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The Transient Behaviour of Transfer 
Lines With Buffer Inventories 

Abstract 

The transfer line models in the literature are planning 

models rather than operational mo dels. That is, they are 

very useful for planning or designing the transfer line, but 

are less useful for controlling daily operations of the line. 

The performance measure, used in these models is the expected 

efficiency of the line. In this paper a method is presented 

for calculating the variance of the efficiency of the line. 

These two performance measures can be used to construct a 

confidence interval for the expected production during a 

specifie d time interval (say, a shift) . This confidence 

interval is an operational guide for the production manager. 

• 



1. Introduction 
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The transfer line is an important production system. It consists of a 

number of stations connected so that all work-in-process goes through the 

same sequence of stations. Figure 1 depicts a K-station transfer line with 

K-1 buffer inventories. The problem of transfer lines and buffer inventories 

in transfer lines has had a long history. A good review of the literature 

is found in Buzacott and Hanifan [1978] and Gershwin and Berman [1981]. The 

models in the literature are planning models rather than operational models. 

That is, they are very useful for planning or designing the transfer line, 

but are of limited use in cont�olling the daily operation of the transfer 

line. In most models, the performance measure is the expected efficiency of 

the line E(A). Gershwin and Schick [198 3] interpret the efficiency, A, as 

t he prob a bi l i ty that a product emerges from the line during a cycle. 

Equivalently, A can be interpreted as the ratio of what the system actually 

produces over some period to what it could have produced in the same period 

had there been no lost production (Buzacott [1971] ). The expected efficiency 

E(A) is a long-run measure and may be considerably different from the actual 

efficiency (or actual production) over a production shift. The manager needs 

a conf.1.<lence interval estimate for actual production he can expect. so that 

he can schedule material handling, shipping and overtime. 

This paper shows how to calculate V(A) the variance of the efficiency 

of a transfer line. Confidence intervals for the ex pected production over 

s peci fied planning intervals can then be calculated. These confidence 

intervals are an operational guide for the production manager. (It is 

i nterestin g to no� that Hatcher [1 969] first identifie d the need to 

calculate the variability of the efficiency of a transfer line. ) 
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In what follows; Section 2 describes the structure of the transfer line 

models. Section 3 shows how E(A) and V(A) are calculated. Section 4 gives 

two illustrative examples using well-known transfer line models. Section 5 

outlines some computational considerations. Section 6 discusses extensions 

to this research. 

2. Markov Chain Models 

Most of the transfer line models in the literature are Markov chain 

models. Each of the K stations in the transfer line can be descri bed by up 

to three variables. They are the processing time qi' station failure time 

li and station repair time bi (i=1,2, • • •  ,K)� The buffer inventory i s  

described by specifying its maximum size si (i=1,2, • • •  ,K-1). Each station 

can be either up (that is� working) or down (that is, under repair). Let Q, 

L, B and S be vectors whose elements are q., 1., b. Ci=1,2, . • •  ,K) and s. l l l J 
(j=1,2, • . •  ,K-1) respectively. For finite size buffer inventories the states 

of a K station transfer line constitute a Marl<:ov chain. Each station j can 

be up or down and each buffer inventory can have content 0, 1 , 2, . . •  , s. • The 
J 

total number of states (TNS) is 

( 1) K K-1 TNS .. 2 .n, (s. + 1) 
J= J 

Transitions between states are functions of the four vectors Q, L, B and s. 

The corresponding transition probability matri x P, wit h the elements p . .  , lJ 
can be speci fied in terms of the elements in Q, L, B and S, and the steady 

state probabilities of the states can, in principle, be determined. If 11' is 

the vector of steady state transition probabilities wit h elements 11' . , l 
(i=1,2, • • •  ,TNS) then 11' can be determined from the well known result 1T=P11', or 

equivalently, 

11'. == T�S p 11' J i == 1 ij i j=1,2, • • •  ,TNS-1 



or 

and 

T�S �j(pjj
-l) + i=1 pij�i l=J :�s, �. = , • 

J= J 

4 

0 j=1 ,2, • • •  ,TNS-1 
(2) 

There are many computer procedures available for solving this large set of 

simultaneous equations. (See section 5.) The expected efficiency E (A), is 

the sum of the �., j e: U, where U is the set of states that result in a 
J 

finished unit being produced by the line. 

