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Optimal Weighted tp Norm Parameters For Facilities 

Layout Distance Characterizations 

Robert F. Love* 
Paul D. Dowling* 

The distances used in certain types of industrial, office or 

street grid layouts are often assumed to be rectangular. Because 

of the "doubling back" effect caused by finite block and facility 

sizes, actual distances travelled are often much greater than 

indicated by the \ norm. In this study the weighted t p norm is 

fitted to a certain commonly occurring class of layout patterns. 

The optimal best-fit parameters are reported in addition to other 

observations which should be useful to users of distance models. 

The results give strong support for the use of the t1 norm in 

determining optimal facility locations when travel distances are 

rectangular and doubling back occurs. However, the i1 norm is not 

appropriate for modelling actual travel distances under the same 

circumstances. 

* McMaster University, Hamilton, Ontario 



Optimal Weighted 2p Norm Parameters For Facilities 

Layout Distance Characterization 

Robert F.  Love 
Paul D .  Dowling 

1.  Introduction 

A great deal of research has been carried out dealing with the 

characterization and solution of floor layout problems [ 1,7]. One of the most 

common assumptions made in the development of floor layout models for 

buildings such as factories, warehouses or offices, is that travel distance 

between pairs of points can be modelled by the 21 norm (also commonly referred 

to as the rectangular or rectilinear distance). The 21 norm assumption is 

widely used and applications also include modelling rectangular street 

patterns and piping and wiring networks where the conduits must follow the 

orthogonal outlines of building structures. It has been the experience of one 

of the authors that in practical applications the distances between point 

pairs are often greater than would be indicated by the 21 norm. This extra 

travel distance may be caused by the necessity to "doubl' back". Doubling 

back may occur in practice due to the existence of finitely-sized blocks or 

bays into which a floor is divided. Doubling back may also be caused by the 

necessity to travel between closed departments or areas. By "closed area" we 

mean, for example, a walled-off office area or production department with an 

entrance on one side. In order to travel from one closed area to another the 

traveller may find that he must travel in directions which are different from 

those which would be travelled if the assumption of perfect rectangular 

distances prevailed. 

* Figure 1 illustrates a typical industrial floor layout with ten of the 

*This is the current layout of the main manufacturing area of ITW Canada Inc., 
Toronto . 
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more frequently travelled inter-departmental routes marked on it. While the 

flow of materials from machine to machine within a department or machine 

grouping is handled quite efficiently, it is the movement of parts and people 

between departments which can create travel distances greater than those 

specified by the i1 norm. In this layout, machine groupings can usually be 

characterized as departments with only one or two access points. This occurs 

because of the machine locations and the space occupied by completed parts, 

work in process, and buffer stock located adjacent to the machines. For 

example, routes 6 and 7 in Figure 1 are from a machine grouping which can be 

dealt with as if it is a department with two doorways. Table 1 gives the 

rectangular and actual distances for each route, as well as the excess 

distance between the actual and rectangular distances that is due to doorway 

locations and obstacles on the shop floor. In most cases, it is the doubling 

back which accounts for the increased distances travelled, and thus the extra 

distance due to doubling back is mainly a function of the lengths of the 

department sides and not the total travel distance. 
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Route Description Distance Between Excess Distance Travelled 
Midpoints (ft) Due To 
Rectang- Actual Doorway Shop Floor 
ular Locations Obstacles 

1 Quality Control to 42 llO 68 0 
Finished Goods 
Inventory 

2 Tool Storage to 168 200 32 0 
Engineering 

3 Maintenance to 144 196 28 24 
Cafeteria 

4 Finished Goods 68 68 0 0 
Inventory to Ship-
ping 

5 Finished Goods. In- 12 56 44 0 
ventory Records to 
Finished Goods In-
ventory 

6 Machining Dept. to 82 104 22 0 
Weigh/Wash Dept. 

7 Quality Control to 176 248 60 12 
Machining Dept. 

8 Work in Process In- 38 86 48 0 
ventory to Trimming 

9 Receiving Dept. to 58 102 44 0 
Milling/Forging 

10 Raw Material In- 110 llO 0 0 
ventory to Machin-
ing Dept. 

Total 898 1280 364 36 

TABLE 1 Routes and Distances For Floor Layout in Figure 1 
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The phenomenon of doubling back is not confined to travel distance on 

floor layouts. It may also occur on street grids due to one- way streets or 

restrictive t r affic rules (for example, no l eft turns at certain 

intersections). Doubling back also occurs in piping and wiring circuits since 

it is often impossible to have conduits follow perfectly rectangular distance 

paths. 

Various distance norms have been evaluated to obtain models with few 

parameters which accurately describe actual road distances. The ikp norm has 

proved to be valuable in road distance modelling (3, 4 ]. When doubling back is 

not present, the t1 norm provides an ideal fit for travel along rectangular 

paths. However, in situations which require doubling back, the actual 

distances are greater than rectangular distances and the t1 norm may no longer 

be suitable to model these. The purpose of this study is to investigate the 

appropriateness of the tkp and t1 norms when the distances _between departments 

on a plant or office floor layout are equal to or greater than rectilinear 

distances. The model used here to describe the distance between departments i 

and j with coordinates xi = (xi1, xi2) and xj = (xj1, xj2) respectively is 

\, 
P 

= k [ l xil -x j 11 P + I xi2- x  j2 IP] l/p where k and p are the parameters to be 

fitted. We also refer to this model as the tk, p  norm or the t k,p distance 

function. The results obtained from using the 2kp norm will then be compared 

with the t1 norm, which has commonly been used to model floor layouts. 

