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Lay Abstract

This thesis introduces a new generative AI approach that addresses three long-

standing hurdles in human motion generation: accuracy, speed, and reliable alignment

with user-written text. From a simple sentence, the system quickly produces natural,

high-quality 3D movements that can be retargeted to digital characters for anima-

tion, virtual reality (VR), and games. The experiment demonstrates its practical

value in VR, where the generated motions enhance immersion and responsiveness.

Building on this, the thesis explores a second, scene-aware model that works with

large language models to understand both the instruction and the surrounding scene.

It can break down long requests into smaller steps and generate motions that interact

with objects, for example walking to a chair and then sitting down. Together, these

contributions point to more intuitive, text-driven tools for creating lifelike character

animation.
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Abstract

This thesis introduces Masked Deconstructed Diffusion (MDD) for text-to-motion

generation and a complementary multi-task scene-aware pipeline (MTSA-T2M). MDD

couples a multi-stage Kinematic Chain Quantization (KCQ) module with a Masked

Deconstructed Diffusion Transformer (MDDT): KCQ compresses human motion into

a compact, expressive codebook by jointly capturing local joint dynamics and global

kinematic structure, while MDDT performs parallel masked index refinement con-

ditioned on text, enabling faithful many-to-many text–motion mapping with fast

inference. Empirically, the approach improves semantic alignment and motion qual-

ity against contemporary baselines while reducing runtime, and the discrete interface

simplifies user control and editing. Building on this core, MTSA-T2M targets long,

composite instructions in 3D scenes: it decomposes a prompt, plans sub-goals against

a scene map, and invokes aligned diffusion modules to synthesize coherent motion seg-

ments that respect navigation and interaction cues. The resulting motions transfer

effectively to VR avatars and scenes through rapid retargeting, supporting interactive

applications and VR prototyping. Together, MDD and MTSA-T2M advance text-

driven human motion synthesis by jointly addressing accuracy, diversity, efficiency,

and scene awareness.
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Chapter 1

Introduction

The generation of 3D human motions that align with user intentions has emerged as a

vibrant area of research, driven by its broad utility in domains such as virtual reality

(VR), augmented reality (AR), video games, and various forms of digital media.

Among the different input modalities, natural language stands out as one of the most

intuitive and accessible interfaces for guiding motion synthesis. As a result, text-

to-motion approaches have received growing attention, offering users the ability to

create complex motion sequences with simple verbal descriptions. Beyond producing

motions in isolation, a further challenge arises when these motions are deployed within

concrete scenes. In such contexts, users often expect characters to perform actions

that meaningfully interact with their surroundings, for instance, “sitting on a chair”

or “walking towards the door.”

1
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1.1 Challenges

Generating realistic and expressive 3D human motions from textual descriptions and

scenes presents several critical challenges. 1) Text-based conditions are often abstract

and inherently ambiguous, leaving space for multiple plausible motion outcomes. The

many-to-many relationship between language and motion makes it difficult to estab-

lish a deterministic one-to-one mapping from sentences to motion sequences. 2) Raw

motion data exist in high-dimensional spaces and are both redundant and noisy,

making it essential to derive compact latent representations. Yet, employing a single

autoencoder or variational autoencoder is limiting, as they rely on either determinis-

tic mappings or a single Gaussian distribution, often resulting in poor precision and a

lack of diversity. 3) Synthesizing long motion sequences is computationally demand-

ing. Frame-by-frame autoregressive generation is prohibitively slow, and extended

sequences frequently suffer from temporal drift, which can lead to unnatural or de-

generate neutral poses. 4) Interactions within scenes are often composed of multiple

stages, requiring the model to understand contextual relationships among spatial and

temporal scene elements, including objects. Existing methods are generally confined

to single-step motions and rely on overly complex multimodal architectures to unify

different input modalities.

1.2 Methods

In this paper, I propose a Masked Deconstructed Diffusion (MDD) framework for gen-

erating plausible and diverse 3D human motions conditioned on text input, with an

efficient runtime suitable for VR applications. Considering the hierarchical kinematic

2
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structure of human models, MDD employs multi-stage Kinematic Chain Quantization

(KCQ) encoders to learn a compact and expressive codebook from human motions.

Each encoder focuses on a specific body part, such as the left arm or right leg. Lo-

cal kinematic features are then hierarchically fused to form the latent vectors of the

full-body motion. These continuous latent vectors are further discretized through

quantization and organized into a codebook. Codebook entries, referenced by their

indices, can be inverse-projected back to the human motion space through decoders

trained by minimizing motion reconstruction loss. Given a text input, the MDD

framework generates the corresponding motions using a Masked Deconstructed Dif-

fusion Transformer (MDDT), which predicts the sequence of codebook indices through

diffusion. The diffusion process begins with no knowledge of the output, so all indices

in the sequence are masked with zeros as unknown. At each step, the transformer

predicts all masked indices simultaneously, and only predictions with high confidence

are retained. Low-confidence predictions are discarded and re-masked for subsequent

iterations until the entire sequence is reliably predicted. I adopt a deconstructed

approach to accelerate the diffusion process. Finally, the output 3D human motion

sequence is reconstructed by inverse-projecting the indexed codebook entries through

the decoder.

In addition, I introduce the Multi-task Scene-aware Text-to-Motion (MTSA-T2M)

framework, which explores scene-aware motion generation without explicitly building

a unified multimodal model of scenes and motions. The approach begins by using

a large language model (LLM) to decompose a long prompt into multiple shorter

prompts. For each segment, the LLM performs path planning based on the provided

scene road map and height map, thereby generating appropriate motion guidance.

3
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These guidance signals are then fed into a pre-defined Aligned Motion Diffusion Model

to produce short segments of scene-aware motions. Finally, the generated motion

segments are smoothly connected through motion interpolation, completing the full

multi-task scene-aware motion generation process.

1.3 Contributions

This thesis introduces two novel frameworks, MDD and MTSA-T2M, to address key

challenges in 3D human motion generation from text and scenes. The proposed

approaches tackle issues of accuracy, diversity, efficiency, and scene-awareness in a

systematic manner.

The first part of the thesis focuses on the Masked Deconstructed Diffusion (MDD)

framework. MDD bases motion generation on diffusion, which has shown great success

in visual generation tasks [33]. Compared to deterministic one-to-one mappings and

naive cross-modality alignment [81, 70], diffusion models naturally capture ambiguity

through stochastic sampling, better handling the many-to-many relationships between

texts and motions. Furthermore, instead of applying diffusion directly to raw motion

data [29], MDD leverages multi-staged KCQ to learn compact and expressive latent

motion representations. The derived codebook is more efficient than multi-codebook

designs [27, 60, 97] and provides richer diversity than single VQ-VAE representations

[26, 13, 25]. In addition, the deconstructed diffusion operates on codebook indices,

making it lightweight and scalable. Unlike auto-regressive methods [29], my masking

mechanism incorporates global context at each step, with low-confidence predictions

re-masked until convergence, resulting in faster generation and adaptability to varying

sequence lengths [11, 27, 52].

4
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The second part of the thesis presents the Multi-task Scene-aware Text-to-Motion

(MTSA-T2M) framework. MTSA-T2M automatically decomposes long prompts into

sub-tasks using large language models (LLMs), which perform path planning with

scene road maps and height maps to produce appropriate motion guidance. These

guidance signals are then integrated into an Aligned Motion Diffusion Model to gen-

erate coherent short motion segments. This design achieves scene-aware motion gen-

eration while maintaining a clear separation between motion synthesis and scene

reasoning.

I summarize the major contributions of this thesis as follows:

• I propose MDD, a diffusion-based framework for generating high-fidelity and

expressive human motions from text descriptions;

• I present multi-staged KCQ for learning motion representations and deriving a

compact yet diverse codebook;

• I design a novel transformer that incorporates masking and deconstructed dif-

fusion to achieve efficient index prediction for motion generation;

• I conduct comprehensive evaluations showing that my results are on par with or

surpass the state-of-the-art across multiple metrics, and demonstrate practical

applications in VR settings;

• I introduce the MTSA-T2M framework, which explores the possibility of gen-

erating multi-task scene-aware motions without requiring unified multimodal

models.

5
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1.4 Organization

The remaining dissertation is organized as follows:

• Chapter 2: Background knowledge of diffusion-related techniques for human

motion generation.

• Chapter 3: A literature review of related methods for human motion generation.

• Chapter 4: Data representation and problem formulation.

• Chapter 5: Details of the MDD framework, including Kinematic Chain Quanti-

zation (KCQ), the Masked Deconstructed Diffusion Transformer (MDDT), and

the multi-step inference strategy.

• Chapter 6: Experimental evaluations of the approaches developed in Chapters 5.

• Chapter 7: Details of the Multi-task Scene-aware Text-to-Motion (MTSA-T2M)

framework and its experimental visualization results.

• Chapter 8: Thesis conclusion and discussion of future directions.

6
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Chapter 2

Background on Diffusion for

Text-to-Motion Generation

In Chapter 2, I review techniques commonly used for diffusion models that are partic-

ularly relevant to the text-to-motion generation task. The discussion centers on three

aspects: (1) Vector Quantized Variational Autoencoders (VQ-VAE), which

are employed to simplify the latent space (Section 2.1); (2) the foundation of dif-

fusion modeling, namely Denoising Diffusion Probabilistic Models (DDPM)

(Section 2.1); and (3) a widely used text-to-motion framework, MDM, which also

serves as a key component in my proposed Multi-task Scene-aware Text-to-Motion

approach (Section 2.3).

2.1 Vector Quantized Variational Autoencoders

A Vector Quantized Variational Autoencoder (VQ-VAE) is a generative model that

extends the classical VAE framework by introducing discrete latent variables through

7
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Figure 2.1: Framework of VQ-VAE [82].

vector quantization. Unlike standard VAEs that rely on continuous Gaussian-distributed

latents, VQ-VAE encodes the input into a latent space where each point is replaced by

the closest entry from a learned embedding dictionary. This design prevents the com-

mon “posterior collapse” issue observed in traditional VAEs, where powerful decoders

tend to ignore latent variables [82].

As illustrated in Figure 2.1, the model is composed of three key components: an

encoder network E that maps the input x into latent representations ze(x), a codebook

C = {e1, e2, ..., eK} with K embedding vectors, and a decoder D that reconstructs the

input from the quantized embeddings. The discrete latent variable zq(x) is obtained

by nearest-neighbor lookup:

zq(x) = ek, k = arg min
j
‖ze(x)− ej‖2

2, (2.1.1)

where ek is the embedding vector closest to ze(x). This quantization step acts as

a bottleneck that forces the encoder output to commit to a discrete code, while the

decoder learns to reconstruct x from zq(x).

The overall training objective balances three terms: the reconstruction loss, which

updates encoder and decoder parameters; the codebook loss, which moves embedding

vectors closer to the encoder outputs; and a commitment loss, which prevents encoder

8
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outputs from fluctuating excessively. The combined loss function can be written as:

L = log p(x|zq(x)) + ‖sg[ze(x)]− e‖2
2 + β‖ze(x)− sg[e]‖2

2, (2.1.2)

where sg[·] denotes the stop-gradient operator and β is a weight controlling the

commitment cost.

By compressing continuous motion or image data into a sequence of discrete to-

kens, VQ-VAE makes it possible to model long-term structures using powerful autore-

gressive or diffusion priors in the discrete latent space. This discrete representation

not only reduces the dimensionality of the data but also captures high-level semantics,

enabling more effective generation in tasks such as image synthesis, speech modeling,

and text-to-motion learning. For motion diffusion in particular, VQ-VAE plays a cru-

cial role by converting high-dimensional motion sequences into compact, semantically

meaningful codebook indices. This transformation simplifies the diffusion process, re-

duces computational cost, and allows the model to focus on learning the distribution

of motion primitives rather than raw joint trajectories, ultimately improving both

efficiency and controllability in text-to-motion generation.

