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Abstract

With geographic information systems (GIS) software having become readily acces-
sible, a natural interest arises in modeling spatial-referenced data. Spatial survival
analysis is one of the common approaches to account for spatial dependence in the
data, and it refers to the modelling and analysis of location-referenced time-to-event
data. One of the popular methods for conducting survival analysis for lifetime data is
to use cure rate models, which have been studied extensively assuming a competing
risks scenario. In this work, we adopt the competing risks scenario for modelling
lifetimes by assuming the number of competing causes related to the occurrence of
an event to follow a discrete power series (PS) distribution as proposed in Noack
(1950). The PS cure rate model is extremely flexible and can be transformed into
many well-known cure models through choices of its power parameter and series func-
tion. In this thesis, we restrict our attention to the three scenarios, called the first
activation scheme, the random activation scheme, and the last activation scheme.
Under the first activation scheme, we focus on competing causes following Poisson,
geometric, and logarithmic distributions, and the corresponding cure rate models are
the promotion time cure rate model, geometric cure rate model, and logarithmic cure
rate model. For the last activation scheme, the three distributions for the competing

causes are also the same. But, the corresponding cure models are the complementary

v



promotion time cure rate model, the complementary geometric cure rate model, and
complementary logarithmic cure rate model. The random activation is defined when
competing risk follows a Bernoulli distribution and forms a Bernoulli cure rate model.

The spatial effect model is constructed through a Gaussian process, also known
as a Gaussian random field (Li and Ryan (2002); Wilson and Wakefield (2020)). The
spatial effect is then added to cure rate models as spatial frailties to reveal the effect
of geographical location on survival time for susceptible individuals within the region.

In addition, we propose the baseline to follow the generalized extreme value (GEV)
distribution (Coles (2001) and Kotz et al. (2001)). By doing so, we empower the model
with a more flexible baseline hazard function that combines a family of continuous
distributions into one. By adjusting the scale and shape parameters, GEV includes
to the Gumbel (Type I), Fréchet (Type II), and Weibull (Type III) distributions as
spacial cases. Widely used hazard distribution like Weibull assumes the distribution
to be monotone, while in fact the hazard function can have a bell shape, U-shape, or
combine both of them. The GEV distribution accommodates tail behaviour and is
more inclusive for modelling survival data (Li et al. (2016)). Additionally, the GEV
simplifies the implementation by allowing the data to determine the most suitable type
of tail behaviour through inference on this shape parameter. It is not required to have
prior knowledge of which extreme value family is appropriate to adopt. While the
GEV distribution has gained popularity in various disciplines, its application under
the survival model set up and in survival analysis is relatively unexplored.

Despite the fact that Bayesian inference and the EM algorithm have been carried
out for conducting survival analysis in various papers, the inference of the spatial

survival model based on Stochastic EM has not been studied much. In this work,



the required methodology pipelines are developed for applying the Stochastic EM
algorithm (Celeux and Diebolt (1985)) to find the optimal estimates of parameters for
the proposed models. In many cases, the stochastic step (S-step) of the stochastic EM
is preferred to the expectation step (E-step) of the EM algorithm due to the fact that
the S-step is based on a single draw from the conditional distribution, and it avoids
the necessity of computing the conditional expectations involved in the EM algorithm.
Unlike the Monte Carlo EM algorithm and Newton-Raphson method, SEM is of a
stochastic nature and is free of the saddle point problem. Besides, it is insensitive
to the starting values and performs well for small and moderate sample sizes, which
are quite common in clinical data. In the following Chapters, the improvements in
the robustness of the SEM algorithm are illustrated. Moreover, extensive simulation
studies demonstrate that the Stochastic EM algorithm converges well under various
settings, and the performance is also assessed through model discrimination using
information-based criteria. The selection rates for choosing the true model among
all candidate models are examined. The spatial effect of a particular geographical
location on the survival times of susceptible individuals is shown. The proposed
spatial cure rate models and associated methodologies are then applied to a smoking
cessation dataset. The spatial effect on hazard is visualized using maps. The cure rate
and survival probabilities are compared and contrasted with and without including
spatial effects. The necessity of adding spatial effects to the survivals is illustrated
through the likelihood ratio test (LRT).

KEY WORDS: Stochastic EM; Spatial survival analysis; Competing cause sce-
nario; Power series cure rate model; Generalized extreme value distribution; Likeli-

hood ratio test; Model discrimination; Hypothesis test; Goodness-of-fit test.
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Chapter 1

Introduction

With geographic information systems (GIS) software becoming readily accessible,
a natural interest arises in modeling spatial-referenced data. Disease mapping and
spatial survival analysis are two common approaches to account for spatial dependence
in the data. Disease maps are often used to spotlight areas with high or low incidence,
mortality rates of disease and changes in the rates among regions. Spatial survival
analysis refers to the modelling and analysis of location-referenced time to event
data. The event of interest has either occurred (death or disease) or been censored,
whichever occurs first. Spatial survival analysis is often used to model clustered
survival data, and the clusters arise according to the geographic regions.

Spatial survival analysis can be further broken down into two components, which
are survival analysis and the spatial effect on the survival. One of the popular methods
for conducting the survival analysis for lifetime data is by the use of cure rate models.
Cure rate models are also called survival models with a cure fraction. The subjects
who are non-susceptible to the event of interest or are long-term disease-free survivors

are considered cured, and the percentage of those cured patients in the lifetime data
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is called the cured fraction. Yakovlev et al. (1996) discussed a common situation
where multiple causes of failure create problems in the analysis of lifetime data, and
the competing event precludes the event of interest from happening. In such a case,
a model with competing risks becomes necessary. One of the ways to do it is to
construct a competing-risks model based on unobserved latent time to each type of
failure. Cure rate models have been studied extensively assuming a competing risks
scenario.

The two most widely used cure rate models are the Bernoulli cure rate model
and the promotion time cure rate model. In the Bernoulli cure rate model and the
promotion time cure rate model, the number of competing risks follows a Bernoulli
distribution and a Poisson distribution, respectively. In this work, the number of
competing causes is modeled using the power series cure rate (PS) model (Noack
(1950)). We restrict the scenario to three broad aspects, which are first activation,
random activation, and last activation. In the first activation, we focus on competing
causes following Poisson, geometric, and logarithmic distributions, and construct the
promotion time cure rate model, the geometric cure rate model, and the logarithmic
cure rate model, respectively. In the last activation, we assume competing causes
following the same distributions as in the first activation scenario. However, the cure
rate models get modified into the complementary promotion time cure rate model,
the complementary geometric cure rate model, and the complementary logarithmic
cure rate model, respectively. The random activation is defined as the case in which
the competing risk follows a Bernoulli distribution, leading to a Bernoulli cure rate
model.

In the literature, many papers have modeled the cluster-specific random effect in
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the clustered data by using frailties (Vaupel et al. (1979)). This is due to the natural
characteristics of clustered data, where the observations within the same region or
cluster share similar conditions and environment, and these features sometimes are
not easy to observe directly. Using frailties, the similarity and heterogeneity in the
data can be captured within the same region. To achieve this goal of capturing
spatial effect in the data, as shown in Section 1.20, the spatial effects are constructed
through a Gaussian process, also known as a Gaussian random field (Li and Ryan
(2002); Wilson and Wakefield (2020)). The spatial effect then gets added to the cure
rate models as spatial frailties to reveal the effect of particular geographic location
on survival times of susceptible individuals.

In existing research on survival analysis, numerous papers have modeled the data
using the Weibull distribution, since the Weibull has monotone hazard rates, depend-
ing on the shape parameter. When we assume the hazard function to follow a Weibull
distribution, we assume the hazard function to be monotonically decreasing, increas-
ing, or staying constant. In reality, the hazard function is not necessarily guaranteed
to be monotone; it could be bell-shaped, U-shaped, or a combination of both. Coles
(2001) and Kotz et al. (2001) have discussed a flexible model called the generalized
extreme value (GEV) distribution. By assuming the baseline to be the generalized
extreme value (GEV) distribution, we empower our model with a more flexible base-
line hazard function that combines a family of continuous distributions into one. The
GEV is quite flexible. By adjusting the scale parameter, o, and shape parameter, 7,
GEV can change between Gumbel (Type I), Fréchet (Type II), and Weibull (Type
IIT) distributions. Hence, the GEV is more appropriate, and we adopt it here for con-

structing our survival models. In addition, the GEV simplifies the implementation



Ph.D. Thesis - Xinyi Wang McMaster - Mathematics and Statistics

by allowing the data to determine the most suitable type of tail behaviour through
inference on its shape parameter, v. Thus, we are not required to have prior knowl-
edge of which extreme value family is appropriate to use. The GEV distribution has
gained popularity in various disciplines, but its application under the survival model
setup and in survival analysis is relatively new (Li et al. (2016)).

Despite the fact that Bayesian inference and the EM algorithm have been carried
out to conduct survival analysis in many articles, the inference of the spatial survival
model based on Stochastic EM has not been studied much. In this work, we develop
the required steps of inference based on the Stochastic EM algorithm (Celeux and
Diebolt (1985)) for our proposed models. In many scenarios, the stochastic step (S-
step) in the stochastic EM is preferred over the expectation step (E-step) of the EM
algorithm due to the fact that the S-step is based on a single draw from the con-
ditional distribution, and it avoids the necessity for computing complex conditional
expectations involved in the EM algorithm. Unlike the Monte Carlo EM algorithm or
Newton-Raphson method, which do not guarantee convergence to a global maximum
or a local maximum (since they may lead to convergence to a stationary point close
to the starting value, and that stationary point might be a saddle point), SEM is
of a stochastic nature and is free of the saddle point problem. Moreover, SEM is
insensitive to starting values and performs well for small and moderate sample sizes,
which are commonly seen in clinical data. The improvements in the robustness of the
convergence algorithm have been well illustrated in the literature. (Bordes (2007);
Davies (2020)).

Along with model development, the extensive simulation studies (Section 2.5; Sec-

tion 3.5; Section 4.5) carried out demonstrate that the algorithm converges well under
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various settings, and the model performance is also assessed via model discrimina-
tion using information-based criteria (i.e., AIC, BIC, AICc). The selection rates for
choosing the true model among all candidate models are checked and summarized
in Tables 3.19 and 4.29. For illustration, the proposed models and methodologies
are illustrated with a smoking cessation dataset on the relapse of smoking. The spa-
tial effect on hazard has been demonstrated and also visualized via heat maps. The
cure rate and survival probabilities are compared and contrasted with and without
the spatial effect. The necessity of adding spatial effects to the survival models is

confirmed through hypothesis testing using the likelihood ratio test (LRT).

1.1 Common survival models

In survival analysis, we are often interested in studying the differences between sub-
jects’ lifetime that are present due to different factors. One of the popular survival
models is the proportional hazards model proposed by Cox (1972). Let 7T; be the event
time and z; be the covariates associated with the ¢th subject. Then, the proportional

hazards model is defined in terms of hazard function and is expressed as

Atilzi) = Mo(ti)exp(2] B), (1.1)

where )\ is the baseline hazard function, and 3 is the effect of covariates associated
with survival function. The proportional hazards model assumes that the hazard
ratio is invariant over time, and it can be developed either parametrically or semi-
parametrically. A parametric proportional hazards model is developed in this thesis

where the choice of baseline hazard function ) is predetermined (Section 1.5). The
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survival function under the proportional hazards model is given by
S(tilz:) = Solt|z:) =), (1.2)
where Sy is the baseline survival function corresponding to Ag.

1.1.1 Power series (PS) model

Suppose there are n individuals, indexed by ¢+ = 1,...,n, and the ith individual is
exposed to competing risk M;, where M; denotes the initial number of competing
causes related to the occurrence of an event. For M;, we use the probability mass

function (pmf) of the discrete power series distribution (Noack (1950)) given by

a0 a0
P(M; =m) = L _omh 1,

where m = 0,1,2,..., G(6;) = >°7_, a,,0™

m=0 [

an, > 0, and 6; € (0, s) is selected such
that G(6;) is finite, and its first, second, and third derivatives are all well defined.

Given M; = m, let the random variable Wj.; denote the event time due to the
k*th latent risk for the ith individual, with distribution function F(-) = 1 — S(-) and
survival function S(-), where k* = 1,2,...,m. Any survival distribution S(-) may be
used to represent the uncertainty in Wj.;, as discussed in later sections. Although the
number of competing causes, M;, and the latent event time associated with a specific
cause, Wy«;, are unobservable, they can be conceptually constructed as follows.

In Chapter 2, we focus on the case when the event of interest only takes place after
first possible latent cause has presented (first activation scheme). Under this assump-

tion, the time to the event of interest for the ith individual is 7; = min{W;,..., Wy, }

10
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for M; > 1, and T; = oo if M; =0 with P[T; = oo | M; = 0] = 1.

The general form of the population survival function is S} (t;) = P(T; > t;) =

m
2

Yo oS (ti>maGWZZ-)7 where t; > 0, 6; is the power function. The cure fraction is

poi = G(0)/G(6;) > 0, the density function is fI(t;) = G'(6:5(t:))0s; f (t:)/G(6;), and
the hazard function is AJ'(t;) = G'(6;S(t;))0: f(t:)/G(0;5(t;)). Here, G'(6:;S(t;)) =
dG(6;S(t;))/dt and f(t;) = —dS(t;)/dt, with f(t;) being the proper density function
to event of interest 7T;.

In addition, given M;, the event of interest would occur when some of the possible
causes are activated. Then, the number of initiated causes is a random variable with
discrete uniform distribution on {1,..., M;} (Noack (1950); Bao et al. (2020)). This
scenario is defined as random activation scheme. Its population survival function is
given by ST(t;) = P(T; > t;) = G(0)/G(6;)+(G(6:)—G(0))S(t;)/G(6;) for t; > 0. The
population density and hazard function for the random activation scheme are given

G(0:)=G(0) /(¢ .
by fE(t:) = (1 — G(0)/G(6:))f(t:), and NF(t;) = G(O()Jr((G)(@ij)(Eg{éﬁ);(ti), respectively.

The relation between the first activation scheme and random activation scheme is
that S} (t;) < Sp(t;), for all t; > 0.

In Chapter 2, we restrict our attention to four special cases. By adjusting the
power function and series function, the competing causes are set to follow Bernoulli,
Poisson, geometric, and logarithmic distributions. The related cure models become
Bernoulli mixture cure rate model, Poisson (promotion time cure rate model), geo-
metric (odds cure rate model), and logarithmic cure rate model.

The detailed forms of density functions, survival functions and form of cure rates
under first or random activation are all discussed in Section 2.2. Hereafter in Chapter

2, we omit the superscripts F' and R and write f,(¢;), Sy(t;), and \,(;) for simplicity.

11
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Although under the general form, f,(¢;) and S,(¢;), are not proper density function
and not a proper survival function, it is not an issue for developing inference for the

parameters.

1.1.2 PS model with spatial frailties (Scenario 1)

In Chapter 3, we discuss the spatial effect on the cure rate and survival probabilities.
First, we assume in the ith region (i = 1,..., ), there are n; number of subjects
indexed by j = 1,...,n;. The observed event time for the (i, j)th subject is denoted
by T;.
The initial number of competing causes of the event, M;;, for (7, j)th subject is

assumed to follow a discrete PS distribution, with probability mass function (p.m.f)
ameg% amei’?

P(My; = m) = —— _ , 1.4
(Myj = m) = S~ 9 = C{ay) (14)

where m = 0,1,2,..., G(0;;) = >.°_ a0

0 Wy am > 0, and 0;; € (0,1). The power
series function G(6;;) changes under different cases and form well-known distributions,
like Bernoulli, Poisson, geometric, and logarithmic distributions.

Given M;; = m, let random variable Wy.;; be the failure time of the (7,7)th
individual due to the k*th latent risk, with distribution function F(-) = 1 — S(-),
k* = 1,2,...,m. Again, M;; and Wj~;; are unobservable. Hence, we proceed as
follows.

Under the first activation scheme, assuming that any competing cause will even-
tually trigger the event, the failure time of the ijthe individual is defined by the
random variable T;; = min{W1;;, ..., W, } for M;; > 0, and Tj; = oo if My; = 0 with
P[Tij = oo | M;; = 0] = 1.

12
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The general form of its survival function for the population under the first acti-

vation scheme is given by S¥(t;;) = P(Ti; > tij) = > S(tij)mgg_g_%, where ¢;; > 0,
ij

and G(0;;) is the power function. The cure fraction is py;; = G(0)/G(6;;) > 0, the

density function is fl(t;;) = G'(6;;5(ti;))0:;f (ti;)/G(6;;), and the hazard function
is A} (tij) = G'(05S(ti7))03. f (ti5)/ G (055 (tij)). Here, G'(6:;S(t;5)) = dG(0;;S(ti;))/dt
with f(t;;) = —dS(t;;)/dt, and f(t;;) being the proper density function to event of
interest Tj;.

Under the random activation scheme, the event occurs when some possible com-
peting causes are presented, given the number of competing causes M,;, the number
of activated competing causes is then a random variable with the discrete uniform
distribution on {1,..., M;;}. Its population survival function is given by S}(t;;) =
P(T;; > t;j) = G(0)/G(0;;) + (G(6;5) — G(0))S(ti;)/G(6;;) for t;; > 0. The popula-

tion density and the hazard function for the random activation scheme are given by

FR(ti;) = (1 — G(0)/G(0:)) f (t;7), and NE(t;;) = G(Ogﬁfgg@;jg{(g;gggggm). The relation-
ship between the first activation scheme and random activation scheme is Sj (tij) <
SJ(ti;), for all t;; > 0.

In this work, we restrict our attention to four special cases, which are Bernoulli
mixture model, Poisson (promotion time cure rate model), geometric (odds cure rate
model), and logarithmic cure rate model. The spatial frailties get added to the cure
rate models through linear form of covariates, as discussed in Section 1.4. The detailed
information on the four cure models with spatial frailties are discussed in Section 3.2,
and we omit the superscript /' and R and use f,(t;;), Sp(tij), A\p(ti;) for simplicity.
Although f,(t;;) and S,(t;;) are not proper density function and not proper survival

function, it is not an issue for developing inference of the parameters.

13
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Even though the general form of the population survival and density functions
under the first activation scheme and random activation scheme are similar to these
in Chapters 2 and 3, and when we add the spatial frailties to account for spatial
correlation in the data and its effects on survival, the underlying cure models become

quite different.

1.1.3 PS model with spatial frailties (Scenario 2)

The assumption in Chapters 2 and 3 is that the event of interest takes place after the
first possible competing cause presents. In Chapter 4, to make our analysis applicable
to more complicated scenario, we consider an additional case where event, T;;, only
take place after all the competing cause have occurred (last activation scheme).
Under the last activation scheme, the time to the event of interest is denoted by
the random variable Tj; = max{Wy;, ..., Way,} for My; > 1, and Tj; = oo if M;; =0
with P[T;; = oo | M;; =0] = 1.
The survival function for the population in this case is Sk(t;;) = P(T;; > ti;) =
1+G(0)/G(0;5) — G(0:F(t;;))/G(6;;) for t;; > 0. The cure fraction is given by pg;; =
G(0)/G(6;;) > 0. The corresponding density function is f'(t;;) = G'(0:;F (ti;))0:; f (ti;)/ G (6:)

and the hazard function is AJ(t;;) = G<oﬁg)féi§?gzgi€?§2tij))v where G'(0;;F (t;;)) =
dG(0,;F(ti;))/dt and f(t;;) = —dS(t;j)/dt. The density function for the population,
fl(t;;), and survival function for the population, S’(t;;), are constructed in detail
in Section 4.2. As shown in Section 1.4, the spatial frailties are from Gaussian and

haven been added to the cure models though linear form of covariates. In Chapter 4,

we omit the superscript L and use f,(ti;), Sp(ti;), Ap(ti;) for simplicity.
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1.2 A brief literature review

The spatial survival analysis of medical data has emerged over the last two decades.
For example, the spatial survival analysis has been conducted on leukemia survival
(Zhou and Hanson (2018)), asthma (Li and Ryan (2002); Li and Lin (2006)), infant
mortality (Banerjee et al. (2003)), breast cancer (Hanson et al. (2012); Zhou et al.
(2015)), smoking cessation (Pan et al. (2014); Bao et al. (2020)), HIV/AIDS survival
(Martins et al. (2016)), the lifespan of tooth (Schnell et al. (2015)), lip cancer (Wilson
and Wakefield (2020)), and some more.

Numerous methods have been proposed for spatial survival analysis, which can
be broadly classified as applications of conditional model and marginal model. The
conditional model assumes the regression coefficients are conditioned on the spatial
frailties. The conditional model was introduced in the proportional hazards frame-
work (Li and Ryan (2002); Banerjee et al. (2003)) and the proportional odds frame-
work (Banerjee and Dey (2005)). Li and Lin (2006) proposed a marginal model that
requires the data to be transformed to Gaussian and modelled directly (i.e., without
frailties) by a Gaussian spatial model. Recently, Schnell (2016) proposed to model
the frailties as linear combinations of positive stable random variables. Bao et al.
(2020) assumed the spatial frailty to follow MCAR prior and used Bayesian analysis

for estimating the model parameters.

1.3 Distributions for competing causes

In this thesis, we focus on several well-known distributions that belong to the family of

power series cure rate model. As listed in Table 1.1, the competing causes are assumed
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to follow Bernoulli, Poisson, geometric, and logarithmic distributions, giving rise to
complementary cure rate model, complementary promotion time cure rate model,
complementary geometric cure rate model, and complementary logarithmic cure rate

model, respectively, along with spatial frailties.

Table 1.1: A list of distributions for the competing causes are assumed to follow in
the analysis

Power series cure rate model
Chapter 2 Model 1  Bernoulli

Model 2 Poisson

Model 3 Geometric

Model 4  Logarithmic

Chapter 3 Model 5  Bernoulli with Spatial Frailties
Model 6  Poisson with Spatial Frailties
Model 7 Geometric with Spatial Frailties
Model 8  Logarithmic with Spatial Frailties

Chapter 4 Model 9  Complementary Poisson with Spatial Frailties
Model 10 Complementary Geometric with Spatial Frailties
Model 11  Complementary Logarithmic with Spatial Frailties

1.4 (zaussian spatial effect

Clustered data are frequently seen in survival analysis and it has been modelled by
many using frailties for describing the cluster-specific random effect. In clustered
data, observations within the same region or cluster, share similar condition and
environment which are not easy to observe directly. Using frailties, the similarity
and heterogeneity in the data can be captured within the same region. To achieve

this goal, the spatial effect model has been constructed using Gaussian process, also
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known as Gaussian random filed. We use the spatial frailty, U;, to interpret the effect
of the ith geographic location on survival time for susceptible individuals within the
region. First, let u; be the realization of a stationary spatial frailty U; and have U;
coming from a Gaussian process (Li and Ryan (2002); Wilson and Wakefield (2020)).

In the clustered dataset, we assume individuals belong to I disjoint regions (clus-
ters). Then, to take into account the spatial frailties in each region, we construct the
Gaussian process to be the stationary I-dimensional multivariate Gaussian, as pro-
posed in Li and Ryan (2002). We define U = (Uy, Uy, ..., Ur)T and U ~ N(ps, X(0s, ¢5)),
where pg is a I-dimensional constant mean vector and (o, ¢s) is the I x I dimen-

sional variance-covariance matrix given by

COV(Ul,Ul) COV(Ul,UQ) COV(Ul,Ug) COV(Ul,U[)
Cov(Uy,Usy) Cov(Usy,Us) Cov(Us,Usz) ... Cov(Us,U

S(on, 60) = (U1, Us) (Uz, Us) (Uz, Us) (Us, Ur) (15)
COV(U[, Ul) COV(U[, Ug) COV(UI, Ug) e COV(UI, U])

The pairwise covariance function, Cov(U;, U;+), is the function of distance between
subjects ¢ and ¢*. The isotropic covariance between U; and U/, takes an exponential

form, ¥ (05, ¢s) = cov(U;, U ) = o2exp{—||Loc; — Loc;s

/®s}, where Loc; and Loc;
are locations of subject ¢ and subject i*, respectively, || - || is the Euclidean distance,

and I, is the indicator function taking value 1 if ¢ = ¢*, and 0 otherwise.

