
, .. 
I '  

.:'1 

'-' 

I ,  

\ 

j 

I;�,' . 
. · •  

·1 . � ' 

' ·' \'. .. 
·\ ' 

i 

� 

'I 

,\·· 

:.:.-
. ·� 

"· 

. � {' 
·, , 

·� 

�! 

Innis 
... 
HIB 
74.5 
.R47 
no.188 

M�J'1 

le� I I 

Sing le Machine Scheduling 
with Precedence Constraints 
of Dimension 2 

By 

GEORGE STEINER 
Production and Management Science Area 

FACULTY OF BUSINESS 

' � . 1;l ·�di' .. N. �,� ,. ' '}' IN�"'IS ! !'lllfhli·\'t �R"ff I Iii 1,.a�i'ia u. 

riun9� l'!Sffti'U� AV'il�� nat.H�"tol ·,��la.u enib 

McMASTER UNIVERSITY 
HAMIL TON, ONTARIO 

Research and Working Paper Series No. 188 
June, 1982 



S:i.nqle M'.achine Scheduling 

with Precedence Constraints of Dimension 2 

� George Steiner 

Proruction and Manaaement Science Area 
Pacultv of Business 
McM'aster University 

Hamilton, Ontario 
Canada. 

June 1982 



Abstract 

ronsirer the set of tasks that are partiallv ordered by precedence 

constraints. 'T'h� tasks are to be sequenced so that a given obj ective 

function wjll assume its ootimal value over the set of feasible 

solutions. A subset of tasks is called feasible, if for every task in 

the su}"lset, all of its predecessors are also in the subset. We present 

an efficient dynamic oroqramminq solution to the problem, when the 

constrajnina Partial order has a dimension �2. This is done by 

refinina a "comoact" labelinq scheme and a very efficient enumerative 

oroce(lure :for all the feasible subsets. In this process a new 

characterization is qiven for 2-(!imensional partial orders. 



�INGLE MACHINE SCHEDULING 

W1'T'fl' :PRFCF.DENCE CONSTFAIN'T'8 OF DIMENSIONS <2 

ronsioer the set of n jobs to be seauenced for Processing by a single 

machine. "T'he oossible seauences mav be restricted by Precedence constraints 

reoresented bv a aiven acyclic digrap h G = (V,A) where each node i e: V 

corresoonns to one of the n tasks and the arc (i,j) e: A means that i is a 

oreoecessor of i. (If i is a Predecessor of j we will also use the notation 

i�; .) 'T'hese constraints reauire that a given job i mav not be processed until 

after the orocessinq of all its predecessors has been finished and assume that 

i js available for processinq at any time thereafter. A subset SC. V is 

C8.llec1 feasihle if for everv i e: s all the predecessors of i are also in S •. 

H'a_ch task j e: "'i7 has a aiven Processinq time c(i) and the finishinq time of the 

i-th ;oh in a seouence js the sum of the orocessinq times of the first i jobs 

in the seauence. Let o(i,t) be the cost incurren bv job i if it finished at 

time t, ann assume that o(i,t) is non-neaative and nondecreasing in t. We 

assume tha.t this cost is aClcHtive i.e. the cost associated with a given 

-Feasihle seauence is the sum of t.he costs of the jobs in this seauence. (Such 

a function is e.a. the tarniness or weiahtea tardiness, but many other satisfy 

these aeneral conditions.) 'T'he objective is to find an optimal sequenle of 

the n iohs which satisfies the orecef.lence constraints ann for which the total 

cost incurred 1s minimal. 

�aker an� Schraqe r21 aescribed a dynamic programming algorithm for the 

orohlern which outnerforme(! all previouslv known algorithms on their set of 

test oroh1erns. Burns and Steiner r3] qave some motivations whv this algorithm 

is so pffective ann presentea a rnoaifieo version of the algorithm for the 

!=lnPcial case when G is a series-oarallel diaraoh. This modified algorithm 

user! a "r.omnact" labelina scheme bv assiqnina the non-neqative integers to 

-FE"asj hle suhsets in such a way that each of the labels generated belongs to 
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exactlv one of the feasible subsets. In this oaper we show that by performing 

the labelina in the "riaht" seauence the "compactness" property of the 

lat--elina can be extendea to the class of all precedence graphs with 

"nimension" less than or eaual to two. In addition we show that no further 

extension of the labelina is oossible, without violating the compactness 

rE'!Ollirement, in fact if the labeling is C'Ompact, the precedence graph has to 

have ni Tfl@nsion .::_2. This orovif.!es a ne.w characterization of partial orders 

wi.th nirnension less than or eaual to two. We also define a new family of 2-

�imensional niqraohs (WGSP) which properly contains the class of general 

series-oarallel �iqraphs. Usinq the comoact labeling scheme we present a 

mc:Ylifie(I version of the C!vnarnic oroqrammim algorithm requiring O(Kn) time and 

nm soace, where K is the number of· feasible subsets in the precedence graph. 