2.2 Denoising Diffusion Probabilistic Models

Figure 2.2: The forward diffusion and reverse denoising of DDPM [62]

9
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Denoising Diffusion Probabilistic Models (DDPM) are a class of latent variable

generative models that progressively add Gaussian noise to data and then learn to

reverse this process to generate new samples. In the forward (diffusion) process, a

clean data point x0 is gradually corrupted into a sequence {xt}Tt=1 according to a

variance schedule {βt}Tt=1, as illustrated in Figure 2.2:

q(xt|xt−1) = N
(√

1− βt xt−1, βtI
)
, (2.2.1)

and equivalently, a noisy sample at step t can be drawn directly from x0:

q(xt|x0) = N
(√

ᾱt x0, (1− ᾱt)I
)
, ᾱt =

t∏
s=1

(1− βs). (2.2.2)

The reverse process, shown together with the forward process in Figure 2.2, is pa-

rameterized by a neural network pθ(xt−1|xt), often instantiated as a U-Net or Trans-

former, which aims to denoise step by step. Training can be simplified into a denoising

score matching objective:

Lsimple(θ) = Et,x0,ε

[
‖ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)‖2

]
, (2.2.3)

where ε ∼ N (0, I) and εθ is trained to predict the added noise from the corrupted

sample.

DDPM has demonstrated state-of-the-art results in image generation by produc-

ing diverse and high-fidelity samples. For motion generation tasks, diffusion models

provide two main benefits: (1) Stable training, avoiding mode collapse commonly

observed in GANs, and (2) Flexible conditioning, where text, audio, or scene infor-

mation can be injected at each denoising step.

10
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However, standard DDPM frameworks also suffer from drawbacks, such as slow

sampling speed due to the large number of denoising iterations and difficulties in bal-

ancing efficiency with motion quality. These limitations motivate the improvements

proposed in this thesis, which are introduced and discussed in the following chapters.

2.3 MDM: Human Motion Diffusion Model

Figure 2.3: Framework of MDM [29]

The Human Motion Diffusion Model (MDM) is a diffusion-based generative frame-

work specifically designed for the motion domain [29]. Unlike earlier autoencoder or

VAE-based methods that often restrict motion representations to simplified latent

distributions, MDM leverages diffusion to better capture the inherent many-to-many

mapping between textual conditions and motion sequences.

A motion sequence is represented as x0 = {p1,p2, . . . ,pN}, where each frame pi

contains joint-level information such as positions or rotations. As illustrated in Fig-

ure 2.3, the forward process gradually perturbs the clean sequence into noisy states xt,

while the reverse process employs a transformer-based network to iteratively denoise

the sequence. Unlike standard DDPM, MDM directly predicts the clean motion x0 at

11
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each denoising step instead of the noise ε, which enables the incorporation of motion-

specific geometric losses such as foot-contact constraints [74] or velocity regularization

[69] to improve realism.

Conditioning is applied in a classifier-free manner. For text-to-motion generation,

the text prompt c is first embedded using a CLIP encoder and then combined with the

timestep embedding t. These conditioning signals are injected into the transformer

denoiser, which progressively reconstructs motion sequences x0 that align semantically

with the input description. As shown in Figure 2.3, this iterative process allows

the model to sample both conditional and unconditional motions within the same

framework.

In addition to text-to-motion, MDM naturally extends to related tasks such

as action-to-motion generation, motion completion, and motion editing (e.g., in-

betweening or partial body control). This versatility makes MDM a strong baseline for

controllable motion synthesis. Nevertheless, its reliance on a large number of denois-

ing steps results in high inference cost, which limits efficiency. In this thesis, I build

upon MDM by adapting it as a module within the proposed Multi-task Scene-

aware Text-to-Motion framework, where it is used to generate scene-consistent

motion segments from textual prompts.

12
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Chapter 3

Literature Review

In this chapter, I lay out the background needed for the methods that follow. Sec-

tion 3.1 reviews core AI paradigms for learning 3D human motion, from early fully

connected and recurrent models to attention-based architectures and physics-aware

control. Section 3.2 summarizes conditional generation, where motions are guided

by trajectories, styles, references, or other input signals across VR and interactive

settings. Section 3.3 focuses on text-to-motion, outlining latent alignment, tokenized

representations, and diffusion-based approaches that translate language into move-

ment. Section 3.4 turns to scene-aware synthesis, highlighting how motion generation

is coupled with layout and object geometry to support navigation and physically

plausible interactions.

3.1 AI for 3D Human Motion Learning

With the rapid advancement of artificial intelligence, deep learning methods have

become the mainstream paradigm for learning and synthesizing 3D human motions.

13
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Early work by Taylor et al. [79] introduced the Factored Conditional Restricted

Boltzmann Machine (FCRBM), which modeled motion dynamics through stacked

network layers. Early frameworks often relied on fully-connected architectures for

autoregressive motion generation. For example, Holden et al. [36] developed Phase-

Functioned Neural Networks (PFNN) to drive real-time locomotion in VR scenes

across various terrains. Deep autoencoders [34, 85] further enabled the extraction

of latent features in a compact manifold, facilitating retrieval and reconstruction of

diverse human motions for VR and gaming applications. By stacking fully-connected

layers on top of autoencoders, Holden et al. [35] generated locomotion sequences with

accurate foot placement and path-following ability.

Recurrent Neural Networks (RNNs) [61, 86, 84], as well as their variants such as

GRUs [23] and LSTMs [53, 78], have been widely adopted to model temporal motion

dynamics. More recently, attention mechanisms and Transformer-based models [46,

47, 8] have gained prominence for their ability to capture long-range dependencies,

making them particularly effective for generating complex free-form motions such as

gestures or dance.

In the context of physics-based simulations, deep reinforcement learning (DRL)

has been extensively used to generate physically realistic human skills. Representa-

tive works include DeepMimic [66] and Adversarial Motion Priors (AMP) [68], which

synthesize a wide variety of motions via imitation and adversarial training. Beyond

locomotion and navigation, DRL has been applied to balancing [56], basketball drib-

bling [57], and acrobatics [66]. In addition, adversarial generative models such as

GANs have also been employed [50] to improve diversity and realism in synthesized

motions.
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3.2 Conditional Human Motion Generation

Unlike unconstrained motion synthesis, conditional motion generation focuses on pro-

ducing motions that satisfy task-specific or user-defined requirements, which is of

particular importance in VR/AR and interactive entertainment. Spatial conditioning

is one common approach, enabling the system to enforce trajectory-following [35],

terrain-aware navigation [36], or reference motion imitation [66].

Another direction is style-conditioned motion synthesis, where users specify both

a target content and a reference style. Style transfer can then be realized using autore-

gressive mixtures [89], frequency-domain amplitude modulation [95], fully-connected

neural models [76], GRAM matrices [35], or Adaptive Instance Normalization (AdaIN)

[1]. With recent progress in human pose estimation, some approaches [67, 1] are even

able to extract motion conditions from 2D videos to guide the generation of corre-

sponding 3D outputs.

Multimodal conditioning has also been explored, particularly in audio-driven mo-

tion generation. Early works modeled gesture synthesis from speech using HMMs

[44] and CRFs [45]. Leveraging large-scale speech–gesture datasets [20, 23, 54, 55],

later studies proposed supervised learning with CNNs [30], VQ-VAEs [5], GRUs [23],

LSTMs [5], and Transformers [8]. To better capture the many-to-many mappings be-

tween speech and gestures, GANs [3, 23, 31, 48, 58, 92, 42, 21] and diffusion models

[6, 4] have been applied to enhance variation and realism. Similar frameworks are

adopted for music-driven dance synthesis, where CNNs [43, 104, 91], VAEs [65], RNNs

[78, 2], LSTMs [37, 17, 7], AdaIN [7], and Transformers [15, 16, 51, 75, 46, 47] have

been successfully employed to choreograph realistic dance motions from music inputs.

Unlike speech-driven gestures, music-driven motion typically requires less semantic
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alignment.

3.3 Text-to-Motion Generation

Text-to-motion is a specific subtask of conditional motion generation where natural

language descriptions serve as conditioning signals. To capture semantic information,

CLIP embeddings [72] are widely adopted. One representative line of work aligns text

and motion in a shared latent space. For example, TEMOS [70] employs transformer-

based VAEs to project paired motion–text samples into a joint space, allowing motion

generation via stochastic latent sampling. MotionCLIP [81] extends this idea by

aligning motion with the CLIP space through transformer-based autoencoding and

rendered motion images, enabling downstream tasks such as motion interpolation and

editing. However, the discrepancy between text and motion distributions often leads

to artifacts and reduced diversity [13].

Other approaches focus on token-based representations. TM2T [26] formulates

bidirectional mappings between text and motion tokens using neural machine trans-

lation, enabling both text-to-motion and motion-to-text generation. To encourage

diversity, Guo et al. [24] decomposed the task into text-to-length prediction and

length-conditioned text-to-motion synthesis with GRU-based VAEs. MoMask [27]

further advanced quantized representations by introducing hierarchical residual vec-

tor quantization (RVQ), where motion tokens are predicted through masked and

residual transformers.

With the success of diffusion models in computer vision, several works have applied

diffusion to text-to-motion generation [29, 13, 40, 99, 73, 18]. For instance, the Human

Motion Diffusion Model (MDM) [29] adopts a transformer encoder for denoising-based
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motion generation. MotionDiffuse [99] improves controllability through cross-modal

linear transformers and body-part/time-varying controls. Guided Motion Diffusion

(GMD) [40] emphasizes spatial constraints through dense propagation mechanisms.

MoFusion [18] integrates textual and musical conditioning into a 1D UNet-based

diffusion model, ensuring quality with kinematic and temporal consistency losses.

Meanwhile, Motion Latent Diffusion (MLD) [13] proposes to operate diffusion in

a compact latent space learned by a transformer-based VAE, which enhances both

efficiency and motion quality.

3.4 Scene-Aware Motion Generation

Scene-aware motion generation moves beyond character-only synthesis. The goal is

to respect scene geometry and semantics and affordances. One line of work uses

affordance as an intermediate cue. Afford-Motion first predicts language-guided af-

fordance maps and then generates motions that satisfy these cues [87]. GenZI targets

zero-shot generation. It distills priors from vision–language models and produces

text- and location-aware interactions without dedicated 3D HSI training data [49].

Another direction splits the task into object grounding and motion synthesis.

Text–Scene–Motion grounds the referenced object and then produces object-centric

motions in complex indoor layouts [10]. TeSMo [93] further advances this line by en-

abling text-controlled, scene-aware human-object interaction motions in diverse 3D

environments [93]. TRUMANS scales data size and sequence length. It provides a

large scene-aware corpus and an autoregressive diffusion backbone for long-horizon

interactions with strong cross-scene generalization [39]. UniHSI aims for unified con-

trol. It uses a language-driven chain-of-contacts planner and a single controller to
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realize long-horizon and fine-grained interactions across diverse layouts [90].

Foundational efforts shape today’s landscape. COINS [103] establishes compo-

sitional control over action–object specifications and supports retargeting to unseen

combinations. SceneDiffuser frames generation and optimization and planning di-

rectly in 3D scenes through diffusion [38]. Work from graphics and 3D vision offers

strong priors. The Neural State Machine models physically plausible character–scene

interactions with learned controllers [77]. PLACE [102] learns proximity and contact

distributions that guide feasible placements in 3D environments . Recent systems

stress physical plausibility and full-pipeline consistency. InterScene synthesizes phys-

ically plausible motions in 3D scenes [64]. HUMANISE explores language-conditioned

interaction in 3D scenes [88]. Together these studies advance robust and controllable

scene-aware motion generation that scales across objects and scenes and tasks.
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Chapter 4

Problem Formulation

In this chapter, I first introduce the data resources used throughout this thesis, which

include annotated human motion datasets and scene dataset. These provide the

foundation for training and evaluating motion generation models. I then formulate

the research problems considered in my work, starting from text-to-motion genera-

tion, extending to address the challenge of producing multi-task sequences guided by

complex user instructions and realistic scene constraints.

