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The Transient Behaviour of Transfer
Lines With Buffer Inventories

Abstract

The transfer line models in the literature are planning
models rather than operational models. That is, they are
very useful for planning or designing the transfer line, but
are less useful for controlling daily operations of the line.
The performance measure, used in these models is the expected
efficiency of the line. In this paper a method is presented
for calculating the variance of the efficiency of the line.
These two'performance measures can be used to construct a
confidence interval for the expected production during a

specified time interval (say, a shift). This confidence

interval is an operational guide for the production manager.

e



1. Introduction

The transfer line is an important production system. It consists of a
number of stations connected so that all work-in-process goes through the
same sequence of stations. Figure 1 depicts a K-station transfer line with
K=1 buffer inventories. The problem of transfer lines and buffer inventories
in transfer lines has had a long history. A good review of the literature
is found in Buzacott and Hanifan [1978] and Gershwin and Berman [1981]. The
models in the literature are planning models rather than operational models.
That is, they are very useful for planning or designing the transfer line,
but are of limited use in controlling the daily operation of the transfer
line. In most models, the performance measure is the expected efficiency of
the line E(A). Gershwin and Schick [1983] interpret the efficiency, A, as
the probability that a product emerges from the line during a cycle.
Equivalently, A can be interpreted as the ratio of what the system actually
produces over some period to what it could have produced in the same period
had there been no lost production (Buzacott [1971]). The expected efficiency
E(A) is a long-run measure and may be considerably different from the actual
efficiency (or actual production) over a production shift. The manager needs
a confidence interval estimate for actual production he can expect, so that
he can schedule material handling, shipping and overtime.

This paper shows how to calculate V(A) the variance of the efficiency
of a transfer line. Confidence intervals for the expected production over
specified planning intervals can then be calculated. These confidence
intervals are an operational guide for the production manager. (It is
interesting to note that Hatcher [1969] first identified the need to

calculate the variability of the efficiency of a transfer line.)
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In what follows; Section 2 describes the structure of the transfer line
models. Section 3 shows how E(A) and V(A) are calculated. Section Y4 gives
two illustrative examples using well-known transfer line models. Section §
outlines some computational considerations. Section 6 discusses extensions

to this research.

2. Markov Chain Models

Most of the transfer line models in the literature are Markov chain
models. Each of the K stations in the transfer line can be described by up
to three variables. They are the processing time qi, station failure time
1i and station repair time bi (i=1,2,...,K). The buffer inventory is
described by specifying its maximum size si (i=1,2,...,K=1). Each station
can be either up (that is, working) or down (that is, under repair). Let Q,
L, B and S be vectors whose elements are qi, li’ bi (i=1,2,...,K) and s,
(j=1,2,...,Kk-1) respectively. For finite size buffer inventories the states
of a K station transfer line constitute a Markov chain. Each station j can
be up or down and each buffer inventory can have content 0,1,2,...,s5.. The
total number of states (TNS) is
(1) s = 2 SElGs ¢ )

Transitions between states are functions of the four vectorg Q, L, B and S.
The corresponding transition probability matrix P, with the elements pi.,
can be specified in terms of the elements in Q, L, B and S, and the steady
state probabilities of the states can, in principle, be determined. If = is
the vector of steady state transition probabilities with elements "i’
(i=1,2,...,TNS) then ©® can be determined from the well known result w=Pw, or

equivalently,

TYS - :
™y ig1 JLN J=1,2,...,TNS=1



or w.(p,.,-1) + Eg? Py = 0 j=1,2,...,TNS-1
J " JJ 1] J (2)

TS
and jg1 ﬂj =1.

There are many computer procedures available for solving this large set of
simultaneous equations. (See section 5.) The expected efficiency E(A), is

the sum of the =« j e U, where U is the set of states that result in a

J ’
finished unit being produced by the line.

3. Calculation of E(A) and V(A)

As mentioned
(3) E(a) Sngwj
Let,

(4) v(a) =j§uvj )
where V., is the variance of the steady state transition probability of state
j. In order to develop expressions for the calculation of Vj define the e
following Markov chain variables. |
pij = element of the transition probability matrix P,
= probability that the process will occupy state j at the next
transition given that it currently occupies state i.
ﬂij(n) = n—-step transition probability from state i to state j,
= probability that the process will occupy state j at time n

given it occupied state i at time 0.

