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Multi-stage manufacturing usually involves work-in-process inventory which 
increases progressively with the number of stages. Models dealing with this 
phenomenon are intended for a variety of production/inventory situations. 
Two typical models, each of which represents a particular organization of the 
manufacturing process, are examined in this paper. An empirical study draws 
attention to the underlying assumptions and significant characteristics of 
these two models, and reveals a remarkable difference with regard to the merit 
of the process organizations as the number of stages increases. 

1. Characteristics of Multi-Stage Inventory Models 

1.1 Applicability of Lot-size Models 

The efficiency of large production runs is a long-standing and widely­
accepted doctrine in production management. The reason for this may be that 
setting up machines for a production run is time consuming and the related 
costs are far more conspicuous than those of carrying inventory. The need to 
control inventory levels sets a natural limit on the application of this doc­
trine. Early inventory-control research focused on the common EPQ (Economic 
Production Quantity) model. One must realize, however, that this model 
assumes a single manufacturing operation and only accounts for the finished 
product inventory. It ignores the work-in-process (later called process in­
ventory) which is inherent in any process whenever a lot is manufactured 
through several operations. The larger the production lot-size and the num­
ber of manufacturing stages, the longer the manufacturing cycle time which, 
in turn, increases the process invento�y. This relationship is recognized, 
to varying degrees, in multi-stage production/inventory. models. 

Since the single-stage EPQ model overstates the optimal lot size, drama­
tic savings could be generated by replacing it with a multi-stage model when 
appropriate. Any multi-stage production/inventory model is intended for some 
particular organization of the manufacturing process. The same models are 
usually advocated for both "serial" systems, in which each stage has only one 
predecessor stage, and for ''assembly" systems, in which various stages precede 
the final assembly stage with an arborescent configuration. Some reservation 
is in order, however, in accepting this claim. It is assumed that, in 
recurring cycles, the quantity produced at each stage feeds the final assembly 
stage for a certain length of time. This single cycle heuristic may not be 
optimal because certain components might be more economically produced in 
quantities that would supply more than a single cycle. However, a serial 

1This research was supported by a grant from the Natural Sciences and 
·Engineering Research Council of Canada. 
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system always entails a single cycle process organization. 

Serial systems are very common in practice. Parts for a complex product 
often involve a series of operations (stages) being performed in production 
lots. Specifically, an overwhelming number of such parts are produced in the 
automobile industry and generally in the machine industry. It is also notable 
that the number of manufacturing stages is usually rather large (5-15 stages) . 
Although a single part may not be (and usually is not) sold directly, the 
assembly of the product incorporating this part could be continous over time. 
Since part-manufacturing is seldom synchronized with the rhythm of the assem­
bly line, a single part may be manufactured intermittently. When this happens 
the net effect is that of having a continuous demand fed by a part produced 
in lots. This is the reason for the applicability of lot-size models. 

Obviously, scheduling precedence must be given to products whose produc­
tion must follow the process organization ·implied by the multi-stage model. 
When facilities are shared by several intermittently-manufactured product 
lots, the scheduling of EPQ's for the entire spectrum of products is rarely 
feasible. However, experience has shown often that a relatively small portion 
of all products constitute a very large part of the process inventory. Sche­
duling priorities in manufacturing a small number of products, as the multi­
stage model requires, do not present an obstacle in practice. The reason is 
that these products do not tie-up a prohibitive proportion of the manufact­
uring capacity; rather, they leave ample room to manipulate the manufacturing 
schedule of the remaining product line. This practical consideration justi­
fies the limited application of EPQ models even in very tightly scheduled MRP 
(Material Requirements Planning) systems. The key problem is to select the 
right products for production according to an EPQ model. 