'T'hese houn<is of course are still exoonential (K can be as large as 2n) , but 

thev are the best obtainea so far and in manv cases K is substantially smaller 

than 2n r cf. 21. 

J. 'T'he nriainal DvnaJTlic Proorarrmina Alqorithm [21 

For a feasible subset Sc \T let us define the following: 

c(�) = the sum of the orocessina times of the tasks in s. 

R<R) = the set of tasks in s with no successor in S. 

f (�) = the C'OSt of the minimum C'OSt seauence of tasks in S. 

""hen ohviouslv the followina DP recursion is valid: 

f(S) = min ff(S\f it) + a(i,c(S)) I for all i e: R(S)} 

'1'o minimize the C'Omouter storaqe reauired and to provide auick access to 

the f (8) values in the DP tables, Baker and Schrage [2] defined the following 

1aheJina sc�eme for the orecedence araoh: 

i:.et L(i) be the label assianea to each i e: V; b(i) =the sum of labels of 

nre,ri_ous1v lahelen tasks that are prec1ecessors of i; a (i) = the sum of 

Jcihels of previously labeled tasks that are successors of i; t(i) = the 
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sum of labels of all tasks labeleil orior to i • 

.,,,.,en the labelina can be acne bv the following alqorithm: 

r-iet t ( i) = a ( i) = b ( i) = 0 for all i e �T. 

For i = 1 to n: 

let L(i) = t(i) - a(i) - b(i) +l 

let h(i) = h(i) + L(i) for every i which has not J:::een labeled yet and i�j 

let a(j) = a(j) + L(i) for. every i which has not been labeled yet and 

i�i . 

let t ( i + l) = t ( i) + L ( i) and if i = n t (V) = L (V) = t ( i) + L ( i) • 

Next i. 

'T'he l.ah.eJinq scheme can J:::e extended to subsets of v by 

r,(�) = I L(j) for everv s C. �1. 
ieS -

�aker anCI �chraae have oroved that indeoendent of the order of labeling, for 

e'ri:-rv feasihle subset � � v the label L(S) uniauelv belongs to s, in the sense 

t.hat there is no other feasible subset with the same label. In other words 

the labelina scheme reoresents a maooina of the feasible subsets into the set 

of inteqers between O anc=! L ('1.1). We say that this mapping is compact if for 

anv intF!aer k (0 � k .:s_L (�.1)) there
_ 

is a feasible subset Sk C V such that 

T.J <�k) = k. r�!e 0efine in qeneral the compact labeling of a diqraph: 

Let <1 = (V,A) be an acvclic airected qraph on V = fl,2, • • • ,n} . Let Gk 

nenote the subaraoh of G innuced by the vertices f1,2 , • • •  ,k} (1 � k � n) . We 

sav tliat an assianment of labels L<l), L(2) ,oe.,L(n) to the vertices of G is a 

compact labelinq of G if and onlv if for every k (1 < k < n) l L(i) = the - -
i<k 

numhP.r of nonemotv feasible subsets in �1<· 

In tl-ie DP alqorithm the label L(S) is used to at1dress the feasible subset 

� ar1.n the associat� f (S) value. This means that the storage reauirements of 

the alaorithm are ororortional to the hiqhest label (address) used, which is 

r. N). 'T'herefore the storaae requirements for the DP table highly depend on 
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how close the labelinq scheme can qet to a compact mapping, i.e., how small 

L�7') can be for a qiven precedence graph G = �,A}. Baker and Schrage provide 

statistics on this for their fairlv extensive test Problem set and also give a 

s:tmole examole for which the mapping is not compact. They also discuss 

hrieflv how the orc'ler of labelim the vertices may affect the LM value, and 

mention that in their compUter implementation of the algorithm, the tasks were 

numberen in such an order that the task labeled next was the one that would 

receive the smallest label if added next. This requires the calculation of a 

lahel POssiblv for everv unlabeled node before one can select the next node to 

be labeled and it will not necessarily result in a compact lal::eling. In [3] 

�urns and Rteiner replaced this selection rule by a simpler one which resulted 

in a comoact labelinq for qeneral series-parallel graphs. It was also shown 

that this seauencinq rule cannot be extended to non-series-parallel graphs 

without violatinq the compactness property. In the following development we 

�e�ine a new seauencinq rule, which results in a compact labeling for all 

precedence qraphs with dimension <2. 

