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Lay Abstract

Researchers are often interested in the time it takes for a certain event to happen.

For example, in medical studies, we may ask how long it takes a patient to recover,

while in engineering, we may study how long a product works before it fails.

This type of information, which measures the time until an event occurs, is called

lifetime data. Collecting such data can be difficult because studies often end before

every recovery or failure has been observed, resulting in incomplete data.

To make sense of incomplete data, statisticians use statistical inference, a process

where they make inferences about the population from available data. There is a

special type of statistical inference, called estimation, where mathematical formulas

called estimators are used to approximate important features of said population.

This thesis examines how to decide which estimator is more accurate among

a given class under a specific data collection scheme. Using a mathematical tool

called the Pitman closeness criterion, we derive and compute exact expressions

for making pairwise comparisons among three different estimators that depend

on the length of the study and the number of observations collected. Our results,

based on this criterion, support the intuitive idea that extending the study period

or increasing the number of observations leads to producing a better estimator

according to the Pitman closeness criterion in a particular data collection scheme.
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Abstract

The Pitman closeness (PC) criterion is a method to compare two statistical esti-

mators. Assuming that the lifetime data follow an exponential distribution with

scale parameter θ, prior work had computed the PC probabilities for estimators

of θ based on Type-I right-censoring, Type-II right-censoring and Type-I hybrid

censoring schemes (HCS). However, the derivation of the PC under a Type-II HCS

has not yet been addressed in the literature.

This thesis examines two comparisons of maximum likelihood estimators for θ,

the scale parameter, for exponentially distributed lifetimes arising from the Type-

II HCS: (1) between estimators corresponding to different numbers of observed

failures, and (2) between estimators with different censoring times. Closed-form

expressions for the PC probabilities are derived, and numerical results are reported

for various sample sizes, censoring times, and study durations. Numerical results

show that increasing the pre-fixed termination time or the number of failures led to

an estimator that was always Pitman closer to the true parameter. These findings

confirm the intuition that increasing the termination time or the number of observed

failures will usually lead to an estimator that is Pitman closer than one based on a

shorter termination time or fewer observed failures.
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Notation and Abbreviations

Notation

| · | Denotes the absolute value of the argument, where “·” serves as a

placeholder for a real number, defined as appropriate in context.

P(·) The probability of the placeholder “·” occurring, which is precisely

defined as needed.

X ∼ D(·) The random variable X follows a placeholder D distribution. D

and “·” are stated when relevant.

Exponential(θ) The exponential distribution with rate parameter θ.

fX(x) The probability density function (pdf) of a random variable X eval-

uated at x.

FX(x) The cumulative distribution function (cdf) of a random variable X

evaluated at x.

fX(x; ·) An alternative notation for the pdf of a random variable X evalu-

ated at x, where “·” serves as a placeholder for the parameters for

the distribution.
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FX(x; ·) An alternative notation for the cdf of a random variable X evalu-

ated at x, where “·” serves as a placeholder for the parameters for

the distribution.

L(·) The likelihood function where “·” serves as a placeholder for the

parameter vector for the distribution.

Xi:n The ith order statistic from a sample of size n.

1[a,b](x) An indicator function where we have 1 if a ≤ x ≤ b and 0 otherwise.

Abbreviations

PC Pitman closeness criterion.

HCS Hybrid censoring scheme.

pdf Probability density function.

cdf Cumulative distribution function.

i.i.d. Independently and identically distributed.

MLE Maximum likelihood estimator.

UMVUE Unique minimum variance unbiased estimator.

MSE Mean square error.

BLUE Best linear unbiased estimator.

BLIE Best linear invariant estimator.

xiii



Chapter 1

Introduction

Lifetime experiments, which aim to measure the time until an event occurs, are com-

monly employed in healthcare and engineering settings. For example, researchers

measure how long it takes for patients to recover from a disease, or engineers test

how long their product can be used for. There are many costs and time considera-

tions when conducting lifetime experiments, which may result in incomplete data,

meaning data for which the event of interest (e.g., recovery, failure) has not been

observed for all subjects. For instance, patients can pass away prematurely, or a

product may last longer than the study time.

Most experiments are conducted under right-censoring, where only a lower

bound on lifetimes are fully observed for the observations, often using either Type-

I or Type-II censoring schemes. However, there are hybrid versions, such as the

Type-I and Type-II Hybrid Censoring Schemes (HCS), which may provide more

information for estimating parameters for lifetime distributions. These naming

conventions (Type-I HCS, Type-II HCS) were first introduced by Childs et al. [11].

Because these schemes affect how much information is available, it is common

1
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when analysing lifetime data to model the times to event using a specific probability

distribution. In this context, these are often referred to as lifetime distributions,

although functionally they are standard probability distributions applied to lifetime

data. Some recent examples in the literature use an exponential distribution to

analyse electronic components [12] and fluorescence decay [24]. Other common

distributions include the log-normal, log-logistic, gamma, inverse Gaussian, and

the Weibull distribution [19].

Previous studies have applied the Pitman closeness (PC) criterion, a method

to compare two estimators, to censored samples drawn from the exponential dis-

tribution. These include investigations under Type-I censoring, Type-II censoring,

and Type-I HCS [7, 8, 13]. The work about Type-I HCS specifically examined

how increasing the pre-specified number of observed events r or the censoring

time T influences the closeness of an estimator to the value of the scale parameter

from the exponential distribution under the PC criterion. However, an analogous

comparison has not yet been carried out.

This thesis focuses on the derivation of the PC probabilities among maximum

likelihood estimators (MLEs) of the scale parameter θ obtained under Type-II

hybrid censoring schemes from an exponential lifetime distribution. The result

provides a suggestion for researchers designing experiments under a Type-II hybrid

censoring scheme. Specifically, this determines whether increasing the number of

observed failures or extending the total data collection time leads to an estimator

that is Pitman closer to the true parameter, which can be used as a heuristic to

identify a more accurate estimator.

2
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The rest of this thesis is organised as follows. Chapter 2 introduces key pre-

liminary concepts in detail, including Pitman closeness, lifetime data, and various

censoring schemes. Chapters 3 and 4 present comparisons between MLEs of the

scale parameter θ under a Type-II HCS from a lifetime exponential distribution.

Chapter 3 examines how increasing the number of observed failures affects es-

timator performance, while Chapter 4 investigates the impact of extending the

total data collection time. Next, we present numerical results from computing the

PC probability for varying cases in Chapter 5. Finally, we make our concluding

remarks and suggest new avenues for future research in Chapter 6.

3
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Chapter 2

Preliminaries

In this chapter, we present relevant preliminaries to understand the method used

for comparing estimators, as well as the structure and properties of the exponential

distribution.

2.1 Lifetime Data Analysis

Lifetime refers to the length of time from a defined starting point (such as the

beginning of observation or the start of product use) until a specified event, often

called a failure, occurs. The definition of “failure” depends on the situation and

does not imply something negative. For example, in engineering, this might mean

a product no longer works properly. In healthcare, it may be that a patient has been

cured or has passed away.

Lifetime data, as the name suggests, consists of observations of these lifetimes.

This type of data can also be referred to as survival or failure time data, depending

on the context. Such data arise in biomedical sciences, epidemiology, engineering,

4
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reliability studies, and many other fields. For instance, in healthcare, one might

record the time it takes for a patient to recover from an illness to estimate average

recovery times. In manufacturing, lifetime data are collected in reliability studies

to assess how long a product lasts before it stops functioning as intended.

When analysing lifetime data, it is typical to assume an underlying probability

distribution describing the time to event. In the context of lifetime data analysis,

such models are commonly termed as lifetime distributions; however, they are

mathematically identical to conventional probability distributions.

Lifetime distributions can be either continuous or discrete. Continuing the

healthcare example, one might measure recovery time in days, which is discrete,

or in hours or minutes, which can be treated as continuous. This thesis, however,

focuses on continuous lifetime distributions; consequently, all notations, including

cumulative distribution functions, will be discussed in their continuous form.