1. 2 Selective Review of the Literature 

Inventory models are forerunners of the birth of operations research. 
Raymond (1931) , in his early study of the subject, describes a host of 
variations in order quantity models. Whitin (1954) presents a comprehensive 
survey of the development of inventory control research. Niland (1970) has 
shown that the capital tied up by process inventory in certain industries can 
be as large as 60% of that for the total inventory. Nevertheless, the control 
of this particular type of inventory has received relatively little attention. 
Eilon (1962) introduces a variation of the conventional EPQ models that opti­
mizes the return on the whole production cycle by determining the length of 
the cycle and the size of the buffer stock for the required consumption of 
finished products. However, his model treats the multi-stage case in aggre­
gate, as if executed by a single facility. 

An extensive survey of multi-echelon (stage) models by Clark (1972) 
summarizes the state-of-the-art until 1972. One class of these models is 
distinguishable on the basis of allowing different lot sizes across stages. 
Crowston, Wagner and Williams (1973) present a model for a multi-stage assem­
bly system and compute a set of optimal lot sizes, but the model assumes in­
stantaneous production at each stage, an improbable characteristic in prac­
tice. Jensen and Khan (1972) allow non-instantaneous production and assume 
that each stage will be periodically shut down and restarted so that the 
ave�age production rate at that stage is equal to the demand rate. Their 

�· 
_, _, 

t-3 

:-j 
.,! 

:7 

�j 

1: 



3 

model ignores the cost of transporting batches and permits any number of ship­
ments between stages. Taha and Skeith (1970) assume non-instantaneous pro­
duction with variable lot-sizes at different stages. In their model, they 
calculate the optimum lot size of the finished product and allow over-produc­
tion at those stages where a large set-up cost warrants a holdover of process 
inventory for· subsequent manufacturing cycles. Their model, however, is 
based on backlogging of unfulfilled demand of the finished product; therefore, 
it presents considerable difficulties in practice when the product is requi­
red for a further echelon (e.g., assembly) of the production process. 
Schwarz and Schrage (1975) in a similar model, exclude backlogging and allow 
decreasing variable lot-sizes at the various stages so that only complete 
lots are transported to the next stage. Their model incorporates an."echelon 
inventory-holding cost" which may be mistaken for the more familiar and 
explicit stage inventory-holding cost. If this happens, a seriously distor­
ted non-optimal result may be obtained as shown by Szendrovits (April, 1978) .  
Nevertheless, their model is typical of variable lot-size models. 

Another class of multi-stage models has uniform lot sizes at all stages, 
but allows portions of a lot to be transported to the next stage in batches. 
Szendrovits (1975) explores the functional relationship between the manufac­
turing cycle time and the process inventory and, based on his findings, offers 
a model in which equal-sized batches can be transported between stages. How­
ever, this model assumes an average process-inventory holding cost and "sunk" 
costs of transporting batches. A refinement of his model (Szendrovits, 1976) 
incorporates stage inventory-holding costs and transportation costs of . 
batches over all stages. Goyal (1977) advocates that unequal batch-sizes 
within each stage could be chosen so as to decrease the process inventory in 
a two-stage system. However, Szendrovits (October, 1978) has shown that the 
additional transportation cost of unequal batch-sizes within a stage usually 
eliminates the savings in inventory costs. Moreover, unequal batch sizes 
within a stage become technically infeasible for more than two stages. Con­
sequently, Szendrovits' (1976) model for a uniform lot size with equal-sized 
batch shipments at all stages is representative of this class of models. 

The objective of this paper is to examine which of the process organi­
zations represented by two typical multt-stage production/inventory models 
yields a lower cost, especially when the number of stages increases. 

2. Focusing on Two. Typical Process Organizations 

2. 1 Basic Assumptions in the Models 

Models in the literature reflect some of the many possible variations in 
process organization. No model can be exhaustive and numerous variations 
could be added to any model; but, the problem would soon become unmanageable 
and the solution method analytically intractable. 

