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ABSTRACT 

The problem of finding an optimal advertising and 

production policy in a firm is analyzed u sing a recently 

proposed model of a marketing-production system. First 

it is shown that the optimal control problem underlying 

the proposed model is a partially singular control prob

lem. Then, using a reverse time parametric approach, a 

solution procedure is designed to determine the optimal 

advertising and production policy for the proposed model. 

Finally, it is shown that the results deriving from the 

new model are applicable to problems of capacity expansion 

in a firm. 

McMASTEH Ut�;v,�:(;'l; I I F<:f!"·��,. 
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1. INTRODUCTION 

Marketing and production policies in a firm tend to be interdependent. 

Marketing policies are normally designed to generate demand for the firm's 

products whereas production policies are normally designed to meet that 

demand. 

Although marketing and production policies in a firm are interdepend�nt, 

most of the models of marketing and production planning assume that the deci

sion making in the two areas is separate [e.g. , 11, 12, 17, 22, 30]. In 

recent years, :however, models incorporating the interdependencies between the 

two areas have been proposed (7, 8, 19, 20, 27, 29]. Thomas (27] proposes a 

linear programming approach to solve the problem. Leitch (20], Bergstorm [7], 

and Damon and Schramm [8] propose mathematical programming models to address 

the problem. The problem has also led to models that have a structure of a 

continuous optimal control problem. Koive et al. (19] propose a stochastic 

model of a marketing-production system using an arbitrary sales-advertising 

relationship. Thompson et al. [29] propose an optimal control model for a 

monopoly. Recently this author proposed [l, 2] an optimal control model where 

the two functions are represented by empirically derived subsystem models: 

the HMMS model of production planning [11] and the Vidale-Wolfe model of sales

advertising relationship [30]. 

In this paper, we consider the optimal control problem underlying the 

marketing-production model proposed in [l]. First we show that the optimal 

control problem underlying the new model is a partially singular control prob� 

lem. Then, using a reverse time parametric approach, we develop a solution 

procedure.for determining the optimal control to the proposed model. The 
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procedure, although described in terms of the problem under con�ideration, is 

fairly general and can be applied to other similar singular control problems • 

Finally, we show that results deriving from the model are applicable to prob-

lems of capacity expansions. 

2. THE PROPOSED MODEL 

The problem of advertising-production planning for a single product can 

be formulated as [l, 2]: 

min J(A,P) 

A,P 

s.t. 

Where 

S(t) 

I(t) 

P(t) 

A(t) 

A. 

r 

= !T[-(1 - q)S +A+ C P + C (P-P*)2 

0 v p 

I P - S/C 

S = rA(l - S/M) - A.S 

A < A < A min - max 

I(O) = I
O' s (0) = s

o 

Sales rate at time ( t) ' ($/day). 
' 

J;.,evel of inventory at time (t)' (Units). 

Rate of production at time (t) ' (Units/day). 

Rate of advertising expenditure at time t, ($/day). 

sales decay constant, ( /day). 

sales response constant, ( /day). 

(1) 

(2) 

(3) 

(4) 

(5) 

... 
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saturation level of sales rate, ($/day). 

Selling price - assumed to be constant, ($/unit). 

= per unit cost of raw materials, direct labor and other 

production costs that are proportional to P(t), ($/unit). 

fraction reflecting all other variable costs. 

C [P(t) - P*(t)]2 
p 

The rate of costs that are related to the deviation of 

C [I(t) - I*(t)]2 
I 

the actual rate of production, P(t), from the desired 

rate of production, P*(t) (e.g. undertime-overtime 

costs), ($/day}. 

= Rate of costs associated with the deviation of the 

actual level of inventory, I{t}, from the desi.red 

leyel of inventory L*(tl1 ($ /dpy}, 

b1 = value of a unit inventory at t = T, ($/unit). 

b2 = value of a unit sales rate at E = T,($/unit) 

F = All on...... fixed costs during the planning horizon. 

A . = The minimum rate of advertising that the firm can min 

effectively maintain. Assumed to be zero in this paper. 

A = The maximum rate of advertising that the firm can max 

ro 
so = 

effectively maintain. 

initial level of inventory. 

initial sales rate. 

Equation (3) above is the Vidalc-Wolfc model of sales advertising 

relationship. The equation was proposed in 1957 [30], and it is empirically 

validated. The interpretation of the equation is the following: the increase 



- 4 -

in the rate of sales rate, dS, is proportional to the intensity of advertising 
dt 

effort, A, reaching the fraction of potential customers, (1-S/M), less the 

number of customers that are being lost due to forgetting, AS. Equation (2) 

is the production-inventory identity. It says that the inventory accumulates 

at a rate equal to the difference between the production rate and the sales 

rate. 1 The objective function (1) is the negative of the profit during the 

planning period plus the value of the ending inventory and the ending sales 

rate (goodwill). 