Let T be a non-negative random variable that represents the lifetime of a subject

under study, which again is the duration until an event of interest occurs. Let fT(t)

denote the probability density function (pdf) of T; usually, fT(t) ∈ [0,∞). Also, let

FT(t) represent the cumulative density function (cdf) of T. We can write the cdf as:

FT(t) = P(T ≤ t) =

∫ t

0
fT(x)dx. (2.1.1)

Here, the cdf represents the probability that a lifetime ends before time t. It is

common for researchers to be more interested in the probability that a lifetime

lasts beyond time t. Hence, the survival function, sometimes referred to as the

5
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reliability function, denoted as ST(t), is shown below,

ST(t) = P(T ≥ t) =

∫
∞

t
fT(x)dx, (2.1.2)

and this function represents the probability that an individual or object survives

beyond a specified time point t.

2.1.1 Lifetime Distributions

When analysing lifetime data, researchers often rely on well-known probability

distributions such as the log-normal, log-logistic, gamma, inverse Gaussian, and,

most commonly, the Weibull distribution [19].

The pdf for the Weibull distribution is defined as:

fX(x) =
k
θ

( x
θ

)k−1

exp
{
−

( x
θ

)k
}
, x ≥ 0, k > 0, θ > 0, (2.1.3)

where k is the shape parameter, and θ is the scale parameter. A special case of

the Weibull distribution is the exponential distribution, which occurs when k = 1.

That is, assuming we have the same scale parameter θ, the pdf of an exponential

distribution is given by:

fX(x) =
1
θ

e−x/θ, x ≥ 0, θ > 0. (2.1.4)

The corresponding cdf is:

FX(x) = 1 − e−x/θ, x ≥ 0, θ > 0. (2.1.5)

6
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Furthermore, if there exists ε > 0 such that E[eXt] is finite for all t ∈ (−ε, ε), the

moment generating function of the exponential distribution is:

MX(t) = E[eXt] = (1 − θt)−1, t , θ−1. (2.1.6)

The exponential distribution has nice properties. For instance, the exponen-

tial distribution is scale-invariant under reparameterisation. That is, let X ∼

Exponential(θ), where θ represents the scale parameter, and let Y = X/θ. Then,

FY(y) = P(Y ≤ y) = P(X/θ ≤ y) = P(X ≤ θy) = FX(θy),

fY(y) = fX(θy)θ =
1
θ

e−(θy)/θθ = e−y.
(2.1.7)

Hence, Y ∼ Exponential(1). This result shows us that when working with estimators

for the scale parameter of an exponential distribution, results can be rescaled to

apply to any value of θ.

Furthermore, there is an interesting relationship between the exponential dis-

tribution and the gamma distribution. Let V ∼ Gamma(α, β), where α represents

the shape and β represents the scale. The shape and scale parameterisation of the

gamma pdf is defined as:

fV(v;α, β) =
1

Γ(α)βα
vα−1e−v/β, x ≥ 0, α > 0, β > 0. (2.1.8)

Similarly, if E[eVt] is finite for ε > 0, t ∈ (−ε, ε), then we define the moment

generating function of the gamma distribution to be:

MV(t;α, β) = E[eVt] = (1 − βt)−α. (2.1.9)

7

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Ly; McMaster University – Mathematics and Statistics

The gamma distribution has the useful property that the sum of independent

exponential random variables with a common scale parameter θ follows a gamma

distribution. A formal proof is given in Theorem (2.1.18) in Durrett’s textbook [14],

and we restate the lemma below for reference.

Lemma 2.1.1. Let X1, X2, . . . , Xn be be independent and identically distributed (i.i.d.)

distributed as Exponential(θ). Then, the distribution of ξ B X1 + X2 + · · · + Xn is

Gamma(n, θ) where the first value (n) represents the shape parameter and the second value

(θ) represents the scale parameter.

2.1.2 Order Statistics

Order statistics, as their name suggests, are defined by sorting a random sample in

increasing order. That is, given we have a random sample of size n: X1,X2, . . . ,Xn,

we denote the corresponding order statistics as X1:n,X2:n, . . . ,Xn:n where X1:n ≤

X2:n ≤ · · · ≤ Xn:n. Order statistics appear in numerous statistical contexts; here, we

consider their application specifically to lifetime data.

The pdf of the ith order statistic, as derived by Barry et al. [3] as Equation (2.2.2),

is given in the following lemma:

Lemma 2.1.2. Let X1, X2, . . . , Xn be i.i.d. random variables with probability density

function fX(x) and cumulative distribution function FX(x). Denote their order statistics

by X1:n ≤ X2:n ≤ · · · ≤ Xn:n. The probability density function of Xi:n, for i ∈ {1, . . . ,n}, is:

fXi:n(x) =
n!

(i − 1)!(n − i)!
{FX(x)}i−1

{1 − FX(x)}n−i fX(x), −∞ < x < ∞. (2.1.10)

There is an interesting result involving spacings of exponential distributions

8
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derived as Theorem (4.6.1) in Barry et al., [3]:

Theorem 2.1.1. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics from the standard

exponential distribution from a sample of size n. We will set X0:n = 0. Then consider the

random variable of the form:

Zi = (n − i + 1)(Xi:n − Xi−1:n), i ∈ {1, 2, . . . ,n}. (2.1.11)

We have that Z1,Z2, . . . ,Zn are all statistically independent and have standard exponential

distributions.

This result may seem overly specific, but it frequently arises in the context of

order statistics from the exponential distribution.

Order statistics are central to constructing L-estimators, which are linear com-

binations of order statistics. Common examples include the median, minimum,

maximum, and quantiles, all of which are generally robust to outliers. A detailed

treatment of L-statistics can be found in Serfling’s book [23].

Beyond their role in descriptive statistics, some types of data are inherently

ordered. This is especially relevant in life-testing experiments with missing or

incomplete data, also known as censored data, a topic explored in the next sub-

chapter.

2.1.3 Standard Right-Censoring Schemes

Many unexpected events may occur during the data collection phase for lifetime

data. Morbid events, such as patients passing away before they can recover, are

9
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not unique. Furthermore, sometimes experiments can take longer than the origi-

nal time allocated, resulting in experiments that may be prematurely terminated.

Hence, we discuss the notion of censored data, a broad term that implies incom-

plete observations. There are specific types of censored data; we will focus on

discussing extensions of right-censored data.

Right censoring refers to experiments where only a lower bound on the lifetime

is observed. This means that for some subjects, the event of interest may occur

later than the observation period, and the exact time is unknown. For example,

in a healthcare study tracking patient recovery, a patient may recover soon after

the observation period ends or potentially much later; the precise recovery time

remains uncertain. It is common to exclude the suffix “right” when describing

right-censored experiments, and we will adopt this convention throughout. There

are different types of right censoring schemes, such as Type-I, Type-II, Progressive

Type-I, Progressive Type-II, Type-I Hybrid, and Type-II Hybrid.

Type-I refers to situations where the experiment ends at a predetermined time,

thus the number of observed failures is random. On the other hand, Type-II occurs

when the experiment continues until a pre-determined number of events have

occurred, while the termination time is random. In summary, Type-I is fixed by

time, and Type-II is fixed by the event count. A good comprehensive introduction

to lifetime data and right-censoring schemes is discussed in Lawless’ textbook [19].

There are modifications to Type-I and Type-II censoring schemes to add an extra

layer of complexity. An example that we will briefly discuss is Progressive Type-I

and Progressive Type-II, where censoring takes place progressively at r different

stages.
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In a lifetime experiment, any unit that has not yet failed is referred to as a live

unit or surviving unit. Progressive Type-I censoring describes an experimental

setup where a set of termination times, t1, t2, . . . , tk, is fixed in advance, and at each

of these times a predetermined number of live units m1,m2, . . . ,mk are randomly

removed from the study.