In the models discussed in this- paper, and particularly in the two typi­
cal ones on which we will focus our empirical analysis, some conventional 
assumptions can be noted. A "lot" denotes the quantity produced with one 
set-up at a stage and a "batch" denotes the portion of a lot transported to 
the next stage. The lot- or batch-size does not have to be an integer, the 
implication of which is that units of the product are "infinitely divisible". 
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This, of course, is not restrictive if optimal lot- and batch-sizes are found 
to be sufficiently large. The production system consists of a fixed sequence 
of operations, with constant production rates at each stage. The "one time" 
output quantity (lot size) is not constrained by limited production or 
storage capacity. Each lot involves a fixed set-up cost and the transporta­
tion cost of each batch to the next stage is also fixed. Note that only 
completed lots or batches are transported between stages. Set-up times and 
transportation times are not considered to be significant and, hence, are 
ignored. The inventory system is based on deterministic (and constant) demarrl 
rates and linear inventory-holding costs over an infinite time horizon. The 
stage inventory holding-cost is interpreted as the cost, per unit time, that 
is incurred by carrying one unit of physical inventory of a product on which 
the stage is completed. 

The following assumptions to simplify the analysis are also common in 
most of the existing lot size models. The unit inventory-holding cost for a 
stage is assumed to be never lower than that for the preceding stage. This 
is not unreasonable in practice, since the inventory-holding cost is often 
proportional to the increasing value of the product. However, exceptions to 
this are possible when special handling costs are implemented at a particular 
stage and are not required at later stages. Also, it is assumed that the lot 
size of a stage is an integer multiple of the lot size that follows it. One 
could show that this decreasing lot size requirement is never optimal in any 
of the existing variable lot-size models (except for the unrealistic case of 
instantaneous production) . However, one must admit that this is a necessity 
for analytical tractability in the variable lot-size models. In the uniform 
lot-size models the assumption of an integer number of batches helps analyti­
cal tractability and the resulting equal-sized batches facilitate the account­
ing for transportation costs. 

Following frequent practice in the literature, we denote the stages in 
the production process by i = 1, 2, ... , n; the final stage, the one which meets 
the demand for the finished product, is stage 1. Other notation is as 
follows: 
D = demand (consumption) rate of the final product (at stage l) ; 

P. = production rate at stage i (note that P. > D) ; 
l 1 

S. = set-up (fixed) cost of one lot at stage i; 
i 

T. = transportation (fixed) cost of one batch from stage i to stage i-1; 
1 

c. = unit inventory-holding cost, per unit time, at stage i; 
i 

Q. = the lot size at stage i; 
l 

m. = Q./Q1 (note that m. is required to be an integer) ; 
1 1 1 

Q = a uniform lot size at all stages; 

b = the number of batches in lot size Q at all stages (note that b is an 
integer) ; 

x = Q/b, the size of batches in lot size Q at all stages (note that the 
sizes of batches are equal) . 

All parameters above are greater than zero. For the convenience of our 
cost equations we define: cn+l = O, P0 

= D, m
0 = 1 and Q

0 
= Q1• 
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For convenience in the following discussion, we will ref er to a lot at 
stage i as a Q. lot. 

i 

Let us now focus our attention on two basic models that we intend to 
compare. 

2. 2 Variable Lot-sizes with Full-lot Shipments - Model 1 

A typical model in this class is described by Schwarz and Schrage (1975) . 
Figure 1 illustrates the time-weighted stage inventories resulting from the 
underlying process organization. 
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Figure 1 shows that lot-size Q3 is produced at stage 3 during the time 
Q1/P

3
. Only after the full lot �s completed can units be transported to 

stage 2. Here the first Q lot (i. e., lot at stage 2) , the size of which is 
Q3m2/m3 = Q3/3, is produce� during the time Q2/P2 while some portions of the 
Q3 lot are carried with a unit inventory�holding cost of c3 until the second 
and third Q2 lots absorb them. When the first Q lot is completed the pro­
duction of the first Q lot takes place during tte time Q /P1 and the inven­
tory is carried at c1 �olding-cost to satisfy the demand lor a period of Q1/D. 
Again some portion or the Q2 is stored at c

2 
holding-cost until it is used up 

for the next Q1 lot. The same phenomenon occurs for the second and third Q2 lots. The entire inventory cycle is repeated for each subsequent period 
Q3/D over an infinite time horizon. 
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The cost function expressed in terms 
Szendrovits (April, 1978) in equation (3) 

of stage holding-costs as shown by 
is: 

D 
n (S

i + Ti) Ql 
n 

Cl = - E + - E c. 
Ql . ·1 m. 2 . 1 1 

D D ICp- + l) m. + (-p- - l)m . _1] (1) 
1= 1 1= i 1 i-1 1 

subject to Q./Q. 1 and m. must be integers; m. > m. 1; c.
+l 

< c. for 
1 1- 1 1 - 1- 1 - 1 

i = l, 2, • • .  , n. 