17
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Eq. (1.5) can be rewritten as

| o2 o2exp{—dis/ds} olexp{—diz/ds} ... olexp{—di;/ds}
(04, ) = Ugexp{_d12/¢s} Uf afexp{—d%/gbs} e 0§GXP{—CZ21/¢S}
olexp{—dn/¢s} olexp{—dp/ds} olexp{—dis/ds} ... o2
(1.6)

where d;;« = ||Loc; — Loc;+||, X(0s, ¢s) is positive semi-definite, ps € R, o5 > 0, and
¢s > 0. The parameter ¢, depends on the spatial dependence between two locations,
and a larger value of ¢, indicates a higher dependence. The density function of the

multivariate normal is given by

: e  wew). )

fului,ug, ... ur) = WGXP( 5

The spatial version of cure models

The spatial effect on survival times of individuals, u;, gets included in the models
through linear form. The components for the effects of covariates on power parameter
0;; is modified as in (1.8) below, and 6;; is related to the cure probability pg;;. The
components for the effects of covariates on the survival models are as expressed in

(1.9) below:

aj; = xlb+ u;, (1.8)

Qﬁ;‘kj = zﬁﬁ + Ui, (1.9)
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for region ¢+ = 1, ..., I, and individual j in region ¢, where j = 1,...,n;. In addition,
x and z are covariates, b is the effect of covariates associated with cure probabilities
poi, and B is the effect of covariates associated with survival function.

The spatial version of the survival, hazards, and density functions can be re-

written as

S(tij) = Solty) D=l tu), (1.10)

where Sy (t;;) is the baseline survival function and Ag(¢;;) is the baseline hazard func-
tion defined in Section 1.5.

The spatial version of the power parameter 6;; consider in this work is as follows:

exp(xiij +u;), for Models 5, 6, 9.

ex ach U;
p(zfjbtui) for Model 7, 8, 10, 11,

1+exp(a:g;- b+u;)’

where Model 5 is the Bernoulli mixture model with multivariate Gaussian spatial
effect, Model 6 is the promotion time cure model with Gaussian spatial effect, and
Model 9 is the complementary promotion time cure model with Gaussian spatial
effect. Models 7, 8, 10, and 11 are geometric, logarithmic, complementary geometric,
and complementary logarithmic models with a Gaussian spatial effect.

Details of model development for Models 5-8 are discussed in Chapter 3. In

Chapter 4, we focus on the model development of Models 9, 10, and 11.
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1.5 Baseline Distribution: GEV distribution

The baseline hazard function is assumed to follow a GEV distribution, and logT
~ GEV. The GEV distribution is a family of continuous probability distributions
combining three distributions. As shape parameter v changes, GEV distribution
becomes the light-tailed Gumbel distribution (Type I variation of GEV) when v = 0.
The Type II of GEV is the heavy-tailed Fréchet distribution when ~ > 0. Finally,
v < 0, it becomes the Weibull distribution (Type III of GEV); See Kotz et al. (2001).
We can write logT' ~ GEV(u, 0,7), and the general form of baseline survival function

is given by

—1
1—exp{ — (1—1—710g%)+”}, if v #£0,

SO(t | K, o, 7) = (114)

1—exp{ exp (208 ”)}, ifv=0,

where location parameter p € R, scale parameter ¢ > 0, shape parameter v € R, and
x4 = max(0,z) (Kotz et al. (2001)).

The general form of the baseline hazard function is given by

3 (o) o] - (et 3ol ity 20

Ao(t | p,0,7) = —1
exp(logt [exp {exp logt “)} — 1} , ify=0.

(1.15)

1.6 Data structure and the likelihood

Let T; = min{T;, C;}, where C; denotes the right censoring time for subject i. Let

0; = I(T; < C;) and 0; takes a value 1 if 7; is the observed lifetime, and 0 if it is right
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censored. We define a cured status variable, J*, as

1, if a subject is susceptible
J =

0, if a subject is cured /immune.
Let P[J* = 0] = po; and P[J* = 1] = 1 — py;. Then, the population survival

functions can be expressed as

— P[T, > t:|J7 = 0|P[J7 = 0] + P[T; > t;|.J7 = 1|P[J7 = 1]

= poi + (1 — poi)Ss(ti), (1.16)

where Si(t;) is survival function of susceptible individuals.

The missing data are the unobserved cured status of the subjects with censored
lifetimes. If the lifetime is censored and its cure status is known as J = 0, its
contribution to the likelihood is pg;. If the lifetime is censored and its cure status is
unknown, J = 1, its contribution to the probability is (1 — pg;)Ss(t;), which equals
Sp(ti) — po; from (1.16).

1.6.1 Non-informative censoring and likelihood

Under the non-informative censoring assumption, the likelihood function can be writ-

ten as

I
L(&t,8, 2, 2) o | [{Folti, i 20 €)Y {Sp(cs i, 2 )} 77, (1.17)
i=1

where £ = (', 3", p,0,7)', t; = min{t;, ¢;}, 6;; = I(T; < C;), « and z are covariates,

b is the effect of covariates associated with cure probabilities pg;, B is the effect
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of covariates associated with survival function, and ¢, c are the vectors of observed
lifetimes and censored lifetimes.

The log-likelihood function takes on the form

lc(&;t7J*7maz): Z logfp(tiamivzi;g)

i:§;5=1

+ Y (1= J)log {poi(wi; b)} (1.18)
i: 0;=0

+ > Jrlog {Sy(ci, i, 2i 1 €) — pos(xi; b))
i:0;5=0

where & = (b, 3, i1, 0,7)" is the model parameter.

1.6.2 Non-informative censoring and likelihood for spatially

correlated data

For the ith region, i = (1,...,I), j indicates the jth individual in the ith region, j
= (1, ..., n;), the complete likelihood function, with consideration to spatial frailties

in the data, is given by

I z
L(&;t,0,x,2,05) H H{fp(tijamijazij|ui 1)} {Sp (cijy ®igy Zo | wi)} 70 fu(us; 05)  (1.19)

i=1j=1
where § = (b',8',p,0,7,0.), t;j = min{t;;,c;;}, 6;; = I(T;; < Cyj),  and z are
covariates, b is the vector of covariates associated with cure probabilities py;;, B3 is
the vector of covariates associated with the survival function, and y, ¢ are the vectors
of observed lifetimes and censored lifetimes. The wu; are random variables that denote

the spatial effect from a Gaussian process with parameter 05 = (us, o5, ¢5)".
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The corresponding log-likelihood function under the consideration of spatial frail-

ties is given by

(6 t J* T, z, 0 Z Z 1ngp lj)wlj7zlj?€)

(4,4): 6i5=1
+ 30 (1= J;)og {poij(@i|us; b)}

(17]) ij =0

(1.20)
+ZZ log{S (Cij» ®ij, zijlui 5 &) — poij(xij|uis b)}

(4,9): 05 =0

I
+ ) log fu(us;65),
=1

where £ is the vector of model parameters to be estimated, £ = (b, 3, 1,0,7,0.)".
Also, the f is the density function of spatial frailties that follows a Gaussian process
with parameter 05, = (ps, 05, ¢5)’, f, is the population density function, pg;; is the
cure probability, and S, is the population survival function. The f,, py;j, and S,
are all provided in Sections 3.2 and 4.2. The log-likelihood function (1.20) becomes
different versions under Models 5 - 8 as shown in Section 3.3, and Models 9 - 11 in
Section 4.3.

Recall that the survival data can be right censored, left censored, and interval
censored. But, we focus here on the right censoring scenario in this thesis, since this
is the most common form of censoring encountered in practice.

So far, the non-informative likelihood function of right censored data with spa-
tial frailties has been shown; but, we still do not have complete information for the
subjects who are right censored. The survival status remains unknown for the cen-
sored subjects, they can be either cured or susceptible. We overcome this difficulty

by implementing the stochastic step (S-step) and then finding the optimal MLEs by
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using the Stochastic EM algorithm. The general steps of the SEM algorithm for in-
ference for the cure rate models with spatial frailties are provided in Section 1.7.2.

The detailed formulas are all provided in Sections 2.4, 3.4, and 4.4.

1.7 Likelihood inference

The SEM algorithm, proposed by Celeux and Diebolt (1985), is an alternative ap-
proach to the EM algorithm. The SEM algorithm replaces the expectation step
(E-step) in the EM algorithm with a stochastic step (S-step). The stochastic step is
easy to implement when the missing data are not fairly imputable.

In this thesis, we have developed two versions of the SEM algorithm. Type I of the
SEM algorithm is developed for the first scenario (as outlined in Chapter 2), where
individuals in the data are treated as if they were from one cluster. It is equivalent
to setting the spatial frailties to 0. In Chapters 3 and 4, the non-zero spatial frailties
are included in the model, and studies are then conducted to show that adding the
spatial frailties improves the performance of the model. When we shift our focus
to include the spatial frailties for analyzing clustered data, we no longer treat the
individuals to be from one big region, but we stratify them by the actual region they
belong to. The Stochastic EM algorithm in such a case (Type II) is developed so that
the parameter 85 that describes the spatial effect in the model gets determined along
with other model parameters.

The general steps of the SEM algorithms are presented in Sections 1.7.1 and 1.7.2,
and the detailed steps of the corresponding algorithms are provided in Chapters 2, 3,
and 4.
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1.7.1 Type I: SEM

Step 1: Initialization

To properly start the SEM algorithm, we find the set of initial values using the grid
search method based on 2000 values within the parameter space. The best set of
parameter values, that are recorded as the initial values, is the one that maximizes
the observed data log-likelihood function. The notation of the initialized parameters
is given by £© = (()(0)’7 BO MONEORON

If the lifetime is observed, we have §; = 1 and t;, which implies that the subject is
susceptible, and so J = 1. If the lifetime is unobserved, we have §; = 0 and t; = ¢;,
and the lifetime status of the subject is then unknown, with J* = 0 if cured and
J; =1 if uncured.

Step 2: Stochastic step (S-step)

Recall that for censored subject ¢, we have §; = 0, and J* can be generated from a

Bernoulli distribution with conditional probability of success as

P[T; > ¢;|J; = 1|P[J} =1]

p = PLI; =1|T; > ;€9 = (1.21)

£=¢©
_ Sp(ci,mi,zi;é(o)) —p(:;(:ci;ﬁ(o))’ (1.22)
Sp(Ci,wiyzi;E( ))

where py; and S, are the cure probabilities and the survival function that are presented
in the following chapters.
Step 3

If the censored subject is susceptible, J* = 1, the complete lifetime ¢} is from the
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truncated distribution with density function and cumulative density function (cdf) as

Folty, @i, 2 €©)

Sp(ci7 Ly Zi; f(o)>,

Splci, @i, 2i;€Y) = S, (t7, @i, zi;€7)
Sp(ci7 L, Z4; 5(0))

fr(t @i, zilug; €0) = (1.23)

Fr(t;, i, Zi;f(o)) = ) (1.24)
where ¢; < t; < oo. Here, Fr(t) is not a proper cdf since limy: o Fr(t], i, 2i; S(O)) =+
1.

To generate t! from (1.23) under the susceptible scenario, we adopt inverse trans-
formation sampling techniques. It is easy to show that Fr(t}, x;, z;; S(O)) follows an

: * _ « _ Spleiminzii€ ) —poi(@i€ )\ qipoa
Uniform(a* = 0,0* = R pP—- ) distribution.

The cured/immunized subject with J = 0 is treated as long term survivor and
the subject’s lifetime is infinite with respect to the event of interest. Hence, it takes
the form limg« o0 Sp (5, 24, 243 5(0)) = poi(x;; E(O)).

The detailed derivation and definitions of cure probabilities py; and population
survival probability S, are all presented in Section 2.2.

Step 4: Maximization step (M-step)

We fill the censored data with the generated data from Step 3. Now, the improved

estimate of & can be found using the pseudo-complete data and

€1 = (6@, 8D 4,0, 4V = arg maxlogLe(&: (¢, J°), (¢, T ), @, 2),
3

where t* and J** are vectors of ¢ and J*. The optimal value of £ is obtained using
the ‘L-BFGS-B’ package in R software, where the algorithm is set to be converged
when the desired tolerance level, i.e., |&, 1 — & | < 1075), is achieved.

Step 5: Iterative step
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Using the estimate, €1 = (5(1)/,,@(1)/,/2(1),&(1),6/(1))’, that we obtained in Step
4, repeat Steps 2 - 4 R times, to generate é(r) = (B(T)/,B(T)I,[L(’”),&(’”)ﬂ(’”))’, r =
1,..., R. The result, a sequence of estimates, is a Markov Chain which, instead of
converging to a single value, converges to a stationary distribution under standard
conditions as discussed by Diebolt and Ip (1995).

Step 6: Burn-in and MLE step

To obtain the stationary distribution, we discard the first r* iterations as a burn-in,
and then compute the estimates by averaging every third of the remaining iterates
to avoid auto-correlation. By adopting the burn-in period, the random perturbations
of the Markov chains preclude the influence of local maximum, so that the estimates
become more reliable. The choice of spacing is somewhat arbitrary (e.g., every 2nd,
3rd, or 5th iteration) and should be large enough to reduce autocorrelation between

retained draws, but not so large that too much information is discarded.

Convergence of Algorithm

In this study, the optimal estimates are obtained using the ‘L-BFGS-B’ package in
R software, where the algorithm is set to converge when the desired tolerance level,
|€T+1 — fr| < 1079, is achieved. The standard errors are obtained from the Hessian

matrix with respect to the parameters, and they are obtained numerically.

1.7.2 Type II: SEM algorithm for cure rate models with spa-

tial effect

Next, we shift our focus to include the spatial frailties to the proposed cure rate models

for modelling clustered data. Recall that we assume individuals in the data are from
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I regions, i = (1,...,I). In the ith region, we have j individuals, J = (1,...,n;). In
this case, we no longer treat the individuals in the data as being from one group, but
we have stratified them by the region they belong to. Hence, when the lifetime of
the (4, j)th individual in the ith region is observed, we denote it by d;; = 1 and ¢,
which implies that subject j in region ¢ is susceptible, and so Jj; = 1. If the lifetime
is unobserved, we denote it by d;; = 0 and ¢;; = ¢;j, and the lifetime status of the
subject is then unknown, and so J; = 0 if cured or Jj; = 1 if uncured.

Now, a new set of initial values, £©) = (b(o)/,ﬁ(o)/, @ @ ) Bgo)/)’, is gener-
ated using the grid search method mentioned in the previous section. The expressions
in Steps 2 and 3 are then modified to accommodate the spatial frailties captured in
the model. The modified steps of SEM algorithms are as follows.

Step 2 (Spatial version)

Recall that for censored subject (7,7) in region 4, we have d;; = 0. The cure status

of individual j in the ith region, J

15, can be generated from a Bernoulli distribution

with conditional probability of success as

P[Tij > cij|J5; = 1P = 1]

0 *
P((Jm)‘ = PlJ; =1|T;; > Cz’j;f(o)] = P[T; > cij]
i ij

(1.25)
£=¢©
 Spleigs ®ig, Zijlui €) — posj(xij|us; €0)
_ Ik , (1.26)
Sp(cij, Tiz, zijlui; €)

where py;; and S, are conditioned on the spatial frailties u;. Also, py;; and S, are
modified to be the spatial versions of the cure probabilities and the survival function,
and detailed information are then provided in Sections 3.2 and 4.2. Here, T;; is the
lifetime for the (¢, j)th individual and ¢;; is the censoring time.

Step 3 (Spatial version)
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If the censored subject is susceptible, i.e., Jj; = 1, the complete lifetime T7; is from

the truncated distribution with density function and cdf given by

t*'umi'a Zij | U, ©
fr(t, @i, zilui; €9) = Iolliy Ty 2] £((J))a (1.27)
Sp(cij, Tij, zij|ui; €)
Sp(cija Lij, Zij|ui; 5(0)) - Sp(tfy Lij, Zij|ui; 5(0))
Sp(cija Lij, Zij|ui; E(O))

, (1.28)

where ¢;; < ;; < oo. The cdf is not a proper cdf since

. * S Cz"ami'>zi‘ui§£(0) — DPoij wi‘ui§€(0)
*hm FT(tij,a:ij,ziﬂui;E(D)) = p( J J j| ) 0]((0) ]’ ) 7é 1. (129)
ti; =0 Sp(cijs @iz, zijlug; €7)

The cured/immunized subject with J7; = 0 is treated as long term survivor and the
subject’s lifetime is infinite with respect to the event of interest. Hence, it takes the

form of limt;jﬂoo Sp(ts, Tij, zij|wi; 5(0)) = Poij (x4 |wi; 5(0)). To generate tj; from (1.27)

ij>
under the susceptible scenario, we adopt inverse transformation sampling technique.
It is easy to show that Fr(t};, @i, zij|u; £ follows an Uniform(a*,b*) distribution

with parameters

Sp<cij7 Tij, zij|ui; 5(0)) - pOij(iBij\Ui; 5(0))

a* =0and b* = (0)
Sp(cijamij’zij‘ui;é )

(1.30)

where pg;; and S, are conditioned on the spatial frailty u,. Also, py;; and S, are
the cure probabilities and the survival function for Models 5 - 10. Derivation of all

relevant formulas are provided in Sections 3.2 and 4.2.
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1.7.3 Standard errors and asymptotic confidence intervals

based on MLEs

The standard errors of estimators are calculated using the observed information ma-
trix. To be more specific, the variance-covariance matrix of é can be obtained by the

inverse of the information matrix as

Var(é) = [1()]™ (1.31)

The observed information matrix is the negative of the expected value of the Hes-
sian matrix, where the Hessian matrix is the second derivatives of the log-likelihood

function with respect to the parameters given by

(1.32)

¢=¢

Then, the standard errors of the estimator, é , is given by the square roots of the diag-
onal terms in the variance-covariance matrix. The asymptotic 100(1-0)% confidence

interval of £ is given by

~

(€= 21-5p2e(€),§ + 21sp25¢(S) ), (1.33)

where se(é) is the standard error of the MLE f and z, is the upper a percentage

point of the standard normal distribution.

30



Ph.D. Thesis - Xinyi Wang McMaster - Mathematics and Statistics

1.8 Simulation study

1.8.1 General setup

The simulation studies conducted include different sample sizes: 500 and 1000. Var-
ious different sets of true values are chosen to ensure different levels of cure rates. In
addition, the simulated dataset have low to high level of censoring. The underlying
competing cause, M;, is fixed to follow Bernoulli, Poisson, geometric, and logarithmic
distributions, which is equivalent to producing data with Bernoulli cure rate (Model
1), Promotion time cure rate (Model 2), Geometric cure rate (Model 3), and loga-
rithmic cure rate (Model 4) models. One categorical variable, X;, is considered, and
is set to follow Bernoulli distribution with success probability 0.6. Censoring time,
C;, is set to follow an exponential distribution, Exp(cc), where cc > 0 controls per-
centage of censored data. The lifetime, Y;, is generated from the quantile function of
the logGEV distribution with parameters, u, o, and v. If Y; < C;, we set censoring
indicator 9; = 1, and ¢; = 0 otherwise.

We monitor the censoring proportion for each simulated data and run the algo-
rithm 1200 times. The burn-in period is set to 200 iterations, and the spacing is set

to 3.

1.8.2 Cure rate models with spatial survival analysis

In Chapters 3 and 4, to reveal the spatial effects on survival time, the location of
patients is taken into account in the simulation studies. We assume that 500 and
1000 subjects were from 5 zip codes in Minnesota, as shown in Figure 1.1. In each

region we have 100 and 200 patients, corresponding to 500 and 1000 sample sizes,
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respectively. The latitude, longitude, and zip code are all listed in Table 1.2, and the

euclidean distance matrix of the 5 zip codes is presented in Table 1.3.

Figure 1.1: Map of 5 zip codes in Minnesota

Map of 5 zip codes in Minnesota
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For the jth individual in the ith region, we assume the corresponding compet-
ing causes, M;;, follow Bernoulli, Poisson, geometric, and logarithmic distributions.
Then, we obtain their corresponding cure rate models with Gaussian spatial effect,
which are Model 5 (Bernoulli cure rate model with spatial effect), Model 6 (promo-
tion time cure rate model with spatial effect), Model 7 (geometric cure rate model
with spatial effect), Model 8 (logarithmic cure rate model with spatial effect), Model

9 (complementary promotion time cure rate model with spatial effect), Model 10
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Table 1.2: Latitude, longitude, zip code, and city names of the 5 regions in Minnesota,
US, used in the simulation study.

Latitude Longitude Zip code City

44.016 -92.624 55920 Salem Minnesota

44.061 -92.504 55901 Rochester Minnesota

43.985 -92.499 55902 Rochester Minnesota

43.973 -92.414 55904 Bear Creek Marion Minnesota
43.999 -92.259 55934 Eyota Township Minnesota

(complementary cure rate model with spatial effect), and Model 11 (complementary
logarithmic cure rate model with spatial effect). The algorithm is run for 1200 times
on the simulated data. The burn-in period is set to be 200, and the spacing is set to
be 3. Let covariate, x;;, be a categorical variable that takes values 0 and 1, and gets

generated from a Bernoulli distribution with success probability as 0.6.

Table 1.3: The Euclidean distance matrix of the 5 cities and their zip codes in Min-
nesota, US.

(55920) (55901) (55902) (55904) (55934)

Salem (55920) 0.00000  0.12816  0.12879  0.21436  0.36540
Rochester (55901) 0.12816  0.00000  0.07616  0.12587  0.25272
Rochester (55902) 0.12879  0.07616  0.00000  0.08584  0.24041
Bear Creek Marion(55904) 0.21436  0.12587  0.08584  0.00000  0.15717
Eyota (55934) 0.36540  0.25272  0.24041  0.15717  0.00000

1.9 Model discrimination

1.9.1 Information-Based criterion

As one would expect, an increase in the likelihood value can be achieved by increasing

the number of parameters. In order to avoid over fitting, the Akaike information
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criterion (AIC; Akaike (1974)) and Bayesian information criterion (BIC; Schwarz
(1978)) are used to resolve this problem by including a term to penalize based on the

number of free parameters. The AIC is given by

~

AIC = —2In(L(§)) + 2k, (1.34)

where In(L(€)) represents the value of the maximum log-likelihood of the considered
model and k is the number of parameters in the model. The idea of AIC is to evaluate
the performance of the models by the goodness of fit while penalizing for an increase
in the number of parameters. The model that gives the minimum AIC value is the
best model to be selected among the candidate models.

The Bayesian information criterion (BIC) has been widely used as a criterion for

model selection. It is an alternative to AIC, and this criterion is given by

~

BIC = —2In(L(¢)) + k In(n), (1.35)

~

where In(L(§)) represents the value of the maximum log-likelihood for the estimated
model, k£ is the number of free parameters to be estimated, and n is the number of
observations. The model with the lowest value of BIC is the one that is preferred. The
value of BIC increases when the variation in the dependent variable and the number
of explanatory variables increase. A lower BIC value indicates that the model has
fewer variables, provides a better fit to the data, or both. BIC is more strict with
free parameters than AIC, and BIC does not require the test model to be nested.
The Akaike Information Criterion corrected (AICc) is the corrected version of AIC

designed to address the issue of over fitting for the models with small sample sizes.
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It is particularly useful when the ratio 7 < 40, where n is the number of observations

and k is number is parameters in the model. AICc is given by

. 2k (k + 1)

AICc = —2In(L(§)) + 2k + P — (1.36)

~

where In(L(§)) represents the value of the maximum log-likelihood of the model and
k is the number of parameters in the model. AICc converges to AIC when n gets
large (Sugiura (1978)). All three information-based criteria have been used in this

thesis.

