
.. -- -�

Innis
am
HO

... ; 45 ' '

.W657
no.63

...

· .. �
-,_,

:-,. :

INNOVATIOl\T RESEARCH CENTRE

. i
'

DATA WEBS: AN EVALUATION OF AN

INNOVATIVE INFORMATION MANAGEMENT

TOOL THAT INTEGRATES DATABASES

WITH THE WORLD WIDE WEB

by

R.Bassett, N.P. Archer and W.G. Truscott

Innovation Research Working Group

WORKING PAPER NO. 63

April, 1997

lfJMCMASTER •·UNIVERSITY•
MICHAEL G. neGROOTE

SCHOOL OF BUSINESS

NON-C�.ilCUL.&i.'flNG

DATA WEBS: AN EVALUATION OF AN

INNOVATIVE INFORMATION MANAGEMENT

TOOL THAT INTEGRATES DATABASES

WITH THE WORLD WIDE WEB

by

R.Bassett, N.P. Archer and W.G. Truscott

Innovation Research Working Group

WORKING PAPER NO. 63

April, 1 997

The Working Paper series is intended as a means whereby a researcher may communicate his or her

thoughts and findings to interested readers for their comments. The paper should be considered
preliminary in nature and may require substantial revision. Accordingly, this Working Paper should

not be quoted nor the data referred to without the written consent of the author. Your comments and

suggestions are welcome and should be directed to the author.

Data Webs:
An Evaluation of an Innovative Information Management Tool

That Integrates Databases With the World Wide Web 1

By

R. Bassett, N.P. Archer, and W.G. Truscott

Michael G. DeGroote School of Business
McMaster University

Hamilton, Ontario
Canada L8S 4M4

1 This work was supported through a grant from the Innovation Research Centre, Michael G. DeGroote
School of Business, McMaster University.

Data Webs:
An Evaluation of an Innovative Information Management Tool

That Integrates Databases With the World Wide Web

R. Bassett, N.P. Archer, and W.G. Truscott

Michael G. DeGroote School of Business
McMaster University

Abstract

The World Wide Web (Web) has attracted significant amounts of interest from both

researchers and business people. Until very recently, nearly al l of the pages on the Web were

made up of static text and data. Tools and methods have recently been developed which permit

the development of applications for use over the Web. The key element to these systems is the

ability to access and manipulate data from databases directly from Web interfaces. This paper

addresses many of the issues involved with Web/database integration (resulting in systems called

datawebs) . In particular, traditional client/server models and systems are compared to the Web as

an application development environment. It is shown that the datawebs are superior to traditional

client/server systems in many regards. Nevertheless, the Web sti l l has some problems associated

with it such as concerns with data security and integrity, and this paper discusses a number of

these shortcomings. This paper also introduces a sample dataweb which was developed to allow

querying and maintenance of an on-line bibliography.

Table of Contents

1 . Introduction

2. The Client/Server Model

2 .1 History

2.2 Client/Server Models

2.3 Advantages and Disadvantages of Client/Server
Computing

3. World Wide Web Computing

2

2

4

9

3 . 1 History 1 2

3.2 Intranets 14

3 .3 Advantages of Web Computing Over Client/Server 1 5

3.4 Problems With Web Computing 1 5

3.5 Models for Web Security 1 8

4. Integrating the Web and the Client/Server Model

4. 1 Overview 20

4.2 Thin Client Model for Datawebs 24

5. Accessing Different Types of Databases Over the Web 26

6. Key Features Required for Datawebs 29

7. On-line Entrepreneurship Bibliography: 30
An Applied Dataweb Example

8. Summary 34

9. References 36

Page 1

1. Introduction

The rapid arrival of the World Wide Web (Web) as a business tool and general resource

has captured the computing industry by storm. The Web has drawn the attention of many groups

of people. The business world has been trying to figure out how to make money from the Web by

offering improved or new services over the Web or by selling products on-line. Academic

researchers and the system development community have been trying to address pertinent issues

such as user interface problems, ever increasing bandwidth demands, and optimal data retrieval

schemes. To this end, the technology and the tools necessary to develop Web applications have

been developing rapidly over the past couple of years. A major area of application development

is how to link existing and new databases to the Web - resulting in systems called datawebs.

Many of these dataweb systems are based on existing client/server knowledge, but they are

superior to client/server applications in many ways. Comparisons between client/server models

and the Web as an application environment will be discussed in this paper. This paper will also

address some of the key issues currently being dealt with in these areas of dataweb development.

These include the advantages and drawbacks of using the Web, what kind of data and database

structures can be accessed over the Web, and some key points to consider to help ensure success

in dataweb development. Finally, a sample application wil l be used to illustrate some of the

features of datawebs.

2. The Client/Server Model

2.1 History

The basic concept of client/server technology is simple [20] . The client/server computing

model divides the support activities among computers within a companywide or department­

level system. The division of labour is apportioned between servers and clients. Servers are

Page2

typically high-powered computers which often store shared company data. Server functions

commonly involve database and administrative application functions such as security and query

processing. In contrast, the clients typically contain user-oriented functions such as query entry

and data display to the user [20] .

On Line Transaction Processing (OLTP) is the automation of high-volume, repetitive

business processes with clearly definable transaction steps or procedures. Examples include

order processing and invoicing. Evolution of various technologies to support OLTP systems has

continued for many years. Beginning in the late 1 960' s, the traditional computing model began

to appear [24] . Prior to this development, batch processing was prevalent, with data commonly

entered from computer punch cards. At the heart of this traditional computing model is a

powerful host computer which has a number of "dumb" terminals attached to it. These terminals

resembled the PC's of today, but they had very little computing power. Another distinction

between these dumb terminals and today's PC's is that the dumb terminals were character-based;

graphics were not displayed. These early terminals relied on programs that were stored and ran

on the host. In the early 1 970's, host computers were largely mainframe computers.

Mainframes still play a significant role in systems used today by banks, airlines,

telephone companies, etc. The U.S. Department of Defense has about 1 2,000 mainframes in use,

at an average age of 15 years. [24]. The major advantages of mainframe or host-based computing

are reliability and security. The major pitfalls are the high operating costs and the length of time

required to develop applications.

In the mid 1 970's, minicomputers became more popular. These were powerful hosts

using the centralized computer model, but had some distinct advantages over mainframes. They

were much cheaper than mainframes, allowing organizations the opportunity to purchase more of

them and designate specific functions to them. For instance, each department of a large

organization could have a designated minicomputer for its computing needs. The big

Page 3

disadvantage with minicomputers was that many of them used proprietary operating systems. For

instance, IBM made the AS/400 which used IBM's own OS/400 as an operating system. This

made it difficult to transfer application programs from one vendor's computer to another

vendor's system.

The increase in the number of minicomputers as well as the introduction of desktop

personal computers (PC's) brought on an entirely unforeseen problem. PC's were used not only

for desktop computing, but in terminal emulation mode. PC's were recognized as having

processing power which was lacking in the dumb terminals of the 1970's. The client/server

model was born out of the notion of splitting the processing functions between both the client

(the PC) and the server (the centralized system) . Client/server systems were developed to

overcome some of the drawbacks experienced with mainframe applications. Applications could

be developed and deployed more quickly with client/server systems than on mainframes.

Graphical displays could be used instead of text displays. Managing growth was easier on a

client/server system. There are more standards in place with client/server systems which gave

developers more choice with respect to platforms and relational database management systems

(RDBMS) . Since processing power is split between the client and the server, there is generally

less drain on the server but, on the other hand, there is an increase in network traffic which

presents another array of problems. Owing to the demands on servers, they can be either

mainframes or high-powered workstations.