Another com"POnent of the DP algorithm, which facilitates the use of the 

np recursion, is an enumerative procedure in which all the feasible subsets S 

are enumerated in such an order that S \ f i } is enumerated before S for all 

j e: :R (R) and � c �7• Baker and Schraqe -use for this a standard binary coding 

procedure. In the subsequent development we show how the labels could be used 

for a more efficient enumeration scheme. 

2. 'T1he Labeling of Precedence Relations of Dimension < 2. 

11'irst we intronuce some definitions and known results necessary to 

unaerstana the nevelooment which follows these. 

Anv c'lirecteo acyclic qraph G = (V,A} induces a partial order � on its 

''ertex set v hv u -E- v, u,v e: V iff there is a directed path from u to v in G. 
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The transitive closure of G is the directed acyclic graph G1 = (V,A1), for 

which A c A1 and whenever there is a directed path from u to v in G, 

(u,v) e: A1• An arc (u,v) of G is called redundant if there is a directed path 

from u to v in G that does not include the arc (u,v). The transitive 

reduction of G is the unique directed acyclic graph which contains no 

redundant arcs and has the same transitive closure as G. 

If we consiner a set of precedence constraints represented by the directed 

acvclic araph G = (�T,A) , this alwavs induces a unique partial order P on v, 

and :if we �efine G1 = (V,A1) s.t. for anv u,v e: V u "" v iff (u,v) e: Ai, then 

r,l is the transitive closure of G. We will say that P induces G1• For any 

airecte<i qraPh G = (\T,A) let
. 
G = (V,A) be its undirected version and let Ge be 

the complementary qraph of G. (Ge = (V,Ac), where the undirected edge 

(x,v} e: p...c iff (x,v) i A). An un�irected graph G = (V,A) is called a 

comparability graph if there exists a transitive orientation of its edges, 

i.e., there exists a airected version of G, G = (V,A) in which if (u,v) e: A 

and (v,w) e: A then (u,w) e: A also holds for every u,v,w e: v. 

A partial order on T..7 is called a total order if any two elements of V are 

comoarable. Szpilrajn showed [11] that any partial order is extendable into a 

total oroer, and anv oartial order can be defined as the intersection of 

several total orders expressed as binary relations. For example, if we 

con�iner the Partial oroer induced bv the nigraph G of Figure 1 on the set 

-r..1 = fl,2,3,4}, then the diqraphs G1 and G2 induce total orders on v, which are 

extensions of the oarti.al orner. Considering these orders as binary 

relations, G induces the relationships R = { (1, 3), (2, 3), (2,4)}, G1 induces 

R1 = f (1, 2), (1,3) � (1, 4), (2,3), (2,4), (3, 4)} and G2 induces R2 = { (2, 4), 

(2, 1), (2,3), (4 ,1), (4 , 3), (1,3)}. Clearly R = R1 (\ R2. 

Dushnik ann Miller rs] defined the dimension of a partial order P as the 

minimum numher of total orders such that their intersection is P. Let us 
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nenote this number by aim P. Accordinq to this the dimension of the partial 

order induced by the digraph G of Figure 1 is 2. They have also proved the 

followina theorem. 

'T'heorem 1: Let the partial order P induce the digraph G. Then dim P < 2 if 

and only if 7F is a C'OffiPB.rability graph. 

Now let us consider 1T = (1T1, 1T2, . . .  , 1Tn} , a permutation of the numbers 

1,2, • • •  ,n and let 1T-l (i) , denoted shortly by 1T.jl, be the position in 1T where 

the number i can be found. (E. a., if 1T = (311, 4, 2), then 1T 41 = 3, 1T3
-1 = 1, 

etc.) We can construct an undirected qraph G [1T] from 1T in the following way: 

the vertices of G[1T] are the integer numbers, 1, 2, ••• ,n and two vertices are 

joined by an edqe if the larger one of them (as numbers) is to the left of the 

smaJ ler one in 1T • 'T'he graoh G [1T] corresponding to the above permutation 1T is 

shown in Figure 2. An undirected graph G is called a permutation graph if 

there exists a oermutation 1T such that G is isomorphic to G [ 1T ] • 

.
(Denoted by 

G ,; G [ '!T]). 

F.ven, LernPel ancl Pnueli [6] '!?roved the following: 

'r'heorem 2: An un�irectec'l qraph G is a oermutation graoh if .and only if G and 

GC both are comparability graphs. 

