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VARIATIONS IN OPTIMIZING SERIAL MULTI-STAGE PRODUCTION/INVENTORY SYSTEMS 

Andrew Z. Szendrovits, McMaster University 
George O. Wesolowsky, McMaster University 

ABSTRACT 

This paper presents two basic, deterministic, infinite 
horizon models for a serial multi-stage production/ 
inventory system. One model assumes that the lot size 
is maintained through all production stages while 
transportation of equal sized sub-batches is allowed 
between stages. Consequently, only one set-up cost is 
incurred for each stage; however, the transportation 
cost of sub-batches must also be considered. An op­
timal solution is presented for this first model. The 
other model has varying lot sizes with lot-sized in­
tershipments assuming certain integrality restrictions 
on the splitting of lots and monotonically increasing 
stage inventory holding costs. A good approximation 
to the optimal solution is given for this second model. 
Comparison of the two models provides an insight into 
the characteristics of multi-stage production systems. 
The efficiency of the computational procedures des­
cribed is demonstrated with extensive computational 
experience. 

INTRODUCTION 

Deterministic, infinite horizon models for serial 
multi-stage production/inventory systems are well 
known in the literature; a general survey is given by 
Clark [l]. The continuous production case, but with 
continuous intershipment., has been treated previously 
by Jensen and Khan [3]. Lot size intershipment as 
well as back-logging were built into the model by Taha 
and Skeith [8] who used complete enumeration and ·some 
limiting assumptions to arrive at a solution. Schwarz 
and Schrage [4] presented a similar model, but with 
"echelon" inventory holding costs, the definition of 
which involves some difficulties in applying the 
proper holding costs, and may lead to certain anomal­
ies as shown by Szendrovits [7]. Crowston, Wagner and 
Williams [2] offered a dynamic programniing procedure 
to optimize a model for multi-stage assembly systems 
where production at each stage occurs instantaneously. 
Most of these models assume that the lot size at each 
facility is a positive integer multiple of the lot 
size at its successor facility. They also assume 
unconstrained capacity at all stages and do not allow 
the inventory unit holding cost to be less at a foll­
owing stage. Transhipment costs are implied to be 
sunk cost or are built into the fixed cost per lot. 
Optimization procedures are illustrated by examples 
for cases with a small number of stages (n < 10). 
An alternative to lot-splitting is to maintain the lot 
size through all production stages while allowing 
transhipment of equal-sized sub-batches between stages. 
A model for such a system, where the number of sub­
batches is predetermined, is offered by Szendrovits [5]. 
It assumes a uniform (average) unit holding cost for 
the process inventory at all stages. It also assumes 
a single production facility at each stage and sunk 
transportation costs. When the transportation cost for 
the sub-batches is known, the possibi_lity of optimizing 
sub-batch sizes is discussed in [6]. 

The two basic production/inventory models presented in 
this paper have n manufacturing stages in sequence. 
These stages are numbered in reverse; that is, the 
final stage, the.one which meets the demand for the 
finished product is stage 1. Deterministic demand 
rates over an infinite horizon and unconstrained 
capacity at all stages are assumed in both models. It 

is further assumed that at a given stage, the inven� 
tory holding cost per unit (the holding cost of units 
with that stage completed) as_well as the set-up 
cost (of single or multiple facilities), and the 
production rate are all constant. 

Apart from these common characteristics the two models 
are distinctly different. 

Model I incorporates the following assumptions: 

a) the lot size is uniform at all stages and 
set-up cost is incurred only once at each stage; 

b) equal sized sub-batches can be transported from a 
given stage to the next production stage before 
the production of the lot is finished; 

c) the transportation cost of sub-batches between 
stages is known and constant; 

d) the stage holding cost per unit at any stage may 
be greater than that at the next stage; 

·e) both the number of sub-batches per lot and the 
sub-batch size must be an integer. 

Model II encompasses the following assumptions: 

a) the lot size of a stage is an integer multiple of 
the lot size of the stage that follows it (this 
is done for the conventional reason of making the 
problem analytically tractable); 

b) the product is transferred between stages in lots; 
therefore, when the lot size is split at a stage, 
multiple set-up costs are incurred at that stage 
and at subsequent stages (reflection on the model 
will show that the case where the following stage 
has a larger-lot size cannot be optimal); 

c) the transportation cost of lots is regarded as a 
sunk cost or, alternatively, it is included in 
the fixed cost per lot (this assumes that the 
transportation cost is independent from the lot 
size); 

d) the stage holding cost per unit for a stage is 
never lower than that for a preceding stage (th±s 
assumption is to simplify the problem; however, 
it is also justified in practice when the inven­
tory holding cost is proportional to the value of 
the product); 

e) the lot size at a given stage �s not restricted 
to be an integer number (however, the optimiza­
tion methods proposed could be modified to 
accommodate this restriction). 