In real situations, office clusters or production areas may have 

entrances on more than one side. In the layouts studied, (Figure 1 is 

typical), the majority of departments had a single access. Therefore, it was 

decided to adopt the convention that a department would have only one 

entrance, but the entrance to that department would be randomly assigned to 

one of the four sides with equal probability. 
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Unlike previous studies [ 3,4] in which several distance functions were 

fitted to empirical data, the research reported here concentrates on fitting 

the� a n d  lk ,P· no rms t o  a set of c o mp u ter-gener ated f l o o r  layout 

representations. The weighted 1 p norm was chosen for the following reasons. 

1. The distances being modelled were chosen from surfaces which were 

assumed to be flat. In the previous studies of road distances [ 3,4], city 

pairs were chosen from fairly large geographical areas. This meant that the 

existence of natural topographical formations such as mountains, lakes and/or 

the earth's curvature were factors to be incorporated in the distance 

function. This suggested the use of distance models such as the spherical 

distance norm. 

2. Previous empirical studies have indicated that, unless more than two 

parameters are to be determined, the tk,p model is as good as or superior to 

other distance models [3,4]. 

3. The tk,p distance function has desirable convexity properties and is 

widely used in facility location models [5,6] and other applications ( for 

descriptions of three other applications see reference 3). 

2. Design Of The Study 

Figure 1 is representative of several floor layouts examined, and in most 

cases the departments are rectangularly shaped and have a single entrance. 

Furthermore, in Figure 1, including the machine groupings as departments, the 

departments cover roughly 55% of the total floor area. These observations, 

along with the fact that the doubling back effect is mainly a function of 

departmental side length, form the basis for creating sample floor layouts. 

A computer program was written to assign rectangularly shaped departments 

to a floor layout. The midpoint of each department was randomly generated. 

The length and width of each department was also randomly generated from a 
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specified minimum and maximum allowable dimension. Various minimum and 

maximum allowable department sizes were used in the study. In one set of 

tests carried out, the department sizes were systematically increased in order 

to examine the effect of this expansion on the parameters of the fitted 2k,p 

function. The department areas ranged from 0.002% of the total area ( to 

represent points on a plane) up to approximately 60% of the total floor area. 

After each department's dimensions were generated, the location was 

examined to see if it extended outside the floor layout boundaries. Any 

protrusion was corrected by a translation to map the department length( s) onto 

the boundary line( s) . Then the department location was tested against all 

other department locations. If there was any overlap with an existing 

location, a new location was generated. After a department location passed 

this overlap check, a doorway was randomly assigned to the midpoint of a side. 

Figure 2 shows the convention used in assigning the doorway locations. 

Figure 2. Doorway Location Convention 

After the desired number of departments was generated, the inter-

departmental travel distances between all pairs of departments were 

calculated. In the model, when doubling back occurred in a trip from one 

department to another, the appropriate department lengths were added to the 

rectangular distance to obtain the actual distance travelled. Thus actual 

distances were simulated by the model. All travel was assumed to take place 

parallel to the orthogonal axes since this corresponds to what commonly occurs 

in industrial plants, warehouses, offices and many city street grids. These 

distances were then used as the data inputs for the distance function fitting 

calculations. The parameters ( one or both of k and p) were computed using two 
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measures of merit. 

The first measure involves minimization of the sum of absolute deviations 

given by: 

where 

AD = l J d(q,r)-A(q,r) J ,  
all sample pairs 

A(q,r) = actual distance between departments q and r; and 

d(q,r) = estimated distance between departments q and r.  

The implication of using this criterion is that a function must estimate 

greater actual distances relatively more accurately than shorter distances. 

This can be seen by noting that a 50 per cent error in estimating a 10 unit 

actual distance is relatively unimportant when compared to a 50 per cent error 

in estima ting a 1 0 0  unit actual distance, although the errors are 

proportionately the same. The reasonableness of such a criterion rests on the 

assumption that a user may be more concerned with absolute deviations of 

estimates than with proportional deviations. 

The second measure of merit used in the study involves minimizing the sum 

of squares given by: 

SD = I 
all sample pairs 

[d(q,r) -A(q,r) l2
• 

I A(q,r) 

This criterion is more sensitive than the first to large values of 

j d(q,r)-A(q,r) J in relation to A(q,r) [ 4]. Division by ./ A(q,r) accomplishes a 

certain sensitivity in the criterion such that shorter actual distances are to 

be estimated at least as accurately (in a relative sense) as greater actual 

distances. Thus the second criter i o n  measures goodness-of-fit in a 

significantly different way from the first criterion. 

