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Lay Abstract

Researchers are often interested in the time it takes for a certain event to happen.
For example, in medical studies, we may ask how long it takes a patient to recover,
while in engineering, we may study how long a product works before it fails.
This type of information, which measures the time until an event occurs, is called
lifetime data. Collecting such data can be difficult because studies often end before
every recovery or failure has been observed, resulting in incomplete data.

To make sense of incomplete data, statisticians use statistical inference, a process
where they make inferences about the population from available data. There is a
special type of statistical inference, called estimation, where mathematical formulas
called estimators are used to approximate important features of said population.

This thesis examines how to decide which estimator is more accurate among
a given class under a specific data collection scheme. Using a mathematical tool
called the Pitman closeness criterion, we derive and compute exact expressions
for making pairwise comparisons among three different estimators that depend
on the length of the study and the number of observations collected. Our results,
based on this criterion, support the intuitive idea that extending the study period
or increasing the number of observations leads to producing a better estimator

according to the Pitman closeness criterion in a particular data collection scheme.
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Abstract

The Pitman closeness (PC) criterion is a method to compare two statistical esti-
mators. Assuming that the lifetime data follow an exponential distribution with
scale parameter 0, prior work had computed the PC probabilities for estimators
of 0 based on Type-I right-censoring, Type-II right-censoring and Type-I hybrid
censoring schemes (HCS). However, the derivation of the PC under a Type-II HCS
has not yet been addressed in the literature.

This thesis examines two comparisons of maximum likelihood estimators for 0,
the scale parameter, for exponentially distributed lifetimes arising from the Type-
IT HCS: (1) between estimators corresponding to different numbers of observed
failures, and (2) between estimators with different censoring times. Closed-form
expressions for the PC probabilities are derived, and numerical results are reported
for various sample sizes, censoring times, and study durations. Numerical results
show that increasing the pre-fixed termination time or the number of failures led to
an estimator that was always Pitman closer to the true parameter. These findings
confirm the intuition that increasing the termination time or the number of observed
failures will usually lead to an estimator that is Pitman closer than one based on a

shorter termination time or fewer observed failures.
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Notation and Abbreviations

Notation

IP(-)

Exponential(0)

fx(x)

Fx(x)

fx(x; )

“" 77

Denotes the absolute value of the argument, where “-” serves as a

placeholder for a real number, defined as appropriate in context.

The probability of the placeholder “-” occurring, which is precisely

defined as needed.

The random variable X follows a placeholder O distribution. D

and “-” are stated when relevant.
The exponential distribution with rate parameter 6.

The probability density function (pdf) of a random variable X eval-

uated at x.

The cumulative distribution function (cdf) of a random variable X

evaluated at x.

An alternative notation for the pdf of a random variable X evalu-

“” 7

ated at x, where “-” serves as a placeholder for the parameters for

the distribution.
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Fx(x;-)

An alternative notation for the cdf of a random variable X evalu-

“” 7

ated at x, where “-” serves as a placeholder for the parameters for

the distribution.

L(") The likelihood function where “-” serves as a placeholder for the
parameter vector for the distribution.

Xin The ith order statistic from a sample of size n.

Lo, 51(%) An indicator function where we have 1ifa < x < band 0 otherwise.

Abbreviations

PC Pitman closeness criterion.

HCS Hybrid censoring scheme.

pdf Probability density function.

cdf Cumulative distribution function.

ii.d. Independently and identically distributed.

MLE Maximum likelihood estimator.

UMVUE Unique minimum variance unbiased estimator.

MSE Mean square error.

BLUE Best linear unbiased estimator.

BLIE Best linear invariant estimator.
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Chapter 1

Introduction

Lifetime experiments, which aim to measure the time until an event occurs, are com-
monly employed in healthcare and engineering settings. For example, researchers
measure how long it takes for patients to recover from a disease, or engineers test
how long their product can be used for. There are many costs and time considera-
tions when conducting lifetime experiments, which may result in incomplete data,
meaning data for which the event of interest (e.g., recovery, failure) has not been
observed for all subjects. For instance, patients can pass away prematurely, or a
product may last longer than the study time.

Most experiments are conducted under right-censoring, where only a lower
bound on lifetimes are fully observed for the observations, often using either Type-
I or Type-II censoring schemes. However, there are hybrid versions, such as the
Type-I and Type-II Hybrid Censoring Schemes (HCS), which may provide more
information for estimating parameters for lifetime distributions. These naming
conventions (Type-I HCS, Type-II HCS) were first introduced by Childs et al. [11].

Because these schemes affect how much information is available, it is common
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when analysing lifetime data to model the times to event using a specific probability
distribution. In this context, these are often referred to as lifetime distributions,
although functionally they are standard probability distributions applied to lifetime
data. Some recent examples in the literature use an exponential distribution to
analyse electronic components [12] and fluorescence decay [24]. Other common
distributions include the log-normal, log-logistic, gamma, inverse Gaussian, and
the Weibull distribution [19].

Previous studies have applied the Pitman closeness (PC) criterion, a method
to compare two estimators, to censored samples drawn from the exponential dis-
tribution. These include investigations under Type-I censoring, Type-II censoring,
and Type-1 HCS [7, 8, 13]. The work about Type-I HCS specifically examined
how increasing the pre-specified number of observed events r or the censoring
time T influences the closeness of an estimator to the value of the scale parameter
from the exponential distribution under the PC criterion. However, an analogous
comparison has not yet been carried out.

This thesis focuses on the derivation of the PC probabilities among maximum
likelihood estimators (MLEs) of the scale parameter 0 obtained under Type-II
hybrid censoring schemes from an exponential lifetime distribution. The result
provides a suggestion for researchers designing experiments under a Type-II hybrid
censoring scheme. Specifically, this determines whether increasing the number of
observed failures or extending the total data collection time leads to an estimator
that is Pitman closer to the true parameter, which can be used as a heuristic to

identify a more accurate estimator.


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.Sc. Thesis — A. Ly; McMaster University — Mathematics and Statistics

The rest of this thesis is organised as follows. Chapter 2 introduces key pre-
liminary concepts in detail, including Pitman closeness, lifetime data, and various
censoring schemes. Chapters 3 and 4 present comparisons between MLEs of the
scale parameter 0 under a Type-II HCS from a lifetime exponential distribution.
Chapter 3 examines how increasing the number of observed failures affects es-
timator performance, while Chapter 4 investigates the impact of extending the
total data collection time. Next, we present numerical results from computing the
PC probability for varying cases in Chapter 5. Finally, we make our concluding

remarks and suggest new avenues for future research in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we present relevant preliminaries to understand the method used
for comparing estimators, as well as the structure and properties of the exponential

distribution.

2.1 Lifetime Data Analysis

Lifetime refers to the length of time from a defined starting point (such as the
beginning of observation or the start of product use) until a specified event, often
called a failure, occurs. The definition of “failure” depends on the situation and
does not imply something negative. For example, in engineering, this might mean
a product no longer works properly. In healthcare, it may be that a patient has been
cured or has passed away.

Lifetime data, as the name suggests, consists of observations of these lifetimes.
This type of data can also be referred to as survival or failure time data, depending

on the context. Such data arise in biomedical sciences, epidemiology, engineering,
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reliability studies, and many other fields. For instance, in healthcare, one might
record the time it takes for a patient to recover from an illness to estimate average
recovery times. In manufacturing, lifetime data are collected in reliability studies
to assess how long a product lasts before it stops functioning as intended.

When analysing lifetime data, it is typical to assume an underlying probability
distribution describing the time to event. In the context of lifetime data analysis,
such models are commonly termed as lifetime distributions; however, they are
mathematically identical to conventional probability distributions.

Lifetime distributions can be either continuous or discrete. Continuing the
healthcare example, one might measure recovery time in days, which is discrete,
or in hours or minutes, which can be treated as continuous. This thesis, however,
focuses on continuous lifetime distributions; consequently, all notations, including
cumulative distribution functions, will be discussed in their continuous form.

Let T'be a non-negative random variable that represents the lifetime of a subject
under study, which again is the duration until an event of interest occurs. Let fr(t)
denote the probability density function (pdf) of T; usually, fr(t) € [0, o). Also, let

Fr(t) represent the cumulative density function (cdf) of T. We can write the cdf as:

Fr() =P(T<t) = f Fr(x)dx. 2.1.1)
0

Here, the cdf represents the probability that a lifetime ends before time t. It is
common for researchers to be more interested in the probability that a lifetime

lasts beyond time t. Hence, the survival function, sometimes referred to as the
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reliability function, denoted as St(t), is shown below,

Sr(t) = P(T > 1) = f ) Fr(x)dx, (2.1.2)

and this function represents the probability that an individual or object survives

beyond a specified time point t.

2.1.1 Lifetime Distributions

When analysing lifetime data, researchers often rely on well-known probability
distributions such as the log-normal, log-logistic, gamma, inverse Gaussian, and,
most commonly, the Weibull distribution [19].

The pdf for the Weibull distribution is defined as:

fx(x) = g(%)k_l exp {— (g)k} x>0,k>0,0>0, (2.1.3)

where k is the shape parameter, and 0 is the scale parameter. A special case of
the Weibull distribution is the exponential distribution, which occurs when k = 1.
That is, assuming we have the same scale parameter 0, the pdf of an exponential

distribution is given by:
1 —x/0
fx(x) = gt X2 0,0>0. (2.1.4)
The corresponding cdf is:

Fx(x)=1-¢%% x>0,0>0. (2.1.5)
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Furthermore, if there exists € > 0 such that E[eX] is finite for all t € (—¢,€), the

moment generating function of the exponential distribution is:
Mx(t) =E[eX]=1-007", t+67L (2.1.6)

The exponential distribution has nice properties. For instance, the exponen-
tial distribution is scale-invariant under reparameterisation. That is, let X ~

Exponential(0), where O represents the scale parameter, and let Y = X/60. Then,

Fy(y) = P(Y < y) = P(X/0 < y) = P(X < Oy) = Fx(0y),

(2.1.7)
fH(y) = fx(0y)0 = %e—(ey)/ee — oY

Hence, Y ~ Exponential(1). This result shows us that when working with estimators
for the scale parameter of an exponential distribution, results can be rescaled to
apply to any value of 0.

Furthermore, there is an interesting relationship between the exponential dis-
tribution and the gamma distribution. Let V ~ Gamma(a, ), where a represents
the shape and g represents the scale. The shape and scale parameterisation of the

gamma pdf is defined as:

1
fr(v;a,B) = Wv“—le—v/ﬁ, x>0,a>0,8>0. (2.1.8)

Similarly, if E[e"] is finite for € > 0, t € (—¢,€), then we define the moment

generating function of the gamma distribution to be:

My(t;a,B) = E[e""] = (1 - pt)™. (2.1.9)
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The gamma distribution has the useful property that the sum of independent
exponential random variables with a common scale parameter O follows a gamma
distribution. A formal proof is given in Theorem (2.1.18) in Durrett’s textbook [14],

and we restate the lemma below for reference.

Lemma 2.1.1. Let Xj, Xy, ..., X, be be independent and identically distributed (i.i.d.)
distributed as Exponential(0). Then, the distribution of & = X1+ Xo + -+ X, is
Gamma(n, 0) where the first value (n) represents the shape parameter and the second value

(0) represents the scale parameter.

2.1.2 Order Statistics

Order statistics, as their name suggests, are defined by sorting a random sample in
increasing order. That is, given we have a random sample of size n: Xy, X,, ..., X,,
we denote the corresponding order statistics as Xi.,, Xou, - .., Xu:n Where Xp,, <
Xoy < -+ £ Xy Order statistics appear in numerous statistical contexts; here, we
consider their application specifically to lifetime data.

The pdf of the ith order statistic, as derived by Barry et al. [3] as Equation (2.2.2),

is given in the following lemma:

Lemma 2.1.2. Let Xy, X5, ..., X, be i.i.d. random variables with probability density
function fx(x) and cumulative distribution function Fx(x). Denote their order statistics

by Xi.n < Xoy < -+ £ Xy The probability density function of X, fori € {1,...,n}, is:

T Fx(I L~ BV ), oo <x<oo. (2110)

fxin (%) = W

There is an interesting result involving spacings of exponential distributions

8
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derived as Theorem (4.6.1) in Barry et al., [3]:

Theorem 2.1.1. Let Xj.,, < X5, < -+ < X, be the order statistics from the standard
exponential distribution from a sample of size n. We will set X,., = 0. Then consider the

random variable of the form:

Zi=(n—i+1)(Xin— Xi1m), i€1{1,2,...,0. (2.1.11)

We have that Z1,Z,, . .., Z, are all statistically independent and have standard exponential

distributions.

This result may seem overly specific, but it frequently arises in the context of
order statistics from the exponential distribution.

Order statistics are central to constructing L-estimators, which are linear com-
binations of order statistics. Common examples include the median, minimum,
maximum, and quantiles, all of which are generally robust to outliers. A detailed
treatment of L-statistics can be found in Serfling’s book [23].

Beyond their role in descriptive statistics, some types of data are inherently
ordered. This is especially relevant in life-testing experiments with missing or
incomplete data, also known as censored data, a topic explored in the next sub-

chapter.

2.1.3 Standard Right-Censoring Schemes

Many unexpected events may occur during the data collection phase for lifetime

data. Morbid events, such as patients passing away before they can recover, are
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not unique. Furthermore, sometimes experiments can take longer than the origi-
nal time allocated, resulting in experiments that may be prematurely terminated.
Hence, we discuss the notion of censored data, a broad term that implies incom-
plete observations. There are specific types of censored data; we will focus on
discussing extensions of right-censored data.

Right censoring refers to experiments where only a lower bound on the lifetime
is observed. This means that for some subjects, the event of interest may occur
later than the observation period, and the exact time is unknown. For example,
in a healthcare study tracking patient recovery, a patient may recover soon after
the observation period ends or potentially much later; the precise recovery time
remains uncertain. It is common to exclude the suffix “right” when describing
right-censored experiments, and we will adopt this convention throughout. There
are different types of right censoring schemes, such as Type-I, Type-II, Progressive
Type-1, Progressive Type-II, Type-1 Hybrid, and Type-II Hybrid.

Type-I refers to situations where the experiment ends at a predetermined time,
thus the number of observed failures is random. On the other hand, Type-II occurs
when the experiment continues until a pre-determined number of events have
occurred, while the termination time is random. In summary, Type-I is fixed by
time, and Type-II is fixed by the event count. A good comprehensive introduction
to lifetime data and right-censoring schemes is discussed in Lawless” textbook [19].

There are modifications to Type-I and Type-II censoring schemes to add an extra
layer of complexity. An example that we will briefly discuss is Progressive Type-I
and Progressive Type-II, where censoring takes place progressively at r different

stages.

10
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In a lifetime experiment, any unit that has not yet failed is referred to as a live
unit or surviving unit. Progressive Type-I censoring describes an experimental
setup where a set of termination times, ti, t5, ..., f, is fixed in advance, and at each
of these times a predetermined number of live units m;y, my, ..., m; are randomly
removed from the study.

In contrast, Progressive Type-II censoring is both more commonly studied and
more widely applied than Progressive Type-I. It involves removing a predeter-
mined number of live units at the time of certain failures. Suppose an experiment
begins with 7 units, and the goal is to observe exactly k failures. Let my, my, ..., my;
denote the numbers of live units to be removed in addition to the observations
that fail at the times of the 1st, 2nd, ..., kth failures. For instance, when the first
failure occurs, an additional m; of the remaining n — 1 live units are withdrawn at
random. At the second failure, 7, units are removed from the remaining n —2 —m,
live units, and this process continues until n — r — m; — m, — - - - — my units remain.

Additional references on Progressive Type-I and Progressive Type-II censoring
are provided in books written by Balakrishnan & Aggarwala [4] and Balakrishnan
& Cramer [6].

There are some issues with Type-I and Type-II censoring schemes. For example,
in Type-I censoring schemes, if the termination time T is small, it is possible to ob-
serve no failures. Hence, it would be impossible to make any statistical inferences.

Other flaws regarding Type-I and Type-II censoring schemes are that they do
not account for both the number of observations as well as the termination time,
although realistically, most researchers have an idea of both factors in the planning

phase. For instance, in Type-I censoring, if the termination time T is large, then

11
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there is a possibility that the number of observed failures r will exceed the number
of failures that the experimenter had planned to account for, meaning the test could
be unnecessarily prolonged.

Furthermore, long experiments are often costly and impractical. In engineering,
for instance, testing the durability of mobile phones over many years is unrealistic
when new models are released annually. Similarly, in healthcare, it is difficult for
participants to remain in long-term studies without compensation, and personal
circumstances may cause them to withdraw.

Conversely, in Type-II censoring, since the number of planned observations
r is fixed but not the termination time T, the experiment can end much earlier
than expected or last longer than expected. This is problematic in situations where
experimenters expected or budgeted for a longer study. For example, in healthcare,
participants may have been promised funding for a fixed duration, leading to
wasted resources if the study ends prematurely. However, if the experiment lasts
longer than expected, there may not be enough resources to complete the study.

In other cases, researchers may be specifically interested in late-life failures.
For instance, when studying the durability of a manufactured product, it may be
useful to know how likely it is to last well beyond its average lifespan. More details
regarding the issues with Type-I and Type-II censoring are elaborated in Section
1.3 of Balakrishnan et al. [9].

With regards to Progressive Type-I and Type-II censoring, it is often difficult in
practice to randomly withdraw additional live units at exactly the prescribed times
(Type-I) or after each observed failure (Type-II). These challenges motivate the

development of hybrid censoring schemes, which aim to balance the number of
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planned failures r and the termination time T while avoiding excessive complexity.

2.1.4 Hybrid Censoring Schemes

Two different types of hybrid censoring schemes are Type-I Hybrid Censoring
Scheme and Type-II Hybrid Censoring Scheme. Typically, “Hybrid Censoring
Scheme” is abbreviated to “HCS”.