Ccmbinina theorems 1 and 2 we qet the following: 

'T'heorem 3: Let P be a partial order with an induced digraph G, then dim P < 2 

iff G is a permutation graph. 

In view of the above theorems to determine for a partial order P whether 

nim P 2 2, or equivalently whether (for its induced digraph G) G is a 

permutation araph, it is sufficient to check whether ac is transitively 

orientahle. C..olumbic [7] has studied this problem and described a polynomial 

time algorithm, which answers this question and finds a t=ermutation 1T such 

that � ls lsomorohic to G [ 1T] whenever G is a permutation graph. If we direct 

�f1Tl so that each edge is directed towards its larger end point, when 
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consinerinq the vertices of G[TI] as inteqer numbers, and denote this directed 

araph bv G[ Til then G � G[ TI] also holds. The permutation TI defines a sequence 

or the vertices of G, which leads to a compact labeling of the feasible 

subsets: 

'11heorem 4: Let G = �T,A) be a directed acyclic qraph representing the partial 

or�er P for which dim P < 2. Assume there exists a perm�tation TI of the nodes 

of G such that r.; [TI] � G*, where G* is the transitive closure of G. Further 

assume (without the loss of qenerality} that the nodes of G have been numbered 

so that the i-th node corresponds to i in TI • (0 � i � Iv!). 
If the noaes of G are labeled in order of increasing i, using the Baker-

Rchraqe labelinq formulae, then the resulting labeling is compact. 

Proof: Bv inauction on the number of nodes. 

For l\rl = 1 or 2 the proof is obvious by simple enumeration. 

Hvoothesis: Let us assume that for any graph with the above properties on 

less than n nodes (n > 2) the labeling is compact, and let lvl = n. Since 

there is a one-to-one correspendence hetween the nodes of G and the integer 

numbers hetween 1 and n, we will refer to these nodes by using the 

corresoonninq inteaer numbers. Let us define the following subsets of nodes: 

Rk = fl,2, • • •  ,k} 1 < k < n 

Pk = f ;j; prece0es k in G} 1 < k < n 

Q}{ = 8k-l \ Pk 2 < k < n 

We assumed that the labeling occurs in the order 1,2, ••• ,n. This clearly 

means that if 4 E Pk => i E sk-l' because of the direction rule for G[TI]. 

AoPlvinq the Baker-Schrage formulae in this order it follows immediately that 

a(k) = 0 for everv k (12_k.::.n> and that L(k) = t(k) - b(k)+l = L(Qk) + 1. 

Let us consider the induced subgraphs Gk = (Sk,A) of G*. It is clear 

that each of these subqraphs reoresents a partial order with dimension less 

than or eaual to two, and the permutation TI! k induced by TI on Sk is such that 
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Gk = G [rr I k] . 'T'he labelinq L of G is clearly a labeling of each of the Gk-s 

and it satisfies the a�sumptions of the theorem. To prove the theorem we 

shall prove that the labelinq L is a unique, compact labeling for each of the 

araphs Gk• (l�k�n and Gn = G*). This is clearly true for G1 and G2 and 

sUOPOse it is true for G1, G2, ... ,Gn-l• By this hyy:othesis the number of non

emptv _feasible subset of Gn-l is L(Sn-l>· The uniqueness of the labeling on 

the feasible subsets follows from the following two observations: 

1. If n is an element of any feasible subset T, then L(T) � L(n) + 

L(Pn) = L(On} + L(Pn} +l = L(Sn_1)+1. Hence no feasible subset 

containing n has the same label of any feasible subset of �-l· 
2. If '1"1 and T2 are different feasible subsets of Gn' each containing 

n, then L(�l) ¥ L(T2). Otherwise, we would have L(T1 \ {n}} = 

L(�2 \ fnt) contradictina the cc:mpactness of the labeling on Gn-1 · 

wor the compactness of the labeling on Gn it remains to prove that there are 

oreciselv L(Sn} = L(Sn-1> + L(On)+l feasible subsets in �· 

.,, is a feasible subset of Gn containing n iff T = {n} U Pn UR, where R = � or 

R is a feasible subset of G* (On, A} .  Thus it suffices to prove that L(Qn} is 

oreciselv the numbei of non-empty feasible subsets of G* (Qn, A). We shall go 

further, hv showinq that L restricted to On is a compact labeling. For this 

we note the following two facts about the permutation 1T : 

i) all elements of On precede n in 1T • 

ii} n precedes all elements of Pn in 'IT. 