3. Calculation of E(A) and V(A) 

As mentioned 

Let, 

( 4) V(A) =. EUV. 
Je: J 

where V. is the variance of the steady state transition probability of state 
J 

j. In order to develop expressions for the calculation of V. define the 
J 

following Markov chain variables. 

pij = element of the transition probability matrix P, 

= probability that the process will occupy state j at the next 

0. :-(n) lJ 

v ij ( n) 

transition given that it currently occupies state i. 

n�step transition probability from state i to state j, 

= probability that the process will occupy state j at time n 

given it occupied state i at time O. 

state occupancy random variable, 

= the number of times state j is entered through time n given 

that the system started in state i at time O. 

v
ij(n) = mean of the state occupancy random variable. 

vij(n) = variance of the state occupancy random variable. 

eij = first passage time random variable, 

• 

..) 
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the number of transitions to reach state j for the first time 

if the system was in state i at time 0. 

eij 
mean of the first passage time random variable. 

eij = variance of the first passage time random variable. 

fij(n) = the probability that 

The random variables 

e .. = n. lJ 

that are of interest to us are 

and lim vij(n) 
• The first expression represents the 

n 

probability that a· state j is  entered given that the process started in 

state i at time zero. The second expression represents the variability of 

the state occupancy random variable per transition. We will proceed to show 

that 

Um 1 
n-+m = 1T ·"' ;p--J �jj 

• 

This· equation shows that the probability of entering state j is independent 

of the starting state i. As well 

lim vij(n) e .. 
-l.J.... = v. n-+m n - 3 J e .. JJ 

Similarily the variance is also independent of the starting state i and so 

is denoted V . •  J 
From the definition of a Markov cha-in 

( 5 ) iD ( n ) "' Pn 

Let 

( 6) 
n iD(n) = P = iD + T(n) 

n = 0,1,2, • •• 

n = 0,1,2, • • • 

where iD is the limiting steady state transition probability matrix, with 

elements 0 . .  (oo), and T( n) is the matrix of transient lJ 

terms (which disappear when n is large) with elements t .. (n). (Notice that m lJ 
is a matrix where each row is the vector 1T.) 
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When working with Markov chain eq u ati ons it is of ten useful  t o  

transform the equ ations and solve the equations in the transformed domain. 

Taking the in verse of the transform solution gives the solution to the 

origin al problem. (The great advantage is that working in the transformed 

domain permits analysis of the Markov process before it reaches steady 

state.) For discrete time Markov chains, the geometric transform is used. 

That is, for a discrete function f(n) > 0 (n=0,1,2, • • •  ), f(n) = O (n < 0); 

the geometric transform fg(z) is defined 

(7) g "' n f ( z) = r 0f ( n) z • n= 

fg(z) exists i f  the series converges. (See Appendix 1, for a brief review 

of geometric transforms in Markov chains). 

Equation 6 in transformed form is 

or 

. '°�j(z) = 1'-z '°ij + 
t�j(z) 

• 

But 6 . . is the limiting steady state probability of state j, and so is lJ 
independent of the starting state i. That is 115 • •  = v., and so· lJ J 
(8) 

(9) 

or, 

( 10) 

(J� • ( z ) "" 1 
+ t g ( z ) lJ 1-z 1T j ij • 

Con�ider now vij(n). Clearly, 

v . .  (n) � f0·0 .. (m) lJ · m= lJ 
in transformed form 

- g 1 g v .. (z) .. -1 6 1. J. (z) . lJ -z 
It can be shown that the· second moment of the mean occupancy is (see pp. 

240-270 of the Howard [1971]), 

v�.(n) = 2:t!0 B: o . .  (m) lJ m= r=m lJ 

which simplifies to 

( 11) 2 vij (n) 2m;:::_
n
0 i> . . (m)v .. (n-m) - v . . (n) lJ JJ lJ 

n=O, 1 , 2, • • •  

n=O, 1 , 2, • • • 

•' 

'· 



In the transformed domain equation 11 becomes 

�g g - g - g v
1.J
.(z) = 2 o .. (z)v .. (z) - v . .  (z) lJ JJ lJ 

which simplifies to 

n=O, 1 , 2, . • •  

-g 
(12) v�j(z) = ;:z o�j(z) [2 16�j(z) - 1] . 

v .. (n) can be calculated by using the definition of a variance. That is lJ 
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where ;ij(n) is given by equ ation 9 and v�j(n) is given b� equation 11. 

(Alternatively equations 10 and 12 in the transformed domain could be used.) 