The objective for both models is to minimize the sum 
of the fixed costs and the inventory holding costs of 
the system. An optimal solution is g1ven for Model I 
and a close approximation to the optimal solution is 
found for Model II. Both optimization procedures are 
computationally efficient, (in contrast to other known 
methods) for a large number of stages. This is 
demonstrated by extensive computational experience. 



Symbols common to both Model I and Model II are as 
follows: 

demand rate of the final product (at stage l); 
production rate at stage i; note that Pi > D; 
set-up cost per lot at stage i; note that 
F1 > O; 
fixed transportation cost for a lot or for a 
sub-batch at stage i; 
inventory holding cost per unit at stage i; 
lot size at stage i. 

MODEL I - UNIFORM LOT SIZE WITH SUB-BATCHES 

The Model and the Objective Function 

In this model the lot size is the same at every stage 
and equal sized sub-batches can be transported from a 
given stage to the next production stage before the lot 
is finished. At all stages the entire lot is produced 
continuously, hence with a single set-up cost for each 
stage. Therefore, when the production rate of a given 
stage is greater than or equal to that of the 
following stage, (a shorter operation time followed by 
a longer), production at the following stage starts 
as soon as a sub-batch is available; subsequent sub­
batches will be available to maintain the continuity 
of production at the following stage. On the other 
hand, when the production rate of a given stage is 
smaller than that of the following stage, production 
at the following stage must start with an appropriate 
delay. The inventory model (for the latter case) is 
illustrated in Figure 1, where the areas represent 
the time-weighted inventory for each stage. 

Q 

FIGURE 1 

Time-Weighted Inventory at Stage i with b=4 
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In this model the following additional symbols are 
used: 

Q 

b 

F 

uniform lot size at all stages; note that 
Q = Ql = Q2= 

• . .  
=Qn; 

the number of equal sized sub-batches; 
n L F., the total set-up cost of the system; 

i=l l 

2 

G 

x 

n 
l G., the total transportation cost of one 

i=l 1 sub-batch through all stages; 
the number of units in one sub-batch; note 
that x = Q/b. 

The inventory holding cost per unit time at stage i 
can be expressed as follows: 

c. l 
Qz 

c. r c1- + _1_) + 11:.._ - _1_ 1 Cb-1) 1.Q 2b l pi pi-1 pi pi-1 Q (1) 

The inventory holding cost of the system is obtained 
by the summation of (1). Adding to this the total 
set up costs and the transportation costs (per unit 
time) of the sub-batches, we obtain the average total 
cost of the system: 

n 
c = .Q (F + bG) + QD I Q 2b i=l 

where: 

c. [(1:.._ + _l_) l pi pi-1 
+ 11:.._ - -1-1 Cb-1) 1 

pi pi-1 
(2) 

The objective is to m1n1m 1ze the total cost of the 
system. To simplify notation the objective function 
can be written: 

Minimize C(Q,b) = � (F + bG) + Q(M + N/b) (3) 

subject to: l� b� Q 
n c. 

l.Q_ D where: M = I l 

i=l 2 P. pi-1 l 
n c. [(.Q_ + _D _) N I l 

l.Q_ D ll i=l 2 pi pi-1 P. p i-1 l 

p = D �--� 0 

It is obvious that the larger b becomes, the smaller 
will be the sub-b·a tch size, x = Q/b, and vice-versa. 
Thus, the rounding of small b or x values would make 
the result inaccurate. Therefore, the task is to 
minimize the cost function (3) subject to the inte­
gralities of b and x (of course, this also,yields an 
integer optimal lot size). 

We substitute x = Q/b in (3) and the objective function 
becomes: 

Minimize C (x,b) = D(F/b + G)/ x + x (Mb + N) 

subject to: b and x integers; 1 � b � Q and 
1 � x .::;:Q. 

Optimization Without Integrality Constraints 

(4) 

We first ignore integrality restrictions. By partially 
differentiating (4) with respect to x and b, and by 
solving separately the extremal equations 
ac(x,b)/ax = 0 and ac(x,b)/ab = 0 we obtain: 

=VD(F/b + G) x Mb + N 

b =VnF 
Mx2 

Solving (5) and (6) we obtain the optimal values: 

x* ='/¥" 
b* = '{[" 

(5) 

(6) 

(7) 

(8) 



It also will be useful to have: 
C(x) = min C(x,b) = D G/x + Nx + 2VMDF (9) 

b 
which is obtained by .substituting (6) in (4), and 

C(b) = min C(x,b) 2Vn(F/b + G ) (Mb + N) (10) x 
which is obtained by substituting (5) in (4). It 
could be shown that both C(x) and C(b) are unimodal. 
This also will be useful in the next section. 

Algorithm for Finding Integer b and x Values 

In subsequent expressions, square brackets around a 
variable indicate that only integer values of that 
variable are considered, e.g. the integer values of 
x are denoted [x]; x+ denotes x rounded down and xt 
denotes x rounded up. 