'T'herefore if j e on ana i e s1_1("\ Pn then i has precedence over j in G. 

Hence all elements of 'Pn, which are labeled before j are predecessors of j. 

'T'hus L(i} = t(j) - b(j} + l = [t(j) - L(Sj-1 (l Pn)] - [b(j) - L(Sj-1 (\ Pn} ]  

+ 1 oroves that the labels L(j) (j e On) are exactly the labels we would get 

:if we aoolie<i the labelina scheme to the Permutation qraph G* (Qn, A). We can 

clearlv aPplv the original inductive hypothesis to this graph, and so the 
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* ccmoactness of L on G (On,A) follows. 

As an example for performing the labeling calculations for a permutation 

qraoh in the order aefined by the 'J:)ermutation, consider the graph shown in 

F'iqure 3. The labeling calculations are summarized in Table I. Since the 

total sum of the labels L('7) = 9, the graph has precisely 9 non-empty feasible 

subsets. 

In f 3] it was proved that labeling the· nodes of a series-parallel digraph 

bv the Baker-Schraqe formulae will result in a compact labeling, if this was 

done in a oarticular sequence, defined there. Since the transitive closure of 

everv series-parallel graoh represents a partial order of dimension � 2 (see 

[9]) theorem 4 aefines a new com'J:)act labeling sequence for series-parallel 

araohs and also extends the com'J:)actness property beyond this class. Series-

oarallel araphs have a forbidden subgraph characterization (cf. [9]). Baker, 

Fishburn and Roberts [1 ] have shown however that a forbidden subgr.aph 

characterization is impossible for precedence graphs of dimension 2. In the 

followina we identify a class of 2-dimensional precedence graphs which 

orooerlv contains the class of series-parallel digraphs. 

Consider the diqraoh G shown in Figure 3. The subgraph of G induced by 

f 2,3,4,5 } is the forbidden subgraph for series-parallel graphs, while the 

sub:::lraoh int=lucea by f l,3,4,6 } is what is known as a airected Wheatstone bridge 

(41. G is a permutation qraph which is not series-parallel. 

Definition �JJJSP (Wheatstone �inimal Series-Parallel): 

i) '!'he directed acyclic qraph having a single vertex and no arc is ViMSP. 

i.i) 'T'he directed acvclic graph G(7r] shown in Figure 2 is ™SF .  

iii) If G1 = ('�Ti,A1) and G2 = (V2,A2) are WMSP, Vi(\ V2 = rj, then either 

one of the followinq directed acyclic gra?hs is �SP tco: 

a) Parallel Canoosition: %. = (Vi U v2, Ai \J A2) 

b) Series Composition: Gs = (V1 U V2, A1 U -A2 U (01 x I2))' 
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where 01 is the set of exit nodes in G1 and r2 in the set of 

entry nodes in G2• 

Definition WGSP (Wheatstone General Series-Parallel): A directed acyclic 

qra'Ph is mSP iff its transitive reduction is ™51' .  

'T'heorem 5:  If G1 = (�11, A1) is the transitive closure of a WGSP graph, P1 is 

the partial order induced by G1 then dim Pi � 2 or equivalently G1 
is a permutation graph. 

:Proof: Bv induction on the number of nodes n = lv1 I· For n = 1, 2, 3 it is 

clear that G must be a GSl? gra'IJh, therefore dim P1 � 2. 

�or n = 4 a) if G1 is the gra:i;>h G[�] shown on Figure 2 (or isomorphic to it) 

then it was shown earlier that its undirected version G[�] is a 

permutation graph, i.e., by theorem 3, dim P1 � 2. 

b) if G1 is not isomorphic to the qraph G [�] of Figure 2, then it 

is clear that G1 is series-parallel implying dim P1 � 2. 

Hvoothesis: Assume that the theorem is true for any WGSP graph on less than n 

noc=!es. (n > 4) 

Let G1 = w1, A1) be a �c;p qraph on n nodes. 

a) If G1 is the parallel composition of two WGSP graphs G2 = (V2, A2) and 

�3 = (v3, A3) let the partial orders induced by G2 and G3 be P2 and P3 resp. 