4.1 Data Representation

4.1.1 Annoated Motion Datasets

I use text–motion corpora that pair natural language descriptions c with 3D human

motions m. Following the HumanML3D [25] convention, each motion is represented

in a compact per–frame format m ∈ RN×D with N frames and a D-dimensional

attribute vector
[
rh, rrv, rlv, jr, jlp, jv, f

]
per frame, where rh is the root height, rrv the
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root rotation velocity, rlv the root linear velocity, jr the joint rotations, jlp the joint

local positions, jv the joint velocities, and f the binary foot–contact indicators. This

unified representation facilitates training motion models directly in the attribute space

while maintaining temporal and structural consistency across frames. HumanML3D

Figure 4.1: Samples of HumanML3D dataset [25]

is sizeable and diverse: it contains 14,616 motion clips paired with 44,970 descriptions

spanning 5,371 unique words. The motion set totals 28.59 hours, with clips averaging

7.1 seconds (range 2–10 s). Texts are concise, with mean and median lengths of 12

and 10 tokens. As shown in Figure 4.1 HumanML3D pairs each motion with multiple

free–form sentences covering action type, body part, direction, and style. Typical

captions include short single–action prompts such as “shakes an item with his left

20
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hand” or “waves his left hand repeatedly above his head,” as well as multi–clause

instructions like “jumping jacks and then running on the spot,” “jumping jacks then

starts jogging in place,” and “does four jumping jacks then three front lunges.” These

examples reflect the many–to–many relation between text and motion and motivate

the multi–task handling in later chapters. In addition, the HumanML3D authors

release KIT–ML [71] in the same processed formats, enabling direct reuse of the

notations above for cross–dataset training and evaluation.

4.1.2 Scene Datasets

I adopt the scene-aware data released with TSTMotion [28], which is built on the

HUMANISE [88] corpus of human–scene interactions in furnished indoor scans. As

shown in Figure 4.2. HUMANISE provides language descriptions aligned to human

motions m performed within realistic 3D environments, together with per-scene ob-

ject instances and geometry. This pairing of text c, motion, and scene context enables

evaluating scene-aware generation.

TSTMotion applies a Scene Compiler to HUMANISE scenes to convert raw scans

and instance annotations into two rasterized products that are convenient for down-

stream use as shown in Figure 4.3. First, a scene-wide road map R ∈ {0, 1, 2}H×W

encodes horizontal traversability: cells with value 0 are walkable, value 1 are obsta-

cles (walls, furniture footprints, voids), and value 2 mark target regions referenced

by the captions. The grid is defined in the ground plane with a fixed cell size, so

that R uniformly represents room layout across scenes. Second, instead of a single

global height raster, the compiler produces an upper-surface height map for every

object instance. For each candidate object o, its 3D bounding box is projected onto
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Figure 4.2: Samples of HUMANISE dataset. [88]

the scene coordinate system, where x and y represent horizontal floor positions and

z denotes the vertical height. Based on this projection, an object-level height map

Ho ∈ Rho×wo is computed over the footprint of the object’s bounding box, with each

cell corresponding to a discrete (x, y) location and storing the elevation of the object’s

top surface along the z axis. The resolution (ho, wo) is determined by the physical

footprint of the object, providing detailed surfaces for large items such as beds or

tables, while maintaining compact grids for smaller objects.

Figure 4.3: TSTMotion Scene Compiler [10]
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The released scene-aware dataset therefore contains, for each scene: the rasterized

road map R, a collection of per-object surface maps {Ho} covering all annotated

objects, and the original HUMANISE links between motions m, texts c, and the

scenes in which they occur. This standardized representation supports experiments

that require both global travel information from R and precise surface geometry from

Ho.

4.2 Problem Statement

4.2.1 Text-to-Motion

Let D = {(ci,mi)}Mi=1 denote the paired text–motion dataset, where each motion

m ∈ RN×D. We aim to learn a stochastic generator

fθ1 : (c, z) 7→ m̂, z ∼ N (0, I),

that models the conditional distribution pθ1(m | c)

The training goal is simply to make the model distribution close to the data

distribution under the same text:

min
θ1

Ec

[
∆
(
pθ1(m | c) ‖ pD(m | c)

) ]
,

where ∆(·‖·) denotes a suitable discrepancy (e.g., likelihood-based or distributional

distance). Equivalently, one may maximize the conditional log-likelihood:

max
θ1

1

M

M∑
i=1

log pθ1(mi | ci).
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Beyond distributional closeness, the generator is expected to produce, for any

given c: (i) motions that are semantically consistent with the text, (ii) natural and

physically reasonable sequences with smooth kinematics and sensible contacts, and

(iii) diverse samples when queried multiple times with the same c.

4.2.2 Multi-task Scene-aware Text-to-Motion

Given a scene and a long instruction, the goal is to generate a sequence of scene-aware

motions that follow the instruction while respecting the scene layout. Let the scene

be represented by a road map R ∈ {0, 1, 2}H×W and a set of object top-surface height

maps {Ho}Oo=1,H
o ∈ Rho×wo . Let c be the user text, which may implicitly contain

multiple sub-tasks [ci]
C
i=1 The objective is The objective is to design a generator

fθ2 : (ci, R, {Ho}, ξi) 7→ m̂i,

that generates a scene-aware motion segment m̂i corresponding to each sub-task ci,

where ξi is a stochastic seed enabling multiple plausible outcomes. The full motion

sequence is obtained by temporally concatenating the set [m̂i]
C
i=1.

The optimization objective is to make the generated motions consistent with the

dataset distribution under the same text and scene conditions. Beyond matching the

data distribution, the generator is expected to offer diversity through the noise ξi, and

to remain natural and physically reasonable within the constraints implied by R and

{Ho}. These properties are promoted by stochastic sampling, soft scene-consistency

penalties at sampling time.

t
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Chapter 5

Masked Deconstructed Diffusion

for Text-to-Motion

5.1 Overview

I formulate the problem of text-to-motion generation as follows: given a text condition

c, the goal is to synthesize a motion sequence m ∈ RN×D consisting of N frames.

Each frame is represented by D-dimensional pose attributes [rh, rrv, rlv, jr, jlp, jv, f ],

where rh denotes root height, rrv the root rotation velocity, rlv the root linear velocity,

jr the joint rotations, jlp the joint local positions, jv the joint velocities, and f the

binary foot-contact indicators.

As illustrated in Fig. 5.1, the proposed framework is composed of three major com-

ponents: 1) Kinematic Chain Quantization (KCQ) encodes body-part-specific

motion features into latent representations, which are subsequently discretized into

vectors and stored as entries in a codebook (Section 5.2); 2) during training, the

Masked Deconstructed Diffusion Transformer (MDDT) learns to align text
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Figure 5.1: MDD framework overview. A. Kinematic Chain Quantization: The
original motion sequence undergoes precise quantization through a chain-wise encoder
designed based on human kinematic structure, producing an efficient latent vectors
codebook with code entries referenced by their indices. B. Masked Deconstructed
Diffusion Transformer: The masked motion indices, text condition, and diffusion step
are noised in the latent space. The transformer is trained to predict the complete
and clean index sequence, enabling a deconstructed diffusion process. C. At inference
time, the text condition guides the transformer to generate indices, according to
which, codes are retrieved from the codebook and fed to the decoder, generating
high-quality motion output.

conditions with motion sequences by predicting an ordered set of code indices un-

der masked diffusion (Section 5.3); 3) during inference, the trained MDDT applies

a multi-step prediction strategy to progressively refine code indices until a full

motion sequence is reconstructed through the decoder (Section 5.4).

5.2 Kinematic Chain Quantization

I begin by revisiting the vanilla Vector Quantized-Variational AutoEncoder (VQ-

VAE), which has been widely adopted in prior work on motion generation [82, 96] as a

means of transforming continuous motion signals into discrete representations. Given
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Figure 5.2: Chain-wise Encoder. Three stages model motion features from local
to global levels based on different kinematic chains.

a motion sequence m ∈ RN×D, an encoder E composed of stacked convolutional layers

projects it into a latent sequence z ∈ Rn×d, where n and d indicate the temporal and

feature dimensions in the compressed space. A quantizer Q(·) then maps each latent

vector to the closest codebook entry, yielding ẑ = Q(z) ∈ Rn×d. The codebook C ∈

RK×d contains K entries, each representing a prototypical motion pattern. Following

[82], the assignment index bi for zi is obtained by minimizing Euclidean distance:

bi = arg min
j
‖zi − Cj‖ , (5.2.1)

where Cj is the j-th entry in the codebook. The codebook is trained jointly with

the encoder using a large set of motion examples, similar to the approach in [98].

Once quantized, the codes ẑ are decoded by D to reconstruct the motion m̂ =

D(ẑ). Although this process enables motion data to be discretized and modeled

under a Gaussian prior, standard VQ-VAE representations encode the entire body as
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a single unit, which reduces efficiency and limits diversity across different body parts.

To address this limitation, I introduce Kinematic Chain Quantization (KCQ).

Unlike the conventional VQ-VAE, KCQ employs a chain-wise encoder E that sepa-

rately extracts local latent features from multiple kinematic chains before combining

them into a compact codebook (see Fig. 5.2). Each motion frame m ∈ RN×D carries

D-dimensional information including joint rotations, positions, and velocities. KCQ

leverages a three-stage encoding strategy to capture both localized body-part features

and holistic full-body representations.

At each stage, motion data corresponding to a specific kinematic chain m̃ ∈ RN×D

are isolated by zero-masking all other dimensions. The encoder layer, consisting of

a 1D convolution followed by a ResNet-style 1D block [32], transforms these masked

inputs into latent features z̃ ∈ RN
2
×D:

m̃′ = ReLU(m̃ ∗W0 + b0),

z̃ = ReLU
(
ReLU(m̃′ ∗W1 + b1) ∗W2 + b2 + m̃′

)
,

(5.2.2)

where W0, b0 are the parameters of the convolution, and W1, b1,W2, b2 belong to

the ResNet block.

Stage 1: Five local kinematic chains are extracted: left arm (m̃la), right arm

(m̃ra), torso (m̃t), left leg (m̃ll), and right leg (m̃rl). Their latent codes zla, zra, zt, zll, zrl

are obtained by passing each through the encoder.

Stage 2: The features are fused into upper-body zu = zla⊕zra⊕zt and lower-body

zl = zll ⊕ zrl ⊕ zt, where ⊕ denotes element-wise addition. For joints contributing to

both fusions (e.g., the hip), features are averaged to normalize their scale. The fused

results zu and zl are then re-encoded into z̄u and z̄l.
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Stage 3: The upper- and lower-body features are further combined into z̄ =

z̄u⊕z̄l. This representation is passed through the final encoder and a linear projection

to produce the compact full-body latent vector z ∈ Rn×d.

For reconstruction, the decoder D adopts the conventional VQ-VAE structure to

maintain generalization ability. Training of KCQ follows [98] by minimizing both

reconstruction loss Lrec and vector-quantization loss Lvq:

LKCQ = ‖m− m̂‖1︸ ︷︷ ︸
Lrec

+α‖ẑ− z‖2
2︸ ︷︷ ︸

Lvq

. (5.2.3)

After training, the KCQ module can effectively extract multi-scale spatiotempo-

ral features that capture different kinematic characteristics of human motion during

encoding. For example, certain motions emphasize upper-body movements, while oth-

ers focus more on lower-body dynamics. By modeling these variations, KCQ learns a

more expressive and structured codebook, which is essential for high-quality motion

reconstruction. In contrast, most existing methods that rely solely on a standard VQ-

VAE are unable to achieve this level of representation learning, as demonstrated in

the component analysis presented in Chapter 6 Section 6.5. Furthermore, in the sub-

sequent conditional generation stage, one promising direction is to directly establish

the mapping between motions and codebook indices, rather than between motions

and latent variables, which can significantly improve inference speed.

