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This problem concerns the location of a facility among n 

points where the points are serviced by "tours" taken from the 

facility. Tours include m points at a time and each group of m 

points m ay become active (may need a tour) with some known 

probability. Distances are assumed to be rectilinear. An exact 

solution procedure is provided for m � 3 and a bounded heuristic 

algorithm is suggested when some tours have 4 or more points. It 

is shown that in the latter case the objective function becomes 

multimodal. 



INTRODUCTION 

The problem discussed in this paper may be thought of as an extension of 

the Weber single facility location problem. In the well known Weber problem, 

the facility is to be located among n points on a plane w ith the object of 

minimizing the sum of weighted distances between the facility and the points. 

A commonly quoted scenario is that a warehouse must be so placed that the sum 

of delivery costs to n customers is as small as possible. Distances are 

weighted by constants to represent the appropr iate costs incurred when 

different volumes are demanded by the customers. This problem and its 

variations is discussed in f2]. An inherent assumption in the model is that a 

separate trip is required for the service of each customer. It is assumed 

here, on the contrary, that two or more points ma y be covered on a single 

trip; this trip will be 
_
called a tour. 

A possible scenario for this problem is that a truck from the warehouse 

may be called upon to deliver to, say, four customers and return, using the 

shortest route. It is assumed that the probability of those four .demands 

becoming "active". for a tour is known. The overall objective of the problem 

is to locate the facility where it will minimize the expected delivery cost 

over all such possible tours in the system. We assume that in each tour 

distances have the same weight. It would be triv ially easy to extend our 

problem by assigning a different weight for each tour. However, i f  each 

component of the tour, a facility to point distance or a point to point 

distance, has a different weight per unit distance then our formulation does 

not apply. 

This problem has been called the Traveling Salesman Location Problem. 

Burness and Wh ite f l] provided a heuristic solution method similar to many 

location-allocation heuristics. A location was found by using a derived Weber 

problem, then the best tours were "allocated" by a Traveling Salesman 

... . 
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algorithm; the process was repeated to form iterations. Heuristic solution 

methods [ 4], [ 5] have been presented for versions of the Traveling Salesman 

Location Problem where the facility must be located on a network. 

Our method takes advantage of the specia l properties of rectilinear 

distances which are often a gcxx:i approximation when travel must occur through 

a g_rid of streets or a grid of aisles in a plant. We concentrate mainly on 

pro�lems where m, the number of points on a tour, is small. An optimal 

solution is given for m � 3 and the method turns into a good heuristic when 

m>4 is possible, but is unlikely. Although the rectilinear Traveling Salesman 

Problem has some special properties, it was shown to be NP-complete [ 3] and 

only restricted versions of it have been solved efficiently so far [6]. 
The following section begins w ith a somew hat general treatment of 

rectilinear tours. 

Optimal Tours 

Let a = (a1,a2) and b = (b1,b2) be two points on the plane. The 

rectiline�r distance between a and b, d(a,b), is defined by 
d(a,b) = la1-Q1I + la2 -b2I· 

Although d(a,b) is uniquely defined, there are, of course, many different 

paths between a and b, all having the length d(a,b) as is illustrated in 

Figure 1. 

We define the distance between a set S and a point a by d(S,a) = 

min{d(b,a) lb Es}. 

... . 
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Figure 1 Rectilinear paths 
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In this section we will study tours which go through a fixed subset of m 

points. Accordingly we will represent a tour Tm through the m points 

{ 1,2, ••• ,m} by a "permutation" p = {p{l) ,p(2) , ••• ,p(m), p(m+l)) of the numbers 

{ 1,2, ••• ,m}; p(l) = p (m+l) because it is assumed that the sequence in which· 

the points are visited on the tour begins and ends with p(l). The length of 
m 

such a tour, t(Tm) is uniquely defined by t(Tm) = I d(p(i),p(i+l)). 
i=l 

This unique length, however, has infinitely many tour realizations, depending 

on which path between each pair of points in the sequence is selected from 

among the infinitely many paths of the same length. Which path between two 

points is selected, has, of course, no effect on t(Tm). 