The parameters k and p of the distance function were defined as those 

which best fit the given criterion for the given sample. This allows 

' 
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information to be gained about how the "best" parameters change with changes 

in criteria and layout patterns. For example, if -\,p has optimal parameters 

p* and k* which minimize AD with respect to p and k, these may not be the 

parameters which minimize SD. Computer programs were writ ten to perform 

exhaustive searches for the optimal parameters in the intervals in which they 

were known to occur. Sample floor layouts with 15 departments were generated 

with minimum and maximum department lengths and widths of 4 and 12 units 

respectively. The locations and dimensions for the departments are displayed 

in Table 2 and the distances between departments are given in Table 3. A 

random sample of 50 department pairs was selected and the actual distances 

(Table 2) were compared with the predicted distances to determine the AD and 

SD best-fit value differences. 

Dimensions Doorway 
Dep;:irtment Location Length x Width Location 

A (25,61 ) 6 x 8 1 
B (79,99 ) 7 x 12 4 
c (73,2 ) 12 x 4 4 
D ( 5,179) 9 x 8 4 
E (91,172) 11 x 8 3 
F (45,174) 4 x 9 4 
G (29,157) 5 x 6 1 
H (88,171) 9 x 7 1 
I (88,153) 6 x 9 2 
J (23,149) 6 x 11 2 
K ( 4,177) 4 x 4 2 
L (50,150) 7 x 10 1 
M (38,176) 4 x 6 3 
N ( 5,116) 10 x 11 1 
0 (13.61 ) 5 x 10 4 

Table 2 15 Departments on a iOO x 200 Floor Layout 



I\ B 

A 99 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 

c D E F G H I J K L 

127 138 177 137 106 180 155 96 141 124 
110 161 85 116 121 88 63 119 164 97 

257 188 212 217 191 166 215 260 193 
101 49 46 91 109 48 16 74 

56 77 4 28 97 104 63 
37 46 64 57 52 29 

80 69 26 49 34 
31 100 94 66 

75 112 41 
51 44 

77 

Table 3 Actual Distances Between Departments 

3. Computation Results and Discussion 

One and .:!!!£ P:arameter Best-Fit Results 

10 

M N 0 

128 86 20 
125 109 111 
221 205 131 

42 72 131 
65 142 189 
13 102 149 
28 71 118 
55 145 192 
73 120 167 
48 51 98 
45 66 134 
38 89 136 

93 140 
79 

Since one of the purposes of the study was to determine how the 

unweighted Q,p distance model, i. e. , the Q,l,p model, was affected by typic al 

floor layout patterns, it was dec ided·-to fit the Q,l, p model to sets of test 

data. In these one parameter fits, the AD and SD values were computed for p 

in the interval [0�5,1.5] (computational experience indicated that optimum p 

values would not be found outside this interval). The total search procedure 

used step sizes (the amount by which p was incremented) of 0.1, 0.03, and 

0.02. The best fit values of p according to tests 1 and 2 for the 3 step 

sizes are shown in Table 4, along with the results for the Q,l 1 norm. 
' 



Best Fit Value 
p Value Differences 

Test 1-AD 

0.9 
0.92 
0.92 

1.00 

Test 2-SD Test 1-AD Test 2-SD 

0.9 5.058 x 102 6.031 x 10 
0.92 4.957 x 102 6.022 x 10 
0.92 4.957 x 102 6.022 x 10 

1.00 6.290 x 102 8.674 x 10 

Table 4 One Parameter Fit, k = 1 

1 1  

Step 
Size 

0.1 
0.03 
0.02 

In the determination of best fits for the t k,p model, both parameters 

were allowed to vary over prescribed intervals using specified step sizes. 

The results shown in Table 5 are for kE: [0.5,1.5] and PE [0.5,1.51 with step 

sizes of 0.1, 0.03, and 0.02. 

Best Fit Value 
k Value p Value Differences Step 

Test 1 Test 2 Test 1 Test 2 Test 1-AD Test 2-SD Size 

1.1 1.1 1.1 1.1 4.819xl02 5.534xl0 0.1 
1.07 1.07 1.04 1.01 4.644x102 5.412xl0 0.03 
1.06 1.08 1.02 1.04 4.64lxl02 5.370xl0 0.02 

Table 5 Two Parameter Fit 

With the layout representations created by the methodology in this study, 

for a single parameter fit (the best value of p for k=l), the value of p 

varied between 0.90 and 0.92 as shown in Table 4. It is not surprising that 

all the p values are less than unity since all sample distances were equal to 

or greater than their rectangular distance counterparts. 

From the results of fitting the t k,p distance function (Table 5), it is 

interesting to note that the best-fit p values remain close to unity whereas 

the k values tend to be larger than unity. This could indicate that the k 

values rather than the p values account for the larger-than-rectangular dist-

ances which are being modelled. We investigate this possibility in the next 

section. 
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Effect of Varying Department Sizes 

The "best-fit" values of k and p in the ik,p norm must be unity when each 

department is represented by a single point on the plane. What was not known 

was the effect on the best-fit values of k and p when department sizes are 

increased relative to the total floor space. For experimental purposes the 

layout with 15 departments was chosen and 12 layouts were generated randomly 

using various minimum and maximum department lengths. The results for one and 

two parameter best-fits for a step size of 0.02 are shown in Table 6, along 

with the best fit differences for the i1 1 norm. For each layout, two samples ' 
of 50 randomly selected department location pairs were used to obtain one and 

two parameter best-fit models labelled (a) and (b) in Table 6. 