Before showing the algorithm for determining [x]* and 
[b ]*, we describe the logic of the optimization. 
First, we determine the continuous optimal values for 
x* from (7) and for b* from (8). Then, we initiate 
the search on either of the axes. If x*.:;: b* we 
search integers on the x axis, otherwise we search 
integers on the b axis. Let us illustrate searching 
on the x axis. We select x* = [x�] as the initial 
integer value of x and compute b in (6) at this x*. 
We also compute the cost C(x,b) in (4) with two 
integer values of [b+ ] and [bt] and retain Cmin' the 
smaller of the costs. Then we continue searching for a 
better cost on both sides of x* simultaneously, i.e., 
we repeat calculating b and C(x,b) at x*-1, x*+l, 
x*-2, x*+2, ... ,etc, and retain the lowest of the Cmin 
costs obtained at integer b's. Equation C(x) in (9) 
is the cost which is the lower bound for all b values 
at a given x value; therefore, we compute C(x) at each 
integer x value and end the search on the particular 
side of x* whenever a C(x) value is higher than the 
lowest Cmin value already obtained. Since C(x) is uni-
modal, this procedure guarantees an optimal integer 
solution. 

* * 
The algorithm for finding [x] and [b] is illustrated 
for an initial search on the x axis: 

1. 

2. 

3. 

4. 

5. 

* * * * Find x in (7) and b in (8). Since x � b ' set 
x* = [xtJ. If x* < 1, set x* = 1. Retain x*. 
Set L = l; set FLAGl 0, set FLAG2 0, c min 00. 

Set x' = x* and call Subroutine CXB. 

If FLAGl = 1, go to 4. 

Check optimality and/or search for a better Cmin 
on the lower side of x*. Set x' = x* - L and 
compute C(x') in (9). If x' � 1 or C(x') � Cmin' 
set FLAGl = 1 indicating that the search ended 
nn the lower side of x*. If C(x1·) < Cmin' call 
Subroutine CXB. 

If FLAG2 = 2, go to 6. 

Check optimality and/or search for a better Cmin 
on the upper side of x*. Set x' = x* + L and 
compute C(x') in (9). If C(x') � Cmin' set. 
FLAGZ = 2 indicating that the search ended on the 
upper side of x*. If C(x') < Cmin' call Subrou-
tine CXB. 
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6. 

7. 

If FLAGl = 1 and FLAG2 = 2, stop. The optimum 
solution is: [x]* = x . , [b]* = b . , min min 
C( [x]* [b]*) = C . and [Q] * = [x]*[b ]*. ' min 
Otherwise, set L = L + 1 and go to 2. 

Subroutine CXB 
Compute b in (6) at x'; if b < 11 set b = 1. 
Com�ute by (4) C(x' [b+]) and C(x,[b+]), or only 
C(x,b) when b = 1. Select b' from { [b+], [bt]} to 
minimize the cost, Cmin' Retain the best Cmin 
obtained thus far, and the minimizing xmin and 
b . values. Return. min 

* * Had we found that b < x in step 1 of the algorithm, 
the search would have been initiated on the b axis 
instead of the x axis. However, equations (5) and (10) 
would have been used in lieu of (6) and (9). The 
following example will illustrate the algorithm for 
such a case. 

Example 1 
TABLE 1 

Problem Parameters for Example 1 

i F. G. c. P. l l l l 

1 5.0 5.0 2.0 1000 
2 35.0 5.0 1. 7 1600 
3 395.0 5.0 1.3 400 
4 220.0 5.0 0.8 2500 

n = 4 I D = 300 

From the problem parameters we calculate by (3): 
n 

M = 1. 41325, N = 1.25850, F = I Fi = 655.0, 
i=l n 

G = I 
i=l 

G. = 20.0 l 
* * We now use the algorithm to find [x] and [b ] : 

1. 

2. 

3. 

4. 

5. 

6. 

* In (7), x = 69.05; 
* * b < x , we ·initiate 

b* = 5, b' = b* 5. 
FLAG2 = O, Cmin 

* in (8)' b 5.40. Since 
the search on the b axis: 

We set L = 1, FLAGl = 0, 
Call Subroutine CXB. In 

(5), x = 73.77. By (41 C(b', [x+J)= C(5,73) 
1228.26 and C(b'[xt]) = C(5,74) = 1228.19. 
C . = 1228.19 at b . = 5 and x . = 74. min min min 
FLAGl = O, continue. 

b' = b* - L = 5 1 = 4. In (10), C(b') C(4) 
1234.50. C(b') > Cmin' hence FLAGl = l; search 
ended on the lower side of b*. 

FLAG2 0, continue. 

b' = b* + L = 5 + 1 = 6. In (10), C(b') = C(6) 
1228.57. C(b') > Cmin' hence FLAG2 = 2; search 
ended on the upper side of b*. 