2.2 Client/Server Models

Today there are primarily four client/server application models being used to develop

applications [18] . The four competing paradigms are structured query l anguage (SQL) databases,

transaction processing (TP) monitors, groupware, and distributed databases.

Page 4

The most prevalent of the four client/server models are the SQL databases (Figure 1) .

Initially, SQL started as a language to manipulate data stored i n relational databases. Clients

would make data requests from the server by using SQL statements or queries. As the

client/server environments became more demanding, it was apparent that simply manipulating

data was not enough. It was also necessary to manage the functions that manipulated the data.

Stored procedures were designed to group and compile collections of SQL statements. This is

just one example of the number of advances with SQL over the years. Although SQL is fami liar

to a number of programmers and is fairly easy to work with, SQL standards seem to lag behind

commercial implementations by about five years [18].

SQL

Results

Client Server

Figure 1 . SQL Client/Server Model

Nearly every mission-critical application in the mainframe world comes with a

transaction processing (TP) monitor (figure 2) . TP monitors are important infrastructure

elements in systems that help to ensure that the system delivers reliable and secure operations,

and rapid response times [12] . TP monitors provide an extra layer between the server and the

client to manage the application processes. TP monitors break complex applications into pieces

of code called transactions. An example would be an airline reservation system written for the

Internet. A large mainframe reservation system (an example of a legacy system) would already

exist to handle the actual reservation, but database applications to capture customer profiles

Page 5

would have to be developed. TP monitors could be used to l ink the new web database to the

existing legacy systems. The existing legacy system would be encapsulated as a set of TP

services or functions: get flight schedule, get seat availability, book seat, etc. Thus, customers

could update their profile and sti l l access reservation information. Transaction models define

when a transaction starts, when it ends, where the processing is handled and what happens when

there is a system failure. TP monitors are not dominant in the current client/server applications,

but they may become more prevalent as the need to manage the programs themselves becomes

increasingly important.

Client

TP Monitor as middle layer between clients and servers to manage the
application process .

... ,

---..;i)li� Transaction
Process
Monitor

/I
E)I I
�I

Apps I�
Apps I E)Ii

Apps 1/

Figure 2. Transaction Process Monitor Client/Server Model

Server

The third client/server model is groupware, which contains the necessary technologies to

support col laborative work. These technologies are multimedia document management, work

flow, e-mail , conferencing and scheduling. As shown in Figure 3, these technologies can run on

the client and/or the server. Groupware helps users share and collect unstructured data such as

documents and spreadsheets. The key player in the groupware market is Lotus with its Lotus

Notes. One of the major reasons for the success of Notes is its ability to manage document

databases in a client/server fashion.

Page 6

.- - 0 - - �o - - - - - - - - _ L _

Gcoup
�"� '.�''.';'"'-

o� �l:•_nt ��d/o,,ecvec
�

: &" , ; i - - -�:�i; - - -1 -

L
- - - ------- - - - - -- ----------- - �

I � ¥:- -:�
I

; !!� ' E > �=��f:: : =�.:::: I � Ii�
-

���;
:

,

i Ld Documents

: �}> / � J Confecencing J � '--�����.

1.. ;.J

L.1

Clients Server

Figure 3. Groupware Client/Server Model

The last client/server model to consider is distributed-object technology. This approach

is more flexible than the other client/server approaches because it encapsulates data and business

logic into smaller objects. These objects can be designed to act as agents, they can run on

different platforms, and they can manage themselves and the resources they run. The key result

is that this approach can break very large programs into more manageable components. These

components can be distributed to the client and/or the server. As will be discussed shortly, this is

very important for developing Web-based database applications. A significant advantage of this

approach over the other client/server models is that standards are already in place. In other

words, the standards preceded the widespread implementation of these types of systems, which is

quite the opposite of the situation with SQL based systems.

Page 7

c Distributed module activity on client and/or server �
: -

.

-. -_-_-_ -_ -_ -_ -_ -_ -_-_ -_ -_-_-_-_-_-_-_-_ -_ -_-_-_-_-_ -_-_-_-_-_ �
- -�- - - -

,
. . . .

Application '.
Modules

, . Modules
tp<..!....�'

i����!iL��-? Modules

Modules

Modules

Client
' '
"" -·- · · - - - - - - - - - J

Figure 4. Distributed Objects Client/Server Model

Server

In addition to being classified into the four different models above, client/server systems

can be described as being two-tiered or three-tiered. Two-tiered systems involve the presentation

and data layers only (Figure 5) . The SQL is either hidden beneath the graphical user interface

(GUI) or is executed as stored procedures in the DBMS. Most of the PC-based 4GL tools, such

as Visual Basic and PowerBuilder, create applications based on a two-tiered architecture [10].

These tools attempt to isolate non-technical users from the complexities of SQL coding. This

model may be acceptable with fairly simple systems with relatively small databases being stored

and accessed (less than a gigabyte) , but for larger systems with complex analytic requirements

this model may not be adequate. The reason is that SQL is not a very robust programming

language. It is especially weak in doing data comparisons [10] . This is where a three-tiered

architecture comes in. This approach strictly enforces a logical separation of the GUI, the

business logic, and the data (Figure 6) . Generally, this approach allows for more complex

analysis because the system is l imited neither by SQL nor by the underlying DBMS. In addition,

Page 8

the three-tiered systems are more able to scale upward to larger databases then the two-tiered

systems.

Presentation
and Logic

�" �-�1

/����'lf\�'02
Presentation

SQL

Results

Figure 5. Two-tiered Client/Server System

Queries
Input

Processed
Results

Middleware

Business Logic

SQL

Results

Figure 6. Three-tiered Client/Server Model

Data and
Logic

2.3 Advantages and Disadvantages of Client/Server Computing

Data

There are a number of compell ing forces which have attracted organizations to the

client/server model [19] . A major motivation is the desire for end users to obtain fast access to

both internal and external databases. Internal databases generally refer to databases maintained

Page 9

within an organizations, whereas an external database would not be. To use a human resource

department as an example, a database holding information on current employees would be an

internal database. On the other hand, an on-line database of potential employees maintained by

an employment agency but which can be accessed through the Internet would be an example of

an external database. Well developed systems offer the user transparent access to the various

databases necessary for the particular application. Another motivation is increased management

control . The introduction of PC's into organizations brought with it a number of management

problems such as a l ack of control over development, data integrity, and the acquisition of

incompatible software and hardware. The client/server model centralized control of data and

application development. Other reasons for the attraction towards client/server computing

include the sharing of hardware and software resources, faster development, and reduced

application development backlog. Of particular interest is that the development backlog may not

have been decreased at all, for there may actually be an increase in the number of applications

demanded. This has been offset to some extent by the fact that many modern application

packages are purchased and not developed locally.

These advantages of client/server over mainframe systems (otherwise known as legacy

systems) are significantly offset by a number of drawbacks. Software distribution is a major

concern. If a system consists of 1 ,000+ clients and an upgrade is required to the client side, the

task could be very draining on time and resources. Another concern is version control . In this

1 ,000+ client system, monitoring which versions of different software that exists on the various

clients can be a difficult task. Server scalability is also a concern with client/server systems. The

servers can commonly deal with a large number of users, but there stil l exists a threshold.

Servers can only maintain a limited number of concurrent users because of l imitations on

memory, CPU power, etc.