In contrast, Progressive Type-II censoring is both more commonly studied and

more widely applied than Progressive Type-I. It involves removing a predeter-

mined number of live units at the time of certain failures. Suppose an experiment

begins with n units, and the goal is to observe exactly k failures. Let m1,m2, . . . ,mk

denote the numbers of live units to be removed in addition to the observations

that fail at the times of the 1st, 2nd, . . . , kth failures. For instance, when the first

failure occurs, an additional m1 of the remaining n − 1 live units are withdrawn at

random. At the second failure, m2 units are removed from the remaining n− 2−m1

live units, and this process continues until n − r −m1 −m2 − · · · −mk units remain.

Additional references on Progressive Type-I and Progressive Type-II censoring

are provided in books written by Balakrishnan & Aggarwala [4] and Balakrishnan

& Cramer [6].

There are some issues with Type-I and Type-II censoring schemes. For example,

in Type-I censoring schemes, if the termination time T is small, it is possible to ob-

serve no failures. Hence, it would be impossible to make any statistical inferences.

Other flaws regarding Type-I and Type-II censoring schemes are that they do

not account for both the number of observations as well as the termination time,

although realistically, most researchers have an idea of both factors in the planning

phase. For instance, in Type-I censoring, if the termination time T is large, then

11
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there is a possibility that the number of observed failures r will exceed the number

of failures that the experimenter had planned to account for, meaning the test could

be unnecessarily prolonged.

Furthermore, long experiments are often costly and impractical. In engineering,

for instance, testing the durability of mobile phones over many years is unrealistic

when new models are released annually. Similarly, in healthcare, it is difficult for

participants to remain in long-term studies without compensation, and personal

circumstances may cause them to withdraw.

Conversely, in Type-II censoring, since the number of planned observations

r is fixed but not the termination time T, the experiment can end much earlier

than expected or last longer than expected. This is problematic in situations where

experimenters expected or budgeted for a longer study. For example, in healthcare,

participants may have been promised funding for a fixed duration, leading to

wasted resources if the study ends prematurely. However, if the experiment lasts

longer than expected, there may not be enough resources to complete the study.

In other cases, researchers may be specifically interested in late-life failures.

For instance, when studying the durability of a manufactured product, it may be

useful to know how likely it is to last well beyond its average lifespan. More details

regarding the issues with Type-I and Type-II censoring are elaborated in Section

1.3 of Balakrishnan et al. [9].

With regards to Progressive Type-I and Type-II censoring, it is often difficult in

practice to randomly withdraw additional live units at exactly the prescribed times

(Type-I) or after each observed failure (Type-II). These challenges motivate the

development of hybrid censoring schemes, which aim to balance the number of
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planned failures r and the termination time T while avoiding excessive complexity.

2.1.4 Hybrid Censoring Schemes

Two different types of hybrid censoring schemes are Type-I Hybrid Censoring

Scheme and Type-II Hybrid Censoring Scheme. Typically, “Hybrid Censoring

Scheme” is abbreviated to “HCS”.

Suppose we fix both a termination time T and a pre-determined number of

observed failures r. Let X1, X2, . . . , Xn represent a random sample of lifetimes.

We order the lifetimes as X1:n ≤ X2:n ≤ · · · ≤ Xn:n. Type-I Hybrid Censoring

Scheme (HCS) is when the experiment is terminated at T1 = min{Xr:n,T} and is

first introduced by Epstein [15]. One potential issue is that if T is small enough, it

is possible that some estimators, such as the MLE, will not exist. This is because if

T is sufficiently small, no failures may occur within the study period, leading to no

data being collected, and therefore, inferences cannot be made.

Thus, other researchers may find the Type-II Hybrid Censoring Scheme (HCS)

to be more appealing. In this scheme, lifetime experiments are terminated at

T2 = max{Xr:n,T}, which provides more information than lifetime experiments

under a Type-I HCS because it guarantees that there will be at least r failures.

A limitation for Type-II HCS is that the experiment will need to run for longer

compared to other censoring types, which can be seen as impractical depending

on the time it takes for r observed failures to occur.

There are many other hybrid censoring schemes, such as Generalized Type-I

HCS, Generalized Type-II HCS, and others. More details of alternative hybrid

schemes can be found in Balakrishnan et al. [9].
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2.1.5 Truncation

Truncated distributions are a type of conditional distribution that is derived from

knowing that the variable has a smaller range than the initial distribution. For ex-

ample, suppose we assume that the random sample X1,X2, . . . ,Xn is exponentially

distributed, but we know all of the lifetimes occur before time T. For reference,

we say that this sample is right-truncated at T. Then, the range is 0 < Xi < T for

i ∈ {1, 2, . . . ,n}. We need to adjust the probability density function to ensure it is

valid. That is, letting c ∈ R represent the scalar that adjusts the probability density

function accordingly:

1 = c
∫ T

0

1
θ

e−x/θdx ⇒ c = (1 − e−T/θ)−1. (2.1.12)

The truncation does not necessarily have to be between 0 < Xi < T. Another form

of truncation arises when we have a stricter lower bound than that of the original

distribution. For example, consider the earlier sample X1,X2, . . . ,Xn drawn from

an exponential distribution, but this time all observed failures are known to exceed

T. Consequently, the support becomes T < Xi < ∞ for i ∈ {1, 2, . . . ,n}, and such a

sample is referred to as left-truncated at T.

Data can be doubly left and right-truncated. Hence, we highlight the general

form of a truncated distribution. Suppose X has a probability density function fX(x)

and a cumulative density function FX(x). Let a, b ∈ R. If X follows a distribution

restricted to the interval [a, b], then the truncated distribution is defined as:

fX(x | a ≤ X ≤ b) =
fX(x) · 1[a,b](x)
FX(b) − FX(a)

, (2.1.13)
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where 1[a,b](x) represents the indicator function:

1[a,b](x) =


1 if x ∈ [a, b],

0 otherwise.
(2.1.14)

Truncations are relevant since they arise as a byproduct of censoring schemes.

For example, under Type-I censoring, the experiment is forced to end at a fixed

time T, which implies there are some right-truncated observations. Moreover,

working with truncated distributions may be useful when dealing with estimators

or mathematical expressions that include order statistics. For instance, it is useful to

partition the ordered samples into two groups (e.g., one subject to right-truncation

and the other to left-truncation).

When working with left-truncated samples from an exponential distribution,

there is a convenient property: if the sample is truncated at some T > 0, then

subtracting T from the truncated observations restores the original exponential

distribution.

Lemma 2.1.3. Let X be exponentially distributed with scale parameter θ, left-truncated

at T. Then the shifted random variable V = X − T also follows an exponential distribution

with scale parameter θ.

Proof. From Equation (2.1.13), the pdf of X is given by

fX(x) =
θ−1 exp(−x/θ)

1 − FX(T)
=

1
θ

exp
{
−x + T
θ

}
, T < x < ∞. (2.1.15)

15

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Ly; McMaster University – Mathematics and Statistics

Now, for V = X − T we have

FV(v) = P(X − T ≤ v) = FX(v + T),

fV(v) = fX(v + T) =
1
θ

exp
{
−(v + T) + T

θ

}
=

1
θ

exp(−v/θ) , 0 < v < ∞,

(2.1.16)

which is precisely the pdf of an exponential distribution with scale θ. �

Furthermore, when dealing with samples from a doubly truncated exponential

distribution, it is often advantageous to transform the variable to obtain a distribu-

tion that is only right-truncated. Consider the following lemma as well.

Lemma 2.1.4. Assume X is exponentially distributed with scale parameter θ and doubly

truncated between T and T∗ where 0 < T < T∗. Then, X−T is a right-truncated exponential

distribution with scale parameter θ at T∗ − T.