Consider a to':lr Tm· For any pair of points p(i) and p(j} (l � i < j � m) 

let us define the rectangle �(i)p(j} which has p(i) and p(j) as its 

diagonally opposite corner points. It is clear that a point x (for example, 

the facility) can be included .in the tour Tm between the points p{i) and 

p(i+l) (1 � i � m) without incre;asing the length of the tour if and only if 

xc:�(i)p(i+l)• Accordingly we define the set of free points for the tour Tm 

by 
m 

FR(Tm) = .U �(i)p(i+l) i=l 

and FR(Tm) clearly represents the set of those points in the plane which can 

be included in the tour Tm without increasing its length. FR(Tm} will b� 

important in our optimization procedure when we seek to extend a tour Tm to 

include a point x at a minimal cost increase • 

.... 
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In general we are going to denote by � the smallest rectangle enclosing 

the given set of m p:>ints, and define the nonfree set for the tour Tm by 

Naturally, the tour Tm can be extended many different ways to include an 
• 

adpitional point x, depending on between which pair of adjacent points p (i) 

and p(i+l) x is visited. In general, we are going to denote by Tm (x) any such 

extension of Tm for which the length of Tm (x) , t (Tm (x) ) ,  is as small as 

possible� we will call Tm a base tour and Tm(x) its extension. We define the 

distance of x from the tour Tm, denoted by d (Tm,x) , as the shortest distance 

between x and any -point traversed by any realization of Tm• It is clear that 

£ (Tm (x) ) = £ (Tm) + 2d (Tm , x) and d (Tm ,x) = 0 if and only if x e: FR (Tm) . 

We define the free region for a set of m -points by 
where 

-r = {�I £ (Tm) is minimal} • 

The nonfree region is defined by NFR = � - FR. It is clear that a -point 

x can be included without additional cost in some optimal tour through the m 

i;:oints if and only if x e: FR. 

- If p � (p (l) , ••• ,p (m) , p (l) ) represents a tour on m points then any 
' 

cyclical rearrangement p = (p (i) ,p (i+l) , ••• ,p (m) ,p�l) , ••• ,p (i-1) ,p (i) ) 

(1 2 i 2 m) clearly represents the same tour, therefore without the loss of 

generality we can always consider only those sequences for which p (l) is 

fixed, e.g., p (l) = 1. Furthermore since p = (p (l) ,p (2) ,  ••• ,p(m) ,p (l) ) and 
' 

p = · (p (l) ,p (m) ,p (m-l) , ••• ,p (2) ,p (l) ) represent two tours, where one is the 

reverse of the other and since our distance function is symmetric, all 

together it is enough to consider (m-1) !/2 sequences to represent all the 

tours on m -points. 

Theorem 1: For any set of m points and any tour Tm 
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!l (Tm) ?_ !l(�) ' (1) 
where !l(�) is the length of the circumference of �· 

Proof: Due to the cyclical nature of the sequences used to represent a tour 

w e  can start measuring the length of a tour at any point in the sequence 

representing it. If , in the horizontal direction, we take a leftmost :i;:oint a 

as the start of Tm, and b is a rightmost :i;:oint among the m :i;:oints then Tm has 

tq go from a to b and eventually get back to a, no matter in what sequence the 

other m-2 points are covered. Therefore in the horizontal direction !l(Tm) is 

at least 2 times �he distance between a and b. A similar argument in the 

vertical direction proves the Theorem. 