The model does not include constraints I(t)l<Q (i.e. no backordering), 

P(t)<O. This is because it is assumed that the presence of the quadratic 

terms in the objective function would preclude possibility of I(t)<O, P(t)<O. 

Moreover, for simplicity, I*(t) and P*(t) are assumed to be constants with 

respect to time, 

3. NATURE OF THE OPTIMAL CONTROL 

PROBLEM UNDERLYING THE PROPOSED MODEL 

Let n1 and n2 be the adjoint variables associated with constraints (2) 

and (3) respectively. Then the Hamiltonian for the above problem is 

�(I,S, nl' n2,P,A} = [-(1 - q)S +A+ CVP + Cp(P.-- P*)2 

+ c. (I - 1*)2] + n [P - S/C] I 1 

+ n2[rA(l - S/M) - AS] 

(6) 

1Dimension of S (t) is $/day. Thus, division of S (t) by selling price (C) is 
necessary for consistent dimensions in the above identity. 
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It is easy to see that the Hamiltonian is linear with respect to A and 

quadratic with respect to P. Thus the order of the hessian of H with 

respect to P and A is one. That is, the optimal control problem under 

consideration is a partially singular control problem [5]. 

4. NECESSARY CONDITIONS FOR THE OPTIMAL CONTROL 

Using Pontryagin 's Maximum Principle [23]: 

aH 
n = - - = -2 C (I - I*) 

and 

1 ·1H I 

aH _ 

n2 = - as -
nl rA (1 - q) + -+ n [- + /..] C 2 M 

n1 (T) = -bl 

n2(T) = -b2 

Furthermore 

inI 
ap n + 2C (P - P*) + C = 0 1 p v 

and, since H is linear with respect to A, 

where 

A(t) 

A max 

A s 

0 

if 

ciH S H = - = 1 + rn (1 - -) A aA 2 M 

HA < 0 

HA 0 

HA > 0 

and A denotes singular rate of advertising. s 

From (7) and (11) 

(7 ) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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dt = C {I - I*) 

p 

-2C dP 
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Similarly, from (9) and (11), 

or 

n (T) = -2C [P (T) - P*] - C = -b 1 p v 1 

Pf.n = P* + [b - c 112c 1 v p 

Thus equation (11) can be used to eliminate n1, and equations (14) and 

(15) can be used in place of equations (7), (9) and (11) . 

(14) 

(15) 

Note that A in condition (12) is not characterized yet. Furthermore, s 

given condition (12) and given initial conditions (5) and terminal conditions 

(9) and (15), the structure of the. optimal path for· a sufficiently long 

planning horizon is likely to be one described in Fig. 1. Specifically, 

optimal advertising policy for the planning period is likely to be non-

singular (i.e. , A = A or O) in the beginning and at the end of the planning 
max 

period and singular (i.e., A = A5.) during the middle of the planning period. 

In what follows, we assume that the structure of the optimal path is as 

described in Fig. 1. Then, in light of this structure, we state the 

necessary conditions for the stage r. and Ill of the optimal path, We 

characterize A and develop necessary conditions for the stage II of tlie s . 
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path. Finally, we state the necessary conditions for the optimal path at 

junction times t1 and t2• 

4.1. Necessary conditions for stage I and III of the Optimal Path 

Let A denote A = A or A = O. Then necessary conditions for stage I ns max 

{i. e • for t E [ Q, t1) ·} 
(14); and the condition 

in (S, I, n2,P, A) space are: conditions; (2), (3), (8), 

A = A  ns 

A max 

a 

if . 

if 

H � 0 A 

H " 0 A 

(16) 

plus the initial conditions 1(0) = 10, S(O) = s0; t1 is a parameter. Similarly 

necessary conditions for stage III {i. e. , for t E (t2,TJ} are the same as be-

fore e�cept that now boundary conditions are terminal conditions n2 en = 

P(T) = P* + {b1 - C
v

J/2Cp; t2 is a parameter. 