Proof. From Equation (2.1.13), the pdf of X is given by

fX(x) =
θ−1 exp(−x/θ)
FX(T∗) − FX(T)

=
θ−1 exp(−x/θ)
e−T/θ − e−T∗/θ , T < x < T∗. (2.1.17)
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Now, for V = X − T we have

FV(v) = P(X − T ≤ v) = FX(v + T),

fV(v) = fX(v + T)

=
θ−1 exp(−(v + T)/θ)

e−T/θ − e−T∗/θ

=
θ−1 exp(−v/θ) exp(−T/θ)

e−T/θ − e−T∗/θ

exp(−T/θ)−1

exp(−T/θ)−1

=
θ−1 exp(−v/θ)

1 − exp(−(T∗ + T)/θ)

(2.1.18)

which follows the form of the pdf of an exponential distribution that is right-

truncated at T∗ − T with scale θ. �

There is a useful theorem proved by Balakrishnan and Cohen [5] as Theorems

(2.4.1) and (2.4.2) in their text, which shows that a sample of order statistics can be

partitioned into two distinct groups: the first forming a right-truncated complete

sample, and the second forming a left-truncated complete sample.

Theorem 2.1.2. Let X1,X2, . . . ,Xn be i.i.d. random variables from a population with cdf

F(x), and let X1:n ≤ · · · ≤ Xn:n denote the corresponding order statistics. If the observed

data are truncated on the right at T, and exactly m of the Xi’s are less than or equal to T,

then the first m order statistics X1:n ≤ · · · ≤ Xm:n form a complete random sample of size m

from the distribution F(x) that is right-truncated at T. Furthermore, the remaining n −m

order statistics Xm+1:n ≤ · · · ≤ Xn:n form a complete random sample of size n −m from the

distribution F(x) that is left-truncated at T. Moreover, these two sets of order statistics are

independent.

More details of truncation can again be found in Lawless’ textbook [19].
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2.2 Maximum Likelihood Estimation

This subchapter discusses likelihood functions, which are commonly used in statis-

tical inference, together with their maximum likelihood estimators (MLEs). Since

the form of the likelihood depends on the type of data, we also present the cor-

responding likelihoods under Type-I censoring, Type-II censoring, and the two

hybrid schemes (Type-I and Type-II).

2.2.1 Likelihood Functions

Some methods in statistical inference rely on likelihood functions derived from ob-

served data. Consider a random sample of lifetimes X1,X2, . . . ,Xn. These lifetimes

are assumed to follow a distribution with pdf fX(x) and cdf FX(x) for i = 1, 2, . . . ,n.

When we wish to emphasise the role of the parameters, we instead write fX(x;θ)

for a parameter vector θ. The likelihood function for complete data is then given

by:

L(θ) =

n∏
i=1

fX(xi;θ). (2.2.1)

Because the likelihood depends on the observed data, its form differs under censor-

ing schemes with incomplete observations, or with other missing-data mechanisms

(e.g., data missing at random).

Suppose we have a random sample of lifetimes X1,X2, . . . ,Xn, with realisations

x1, x2, . . . , xn. Each xi represents either a fully observed lifetime or the time at which

the observation was right-censored (i.e., the last known time before the experiment

18

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Ly; McMaster University – Mathematics and Statistics

ended). Define a censoring indicator by:

δi = 1xi(Xi) =


1 if Xi = xi,

0 otherwise,
for i = 1, 2, . . . ,n. (2.2.2)

Thus, δi = 1 indicates that the lifetime was observed in full, while δi = 0 indicates

censoring. Clearly,
∑n

i=1 δi gives the number of observed lifetimes.

The likelihood function can then be written as:

L(θ) =

n∏
i=1

fX(xi)δiSX(xi)1−δi , (2.2.3)

where SX(xi) := P(X ≥ xi) is the survival function. This form is intuitive; when

δi = 1, the observed lifetime contributes through the density fX(xi). Meanwhile,

if δi = 0 then we only know that the lifetime exceeds xi, which is captured by the

survival probability SX(xi). A more detailed discussion of likelihood functions for

censored data can be found in Lawless’ book [19].

Sometimes in practice, likelihood functions can be complex, and the closed-

form expression for the MLE may not exist. In such cases, iterative procedures

are employed. The Expectation-Maximisation (EM) algorithm is one widely used

approach, and numerical methods such as Newton–Raphson can also be incorpo-

rated within it to carry out the maximisation step. A convenient feature of the

exponential distribution is that the closed form for the likelihood functions and

MLE can be easily derived under common right-censoring schemes, including the

Type-II hybrid censoring scheme, so such numerical methods are not required for

this thesis.
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In the following subsections, we focus on the exponential distribution and

explicitly derive the likelihood functions under four censoring schemes: Type-I

censoring, Type-II censoring, Type-I hybrid censoring, and Type-II hybrid censor-

ing.

2.2.2 Type-I Censoring

We now present a more formal definition of Type-I censoring. In this scheme,

each lifetime observation has a pre-specified censoring time Ci. We use the term

potential censoring time because if the event (failure) occurs before Ci, then the

observation is not censored.

Assume now that X1,X2, . . . ,Xn are i.i.d. and follow an exponential distribution

with scale parameter θ, and let x1, x2, . . . , xn denote the corresponding realisations.

Additionally, let r =
∑n

i=1 δi =
∑n

i=1 1xi(Xi) denote the number of complete (uncen-

sored) observations. Then, the observed likelihood function is:

L(θ) = θ−r exp

− 1
θ

n∑
i=1

min{xi,Ci}

 , (2.2.4)

and the corresponding observed MLE is:

θ̂MLE =
r∑n

i=1 min{xi,Ci}
. (2.2.5)

Further details of this example can be found in Lawless’ book [19].
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2.2.3 Type-II Censoring

Consider a random sample X1,X2, . . . ,Xn with realisations x1, x2, . . . , xn, each rep-

resenting either a complete lifetime or a censoring time. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n

denote the corresponding order statistics with realisations x1:n ≤ x2:n ≤ · · · ≤ xn:n.

Under Type-II censoring, only the r smallest lifetimes are observed. Thus,

x1:n ≤ · · · ≤ xr:n represent fully observed lifetimes, while xr+1:n ≤ · · · ≤ xn:n represent

censored lifetimes, which are only known to exceed the censoring time xr:n.

Assume that X1, . . . ,Xn are independent and exponentially distributed with

scale parameter θ. Then, the observed likelihood function is:

L(θ) = θ−r exp

− 1
θ

 r∑
i=1

xi:n + (n − r)xr:n


 , (2.2.6)

and accordingly, the observed MLE takes the form:

θ̂MLE =
r∑r

i=1 xi:n + (n − r)xr:n
. (2.2.7)

Again, comprehensive details are available in Lawless [19].

2.2.4 Type-I Hybrid Censoring

Consider a random sample X1,X2, . . . ,Xn. Under Type-I hybrid censoring, the

lifetime experiment is terminated at T1 = min{Xr:n,T} where T ∈ (0,∞) represents

a censoring time, which is fixed in advance, and r ∈ N represents the number of

failures we plan to observe.

Assume that D1 corresponds to the number of failures before time T1. Chen and
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Bhattacharyya derived the likelihood function and the MLE for θ under the Type-I

HCS censoring scheme, assuming the exponential distribution [10]:

L(θ) =


n!

(n−D1)!θ
−D1 exp

{
−

∑D1
i=1 Xi+(n−D1)T1

θ

}
if D1 ≥ 1,

exp
{
−

nT
θ

}
if D1 = 0,

(2.2.8)

and the corresponding MLE, which only exists when D1 > 0, is:

θ̂MLE =


1
D

{∑D
i=1 Xi + (n −D)T

}
if T < Xr:n,

1
r

{∑r
i=1 Xi + (n − r)Xr:n

}
if Xr:n ≤ T.

(2.2.9)

Here, D ∈ {0, 1, 2, . . . ,n} denotes the random number of failures that before time T,

as illustrated in Figure 2.1.

Figure 2.1: Timeline illustrating D, the number of failures occurring before time T.

One limitation of the Type-I HCS is that inferential results, such as the MLE,

may not always exist. Notice that if the termination time T is small enough so that

D = 0, then the MLE shown in Equation (2.2.9) will not exist. Hence, there is a

need for an alternative.
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2.2.5 Type-II Hybrid Censoring

To guarantee that the MLE will always exist, Childs et al. [11] introduced the Type-

II Hybrid Censoring Scheme, where the experiment is terminated at max{Xr:n,T}.