FLAGl = 1 and FLAG2 = 2, stop. Optimal solution 
obtained: 

* * * * [b ] b min 5, [x] = x min 74, C( [x] ' [b ]  ) = 
* * * 

c 1228.19, [Q] = [x] [b ] 370. min 
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"Sunk" Transportation Costs The following additional symbols are used: 

si-1 = Qi/Qi-1 for i = 2,3, ... ,n; note that si-1 
is an integer; 

Transportation costs in a plant are often regarded as 
sunk costs because the transportation system must 
handle a whole spectrum of products and it is difficult 
to allocate the costs of the system to particular 
product lots. In such cases the sub-batch size is 
usually predetermined to suit the load capacity, or 

- j=i-1 Tii-l - Tij=l Sj; for later notational convenience we 

c i � c i _ 1 for i = 2, 3, . • •  n. 
the best utilization, of the transportation equipment. 
Undoubtedly, such a choice of sub-batch size yields 
only a sub-optimal solution, but it still results in a 
better cost than transporting whole lots. To simplify certain expressions, we define for stages 
If the sub-batch size is a fixed integer, [xs], the 
sub-optimal number of sub-batches, [bs ], can be found 
by setting G = 0 in the cost function (4) and 
applying only the subroutine of the algorithm. 

Computational Experience and Conclusions 

i = 1,2, ... ,n: / 

d. l 

e. l 

ci(D/Pi-l - 1)/2, where PO 
F.D l 

D 

Numerous randomly selected examples were solved for 
different numbers of stages (n = 5, n = 10, n = 20, 
n = 30) on a CDC 6400 computer. No significant 
difference was found in the execution times for 
smaller and larger number of stages; the small 
differences appeared to be rather data dependent. 
Generally, the execution time was between 0. 025 and 
0. 035 seconds per case for n � 30. 

The inventory _holding cost per unit time at stage i 
can be determined from the triangular and rectangular 
areas in Figure 2. For the triangular areas we 
obtain: 

It is also interesting to note that optimum solutions 
for all cases were obtained with no more than two 
iterations. In some contrived cases there could be 
more than two iterations; nevertheless the 
computational procedure will always yield an optimum 
solution. 

MODEL II - VARYING LOT SIZES 

Q� Q� 
ci(2P

1
. +�)1?_ i 2pi-l Qi 

for the rectangular areas it is: 
Ql Si-l(Si-1 - l) D ciQi-1Cn--) 2 (s1s2···si-2) � 

l 

The set-up cost per unit time at stage i is: 

The Model and the Objective Function 

In this model the lot size may be different at various 
stages; reflection on the model will show that the 
case where a following stage has a larger lot size 
cannot be optimal. The lot size is an integer 
multiple of the lot size at the stage that follows it, 
and only lot-sized intershipments are allowed 

Consequently, the total of inventory holding costs and 
set-up costs per unit time for stage i is: 

between stages (including the final stage). This 
inventory model is illustrated by Figure 2 in which 
the triangular and rectangular areas (distinguished 
with different lines) represent the time-weighted 
inventory for each of four stages. 

C. l 

where: P0 
FIGURE 2 

Time-Weighted Inventory with s1 

D 
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(11) 



Thus, Ci is a simultaneous function of Q1, Si-l and 
Ili_2. The expression for Ci can be simplified to: 

e. l C. = Q1rr._2(s._1b. + d.) + Q IT S (12) l l l l l 1 i-2 i-1 

The objective is to minimize the total cost of the 
system. The objective function is obtained by 
summation of (12) over all stages: 

n 
Minimize TC(Qls) = Ql I ni-2 (Si-lbi +di) 

i=l 

(13) 

where s is the set { S1,s2, ... ,Sn-l} 

We partially differentiate (13) with respect to Q1, 
set the derivative to zero and solve to obtain the 
minimizing Q1, which we designate Qlmin: 

n 
l e/(IIi-2si-l) i=l (14) n 
.I rri-2<si-lbi+di) 
i=l 

For a given Q1 the cost at any i'th stage is defined 
by Ili_2 and Si-l" A dynamic programming approach, 
using rri_2 as a stage variable and Si-l as a 
decision variable, will be used to minimize the total 
cost (13). 

Optimization Without Integrality Restrictions 

It will be handy, for several reasons, to hav� a 
solution to the minimization of (13) ·but with no 
integrality restrictions on the Si's. There are a 
number of ways of solving a problem of this type. 
However, the convenient and efficient "collapsing" 
method used by Schwarz and Schrage [4] will be 
employed. A brief outline is given in this section. 

To distinguish this case we use qi's instead of Qi's 
and s. 's instead of S.'s. We define l l 

qi si-l for i = 2, ... ,n, and o to be the set 
qi-1 

Thus, the total cost in (13) can be rewritten: 
n 

TC (qi) = I qi(bi+di+l) + c i=l 

subject to: q1 < q2 < q3 < 

where: qi = {q1,q2, ... ,qn}. 

n e. 
I -2:. 

i=l qi 

This can be converted to the expression 
n 

TC (qi) c 

where: 

I (Kiqi + Mi/qi) 
i=l 

K. b. + di+l for l l 

dn+l = O; 

M. e. l l 

i 1, ... ,n, and we set 

(15) 

(16) 