Corollary�: Let x be an arbitrary point in the plane and let Tm (x) be any 

tour through m given points and x. If �(x) is the smal lest rectangl e 

enclosing the m :i;:oints and x, and � is the smallest rectangle enclosing the m 

points then 

!l (Tm (X) ) ?.. !l(� (X) ) = !l(Rnt) + 2d (� .x) • (2) 

Proof: T o  prove th� inequality apply Theorem 1 to the set of m + 1 points 

which consists of the m fixed :i;:oints and x. The equality in (2) is obvious. 

Corol lary 1_: Let x c: � be an arbitrary point. If there exists a tour T� (x) 

through the m :i;:oints and x for which !l(T; (x)) = !l (l\t) then T; (x) is optimal. 

Proof: Obvious by Corollary 2. 
I 

Lemma 4: Assume that x � Rm· Let x c: Rm be the point where d(Rm,x) is 
I 

obtained (i.e., x . is the c losest point of Rm to x) and * I 
let Tm (x ) be a 

I * minimum length tour through the m points and x • If T m (x) is obtained from 

T; (X1) by replacing in it x' by x (without changing the sequence in which the 

points are visited) then T;(x) is a minimum length tour through the m p::>ints 

and x and 
* * I I . * I 

!l (Tm (x) ) = !l(Tm (x ) ) + 2d (x ,x) = .Q,(Tm (x ) ) + 2d (�,x). 
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Proof: Assume that to the contrary there exists a tour Tm (x) through the m 

points and x for which t(Tm (x) ) < t (T� (x) ) .  Obtain Tm (x1) from Tm (x) by 

replacing in it x by x' without changing the sequence. It is clear that 

t (Tm (x1 ) )  = t(Tm (x) ) - 2d (x1 ,x) < t(T; (x}) - 2d (x1 ,x} = t (T; (x1 ) )  

contradicting the optimality of T; (x1) .  

Lemma 4 means that when looking for the best tour through m given points 

and an arbitrary x, it is sufficient to consider only x's which are contained 

in the smallest rectangle enclosing the m points. 

3-point tours 

When we are looking for the minimum length tour through" 3 given points 

and an arbitrary x then there are (4-1) !/2 = 3 possible tour sequences. The 

next two results show that we do not have to consider all of these: 

Lemma 5: Assume 3 distinct fixed points and x are all located on a horizontal 

(vertical) line. Then, there are exactly two optimal tours and their length 

is 2 times the length of the smallest interval containing all four points. 

Proof: Without the loss of generality assume that the three fixed points, 1, 
2 and 3 have been numbered so that 2 is between 1 and 3 on the line. Then it 

is easy to see by inspecting Figure 2 that regardless of the position of x 

exactly two tour sequences are always optimal and their length is as stated in 

the Lemma. 

x 1 2 3 1 x 2 3 

Opt. sequences: xl23x and xl32x Opt. sequences: xl23x and xl32x 

·l 2 x 3 1 2 3 x 

Opt. sequences: xl23x and x213x Opt. sequences: xl23x and x213x 

Figure 2 Optimal Sequences 

Corollary .§_: If a1 � a2 � a3 are the horizontal coordinates of the points 1, 

2 and 3 located on a horizontal line and x1 is the horizontal coordinate of x 

_ .. �. 



7 

then 

Proof: By direct inspection of the smallest interval containing the four 

points in Lerrma s .. 

Theorem 7: For 3 arbitrarily located points and x there is an optimal tour 

sequence that is also optimal in each of the b«:> dimensions separately. 

Proof: By Lemma 5 two tour sequences are optimal in the first dimension and 

two tour sequences are optimal in the second dimension. These four tour 

sequences cannot be all different since only three tour sequences are 

possible. Therefore, there must be one which is also optimal in both 

dimensions. This tour must be of minimum length overall since the length of a 

tour with rectilinear distances is the sum of its lengths in the two 

dimensions. 