Again, Xr:n denotes the time of the r-th smallest failure among n observations, and

T is a termination time set by the experimenter. This guarantees that there will

be at least r observed failures for analysis. Figure 2.2 demonstrates the difference

between Type-I and Type-II HCS.

Assuming that the lifetimes are exponentially distributed, the expression for

the observed likelihood function for θ under the Type-II HCS censoring scheme

is [11]:

L(θ) =


n!

(n−r)!
1
θr exp

{
−

1
θ

∑r
i=1 xi + (n − r)xr:n

}
if D = 0, 1, . . . , r − 1,

n!
(n−D)!

1
θD exp

{
−

1
θ

∑D
i=1 xi + (n −D)T

}
if D = r, r + 1, . . . ,n,

(2.2.10)

and the corresponding observed MLE is:

θ̂MLE =


1
r

{∑r
i=1 xi + (n − r)xr:n

}
if D = 0, 1, . . . , r − 1,

1
D

{∑D
i=1 xi + (n −D)T

}
if D = r, r + 1, . . . ,n.

(2.2.11)

2.3 Pitman Closeness Criterion

In this section, we present the Pitman closeness (PC) criterion, which serves as the

primary tool in this thesis for comparing three different MLEs under the Type-II

HCS. We also provide a motivation for using the PC criterion. We describe why
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Figure 2.2: Illustration of the two different scenarios and the termination times for
both Type-I HCS and Type-II HCS.

it offers a meaningful alternative to commonly used measures such as the mean

squared error. Finally, we review the literature where PC has been applied to

compare different estimators under various censoring schemes.

2.3.1 Definition

Suppose we want to compare two estimators, θ̂1 and θ̂2, of a common parameter θ.

The Pitman closeness criterion, also known as the Pitman measure of closeness,

is a method to compare two statistical estimators by computing the probability that

the estimator θ̂1 produces an estimate that is at least as close to the true value θ as

the estimate given by the second estimator θ̂2. To clarify a common misconception,

PC does not evaluate the magnitude of how close an estimator is to the parameter.

In 1936, Pearson questioned what it means for an estimator to be “better” among

two competing estimators [20]. In response, the PC criterion was introduced in the

same year [21]. Ideally, a “better” estimator is the one that is more likely to produce

estimates closer to the true parameter value. Later, a textbook was dedicated to
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Pitman closeness [18]. Specifically, let θ̂1 and θ̂2 be two competing estimators of a

parameter θ. Then, the PC of θ̂1 relative to θ̂2 is:

πθ̂1,θ̂2
(θ) B P(|θ̂1 − θ| ≤ |θ̂2 − θ|). (2.3.1)

The PC criterion is as follows: if πθ̂1,θ̂2
(θ) > 1

2 then θ̂1 is said to be Pitman closer to

θ, implying it is a more desirable estimator.

2.3.2 Motivation and Rationale

There are many different methods for comparing estimators; the most commonly

taught method is minimising the mean square error (MSE). Let θ̂ be an estimator

with respect to an unknown parameter θ. Then, the MSE is defined as:

MSE(θ̂) := E
[
(θ̂ − θ)2

]
. (2.3.2)

It is common to use the formula pertaining to the variance-bias decomposition:

MSE(θ̂) = Var(θ̂) + Bias(θ̂)2. (2.3.3)

Karlin [16] noted advantages of using MSE when comparing estimators: for an un-

biased estimator θ̂ of θ, the MSE equals its variance, and squared error emphasises

large deviations, so a smaller MSE implies more consistent accuracy. However,

Rao [22] argued that MSE does not indicate how often an estimator lies close to the

true parameter.
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Focusing solely on MSE encourages reducing the variance of unbiased esti-

mators, hence the origin of solving for the unique minimum variance unbiased

estimators (UMVUE). However, many useful estimators, such as the MLE, may be

biased. Rao [22] therefore proposed PC as an alternative, since it directly measures

the probability that one estimator is closer (in absolute error) to the true parameter

than another. He demonstrated cases where an unbiased estimator with smaller

variance does not yield a Pitman closer estimator compared to one with higher

variance, illustrating a need for alternative means for comparing estimators.

The PC also has an intuitive appeal in applied settings. For example, Keating

and Mason [17] noted that in elections, voters typically support the candidate

whose position is likely the closest to their own, not the one minimising squared

differences. Similarly, customers choose the convenience store that will probably

take the shortest amount of time to travel, not the one that minimises a weighted

squared distance. In practice, decisions are often made based on closeness rather

than MSE.

The textbook by Keating et al. [18] provides additional cases to illustrate why

the PC criterion can be regarded as more intuitive than alternative approaches

under different settings. Furthermore, recent literature has included examples of

computing the PC probabilities of different estimators (such as the MLE, median

predictor, etc.) when assuming the data follows an exponential distribution [1, 2].

2.3.3 Applications in the Literature

Several studies have applied the PC criterion to compare different estimators under

different censoring schemes. For instance, under Type-I censoring of exponential
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lifetime data, Balakrishnan et al. [7] considered two MLEs of the scale parameter θ

corresponding to different termination times, T and T∗, where T < T∗. They found

that the MLE based on the longer termination time, T∗, was always Pitman closer

to the true parameter than the one based on T for the cases considered.

Furthermore, under Type-II censoring of exponential lifetime data, Balakrish-

nan et al. [8] further showed that, in the cases they considered, the best linear

unbiased estimator (BLUE) of the scale parameter θ is always Pitman closer to θ

than the best linear invariant estimator (BLIE) of θ.

Recently, the PC probabilities for the MLEs of the scale parameter θ under

Type-I HCS, assuming an exponential distribution, has been computed [13]. There

were two comparisons: the first was between two estimators based on Type-I HCS

with differing termination times min{Xr:n,T} and min{Xr:n,T∗} where T < T∗. In

the specific cases examined by the author, it appeared that the estimator with the

longer termination time, T∗, usually produced an estimator that is Pitman closer to

θ than the shorter one, with rare exceptions.

In the second comparison, the number of observed failures was varied while

keeping the termination time fixed, comparing min{Xr:n,T} and min{Xs:n,T} with

r < s. The author found that increasing the number of failures observed before

stopping almost always led to an estimator that was Pitman closer to θ. Both of

these comparisons align with the intuition that a longer experiment or more data

produced estimates that are Pitman closer to the true parameter.

We now extend these comparisons by applying the PC criterion to MLEs of the

scale parameterθunder Type-II hybrid censoring schemes (HCS) from an exponen-

tial distribution, a case that has not been considered. In our first comparison, we
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consider the MLEs θ̂1 and θ̂2, which are based on the termination times max{Xr:n,T}

and max{Xs:n,T}, respectively, where r < s. In the second comparison, we contrast

θ̂1 with θ̂3, where θ̂3 is based on the termination time max{Xr:n,T∗}with T < T∗.
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Chapter 3

Comparison of θ̂1 and θ̂2

This chapter computes the Pitman closeness (PC) of two estimators based on Type-II

HCS experiments. We investigate which estimator is Pitman closer to the scale pa-

rameter θ of the exponential distribution once we increase the number of observed

failures.

3.1 Estimators and Case Breakdown

Assume we have a lifetime experiment with a random sample of lifetimes X1, X2,

. . . , Xn which follows an exponential distribution. That is, let Xi ∼ Exponential(θ)

for i ∈ {1, 2, . . . ,n}. Then let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the corresponding

order statistics. Due to the scale-invariant property under reparameterisation of

the exponential distribution as described in Equation (2.1.7), we assume a rate

parameter of θ = 1 without loss of generality.

Suppose we have a pre-determined termination time T. Let D be a random

variable that represents the number of failures during the interval (0,T]. That

29
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is, D =
∑n

i=1 1Xi:n(0,T]. Since we have a summation of the complete sample, the

order does not matter due to the commutative property of addition, and so D =∑n
i=1 1Xi(0,T].