(17) 
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Let us now define: N 
qi as the optimal lot size 

computed independently for stage i: 
N \� 

qi = � � (18) 

lt is evident that in the absence of constraints, (18) 
would give the optimum q values. Since (17) is a 
convex objective function and constraints are convex, 
the Kuhn-Tucker conditions are necessarv and 
sufficient for optimality. The problem can be written: 

n 
Minimize 

iil (Kiqi + Mi/qi) (19) 

subject to: qi-qi+l � 0 for i=l, • . .  ,n-1 

The Kuhn-Tucker conditions (somewhat simplified 
because we know that the qi's are always positive for 
non-trivial cases) are: 

*2 
K1-M/q1 + ul = 0 (20) 

*2 
Ki-Mi/qi 

*2 
Kn-Mn/qn 

- ui-1 + 

- u n-1 
* * 

= 

u. 0 l for i 2,. - ,n-1 

0 

where: q1, 
• . . ,qn are the optimal q values. 

The ui' s are positive or zero; also, ui ·, 0 only when 
constraint i in (20) is tight and holds as an equality. 

We can now show (this proof is similar to one in 
Schwarz and Schrage [4]) that: 

N N * * If qi < qi-1 then qi = qi-1. (21) 

To prove this we assume the contrary conditions, i.e., 
N N >'< * 

qi < qi-l and qi > qi-l and show that they are not 
possible. Since, using (20), 

q: � Y Ki-ui:� + ui 
* * and because qi > qi-l means that ui-l = 0, the 

* N consequence is that qi � qi. Using the given 
conditions, we now have: 

* N 
qi < qi-1 (22) 
Further, since 

* the consequence is that qi-l � 
given conditions we now have: 

* N 
qi > qi-1 

From the 

(23) 

The inequalities (22) and (23) are contradictory and 
the proof is complete. 

To find the optimum solution to (19), we first find 
the quantities q� from (18). Suppose that there is i. N an i such that q� < q. 1 (if there isn't, then 

* N i i-
qi qi for all i). Since qi = qi-l at optimality, 
we can combine the two stages so that • 

I 

Ki = Ki + Ki-l and Mi = Mi + Mi-l" We now have a 



new problem of the type (17), but with one less 
stage. This collapsing continues until it can 
proceed no further and hence the set of optimal qi values has been found: 

* * * * 
� { q1,q2, .•• ,qn}, and the set of optimal si's 

* * * * 
from (15) is: o {s1,s2, ••. ,sn_1}. 

Example 2 illustrates the computational procedure. 

Example 2 

Here we use the same data as in Example 1. However, 
it is assumed. that the set-up cost Fi includes Gi, the 
transportation cost of the lot (which is independent 
of the lot size) at stage i; i.e. Fi = Fi + Gi. 
Consequently the only change in the problem parameters 
in Table 1 is that: 
Fl = 10.0, F2 
at each stage. 

400, F4 225, and Gi 0 

N From the problem parameters we can calculate qi using 
(18) as it is illustrated in Table 2. 

i b. l 

1 1.300 
2 1.009 
3 1.138 
4 0.448 

TABLE 2 
Calculation of q� Values l 

d. e.=M. K. l l l l 

0.000 3000. 0.705 
-0.595 12000. 0.481 
-0.528 120000. 1.038 
-0.100 67500. 0.448 

N qi 
65.23 

157.91 
340.09 
388.16 

N N N N Since q1 < q2 < q3 < q4 no collapsing is necessary. 
We have obtained a solution to (19) and, consequently, 

* * * to (16 ): q1 = 65.23, q2 = 157.91, q3 = 340.09, 
* * 

q4 = 388.16 or � 
* * * 

{65.23, 157.91, 304.09, 388.16} and 
* 

TCc(� ) = TC (ql) 1297.45. From (15), s1 = 2.42, 
1, * * 

s2 = 2.15, s3 = 1.14 or o 

The "Rounded Solution" 

{2.42, 2.15, 1.14}. 

The solution to (16 ) is important for two reasons. 
First, since (16) is merely the minimization of (13), 
but with relaxed constraints, the solution to (16) 
gives a lower bound on the minimum of (13). Secondly, 
we can obtain an approximate minimum to (13) by 
"rounding". 

Let S� = [s: ], where the brackets indicate conven­
tional rounding to an integer. If we .use S� for S. l l 

* in (14) we obtain qlR' and the minimum total cost of 
this "rounded solution" can be computed. The value 

* 
h i"f of qlR must yield a cost equal to or less t an 

* R, q1 were used with Si s. 

From Example 2, we have S� = 2, sR2 = 2, SR 1 o'r 
*3 

or sR = {2,2,1}. Using (14) we obtain qlR 85.69. The 
cost*of the rounded solution, by substitution in (13), 
TC(qlR'sR) = TC*(sR) = 1304.12. 
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The approximate rounded solution, as shown by 
computational experience, quite often could be the 
same as the optimal solution. 

Dynamic P rogramming to Find Integer Si's at a Given Q1 

In this section, we will discuss the problem of 
minimizing (13) for the case where a set of 
permissible values for Si is given. 