The first term is the average fixed cost (set-up and transportation 
cost) ; the second term is the cost of holding the average inventory per unit 
time. Note that in our particular example the fixed cost is required once 
for Q

3 
lot, three times for Q

2 
lots and six times for Q1 lots. 

However, the largest proportion of the inventory is carried at the lavest 
unit holding-cost and the smallest inventory involves the highest unit 
holding-cost. As a point of interest, one must remember that the model and 
its cost function are valid only if the unit holding-costs of the stage inven­
tories are monotonically increasing, i.e. , ci+l < c. for i = 1, 2, • • .  , n. The 
optimization procedure for the cost function (1) is

1
described by Szendrovits 

and Wesolowsky (1979) . 

2. 3 Uniform Lot-size With Equal-size Batch Shipments -- Model 2 

A typical model in this class is described by Szendrovits (1976) . 
Figure 2 illustrates the time-weighted stage inventories resulting from the 
underlying process organization. 
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Figure 2 shows that a uniform lot size Q is produced with a single -set­
up at each stage. At stage 3 the production time of the lot is Q/P . Since 
batch shipments of Q/b units are allowed, we do not wait until the full Q lot 
is completed; rather, we start producing at stage 2 after Q/ (bP3) time. �e 
can see that there is always a sufficient supply of units from stage 3 to 
produce the Q lot without interruption at stage 2. A similar schedule is 
always possible whenever a shorter operation time is followed by a longer one, 
or when adjacent operation times are equal; i. e. , i/Pi

: l/P
i-l

" It is clear, 
however, that we must delay the start of stage 1 to ensure uninterrupted 
production of Q lot at this stage. Nevertheless, we can start producing at 
stage 1 after Q/P

2 
- (b-1) Q/ (bP ) time; that is before the full Q lot is 

completed at stage 2. Such a detay is always necessary whenever a longer 
operation time is followed by a shorter one; i. e. , l/P. > l/P. . Since all 
production rates are greater than the demand rate (P. � D) , ufilts are avail­
able to satisfy continuous demand for Q/D time as so5n as the first batch is 
finished at stage 1 in Q/ (bP1) time. Stage inventories are carried at the 
corresponding unit stage-inventory holding-costs, c3, c2 and c

1
• 

The cost function and its optimization method are given by Szendrovits 
and Wesolowsky (1979) . The cost function is: 

C2 = D 
Q 

n 
QD 

L (S. + bT.) + 
2b i=l 1 1. 

n 1 1 I 1 1 I L c. [(-+ --) +  - - -- (b-1) ] (2) 
. l 1 P. P. l P. P. l -
1= 1 1- 1 1-

subject to: b = integer; 1 � b < Q. 

The first term contains the average fixed cost (set-up costs and trans­
portation costs of b batches) , the second term is the holding cost of the 
average inventory per unit time. Note that only one set-up cost is incurred 
at each stage, but transportation costs must be included for each of the b 
batches at all stages. In contrast to Model 1, if the unit stage holding­
costs were increasing, a relatively larger proportion of the inventory would 
be carried at higher unit holding-costs. On the other hand, monotonically 
increasing unit holding-costs are not required in this model for its optimi­
zation. 

