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Optimal Control Of An Ornstein-Uhlenbeck Diffusion Process, With 
Applications 

Summary 

The Ornstein-Uhlenbeck diffusion process presents an opportunity for 

the development of approximation models of many real processes in business 

and industry because it is the continuous analog of the first order 

autoregressive process. The Ornstein-Uhlenbeck process has two decision 

variables: one relates to the target level of the process trajectory, and 

the other relates to the dispersion of the process sample paths. An op-

timization model of the process is developed, which includes holding or 

carrying costs, control costs and penalty costs. The penalty costs are 

related to the nearness of the process trajectory to reflecting barriers 

which are included in the model. 
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1. Introduction 

In recent years a considerable amount of interest has been aroused in 

developing diffusion approximations for models of stochastic processes in 

management science. The interest in diffusion approximations is due to the 

relative ease with which solutions may bE ibtained to complex stochastic 

problems which are often intractable if modeled exactly. Diffusion process 

models of inventory systems and (storage systems) were first developed by 

Bather2•3 • A sample of the many references for diffusion approximations of 
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storage system models are references 11 and 14. Related exampl es of diffu­

sion models for financial operations appear in references 8, 9, 10, and 12. 

Bhat, Shalaby and Fischer4 
have also published a survey of approxima­

tion techniques for queuing systems, including a large number of references 

for diffusion approximations. 

In the Brownian diffusion processes used to model storage systems of 

various types, control is usually applied as an impulse at certain instants 

when the process trajectory approaches some pre-defined position(s ). For 

example, in an (s,S)  inventory control diffusion model of inventory position 

with negative drift (the rate of drift being used to model the rate of use 

of inventory ), more stock is ordered when the process crosses the order 

boundary S. This results in an instantaneous jump away from the lower bound­

ary in terms of stock position. In the Brownian diffusion model of a dam, an 

instantaneous control is applied by modeling a reduction in the water level 

by releasing flow when the level is too high. 

In many real processes, control is not applied instantaneously as the 

stochastic process trajectory approaches a boundary. Rather, control is 

applied more or less continuously so as to maintain a limiting distribution 

of the process sample paths within the normal operating region. Many con­

tinuous processes in the chemical indu�try, such as mixing, heating, 

reacting, etc. are of this type. Some discrete processes are also subject to 

continuous control activities, including buffer stock level control in 

multi-stage production lines. 

One feature of processes in which continuous control may be applied is 

that discrete time series measurements of the process trajectories reveal 

that these trajectories can often be analyzed by means of autoregressive 

models. This paper will discuss the Ornstein-Uhl enbeck
17 

(O.U.) diffusion 
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process which exhibits continuous control, and demonstrate its applicability 

to modeling certain processes. some of these processes have a discrete time 

series behavior which may be fitted by first order autoregressive models, 

and the stochastic differential equation describing the O.U. model turns out 

to be the continuous analog for first order autoregressive models. 

2. The Diffusion Model 

Most diffusion approximations make use of the Wiener process (Brownian 

motion ) in one dimension. Brownian motion is a diffusion with a generator 

which is the linear second-order differential operator 

�� �=- + µ d 

2 dx2 dx 

and domain equal to the twice continuously differentiable functions on the 

real line. Here, a212 is the diffusion coefficient and µ is the drift 

coefficient. On the other hand, the Ornstein-Uhlenbeck (O.U. ) process is a 

diffusion with generator 

a2 d2 d -- --- - PX --
2 dx2 dx 

with domain the same as for Brownian motion. Here, S is the constant of 

proportionality for a controlling or restoring force which will be referred 

to later. It is·restricted to S > o. The density of the O.U. process which 

satisfies the related forward Kolmogorov equation 

2 saxf (x,xo;t ) �:�:::Q::2 2 a f (x , xo;t ) a ----------- + -----------

2 ax 2 at at 

in the absence of barriers for t > 0, is a Gaussian diffusion with mean 

(l a )  

and variance 

Var(X ) = a2{1-exp(-2St)}/2S (lb )  
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Here, x0 is the starting point of the process. If  8 = 0, then the o.u. 

process c�n be shown to be equivalent to a Wiener process with zero drift. 

Also note that, while both the O.U. and Wiener processes are Gaussian, the 

2 asymptotic mean and variance for the o.u. process are o and a 128 respec-

tively, but the mean of the Wiener process is x0 + µt and its variance grows 

without limit. Although both processes are Markovian, the Wiener process 

has independent increments, unlike the O.U. process. 