Let SI = { G1, ... ,Gn_1}, where Gi is the set of 
permissible values for Si. Given SI, we can·construct 
PI = { H1, •.. , Hn_2}, where Hi is the set of permissible 
values for rri. In practice, such limitations on Si 
or rri could actually exist as a result of storage 
limitations or transportation convenience; however, 
they can be eliminated by extending the search region. 

Let us assllllle for the moment that Q1 is known in (13) 
and that the best S. 's must be selected from SI for l 
that Q1• The problem of minimizing (13) can be 
solved by a standard dynamic programming approach. 

At any stage i, let rri_2 be the state variable, and 
Si-l be the decision variable. As seen from (12) the 
cost Ci of any stage, at a given Q1, is defined by 
these two variables. We can now write the recursive 
relationship. 

where: Ili_2EHi_2, Si-llli_2 
* fn+l(Iln-2Sn-l) = O. 

rri-l' and we set 

This recursive relationship can be used in the 
conventional way; moving backward from stage n to 
stage 1 and finding the optimal policy Si-l for each 
state Ili_2 of stage i. After this is finished, at 
stage 1 the optimum sl will be found; tracing 
forward through the stages will give the rest of the 
Si's. Thus, having found the set 
s = { s1,s2, .•• ,sn_1}, by using (4) we can find 

(25) 

The "Likely Optimum Solution" 

We now describe the finding of a solution that we call 
(in high hopes) the "likely optimum solution." We 
first define 

(26) 

* and we denote the Q1 that minimizes TC(Q1,s) with Q1s. 

* 
First, the collapsing method is used to find q1 as 
described before. Then, we find the best s at 

* q1 by dynamic programming described in (24). Once 
* the best s is found, a Q1r can be determined by (14) 

.., >'< and TC*(s) can be computed. Using the Qls' the 



cycle of dynamic progralllIIling and application of (14) 
is continued iteratively until no further improvement 
in cost can be found. The result will be the likely 
optimum solution, TC(QlL'sL) = TC*(sL). Example 3 
illustrates the procedure and notation. 

Example 3 

We continue with the problem of Example 1. Assume 
that 
SI = {{1,2,3,4}, {1,2,3,4,5,6,7}, {1,2,3,4,5,6,7}, 
hence P I = {{1,2,3,4,5}, {1,2,3,4,5,6}} .  

T o  find the likely optimum solution w e  first 
determined, by dynamic progralllIIling, sl at q� 65.23 

* (note that q1 was calculated in Example 2). 
The result was s1 = 2, s2 = 3, s3 = 1 (or s1 = {2,3,1}). 
Using s1 we calculated by (14) Qfs 61. 8, and the 

1 
corresponding cost by (13) was TC*(s1 ) = 1305.18. We 
now illustrate the dynamic programming procedure by 
finding s2 at the new Q1 (which is Q� 1 s1 
Table 3 illustrates the calculations according to (24). 

* It can be seen in Table 3 that f2(rr0) = 1173.60 
occurs at s1 = 3; consequently rr1 = 3. At 

* rr1 = 3 the best cost is f3(rr1) 958.68 which occurs 
at s2 = 2, consequently 

* 
rr2 = 6. At rr2 = 6 the best 

cost is f4(rr2) = 311.18 which occurs at s3 1. 
Hence s2 = {3,2,1}. Now using s2 in (14) we calculate 
q

* = 58.80, and using (13) we find the cost to be ls2 
TC*(s2) = 1300.94. 

* Since the application of dynamic programming at Qls 
58.80 does not change s2 (i.e. s is stabilized), we2 

have obtained the likely optimum solution: 
Q:s = Q1L = 58.80; s� = 3, s� 2 and s� = 1 

2 

The likely optimum solution, as shown by computational 
experience, very frequently could be the same as the 
optimal solution. 
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TABLE 3 

Dynamic ProgralllIIling 

f 4 (Il2) = C4 (S3,l12) 

I* 2 1 2 3 4 5 6 7 

1 1115.9 596.3 441.5 378.0 350.8 342.0 343.6 
2 590.1 371.8 335.9 345.5 
3 429.2 329. 7 351.8 
4 359.5 333.2 398.1 
5 326.2 354.9 
6 fil.d 385.8 

. f3 (Ill) = * c3(S?.Ill) + f4(rr2) 

I� 1 1 2 3 4 5 6 7 

1 2325.2 1416.4 1156.1 1067.7 1033.5 1023.8 1043.1 
2 1383.8 1035.1 991. 3 104 7. 8 
3 1091.0 � 1064.7 
4 969. 9 982.7 
5 903.2 1057 .4 

f2Cno) = * C2(Sl,ITO) + f3(Ill) 

AA 1 2 3 4 

1 }1243.9 1176.4 1dZl:.§. 1230.9 

The Approximate Optimum Solution 

Figure 3 illustrates the cost curves obtained by the 
solution procedures applied to the example. The 

* * minimum cost with· continuous si's, TC (q1), 
is the lower bound to the solution with integer Si's. 
The minimum cost obtained by the likely optimum 
solution, TC*(sL), is smaller than that computed by the 

FIGURE 3 
Illustration of the Problem and Examples 
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rounded solution, TC*(s
R

). Hence, in our example the 

likely optimum solution is chosen for the approximate 
optimum solution (in fact this is the optimum 

solution). Of course, the smaller of the two costs 
will always indicate the approximate optimum 
solution. Computational experience has shown that the 
approximate solution is overwhelmingly close (or 
often identical) to the optimum. 