1.9.2 Likelihood ratio test

The idea of the likelihood ratio test (LRT) is to compare the unrestricted and re-
stricted models, provided that the simpler model is a special case of the unrestricted
model. It is also called the comparison of two nested models. In terms of hypothesis
testing, the null hypothesis is defined as the test parameters are all not all zero, which
means the restricted model is the correct model to choose. The alternative hypothesis
is defined as the test parameters are not all zero, which means the unrestricted model
is the correct model to choose. In order to conduct the LRT, the likelihood values of

both models need to be determined.

The LRT statistics is defined as

LRT = —21n<€7"> = —2(I, = I,) ~ x*(g), (1.37)

where [, is the maximized log-likelihood value for the reduced (constrained) model

and [, is that of the full model (unconstrained) model, and g is the number of testing
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parameters.

For the real data analysis in Chapter 3, we apply the LRT to compare Bernoulli
(Model 1) and Bernoulli with spatial frailties (Model 5), Poisson (Model 2) and Pois-
son with spatial frailties (Model 6), geometric (Model 3) and geometric with spatial
frailties (Model 7), and logarithmic (Model 4) and logarithmic with spatial frailties
(Model 8). Comparing these four pairs of models is equivalent to investigating the
necessity of adding parameters to include spatial frailties to the cure rate models. The
null hypotheses is that the cure model, Models 1 - 4 without spatial frailties (u; = 0),
versus the alternative hypothesis is the cure rate models with a spatial component
included in them. Models 1 - 4 are special cases of Models 5 - 8, and so the LRT is

appropriate to apply here.

1.9.3 Parameter evolution of SEM

It is worth mentioning that the convergence characteristic of Stochastic EM is meant
to better help one to detect convergence of the proposed iterative algorithm. One can
visualize the results obtained from the iterations. A successful convergence of SEM
is equivalent to its results of SEM iterations oscillating around the horizontal line
without indication of either upward or downward trend. As established in the work
by Nielsen (2000), a parameter evolution plot with horizontal average value indicates
the convergence of SEM iterations to a stationary distribution, and so it is reasonable
to use the average of the iterations after the burn-in to obtain the estimate of the

parameter.
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1.10 Smoking cessation dataset

In the real data analysis section, we apply the proposed cure rate models to the
smoking cessation data that were collected in the 51 zip codes in the southeastern
corner of Minnesota, United States. The 51 zip codes have been visualized via a
map in Figure 1.2. The original data contain records of 223 smokers who enrolled in
the study between 1986 and 1989. They were randomly split into two groups, with
one group receiving smoking intervention (SI) and the other receiving the usual care
(UC). As shown in Table 1.4, some other information is also recorded in the study,
such as the gender (Male=0, Female=1), duration as smoker in years, the average
number of cigarettes smoked per day over the last 10 years, and their corresponding
zip codes (51 zip codes).

The smokers were randomly put into two groups: usual care (UI) and smoking
intervention (SI). At the end of this study, 65 of them had relapsed, and 158 of them
were censored, which give a high level of censoring proportion, 0.708. However, the
cure status of the patients who had not relapsed remains unknown. It will be of
interest to better understand the effect of the location of patients on his/her relapse
of smoking while excluding the possibility of labelling the individual as cured due to
early stopping of the experiment.

Due to limited information in this dataset, we do not have access to the detailed
clinical definitions of usual care and the smoking intervention used in the experiment.
Other potential confounding factors are outside the scope of this thesis and therefore

are not explored further.
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Figure 1.2: Map of 51 zip codes in Minnesota
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1.11 Scope of the thesis

In Chapters 2 - 4, the proposed cure rate models are all discussed in detail along with

the corresponding steps of the stochastic EM algorithm. Simulation study and real

data analysis for proposed models are conducted, and the obtained results are pro-

vided. In Chapter 2, we adopt the stochastic EM algorithm to a family of cure rate

models from the power series cure rate model. They are Bernoulli cure rate model
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Table 1.4: Variables in the smoking cessation dataset in southeastern corner of Min-
nesota

Treatment 1 = special intervention [SI] ST = 169
0 = usual care [UC] UC = 54
Gender male = 0 136 (male)
female = 1 87 (female)

Consumption the average number of cigarettes smoked/day range: 5-60
mean: 27.1 /day

Duration duration of smoking habit (years) range: 12-46 yrs
mean: 30.5 yrs

(Model 1), promotion time cure rate model (Model 2), geometric cure rate model
(Model 3), and logarithmic cure rate model (Model 4), with the GEV distribution as
baseline hazard distribution. The performance of the proposed models is evaluated
through a simulated study along with model discrimination using information-based
criteria. In addition, the proposed cure rate models are applied to a real dataset, and
cure rate and survival probabilities are visualized through heat maps. With variation
of colours, the heat map indicates high and low values of cure and survival probabili-
ties among different regions. Next, in Chapter 3, we then extend the work to include
spatial frailties and study the spatial effect on cure rate and survival probabilities.
The Bernoulli cure rate model with spatial effect (Model 5), promotion time cure
rate model with spatial effect (Model 6), geometric cure rate model with spatial ef-
fect (Model 7), and logarithmic cure rate model with spatial effect (Model 8) are all
constructed with baseline GEV distribution. The stochastic EM algorithm is then
used to find the optimal estimates of the model parameters. A simulation study is
performed with patients being fixed to be from specific regions. Additionally, the sam-
ples were generated from a true model and fitted all the relevant candidate models.

The fitted results are then compared using information-based criteria. The selection
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rates of all candidate models are also reported to illustrate the model performance.
Furthermore, model discrimination using LRT confirms the improvement in the mod-
els by adopting spatial frailties using the spatial information of the patients (longitude
and latitude). The presence of spatial effect is successfully captured by the models
proposed, and the necessity of adding spatial effect to the model are also visualized
using heat maps.

In Chapter 4, we extend the research work to the case when the event takes place
after all of the competing causes are presented, along with the consideration of the
spatial effect on to cure rate and survival probabilities. Complementary promotion
time cure rate model with spatial effect (Model 9), complementary geometric cure
rate model with spatial effect (Model 10), and complementary logarithmic cure rate
model with spatial effect (Model 11) are constructed, and the MLEs of these model
parameters are obtained by using the stochastic EM algorithm. The model per-
formance is evaluated by a simulation study and also by model discrimination. The
samples are generated from a true model and then fitted with some candidate models.
The fitted results are then compared using information-based criteria. The selection
rates of all candidate models are also reported to illustrate the model performance.
The proposed models are then applied to the real data on smoking cessation. The
difference in cure rate and survival probabilities is also demonstrated using maps.

The concluding remarks, along with some future research directions, are finally

mentioned in Chapter 5.
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Chapter 2

Stochastic EM-based Likelihood
Inference for a Class of Cure Rate

Models Based on GEV

Distribution

2.1 Introduction

Suppose the 7th individual is exposed to competing risk M;, where M; denotes the
initial number of competing causes relating to the occurrence of an event. Given
M; = m, let random variable Wj«; be the time-to-event due to k*th latent risk for
the ith individual, with distribution function F'(-) = 1 — S(-), survival function S(-),
and k* =1,2,...,m.

In reality, we cannot observe the competing causes M; and the lifetime related to
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a specific cause, Wy+;. Recall that under the first activation scheme, assuming that
any competing cause will eventually trigger the event, the time to the event of interest
is denoted by the random variable T; = min{Wy;, ..., W,,.} for M; > 1, and T; = oo
if M; =0 with P[Y; = oo | M; = 0] = 1. Under the random activation scheme, the
event occurs when some possible competing causes are presented, given the number
of competing causes M;, the number of activated competing causes is then a random
variable with the discrete uniform distribution on {1,..., M;}.

In Section 2.2, details of the proposed cure rate models, namely, Bernoulli cure
rate model (Model 1), Poisson cure rate model (Model 2), geometric cure rate model
(Model 3), and logarithmic cure rate model (Model 4), are all presented. The likeli-
hood function and estimation methods using SEM are described in Section 2.3 and
Section 2.4, respectively. In Section 2.5, various settings with different sample sizes
are considered for the simulation study. The flexible baseline of GEV successfully
captures the tail behaviour of the data. In addition, the purposed models are applied
to analyze a real data in Section 2.6. The cure rate and survival probabilities are

then visualized using plots and maps.

2.2 Cure rate models

When competing cause, M;, follows Bernoulli or Poisson distributions, we obtain
Bernoulli mixture cure rate model (Model 1) or Promotion time cure rate model
(Model 2) from the PS cure rate model. In this case, the power parameter of the
distribution is 6; = exp(z!'b), where 6; > 0, and b is the vector indicating the effects

of covariates on 6; , with 6; being associated with cure probability.
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Bernoulli mixture cure rate model (Model 1)

By choosing the series function of PS model, G(6;), to be G(6;) = (1 + 6;), and
combining it with the choice of the power parameter of distribution §; = exp(x!b),
the competing cause M; follows a Bernoulli distribution. In this case, we obtain a

Bernoulli mixture cure model (Model 1), with

Poi = %&, (2.38)

Sp(ti) = poi + (1 — poi)S(ti), (2.39)
0;

folts) = (1+91>f(ti)- (2.40)

where py; are the cure probabilities, S,(¢;) is the population survival function for
Model 1, and S(t;) is the survival function calculated from the baseline survival func-
tion as So(t;)*P=/B) . The density function is f(t;) = A(t;) * S(¢;), and the hazard
function A(¢;) is calculated from the baseline hazard function as A = A\o(t;)exp(z! 3).
Also, B is a vector representing the effects of covaraites on the survival model com-

ponent.

Promotion time cure rate model (Model 2)

By choosing the power parameter of the PS distribution as ; = exp(x! b) and set the
series function G(6;) to be G(0;) = exp(6;), M; follows a Poisson distribution, and the
promotion time cure rate model (Model 2) is obtained in this case from the PS cure

rate model. The corresponding cure probability, population survival and population
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density functions are given by

poi = exp(—0;) (2.41)
Sp(ti) = exp(—0;F (1)), (2.42)
fp(ti) = 0:f (t;)exp(—0;F(t;)), (2.43)

where F(t;) = 1 — S(t;), S(t;)) = So(t;)***#) and B is a vector representing the
effects of covaraites on the survival model component. The hazard function A is
A = Xo(t;)exp(zI'B3), \o(t;) is the baseline hazard function that follows the GEV
distribution as discussed in (1.15), and Sy(t;) is the baseline survival function from
GEV distribution in (1.14).

When the competing cause follows the geometric and logarithmic distributions,
the geometric cure rate model (Model 3) and logarithmic cure rate model (Model 4)
are obtained from the PS cure rate model. The power parameter ; in these case is

set to be

0, — exp(z; b)

= 2.44
1+ exp(x]b)’ (244

where 0 < 6; < 1, and b is the vector representing the effects of covariates on 6;. Also,

9; is associated with cured probability po;;.

Geometric cure rate model (Model 3)

Setting series function to be G(6;) = and combining it with the choice of power

1
parameter in (2.44), M; follows a geometric distribution, and the geometric cure rate

model (Model 3) is then obtained from the PS cure rate model. The cure probability,
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population survival and population density functions given by

poi=1—10; (2.45)
Sp(ti) = T=6,5(t) (2.46)
fo(ts) = 0:(1 — 0;) f (t:)[1 — 6:S(t:)] 2, (2.47)

where S(t;) = Sy(t;)**#) the density function constructed using baseline hazard
function is f(t;) = AS(t;), and X\ = A\o(t;)exp(zI'B). Ao(t;) and Sy(t;) are the baseline
hazard and survival functions from the GEV distribution as presented in (1.15) and
(1.14). Unlike b focusing on the effect on cure probabilities, 3 is a vector representing

the effects of covariates on the survival component.

Logarithmic cure rate model (Model 4)

The PS cure rate model changes to a logarithmic cure rate model (Model 4) if M,

follow a logarithmic distribution with series function G(6;) = %}_ei) and power
parameter 0; as in (2.44 ). The cure probability, population survival and population

density functions in this case are given by

0,

Poi = log(1—6,)’ (2.48)

Solts) = S(ti)log(1l —6;)’ (2.49)
_ f(t:) log(1 — 0;5(t;)) ,

foti) = ~S(los(l =0 5 T o5 (2.50)

where the survival function S(t;) = So(t;)*P=#) and B is the vector representing

the effects of covaraites on the survival model component. The density function
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f(t;) = AS(t;), with the hazard function being A = A\o(¢;)exp(z!3), where A\o(¢;) and
So(t;) are the baseline hazard and survival functions from the GEV distribution as

given in (1.15) and (1.14).

2.3 The expression of log-likelihood function for
cure rate models

2.3.1 Bernoulli mixture cure rate model (Model 1)

In case the competing cause of event M, follow a Bernoulli distribution, the log-

likelihood as the complete likelihood function is given by

(&t T 2, z) = Z log{< exp(z!b)

Nex ] Nexp(zTB)
1 + exp(x?'d)) Mo(ti)exp(z; B)So(t:) }

IS 5121
1
1—J)Nogd —— =~
+ Z;;O( J; log { = exp(min)} (2.51)
1 T
*1 ] = t;)eP (= 8)
’ 520 filoe { ( 1+ exp(w?b))&)( ) }

where & = (b, ', 1, 0,7)". The detailed steps of obtaining log-likelihood function in
this case are presented in Appendix A.
Recall that the baseline survival function and baseline hazard function have two

forms depending on parameter v. When ~ = 0, the log-likelihood function is given
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by

L&t J* . 2) = Z 10g{( exp(z!b) Lexp(—log@i) —M)

, 1 + exp(x?'d)) ot; o
7: 52']':1

log(:) — oy 1] -

X [exp {exp(— .

x exp(z.;3) {1 —exp{ — exp(w)}}exp( Zﬂ)}

s 1_J*)1og{1+e+p(Tb)}

i: 6;=0

1
£ 1- =
- 3 s (- )

) {1 exp( — eXp(M)}]exp(z?m}

g

(2.52)

When ~ # 0, the log-likelihood function has the general form of

(&t T* _ | exp(z;b) 1 log(ti) — p1y =21
&b 2 Z-%;l Og{(l—i—exp( b)) ot (1+7 pu )

o))
x exp(z! B) {1 _ exp{ (14 o8l —p log(tz) );Hexp(zz"ﬁ)}
+ “;ZO (1— J)log {m}

1
*] 1l—-
+ Z Ji og{( 1+exp(win)>

1 tz _ —1 exp(zzTﬂ)
X {1—exp{—(1+’y—og(a) 'u)ﬁ H },

(2.53)
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where X, = max(0,X), n € R and 0 > 0. Then, it can be further split into cases
where v > 0 and v < 0 corresponding to Fréchet and Weibull baseline distributions,

respectively.

2.3.2 Poisson cure rate model (Model 2)

In case the competing cause of event M; follow a Poisson distribution and the assump-
tion of the event of interest occur when first competing cause presents, by combining

(2.41) - (2.43) the log-likelihood the complete likelihood function is given by

(&t J" @, 2) = Z log{exp(mzb))\o(ti)exp(zfﬂ)so(tz‘)eXp(ziTﬂ)

% eXp[ o exp(cclTb)(l _ SO (ti)exp(Z?B))} }

+ Y (1= J7)og {exp(—exp(a] b))}

i: 0;=0

+ ) Jilog {eXp[ — exp(@] b) (1 — Sy(t:)**=?))] - eXp(—eXp(w?b))}'
i 0;=0

(2.54)

It changes to two forms depending on the shape parameter, ~, of the baseline. The
detailed steps of obtaining this log-likelihood function for Model 2 are presented in

Appendix A.

2.3.3 Geometric cure rate model (Model 3)

When the competing cause of event, M;, follow a geometric distribution, the geometric

cure rate model has the complete log-likelihood function as
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B exp(z]b) 1 Vexp (2T
=) log{leeXp(min)(1+exp(m;b))>\o(tz) p(z; B)

i 5,11

X So(t:) P B |1 — MS (1,)oP=TP) -
o 1+ exp(xzlb) """

+ Z (1 —J)log {m}

i:0;=0
1
* T+exp(2Tb) 1 }
i:;0 & { 1— MS()(ti)exp(z?ﬂ) |:1 + eXp(wZTb) }

1+exp(zl b)

(2.55)

This changes to two forms depending on the shape parameter, 7, of the baseline. The
detailed steps of obtaining the log-likelihood function for Model 3 are presented in

Appendix A.

2.3.4 Logarithmic cure rate model (Model 4)

In case the competing cause of event M; follow a logarithmic distribution, PS cure rate

model reduced to the logarithmic cure rate model, with its complete log-likelihood
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function as

. —o(ti)exp(z] B) Sy (t:) =P
lC ;t7J b ) = 1
(& x,z) Z Og{S()( )P T B log(1 — P @B )

i:0;=1 1+exp (x]'b)
X b ex X b
Fogu——;;f ) T ”
exp(z1B) exp ex
So(t:) 1—m50()p ‘P

___exp (z; b)
« 14exp (x7'b)
+ (1 —J)log :
Z lOg( exp (zI'b) )

it 6;=0 T+exp (z7b)

X X T'p)
log(1 — —e :(m 5 S (t;) 0= P)) __® 1:((961 b
+ E Jtlog o | - ( e (2.) .
log(1 )

exp(zT exp (w?b) exp (w?b)
) Pz B)log(l T l4exp (mlTb)> 1+exp (zI'b)

(2.56)

The log-likelihood has two forms depending on shape parameter, v, of the baseline.
The detailed steps of obtaining the log-likelihood function for Model 4 are presented
in Appendix A.

In fact, we do not have complete information for the subjects that are right cen-
sored. The survival status remain unknown for the censored subjects since they
can be either cured or susceptible. We overcome this difficulty by implementing the

stochastic step (S-step) described in the following section.

2.4 Stochastic Expectation-Maximization (SEM)
algorithm for cure rate models

To properly start the SEM algorithm, we fix a set of initial values using the grid

search method based on 2000 points within the parameter space. The best set of
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parameter values, that are chosen as the initial values, is the one that maximizes the

observed data log-likelihood function.

Step 1: Initialization

We use the recorded set of parameters that optimize the log-likelihood function using

grid search. The notation of the initialized parameter is
!/ !/
0 = @ 3O L0 5O Oy

If lifetime is observed, we have 9; = 1 and ¢;, which implies the subject is suscep-
tible, and so J; = 1. If the lifetime is unobserved, we have §; = 0 and ¢; = ¢;, and
the lifetime status of the subject is unknown, and in this case J = 0 if cured and

J; =1 if uncured.

Step 2: Stochastic step (S-step)

Recall that for censored subject ¢, we have §; = 0, and J* can be generated from a

Bernoulli distribution with conditional probability of success as

py) = PLI; =1|T} > ¢;; €] (2.57)
_ Pt el =Pl = 1 259
P[T; > ¢ £=¢(©)

Sp(cuwi,zi;f( ))

where py; and S, are the cure probabilities and the survival function are as in (2.38),
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and (2.39) presented in Section 2.2.

Step 3

If the censored subject is susceptible, i.e., J" = 1, the complete lifetime ¢} is from the

truncated distribution with density function as

tr, @i, zilu; €0) = Jolti, i 2il: , 2.60
fT( ' ’ : ) Sp(ci,wi,zi\;ﬁ(o)) ( )

where ¢; < t7 < oo. The corresponding cdf is

Sp(cis @i, 2, €0) — Sy (t1, @i, 23 €)

Fr(th, a;, zi; €9) = , 2.61
A &) Sp(ciawiazi;é(m) ( )
where ¢; < tf < 0o, which is not a proper cdf since
Sp(¢i, i, 23 ) — i\Li ©
lim Fp(ts, a2 £0) = 2l T 25 €7) —pou@i&7) (2.62)

00 Sp(ci,xi, 2::€)

The cured/immunized subject with J = 0 is treated as long term survivor and
its theoretical lifetime is infinity with respect to the event of interest. Hence, it takes
form of limy: Sp(tr, @i, zi; E(O)) = poi(x;; 5(0))-

To generate t} from (2.60) under the susceptible scenario, we adopt inverse trans-
formation sampling technique. It is easy to show that Fr(tf,x;, z;; 5(0)) follows an
Uniform(a*, b*) distribution with parameters

Sp(ci, @i, 2 €Y — poi(xi; €?)

a* =0andb* = 5
Sp(ciuwiazi;g( )>

(2.63)
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Model 1

When assuming latent cause, M;, follow Bernoulli distribution, we look at the Bernoulli
mixture cure rate (Model 1) from the PS cure rate model, S,(c;,x;, z;;€®) and

poi(xi; €)Y are replaced by (2.38) and (2.39). Now b* is given by

. oxp(@]b)Sp(c;) = P
1 4 exp(2'b)Sy(c;)xP=IA)

(2.64)

Model 2

When assuming latent cause, M;, follow Poisson (promotion time cure rate (Model

2)), Sp(ci,wi,zi;é(o)) and pOi(wi;E(O)) are replaced by (2.41) and (2.42). Also, b* is

given by
b — exp(—0;)exp(0:S(c;)) — exp(—0;) _ exp(0;5(c;)) — 1
exp(—0;)exp(0;5(c;)) exp(6;;5(ci))
=1—exp{ —6:5(c;)} =1 —exp{ — exp(w?b)So(ci)eXp(z?ﬁ)} (2.65)
Model 3

When assuming latent cause, M;, follow geometric distribution, we obtain geometric
cure rate model (Model 3), with S,(c;, @, 2;;€®) and po;(x;; €©) being given by
(2.45) and (2.46). Also, b* is given by

=0 (1 0;)
* 1—915 C; ( ?
b = - = 0,5(c;))
I—GiS(ci)
= exp(a] b)So(c:) ™= /{1 + exp(a] b) } (2.66)
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Model 4

When assuming latent cause, M;, follow logarithmic distribution (logarithmic cure
rate model (Model 4) from PS cure rate model), S,(¢;, T, 2;; E(O)) and po;(x;; E(O)) are
as in (2.48) and (2.49). Also, b* is given by

log(1—0;5(t))
o S(c)log(l — ;) losi=0) 1+ 0;S(c;)
N log(1 — 6;5(¢;)) N log(1 — 6;S(c;))

S(c;)log(1 — 6;)

- exp(] b)Sy(c;) PP (2.67)

exp(2Tb)So(c;) <P P

Step 4: Maximization step (M-step)

We fill the censored data with the generated data from Step 3. Now, the improved

estimate of & can be found using the pseudo-complete data as

/ !/
5(1) — (b(l) 713(1) ,,u(l),a(l),’y(l))/

= arg maxlogLe(&; (¢, J7), (¢7, J™), @, 2),
3

where t* and J™ are vectors of tf and J*. The optimal value of £ is obtained using
the ‘L-BFGS-B’ package in R software where the algorithm is set to be converged

when the desired tolerance level is achieved, i.e., [£.43 — &] < 1075,

Step 5: Iterative step

Using the estimate £ = (5(1),,6(1),,,&(1),&(1),&(1))’, that we obtained in Step 4,

we repeat Step 2 to Step 4 R times, to generate é(r) = (B(T)/,B(")/,ﬂ(’"),&(”)ﬁ(”)’,

o4



Ph.D. Thesis - Xinyi Wang McMaster - Mathematics and Statistics

r=1,..., R. The result, a sequence of estimates, is a Markov Chain; instead of con-
verging to a single value, it converges to a stationary distribution under the standard

conditions as discussed in Diebolt and Celeux (1993) and Diebolt and Ip (1995).

Step 6: Burn-in and MLE step

To obtain the stationary distribution, as mentioned in Step 5, we discard the first
r* (i.e., 200 and 500) iterations as a burn-in step, and compute the estimates by
averaging every third of the remaining iterated estimates to avoid auto-correlation.
By adopting the burn-in period, the random perturbations of the Markov chains

preclude the influence of local maximum, thus making the estimates more reliable.

2.5 Simulation study

We adopt here the simulation setup described in Section 1.13. We consider two sample
sizes, n = (500, 1000), to mimic the data with moderate and large sample sizes. We
further fix the X;; to be a categorical variable that follow a Bernoulli distribution
with success probability of 0.6, Ber(p = 0.6).