Theorem 7 will enable us to separate the 3 point tour optimization 

problem into two independent one dimensional optimization problems. It also 

implies that for m =  3 there is a tour Ti for which equality holds in (1) . 
. * Corollary �: Let T3 (x) be an optimal tour through 3 given points and an 

arbitrary x. Then 

Proof: By Theorem 7 there is an optimal tour which is also optimal in the two 

dimensions separately. The length of this tour in each dimension, is equal by 
Lemma 5, to 2 times the length of the interval spanned by the four points in 

each respective dimension. 

4-point tours 

Assume now that we want to find a minimum length tour through four given 

points i,j ,k and Q,. Since Corollary 8 holds for any x, it also means that for 

an optimal tour T: .through i,j , k and !l we always have !l (T:) = 2 (R4) ,  i.e., 

equality can be achieved in (1) for m = 4. In the following development we 

... . 
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are going to construct such optimal tours and discuss the possibilities which 

may occur with respect to their extendability to include a fifth point x at 

minimum cost. 

The rectangle R4 for i, j, k and Q, may contain on its sides 2, 3 or 4 of 

these points. Our general rule to construct an optimal tour through them can 

be formulated as follows: Sequence the points on the sides of R4 in the 

counter-clockwise direction and insert the remaining points between these "for 

free". Arbitrarily we are going to start the tour sequences with the lowest 

leftmost point on the sides of R4• 

Case a: Exactly two of the four points (say k and t) are on the sides of R4, 

i.e., k and t are diagonally opposite corner points of R4 with (say) k being 

the left corner point. We further distinguish between two possibilities 

depending on the relative location of the remaining t\\O points i and j: 
al. Rk · :::::> Rk · (Figure 3.al.) l. - J 
a2. Rki (\ �kj � � but neither one contains the other, i.e. 

�i � Rkj and Rki � Rkj · (Figure 3.a2.} 

I n  case al.," since R k 2 = R4, all three possible tour sequences 

(k,j ,t,i,k) , (k,j,i,t,k) and (k,i,t,j,k) are optimal with a length equal to 

t(R4) .  We note that of these, for the tour sequence (k,j ,i,..£.,k) , FR (kj itk) = 

Rik = R4, so NFR = � i.e., for any x e R4 the tour can be extended t? include 

x for free. 

It can be easily proved in case a2 that (k ,i ,t,j ,k) is the only optimal tour 

sequence. In this case FR (ki tj k) = Rki U Rii U R2j U R j k  '1' R4, so NFR con

sists of the two corner rectangles, henceforth called "blind" corners, c1 and 

c2 and the interior rectangle IR' shown as cross hatched areas in Figure 3.a2 • 

.. . 
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Case b: Exactly three of the four points (say i,j and k) are on the sides of 

R4 with i being the lowest of the leftmost of these. Again we distinguish 

between t".\10 possibilities: 

bl. Of the rectangles R ij, Rjk and Rki exactly one (say Rjk) contains 

the fourth point R. . According to our general rule we insert 

R. between j and k for free to get the tour sequence (i,j,R.,k,i) with 

length equal to R.(R4). It can be easily seen that in this case 

this is the only optimal sequence, therefore NFR consists of the 

corner rectangle ("blind" corner) C1 and the interior rectangle IR' 

shown as cross hatched areas in Figure 3.bl. 

b2. Two of the rectangles (say Rij and �k) contain the fourth point R. • 

In this case R. can be inserted for free between both (i,j) and 

(j,k). So (i, R. ,j,k,i) and (i,j, R.,k,i) are both optimal tour 

sequences with length R.(R4). Furthermore, although each of these 

two sequences has a blind corner: this is always covered by the 

other sequence, i.e., FR (iR.jki) U FR (ijt ki) = R4 with NFR = �-
case c: All four P,Oints are on the sides of R4• We sequence them in counter-

clockwise direction, starting with the lowest leftmost po int and get the 

optimal sequence say (i,j,k,R.,i) with FR (ijkR.i) = R4, so NFR = }1. (See Figure 

3.c) 