Suppose we fix both a termination time T and a pre-determined number of
observed failures r. Let Xj, X, ..., X,, represent a random sample of lifetimes.
We order the lifetimes as X;,, < X5,y < -+ < X,. Type-I Hybrid Censoring
Scheme (HCS) is when the experiment is terminated at T; = min{X,.,, T} and is
tirst introduced by Epstein [15]. One potential issue is that if T is small enough, it
is possible that some estimators, such as the MLE, will not exist. This is because if
T is sufficiently small, no failures may occur within the study period, leading to no
data being collected, and therefore, inferences cannot be made.

Thus, other researchers may find the Type-II Hybrid Censoring Scheme (HCS)
to be more appealing. In this scheme, lifetime experiments are terminated at
T, = max{X,,, T}, which provides more information than lifetime experiments
under a Type-I HCS because it guarantees that there will be at least r failures.
A limitation for Type-II HCS is that the experiment will need to run for longer
compared to other censoring types, which can be seen as impractical depending
on the time it takes for r observed failures to occur.

There are many other hybrid censoring schemes, such as Generalized Type-I
HCS, Generalized Type-II HCS, and others. More details of alternative hybrid

schemes can be found in Balakrishnan et al. [9].
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2.1.5 Truncation

Truncated distributions are a type of conditional distribution that is derived from
knowing that the variable has a smaller range than the initial distribution. For ex-
ample, suppose we assume that the random sample X, X5, ..., X, is exponentially
distributed, but we know all of the lifetimes occur before time T. For reference,
we say that this sample is right-truncated at T. Then, the range is 0 < X; < T for
i €{1,2,...,n}. We need to adjust the probability density function to ensure it is
valid. That is, letting ¢ € IR represent the scalar that adjusts the probability density

function accordingly:

T

1

1= cf 5e'x/9dx = c=(1-e79" (2.1.12)
0

The truncation does not necessarily have to be between 0 < X; < T. Another form
of truncation arises when we have a stricter lower bound than that of the original
distribution. For example, consider the earlier sample X, X5, ..., X, drawn from
an exponential distribution, but this time all observed failures are known to exceed
T. Consequently, the support becomes T < X; < oo fori € {1,2,...,n}, and such a
sample is referred to as left-truncated at T.

Data can be doubly left and right-truncated. Hence, we highlight the general
form of a truncated distribution. Suppose X has a probability density function fx(x)
and a cumulative density function Fx(x). Leta,b € R. If X follows a distribution

restricted to the interval [a, b], then the truncated distribution is defined as:

fx(x) - L p(x)

Sxla <X <D= 6 " F@)

(2.1.13)
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where 1j,;(x) represents the indicator function:

1 ifxe]a,b],
Lo (x) = (2.1.14)

0 otherwise.

Truncations are relevant since they arise as a byproduct of censoring schemes.
For example, under Type-I censoring, the experiment is forced to end at a fixed
time T, which implies there are some right-truncated observations. Moreover,
working with truncated distributions may be useful when dealing with estimators
or mathematical expressions that include order statistics. For instance, it is useful to
partition the ordered samples into two groups (e.g., one subject to right-truncation
and the other to left-truncation).

When working with left-truncated samples from an exponential distribution,
there is a convenient property: if the sample is truncated at some T > 0, then
subtracting T from the truncated observations restores the original exponential

distribution.

Lemma 2.1.3. Let X be exponentially distributed with scale parameter 0, left-truncated
at T. Then the shifted random variable V = X — T also follows an exponential distribution

with scale parameter O.

Proof. From Equation (2.1.13), the pdf of X is given by

-1 _ _
fuly = 2RO L (=L

D " 6 } T <x <o (2.1.15)
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Now, for V = X — T we have

Fy(v) = P(X =T <) = Fx(v + T),

1 -(v+T)+T
ﬁ@:h@+ﬁ:5m%i—?L—} (2.1.16)
1
= Eexp(—v/e), 0<v<oo,
which is precisely the pdf of an exponential distribution with scale 6. m|

Furthermore, when dealing with samples from a doubly truncated exponential
distribution, it is often advantageous to transform the variable to obtain a distribu-

tion that is only right-truncated. Consider the following lemma as well.

Lemma 2.1.4. Assume X is exponentially distributed with scale parameter 6 and doubly
truncated between T and T" where 0 < T < T". Then, X—T is a right-truncated exponential

distribution with scale parameter 0 at T —T.
Proof. From Equation (2.1.13), the pdf of X is given by

0~ exp(-x/0) 07! exp(-x/0)

)= BT — R = e T

T<x<T. (2.1.17)
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Now, for V = X — T we have

Fy(0) = P(X-T <v) = Fx(@ +T),

fv(@) = fx(v+T)
_ 0'exp(=(v+T)/0)

o-T/0 — p-T'/0 (2.1.18)
_ 07 exp(-v/0) exp(-T/0) exp(-T/0)~"
- e~ T/0 — e=T'/0 exp(-T/6)

_ 07"exp(-v/0)
" 1-exp(—(T*+T)/0)

which follows the form of the pdf of an exponential distribution that is right-

truncated at T* — T with scale 6. m|

There is a useful theorem proved by Balakrishnan and Cohen [5] as Theorems
(2.4.1) and (2.4.2) in their text, which shows that a sample of order statistics can be
partitioned into two distinct groups: the first forming a right-truncated complete

sample, and the second forming a left-truncated complete sample.

Theorem 2.1.2. Let X3, X>, ..., X, be i.i.d. random variables from a population with cdf
F(x), and let Xy, < --- < X,,., denote the corresponding order statistics. If the observed
data are truncated on the right at T, and exactly m of the Xi’s are less than or equal to T,
then the first m order statistics Xy, < - -+ < Xy form a complete random sample of size m
from the distribution F(x) that is right-truncated at T. Furthermore, the remaining n — m
order statistics X1 < -+ < Xy form a complete random sample of size n — m from the
distribution F(x) that is left-truncated at T. Moreover, these two sets of order statistics are

independent.

More details of truncation can again be found in Lawless’ textbook [19].

17


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.Sc. Thesis — A. Ly; McMaster University — Mathematics and Statistics

2.2 Maximum Likelihood Estimation

This subchapter discusses likelihood functions, which are commonly used in statis-
tical inference, together with their maximum likelihood estimators (MLEs). Since
the form of the likelihood depends on the type of data, we also present the cor-
responding likelihoods under Type-I censoring, Type-II censoring, and the two

hybrid schemes (Type-I and Type-II).

2.2.1 Likelihood Functions

Some methods in statistical inference rely on likelihood functions derived from ob-
served data. Consider a random sample of lifetimes Xj, X5, ..., X,,. These lifetimes
are assumed to follow a distribution with pdf fx(x) and cdf Fx(x) fori =1,2,...,n.
When we wish to emphasise the role of the parameters, we instead write fx(x; 0)
for a parameter vector 0. The likelihood function for complete data is then given

by: )
L(6) = H Fx(xi; 0). (2.2.1)

i=1

Because the likelihood depends on the observed data, its form differs under censor-
ing schemes with incomplete observations, or with other missing-data mechanisms
(e.g., data missing at random).

Suppose we have a random sample of lifetimes X, X5, ..., X,,, with realisations
X1,Xy, ..., X,. Each x; represents either a fully observed lifetime or the time at which

the observation was right-censored (i.e., the last known time before the experiment
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ended). Define a censoring indicator by:

1 if Xl' = X,
0i =1,,(X;) = fori=1,2,...,n. (2.2.2)

0 otherwise,

Thus, 6; = 1 indicates that the lifetime was observed in full, while 6; = 0 indicates
censoring. Clearly, .7, 0; gives the number of observed lifetimes.

The likelihood function can then be written as:

L(0) = | | fx)Sxx)', (2.2.3)
i=1

where Sx(x;) := P(X > x;) is the survival function. This form is intuitive; when
0; = 1, the observed lifetime contributes through the density fx(x;). Meanwhile,
if ; = 0 then we only know that the lifetime exceeds x;, which is captured by the
survival probability Sx(x;). A more detailed discussion of likelihood functions for
censored data can be found in Lawless” book [19].

Sometimes in practice, likelihood functions can be complex, and the closed-
form expression for the MLE may not exist. In such cases, iterative procedures
are employed. The Expectation-Maximisation (EM) algorithm is one widely used
approach, and numerical methods such as Newton—-Raphson can also be incorpo-
rated within it to carry out the maximisation step. A convenient feature of the
exponential distribution is that the closed form for the likelihood functions and
MLE can be easily derived under common right-censoring schemes, including the
Type-II hybrid censoring scheme, so such numerical methods are not required for

this thesis.
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In the following subsections, we focus on the exponential distribution and
explicitly derive the likelihood functions under four censoring schemes: Type-I
censoring, Type-II censoring, Type-I hybrid censoring, and Type-II hybrid censor-

ing.

2.2.2 Type-I Censoring

We now present a more formal definition of Type-I censoring. In this scheme,
each lifetime observation has a pre-specified censoring time C;. We use the term
potential censoring time because if the event (failure) occurs before C;, then the
observation is not censored.

Assume now that Xj, Xy, ..., X, areii.d. and follow an exponential distribution
with scale parameter 0, and let xy, x5, . . ., x, denote the corresponding realisations.
Additionally, let » = YL, 6; = Y.1.; 1,,(X;) denote the number of complete (uncen-

sored) observations. Then, the observed likelihood function is:

L(O) = 67" exp {—% Z min{x;, Ci}} , (2.2.4)
i=1

and the corresponding observed MLE is:

A r
3] = . 2.2.5
ME = Y minx;, C) (225

Further details of this example can be found in Lawless” book [19].
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2.2.3 Type-II Censoring

Consider a random sample X, X5, ..., X,, with realisations x1, x,, ..., x,, each rep-
resenting either a complete lifetime or a censoring time. Let Xj., < X5, < -+ < Xjp1p
denote the corresponding order statistics with realisations x1., < xp,, < -+ < Xy
Under Type-II censoring, only the r smallest lifetimes are observed. Thus,
X1 < -+ < Xy represent fully observed lifetimes, while x,.1,, < --- < x,,,, represent
censored lifetimes, which are only known to exceed the censoring time x;.,,.
Assume that Xj,..., X, are independent and exponentially distributed with

scale parameter 0. Then, the observed likelihood function is:

L(O) = 0" exp {—% [i Xim + (1 — r)xm]} , (2.2.6)

i=1

and accordingly, the observed MLE takes the form:

r

éMLE = Z (227)

X+ (M= 1)xp

Again, comprehensive details are available in Lawless [19].

2.24 Type-I Hybrid Censoring

Consider a random sample Xj, X5,...,X,. Under Type-I hybrid censoring, the
lifetime experiment is terminated at T; = min{X,.,, T} where T € (0, o) represents
a censoring time, which is fixed in advance, and r € IN represents the number of
failures we plan to observe.

Assume that D; corresponds to the number of failures before time T;. Chen and
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Bhattacharyya derived the likelihood function and the MLE for 6 under the Type-I

HCS censoring scheme, assuming the exponential distribution [10]:

D
(n_né )'Q—Dl exp {_Zi_]1 Xi"'é”_Dl)Tl} ifD, >1,
L(O) = v (2.2.8)
exp {—%} if D; =0,

and the corresponding MLE, which only exists when D; > 0, is:

HEL X+ (n-D)T} if T <X,

Owmie = (2.2.9)
WYL Xi+ (n=nXpu) if Xew <T.

Here, D € {0,1,2,...,n} denotes the random number of failures that before time T,

as illustrated in Figure 2.1.

T T 1 ] I
Xl:n X2:n X3:n tee XD:n T

Figure 2.1: Timeline illustrating D, the number of failures occurring before time T.

One limitation of the Type-I HCS is that inferential results, such as the MLE,
may not always exist. Notice that if the termination time T is small enough so that
D = 0, then the MLE shown in Equation (2.2.9) will not exist. Hence, there is a

need for an alternative.
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2.2.5 Type-II Hybrid Censoring

To guarantee that the MLE will always exist, Childs et al. [11] introduced the Type-
IT Hybrid Censoring Scheme, where the experiment is terminated at max{X;.,, T}.
Again, X,., denotes the time of the r-th smallest failure among n observations, and
T is a termination time set by the experimenter. This guarantees that there will
be at least r observed failures for analysis. Figure 2.2 demonstrates the difference
between Type-I and Type-II HCS.

Assuming that the lifetimes are exponentially distributed, the expression for
the observed likelihood function for 6 under the Type-II HCS censoring scheme
is [11]:

! 1exp{—%2§:1xi+(n—r)xr:n} if D=0,1,...,r—1,

(n—r)! or

L(6) = (2.2.10)

(nfb)m%exp{—% ZiDzlxi+(n—D)T} if D=rr+1,...,n,

and the corresponding observed MLE is:

A HYiixi+(m—nx.} if D=0,1,...,r-1,
GMLE = (2211)

HE2ixi+(-D)T} if D=rr+1,...,n

2.3 Pitman Closeness Criterion

In this section, we present the Pitman closeness (PC) criterion, which serves as the
primary tool in this thesis for comparing three different MLEs under the Type-II

HCS. We also provide a motivation for using the PC criterion. We describe why
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Scenario 1

Scenario 2

[—. Xl:n \ /—. Xl:n \
_ Xg;n —0 Xy,
o X,. o X,
o T o T
o VAN )

Type I HCS is terminated at X,.,,

Type I HCS is terminated at T,

Type II HCS is terminated at T Type II HCS is terminated at X,.,.

Figure 2.2: Illustration of the two different scenarios and the termination times for
both Type-I HCS and Type-II HCS.

it offers a meaningful alternative to commonly used measures such as the mean
squared error. Finally, we review the literature where PC has been applied to

compare different estimators under various censoring schemes.

2.3.1 Definition

Suppose we want to compare two estimators, él and ég, of a common parameter 0.
The Pitman closeness criterion, also known as the Pitman measure of closeness,
is a method to compare two statistical estimators by computing the probability that
the estimator 6; produces an estimate that is at least as close to the true value 0 as
the estimate given by the second estimator 0. To clarify a common misconception,
PC does not evaluate the magnitude of how close an estimator is to the parameter.

In 1936, Pearson questioned what it means for an estimator to be “better” among
two competing estimators [20]. In response, the PC criterion was introduced in the
same year [21]. Ideally, a “better” estimator is the one that is more likely to produce

estimates closer to the true parameter value. Later, a textbook was dedicated to
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Pitman closeness [18]. Specifically, let 0; and 8, be two competing estimators of a

parameter 0. Then, the PC of 0, relative to 0, is:
T, 0,(0) == P(101 — 6] < 0, — O)). (2.3.1)

The PC criterion is as follows: if 114 4 (6) > 3 then 0, is said to be Pitman closer to

0, implying it is a more desirable estimator.

2.3.2 Motivation and Rationale

There are many different methods for comparing estimators; the most commonly
taught method is minimising the mean square error (MSE). Let 6 be an estimator

with respect to an unknown parameter 0. Then, the MSE is defined as:
MSE(0) := E[(0 - 0)?]. (2.3.2)
It is common to use the formula pertaining to the variance-bias decomposition:
MSE(0) = Var(0) + Bias(0). (2.3.3)

Karlin [16] noted advantages of using MSE when comparing estimators: for an un-
biased estimator 0 of 0, the MSE equals its variance, and squared error emphasises
large deviations, so a smaller MSE implies more consistent accuracy. However,
Rao [22] argued that MSE does not indicate how often an estimator lies close to the

true parameter.
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Focusing solely on MSE encourages reducing the variance of unbiased esti-
mators, hence the origin of solving for the unique minimum variance unbiased
estimators (UMVUE). However, many useful estimators, such as the MLE, may be
biased. Rao [22] therefore proposed PC as an alternative, since it directly measures
the probability that one estimator is closer (in absolute error) to the true parameter
than another. He demonstrated cases where an unbiased estimator with smaller
variance does not yield a Pitman closer estimator compared to one with higher
variance, illustrating a need for alternative means for comparing estimators.

The PC also has an intuitive appeal in applied settings. For example, Keating
and Mason [17] noted that in elections, voters typically support the candidate
whose position is likely the closest to their own, not the one minimising squared
differences. Similarly, customers choose the convenience store that will probably
take the shortest amount of time to travel, not the one that minimises a weighted
squared distance. In practice, decisions are often made based on closeness rather
than MSE.

The textbook by Keating et al. [18] provides additional cases to illustrate why
the PC criterion can be regarded as more intuitive than alternative approaches
under different settings. Furthermore, recent literature has included examples of
computing the PC probabilities of different estimators (such as the MLE, median

predictor, etc.) when assuming the data follows an exponential distribution [1, 2].

2.3.3 Applications in the Literature

Several studies have applied the PC criterion to compare different estimators under

different censoring schemes. For instance, under Type-I censoring of exponential
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lifetime data, Balakrishnan et al. [7] considered two MLEs of the scale parameter 0
corresponding to different termination times, T and T*, where T < T". They found
that the MLE based on the longer termination time, T*, was always Pitman closer
to the true parameter than the one based on T for the cases considered.

Furthermore, under Type-II censoring of exponential lifetime data, Balakrish-
nan et al. [8] further showed that, in the cases they considered, the best linear
unbiased estimator (BLUE) of the scale parameter 0 is always Pitman closer to 0
than the best linear invariant estimator (BLIE) of 6.

Recently, the PC probabilities for the MLEs of the scale parameter 6 under
Type-1 HCS, assuming an exponential distribution, has been computed [13]. There
were two comparisons: the first was between two estimators based on Type-I HCS
with differing termination times min{X,.,, T} and min{X.,,, T} where T < T*. In
the specific cases examined by the author, it appeared that the estimator with the
longer termination time, T*, usually produced an estimator that is Pitman closer to
0 than the shorter one, with rare exceptions.

In the second comparison, the number of observed failures was varied while
keeping the termination time fixed, comparing min{X,.,, T} and min{X,.,, T} with
r < s. The author found that increasing the number of failures observed before
stopping almost always led to an estimator that was Pitman closer to 0. Both of
these comparisons align with the intuition that a longer experiment or more data
produced estimates that are Pitman closer to the true parameter.