In different settings, the competing cause, M;, are assumed to follow Model 1,
Model 2, Model 3, and Model 4, and baseline is set to follow Type I, Type II, and
Type III of GEV distribution. We then fit all four models with the three choices of
baseline to the simulated dataset, and assess the model performance.

When M;; follow Bernoulli and Poisson, i.e., when we consider Bernoulli cure rate

model (Model 1) and promotion time cure rate model (Model 2), we have

Qi = exp(bo + bl * $Z‘), (268)
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and ¢ = 1,...,500(1000). When M;; follow geometric and logarithmic distributions,
i.e., the PS cure rate model changes to a geometric cure rate model (Model 3) and a

logarithmic cure rate model (Model 4), we have

0; = exp(bo + by * ;) /(1 4 exp(bg + by * x;)), (2.69)

and i = 1,...,500(1000). Cure rates and survival probabilities for Model 1 to Model
4 are given in Table 2.6. The simulated dataset considers low to moderate level of
censoring, high level of censoring and extra high level of censoring. In addition, we
conduct the analysis on the true parameter settings that generate types of cure rate
to be the low level cure rate, moderate level of cure rate, and high level cure rate.

Censored lifetime for individual i is generated from an exponential distribution
with parameter cc, C; ~ Exp(cc). We generate Y; from the quantile function of the
GEV distribution with parameters u, o, and 7. If Y; < C;, we set §; = 1, and
0; = 0 otherwise. We adjust the parameter of the exponential distribution, leading
to different censored lifetimes and different censored proportions for the data. The
number of iterations was set to 1200, with the first 200 as burn-in, and the spacing
was fixed to 3 to avoid autocorrelation.

Table 2.5: The settings of the shape parameter, v, considered for the baseline function

Baseline 7

Type 1 0.000

Type II ~ 1.600 2.550

Type III' -0.230 -1.100 -1.200 -1.500
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Table 2.6: Some of the cure rates and levels of censoring for the simulated datasets

Censoring Cure Rate
low to moderate 0.529 moderate 0.560
extra high 0.781 low 0.334
high 0.626 high 0.643
high 0.682 high 0.643
high 0.652 high 0.614
extra high 0.743 low 0.434
moderate 0.619 moderate 0.569
high 0.643 high 0.672
high 0.696 low to moderate 0.497

Table 2.7: The choice of true values for the model parameters

bo by By 1L o v (Type I, 11, TIT)
TV -0.700 0.520 0.640 0.200 0.170 0.000
TV -0.600 0.150 0.300 0.100 0.150 1.600
TV -0.890 0.530 0.875 0.140 0.440 -1.100
TV 0400 -0.590 -0.550 0.100 0.100 0.000
TV -0.450 0.770 0.400 0.350 0.900 2.550
TV 0.350 -0.640 -0.610 0.140 0.700 -1.500
TV -0.930 0.880 1.300 0.290 0.350 0.000
TV -0.880 0.880 0.820 0.130 0.450 -1.200
TV -0.600 -0.300 0.400 0.100 0.150 1.600
TV 0.620 -0.700 -0.620 0.550 0.900 -0.230
TV 1.100 -0.300 -0.310 0.150 0.450 0.000

Results

The estimated means are close to the true values, indicating that the algorithm suc-
cessfully converges to the data-generating parameters. When the candidate model
fitted to the simulated data coincides with the data-generating model, the resulting
bias and RMSE are low. This pattern is consistent across all models and aligns with
the original simulation setup. Variations in the cure rate do not affect algorithm

convergence or the recorded bias and RMSE. Coverage probabilities were calculated
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using confidence intervals constructed from the standard errors derived from the Hes-
sian matrix, with the interval containing the true value for each simulated dataset.
With a nominal confidence level of 95%, the observed coverage probabilities are close
to 95%.

When a candidate model differs from the data-generating model, the maximum
likelihood estimates obtained via the stochastic EM algorithm do not necessarily
converge to the true values, resulting in higher bias and RMSE. In these cases, the
observed coverage probabilities are lower than the nominal 95% level. The true pa-
rameter values, along with the corresponding estimates, biases, and RMSEs obtained
from fitting the true models, are presented in the following tables.

When we calculated the cure rate under Model 1, as shown in Table 2.10, the
p-values of the difference between the true cure rate (0.611, 0.646) and estimated
cure rate (0.628, 0.649) of our model under the low cure rate case are equal to 0.211
and 0.438, respectively. These correspond to the cases when the categorical variable,
x;, is equal to 1 and 0, respectively. As the obtained p-values are considered larger
than 0.05, we do not see a statistically significant difference between the true cure
rate and the estimated cure rate, and so we concluded that the difference observed
is due to random chance. When the true model is the same as the fitted model, the
results shown in Table 2.8 reveal that the true and estimated cure rates possess a
small difference in values, and all cases share similar characteristics in Table 2.10.
The difference of true cure and estimated cure rates result in p-values being larger
than 0.05. In short, we conclude the model we have proposed has successfully revealed

the true cure rate in the simulation study.
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Table 2.8: Simulation results of estimated means, Bias, and RMSE, for different
choices of baseline shape parameter, v, and true model and fitted model are the
same, based on 1200 iterations.

True: Bernoulli
Fitted: Bernoulli
Baseline: v =10

n Censoring Cure Rate Parameter T.V. Estimate Bias  RMSE
(high) (low)
1000 0.748 0.330 b 0.400 0.519 0.119 0.154
by -0.590 -0.540  0.050  0.098
B4 -0.550 -0.564 -0.014  0.112
I 0.100 0.072 -0.028  0.032
o 0.100 0.064 -0.036  0.039
y 0.000 -0.013 -0.013  0.014

True: Poisson

Fitted: Poisson

Baseline: 7 =0

n Censoring Cure Rate Parameter T.V. Estimate Bias  RMSE

(high) (low to mid)

1000 0.743 0.434 by -0.700 -0.651  0.049  0.069
by 0.520 0.536  0.016  0.042
b1 0.640 0.642 0.002  0.010
i 0.200 0.162 -0.038  0.050
o 0.170 0.152 -0.018  0.042
04 0.000 -0.032 -0.031  0.033

True: Bernoulli

Fitted: Bernoulli

Baseline: v = 2.55

n Censoring Cure Rate Parameter TV Estimate Bias =~ RMSE
(mid) (mid)
1000 0.529 0.560 by -0.450 -0.385  0.065  0.093
by 0.770 0.844 0.074  0.107
51 0.400 0.447 0.047  0.113
1 0.350 0.331 -0.019  0.053
o 0.900 0.812 -0.088  0.144
v 2.550 2.456 -0.094  0.152

29



Ph.D. Thesis - Xinyi Wang

McMaster - Mathematics and Statistics

True: Bernoulli
Fitted: Bernoulli
Baseline: v = —1.5

n Censoring Cure Rate Parameter TV Estimate  Bias RMSE
(high) (low)
1000 0.781 0.334 bo 0.350 0.336 -0.014  0.060
by -0.640 -0.693 -0.053  0.074
B -0.610 -0.633 -0.023  0.185
1 0.140 0.228 0.088  0.130
o 0.700 0.607 -0.093  0.105
v -1.500 -1.514 -0.014  0.104
True: Poisson
Fitted: Poisson
Baseline: v = —1.1
n Censoring Cure Rate Parameter TV Estimate Bias  RMSE
(high) (high)
1000 0.652 0.6136 by -0.890 -0.880  0.010  0.048
by 0.530 0.567 0.037  0.043
B4 0.875 0.878 0.003  0.011
1 0.140 0.147 0.007  0.042
o 0.440 0.397 -0.043  0.068
¥ -1.100 -1.119 -0.019  0.036
True: Geometric
Fitted: Geometric
Baseline: v = —1.2
n Censoring Cure Rate Parameter TV Estimate Bias =~ RMSE
(high) (high)
1000 0.626 0.643 by -0.880 -0.868 0.012  0.119
by 0.880 0.893 0.013 0.024
B4 0.820 0.865 0.045  0.061
1 0.130 0.143 0.013  0.051
o 0.450 0.431 -0.019 0.071
v -1.200 -1.200 0.000 0.184
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True: Geometric

Fitted: Geometric

Baseline: v =10

n Censoring Cure Rate Parameter TV Estimate Bias  RMSE

(high) (high)
1000 0.643 0.672 by -0.930 -0.952 -0.022  0.026
by 0.880 0.881 0.001  0.017
B 1.300 1.317 0.017  0.018
I 0.290 0.316 0.026  0.039
o 0.350 0.330 -0.020  0.041
0 0.000 -0.071 -0.071  0.305

True: Logarithmic

Fitted: Logarithmic

Baseline: 7 = —0.23

n Censoring Cure Rate Parameter TV Estimate Bias  RMSE

(high) (high)
1000 0.619 0.569 by 0.620 0.629 0.009 0.075
by -0.700  -0.706 -0.006  0.061
B 0.62  -0.630 -0.010  0.076
[ 0.550 0.546 -0.004  0.040
o 0.900 0.913 0.013  0.093
v 0230 -0.217  0.013  0.029

True: Logarithmic

Fitted: Logarithmic

Baseline: v =0

n Censoring Cure Rate Parameter TV Estimate Bias  RMSE

(high) (moderate)
1000 0.696 0.497 b 1.100 1.196 0.096  0.103
by -0.300 -0.280  0.020  0.035
B -0.310 -0.297 0.013  0.024
1 0.150 0.215 0.065  0.074
o 0.450 0.424 -0.026  0.027
vy 0.000 -0.078 -0.078  0.085
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True: Bernoulli

Fitted: Bernoulli

Baseline: v = 2.55

n Censoring  Cure Rate  Parameter TV Estimate Bias  RMSE
(moderate) (moderate)

500 0.588 0.535 by -0.450 -0.430 0.020  0.088
by 0.770 0.653 -0.117  0.180
B 0.400 0.388 -0.012  0.137
0 0.350 0.317 -0.033  0.071
o 0.900 0.808 -0.092  0.191
y 2.550 2,536 -0.014  0.131

True: Poisson

Fitted: Poisson

Baseline: v = —1.1

n Censoring Cure Rate  Parameter TV Estimate Bias  RMSE

(high) (moderate)
500 0.686 0.589 by -0.890 -0.864 0.026  0.193
by 0.530 0.522 -0.008  0.043
B 0.875 0.881 0.006  0.062
i 0.140 0.1564 0.014  0.036
o 0.440 0.322 -0.118  0.135
v -1.100 -1.025 0.075  0.300

True: Geometric
Fitted: Geometric
Baseline: v =0

n Censoring  Cure Rate Parameter TV Estimate Bias ~ RMSE
(moderate)  (high)

200 0.626 0.683 b -0.930 -0.950 -0.020  0.025
by 0.8380 0.888 0.008  0.010
51 1.300 1.316 0.016  0.017
! 0.290 0.323  0.033  0.050
o 0.350 0.357 0.007  0.048
¥ 0.000 -0.075 -0.075  0.078
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True: Logarithmic
Fitted: Logarithmic
Baseline: v =10

n Censoring Cure Rate Parameter TV Estimate Bias  RMSE
(high) (high)

500 0.626 0.683 by 0.620 0.642 0.022  0.129
by -0.700 -0.707 -0.007  0.089
b1 -0.620 -0.629 -0.009  0.132
L 0.550 0.546 -0.004  0.034
o 0.900 0912 0.012 0.074
v -0.230 -0.212  0.018  0.027

Table 2.9: Simulation results of mean estimates, bias, and root mean square error
(RMSE) based on 1200 iterations. (n = 1000, censored proportion = (Case 1: 0.68,
Case 2: 0.73), moderate and high cure rate = (0.611, 0.711))

True M;; : Geometric

Fitted M;; n Censoring Cure Rate Par. T.V. Estimate Bias = RMSE
Geometric 1000 Case 1 moderate by -0.600 -0.526  0.074  0.129
by 0.150 0.127 -0.023  0.066
ot 0.300 0.277 -0.023  0.280
1 0.100 0.053 -0.047  0.048
o 0.150 0.093 -0.057  0.060
v 1.600 1.660 0.060  0.130
Geometric 1000 Case 2 High bo -0.600 -0.619 -0.019  0.040
by -0.300 -0.254  0.046  0.064
b1 0.400 0.372 -0.028  0.151
i 0.100 0.051 -0.049  0.049
o 0.150 0.089 -0.061  0.062
v 1.600 1.661 0.061  0.096
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Table 2.10: Cure Probabilities: n = 1000

Geometric

censored:0.682, lower cure rate
Cure Rate z;,=1 z; =0
True 0.61064 0.64566
Estimated  0.62803 0.64897

2.6 Analysis of smoking cessation data

Signs of cure fraction for by, by, b3, and by, corresponding to gender, duration, treat-
ment, and consumption, are the same for all selected models except the intercept, by.
Estimated empirical means of b have the lowest standard errors under the promotion
time cure model (Model 2), where b is related to the cure fraction. We may therefore
obtain the inferences on the cure rate via survival plots as shown in Figures 2.4 and
2.5.

Signs of By and 4, covariates for the survival function, are the same for all selected
models. (; has a negative sign under the promotion time cure model (Model 2) and
logarithmic cure model (Model 4), and a positive sign under others. (3 is negative
under Bernoulli (Model 1), and positive under others. Estimate means of 5 have the
lowest standard errors under the promotion time cure model (Model 2). The means
of parameters for baseline distribution g (mean), o(scale),y(location), are all close
values for all the models.

The b parameters are related to the cure fraction and so we may obtain inferences
on the cure rate. In Figure 2.4, for a patient who has smoking duration of 30 years,

and consumption of 6 cigarettes per day, the survival function of a male patient with
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smoking intervention (blue curve) has lower probability of survival than a female pa-
tient (red curve) who received smoking intervention and same smoking habits. We
may conclude that for this particular population where smokers received smoking in-
tervention, the women smokers have higher probability of quitting than men smokers.
The patient who received smoking intervention, i.e., treatment, has higher probability
of quitting than the one who received usual care, as shows in Figure 2.5. The smoker
who has higher level of cigarette consumption has lower probability of quitting than
the ones who smoke less.

Recalling that the confidence interval is calculated using the formula (é —21-5 /28€<€ ), é +
21-§ /gse(é) ), we calculated the 95% confidence interval and have presented them in
Table 2.11 and 2.12.

Table 2.13 presentes negative log-likelihood, AIC, BIC, and AICc values for Models
1 to 4. The promotion time cure model (Model 2) is seen to give the lowest AIC,
BIC, AICc values among all.

Based on all the results, we observe that the model that has the lowest AIC and
BIC scores, among all the models considered for the smoking cessation data, is the
promotion time cure rate model (Model 2) with Type II of GEV as baseline. We
visualize the difference of the survival function based on the optimized estimates of
the parameters for Model 2 in Figures 2.4 and 2.5. Figure 2.6 is an example of the
parameter evolution graphs for the 11 parameters of Model 2 and it shows that the
estimates of the model parameters oscillate around the mean after the burn-in period
of 500. Thus, we note that our algorithm has converged. (Additional graphs are
presented in Figure A.18 in Appendix A.)

Finally, the cure rates and survival probabilities of all 223 patients are predicted,
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and the results have been visualized using maps in Figure 2.3. The darker pink/purple
colours are associated with high cure rates and survival probabilities, and the lighter
pink colour indicates lower cure rates and lower survival probabilities. The patients
are stratified by the zip code they belong to. For regions with more than one patients,
we use the average cure rate of the region and the average survival probability of the
region for demonstration and colouring purposes. The maps indicate patients from
unalike zip codes have cure rate and survival probabilities that fluctuate. For these
reasons, in the following Chapters, we introduce spatial frailties to our models, and

so spatial survival analysis is designed and conducted in the subsequent chapters.

Figure 2.3: Maps of cure rate and survival probabilities stratified by zip codes.

Model 2: cure rate stratified by 51 zip codes

cure rate

Latitude

-93.5 -93.0 -92.5 -92.0 -91.5

Longitude

Model 2: survival prob stratified by 51 zip codes

Latitude

-93.5 -93.0 —925 -92.0 -91.5

Longitude
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Table 2.11: Estimated mean, standard error, and 95% CI when competing causes
follow Bernoulli and Poisson (Model 1 and Model 2) for the smoking cessation data
(Iterations: 3000, Burn-in: 500, and Spacing: 3).

Model 1
Parameter Mean SE  2.50% 97.50%
bo (Intercept) -0.373  0.788 -1.917  1.171
by (Gender) 0.681 0.313 0.067 1.295
by (Duration) -0.015 0.021 -0.057 0.027
bs (Treatment) -0.567 0.347 -1.248  0.115
by (Consumption) 0.066 0.016 0.036 0.097
p1 (Gender) 0.321 0.261 -0.190  0.833
P2 (Duration) -0.001 0.012 -0.024 0.021
Ps (Treatment) -0.179 0.280 -0.728 0.371
B4 (Consumption) 0.000 0.010 -0.020  0.020
I 3.234 0.665 1.931 4.537
o 6.982 2.058 2948 11.015
% 2.805 0.232 2.351 3.259
Model 2
Parameter Mean SE  2.50% 97.50%
bo (Intercept) -0.187 0.446 -1.062  0.687
b1 (Gender) 0.684 0.202 0.288 1.080
by (Duration) -0.014 0.012 -0.038  0.011
bs (Treatment) -0.433 0.211 -0.846  -0.020
by (Consumption) 0.038 0.009 0.021  0.056
B, (Gender) 0.252 0.305 -0.850  0.346
P2 (Duration) -0.002 0.013 -0.027 0.023
Ps (Treatment) 0.054 0.324 -0.582 0.690
B4 (Consumption) -0.025 0.013 -0.050  -0.001
I 3.274 0.659 1.982 4.567
o 7.038 2.042 3.034 11.041
ol 2,777 0.231  2.324 3.230
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Table 2.12: Estimated mean, standard error, and 95% CI when M;; follow geomet-
ric and logarithmic models (Model 3 and Model 4) for the smoking cessation data
(Iterations: 3000, Burn-in: 500, and Spacing: 3).

Model 3
Parameter Mean SE  2.50% 97.50%
bo (Intercept) 0.670 0.666 -0.636  1.976
by (Gender) 0.555 0.301 -0.034  1.144
by (Duration) -0.025 0.019 -0.061 0.012
bs (Treatment) -0.547 0.351 -1.235  0.141
by (Consumption) 0.024 0.013 0.000  0.049
f1 (Gender) 0.019 0.345 -0.657  0.694
P2 (Duration) -0.009 0.015 -0.039 0.021
Ps (Treatment) 0.046 0.388 -0.714 0.807
B4 (Consumption) -0.008 0.014 -0.035  0.019
I 3.900 0.936 2.066 2.735
o 8.408 2.865 2.794 14.023
¥ 2.656 0.214  2.237 3.076
Model 4
Parameter Mean SE  2.50% 97.50%
bo (Intercept) 2.072 1.250 -0.378 4.522
by (Gender) 0.770  0.551 -0.310  1.850
b, (Duration) 20.069 0.036 -0.140  0.002
bs (Treatment) -0.815 0.641 -2.072  0.441
by (Consumption) 0.081 0.025 0.032  0.130
B, (Gender) 0.015 0.396 -0.791  0.761
P2 (Duration) -0.003 0.019 -0.040 0.033
Ps (Treatment) 0.135 0.459 -0.764 1.034
B4 (Consumption) -0.019 0.018 -0.054  0.016
! 4.198 1.352 1.548 6.849
o 7.683 4.031 -0.219 15.584
ol 2.151 0.212 1.735 2.567
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Table 2.13: Negative log-likelihood values, AIC, BIC, AICc for Model 1, Model 2,
Model 3, and Model 4 for the smoking cessation data (Iterations: 3000, Burn-in: 500,

and Spacing: 3).

Activation Distribution of M;; -Il AIC BIC AICc

Random Model 1 295.368  614.735 655.621  616.221

First Model 2 292.638 609.277 650.163 610.762
Model 3 296.250  616.500 657.386  617.985
Model 4 294.602 613.205 654.091  614.690

Survival plots

Figure 2.4: Survival Plots (C.P.): Female vs Male w/ SI

Gender : (Duration = 30 and Cigarette = 6)
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Figure 2.5: Treatment: Female, Consump:6, Duration: 30

Treatment : (Female, Duration = 30 and Cigarette = 6)
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Figure 2.6: Parameter evolution plots for by, b; and by of the SEM algorithm when
M;; follow Model 2 for the smoking cessation dataset. (2500 iterations after burn-in
period of 500)
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Chapter 3

Stochastic EM-based Likelihood
Inference for First Activation
Scheme of PS Cure Rate Model

with Gaussian Spatial Frailties

3.1 Introduction

In this chapter, we consider spatial component that exists in the data, and reveal the
impact of location of a patient on the occurrence of event of interest. We will thus
extend survival analysis carried out in the last chapter to spatial survival analysis. We
incorporate spatial frailties into cure rate models, assuming that the event of interest
occurs when the first possible competing cause is present (first activation scheme)

and when some competing causes are present (random activation scheme).
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Recall that we assume in the ith region (i = 1,...,7), there are n; number of
subjects indexed by j = 1,...,n;. The observed event time for the (4, j)th subject is
denoted by T;;.

The competing cause M;; is assumed to follow power series cure rate model with
p.m.f. asin (1.3). Given that the number of competing causes for the (7, j)th indi-
vidual is M;; = m, let random variable Wj-;; be the time-to-event due to the £*th
latent risk, with distribution function F(-) = 1 — S(-) and survival function S(-), for
k*=1,2,...,m.

The reality is that the competing cause M;; and the lifetime related to a specific
cause, Wi;;, are not observable. Under the first activation scheme, assuming that any
competing cause will eventually trigger the event, the time to the event of interest is
denoted by the random variable Tj; = min{Wy;, ..., Wy, } for M;; > 1, and Tj; = oo
if M;; =0 with P[Y;; = oo | M;; = 0] = 1. Under the random activation scheme, the
event occurs when some possible competing causes are presented, given the number
of competing causes M;;, the number of activated competing causes is then a random
variable with the discrete uniform distribution on {1,..., M;;}.

The spatial frailties are constructed by using the geospatial information (longitude
and latitude) and the Gaussian process. In Section 3.2, the Gaussian spatial effects
are added to cure rate models, which results in Bernoulli mixture cure rate model
with spatial frailties (Model 5), promotion time cure rate model with spatial frailties
(Model 6), geometric cure rat model with spatial frailties (Model 7), and logarithmic
cure rate model with spatial frailties (Model 8). The details of the developed models
are presented in Section 3.2. The steps for the derivation of the log-likelihood function

and the estimation technique using SEM algorithm are developed and presented in
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Sections 3.3 and 3.4, respectively. In Section 3.5, an extensive simulation study
is conducted with consideration to different sample sizes and parameter settings for
evaluating the performance of Models 5 - 8. Model selection and model discrimination
are performed and the obatined results are presented in Section 3.5. In Section 3.6, the
proposed models are illustrated with a real life dataset. The effect of spatial frailties
are captured by the proposed models, and the different spatial effects on cure rate
and survival probabilities are demonstrated using heat maps. The obtained results
are visualized by survival plots as well. The parameter evolution plots for the our
model parameters are provided for ensuring the convergence of the SEM algorithm.
In addition, the results of the likelihood ratio test do confirm the necessity of adding

spatial effect to the proposed cure rate models.