Clearly, 1Xi(0,T] is Bernoulli distributed where P(Xi ≤ T) = 1 − e−T. Since the

sum of independent and identically Bernoulli random variables is binomial, we

have that D ∼ Binomial(n, 1 − e−T).

Let θ̂1 and θ̂2 be the respective MLEs forθunder the termination times max{Xr:n,T}

and max{Xs:n,T}, where r < s. Borrowing the results from Childs et al. [11], these

respective estimators are of the form:

θ̂1 =


1
r

{∑r
i=1 Xi:n + (n − r)Xr:n

}
D = 0, 1, . . . , r − 1,

1
D

{∑D
i=1 Xi:n + (n −D)T

}
D = r, r + 1, . . . ,n,

(3.1.1)

and

θ̂2 =


1
s

{∑s
i=1 Xi:n + (n − s)Xs:n

}
D = 0, 1, . . . , s − 1,

1
D

{∑D
i=1 Xi:n + (n −D)T

}
D = s, s + 1, . . . ,n.

(3.1.2)

Since the expressions for θ̂1 and θ̂2 both depend on the value of D, we need to

consider the following cases:

Case 1: D ∈ {0, 1, . . . , r − 1} ⇔ T < Xr:n < Xs:n,

Case 2: D ∈ {r, r + 1, . . . , s − 1} ⇔ Xr:n ≤ T < Xs:n,

Case 3: D ∈ {s, . . . ,n} ⇔ Xr:n < Xs:n ≤ T.

To account for these separate cases, we will condition on them accordingly based

30

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Ly; McMaster University – Mathematics and Statistics

on the value of D. For case 1, we focus on the estimators:

θ̂111 B
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 , θ̂112 B
1
s

 s∑
i=1

Xi:n + (n − s)Xs:n

. (3.1.3)

Under case 2, the estimators take the form:

θ̂121 B
1
D

 D∑
i=1

Xi:n + (n −D)T

 , θ̂122 B
1
s

 s∑
i=1

Xi:n + (n − s)Xs:n

. (3.1.4)

Finally, when considering case 3, the estimators are expressed as:

θ̂131 B
1
D

 D∑
i=1

Xi:n + (n −D)T

 , θ̂132 B
1
D

 D∑
i=1

Xi:n + (n −D)T

. (3.1.5)

For notational convenience, let PD(·) B P(·|D = d). We can then derive the PC

probability using the following decomposition:

P(|θ̂2 − 1| ≤ |θ̂1 − 1|) =

r−1∑
d=0

P(D = d)PD(|θ̂112 − 1| ≤ |θ̂111 − 1|)

+

s−1∑
d=r

P(D = d)PD(|θ̂122 − 1| ≤ |θ̂121 − 1|)

+

n∑
d=s

P(D = d)PD(|θ̂132 − 1| ≤ |θ̂131 − 1|).

(3.1.6)

Since D ∼ Binomial(n, 1 − e−T), we can easily derive:

P(D = d) =

(
n
d

)
(1 − e−T)d(e−T)n−d. (3.1.7)

For the next subchapters, we will focus on computing the following cases:
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Case 1:
∑r−1

d=0P(D = d)PD(|θ̂112 − 1| ≤ |θ̂111 − 1|),

Case 2:
∑s−1

d=rP(D = d)PD(|θ̂122 − 1| ≤ |θ̂121 − 1|),

Case 3:
∑n

d=sP(D = d)PD(|θ̂132 − 1| ≤ |θ̂131 − 1|).

3.2 Case 1

As a reminder, the estimators we want to compare depend specifically on the values

of D. Hence, we will condition on D = d when computing the PC between θ̂1 and

θ̂2.

For our first case, we consider the values where D ∈ {0, 1, . . . , r−1}. These values

of D correspond to these two estimators:

θ̂111 B
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 , θ̂112 B
1
s

 s∑
i=1

Xi:n + (n − s)Xs:n

 . (3.2.1)

We will compute:

r−1∑
d=0

P(D = d)PD(|θ̂112 − 1| ≤ |θ̂111 − 1|). (3.2.2)

To start, we consider the conditional PC probability:

PD(|θ̂112 − 1| ≤ |θ̂111 − 1|) = PD((θ̂112 − θ̂111)(θ̂112 + θ̂1−2) ≤ 0)

= PD(2 − θ̂111 ≤ θ̂112 ≤ θ̂111) + PD(θ̂111 ≤ θ̂112 ≤ 2 − θ̂111)

= π111 + π112, say, (3.2.3)

where π111 and π112 are used to simplify the expression. First, we will rearrange
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the inequality within π111.

π111 = PD(2 − θ̂111 ≤ θ̂112 ≤ θ̂111)

= PD

{
2 −

1
r

( r∑
i=1

Xi:n + (n − r)Xr:n

)
≤

1
s

( s∑
i=1

Xi:n + (n − s)Xs:n

)
≤

1
r

( r∑
i=1

Xi:n + (n − r)Xr:n

)}
= PD

{
2 −

1
r

( r∑
i=1

Xi:n + (n − r)Xr:n

)
−

1
s

( r∑
i=1

Xi:n + (n − r)Xr:n

)
≤

1
s

( s∑
i=1

Xi:n + (n − s)Xs:n

)
−

1
s

( r∑
i=1

Xi:n + (n − r)Xr:n

)
≤

1
r

( r∑
i=1

Xi:n + (n − r)Xr:n

)
−

1
s

( r∑
i=1

Xi:n + (n − r)Xr:n

)}
= PD

{
2 −

(1
r

+
1
s

) r∑
i=1

Xi:n −

(n − r
r

+
n − r

s

)
Xr:n

≤
1
s

( s∑
i=r+1

Xi:n + (n − s)Xs:n − (n − s + s − r)Xr:n

)
≤

(1
r
−

1
s

) r∑
i=1

Xi:n +
(n − r

r
−

n − r
s

)
Xr:n

}
= PD

{
s
[
2 −

(1
r

+
1
s

) r∑
i=1

Xi:n −

(n − r
r

+
n − r

s

)
Xr:n

]
≤

s∑
i=r+1

(Xi:n − Xr:n) + (n − s)(Xs:n − Xr:n)

≤ s
[(1

r
−

1
s

) r∑
i=1

Xi:n +
(n − r

r
−

n − r
s

)
Xr:n

]}
. (3.2.4)

Using similar steps, we obtain the following for π112:

π112 = PD(θ̂111 ≤ θ̂112 ≤ 2 − θ̂111)
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= PD

{
s
[(1

r
−

1
s

) r−1∑
i=1

Xi:n +
(n − r

r
−

n − r
s

+
1
r
−

1
s

)
Xr:n

]
≤

s∑
i=r+1

(Xi:n − Xr:n) + (n − s)(Xs:n − Xr:n)

≤ s
[
2 −

(1
r

+
1
s

) r−1∑
i=1

Xi:n −

(n − r
r

+
n − r

s
+

1
r

+
1
s

)
Xr:n

]}
. (3.2.5)

Now, we will derive the pdf of the middle quantity of the inequality in the condi-

tional PC probability shown in Equation (3.2.5). That is, we define:

B11 B
s∑

i=r+1

(Xi:n − Xr:n) + (n − s)(Xs:n − Xr:n). (3.2.6)

Conditioning on Xr:n = xr, using Theorem (2.1.2), we claim that Xr+1:n ≤ Xr+2:n ≤

· · · ≤ Xs:n are the order statistics from a complete sample of size (s − r) from the

exponential distribution truncated on the left at xr. By Lemma (2.1.3), subtracting

xr from these truncated variables will produce random variables that are exponen-

tially distributed. Hence, re-writing B11 provides us with:

B11 =

s∑
i=r+1

(Xi:n − xr) + (n − s)(Xs:n − xr)

=

s−r∑
i=1

Yi:n−r + (n − s)Ys−r:n−r

=

s−r−1∑
i=1

Yi:n−r + (n − s + 1)Ys−r:n−r, (3.2.7)

where the random variables Y1:n−r ≤ Y2:n−r ≤ · · · ≤ Ys−r:n−r denote the first (s − r)

order statistics from a sample of size (n − r) drawn from a standard exponential

distribution. To find the distribution of B11, we realise that B11 is the same form
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as the sum of spacings as shown in the form of Theorem (2.1.1) where we denote