We now extend these comparisons by applying the PC criterion to MLEs of the
scale parameter 0 under Type-Il hybrid censoring schemes (HCS) from an exponen-

tial distribution, a case that has not been considered. In our first comparison, we
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consider the MLEs 6, and 0,, which are based on the termination times max{X,.,, T}
and max{X,.,, T}, respectively, where r < s. In the second comparison, we contrast

0, with 0, where 0, is based on the termination time max{X,.,,, T*} with T < T*.
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Chapter 3

Comparison of 61 and 0,

This chapter computes the Pitman closeness (PC) of two estimators based on Type-II
HCS experiments. We investigate which estimator is Pitman closer to the scale pa-
rameter O of the exponential distribution once we increase the number of observed

failures.

3.1 Estimators and Case Breakdown

Assume we have a lifetime experiment with a random sample of lifetimes X, X5,
..., X which follows an exponential distribution. That is, let X; ~ Exponential(0)
fori € {1,2,...,n}. Then let X;,, < X5, < --- < X, denote the corresponding
order statistics. Due to the scale-invariant property under reparameterisation of
the exponential distribution as described in Equation (2.1.7), we assume a rate
parameter of 0 = 1 without loss of generality.

Suppose we have a pre-determined termination time T. Let D be a random

variable that represents the number of failures during the interval (0, T]. That
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is, D = Y., 1x,,(0,T]. Since we have a summation of the complete sample, the

in

order does not matter due to the commutative property of addition, and so D =
Y1 1x,(0, TI.

Clearly, 1x.(0, T] is Bernoulli distributed where P(X; < T) = 1 —¢™T. Since the
sum of independent and identically Bernoulli random variables is binomial, we
have that D ~ Binomial(n,1 —e77T).

Let 0; and 6, be the respective MLEs for 0 under the termination times max{X;.,, T}
and max({X;.,, T}, where r < s. Borrowing the results from Childs et al. [11], these

respective estimators are of the form:

A WY Xin+(n-nX.) D=0,1,...,r-1,
0, = (3.1.1)

%{Z&Xﬁw(n—D)T} D=rr+1,...,n,

and
R % Y Xim+m-9Xs) D=0,1,...,s-1,
0 = (3.1.2)
%{ZilXiw(n—D)T} D=s,s+1,...,n.

Since the expressions for 6, and 6, both depend on the value of D, we need to

consider the following cases:

Case 1: De{0,1,...,.r—1} & T<X,., <Xsn,
Case 2: De{rr+1,...,s-1} © X,.,<T<X;,,
Case 3: Dels,...,nt & X,,<X.,<T.

To account for these separate cases, we will condition on them accordingly based
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on the value of D. For case 1, we focus on the estimators:

A 1 r A 1 s
8111 = ; (; Xi:n + (1’1 - r)Xr:n)/ 9112 = g (; Xi:n + (7’1 — S)Xs:n]- (313)

Under case 2, the estimators take the form:

D s
N 1 A 1
O121 = D ( ;:1 Xip + (n — D)T) , O = S [;:1 Xin + (n = S)Xs:n} (3.1.4)

Finally, when considering case 3, the estimators are expressed as:

A 1
, Oip ==

D
Zl Xi:n + (1/1 - D)T D

A 1
O131 == 5

i=1

D
Z Xip + (1 — D)T]. (3.1.5)

For notational convenience, let Pp(:) := P(:|D = d). We can then derive the PC

probability using the following decomposition:

r—1
P(0; -1 <10: - 1)) = Z P(D = d)Pp(|6112 — 1] < 16111 — 1))
d=0
s—1
+ Z P(D = d)Pp(|0122 — 1| < |0121 — 1) (3.1.6)
d=r

+ Z P(D = d)Pp(|613 — 1] < 16131 — 1.
d=s
Since D ~ Binomial(n,1 —¢™"), we can easily derive:

P(D = d) = (Z)a — e Tyi(e Ty, (3.1.7)

For the next subchapters, we will focus on computing the following cases:
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Casel: Y., P(D=d)Pp(|6i2 — 1] < O111 — 1),
Case 2: s P(D = d)Pp (0120 — 1] < |0121 — 1),
Case 3: Y. P(D = d)Pp(|013; — 1| < |6131 — 1)).
3.2 Casel

As areminder, the estimators we want to compare depend specifically on the values

of D. Hence, we will condition on D = d when computing the PC between 0; and

A

0.
For our first case, we consider the values where D € {0, 1, ...,r—1}. These values

of D correspond to these two estimators:

élll = 1 [Z Xi:n + (1’1 - 7’)}Q’:n] ’ é112 = % (Z Xi:n + (I’Z - S)Xs:n)- (321)

We will compute:

r—1

P(D = d)]PD(|é’112 1 <10 - 1)). (3.2.2)
=0
To start, we consider the conditional PC probability:
Pp(0112 — 1] < 0111 — 1) = Pp((B112 — O111)(O112 + 6:-2) < 0)
=Pp(2 - 0111 < O < ém) + H)D(éﬂl <Op<2- ém)

= Tl111 + Tl112, Say, (3.2.3)

where 71117 and 711, are used to simplify the expression. First, we will rearrange
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the inequality within 71451.

111 = Pp(2 - O < 011 < 9111)

=Pl (Vs =) <
<3 v )

- Pofz- %(le + (1= X - %(le + (1= 1Xe)
<Y Z X+ (1= 9% ) = Z Xiy + (1= 1))

< Z; Xio + (1= 1% - Z; Xi + (1 - r)xm)}
:H»D{z_(;+§);xizn-(”;f+”;r)xm

1 S
< E( Z Xin+(n—9)Xep—(n—s+s— r)Xm)

i=r+1

@ | =

(Zl X + (1= X

r

< (1_1) Xi:n"'(n_r - n_r)Xr:n}
r S/ 4 r S
:11’13{5[2—(1 + 1) Xin _(7’1_7 + n_r)Xr:n]
r S P r S

< Z (Xi:n - Xr:n) + (1’1 - S)(XSIH - X”iﬂ)

i=r+1
< s[(% - %);X + (” . L - r)x]} (3.2.4)

Using similar steps, we obtain the following for 77;;,:

T2 = Pp(O111 < 0112 <2 - 0111)
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r—

1
1 1 — — 1 1
) SR LELAELI S
r S ; r S r S

i=

S

< Z (Xi:n - Xr:n) + (Yl - S)(XSZH - Xr’:n)

i=r+1

1 1\ n—-r n-r 1 1
< s[z - (— + —)Z Xin — ( Lol —)x}} (3.2.5)
ros/) = r s ro s
Now, we will derive the pdf of the middle quantity of the inequality in the condi-

tional PC probability shown in Equation (3.2.5). That is, we define:

S

B]l = Z (Xz':n - Xr:n) + (i’l - S)(stn - Xr:n)- (326)

i=r+1

Conditioning on X,., = x,, using Theorem (2.1.2), we claim that X,,1., < X2, <
-+ < X,y are the order statistics from a complete sample of size (s — r) from the
exponential distribution truncated on the left at x,. By Lemma (2.1.3), subtracting
x, from these truncated variables will produce random variables that are exponen-

tially distributed. Hence, re-writing By; provides us with:

Bi= Y (Xin = %) + (1= 5)(Xe — )

i=r+1

= Sz_i Yin—r + (1 =5)Ysrms
i=1

s—r—1

= Y Yinr+(1=5+ 1Yoy, (3.2.7)
i=1

where the random variables Yi.,., < Y5, < -+ < Y., denote the first (s — )
order statistics from a sample of size (n — r) drawn from a standard exponential

distribution. To find the distribution of By;, we realise that B;; is the same form
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as the sum of spacings as shown in the form of Theorem (2.1.1) where we denote

Yo.n—r = 0. In particular,

S—=r

Y (1=7) =i+ D)V = Y1)

i=1

= (Vl - r)len—r + (Vl —r—- 1)(Y2:n—r - Yl:n—r) + (VL —r- 2)(Y3:n—r + YZ:n—r)

R (n —r- (S —r- 1))(Ys—r:n—r - Ys—r—l:n—r)

(n—s+1)
= [(Tl - 7’) - (7’1 —r-= 1)]Y1:n—r + [(Tl —r-= 1) - (7’1 —r-= 2)]Y2:n—r
+-+ [(1’1 —-s+ 2) - (7’1 -5+ 1)]Ys—r—1:n—r + [Tl —Ss+ 1]Ys—r:n—r

= Yl:n—r + YZ:Tl—V R Ys—r—l:n—r + (i’l —s+ 1)Ys—r:n—r

s—r—1

= Z Yz':n—r + (1’1 -5+ 1)Ys—r:n—r

i=1

= Bll- (328)
Thus, we can use Theorem (2.1.1) and Lemma (2.1.1) to claim that:

By = Z((n ) m i+ D) (Yiny = Yiitns) = Z Z; ~ Gamma(s —r,1).  (3.2.9)
i=1

i=1

Now we are interested in observing the bounds of the inequality shown in Equa-
tions (3.2.4) and (3.2.5). Notice that the bounds depend on both X,.,, and Z;l Xin.
Given that we are conditioning on X,., = x,, Theorem (2.1.2) allows us to claim that
the random variables Xi., < X5., < --- < X,_1., are distributed as the order statistics
of a complete sample of size (r — 1) from an exponential distribution truncated on

the right of x,.
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Hence, we will now try to find the distribution of A; = 2:;11 Xiy given X, = x,.
Since there will be many instances in which we will need to find the distribution of
the sum of order statistics that are right-truncated, we will instead state a general

proposition and prove it.

Proposition 3.2.1. Sum of Right-Truncated Ordered Exponential. Let X;,, < --- <
Xu:n be the order statistics obtained from a sample of size n from the Exponential(1)
distribution. If the obtained data are truncated on the right at L, and exactly m of the
Xs are less than or equal to L, then, the first m order statistics Xy, < -+ < Xy form a
complete random sample of size m from the right-truncated exponential distribution at L.

Additionally, the pdf of A’ = Y71 X;y is:

farla) = ﬁ ; (T)(—l)ie‘”ﬁ(a — Li)" e I](a > Li), (3.2.10)

where 0 < A” < mL. Furthermore, the last n — m order statistics X1, < -+ < Xy form
a complete random sample of size n — m from the left-truncated exponential distribution at

L. Moreover, the two sets of order statistics are independent.

Proof. We focus on deriving the pdf of A” as Theorem (2.1.2) covers the rest of the
statement. Let X’ represent a single observation that is exponentially distributed,

which is right-truncated at L. Then, the density function of X" is:

—x
fX/(X) = 1i—e—L’ 0<x<L (3211)

Its moment generating function is:

My (t) = E[eX"]
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L -
_ xt
= j(: e - e_L)dx

1 —p—x(1-t) L
Ca-eh|a-p 0]
— L1 - et (3.2.12)
T-eha-p 7 -

Thus, we can compute the moment generating function for A”:

MAI — (IE [eXft])m
B 1 1
S (l—elyn(1—tym

1 1 - (m i ~Li Lti
S a-ehra-y Z(i)(_l)e -

i=0

[1 _ e—L(l—t)]m

m Lti

= m Z (T)(—l)ie‘“ﬁ. (3.2.13)

i=0

The first line arises from having a complete sample of size m, and binomial theorem
is used for the third line. To derive the pdf, we will work backwards by referring
to common moment generating functions.

Suppose W ~ Gamma(m, 1), and i € IN. Then, the moment generating function

of Li + W is:
Lit
Myiw(h) = B[V = — (3.2.14)
(1—tym
This allows us to find the cdf and pdf:
Frisw(w) =P(Li+ W < w) = P(W < w — Li) = Fyy(w — Li)
(3.2.15)

i) = frw = L) = o = L™ el > L
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This is used as inspiration to propose a pdf for A’

far(a) = ﬁ ; (’?)(—1)?'“ ﬁ(a — Li)y" e @ ](q > Li). (3.2.16)

It is not difficult to show that computing the moment generating function using
the proposed pdf, Equation (3.2.16), will have the same result as Equation (3.2.13).
Hence, due to the uniqueness property of moment generating functions, the pro-
posed distribution is valid. The next thing we are interested in is finding the bounds
of A’.

Since A’ is the sum of exponentially distributed random variables whose sup-
port is positive, A’ > 0. Furthermore, since the observations are right-truncated at
L we have that X;., < X5, < -+ £ X, £ L. The maximum case occurs when we

have equality. That is, X;., = Xp,, = -+ = Xjy = L, 50 A” < mL. O

Using Proposition (3.2.1), we know that conditioning on X.., = x, tells us that
X1 £ Xoup £ -++ £ Xy_1.0 < X, and therefore if we set m = r — 1 and L = x, we have
that the pdf of A;; is:

1 efr-1 . 1 .
fanXm=x,(@) = m ;‘ ( ; )(—1)le—xr1 T 1)(a — x,i) Dl (g > x ),
(3.2.17)

Notably, the bounds shown within the probabilities defined by 711, and 711>
(see Equations (3.2.4) and (3.2.5), respectively) suggest different values for A;;. For

notational convenience, let:

11 “r om—r 1 1
Liy(An,x,) = s [z - (— ; —)An - (” LT 2 —)xr], (3.2.18)
r S r S r S
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11 —r on-
Ui (A, %) = s [(— - —)A11 + (” r_n-r 1_ 1)xr]. (3.2.19)
r S r S r S

First, we consider the case corresponding to 77;11.

L11(A11, x,) < Ui (A1, xr)

1 1 - - 1 1
@5[2—(—+—)A11—(n . r+—+—)xr]
r s r

15 r s
1 1 n—-r n—-r 1 1
e
r s r s r s
1 1 1 1
S
N n—r n- 1 Y n-r n- 1 ¥
-y s r/ s r s r/'s
o9_ 11<2xr7’l—7’+1
r r
sSr—-xn-r+1) <A (3.2.20)

Similarly, for the case corresponding to 7115, Ui1(A11, %) < Lii(A11,x) © Ap <
r—x,n—r+1).

Next, we will propose a pdf for X,., conditional on D = d. Since we have that
D € {0,1,...,r — 1} it is known that X,., > T. Let X/, denote a random variable
following a standard exponential distribution left-truncated at T. Then, its pdf and

cdf are given by:

e e X
fi, () = =5, and Fyr () = 1= —, (3.2.21)

respectively. Given that we are conditioning on D = d, X,., is the (r — d)th order

statistic from (n—d) observations left-truncated at T. Thus, we can use Lemma (2.1.2)
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to derive the density function of X,., conditional on D = d:

(n—d)! e )7
Frao=i®) = G - @y O 1 @I )

- -=) (&) ()

- (r— d(iz I){!i()r!z —7)! (1 - i) (;)n B » T<v<es, (3:2.22)

r—d—1

e—T

Now, we can derive 7111 and 7111, using the total law of probability:

R ) RN e
(Z(xm— ) + (1 —s)(xsm—xrm))

i=r+1

ss[(%—g)im(”? )

(r=1)x;
f f Lll(a xr) < Bll < ull(a xr) | Xrn - xr/All - IZ}

xXr(n—r+1)

X X, AniD=d(Xy, a) da dx,

(r=1)x,
f f FBll u11(ﬁl x))) FBH(LH(Q X,))]
r—xy(n—r+1)

X er-n A11|D—d(xr/ a) da dxr

(r=1)xy
f f FBn U11(11 xr)) FBll(Lll(a x;))]
r=xy(n—r+1)

X fAlllxr:u:Xr,DZd(a) er;”|D:d(‘x1’) da d'xi’l (3.2.23)
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and similarly,

SR

< [Z (Xi:n - Xr:n) + (” - S)(Xs;n - XY!H)]

i=r+1
r—1
1 1 - - 1 1
SS[Z—(—+—)ZX1-:”—(” . r+—+—)XW]}
r S Py r S r S

00 r—xy(n—r+1)
= f f Pp {U11(a, x,) < Bi1 < Li(a, x0) | X = X, A1 = a}
T Jo

r—

Xi:n"'(n_r_n_r‘i'l_l)xr:n:l

1
: r S r S
i=1

X er:m,A11|D:d(xr/ a) da dx,,
o r=x,(n—r+1)
B f f [PBH (Lun(a, xp)) - Fg, (Una(a, xr))]
T 0

X er:mAulD:d(xr/ a) da dx,,

o ~rx(n-rt1)
:ﬁ f(; [FBH(LH(a,x,))—FBH(Un(ﬂ/Xr))]

X fayXm=r,,0=d(@) fx,.,ip=a(X;) da dx;. (3.2.24)

Therefore, the PC probability corresponding to the first case is:

r—1 r—1
IP(D = d)IPD(|é112 - 1| < |9111 - 1|) = Z ]P(D = d)[nm + 77112]- (3-2-25)
d=0 d=0

41


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.Sc. Thesis — A. Ly; McMaster University — Mathematics and Statistics

3.3 Case?2

For case 2, the objective is to compare the following two estimators, which arise

whenD e {r,r+1,...,s—1}:

D s
O121 = 5 [; Xy + (7/1 - D)T) , Oip = E [IZZ] Xy + (Vl - S)XSZH) . (331)

Again, we attempt to derive the conditional PC probability:

Pp(|0122 — 1] < 0121 — 1) = Pp((O122 — 0121)(O122 + O11 — 2) < 0)
=Pp(2 - é121 < é122 < ém) + H)D(ém < é122 <2- élZl)

= T21 + Tl122, Say, (332)

where 7115; and 7112, are named for convenience. To continue our derivation, we

must find a way to simplify 0;5. Note that we can re-arrange 015, to have the form:

D s—1
A 1
6122 = - [Z Xi:n + Z Xz':n + (1’1 - (S - 1))Xs:n . (333)
S\= i=D+1
Furthermore,
1 (L D
O = ; X+ (n-D)T| = ; Xi = DOysy — (n — D)T. (3.3.4)