3.2 Cure models

As discussed in Section 1.10, the spatial component is added to our model in linear
combination shown in Egs. (1.8) and (1.9), where ¢;; = 2{,8+4u; and of; = &b+ u,
fori=1,...,1, 7=1,....,n;

When the competing causes M;; follow Bernoulli or Poisson distributions, the PS
cure rate model reduces to a Bernoulli mixture model or a promotion time cure rate

model, respectively, with the power parameter given by 6;; = exp(azg;b + u;).
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Bernoulli cure rate with spatial frailties (Model 5)

In the case where we assume that the latent competing causes M;; follow a Bernoulli
distribution, a Bernoulli mixture cure model with spatial frailties (Model 5) is ob-
tained from the PS cure rate model, with the spatial effect modeled through a Gaus-
sian process. In this setting, the series function is G(6;;) = 1+ 6;;. From (1.4), the

mass function of M;; takes the form

1 1-my; 0 ™
e = P(M;; = my;;) = A B .
o =Pt =m0 = (5 ) (70%) 70

for 0;; > 0, m;; = 0, 1. The cure probability is

poij = P(M;; = 0) =

. 71
1+ 0, (3.71)

The population survival function and probability density function for the population

are
1 1—my; mij
Solha) = mz;o <1 + 9ij> (1 + eij) Stty)
= poij + (1 — poi;j)S(tij), (3.72)
0.
fo(tis) = —5—f(ti;), (3.73)
P (14 0,)7 Y
respectively.
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Poisson cure rate with spatial frailties (Model 6)

When M;; follow a Poisson distribution, the promotion time cure model with spatial
frailties (Model 6) is obtained from the PS cure rate model, with the spatial effect
incorporated through a Gaussian process. In this case, the series function has the

form G(6;;) = exp(6;;). From (1.4), the mass function of M;; is

0.
e = P(M;; = m;;) = —2——| 3.74
for 0;; >0, m;; =0, 1, .... The cure probability is
poij = P(M;; = 0) = exp(—0;;). (3.75)

The population survival function and probability density function are given by

Splti) = Y ——S(t;))™

, mtexp(b;;)

= exp(—0;;) Z [Qwsgiz'])]m”

= exp(—b;;)exp(0;S(Li;))

— exp(—0,F (), (3.76)
fo(tiz) = 05 f (tij)exp(—0:;F'(t;)), (3.77)

respectively, where f(t;;) = \(ti;) * S(ti;).

When the PS cure rate model changes to a geometric cure rate model and a
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logarithmic cure rate model, we have the corresponding power parameter to be

exp(x;b + u;)

;=
7 1+ exp(alb+ uy)

Geometric cure rate with spatial frailties (Model 7)

(3.78)

When M;; follow a geometric distribution, we obtain the geometric cure rate model

with spatial frailties (Model 7). The series function in this case has the form G(6;;) =

——. From (1.4), the mass function of M;; is
ij

Pm;; = P(Mi; = my;) = (1 — Hij)ei-?”,
for 0 < 0;; <1, m;; =0, 1, .... The cure probability is

The population survival function and probability density function are

Sp(ti;) = Z (1 — Qij)eglijs(tij>mij
mi]-:O

Fo(tis) = 055(1 = 63) f(ti;)[1 — 653 (t:5)) 2,

respectively.

7

(3.79)

(3.80)

(3.81)

(3.82)
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Logarithmic cure rate with spatial frailties (Model 8)

Similarly, when M;; follow a logarithmic distribution, the logarithmic cure rate model

with spatial frailties (Model 8) is obtained, with the series function, cure probability,

survival function, and probability density function is given by G(6;;) = —_logéij_g’j),
—0;,
o 83
pO J log( 92]) (3 )
log(1 — 0;;5(cij))
i ) 3.84
) = ey Iow(1 ) 350
fley) log(1 — 0;;S(cy)) 0
Y= . 3.85
fp(cJ) S(cz])log(l — Gw) S(Cz‘j) + 1— 9@5(0@') ( )

3.3 The log-likelihood function

3.3.1 Bernoulli mixture cure rate with spatial frailties (Model
5)

When we incorporate spatial frailties, the complete log-likelihood function under the
Bernoulli mixture cure rate model (with Af;; following a Bernoulli distribution) is

given by
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l(&t, T @, 2,0)5)

exp(x; -b—i—ui) |
_ 1 A tii ; S exp(z ﬁ+u1)
1
(1—J)1
—I—ZZ Og{l—kexp(a:iij—i—ui)}
1 T
J*l 1 — S tz EXp(Zij@‘l’Ui)
+(iz:”;::() ” og{( 1+exp(a:iij+ui)) ots)

I
+ > logfu(us; 65),
=1

(3.86)

where € = (b, 3", 11, 0,7)’, Ao is the baseline hazard function as in (1.15), Sy is the
baseline survival function as in (1.14), u, is the Gaussian spatial frailty corresponding
to location 4, and fy is the density function of spatial component as in (1.7.

Recall that the baseline survival function and baseline hazard function has two

forms depending on parameter v. When ~ = 0, the log-likelihood function is given
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by
l(&t, J* @, z)
exp(xzb+ u;) 1 log(t;:) —
D IPIR 7 exp(— 2Bl
(i7): o=1 +eXp( b+uz))at” g

_log(t) — iy 1} -

X {exp {exp( -

log(t;;) — M)}} eXp(ziTjﬁ)}

X exp(zz;ﬁ + ;) [1 — exp{ — exp(

o
1
1—J* 1
£ S e | g |
(4,5): 63;=0 Y
1
Jl 1-—
+ 3 3 soe{ (1~ e
2,7): 0i5=

exp(2L. B+u;
log(tij) _y p(z;;8+u;)
(lostt) = 1))

I
+ ) log fu(u;; 0).
=1

X [1 — exp{ — exp

(3.87)
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When v # 0, the log-likelihood function has a general form

30 Y {1 Pl 2

14 exp(xb +u;)) oty
log(t;;) — =1 !
x [exp{@ﬂw)g }_1}
log(t;) — puy =1 ]PEGEATE)
x exp(z! B+ u;) {1—exp{ — (1+7%)$ }} }

1
(1—J)N
+Z Z Og{l%—exp(a:g;b—i-ui)}

(i,4): 0i;=0
1
J1 1—
+Z Z og{( 1+exp(wr»b+ui))
(i,5): 6i5=0 i
exp(zL. B+u; T
log(ti;) — p = (2L B+u;) |
X [1—exp{ a <1+”yf)+ +;10ng(Ui795),

(3.88)

which can be further written into cases with v > 0 and v < 0 corresponding to

Fréchet and Weibull baseline distributions, respectively.

3.3.2 Promotion time cure rate Poisson model with spatial

frailties (Model 6)

When M;; follows a Poisson distribution and the the event of interest occurs when
the first competing cause presents, when combining the Eqs (2.41), (2.42) and 2.43,

the complete log-likelihood function is obtained as
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lc(£7t7 J*a T, z, 08)

- Z Z log{exp Tb+ u;)Ao(ti;)exp(z; B + u;)So(t; )eXp( z];B+ui)

(4,4): dij=1

X exp[ — exp(xl b+ u;)(1 — So(t; )exp Tﬁ"!‘ui))] }

+) > (1= J5)log {exp(—exp(afb + u;))} (3.89)

(4,4): 6i5=0

#3057 7o fepl — explalp )1 - ol
(4,4): 9i5=0

-~ expl-explalb+ ) b+ S log fu(11:6,).
=1

where the power parameter 0;; > 0.
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3.3.3 Geometric cure rate model with spatial frailties (Model
7)

When M;; follows a geometric distribution, the complete log-likelihood function is

given by

l(&t,J*, @, 2,0,)

exp(x);b + u;) 1 T
Z Z {1 + exp(x b + u;) (1 +exp(a:iij+ui)) o(ts)exp(zi;B + i)

1 0i5=1

_ exp(zlb + u;) Tarun]
x Sp exp(z];B+ui) |1 _ Y So(ts exp(z;;B+ui)
(t) T oo St

1
(1—J)1
+Z Z Og{l—i—exp(wg;b—l—ui)}

(4,4): 935=0
1T .
1+exp(x; b+u;)
22 J-’}log{ T { H
i exp(z];b+u;) exp(=T B+u; 1 Tp ;
(ij): 85;=0 1— —1+exp(aig;b+u So(t;;)>PEEATw) + exp(z};b + u;)

I
+ > logfu(ui; 0),
=1

(3.90)

where the power parameter 0 < 0;; < 1.

3.3.4 Logarithmic cure rate model with spatial frailties (Model
8)

When M;; follow a logarithmic distribution, the logarithmic cure rate model with spa-

tial frailties (Model 8) is obtained. In this case, the complete log-likelihood function
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is given by

—Xo(tij)exp(2FB8 + u;) Syt ;) P Eah+e)
= Z Z log
) 8

ex Tﬁ+ui) exp (m?b)
SO ) bz log(l T l4exp (:cz;]b-i-ul))

exp (az b+u;) exp(2T B+u; exp (xlb+u;)
10g(1 " Itexp (z Tb—i—u SO( U) PRy )) n 1+exp (:cjz;b-i-uz)
X
So(ti;)*PE0 ) 1 — b D) 5y (1) P+

1+exp (azz; b+u;)
exp (mz; b+u;)

" " Texp (xLb+u;)
+3 S| T
log(1 U )

(4,5): 6i;=0 1+exp (x Tb—&-ui)

1+exp (x Tb+u

1+exp (2l b+u;)
5 (i
O(tij)exp(zgﬁ+ul)log(1 o exp (wijb‘H/fz) )) log(l exp (wijb+ul)

(1,5): 6i;=0 14exp (zZT].b—i-ui 1+exp (mz;.b—l—ui

log(l — MSO( Z])exp(zT,B-i-uz)) _m }
7)

+ Z long(ui; 63)7
(3.91)

where the power parameter 0 < 0;; < 1.

All pertinent details for the above cases are provided in Appendix B.

Though the complete log-likelihood functions for the proposed cure rate models
are presented, we do not have complete information for individuals who are right
censored. The survival status remains unknown for censored subjects since they
can be either cured or susceptible. We overcome this difficulty by implementing the

stochastic step (S-step), explained in the next section.
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3.4 Stochastic EM

Recall that for the jth individual in the ith region, if the individual’s lifetime is
observed, we record the lifetime ¢;; and set the censoring indicator d,; = 1, which
implies that the subject is susceptible and thus the cure status is Jj; = 1. If the
lifetime is unobserved, the individual may or may not be cured from the event of
interest. In this case, we have d;; = 0 and t;; = ¢;;, so the lifetime status of the
subject is unknown. Consequently, there are two possible outcomes: Ji; = 0 if the

individual is cured, or J; = 1 if the individual is uncured.

Steps for Stochastic EM algorithm

Step 1

We initialize the parameter £© = (b(O)/,B(O)/,u(o),J(O),V(O),Ogo)/)’ using the grid
search method. The set of parameter values in the parameter space that maximize
the complete log-likelihood function is set to be the initial value, £, for the Stochastic

EM algorithm.

Step 2: Stochastic step (S-step)

Recall that for censored subject ¢j, we label their censored lifetime by ;; = 0. Among

them, the indicator of the cure status, Jj;, is obatined from a Bernoulli distribution
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with probability computed from (1.21), and we can express it as

P[T; > ci| Jl; = 1|PLJ;; = 1]
P[Ti; > ¢l

phyy = Pl = 1T > ;3 €7] =

¢=¢
_ Sp(Cijs Tij, Zz'j’ui;f(o)) — poij (@i |us; 5(0)) _ boij + (1 = poij)S(cij) — poij
Sp(cij, @ij, zi5]ui; €2) poij + (1 = poij)S(cij)
exp(zL. Uj
(1—poiy)Sleyy)  05S(cy)/(L+0y)  exp(@hb+u)So(cy) PP

 poig + (1= poig)S(eis)  (1+0;S(cyy))/(1+055) 14 exp(xlb + 1) So (i) PEGAFU)

where pg;; and S, are cure probabilities and survival function from (3.72), Sy is the
baseline survival function, and w; is spatial frailty.
Now, suppose the computed cure status for the first round of censored subject

17 is denoted by 7rz-(](-)).

We then replace J;; in the complete log-likelihood functions
in (3.86), (3.89), (3.90), and (3.91) when assuming M;; follow Bernoulli, Poisson,
geometric,and logarithmic distributions, respectively. Now, combining the Gaussian

spatial effect, their associated cure rate models are given by Model 5 - 8, respectively.
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Model 5

Ji; in (3.86) is replaced by 7T . The complete log-likelihood function of the Bernoulli

mixture cure rate along with spatial frailties (Model 5) can be rewritten as
l(&t, T @, 2,0)5)

—Z Z 10%{ exp(@yb & ) Ao(tij)exp(z58 + u;) So(ti;) ™ TBJ””)}

1+ exp(x Tb +u;))

1
B
(%; gzjo J 1+ eXp(wijb + uz)
(0 1— 1 o 1 T

I
+ ) log fu(us; 65).

=1

(3.92)
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Model 6

Ji; in (3.89) are replaced by 77 . The complete log-likelihood function of promotion

time cure rate along with spatial frailties (Model 6) can be rewritten as

lc(é;t7 J*7 m’ z7 03)

- Z Z log{exp Tb + u;) Ao (tij)exp(z; ,3 + u;)So(t )eXP(ZTB‘Wz)

(1,4): di5=1

X exp[ — exp(x! b)(1 — Sp(t; )exp(zTB+ul))}}

+32 3 (= log {exp(~exp(afib -+ u)) (3.99)
(i,5): 6i;=0
DY m; log {eXp[ — exp(@]b + u;) (1 — Sp(ti;) =AY

I
— exp(—exp(a;b + ui>>} + ) logfy(u; 6
=1
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Model 7

J3; in (3.90) is replaced by 7r . The complete log-likelihood function of the geometric

cure rate along with spatial frailties (Model 7) can be rewritten as

lC(&;t7 J*’ m) z) 93)

exp(x);b + u;) 1 .
= E E lo o (t; T ;
{1 + exp(x b + u;) (1 + exp(x]b + uz)) oti)exp(z;B + w;)

): Giy=1

T B exp(zlb) o 172
So exp(z;;8+ui) | | ] So(ts exp(z,;B+u;)
< Solt:) 1+exp(a:g;-b+ui) olts)

1
+Z Z 1_7T )>10g{1+exp( Tb—i—uz)}

(,4): 9i5=0

1
1+exp(x Tb+ui) 1
|
+ Z Z ;108 { 1 _ exp(a]; b+u;) |:1 + exp(wz;.b + uz):| }

_SXPI®; i) exp(z]; B+u;)
(4,5): 6i5=0 1+exp(wa+u SO( ”) ’

+ Z log fu(us; 05).
i=1

(3.94)
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Model 8

Ji; in (3.91) is replaced by 7r . The complete log-likelihood function of the logarith-

mic cure rate along with spatial frailties (Model 8) can be rewritten as

lC(&;t7 J*’ a:, z? 93)

_Z Zlog{ —No(ti;)exp(2L8 + ;) Sy (t;;) =P )

X T ul exp (:131 b)
,] Z]_l )e P(Zz]ﬁ'H‘ IOg(l - 1+exp (m'll;]b_j’_u_b))
exp (m bt+u;) exp(zL B+u;) exp (zlb+u;)
y {log(l — mso( z]) PiZij ) n 1+exp (mjg;.b+’ul') }
Sol(tiy) P ) 1 — 22 @b g (¢, )pEote)

1+exp (mz;b—&—ul)
exp (wg btu;)

(0) " 1texp (xlb+u;)
I
log(1 - )

(4.3): 6i5=0 1+exp (x Tb—l—ui)

exp(x; u;) ex ” ex :clT u;
p( b+ So( Z]) p( z]ﬂ+ 7()) o P ( Jb"l' ) }
)

log(1 — ——4m—— B
0 1+exp (x;;b+u;) 14exp (x] btu;)
+3 3 s J

exp(zL B+u; exp (zlb+u;) B exp (zLb+u;)
(4,4): 935=0 SO( ) p(z :3+ )]Og<1 - _1+exp (:;Z;b—‘ru,)) lOg(l — WW

I
+ ) logfu(ui; 6).
i=1

(3.95)

Step 3

©) _

If the censored subject is susceptible, i.e., m;;” = 1, the complete lifetime y7; is com-

puted from the truncated distribution with density function

0y = fo(yijs i, zijlui; €) (3.96)

fr(yis, @ij, zijlui; §
g2 ry T Sp(cijamijaziﬂui;s(o))’
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where ¢;; < yj; < 0o, and the cdf is

Sp(Cig, @iy, zijlus; €0) = Sy (ysy, @i, 25l us; €©
FT<y;j7wij7zij|ui;£(0)): p(Cijy @ij, Zij|ui; €) (Y5 (0)] jluis € )7 (3.97)
Sp(cij, Tij, zijlug; €)
where c;; < yi; < 0o. Eq. (3.97) is not a proper cdf since
Splcij, Tij, Zij|ui; ) — ij \Lij | Ui ©
*hm FT(y:jawijazijlui;ﬁ(O)): p(C],ZL‘],Zglu,g ) pOJ((O)m]|ua£ )%1 (398)
Yij 0 Sp(cijs Tij, zijlui; )

©

The cured/immunized subject with 7%) = 0 is treated as long term survivor and its

lifetime is infinite with respect to the event of interest. Hence, it takes the form of
limy: o0 Sp(Yij: Tigs Ziglwis O = poi; (45 ]ui; €). To generate y;; from (3.96) under
the susceptible scenario, we adopt inverse transformation sampling technique. It is

easy to show that Fr(y;, T, zij|us; £ follows an Uniform(a*, b*) distribution with

— 0 and b* = Sp(cij @iz, zij|uis€®)—poij (®ij]ui;€®)
Sp(cij,xij,zijluie®)

(0))

parameters a* Sp(cijy Tij, zij|wis €
and pol-j(a:ij|ui;€(0)) have different forms when we consider Bernoulli mixture cure
rate with spatial frailties (Model 5), Poisson cure rate with spatial frailties (Model
6), Geometric cure rate with spatial frailties (Model 7), and Logarithmic cure rate

with spatial frailties (Model 8). The form of b* takes different forms under different

assumptions for the latent cause, M;;.
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Model 5

For the Bernoulli mixture cure rate along with spatial frailties (Model 5), S, (cij, ®ij, 2i;|ui; €?)

and poi; (;]us; €) are replaced by (3.72) and (3.71). In this case, b* is given by

exp(x];b + ui)So(cij)eXp(ziTjﬁJ“”")

b* = |
L+ exp(b + “i)So(Cij)eXp(z"TfBJr“i)

(3.99)

Model 6

For the promotion time cure rate model with spatial frailties (Model 6), Sy (ci;, Tij, 24j|wi; 5(0))

and poi; (4;]us; €) are replaced by (3.76) and (3.75). In this case, b* is given by

- xXp(=biy)exp(0i;S(ciy)) — exp(—byy) _ exp(6i5(cyy)) — 1
exp(—0;;)exp(0;5(ci;)) exp(i;5(ci))

=1—exp{ —0;;S(c;j)} =1 —exp{ — exp(wiij + ui)So(cij)eXp(zgﬁJ““i)}. (3.100)

Model 7

Under the geometric mixture cure rate with spatial frailties (Model 7), S, (cij, @5, zij|us; €)

and poi; (i;]us; €) are replaced by (3.81) and (3.80). In this case, b* is given by

1-6;;
a5t — 1~ %)

b* — =0, = QZ]S(CZ])>
1—92'3'3 Cij)
= exp(z;b+ ui)So(cij)eXp(z?jB+“i)/{1 + exp(x];b+u;) }. (3.101)
Model 8

When assuming latent cause, M;;, to follow logarithmic, we obtain the logarithmic

cure rate model with spatial effect (Model 8). In this case, S,(cij, @ij, Zij|w;; 5(0)) and
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poij (x5 |ui; €©) are replaced by (3.84) and (3.83), and the b* is given by

log(l — Hljs(tlj)) 47
b — S(czj)log(l — (9@]) log(1-0s5) — 14+ eijS(Cij)
log(1 — 0;;5(ci;)) log(1 — 0;;S(cij))

S(cw)log(l — 91])
exp(x);b+ ui)So(cij)eXp(zgﬂJr“i)

. 3.102
eXp(mz;"”‘ui)So(cz'j)cxP(z;GB*“i) ( )

1+exp(:l:iTj btu;)

1+ exp(x b+ uz)} log [1 —

Step 4: Maximization step (M-step)

We fill the censored data with the generated data from Step 3. Now, the improved

estimate of & can be found using the pseudo-complete data as

/ / /
e = RN IORNONCIORON ggl) )’
= arg maxlogL.(&: (¢, J7), (", J7), , 2, 6;),
13
where t* and J** are vectors of ¢j; and J7, respectively. The optimal value of § is
obtained using the ‘L-BFGS-B’ package in R software, where the algorithm is set to

be converged when the desired tolerance level, i.e., |fr+1 — é}\ < 107, is achieved.

Step 5: Iterative step

Using the estimate €1 = (5(1)/,6(1),,/)(1), e 4 é§1)’)/ that we obtained in Step
4, repeat Steps 2 - 4 R times, to generate é(r) = (B(T),,B(T)/,ﬂ(’"),6(”,?(’") é(r)/)’,
r=1,...,R. The results are a sequence of estimates as a Markov Chain, and instead

of converging to a single value, it converges to a stationary distribution under the

standard conditions as discussed in Diebolt and Celeux (1993) and Diebolt and Ip
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(1996).

Step 6: Burn-in and the MLE step

To obtain the stationary distribution, we discard the first r* iterations as a burn-in,
and then compute the estimates by averaging every third of the remaining iterates
to avoid auto-correlation. By adopting the burn-in period, the random perturbations
of the Markov chains preclude the influence of local maximum, so that the estimates

become more reliable.

3.5 Simulation Study for Spatially Correlated Data

As discussed in Section 1.8.2, we fix the total number of individuals to be 500 and
1000. We further assume the patients resident in the 5 regions/5 zip codes, in Min-
nesota, US. The latitude, longitude, zip codes and cities are listed in Table 1.2. In
each region, we have 100 and 200 patients, for the two sample sizes accordingly.

The competing cause M;;, with spatial frailties, is assumed to follow Bernoulli,
Poisson, geometric, or logarithmic distributions. Let the covariate x;; be a categorical
variable taking values 0 or 1, generated from a Bernoulli distribution with success
probability 0.6. Combining this with the geographic information for each individual,
we construct Models 6-9.

For Models 6 and 7, the power parameter 0;; is taken as

91‘3‘ = eXp(bQ + bll‘i]‘ + ul)
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For Models 8 and 9, 0;; is given by

0. — exp(bo + bll‘i]‘ + ul)
Y T+ exp(bo + by +ug)

Here,i=1,...,5and j =1,...,100 (or 200).

Censored time, Cjj, is set to follow exponential with parameter cc. We generate
Y;; from the quantile function of the GEV distribution with parameters, y, o, and .
If Y;; < ), we set §;; = 1, and d;; = 0 otherwise.

We run the algorithm 1200 times and discard the first 200 as the burn-in period,

and set the spacing to be 3.

Table 3.14: Some of the true values selected for the model

Parameter: by by 51 7 o Y s o} Gs

True Value 0.500 0.400 0.400 0.100 0.100 1.600 -0.800 0.200 0.500
True Value 0.400 -0.590 -0.550 0.100 0.100 0.000 -0.800 0.400 0.800
True Value 0.400 0.900 0.900 0.200 0.600 2.500 -0.800 0.400 1.200
True Value 0.720 0.550 0.730 0.150 0.470 0.000 -1.300 0.600 1.100
True Value 0.880 0.880 1.300 0.150 0.350 0.000 -0.990 0.750 2.000
True Value 0.400 -0.590 -0.550 0.200 0.780 -1.500 -0.800 0.400 0.800
True Value -0.650 0.820 0.850 0.250 0.450 -1.300 -0.800 0.400 1.000
True Value 0.880 0.820 0.820 0.330 0.450 -1.200 -0.990 0.750 2.000

Table 3.15: The setup of the spatial correlation, ¢,, considered for the simulated
dataset

b5 0.500
0.800
1.000
1.100
1.200
2.000
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Table 3.16: The settings of the shape parameter, v, considered for the baseline func-
tion

v
Typel 0.000 Type III -1.200
Type I 1.600 -1.300

2.500 -1.500

The mean parameter estimates were obtained under the Bernoulli (Model 5),
Poisson (Model 6), geometric (Model 7), and logarithmic (Model 8) cure rate models
with spatial frailties. Overall, the estimates are close to the true values, particularly
for larger sample sizes.