(n) = state occupancy random variable,

iJ
= the number.of times state j is entered through time n given
that the system started in state i at time O.
;ij(n) = mean of the state occupancy random variable. ¢
;ij(n) = variance of the state occupancy random variable. ,

= first passage time random variable,



= the number of transitions to reach state j for the first time
- if the system was in state i at time O.

éij = mean of the first passage time random variable.

D >
1]

1j variance of the first passage time random variable.

fij(n) = the probability that eij = n.

The random variables that are of interest to us are

lim l(n) and lim ](n) . The first expression represents the
oo N->ow n

probability that a state j is entered given that the process started in
state i at time zero. The second expression represents the variability of

the state occupancy random variable per transition. We will proceed to show

that

This-equation shows that the probability of entering state j is independent

of the starting state i. As well

1im Yiy(® C % v
ne n 53 j
i

Similarily the variance is also independent of the starting state i and so
is denoted Vj’

From the‘definition of a Markov chain
(5) &(n) = P" n=0,1,2,..
Let
(6) &(n) =P"= & + T(n) n =0,1,2,...
where & is the limiting steady state transition probability matrix, with
elements dij' where dij = diij), and T(n) is the matrix of transient
terms (which disappear when n is large) with elements ti.(n). (Notice that &

is a matrix where each row is the vector w.)



When working with Markov chain equations it is often useful to v
transform the equations and solve the equations in the transformed domain.
Taking the inverse of the transform solution gives tﬁe solution to the
original problem. (The great advantage is that working in the transformed
domain permits analysis of the Markov process before it reaches steady
state.) For discrete time Markov chains, the geometric transform is used.
That is, for a discrete function f(n) > 0 (n=0,1,2,...), f(n) =0 (n < 0);
the geometric transform £8(z) is defined
(1) £8(z) = §=Of(n)zn.
fg(z) exists if the series converges. (See Appendix 1, for a brief review
of geometric transforms in Markov chains).

Equation 6 in transformed form is

2%(2) = 1—12- 5 + 18(2) )

or - .

g 1 g
. dij(z) Bb,, + tij(z) .

1=z 7ij
But éij is the limiting steady state probability of state j, and so is

independent of the starting state i. That is dij = 7j' and so’

g a1 g
®) 6f,(2) = 1 7, + tfi(2),

Consider now Vij(n)' Clearly,

(9) ¥,.(n) = 28, .(m)

ij -m=0"1]j : -

or, in transformed form
8 .1 48
(10) vij(Z) T bij(z).
It can be shown that the second moment of the mean occupancy is (see pp.

240-270 of the Howard [1971]),

2 n n
Vij(n) = Zﬂgo = bij(m) dij(r m) =0 dij(m) n=0,1,2,...

which simplifies to .

2 n = -
(1) Vij(n) = 2555 bij(m)vjj(n-m) - Vij(n) n=0,1,2,...



In the transformed domain equation 11 becomes

"'8
g €.,y _28 -
(z) 2 8, (z)vJJ(z) v, J(z) n=0,1,2,...
which 51mp11f1es to
e 1 g g
(12) v (z) =1 % (z) (2 &; (z) -1].

~

vl.(n) can be calculated by using the definition of a variance. That is
(13) vy (n) (n) - [v (n)]

where v (n) is given by equation 9 and v (n) is given by equation 11.

(Alternatively equations 10 and 12 in the transformed domain could be used.)

It turns out the equations for v (n) and v (n) have a number of terms
which become insignificant for large n. Substituting equation 8 into
equation 10 gives

7 8(2) 2 == (- g
(14) Vij(Z) - (l-z TS + tij(Z) )

g
™ tij(Z)

= +

(1-z)2 1-2

For large n, the inverse of this transform equation is

(15) v (n) = (n+1) wJ + tfj(1) .