Therefore, combining Equations (3.3.3) and (3.3.4) gives us:

s—1
A 1 A
O = 3 [Dem - (n-D)T + E Xin+(m—(s—1))X., | (3.3.5)
i=D+1
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Conditioning on D = d, Theorem (2.1.2) tells us that X;.1., < Xgsom < -+ < Xa
are the order statistics from a complete sample of size (s — d — 1) from a standard
exponential distribution left-truncated at T. Let Y14 < Yo—g < -+ < Yygna
represent order statistics that have a standard exponential distribution from a

sample of size (n — d). Using Lemma (2.1.3), we will rewrite the expression found

in Equation (3.3.5),

s—1
Z Xi:n + [1’1 - (S - 1)]Xs:n
i=d+1

(s—1)—d

= (Yi:n—d + T) + [TZ - (S - 1)][Y5—d:/z—d + T]

|
—
=

—
®
|~
—
T o=
0

Il
—_

Yz':n—d + [(S - 1) - d]T + [Tl - (S - 1)][Ys—d:n—d + T]

—~
)
|

—_
-
|
U

Yin-a+[n—=(s=DYsana+[(s=1) —d+n—(s-DIT

g

—
w
| =
=l
-
U

Yin-a +[n = (s = DIYsiin-g + (n = d)T. (3.3.6)

Il
—_

Equations (3.3.5) and (3.3.6) allow us to re-write O122:

s—1
01 = 1 d012 — (n—d)T + Z Xin+[n—(s— 1)]Xs:n)
S i=d+1
(s=1)—d
1| .4
= {0 = (=T + Y Yiwa = 6= DYaa + (1 - d)T]
i=1
1 (s—1)—-d
=3 A0y + ; Yinat[n—(s— 1)]Ys—d:n—d]- (3.3.7)

As a side note, if D = s — 1 then the expression Zi‘ll)_d Yin-a = 0, but the
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following steps are applicable for deriving the conditional PC probability. Now,

we shall explicitly write the expressions for 715 and 7115,:

o1 = Pp2 — 0121 < 12y < 011)

1 (s—1)—d

=Py {2 — 01y < E [d9121 + ;
(s—1)d
= ]PD {ZS — ém(s + d) < Z

i=1

Yi:n—d + [i’l - (S - 1)]Ys—d:n—d) < é121}

Yinea + 1= (5= 1)]Ysana < O121(s — d)}

(s-1)—d

[i Xin + (n - d)T] < Z Yina+[1n—(=1)]Ye g
i=1

i=1

<= d[zd: Ko + (11 — d)ir]}, (33.8)

i=1

s+d

= ]PD{ZS -

T = Pp(B11 < 0120 <2 — 0151)

(s=1)—d
” 1 ~ ”
=Pp {9121 < S [dem + Z Yin-a+[n—(s— 1)]Ys—d:n—d] <2- 9121}

i=1
(s—1)—d

=Pp {ém(s —-d) < Z Yined + [ — (5 = D]Ysoinoa < 25 — O121(s + d)}

zn -4+ Tl—(S—l)] s—d:n—d

||

/—/R\
»

£oal
= s
iP1-

?<1

+

’§

Q_‘
T
NMC
L

< 25— T[Zd: Xy + (11— d)T]}. (3.3.9)

Again, we approach this problem by finding the distribution of the expression
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in the middle of the inequality shown in Equations (3.3.8) and (3.3.9). Consider:

(s—1)—d
Bii= Y Yawa+[n—(5=DIYssma (3.3.10)

i=1

To find the distribution of By,, we use the same method as Equation (3.2.8), where

if we claim Yy,,—4 = 0 then we notice that By, is the sum of spacings. That is,

s—d
Bia= ) ((n=d) =i+ D)(Yios = Yiotna). (3:3.11)
i=1

We again use Theorem (2.1.1) to claim that Z;, Z,, ..., Z, are independent and have
standard exponential distributions. In addition, combining Theorem (2.1.1) and

Lemma (2.1.1) allows us to claim:

s—d s—d
By = Z((n —d) =i+ D) Yind = Yiomd) = Z Zi ~ Gamma(s —d,1).  (3.3.12)
i=1

i=1

Now, we would like to consider the bounds on B, which depend on Ay, =
Zle Xi.n, which represents the sum of a complete sample of size 4 that are exponen-
tially distributed but right-truncated at T. Again, we use Proposition (3.2.1) where
we set m =d and L = T to obtain:

d
fapip=d(a) = ﬁ ;(—1)i(f)e‘ﬁ%d)(a —iT)" e @ D](a > iT). (3.3.13)

Furthermore, we have 0 < Ay, < dT.
The inequalities defining 711>, and 7115, as defined in Equations (3.3.8) and (3.3.9)

impose additional constraints for A,. For clarity, we denote these bounds explicitly
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as:
1 1
L15(Ar2) = 25— E(Alz +(m—=d)T)[s+d], Up(Ar) = E(Alz +(n—-d)T)[s—d]. (3.3.14)
For 7171, we need to pay attention to the case when Li»(A12) < Upa(Arp):

Li(An) < Un(Ar2) & 25— <Az + (1= dYDls +d] < 2(Aw + (1= Ds =
& 25 < %(Au + (n — d)T)[2s]
1< d(A12 + (7’1 - d)T)

Sd- (n - d)T < AlZ- (3315)

Similarly, for 11, we focus on Li2(A12) > Uj2(A12) which implies Ay, <d — (n—d)T.

Thus, utilising the total law of probability, 71 and 7112, can be calculated using;:

d
Tl21 = ]PD{ZS - #[Z Xin + (n — d)T] <Bp,
i=1

< %[Z::x Ny d)T]}

iT
f IPp (L12(a) < Bya < Uiz(a) | A1 = a) fa,p-a(a) da
d—(n—-d)T

dT
= jd‘ [FBn(ulZ(a)) - FB]Z(le(ll))] fA12|D:d(a) dll, (3316)

—(n—d)T
and

d
s—d
Tl = ]PD{ 7 [Z Xin +(n — d)T] < By

i=1
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ZS—M[ZXM"F(H_ ]}
(n-d)T
= f IPD (ulz(ll) < Blz < LlZ(a)) fA12|D:d(a) da
0
(n—-d)T
= f [FBJZ(le(LZ)) - FBJZ(U12(Q))] fA12|D:d(a) da. (3317)
0

Hence, the PC probability associated with the second case is calculated by:

s—1 s—1
P(D = Pp(012 =11 < (01 = 1) = ) | PO = d)mizs + 7] (3:3.18)
d=r d=r

3.4 Case3

This is the case where D € {s, ..., n}. Here, the estimators are the same:

D
A A 1
0131 = O132 = D ; Xin + (n — D)TJ- (3.4.1)
Therefore, we can easily say that
Y. P = d)Po (1015 — 1] < |01 — 1) = Y | P(D = d). (342)

d=s

3.5 Pitman Closeness Criterion for Comparison of 6,

and 6,

Now that we have derived the exact expressions for the three separate cases, we

can combine them to find the PC probability between estimators é1 and éz. We
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have that:

r—1

IP(|92 -1/ < |é1 -1)) = ZIP(D = d)]PD(|é112 -1/ < |é111 - 1))
4=0
s—1

+ Y P(D = d)Pp(01z2 — 1] < Oy — 1)
d=r

+ Y P(D = d)Pp(0r — 1] < 0131 — 1)

d=s
-1

= Z IP(D = d)[1t111 + Tt112]
d=0
s—1

+ P(D = d)[1t101 + T120]
d=r
d=s

where P(D = d) is given in Equation (3.1.7). Computational results can be found

in Chapter 5.1, and the associated R code can be found in Appendix A.2.
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Chapter 4

Comparison of 61 and 05

Similar to the previous chapter, we now focus on deriving the Pitman closeness (PC)
of two estimators based on Type-II HCS experiments to examine which estimator
is Pitman closer to the scale parameter O of the exponential distribution once you

increase the time allocated for the study.

4,1 Estimators and Case Breakdown

Assume a similar setting as the previous chapter, except now we introduce a
longer termination time T* > T. Let D* be a random variable which represents
the random number of failures between (0, T*]. Employing an argument parallel
to that used for deriving the distribution of D, we find that D* = Y., 1x,(0, T*]
tor X; ~ Exponential(1) for i € {1,2,...,n}. This further informs us that D* ~
Binomial(n,1 —e™T). Figure 4.1 demonstrates the relationship between D and D",
assuming that D and D" are unequal. It is possible for D = D’; this occurs when

there are no additional failures observed between T and T".
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T I 1 1 I
X1n oo Xpin T XD+1:n XD—|—2:n XD*:n T

Figure 4.1: Timeline showcasing D and D" and their relation to times T and T".

Let 8, be the same as Equation (3.1.1):

. WY Xin+ (n-1Xe) D=0,1,...,r—1
61 = (4.1.1)

%{Zfileeﬁ(n—D)T} D=rr+1,...,n,

and 93 be the respective MLE for 0 under the termination times max{X,.,, T"}.

Again, the result from Childs et al. [11] suggests this third estimator is of the form:

A %{Zgzlxiln_i_(n_r)xr:n} D*=0,1,...,r—1,
05 = (4.1.2)

= {ZZ} Xin + (n— D*)T*} D'=rr+1,...,n.

The expressions for él and é3 depend on the values of D and D*, hence we
consider the following cases:
Case 1: D,De€{0,1,...,r—1},
Case 2: D,D el{rr+1,...,n},
Case 3: De{0,1,...,r—1}and D* e {r,r+1,...,n}.

In case 1, we have that:

. 1 r . 1 r
Or1 = P [; Xin + (n— 7’)Xr:n] , Oz = P (Z X +(n — 7’)Xr:n] . (4.1.3)

i=1
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Furthermore, for case 2, we have that:

D

A 1
Z Xin + (n — D)T)/ O3 = D

i=1

A 1
O = =

.
5 Z Xip + (1 — D*)T*]. (4.1.4)
i=1

Finally, for case 3, we have that:

r D*
A 1 A 1
623] = ; (; Xi:n + (71 - 7")><r:n) 7 6233 = D (Z X1':11 + (Yl - D*)T*] . (415)

i=1

For convenient notation, allow Pp p-(-) := P{|D = d,D* = d*}. We also borrow
the earlier notation where Pp(:) := IP{:|[D = d}. Then, utilising the total law of

probability, we can compute the PC probability via the following formula:

[y

r—

r—1
P(0s -1 <101 1) = ) | P(D =d) Y Po(D" = d)Pp,p- (|05 = 1| < |01 — 1]
d*=d

4=0

+ Y P(D=d) ) Pp(D" = d)Ppp(05 — 1| < 01 — 1))
d=r d=d
r—1 n

+ P(D = d) Pp(D* = d")Pp,p(|0233 — 1| < [0p31 — 1I).
d=0 d*=r

(4.1.6)
Again, IP(D = d) can be found through Equation (3.1.7). It is worth recalling that:
P = d) = (Z)a _ ey Ty, 4.1.7)

but calculating Pp(D* = d*) is more challenging. Conditioning on D = d, let D’

represent the number of lifetimes between X, and Xp-,,. Thatis, D’ = D*—d. With
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(n —d) lifetimes remaining, the probability of a “success” (i.e., the probability that a
lifetime from a standard exponential distribution lies between T and T*, conditional

on exceeding T) is:

P(T < X; < T

P(X; > T)
_PX,<T)-P(X;<T)
B P(X; > T)
(- -(1-¢eT)
- —

P(T<X;<T'|X;>T)=

=1-¢TD, (4.1.8)

Thus, we claim that D’ | D = d ~ Binomial(n —d,1 — e~"~1), and we make the claim

that Pp(D* = d*) = Pp(D’ = d* — d). Therefore,
, , n—d ~(T* =T\’ ( ,~(T*~T)\(n—d)—d’
Pp(D’' =d') = 7 1-e ) (e ) . (4.1.9)

Similar to before, we will compute the following cases for the next subchapters:
Casel:  LinP(D=d) L5l Pp(D" = d)Ppp (1025 - 1 < |02 - 1),
Case 2: iy P(D = d) Yy Pp(D* = d*)Pp,p-(16223 — 1| < 01 — 1I),

Case 3: YioP(D=d) Yl Pp(D" = d)Pp (10233 — 1] < 031 — 1)
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4.2 Casel

If we have that D,D* € {0,1,...,r — 1}, then it is the case that:

. . 1w
211 = Oz = p (Z; Xin +(n r)Xrn) (4.2.1)
i=
These are the same estimators, hence:
r—1 r—1
IP(D = d) Z Pp(D* = d")Pp,p-(10213 — 1| < [0211 — 1)
d=0 d=d

r—1 r—1

=Y P(D=d)) Py(D =d) (4.2.2)
4=0 d=d
r—1 r—d-1

=Y (D=4 Z Po(D’ = d).
d=0 d'=1

4.3 Case?2
If we have that D,D* € {r,r + 1, ...,n} then:
1 (& 1 [
O = D ; Xin+(m=D)T|, O3 = D ; Xin +(n=D")T"|. (4.3.1)
We need to consider two sub-cases: either D = D* or D < D",
4.3.1 Case?2.1
If D = D" then we have the following;:
(4.3.2)
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Therefore,
1 (v«
O3 = D L Xiw + (n = DT
1 (&
=3 Zx +(n-D)T"
i=1
1 A *
=5 (D021 — (n = D)T + (n - D)T")
o -D)T"-T
_ 0y, 4+ DX ), (4.3.3)
D
We then have the following computation:
]PD,D*(|9223 —1| <100 - 1) =Ppp-(2 - O < O < é221)
+ ]PD,D*(é221 <0yp<2- é221)
= Tip211 + Ti2212, Say, (4.3.4)

where 715,11 and 7,1, are used for short-hand. For further convenience, let M =

(=D)NT"-T) )E()T*_T). We will try to solve for 712,11 and 701, separately.

Tio11 = Pp,pr {2 — 001 <0 +M< 9221}

=Ppp {2 - 200 <M <0]. (4.3.5)

Since n > D and T* > T, it is impossible for M < 0 and therefore 71,1, = 0. For the

second probability in Equation (4.3.4):

Tio12 = Pppr {9221 <O +M<2- 6’221}

=Ppp{0 < M <2-20,]
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M-=-2 A
=Ppp { — 2 9221}
d . —
=Ppp {1 - % > Licy X ; r d)T}

— Pp {d( - %) —-dT > i X} (4.3.6)

From Theorem (2.1.2), we have that Xj.,, < X5, < --- < Xjz,, represents a complete
sample of size d of i.i.d. exponential random variables that are right-truncated at
T. Note that we derived the pdf of A, = Z?:l Xy earlier in first comparison in

Chapter 3 as Equation (3.3.13). Thus, let:

Uxi(A1p,d,d") = d(l - M) -(n-d)T, M=

(n-D)(T"-T)
> 5 . (4.3.7)

Note that A, does not depend on D* = d*, hence that extra condition is omit-
ted when writing the pdf. Therefore, the probability in Equation (4.3.6) can be

calculated using:

U221 (A12,d,d%)
T2 = f fanip=a(a)da. (4.3.8)
0

4.3.2 Case 2.2

Here, we aim to compute:

]PD,D*(léZZB -1 < |é221 = 1)) =Ppp {2 - 9221 < é223 < ézzl}
+ IPp p- {ézzl < ézzs <2- ézzl}

= Tlo221 + Tl2222, Say, (4.3.9)
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where 71555 and 71,59, are denoted for convenience. If we conditionon D =d,D* = d*

then for d < d* then we have the following;:

d d &
Y Xin= ) Xiwt Y X, (43.10)
i=1 i=1 i=d+1
thus,
d
Z Xin = 0y — (n — d)T. (4.3.11)
i=1

This implies that:

d*

s 1

Oy = < | )Xo+ (- d*)T*]
i=1

dx—
1 il
== A0y — (n —d)T + Z Xiy + (1 = d*)T*]. (4.3.12)
i=d+1

Notice Xj11. < Xgiom < -+ < Xy are the order statistics from a sample of size (d*—d)

from the exponential distribution doubly truncated between (T, T*]. Suppose:

i Xy = i X =) + (& —d)T

i=d+1 i=d+1
d*—d
=Y Yigat+ @ -dT, (4.3.13)
i=1
where Yi4g < Yougq < -+ < Yg_g4-q represent a complete sample of order

statistics of the exponential distribution right-truncated at 7" = T* — T of size

(d* — d). We now have:

~ 1 ”
Oz = — (d9221 —(n—d)T +

d*—d
= Z Yiga+ (d —d)T

+M—fﬁj
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d'—d
1( A
T (dem " Z Yig-q+(n—d)T" - T)] - (4.3.14)

i=1

Since we have 6, = %(Z’Ll Xin + (n — d)T), we will want to condition on
Ap = Z;il Xin. As mentioned in the previous case, the pdf for A;, was found

in Equation (3.3.13) where its bounds are 0 < Ay, < dT, so we have:

d*—d
~ 1 ” ~
T = Ppp- {2 — Oy < 7 (dezm + E Yig_a+m—d) T — T)] < 9221}
i=1

]PD,D*{Zd* — Opd* —dOy — (n = d°)(T" = T)

[

“—d
Yig-a < Opd —dOxy — (n — d")(T" - T)}

IA
I\

i

]PD,D*{Zd* — Oy (d* +d) — (1 — dYT* = T)

[

“—d

<Y Yiru < O —d) = (1 —d')(T" — T)}
i=1
= PD,D*{zd* _ Yot (; "D v dy = (n— )T =T
d'—d
<Y Yiga< (Arz + (;l — D) @ —d)—(n—d)T - T)}. (4.3.15)
i=1
Furthermore,

& —d
~ 1 N ~
T = Ppp- {9221 < T [d9221 + Z Yigog+m—d) T — T)J <2- 9221}
i1

{(Au +(n—d)T)
D,D* 7

Il
M3

@ —d) - (n—d)T =T) (4.3.16)

d'—d
<Y Vira <20 - Q2O gy gy oy - )
i=1
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We are now interested in finding the pdf for the middle expression in the
inequalities shown in Equations (4.3.15) and (4.3.16), which we will denote as
By = Zf;]d Y;4—4. Conditioning on D = d,D* = 4", this density function can also
be found using Proposition (3.2.1) where m =d* —dand L = T" = T* — T. Thus, we

have:

d—d
1 d* - d i —=Ti
fBniD=a,0=a:(b) = ATy ( ; )(—1)6 !
i=0
X 5 ( d}_ 7 (b= T'i) DT > T). (4.3.17)