Bv the in<1uctive hypothesis dim P2 � 2 and dim P3 � 2. As a result of the 

parallel o:>moosition the nodes of G2 and G3 are ino:>rnparable in P1• So if R� 
ana R� are two total oroers s. t. R� (\ R� = P2 and R� and R� are two total 

orders s. t. �l(\ R� = P3 then we can define two total orders on Vi: 

RT = f (x,v) I (x, y) e: � or (x,v) e: R� or x e: V2 and ye: V3} 

Rf = f (x, v) I (x, y) e: � or (x, y) e: R� or x e: V3 and ye: V2} 

It is clear that Rf() Rf = P1 irnolvinq dim P1 2_ 2. 

b) If G1 is the series composition of two WGSP graphs Gz = (V2, A2) and 

G3 = (V3, A3)• 
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Let the partial orders induced by G2 and G 3 be P2 and P3 resp. By the 

inductive hypothesis we have dim P2 � 2 and dim P3 � 2. As a result of the 

series composition the nodes of G2 are all predecessors of every node in G3• 

If R� and R� are two total orders s.t. R� n R� = P2 and R� and R� are total 

oraers s. t. R� ('\ R� = P3 then we can define the following total orders on V1: 

R� = f (x,y} I (x, y) c: R� or (x, y) c: R� or x c: v2 and y c: v3} 
R1 = f (x,y) I (x, y) c: R� or (x, y) c: R� or x c: v2 and y c: v3} 

It is clear that R1 n R� = Pl implying dim P1 � 2. _  

A.s an illustration we show one WGSP qraph on Figure 4. A somewhat 'loose' 

definition for the class WGSP could be that its members are GSP graphs with 

certain nodes substituted by Wheatstone bridges. 

A natural question to ask is whether the compactness of the Baker-Schrage 

labeJina svstem can be extended further to partial orders (precedence graphs) 

with hiqher dimension than two. The answer for this is negative, actually the 

fact that the Baker-Schraqe formulae result in a compact labeling implies that 

the partial order has a dimension < 2. The first proof of this is due to J.B. 

Orlin (10] . In the following we present the proof of a stronger result, but 

first we have to review the concepts of basic feasible subsets and basic 

canplements due to Held, Karp and Shareshian (8] . 

Let P be a partial order � on V = f 1, 2, • •• , n}. (In the following 

Clevelooment we alwavs assume that i � j implies i < j.) Let us define the 

basic feasible subsets in P by Bk = f i I i=k or i � k} for k > 0 and let Bo be 

the emotv set. 'l'hese basic feasible sets determine the sets Bo, B1, •• • , Bn, 

called the basic complement� by Bk = { i Ii < k and i ,t Bk}. Each Bk induces a 

Partial order, which is the restriction of P to the elements of Bk· If we · 

consider those feasible subsets S in P which contain k as their highest 

numherea element an<l the feasible subsets R in the induced partial order on 
-

"Rk, then there is a one-to-one correspondence between S and R by S = R U Bk· 
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Fran this follows the following theorem: 

n 
Theorem 6 [8] : [P] = l [Bi] ,  where [X] denotes the number of feasible 

i=O 
subsets (including the empty set) in the partial order induced by the set X. 

Lemma 7. Let P be a partial order � on V = {1,2, ••• , n} as above and let 

G = (�7,A) be the digraph induced by P. Let L(l), L(2) , ••• , L(n) be a labeling 

of the vertices of G. Then this labeling is a compact labeling of G if and 

only if 

L(k) = [Bk] for every 1 � k � n (1) 

Proof: In one direction the proof is obvious by Theorem 6. For the other 

<iirection we use an induction on n, the number of elements. For n = 1 the 

onlv non-empty feasible subset in G1 = G is {l} so L(l) = 1, on the other hand 

:Rl = �, so [B1] = 1 implying. (1) .  

Hypothesis: Let us assume that for any partial order on less than n elements 

if !i is a compact labeling then (1) is also true. Let us consider then the 

partial order P on n elements and let Pn-l be the partial order induced on 

r1, 2, ... , n-l}. It is clear that the basic complements Bo, B11•••f Bn-1 and 

the partial orders induced by the� are identical in P and Pn-l• Therefore by 

't'heorem 6 

n n-1 
[l?l = I [Bi] = l [Bi] + [Bnl = [Pn-11 + [Bnl • 

i=O i=O 
(2) 

It is clear that if L(l), L(2) , ••• , L(n) is a compact labeling of P then L(l), 
n-1 

L(2) , ••• , L(n-1) is a comoact labelinq of Pn-l' [Pn-l] = 1 + l L(i) and by 
i=l 

the inductive hypothesis we have L(k) = [Bk] for 1 � k � n-1. On the other 
n 

hand [P] = 1 + l L(i) from which it follows by (2) that L(n) = [Bnl is also 
i=l 

tru�, thus provina the lemma. 