We can calculate a similar expresssion for v?j(n) and then use equation 13
to calchlate vrj(n). The result would be
g 2 g
(16) v, (n) =y [n +2t (1) -1In + LI wj[2tjj(1)-1]
g; g! g g g
- 2r_ [t7.(1)+t5 (1 + £2.(1)2tT.(1)-1-t2.(1 for lar ,
LA ) $3(D7 + £ (2L (1D=1-t3 ()] ge n

where

. at$. (z)
£5.(1) =« —bl—
ij dz 2=l

Finally consider °ij . Recall that
(17) fij(n) = Prob (eij=n),

and so



(18) éij(n) = Gijd(n) + ggofij(m)djj(n-m) n=0,1,2...

where Gij = 1 if i = j and zero otherwise; 6(n) = 1 if n = 0 and zero
otherwise. 1In transformed form equation 18 is

g g g
(19) éij(z) = 6ij + fij(Z) djj(z)
or

g Pt _ g .
(20) fij(z) [ﬁij(z) Gij] / éjj(z)

Substituting equatidn 8 into 20 gives

- g
"i,+ (1 Z)tij(Z)

L3
.+ ( ) --( )

1 - L2 i=j .

- g
15 + (1 Z)th(Z)

g
(21) fij(z) =

Since fij(n) is a probability distribution function, f?j(1)=1 from equation
7, and the moments of eij can be obtained by differentiating ffj(z). and
evaluating the results at zs1. In particular

g g .

£3.(1) = £32.(1) 1/, i#

L JJ( ) 13( )] ﬂb J

1/, i=7.

- g’
(22) °ij = fij (1) = {
Jd

In a more compact form

(23) eij= [6ij 5

Similarly the second moment of the mean first passage time is

g - +8
+ tjj(1) t] (1)]/1rj .

2 - g" gi
(24) Oij fij(1) * fij(1)

which, after Some simplication, is
- 2t8 (1) gt g
2 o,, =&, . -+ 1] + 20 t3.(1) - t2.(1)1/11 -
(25) of, = &L J-J—-—J 1+ 2l 250 - e, (O /m,
Again, the variance of the first passage time random variable, is calculated

from

~ 2 -
2 = -
(26) eij oij (oij

using equations 23 and 25. If we are only interested in calculating the

recurrence time moments (that is i=j) then equations 23 and 26 simplify to



1
(27) 8., = —
JJ ﬂj
28) 8., = —— [2t.8(1 -
(28) jj “2 C JJ( ) + TS ]
J

Using equations 15 and 27 gives

(29) .. v, .(n)
lim ij -T.= _1
n+e n j e..
JJ
while equation 16 gives
(30) ,. v, .(n)
lim i3 ° _ g -
How n— = mylmyr 2ty () - 1]

or, after substituting equations 27 and 28;

(31) lim vi.(n) _ ..
n»o . n 5 3
JJ

In Appendix 2 we show that the matrix T8(1) with elements ti§(1) can be
calculated from

g -1
(32) (1) = [I -P+9] -9

where I is the identity matrix.

y, Illustrative Examples

Example 1 Consider the two station-one buffer inventory transfer line of
Figure 2. Suppose an appropriate model for this line is the following model
from Buzacott [1971].

Let ay be the probability that station i breaks down during a cycle and
let bi be the probability that a repair to a broken down station is
completed during a cycle. Suppose that o =0z = 0.20 and b, = b, = 0.30;
and that the buffer inventory between the stations has a capacity of 3
units. (That is, s=3). Buzacott uses a Markov chain formulation (see
Figure 3) and derives the following closed form expression for the expectgd

efficiency of a two station transfer line.
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s
1-tC
S t/1
(33) Ea) = 't X = (T X)tC
1+r - b, (1+4X) + s b,(1+x)
2 =
(1+2X)(1+Y"b2(1+X))+sb2(1+x) t=1
where

(ay+az)(by*ba) = a,b,(a,*a,+b, + b,)

='(aj+a2)(b1+b2) = a,b,(a;*a,+b,+b,)

c

t = azb; /a;b,

X, = a;/b, Xy = /by
and when t = 1

¥ = X, = X

r = az/a; = by/b,;
For this example C=1, t=1, x=0.6667, r=1 and so equation 33 gives E(A) =
0.50.