Now, we will define the bounds on By, found in Equations (4.3.15) and (4.3.16):

_ (Aip + (n —d)T)

L222(A12, d, d*) =24 P

@ +d)— (n—d)NT =T), (4.3.18)

(Ap + (n—d)T)
d

Unso(Ar, d, d°) = (@ —d) — (n— d)T = T). (4.3.19)

Note that,
(Ap + (n —d)T)

Loxn(A1z,d,d") < Upy(Ap,d,d") © 24" - y

< (A + (; - d)T)(d* —d)

- < (Ap + (n—d)T)
- d

od< (A12 + (1’1 —d)T)

(d +d)

& 2d

(")

Sd- (ﬂ - d)T < A12- (4320)
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Similarly, Uz (A2, d,d) < Lopo(A1z,d, d*) tellsus that Ay, < d—(n—d)T. Therefore,

utilising the total law of probability, we claim that:

AT
Tlopo1 = f P(Lyo(a,d,d") < By < Upp(a,d,d")|A1x =a,D =d, D" = d)
d—(n—-d)T
X fa,ip=d(a)da
AT
= f [FB,ol(Asp=a,D=d,0*=d)(U22(a,d, d")) = Fp,,(Ayp=a,D=d,D=d*)(Lox2(a, d, d"))]

d—(n—-d)T

X fAlle:d(a) dﬂ, (4321)

and similarly,

(n—d)T
Tl = f P(Ux»(a,d,d") < By < Lop(a,d,d)| Ay, =a,D=d,D" =d)
0
X fa,ip=a(a)da
n—d)T
= f [FB,oi(Arp=a,D=d,D*=a)(L222(a, d, d")) = Fpy\(Ap=a,0=d,0-=d)(U222(a, d, d"))]
0

X fA12|D:d(a) da. (4.3.22)

Therefore, the PC probability corresponding to the second case is:

Z]P(D d)Z]PD =d) IPDD(|9223—1| < |9221—1|)

= Z IP(D = d)|Pp(D* = d)mipo; + Z Pp(D* = d*)[1t2001 + ﬂzzzz]]
= d*=d+1
n n—d
= Z P(D = d)|Pp(D" = 0)71p01 + Z Pp(D" = d")[1t2001 + ﬂzzzz]J- (4.3.23)
=1
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4.4 Case3

In this case, D € {0,1,...,r =1} and D" € {r,r + 1,...,n}. Hence, we will compare

the following estimators:

. 1 (v A 1
031 = P (;‘ Xin + (n — r)Xr:n)/ O35 = D

.
Z Xip + (1 — D*)T*J . (4.4.1)
i=1

Again, we consider two sub-cases, either D* = r or D* > r.

4.4.1 Case 3.1

Suppose that D* = r. Since D" is the number of failures observed before time T", we

have T* > X,.,. Therefore, we have that:

T > Xr:n St (1’1 - V)T* > (7’1 - r)Xr:n

< Zl Xi:n + (1’1 - T’)T* 2 Zl Xi:n + (Tl - r)Xi’:n

S % (; Xi:n + (i’l - T)T*] > % (; Xi:n + (Tl - r)Xr:n)

& 033 > Oy (4.4.2)
Deriving the conditional PC probability, we obtain:

T31 = ]PD,D*(|é233 -1/ < |é231 —1J)
=Ppp-{2 - é231 < é233 < é231} + PD,D*{é23l < é233 <2- éZSl}

=0+ Ppp(023 <2 - 61), (4.4.3)
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where the last line arises from the fact that 8,33 > 0,3;. For convenience, let us

denote 7p3; = IPD/D*(ézg,g, <2- é231). Now, note that:
n A 1
O3 <2031 © —

1 r
» 32_;(;Xi:n+(n_r)xr:n]
@1 Zr:X +(n-nT" <2—1 Zr:X +(n—-rX
r — n — r — n rn
2 © n—r n—r\,.
@;ZXM+( - )Xmsz—( - )T

.
Z Xip + (1 — DT
=1

n—r n—r\..,
C);in+(1+T)X,n§r_( )T
d r—1 Nt L
& ;th +i;1 Xi:n + (1 + —2 )Xr:n < 7‘_( 5 )T . (444:)

When deriving the conditional PC probability for this case, we must consider two
things. First, by Theorem (2.1.2) we have that X;,, < X,,, < -+ < X, represent
the order statistics from a complete sample of size d drawn from an exponential
distribution that is right-truncated at T. Furthermore, the pdf of A, = Z?:l X, has
been calculated before in Equation (3.3.13) and its bounds are 0 < A;, < dT.
Second, Xyi1: < Xgiom < -+ < X,y are the order statistics doubly truncated
between T and T* from a complete sample of size (r—d). Then, Lemma (2.1.4) allows
us to claim that X;,, — T represents an order statistic that is only right-truncated at
T"=T"-Tforj=d+1,d+2,...,r. Hence,let Yy, 4 < Yo,y < --- < Y, 4,4 represent

these order statistics that are right-truncated at 7" from a complete sample of size
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(r —d), and consider the following:

Z Xi:n + (1 + n- r)Xr:n
2
i=d+1
r—1 n_r
-y X,-:n+(1+ _ )Xm—(r—d—l)T+(r—d—1)T
i=d+1
r—1
n—r
= Z(Xi:n_T)+(1+ > )Xm+(r—d—1)T
i=d+1
= n—r n—r n—r
= Z(Xi:n—T)+(1+ > )Xm+(r—d—1)T—(1 + T)T+(1 + > )T
i=d+1
r—1
=Y X -T) +(1 + ”;r)(xm -7 +(r—d—1)T+(1 + %)T
i=d+1
& n—r n—r
=Y Vit (1 + )Y,,d:,,d +(r—d-1DT+ (1 + )T. (4.4.5)
i=1
So instead, we can focus on:
4 uml n—r n—r
6233 <2- 6231 L= ZXi:n + Z Xi:n + (1 + T)Xr:n < 1’—( > )T
i=1 i=d+1
r—d-1 H_r
© A+ ; Yirq + (1 + T) Yi—gy-a+(r—d-1)T
n—r n—r
< _ 1%
+(1+ > )T_r ( > )T
r—d-1 P
© Ap + ;‘ Yira+ (1 + )Yr—d:r—d
Sr—(n;r)T*—(r—d—l)T—(1+n;r)T. (4.4.6)

To proceed further, we would be interested in computing the pdf for B =

Zf;f -1 Yir—q + @Y,_g,—g where w € R. We next present a proposition corresponding
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to Equation (65) in Davies [13]:

Proposition 4.4.1. Sum of Right-Truncated Ordered Exponential with Weighted
Maximum. Let T, = L(w + 1), 0; = %X and | represents the lower incomplete gamma

i1

function:

. L : a-1 ,—t
J(a,x) = l“(a)jo‘t le~tdt. (4.4.7)

Now, suppose X1, < -+ < X,y be the order statistics obtained from a sample of size n
from the Exponential(1) distribution. If the obtained data are truncated on the right at
L, and exactly m of the X's are less than or equal to L, then, the first m order statistics
Xy £ oo+ £ Xy form a complete random sample of size m from the right-truncated

exponential distribution at L. Then, for w € R, the pdf of Z' = Z;’;l Xiy + WXy 18:

m—1 (=1 1 o 1 1
£(2) = l_]),,, Z( 1) (m i ) ST 1)6 /6 (1 | )(” 1)]<m — 1,(1 — a)z)

e—L(z‘+1) 1 1
_ I LI P (1 _ _) 1 )
6+ 1) (1_Ly4]Ql =) ))

(4.4.8)

Furthermore, 0 < 7' < (m — 1+ w)L.

Using Proposition (4.4.1), we can substitute m =r—~d and L =T" =T" - T to

obtain the pdf for Bys:

r—d—1 —d-=1
me(b)=WZ(1)(F i )

| d-1,(1-=)b
“loa+ (1—%?““”]; A
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o1 +D)

1 1

— e — '—d—l(l——)b— i). 4.4.
6;

Here, v = 1+ % and 1; = T"(w + 7). Returning to deriving the conditional PC

probability shown in Equation (4.4.6):

r—d-1
O3 <2 — 031 & Ay + Z Yija+ (1 +

i=1

Sr—(n;r)T*—(r—d—l)T—(1+n;r)T

n—r

) Yr—d:r—d

-7 n—r

@323137’—(71 )T*—(V—d—l)T—(1+ )T—Alz. (4.4.10)

For notational convenience, let:

n—r
2

Unsy (Agg) = 7 — (ﬂ) T —(r—d-1)T - (1 ;

- )T —Ap. (4.411)

Then we have that,

Ttoz1 = Ppp (Bas1 < Uns1(A12))

iT
= f Pp,p+(Baz1 < Uas1(a)|A1z2 = a) fa,,p=a,p-=4(a) da
0
iT
. f Faputa(Usst (0)) g r—a(@) da
0

aT
= f Fp,y, (Uz31(a)) fas,ip=a(a) da. (4.4.12)
0
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4.4.2 Case 3.2

Suppose that D* > r. Then, one way to rewrite the conditional PC probability is:

]I)D,D*(lé233 -1 < |é231 - 1)) =Ppp(2 - é231 < é233 < é231)
+ H)D,D*(é231 < 033 <2 - 0p3)

= Tip321 t Tl2322, Say, (4.4.13)

where 731 and 7130, are introduced for notational convenience. First, we will

focus on evaluating 7,31:

r—1 ’
—d)T
_JPDD{z_l[ Xm+(n—r+1)Xm] (dlZX (n . ) )
i=1 i=1
da: r—1 ’
1 1 1 (n—d")T
< d*[ Z Xz:n] < T[Z X,;n + (1’1 -1+ 1)Xr:n — (§ ' Xl:n + T)}
i=r+1 i=1 —1
r—1
1 1 n—-r+1 1 (n—d)T
= IPDD {2 ( + d*) - Xz:n - ( p + %)Xr:n 7
da r—1
1 1 1 n-r+1 1 (n—dT
<5 g S\>—= i . mn . Jx.
< d*[i; X] < (V d*) 2 X + ( . - )X — } (4.4.14)
Consider the following:
1 & 1 & 5y
7 i;1 Xin = o Z.:Zr:‘l(Xi:n = Xpn) + TXM, (4.4.15)
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Thus, we have that:
r—1
1 1 -r+1 1 n—da)T
772321:][)D,D*{2_(;+E) Xi:n_( ; E)Xr:n ( d*)
i=1
&
1 d—r
< } Z(in _Xrn) + Txr:n
r—1
1 1 n—-r+1 1 (n—d9T
<|l=-= —Ix. T/
<(5- d*);x’”( “ T }
r—1
1 1 n—r+1 d*—r+1 n—d)T
:“’DID*{z‘(f}) %= R
i=1
1
< E ‘ZI(XI'H - Xr:n)
r—1
1 1 n-r+1 d-r+1 (n—d)T
<|l—-—— Xin rm T . 4.
<(5- d*)lzl (= T 2 } (1410

To derive this conditional PC probability, we will first condition on X,., = x,. This

gives us:

r—1
— * _ *T*
712321=]PD,D*{€Z*[2—( ) Xin — ( rrl d r+1)xr—M]

a d
i=1
a
< Z (Xi:n - xr)

i=r+1

<d[(———)ixl (_”1 d*_di’Ll)x,—(”_d—‘f*)T*]}. (4.4.17)

1=

Using similar steps for computing 71,3, from Equation (4.4.13), we have that:

1 1 n—-r+1 d-r+1 n—d)HT
T30 = H)D,D*{d*[ (; - —) Xin + ( . - 7 )xr - %]
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a*

< Z (Xz‘;;7 — Xr)

i=r+1

r—1
. 1 1 n—r+1 d-r+1 (n—d)T
<d [2 (r + d)ZX ( e )x,,— = ]} (4.4.18)

i=1

Now we focus on finding the distribution of the middle expression of the
inequality found in Equations (4.4.17) and (4.4.18), which is 2?;, +1(Xiy — x,). Notice
that X110 < Xpiom < -+ < Xy are order statistics from a complete sample of size
(@ — r) from an exponential distribution doubly truncated between [x,, T*]. Again,

using a result from Lemma (2.1.4) Let

d d—r
Z (Xz’:n - xr) = Z Yz’:nfr/
i=r+1 i=1
where Y1, < Yoy < oo+ £ Yoy, represent order statistics from a complete

sample of size (4" —r) that is now only right-truncated at T"” = T* —x,. For notational
convenience, By; = Zf;]r Yin_r
Using Proposition (3.2.1) where m = d* —r and L = T”, we propose the pdf for

B23 to be:

1 © (d -1
- - - 1\ ,=T"i
fBz3(b) - (1 _ e_T//)(d»_},) ;( l )( 1) e

1 \ ‘
_ o d-r)-1_,—-0b-T"1) o
X gy T e T > T, (4.4.19)

Furthermore, 0 < By < (d* —1)T".

Next, we aim to find the pdf of Ay; = 21:11 Xin. The corresponding result was
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established earlier in comparison 1; see Equation (3.2.17).

Finally, let us focus on finding the pdf for X,.,. Sincewehave D € {0,1,...,r—1},
we know that X,., > T. Butsince D* € {r+1,r+2,...,n} we have X,., < T*. Thatis,
conditioning on both D = d, D* = d* we have that X,., is the (r — d)th order statistic
from (d* — d) observations truncated between (T, T*]. Thus, using Lemma (2.1.2),

we can derive the the pdf for X,., conditional on D = d and D* = d":

fXyulD=d,D*=d" (Xr)
_ (d —d)!
T (=D - DH@ )~ (=)

(d* _ d)' T — g (r-d-1) T — o (d*-r) o
C (r—d-1)(d—7)! (e—T—e—T*) (1 B m) (m)

(d* _ d)' T — o= (r—d-1) o5 _ T -7 -
C(r—d-1D\d —r)! (e‘T—e—T*) (e—T _e—T*) (e—T_e—T*)
_ (d —d)! 1
T (r=d-1DI(d -1 (T —eT)E-d

T<x <T. (4.4.20)

(Fx, ()} 1 = Py ()} £ (x)

(e—T _ e—x,)(r—d—l)(e—x, _ e—T*)(d*—r)(e—x,)’

Now we want to return to the bounds expressed within 7,351 and 712350, which

were shown in Equation (4.4.17) and (4.4.18). Consider the following:

oo e 1 1 n—-r+1 d-r+1 (n—d)T"
L232(A11,Xr,d)-—d[2 (r+d*)An ( t— )xr Y ],

(4.4.21)

1 1
Uz (A1, xp, d7) = d° [(; - T)A11 + (

d

n-r+l d-r+1 . _(n-d)T
da ’ d '

(4.4.22)
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Note that 753, is associated with the case where Ly (A1, X, d°) < Uoz(A1y, X, d4°).

Writing out this inequality, we obtain:

Loz (Ag1, X, d7) < Unsa(Aga, Xxr, d°)

@2_(%+1)A11_(n—:+1+d —r+1)xr

d*

1 1 n-r+1 d-r+1
S(———)An-i‘ » — Xy

d*

S -Ap<xn-r+1)—-r

SAp>2r—-xn-r+1). (4.4.23)

Similarly, Ly3(Ai1, Xy, d*) > Uasa(A1s, Xy, d) implies that A1 < r—x,(n—r+1). Hence,

utilising the total law of probability, we can compute the 73,1 and 71232, using:

T (r—1)x,
Ti2321 = f f [FBB(U232((1/ Xy, d*)) - FBB (L232(11, Xy d*))]
T r

—x;(n—r+1)

X er:mAll (xr/ a) da dxi’
T Ar—T)n
= f f [Fpy (Uns2(a, X1, d7)) — Fy, (Loz2(a, X, d7))]
T r

—xy(n—r+1)

X fAn 1X=x, (a)ny;nlD:d(xr) dadx,, (4424)
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and for the other case, we have that

T r—xy(n—r+1)
Tto322 = f f [FBB(LZBQ(Q/ X, d7)) — F823(u232(a/ X, d"))]
T 0

X er:n,AH (xT/ a) da dx;

T r—xp(n—r+1)
= f f [F323(L232(ﬂ, Xp,d’)) — FBB(uzsz(ﬂ, Xy, d"))]
T 0

X fAn 1X)=2x; (a)fX,-;,,lD:d (x;) da dx,. (4.4.25)

Thus, the PC probability corresponding to the last case is:

r—1 n

Y P(D=d)) Po(D" =d)Ppp(102s — 11 < 10231 — 1])

d=0 d*=r
r—1 n

= ) P(D=d)|Pp(D" =r)m + Z Pp(D" = d*)[110301 + 7Tz322]]
d=0 d=r+1
r—1 n—d

P(D = d)(]PD(D, =1 —d)T3 + Pp(D" = d")[m31 + ﬂzazz])- (4.4.26)

QU

=0 d'=r+1-d

4.5 Pitman Closeness Criterion for Comparison of 0;

and 0,

Having derived expressions for the PC probability in three distinct cases, we now
combine the results to obtain the PC probability between the estimators 0; and 0s.

Specifically, we have:
P(165 — 1] < 16; — 1)

70


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.Sc. Thesis — A. Ly; McMaster University — Mathematics and Statistics

r—1

=Z]P(D=

d=0

+ Zn:lP(D =
d=r
+ erH’(D =

I SW
o

—_

r—

1= 1

+

I W
==

<

+ IP(D =

QU

=0

P(D =

P(D =

r—1

d) )" Po(D" = d)Ppp- (10215 — 11 < 1011 — 1))
dr=d

d) Z Pp(D" = d*)]PD,D*(léZE -1 < |é221 - 1))
d=d

d) Z Pp(D* = d*)Pp,p- (10233 — 1| < |03 — 1])
d*=r

r—d—1

d) ), Po(D' =)

d'=1

n—d
d)(]PD(DI = 0)7o01 + Z Pp(D" = d")[1m2001 + 712222])

=
n—d
d)(]PD(D, =1 —d)mz + Z Pp(D" = d")[m2321 + 712322])/ (4.5.1)
d’'=r+1-d

where we have P(D = d) and Pp(D’ = d’) from Equations (3.1.7) and (4.1.9),

respectively. The computational results are presented in Chapter 5.2, and the

corresponding R code is provided in Appendix A.3.
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Chapter 5

Numerical Results

This chapter presents the numerical results computing the Pitman closeness prob-

abilities for different settings and with varying n,7,s, T, and T".