Y0:n−r = 0. In particular,

s−r∑
i=1

((n − r) − i + 1)(Yi:n−r − Yi−1:n−r)

= (n − r)Y1:n−r + (n − r − 1)(Y2:n−r − Y1:n−r) + (n − r − 2)(Y3:n−r + Y2:n−r)

+ · · · + (n − r − (s − r − 1))︸                  ︷︷                  ︸
(n−s+1)

(Ys−r:n−r − Ys−r−1:n−r)

= [(n − r) − (n − r − 1)]Y1:n−r + [(n − r − 1) − (n − r − 2)]Y2:n−r

+ · · · + [(n − s + 2) − (n − s + 1)]Ys−r−1:n−r + [n − s + 1]Ys−r:n−r

= Y1:n−r + Y2:n−r + · · · + Ys−r−1:n−r + (n − s + 1)Ys−r:n−r

=

s−r−1∑
i=1

Yi:n−r + (n − s + 1)Ys−r:n−r

= B11. (3.2.8)

Thus, we can use Theorem (2.1.1) and Lemma (2.1.1) to claim that:

B11 =

s−r∑
i=1

((n − r) − i + 1)(Yi:n−r − Yi−1:n−r) =

s−r∑
i=1

Zi ∼ Gamma(s − r, 1). (3.2.9)

Now we are interested in observing the bounds of the inequality shown in Equa-

tions (3.2.4) and (3.2.5). Notice that the bounds depend on both Xr:n and
∑r−1

i=1 Xi:n.

Given that we are conditioning on Xr:n = xr, Theorem (2.1.2) allows us to claim that

the random variables X1:n ≤ X2:n ≤ · · · ≤ Xr−1:n are distributed as the order statistics

of a complete sample of size (r − 1) from an exponential distribution truncated on

the right of xr.
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Hence, we will now try to find the distribution of A11 B
∑r−1

i=1 Xi:n given Xr:n = xr.

Since there will be many instances in which we will need to find the distribution of

the sum of order statistics that are right-truncated, we will instead state a general

proposition and prove it.

Proposition 3.2.1. Sum of Right-Truncated Ordered Exponential. Let X1:n ≤ · · · ≤

Xn:n be the order statistics obtained from a sample of size n from the Exponential(1)

distribution. If the obtained data are truncated on the right at L, and exactly m of the

X′i s are less than or equal to L, then, the first m order statistics X1:n ≤ · · · ≤ Xm:n form a

complete random sample of size m from the right-truncated exponential distribution at L.

Additionally, the pdf of A′ =
∑m

i=1 Xi:n is:

fA′(a) =
1

(1 − e−L)m

m∑
i=0

(
m
i

)
(−1)ie−Li 1

Γ(m)
(a − Li)m−1e−(a−Li)I(a > Li), (3.2.10)

where 0 ≤ A′ ≤ mL. Furthermore, the last n −m order statistics Xm+1:n ≤ · · · ≤ Xn:n form

a complete random sample of size n−m from the left-truncated exponential distribution at

L. Moreover, the two sets of order statistics are independent.

Proof. We focus on deriving the pdf of A′ as Theorem (2.1.2) covers the rest of the

statement. Let X′ represent a single observation that is exponentially distributed,

which is right-truncated at L. Then, the density function of X′ is:

fX′(x) =
e−x

1 − e−L , 0 ≤ x ≤ L. (3.2.11)

Its moment generating function is:

MX′(t) = E
[
eX′t

]
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=

∫ L

0
ext e−x

(1 − e−L)
dx

=
1

(1 − e−L)

[
−e−x(1−t)

(1 − t)

∣∣∣∣∣L
0

]
=

1
(1 − e−L)

1
(1 − t)

[1 − e−L(1−t)]. (3.2.12)

Thus, we can compute the moment generating function for A′:

MA′ =
(
E

[
eX′t

])m

=
1

(1 − e−L)m

1
(1 − t)m [1 − e−L(1−t)]m

=
1

(1 − e−L)m

1
(1 − t)m

m∑
i=0

(
m
i

)
(−1)ie−LieLti

=
1

(1 − e−L)m

m∑
i=0

(
m
i

)
(−1)ie−Li eLti

(1 − t)m . (3.2.13)

The first line arises from having a complete sample of size m, and binomial theorem

is used for the third line. To derive the pdf, we will work backwards by referring

to common moment generating functions.

Suppose W ∼ Gamma(m, 1), and i ∈ N. Then, the moment generating function

of Li + W is:

MLi+W(t) = eLitE[eWt] =
eLit

(1 − t)m . (3.2.14)

This allows us to find the cdf and pdf:

FLi+W(w) = P(Li + W ≤ w) = P(W ≤ w − Li) = FW(w − Li)

fLi+W(w) = fW(w − Li) =
1

Γ(m)
(w − Li)m−1e−(w−Li)I(w > Li).

(3.2.15)
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This is used as inspiration to propose a pdf for A′:

fA′(a) =
1

(1 − e−L)m

m∑
i=0

(
m
i

)
(−1)ie−Li 1

Γ(m)
(a − Li)m−1e−(a−Li)I(a > Li). (3.2.16)

It is not difficult to show that computing the moment generating function using

the proposed pdf, Equation (3.2.16), will have the same result as Equation (3.2.13).

Hence, due to the uniqueness property of moment generating functions, the pro-

posed distribution is valid. The next thing we are interested in is finding the bounds

of A′.

Since A′ is the sum of exponentially distributed random variables whose sup-

port is positive, A′ ≥ 0. Furthermore, since the observations are right-truncated at

L we have that X1:n ≤ X2:n ≤ · · · ≤ Xm:n ≤ L. The maximum case occurs when we

have equality. That is, X1:n = X2:n = · · · = Xm:n = L, so A′ ≤ mL. �

Using Proposition (3.2.1), we know that conditioning on Xr:n = xr tells us that

X1:n ≤ X2:n ≤ · · · ≤ Xr−1:n ≤ xr and therefore if we set m = r − 1 and L = xr we have

that the pdf of A11 is:

fA11|Xr:n=xr(a) =
1

(1 − e−xr)r−1

r−1∑
i=0

(
r − 1

i

)
(−1)ie−xri 1

Γ(r − 1)
(a − xri)(r−1)−1e−(a−xri)I(a > xri).

(3.2.17)

Notably, the bounds shown within the probabilities defined by π111 and π112

(see Equations (3.2.4) and (3.2.5), respectively) suggest different values for A11. For

notational convenience, let:

L11(A11, xr) B s
[
2 −

(1
r

+
1
s

)
A11 −

(n − r
r

+
n − r

s
+

1
r

+
1
s

)
xr

]
, (3.2.18)
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U11(A11, xr) B s
[(1

r
−

1
s

)
A11 +

(n − r
r
−

n − r
s

+
1
r
−

1
s

)
xr

]
. (3.2.19)

First, we consider the case corresponding to π111.

L11(A11, xr) ≤ U11(A11, xr)

⇔ s
[
2 −

(1
r

+
1
s

)
A11 −

(n − r
r

+
n − r

s
+

1
r

+
1
s

)
xr

]
≤ s

[(1
r
−

1
s

)
A11 +

(n − r
r
−

n − r
s

+
1
r
−

1
s

)
xr

]
⇔ 2 −

(1
r

+
1
s

)
A11 −

(1
r
−

1
s

)
A11

≤ xr

(
n − r

r �
�

�
�

−
n − r

s
+

1
r�

�
�
−

1
s

+
n − r

r �
�

�
�

+
n − r

s
+

1
r�

�
�

+
1
s

)
⇔ 2 −

2A11

r
≤ 2xr

n − r + 1
r

⇔ r − xr(n − r + 1) ≤ A11. (3.2.20)

Similarly, for the case corresponding to π112, U11(A11, xr) ≤ L11(A11, xr) ⇔ A11 ≤

r − xr(n − r + 1).