The data in Table 6 indicate that the optimal p value for (k,p) fits is 

usually close to unity. The most striking exception to this was the best fit 

parameter values found for the case involving department lengths between 12 

and 36, as shown in Table 6. Under the first goodness-of-fit measure (sum of 

absolute deviations) the optimum (k,p) fit found was (0.74, 0.58). This fit 

was 6.2 8% better than the (k,l) best-fit, 3.04% better than the (1,p) best-

fit, and 23.1 0% better than the (1,1) fit. 

For the one parameter (p) fit, it is quite apparent that, as the 

department sizes shrink, the p values increase to approach p = 1. A similar 

pattern occurs with the two parameter goodness-of-fit data. For the smallest 

department size, both k and p values are 1.02 for both goodness-of-fit 

criteria. It would seem logical to theorize that, for p=l, the best-fit 

values of k would increase as department sizes increase. The reason for this 

is that as department sizes increase relative to a fixed total layout space, 

the "doubling back" effect will increase. Similarly, for k=l, the best fit 

values of p should decrease as department sizes increase. The decreasing 

values of p, of course, reflect larger average distances being modelled. 

' 
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Dept. Lengths Parameter (s) k Value p Value Best Fit Differences 
Min 

1 

2 

3 

4 

Max Fitted Test 1 Test2 Test 1 Test2 Test 1- AD Test2- SD 

2 p (k=l) (a) 1.00 1.00 0.98 0.98 53.25 3.136 
(b) 1.00 1.00 0.98 0.98 49.17 2.883 

k (p:l) (a) 1.00 1.02 1.00 1.00 60.00 3.157 
( b) 1.00 1.02 1.00 1.00 58.00 3.065 

k,p (a) 1.02 1.02 1.02 1.02 51.85 2.845 
(b) 1.02 1.02 1.02 1.02 48.11 2.743 

k=l, p=l (a) 1.00 1.00 1.00 1.00 60.00 3. 157 
( b) 1.00 1.00 1.00 1.00 58.00 3.065 

4 p (k=l) (a) 1.00 1.00 0.96 0.96 105.2 8.362 
(b) 1.00 1.00 0.96 0.96 77.65 3.177 

k (p=l) (a) 1.02 1.02 1.00 1.00 98.54 7.747 
( b) 1.02 1.02 1.00 1.00 88.34 3. 333 

k,p (a) 1.02 1.04 1.00 1.02 98.54 7.512 
(b) 1.00 1.00 0.96 0.96 77.65 3.177 

k=l, p=l (a) 1.00 1.00 1.00 1.00 128.0 10.62 
( b) 1.00 1.00 1.00 1.00 121.0 5.974 

6 p (k=l) (a) 1.00 1.00 0.96 0.94 183.3 10.81 
(b) 1.00 1.00 0.96 0.94 164. 4 12.20 

k (p=l) (a) 1.04 1.04 1.00 1.00 173.6 9.354 
( b) 1.04 1. 04 1.00 1.00 157.2 11.22 

k,p (a) 1.06 1.04 1.06 1.00 163.4 9.354 
(b) 1.04 1.04 1.02 1.00 148.3 11.22 

k=l, p=l (a) 1.00 1.00 1.00 1.00 208.0 16.26 
( b) 1.00 1.00 1.00 1.00 192.0 17.27 

8 p (k=l) (a) 1.00 1.00 0.94 0.94 190.8 20.69 
(b) 1.00 1.00 0.94 0.92 180.9 18. 69 

Table 6 One and Two Parameter Fits For 15 Departments, step size 0.02 
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Dept. Lengths Parameter (s) k Value p Value Best Fit Differences 
Min Max Fitted Test 1 Test2 Test 1 Test2 Test 1-AD Test2-SD 

4 8 k (p=l) (a) 1.04 1.04 1.00 1.00 182. 8 20.81 
(b) 1.04 1.04 1.00 1.00 175.1 16.62 

k,p (a) 1.02 1.02 0.98 0.98 181.5 20.39 
(b) 1.04 1.06 1.00 1.02 175.1 16. 02 

k=l, p=l (a) 1.00 1.00 1.00 1.00 243.0 26.95 
(b) 1.00 1.00 1.00 1.00 221.0 19.96 

4 12 p (k=l) (a) 1.00 1.00 0.94 0.92 254.9 26. 59 
(b) 1.00 1.00 0.92 0.90 264.7 39. 71 

k (p:l) (a) 1. 04 1.06 1.00 1.00 236. 3 24.08 
( b) 1.06 1.06 1.00 1.00 252.1 37.05 

k,p (a) 1. 06 1. 06 1. 02 1. 02 234.3 24.02 
(b) 1.06 1.08 1.00 1.02 252. 1 36.77 