When the candidate model fitted to the simulated data is the same as the model
used for data generation, the estimates exhibit minimal bias and RMSE, with coverage
probabilities close to their nominal levels. Bias and RMSE generally decrease, and
coverage probabilities increase, as the sample size grows from 500 to 1000, reflecting
the additional information available with larger datasets. Coverage probabilities may
fall below nominal levels for some parameters when the fitted model differs from the
true model.

The spatial dependence parameter ¢, is consistently well-estimated across all mod-
els and settings, even under model misspecification, with convergence probabilities

close to the nominal 95% level.

3.5.1 Model discrimination

In this section, we further investigate the performance of the proposed models. We
generate 50 datasets under the choice of setting corresponding to the true model

being Bernoulli with spatial frailty (Model 5), Poisson with spatial frailty (Model 6),
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Geometric with spatial frailty (Model 7), and logarithmic with spatial frailty (Model
8), and baseline being Type I, Type II, and Type III of the GEV distribution. The
sample size of our dataset is fixed to be 500. We then fitted the proposed Models
5-8 to the datasets. The results obtained were then compared by information-based
criteria such as AIC, BIC, and AICc as discussed in Chapter 1.

The selection rates based on AIC are presented in Table 3.19. The correct models
had the highest selection rates among the candidate models. Under Models 5-8,
the selection rates for choosing the correct model are 0.92, 0.94, 0.90, and 0.92,
respectively. Overall, the performance of the purposed models is seen to be very

good.
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Table 3.17: Simulation results on mean estimates, bias, and root mean square er-
ror (RMSE) under different choices of baseline, v = (—1.3,0,1.6,2.5), and different
spatial dependencies ¢5 = (0.5,0.8,1,1.1,1.2), based on 1200 iterations

moderate censoring = (.58
baseline: v = 2.5, spatial: ¢, = 1.2
low to mid cure rate = (0.27, 0.37, 0.38, 0.40. 0.44)

n True Model Fitted Model Parameter TV Estimate Bias RMSE

1000 Model 5 Model 5 bo 0.400 0.434 0.034 0.303
by 0.900 0917 0.017  0.523
b1 0.900 0.907 0.007  0.208
I 0.200 0.238 0.038  0.069
o 0.600 0.564 -0.036  0.153
0 2.500 2.351 -0.149  0.262
s -0.800 -0.803 -0.003  0.084
o2 0.400 0.398 -0.002  0.048
Os 1.200 1.201 0.001  0.021

low censoring = 0.35
baseline: v = 0, spatial: ¢, = 0.8
mid to high cure rate = (0.50, 0.51, 0.53, 0.58, 0.64))

n True Model Fitted Model Parameter TV Estimate Bias RMSE

1000 Model 5 Model 5 by 0.400 0477 0.077  0.144
by -0.590 -0.605 -0.015  0.091
B -0.550 -0.564 -0.014  0.084
I 0.100 0.008 -0.092  0.098
o 0.100 0.048 -0.052  0.130
0 0.000 -0.006 -0.006  0.012
s -0.800 -0.795 0.004  0.005
o2 0.400 0.395 -0.005  0.006
?s 0.800 0.810 0.010  0.010

moderate to high censoring = 0.57
baseline: v = —1.3, spatial: ¢5 =1
moderate to high cure =(0.53, 0.54, 0.55, 0.56, 0.64)

n True Model Fitted Model Parameter T.V. Estimate Bias RMSE

1000 Model 6 Model 6 b, 0.650  -0.686 -0.036  0.408
by 0.820 0.833 0.013  0.386
B 0.850 0.832 -0.018  0.170
1 0.250 0.343  0.093  0.100
o 0.450 0452 0.002  0.071
~ 1300 -1.279  0.021  0.426
s 0.800  -0.800 0.001  0.009
o3 98 0.400 0.412 0.012 0.018

?s 1.000 0.990 -0.010  0.011
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high level censoring = 0.686
baseline: v = 0, spatial: ¢5 = 1.1
low to mid cure rate = (0.18, 0.20, 0.21, 0.32, 0.4)

n True Model Fitted Model Parameter TV Estimate Bias RMSE

1000 Model 6 Model 6 by 0.720 0.706 -0.014  0.027
b1 0.550 0.568 0.018  0.031
01 0.730 0.716 -0.014  0.015
1 0.150 0.111 -0.039  0.040
o 0.470 0.471 0.001  0.013
vy 0.000 -0.097 -0.097  0.097
Ihs -1.300 -1.310 -0.010 0.010
o? 0.600 0.601 0.001  0.004
O 1.100 1.100  0.000  0.002

low censoring = 0.283

baseline: v = 0, spatial: ¢4 = 2

high cure rate = (0.79, 0.83, 0.85, 0.85, 0.88)

n True Model Fitted Model Parameter TV Estimate Bias RMSE

1000 Model 7 Model 7 by 0.880 0.942 0.062 0.355
by 0.880 0.905 0.025 0.138
51 1.300 1.317  0.017  0.084
1 0.150 0.138 -0.012  0.052
o 0.350 0.362 0.012 0.125
v 0.000 -0.003 -0.003  0.005
Ihs -0.990 -0.990 0.000 0.001
o2 0.750 0.750 0.000  0.002
Os 2.000 2.000 0.000  0.001

high level censoring = 0.604

baseline: v = 1.6, spatial: ¢, = 0.5

mid to high cure rate = (0.43, 0.52, 0.55, 0.60, 0.67)

n True Model Fitted Model Parameter TV  Estimate Bias RMSE

1000 Model 7 Model 7 by 0.50 0.316 -0.184  0.218
b1 0.40 0.324 -0.076  0.143
o5 0.40 0.450 0.050  0.084
1 0.10 0.089 -0.011  0.023
o 0.10 0.192 0.092 0.104
v 1.60 2.100 0.500  0.517
s -0.80 -0.800 0.000  0.012
o2 0.20 0.199 -0.001  0.030
O 0.50 0.501 0.001  0.010
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moderate censoring = 0.564
baseline: v = —1.2, spatial: ¢, = 2
moderate cure rate = ( 0.47, 0.51, 0.54, 0.54, 0.57)

n True Model Fitted Model Parameter TV Estimate Bias RMSE
1000 Model 7 Model 7 by 0.880 0.921 0.041  0.350
b1 0.820 0.822 0.002 0.076
51 0.820 0.826  0.006  0.046
1 0.330 0.212 -0.118  0.625
o 0.450 0.510 0.060  0.266
v -1.200 -1.183  0.017  0.257
Ihs -0.990 -0.980 0.010  0.055
o? 0.750 0.741 -0.009  0.052
O 2.000 2.020 0.020 0.107
moderate censoring = 0.564
baseline: v = 0, spatial: ¢, = 0.8
high cure rate = ( 0.628, 0.587, 0.658, 0.626, 0.69)
n True Model Fitted Model Parameter TV Estimate Bias RMSE
1000 Model 8 Model 8 by 0.350 0.390 0.040 0.215
b1 -0.880 -0.848 0.032  0.159
51 -0.850 -0.802 0.048  0.161
1 0.850 0.793 -0.057  0.191
o 1.000 0.904 -0.096  0.236
v 0.000 -0.001 -0.001  0.003
Ihs -0.400 -0.410 -0.010 0.028
o2 0.400 0.410 0.010  0.029
Os 0.800 0.810 0.010  0.028
low to moderate censoring = 0.494
baseline: v = 0, spatial: ¢; = 0.8
low to moderate cure rate = (0.36, 0.44, 0.43, 0.45, 0.55)
n True Model Fitted Model Parameter TV Estimate Bias RMSE
500 Model 5 Model 5 by 0.400 0.306 -0.094  0.118
by -0.590 -0.682 -0.092  0.111
51 -0.550 -0.633 -0.083 0.119
1 0.100 0.020 -0.080  0.085
o 0.100 0.088 -0.012  0.158
y 0.000 -0.023 -0.023  0.041
[Ls -0.800 -0.795 0.005  0.006
o2 0.400 0.396 -0.004  0.008
Os 0.800 0.810 0.010  0.011
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low to moderate censoring = 0.394
baseline: v = —1.3, spatial: ¢5 =1
high cure rate = (0.63, 0.64, 0.68, 0.69, 0.72)

n True Model Fitted Model Parameter TV Estimate Bias RMSE

500 Model 6 Model 6 by -0.650 -0.553  0.097  0.314
by 0.820 0.853 0.033  0.101
B 0.850 0.857 0.007  0.028
I 0.250 0.164 -0.086  0.101
o 0.450 0.481 0.031  0.107
y -1.300 -1.218  0.082  0.310
fLs -0.800 -0.800  0.000  0.006
o2 0.400 0.411 0.011  0.015
Os 1.000 0.990 -0.010  0.010

high censoring = 0.596
baseline: v = —1.2, spatial: ¢; = 2
low to moderate cure rate = (0.44, 0.42, 0.40, 0.48 ,0.43)

n True Model Fitted Model Parameter TV Estimate Bias RMSE

500 Model 7 Model 7 by 0.880 0.882 0.002  0.163
by 0.820 0.789 -0.031  0.080
b1 0.820 0.803 -0.017  0.041
I 0.330 0.318 -0.012  0.027
o 0.450 0.398 -0.052  0.064
7y -1.200 -1.158  0.042  0.189
fbs -0.990 -0.980 0.010  0.012
o? 0.750 0.741 -0.009 0.014
?s 2.000 2.020 0.020  0.021

low censoring = (0.312
baseline: v = 0, spatial: ¢; = 0.8
high cure rate = (0.72, 0.62, 0.63, 0.58, 0.61)

n True Model Fitted Model Parameter TV Estimate Bias RMSE

500 Model 8 Model 8 by 0.350 0.446 0.096  0.349
by -0.880 -0.813  0.067  0.241
B -0.850 -0.776  0.074  0.221
i 0.850 0.784 -0.066  0.235
o 1.000 0.924 -0.076  0.267
¥ 0.000 -0.007 -0.007  0.037
Ibs -0.400 -0.410 -0.010  0.011
o2 0.400 0.410 0.010 0.013
Os 0.800 0.810 0.010  0.011
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Table 3.18: Comparison of simulation results on mean estimates, bias, and root mean
square error (RMSE) for different fitted models based on 1200 iterations.

censoring = 0.604
moderate to high cure = (0.43, 0.52, 0.55, 0.60, 0.67)
n True Model Fitted Model Parameter Estimate Bias RMSE

1000 Model 7 Model 5 b 0.458 -0.042 0.105
by 0432 0.032  0.105
By 0.524 0.124  0.195
L 0.065 -0.035  0.043
o 0.162  0.062  0.091
~ 2.454 0.854  0.903
s -0.800  0.000  0.007
o2 0.198 -0.002  0.020
s 0.501 0.001  0.006
1000 Model 7 Model 6 Do “0.058 -0.558  0.570
by 0.336 -0.064  0.092
By 0.346 -0.054  0.159
[ 0.101  0.001  0.030
o 0238 0.138  0.163
5 2.283  0.683 0.718
s 0799 0.001  0.009
o2 0.199 -0.001  0.027
B, 0.500 0.000  0.009
1000 Model 7 Model 8 Do 1.008 0508 0.534
by 0.555 0.155  0.191
By 0477 0.077  0.147
u 0.087 -0.013  0.031
o 0.169 0.069  0.081
5 1.909  0.309  0.333
s -0.500 0.300  0.301
o2 0.101 -0.099  0.123
&, 0.500 0.000  0.012
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Table 3.19: Selection rates based on AIC (n =500)

B (Model 5) P (Model 6) G(Model 7) L (Model 8)

B (Model 5) 0.92 0.04 0.02 0.02
P (Model 6) 0.04 0.94 0.02 0.00
G (Model 7) 0.02 0.06 0.90 0.02
L (Model 8) 0.00 0.02 0.06 0.92
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3.6 Analysis of smoking cessation data

We applied the proposed models to the smoking cessation dataset, using the Stochas-
tic EM algorithm to obtain the optimal estimates of the model parameters. The
results indicate that the coefficients for b; (Gender) are all positive, for bs (Treat-
ment) are all negative, for b, (Consumption) are all positive, and for Sy (Duration)
are all negative. The coefficients for 5, (Consumption) are all positive. For by (Dura-
tion), the sign is positive for the Bernoulli mixture model and negative for the other
models. The coefficients for by (Intercept) and S (Treatment) are negative for the
Bernoulli and promotion time cure models, and positive for the others. The coefficient
for 81 (Gender) is negative only for the Poisson cure model.

The mean estimates of the baseline distribution parameters, u (mean), o (scale),

and v (shape), as well as the spatial effect parameters, p,, o2

S

and ¢, are similar
across all models considered, with ¢, &~ 0.6 for all models. This indicates that the
spatial effect is present and has been successfully captured by the models.

Also, b parameters are related to the cure fraction and so we may obtain inferences
on the cure rate. If we keep all other variables as fixed values, the women smokers
have a lower probability of quitting than men smokers (Gender: 1= female). The
smokers who received smoking intervention (Treatment) have a higher probability of
quitting than those who received the usual care. The smoker who has a higher level of
cigarette consumption has a lower probability of quitting than those who smoke less.
We further visualize the impact of location, as a spatial frailty component, on top of
survival time for different cohorts of smokers using survival plots. Plots for survival
functions stratified by location, treatment, gender, and consumption are shown in

Figures 3.11 - ?77.
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Confidence intervals for the model parameters were calculated using (1.33) and
are reported in Table 3.20, while Table 3.22 presents the negative log-likelihood,
AIC, BIC, and AICc values. Under the Poisson assumption for competing causes
(promotion time cure model with Gaussian spatial frailties, Model 6) and a Type
II GEV baseline, the lowest AIC, BIC, and AICc values were obtained: 285.260,
600.521, 605.745, and 602.839, respectively.

Likelihood ratio tests comparing models with and without spatial frailties (Models
5-8 vs. Models 1-4) yielded p-values of 0.006, 0.002, 0.004, and 0.014, indicating that
models with spatial frailties provide a significantly better fit.

Goodness-of-fit was assessed using normalized random quantile residuals from
the SEM estimates (R. and J., 1968). QQ plots for Model 6 (Figure 3.10) and the
Kolmogorov—Smirnov test (p = 0.194) support the normality of residuals, confirming
an adequate fit.

Spatial frailties across 51 zip codes (Figure 3.7) reveal regional variation, with
darker purple indicating stronger positive and lighter purple stronger negative frail-
ties. Maps of differences in cure rates and survival probabilities (Figure 3.8) show
that areas with stronger negative frailties tend to increase outcomes, whereas areas
with stronger positive frailties decrease them. Cure rates and survival probabilities
stratified by zip code (Figure 3.9) are consistent with these patterns.

Parameter evolution plots (Figure 3.12) confirm convergence of the SEM algo-
rithm, with no systematic upward or downward trends. Additional evaluation plots

are provided in Appendix B.
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Figure 3.7: Demonstration of different spatial frailties for patients from 51 zip codes
in Minnesota

Model 6: demonstration of spatial frailties for 51 zip code
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Figure 3.8: Demonstration of different spatial frailties for patients from 51 zip codes
in Minnesota
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Figure 3.9: Demonstration of different spatial frailties for patients from 51 zip codes
in Minnesota
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Table 3.20: Mean estimates, standard error, and 95% CI for model parameters for
the smoking cessation data assuming M;; follow Models 5 and 6 (Iterations: 3000,
Burn-in: 500, and Spacing: 3).

Model 5

Parameter Mean SE  25% 97.5%
by (Intercept) -1.596 0.810 -3.185 -0.008
by (Gender) 0.368 0.325 -0.270  1.006
by (Duration) 0.010 0.022 -0.032  0.053
bs (Treatment) -0.400 0.374 -1.134 0.334
by (Consumption)  0.065 0.017 0.032  0.097
f1 (Gender) 0.463 0.245 -0.018 0.944
P (Duration) -0.025 0.011 -0.046 -0.003
Bs (Treatment) -0.340 0.269 -0.867 0.186
B4 (Consumption) 0.001 0.010 -0.020  0.022
W 3.474 0.658 2184  4.764
o 7.739 1.989 3.840 11.639
v 2.838 0.225 2396  3.279
s 0.692 0.106 0.485 0.899
o2 0.106 0.030 0.047  0.165
Os 0.570 0.156 0.264 0.876
Model 6

Parameter Mean SE  25% 97.5%
bo (Intercept) -0.390 0.451 -1.274  0.494
by (Gender) 0.682 0.188 0.314  1.050
by (Duration) -0.010 0.012 -0.034 0.013
bs (Treatment) -0.412  0.210 -0.823 -0.001
by (Consumption)  0.038 0.009 0.021  0.056
B1 (Gender) -0.225 0.304 -0.822  0.371
B2 (Duration) -0.007 0.013 -0.032  0.019
B3 (Treatment) 0.000 0.323 -0.634 0.634
B4 (Consumption) -0.024 0.012 -0.049  0.000

7 3.402 0.695 2.040 4.764
o 7.450 2.052  3.427 11.472
v 2.803 0.220 2.371  3.235
Ihs 0.088 0.118 -0.144  0.320
o? 0.084 0.037 0.011  0.156
?s 0.626 0.294 0.050  1.203
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Table 3.21: Estimates of mean, standard error, and 95% CI for model parameters for
the smoking cessation data assuming M;; follow Models 7 and 8 (Iterations: 3000,
Burn-in: 500, and Spacing: 3).

Model 7

Parameter Mean SE 2.5%  97.5%
by (Intercept) 0.474 0.690 -0.878  1.826
by (Gender) 0.528 0.291 -0.043  1.099
b, (Duration) 0.022 0.019 -0.059  0.015
bs (Treatment) -0.503 0.325 -1.139 0.134
by (Consumption) 0.022 0.012 -0.001  0.046
f1 (Gender) 0.069 0.336 -0.589  0.728
P (Duration) -0.012 0.015 -0.041  0.017
Ps (Treatment) -0.011 0.348 -0.692 0.670
B4 (Consumption) -0.004 0.013 -0.030  0.022
0 4.243 1.186 1918 6.568
o 9.454 3.604 2.390 16.517
y 2.697 0.196 2.313 3.081
s 0.091 0.118 -0.140  0.322
o 0.084 0.029 0.027 0.141
?s 0.631 0.280 0.082 1.181
Model 8

Parameter Mean SE 2.5%  97.5%
bo (Intercept) 1.797 1.202 -0.558  4.152
by (Gender) 0.740 0.542 -0.321  1.802
by (Duration) -0.062 0.035 -0.130  0.005
bs (Treatment) -0.772 0.619 -1.984  0.441
by (Consumption)  0.070 0.024 0.023  0.118
B1 (Gender) 0.023 0.409 -0.779  0.825
B2 (Duration) -0.003 0.018 -0.038  0.033
B3 (Treatment) 0.083 0.447 -0.792  0.958
B4 (Consumption) -0.014 0.017 -0.047  0.019

7 4.477 1396 1.740 7.214
o 8.293 4.069 0.317 16.268
v 2.121 0.202 1.725  2.518
Ihs 0.084 0.213 -0.334  0.502
o? 0.162 0.079 0.007  0.316
?s 0.675 0.281 0.124  1.225
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Table 3.22: Negative log-likelihood, AIC, BIC, and AICc values for the smoking
cessation data assuming M;; follow Models 5 - 8 (Iterations: 3000, Burn-in: 500, and
Spacing: 3).

Activation Distribution of M;; -11 AIC BIC AICc
Random Bernoulli (Model 5) 289.060 608.120 613.345  610.439
First Poisson (Model 6) 285.260 600.520 605.745 602.839

Geometric (Model 7)  289.604  609.209 614.433  611.528
Logarithmic (Model 8) 289.331  608.662 613.887  610.981

Figure 3.10: QQ plot
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Figure 3.11: Surviving function: stratified by location (Cannon Falls, Minnesota;
Stewartville, Minnesota) and gender with Duration (30 years-mean) and cigarette
consumption: 6 and 31.
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The blue line indicates male smoker, and the red line indicates a female smoker. Blue:
Male (zip code: 55009 - Cannon Falls), Red: Female (zip code: 55009 - Cannon Falls),
Blue dashed: Male (zip code: 55976 - Stewartville), Red dashed: Female (zip code:
55976 - Stewartville)
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Figure 3.12: Parameter evolution plots for by, b; and by of the SEM algorithm when
M;; follow Model 6. (2500 iterations after the 500 burn-in period)
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Chapter 4

Stochastic EM-based Likelihood
Inference for Last Activation
Scheme of PS Cure Rate Model

with Gaussian Spatial Frailties

4.1 Introduction

In this Chapter, we extend the cure rate models proposed in Chapter 3 to models
that focus on the cases when the event of interest only takes place when all of the
competing causes are initiated. It is also called last activation scheme of PS cure rate
model (Noack (1950)), introduced earlier in Section 1.1.3.

Given that the number of competing causes for the ijth individual is M;; = m,

let random variable Wj-;; be the time-to-event due to the k*th latent risk, with
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distribution function F(-) = 1 — S(-) and survival function S(-), for k* =1,2,...,m.

Under the last activation scheme, the time to the event of interest is denoted by
the random variable T;; = max{Wh;j, ..., Wy, } for M;; > 1, and Tj; = oo if Mj; =0
with P[T;; = oo | M;; = 0] = 1.

In addition, the spatial effect on survival time of susceptible patients is also in-
corporated. Spatial component is assumed to follow a Gaussian process as defined
in Section 1.4 (Li and Ryan (2002)). The spatial frailties are once again developed
using the geographic information on individuals (i.e, longitude and latitude) in the
spatial-referred data.

In this Chapter, by adjusting the power parameter and series function, we re-
strict the last activation scheme to result in complementary promotion time cure rate
model, complementary geometric cure rate model, and complementary logarithmic
cure rate model. The Gaussian spatial effect is then added to the proposed mod-
els and produces complementary promotion time cure rate model with spatial effect
(Model 9), complementary geometric cure rate model with spatial effect (Model 10),
and complementary logarithmic cure rate model with spatial effect (Model 11). The
flexible baseline function that follows a GEV distribution is adopted, and with differ-
ent values of the shape parameter «y, the baseline function changes to Type I (v = 0),
Type II (7 > 0), and Type III of GEV (y < 0).

The relative functions such as survival functions, and density functions of all the
models are presented in Section 4.2. The likelihood function and expression of SEM
are described in Sections 4.3 and 4.4, respectively. In Section 4.5, a simulation study
is conducted with the consideration to multiple sample sizes and different parameter

settings. Different spatial associations to the event of interests are also considered.
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In addition, the effectiveness of capturing spatial frailty is demonstrated in the simu-
lation studies. The performance of Models 9 -11 are then evaluated through a model
discrimination.

In addition, in Section 4.6, the proposed models are fitted to a real-life dataset
on smoking cessation. The spatial frailty is captured effectively, and its impact on

survival is then visualized with heat maps.

4.2 Cure models

For the Bernoulli mixture cure model with spatial frailties (Model 5) and the com-
plementary promotion time Poisson cure model with spatial frailties (Model 9), we
take

Qij = exp(mgb + ui),

where u; is the spatial frailty for region i, and b is the vector of covariate effects on
the cure probability p;;.

As discussed in Section 3.2, when M;; follows a Bernoulli distribution and is
combined with the survival and hazard functions conditional on spatial frailty, we
obtain the Bernoulli mixture cure model with spatial frailties (Model 5). Its series

function is

G(0) = 1+ 0,

and the corresponding cure probability is

poij = P(Mij =0) = 7.
ij
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In this case, the population survival and density functions are given by

Sp(tij) = poij + (1 — poi;) S (ti5), (4.103)
6’1-]-
foltig) = (H—@ij)f(tij), (4.104)

where S(t;;) = So(tij)e"p(zi%”i), So(ti;) is the baseline survival function in (1.14),
and u; is the spatial frailty from a Gaussian process, as described in Section 1.4. The

density function is f(¢;;) = Ao(ti;)S(tij), where Ag(t;;) is the baseline hazard in (1.15).