Now consider the problem of extending the base tours through the four 

given points, to include an x at the smallest possible cost. In all of the 

arove cases where NFR = �, for any x e: R4, we can extend an optimal base tour 

to include x for free, i.e., there is a tour T: (x) for which R.(T: (x)) = R.(R4) 

which by Corollary 3 must be an optimal tour. Unfortunately for cases a2. and 

bl. (when NFR � �) this may not be possible; moreover, for certain x e: NFR the 

extension of a suboptimal base tour may be shorter than the extension of the 

optimal base tour. If we have the case a2. or bl. NFR consists of an interior 

. .  
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r ectangle (IR) and one or two blind corners (C1,C2). Let us denote by I1 and 

I2 the length of the horizontal and vertical sides of IR respectively and let 

I 

.. J 

.k 

. 

Figure 3.al. 

k 

r • 

Figure 3.bl. 

I . 
J 

Figure 3.c. 

When IR = r) we let I = 0 by convention. 

.. , I 
..- CJ1. 

c12{�--------

k 

Figure 3.a2. 

.. k .. 

. 
· 1 

.1 

.. .. 

Figure 3 .b2. 

Figure 3: Four point
. 

tours 

J 

Lemma 9: Assume that the f our points belong to case a2. or b l., i.e., IR 1 r) 

' . and let '14 be the optimal base tour through them. For any x € IR the shortest 

extension of the optimal base tour, � {x) is the optimal tour through the four 

points and x- and 

(3) 
. .  
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I 
Proof: It is clear that for any x e IR, for the distance of x from T4, 

d(T�,x), we have d(T�,x) _:: 0.5 min{I1,r2} = O.SI. Since IRS. R4 it follows 

that I_:: 0.25 .e,(R4) which clearly means that (3) holds. We have to show that 

T� (x) is optimal: Let T � and T l be the other possible (and suboptimal) base 
I 

tours. We note that the difference between t(T4) and the lengths of �he 

suboptimal base tours .e, (T�) and .e.(Ta) is 2I1 or 2r2 as can easily be seen from 

Figures 3.a2. and 3.bl. Therefore 

min { t(T �(x)), R.(T�(x))} .?_ min { R.(T�),R. (T�)} > 

proves that T�(x) is optimal. 

I I 
R.(T4) + 2! > R.(T4 (X)) which 

Lemma 10: Assume that the four points belong to case a2. or bl. and let x be 

a point from the "blind corners" (C1 or c2) ,  i.e., x e NFR - IR. If T : (x) is 

the optimal tour through the four points and x then 

* t(R4) _:: t(T4(X)) _:: l.25.e,(R4) 

Proof: Let c11 and c12 be the length of the horizontal and vertical sides 

respectively of the "blind corner" c1 and similarly let c21 and c22 be the 

lengths of the horizontal and vertical sides respectively of c2, if it exists. 
I I 

Let T4(x) be the shortest extension of the optimal base tou r  T4; then if 

x e Ci (i = 1 or 2) we have 

,Q,(T� (x)) _:: R.(T�) + 2 min{cu, ci2} = i(R4> + 2 min{ cu, ci2} (4) 

We note that any x e NFR can be included for free in either one of the two 

suboptimal tours, T� or T�. Therefore, for their extensions T�(x) and T�(x) 

.e, (T� (x)) = .e,(T�) and R,(T� (x)) = R.(Ti) so 

min{ t(Ta (x)) , t (T� (X) ) } = min{ R.(Ta) , t (T�) }  < t(R4) + 2 min{ Il, I2} (5) 

Fran (4) and (5) we get 

R.(T: (x)) = min{ t(T� (x)) , t(Ta (X)) , R.(T� (x))} 
(6) 

Let A and B denote the length of the horizontal and vertical sides, 

respectively, of �· Then 

-· .· 



cil + I1 �A and Ci2 + I2 � B i = 1,2 

(see Figures 3.a2. and 3.bl.). 