It turns out the equations for v . . (n) and v�.(n) have a number of terms lJ lJ 
w hich become insignificant for large n. Substituting equation 8 into 

equation 10 gives 

- g (14) v .. (z) = -1 l J  -z 

itij = 

<1�z rrj + t�j(z) 

t�.(z) 
+ lJ 

( 1-z }2 1-z 

For large n, the inverse of this transform equation is 

(15) v .. (n} = (n+l) ir. + t�.(1) • lJ J lJ 

2 We can calculate a similar expresssion for v ij (n) and then use equation 1 3 
-· ... 

to calculate vtj(n). The result would be 

where 

rr. [ir.+2t�.(1)-1]n + ir.2 + rr. [2t�.(1)-1] J J JJ J J JJ 

2ir.[t�:(l)+t��(l)] + t�.(1)[2t�.(1)-1-t�.(1)] for large n, J lJ JJ lJ JJ lj 

, dt�. (z) 

I t�.(1) � 
lJ 

lJ dz z�l 

Finally consider oij • Recall that 

(17) fij(n) = Prob (eij=n), 

and so 



( 18) · i6 • .  ( n) = o .. o ( n) + � 0f .. (m) i6 . •  ( n-m) lJ . lJ m= lJ JJ n= O, 1 , 2 • • • 

where oij 
= 1 if  i = j and zero otherwise; o (n) "' 1 i f  n 

otherwise. In transformed form equation 18 is 

or 

(20) rfj
< z) = [o�j

(z) - oij
] I rzS�j

(z). 

Substituting equation 8 into 20 gives 

1T j + ( 1 -z ) t � . ( z) lJ 

(21) f�j 
(z) 'Ii. + ( 1-z) t� . ( z) = J 1-z JJ 

1 -

1'} + ( 1 -z ) t � . ( z ) 
JJ 

ii'j 

i=j . 
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0 and zero 

Since f ij 
(n) is a probability distri bution function, f�j

(1 ) =1 from equation 

7, and the moments of e
ij 

can be obt ained by differentia ting rf
j

Cz) ,  and 

evaluating the results at z•1. In particular 

(22, o . . = f  .. (1) = 
,.. g' 

{ lJ lJ 
In a more compact form 

[t�j
(1) - t�/ 1) ] /'Tf

j 

1111j 

(23) eij
= [oij 

+ t�j
(1) - t�j

(1) ]/1Tj 
• 

i * j 

i "' j 0 

Similarly the second moment of the mean first passage time is 

which, after some simplication, is 

2 
2tJj(1) 

g' g' (25) eij 
= �ij

[ + 1] + 2[ t
j j

(1) - tij
(1) ] /1Tj · 

j 

Again, the variance of the first passa ge time random variable, is calculated 

from 

2 "' 0 -
ij 

using equations 23 and 25. If we are only interested in c alculating the 

recurrence time moments (that is i=j ) then equations 23 and 26 simplify to 

•' 



(27) e .. 
JJ 1T • 

J 
(28) e .. 1 [ 2t. �( 1) - 1 J = 

2 + 1T .  
JJ 1T • 

JJ J 
J 

Using equations 15 and 27 gives 

(29) lim 
v 

i
/ n) 

n-+m n 
,= 1f .  = ii .. J JJ 

while equation 16 gi.ves 

(30) lim 

or, after substituting equations 27 and 28; 

(31) lim 
n-+CD 

e . . 
= ...J.L 

- 3 aJJ 
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In Appendix 2 we show that the matrix Tg(l) wit h elements t1�(1) c an be 

calculated from 

where I is the identity matrix. 

4. Illustrative Examples 

Ex ample 1 Consider the two station-one buffer inventory transfer l.ine of 

Figure 2�. Suppose an appropriate model for this line is the following model 

from Buzacott [ 1
'
971]. 

Let ai be the probability that station i breaks down during a cycle and 

let b
i 

be t he p rob a bi li ty that a rep ai r  to a broken down station i s  

completed during a cycle. Suppose that a1 = a2 = 0 .20 and b1 b2 = 0 .30 ; 

and that the buffer inventory between the stations has a c a pa city of 3 

units. (T hat i s, S=3). Buza cott uses a Markov cha in formulation (see 

Figure 3) and derives the following closed form expression for the expected 

efficiency of a two station transfer line. 



' 
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(33) E(A) • f 1-tc
s 
�--�----�----- s 

+ X 1  - (1 + X 2 ) tC 

1+r - b2 (1+X) + s b2(1+x) 
..,.-�-.,.,...,,.._.----.,---.,....,---_,...�2 
(1+2X) (1+r- b2 (1+X ) ) +sb2(1+X) 

where 

c 
(a1+a2)(b1+b2) - a1b2(a1+a2+b1 + b2) 
(a1+az)(b1+b2) - a2b1Ca1+a2+b1+b2) 

and when t = 

10 

t/1 

t=1 

For this ex a mple C=1, t=l, x = 0. 6667, r=l and so equation 33 gives E(A) � 

0.50. 