Page 10

Another large concern is the distribution of processing power. The splitting of

processing functionality between the server and the client is largely an art. The proper balance of

load between the server and the client can determine the success or failure of a system. This

debate brings in the discussion of fat server vs. fat client. "Fat client" refers to a system which

has a bulk of the processing apportioned to the clients. Conversely, "fat server" refers to a

system in which much of the application processing is done at the server. Benefits of a fat server

include a decreased load on the network because there is less data being passed back and forth

for processing, but fat server systems require more memory and other resources on the server

than do fat client applications. As a result, given the limitation on memory and the number of

concurrent users, fat server systems do not scale as well as fat client systems. A simple fat client

system may only require two percent of a database server's capacity per client, whereas a similar

system using a fat server approach may require up to five percent of the server's capacity per

client [13] .

Other drawbacks of the client/server model include the costs of retraining IS personnel

needed to support the system. The costs of retraining one information systems employee could

reach $15 ,000 [19] . A further barrier to client/server implementation is the MIS culture itself.

Staff trained in legacy system development with mainframes may be resistant to changing to a

client/server environment. This resistance is likely to vary with the length of time that a staff

member has been using existing tools, as well as with the technology gap between legacy and

cl ient/server applications. Personnel that are trained in the use of LAN's and PC's are l ikely

more able to make the transition to the client/server way of thinking. Stil l further barriers to the

adoption of client/server systems include data security threats, system complexity, and the

seemingly exaggerated promises of lower costs.

The future of client/server computing seems to rest on the ability to develop standards to

help systems to communicate better. This is what is referred to as open systems: systems that

Page 11

work similarly with the same look and feel regardless of the operating system or underlying

database management system. If these problems can be solved, global schemas that provide

access to widely distributed, heterogeneous data in an efficient, effortless mariner can develop.

As will be discussed shortly, the dramatically increased use of Web technology may already be

outpacing the traditional client/server models in developing such global schemas.

3. World Wide Web Computing

3.1 History

Many system development platforms and approaches have existed for a long time. The

list includes mainframes, which have already been discussed, and relational database systems. In

1 993, the World Wide Web became accessible commercially and since then the Web has

attracted much attention as an application environment. By mid-1995, the Web became the

dominant Internet resource as measured by both packet count and volume [1], surpassing File

Transfer Protocol (FI'P) , Gopher, and Telnet.

A key factor in the rapid success of the Web is the standardization of communications

between Web servers and Web clients [8]. On the client side, this communication is handled by

software called browsers. Presently, the most commonly used browser is Netscape Navigator.

The three main standards governing the communications between Web clients and Web servers

are URI (Universal Resource Identifiers), HTTP (HyperText Transfer Protocol) and HTML

(HyperText Markup Language) . Together these standards help to support uniform Web

development; one person's code is readable and easily understood by other developers. More

important is the fact that Web programming is independent of which operating system will run

the resulting system. This platform independence is even further supported by the development

of Java, a platform-independent, object-oriented language which is used to develop Web

Page 12

applications. HTML is very good for developing the user-interface for a Web application, but i t

is limited when i t comes to complex functions such as dynamic form creation, database access,

and conducting real-time calculations. Java and its related language Javascript can be used

within HTML coding to improve the functionality of a website. (A website refers to a collection

of web pages and all related content for a particular organization or company.) An example of

extended functionality on a website would be a web page on-line calculator. Simple HTML

creates a static page that cannot deliver results based on inputs to a form. With some Javascript

code, a page can be designed which performs desired numerical calculations in real-time.

The use of the Internet continues to grow very rapidly. A recent report in Data

Communications [21] pointed out that global spending on networking products and services

topped $100 billion in 1 996, a 21 % increase from 1 995. The Internet application market grew by

45% in 1996. Revenue from Internet services such as providers and carriers is expected to leap

by 67% in 1997. This article reported that of the more than 1 00 marj<.et researchers, analysts, and

vendors interviewed, nearly everyone cited interest in the Internet and Intranets as the reason for

the huge increase in network expenditures and traffic. Intranets are closed network systems that

are internal to an organization and use Web technology. Users also use Web access software to

access Intranets. It seems very apparent from these figures that the interest in the Web is by no

means a passing fad.

Another trend in Web-based applications is the trend towards making Web servers more

easily set up on desktop workstations. There has been some notion that Web servers may become

utilities that are distributed as components of operating systems - perhaps in future versions of

MS Windows. Web server software essentially handles the HTTP requests sent from browsers

operating on client systems. Typical web server software runs in the background on a server and

"waits" for HTTP requests. Therefore, the software must be running at all times in order to

effectively respond to requests. Just as calculators, scheduling systems, and word processors

Page 13

have become utilities that are distributed with many operating systems, web server software may

also become distributed uti lities. A popular example of a web server is Microsoft's Internet

Information Server (IIS). According to the IIS website [29], this server permits easy access to a

number of different databases, provides security and supports existing Internet standards. IIS

only runs on the. Windows NT operating system. O'Reilly is the distributor of a commercial ly

available Web server called WebSite, which runs on both Windows 95 and Windows NT [30].

One of O'Reil ly's main goals is to have a Web server on every desktop. Although this objective

may be somewhat unrealistic, it does reflect the trend of Web servers becoming less draining on

computing resources, more easily configured and set up, and more widely available across

operating systems. If this trend prevails, the market for networking devices wil l start to switch

from traditional network operating systems to those that utilize TCP/IP (Transmission Control

Protocol/Internet Protocol), which is the protocol used for Internet communications. TCP/IP is a

packet-oriented family of network and application protocols which is the industry standard for

Internet communications and enables Web protocols such as HTTP, HTML and URI. In order to

faci litate this communication, a computer browser must be running a TCP/IP stack. TCP/IP stack

software is distributed freely with many operating systems such as Windows 95.

3.2 Intranets

The ease of use and setup of web servers has precipitated the onset of a new model of

application development called Intranets. Intranets are closed networks within an organization

which use web technologies. Each client station has browser software such as Netscape

Navigator or Microsoft Explorer and the network applications have the same look and feel as do

applications found on the Internet. The key distinction is that the Intranet system is not readily

accessible to individuals outside of the organization. It is in this environment that the traditional

network operating systems such as Novell NetWare will no longer be required, for it will be

Page 14

replaced by the use of TCP/IP stacks and the use of Internet standards. Since this model is

platform independent, the workstations can be any type of system (PC's, Macintosh's, etc.)

running any one of a number of operating systems including Windows or UNiX.

3.3 Advantages of Web Computing Over Client/Server

There are some significant advantages to using the Web over client/server as an

application environment [25]. The first is the ease of administration and deployment. Web

application programs and files are typically stored upon the server and passed to the client

browser only when requested. Thus, maintaining and updating a system normally involves

updating the files stored on the server only, which is significantly easier than having to update

files and programs stored on the client side as well . Speed of development is also another

advantage with Web-based development. Modifications to HTML coding are significantly easier

than with most other programming languages, which makes it much easier to use feedback to

improve the application. Even if the application is in general use, the changes are easy to make.

In applications that involve transaction processing, the updates are stil l significantly easier than

under the client/server model, mainly because of the highly centralized nature of the system.

Careful planning must still be done to ensure data and transactional integrity is maintained when

the changes are implemented.

3.4 Problems With Web Computing

There are some disadvantages with using the Web as well. One is that portions of a form

cannot be updated or activated based on inputs from other parts of a form. For example, using

regular HTML it is not possible to update a customer invoice table by simply entering a

customer number into a field on the form. This is an easy task for most database management

Page 15

systems such as Oracle and Paradox. This Web problem can be overcome by using Java or

Javascript applications, but it also increases the complexity of the development.

A major concern with the Web is that it is a stateless environment, which means that

every communication between a browser and a Web server is made with no memory of previous

communications. Under this "amnesiac model", as a browser retrieves pages for the user

working through a multi-page website, every new page essentially greets this "new" browser.