On the other hand 

min{Cil' ci2' I1, I2} � 0. 5 (Cil + I1) 

min{cil' Ci2r Ii, I2} � 0.5 (Ci2 + I2) 

and ccmbining (7} and (8} we get 

2 min{Cu, Ci2r Ii, I2} � 0.5 (A+B} = 0.25 t(R4} 
In view of (6) , this proves the lerrana. 
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(7) 

(8} 

Theorem 11: Consider four given p:>ints with smallest enclosing rectangle R4• 
* 

Let T 4(x) be the optimal tour through the fo ur points and an arbitrary x. 

Then 

(9) 
Proof: a} I f x e: R4 we note that d(R4, x) = 0 for any xe: R4, and (9) is 

equivalent to 
* t(R4} � t(T4 (x)) � 1.25 t(R4} 

If x e:FR (10) clearly holds since 

If NFR :;'- � and x e: NFR then if x e: IR then Lemma 9 and 

if x e:NFR-IR then Lemma 10 proves the Theorem . 

(10) 

b) If x i R4 then Lemma 4 reduces this case to case a) and so (9) follows 

from the fact that. (10) holds for x
' 

e: R4, where x' 
is the closest point of R4 

to x. 

Theorem 11 will enable us to approximate the optimal 4-p:>int tours in a 

heuristic optimization procedure. T he following Corollary generalizes the 

bounds of T heorem 11 for m>4 although its usefulness is limited as the 

difference between the lower and u p per bound increases quickly as m is 

increased. 

Corollary 12: Consider m points and an arbitrary x and let T�(x) be the 

optimal tour through them. Then 

-· �. 
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(11) 

for any m�4. 

Proof: The lower bound in (11) was proved in Corollary 2. For the upper 

bound it is sufficient to consider only the case when xe: R4 (in view of Lemma 

4), For m=S the upper bound in (11) follows from (9): Consider any four of 

the five points; then for these t (T: (x)) 2 1.25 t (R4). If the fifth point is 

inserted at minimal cost in T: (x) then the increase in t (T: (x)) will be no 

more than 2 times the length of the shortest side of R5• From this it follows 
* * 

that 2 (Ts (x)) 2 2 (T4 (x)) + 0.5 t (Rs) 21.25 2 (R4) + 0.5 t (�s) < l.752 (R5). 

A similar· induction proves (11) for higher m. 

Optimal facility location 

For the m-point tour location problem, let us define S (k) as the set of 

all distinct subsets of the n points that have k members (k 2 m 2 n).
. 

Let 

S (k) = {s{k,l), s (k,2), ••• ,s (k,r (k))}, where s (k,i) is the i'th set of k 

points and r (k) = {�). Let Tkf (x) the minimum length tour through the points 

in s {k,i) and an arbitrary x and let pki be the probability of the set s (k,i) 

becoming active. The m point tour location problem then can be formulated as 
m r (k) * minimize F {x) = l , l Pki t(Tki (x) ) (12) 

x k=l l=l 

If m=l then problem (12) is simply a rectilinear distance Weber problem 

with each distance multiplied by 2.  When tours including two points exist 

(m=2) the problem is also immediately reduced to a Weber problem because the 

distance between the two fixed points in each tour is a constant. However, 

when points can become active three at a time the qhoice of the optimal tour 

enters the problem. 

Locating the facility with tours through triples 

The methods developed in this section can be easily applied when 1 and 2 

point tours are also included but in order to simplify the discussion we are 

going to assume that Pki = O for k i 3. The following result is a direct 

.. .  
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consequence of Theorem 7. 