-

k=l, p=l (a) 1.00 1.00 1.00 1.00 303.0 38.63 
( b) 1.00 1.00 1.00 1.00 349.0 56.21 

6 15 p (k=l) (a) 1.00 1.00 o.88 o.86 399.8 65. 73 
.. (b) 1.00 1.00 0. 82 0. 82 405. 4 72.69 

k (p=l) (a) 1.10 1.12 1.00 1.00 365. 1 54.79 
( b) 1.12 1.14 1.00 1.00 384.0 69.04 

k', p (a) 1.18 1.22 1.12 1.16 356.6 51. 69 
(b) 1.10 1.12 0.94 0.96 382.2 68 .01 

k=l, p=l (a) 1.00 1.00 1.00 1.00 696.0 140.6 
( b) 1.00 1.00 1.00 1.00 696.0 153.0 

7 20 p (k=l) (a) 1.00 1.00 0.82 0. 80 611.5 104. 5 
( b) 1.00 1.00 0.76 0.80 568. 4 100.0 

k (p=l) (a) 1.16 1.16 1.00 1.00. 525.1 85.12 
( b) 1.18 1.16 1.00 1.00 534.3 85.29 

Table 6 One and Two Parameter Fits For 15 Departments, step size 0.02 



Dept. Lengths Parameter (s) k Value p Value Best Fit Differences 
Min Max Fitted Test 1 Test2 Test 1 Test2 Test 1- AD Test2- SD 

7 20 k, p (a) 1.18 1.20 1.04 1.06 519.2 84.23 
(b) 1.14 1.18 0.94 1.02 532.2 85.26 

k=l, p=l (a) 1.00 1.00 1.00 1.00 898.0 202.8 
(b) 1.00 1.00 1.00 1.00 837.0 191.3 

8 24 p (k=l) (a) 1.00 1.00 0.90 o.86 501.0 104.9 
(b) 1.00 1.00 0.84 0.82 521.5 99.67 

k (p=l) (a) 1.06 1.10 1.00 1.00 510.9 97.76 
( b) 1.12 1.14 1.00 1.00 479.1 89.04 

k,p (a) 0.94 1.14 0.82 1.08 498.8 96.77 
(b) 1.14 1.16 1.02 1.04 477.4 88.74 

k=l, p=l (a) 1.00 1.00 1.00 1.00 546.0 138.9 
( b) 1.00 1.00 1.00 1.00 760.0 169.5 

10 30 p (k=l) (a) 1.00 1.00 0.84 0.84 766.2 193.5 
(b) 1.00 1.00 0.88 o.8� 726.0 149.2 

k (p=l) (a) 1.10 1.12 1.00 1.00 702.1 180. l 
( b) 1.12 1.14 1.00 1.00 658.7 134.8 

k, p (a) 1.14 1.16 1.08 1.08 692.2 179.4 
(b) 1.16 1.16 1.10 1.04 639.3 134.6 

k=l, p=l (a) 1.00 1.00 1.00 1.00 831.0 251.0 
( b) 1.00 1.00 1.00 1.00 876.0 223.7 

12 30 p (k=l) (a) 1.00 1.00 0.76 0.76 826 .4 223.3 
(b) 1.00 1.00 0.78 0.76 902.5 285.9 

k (p=l) (a) 1.18 1.20 1.00 1.00 791.1 218.5 
( b) 1.18 1.20 1.00 1.00 880.7 279.0 

k, p (a) 1.18 1.14 1.00 0.92 791.1 216.7 
(b) 1.18 1.16 1.00 0.99 880.7 278.0 

Table 6 One and Two Parameter Fits For 15 Departments, step size 0.02 
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Dept. Lengths Parameter (s) k Value p Value Best Fit Differences 
Min Max Fitted Test 1 Test2 Test 1 Test2 Test 1-AD Test2- SD 

12 30 k=l, p=l (a) 1.00 1.00 1.00 1.00 1095. 362.5 
(b) 1.00 1.00 1.00 1.00 1089. 414.1 

12 36 p (k=l) (a) 1.00 1.00 0.82 0.82 620.1 125.4 
(b) 1.00 1.00 0.80 0.80 739.2 125.7 

k (p=l) (a) 1.16 1.14 1.00 1.00 580.1 112.4 
(b) 1.16 1.16 1.00 1.00 764.7 126.2 

k,p (a) 1.22 1.20 1.14 1.10 567.9 111.3 
( b) 0.74 1.08 0.58 0.90 716.7 124.o 

k=l, p:l (a) 1.00 1.00 1.00 1.00 732.0 192.l 
(b) 1.00 1.00 1.00 1.00 932.0 231.6 

20 36 p (k=l) (a) 1.00 1.00 0.76 0.74 899.2 264.3 
( b) 1.00 1.00 0.70 o.68 753.2 189.6 

k (p=l) (a) 1.20 1.24 1.00 1.00 868.8 250.2 
( b) 1.30 1.32 1.00 1.00 698.1 151.8 

. .  

k,p (a) 1.18 1.24 o.96 1.00 867.4 250.2 
( b) 1.30 1.30 1.02 0.98 687.1 151. 7 

k=l, p=l (a) 1.00 1.00 1.00 1.00 1590. 495.5 
(b) 1.00 1.00 1.00 1.00 1132. 420.5 

Table 6 One and Two Parameter Fits For 15 Departments, step size 0.02 
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In order to test these conjectures, statistical tests were used to check 

for trend effects in the sequences of p and k values generated in Table 6. 