5.1 Comparison of 6, and 6,

For the first comparison, we consider two possible values for n with varying values
of 7,5, and T, with the restriction that » < s. The case for n = 10 can be found in
Table 5.1 and Figure 5.1, and n = 15 can be found in Table 5.2 and Figure 5.2. Each
cell represents the result obtained by Equation (3.5.1). We see that the estimator
based on s is always Pitman closer to 0 than the estimator based on r, as expected.
The code used for these results can be found in Appendix A.2.

Interestingly, as the number of observed failures associated with 6, increases
(s), the PC probability decreases. However, the PC probability is still always above
the 0.5 threshold. This may imply that for a fixed T, a substantial increase in the

number of observed failures may not be necessary.
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Figure 5.1: Line plots featuring the Pitman closeness probabilities between 0; and
0, for n = 10 and varying values of ,s, and T.
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Figure 5.2: Line plots featuring the Pitman closeness probabilities between 0; and
0, for n = 15 and varying values of ,s, and T.
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0.75 1.00 1.25 1.50 1.75 2.00

<
»

09854 0998 09997 1.000 1.000 1.000
0.9485 0.9868 0.9971 0.9994 0.9999 1.000
0.8191 0.9489 0.9826 0.9947 0.9985 0.9996
0.6691 0.8252 0.9349 0.9724 0.9889 0.9958
0.6077 0.6677 0.7872 0.8928 0.9476 0.9737
0.6044 0.5988 0.6372 0.7145 0.8024 0.8745

0.9375 0.9844 0.9967 0.9994 0.9999 1.000

0.8098 0.9474 0.9824 0.9947 0.9985 0.9996
0.6614 0.8243 0.9348 0.9724 0.9889 0.9958
0.6013 0.6672 0.7872 0.8928 0.9476 0.9737
0.5990 0.5984 0.6372 0.7145 0.8024 0.8745

0.7906 0.9388 0.9797 0.9940 0.9984 0.9996
0.6380 0.8167 0.9329 0.9720 0.9889 0.9958
0.5761 0.6607 0.7858 0.8926 0.9476 0.9737
0.5727 0.5928 0.6362 0.7143 0.8023 0.8745

0.6311 0.8013 0.9248 0.9685 0.9876 0.9954
0.5646 0.6421 0.7782 0.8899 0.9467 0.9735
0.5602 0.5732 0.6294 0.7122 0.8018 0.8743

0.5702 0.6367 0.7638 0.8814 0.9420 0.9712
0.5649 0.5625 0.6111 0.7033 0.7975 0.8725

O O [ O 0 J [ VOV o N O[OV oo NN o O |vo 0o N o U

Table 5.1: Pitman closeness probabilities between 6, and 6, for n = 10 and
varying values of 7,5, and T.
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r s 0.75 1.00 1.25 1.50 1.75 2.00

4 6 |09874 0.9987 0.9999 1.0000 1.0000 1.0000
8 109066 09771 0.9955 0.9993 0.9999 1.0000
10 | 0.6565 0.8463 0.9503 0.9837 0.9953 0.9988
12 1 0.5936 0.6180 0.7287 0.8611 0.9369 0.9716
14 | 0.6167 0.5872 0.5787 0.6036 0.6646 0.7453

6 8 |0.8991 09763 0.9954 0.9993 0.9999 1.0000
10 | 0.6512 0.8459 0.9503 0.9837 0.9953 0.9988
12 1 0.5898 0.6179 0.7287 0.8611 0.9369 0.9716
14 1 0.6139 0.5871 0.5787 0.6036 0.6646 0.7453

8 10| 0.6150 0.8362 0.9480 0.9833 0.9953 0.9988
12 | 0.5507 0.6099 0.7273 0.8609 0.9369 0.9716
14 | 0.5741 0.5806 0.5778 0.6035 0.6646 0.7453

10 12| 0.5586 0.5863 0.7131 0.8553 0.9351 0.9711
14 | 0.5816 0.5539 0.5640 0.5991 0.6634 0.7450
12 14 | 0.5555 0.5530 0.5554 0.5833 0.6514 0.7385

Table 5.2: Pitman closeness probabilities between 6, and 6, for n = 15 and
varying values of ,s, and T.
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It is worth noting that the PC probability also accounts for cases where the
estimators are equal. The cases regarding ties are generally uninformative; if
increasing the sample size or experiment duration produces the same estimator,
there is no insight to be gained for estimating the true parameter. To illustrate how
P(6, — 1| < 16, - 1)) changes once we condition on the estimators being unequal,
we provide additional tables with three entries for each combination of , s, and T.

In each cell (same combination of 7, s, and T):

e The first row represents the conditional probability P(|0, — 1| < |0, — 1]) given

that the estimators are different,

e the second row represents the conditional probability P(6, — 1] < 16, - 1))

given that the estimators are different,

e and the last row represents the probability that the estimators tie; that is,

P(16, - 1] =16, - 1)).

By construction, the probability that they tie is explicitly written for the third case
where D € {s,...,n} as outlined in the subchapter (3.4). As a clarification, this
second set of tables cannot be used for PC comparisons since the equality case is
included for the original definition and the criterion.

In Tables 5.3 and 5.4, we consider n = 10 and values T = 0.75, 1.00, 1.25,
1.50, 1.75, 2.00, r = 3,4,5,6,7, and values of s that are greater than r but up to 9.
Meanwhile, in Tables 5.5 and 5.6 consider the same values for T, r = 4,6,8,10, 12,
and even values of s that are greater than r but up to 14.

Overall, for smaller values of s, the likelihood of ties decreases. This supports the

earlier observation that while using a larger number of observed failures improves
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estimator performance, the benefit tapers off as s becomes too large.
Additionally, for fixed values of rand s, increasing T leads to a higher probability
of ties, while also raising the probability that IP(|0, — 1| < |6; — 1|) given that they

are different.

5.2 Comparison of §; and 6;

For the second comparison, we again consider sample sizes n = 10 and n = 15,
examining various combinations of r, T, and T*. Results corresponding to n = 10
are presented in Table 5.7 and Figure 5.3, while those for n = 15 appear in Table 5.8
and Figure 5.4. Each cell in the tables reflects values computed using Equation
(4.5.1). The code used to generate these results is provided in Appendix A.3.

As anticipated, the estimator based on T" is always Pitman closer to 0 than T,
however, for a fixed r there is no discernible pattern that significantly increasing T"

will make 05 Pitman closer to 6 compared to 0;.
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T

r s 0.75 1.00 1.25 1.50 1.75 2.00

3 4 0.8883 0.9406 0.9685 0.9833 0.9911 0.9952
0.1117 0.0594 0.0315 0.0167 0.0089 0.0048
0.8697 0.9655 0.9920 0.9983 0.9996 0.9999
5 0.8343 0.8880 0.9236 0.9481 0.9649 0.9763
0.1657 0.1120 0.0764 0.0519 0.0351 0.0237
0.6889 0.8824 0.9619 0.9888 0.9970 0.9992
6 0.6732 0.8232 0.8639 0.8953 0.9195 0.9381
0.3268 0.1768 0.1361 0.1047 0.0805 0.0619
0.4465 0.7110 0.8719 0.9494 0.9816 0.9937
7 0.5752 0.6729 0.7932 0.8326 0.8604 0.8834
0.4248 0.3271 0.2068 0.1674 0.1396 0.1166
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642
8 0.5750 0.5714 0.6334 0.7271 0.7859 0.8163
0.4250 0.4286 0.3666 0.2729 0.2141 0.1837
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568
9 0.5977 0.5688 0.5621 0.5861 0.6340 0.6868
0.4023 0.4312 0.4379 0.4139 0.3660 0.3132
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992
4 5 0.7991 0.8672 0.9128 0.9428 0.9623 0.9751
0.2009 0.1328 0.0872 0.0572 0.0377 0.0249
0.6889 0.8824 0.9619 0.9888 0.9970 0.9992
6 0.6564 0.8180 0.8625 0.8949 0.9194 0.9381
0.3436 0.1820 0.1375 0.1051 0.0806 0.0619
0.4465 0.7110 0.8719 0.9494 0.9816 0.9937
7 0.5653 0.6712 0.7929 0.8326 0.8604 0.8834
0.4347 0.3288 0.2071 0.1674 0.1396 0.1166
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642
8 0.5681 0.5707 0.6334 0.7271 0.7859 0.8163
0.4319 0.4293 0.3666 0.2729 0.2141 0.1837
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568
9 0.5922 0.5684 0.5621 0.5861 0.6340 0.6868
0.4078 0.4316 0.4379 0.4139 0.3660 0.3132
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

Tflble 5.3: Tflbles displaying the following probabilities: P(18, — 6] < |6; — 0)),
P(16, — 0| < |6, — 0]), and IP(|0, — O] = |01 — O]) with n = 10 across varying r,s, and
T values (Part 1).
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T

r s 0.75 1.00 1.25 1.50 1.75 2.00

5 6 0.6217 0.7881 0.8412 0.8814 0.9113 0.9334
0.3783 0.2119 0.1588 0.1186 0.0887 0.0666
0.4465 0.7110 0.8719 0.9494 0.9816 0.9937
7 0.5353 0.6569 0.7868 0.8303 0.8596 0.8831
0.4647 0.3431 0.2132 0.1697 0.1404 0.1169
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642
8 0.5408 0.5623 0.6310 0.7265 0.7858 0.8163
0.4592 0.4377 0.3690 0.2735 0.2142 0.1837
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568
9 0.5655 0.5624 0.5609 0.5860 0.6339 0.6868
0.4345 0.4376 0.4391 0.4140 0.3661 0.3132
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992
6 7 0.5264 0.6281 0.7611 0.8094 0.8443 0.8726
0.4736 0.3719 0.2389 0.1906 0.1557 0.1274
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642
8 0.5283 0.5383 0.6179 0.7195 0.7824 0.8148
0.4717 0.4617 0.3821 0.2805 0.2176 0.1852
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568
9 0.5528 0.5413 0.5527 0.5828 0.6329 0.6865
0.4472 0.4587 0.4473 0.4172 0.3671 0.3135
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992
7 8 0.5344 0.5314 0.5930 0.6979 0.7631 0.7989
0.4656 0.4686 0.4070 0.3021 0.2369 0.2011
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568
9 0.5575 0.5299 0.5307 0.5700 0.6250 0.6819
0.4425 0.4701 0.4693 0.4300 0.3750 0.3181
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

Table 5.4: Tables displaying the following probabilities: P(|0, — 0] < |0; — 0)),
P(16, — 0| < |6, — 0]), and IP(|0, — O] = |0; — O]) with n = 10 across varying r, s, and
T values (Part 2).
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r s 0.75 1.00 1.25 1.50 1.75 2.00

4 6 0.8809 0.9292 0.9577 0.9748 0.9851 0.9912
0.1191 0.0708 0.0423 0.0252 0.0149 0.0088
0.8943 0.9818 0.9975 0.9997 1.0000 1.0000
8 0.7744 0.8416 0.8836 0.9142 0.9368 0.9534
0.2256 0.1584 0.1164 0.0858 0.0632 0.0466
0.5862 0.8553 0.9614 0.9914 0.9983 0.9997
10 0.5667 0.6889 0.7926 0.8299 0.8594 0.8833
0.4333 0.3111 0.2074 0.1701 0.1406 0.1167
0.2071 0.5058 0.7603 0.9043 0.9669 0.9897
12 0.5815 0.5565 0.5903 0.6836 0.7538 0.7891
0.4185 0.4435 0.4097 0.3164 0.2462 0.2109
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654
14 0.6164 0.5830 0.5592 0.5494 0.5603 0.5905
0.3836 0.4170 0.4408 0.4506 0.4397 0.4095
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780
6 8 0.7561 0.8359 0.8820 0.9138 0.9367 0.9534
0.2439 0.1641 0.1180 0.0862 0.0633 0.0466
0.5862 0.8553 0.9614 0.9914 0.9983 0.9997
10 0.5600 0.6882 0.7925 0.8299 0.8594 0.8833
0.4400 0.3118 0.2075 0.1701 0.1406 0.1167
0.2071 0.5058 0.7603 0.9043 0.9669 0.9897
12 0.5775 0.5563 0.5903 0.6836 0.7538 0.7891
0.4225 0.4437 0.4097 0.3164 0.2462 0.2109
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654
14 0.6136 0.5830 0.5592 0.5494 0.5603 0.5905
0.3864 0.4170 0.4408 0.4506 0.4397 0.4095
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

Table 5.5: Tables displaying the following probabilities: P(|0, — 0] < |0, — 0]),
P(|6, — 0| < |6, — 0]), and IP(|0, — O] = |01 — O]) with n = 15 across varying r, s, and
T values (Part 1).
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T

r S 0.75 1.00 1.25 1.50 1.75 2.00

8 10 0.5144 0.6684 0.7833 0.8260 0.8578 0.8827
0.4856 0.3316 0.2167 0.1740 0.1422 0.1173
0.2071 0.5058 0.7603 0.9043 0.9669 0.9897
12 0.5372 0.5471 0.5883 0.6833 0.7537 0.7891
0.4628 0.4529 0.4117 0.3167 0.2463 0.2109
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654
14 0.5737 0.5764 0.5582 0.5493 0.5603 0.5905
0.4263 0.4236 0.4418 0.4507 0.4397 0.4095
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780
10 12 0.5454 0.5196 0.5669 0.6706 0.7467 0.7854
0.4546 0.4804 0.4331 0.3294 0.2533 0.2146
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654
14 0.5812 0.5493 0.5438 0.5443 0.5587 0.5901
0.4188 0.4507 0.4562 0.4557 0.4413 0.4099
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780
12 14 0.5551 0.5485 0.5347 0.5263 0.5430 0.5796
0.4449 0.4515 0.4653 0.4737 0.4570 0.4204
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

Table 5.6: Tables displaying the following probabilities: P(|0, — 0] < |0, — 0)),
P(16, — 0| < |6, — 0]), and IP(|0, — O] = |0; — O]) with n = 15 across varying r, s, and
T values (Part 2).
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Figure 5.3: Line plots featuring the Pitman closeness probabilities between ; and
05 for n = 10 and varying values of 7, T, and T".
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Figure 5.4: Line plots featuring the Pitman closeness probabilities between 6, and
05 for n = 15 and varying values of 7, T, and T".
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T T 4 5 6 7 8 9

050 0.75|0.5364 0.6816 0.8854 0.9546 0.9868 (.9984
1.00 | 0.5156 0.5681 0.6698 0.8607 0.9506 0.9903
1.25 | 0.5377 0.5553 0.5805 0.6843 0.8724 0.9679
1.50 | 0.5454 0.5646 0.5652 0.5999 0.7332 0.9206
1.75 | 0.5580 0.5748 0.5620 0.5525 0.6218 0.8320
2.00 | 0.5631 0.5819 0.5685 0.5497 0.5785 0.7141

0.75 1.00 | 0.5683 0.5629 0.6307 0.8365 0.9456 0.9915
1.25 | 0.5780 0.5403 0.5437 0.6774 0.8707 0.9684
1.50 | 0.5743 0.5420 0.5386 0.5887 0.7316 0.9210
1.75 | 0.5888 0.5541 0.5299 0.5424 0.6194 0.8324
2.00 | 0.5896 0.5583 0.5357 0.5400 0.5760 0.7145

1.00 1.25|0.5714 0.5606 0.5529 0.6353 0.8718 0.9758
1.50 | 0.5616 0.5507 0.5319 0.5859 0.7200 0.9247
1.75 | 0.5747 0.5627 0.5380 0.5244 0.6185 0.8351
2.00 | 0.5691 0.5587 0.5310 0.5169 0.5726 0.7172

1.25 1.50 | 0.5857 0.5814 0.5751 0.5856 0.7561 0.9477
1.75 | 0.5278 0.5257 0.5227 0.5370 0.5967 0.8504
2.00 | 0.5802 0.5756 0.5586 0.5247 0.5711 0.7267

Table 5.7: Pitman closeness probabilities between 6, and é?, forn =10 and
varying values of , T, and T".
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T T 4 6 8 10 12 14

0.50 0.75 | 0.6155 0.5662 0.7761 0.9528 0.9952 0.9999
1.00 | 0.5937 0.5259 0.5945 0.8280 0.9694 0.9990
1.25 | 0.6212 0.5528 0.5684 0.6437 0.9024 0.9938
1.50 | 0.6342 0.5691 0.5764 0.5746 0.7665 0.9780
1.75 | 0.6427 0.5794 0.5889 0.5575 0.6425 0.9411
2.00 | 0.6481 0.5858 0.5984 0.5653 0.5721 0.8691

0.75 1.00 | 0.5513 0.5458 0.5506 0.8244 0.9684 0.9990
1.25 | 0.5916 0.5808 0.5257 0.6366 0.9015 0.9939
1.50 | 0.6010 0.5925 0.5375 0.5659 0.7656 0.9780
1.75 | 0.6054 0.5986 0.5508 0.5492 0.6418 0.9411
2.00 | 0.6118 0.6059 0.5596 0.5567 0.5713 0.8691

1.00 1.25 | 0.5277 0.5256 0.5327 0.6345 0.8875 0.9947
1.50 | 0.5529 0.5511 0.5412 0.5442 0.7636 0.9784
1.75 1 0.5782 0.5771 0.5640 0.5250 0.6369 0.9414
2.00 | 0.5848 0.5842 0.5712 0.5333 0.5665 0.8694

1.25 1.50 | 0.5343 0.5339 0.5305 0.5505 0.7367 0.9835
1.75 | 0.5739 0.5737 0.5685 0.5429 0.6388 0.9445
2.00 | 0.5650 0.5649 0.5612 0.5354 0.5595 0.8714

Table 5.8: Pitman closeness probabilities between 6, and é?, forn =15and
varying values of , T, and T".
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Similar to the previous section, we provide additional tables to show exactly
how the probabilities P(16; — 1| < |0; — 1]) and P(|6, — 1| < |85 — 1)) are affected once
you account for the ties for each combination of r, T, and T*. For each cell (same

combination of 7, T, and T%):

o The first row represents the conditional probability P(6;-1| <16, -1)) given

that the estimators are different,

e the second row represents the conditional probability P16, — 1] < 165 - 1))

given that the estimators are different,

e and the last row represents the probability that the estimators tie; that is,

P10, — 1] = |05 - 1]).