Corollary 13: For k=3 the objective function in (12) is separable into two 

one-dimensional functions; thus (12) becanes 

and 

rJ3) 
minimize F2(x2) = .l P3i 2(T3i(x2)) 

X2 . l=l 

(13a) 

(13b) 

where the tours T3� (xj) are the optimal tours through s(3,i) and Xj in 

the j- th d imensi o n  (j = l, 2), w i th all di stances meas u red a long the 

corres-ponding axis and F(x) = F1(x1) + F2(x2) 

From now on w e  restrict our attention to the one dimensional problem 

(13a) but everyth�ng can be easily'appiied to (13b) too. Let ali' a2i and a3i 

be the coordinates in the x1 dimension of the three points in s(3,i) and 

without loss of generality assume that a1i,.::. a2i _:: a3i. Using Corollary 6 we 

can rewrite the function in (13a) as 

(14) 

Note that (14) is a sum of convex terms in x1 and is hence convex. Assume 

that a1 ,.::. a2 ,.::. •••• ,.::. an are the coordinates in the x1 dimension of the n 

fixed points and define subsets of S (3) by 
� = {s(i) laj is the coordinate of the leftmost point in s(3, i))} 

Bj = {s(i) laj is the coordinate of the rightmost point in s(3,i)} 

for j=l, • • • ,n 

Then (14) can be rewritten as 

.... 



n 
+ l w· l x1 - a· I . 

l 
J J 

J= 

where wj = l PJi 
i e: Aj UBj 
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j=l, • • •  ,n (15) 

Since the first sum is constant and the second sum forms a Weber problem this 

proves the following: 

Theorem !i= The 3 point tour location prob lem can be solved by solving a 

Weber problem in each dimension separately. 

�le 

There are five points as in Figure 4 and therefore n�s. 
X2 

s .4 

4 e3 

3 

2 .1 •. 2 

1 .s 

0 X1 0 1 2 3 4 5 
Figure 4: Locations of five points 

The i:ossible triplets and their probabilities are listed in Table l 

i P3i s (k , i) ali a3i l a1i-a3i l 

1 0 f 1, 3, 5 1 3 2 
2 .1 1, 3,2 l 4 3 
3 .1 1,3,4 l 5 4 
4 0 1, 5,2 l 4 3 
5 .2 1,5,4 1 5 4 
6 .1 1,2, 4 1 5 4 
7 .l 3, 5,2 2 4 2 
8 0 3,5,41 2 5 3 
9 .4 3, 2, 4  2 5 3 
10 0 5,2, 4. 3 5 2 

Table 1 

.... 

. .  



We can now find the sets Aj , Bj , and Aj U Bj 
Al= {l,2,3,4,5,6} B1 = fJ A1UB1 = fl,2,3,4,5,6} 
A2 = fJ B2 = f 2 , 4 , 7} A2 u B2 = 

I 
2, 4 , 7} 

A3 = {7,8,9} B3 = fJ A3UB3 = 7,8,9} 
A4 = � B4 = {3f5,6,8,9,10} A4UB4 = 3,5,6,8,9,10} 
A5 = { 10} B5 = { 1 t As lJ B5 = 1, 10} 

The weights wj in (15) are now calculated: 

w1=.5, w2=.2, w3=.5, w4=.8, w5=0. Therefore 

F1 cx1> = 3.3 + .5 l x1-l l + .2 l x1-41 +.5 l x1-21+.8 l ·x1-5I 

16 

The optimum x1 is found (see [2]) by finding the median of the numbers 

1,2,4 and 5 when they are weighted by .5, .5, .2 and .8 respectively: x1 is 

therefore optimal in the closed range [2,4]. A similar procedure would yield 

the optimal x2• 

Suppose that the example is altered so that all the p3i are equal to 0.1. 

That is, each triple is equally likely. It is easy to verify that in this 

case w1=.6, w2=.3, w3=.3, w4=.6 and w5=.2. The optimal x1 is then 3. 

Actually it is a consequence of the following corollary that when all triples 

are equally likely xi and x; qre found by determining the median co-ordinates 

in the horizontal and vertical directions respectively. 