The transition prob a bility matrix P for the Markov ·chain of Figure 3 

is 

0 .5 0 0 0 .3 0 0 0 0 0 0 0 . 2  0 0 
0 0 .5 0 0 0 . 3  0 0 0 0 0 0 0 . 2  0 
0 0 0 .5 0 0 0 .3 0 0 0 0 0 0 0 . 2  
0 0 0 .7 0 0 0 .3 0 a 0 0 a a 0 a 
.2 a 0 0 .6 a 0 0 .2 0 0 0 0 0 0 0 
0 .2 0 0 0 .6 0 0 0 .2 0 0 0 a 0 0 
0 0 . 2  a 0 0 .6 0 0 0 .2 0 0 a 0 0 

(34) P,. = 0 a 0 .2 0 0 0 . 6  0 0 0 .2 0 0 0 0 
0 0 0 0 .3 0 0 0 • 7 0 0 0 0 a 0 0 
0 a ·O 0 .3 0 0 0 . 5  0 0 0 .2 0 0 0 
0 0 0 0 0 . 3  0 0 0 .5 0 0 0 . 2  0 0 
a 0 0 0 0 0 . 3  0 0 0 .5 0 0 0 .2 0 
. 3  0 0 0 0 0 0 0 . 3  0 0 0 . 4 0 0 0 
0 . 3  0 0 0 0 0 0 0 . 3  0 0 0 . 4  0 0 
0 0 .3 0 0 0 0 0 0 0 . 3  0 0 0 . 4  0 
0 0 0 . 3  0 0 0 0 a a 0 .3 0 0 0 .4 

Using equation 2 gives 

(35) 1f = [0.033 0.033 0.033 0. 166 0.150 0.050 0.050 0. 150 

0.166 0.033 0. 033 0.033 0.011 0.022 0. 022 0.011] • 
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Define a vector consisting of the W diagonal elements of a W x W matrix A as 

AD. That is AD has elements a i i  i = 1 , 2, • • •  , W . T
g

(1) -i s c alculated from 

equation 32, from which 

(36) T� ( 1) = [0.7592 0. 7128 0. 7592 3. 6750 2. 6806 2. 2081 2. 2081 2. 6806 

3. 6750 0.7592 0.7128 0. 7592 1. 6049 1. 5740 1 . 5740 1. 6049]. 

-
Define 0

D 
as a vector with elements e .. . Using equation 27 gives ll 

(37) 0 .. [30.0 30. 0 30. 0 6. 0 6. 6 20. 0 20. 0 6. 6 6. 0 D 

30. 0 30. 0 30. 0 90. 0 45. 0 45. 0 90.0]. 

Similarly define 00 as a vector with elements 6 . . • Using equation 28 gives ll .. 
(38) 00 

= [496.5 413.1 496.5 234. 6 200.5 1386.5 1386�5 200. 5 234. 6 

496.5 413.1 496.5 17989. 4 4394.7 4394.7 17989.5]. 

Substituting equations 37 and 38 into 30 gives the variances of the steady 

state probabil�ties 

(39) VD 
= [0.01839 0. 01530 0. 01839 1. 08625 0. 67653 0. 17332 0. 17332 0. 67653 

1. 08625 0. 01839 0. 01530 0. 01839 0.02468 0.04823 0. 04823 0.02468] 

where v0 
i s-a vecto� with elements Vj. For thi s model the "productive" 

states are states 5,6, 7,8,10,11 and 12. From equations 35 and 39 

1T s = 0. 1500 Vs = o. 6765 

1T6.- =- 0 . 0500 Vs .. 0. 1733 

1T7 .. 0. 0500 V7 .. 0. 1733 

1T 8 = 0. 1500 Va .. o. 6765 

1T l 0 .. 0. 0333 v l 0 = 0 .0-184 

1T l l = 0. 0333 v l l .. 0.0153 

1T l 2 = 0. 0333 V12 .. 0. 0184 

Hence 

E(A) "" 1Ts + 1Ts + 1T7 + 1Ts + 1T10 + 1T11 + 1T12 a 0. 50 

(40) V(A) = 1. 7517 
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The expected efficie ncy, of course, agrees with our previous results. 

Suppose, for example, that the transfer line runs for 800 cycles during 

a p r od u c tion shift. On average 80 0E(A) = 400 of these cycles wi ll be 

productive and that on 800(1-E(A) ) = 400 cycles no uni ts will be produced. 

The variance of the expe cted production is 800V(A) = 1401. 4 and so the 

standard deviation is /1401. 4 3 7. 43. Inte resting ly, the central l i m i t  

theorem applies to this large sum o f  dependent trials. (See for example, p. 

275 of Howard [1971] or a copy of the proof.by A. A. Markov on pp. 552-576 of 

H oward [19 71]) . Consequently, the 95% confidence interval for the expected 

production during the shift is 

0. 50*800 :!: 1 . 96 /1. 7517*800 = (327', 473) units. 

This production range is very useful to a manager because i t  estimates how 

high and how low the actual production could be. The point estimate O. 50*800_ 

for the expected production on the shift does not give this information. 