The transition probability matrix P for the Markov ' chain of Figure 3

is

3
%))
o

oo
w
o

oo
N
o

')

oo

(9)]
w

n

[eNeoNeoNe]
[oNeNeNe N
L]
~ WU
OO oo
[eNeNeNeoN)
o
w w
[eNeoNeoNe!
[eNoNeoNeoNeo]

n
[eNeNeNe )
o
[N eNeNei)
n
[eNeoNeoNoNeoNeo]

n
n
O O O
O OO
(o))
o
O OO
(o)}
O OO
n
n
[eNeoNeoNeNoNoNol
n
[eNeoNoNeoNeoNoNoNoNo]

n

(34) P.=

leNeoNoNoNoNeolNoNeoNeo R

O O OO
O OO0OO0O-

L]
Uy

n

w w
e eolNeNeolNoNeNeoNolNe N

O OOO-
O OO O0-

n

w

OO O0OO0OO0O0O0.

O O

(O]

oo'

n
[eNeoleoNeoNeoNoNoNoNeoNoNoNolN

w
OCO0OO0OO0OO0OOO-
OCO0OO0OO0OOO0Oo-
w
O
oo
=
oo
=
cO-.

w

w
w [§)}
OO0OO0OO0OOCOO-

[eNeoNeoNeoNeNeNe N
(@3]
°
w

O e
w

.

w

O OO.
O O
OO O0OO0OO0OO0O-.
[eNeNeNeoNo N
OO OO
w
[elNeoNeNeoNeNeoNeoNeR
O OO,
O O«
O OO0O-
O O
O .
=
=
],

Using equation 2 gives
(35) = = [0.033 0.033 0.033 0.166 0.150 0.050 0.050 0.150

0.166 0.033 0.033 0.033 0.011 0.022 0.022 0.011] .
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Define a vector consisting of the W diagonal elements of a W x W matrix A as
- AD. That is AD has elements ajy i=1,2,...;w. 78(1) is calculated from
equation 32, from which
(36) Tg(1) = [0.7592 0.7128 0.7592 3.6750 2.6806 2.2081 2.2081 2.6806
3.6750 0.7592 0.7128 0.7592 1.6049 1.5740 1.5T740 1.6049].

Define 5D as a vector with elements 511. Using equation 27 gives
(37) @, = [30.0 30.0 30.0 6.0 6.6 20.0 20.0 6.6 6.0

30.0 30.0 30.0 90.0 45.0 45.0 90.0].
Similarly define gD as a vector with elements éii. Using equation 28 gives
(38) 8D = [496.5 413.1 496.5 234.6 200.5 1386.5 1386.5 200.5 234.6

496.5 413.1 496.5 17989.4 4394.7 4394.7 17989.5].
Substituting equations 37 and 38 into 30 gives the variances of the steady
state probabilities
(39) VD = [0.01839 0.01530 0.01839 1.08625 0.67653 0.17332 0.17332 0.67653

1.08625 0.01839 0.01530 0.01839 0.02468 0.04823 0.04823 0.02468]
whére VD is-a vector Qith elements Vj' For this model the '"productive™

states are states 5,6,7,8,10,11 and 12. From equations 35 and 39

Ts = 0.1500 Vs = 0.6765
Te. =- 0.0500 Ve = 0.1733
T, = 0.0500 V, = 0.1733
me = 0.1500 * Ve = 0.6765
Ty = 0.0333 V,, = 0.0184
m,, = 0.0333 V,, = 0.0153
T2 = 0.0333 V,, = 0.0184

Hence

E(A) = TTg + g + Ty + g * Ty + Ty; + Ty, = 0.50

(40) v(a) = 1.7517
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The expected efficiency, of course, agrees with our prévious results.

Suppose, for example, that the transfer line runs for 800 cycles during
a production shift. On average 800E(A) = 400 of these cycles will be
productive and that on 800(1-E(A)) = U400 cycles no units will be produced.
The variance of the expected production is 800V(A) = 1401.4 and so the
standard deviation is ¥1801.4 = 37.43. Interestingly, the central limit
theorem applies to this large sum of dependent trials. (See for example, p.
275 of Howard [1971] or a copy of the proof by A.A. Markov on pp. 552=576 of
Howard [1971]). Consequently, the 95% confidence interval for the expected
production during the shift is

0.50%800 + 1.96 /7.7517%800 = (327,473) units.