5.3 Masked Deconstructed Diffusion Transformer

To capture the inherent many-to-many correspondence between text prompts and

motion outputs, I propose the Masked Deconstructed Diffusion Transformer
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Figure 5.3: Masked Deconstructed Diffusion Transformer predicts clean indices
based on the diffusion step, text condition, and masked indices.

(MDDT), shown in Fig. 5.3. Earlier studies mainly relied on autoregressive models

[29, 25], which generate future frames sequentially from past information. Such ap-

proaches often suffer from inefficiency and compounding errors across long sequences.

In contrast, I represent a motion sequence by the indices of its quantized codes ẑ in

the learned codebook C, and adopt a masked prediction strategy [11, 27, 52] to enable

parallel decoding of the entire sequence. Formally, MDDT takes as input the text

condition c, a masked index sequence b ∈ Rn for n frames, and the diffusion step

t, and produces predicted indices b̂ ∈ Rn. Text features are extracted from c using
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CLIP [72], yielding an h-dimensional embedding.

During training, the true motion indices b associated with c are partially masked.

The masking ratio is controlled by r(β) = cos
(
πβ
2

)
, where β ∼ U(0, 1). The resulting

masked indices b and the diffusion step t are projected into h-dimensional embeddings

and concatenated with the textual feature c. After position encoding, this forms a

matrix xt ∈ R(n+2)×h which serves as the input to the transformer [83].

A challenge of text-to-motion datasets such as HumanML3D [25] is that their tex-

tual annotations are manually labeled and may include ambiguous or noisy descrip-

tions. To address this, previous works [41, 59] leverage Denoising Diffusion Proba-

bilistic Models (DDPM) [33], where a clean feature x0 is gradually perturbed with

Gaussian noise:

x̃t = γtx0 + σtε, (5.3.1)

with ε drawn from a Gaussian distribution, and γt, σt being schedule parameters

such that γ2
t + σ2

t = 1, γ2
t =

∏t
s=1(1 − ηs) under a linear noise schedule [62]. In

the reverse process, the clean signal is reconstructed by iteratively estimating and

subtracting noise at each step. Although effective, this iterative denoising requires

many passes, making training and inference costly [14].

Building on this idea, I develop a deconstructed diffusion scheme to accelerate

the process. Instead of progressively increasing noise, I adopt a linearly decreasing

schedule for γ2
t , which reduces the number of steps while retaining useful clean features

as shown in Figure 5.4. At step t, the corrupted feature x̃t is fed into an N -layer

transformer encoder that directly outputs the motion indices b̂, bypassing explicit

noise estimation.
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Figure 5.4: Noise schedules. The conventional setting defines γ2
t =

∏t
s=1(1 − ηs)

with linearly increasing η. By contrast, a linear decrease in γ2
t encourages the model

to emphasize features with lower noise levels.

The learning objective at step t is defined as a cross-entropy loss between the

masked indices b and the predictions b̂, weighted by γ2
t to emphasize denoising:

LtMDDT = −γ2
t · E(b,b̂,c,t)

[
log p(b̂|b, c, t)

]
, (5.3.2)

where E denotes the expectation over training samples.

In summary, I deconstruct both the forward and backward diffusion processes:

the forward pass avoids excessive noise injection through a simplified schedule, and

the backward pass replaces step-by-step noise removal with direct index prediction.

This results in a more efficient and stable mapping between textual conditions and

generated motion sequences.
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5.4 Multi-step Inference

During inference, given a new text prompt, its CLIP embedding c is extracted and

provided as input to the trained MDDT. The model then predicts the motion indices

over L refinement steps. At the beginning (l = 0), the index sequence b0 is entirely

masked. Inference proceeds iteratively, with step l ranging from 0 to L, while the

corresponding diffusion step is set as t = L− l, decreasing from L down to 0. At each

step l, the model receives the textual feature c, the current index sequence bl, and

the diffusion step t, and outputs an updated sequence bl+1. To progressively refine

the predictions, dr
(
l
L

)
·ne indices with the lowest confidence are masked again before

moving to the next iteration. After completing L steps, the final sequence bL+1 is

obtained and used to retrieve quantized codes ẑ from the codebook C. Finally, the

decoder D in KCQ transforms ẑ back into the reconstructed motion sequence.
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Chapter 6

Experiments and Results of

Masked Deconcusted Diffusion

In this chapter, the proposed Masked Deconstructed Diffusion (MDD) framework

is systematically evaluated through a series of experiments designed to assess its

effectiveness in text-driven human motion generation. Section 6.1 introduces the

evaluation metrics adopted in the study, followed by Section 6.2, which details the

implementation settings, including the experimental environment and hyperparam-

eter configuration. Section 6.3 presents the quantitative evaluation results, while

Section 6.4 discusses the qualitative analyses, demonstrating that MDD achieves

competitive accuracy and efficient inference speed while maintaining high realism.

To further investigate the impact of individual components, Section 6.5 provides a

detailed component analysis. Finally, Section 6.6 explores the practical applicabil-

ity of the proposed framework in virtual reality (VR) environments, highlighting the

flexibility and effectiveness of MDD-based motion generation for immersive VR ap-

plications.
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6.1 Evaluation Metrics

Consistent with prior studies, I adopt several quantitative metrics to evaluate the

proposed models:

• R-Precision: evaluates how well the generated motion corresponds to the input

text by computing retrieval accuracy.

• Multimodal Distance (MM-Dist): measures the semantic consistency between

the synthesized motion and the given textual description.

• Fréchet Inception Distance (FID): compares the statistical distribution of gen-

erated motions with that of real motions, serving as an indicator of overall

motion realism and quality.

• Multimodality (MModality): quantifies the diversity of results by examining the

variation among motions produced from the same text prompt.

6.2 Implementation Details

All experiments were implemented in PyTorch 1.7.1 and conducted on an Ubuntu

20.04 workstation equipped with 32GB RAM, an Intel(R) Core(TM) i9-13900 CPU

@ 2.00GHz, and an NVIDIA GeForce RTX 4080 GPU with 16GB memory. For the

KCQ module, I adopted ResNet-1D blocks in both encoder and decoder, each stage

using a sampling scale factor of 2. The codebook size K and embedding dimension d

were both fixed to 512, and the quantization loss weight α was set to 0.08. The MDDT

model consisted of six transformer layers, each with six attention heads and a hidden
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dimension of 384. The number of diffusion steps t as well as inference iterations L

was set to 10.

6.3 Quantitative Comparisons

I compared the proposed MDD against representative baselines, including VAE-based

methods [25], VQ-VAE approaches [26, 98, 13, 27], and diffusion-based frameworks

[13, 29, 101, 100]. Evaluations were performed using the aforementioned metrics

together with inference runtime.

6.3.1 Metrics-based Comparison

To minimize randomness in evaluation, I followed the protocol in [25] and repeated

each experiment 20 times. The reported values correspond to the mean performance

with a 5% significance level. Table 6.1 summarizes the results on two datasets. In

general, across 11 state-of-the-art baselines, the proposed approach consistently places

within the top three on both R-Precision and FID, confirming its strong overall ef-

fectiveness. Although MoMask [27] achieves the best overall performance among ex-

isting methods, this advantage largely stems from its architectural complexity. The

model employs multiple residual VQ-VAEs together with several autoregressive Trans-

formers for motion index prediction, where the stacked modules compensate for the

quantization inaccuracies that arise in each individual step. To enable a fair com-

parison under a comparable model scale, I also include MoMask (base), a simplified

variant that uses only a single base codebook. Compared with this baseline, my

framework further refines the encoder’s feature extraction process and integrates a
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Table 6.1: Metrics-based evaluation on HumanML3D and KIT-ML test set.
± indicates a 95% confidence interval. (base) indicates useing single codebook. Bold
face indicates the best performance, single underline indicates the second-best, and
double underline indicates the third-best.

Datasets Methods
R Precision ↑

FID ↓ MultiModal Dist ↓ MultiModality↑
Top 1 Top 2 Top 3

HumanML3D

T2M [25] 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 2.219±.074

TM2T [26] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 2.424±.093

T2M-GPT [98] 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 1.831±.048

MotionGPT [13] 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 2.008±.084

MLD [13] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

MDM [29] - - 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MotionDiffuse [101] 0.491±.002 0.681±.001 0.782±.001 0.630±.001 3.113±.001 1.553±.042

ReMoDiffuse [100] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 1.795±.043

MoMask (base) [27] 0.504±.004 0.699±.006 0.797±.004 0.082±.008 3.050±.013 1.050±.061

MoMask [27] 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 1.241±.040

MDD 0.506±.002 0.702±.002 0.799±.002 0.076±.003 3.090±.003 1.236±.043

KIT-ML

T2M [25] 0.361±.005 0.559±.007 0.681±.007 3.022±.107 3.488±.028 2.052±.107

TM2T [26] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 3.292±.081

T2M-GPT [98] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 1.570±.039

MLD [13] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 2.192±.071

MDM [29] - - 0.396±.004 0.497±.021 9.191±.022 1.907±.214

MotionDiffuse [101] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 0.730±.013

ReMoDiffuse [100] 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 1.239±.028

MoMask (base) [27] 0.415±.010 0.634±.011 0.760±.005 0.372±.020 2.931±.041 1.097±.057

MoMask [27] 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 1.131±.043

MDD 0.424±.006 0.637±.005 0.765±.006 0.344±.027 2.933±.015 1.234±.038

deconstructed diffusion mechanism into the Transformer for index generation. As a

result, it achieves higher motion quality while maintaining comparable inference ef-

ficiency, which is particularly valuable when computational resources are limited. A

detailed comparison of inference speed is presented in the following section, further

underscoring the efficiency of the proposed framework.

6.3.2 Inference Speed Comparisons

I further benchmarked the inference efficiency of the proposed method against several

state-of-the-art baselines, including MoMask [27], MLD [13], MotionDiffuse [101],

MDM [29], and T2M-GPT [98], using an NVIDIA GeForce RTX 4080 GPU. For
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FID       AIT      Methods
   0.076   0.071s    MDD  
   0.045   0.104s    MoMask   
   0.082   0.077s    MoMask(base)   
   0.473   0.228s    MLD   
   0.630   3.243s    MotionDiffuse   
   0.544   6.069s    MDM   
   0.141   0.306s    T2M-GPT   

Figure 6.1: Inference Speed Comparisons. All experiments are conducted on an
NVIDIA GeForce RTX 4080. Lower FID and average inference time indicate better
performance.

each model, 100 motion sequences were generated and the Average Inference Time

(AIT) was recorded as a measure of computational cost. As illustrated in Fig. 6.1,

approaches that lie closer to the origin, corresponding to lower FID and AIT, are

considered more favorable.

The proposed method attains a strong trade-off between runtime and quality,

requiring only 0.071 seconds on average to generate a motion sequence. Compared

to diffusion-based models such as MLD [13], MotionDiffuse [101], and MDM [29], my

approach is faster by 2–3 orders of magnitude, owing to the fact that these methods

depend on numerous denoising iterations, while the deconstructed diffusion process

in my framework requires only a small number of steps. In terms of fidelity, the

method also outperforms T2M-GPT [98], which is limited by its vanilla VQ-VAE

design and autoregressive decoding. Finally, when compared to MoMask (base) [27],
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the proposed approach provides both higher generation speed and superior motion

quality.

6.4 Qualitative Comparisons

MDD MoMask T2M-GPT MLD MDM

A person walks forward, moving from left to right, making a single large step in the middle.

A person walks straight ahead for a few steps, breaks into a running jump, lands and continues to walk.

A person drops their arms and walks left to the chair to sit down.

Figure 6.2: Qualitative comparison among multiple motion generation methods is
conducted using three text descriptions from the HumanML3D dataset. Our method
demonstrated superior performance in generating detailed motions and understand-
ing long text. The axis−−→ represents the time axis, and the line indicates the motion

trajectory. Please refer to the online videos [12] for dynamic visualizations.