To illus trate the f lexibility of this approach consider the following 

situation. Suppose the above m odel is appropriate for the tranafe r l in e  

except thae there i s  a constraint on repairman. I n  fact, if � stations 

are down then the probability of repairing a station changes from 0�30 to 

0 • 1 5 • That is 
.. 

(41) b1 � b2 = f 0. 15 states 13(DOO) , 14(01_0) , 15(020) , 16(030) 

0. 30 all other states 

The transition probability matrix is the same as before (equation 34) except 

that rows 13 to 16 are changed to 

(42) row 13 0. 15 0 0 0 0 0 0 0 0. 15 0 0 0 0.7 0 0 0 

row 14 0 0. 15 0 0 0 0 0 0 0 0. 15 0 0 0 0. 7 0 0 

row 15 0 0 0. 15 0 0 0 0 0 0 0 0. 15 0 0 0 0. 7 0 

row 16 0 0 0 0. 15 0 0 0 0 0 0 0 0. 15 0 0 0 0. 7 

{ 



1 3 

Again, using equations 2, 27, 28' 29 and 31, gives 

1T 5 0. 140625 Vs = 0. 65197 

1T 6 0. 046875 Vs = 0. 16342 

1T7 0. 046875 v, 0. 16342 

1T9 0. 140625 Va = o. 65197 

1T l 0 = 0. 031250 v l 0 = 0. 01675 

1T l l = 0. 031250 v l l .. 0. 01361 

1T l 2 = 0. 031250 V12 = 0. 01675 

From which 

E(A) = 0. 4688 and V(A) = 1. 6779 

The constraint on repairmen decreases the expected efficie ncy from 0. 50 to 

0. 4688. Suppose again that the line runs for 800 cycles during a production 

shift. The 95% confidence interval for the expected production is (303, 447) 

units. To justify additional repairmen, the expected additional cost must 

not exceed the profit associated wit h producing an additional 800 (0 . 50� 

0. 4688) = 25 units. · 

Unfortunately if slight adjustments, su c h  as this are made, the n  the 

closed form solution of equation 33 cannot be used. 

Example 2 In addition to the two station variables (up time and down t i me) 

c onsidered in example 1 � c onsider now a m odel ( by Gershwin and Berman 

[1981]) which adds a third variable - processing time . Using their notation 

define 

u. = mean uptime in cycles for station i, l 

D. = mean repair time in cycles for station i, l 
R. = mean processing time in cycles for station i' l 

T = E u1 + D .  l + R. for all stations. l 

and let 



One of their examples has 

Station, i 

0.0476 5 

2 2 6 

0 .  2381 3 

0 .2857 4 

r. l 

0. 1429 

0. 1905 

1 4 

with S=3. Gershwin and Berman assume that the limitin g steady s tate 

probabilities are of the form 

(43) ir(a1 , n,�2) = c Xn Y�1 Y:2 

where a.= 0 if station i is down, a.= 1 i f  station i is up and n=0, 1,  • • •  , s. l l 

An algorithm is given to calculate C, X9 Y1 and Y2 and he nce the limiting 

steady state probabilities. 

The Markov chain f o r  t hi s  exam p le i s  shown i n  Fi g u r e  4. The 

corresponding transition pr6bability matrix is 

. 5238 • 1429 0 0 .2857 0 0 0 0 0 0 0 .0476 0 0 0 
0 .5238 • 1429 0 0 .2857 0 0 0 0 0 0 0 .0476 0 0 
0 0 . 5238 • 1429 0 0 . 2857 0 0 0 0 0 0 0 . 0476 0 
0 0 0 .7143 0 0 0 • 2857 0 0 0 0 0 0 0 0 
.0952 0 0 0 • 7143 • 1429 0 0 .0476 0 0 0 0 0 0 0 
0 .0952 0 0 . 1905 . 5238 . 1429 0 0 .0476 0 0 0 0 0 
0 0 . 0952 0 0 . 1905 .5238 .1429 0 0 .0476 0 0 0 0 

(43) p = 0 0 0 . 0952 0 0 • 1905 . 6667 0 0 a .0476 a 0 a 0 
0 0 0 0 • 2381 0 0 0 .7619 a 0 0 0 0 0 0 
0 0 0 0 0 • 2381 0 0 . 1905 .4762 0 0 0 . 0952 0 E) 
0 a 0 0 0 0 • 2381 0 0 • 1905 • 4762 0 0 0 .0952 0 
0 0 0 0 0 0 0 • 2381 0 0 • 1905 • 4762 0 0 0 .0952 
. 2381 0 0 0 0 0 0 0 . 2857 0 0 0 .4762 0 0 0 
0 . 2381 0 0 0 0 0 0 0 . 2857 0 0 0 .4762 0 0 
0 0 • 2381 0 0 0 0 0 0 0 . 2857 0 0 0 .4762 0 
0 0 0 • 2381 0 0 0 0 0 0 0 . 2857 0 0 0 . 4762 