If the trajectory of the O.U. process is given by x
t 

at time t, then 

there is an associated cost arising from the sample path which is of the 

magnitude c(xt)dt in the time interval [t, t + dt]. Hence the total cost of 

the process over some time interval [t1, t2J is 

t 

J
2c (xt) dt 

t, 

In the lim�t, as t + �, we are interested in the expected cast C per 

unit time from an equilibrium process, which can be determined from the 

asymptotic o.u. distribution. This is given by 

t 
c = I f (x )  um i J c (x )ds dx + 8(6) 

t s 
� CD t 

x 0 

.. J f(x) c(x) dx + 8(8) 
x 

f(x )  
1 

---------where 
------

/ 2irY2 

and Y2 
= a2128, the variance of the limiting distri bution of the o .u. 

process. 8(8) is the cost contribution from control activities which are a 

function of S alone. 
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Consider the first order stochastic differential equation 

where z(t) is a scalar white noise. This equation is known as the Langevin 

equation in fluid dynamics, and the equilibrium solution is a Gaussian 

process with mean and variance given by the asymptotic forms of (la) and 

(lb). The autocovariance of the O.U. process is1 

2 a cov(X, X+s) = 26 exp(- Ss). 

Thus, the autocorrelation function for the O.U. process is 

p(s) = exp(- Ss). 

Let us consider the measurement of time series, which are important in 

many aspects of business and industry. Time series are discrete samples of 

the levels of either continuous or discrete systems at uniform time inter-

vals of A. We may obtain a continuous approximation to the process 

described by a discrete time series by equating the autocorrelation function 

of the time series to that of the approximating diffusion process. Equation 

2 is t h e  con t i n u o u s  a nal o g  of  the d iscrete AR (l) ( f irst order 

autoregressive) model described below.6 For this model, the time series is 

given by 

xt = $1xt-l + 0azt. 

Here, $1, is a constant to be estimated from the time series, with - 1 < $1 < 

1, and the observations xt are taken at time increments of A. However, the 

restriction 8 > O for a stationary process also restricts O < $ < l for the 

continuous approximation to be valid. zt is a pure noise process with mean 

zero and variance one, and o2 is the variance of the inherent noise. a 

Clearly, disturbances in the AR (l) process decay exponentially with the 

passage of time, when 0 < $ < l as in the equivalent continous process above 

when 8 > O. The autocorrelation function for the AR(l) process is 
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· -

Equating the autocorrelation functions for the discrete and approximating 

continuous processes, with s = 6, gives 

$
1 = exp(-S6) , or 

inqi
1 s = - ----A 

In the following we will be concerned with the properties of an O.U. 
process not only in open one-dimensional space as discussed above, but also 

with its properties when confined between reflecting barriers x < x < x • w - - m 

Sweet and Hardin16 have shown that the asymptotic density for such an o.u. 

process is given by 

r(x ) 

f(s) .. exp (-s2/2) / f e�p (-r2/2) dr s < s < s (3) w- - m 
r(x ) w 

where s(x) =1r(x) = (x - a)/Y. 
In the O.U. model, with x < a< x ,  a corresponds to the mode of the w - - m 

distribution f(s) which is a truncated gaussian. If a is outside this 

range, then the mode is xw or xm if a < xw or a> xm respectively. S is 

restricted to positive values and is the proportionality constant of the 

restoring force which maintains the trajectory around the target level a. 
The denominator in (3) will be denoted as U(a,S), and is easily shown 

to be 

/w- 2 1/2 2 1/2 · 
· U(a,p)=;I -2Lerf{(S/a ) la-x l lsgn(a - x  )+erf{(S/a ) I x -al }sgn(x -a)j w w m m 

where erf(v) 2 

I w 

3. Cost Model 

v 2 f e-t dt 

0 

A cost model can be developed for the O.U. process which will allow 

optimization of the process with respect to the decision variables a and s. 
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For generality we will assume that the process is confined between reflect-

ing barriers, either or both of which may be removed if desired. 

The objective function will be assumed to consist of cost contributions 

from three sources: carrying or holding costs H, control costs 8, and 

penalty costs Gw and G
m 

related to the distance of the trajectory from lower 

and upper boundaries respectively. Then the optimization problem is 

min c = H + 8 + G + G et., i:s w m 

subject to S > O. 

(4) 

Note that the holding cost contribution is a function of the absolute 

level of the process at any time t, while the control cost is a function of 

the decisi on variable B which controls the dispersion of the process 

To demonstrate that optimal solutions may be obtained for the model, 

certain functional forms will be assumed for these cost functions in the 

following discussion. 

The holding cost per unit time may be given by 

s(x ) 

H = f Y�hsf (s)ds + cha 

s(x ) w 

= eh ( YE ( S ) + et.} 

2 2 2 2 chY{exp[-(B/o ) (xw
-et. ) ]-exp[- (B/o ) (xm-et.)  ]}/U(a, B)+chet.. 

Here, eh is the cost per unit time to carry each unit of X. 

The value of B is inversely proportional to the variance of the 

process. Thus, to hold the process trajectory within a narrower range about 

the target level a, the value of 8 must be increased. Increased values of $ 

imply tighter control which tends to be more costly in a manufacturing or 

physical process. In many contexts, this cost may be expected to increase 

more rapidly than as a linear function of B. In general, any suitable 
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increasing function of S may be used. In this example we will assume that 

control cost B is a function of s2, or 

2 B = c
bS • 

Here, cb is the cost per unit time per unit increase in the control 

function. 