As illustrated in Fig. 6.2, I present qualitative comparisons with MoMask [27],

T2M-GPT [98], MLD [13], and MDM [29]. Overall, the proposed framework produces

motions that follow textual descriptions more faithfully. In the first case, T2M-GPT

[98] and MDM [29] fail to accurately realize the instruction “moving from left to
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right”. The second case focuses on longer textual inputs: MDM [29] and MLD [13]

either omit required motions or introduce unnecessary turns, while MoMask [27] and

T2M-GPT [98] also struggle to preserve the “walk straight” constraint. In the third

scenario, which involves relatively simple movement, my method still demonstrates

higher fidelity than competing approaches.

6.5 Component Analysis

I examined the contribution of individual components in the framework through sev-

eral analyses, including a comparison of KCQ against the vanilla VQ-VAE for effi-

ciency, as well as ablation experiments on the quantization loss weight α and the

number of inference steps L.

6.5.1 KCQ Efficiency
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Figure 6.3: Heatmap of the normalized standard deviation of the codebooks
from VQ-VAE and KCQ. The bright green areas represent more diverse codes.

As shown in the first section of TABLE 6.2, we evaluated the codebook efficiency

of KCQ and VQ-VAE on the HumanML3D dataset with models of equivalent scale,

focusing on both reconstruction and generation tasks. The evaluation metrics include
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Figure 6.4: Distribution of the normalized standard deviation of the codebooks
from VQ-VAE and KCQ, with a rightward shift in the distribution indicating that
most standard deviations are larger.

FID, Codebook Usage (measured as the average proportion of codes used per evalua-

tion batch) [94], and Perplexity [9]. For FID, our KCQ significantly outperforms over

a single VQ-VAE, as a single VQ-VAE does not account for the structure of motion

data. The Codebook Usage and Perplexity metrics indicate that KCQ’s codebook is

more efficient, offering greater diversity and capturing a wider range of motion fea-

tures. Comparing the normalized standard deviation of the code dimensions in Fig.

6.3, it is evident that the codes learned by KCQ are more dispersed. Additionally,

Fig. 6.4 shows that the normalized standard deviation in KCQ is more concentrated

in a larger range, further confirming its greater diversity.

6.5.2 Quantization Loss Weight α

The second part of Table 6.2 reports results under varying quantization loss weights

α. When α is too small, the reconstruction accuracy of KCQ degrades; conversely,

an excessively large weight limits generalization and adversely affects the FID score

of generated motions. These findings indicate that an appropriate trade-off between

reconstruction fidelity and quantization precision is crucial during training.
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Table 6.2: Component Analysis of KCQ. First part compares the reconstruction
and generation performance with VQ-VAE. Second part focuses on ablation study of
the quantization loss weight α.

Reconstruction Generation
Methods

FID ↓ Codebook
Usage ↑

Perplexity ↓ FID ↓ Codebook
Usage ↑

Codebook Efficiency
MDD (VQ-
VAE)

0.118±0.001 77.823% 137.86 0.124±0.005 74.204%

MDD (KCQ) 0.067±0.001 79.295% 119.772 0.076±0.003 76.148%
Quantization Loss Weight α

MDD(α, 0.02) 0.070±0.001 78.042% 134.247 0.081±0.004 74.913%
MDD(α, 0.04) 0.102±0.002 78.676% 138.934 0.110±0.003 75.525%
MDD(α, 0.06) 0.081±0.001 78.981% 136.630 0.092±0.004 75.632%
MDD(α, 0.08) 0.067±0.001 79.295% 119.772 0.076±0.003 76.148%
MDD(α, 0.1) 0.068±0.002 78.717% 133.774 0.078±0.005 75.564%
MDD(α, 0.12) 0.076±0.001 78.554% 129.276 0.087±0.002 75.422%

6.5.3 Inference Steps L
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Figure 6.5: Illustration of the ablation study on diffusion/inference steps L.

Figure 6.5 presents the effect of varying the number of inference steps L on FID

and multimodality distance. With too few steps, the accuracy of masked index pre-

diction decreases and the denoising process becomes incomplete, leading to reduced

motion quality. Beyond L = 10, however, no further improvements are observed.

Therefore, L = 10 is adopted as the default setting in our experiments.
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6.6 Applications in VR

The proposed text-to-motion framework can be applied to a variety of VR tasks,

including virtual navigation, scene-level interactions, and the generation of complex

motion behaviors. Given prior knowledge of the virtual characters and their environ-

ments, motions are first synthesized using the MDD framework with text prompts

that define motion constraints. These motions are then retargeted to virtual charac-

ters in Blender [22] and subsequently exported into VR scenes. To improve realism

and facilitate seamless integration into VR applications, I incorporated the following

procedures:

1) Global Alignment: To ensure consistency between the generated motion and

objects in the scene, keyframes and associated constraints are selected. Based on

these, global repositioning and reorientation are applied to adjust the sequence to

meet spatial requirements.

2) Kinematic Refinement: To give users more precise control over attributes such

as distance, direction, and speed, the framework supports scaling, blending, and

splicing of motion units derived from different prompts. This allows the enforcement

of fine-grained spatial constraints in flexible ways.

3) Dynamic Transition: To build longer motion sequences involving multiple be-

haviors, smooth temporal transitions are added between motion units. Transition

timing can be adaptively modified according to dynamic changes in the VR scene,

resulting in more natural interactions.

To showcase the practicality and versatility of the framework across different VR

use cases, several prototypes were developed in Unity3D [80].

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – J. Chen; McMaster University – Computing and Software

Figure 6.6: Application of MDD in VR. High-quality motions generated from
texts can be applied to different characters interacting with the scenes.

6.6.1 Scene Navigation

As shown in Fig. 6.6, using the prompt “walks down some stairs”, the framework

produces a motion sequence where the character descends a staircase. With knowledge

of the staircase location, global alignment adjusts the generated sequence to match

the scene geometry. For trajectory-based navigation, locomotion clips are generated

from simple directional prompts such as “walk forward”, “run forward”, or “turn

left”. These units are refined and blended via kinematic refinement to satisfy spatial

constraints, and further connected with dynamic transitions to form long, continuous

navigation paths. This experiment illustrates that the proposed framework enables

smooth and controllable scene traversal.

6.6.2 Scene Interaction

The framework also supports interactive motions, e.g., knocking on a door or jumping

over obstacles. In the right-hand scenario of Fig. 6.6, the text prompt “breaks into

a running jump, lands.” generates a jumping motion. Global alignment ensures the

apex of the jump coincides with the obstacle’s location, allowing the character to clear
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it. Dynamic transition is then applied to seamlessly connect the jump with preceding

and subsequent motions, yielding natural interactions.

6.6.3 Non-trivial Motion Generation

By enriching prompts with stylistic adjectives, the MDD framework can produce

complex, stylized motions with specific posture, speed, or amplitude preferences.

For example, the middle scenario in Fig. 6.6 shows a salsa dance generated from the

prompt “A person is doing a salsa dance moving their legs and arms.” Given a stage-

and-audience layout, global alignment places the performance at the stage center and

orients the dancer toward the audience, while kinematic refinement allows fine control

of dance tempo and stylistic details.

The results across these prototypes demonstrate the flexibility and effectiveness

of MDD-based motion generation for VR applications.
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Chapter 7

Multi-task Scene-aware

Text-to-Motion

7.1 Overview

In this chapter, I introduce the Multi-task Scene-aware Text-to-Motion (MTSA-

T2M) framework, which is designed to generate motion sequences that simultane-

ously respect textual descriptions c and interact coherently with a given scene s.

Unlike conventional text-to-motion models that typically focus on producing single-

task or isolated motions, MTSA-T2M enables the end-to-end synthesis of sequences

containing an arbitrary number of tasks, allowing characters to perform diverse mo-

tions consistent with the scene layout.

As illustrated in Figure 7.1, the framework is composed of three core modules:

(1) a Prompt Decomposer which could automatically segment a long and complex

textual description into a sequence of shorter sub-prompts, each corresponding to a

sub-task; (2) a Sub-task Motion Planner, which interprets each sub-prompt under
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the given road map R and object height maps {Ho}, where Ho denotes the height

map of a single object and the braces {·} represent the set of all objects, performs

spatio-temporal reasoning such as path planning on the scene map, and produces

motion guidance for execution; and (3) a Scene-Aligned Diffusion Model, which

synthesize motion segments conditioned on both the sub-task descriptions and the

scene guidance, ensuring that the generated sequences are coherent with the textual

intent and physically compatible with the scene.

Figure 7.1: Framework of Multi-task Scene-aware Text-to-Motion (MTSA-T2M)

7.2 Prompt Decomposer

In existing text-to-motion pipelines, multi-task scenarios are often handled through

manually designed stages, where each stage corresponds to a specific type of task.
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While effective in restricted domains, this approach does not generalize well to open-

ended user instructions, which frequently involve long and varied textual descriptions

with multiple implicit actions. To overcome this limitation, I introduce the Prompt

Decomposer, a module designed to automatically decompose complex prompts into

atomic sub-tasks.

Given an input description c that contains multiple actions (e.g., “A person walks

to the door, then they turn and walk towards the sofa. After that, they sits on the

sofa.”), the decomposer leverages large language models (LLMs, e.g., GPT-4o [63])

combined with carefully engineered prompts to segment the text into a sequence of

shorter, semantically consistent sub-descriptions [ci]. Each sub-prompt corresponds

to one elementary action, such as “Walk to the door” or “Sit on the sofa”. The

design of the decomposition prompt (see Appendix A) follows three key principles.

First, it enforces atomic granularity, requiring each output to capture a single action

unit. This prevents ambiguity and ensures that no two distinct actions are merged.

Second, it incorporates explicit handling of temporal connectors (e.g., “then”, “after

that”, “and”), treating them as natural breakpoints for segmentation. Third, it

specifies a structured output format in JSON arrays, which enables direct integration

with downstream planning modules. By following these principles, the decomposer

reliably translates long-form user descriptions into a set of actionable sub-prompts

[ci]
C
i=1, where the subscript i indexes each sub-task and the superscript C denotes the

total number of decomposed sub-prompts, which can be independently processed in

later stages.

As a result, the Prompt Decomposer provides the foundation for handling complex

user instructions in an automated manner, ensuring scalability to diverse multi-task
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scenarios without the need for manually predefined motion stages.

7.3 Sub-task Motion Planner

For the i-th sub-prompt ci generated by the Prompt Decomposer, the LLM-driven

Sub-task Motion Planner designed in this section produces a sparse 3D skeletal se-

quence as motion guidance gi ∈ RT×J×3, where T is the number of frames, J is the

number of body joints, and the last axis stores global coordinates (x, y, z). The LLM

employed here is the same as that used in the Prompt Decomposer described in Sec-

tion 7.2, ensuring consistent language understanding and reasoning throughout the

entire pipeline.It will guide the Scene-Aligned Diffusion Model introduced in the next

section to generate the corresponding motion mi. Specifically, given the sub-prompt

ci and the scene information represented by the road map R and the set of object

height maps {Ho}Oo=1, the Sub-task Motion Planner first generates a structured plan

Pi = (Ti,Ki, Ci), where Ti sketches the root trajectory on the ground plane, Ki pro-

vides a compact set of keyframes containing pelvis positions and optionally selected

joints, and Ci encodes interaction constraints such as the contact joint, the approach

direction, and the target grid cell. Finally, the motion guidance gi is reconstructed

based on the generated plan Pi.

The planner utilizes two types of maps at different reasoning processes. When rea-

soning over scene traversal, it relies on the road map R ∈ {0, 1, 2}H×W , which serves

as a global grid representation of the scene. Cells with value 0 denote traversable

areas, 1 indicate obstacles, and 2 mark target regions. When reasoning about precise

object–scene contacts, the planner first identifies the target object among all can-

didates and selects its corresponding upper-surface height map Ho ∈ Rho×wo . Each
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object’s 3D bounding box is projected onto the scene coordinate system, where x and

y represent horizontal floor positions and z denotes vertical height. The resulting

height map Ho is defined over the object’s footprint, with each grid cell storing the

elevation of the top surface along the z-axis. This dual-map design enables the plan-

ner to reason globally about navigation and locally about contact interactions within

the same framework.