!> 

4. 2 Necessary conditions for stage II of the Optimal Path 

In state. I.L, A = As and HA = 0 .. Thus in stage II:, 

s HA = 1 + rn2 �l - M} = o 

--b2 � 

(17) 

Differentiating (_17} once and substituting fo:r n2 from (8J and for S from 

(3), we have 

d 
dt HA 

. s "1 s (1 - q) (1 - -) + An + � (1 -.-) M 2 C M a (18) 
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Similarly differentiating {.l8} once TQore,_ and simplifying, it can be 

shown that 

A'!!' A s 

C M  AS 
_ �

I
� (I - I*) (l - S/M)2 = C A  

Also from (17) 

-1 
n2 = r (1 - S/M) 

and from (18) and (11), 

_ * _g_ 
_ 

A/r 
p - p + 2C {<lv (1 - S/M)2} 

p 

where 

<iv = 1 - q - C /C v 

When A = A , (3) reduces to s 
rCIM 3 S = - -- (I - I*) (1 - S/M) c 

and from (21), (2) reduces to 

I P* + _g_ { · A/r 
2C -· <lv - '1 - ,.,, > 

} 
p 

s 
c 

(19) 

(20) 

(21) 

(22) 

(23) 

Thus the necessary conditions for stage II are conditions (22), (23), (20), 

(21), (19} and the condition that t1 and t2 are parameters. 

Note that the e
.
quilibrium point of (22) and (23) can be obtained by 

setting the left hand sides in those equat:i..�ns to zero. Thus the equili--

Brj.�m point for e;uation (22) a�c (2j) is 
I = I* 

and S = S* where S* is the solution2 of 

P* + _g_ { A/r 
2C <lv - " _,.,,.,} p 

�=0 - c 

2
It can be shown that only one of the roots of the above cubic would be 
between 0 and M. 

(24) 

(25) 

I 
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Moreover, from (2) and (3) 

A = A.S*/[r*(l - S*/M)] 

P = S*/C 

It can be shown that the equilibrium point described by equations (24) 

through (27) above is the long run optimum for the firm. Thus from (1), 

the profit rate at the long run optimum for the firm is given by: 

R = (1 - q)S* - A - C (P - P*)2 - C P e p v 
where A and P are as described in equations (26) and (27) above. 

The equilibrium point (I*,S*) described above is a saddle point for 

(26) 

(27) 

(28) 

equations (22) and (23) [9]. The behaviour of the singular subarcs in the 

neighbourhood of (I*,S*) is therefore as described in Fig. 2 [9]. 

4.3. Necessarv conditions for the Optimal. Path at Junction Times 

The state variables I and S, and the adjoint variables n1 and n2 are 

continuous at the junction points [23]; 

Thus, at t1 and t2 

I = I+ 

s = s+ 
---

- + 
n1 = n1 

+ nz = n2 

(29) 

(30) 

(31) 

(32) 
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FIGURE 2· 

Stability of the System Represented by Singular Equations 
in the Neighbourhood of the Equilibrium Point ( I*, S*) 
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Thus, continuity of n1 at t1 and t2 implies continuity of P at t1 and t2• 

Hence, at tl and t2' 

(33) 
+ p = p • 

5. A PROCEDURE FOR SYNTHESIZING THE OPTIMAL 

CONTROL FOR A GIVEN PROBLEM 

The necessary conditions for the various parts of the optimal path were 

described in the previous section. In this section, we further examine the 

optimal path in light of those necessary conditions. First we describe the 

stage-III boundary value problem that characterizes the stage-III non-singular 

subarc. Then we describe the admissible set of singular subarcs; i.e. the set 

of singular subarcs that can be a part of an optimal path. We study the 

optimality of the stage-I non-singular subarc; and in the final part of this 

section, present a procedure for synthesizing the optimal control to a given 

problem. 

5 .1. · Boundary Value. Problem fcit the Stage JTl Nori.,.;.Sirtgular SuB.arc 

From (21) and (33) 

+ ;.. C · - · A./r · · 
P(t2) = P(tz} = P* + Zc {� - I1 _ S(t'"'' ",,;i} 

p 2 

Similarly from (20) and (32), 
+ - . -

n2<t2) = n 2<t2) = -1/{r[l - S(t2)/MJ} 

(34) 

(35) 



- 13 -

Thus, for the stage III non-singular subarc, there are three in:i.tial conditions 

[condition (34), condition (35) and the assumption of S(t2)] and two terminal 

conditions (10) and (15). However the duration of stage-III, T3 = T3 - t2 is 

free to vary. Thus for a given S Ct2), the stage. III non-singular subarc is. 

characterized by differential equations (_2)1 (3)2 (�) and (J4), and the boundary 

conditions (34), (35), (10) and (15)_, Computational exper:j_ence with the model 

suggests that· in general the_ locus of [S(.t2), t.Ct2)J is as· descrioed in Fig. 3, 

5. 2. The Admissible Set of Singular Sub arcs 

In Fig. 2, the singular subarcs in the neighbourhood of (I*, S*) were 

described. Given the locus of [S(t2), I(t2)] described in Fig. 3 and given 

that at t2 the optimal arc is singular the set of singular subarcs that can 

be part of the optimal solution is (in the reverse-time sense) as shown in 

Fig. 4. Note that point 'a' in Fig. 4 is called the point of inflection. 