This model is sufficient for most pages that exist on the Web because the vast majority of sites

consist of static pages. For robust database applications, this lack of memory can be troublesome.

An on-line retail site could not function under this model. Maintaining a memory of who is on­

l ine helps a retail site to track accumulated purchases, maintain a check against a credit l imit, and

conduct a number of other basic, yet critical, functions.

Netscape is advocating a standard known as "cookies" to overcome this statelessness

[1 7] . Cookies act to move the state information from the server to the browser. Cookies are

name/value pairings of variables which are stored on the client's hard drive and tracked by the

server. A server, when returning an HTTP object (e.g. HTML document) to a client, may also

send a cookie which the cl ient will store. Included with the cookie is a listing of URLs for which

that cookie is valid. Any future HTTP requests made by the client to servers included in the URL

listing will include a transmittal of the current value of the cookie from the client back to the

server. In other words, cookies are passed back from the browser to the server whenever the user

submits a form, query, or some other server-generated request form and the server's URL is

included in the URL listing associated with that cookie. Once the server has received the cookie,

it can consult a database containing cookie values to get information on the particular browser.

The only drawback to this approach is that it identifies a browsing client as opposed to an

individual. Presumably, other security measures such as passwords can identify an individual to

help avoid fraud or unauthorized access.

Page 16

Other challenges to the Web model include the unpredictability and integrity of

transactions. Since it is difficult to manage the user base, it is important to design steps into the

transaction process which minimize problems with incorrect or fraudulent transactions. The

technical problem here is that the tools for maintaining data and transaction integrity are not

mature. Minimal levels of transactional "protection" are currently available, but these dataweb

tools will have to mature further to overcome this problem.

Yet another concern about Web application development is the lack of standards to allow

integration of systems. This should really be of no surprise since this area is so young. There are

two levels of concern: management of the network and management of the application software.

Network management systems have been developed that monitor networks. For instance, many

network operating systems use SNMP (Simple Network Management Protocol) for such

monitoring. Software agents facilitate communication between the management station, which

acts as the network central control, and the network elements. Development tools are now being

prepared to bridge Web servers and browsers to these SNMP monitors [1 1]. In fact, Microsoft's

Internet Information Server includes SNMP to monitor network performance. In this case the

server includes the management station and the network elements include the client browsers.

The area of managing application software is a little more complex. Many authors are

recognizing that a standard application Management Information Base (MIB) will be required to

guide the monitoring and analyzing of software applications [22]. A MIB contains information

on the application to help analyze performance, inter-application relationships, and basic

definition variables that identify key characteristics of the application. These MIB 's could help

with the development of dataweb applications. Since these applications may be accessed across a

very dispersed network, monitoring performance and other aspects of these applications could be

a difficult yet necessary endeavor.

Page 17

3.5 Models for Web Security

A further concern with the Web model to be considered here is security. In order to

conceptualize the security problem, two different models of database security design will be

discussed. The first i s the Woods Hole architecture [4]. This conceptual model is depicted in

Figure 7. (To clarify these diagrams, "untrusted" refers to the lack of database security measures

built in to that level . If a front end or a DBMS is labeled "trusted", that node in the model is

entrusted with "guarding" the database against threats.)

User

Untrusted
front end

User

Untrusted
front end

Trusted front-end
(reference monitor)

Untrusted
DBMS

Database

Figure 7. Woods Hole Architecture. From [4]

Under the Woods Hole architecture, the DBMS is untrusted and a trusted front-end lies

between the untrusted user and the DBMS. If such an approach were to be utilized in a Web

system, there would have to be sophisticated software on the Web server to act as the trusted

front end. The problem with this approach is that the tools available at the Web server level are

not sophisticated enough at the present time. Tool developers are stil l trying to develop ways to

Page 18

manage browser statelessness, as previously discussed. Setting up a trusted front-end is

significantly more sophisticated than simply managing statelessness. Therefore, this model

would not be appropriate for current Web applications. Commercial DBMSs that use variations

of this model for their security model include Oracle.

A more appropriate security conceptual model for Web applications is Trusted Subject

Architecture [4] . This model is shown in Figure 8. Under this scheme, the need for the trusted

User

Untrusted
front end

Trusted
DBMS

Trusted
OS

Database

User

Untrusted
front end

Figure 8. Trusted Subject Architecture. From [4]

front-end intermediary is eliminated because the database and the underlying OS are trusted.

With this approach, the DBMS itself monitors the security threats and acts accordingly. This

model is more appropriate for the Web. Since there is not enough sophistication at the Web

server level to monitor security, it is clear that this function must rest with the DBMS. Most

Page 19

DBMS' s are suited for guarding against security threats. An example of a commercially

available DBMS which uses this scheme is Sybase.

These various chal lenges demonstrate the need for careful planning with respect to Web

s i te or application development. Even though the various programming tools such as HTML,

Java, and Common Gateway Interface (CGI) are not too difficult to learn, knowledge of the tools

does not ensure a successful website. (CGI is a programming standard which makes it possible

for a browser user to initiate and pass information to server-based programs.) A wide v ariety of

technical and business issues need to be addressed in order to overcome some of the potential

pitfalls with dataweb development.

Although there is recognized need for standards to help guide the development of Web

applications, many vendors are releasing dataweb tools for creating such applications. Thus,

robust Web applications are starting to appear and the core technology behind these

developments is the database/Web integration. The rest of this paper will focus on issues which

pertain specifically to"Lhis integration.

4. Integrating the Web and the Client/Server Model

4.1 Overview

As mentioned in the introduction, dataweb is a term used to describe systems which

integrate the Web with databases. Datawebs have just started to be developed over the past few

years. Although the history of these systems only spans a short period of time, there have been

considerable advances. Figure 9 reflects this brief history.

Page 20

Database
Updates

Database
Query

Static Text and
Graphics

1993

Internet

m't1I Database enabled
II Corporate firewall

1995

Intranet

Figure 9. History of Data Webs. Taken from [23]

The Web as a commercial tool appeared in 1993, with static web text and graphics. The

technology has improved since then and Web sites are appearing which allow database updates

and querying. Generally there are two approaches for updating and querying databases through

the Web [8] . The first approach involved using CGI to access databases directly (figure 1 0) . CGI

permits the dynamic generation of HTML code. This is significant because it allows Web pages

to be generated which are based on query results. The short-coming of this method of database

access is that CGI code has to be reprogrammed and recompiled every time a new database

access method is required. Furthermore, the CGI code is very specific to the table and access

method being addressed.

Page 21

Web Server

I\

"

Customized CGI
Application

'�

•It
RBDMS

I\

II
- ---
....... _,,,.

Database

....___ __,

Figure 1 0. CGI Direct Access to Database (Taken from [8])

The second approach for updating and querying databases over the Web involves using

middleware between the server and the underlying database. This model is shown in figure 1 1 .

The advantage of this method is that much of the CGI programming i s embedded i n available

functions in the middleware. The disadvantage is the increased overhead of having a software

layer situated between the Web server and the database.