Depending on whether the motion requires fine-grained interaction inferred from

the prompt semantics, the planner categorizes each sub-task into either a navigation

or an interaction type (see Appendix B). For navigation-type motions, when gener-

ating the trajectory Ti within the plan Pi, the planner determines an appropriate

number of keyframes and samples an initial point in a traversable area (cell value

= 0) on the road map R, maintaining a reasonable distance from the target region.

It then searches for an optimal trajectory that avoids obstacles (cell value = 1) and

terminates at a feasible end point near the target area (cell value = 2). The corre-

sponding keyframes Ki include motion phrases decomposed by the LLM (e.g., for the

instruction “walk to the door,” the motion is divided into “start walking,” “midway

walking,” and “reaching the door”), the motion tendency (such as toward or away),

and the 3D coordinates of the pelvis joint. The motion phrases and motion tendency

mainly serve to help the LLM maintain semantic coherence and logical continuity dur-

ing plan generation, resulting in smoother and more natural motion transitions. The

final pelvis coordinates will later be used to construct the motion guidance gi. For

interaction-type motions, the planner additionally generates interaction constraints

Ci, including the selected interaction joint, the approach direction, and the specific
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contact region determined from the height map Ho. The corresponding joint coor-

dinates are also attached to Ci, allowing precise alignment between the interacting

body part and the target object surface.

Finally, by extracting the spatio-temporal coordinates of all joints contained in

the plan Pi and padding the intermediate missing frames, a sparse motion guidance

sequence gi is obtained. It will condition the Scene-Aligned Diffusion Models at

the level of trajectories, key poses, and contact goals, ensuring that the synthesized

mi is consistent with both the sub-prompt semantics and the scene constraints in

Section 7.4.

7.4 Scene-Aligned Diffusion Model

Following the MDM-style denoising process [29] and the aligned generator adopted in

TSTMotion [28], each motion instance mi is generated through a diffusion sampling

procedure under the scene-aware condition. Starting from isotropic Gaussian noise

m
(K)
i ∼ N (0, I), a transformer-based denoiser fθ iteratively refines it into a clean

motion sequence conditioned on the diffusion step k and the sub-prompt embedding

ci.

At each diffusion step k ∈ {K, . . . , 1}, the network predicts an estimate of the

noise-free motion, denoted as

m̂
(0,k)
i = fθ

(
m

(k)
i , k, ci

)
, (7.4.1)

where the superscript (0, k) indicates that m̂
(0,k)
i is the denoised (i.e., step-0) motion

estimated from the current noisy state at diffusion step k.
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Given this estimate, the DDPM posterior mean [33] is computed as

µ
(k)
i =

√
ᾱk−1 (1− αk)

1− ᾱk
m̂

(0,k)
i +

√
αk (1− ᾱk−1)

1− ᾱk
m

(k)
i , (7.4.2)

where αk ∈ (0, 1) is the diffusion coefficient and ᾱk =
∏k

s=1 αs is the cumulative

product controlling the noise schedule.

The next state is then sampled from this posterior as

m
(k−1)
i = µ

(k)
i + σk ε, ε∼N (0, I), (7.4.3)

where σ2
k = 1 − αk denotes the variance term that determines the stochasticity at

step k.

After K denoising steps, the final motion m
(0)
i (or simply mi) is obtained as the

generated motion sequence corresponding to the i-th sub-prompt.

To align the reverse diffusion process with the scene-based plan, I incorporate the

motion guidance gi∈RT×J×3 generated by the planner in the previous subsection. At

each diffusion step k, an alignment energy encourages the denoiser’s clean prediction

to conform to the scene-conditioned plan and the intended contacts:

E (k)
align =

∑
(t,j)∈Ωi

∥∥∥gi[t, j]− FK(m̂(0,k)
i

)
[t, j]

∥∥∥2

2
, (7.4.4)

where Ωi denotes the index set of frame–joint pairs constrained by the plan, t and j

refer to the frame index (t=1, . . . , T ) and the joint index (j=1, . . . , J), respectively,

and FK(·) denotes the forward kinematics function that maps a motion representa-

tion (i.e., joint rotations) into the corresponding 3D skeleton sequence.
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A small posterior update is then applied to refine the denoiser’s prediction at

diffusion step k:

m̂
(0,k)
i ← m̂

(0,k)
i − λ∇

m̂
(0,k)
i
E (k)

align, (7.4.5)

where λ is a scalar hyperparameter controlling the guidance strength. This posterior

refinement gently nudges the reverse diffusion toward motions consistent with the

planner-generated scene-based plan gi, while preserving the stochastic nature of the

diffusion process.

To further prevent interpenetration with the scene geometry, a soft non-collision

constraint is incorporated during sampling. Let P denote the mesh of the given scene,

and SMPL
(
m̂

(0,k)
i

)
represent the skinned human mesh reconstructed from the current

clean motion prediction. Using a signed distance field SDF(·,P) that measures the

signed distance between the body surface and the scene mesh, a penetration energy

is defined as

E (k)
scene = ReLU

(
− SDF(SMPL(m̂

(0,k)
i ), P)

)
, (7.4.6)

where ReLU(·) excludes body points that are already outside the scene mesh, and

SDF(·,P) is updated at each diffusion step to reflect the current body–scene config-

uration.

A small posterior update is then applied to the clean prediction at diffusion step

k:

m̂
(0,k)
i ← m̂

(0,k)
i − η∇

m̂
(0,k)
i
E (k)

scene, (7.4.7)

where η is a scalar hyperparameter controlling the repulsion strength. This update

softly penalizes body–scene intersections, guiding the reverse diffusion toward physi-

cally plausible, non-colliding motions while preserving the stochasticity of sampling.
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In practice, the inputs to the generator are the text embedding ci, the initial

noise sample m
(K)
i , and the planner-produced guidance gi; the output is the denoised

motion m
(0)
i . Both guidance terms act only at sampling time and therefore require

no extra training, gradually steering the samples toward motions that satisfy the

sub-prompt semantics and the scene constraints.

7.5 Experiments and Results

To assess the feasibility of my MTSA-T2M framework, this chapter focuses on quali-

tative evaluations. I generate multiple multi-task motion sequences in several scenes

from the ScanNet [19] dataset. The selected prompts include varying numbers and

orders of navigation and interaction tasks, as well as diverse object configurations.

Among the evaluated scenes, one features a larger and more complex layout with

multiple objects and interaction regions, while another represents a smaller and sim-

pler environment. These results indicate that MTSA-T2M produces scene-aware,

text-conditioned motions and shows strong generalization to varied and demanding

settings.

7.5.1 Implementation Details

The qualitative experiments were implemented in PyTorch 1.7.1 and run on an

Ubuntu 20.04 workstation with 32 GB RAM, an Intel(R) Core(TM) i9-13900 CPU @

2.00 GHz, and an NVIDIA GeForce RTX 4080 GPU (16 GB). The LLM was GPT-

4. The MDM component used its default settings, and following TSTMotion, the

weighting in Eq. (7.4.5) was set to λ = 2, while the term in Eq. (7.4.7) was set to
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η = 0.5.

7.5.2 Qualitative Result

Prompt Result

A person walks to the door, then

moves toward the chair near the

shelf and climbs onto it.

A person sits on the bed, then

stands up and quickly runs toward

the TV.

Figure 7.2: Qualitative Result

Figure 7.2 visualizes MTSA-T2M outputs across three scenes and instructions.

Overall, the framework reliably parses long prompts with multiple implicit tasks into

sub-goals and generates scene–aligned motion segments for each, without manual

specification of motion types or their sequence.

In the first example, the prompt represents a sequence involving multiple naviga-

tion actions followed by an interaction, within a relatively complex scene. To specify

the target more precisely, the phrase “near the shelf” is used to locate the intended

chair. The prompt is automatically decomposed into three sub-tasks: “Walk to the

door,” “Move to the chair near the shelf,” and “Climb onto the chair near the shelf.”

The character successfully reaches the designated objects with accurate root trajecto-

ries, confirming the effectiveness of the navigation components in the Sub-task Motion

Planner. In the final sub-task, the feet make stable contact with the chair surface,
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indicating successful interaction control. Occasional interpenetration is observed in

the middle of the sequence, suggesting that the current interaction constraints still

have room for improvement.

For the second example, the sequence involves multiple interaction actions followed

by a navigation task, taking place in a relatively simple scene that allows easier local-

ization of the target objects. MTSA-T2M segments the prompt into three sub-tasks:

“Sit on the bed,” “Stand up from the bed,” and “Run toward the TV.” Although no

explicit rule enforces spatial continuity between sub-tasks, the planner selects plau-

sible contact points on the bed, resulting in visually coherent transitions between

sitting and standing. In the final sub-task, the running motion demonstrates distinct

dynamics compared to walking, indicating that the Scene-Aligned Diffusion Models

can preserve the stylized behaviors inherited from the base MDM while remaining

adaptive to the surrounding scene context.
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Chapter 8

Conclusion and Future Work

8.1 Discussion

In this section, I will discuss several practical aspects that should be considered when

applying the proposed methods to real-world scenarios. While this thesis primarily

focuses on improving the efficiency and quality of end-to-end text-to-motion gener-

ation, it is also necessary to address potential challenges that arise in practical use,

particularly cases where the generated motions might be uncomfortable to view or

unsafe to experience.

Regarding the issue of motion comfort, the stochastic nature of motion generation

may occasionally lead to unnatural postures or movements that deviate from common

human motion habits. In addition, minor artifacts such as sliding, jittering, or jerking

sometimes appear in generated sequences. In VR applications, these irregularities

can induce motion sickness or discomfort, leading to unpleasant viewing. Therefore,

ensuring motion comfort will be an essential direction for future improvement, as it

is crucial for delivering a stable and reliable visual performance to users.
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Regarding motion safety, on one hand, directly experiencing unverified generated

motions may result in rotations that exceed the normal range of motion, posing risks if

replicated by real humans. On the other hand, due to the complexity of the planning

system and the inherent limitations in LLM reasoning, the model may occasionally

produce unsafe plans that lead to penetration or excessive sliding, which could cause

loss of balance or even physical hazards in real-world scenes. Therefore, ensuring the

reliability and safety of generated motions must be treated as a critical priority for

future development.

8.2 Conclusion

This thesis introduced two complementary frameworks for text-driven human mo-

tion generation. MDD treats text-to-motion as diffusion over compact, kinematics-

aware codes: Kinematic Chain Quantization learns expressive discrete representations

that capture both local joint dynamics and whole-body structure, and a Masked De-

constructed Diffusion Transformer performs parallel masked index refinement under

textual conditioning; decoding the predicted codes yields motions that follow the

description, remain temporally coherent, and can be produced efficiently.

Building on this core, MTSA-T2M addresses long, composite instructions in real-

istic environments: a prompt decomposer segments a complex description into sub-

prompts, a sub-task motion planner reasons over the scene’s road map and per-object

height maps to produce actionable guidance, and scene-aligned diffusion modules syn-

thesize motion segments that respect both language and geometry. Together, MDD

improves semantic fidelity, diversity, and runtime through its discrete interface and

parallel refinement, while MTSA-T2M delivers end-to-end multi-task generation with

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – J. Chen; McMaster University – Computing and Software

consistent navigation and object interactions, modular components that can be up-

graded independently, and robust generalization to varied scenes and instructions.

8.3 Future Work

For MDD, there are several limitations. Current public datasets typically provide

motions at 20–30 FPS, which is suboptimal for synthesizing fast, high-amplitude

movements with crisp timing. Moreover, when training across datasets with different

kinematic hierarchies or skeleton conventions, the encoder layers in Kinematic Chain

Quantization require manual customization. Going forward, I will pursue a tempo-

ral–kinematic agnostic pipeline: learning rate-invariant motion codes that can be de-

coded at arbitrary frame rates, and introducing an adaptive kinematic interface that

maps diverse skeletal definitions into a shared canonical space with minimal hand-

tuning. I also plan to explore mixed-resolution training and cross-skeleton alignment

losses to improve robustness and transferability.