3. Comparison of the Process Organizations for Different Numbers of Stages 

3. 1 The Experiment and the Problem Parameters 

Whether one or the other process organization yields a lower cost de­
pends on problem parameters. Therefore we tested the two models with diff­
erent numbers of stages (n = 5, 10, 15 and 20) , using 400 problems for each. 
The problem parameters were randomly generated within the following ranges: 
Range (D) = [5000, 50000] , Range (P.) = [60000, 625000] , Range (c.) = [O. l, 

. 1 1 
2. 5], Range ( S.) = [l , 500] and Range (T.) = [O, 50]. The values for the 
parameters in �ach test problem were genefated from a uniform probability 
distribution within each range. Since c. in Model 1 must increase with 
decreasing stage numbers (c.+l < c.) ,  th� c. values were ordered accordingly. 
(Note that this condition i§ not r�quired f5r Model 2 but was necessary to 
compare the two models. ) 

Empirical results were obtained using the 400 randomly generated 
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problems. These were studied to observe how the number of stages influences 
the performance of the two models under different assumptions. Examining the 
models in the light of different assumptions helps us to understand their 
behaviour and to draw conclusions as to the merit of the process organization. 
While the selected ranges of the parameters are considered to be reasonably 
realistic, the results obtained must be regarded as illustrative rather than 
as a statistical justification for the conclusions drawn. Recognizing the 
shortcoming of such an empirical study, we have checked the effect of exag­
gerated ranges for certain parameters on 100 contrived problems similar to 
those in the tests. We will illustrate the test results for various basic 
assumptions graphically, interpret their meaning and explain the effect of 
contrived parameters. 

3.2 Magnitude of the Average Inventory 

A cursory examination of Figure 1 and*Figure*2 is sufficient to realize 
that, if Model 1 is applied with optimal Q!.17.and m quantities, Model 2 could 
be an alternate solution if we choose Q = Qn and � = uh· In our figures Q , 
m. and P. for i = 1,2, .. . , n  were construed so that the inventory areas aren 

tfie same: This is the exception rather than the rule when m > 1, but is 
always so when m = 1. We can see that in both cases the ti�e-weighted 
inventory takes �he shape of a trapezoid, the area of which depends on its 
base. The larger the base for one of the models, the larger is the average 
inventory for that model. We can easily express the base for Model l: · 

n Q. 
J_ BAl = L: - • (3) 

. 1 p. i= J_ 
* * 

For Model 2 when Q = Q and b = m the base is: 
n n 

Q n 1 1 1 BA2 = - L: . [ - + (b - 1) (- - --) I. ], 
b . l P. P. P. l i 

where I. 
J_ 

i= J_ J_ i-

= 
{ l if 

0 if 

p < P. l; 
i l.-

P. > P. 1• 
l. - l.-

Using the test problems described earlier we computed optimal Q. 
values for Model 1 and established BAl and BA2 for 400 random cases.1 

results for various numbers of stages are summarized in Table 1. 

Table 1 

Relative Magnitude Of Average Inventory For The Two Models 

No. of Stages Percent of 400 cases 
n BAl>BA2- BAl=BA2 BAl<BA2 
5 so 33 17 

10 SS 19 26 
lS Sl 16 33 
20 S8 9 33 

(4) 

and m. 
The 1 
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A larger base for the particular model indicates a larger average inven­
tory. It is obvious from (3) and (4) that the bases and, therefore, the 
inventories are the same for both models when m = 1. As Table 1 shows, 
Model 1 yields a larger inventory than Model 2 �n at least 50 percent of the 
cases. Equal average inventory sizes decrease from 33 percent for 5-stage 
cases with increasing numbers of stages. Model 2 involves a larger average 
inventory than Model 1 in only 17 percent of 5-stage cases; this increases to 
33 percent, while the percent of equal inventory sizes decreases, with in­
creasing numbers of stages. 

Considering that Model 2 never involves more than one set-up at each 
stage, these data suggest that Model 2 (with Q = Q� and b = �) is generally 
better than Model 1 because it yields a smaller or equal aYerage inventory in 

.at least one third of the cases. This is certainly true if an average unit 
holding cost (uniform for all stages) is applied to the process inventory and 
if the transportation cost of batches is not taken into account (i. e., "sunk" 
transportation costs) . One should note that these conditions are found quite 
frequently in practice. 