Figure 1 1 also shows the common means by which middleware accesses data from the

underlying database. The middleware could be tightly l inked to a particular DBMS, such as

Oracle, and may access it directly. More commonly, data is accessed by using ODBC (open

database connectivity) drivers. ODBC was initially designed by Microsoft to present a common

access method for all database and database-related products. The advantage of such drivers is

that a system can be set up with an ODBC interface, and everything that supports ODBC will

work with it. Virtually all current database products have ODBC drivers. The problem with

ODBC is that it addresses data access only from databases. In August 1996, Microsoft released

Page 22

version 1 .0 of OLE DB, which specifies a standard method of accessing data from any "data

provider", such as an e-mail package, a word processor, or a database. [3]

Web Server

II\

\I

Middleware
,_

(Commercial tools) ,� �
,, ODBC
I/ Drivers

RBDMS - '[' -

�

\�
,.... ---....
...__ _.,

Database

...___ _.,

Figure 1 1 . Web Database Access Using Middleware (Taken from [8])

An example of a commercially available middleware package is Cold Fusion from

Allaire [27] . The syntax used is called CFML (Cold Fusion Markup Language) and has the same

tagged text format as used with HTML. (The syntax was called DBML, database markup

language, in versions of Cold Fusion prior to version 2.0) Thus, it is easily adopted by

experienced HTML programmers. The key to its functionality is its use of templates, which

consist of combined HTML and CFML code. Variables are used in the templates which handle

data that is returned by the database query. The result is a valid HTML document that is

dynamically generated based upon the data returned from the database. Like Web server

software, Cold Fusion must be executing at all times on the server in order to be used. As

mentioned above, this results in increased overhead on the server.

Page 23

Since 1995 there has been an increasing interest in Intranets. Companies are beginning to

see significant advantages with setting up internal systems using Web technology. One of the

key advances which make Intranets attractive is the development of dataweb integration tools,

such as the aforementioned Cold Fusion. There are a number of other similar tools such as

InterBui lder by Borland [28] . These tools are based on the middleware model discussed earlier

and shown in Figure 1 1 .

These dataweb tools are very important because they help to develop applications which

bring together the client/server model with the Web application environment. This i ntegration

enhances some of the advantages of each of these two models previously discussed [7]. First, i t

is a quick development scheme. Since the code is largely HTML, the ease of coding with such a

straightforward language is maintained. Also, the deployment costs are significantly lower and

the deployment is almost instantaneous. These advantages are due to the highly centralized

nature of Web development; all of the code is stored and maintained at the server.

4.2 Thin Client Model for Datawebs

Integrated Web/database systems provide a natural three-tier architecture which

introduces a foundation for scalability [16]. The three tiers are the server, the client and the

middleware. This facilitates easy addition of cl ients, since clients only need browser software

and the necessary security information (such as passwords) to enter the system.

Many of the current middleware packages come with ODBC drivers to access a large

number of different database types. For instance, Cold Fusion comes with drivers to access

Sybase, Oracle, MS Access, Paradox, and dBase database files. Hence, none of the underlying

data models need to be changed in order to allow integration with the Web. Therefore,

operational data stored in existing databases need not be changed and the systems skil ls of the IT

staff can sti ll be utilized, making the transition to datawebs easier for existing staff. Typically,

Page 24

the middleware software is more tightly associated with the server; therefore, it is common to

have the middleware run on the server.

The aforementioned problem of increased overhead on the server becomes even more

prevalent when discussing the Web as an application platform. Increasing the load on the

network by developing fat server systems is more pronounced on the Web, especially during

peak times of Web usage. On the other hand, fat client systems, as they are traditionally thought

of in the client/server model, may not be very practical because it may be difficult to identify

who all the clients are going to be. Since the Web is an open system, users could use browsers

from any client to access a Web application. If the application is open to the entire Web such as

the case with an on-line retail operation, it is not possible to identify all clients. Therefore, much

of the system processing has to be done on the server.

The Web client/server model will only resemble existing client server/models in that the

processing power of an application will be distributed between the server and the client. The

method of this distribution will vary significantly. Since the users may not even be known in

advance i t may not be possible to distribute the client side software before the user uses the

system. This can be overcome in two ways: one is to explicitly instruct the client to download

certain software before using the system; the other is to send packets of processing code to the

cl ient as needed. The first method has the advantage of using network bandwidth only once to

download software which is then stored on the client. This approach results in a system that is

more akin to the client/server model whereby only data and requests for data are passed back and

forth between the client and the server. The second approach has broader appeal for the Web,

because it eliminates any setup time or effort from the client. The user may not even be aware of

whether the client or the server is supporting the processing load. The difference between this

approach and earlier client/server systems is that data and associated functions (called methods

in object-oriented programming) are being passed to the client, not just data. In the client/server

Page 25

model the client already has the necessary coded functions to process the data. Thus, only data

needs to be passed to the client. With datawebs, all of the code resides on the server. Therefore,

if the client is to do any processing, it must be supplied the necessary code from the server. Thus,

there will more bandwidth required with the second form of the dataweb model. Even with this

drawback, this Web client/server model is more appealing than the traditional client/server

model because it more automatically deals with previous client/server problems such as version

control and software distribution. In addition, programming tools such as Java already exist to

facil itate the distribution of segments or granules of code.

An excellent example of a successful dataweb project involves Fruit of the Loom [2].

Fruit of the Loom wanted to increase distributor loyalty to increase its sales, so it decided to

launch a Web-based system for order placement and procurement. In order to make the system

appealing to its distributors, Fruit of the Loom offered to host its distributors' websites and

produce electronic catalogs for these distributors to facilitate order placement. The first

distributor to go on-line with the system reached 200 orders per day within a month, with a cost

savings of at least $10 per order by eliminating the need for phone-in order staff. This first

distributor was up and running within 90 days of the project startup.

5. Accessing Different Types of Databases Over the Web

The first wave of website development involved the construction of fixed files with

static text and graphics. Even today, the large majority of websites have this fixed file

construction. Although this approach is fine for displaying pre-determined data/text in fixed

formats, it only fosters very l imited interaction between the client and the server. Not until

data webs started to appear did applications encourage or require interactivity. The rest of this

Page 26

section will briefly discuss three database models and how they fit into the dataweb model. The

three are relational, object-oriented and multidimensional models.

The relational model is the basis for most of the dataweb tools available today, since the

majority of business applications in use today are based on the relational model and extensions

of these applications are natural. Also, many of the applications on the Web are on-line

transaction processing (OLTP) systems which primarily use relational database management

systems (RDBMSs).

Object databases (ODB's) and relational databases (RDB's) are complementary

technologies. ROB' s are good choices for systems that support applications with fairly simple

data, simple data relationships and static data schema. On the other hand, for systems with

complex data and evolving data schema, ODB's are a better choice. ODB's are useful for both

content management and providing an infrastructure to increase the value of the Web itself [15] .

With respect to content management, objects such as Java applets, complex graphical and spatial

layouts or time-series data are much more easily stored and manipulated in ODB's than in

RDB's. Also, an object database can act as an intermediary to cache data from a relational

database and store the data to allow faster access to pertinent data for a client. The key to this l ast

step is that ODB's can store any analyses of this cached data persistently, whereas information

cached by Java is not persistent, regardless of where the data is retrieved. With respect to adding

to the infrastructure of the Web or at least a particular website, ODB 's could be used to store

frequently accessed information, thereby eliminating the need to seek out that information every

time it is requested. This information could be variable in context, which could be handled

naturally by a ODB. Regardless of the uses for object databases, it is obvious these types of

databases can be util ized to improve the functionality of datawebs.