The general nature of the penalty functions g and g which contribute w m 

to the penalty cost functions G and G is that they will tend to increase w m 

sharply near the boundaries x and x respectively, and to tail off quickly w m 

as the process trajectory moves away from the boundaries. A variety of 

functions may be used in this case, depending upon how well the operational 

situation is approximated. In this example, we will assume that two 

separate penalty functions are used for the upper and lower boundaries 

respectively, and that the penalty functions decrease exponentially with 

distance from the boundaries. Then for the lower boundary penalty function 

we have 

leading to 

G w 

a exp{-d (x-x )}, w w w 

where a is the maximum penalty per unit time incurred at the lower w 

boundary of the trajectory, and d is the fall-off rate of the penalty per w 

unit distance above the lower boundary. 

Removing 

G = w 

the constant 

a exp (d x ) w w w 
riH�:s"5 ____ 

terms 

x 

r exp 

x w 

from the 

2 - ( x-a.) {--- ----
2'(2 

9 

integral gives 

- d x} dx w 



Completing the square and simplifying leads to 

where 

and then 

where y m 

G w 

R w 

1 {x + (Y2d -a)} 
;-2-Y m w J 

Gw = 
1-2 Y Rw f exp (-t2) dt 

__ ! __ {x +(Y2d -a)} 
1-2-Y w w 

= YRw 111-�- [sgn(ym) erf1Ym1 + sgn(yw) erflYwl] 

__ !_ (x + Y2d - a) 
/-2-Y m w 

and y = 1 (a - x - Y2d ) . w 1-2-y w w 

To determine G , where the penalty function g related to the upper m m 

boundary is given by amexp{-dm(xm-x)}, a similar approach gives 

where z m 

and R m 

z w 

Gm .. YRm 1/-�- [sgn(zm) erfjzml + sgn(zw) erflzwl] 

x -(a+Y2d ) m m 

4. Optimization 
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The objective function (4) is highly non-linear, and the GRG2 non­

linear programming package of Lasdon, Waren et al 13 was used for solution. 

It is easy to show that the Hessian of the objective function is not 

generally positive semidefinite for the functions used in the foregoing 

example. It is therefore necessary to be cautious about the interpretation 

of results since, if there is a finite solution, more than one minimum may 

exist in certain cases. This was occasionally found to be the case, for 

example, when constant penalty functions were used over limited regions near 

the boundaries instead of the exponential penalty functions discussed in the 

foregoing section. 

To demonstrate the sensitivity of decision variables to parameter 

values, two examples were set up for solution. The first example used 

symmetrical penalty functions and zero holding costs. Figure 1 shows the 

optimal values (S) of S and the total cost obtained for different values of 

cb and d (=d ). Note that in this symmetrical model with no holding cost, w m 

the optimal value (&) of a is always the midpoint between the two reflecting 

barriers at x =0 and x =100. Values used for the constant parameters were w m 

a=lO and a =a =100 . S first increases and then decreases as d =d increases m w w m 

because, for higher values of d
w

' the penalty regions are very narrow_ and 

close to the boundaries. Smay be quite small here because the variance of 

the process can be relatively large with little penalty. As d =d w m 

decreases, the penalty regions widen, forcing S up and hence the variance 

decreases. Eventually when d becomes quite small the penalty region is w 

11 
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quite flat across the entire range and S again falls because there is little 

cost incurred by increasing the variance in this region. 

The second example included a non-zero holding cost, but with only a 

lower boundary. Figure 2 shows S, a and the total cost as a function of eh 

and cb with fixed d =0.l and a =100. In this example, a=lO. Note that the w w 

algorithm diverged above certain values of e
h
, depending upon the value of 

cb, indicating that no minimum exists for finite values of a in this region. 

5. Conclusions 

It is clear that there is a wide scope of application for models using 

the o.u. diffusion process, since it can be used to approximately model 

systems. which have been found by time series analysis to be first order 

autoregressive. These represent a wide class of real systems and may be 

considered to be under continuous control. Assuming that penalty functions 

used in the O.U. model are sufficiently large to prevent process trajec-

tories from approaching the boundaries more than a small fraction of the 

time, (this  was the case in the majority of the examples demonstrated here) 

then processes confined within reflecting barriers such as the models 

developed in section 3, are good appro�imations to AR (l) type processes when 

0 < $
1 < 1. For example, Steude1

15 has shown that AR (l) models are good 

representations of buffer stocks in high-rise storage for a multi-stage 

production line, and this situation certainly has upper and lower boundaries 

with associated penalty costs. Diffusion approximations are well suited to 

buffer stock level models. In terms of the functional measure for control 

costs, Davis and Taylor7 have discussed the balancing of in-process inven-

tories or buffer stocks as an on-going feature of production line control. 

Resource shifting and balancing is a necessary management activity which 

14 



maintains buffer stocks at appropriate levels, and costs may be determined 

for these control activities. 
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