This production range is very useful to a manager because it estimates how
high and how low the actual production could be. The point estimate 0.50%800
for the expected production on the shift does not give this information.

To illustrate the flexibility of this approach consider the following
situation. Suppose the above model is appropriate for the transfer line
except that there is a constraint on repairman. In fact, if both stations
are down then the probability of repairing a station changes from 0.30 to
0.15. That is
(41) b, = b, = 0.15 states 13(DOD), 14(D1D), 15(D2D), 16(D3D)

E 0.30 all other states
The transition probability matrix is the same as before (equation 34) except
that rows 13 to 16 are changed to
(42) row 13 ,.. 0.150 000000 0.150000.7000
row 14 ... 00.1500000000.150000.,700
row 15 ... 000.150 000 0000.150000.70

row 16 ....0000.150 000000 0.1500 0 0.7
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Again, using equations 2, 27, 28, 29 and 31, gives

ms = 0.140625 Vs = 0.65197
me = 0.046875 Ve = 0.16342
7, = 0.046875 V, = 0.16342
T = 0.140625 Vg = 0.65197
Tio= 0.031250 V,o = 0.01675
T, = 0.031250 V,, = 0.01361
T2 = 0.031250 V,2 = 0.01675

From which

E(A) = 0.4688 and V(A) = 1.6779
The constraint on repairmen decreases the expected efficiency from 0.50 to
0.4688. Suppose again that the line runs for 800 cycles during a production
shift. The 95% confidence interval for the expected production is (303, 447)
units. To justify addiﬁional repairmen, the expected additional cost must
not exceed the profit associated with producing an additional 800 (0.50-
0.4688) = 25 units.’

Unfortunately if slight adjustments, such as this are made, then the
closed form solution of equation 33 cannot be used.
Example 2 In addiﬁion to the two station variables (up time and down time)
considered in example 1, consider now a model (by Gershwin and Berman
(1981]) which adds a third variable = processing time. Using their notation
define

Ui = mean uptime in cycles for station i,

Di = mean repair time in cycles for station i,

Ri = mean processing time in cycles for station i,

T=12 Ui + Di + Ri for all stations.

and let
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¢, = U, /T, b, =D./T, r. = R./T
i i i i i i

One of their examples has

Station, i U, o, D. b, R, r,
i i i i i i

1 1 0.0476 5 0.2381 3 0.1429

2 2 0.0952 6 0.2857 y 0.1905

with s=3. Gershwin and Berman assume that the limiting steady state
probabilities are of the form

(43) m(a,,n,a,) = c x" y$r y22

where ai= 0 if station i is down, ai= 1 if station i is up and n=0,1,...,S.
An algorithm is given to calculate Q, X, Y, and Y, and hence the limiting
steady state probabilities.

The Markov chain for this example is shown in Figure 4. The

corresponding transition probability matrix is

-.5238 .1429 0 0 .2857 0 O O O O O O .0476 0 O O 7
0O .5238 .1429 0 0 .2857 0 O O O O O O .0476 0 O
0 0O .5238 .1429 0 0 .2857 0 0O O O O O O .0476 O
0O 0 0.7143 0 0 0.2857 0 0 0 O O O O O
.0952 0 0 O .7143 .1429 0 O .0476 0 0O 0O 0 O O O
0 .09520 0 .1905 .5238 .1429 0 O .0476 0 0 0 O O O
0 0 .0952 0 O .1905 .5238 .1429 0 O .0476 0 O O 0 O
(43) P=/ 0 0O 0 .0952 0 O .1905 .666T O O O .0476 0 0 0 O
0O 0 0O 0.2381 0 0O 0 .7619 0O 0 0o 0O 0 0O
0O 0 0 0 0.2381 0O 0 .1905 .4762 0 0O 0 .0952 0 @
0O 0 0O 0O 0O 0.2381 0 O .1905 .4762 0 O 0O .09520
0O 0 0O OO O 0.23831 0 O .1905 .4762 0 0O 0 .0952
.23810 0 0 0 O O 0 .2857T O O O .41t62 0 0 O
0O .23810 0 0 0 0 O O .2857T O O O .4762 0 O
0O 0.2381 0 0 0 0 O O O .2857T 0O O O .u47620
.0 0 0.23831 0 0 0O O O O O .2857 0O O O .u762 J