According to Gershwin and Berman the expected system efficiency is 

E (A) ""n�1[ir( 1 , n, 1 , )  + ir(O, n, 1)] 

or E(A) = 1Ts + 1T7 + 1Ta + 1T10 + 1T11 + 1T12 
Solving equations 2, 27, 28,29 and 31 gives 

1T5 = 0.1624 

0.1380 

0 
(} 

I 



Ill\ 



15 

ll'e = 0.  1260 VC-rr8) = 1.0527 

TI' l 0 = 0. 0279 VC-rr10) 0.0839 

1T 1 l = 0.0216 V( TI' 1 i) 0.0687 

11' l 2. .. 0.0127 V( 'If u) 0.0461 

and so 

(44) E(A) � 0.4886, and V(A) = 2.3063 • 

Notice that the expected efficiency for this model is s im ila r to t he 

expected efficiency for the model of example 1 (equation 40) . However, the 

variance is 32% higher in this model. This is because of the a dditional 

station variable. Adding variables to the model increases the variability. 

Suppose again that the line runs for 800 cycles during a shift. We 

expect to be in a productive state 48. 86% (equation 44) of the time. When in 

a productive state the a verag e  processing time is P 2 =4 cycles per unit. 

Hence the expected production rate E(Prod), is 

and 

E(Prod) = E(A)/P2 =-0. 1222 units/cycle. 

2 2 2 
V(Prod) � V(A)/P2 =·0 . 1441 units /cycle 

The 95% confidence interval for the expected production on the shift is 

0.,1222*800 .:!: 1.96 /0.1441*800 "' (77, 119) units. 

5. Computational Considerations 

Recall that Buzacott [1 97 1] was a b le t o  dev elop a c losed form 

expression for the expected efficiency E(A) of a two station - one buffer 

model. Unfortunately, it has not been possible to develop an accompanying 

closed form expressi on for the variance V(A). Neither has it been possible 

to develop closed form expressions for E(A) and V(A) for larg er transfer 

lines (more than two stations). Techniques such as Gershwin and Berman's 

, 1 
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[1981] have been used on two station - one buffer models. (The maxi mum 

b u f fe r  c a p a city c onsidered i s  s=20). A similar techni que is used by 

Gershwin and Schick [19 8 3] to c alculate E(A) for a three station - two 

buffer model. The largest problem they solve has s
1

=15 and s2=15. They 

report computation times of approximately 0.0007� s
1 

+ s
2

)3 cpu seconds on a 

Honeywell 6880 Multics system. 

In this paper, we chose to model the transfer line with a Markov chain, 

formulate the corresponding transition probability matrix and use equations 

2 and 3 to obtain E(A) and equations 30, 31 and 32 to obt ain V(A). These 

equations involve large matrices. A FORTRAN program was written to use these 

equations and, the IMSL [1982] su broutines LEQIF (to c alcul ate E(A)) and 

LINV1F (to c alculate V(A)), to analyze a number of two and three station 

transfer lines. 

Tab le 1 summarizes the ·computational requirements for some typical two 

and three station transfer lines.The storage requirements and computational 

times are very reasonable for two station transfer lines. For s=15, we 

require approximately 64 x 64 =- 4096 words of storage and 5 cpu seconds to 

c alcul a te E(A) and V(A) on a VAX 11-780 or 3. 56 cpu seconds on the faster 

CYBER 1 70-815 computer. For three-station transfer lines, a nd l a rg er 

transfer lines, the state space grows rapidly. One of our problems had s1 = 

7, s2 
= 7 and required approximately 512x5 l2 = 262, 144 words of storage and 

354 cpu seconds (5 min. 54 sec. ) to c alculate E(A). Gershwin and Schick 

[1983] estima te that their tec hni que w ould have required approximately 

0. 007(7+7)3 
� 19. 2 cpu seconds on a Honeywell 6880 Multics system. 



' 
Table 1 - Computational Results on VAX 11/780 

Type of Buffer Number of Order of CPU Seconds to Calculate * 
Transfer Capacity States Matrices 
Line (Equation 1 ) E(A) V(A) 

Two S=15 64 64 x 64 0.82 sec 4.25 sec 
Station (0 . 64 sec **) (2.92 sec **) 

Three s
1=4, s =4 200 200 x 200 16.63 sec 2 min 27 sec 

Station 
2 

(9�3 sec) ( 1 min 20 sec) 
Three S1a7, s

2=7 512 512 x 512 5 min 54 sec 52 min 43 sec 
Station 

Three s
1=8, s

2=8 648 648 x 648 14 min 16 sec �_,_._cocs.,...--

Station 
Three s

1=9, s
2=9 800 800 x 800 25 min 49 sec ..,.,,e>:2..,,.._,�.,.,,.._� 

Station 

* Using IMSL subroutines LEQIF for E(A) and LINV1F for V(A) 
** Times for E(A) and V(A) on a CYBER 170?815 computer 