The final database type to consider is the multidimensional model. This model emerged

from the need to analyze data from a number of different viewpoints or dimensions. For instance,

Page 27

if a manager is reviewing a summary of sales data, the manager might want to see a breakdown

of the data from a number of different views: by date, by product l ine, by different locations,

and/or by salesperson. A properly flexible decision support system will not confine the manager

to a predefined pattern of analysis. A decision support system (DSS) is a system that allows

analysis and v iews of data to help managers make decisions. An important element in a DSS is a

l ibrary of functions and models available to the analyst. Since the user guides the decision

process and the system is just a support aid, the system should be very flexible to allow the user

a sufficient array of choices to analyze the data. That is, the system should allow managers

access to whichever dimension(s) they want to analyze and in whatever order chosen. These

types of systems are commonly referred to as On Line Analytic Processing (OLAP) systems. In

general , the relational model is not well suited for OLAP [6]. First, RDBs do not consolidate data

well across a number of different dimensions. Second, in order to convert a normalized relational

database to one which can be analyzed more readily, a large number of denormalized, redundant

tables have to generated from existing data. This can cause a significant drain on system

resources. In order to avoid these pitfalls, OLAP servers tend to use multidimensional databases

to store data and relationships between data. The structure and schema of multidimensional

databases are significantly more complex than relational systems, but the data structures allow

easier analysis of the data along any dimension or field.

A modification of the multidimensional approach is to employ a RDBMS using a

multidimensional database design - a Relational Dimensional Model (RDM) [9]. Information

Advantage Inc. is a company that develops and markets DecisionSuite, a DSS software toolset

which uses a RDM approach. An extension to DecisionSuite called WebOLAP permits OLAP

analysis of structures data over the Web.

As mentioned earlier, most dataweb systems on the Web are OLTP. As the need for data

analysis increases, more decision support systems will be implemented using Web technologies,

Page 28

likely within Intranets. At that time, there will be a heightened need to set up OLAP systems

over the Web. The largest problem with setting up multidimensional databases on the web is how

to present data in various dimensions over the Web. Arbor Corp., designer and distributor of

Essbase, a multidimensional decision support aid, has recently announced a Web-based version

of Essbase [26] . The results of browser requests arecreturned as l inked Web pages. The problem

with this approach is that there could be significant time l ags between browser requests. This is

especially true with multidimensional systems because the server really has no basis for

estimating what the user is going to request next.

As can be seen from discussion, all types of database models will l ikely be used in

robust dataweb applications. What is important is recognizing which one is appropriate under

any given s i tuation.

6. Key Features Required for Datawebs

As discussed in [14] , there are 6 key business rules which dictate changes to both the

server and the cl ient components of an application.

1 . Few users make use of all functionality of an application and at any one time even

sophisticated users will only use a small portion of an application. Therefore,

functionali ty should be delivered in granules. This parallels the distributed objects

client/server model in which large programs are broken down into more manageable

components.

2. Application delivery should be adaptable to the different ways users could access the

system: different Internet browsers, for instance. Adherence to standards such as HTTP,

URI, and HTML is crucial.

3 . Data security should be very sophisticated so that access to sensitive information can be

restricted.

Page 29

4. Sophisticated workflow management is required because business processes can be very

complex, involving a number of human and system participants. This problem is similar

to that encountered on traditional client/server systems.

5. Business data must be delivered automatically, securely and rapidly.

6. The Web interface should reflect the fact that business is task-driven and not concerned

with programs or files. In other words, the interface should not include references to file

names or programming logic. It should only depict the necessary business processes. For

example, an on-line retail system should only guide the user through the necessary tasks

involved with making a purchase.

These points offer guiding principles upon which datawebs could be built. A seventh

point which was not included in the above list from [14] is that these systems are event-driven

and not calendar-driven. For example, instead of delivering hard copies of corporate policies to

all departments once a year (calendar-driven), everyone will have access to these changes as they

occur if these policies are on the Web (event-driven) .

7. Onmline Entrepreneurship Bibliography: An Applied Dataweb Example

A bibliography of reference material that is relevant for entrepreneurship in Canada has

been developed and maintained by the Innovation Research Centre (IRC) , located in McMaster's

business faculty. In effort to make this bibliography more broadly available, it was decided to

place it on the Web. This section discusses this dataweb.

The first step was to decide which dataweb model would be most appropriate. It was

decided to follow the middleware model with Allaire 's Cold Fusion as the middleware tool and

Borland's Paradox as the DBMS (Figure 1 2) .

Page 3 0

Web Server

'�

•II
Cold Fusion

, ,

I I
Paradox ODBC

Drivers
'�

•II
,..- -
I'-- --

Paradox Tables

Figure 1 2. Paradox/Cold Fusion Model Chosen for Project

This combination of model and tool was chosen for a number of reasons. First, the data was

initial ly stored in a format which was easily exported into Paradox tables. Second, upon review

of a number of different dataweb development tools, Cold Fusion was chosen because of its

apparent ease of use and powerful versatility. As already described, Cold Fusion uses a mark-up

language similar to HTML which makes it easier to learn as compared to other choices such as

CGI scripting. Cold Fusion is shipped with many ODBC drivers for access to a wide number of

DBMS' s: Oracle, Sybase, Acces.s, dBase and Paradox to name a few. Also, by choosing a

middleware approach, database storage, user interface, and the underlying processing logic were

all handled separately. This made the system much easier to design and construct.

The resulting system consists of two modules. The first module permits users to query

the bibliography and enter new items to the system. These steps are all done on-line. The sub-

Page 3 1

module that allows users to enter new items presented a peculiar problem. When a user actually

enters an item. the item is stored in a temporary table for the project manager to edit before it is

entered into the main table. Since most users likely will be infrequent contributors to the

database, the question arose as to how much on-line help to assist the user in entering data as

correctly as possible (so as to minimize further editing). If little guidance were supplied, the

project manager would have to spend a lot of time editing, which was undesirable. If too much

help were offered, the Web interface could quickly become full of help information which could

confuse or insult a user. A balance was struck between these two extremes, but further use of the

system will dictate whether or not modifications should be made. The second part of this module

is the querying tool. This module demonstrates the ease with which Cold Fusion can be used to

develop dri l l-down data inquiry applications. Users are first shown a summary of items which

match their query. The user then has the choice of clicking a button to obtain more detailed

information on any of the items.

A further strength of Cold Fusion was demonstrated in the construction of the query

system. It was decided to leave the underlying Paradox table unnormalized. Some of the input

items on the Web interface include check-boxes which could have any number of the choices

selected. For instance, the "Subject" field has 16 selections from which to choose. The user could

select any number of them, from none to 16. If the user selects any of the choices before

submitting the form, a variable called "Subjects" is passed to Cold Fusion. The value of this

variable is a text string consisting of all subjects selected delimited with commas. For ease of

data manipulation, it was decided to store this "Subjects" variable in one field in the table. This

results in a table that is not normalized. Using carefully constructed combinations of available

commands, Cold Fusion was easily able to handle data manipulation of this unnormalized table.

The second module of this bibliographic system is the data maintenance module. In this

module, the project manager can edit or delete items from both the temporary and permanent

Page 32

tables, add items to the temporary table, and move items from the temporary to the permanent

table. Thus, all necessary data maintenance functions are available to the manager through the

Web. The reason why this approach was chosen was to allow the manager to edit items from

anywhere with a Web browser. This obviously brought up a security issue. It was decided to use

"cookies" along with a password system to make the system secure. The password screen is the

first page that a user sees upon entering this module. Once the user enters the password and user

ID, the system verifies the information. If the password information is incorrect, the user is

returned to the password input screen. If the information is correct, the user is permitted entry

into the system. Also, the server returns a Cookie to the client browser that the system uses in the

background to make sure the user is valid. This validity check is done every time a new page is

requested by the browser. This helps to ensure that an intruder cannot simply by-pass the

password screen if they know the URLs of the site.