According to Gershwin and Berman the expected system efficiency is
E(A) =n21[“(1)n)1)) + 1]’(0,1'1,1)]
or E(A) =mg + W, + g + Wye + M1y ¥ M2

Solving equations 2,27,28,29 and 31 gives

1}

g = 0.1624 V(iwg) = 0.5164

0.5385

[}

m, = 0.1380 vir,)
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Te = 0.1260 V(mg) = 1.0527

Ty = 0.0279 V(w,,) = 0.0839

m,, = 0.0216 V(m,,) = 0.0687

T, = 0.0127 V(m,,) = 0.0461
and so

(44) E(A) = 0.4886, and V(A) = 2.3063 .
Notice that the expected efficiency for this model is similar to the
expected efficiency for the model of example 1 (equation 40). However, the
variance is 32% higher in this model. This is because of the additional
station variable. Adding variables to the model increases the variability.

Suppose again that the line runs for 800 cycles during a shift. We
expect to be in a productive state 48.86% (equation 44) of the time. When in
a productive state the average processing time is P,=4 cycles per unit.
Hence the expected production rate E(Prod), is

E(Prod) = E(A)/P, = 0.1222 units/cycle.
and

2 . 2 2
V(Prod) = V(A)/P, =0.1441 units /cycle

The 95% confidence interval for the expected production on the shift is

0..1222%800 + 1.96 Y0.1441%800 = (77, 119) units.

5. Computational Considerations

Recall that Buzacott [1971] was able to develop a closed form
expression for the expected efficiency E(A) of a two station - one buffer
model. Unfortunately, it has not been possible to develop an accompanying
closed form expression for the variance V(A). Neither has it been possible
to develop closed form expressions for E(A) and V(A) for larger transfer

lines (more than two stations). Techniques such as Gershwin and Berman's
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[1981] have been used on two station - one buffer models. (The max imum
buffer capacity considered is s=20). A similar technique is used by
Gershwin and Schick [1983] to calculate E(A) for a three station - two
buffer model. The largest problem they solve has s1=15 and sz=15. They
report computation times of approximately 0.0007_(51 + 52)3 cpu seconds on a
Honeywell 6880 Multics system. |

In this paper, we chose to model the transfer line with a Markov chain,
formulate the corresponding transition probability matrix and use equations
2 and 3 to obtain E(A) and equations 30, 31 and 32 to obtain V(A). These
equations involve large matrices. A FORTRAN program was written to use these
equations and, the IMSL [1982] subroutinés LEQIF (to calculate E(A)) and
LINV1IF (to calculate V(A)), to analyze a number of two and three station
transfer lines.

Table 1 summarizes the computational requirements for some typical two
and three station transfer lines, The storage requirements and computational
times are very reasonable for two station transfer lines. For s=15, we
require approximately 64 x 64 = 4096 words of storage and 5 cpu seconds to
calculate E(A) and V(A) on a VAX 11-780 or 3.56 cpu seconds on the faster
CYBER 170-815 computer. For three-station transfer lines, and larger
transfe; lines, the state space grows rapidly. One of our problems had s1 =
7, 32 = 7 and required approximately 512x512 = 262,144 words of storage and
354 cpu seconds (5 min. 54 sec.) to calculate E(A). Gershwin and Schick
(1983] estimate that their technique would have required approximately

0.007(7+7)3 = 19.2 cpu seconds on a Honeywell 6880 Multics system.




Table 1 - Computational Results on VAX 11/780

Type of Buffer Number of Order of CPU Seconds to Calculate *
Transfer Capacity | States Matrices
(Equation 1) E(A) V(A)
s=15 64 64 x 64 0.82 sec 4,25 sec
Station (0.64 sec *¥) (2.92 sec **)
s1=u, s2=u 200 200 x 200 16.63 sec 2 min 27 sec
Station (9.3 sec) (1 min 20 sec)
s1=7, 82=7 512 512 x 512 5 min 54 sec 52 min 43 sec
Station
s,=8, s.=8] 648 648 x 648 14 min 16 sec c——See——
. 1 2
Station ]
s1=9, 82=9 800 800 x 800 25 min 49 sec Foemm———
Station