To emphasise, once we condition on the estimators being different, these table no
longer represent the Pitman closeness probabilities, but they represent a dissection
after removing tie cases.

By construction, we know that the estimators tie in the first case where D, D" €
{0,1,...,r — 1} as expressed in subchapter (4.2). However, there is another case
where ties could occur. Recall that in the second case, we considered the scenario

where D, D" € {r,r +1,...,n} and the estimators corresponding to this case are:

D

Z Xin + (n — D)T

i=1

A 1
O = B

1
Dx—

, é223 = . (521)

.
Z Xip + (1 — DT
i=1

If D = D* = n, then the estimators are equal. In fact, we have a complete sample.

Hence, consider the following decomposition instead:

P(10; - 1] <16, — 1))
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d=r =d
+Y P = d}:PD = d)Pp,p (10233 — 1] < 10231 — 1))

r—1
M9®ZHW“M%MmrHﬂ%rm
d=0 dr=d

+P(D = n)Pp(D" = n)]PD,D*(léHS — 1] <001 — 1)

P(D =d) Z Pp(D* = d*)ﬂ—)D,D*(léZZ?a -1 < |é221 - 1)
d=r d=d

Z (D= dZ]PD D" =d) 1PDD(|92%3—1|<|9221—1|)

(5.2.2)

where the first two terms of the last equality correspond to the probability of ties.

Tables 5.9 and 5.10 feature cases where n = 10, r = 4,5,6,7,8,9, T = 0.50, 0.75,
1.00, 1.25, and values of T* that are greater than T but up to 2.00. Furthermore,
in Tables 5.11 and 5.12 we consider same values for T and T* as above, but now
r=4,6,8,10,12,14.

Although Table 5.7 and Table 5.8 suggest that 05 is always Pitman closer to 6
than 6;, somewhat unexpectedly, there are instances where IP(Iél -1 < |é3 - 1))
exceeds 0.5. We highlight such cases in bold text in the tables.

Nonetheless, P(|0; — 1| < |05 — 1|) does not reflect the actual PC probabilities
and therefore the PC criterion cannot be applied to this case. However, these tables

indicate that the apparent advantage of 0; from the Pitman closeness criterion may
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largely be due to the probability of ties. This is similar to the results mentioned
by Davies [13], where similar estimators under a Type-I HCS, revealed instances
where conditional on the estimators being different, there is a higher probability
that the estimator based on the shorter termination time T is closer to 6 compared

to the estimator based on the termination time based on T".
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T T 4 5 6 7 8 9
050  0.75 0.4669 05378 0.7434  0.7944  0.8288 0.9048
0.5331 04622  0.2566  0.2056 0.1712  0.0952
0.1304 03112 0.5535 0.7791 0.9231 0.9834
1.00 0.4982  0.5104  0.5355  0.7008 0.7802  0.8608
0.5018 0.4896  0.4645  0.2992 0.2198 0.1392
0.0346 0.1177  0.2891 05344 0.7754  0.9306
1.25 0.5339 0.5377 05188  0.5392 0.6959 0.8130
0.4661 0.4623 0.4812  0.4608 0.3041 0.1870
0.0081 0.0382  0.1282  0.3149 0.5805 0.8286
1.50 0.5446 05596  0.5420 0.5207 0.5606  0.7437
0.4554  0.4404 04580 0.4793 04394  0.2563
0.0018 0.0113 0.0507  0.1651 0.3928 0.6900
1.75 0.5578 05734  0.5537  0.5138 0.4991 0.6347
0.4422 0.4266  0.4463  0.4862 0.5009 0.3653
0.0004  0.0031 0.0185  0.0794  0.2449 0.5400
2.00 0.5630 0.5815 0.5657  0.5330 0.5080  0.5228
0.4370 0.4185 0.4343  0.4670 04920  0.4772
0.0002 0.0009 0.0064  0.0358 0.1433 0.4009
0.75 1.00 0.5521 05037 04795 0.6477  0.7560  0.8744
0.4479 0.4963 0.5205  0.3523 0.2440  0.1256
0.0362 0.1193 0.2906  0.5360 0.7770  0.9322
1.25 0.5738 0.5212  0.4757  0.5281 0.6905 0.8139
0.4262 04788  0.5243  0.4719 0.3095 0.1861
0.0097  0.0398 0.1298  0.3164  0.5821 0.8302
1.50 0.5728 0.5360  0.5132  0.5065 0.5568 0.7439
0.4272 0.4640 0.4868  0.4935 0.4432  0.2561
0.0034 0.0128 0.0523  0.1667 03944  0.6916
1.75 0.5880 0.5520  0.5203  0.5020 0.4949 0.6344
0.4120 0.4480 04797  0.4980 0.5051 0.3656
0.0020 0.0047  0.0201 0.0810 0.2465 0.5416
2.00 0.5889 0.5572  0.5320  0.5221 0.5041 0.5223
0.4111 0.4428  0.4680  0.4779 0.4959 0.4777
0.0017  0.0025 0.0080  0.0374  0.1449 0.4024

Tflble 5.9: Tflbles displaying the following probabilities: P(16; — 6] < |6; — 6)),
P(160, — 0| < |63 — 0]), and IP(|03 — O| = |01 — O]) with n = 10 across varying r,s, and
T values (Part 1).
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T T 4 5 6 7 8 9
1.00 1.25 0.5634  0.5383 0.4812 0.4598 0.6868  0.8503
0.4366 0.4617  0.5188  0.5402 03132  0.1497
0.0182 0.0483 0.1383  0.3250 0.5906  0.8387
1.50 0.5563 0.5409 0.5016 0.4979 0.5310  0.7489
0.4437  0.4591 04984  0.5021 04690  0.2511
0.0119 0.0214  0.0608  0.1752 0.4029 0.7001
1.75 0.5701 0.5568  0.5244 0.4777  0.4879 0.6334
0.4299 0.4432 04756  0.5223 0.5121 0.3666
0.0105 0.0132  0.0286  0.0895 0.2550  0.5501
2.00 0.5647 05538  0.5232 0.4936 0.4951 0.5199
0.4353 0.4462 04768  0.5064  0.5049 0.4801
0.0103 0.0110  0.0165  0.0459 0.1534  0.4110
1.25 1.50 0.5702 0.5615 0.5357  0.4825  0.5745 0.8106
0.4298 0.4385 0.4643  0.5175 0.4255 0.1894
0.0359 0.0454  0.0848  0.1992 0.4269 0.7241
1.75 0.5109 0.5074  0.4962 0.4777  0.4407  0.6486
0.4891 04926  0.5038  0.5223 0.5593 0.3514
0.0345 0.0372  0.0526  0.1135 0.2790  0.5741
2.00 0.5653 0.5603 0.5399 0.4889 0.4786  0.5164
0.4347 04397  0.4601 0.5111 0.5214  0.4836
0.0343 0.0350  0.0405  0.0700 0.1774  0.4350

Table 5.10: Tables displaying the following probabilities: P(10; - 0] < |6, - 0)),
P(|61 — 0] < |03 — 0]), and IP(|05 — 0| = |01 — O]) with n = 10 across varying r,s, and
T values (Part 2).
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T T 4 6 8 10 12 14
050  0.75 0.6116 0.5150  0.6181 0.7722 0.8357  0.9316
03884 04850 03819  0.2278 0.1643 0.0684
0.0102 0.1057  0.4138  0.7929 0.9709 0.9990
1.00 0.5934 05171 0.5259  0.6599 0.7793 0.8989
0.4066 0.4829 0.4741 0.3401 0.2207  0.1011
0.0008 0.0182  0.1447  0.4942 0.8612  0.9900
1.25 0.6212 0.5517  0.5511 0.5314  0.7109 0.8613
0.3788 0.4483 0.4489  0.4686 0.2891 0.1387
0.0001 0.0025 0.0386  0.2397  0.6623 0.9556
1.50 0.6342 05690  0.5727  0.5295 0.5836  0.8171
0.3658 04310 04273  0.4705 0.4164  0.1829
0.0000 0.0003 0.0086  0.0957  0.4392  0.8797
1.75 0.6427 05794 05882  0.5424  0.5195 0.7514
0.3573 0.4206  0.4118  0.4576 0.4805 0.2486
0.0000 0.0000  0.0017  0.0331 0.2561 0.7628
2.00 0.6481 0.5858  0.5983  0.5608 0.5055 0.6536
0.3519 04142 04017  0.4392 0.4945 0.3464
0.0000 0.0000  0.0003  0.0103 0.1346  0.6220
0.75 1.00 0.5509 0.5373 0.4746  0.6528 0.7725 0.9034
0.4491 0.4627  0.5254  0.3472 0.2275 0.0966
0.0009 0.0183 0.1447  0.4942 0.8613 0.9901
1.25 0.5916 05798  0.5066  0.5219 0.7082  0.8614
0.4084 04202 04934 04781 0.2918 0.1386
0.0001 0.0026  0.0387  0.2398 0.6624  0.9557
1.50 0.6010 0.5923 0.5334  0.5199 0.5821 0.8171
0.3990 0.4077  0.4666  0.4801 0.4179 0.1829
0.0001 0.0004 0.0086  0.0958 0.4393 0.8798
1.75 0.6053 0.5985 0.5500  0.5337 05184  0.7515
0.3947  0.4015 0.4500  0.4663 0.4816  0.2485
0.0001 0.0001 0.0017  0.0332 0.2562  0.7629
2.00 0.6118 0.6058  0.5594  0.5521 0.5046  0.6536
0.3882 0.3942  0.4406  0.4479 0.4954  0.3464
0.0001 0.0001 0.0004  0.0103 0.1347  0.6221

TaAble 5.11: Tables displaying the folloyving probabilities: P(16; — 6] < |8, — 0)),
P(160, — 0| < |03 — 0]), and IP(|03 — O| = |01 — O) with n = 15 across varying r,s, and
T values (Part 1).
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T T 4 6 8 10 12 14
1.00 1.25 0.5272 0.5239 0.5134  0.5186 0.6657  0.8779
0.4728 0.4761 04866  0.4814  0.3343 0.1221
0.0011 0.0035 0.0396  0.2408 0.6633 0.9566
1.50 0.5524  0.5505 0.5367  0.4954 05777  0.8188
0.4476 0.4495 0.4633  0.5046 0.4223 0.1812
0.0010 0.0013 0.0096  0.0968 0.4402  0.8808
1.75 0.5778 05767  0.5628  0.5082 0.5112  0.7517
0.4222 0.4233 0.4372  0.4918 0.4888 0.2483
0.0010 0.0011 0.0027  0.0341 0.2571 0.7639
2.00 0.5844  0.5837  0.5707  0.5280 0.4985  0.6535
0.4156 0.4163 0.4293  0.4720 0.5015 0.3465
0.0010 0.0010  0.0013  0.0113 0.1356  0.6230
1.25 1.50 0.5314  0.5308  0.5234 04994  0.5252  0.8549
0.4686 04692 04766  0.5006 0.4748 0.1451
0.0063 0.0066  0.0149  0.1021 0.4455 0.8860
1.75 0.5712 05710  0.5650  0.5242 0.5102  0.7596
0.4288 04290 04350  0.4758 0.4898 0.2404
0.0063 0.0064 0.0080  0.0394  0.2624  0.7692
2.00 0.5622 0.5621 0.5582  0.5276 0.4873 0.6541
0.4378 0.4379 0.4418 04724  0.5127  0.3459
0.0063 0.0063 0.0066  0.0166 0.1409 0.6283

Table 5.12: Tables displaying the following probabilities: IP(|05 — 6| < |0: — 6)),
P(|61 — 0] < |03 — 0]), and IP(|05 — 0| = |01 — O]) with n = 15 across varying r,s, and
T values (Part 2).
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Chapter 6

Conclusion

Assuming lifetimes follow an exponential distribution with scale parameter 0, this
thesis investigates the Pitman closeness (PC) criterion among maximum likelihood
estimators (MLEs) of 0 derived from observations drawn from a Type-II hybrid
censored scheme (HCS). In this scheme, the lifetime experiment is terminated at
max{X,.,, T}, where r denotes the number of observed failures and T is a pre-fixed
termination time. The MLE of 0 was initially derived by Childs et al. [11]. To derive
the PC probabilities, classical results from order statistics [3] are employed, as well
as utilising similar techniques from earlier work that derived the PC probability of
MLEs of 0 under Type-I hybrid censoring [13].

The first comparison in this thesis considers MLEs of 0 based on the termination
times max{X,.,, T} and max{X,.,, T} with s > r. The numerical results indicate that
the estimator with respect to the second termination time is consistently Pitman
closer to 0, suggesting that, for fixed T, observing more failures improves estimator
performance.

Meanwhile, the second comparison examines MLEs of 0 based on max{X,.,, T}
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and max{X,.,, T*} with T* > T. Here, the numerical results also reveal that the
estimator with the latter termination time is Pitman closer to 6. However, in some
cases, conditional on the estimators being different, there is a higher probability
that the estimator based on the first termination time T is closer to 6 compared to
the estimator based on the termination time based on T".

These reveal that although extending the termination time leads to a better es-
timator under the Pitman closeness criterion, in large part this is because they tie
often. Furthermore, large increases in the number of observed failures or experi-
ment duration yield diminishing returns in PC, suggesting that slight extensions
to the study time or observations may be adequate.

This thesis has several limitations. The exact probabilities were shown for spe-
cific values of n, 1,5, T, and T%; it is plausible that other values would reveal different
patterns. For instance, cases might exist where the MLE based on the termination
time associated with a larger number of observed failures is not necessarily Pitman
closer to O than the estimator associated with the termination time that focuses
on a smaller number of observed failures. Additionally, the second comparison is
more computationally demanding than the first due to the subcases used to de-
rive the exact expressions, but there may be more efficient derivations for the PC
probabilities.

Furthermore, Type-I and Type-II hybrid censoring schemes have inherent lim-
itations. In Type-I HCS, no failures may occur before the pre-specified time T,
whereas in Type-II HCS, T may exceed the time for X,.,, the failure time of the
last observation. These shortcomings motivate the introduction of generalised hy-

brid censoring schemes, which incorporate additional constraints to address these

95


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.Sc. Thesis — A. Ly; McMaster University — Mathematics and Statistics

limitations of their non-generalised counterparts.

The Generalised Type-I HCS guarantees at least k observed lifetimes, prevent-
ing the case of having no failures. Meanwhile, the Generalised Type-II HCS incor-
porates an additional pre-specified termination time, allowing the experiment to
conclude earlier. Specific details can be found in Balakrishnan et al [9].