The optimum solution can be computed with an elaborate 
search procedure somewhat similar to that applied for 
the likely optimum solution. The achievement of 
optimality depends on the width of search regions in 
the dynamic programming procedure. The widths adapted 
in our computations were such that, for practical 
purposes, we were assured of optimality. 

Computational Results and Conclusions 

The algorithm was tested on a large number of problems 
(with integer S

i
's). Test problems were generated in 

the following manner. Ranges were chosen for the 
problem parameters: Range (D) = [5000,50000]; 
Range (P) = [60000, 625000]; Range (c) = [0.1,2.5]; 
Range (F1) = [1,500]; Range (F

i>l) = [0,500]. 

For D, P and c, in each test problem, values were 
simply chosen by using a uniform probability 
distribution within each range. Since values of c

i 
must decrease with increasing stage number (c

i
<c

i_1
), 

the values generated were ordered accordingly. In 
practice, zero set-up costs can occur at certain 
stages, thus, for one half of the cases, F's were 
chosen so that one sixth of them took up at random 
a zero value. On the other hand, when F

1 
= 0 was 

generated, it was adjusted to F
1 

l; otherwise the 

model breaks down (if F
1 

= 0, Q
1 

0). The remaining 

values were sampled uniformly within the range. Of 
course, Q

1 
is actually an integer and a continuous 

value is used only as an approximation; if Q
1 

is not 
very small the resulting error is negligible. The 
parameters were thought to be "reasonable and 
representative" of what might be encountered in 
practice. Some contrived problems were also computed, 
but no discernible difference in performance was 
found. Tables 4 and 5 give comparisons of the 
performance and execution times (on a CDC 6400 
computer) of rounded and likely optimum solutions. 

·TABLE 4 

Accuracy of Solutions and CPU Times Per Case 

No. of No. of Rounded Solution Likely Solution 
Stages Cases 

% Optimal Seconds % Optimal Seconds 

5 400 79.50 0.004 92.75 0.033 

10 400 65.50 0.008 85.50 0.077 

20 400 33.50 0.018 74.50 0.210 

30 400 28.75 0.037 71. 75 0.404 

Some rather obvious generalizations can be made from 
the computational results in Table 4. The rounded 
solution is extremely fast even for large n, but.it 
is optimal in a large percent of cases only for small 
n values (79.50% for n = 5). The likely optimum 
solution is somewhat slower, but is optimal in a 
large percent of cases even for large n values 
(71.75% for n = 30). Note that in computing the 
likely optimum solution, it takes a trivially small 
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extra time to obtain the rounded solution. Both 
solutions can be obtained with virtually the same 
amount of time that is needed for the likely optimum 
solution. 

TABLE 5 

Cost Ratios of Approximate and Optimum Solutions 

No. of Percent of Cases at Cost Highest 
Stages Ratios or Below Ratio 

1.000 1.005 1.010 1.020 1.030 

5 96. 75 98.75 99.75 100.00 - 1.011 

10 92.75 97.75 99.75 100.00 - 1.018 

20 86.25 97.00 99.50 99.75 100.00 1.023 

30 81.00 93.50 98.25 99.75 100.00 1.025 

As shown in Table 5, the approximate optimum, the 
better of the �wo solutions for the same case is, in 
fact, optimal in a large percent of cases even for 
large n values (81.00% for n = 30). Further, the 
costs obtained by the approximate solution do not 
exceed the optimum costs by more than 1% in 99.50 
per cent of the cases if n � 20, and the excess cost 
is hardly more than 2% in any case. 

COMPARISON OF THE TWO MODELS AND CONCLUSIONS 

Quantitative Considerations 

Each of the two models implies and identifies a parti­
cular organization of the production process and is 
based on defined assumptions. There can be variations 
in process organization for which neither model would 
fit; nevertheless, our models can be regarded as two 
basic models for a multi-stage serial system. It can 
be shown that the cost function of each model reduces 
to the same expression, when the lot size is the same 
at each stage and only lot-sized intershipments are 
allowed. 
When the stage inventory unit holding costs are not 
increasing monotonically, the cost function for Model 
II does not identify the best process organization. 
However, Model I still can be applied to such cases. 
When the conditions of both models are satisfied (the 
unit holding costs are monotonically increasing and 
sub-batching is feasible) the choice would be deter­
mined by least cost. We have used the same problem 
parameters for both models in our examples. Model I 
(Example 1) yielded a cost of 1228.19, and the cost 
computed for Model II (Example 3) was 1300.94. Thus, 
in our particular problem, Model II resulted in a 6% 
higher cost. Of course, this could be different for 
another problem; for example, if the transportation 
cost of a sub-batch had been greater. 