* Using IMSL subroutines LEQIF
** Times for E(A) and V(A) on a

for E(A) and LINVIF for V(A)
CYBER 170-815 computer
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6. Summary and Extensions

We began by describing a deficgéncy in Ehe transfer line models in the
literature - namely that they do not accurately model the daily operation of
the transfer line. If both the expected value and the variance of the
efficiency of the transfer line are calculated then a confidence interval
for the expected production over a specified planning horizon (say a
production shift) can be calculated. Such a confidence interval allows the
manager to plan for shifts where output exceeds the expected output and for
shifts where output is less than expected. It also gives him an indication
of the probability that overtime will be required.

E(A) énd V(A) can be calculated for most of the models in the
literature (where lines are modelled as Markov chains). The calculations can
be done using standard IMSL subroutines for almost all sizes of transfer
lines considered in the literature - namely, all two station - one buffer
transfer lines and all three station-two buffer lines where Sy *s, <10,

Clearly the most important extension to this research is to find a more
efficient technique for calculating the variance V(A). Such a technique
might be similar to Gershwin and Berman's [1981] technique for calculating
E(A).
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Appendix 1 - Using the Geometric Transform with Markov Processes

(Based on Huggins [1957] and Howard [1971]).

Consider a simple Markov process with transition probability matrix
(A1) P =p0.8 0.2

[0.3 0.7]

The corresponding transition diagram appears in Figure 5. A mathematician
customarily describes the Markov process by writing down a difference
equation for each state, which indicates how the probability of being in a
state at time n depends on the probabilities of being in adjacent states at
time n~1. 1If p1(n-1) and pz(n-1) a?e the probabilities of being in states 1
and 2, respectively, at time n-1; then one transition step later, the
probabilities are
(A2) p1(n) = 0.8p1(n~1) + 0.3p2(n-1)

pz(n) =70;2p1(n=1) + 0.7p2(n-1)
This is a set of linear difference equations‘with constant coeffiicients.
Notice that p1(n) and pz(n) are linear combinations of themselves after a
unit delay. Taking account of this we can redraw Figure 5 as the linear
flow graph in Figure 6. This is written in the standard notation of flow
graphs representing linear electrical systems. The signal at each ﬁode is
the probability of f'inding the original process of Figure 5 in that state.
The z operators on the branches together with the transition probability
gains indicate that the signal which passes down each branch is to be
delayed by a unit time and multiplied by a constant. We will find that
working with linear flow graphs such the one in Figure 6 will provide
insights into the underlying Markov process. For example, p1(3) the
probability of being in state 1 after the third transition could be

calculated from the linear flow graph of Figure 6 by calculating the signal
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at node 1 corresponding to a delay of z3. This is done in Figure T where,

for the sake of‘convenience, we assume the process began in state 1. Under
this assumption, p1(0)=1. As.well p1(1)=0.8, while p1(2)=0.7 and
p2(3)=0.65. It appears that these probabilities are quickly converging to a
steady state probability. It is a simple matter to calculate the steady
state probabilities for this Markov process using traditional techniques.
The great advantage of the flow graph technique is that it permits analysis
of the Markov process before the process reaches steady state.

Before continuing with flow graph techniques let us define éij(n) as
the probability that the process will occupy state j at time n, given that
it occupied state i at time 0. The quantity éij(n) is called the n-step
transition probability of the Maékov process from state i to state j. Also
define ®(n) as the n-step transition probability matrix with elements
Qij(n). By definition, #(0) = I, the identity matrix. If P is the
transition probability matrix of the Markov process then

6(0)=I

5(1)=@(1)P=IP=P

5(2)=8(2)P=p°
5(3)=8(3)P=P>

and in general

(A3) 8(n)=pP" N=0,1,2,3,...

The behaviour of Qij(n) for all values of i,j and n is the most important
derived characteristic of the Markov process.

Consider a discrete function f(n), as shown in Figure 8. This function
can take on- any real value, positive or negative, at any non-negative
integer n=0,1,2,... We shall find it convenient to define f(n)=0 for n<O0.