The following hypothesis was tested: 

H0: independence of p or k value and department size, 

versus the alternate hypothesis: 

H1: a trend exists (upward or downward) . 
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One of the two samples was randomly selected for each of the 12 layouts and 

the p and/or k values for Tests 1 and 2 were rec orded as shown in Table 7 (a). 

The corresponding best-fit differences are given in Table 7 (b) . 

Dept. 
Size 
Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Dept. 
Size 
Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

best-fit k value best-fit p value best-fit p value best-fit k value 
(p=l) (k=l) (for k, p best fit) (for k,p best fit) 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

1.00 1.02 0.98 0.98 1.02 1.02 1.02 1.02 
1.02 1.02 0.96 0.96 1.00 1.02 1.02 1.04 
1.04 1.04 0.96 0.94 1.02 1.00 1.06 1.04 
1.04 1.04 0.94 0.94 1.00 1.02 1.04 1.06 
1.04 1.06 0.92 0.90 1.02 1.02 1.06 1.08 
1.12 1.14 o.88 0.86 1.12 1.16 1.10 1.12 
1.16 1.16 0.76 0.80 1.04 1.06 1.18 1.20 
1.12 1.14 0.84 0.82 1.02 1.04 1.14 1.16 
1.12 1.14 o.88 0.82 1.08 1.08 1.14 1.16 
1.18 1.14 0.76 0.76 1.00 0.92 1.18 1.16 
1.16 1.16 0.80 0.80 1.14 1.10 0.74 1.08 
1.30 1.32 0.70 0.68 1.02 0.98 1.30 1.30 

Table 7 (a) p and k Values For Increasing Department Sizes 

Best-Fit Differences 
p (k=l) k (p=l) k,p 

AD SD AD SD AD SD 

49 .17 2.883 58.0 3.065 48.11 2.743 
77.65 3.177 88.34 3.333 77.65 3.177 

183. 3 10.81 173.6 9.354 163.4 9.354 
190.8 20.69 182.8 20.81 181.5 20.39 
254.9 26.59 236.3 24.08 234.3 24.02 
405.4 76.29 384.0 69.04 382.2 68.0 1 
611.5 104.5 525.1 85.12 519.2 84.23 
501.0 104.9 510.9 97.76 498.8 96.77 
726.0 149.2 658.7 134.8 639.3 134.6 
826 .4 223.3 791.1 218.5 791.1 216.7 
739.2 125.7 764.7 126.2 716. 7 124.0 
753.2 189.6 698.1 151.8 687.1 151. 7 

Table 7 (b) Best-Fit Differences For Increasing Department sizes 
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A non-parametric test as described by Lehman [l] was used to test for an 

upward or downward trend in the values of p and k and the best-fit differences 

as the department sizes increased. This test is based on the statistic D (or 

D* f ) * 
. b in the case o tied ranks , where D and D are given y 

N 
D = I 

i=l i=l 

where N is the number of departments, 

i is the rank of a department, 

Ti is the rank of the response (p, k or Difference), and 

T� is the midrank in the case of ties. 1 
* The ranks and D (D ) values are given in Table 8. 

For an upward trend, small values of D lead to rejection of H0• For a 

downward trend, large values of D lead to rejection of H0• For N .:: 12, 

Pr(D � d) = a and Pr (D .:: d) = a can be calculated using a normal 

approximation. Then Z = �---- is approximately N (O,l), where 

N3-N 

/VHa (D � 
N2 (N+l) 2 (N-l) 

EH (D) = - and VH (D) = 
0 6 0 36 

For N=l2, EH (D) = 286 and 
0 

VH (D) = 7436. For a =  .05, Pr (D <d) = Pr[z < 
D- EHO 

(D)J = .05. If Z < -1.645 
0 - /vlb (D) 

then reject H0• For Pr (D >d) = .05, reject H0 if Z .:: 1.645. 

Since D takes on even integer values only, a continuity correction should 

be utilized, so that [ (D+l)-EH (D) 
Pr Z < o 

. - /vH (D) 
0 . 