'l'heorem 8: Let P be a partial order � on V = {1, 2, ••• , n} and let G = (V,A) be 

the rliqraPh induced bv P. Assume that the Baker-Schrage labeling formulae 
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result in a CClllPact labeling L(l), L(2) , • • •  , L(n) for G, then 

(i) aim P < 2 

(ii) any compact labeling of G can be generated by the Baker-Schrage 

formulae. 

Proof: We define the following "incomparability'' relationship on the elements 

of �r: we sav that i 11 j (read i is incomparable to j) iff i < j but i is 

unrelated to j in P. 11 is not a transitive relationship in general, but in 

view of theorem 1 if 11 ,is transitive then dim P ..::, 2. 

Consider the basic complements Bk in P. Since L(l) , ••• , L(n) is a 
-

compact labelinq, by Lemma 7 we have L (k) = [Bk] for 1 ..::, k ..::, n. Each Bk with 

the relation � is itself a partially ordered set. We define the basic 

feasible subsets (Cki) and the basic complements (Cki) in these posets: For 

each k (1..::, k � n) and i c: Bk (i. e. , ii lk) let 

cki = hl.j = i or j c: Bk and i � i}, 

cki = ij I ; < i, j c: Bk and j /. cki} and let cko = cko = � 

It is clear that·cki = Bk (\Bi and cki = Bk(\ Bi. Thus applying theorem 6 to 
-

the poset Bk we get 

[BkJ = ccko l + l: rckil = 1 + l: [Bk (\ BiJ 
ii lk ii lk 

(3) 

Consiner a feasible subset s in the p:>set Bk(\ Bi, where ii lk, and let us 

"�xtend" S into Bi bv e(S) = f j l j E s or j c: Bi and there exists an !l c: S such 

that :i � !l in Bit. It is clear that e (S) is a feasible subset in Bi. We 
- -

claim that e is a mappinq of the feasible subsets in Bk(\ Bi into the set of 
-

feasihle subsets in Bi. '1'o prove this, assume the contrary, i.e., there exist 

two aifferent :Eeasible subsets s1 and s2 in Bk n Bi for which e (S1) = e (S2). 

Without the loss of aenerality we can assume that there is a j c: s1 \ s2, for 

this; however :i E e(S1) and j f. e(S2), a contradiction. From this it follows 

that [Bk(\ Bi] � [Bi] for every i, k if i 11 k. Substituting this into (3) we 

aet 



[Bk] = 1 + l [Bk<\ Bi] < 1 + l [Bi] . illk - illk 
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(4) 

Let us assume that Bk() Bi C Bi, i.e., there exists a j e: Bi \ Bk. This 

means that  j 1 1  i, i 1 1  k but j � k, i.e., the relation 1 1  is not transitive. In 

other words Rk r'I Bi = Bi for every i 1 1  k if and only if the relation 1 1 is 

transitive. Furthermore if Bk ll Bi c Bi, we also have [Bk r\ Bi] < [Bi], since 

if we consioer the smallest (as a number) j e: Bi \ Bk and a subset S' �Bi 

with highest index j and feasible in Bi, then clearly there is no feasible 

subset 8 in �k n Bi for which e (S) = S'. In summary [Bk I\ Bi] = [Bi] for 

everv ii lk if and only if the relation 1 1  is transitive, i.e. , dim P � 2. 

Based on Lemma 7 we must have L(j) = [�jl for every j e: V and 

substitutinq this into (4) we qet 

L(k) < 1 + l L(i) , (5) - ii lk 

and equality holds in (5) only if dim P < 2. It is clear that L(k) = 

l+ l L(i) for every k e: V is identical to the Baker-Schrage labeling 
i 1 1  k 

formulae, thus proving the theorem. 

Besiaes resulting in a compact labeling for 2-dimensional precedence 
• 

qraohs, the Baker-Schrage labelinq scheme uniquely assigns labels to all the 

.feasible subsets, moreover this happens in an additive fashion, i.e., if s1, 

R2, � CV are feasible subsets for which S = s1 U s2 and s1 I\ s2 = r; then for 

their labels we have L(S) = L(S1) + L(S2) .  This enables us to define a simple 

alqorithm that could be used to identify the feasible subset S such that L(S) 

= k for a qiven inteqer k (1 � k � L(�n}. 

Algorithm DF'CODE 

T.,et .S = � 

For i = n to 1 

If k > t(i) then S = S U {i} and k = k-L(i) 

Next i 
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Theorem 9: Let us assume that the 2-dimensional precedence graph G = (V,A) 

has been compactlv labeled by the Baker-Schrage formulae. Then for any given 

inteqer k (1 � k � L(V)) the Alqorithm DECODE identifies the unique feasible 

subset 8 in G for which L(S) = k in O(n) times and O(n) space. 