Since this project was undertaken in a university, it was logical to turn this tool into a

teaching aid also. In order to allow students to browse the maintenance module to get a better

idea of the capabilities of Cold Fusion, using "Guest" as both the user ID and password allows

people to enter the module. The users can then see everything that the project manager sees and

can also complete data forms. The key difference is that any changes that are attempted are

rejected and a friendly note comes up telling the user what changes would have been made if

they were not simply guests. The security of this system demonstrated the abil ity of Cold Fusion

.

to use cookies to overcome HTTP statelessness and maintain information on the users.

Cold Fusion is a powerful yet straightforward tool to use for dataweb development. It is

a middleware tool that is positioned between the Web interface and the underlying DBMS. This

on-line bibliographic system is a good demonstration of the capabilities of Cold Fusion in a

dataweb application.

Page 33

To access the on-line bibliography system:

Query/Input Module: http://irc.mcmaster.ca/annbib/mainbib.htm

Maintenance Module: http://irc.mcmaster.ca/annbib/fixbib.htm

Use "Guest" (without quotes) as both the user ID and password.

8. Summary

Database and Web integration are the driving force behind the new dynamic datawebs.

Both legacy databases and newly developed systems can be integrated easily into datawebs.

There is a significant savings in development time with these systems as compared to traditional

client/server systems, but there are a few drawbacks which require more research. Some of these

include how to automatically provide data, how to minimize bandwidth requirements, how to

best present results of complex queries, and how to improve data integrity and security. These

datawebs may be new, but they represent the future in application development. The next wave

of website development will be full blown applications buil t from the ground up. The success of

these systems will depend entirely on the lessons being learned today.

Future research ideas include how to best present data to the user. For instance [5]

discusses visual interaction with database queries. These systems utilize visual query languages

(VQLs) which present the user with more intuitive querying devices such as sliders and toggles.

Using 2D and 3D graphs to represent the database, users can click on a plotted point or cube to

browse the database. This is j ust one possibility for portraying both unstructured and structured

data to a user. The focus of future research here includes determining effective visualizations of

multimedia information.

Researchers could also investigate the relative effectiveness of the various data models

in datawebs. This is especially important for web OLAP systems. Are multidimensional

Page 34

databases appropriate or are relational OLAP systems adequate? Under what circumstances are

the various models more appropriate? Whal features of the underlying systems make one data

model more appropriate than others? Other research ideas could involve the security issues

surrounding dataweb integration. This is still a fairly new application area, but the high degree of

interest it has already attracted will stimulate additional research.

Page 35

9. References

1 . Berghel, H., "The client's side of the world wide web", Communications of the ACM,
vol . 39, no. 1 , January 1 996, pp 30-40.

2. Black, B., "Database and the web: giant steps", Database Programming and Design,
vol . 10 , no. 1 , January 1997, pp 34-41 .

3 . Campbell , R. "OLE DB - moving ODBC into the future", Databased Advisor, vol. 1 5,
no. 1 , January 1 997, pp. 36-37.

4. Castano, S. , Fugini , M., Martella, G., and Samarati, P., Database Security,
Wokingham: Addison-Wesley, 1995.

5. Catarci, T., "Interaction with databases", IEEE Computer Graphics and Applications,
vol. 1 6, no. 2, March 1 996, pp 67-69.

6. Finkelstein, R., "Understanding the need for on-line analytic servers",
<http://www.arborsoft.com/essbase/wht_ppr/finkTOC.html> December 10, 1 996.

7 . Furey, T . , "The web changes the client/server game",
<http://www.csc.ibm.com/advisor/library /2c4a _ 135a.html> Feb. 6, 1 997.

8. Hadjiefthymiades, S. and Martakos, D., "A generic framework for the deployment of
structured databases on the world wide web", Computer Networks and ISDN Systems,
vol. 28, iss. , 1 996, 1 -2, pp. 1 139-1 1 48.

9. Information Advantage, "OLAP - scaling to the masses", Report ordered through the
Web received through mail directly from company.<http://www.infoadvan.com>
January 24, 1 997.

10 . Information Advantage, "The impact of decision support system architecture'', Report
ordered through the Web received through mail directly from company.
<http://www.infoadvan.com> January 24, 1 997.

1 1 . J ander, M., "Welcome to the revolution",
<http://www.data.com/roundups/monitor.html> December 2, 1996.

1 2. Lazur, B. "Transaction processing monitors meet the intranet", ZD Internet. vol. 2, iss.
3, March 1 997, pp. 99- 1 04.

1 3 . Linthicum, D., "C/S collapse", <http://www.dbmsmag.com/9612d07.html> December
2, 1996.

1 4. McKie, S., "Internet-DBMS strategies", <http:// www.dbmsmag.com/961 0d13.html>,
October 1 6, 1996.

Page 36

1 5 . Mellman, J . , "Object databases on the web",
<http://www.webtechniques.com/features/sep96/mellman.shtm> October 23, 1 996.

16 . Mixnet, "Delivering internet/intranet applications in web days instead of man years",
<http://www.mixnet.com/database.htm>, November 7, 1996.

1 7. Online Development, "Database integration and the world wide web",
<http://www.ondev.com/spmi/database.html>, June 1, 1 996.

1 8 . Orfali, R. , Harkey, D. , and Edwards, J. "Intergalactic cl ient/server computing", Byte,
vol 20. Apri l 1995. pp. 108-1 10, 1 1 4, 1 1 6, 1 20, 122.

1 9 . Schultheis, R. and Bock, D . , "Benefits and barriers to client/server computing", IS.
Management, vol . 45, Feb 1994, pp. 12- 1 5, 39-41 .

20. Simon, A. , Strategic Database Technology: Management for the Year 2000, San
Francisco: Morgan Kaufman (1995) .

2 1 . Staff of Data Communications, "The 1997 data comm market forecast",
<http://www.dtat.com/roundups/forecast97 .html> December 3, 1 996.

22. Sturm, R. and Weinstock, J. , "Application MIBs: taming the software beast",
<http://www.data.corn/Tutorials/ Application_ MIBs.html> November28, 1 996.

23. Thomson, D., "Corporate developer: web-footed applications", Database Programming
and Design, (August 1 996) , pp. 63-67.

24. Watterson, K. Client Server Technology for Managers, Reading: Addison-Wesley
(1995) .

25. Whetzel . J . . "Integrating the world wide web and database technology", AT&T
Technical Journal, vol. 75, iss. 2, pp. 38-46.

26. <http://webgate.arborsoft.com/tbc/home.htm>

27. <http://www.al laire.com>

28. <http://www.borland.com>

29. <http://www.microsoft.com/i is/>

30. <http://ora .com/catalog/webpro/>

Page 37

INNOVATION RESEARCH WORKING GROUP
WORKING PAPER SERIES

1 . R.G. Cooper and E.J. Kleinschmidt, "How the New Product Impacts on Success and Failure
in the Chemical Industry", February, 1 992.

2. R.G. Cooper and E.J. Kleinschmidt, "Major New Products: What Distinguishes the Winners

in the Chemical Industry", February, 1 992.

3 . J. Miltenburg, "On the Equivalence of JIT and MRP as Technologies for Reducing Wastes
in Manufacturing, March, 1 992.

4. J.B. Kim, I . Krinsky and J. Lee, "Valuation of Initial Public Offerings: Evidence from
Korea", February, 1 992.

5 . M . Basadur and S. Robinson, "The New Creative Thinking Skills Needed for Total Quality
Management to Become Fact, Not Just Philosophy", April, 1 992.

6. S. Edgett and S. Parkinson, "The Development of New Services Distinguishing Between
Success and Failure" , April, 1 992.

7 . A.R. Montazemi and K.M. Gupta, "Planning and Development of Information Systems
Towards Strategic Advantage of a Firm", April, 1 992.