5.3. Optimality of the Non-Singular Control for Stage I 

It is obvious that optimal control for stage I would be very much a 

function of the initial conditions r0, s0• Because of the partially singular 

control nature of the problem, it is not possible to study optimality of A ns 

in the various regions of the I-S plane analytically [14]. Hence a simula-

tion procedure is used in this paper. 

First it is noted that, similar to junction time t2, at t1 

P(t�) 
+ C ·  P (t ) = P* + - {q 1 · 2C v p 

A/r } ·[l - S (t+) /M] 2 1 
(36) 
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The Locus of the Junction Point [S(tz), I(tz)] in the I-S Plane 
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- + . + 
n2Ct

1) = n2Ct
1) = -1/{r[l - S(t1)/Ml} 

Furthermore, optimality of A in stage-I is determined by condition ns 

(37) 

(16). Thus if a point [S(t1), I(t1)J is selected on some admissible singular 

subarc, equations (2), (3), (8) and (14) can be used to simulate (in the 

reverse-time sense) the non-singular subarc ending at [S(t1), I(t1)]. Thus, 

using the simulation procedure, optimality of A in the various regions of ns 

the I-S plane can be studied empirically. The optimality of A in the ns 

various regions of I-S plane for a pair of singular subarcs that is symmetric 

about point 'a ' is shown in Fig. 5. 

5. 4. A Procedure For . Finding An Optimal Control to a Given Problem 

Given the analysis presented so far, we now describe a procedure for 

finding an optimal control to a given problem. The procedure is a two phase 

procedure. Phase I is devoted to determining the specific struct��� of the 

optimal control to a given problem. Phase II is devoted to finding the 

optimal control. The two phases of the procedure are described below. 

Phase I 

1. Formulate the stage-III boundary value problem described in 5. 1. Solve 

(25} to obtain -S* and for a few values of S(t2} > S*� sove the stage III boundary 

value problem described in section 5.1. Plot the locus of [S (t2), I(t2)] as 

described in Fig. 3 and identify point 'a' on the locus. 

2. On the locus of [S(t2), I (t2)] , select two points close 
_
but on opposite 

sides of 'a'. Using the necessary conditions developed in 5.2, develop (in 

the reverse-time sense) the two singular arcs ending at the two points. 
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3. Using the simulation procedure described in 6.3, study the optimality of 

A for stage I in the various regions of the I-S plane.for the pair of singular 
ns 

arcs developed in step 2. Note the region in which the initial point r0, s0 lies._ 
-, 

Phase II 

4. Identify the path ending at I0, s0 
and note the corresponding S(t2) (see 

Fig. 6). For that S(t2), identify the three durations T3, T2 and Tl and 

record T = T3 + T2 + Tl. c 

5. If T
c 

> T, select a new S(t2) that is farther from S* than the_ cur;re!).t S (t2L 

If T < T, do the opposite. If T = T stop. You have solved the given plan-e c -

ning problem. 

6. For the new S(t2), solve the stage-III boundary value problem. Note the 

new T3. For the new_ [S(t2), I(t2)J develop the singular subarc and using the 

simulation procedure of subsection 5. 3. Identify the stage I non-singular arc 

that ends atQ:0, SQ>-. Note the stage II ·and the stage-I durations (i.e. , T2 

and Tl) and record the new T • Go to step 5. c 

Note that, although_ the selection of a new S(t2) in step 5 -can be carried 

out several ways, the following interpolation scheme has been found useful. 