Contrived problems with expanded and contracted ranges for set-up costs 
and unit inventory holding-costs did not indicate appreciable changes in the 
results shown in Table 1. This suggests that the magnitude of average inven­
tories, under the given circumstances, is rather insensitive to the ranges of 
these parameters. 

3.3 Stage Holding Costs and Sunk Transportation Costs of Batches 

The transportation system in a plant usually handles a host of products 
and it is difficult to allocate transportation costs to particular product 
lots. Due to this difficulty, these costs are often handled as sunk costs. 
This is equivalent to setting all T. values to zero in the cost functions. On 
the other hand, we may be able to e§tablish separate unit inventory-holding 
cost, c., for each stage. To examine whether Model 2 would still be a 
favouraEle alternative to Model 1 under these assumptions, we computed the 
following costs for each problem: 

CAl = the optimal cost for Model 1 in cost function (l) ; 
CA2 = the cost for Model 2 at Q = Q� and b = � in cost function (2) . 

Using these costs we examined which of these costs was higher and computed 
the percentage by which one cost exceeded the other: p = (CA1/CA2 - 1) 100 or 
p = (CA2/CA1 - 1) 100. The results for various numbers of stages are illustra­
ted in Figure 3. 

Let us first interpret the histogram for n = 5 in Figure 3. The numbers 
on the horizontal axis indicate, in less than or equal form, the percent by 
which one cost exceeds the other. The vertical bars indicate the cumulative 
frequencies of all cases (in percent) . The cross-hatched bar shows that in 
33 percent of all cases the costs were equal, CAl = CA2. At p < 1% the white 
bar indicates that in 38-36 = 2 percent of all cases, the cost-of Model 1 
exceeded that of Model 2, CAl > CA2, by 1% or less. The black bar shows that 
Model 2 involved a higher cost than Model 1, CA2 > CAl, in 36-33 = 3 percent 
of all cases. We can see that the excess cost percentage for Model 2 grows 
less rapidly than for Model 1, and at .P � 20% we find CAl > CA2 in 100-47 = 53 
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Figure 3 

Comparison Of Models With Stage Holding Costs ,And Sunk 
Transportation Costs 

n= 5 n=10 n=15 n=20 
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I 

cA1 D CA1 CA1 CA2 
p=EXCESS COST PERCENTAGE 

percent, CA2 > CAl in only 47-33 = 14 percent of all cases. The histograms 
for n = 10, n = 15 and n = 20 show the same phenomenon even more dramatically. 

We can conclude that, for the assumptions specified, the process organ­
ization represented by Model 2 is preferable to that of Model 1, and it is 
apparent that it is increasingly so as the number of stages increases. The 
check problems (i.e., with exaggerated ranges) showed a similar pattern and 
almost identical results when the ranges of parameters for the set-up costs 
and for the stage inventory unit holding-costs were exaggerated. 

3.4 Including Transportation Costs of Batches 

If both the unit inventory-holding cost, c., and the transportation cost 
of a batch, T., can be established for each sta�e, we can compute the opti­
mal cost for Ebe two models: 

CBl = the optimal cost for Model 1 in cost function (l) ; 
CB2 = the optimal cost for Model 2 in cost function (2) , at optimal values � * of QA and b . 

Figure 4, which is constructed in a manner similar to Figure 3, demon­
strates the cost comparison between Models 1 and 2. 

The interpretation of the histograms in Figure 4 is similar to that 
described in connection with Figure 3. We can see that, for the chosen 
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Figure 4 

Comparison Of Models With Stage Holding-costs And 
Transportation Costs 
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problem parameters, Model 2 performs considerably better than Model 1, 
becomes overwhelmingly better when the number of stages becomes large. 
can see that, when n = 20 the optimal cost for Model 2 exceeds that of 

and 
We 

Model 1 
only in 4 percent of all cases and the excess cost is always below 5%. 
Excess cost for Model 1 occurs in 9 6  percent of all cases and it could be as 
high as 25%; in fact, it is between 5% and 25% in 9 6-22 = 74 percent of all 
cases. 