For MTSA-T2M, the main gaps lie in the coupling between sub-tasks and the

breadth of evaluation. While the framework decomposes long prompts reliably, the

transitions between segments rely on simple stitching and do not enforce stronger

continuity constraints on velocity, contact persistence, or momentum. Quantitative

assessment is also limited, focusing primarily on qualitative case studies. In future

work, I will introduce an explicit transition module that predicts handoff states and

timing between sub-tasks, along with soft constraints that preserve speed profiles,

contact states, and heading consistency across boundaries. I will also develop stan-

dardized scene-aware benchmarks with automatic metrics for navigation success, con-

tact accuracy, path efficiency, and collision rates, complemented by user studies to
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assess perceived realism and instruction faithfulness.

For motion comfort and motion safety, future work can incorporate a post-check

mechanism into the framework to ensure that generated motions comply with stan-

dard kinematic constraints and maintain natural, physically valid behavior. When

scene awareness is involved, additional runtime validation can be performed to guar-

antee safe interaction with environmental geometry. Moreover, providing users with

intermediate previews of generated motions can help them assess and adjust results

early, preventing error accumulation and improving overall user control. Through

these enhancements, the system can maintain both generation efficiency and real-

ism while ensuring that the motions meet the comfort and safety requirements of

real-world applications.
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Appendix A

Prompt of Prompt Decomposer

You are an intelligent expert on multi-task motion caption analysis. I will provide

you with a natural language caption describing a long and complex human motion

sequence in a 3D environment. Your task is not to generate 3D motion directly, but to

decompose the caption into multiple concise motion sub-captions, each representing

one clear physical action.

Requirements: 1. Subtask granularity: - Each sub-caption must describe one

atomic human action (e.g., “Walk to the door”, “Turn left”, “Sit on the sofa”).

- If the caption includes temporal connectors such as “then”, “after that”, “and”,

“subsequently”, “finally”, use them as natural split points.

2. Spatial awareness: - When generating each sub-caption, preserve object and

location references from the original description (e.g., “Move to the chair near the

shelf”, not just “Move to the chair”). - If multiple actions involve the same object,

keep the object name consistent across the steps.

3. Output format: - Return the result as a JSON array of strings. - Each string

starts with a capital letter and uses the base form of the verb (no -s or -ed).
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4. Semantic clarity: - Do not merge distinct actions into one line. - Do not invent

actions or objects not mentioned in the input caption.

Examples:

Example 1 Input: A woman runs to the kitchen, opens the refrigerator, and takes

out a bottle of water.

Output: [“Run to the kitchen”, “Open the refrigerator”, “Take out the bottle of

water”]

Example 2 Input: The man walks to the desk near the window, pulls the chair,

and sits down on it.

Output: [“Walk to the desk near the window”, “Pull the chair near the window”,

“Sit on the chair near the window”]

Example 3 Input: A person moves across the living room, picks up the cup on the

table, and places it on the shelf beside the TV.

Output: [“Move across the living room”, “Pick up the cup on the table”, “Place

the cup on the shelf beside the TV”]

Example 4 Input: The child crawls to the toy box, opens the lid, and puts a doll

inside.

Output: [“Crawl to the toy box”, “Open the lid of the toy box”, “Put the doll

inside the toy box”]
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Appendix B

Prompts of Sub-task Motion

Planner

B.1 Navigation

[12]

Standardized Output Schema (use null where not applicable): { “task”: “naviga-

tion” — “interaction”, “interaction joint”: “pelvis” — “left hand” — “right hand” —

“left foot” — “right foot”, “motion tendency”: “toward” — “away” — null, “interac-

tion direction”: “left” — “right” — “top” — “bottom” — “left-top” — “left-bottom”

— “right-top” — “right-bottom” — null, “start”: [x, y] — null, “end”: [x, y] — null,

“interaction grid”: [i, j] — null } (If any original example shows a different field set,

adapt it to this unified schema while preserving semantics.)

[navigation plan]

You are an intelligent expert on the interaction between humans and 3D objects.

You will be provided with a caption of a 3D human motion and the corresponding
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target information in the 3D scene. Your job is to generate 3D human motion in the

format of skeleton joints for this person, which must be aligned with the given caption

and target. Here are more details: 1. Coordinate System: The coordinate system

of the 3D scene includes x, y and z-axis, and every 100 units means 1 meter length.

The positive z-axis represents height. The person moves on the XOY plane and his

“pelvis” should be around 85 units at z-axis when standing upright. 2. Target Object:

The relevant information of the target is also presented. 3. Motion Tendency: You

first need to determine the motion tendency, that is, whether the motion is “toward”

or “away” from the target. If the motion is like “walk to”, the motion tendency

is “toward”; If the motion is like “walk away”, the motion tendency is “away”. 4.

Motion Orientation: You must judge this person’s motion orientation. If the motion

is like “walk to” or “walk away”: the motion orientation is set as “forward”. If

the motion is like “walk backwards”: the motion orientation is set as “backward”.

5. Motion Start and End: The start of the motion on XOY plane should be the

“motion start” of the target. The end of the motion on XOY plane should be the

“motion end” of the target. 6. Motion Keyframes: You must determine how many

frames are in the motion according to the caption. This motion contains a minimum

of 40 frames and a maximum of 100 frames, whose frame rate is 20 frames per second.

Then you must analyze which frames are more key, and then generate the motion of

“pelvis”. Importantly, you must provide the start frame and the end frame of the

motion. You must rationally plan the trajectory of this motion according to the above

requirements and your analysis results. Before you start to generate a new motion, I

will first offer an example:

Scene Scope: {x min:0, x max:630, y min:0, y max:500, z min:0, z max:250}
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Target: { ’target’: {’label’: ’door’, ’midpoint’: [18, 379, 106], ’x min’: 10, ’x max’:

26, ’y min’: 331, ’y max’: 427, ’z min’: 14, ’z max’: 198}, ’motion start’: [15, 15],

’motion end’: [15, 335] }

Caption: walk to the door near the sofa.

### Analysis: 1. Motion Tendency: Since the motion is “walk to”, the motion

tendency is “toward”. 2. Motion Orientation: Since the motion is “walk to”, the

motion orientation is “forward”. 3, Motion Start and End: Since the motion is “walk

to”, the joint “pelvis” should starts at [15,15,85] and ends at [15,335,85]. 4. Motion

Keyframes: Since the start is away from the end, so we can consider it to take 80

frames. And we consider that the start, mid and the end frame are keyframes, so we

provide the “pelvis” position in these frames.

### Result: { “motion”:“walk to the door”, “motion tendency”:“toward”, “mo-

tion orientation”:“forward”,

“keyframe 1”:{“state”:“starting to walk”,“pelvis”:[15,15,85],},

“keyframe 40”:{“state”:“midway walking”,“pelvis”:[78,175,65],},

“keyframe 80”:{“state”:“reaching the door ”,“pelvis”:[15,335,85],},

}

[navigation target]

You are an intelligent expert on the interaction between humans and 3D objects.

You will be provided with a caption of a human motion and the corresponding target

object in the 3D scene. Your job is to reason the trajectory of the motion. Here are

more details: 1. Road Map; The 3D scene will be projected onto the XOY plane

and recorded in the form of a matrix. If the gird value of the road map is 0, the

grid is walk-able for motion. If the gird value of the road map is 1, there are some
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obstacles in this grid. If the gird value of the road map is 2, the target is inside this

grid. 2. Interaction Joint: The joint used to interact with the target is “pelvis”. 3.

Motion Tendency: You first need to determine the motion tendency, that is, whether

the motion is “toward” or “away” from the target. If the motion is like “walk to”,

the motion tendency is “toward”; If the motion is like “walk away”, the motion

tendency is “away”; 4. Motion Trajectory: You need to first locate the target, and

then reason trajectory the of the interaction joint “pelvis” on the road map. If the

motion tendency is “toward”, then the end of motion should be at girds with value

2, the start of motion should be with value 0 and be close to the center of the scene;

If the motion tendency is “away”, then the start of motion should be at girds with

value 2, the end of motion should be with value 0 and away form the target’s grids.

The distance between the start and the end should be moderate. Unless necessary, it

is best not for this person to walk diagonally. There should be no obstacles between

the start and end of the motion. Before you start to analyze the target, I will first

offer an example:

Road Map of the Scene: [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,

0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0,

2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0,

1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2,

2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ]

(The illustration of this sample road map can be seen in Figure B.1.)

Caption: walk to the chair.

### Analysis: 1. Interaction Joint: Since the motion is “walk to”, the interaction

joint is “pelvis”. 2. Motion Tendency: Since the motion is “walk to”, the motion

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – J. Chen; McMaster University – Computing and Software

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
X

0
3
6
9

12
15
18

Y

0

1

2

Figure B.1: Illustration of sample road map.

tendency is “toward”. 3. Motion Trajectory: It can be noted that the target locates

from grid [30,8] to grid [34,14], and the motion tendency is “toward”. Therefore, the

start can be grid [30,1], and end can be grid [30,8]. Note that there are no obstacles

(grids with value 1) on the road.

### Result: { “interaction joint”:“pelvis”, “motion start”: [30,1], “motion end”:

[30,8], }

B.2 Interaction

Standardized Output Schema (use null where not applicable): { “task”: “naviga-

tion” — “interaction”, “interaction joint”: “pelvis” — “left hand” — “right hand”

— “left foot” — “right foot”, “motion tendency”: “toward” — “away” — null, “in-

teraction direction”: “left” — “right” — “top” — “bottom” — “left-top” — “left-

bottom” — “right-top” — “right-bottom” — null, “start”: [x, y] — null, “end”: [x,
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y] — null, “interaction grid”: [i, j] — null } (If any original example shows a different

field set, adapt it to this unified schema while preserving semantics.)

[interaction scene]

You are an intelligent expert on the interaction between humans and 3D objects.

You will be provided with a caption of a human motion and the corresponding target

object in the 3D scene. Your job is to reason the feasible interaction direction of the

motion. Here are more details: 1. Road Map; The 3D scene will be projected onto

the XOY plane and recorded in the form of a matrix. If the gird value of the road map

is 0, the grid is walk-able for motion. If the gird value of the road map is 1, there are

some obstacles in this grid. If the gird value of the road map is 2, the target is inside

this grid. 2. Feasible Interaction Direction: You can select the feasible interaction

directions from “left”, “right”, “top”, “bottom”, “left-top” “left-bottom”, “right-top”

and “right-bottom” of the target in the roadmap. First you should determine whether

the target is at the boundary of the scene. If so, motion can only occur inside the

scene. Secondly, you should determine whether there are many walk-able grids around

the target. If so, the motion should occur in this direction. If you are unsure, you

should provide as many interaction directions as possible. Before you start to analyze

the target, I will first offer an example:

Road Map of the Scene: [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,

0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0,

2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0,

1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2,

2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1], [1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ]

(The illustration of this sample road map can be seen in Figure B.1.)
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Caption: sit on the toilet.

### Analysis: Since the target is not at the boundary of the scene; there are

many walk-able areas at the “left” direction and few walk-able areas at “top” direction

of the target; so the feasible interaction direction can be “left” and “left-top”.

### Result: { “feasible interaction direction”:[“left”,“left-top”] }

[interaction target]

You are an intelligent expert on the interaction between humans and 3D objects.