( 
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We began by descri bing a deficiency in the transfer line models in the 

literature - namely that they do not accurately model the daily operation of 

t he transfer line. I f  both the expected value and the variance of the 

efficiency of the transfer line are calculated then a confid ence interval 

for t he expected production over a specified p lanning horizon (say a 

production shift) can be· calculated. Such a confidence interval allows the 

manager to plan for shirts where output exceeds the expected output and for 

shifts where output is less tha·n expected. It also gives him an indication 

of the probability that overtime will be required. 

E(A) and V(A) can be c al cul ated for m os t  of t he m ode l s  in t he 

literature (where lines are modelled as Markov chains). The calculations can 

be done using standard IMSL subroutines for almost all sizes of transfer 

lines considered in the literature - namely, all two station - one buffer 

transfer lines and all three station-two buffer lines where s
1 

+s 2 < 10. 

Clearly the most important extension to this research is to find a more 

efficient technique for calculating the variance V(A). Such a techni que 

might be similar to Gershwin and Berman's [1981] technique for calculating 

E(A). 
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Appendix 1 - Using the Geometric Transform with Markov Processes 

(Based on Huggins [ 1957] and Howard [ 1971] ) .  

Consider a simple Markov process with transition probability matrix 

(Al) P = r 0.8 

0.3 

0. 2] 
0.1 
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The corresponding transition diagram appears in Figure 5. A mathematician 

customarily descri bes the Markov process b y  writing down a di fference 

equation for each state, which indicates how the probability of being in a 

state at time n depends on the probabilities of being in adjacent states at 

time n-1. If p
1

(n-1) and p2Cn�1) are the probabilities of being in states 1 

and 2, respectivel y, at time n-1; then one transition step later, t he 

probabilities are 

(A2) p
1

(n) m o.8p
1(n-1) + o.3p2Cn-1) 

p2(n) "' 0.2p1 (n-1) + 0.7p2(n-1) 

This is a set of linear difference equations with constant coeff.icients. 

Notice that p1 (n) and p2(n) are linear combinations of themselves after a 

unit delay. Taking account of this we can redraw Fi gure 5 as the linear 

flow graph in Fi gure 6. This is written in the standard notation of flow 

graphs representing linear electrical systems. The signal at each mode i s  
,· 

the probability of f'inding the original process of Figure 5 in that state. 

The z operators on the branches together with the transition probability 

g ains indicate that the signal which passes down each branch is to be 

delayed by a unit time and mult iplied by a constant. We will find that 

w orking with linear flow graphs such the one in Fi gure 6 will provide 

insi ghts into the underl ying Markov process. For examp le, p
1 ( 3) t he 

p r o b a bility of bei n g  in state 1 after the third transition could be 

calculated from the linear flow graph of Figure 6 by calculating the signal 



o.i 

o.:, 

, 

0.2. z 

o.g t 

D. '3 z. 
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at node 1 corresponding to a delay of z 3
• This is done in Figur e 7 where, 

for the sake of convenience, we assume the process began in state 1. Under 

t hi s  a ssu m pt ion, p1(0 )=1. As w el l  p
1( 1 )=0. 8 ,  while p1(2)=0.7 and 

p2
(3)=0. 65. It appears that these probabilities are quickly converging t o  a 

steady state probability. It i s  a simple matter to calculate the steady 

state probabilities for this Markov process using traditional techniques. 

The great advantage of the flow graph technique is that it permits analysis 

of the Markov process before the process reaches steady state. 

Before continuing with flow graph techniques let us define � .. (n) as lJ 

the probability that the proces� will occupy state j at time n9 given that 

it occupied state i at time O. The quantity �ij(n) is called the n-step 

transition probability of the Markov process from state i to state j. Also 

d efine a>(n) as the n-step transition probability matrix with 'elements 

0 . .  (n). By definition, iD(O) .. I, t he identity ma trix. I f  P is t he lJ 
transi.tion probability matrix of the Markov process then 

iD(O)=I 

a>< 1 ) .. m < 1 ) p ... rp .. p 

iD(2 )=<li (2 )P·P2 

i!i(3J=<li(3)P::sP3 

and in general 

(A3) if>(n)=P
n 

n=O, 1 , 2 , 3 , • • •  

The behaviour of f21 • •  (n) for all values of i, j and n is the most important lJ 

derived characteristic of the Markov process. 

Consider a discrete function f(n)1 as shown in Figure 8. This function 

c a n  take on· any real value, positive or negative, at any non-negative 

integer n=0, 1,2, • • •  We shall find it convenient to defin e f(n)= O for n<O. 