[ (D-1)-EH (D)J = • 05 and Pr Z > . o = • 05. 
- /vH (D) 

0 

For the best-fit differences we first test the largest D value, D = 12, to see 

if the resulting Z score leads to the rejection of H0• If this occurs, then 

a l l  D v a l u e s  l e s s  t h a n  1 2  w i ll a l s o  r e j e c t  H 0 • F o r  D = 1 2 ,  
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Rank of i 1 2 3 4 5 6 7 8 9 10 11 12 D(D*) 
Response 
(Ti or Tf) 

p (k=l) Test 1 12 10.5 10.5 9 8 6.5 2.5 5 6.5 2.5 4 1 
p (k=l) Test 2 12 11 9.5 9.5 8 7 3.5 5.5 5.5 2 3.5 1 
p (p, k) Test 1 6 2 6 2 6 11 9 6 10 2 12 6 
p (p,k) Test 2 5.5 5.5 3 5.5 5.5 12 9 8 10 1 11 2 
k (p=l) Test 1 1 2 4 4 4 7 9.5 7 7 11 9.5 12 
k (p=l) Test 2 1.5 1.5 3.5 3.5 5 7.5 10.5 7.5 7.5 7.5 10.5 12 
k (p,k) Test 1 2.5 2.5 5.5 4 5.5 7 10.5 8.5 8.5 10.5 1 12 
k (p,k) Test 2 1 2.5 2.5 4 5.5 7 11 9 9 9 5.5 12 
AD Differences 

p (k=l) 1 2 3 4 5 6 8 7 9 12 10 11 
SD Differences 

p (k=l) 1 2 3 4 5 6 7 8 10 12 9 11 
AD Differences p,k 1 2 3 4 5 6 8 7 9 12 11 10 
SD Differences p,k 1 2 3 4 5 6 7 8 10 12 9 11 
AD Differences 

k (p=l) 1 2 3 4 5 6 8 7 9 12 11 10 
SD Differences 

k (p=l) 1 2 3 4 5 6 7 8 10 12 9 11 

Table 8 Ranks and D Statistic For p,k Values And Best-Fit Differences 

12+1-286 
z = = -3.17. Hence we reject H0 and accept H1; there is an upward 

86.23 
trend in the best-fit differences as department sizes increase. To calculate 

the normal approximation for 

EH (D*) = 
0 

* VH (D ) = 
0 

N3-N 
-- -

6 

1 

12 

e 
l 

i=l 

N3(N+l) 2(N-l) 

36 

D* 
' 

3 (di-di)' and [ . I 1 < d
3 -d . ) i= J. J. 

1 -
N3-N ]. 

where e is the number of tied groups and d1,d2, • • •  ,de are the number of 

elements in the first, second, • • •  , e th tied group respectively. The mean and 
* variance and resulting Z value are shown in Table 9 for the eight D values. 

For the tl,p model, reject H0 and accept the hypothesis that there is a 

downward trend in the p values as department sizes increase (0.05 significance 

level). For the t k,l model, reject H0 and accept the hypothesis that there is 

* 545.5* 556.5* 174 * 257 
17 .s: 
24.5 

123 * 

so * 

8 

12 
10 
10 

10 

10 
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o* e d1 d2 d3 d4 EH (D*) VH (D*) z 

p (k=l) Test 1 545.5 3 2 2 2 284.5 7-358 3.04 
p (k=l) Test 2 556.5 3 2 2 2 284.5 7358 3.04 
p (p,k) Test 1 174 2 3 5 274 6812 -1.21 
p (p,k) Test 2 257 1 4 281 7176 -0.28 
k (p:l) Test 1 17.5 3 3 3 2 281.5 7202 -3.11 
k (p=l) Test 2 24.5 4 2 2 4 2 279.5 7098 -3.02 
k (p,k) Test 1 123 4 2 2 2 2 284 7332 -1.88 
k (p,k) Test 2 50 3 2 2 3 283 7280 -2.73 

Table 9 Z Scores For k,p Values 

an u p w a r d  trend in the k values as departm ent si zes incre a se (0.0 5 

significance level). 

For the Q, k,p model, reject H0 and accept the hypothesis that there is an 

upward trend in the k values as department sizes increase. However, for this 

model we cannot accept H1; i.e., that there is a downward or upward trend in p 

values as department sizes increase. 

It is of special interest to observe the behaviour of the sequence of p 

values obtained for the best-fit k and p values as department size increases. 

In practice when determining an optimal facility location the practitioner 

often assumes the value p=l (probably for numerical expediency since location 

models for p=l are easily computed). We are now able to comment on whether 

this common assumption is sound or not. If there is no discernible trend away 

from p:l and there is an increasing trend in the k values for increasing 

department size, it means that the increased average distance caused by 

doubling back is being accounted for by the increasing k values. We observe 

that there is no discernible trend away from p=l, and there is an increasing 

trend in the k values as department size increase s. We conclude that the 

increasing average distance is being accounted for by the increasing k values 

rather than decreasing p values. 
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In.order to further verify th is rather surprising result we dec ided to 

test the one parameter model (k,1) to see if it would give fits as good as the 

two- parameter model. In order to compare the two models, the percentage 

difference between the best-fit differences were calculated for the 24 samples 

as: 

Best-fit Difference(k) - Best Fit Difference(k,p) 
% difference = x 100% 

Best Fit Difference(k) 

The results for Testl- AD and Test2-SD are displayed in Table 10. 

The best-fit differences for the two- parameter model were always less 

than or equal to the best-f it differences for the one parameter model. 

However, these percentage differences were very small. The medians for the 

percentage differences were 1.5% and 1.0% for the Test 1 - AD and Test 2 - SD 

samples respectively. 