You will be provided with a caption of a human motion and the corresponding target

object in the 3D scene. Your job is to predict which part of the target, and from

which direction of this target the motion should interact with. Here are more details:

1. Target Object: The target object will be projected onto the XOY plane and

divided into multiple grids on the XOY plane. Each grid contains the height of the

upper surface of the target in the grid, forming a height map. Each grid represents

100 square centimeters on the XOY plane. 2. Interaction Surface: For motion like

“sit on the toilet”,“lie on bed”,“stand up from couch”,“stand on the table”, the

interaction point should be the “top” surface of the target. 3. Interaction Joint: You

should decide the decisive joint used to interact with the target, including “pelvis”,

“left hand”, “right hand”, “left foot” and “right foot”. 4. Interaction Direction:

You need to predict on which direction of the height map the person should interact

with. Namely, the start and the end of the motion are much closer to the interaction

direction than other directions. You can select the interaction directions from “left”,

“right”, “top”, “bottom”, “left-top” “left-bottom”, “right-top” and “right-bottom”

of the height map. You had better select one interaction direction from the provided

feasible interaction direction. If the target’s height map grids are all concentrated at

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – J. Chen; McMaster University – Computing and Software

one height, the interaction direction can be any direction. If the target’s height map

does not have all grids concentrated at one height, the interaction direction is from

the higher area of the height map to the lower area. 5. Interaction Grids: Based on

the interaction direction, you need to predict which grid of the height map the person

should interact with the interaction joint. Therefore, the height change of interaction

grids and the surrounding grids should be relatively smooth; the height of this grid

should appear many times in the height map; these grids should be connected to the

boundaries of the target. Importantly, the interaction grids should be close to the

interaction direction. Namely, if there are grids of multiple heights that meet the

requirements, you must not select the grids with the highest heights. For example, if

some grids have a height near 40, and some have a height near 70. You should select

the grid with a height near 40.

Before you start to analyze the target, I will offer two examples:

Example 1: Height Map of Target: [ [70, 70, 65, 45, 45, 45, 45, 45, 40, 40, 40, 40,

40, 40, 35, 35, 40, 40, 40, 60, 65, 65, 60], [75, 75, 70, 50, 50, 50, 50, 45, 45, 45, 45, 45,

45, 45, 45, 45, 45, 45, 55, 60, 65, 65, 65], [0, 70, 70, 50, 50, 50, 45, 45, 45, 45, 45, 45,

45, 45, 45, 45, 45, 45, 65, 65, 70, 70, 65], [0, 75, 70, 60, 50, 55, 55, 50, 45, 45, 45, 45,

45, 45, 45, 45, 45, 50, 65, 75, 75, 70, 65], [75, 75, 80, 80, 70, 60, 55, 60, 60, 60, 60, 60,

45, 50, 55, 50, 45, 45, 65, 70, 70, 70, 70], [75, 90, 90, 90, 90, 90, 85, 70, 75, 80, 80, 85,

90, 70, 75, 65, 70, 70, 75, 75, 70, 70, 70], [80, 90, 90, 90, 90, 90, 90, 85, 85, 85, 90, 90,

90, 85, 85, 90, 90, 90, 90, 85, 85, 70, 70], [80, 80, 80, 80, 85, 90, 90, 85, 85, 85, 85, 85,

85, 85, 85, 90, 90, 90, 90, 90, 85, 70, 70], [80, 80, 80, 75, 75, 70, 85, 70, 70, 70, 70, 70,

70, 70, 70, 70, 70, 65, 65, 60, 65, 65, 0], ]

(The illustration of this sample height map can be seen in Figure B.2.)
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Figure B.2: Illustration of sample height map of couch.

Feasible Interaction Direction: [“top”]

Caption: sit on the couch.

### Analysis: 1. Interaction Joint: Since the motion is “sit on the couch”, the

interaction joint is “pelvis”. 2. Interaction Direction: The provided feasible interac-

tion direction is [“top”]. THe height map of the target couch is mainly concentrated

around 40 or 80, so the interaction direction is from 80 to 40 (i.e., “top”). Compre-

hensive analysis shows that the interaction direction should be “top”. 3. Interaction

Grids: Since the motion is “sit on the couch”, the interaction surface is “top”. Since

the height map of the couch and the motion of sitting, the grid [1,11] in the height

of 45 and nearby grids are suitable interaction grids. This is because the grids at

heights of 45 appear multiple times, are connected to each other, have a smooth
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height change, and can be directly connected to the boundaries of the target. Impor-

tantly, the grids at heights near 90 also meet these requirements, but they are with

the highest height. So we not select the grids at the height near 90.

### Result: { “interaction joint”:“pelvis”, “interaction grid”:[1,11], “interac-

tion direction”:“top”, }

Example 2: Height Map of Target: [ [40, 40, 45, 45, 45, 45, 45, 50, 50, 55, 55, 55,

55, 55, 50, 50, 45, 45, 45, 45, 45, 40, 40], [45, 45, 50, 50, 50, 50, 50, 55, 55, 55, 55, 55,

55, 55, 55, 55, 50, 50, 50, 50, 50, 45, 45], [45, 45, 50, 50, 50, 50, 55, 55, 55, 55, 55, 55,

55, 55, 55, 55, 55, 50, 50, 50, 50, 45, 45], [45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 45, 45], [45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 45, 45], [45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 45, 45], [45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 45, 45], [45, 45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,

50, 50, 50, 50, 50, 50, 50, 50, 50, 45, 45], [40, 40, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45,

45, 45, 45, 45, 45, 45, 45, 45, 45, 40, 40] ]

(The illustration of this sample height map can be seen in Figure B.3.)

Feasible Interaction Direction: [“bottom”, “bottom-right”]

Caption: lie on the bed.

### Analysis: 1. Interaction Joint: Since the motion is “lie on the bed”, the

interaction joint is “pelvis”. 2. Interaction Direction: The provided feasible interac-

tion direction is [“bottom”, “bottom-right”]. The height map of the bed is mainly

concentrated around 50, so the interaction direction can be the long side of the tar-

get (e.g., “bottom” and “top”). Comprehensive analysis shows that the interaction

direction should be “top”. 3. Interaction Grids: Since the motion is “lie on the bed”,
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Figure B.3: Illustration of sample height map of bed.

the interaction surface is “top”. Since the height map of the bed and the motion

of lying, the grid [7,12] in the height of 55 and nearby grids are suitable interaction

grids. This is because the grids are at the boundaries of the target.

### Result: { “interaction joint”:“pelvis”, “interaction grid”:[8,12], “interac-

tion direction”:“bottom”, }

[interaction plan]

You are an intelligent expert on the interaction between humans and 3D objects.

You will be provided with a caption of a 3D human motion and the corresponding

target information in the 3D scene. Your job is to generate 3D human motion in the

format of skeleton joints for this person, which must be aligned with the given caption

and target. Here are more details: 1. Coordinate System: The coordinate system

of the 3D scene includes x, y and z-axis, and every 100 units means 1 meter length.
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The positive z-axis represents height. The person moves on the XOY plane and his

“pelvis” should be around 85 units at z-axis when standing upright. 2. Target Object:

The relevant information of the target is also presented, including interaction joint,

interaction position and interaction direction. 3. Motion Tendency, Interaction Joint

and Interaction Position: If the motion is like “sit” or “lie”, the motion tendency is

“toward” the target. Then the interaction joint should reach the interaction position

at end. If the motion is like “stand”, the motion tendency is “away” the target. Then

the interaction joint should reach the interaction position at start. 4. Interaction

Direction: If the given interaction direction includes “x min” and motion tendency

is “toward”, the position of start on the x-axis should be smaller than the target’s

“x min”. If the given interaction direction includes “x min” and motion tendency

is “away”, the position of end on the x-axis should be smaller than the target’s

“x min”. If the given interaction direction includes “x max” and motion tendency

is “toward”, the position of start on the x-axis should be larger than the target’s

“x max”. If the given interaction direction includes “x max” and motion tendency is

“away”, the position of end on the x-axis should be larger than the target’s “x max”.

If the given interaction direction includes “y min” and motion tendency is “toward”,

the position of start on the y-axis should be smaller than the target’s “y min”. If

the given interaction direction includes “y min” and motion tendency is “away”, the

position of end on the y-axis should be smaller than the target’s “y min”. If the

given interaction direction includes “y max” and motion tendency is “toward”, the

position of start on the y-axis should be larger than the target’s “y max”. If the

given interaction direction includes “y max” and motion tendency is “away”, the

position of end on the y-axis should be larger than the target’s “y max”. 5. Motion
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Orientation: You must judge this person’s motion orientation. If the motion is like

“stand”: the motion orientation is set as “forward”. If the motion is like “sit” or

“lie”: the motion orientation is set as “backward”. 6. Motion Keyframes: You must

determine how many frames are in the motion according to the caption. This motion

contains a minimum of 40 frames and a maximum of 100 frames, whose frame rate

is 20 frames per second. Then you must analyze which frames are more key, and

then generate the motion of “pelvis” and the interaction joint in these keyframes.

Importantly, you must provide the start frame and the end frame of the motion. 7.

Motion Trajectory: You must rationally plan the trajectory of this motion according

to the above requirements and your analysis results. The distance from the start

to the end is moderate. Before you start to generate a new motion, I will offer two

examples:

Example 1: Target: { “target”: {“label”:“toilet”,“midpoint”: [98, 77, 35],“x min”:

78,“x max”: 117,“y min”: 47,“y max”: 107,“z min”: 0,“z max”: 70}, “interac-

tion joint”:“pelvis”, “interaction position”:[78,77,45], “interaction direction”:“y min”,

}

Caption: stand up from the toilet away from the curtain.

### Analysis: 1. Motion Tendency, Interaction Joint and Interaction Position:

Since the motion is “stand up from”, the motion tendency is “away”, the interaction

joint “pelvis” should reach the interaction position [78,77,45] at start. 2. Interaction

direction: Since the given interaction direction includes “y min” and the motion

tendency is “away”, the position of end on the y-axis should be smaller than the

target’s “y min”. 3. Motion Orientation: Since the motion is “stand”, the motion

orientation is “forward”. 4. Motion Keyframes: Since the motion is simple, so we
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can consider it to take 50 frames. And we consider that the start, mid and the end

frame are keyframes, so we provide the “pelvis” position in these frames. 5. Motion

Trajectory: The interaction joint “pelvis” should be interaction position [78,77,45]

at start; the end should be at some distance head of the start along the interaction

direction and out of the target bounding box, which can be [38,77,85];

### Result: { “motion”:“stand up from the toilet”, “motion tendency”:“away”,

“motion orientation”:“forward”,

“keyframe 1”:{“state”:“starting to stand up”,“pelvis”:[78,77,45],},

“keyframe 25”:{“state”:“midway standing up”,“pelvis”:[78,57,65],},

“keyframe 50”:{“state”:“completing the standing ”,“pelvis”:[78,37,85],},

}

Example 2: Target: { “target”: {“label”:“bed”,“midpoint”: [96, 239, 36],“x min”:

45,“x max”: 147,“y min”: 95,“y max”: 383,“z min”: 0,“z max”: 72}, “interac-

tion joint”:“pelvis”, “interaction position”:[140,220,45], “interaction direction”:“x max”,

}

Caption: lie on the bed close to the door.

### Analysis: 1. Motion Tendency, Interaction Joint and Interaction Position:

Since the motion is “lie on the bed”, the motion tendency is “toward”, the interaction

joint “pelvis” should reach the interaction position [140,220,45] at end. 2. Interaction

direction: Since the given interaction direction includes “x max” and the motion

tendency is “toward”, the position of start on the x-axis should be bigger than the

target’s “x max”. 3. Motion Orientation: Since the motion is “lie”, the motion

orientation is “backward”. 4. Motion Keyframes: Since the motion is simple, so we

can consider it to take 60 frames. And we consider that the start, mid and the end
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frame are keyframes, so we provide the “pelvis” position in these frames. 5. Motion

Trajectory: The interaction joint “pelvis” should be interaction position [140,220,45]

at end; the start should be at some distance head of the end along the interaction

direction and out of the target bounding box, which can be [155,220,85];

### Result: { “motion”:“lie on the bed”, “motion tendency”:“toward”, “mo-

tion orientation”:“backward”,

“keyframe 1”:{“state”:“starting to lie down”,“pelvis”:[155,220,85],},

“keyframe 25”:{“state”:“midway lying down”,“pelvis”:[145,220,65],},

“keyframe 50”:{“state”:“completing the lying”,“pelvis”:[140,220,45],},

}
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