The geometric transform is then defined by
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(a8)  £8(z) = £(0) + £(1)z + £(2)2° + ... = £ r(n)z"

if the series converges. We speak of the discrete function corresponding to
a geometric transform as the inverse of the transform. The process of
finding it is called transform inversion. If fg(z) is given in closed form,
then we could expand it in a Taylor series about z=0 and write the inverse
discrete time function as the coefficients of the successive powers of z.
In some cases we can actually carry out this procedure by division when
fg(z) is expressed as the ratio of two polynomials in z. (This was done in

Figure 7). Alternatively we could differentiate equation AY,

1 d% g
(A5) f(n)= = =—£f (z)]
dz z=0

Since the series expansion fg(z) is unique, so is the relationship between
the discrete function and its geometric transform. (These transforms are
related to Laplace. transforms. Tables of geometric transforms are widely
published. See, for example, pp. 516~520 of CRC Standard Mathematical
Tables [1975] or pp. 43-81 of Howard [1981]).
Consider now, equation A3.
ﬁ(n)spn n=0,1,2,...
Let us take the geometric transform of this equation.
(a6) mg(é)-ngopnzna I+Pz+ P2+ ... = [I-Pz]]
To calculate &%(z) we must calculate the inverse of the [I~Pz] matrix. To
illustrate the technique let us consider again our simple Markov process.
I-Pz= 1 Oy- z r0.8 0.27 = [1-0,82 -0.2z
[0 1] [0.3 0°7J -0.3z 1=O.72]
The determinant of I-Pz is
|1-Pz| = (1-0.82)(1-0.72) - (-0.22)(-0.3z)
= 1-1.52+0.52°

= (1-2)(1-0.52)
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Then

g _ _x= 1 1-0.72 0.2z
(AT) 9°(2)=[I-Pz] (1_2)(1-0.52)[0,32_ 1—0.82]

Equation A7 can be simplified using a partial fractional expansion. This

gives

1 0.6 0.4

(a8) 08(2) = 0.4 =0.4]

o1
- 2zL0.6 0.u4d°7 (1-0.52){—0.6 0.6
Taking the inverse transform of @g(z) gives

0.6 0.4 npo.4 -0.4
(a9) o(n) = [op o]+ 05" [ 257, "ot n=0,1,2...

From equation A9 we see that 011(n)=0.6 + 0.5™(0.4). Then 011(0)=1,
011(1)=0.8, 012(2)-0.7; G11(3)=0.65. ete. which agrees with our results from
Figure 7. The limiting multistep transition probabilities are

(A10) ﬂ'[ﬂ1 w2]'= [0.6 0.4]

L is the probability of being in state 1 after an infinite number of
transitions regardless of the initial starting state. Similarly w, is the
steady state probability of being in state 2 regardless of the initial
starting state. We can summarize the behaviour of ¢(n) for an N state
monodesmic (that is, a single chain process - a process that can make a
transition from any state to any other state) by the equation

(A11)  #(n) = p" =& + T(n) N=0,1,2,...

or in transformed form

(a12)  o8(2) = > + 18(z)

1 =2

¢(n), from equation A11 will consist of N terms. One will be a constant
term ¢ - the limiting multistep transition probability matrix for the
process. The other N-1 terms are combined into a matrix T(n). They are

transient terms, whose effect will disappear when n is large.
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Appendix 2 Calculating the Transient Sum Matrix T&(z)

Recall equation 6

o(n) = P" = ¢ + T(n) n=0,1,2,...
where P = transition probability matrix for the process,

$ = limiting steady state transition probability matrix with elements

aij’

(n),

T(n) = matrix of transient terms with elements tij

d(n) = n~step transition probability matrix with elements to @ij(n)c
Rewriting equation 6 gives
T(n) = P=o

The geometric transform of T(n) is (from equation 7)

n
=O"I‘(n)z .

=%, (Pr-0)z2"

g (-]
T°(2) = 5

® n n
= I o +n§1 (P =d)z

However
P - 5 = (P-0)" n=1,2,...
and so
18(z) = 1 = ¢ +f_ (p-0)"2"
= gao(p-¢)nz" - ®
=[I-2p+2z0] -0
Hence
T8(1) = [I - P + 17 -o
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