Complementary promotion time cure with spatial frailties (Model 9)

The series function is G(6;;) = exp(f;;), when the competing cause, M;; follow a
Poisson distribution. Now taking into account the survival and hazard function con-
ditioned on spatial effect, along with last activation scheme of the PS cure rate model,
we obtained the complementary promotion time cure Poisson model with spatial frail-
ties (Model 9). The population survival function and probability density function are

given by

Poi; = exp(—b;5) (4.105)
Sp(tij) = 1+ exp(—6;;) — exp(—0,;5(ti;)), (4.106)
fo(tiz) = 055 f (tij)exp(—0:;5(ti;)), (4.107)

where 0;; > 0.
For the complementary geometric cure rate model with spatial frailties (Model

10) and complementary logarithmic cure rate model with spatial frailties (Model 11),
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we similarly have

exp (xb+ u;)

Qi' - ’
T 14exp (xlb+ w)

(4.108)

where wu; is spatial frailty corresponding to region ¢, and b is the vector representing

the effect of covariates on the cure probability po;;.

Complementary geometric cure model with spatial frailties (Model 10)

If the series function of the PS distribution is G(6;;) = 1%(9”,, and the competing cause,
M;;, follows a geometric distribution, the complementary geometric cure model with
spatial frailties (Model 10) is obtained utilizing the last activation scheme of the
PS cure rate model and Gaussian spatial frailty. The associated cure probability is

poij = 1 — 0;;. The population survival function and probability density function,

conditioned on spatial frailties, and are given by

Syltiy) = 1+ (1— 0) — % (4.109)
Fo(tis) = 051 — 035) f (i) [1 — 035 F (:5)] 2, (4.110)

where F(tzj) =1- S(t”), and 0 < 01']' < 1.

Complementary logarithmic cure rate model with spatial frailties (Model

11)

If G(6;;) = %j_eij), and the competing cause, M,;, follows a logarithmic distribu-

tion, combining it with the last activation scheme of PS cure rate model together with
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spatial component, a complementary logarithmic cure rate model with spatial frail-

—0,;

Tog(izg;)- Lhe population

ties (Model 11) is obtained. Its cure probability is pg;; =

survival function and population probability density function are given by

B 0 log(1 — 0;; F'(ti;))

Spltig) = 1= log(1—6;;)  F(t;;)log(l — 6;;)’ )
_ f (i) log(1 — 6 F(t;;)) 0ij

folt) = - F(ti)log(1 — 6) F(t:;) 1—0;F(t;;) ] EH2)

where 0 < 0;; < 1.

4.3 The likelihood function

4.3.1 Model 9

Combining the Eqgs. (4.105) - (4.107), the complete log-likelihood function of Model

9 is obtained as

lc(&; t7 J*7 m’ z7 03)

= Z Z log{exp(mfjb + u;) Ao (ti;)exp(z];8 + ;) So ()PP EBHu)

(i.d): 6i3=1
x exp[ — exp(l b + u;) So (1) “PEA )] } + ) ) (1= Jp)log {exp(—exp(z;b+ui))}
(4,4): 6i;=0
I
+ Z Z J¥log {1 — exp| — exp(zb+ ;) S (ti;) P EAT] 4 Z log frr (us; 0s),
(4,5): 645=0 i=1
(4.113)

where the baseline survival function, Sy(t;;), and the baseline hazard function, A\o(t;;),

are conditioned on spatial frailty, u;. Baseline changes to Type I, Type II, and Type
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IIT of GEV depending on parameter 7. fy is the density function of the spatial effect
and it follows a Gaussian process as explained in Section 1.4. The detailed steps of

obtaining the log-likelihood function for Models 9 - 11 are provided in Appendix C.

4.3.2 Model 10

The complete log-likelihood function of Model 10 is given by

lc(s;ta']*7mazaes)
exp(xlb + u;) 1
I (e ) et

_ exp(xlb + u;) e\ ]
% S (t;;)PPEGBFu) | 1 i 1 — Sy(t;;)exp(=B+ui)
oltig) ™ 1+ exp(zlb) otiy)™7=

. 1

(4,5): 0i5=0

I S I
. 1+exp(m£b+ui) )
+ Z Z J log {1 — T } + Zlong(Ui, 0).
( — i=1

xp(zL B+u;
b4):8y=0 Trep@rsray (1 = Soltiy) =7

(4.114)
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4.3.3 Model 11

The log-likelihood function of Model 11 is given by

l(&t, T @, 2,05)

No(tij)exp(zh B + u;) So(t;;) P Atu)
= log

(tij)exp( g;ﬁ-i—uz))log( __exp (xTb+u;) )

(,9): 0ij=1 I+exp (x] btu;)
log L exp ( TbJrul) (1 So(t: )exp(z B+uz)) exp (m£b+ul)
y |: 14+exp (:c btu;) n 14exp (xz;b—&-u,)
1— 5 exp(z] B+ui) exp (z] b+u;) exp(zL.B+u;
0( ) 1— WW(:[ — SO(tzJ) p( J ))

__exp (xFb+u;)

o I+exp (I b+u;)

+ Z Z (1 Jz )10g {10 (1 _exp (w?b+ui) ) }
(3,4): 055=0 S 1+exp (27 b+u;)

exp(wiT.b+ui)(1 Sol(ti )exp(z B+uz))
].Og(]. — J 1+4exp ( Z;b+uz)

+> ) Jilog {(

(4,4): 615=0

ex CCT Ujg
L= S(ty) PP log (1 — r Tt >}

1+exp (:IZZ; btu;)

I
+ ZlngU(Uz‘;es)-

=1

(4.115)

However, we do not have complete information on subjects who are right censored.
The survival status remains unknown these censored subjects, since they can be either
cured or susceptible. We overcome this difficulties by implementing the stochastic step

(S-step) described in the following section.

118



Ph.D. Thesis - Xinyi Wang McMaster - Mathematics and Statistics

4.4 Stochastic EM

Step 1: We find the set of initial values via grid search in the parameter space;
Step 2: Recall that for censored subject ij, we have ¢;; = 0, and J; can be gen-
erated from a Bernoulli distribution with conditional probability of success as

P[Ty > ¢ J5; = 1]1P[J}; = 1]
P[T}; > ¢

0 *
péi; = P[‘]ij = 1|T;; > Cz‘j;f(o)] =
¢=¢"
Sp(Cijs Tij, Zig|wi; 5(0)) — Poij(xiz|wi; E(O))

Sp(Cijs Tij, ziz|ui; €) ’

where pg;; and S, are cure probabilities and survival function from (3.71) and (3.72),

)

respectively. J is then replaced with 7TZ(]1 in the complete log-likelihood functions

in (3.86), (4.113), (4.114), and (4.115) when assuming Model 5, Model 9, Model 10,
and Model 11, respectively. ijl ) is the generated cure status for ¢j5th individual with
censored lifetime for the first round of iteration.

The case of Model 5 has been discussed in detail in Chapters, and so we will omit
it here for the sake of brevity.

Model 9: The Jj; in (4.113) are replaced by 7D and the complete log-likelihood

ij
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function of Model 9 can then be rewritten as

lc(£7t7 J*a T, z, 08)

= Z Z log{exp x b+ ui) o (ti;)exp(z);8 + ;) S (t;)SPEBT)

(4,4): di5=1

X exp[ — eXp(win)SO(tij)exp(zfjﬁJruL } + Z Z 1 B 7r log {exp( exp( Tb+ Uz))}

(4,4): 6i5=0
+ Z Z ﬂgj)log {1 —exp[ — exp(wg;-b + ui)SO(tij)exP(zz;ﬂ*“i)} + Z logfu(u;; 05).
(i,3): 6i5=0 i=1
(4.116)

Model 10: The J}; in (4.114) are replaced by 7 and the complete log-likelihood

’L]’

function of Model 10 can then be rewritten as

lc(f;t7 J*7 w? z? 08)

| exp(x];b+ u;) 1

= 0

= & 1+ exp(xb +u;) \ 1+ exp(x];b 4 u;)
i.4): 6ij=

))\o(ti)exp(zgﬁ + ;)

, exp(xlb) Taiur]
X S t’L exp(z;‘r‘ﬁ‘i’uz) 1 . [ S t’L GXP(ZZ',',BJrUz)
o(t:) ’ 1+exp(wiij+ui) oltis) ’

1
2> - 1Og{1+e><p( Tb+uz)}

(4,4): 9i5=0

1+exp(m b+u;) 1
+ 7Mlo —
Z Z ij 108 { 1— exp(a];btu;) Solt U)exp( 2] Btu;) |:1 + exp(:viij + Uz)} }

(4,4): 0i5=0 1+exp(z TbJru

I
+ ) log fur(u;; 0).
=1

(4.117)

Model 11: The J}; in (4.115) is replaced by 7Y and the complete log-likelihood

2]7
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function of Model 11 can be rewritten as

ZC(&t,J*,aﬁ,z,Os)
= Z Z lo { (tij)exp( 13_|_uz)50( )eXP(ZTB-i-ul)

(t,-j)exp( iTjBJruz))lOg(l _exp (@btu) )

(4,9): di5=1 1+exp (z] b+u;)
log 1 exp (z Tb-i-uz)(l So(ti )exp(z ﬁ-‘ruz)) exp (ﬂ’:ZbJruz)
" |: 1+6Xp (:I! b+U2) + 1+exp (w£b+ul)
1—8 exp(z] B+u;) exp (af;b+u,) Cyexp(zL Btu;)
0( ) 1— TSexp (@7 btuy) (mjg;.b—&—ui)(l_SO(tlJ)e p(z;; )

_exp (& b+u;)

| B )
(i.4): 615=0 log (1 — o tororay)

1og(1 el (1-So(t) """ M)))

1+exp (mz; b+u;)

+3 Y 7 log { (

exp (L b+u;
(i) 8i5=0 1 — Sy (i) PEATU)) log(1 — D @bt }

1+exp (mz;b—l—ul)
I
+ Z long<ui; 05),
i=1

(4.118)

Step 3: If the censored subject is susceptible, i.e., WZ(; ) = 1, the complete lifetime

*

t7; is from the truncated distribution with density function
Jr (t:}7wij7 Zij|ui;£(0)> = fp(tjﬁwz’jyZij|ui;5(0)>/Sp(cijawijazij|ui§€(0))7 (4.119)

where ¢;; < tj; < co. The corresponding cumulative function is given by Fr(t5;, @ij, zij|us; € Oy =
Sp(cijvmij:zij|ui§£(0>)_sp(tfjamijzzij‘uif(o))

Sp(cijsij,zijlui€®)

, where ¢;; < t7; < oo, which is not a proper cdf
since hmt* oo P (855, i, 25w E(O)) £ 1.
The cured/immunized subject with 7TZ(J1 ) = 0 is treated as long term survivor and

its lifetime is infinite with respect to the event of interest. Hence, it takes the form of
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T Tij, Ziglug; £ = poij(xii|ui; €). To generate t7; from (4.119) under

the susceptible scenario, we adopt inverse transformation sampling techniques. In
short, Fr(tj;, T, 2| wi; £9) follows an Uniform(a* = 0, b* = Sp(cij, Tij, Zij|wi; €9 —
Doij (wij ‘U,Z, f(o))/SP<CU, Lij, Zij |u1, 5(0))) distribution.

Model 9: Under Model 9, we rewrite b* as

yr = Lt exp(=0y) — exp(—0i;5(cyj)) — exp(—biy) _ 1 — exp(=0;;5(cij))
1+ exp(—0;;) — exp(—0;;S(ci)) 1+ exp(—0;;) — exp(—0i;S(ciy))’
(4.120)

where 6;; = exp(x];b+ u;), and S(c;;) is constructed using baseline survival function
as in (1.10). Also, ¢;; is the censored lifetime of jth individual in region ¢, and w; is
spatial effect associated with region i.

Model 8: Under Model 8, we rewrite b* as

1—-0;;

b = . , (4.121)
1+ (1—6;) — % (05 F (ci5) — 1)
ex T btu, . . .
where 0;; = p (@;btus) , F'(cij) = 1 = S(cij), S(ciy) is constructed using baseline

Troxn (2L bt
1+exp (x;;b+u;)

survival function as (1.10), ¢;; is the censored lifetime of jth individual in region 4,
and wu; is spatial effect associated with region .

Model 11: Under Model 11, we rewrite b* as

L e log(1 —0;;F(ci)) e,
b log(1=0ii)  F(c;;)log(1 — 6;)  1ee(=0u) (4.122)
1 o, log(1—0;F(c;)) ’ |

- 1os0)  F(ci;)log(1 — 6;)

exp (a:z;b—i—uz)

Trexp (T brur)’ F(cij) = 1—5(c;5), and S(c;;) is constructed using baseline

where 0;; =
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survival function as (1.10).
Step 4: Maximization step (M-step)
We fill the censored data with the generated data from Step 3. Now, the improved

estimate of & can be found using the pseudo-complete data as

£ = (™, Oy oM 41 oM"Y = arg maxlogLe(&; (¢, J°), (t, 7)), 2, 2,0,),
where t* and () are vectors of ti; (generated lifetime) and wfjl ) (generated cure
status), respectively. The optimal values of £ is obtained using the ‘L-BFGS-B’
package in R software, where the algorithm is set to be converged when the desired
tolerance level, i.e., \é,.ﬂ — éT] < 107%, is achieved.

Step 5: Iterative step
Using the estimate £ = (3(1)/,3(1)/,;2(1), PAIION égl)/)’ that we obtained in Step
4, we repeat Steps 2 - 4 R times, to obtain é(r) = (B(T)/,ﬁ(r)/,/l(r),ﬁ(r),'?(’”),ég’")/)’,
r =1,...,R. The results are a sequence of estimates as a Markov Chain, which,
instead of converging to a single value, it converges to a stationary distribution under
the standard conditions as discussed in Diebolt and Celeux (1993) and Diebolt and
Ip (1996).

Step 6: Burn-in and MLE step
To obtain the stationary distribution, we discard the first r* iterations as a burn-in,
and compute the estimates by averaging every third of the remaining iterates to avoid
auto-correlation. By adopting the burn-in period, the random perturbations of the
Markov chains preclude the influence of local maximum, so that the estimates are

more reliable.
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4.5 Simulation study

As discussed earlier in Section 1.8.2; in this simulation study, we fix the total number
of patients to be 500 and 1000. We further assume the patients reside in the 5 regions,
5 zip code, in Minnesota, US. The latitude, longitude, zipcode and cities are listed
in Table 1.2. In each region, we have 100 and 200 patients, for the two sample sizes,
accordingly.

In this simulation study, we consider a covariate, x;;, to be a categorical variable
which takes values of 0 or 1, and can be generated from a Bernoulli distribution with
success probability as 0.6.

The competing cause, M;;, follows a class of distributions from a power series cure
rate family with spatial frailties, which are Models 5-8 described earlier in 4.2. Under

the simulation setup, 6;; for Models 5 and 6 can be expressed as
0;; = exp(by + by * x5 + u;), (4.123)
where i =1,...,5, j = 1,...,100(200). Under Models 7 and 8, 6;; can expressed as
0;; = exp(by + by * x5 + u;) /(1 + exp(bo + by * x5 + u;)), (4.124)

wherei =1,...,5, 7 =1,...,100(200).

We adopt several parameter settings as listed in Table 4.26. In Table 4.25, we
record the values we fixed for the spatial dependence parameter, ¢,. The larger
the value of ¢, the stronger the association between the regions. The choice of
shape parameter ~, listed in Table 4.24, is associated with the three different types

of baseline distribution. We considered various values in each type category (v = 0,
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Table 4.23: Examples of the cure rates and the levels of censoring for the simulated
datasets

cure rate censoring
high cure rate 0.68, 0.67, 0.71, 0,71, 0.74  low censoring 0.39
mid to high cure rate 0.59, 0.60, 0.64, 0.65, 0.67 moderate censoring 0.49
low to mid cure rate  0.27, 0.31, 0.34, 0,37, 0.46 high censoring 0.58
low to mid cure rate  0.27, 0.37, 0.38, 0.40. 0.44 high censoring 0.61

Table 4.24: The settings of the shape parameter, v, considered for the baseline func-
tion

vy 0.000

Baseline (GEV)  Type |

v 1.6 2.000 2.100 2.500 2.700
Baseline (GEV)  Type Il Typell Typell Typell Type Il
vy -1.200 -1.250 -1.500

Baseline (GEV) Type III  Type III  Type III

v >0, v < 0) to mimic the possible shape of the baseline distribution.

Censoring time, Cj;, is set to follow exponential distribution with parameter cc.
We generate Y;; from the quantile function of the GEV distribution with the choice of
baseline parameters, 1, o, and . If Y;; < Cj;, we set §;; = 1, and 9,;; = 0 otherwise.

The levels of censoring and cure rate for the five regions are summarized in Ta-
ble 4.23. The cure rates considered range from low to moderate, moderate to high,
and high, and the censoring levels range from low to moderate to high.

To obtain suitable initial values, a grid search based on the observed log-likelihood
was conducted. The Stochastic EM algorithm was then used to compute the MLEs
of the model parameters, with 1200 iterations performed, the first 200 discarded as

burn-in, and a thinning interval of 3 applied.
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Table 4.25: The settings of different spatial correlation, ¢, considered for the simu-

lated dataset

¢»s 0.500 0.800 1.000 1.200 1.500 2.000

Table 4.26: The different settings of the true values of the model parameters

Parameter T.V. T.V. T.V. T.V. T.V.
bo 0.600 0.880 0.350 0.400 0.400
b1 0.400 0.880 1.200 0.900 -0.590
b1 0.600 1.300 0.990 0.900 -0.550
o 0.200 0.150 0.190 0.200 0.100
o 0.400 0.350 0.450 0.600 0.100
y 2.000 2.100 2.700 2.500 0.000
Lbs -0.800 -0.990 -0.800 -0.800 -0.800
o? 0.200 0.750 0.600 0.400 0.400
Os 0.500 2.000 1.500 1.200 0.800
Parameter T.V. T.V. T.V. T.V.
bo -0.900 0.880 0.880 0.400
by 0.820 0.880 1.000 -0.590
o5 0.850 1.300 1.000 -0.550
W 0.250 0.150 0.250 0.200
o 0.670 0.350 0.600 0.780
vy -1.250  0.000 -1.200 -1.500
s -0.800 -0.990 -0.990 -0.800
o2 0.400 0.750 0.750  0.400
O 1.000 2.000 2.000 0.800

Results

When the fitted candidate models match the models used to generate the simulated

data, the parameter estimates are close to the pre-specified values used in the simula-

tion. In these cases, the results also gave the lowest bias and lowest RMSE compared

to the other candidate models fitted to the corresponding simulated datasets. The

coverage probabilities of the confidence intervals based on the asymptotic normality of

the MLESs are quite close to the nominal levels of 95%. When we fitted other candidate
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models that are different from the true models, the obtained coverage probabilities
occasionally are lower than the nominal level.

By considering low level of censoring, moderate level of censoring and high level
censoring, as well as low cure rate, moderate cure rate and high cure rate, the proposed
model performed equally well in all cases. Thus, we conclude that the censoring level
and the cure rate do not have much impact our algorithm.

The model parameter, ¢, that associates with spatial correlation, has been cap-
tured successfully under the cases of low (¢;; = 0.5, ¢;; = 0.8), moderate (¢;; = 1,
¢ij = 1.2 and ¢;; = 1.5) and high level of (¢;; = 2) spatial correlation setups.

When comparing the result of sample size of 500 and 1000, with similar censoring
and level of cure rate for 5 regions, the decrease in bias and RMSE are observed.
Thus, for fixed censoring proportion and cure rate, the Bias and RMSE decrease
when sample size increases.

When the fitted model differs from the data-generating model, the parameter es-
timates exhibit slight variation, and the associated biases are modestly higher than
those obtained when fitting the true cure model. Nonetheless, the signs of the maxi-
mum likelihood estimates remain consistent across all candidate models.

In this section, we focus primarily on results obtained when the fitted model coin-
cides with the data-generating model under various simulation settings. Results from
fitting alternative candidate models are presented selectively for illustrative purposes,
with the remaining results omitted due to their similarity.

In addition, model discrimination is performed for evaluating the performance of
the proposed models. 50 datasets were generated for the choice of parameter settings,

where the choice of settings take different levels of strength of spatial effects and three
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baseline distributions. Sample size was set to be 1000. As shown in Table 4.29, by
using AIC, the selection rate for choosing the correct models are 0.98, 0.94, 0.90 under
Models 9 - 11, respectively. The rates of selecting the correct models all being high

demonstrate that the proposed models are performed very well.
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Table 4.27: The estimated means, bias, and RMSE for selected models, with dif-
ferent choices of shape parameter, v = (2,2.1,2.7), and spatial dependency, ¢5 =

(0.5,1.5,2), when the true model of M;; and the fitted model are the same.

True Model: Model 9
Fitted Model: Model 9

Baseline: v =2
Spatial: ¢ = 0.5

n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(high) (low to mid cure)
1000 0.614 (0.27, 0.31, 0.34, 0.37, 0.46)  bg 0.600 0.728 0.128 0.182
by 0.400 0.465  0.065 0.197
b1 0.600 0.522 -0.078 0.093
i 0.200 0.242  0.042 0.046
o 0.400 0.505  0.105 0.109
vy 2.000 2.066  0.066 0.160
Is -0.800 -0.799  0.001 0.096
o2 0.200 0.188 -0.012 0.075
Os 0.500 0.503  0.003 0.053
True Model: Model 10 Baseline: v = 2.1
Fitted Model: Model 10 Spatial: ¢, = 2
n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(low ) (high cure)
1000 0.389 (0.68, 0.67, 0.71, 0,71, 0.74)  bg 0.880 0.912 0.032 0.070
by 0.880 0.859 -0.021 0.026
b1 1.300 1.321  0.021 0.080
] 0.150 0.133 -0.017 0.039
o 0.350 0.278 -0.072 0.100
y 2.100 2.081 -0.019 0.070
fhs -0.990 -1.000 -0.010 0.011
o? 0.750 0.740 -0.010 0.011
Os 2.000 1.990 -0.010 0.011
True Model: Model 11 Baseline: v = 2.7
Fitted Model: Model 11 Spatial: ¢5 = 1.5
n Censoring  Cure Rate Par. T.V. Estimate Bias RMSE
(moderate) (high cure)
1000 0.488 (0.59, 0.6, 0.64, 0.65, 0.67) by 0.350 0.334 -0.016 0.024
by 1.200 1.208  0.008 0.015
b1 0.990 1.032  0.042 0.051
L 0.190 0.191  0.001 0.039
o 0.450 0.486  0.036 0.089
v 2.700 2.551 -0.149 0.179
Ibs -0.800 -0.799  0.001 0.002
129 o2 0.600 0.599 -0.001 0.004
Os 1.500 1.490 -0.010 0.010
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Table 4.28: The estimated means, bias, and RMSE for selected models, with dif-
ferent choices of shape parameter, v = (—1.25,0,2.5), and spatial dependency,
¢s = (0.8,1,1.2), assuming the true models of M;; and the fitted models are the

Samme.