The hypothesis H0 was tested against the alternative hypothesis H1 using 

the D statistic, where H0 and H1 are given by 

H0: independence of department size and percentage differences, 

H1: downward trend for percentage difference as department sizes 

increase. 

Sample l(a) l(b) 2(a) 2(b) 3(a) 3( b) 4(a) 4( b) 5(a) 5(b) 

% Difference - AD 13.58 17.05 0 12.10 5.88 5.66 0.71 0 7.06 0 
% Difference -SD 9.88 10.51 3.03 4.68 0 0 2.02 3.61 0.25 1.03 

Sample 6(a) 6(b) 7(a) 7(b) 8(a) 8(b) 9(a) 9(b) lO(a) lO(b) 

% Difference - AD 2.33 0.47 1.12 0.39 2.37 0.35 1.41 2.95 0 0 
% Difference - SD 5.65 1.49 1.50 0.04 1.01 0.34 0.39 0.15 0.82 0.36 

Sample ll(a) ll(b) 12(a) 12( b) 

% Difference - AD 2.10 6.28 0.16 1.58 
% Difference -SD 0.98 1. 74 0 0.07 

Table 10 Percentage Difference Between One And Two Parameter Models 
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One of the two samples for each of the 12 layouts was randomly selected, and 

the percentage differences were ranked. After the Z value for the normal 

approximation was calculated, it was decided to repeat this process for 

another random sample since the Z value obtained was close to the value for 

rejecting H
0

• The results for both samples for AD and SD percentage 

differences are in Table 11. Since Pr(Z _:: 1.6 45) = 0.05, we cannot reject H
0 

at the 0.05 significance level. This result tends to verify the previous 

discussion. The best-fit differences are always slightly less for the two-

parameter model and this is not surprising. The interesting result is that 

these differences are very small and that there is no discernible trend in 

them as department sizes increase. 

Dept. AD Percentage Differences and Rank SD Percentage Difference and Rank 
Size Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
* 

D * 
EH (D ) 
V 0 (D

*
) 

z
Ho 

Sample 1 Sample 2 Sample 1 

13.58 12 17.05 12 10.51 12 
0 1.5 12.10 11 3.03 10 
5.88 10 5.88 9 0 1.5 
0.71 4 0 2 3.61 11 
7.06 11 0 2 1.03 7 
2.33 8 2.33 7 1.49 8 
1.12 5 0.39 5 0.04 3 
2.37 9 0.35 4 0.34 4 
1.41 6 2.95 8 0.39 6 
0 1.5 0 2 0.36 5 
2.10 7 6.28 10 1.74 9 
0.16 3 1.58 6 0 1.5 

393.5 374 424.5 
285.5 284 285.5 

7410 7332 7410 
1.25 1.05 1.61 

Table 11 Z Scores For Percentage Differences 

4. Conclusions 

Sample 2 

10.51 12 
4.68 10 
0 1.5 
2.02 9 
0.25 5 
5.65 11 
0.04 3 
1.01 7 
0.15 4 
0.36 6 
1. 74 8 
0 1.5 

414.5 
285.5 

7410 
1. 50 

For the 2kp model we accept the hypothesis that there is an upward trend 

in the k values as department sizes increase. Thus, the k values rather than 
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the p values account fqr the larger-than rectangular distances being modelled. 

The results also show that, from an applications viewpoint, for situations of 

this type, practitioners can use p=l with no cause for concern that they may 

be using an invalid model. 

A further point may be made. If the distance norm is being utilized in a 

location model and the only result that is important is that of obtaining the 

optimal location or locations (rather than, for example, values of the total 

cost function ) ,  then it may not be necesary to know the value of k which is 

correct for the particular situation. To illustrate this, consider the single 

facility location model, 

n 
minimize W(x, y)  = l widi(x, y ) , 

i=l 

where there are n existing facilities, (x, y) is the location to be determined, 

and di(x, y) is the distance from the ith existing facility to the new, unknown 

location. Assume that for p=l the correct value of k has been determined. 

Then the location problem to be solved is 

n 
minimize W(x, y) = l Wik [ ix-xii + I Y-Yil ] , 

i=l 

where (xi, yi) ,  i=l, 2, ••• , n, are the locations of the fixed points. k is a 

common multiplicative value in W(x, y) and is not relevant to the optimal value 

of (x, y) .  These results lead to an interesting interpretation. Faced with a 

situation of the type considered here, the practitioner can imagine that a 

study has been carried out to determine the optimal (k, p) parameters. Knowing 

that p=l is optimal (or close to it ) and that there is some (unknown ) optimal 

value of k, the user can proceed to use the rectangular location model with k=l 

and be ass ured of ·having the optimal location for the new facilities. 

However, if the user is interested in modelling distances rather than 

obtaining optimal facility locations, the i1 1 norm may not be appropriate. 
' 
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From Table 6, we find that the k values for the .Q,k, 1 norm range from 1.00 to 

1.32. Thus, any omission of the k factor (which corresponds to using the .Q,
l 1 ' 

norm) in estimating distances could result in a serious understatement of the 

total distance.1 

1This research was supported by a grant fro m the Natural Sciences and 
Engineering Research Council, Canada. 
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