Corollary 15: When p3i = p0 for each i then (15) is minimized at 

x1 = at+l if n=2 t+l (i.e. n is odd) 

and 

at 2 x1 2 at+l if n = 2 t (i.e. n is.even) 

Proof: It can be easily seen that for each j (32j 2n-2) 

and j=n-1,n �=fJ. Therefore when all the probabilities are the same 

... .. 
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j =l,2 

W• = 
J 

3� j � n-2 

j =n-1,n 

Because of the obvious symmetry in the wj's the weighted median is always in 

the nmiddlen as defined in the Corollary. 

Lccating the facility � four :p:>int tours 

The methods developed in this section can !::e easily modified to include 

1,2 and 3 point tours but in order to simplify the development we will assume 

that Pki = 0 for k � 4. 

Four point tours change the characteristics of F (x) drastically. As an 

illustration consider the four points in Figure S. Figure Sb plots F (x) along 

the line through points 4 and.2. Tl = xl243x, T2 = x324lx, T3=xl234x, 

T4=x4123x, T5=x234lx and T6=x3412X are the optimal sequences in the designated 

segments along this line. 
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F igure 5: F(x) along a line (4 pt. tours) 
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The function F (x) is no longer always convex and can be multimodal as 

seen in the Figure. Furthermore F(x) is no longer always separable in x1 and 

x2; the minimum in the x1 direction is affected by x2 and vice versa. 

Therefore, we will not try to find and substitute into (12) the optimal 

tours, Tkr (x) for each s (4,i) · and x. We develop a heuristic method instead 

which reduces the problem to a 3 point tour problem, for which the optimal 

solution is reasonably close to the optimum of the 4 point problem. 

Corollary 16: Let R4i be the �!Dallest enclosing rectangle for the four points 

in s (4,i) (12_i2_r (4) ) .  Define 

r (4) 
B1 (x) = 

i
�
l 

P4i ( 2 (R4iH-2d (R4i ,x) ) and 

r (4) 
l P4i (1.25 2(R4i) + 2d (R4irX) )  
i=l 

then 

Proof: Substitute ·the bounds of Theorem 11 for each set s (4,i) . 

We note that a1 (x) and a2 (x) differ only by a constant, therefore they 

attain their minimum value at the same x. 

Theorem 17: Assume that B1 (x) obtains its minimum at { and x* is the optimal 

location for the 4 point tour problem 

Then 

0 < 

Proof: 

* * F(x8} - F (x ) 
* F(x ) 

1 
< 

4 

Since x* minimizes F(x) : 

If follows fran these, using Corollary 16 that 

. .  



- , 

* * F(xB)-F(x ) 
r (4) * 1/4 .I P4i 9. (R4i) 
l=l 1 

0 < _, ___ < ----- = ----------- < -
4 

F(x*) 

which is what we had to prove. 
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By Theorem 17 if we minimize B1 (x) instead of F (x) then the solution is 

at JOOSt 25% atove the minimum of F(x). 
In the following we show that minimizing B1 (x) is equivalent to solving 

the 3 point tour location problem. For each set s (4 ,i) the enclosing 

rectangle R4i can always be defined by three appropriately chosen p::>ints on 

its sides e.g. by three of its corner points. Let the set of these three 

points be t (3,i) (l�i�r (4) ) and let us denote by R3i the smallest enclosing 

rectangle for the points in t (3,i) . By definition, R4i=R3i for each i. 

Substituting these into B1 (x) 
r (4) 

Bl (x) = l p 4i ( 9. (R3i) +2d (R)i ,x) ) 
i=l 

and by Corollary 8_ minimizing this function is equivalent to solving the 3 
p::>int tour problem on the sets t (3,i) (l�i�r (4) ) .  

Finally we note that the same heuristic procedure could also be applied 

for m>4; however, Corollary 12 indicates that the bound on the error of the 

procedure increases very quickly as m increases. 

_ .. .  
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