8. A.R. Montazemi, "Reducing the Complexity of MIS Innovation Through Hypermedia and
Expert Systems", May, 1 992.

9 . M. Basadur and Bruce Paton, "Creativity Boosts Profits in Recessionary Times - Broadening

the Playing Field", June, 1 992.

1 0. Robert G. Cooper and Elko Kleinschmidt, " Stage-Gate Systems for. Product Innovation:

Rationale and Results", June, 1 992.

1 1 . S.A.W. Drew, "The Strategic Management of lnnovation in the Financial Services Industry:
An Empirical Study", July, 1 992.

12. M. Shehata and M.E. Ibrahim, "The Impact of Tax Policies on Firms' R & D Spending
Behavior: The Case of R & D Tax Credit", July, 1 992.

1 3 . Willi H . Wiesner, "Development Interview Technology: Implications for Innovative
Organizations", July, 1 992.

14 . Isik U. Zeytinoglu, "Technological Innovation and the Creation of a New Type of
Employment: Telework", August, 1 992.

1 5 . John W . Medcof, "An Integrated Model for Teaching the Management of Innovation in the
Introduction to Organizational Behaviour Course", October, 1 992.

1 6. Min Basadur, "The Why-What's Stopping Analysis: A New Methodology for Formulating
Ill-Structured Problems", October, 1 992.

1 7. Stephen A.W. Drew, " Strategy, Innovation and Organizational Learning an Integrative

Framework, Case Histories and Directions for Research", November, 1 992.

1 8 . Stephen A.W. Drew, "Innovation and Strategy in Financial Services", November, 1 992.

1 9. Scott Edgett, "New Product Development Practices for Retail Financial Services",
November, 1 992.

20. Robert G. Cooper and Elko J. Kleinschmidt, "New Product Winners and Losers: The
Relative Importance of Success Factors - Perception vs. Reality", November, 1 992.

2 1 . Robert G. Cooper and Elko J. Kleinschmidt, " A New Product Success Factors Model: An
Empirical Validation", November, 1 992.

22. Robert G. Cooper & Elko J. Kleinschmidt, " Stage Gate Systems: A Game Plan for New
Product Success", November, 1 992.

23 . Min Basadur, "Optimal Ideation-Evaluation Ratios", March, 1 993 .

24. Christopher K. Bart, "Gagging on Chaos", March, 1 993.

25. Yufei Yuan, "The Role of lnformation Technology in Business Innovation", July, 1 993 .

26. Isik Urla Zeytinoglu, "Innovation in Employment: A Telework Experiment in Ontario",

July, 1 993.

27. John Miltenburg and David Sparling, "Managing and Reducing Total Cycle Time: Models
and Analysis", August, 1 993.

28. R.G. Cooper, C.J. Easingwood, S . Edgett, E.J. Kleinschmidt and C. Storey, "What
Distinguishes the Top Performers in Financial Services", September, 1 993 . .

29. B.E. Lynn, "Innovation and Accounting Research", September, 1 993.

30. Min Basadur and Peter Hausdorf, "Measuring Additional Divergent Thinking Attitudes

Related to Creative Problem Solving and Innovation Management", November, 1 993 .

3 1 . R.G. Cooper and E.J. Kleinschmidt, "Determinants of Time Efficiency in Product
Development", December, 1 993.

32. Christopher K. Bart, "Back to the Future: Timeless Lessons for Organizational Success",
February, 1 994.

3 3 . Ken R. Deal and Scott J. Edgett, "Determining Success Criteria for New Financial Products;
A Comparative Analysis of CART, Logit and Discriminant Analysis", February, 1 995.

34. Christopher K. Bart and Mark C. Baetz, "Does Mission Matter?", February, 1 995.

35 . Christopher K. Bart, "Controlling New Products: A Contingency Approach", February,
1 995.

36. Christopher K. Bart, "Is Fortune Magazine Right? An Investigation into the Application
of Deutschman's 1 6 High-Tech Management Practices", February, 1 995.

37. Christopher K. Bart, "The Impact of Mission on Firm Innovativeness", February, 1 995.

38 . John W. Medcof, "Transnational Technology Networks" , April, 1 995.

39. R.G. Cooper and E.J. Kleinschmidt, "Benchmarking the Critical Success Factors of Firms'
New Product Development Programs", April, 1 995.

40. John W. Medcof, "Trends in Selected High Technology Industries", July, 1 995.

4 1 . Robert C . Cooper & E.J. Kleinschmidt, "Benchmarking Firms' New Product Performance

& Practices" , September, 1 995.

42. Min Basadur and Darryl Kirkland, "Training Effects on the Divergent Thinking Attitudes
of South American Managers", November, 1 995.

43. Min Basadur, " Organizational Development Interventions for Enhancing Creativity in the

Workplace", November, 1 995.

44. Min Basadur, "Training Managerial Evaluative and Ideational Skills in Creative Problem
Solving: A Causal Model", December, 1 995.

45. Min Basadur, Pam Pringle and Simon Taggar, "Improving the Reliability of Three New

Scales Which Measure Three New Divergent Thinking Attitudes Related to Organizational

Creativity", December, 1995.

46. N. P. Archer and F. Ghasemzadeh, "Project Portfolio Selection Techniques: A Review and
a Suggested Integrated Approach'', February, 1 996.

47. Elko J. Kleinschmidt, "Successful new product development in Australia: An empirical
analysis", February, 1 996.

48. Christopher K. Bart, "Industrial Firms & the Power of Mission," April, 1 996.

49. N. P. Archer and F. Ghasemzadeh, "Project Portfolio Selection Management through
Decision Support: A System Prototype," April, 1 996.

50. John W. Medcof, "Challenges in Collaboration Management in Overseas Technology Units,"
April, 1 996.

5 1 . Susan L . Kichuk and Willi H. Wiesner, "Personality and Team Performance: Implications
for Selecting Successful Product Design Teams," May, 1 996.

52. Susan L. Kichuk and Willi H. Wiesner, "Selection Measures for a Team Environment: The
Relationships among the Wonderlic Personnel Test, The Neo-FFI, and the Teamwork KSA
Test, " May, 1 996.

5 3 . Susan L . Kichuk and Willi H . Wiesner, "Personality, Performance, Satisfaction, and Potential

Longevity in Product Design Teams," June, 1 996.

54. John W. Medcof, "Leaming, Positioning and Alliance Partner Selection," June, 1 996.

55 . Scott J . Edgett, "The New Product Development Process for Commercial Financial
Services," July, 1 996.

56. Christopher K. Bart, "Sex Lies & Mission Statements," September, 1 996.

57. Stuart Mestelman and Mohamed Shehata, "The Impact of Research and Development
Subsidies on the Employment of Research and Development Inputs," November, 1 966.

58. Mark C. Baetz and Christopher K. Bart, "Developing Mission Statements Which Work,"
November, 1 996.

59. Fereidoun Ghasemzadeh, Norm Archer and Paul Iyogun, "A Zero-One Model for Project
Portfolio Selection and Scheduling," December, 1 996.

60. R. G. Cooper, S . J. Edgett, E. J. Kleinschmidt, "Portfolio Management in New Product
Development: Lessons from Leading Firms," February 1 997.

6 1 . R. G . Cooper, S . J. Edgett, E. J. Kleinschmidt, "Portfolio Management in New Product
Development: Lessons from Leading Firms -- Part II," February 1 997.

62. C. K. Bart, "A Comparison of Mission Statements & Their Rationales in Innovative and
Non-Innovative Firms," February 1 997.

innova/papers.irc

_J \I\� \ �
RE F
H .D
Y 6

I w b S�1
f\O • b �

	1329178
	1329178_back