Assuming the data arises from the exponential distribution, future work may
consider comparing alternative estimators that do not arise from the MLE of 0
under Type-II HCS to assess viable substitutes, or compare MLEs of 0 under the
Generalised Type-I HCS and the Generalised Type-II HCS.
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Appendix A

R Code

A.1 Commonly Used Probability Density Functions

# Define f_A_ {11}
f All <- Vectorize(function(a, x_r, r){
if(a > ((r-1*x_r)){return(0®)}
total <- 0
denom <- (1 - exp(-x_r)) (r-1)
for(i in 0:(r-1)){
partl <- choose(r-1, i) * exp(-i*x_r) * (-1)"(1)
g <-a- i*x_r
part2 <- if((q > 0) && (a < (r-1)*x_r)){
dgamma(gq, shape = r - 1)
} else {0}

total <- total + partl*part2
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return(total/denom)

}, vectorize.args = "a")

# Define £ A_ {12}
f A12 <- Vectorize(function(a, terml, d){
total <- 0
denom <- (1 - exp(-terml))”(d)
for(i in 0:d){
partl <- choose(d, i) * exp(-i*terml) * (-1)"(i)
g <- a - i*terml
part2 <- if((q > 0) && (a < d*terml)){
dgamma(q, shape = d)
} else {0}
total <- total + partl*part2
}
return(total/denom)

}, vectorize.args = "a")

A.2 Comparison of 6, and 6,

We include the R code used to compute Equation (3.5.1) and results are shown in

Section (5.1).
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A.2.1 Comparison 1 Case 1

# Define £ {X_{r:n}}

complcasel_fxrn <- Vectorize(function(x_r, n, r, terml, d){

if(x_r > terml){
partl <- factorial(n-d)/(factorial(r-d-1)
ex <- exp(-x_r)/exp(-terml)
part2 <- (1 - ex) " (r-d-1)
part3 <- ex” (n-r+1)
return(partl*part2*part3)

} else {
return(0)

}

}, vectorize.args = "x_r")

L_11 <- function(a, x_r, n, r, s){

partl <- 2 - (1/r + 1/s) * a

part2 <- ((n-r)/r + (n-r)/s + 1/r + 1/s) * x

final <- s * (partl - part2)

return(final)

U_11 <- function(a, x_r, n, r, s){

partl <- (1/r - 1/s) * a

part2 <- ((n-r)/r - (n-r)/s + 1/r -1/s) * x_
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final <- s * (partl + part2)

return(final)

# The inner integrand
complcasel_inner_int <- function(a, X_r, n, r, s, type = "111"){
al <- L_11Ca, x_r, n, r, s)

a2 <- U_11Ca, x_r, n, r, s)

1
D)

fl <- pgamma(al, shape s-r, scale

s-r, scale

f2 <- pgamma(a2, shape

f A val <- f_All(a, x_r, 1)
if(type == "111"){

return((f2 - £f1) * f_A_val)
} else if (type == "112"){

return((f1 - £2) * f_A_val)

# The outer integrand for pi_111 and pi_112
complcasel_outer_int <- Vectorize(function(x_r, n, r, s,
terml, d, type = "111"){

if(type == "111"){
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lower_a <- r - x_r*(n-r+1)
lower_a[lower_a < 0] <- 0
upper_a <- (r-1)*x_r
fit_call <- quote(function(a)
complcasel_inner_int(a, x_r, n, r, s, type = "111"))
} else if (type == "112"){
upper_a <- r - x_r*(n-r+l1)
lower_a <- 0
fit_call <- quote(function(a)
complcasel_inner_int(a, x_r, n, r, s, type = "112"))
}
if (lower_a < upper_a) {
inner_result <- integrate(eval(fit_call),
lower = lower_a, upper = upper_a)$value
} else {
inner_result <- 0
}

mult2 <- complcasel_fxrn(x_r, n, r, terml, d)

o
w

result <- inner_result mult2
return(result)

}, vectorize.args = "x_r")

# Comparison 1 Case 1 Full Computation

complcasel <- function(n, r, s, terml){
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prob_d <- 1 - exp(-terml)
total <- @
for(d in 0:(r-1)){
pidl <- dbinom(d, size = n, prob = prob_d)
pi_111 <- integrate(
function(x_r) complcasel_outer_int(x_r, n, r, s,
terml, d, type = "111"),
lower = terml, upper = Inf)$value
pi_112 <- integrate(
function(x_r) complcasel_outer_int(x_r, n, r, s,
terml, d, type = "112"),
lower = terml, upper = Inf)$value
total <- total + (pidl * (pi_111 + pi_112))
}

return(total)

A.2.2 Comparison 1 Case 2

# Bounds for f B_{12}

L_12 <- function(a, n, s, terml, d){
theta_121 <- (a+(n-d)*terml)/d
val <- 2*s - (theta_121 * (s+d))

return(val)
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U_12 <- function(a, n, s, terml, d){
theta_121 <- (a+(n-d)*terml)/d
val <- theta_121 * (s-d)

return(val)

# General integrand computation (for pi_121 or pi_122)
complcase22_integrand <- function(a, n, s, terml, d, type = "121"){
a_121 <- L_12(a, n, s, terml, d)

a_122 <- U_12(a, n, s, terml, d)

1
D

s-d, scale

f1l <- pgamma(a_121, shape

f2 <- pgamma(a_122, shape = s-d, scale
f_A_val <- f_Al2(a, terml, d)
if(type == "121"){
return((f2 - f1)*f_A_val)
} else if (type == "122"){

return((£f1 - £f2)*£f_A_val)

# Used to define pi_121 or pi_122

pi_12 <- function(n, s, terml, d, type = "121"){
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if(type == "121"){
low_bd <- d - (n-d)*terml
upp_bd <- d*terml
fit_call <- quote(function(a)
complcase22_integrand(a, n, s, terml, d, "121"))
} else if (type == "122"){
low_bd <- 0
upp_bd <- d - (n-d)*terml
fit_call <- quote(function(a)
complcase22_integrand(a, n, s, terml, d, "122"))
}
if(low_bd < upp_bd){
result = integrate(eval(fit_call),
lower = low_bd, upper = upp_bd)$value
} else {
result = 0
}

return(result)

# Comparison 1 Case 2 Full Computation
complcase2 = function(n, r, s, terml){
total <- ©®

for(d in r:(s-1)){
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probd <- 1 - exp(-terml)
PD <- dbinom(d, size = n, prob = probd)

resl <- pi_12(n, s, terml, d, type = "121")

res2 <- pi_12(n, s, terml, d, type = "122")
total <- total + (PD*(resl+res2))

}

return(total)

A.2.3 Comparison 1 Case 3

complcase3 <- function(n, s, terml){
probd <- 1 - exp(-terml)
val <- 1 - pbinom(s - 1, size = n, prob = probd)

return(val)

A.3 Comparison of 0; and 03
TheR code used to compute Equation (4.5.1) isincluded here, and the corresponding

results are presented in Section (5.2).

A.3.1 Comparison 2 Case 1

comp2casel <- function(n, r, terml, term2){

total <- O
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for(d in 0:(r-1)){
prob_d <- 1 - exp(-terml)
pidl <- dbinom(d, size = n, prob = prob_d)
total2 <- 0
for(dstar in d:(r-1)){
dprime <- dstar - d
prob_dprime <- 1 - exp(-(term2 - terml))
pid2 <- dbinom(dprime, size = (n-d), prob = prob_dprime)

total2 <- total2 + pid2

}

total <- total + pidl*total2
}
return(total)

A.3.2 Comparison 2 Case 2

U_221 <- function(n, terml, term2, d){
m<- (n-d) * (term2-terml) / d
partl <- d * (1 - (m/2))
part2 <- (n-d) * terml

return(partl - part2)

pi_2212 <- function(n, terml, term2, d){
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lower_bd <- 0
upper_bd <- U_221(n, terml, term2, d)
if(lower_bd <= upper_bd) {
result <- integrate(
function(a) f_Al2(a, terml, d), lower = lower_bd,
upper = upper_bd)$value
} else {
result <- 0
}

return(result)

# Define f_{B_{22}}
f B22 <- Vectorize(function(b, n, terml, term2, d, dstar){
tprime <- term2 - terml
dprime <- dstar - d
total <- @
denom <- (1 - exp(-tprime)) “dprime
for(i in 0:dprime){
partl <- choose(dprime, i) * exp(-i*tprime) * (-1)"(i)
g <- b - i*tprime
part2 <- if((g > 0) && (b < (dprime*tprime))){
dgamma(gq, shape = dprime, rate = 1)

} else {0}
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total <- total + partl*part2
}
return(total/denom)

}, vectorize.args = "b")

# Define F_{B_{22}} using numerical integration
F_B22 <- Vectorize(function(upper, n, terml, term2, d, dstar){
if(upper <= 0){return(0)}
result <- integrate(
function(b_val) f B22(b_val, n, terml, term2, d, dstar),
lower = 0, upper = upper)$value
return(result)

}, vectorize.args = ’'upper’)

L_222 <- function(a, n, terml, term2, d, dstar){
theta_221 <- (a+(n-d)*terml)/d
result <- 2*dstar - theta_221*(dstar+d) - (n-dstar)*(term2-terml)

return(result)

U_222 <- function(a, n, terml, term2, d, dstar){
theta_221 <- (a+(n-d)*terml)/d
result <- theta_221*(dstar-d) - (n-dstar)*(term2-terml)

return(result)
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# General integrand computation (for pi_2221 or pi_2222)
comp2case22_integrand <- function(a, n, terml, term2,
d, dstar, type = "2221"){

al <- L_222(Ca, n, terml, term2, d, dstar)

a2 <- U_222(a, n, terml, term2, d, dstar)

fl <- F_B22(al, n, terml, term2, d, dstar)

f2 <- F_B22(a2, n, terml, term2, d, dstar)

fa <- f_Al2(a, terml, d)
if(type == "2221"){
result <- (f2-fl1)*fa
} else if (type == "2222"){
result <- (f1-f2)*fa
}

return(result)

# Used to define pi_2221 or pi_2222
pi_222 <- function(n, terml, term2, d, dstar, type = "2221"){
if(type == "2221"){

lower_bd <- d - (n-d)*terml
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upper_bd <- d*terml
fit_call <- quote(function(a)
comp2case22_integrand(a, n, terml, term2,
d, dstar, type = "2221"))
} else if (type == "2222"){
lower_bd <- 0
upper_bd <- d - (n-d)*terml
fit_call <- quote(function(a)
comp2case22_integrand(a, n, terml, term2,
d, dstar, type = "2222"))
}
if(lower_bd < upper_bd){
result <- integrate(
eval(fit_call), lower = lower_bhd,
upper = upper_bd)$value
} else {
result <- 0

}

return(result)

# Comparison 2 Case 2 Full Computation
comp2case2 <- function(n, r, terml, term2){

total <- 0
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for(d in r:n){
prob_d <- 1 - exp(-terml)
pidl <- dbinom(d, size = n, prob = prob_d)
total2 <- 0
for(dstar in d:n){
dprime <- dstar - d
prob_dprime <- 1 - exp(-(term2 - terml))
pid2 <- dbinom(dprime, size = (n-d), prob = prob_dprime)
if(dstar == d){ # Case 2.1
value <- pid2 * pi_2212(n, terml, term2, d)

} else { # Case 2.2

partl <- pi_222(n, terml, term2, d, dstar, type "2221"M)

part2 <- pi_222(n, terml, term2, d, dstar, type

|12222||)

value <- pid2 * (partl + part2)

}
total2 <- total2 + value
}
total <- total + (pidl * total2)
}
return(total)

A.3.3 Comparison 2 Case 3

# Define f_{B_{231}}(b)
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f B231 <- function(b, n, r, terml, term2, d){
tprime <- term2 - terml
partl <- (r-d)/((1-exp(-tprime))” (r-d))
omega <- 1 + (n-r)/2
total <- @
for(i in 0:(r-d-1)){
taui <- tprime*(omega + i)
thetai <- (omega + i)/(i + 1)

part2 <- (-1)" (1) * choose((r-d-1), i)

part3 <- exp(-(b/thetai))/(thetai*(i+1))
part4d <- (1 - 1/thetai)” (-(r-d-1))

incll <- (1 - 1/thetai) * b

part5 <- ifelse(incll < 0, O,

pgamma(incll, shape = r - d - 1, lower.tail = TRUE))

exprl <- part3*part4*part5

part6 <- exp(-tprime*(i+1)) / (thetai * (i+1))
part7 <- exp(-(b-taui)/thetai)

part8 <- (1 - 1/thetai)” (-(r-d-1))

incl2 <- (1 - 1/thetai) * (b-taui)

part9 <- ifelse(incl2 < 0, O,

pgamma(incl2, shape = r - d - 1, lower.tail = TRUE))
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expr2 <- parté6*part7*part8*part9

total <- total + part2*(exprl - expr2)
}
result <- total * partl

return(result)

# Define F_{B_{231}}(b) using numerical integration
F_B231 <- Vectorize(function(upp_bd, n, r, terml, term2, d){
omega <- 1 + (n-r)/2
tprime <- term2 - terml
high_val <- (r-d-l+omega) * tprime
if(upp_bd >= high_val){
return(l)
} else if (upp_bd <= 0){
return(0®)
} else {
res <- integrate(
function(b) f_B231(b, n, r, terml, term2, d),
lower = 0, upper = upp_bd)$value
}

return(res)
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b

vectorize.args = "upp_bd")

U_231 <- function(a, n, r, terml, term2, d){
partl <- r - ((n-r)/2)*term2
part2 <- (r-d-1)*terml
part3 <- (1 + ((n-r)/2))*terml
res <- partl - part2 - part3 - a

return(res)

# Integrand for pi_231

inn_int_231 <- function(a, n, r, terml, term2, d){
alph <- U_231(a, n, r, terml, term2, d)
fa <- f_Al2(a, terml, d)
fb <- F_B231(alph, n, r, terml, term2, d)

return(fa*fb)

pi_231 <- function(n, r, terml, term2, d){
upper_bd <- d*terml
res <- integrate(
function(a) inn_int_231(a, n, r, terml, term2, d),

lower = 0, upper = upper_bd)$value
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return(res)

# Define f_{X_{r:n}}(x)
comp2case3_fxrn <- Vectorize(function(x_r, n, r,
terml, term2, d, dstar){
if(x_r > terml){
parl <- factorial(dstar-d)
par2 <- (factorial(r-d-1) * factorial(dstar -r))
partl <- parl/par2
denom <- (exp(-terml) - exp(-term2)) (dstar - d)
numl <- (exp(-terml) - exp(-x_r)) (r-d-1)
num2 <- (exp(-x_r) - exp(-term2))”(dstar-r)
num3 <- exp(-x_r)

ao

value <- partl * ((numl * num2 * num3) / denom)
return(value)

} else {
return(0®)

}

}, vectorize.args = "x_r")

# Define f_{B_{23}}

f_B23 <- Vectorize(function(b, x_r, n, r, term2, dstar){

if(x_r >= term2) {return(®)?}
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tprime <- term2 - X_r
d2 <- dstar - r
if(d2 <= 0){return(®)}
total <- @
denom <- (1 - exp(-tprime))"d2
for(i in 0:d2){
partl <- choose(d2, i) * exp(-i*tprime) * (-1)"1i
g <-b-1i* tprime
part2 <- if(q > 0){
dgamma(q, shape = d2, rate = 1)
} else {0}
total <- total + partl * part2
}
return(total / denom)

}, vectorize.args = "b")

# Define F_{B_{23}} using numerical integration
F_B23 <- Vectorize(function(upper, x_r, n, r, term2, dstar){
if(upper <= 0){return(®)}
result <- integrate(
function(b) f_B23(b, x_r, n, r, term2, dstar),
lower = 0, upper = upper, subdivisions = 500L,
stop.on.error = FALSE)$value

return(result)
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}, vectorize.args = ’upper’)

L_232 <- function(a, x_r, n, r, term2, dstar){
partl <- (1/r + 1/dstar) * a
part2 <- ( (n-r+1)/r + (dstar - r +1)/dstar ) * x_r
part3 <- (n-dstar)*term2 / dstar
result <- dstar*(2 - partl - part2 - part3)

return(result)

U_232 <- function(a, x_r, n, r, term2, dstar){
partl <- (1/r - 1/dstar) * a
part2 <- ( (n-r+1)/r - (dstar - r +1)/dstar ) * x_r
part3 <- (n-dstar)*term2 / dstar
result <- dstar*(partl + part2 - part3)

return(result)

# The inner integrand
pi_232_inner_int <- Vectorize(function(a, x_r, n, r, term2,
dstar, type = "2321"){

al <- L_232(a, x_r, n, r, term2, dstar)

a2 <- U_232(a, x_r, n, r, term2, dstar)

117


http://www.mcmaster.ca/
https://math.mcmaster.ca/

M.Sc. Thesis — A. Ly; McMaster University — Mathematics and Statistics

b_upp_bd <- (term2 - x_r) * (dstar - r)
if(al < @ {f1 <- 0}
else if (al >= b_upp_bd) {f1 <- 1}
else {
fl <- F_B23(al, x_r, n, r, term2, dstar)

if(f1 > D{fl <- 1}

if(a2 < O {f2 <- 0}
else if (a2 >= b_upp_bd){f2 <- 1}
else {
f2 <- F_B23(a2, x_r, n, r, term2, dstar)

if(£2 > D{f2 <- 1}

fa <- f_All(a, x_r, r)
# Safeguarding cases where it’s negative but close to 0

fa[fa < 0 & abs(fa) < 1le-10] <- 0

if(type == "2321"){subtra = (£2-£f1)}

else if (type == "2322"){subtra = (f1-f2)}

# Safeguarding once again

subtra[subtra < 0 & abs(subtra) < 3e-4] <- 0

result = subtra*fa
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return(result)

}, vectorize.args = "a")

# The outer integrand for pi_2321 and pi_2322
pi_232_outer_int <- Vectorize(function(x_r, n, r, terml,
term2, d, dstar, type = "2321"){
if(type == "2321"){
upper_bd <- (r-1)*x_r
lower_bd <- r - x_r*(n-r+l1)
if(lower_bd <= 0){lower_bd <- 0}
fit_call <- quote(function(a)
pi_232_inner_int(a, x_r, n, r, term2, dstar, type = "2321"))
} else if (type == "2322"){
upper_bd <- r - x_r*(n-r+1)
lower_bd <- 0
fit_call <- quote(function(a)

"2322"))

pi_232_inner_int(a, x_r, n, r, term2, dstar, type
}
if(lower_bd < upper_bd){
result <- integrate(
eval (fit_call), lower = lower_bd, upper = upper_bd,
subdivisions = 500L, stop.on.error = FALSE)$value

} else {result <- 0}
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fxr <- comp2case3_fxrn(x_r, n, r, terml, term2, d, dstar)
return(result*fxr)

}, vectorize.args = "x_r'")

# Comparison 2 Case 3 Full Computation
comp2case3 <- function(n, r, terml, term2){
total <- O
prob_d <- 1 - exp(-terml)
prob_dprime <- 1 - exp(-(term2 - terml))
for(d in 0:(r-1)){
pidl <- dbinom(d, size = n, prob = prob_d)
total2 <- 0
for(dstar in r:n){
dprime <- dstar - d
pid2 <- dbinom(dprime, size = (n-d), prob = prob_dprime)
if(dstar == r){
pi_232_r <- pi_231(n, r, terml, term2, d)
total2 <- total2 + (pid2 * pi_232_r)
} else {
pi_2321 <- integrate(
function(x_r) pi_232_outer_int(x_r, n, r, terml,
term2, d, dstar, type = "2321"),

lower = terml, upper = term2)$value
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pi_2322 <- integrate(

function(x_r) pi_232_outer_int(x_r, n, r, terml,

term2, d, dstar, type = "2322"),

lower = terml, upper = term2)$value

total2 <- total2 + (pid2 * (pi_2321 + pi_2322))

}
}
total <- total + (pidl * total2)
}
return(total)

A4 Demonstration of Code Usage

# Comparison 1 Example

cl <- complcasel(n = 15, r = 4, s = 6, terml = 0.75)
c2 <- complcase2(n = 15, r = 4, s = 6, terml = 0.75)
c3 <- complcase3(n = 15, s = 6, terml = 0.75)

cl + c2 + c3

# Comparison 2 Example

cl <- comp2casel(n = 10, r = 4, terml = 0.5, term2 =
c2 <- comp2case2(n = 10, r = 4, terml = 0.5, term2 =
c3 <- comp2case3(n = 10, r = 4, terml = 0.5, term2 =

cl + c2 + c3
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