The geometric transform is then defined by 

• 
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(A4) fg(z) = f(O) + f(1) z + f(2)z2 
+ • • •  = I f(n) z

n 
n=o 

if the series converges. We speak of the discrete function corresponding to 

a geometric transform as the in verse of the transform. The pr ocess of 

finding it is called transform inversion. If fg(z) is given in closed form. 

then we could expand it in a Taylor series about z=O and write the inverse 

discrete time f unction as the coefficients of the successive powers of z. 

In some cases we can actually carry out this procedure by d iv ision when 

fg(z) is expres�ed as the ratio of two polynomials in z. (This was done in 

Figure 7) . Alternatively we could differentiate equation A4. 

(AS) f(n) =  -f dn
hfg(z) ] I n. dz z=O 

Since the series expansion fg(z) is unique, so is the relationship between 

the d iscrete f unction and its geometric transfo
_
rm. (These transforms are 

related to Laplace. transforms. Tables of geometric tr an� forms are widely 

published. See ,  for exam ple, pp. 516·-520 of CRC Standard Mathematical 

Tables [1975] or pp. 43-81 of Howard [1981]) . 

Consider now, equation A3. 

n=O, 1 , 2, • • •  

Let us take the geome tric transform of this equation. 

(A6) �g(�) = E
a

Pnzn= I + pz + P2z2 
+ • • •  a [I-PzJ-1 

n= 

To calculate �g(z) we must calculate the inverse of the [I-Pz] matrix. To 

illustrate the technique let us consider again our simple Markov process. 

I-Pz= 

[� 
Th.e determinant of I-Pz is 

0. 2 J = [ 1 -o 0 8 z 

0.7 -0. 3z 

I I-Pz l a (1-0.8z) (1-0.7z) - (-0.2z) (-0.3z) 

= 1-1.5z+o.5z2 

( 1-z ) (  1-0. 5z) 

-0.2z 

1-0. 72 J 



Then 

g -1 1 [ 1 -o . 7 2 o . 2z J (A7) � (z)=[I-Pz] = (1-z)(1-0. 5z) 0.3z. 1-0. 8z 
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E quation A7 can be simplified using a partial fractional expansion. This 

gives 

(A8) �
g

(z) '"' l � z [ �:� 0 .4 J + 

0.4 
1 ro. 4 -0. 41 

(1-0. 5z) -o. 6 o. 6 

Taking the inverse transform of �g(z) gives 

(A 9) � ( n) .. [�: � 0. 41 + 
0.4 0_ 5n [ o. 4 -o. 4J -o. 6 o. 6 n=O, 1 , 2 • • •  

n From equation A9 we see that 0
11Cn)=0. 6 + 0. 5 (0.4). Then 0

11
(0 )=1, 

011<0=0.8, 012(2) .. 0.7, rtJ11(3)=0.65. etc. which agrees with our results from 

Figure 7. The limiting multistep transition probabilities are 

(A10) 

11'1 is the probability of be-ing_ in state 1 after an infinite num ber of 

transitions regardless of the initial starting state. Similarly 11'2 is the 

steady state probability of being in state 2 regardless of the initial 

starting state. We can summa rize the behaviour of � (n) for an N state 

monodesmic (that is, a single chain process - a process that can make a 

transition from any state to any other state) by the equation 

(A 11) n 
� (n) � p • $ + T(n) n==O, 1 , 2, • • •  

or in tr9nsformed form 

(A12) 

$(n), from equation A11 will consist of N terms. One will be a constant 

term � - the limiting multistep t ransition probability matri x for t he 

process. The other N-1 terms are com bin ed into a matrix T(n). They are 

transient terms, whose effect will disappear when n is large. 
--- -------------------- ·----- ·-----
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Appendix 2 Calculating the Transient Sum Matrix Tg
(z) 

Recall equation 6 

n t(n) = P = t + T(n) n ... a, 1 , 2, • • •  

where P "' transition probability matrix for the process, 

t � limiting steady stat& transition probability matrix with elements 

0
ij' 

T(n) 3 matrix of transient terms with elements t1j(n), 

t(n) "' n-step transition probability matrix with elements to 0
ij 

(n). 

Rewriting equation 6 gives 

n T(n) :s P -t 

The geometric- transform- of T(n) is (from equation 7) 

Tg(z) .. r 0 T(n)zn 
n= 

However 

and so 

Hence 

r (Pn-cp )zn = n=O 

= I - t + £1 (Pn-t)zn 
n= 

n ..- 1 , 2, • • •  

"' n n =I� t +� .. 1(P.-t) z 

= �mO(P-t)nzn - t 

= [I - zp + z t J �1- t 
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