Qualitative Considerations 

The application of the models in the case of "sunk" 
transportation costs needs special attention. Sub­
batch size (the optimal intershipment quantity) and, 
therefore, the optimal number of sub-batches is often 
determined by technical feasibility (for example, the 
sub-batch size may be chosen so that it fully utilizes 
the load capacity of the transportation equipment). 
Model I can be applied appropriately for such a case. 
One must remember, however, that in Model II the inter­
shipment cost is incorporated in the fixed costs per 
lot at each stage (as in Example 3) and is assumed to 
be the same for any lot size. Consequently, if lot 
sizes at different stages are multiples of the optimal 
intershipment size, some additional and unaccounted 
transportation costs exist. Such considerations 
may warrant adjustments to the calculated cost. 



In both models we distinguish between finished product 
inventory (inventory at the final stage) and process 
inventory (inventory at all other stages). It can be 
shown graphically that when the initial lot size, Qn' 
as well as b in Model I and Iln-l in Model II are about 
the same (as in our examples), the basic difference 
between the two models is that a relatively larger 
proportion of the average inventory is shifted to the 
final stage (Stage 1) in Model I than in Model II. 
Although, this occurrence is problem parameter 
dependent and is accounted for in the calculated 
minimum costs for the models, we must be careful 
because stage inventory unit holding costs derived 
from cost accounting data may be more unreliable for 
process inventories. Since they are difficult to 
measure, many intangible cost factors (e.g. relatively 
more expensive storage and handling costs in the plant 
than in stores, record keeping of process inventories, 
scheduling costs, etc.) are usua�ly ignored in process 
inventory costs which, therefore, can easily be under­
estimated. 

It is realistic to assume that the more variety of 
stage inventory exists at a time, the more expensive 
it is to hold the process inventory. A measure of 
this variety can be expressed by comparing the man­
ufacturing cycle time (the maximum time span during 
which any unit from an initial lot is in process 
inventory), and the demand cycle time (the maximum 
time span during which any unit from an initial lot is 
in finished product inventory). The determination of 
the manufacturing cycle time is discussed in [5]. 
Accordingly, for Model I the manufacturing cycle time 
is: Qn n n 
Tm [ l 1 + (b-1) l cL - _ l_ ) Ii] (27) 1 b i=l pi P. pi+l i=l 1 
where: 

-1- = O,· Ii = 0, if l < P • P "P. ' i+1• I 1 1.f .1_ >_1 
__ 1. = ' 

p p n+l 1 i i+l 
For Model II the manufacturing 
from Figure 2, is as follows: 

cycle time, derived 

n rri-1 Ql Ql l P. + � (Iln-1 - l) 
i=l 1 

(28) 

The demand (usage) cycle time of the initial lot size 
in each model is: 

Qnj/D, for j 1,2 (29) 

where: Qnj is the lot size at stage n in Model j. 

The ratio between the holding time of process inven­
tory and that of final product inventory of one initial 
lot indicates the average number of initial lots in 
process: 

r. 
J 

T�/T� 
J J 

(30) 
The meaning of this is that: if rj � 1, there is only 
one initial lot in process at a time; if rj >. 1, then 
more than one initial lot could be found in process 
at some time. 

Table 6 contains the cycle time data derived from the 
problem parameters and the results of our examples. 
We can see from Table 6 that the average number of 
initial lots in process is 0.97 for Model I, and 1.84 
for Model II. This implies that in our particular 
problem one must keep track of a larger variety of 
stage inventories in Model II than in Model I. 

Again, this result is problem parameter dependent. 
Nevertheless, the analysis shown is useful because 
the effect of a larger variety of stage inventories on • 
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holding costs is extremely difficult to evaluate and 
to incorporate in stage inventory unit holding costs. 
Therefore, in effect, the stage inventory unit holding 
costs may not be the same for both models. The cycle 
time analysis presented here could induce further 
adjustments to the calculated cost. 

TABLE 6 
Cycle Time Data for the Two Models 

Symbols Model I Model II 

Qnj 370.00 352.00 
D 300.00 300.00 
T1'.1 1.19 2.17 

J 
T� 1.23 1.18 

J 
r. 0.97 1.84 

J 

Conclusions 

Comparison of the two models has revealed the effects 
of various basic assumptions in multi-stage inventory 
systems. One must remember that each model fits a 
particular process organization. The results derived 
from the model are only valid if the process organ­
ization implied by the model is followed. Several 
models may be feasible under certain conditions. The 
selection of the "best" is problem parameter dependent; 
therefore, the result of different models must be 
compared. It was shown that inventory unit holding 
costs incorporated into the models may not account for 
subtle (but important) effects generated by differing 
process organizations. Consequently, beyond the 
quantitative comparisons of results derived from 
alternative models, a careful qualitative scrutiny 
of models and data is very much desirable. 
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