Check problems have shown that the optimal costs of the models were 
somewhat sensitive to exaggerated ranges, especially for set-up costs and/or 
transportation costs, and to a lesser extent for unit inventory holding-costs. 
Therefore, some caution is in order with respect to the better performance of 
Model 2. Under the given assumptions reliable discrimination coul.d only be 
attained by determining the optimal cost of both models and choosing the 
better one. 

3. 5 The Effect of Limited Transport Capacity 

Examining the cost function (1) for Model 1, we can see that only a 
single transportation cost is accounted for each Q. lot regardless of the 
lot size. On the other hand, the transportation cBst for each of the batches 
is included in the cost function (2) for Model 2. Therefore, if we assume 
that the transportation cost is related to a limited transport capacity which 
is the batch-size x, the modified cost function for Model 1 is as follows: 



CCl = Cl + _Q. 
Qn 

n 
l: 

i=l 

Qi T. [(-) - l] 
J._ x t 
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where (Q./x) t indicates a non-integer Q/x value rounded up to the nearest 
integer �nd Cl is the optimal cost of Model 1 from equation (1) • 

(5) 

The second term of this cost function accounts for the additional average 
transportation cost at those stages where Qi > x. Now we can compare more 
realistically the modified optimal cost of Model 1 in (5) with that of Model 2 
which is: 

CC2 = the optimal cost of Model 2 in cost function (2) . 

To simplify the examples used for comparing the above costs, we assumed 
that the transportation cost, T., is related to the transport equipment, the 
load capacity of which is equal1to the optimal batch size (x = Q/b) computed 
for Model 2. The comparison of costs CCl and CC2 is illustrated in Figure 5. 
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Figure 5 

Comparison With Transportation Costs Included In Both Models 

n= 5 n= 10 n= 15 n=20 

1-T-T I I I I I I 
p.;1 5 10 1520 253040 po; 1 5 10 1520 2530 40 p.;1 5 10 1520 253040 po; 1 5 10 1520253040 

- >1 -- >1 CC2 
I 

cc, D CC1 CC2 
p=EXCESS COST PERCENTAGE 

The histograms in Figure 5 illustrate that, considering the additional 
transportation cost in (5) for Model 1, the performance of Model 2 is better 
than in the cases illustrated in Figure 4 . For 5 stages, the optimal cost of 
Model 2 only exceeds that of Model 1 in 18 percent of all cases and the excess 
cost is always below 20%. For 10 stages, the excess cost is always below 10% 
and only occurs with 6 percent frequency; for 15 and 20 stages, the excess cost 
is less than 1% and occurs only in one percent of all cases. This .suggests 
that, for 10 stages or more, Model 2 is superior to Model 1 if the given 
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assum.pt±ons ·-prevail. 

Inter�stingly ·mes;t ·Check <problems -0.id ·not indicate appreciable sensiti­
vity to .. exaggera:t:ed :�ranges.o.f."set-;up ,and/,or :·txanspor,tation co.s:ts=and inventory 
unit ho:Ld:ing ·costs.. ·�tuitively .this ·''Can ;;be ,expla±ned with the c·orrection for 
the cost of ""multiple .troransport .load:s iniModel 1. 

<4 • .Concl11sion 

4.l Generalization From t:he·Empirical Results 

We must 'emphasize ·.again that :inf·e'I'ences ·d:rawn :from .experiments· based on a 
chosen ran,ge of parametrer.s ·.iillUSt :be accepted with due caution and. ·scrutiny. 
Nevertheless, the results strongly supp·ort -some general conclusions concerning 
the merits of the process organi-zations represented by Models l and 2. 

(a) First we examined the case where transportation costs are "sunk" and 
unit holding-costs are not known for the stage inventories, i.e., only an 
average unit holding-cost can be established for the process inventory. We 
found that Model 2, with the ·same lot-size .. and wi th numbers of batches iden­
tical to the numbers of smallest lots in Model 1, usually yields a smaller 
(or at least equal) average inventory quantity and cost than Model 1. The 
risk to the contrary (i.e., the occurrence of the opposite case) increases 
with the number of stages but appears to be within 33 percent. This risk does 
not show appreciable sensitivity to contrived parameters. 