Let s1c�2) and s
2

(t2) be the two previously chosen sales rates so that total 

durations corresponding to these sales rates, say T and T , are closest cl c2 
to T. Select the new S(t2) as follows 
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1 2 s (t2) - s (t2) 

T - T cl c2 

• . T 

6 • AN EXAMPLE OF MARKETING-

PRODUCTION PLANNING 

ExamE_le 6 . 1  

Consider a problem where 

T 

c 
p 

CI 
I.. 
r 

q 

c v 

� 

= 180 days 

= . 01 

= . 00005 

= . 016 

= . 1  
= .1 

= 20 

= (1 - q)-C /C v . 
1 - . 1  - 20/40 

= . 4 

P* 

I* 

c 
M 

IO 
so 
bl 
A m!iX 
Amin 

= 1500 units 

= 15000 units 

= $40/unit 

= $100000/day 

= 17000 units 

= 
$40000/day 

= 15 b = 6 ' 2 
= $20000/day 

= $0/day 

In this example, the long run equilibrium point [as characterized by equations 

(24) and (25)] is found to be: 

I* = 15000 

S* = 46790.4 $/day 

Analysis of phase I revea:J s that in thi.s case the. initial point (IU' s0} is in 

region II of Fig. 5 • .  That is, the optim�l adverti�ing expend_iture for th� 

stage I of the optimal path is A ns 

total duration (T ) of 132.3 days. c 

A • The path for S (t2) = 47788 has max 

In phase II, it was found that for S(t2} 47788, the point ISCt2}, 
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I (t2) ]  provided by the stage-III boundary value problem was very close to 

point 'a' described in Fig. 4. That is, the optimal path differed by very 

little (except for the time spent near the long run optimum) for T > 132. 3. 
c 

Thus the optimal path for T = 180 is assumed to be similar to the optimal 

path for T = 132. 3 except that in case of the first, the additional time of 
c 

180 - 132. 3 = 47.7 days is assumed to be spent near the long run optimum. 

The optimal path for T = 132. 3 is shown in Fig. 7. Time plots for the opti
c 

mal for T = 180 (constructed from Fig. 7) are shown in Fig. 8. 

7. CAPACITY EXPANSION PROBLEMS 

In capacity expansion problems, a firm is typically concerned with the 

problem of estimating the impact on its profit level if its capacity is changed from 

a current level, say Pf , to some new level, say Pi · The planning horizons in 

capacity expansion problems are, furthermore, long because they are determined 

by factors such as rate of obsolescence, life of the equipment etc. Hence, in 

capacity expansion problems, the firm's future profit rates can be estimated 

using its long run optimal profit rate. Thus, in this paper, the profit rates 

associated with the levei of capacity P* can be estimated using the long run 

optimal profit rate described in expression (28) . The firm can estimate profit 

rates associated with the current and the proposed level of capacity using 

expression (23) and use the difference between the two profit rates as an 

estimate of the incremental cash inflows in its evaluation. The example 

presented below illustrates the use of this philoso2hY. 
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Example 7.1 

Consider an .example wher e .. 

* 
pi = 1000 units/day A = ... 01 

c = $10/unit . r = . 2  

M = $20000/day q = . 15 

c = $5/unit � = 1 - q - C /C 
v v 

c = . 01 = 1 - . 15 - . 5  = . 35 
p 

In this·example, equation (25) pr ovides 

S* = $10614/day 

Similarly fr om (26) and (27) 

A = $1131. 7 /day 

P =-1061.4 units/day 

* 
and fr om (28), the r ate of profit associated with the capacity P1 is 

R = $2545. 50/day e 
* 

Let us say that since P > P1, the manufacturer in this case is con-

templating to incr ease the capacity to 1300 units/day, and the cost of the 

expansion is 200000 $. Should the manufactur er incr ease the capacity? Assume 

that the fir m's acceptable rate of return is 12%, and the planning hor izon 

for the pr oblem is 10 years. 

* 
For P

2 
= 1300, equation (25) now pr ovides 

S* = $12813/day 

and (26) and (27) provide 

A = $1783/day 

P = 1281. 3 units/day. 
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Similarly the new rate of profit using equation (28) is 

R = $2698/day. e 

Thus, changing capacity from 1000 units/day to 1300 units/day increases 

daily profit by 

$2698 - $2545.5 = $152.5 

and assuming 260 working days, yearly profit increases to 

$152. 5 x 2 60 = $39650/yr. 

The rate of return associated with an annuity of $39650 on an initial invest�. 

ment of $200000 over 10 years is about 15%. ·since this rate of-return is more 

than the firm's acceptable rate of return, the firm should exp�nd the 

capacity. 

8. CONCLUSIONS 

The interdependencies between marketing and production functions in a 

firm are explored using an optimal control model of a marketing-production 

system. The model, which is based upon empirically derived subsystem models, 

leads to a problem that is partially singular. A procedure is developed to 

determine the optimal advertising and production policy for the proposed 

model and it is shown that the results deriving from the model are applica-

ble to capacity expansion problems. 
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