Proof: Consider the vertex n which was labeled last. If n e: s, then by the 

feasibilitv of S all predecessors of n must l:e in S too, i.e. , 

L(8) 2:_ L(n) + b(n) = t(n) - b(n) - a(n) + 1 + b(n) = t(n) + 1, (6) 

where the first equality follows from the labeling formulae and the second 

ecruali tv follows from a (i) = 0 (1 � i � n), since we assumed that i � j 

imolies i < j for any pair i,j. 

On the other hann if n is not in s, then 

L(S) � L(l) + L(2) + • •• + L(n-1) = t(n) (7) 

Comparinq (6) and (7) we qet that S contains n if and only if k > t (n) and 

using this argument in an inductive fashion for the induced subgraphs Gn-l' 

Gn-21•••1 G1 oroves the correctness of the decoding algorithm. 

Rince the only information we need to store for DECODE are the labels 

L(i), t(i) (i = 1,2, ••• ,n) the algorithm requires O(n) space indeed. The O(n) 

time requirement is obvious. 

3. 'The Modified Dynamic �roqrarrminq Algorithm 

Consider a sequencing problem with sequencing function f and with 

preceaence araoh G = (V,A) of dimension� 2. Assume that 1T is a permutation 

for which <; � G ( 1T] and the graph G has been compactly labeled by the Baker-

Schraqe formulae. We redefine the DP alqorithm for this problem. 

Alqorithm DYNPRO 

For k = 1 to L (V) 

Let s = �, R(S) = �, c(S) = 0, j = n+l 

For i = n to 1 
If k > t(i) then S = s U { i} , k = k-L(i) and c(S) = c(S} + pi 



otherwise qo to next i 

If 1Til < j then R(S) = R(S) \) f i} and j = 1Til 

Next i 
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f(S) = min f f(S \ f i} ) + q (i, c (S)) i E R(S)} and let i
* be the index, 

where the minimt.nn is obtained. 

Store f (S) and i
* 

under the address L(S). 

Next I<. 

'l'heorem 10: 'l'he Algorithm DYNPRO solves the above defined sequencing problem 

in O (Kn) time and O (K) soace, where K is the number of feasible subsets in the 

precedence qraph G. 

Proof: Since the labeling formulae assign a compact labeling to G, K = L(V). 

The Alqorithm DECODE is used in DYNPRO to identify the feasible subsets, so 

based on 'T'heorem 8, this will require O(Kn) time and O (n) space. Within the 

same lOOP we use the permutation rr to identify the set R(S). The correctness 

of this method follows from the following argument: For any i, k E V i � k if 

ano onlv if i < k and rri1 > rrk1• Therefore if we identify the elements of 

R(�) in their decreasinq seauence (as numbers}, at any point a vertex i is in 

R(S) if ano onlv if for everv k assiqneo to R(S) up to this point rril < rrkl. 

�ince j is used in the alqorithm to store min rrk1 for these k E R(S), this 
k 

Proves that DYNPFO will indeed identify R(S) in the same loop as S, and this 

aqain reauires no more than O(Kn} time and O(n) space. 

'l'o calculate f (S) for one S by the dynamic programming recursion clearly 

reauires at most O(n} time and O(l}  space, and to do this for all feasible S 

reauires then O(Kn) time and 0(1) space. For each S we store f (S) and i
* 

E S 

which is the last vertex in the optimal sequence for .s, therefore the DP 

tables require O(K) soace. 

Once f (V) has been calculated, we can get the optimal sequence, where 

this value is obtained, by putting the i* belonging to S = V in the last 
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available oosi tion and reoeatinq this for s \ { i *} until we reach the empty 

set. 'T1his oroves the theorem. 

There are special situations where we may be interested only in finding 

the ootimal value f (V) but not the optimal sequence. In this case we need not 

store the vertices i * in the above algorithm. Furthermore if Lmax = 

max fL(i)li s v}, for the DP recursion the f(S-{i}) values for any Sand 

i s R(S ) must be stored in one of the �ax addresses immediately preceding the 

address L(S), therefore at any point in the algorithm we need to refer back to 

at most Lmax different locations in the DP table. In this case the space 

reauirements of the algorithm can be reduced to O(Lmax + n). 
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Table I 

i b (i) L(i) t (i) 

1 0 1 0 

2 1 1 1 

3 1 2 2 

4 4 1 4 

5 3 3 5 

6 8 1 8 

'T'otal Rum of labels 9 

20 
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