True Model: Model 5
Fitted Model: Model 5

Baseline: v = 2.5
Spatial: ¢5 = 1.2

n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
1000 0.584 (0.27, 0.37, 0.38, 0.40, 0.44) by 0.400 0.434 0.034 0.303
moderate low to moderate cure by 0.900 0.917 0.017 0.523
b1 0.900 0.907  0.007 0.208
14 0.200 0.238 0.038 0.069
o 0.600 0.564 -0.036 0.153
vy 2.500 2.351 -0.149 0.262
[Ls -0.800 -0.803 -0.003 0.084
o2 0.400 0.398 -0.002 0.048
Os 1.200 1.201  0.001 0.021

True Model: Model 5
Fitted Model: Model 5

Baseline: v =0
Spatial: ¢, = 0.8

n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(low) (moderate to high)

1000 0.350 0.50, 0.51, 0.53, 0.58, 0.64 b 0.400 0.477  0.077 0.144
by -0.590 -0.605 -0.015 0.091
b1 -0.550 -0.564 -0.014 0.084
L 0.100 0.008 -0.092 0.098
o 0.100 0.048 -0.052 0.130
0 0.000 -0.006 -0.006 0.012
s -0.800 -0.795  0.004 0.005
o? 0.400 0.395 -0.005 0.006
Os 0.800 0.810  0.010 0.010

True Model: Model 9
Fitted Model: Model 9

Baseline: v = —1.25
Spatial: ¢5 =1

n Censoring  Cure Rate Par. T.V. Estimate Bias = RMSE
(moderate) (moderate to high)

1000 0.504 (0.54, 0.54, 0.58, 0.60, 0.63) by -0.900 -0.874  0.026  0.227
by 0.820 0.815 -0.005  0.150

51 0.850 0.830 -0.020 0.104

I 0.250 0.201 -0.049 0.104

o 0.670 0.529 -0.141  0.208

v -1.250 -1.217  0.033  0.316

s -0.800 -0.800  0.000  0.006

130 o? 0.400 0.401 0.001  0.012

Os 1.000 1.000 0.000  0.004
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True Model: Model 10
Fitted Model: Model 10

Baseline: v =10
Spatial: ¢, = 2

n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(high) (moderate)
1000 0.599 0.41, 0.433, 0.50, 0.51, 0.54 by 0.880 0.896  0.016 0.048
by 0.880 0.956  0.076 0.113
B 1.300 1.250 -0.050 0.207
1 0.150 0.122 -0.028 0.078
o 0.350 0.368 0.018 0.292
vy 0.000 -0.077 -0.077  0.098
[Ls -0.990 -1.000 -0.010 0.029
o? 0.750 0.741 -0.009 0.028
Os 2.000 1.990 -0.010 0.026
True Model: Model 10 Baseline: v = —1.2
Fitted Model: Model 10 Spatial: ¢4 = 2
n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(high) (moderate)
1000 0.662 0.34, 0.35, 0.39, 0.4, 0.45 by 0.880 0.915 0.035  0.049
by 1.000 0.994 -0.006  0.008
51 1.000 1.175 0.175  0.201
1 0.250 0.248 -0.002  0.010
o 0.600 0.554 -0.046  0.001
ol -1.200 -1.159  0.041 0.529
ILs -0.990 -1.030 -0.040  0.179
o2 0.750 0.741 -0.009  0.043
Os 2.000 2.050 0.050  0.224
True Model: Model 11 Baseline: v =10
Fitted Model: Model 11 Spatial: ¢ = 0.8
n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(high) (moderate)
1000 0.409 0.48, 0.50, 0.53, 0.53, 0.54 by 0.200 0.187 -0.013 0.099
by 0.880 0.897 0.017 0.017
b1 0.880 0.882  0.002 0.104
i 0.850 0.844 -0.006 0.079
o 1.000 0.996 -0.004 0.078
07 0.000 -0.001 -0.001 0.003
[Ls -0.400 -0.410 -0.010 0.045
o2 0.400 0.410 0.010 0.029
Os 0.800 0.810  0.010 0.056
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True Model: Model 9 Baseline: v = —1.25

Fitted Model: Model 9 Spatial: ¢5 =1

n Censoring Cure Rate Par. T.V. Estimate Bias RMSE
(low) (moderate to high)

500 0.456 0.53 0.58 0.51 0.60 0.67 by -0.900 -0.701  0.199  0.233

by 0.820 0.862 0.042  0.076
B 0.850 0.794 -0.056  0.092
0.250 0.191 -0.059  0.117
o 0.670 0.496 -0.174  0.210
¥ -1.250 -1.356  -0.106  0.140
Is -0.800 -0.799  0.001  0.010
o2 0.400 0.404 0.004 0.019
Os 1.000 1.000  0.000  0.006

=

True Model: Model 10 Baseline: v = 2.1

Fitted Model: Model 10 Spatial: ¢g = 2

n Censoring  Cure Rate Par. T.V. Estimate Bias RMSE
(moderate) (moderate to high)

500 0.512  0.52, 0.58, 0.58, 0.58, 0.7 by 0.880 0.855 -0.025  0.111

b1 0.880 0.861 -0.019  0.058
B4 1.300 1.353  0.053  0.117
I 0.150 0.138 -0.012  0.035
o 0.350 0.281 -0.069  0.092
¥ 2.100 2.047 -0.053  0.094
s -0.990 -0.999 -0.009  0.011
o2 0.750 0.741 -0.009  0.014
?s 2.000 1.990 -0.010  0.011

True Model: Model 11 Baseline: 7 =0

Fitted Model: Model 11 Spatial: ¢ = 0.8

n Censoring  Cure Rate Par. T.V. Estimate Bias = RMSE
(moderate) (moderate to high)

500 0.374 0.750.66 0.72 0.76 0.75 by 0.200 0.234 0.034 0.243

by 0.880 0.899 0.019  0.051
B 0.880 0.810 -0.070  0.377
1 0.850 0.853 0.003  0.169
o 1.000 0971 -0.029  0.163
5 0.000  -0.006 -0.006  0.007
g -0.400  -0.408 -0.008  0.014
o2 0.400 0412  0.012 0.023
¢, 0.800 0.809 0.009  0.015
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Table 4.29: The selection rates for Models 9 - 11

(n = 1000) P (Model 9) G (Model 10) L (Model 11)

P (Model 9) 0.98 0.02 0.00
G (Model 10) 0.04 0.94 0.02
L (Model 11) 0.08 0.02 0.90
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4.6 Analysis of smoking cessation data

Signs of the intercept by, gender by, and treatment by are the same for the Bernoulli
mixture model with spatial effect (Model 5), the complementary promotion time
model with spatial effect (Model 9), the complementary geometric cure rate model
with spatial effect (Model 10), and the complementary logarithmic cure rate model
with spatial effect (Model 11). The sign of by is positive under Models 5-11 and
negative under Model 9.

The estimated empirical means of b have the lowest standard errors under Model
9. Since b is related to the cure fraction, these estimates allow more precise inference
on the cure rate (e.g., through survival plots).

Signs of 3, the covariates for the survival function, are the same across all selected
models, and their mean estimates also have the lowest standard errors under Model
9. The estimated means of the baseline parameters and spatial frailties are all close
in value, especially for the three complementary models. Overall, the spatial effect is
present and is captured successfully.

AIC, BIC, and AICc values are listed in Table 4.32. The complementary promo-
tion time cure rate model with spatial frailties (Model 9) yields the lowest values for
all three criteria. Using the optimized parameters from Model 9, we then visualize
the spatial impact on the event of interest.

A likelihood ratio test was conducted to compare the null hypothesis, Model 2
(restricted model with M;; following Poisson), against the alternative hypothesis,
Model 9 (full model with M;; following Poisson and including spatial effects). The
obtained p-value is 0.01, well below the nominal 0.05 threshold, indicating that the

model with spatial effects is preferred.
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The spatial frailties are visualized in Figure 4.13, where darker red indicates higher
positive spatial frailties for patients in those zip codes, and lighter red indicates
lower spatial frailties. The top and bottom maps in Figure 4.14 show the differences
in cure rate and survival probability when spatial frailties are considered. Darker
blue corresponds to a higher positive effect of spatial frailties, while lighter blue
corresponds to a higher negative effect on the cure rate and survival probability.

In Figure 4.15, the left and right side of regions are shaded with darker purple
colour, which represents high cure rate and high survival rate. The central regions
are shaded with light purple, which indicates these regions have lower cure rates and
lower survival probabilities. It is clear that the impact of spatial frailties, as shown in
Figure 4.15, is consistent with the change of cure rate and survival shown in Figure
4.14.

In conclusion, the central regions exhibit higher positive spatial frailties, which
lead to stronger negative differences in cure rates and survival probabilities, resulting
in lower values for these outcomes in those regions. In contrast, the lower spatial
frailties in the left and right regions correspond to positive differences in cure rates
and survival probabilities, leading to higher values for the event of interest in these
areas.

For illustration, the averages of cure rates and survival probabilities were used
for regions with more than one subject. Parameter evaluation plots for the best
model, where the competing cause follows the complementary promotion time cure
model with spatial frailties (Model 9), are presented in Appendix C. No upward or

downward trends are observed, indicating that the algorithm converged successfully.
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Figure 4.13: Demonstration of different spatial frailties for subjects from 51 zip codes
in Minnesota

w5 14
-
e
v g
3 wf
£ i
2., £
g

s
Longitude

Figure 4.14: Demonstration of different spatial frailties for subjects from 51 zip codes
in Minnesota
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Figure 4.15: Cure rate and survival probabilities when considering spatial frailties for
subjects from 51 zip codes in Minnesota
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Table 4.30: Estimated mean, standard error, and 95% CI for the case when competing
cause follow Bernoulli mixture model (Model 5) and complementary promotion time
cure Poisson model (Model 9) with spatial frailties for the smoking cessation data

(Iterations: 3000, Burn-in: 500, and Spacing: 3).

M;; Parameter Mean SE 2.50% 97.50%
Model 5 by (Intercept) -1.596 0.810 -3.185  -0.008
by (Gender) 0.368 0.325 -0.270 1.006
by (Duration) 0.010 0.022 -0.032  0.053
by (Treatment)  -0.400 0.374 -1.134  0.334
by (Consumption)  0.065 0.017 0.032  0.097
p1 (Gender) 0.463 0.245 -0.018  0.944
B (Duration) -0.025 0.011 -0.046  -0.003
Ps (Treatment) -0.340 0.269 -0.867  0.186
B4 (Consumption) 0.001 0.010 -0.020  0.022
7 3.474 0.658 2.184 4.764
o 7.739 1989 3.840 11.639
ol 2.838 0.225 2.396 3.279
T 0.692 0.106 0.485 0.899
o? 0.106 0.030 0.047  0.165
Os 0.570 0.156 0.264 0.876
Model 9 by (Intercept) -0.474 0.393 -1.244  0.296
by (Gender) 0.567 0.194 0.187 0.947
by (Duration) -0.038 0.012 -0.062 -0.013
b3 (Treatment) -0.278 0.229 -0.726 0.171
by (Consumption)  0.050 0.009 0.033  0.067
p1 (Gender) 0.361 0.180 0.008 0.713
B (Duration) -0.046 0.008 -0.061  -0.030
Ps (Treatment) -0.493 0.185 -0.856  -0.130
B4 (Consumption) 0.024 0.007 0.010  0.038
7 1.346 0.001 1.345 1.348
o 1.989 0.251 1.497 2.481
0% 3.439 0441 2.574 4.303
Lbs 1.058 0.153  0.759 1.358
o? 0.190 0.079 0.035  0.345
Os 0.360 0.176 0.015 0.706
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Table 4.31: Estimated mean, standard error, and 95% CI for the cases when M;;
follow the complementary geometric cure rate model (Model 10) and complementary

logarithmic cure rate model (Model 11) with spatial frailties for the smoking cessation
data (Iterations: 3000, Burn-in: 500, and Spacing: 3).

M;; Parameter Mean SE 2.50% 97.50%
Model 10 b, (Intercept) -0.978 0.673 -2.296  0.341
by (Gender) 0.341 0.320 -0.286 0.967
by (Duration) 0.026 0.020 -0.013  0.066
b3 (Treatment) -0.759 0.392 -1.528 0.009
by (Consumption) 0.068 0.016 0.036  0.100
p1 (Gender) 0.281 0.189 -0.090 0.652
P (Duration) -0.007 0.008 -0.023 0.010
Ps (Treatment) -0.550 0.208 -0.958  -0.141
B4 (Consumption) 0.026 0.008 0.011  0.041
L 1.612 0.010 1.592 1.632
o 2.805 0.431 1.960 3.651
v 3.321 0.530 2.281 4.360
T 0.146 0.134 -0.117 0.409
o2 0.237 0.063 0.114  0.360
Os 0.182 0.070  0.045 0.319
Model 11 b, (Intercept) -1.502  2.453 -6.311  3.306
by (Gender) 0.867 1.599 -2.268  4.002
by (Duration) 0.032 0.076 -0.117  0.181
bs (Treatment) -0.552 1.751 -3.985  2.880
by (Consumption)  0.227 0.081 0.069  0.386
p1 (Gender) 0.277 0.265 -0.242  0.795
B (Duration) -0.013 0.010 -0.033 0.007
Ps (Treatment) -0.304 0.289 -0.870 0.261
B4 (Consumption) 0.030 0.010 0.011  0.049
L 2.218 0.0561 2.119 2.317
o 4.789 0.546  3.720 5.859
vy 3.297 0.459  2.398 4.195
Ihs 0.688 0.110 0.473 0.903
o? 0.139 0.042 0.057 0.220
Os 0.248 0.124 0.006 0.491
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Table 4.32: Negative log-likelihood, AIC, BIC, and AICc, values for the distribution
of the competing causes, M;;, following the selected models under the consideration of
all possible underlying competing causes and spatial frailties for the smoking cessation
data (Tterations: 3000, Burn-in: 500, and Spacing: 3).

Activation M, -11 AIC BIC AICc

Last Model 9 286.955 603.909 655.017 606.228
Model 10 324.014 678.029 729.136  680.348
Model 11  297.351  624.703  675.810  627.022

Random Model 5 289.060 608.120  659.228  610.439

Survival plots

Figure 4.16: Survival plot of Model 9 stratified by treatments and gender with Dura-
tion: 30 years, cigarette consumption: 6/day and 31/day (Mean), and spatial frailty:
Rochester, MN (Zip: 55066).

hester (Duration = 30 and Cigarette = 6) 55066 - Rochester (Duration = 30 and Cigarette = 31)
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Figure 4.17: Survival plot of Model 9 for a male smoker with smoking habit of 33 yrs
and consumption= 20 cigarettes/day

Survival plots with and without spatial frailties
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Chapter 5

Concluding Remarks

5.1 Summary of research

In Chapter 2, we adopted the stochastic EM algorithm to a family of cure rate models
from a power series cure rate model. These are the Bernoulli cure rate model (Model
1), promotion time cure rate model (Model 2), geometric cure rate model (Model 3),
and logarithmic cure rate model (Model 4), with the GEV distribution as baseline
distribution. The Stochastic EM algorithm has been developed for finding the optimal
estimates of the model parameters. The performance of the proposed models have
been evaluated by means of a simulated study along with model discrimination using
information-based criteria. The convergence of the developed algorithms for the said
models under various settings has been demonstrated. Furthermore, the proposed
cure rate models were applied to a real dataset. The resulting cure rates and survival
probabilities have been visualized in heat maps. With variation of colours, the heat
maps reveal high and low values of cure and survival probabilities among different

regions. Next, in Chapter 3, we then extended this work to account for spatial frailties
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and examined the spatial effect on cure rate and survival probabilities.

In Chapter 3, the spatial frailties were constructed using a spatial effect assumed
to arise from a Gaussian random field (Li and Ryan (2002); Wilson and Wakefield
(2020))). The spatial frailties got added to the cure model, which then formed the
Bernoulli cure rate model with Gaussian spatial effect (Model 5), promotion time cure
rate model with Gaussian spatial effect (Model 6), geometric cure rate model with
Gaussian spatial effect (Model 7), and logarithmic cure rate model with Gaussian
spatial effect (Model 8). The baseline of the proportional hazard function is fixed to
follow the GEV distribution. The stochastic EM algorithm was then got developed
and used to find the optimal estimates of the model parameters. The simulation
studies for evaluating the performance had subjects coming from 5 specific regions
in Minnesota, as shown in Figure 1.1 and Table 1.2. Model discrimination, using
information-based criteria, illustrated that the model converge to the true values of
parameters under high and low level of censoring, and high and low spatial correlation.
The tail behaviour of the baseline got captured by the baseline model, and correct
variations of baseline distribution (Type I, Type II, and Type III) get selected. The
likelihood ratio test confirmed the improvement of the model with spatial frailties
constructed from the spatial information of the subjects (i.e., longitude and latitude).
The presence of spatial effect got successfully captured by the proposed spatial cure
rate models, and the necessity of adding spatial effect to the model got visualized
using heat maps.

While we constructed the cure rate model under the competing risks scenario,
it is clear that the event of interest might occur after all of the competing causes

have occurred. Unlike in Chapters 2 and 3, where we assumed the event of interest
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takes place when the first possible competing cause has presented, in Chapter 4, we
extended the work to the case when competing causes are presented, along with the
consideration of spatial effect on cure rate and survival functions. Combining it with
the spatial effect from a Gaussian random field, three additional spatial cure models
were constructed, which are the complementary promotion time cure rate model with
Gaussian spatial effect (Model 9), complementary geometric cure rate model with
Gaussian spatial effect (Model 10), and complementary logarithmic cure rate model
with Gaussian spatial effect (Model 11). Their MLEs of the model parameters were
obtained using stochastic EM. The model performance was then evaluated though a
simulation study, which was followed by model discrimination. The proposed models
were then applied to real data on smoking cessation. The model performance got
improved by adding the spatial frailties, and the improvement were demonstrated
through model discrimination using information-based criteria. The difference in cure
rates and survival probabilities was also demonstrated using maps. Given that the
average computation time is approximately 3-5 seconds per iteration, the efficiency
of the proposed Stochastic EM algorithm is also clearly demonstrated.

Last but not least, although techniques such as cross-validation can provide em-
pirical support for model selection and validation, they were not explicitly employed

in the present study.

5.2 Future work

In this thesis, we have studied the spatial survival for the right-censored cluster data.
Nowadays, it is common for individuals to be examined periodically with regard to the

recurrence of a certain disease. One may then consider developing spatial survival
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analysis for such interval censored lifetime data, and develop suitable models and
model fitting methodology in a cure rate setup.

We have demonstrated analysis using a parametric approach through MLEs by the
SEM approach. A spatial cure rate model through a semi-parameter approach may be
good to develop, where we do not assume any specific baseline hazard function. Then,
compared to the work we have done now, where we have assumed the lifetime is from
a particular parametric distribution, the semi-parametric approach would provide a

more general approach for the analysis to be conducted.
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Appendix A

Appendix A for Chapter 2

The log-likelihood functions for Models 1 - 4.
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Model 1
(&t T @, 2) = Z logfy(ti, @i, 2i;§)  + Z (1 = Ji)log {poi(:; b)}
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+ Z Jilog {Sy(ci, @i, 2i ;&) — poi(i; b) }

i: 9;=0
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+ ;D Jrlog { (1 - T exlla(win))S(ti>}

eXP(wa) T (27 8)
= | i A ] (!
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where € = (b, 3, i, 0,7)" is the model parameter vector.
0,7
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Model 2
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Model 3
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Model 4
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Figure A.18: Parameter evolution plots of the SEM algorithm when M;; follow Model
2 for the smoking cessation dataset. (2500 iterations after burn-in period of 500)
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Appendix B

Appendix B for Chapter 3

The log-likelihood functions for Models 5 - 8 are as follows.
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Model 5
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(B.129)

where £ = (b', 3, i, 0,7)" is the model parameter vector, Ay is the baseline hazard

function, and §, is the baseline survival function.
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Model 6
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where the power parameter 0;; > 0, Sy is the baseline survival function, and A is the
baseline hazard function. The baseline hazard and baseline survival functions takes

different forms depends on the shape and scale parameters of the GEV distribution.

Model 7
lc(€7t7 ']*7 €T, z, 08)
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Model 8
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Figure B.19: Parameter evolution plots for b4, 51 and (5 of the SEM algorithm, when
M;; follow Model 6. (2500 iterations after the 500 burn-in period)

00

||'w|" -.l'."'. || | (] | Ll o f W w | ‘\ u“ G ‘.” | “ \I||\I| [l
HIH | \|IH I i | AT e ||||‘| (M \”

005

s

N uul\lm |||‘ “ || byl ‘“H | ‘ il .m‘ln
Al \l\‘ u’ w}|| I, |u||| U‘Il TUTEEMIRETA

eta"

1A \..\I\“ L .‘.I I‘II‘H“\II“I_ T T (bR ,‘.‘.‘”-"
H[H“‘ Sl ”|‘ Al I M \H‘ "H”

1M

heta?

{1

40

158



Ph.D. Thesis - Xinyi Wang

McMaster - Mathematics and Statistics

Figure B.20: Parameter evolution plots for 3, 84 and p of the SEM algorithm when

M;; follow Model 6. (2500 iterations after the 500 burn-in period)
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Figure B.21: Parameter evolution plots for o, v of the SEM algorithm when M;;
follow Model 6. (2500 iterations after the 500 burn-in period)

Ea)

¢

o 500 1000 1500 =000 2500

160



Appendix C

Appendix C for Chapter 4

The log-likelihood functions for Models 9 - 11 are as follows.
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Model 9
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(C.133)

where the baseline survival function, Sy(t;;), and the baseline hazard function, Ao (%),

changes to Type I, Type II, and Type III of GEV depending on the shape parameter

7.
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Model 10
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Model 11
l(§&:t,J" x,2,05)

= Z Z log fo(tij, Tij, zij;§)  + Z Z 1 - log {poij(xi;|Ui; b) }

(1,9): 6i=1 (i.7): 6i;=0
I
+ Z Z lOg {S Cz]awzpzz]‘Uz 76) po”(w”|UZ,b)} +210ng(Uz795)
(6:9): 013=0 i=1
: log(1 — 0, F(t:;
=3 log —f(tiy) [Og( 0 F (b)) 0;; }
(i,4): 8ij=1 tij)log(1 — 0;;) P(ti;) 1 —0;;F(ti;)
—0;; log(1 — 0,F (ti;))
o 1 J *1 1 ;
i (ZZJ) ZO 1 J Og {log(l - QZJ) } - @Zj)(szoj ©8 { F(t”)log(l — 91])

I
+ ZlngU(Uz‘; 0.)

tz])exp< ,8 + Uz)So( )eXp(zTﬁ‘H%)
= log

— So(t;)PEAT) ) og (1 — SR @i btu) (@] bui) )

(4.9): 6i5=1 1+exp (w;b+ui)
log 1— exp (w%b-{—ul) (1—Sojgt )EXP(Z ﬁ+u7,)) oxp (mz;b—i_uz)
" |: 1+exp (& b+u;) n 14+exp (mz;b—kul)
1—-8 exp(2T B+u;) exp (zlb+u;) exp(zT B+us)
0( ) 1 - 1+exp (agz;b—&—ul) (1 - So<tl]) J )

exp (@Tbrw)
* 1+exp (! b+u;)
+ Z E (1 —J)log { L }
exp (x] b+u;)
(): 013=0 log(1 = 17 oo

eXp(:ciT,b+ui)(1 S()( )exP(zzjﬁJr“z))
log<1 — J Troxp @l bt

+szg{<

(4,7): 6i5=0

1— SO( )exp ,G—ﬁ-ul))log(l o exp (a:;l;b-‘rul) )}

1+exp (:135 btu;)

+ Z log fu(ui; €
=1

(C.135)

164



Ph.D. Thesis - Xinyi Wang McMaster - Mathematics and Statistics

Figure C.22: Parameter evolution plots for by, b; and by of the SEM algorithm, when
all competing causes are present and follow the complementary promotion time cure
rate model. (2500 iterations after the 500 burn-in period)
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Figure C.23: Parameter evolution plots for b4, 8, and 35 of the SEM algorithm, under
the scenario when all competing causes are present and follow the complementary
promotion time cure rate model (Model 9). (2500 iterations after the 500 burn-in
period)
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Figure C.24: Parameter evolution plots for g3, 84 and u of the SEM algorithm, when
all competing causes are present and follow the complementary promotion time cure

rate model. (2500 iterations after the 500 burn-in period)
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Figure C.25: Parameter evolution plots for o, v of the SEM algorithm, when all
competing causes are present and follow the complementary promotion time cure
rate model. (2500 iterations after the 500 burn-in period)
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