(b) When transportation costs are "sunk" and unit holding costs are 
established for the stage inventories, the optimal cost of Model 2, based on 
numbers of batches identical to the optimal·numbers o f ·smallest lots in Model 
1, is usually smaller than (or at least equal to) that of Model 1. The risk 
to the contrary appears to be within 15 percent for 5 stages and it declines 
considerably with increasing numbers of stages to .as low as 2 percent for 
20 stages. The sensitivity of this risk to contrived parameters is minimal. 

(c) When both transportation costs .and unit .holding costs are known fo:i; 
the stages Model 2 frequently yields a lower cost than Model l. The risk to 
contrary appears to be about 40 percent for 5 'stages, diininish±ng with incre­
asing numbers of stages to .about 5 percent for 20 stages. However, when the 
set-up costs are very low relative to the .unit holding-costs at .all stages, 
or when the t::r:-anspor.tati:on <Costs .of .batches ,a:r;e quite large r.elative to the 
set-up costs, Model l .is expected to perform u.etter than Model .2. Reliable 
discriminat:iun .can ·only be ·ma:de by .compar.i11;g :the optimal costs ·d:f .the two 
models. 

(d) ;W)hen .the .l'Gad '°'apaci;ty of the :�1'.'.anspox::t .,,equi-pment .is ;c;l:e.se :to ;the 
optimal >b·a.tch o.1size., .'lMo'del :2 <'lll'SUall'y cy..i-eilid£.;;a ·iihower ;;;op·t<imal •cos«t >bhan �Model l 

o:a'ftter .:1adjurs•tin:g '£ror·IDuifl.'t:li'P!l-e '�c:>mait'::t'bn "1Cfe·s.'ts· ':'".£or ·'l'O:t""fS:i<zes · 3saT!ger '.'.than 
.the load 0rcal>ac:i::ty. ''.IDhe�£k '1Co ·tth.e 'C'flnitT.ary -mpp.ea;rs ·to 'fu;e "W.i.'thin ·1'8 .eperc:ent 
for 5 s:tra;ges., 'Xapiidly �fumi'nfush1n.g "<Do .1 ·'.lPer'C�nt :Ior ;20 ,stages . '�'llhere 'is .a low 
ri..sk sens:±:tivi..ty �,to 'eontr.iwed :q>a:rame'.ber.s .• 

(,e) .:The �p;er:&o.-nmane•e -iDf·iM@acl .. 2., .;under ·¥aryi:ng circe>Umstane-es., 1<S.eems to 
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be generally better than that of Model 1. One must also remember that the 
optimal cost of Model 1 can be established only if the unit hold�ng. cos.t of 
stages is monotonically increasing towards the stage that satisfies demand, 
a requirement not needed for determini.ng the optimal cost of Model 2. 

4.2 Need for Improvement 

The process organization represented by Modei 2 required equal batch 
sizes over all stages. A significant improvement on this model can be achieved 
be relaxing the constraint requiring that the number of equal-sized batches be 
the same at each stage. Obviously a low transportation cost at a certain stage 
would allow a larger number of batches than a larger transportation cost at 
another stage. Depending on the transportation cost, varying the number of 
batches across stages could reduce the process inventory, and therefore the 
cost, in a uniform lot-size model similar to Model 2. 

A further development is a model that incorporates the advantages of 
both models discussed in this paper. Combining variable lot-sizes with 
different numbers of batch shipments at various stages allows even more flex­
ible inventory policies which would further reduce costs. 

The author is working on articles discussing these models and their 
optimization methods. For the varying batch-size model, an optimization 
procedure is possible. A model, which unifies variable lot-sizes and diff­
erent numbers of batch shipments at various stages, presents a considerably 
more complex problem and for this only a heuristic solution appears to be 
possible. 
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