Next, we will propose a pdf for Xr:n conditional on D = d. Since we have that

D ∈ {0, 1, . . . , r − 1} it is known that Xr:n > T. Let X′′11 denote a random variable

following a standard exponential distribution left-truncated at T. Then, its pdf and

cdf are given by:

fX′′11
(x) =

e−x

e−T , and FX′′11
(x) = 1 −

e−x

e−T , (3.2.21)

respectively. Given that we are conditioning on D = d, Xr:n is the (r − d)th order

statistic from (n−d) observations left-truncated at T. Thus, we can use Lemma (2.1.2)
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to derive the density function of Xr:n conditional on D = d:

fXr:n|D=d(υ) =
(n − d)!

((r − d) − 1)!((n − d) − (r − d))!
{FXr(υ)}(r−d)−1 {1 − FXr(υ)

}(n−d)−(r−d) fXr(υ)

=
(n − d)!

(r − d − 1)!(n − r)!

(
1 −

e−υ

e−T

)r−d−1 ( e−υ

e−T

)n−r ( e−υ

e−T

)
=

(n − d)!
(r − d − 1)!(n − r)!

(
1 −

e−υ

e−T

)r−d−1 ( e−υ

e−T

)n−r+1

, T < υ < ∞. (3.2.22)

Now, we can derive π111 and π112 using the total law of probability:

π111 = PD

{
s
[
2 −

(1
r

+
1
s

) r∑
i=1

Xi:n −

(n − r
r

+
n − r

s

)
Xr:n

]
≤

 s∑
i=r+1

(Xi:n − Xr:n) + (n − s)(Xs:n − Xr:n)


≤ s

[ (1
r
−

1
s

) r∑
i=1

Xi:n +
(n − r

r
−

n − r
s

)
Xr:n

]}
=

∫
∞

T

∫ (r−1)xr

r−xr(n−r+1)
PD {L11(a, xr) ≤ B11 ≤ U11(a, xr) |Xr:n = xr,A11 = a}

× fXr:n,A11|D=d(xr, a) da dxr

=

∫
∞

T

∫ (r−1)xr

r−xr(n−r+1)

[
FB11(U11(a, xr)) − FB11(L11(a, xr))

]
× fXr:n,A11|D=d(xr, a) da dxr

=

∫
∞

T

∫ (r−1)xr

r−xr(n−r+1)

[
FB11(U11(a, xr)) − FB11(L11(a, xr))

]
× fA11|Xr:n=xr,D=d(a) fXr:n|D=d(xr) da dxr, (3.2.23)
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and similarly,

π112 = PD

{
s
[ (1

r
−

1
s

) r−1∑
i=1

Xi:n +
(n − r

r
−

n − r
s

+
1
r
−

1
s

)
Xr:n

]
≤

 s∑
i=r+1

(Xi:n − Xr:n) + (n − s)(Xs:n − Xr:n)


≤ s

[
2 −

(1
r

+
1
s

) r−1∑
i=1

Xi:n −

(n − r
r

+
n − r

s
+

1
r

+
1
s

)
Xr:n

]}
=

∫
∞

T

∫ r−xr(n−r+1)

0
PD {U11(a, xr) ≤ B11 ≤ L11(a, xr) |Xr:n = xr,A11 = a}

× fXr:n,A11|D=d(xr, a) da dxr

=

∫
∞

T

∫ r−xr(n−r+1)

0

[
FB11(L11(a, xr)) − FB11(U11(a, xr))

]
× fXr:n,A11|D=d(xr, a) da dxr

=

∫
∞

T

∫ r−xr(n−r+1)

0

[
FB11(L11(a, xr)) − FB11(U11(a, xr))

]
× fA11|Xr:n=xr,D=d(a) fXr:n|D=d(xr) da dxr. (3.2.24)

Therefore, the PC probability corresponding to the first case is:

r−1∑
d=0

P(D = d)PD(|θ̂112 − 1| ≤ |θ̂111 − 1|) =

r−1∑
d=0

P(D = d)[π111 + π112]. (3.2.25)
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3.3 Case 2

For case 2, the objective is to compare the following two estimators, which arise

when D ∈ {r, r + 1, . . . , s − 1}:

θ̂121 B
1
D

 D∑
i=1

Xi:n + (n −D)T

 , θ̂122 B
1
s

 s∑
i=1

Xi:n + (n − s)Xs:n

 . (3.3.1)

Again, we attempt to derive the conditional PC probability:

PD(|θ̂122 − 1| ≤ |θ̂121 − 1|) = PD((θ̂122 − θ̂121)(θ̂122 + θ̂121 − 2) ≤ 0)

= PD(2 − θ̂121 ≤ θ̂122 ≤ θ̂121) + PD(θ̂121 ≤ θ̂122 ≤ 2 − θ̂121)

= π121 + π122, say, (3.3.2)

where π121 and π122 are named for convenience. To continue our derivation, we

must find a way to simplify θ̂122. Note that we can re-arrange θ̂122 to have the form:

θ̂122 =
1
s

 D∑
i=1

Xi:n +

s−1∑
i=D+1

Xi:n + (n − (s − 1))Xs:n

 . (3.3.3)

Furthermore,

θ̂121 =
1
D

 D∑
i=1

Xi:n + (n −D)T

 ⇒

D∑
i=1

Xi:n = Dθ̂121 − (n −D)T. (3.3.4)

Therefore, combining Equations (3.3.3) and (3.3.4) gives us:

θ̂122 =
1
s

Dθ̂121 − (n −D)T +

s−1∑
i=D+1

Xi:n + (n − (s − 1))Xs:n

 . (3.3.5)
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Conditioning on D = d, Theorem (2.1.2) tells us that Xd+1:n ≤ Xd+2:n ≤ · · · ≤ Xs:n

are the order statistics from a complete sample of size (s − d − 1) from a standard

exponential distribution left-truncated at T. Let Y1:n−d ≤ Y2:n−d ≤ · · · ≤ Yn−d:n−d

represent order statistics that have a standard exponential distribution from a

sample of size (n − d). Using Lemma (2.1.3), we will rewrite the expression found

in Equation (3.3.5),

s−1∑
i=d+1

Xi:n + [n − (s − 1)]Xs:n

=

(s−1)−d∑
i=1

(Yi:n−d + T) + [n − (s − 1)][Ys−d:n−d + T]

=

(s−1)−d∑
i=1

Yi:n−d + [(s − 1) − d]T + [n − (s − 1)][Ys−d:n−d + T]

=

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d + [(s − 1) − d + n − (s − 1)]T

=

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d + (n − d)T. (3.3.6)

Equations (3.3.5) and (3.3.6) allow us to re-write θ̂122:

θ̂122 =
1
s

dθ̂121 − (n − d)T +

s−1∑
i=d+1

Xi:n + [n − (s − 1)]Xs:n


=

1
s

dθ̂121 − (n − d)T +

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d + (n − d)T


=

1
s

dθ̂121 +

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d

 . (3.3.7)

As a side note, if D = s − 1 then the expression
∑(s−1)−d

i=1 Yi:n−d = 0, but the
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following steps are applicable for deriving the conditional PC probability. Now,

we shall explicitly write the expressions for π121 and π122:

π121 = PD(2 − θ̂121 ≤ θ̂122 ≤ θ̂121)

= PD

2 − θ̂121 ≤
1
s

dθ̂121 +

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d

 ≤ θ̂121


= PD

2s − θ̂121(s + d) ≤
(s−1)−d∑

i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d ≤ θ̂121(s − d)


= PD

{
2s −

s + d
d

[ d∑
i=1

Xi:n + (n − d)T
]
≤

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d

≤
s − d

d

[ d∑
i=1

Xi:n + (n − d)T
]}
, (3.3.8)

π122 = PD(θ̂121 ≤ θ̂122 ≤ 2 − θ̂121)

= PD

θ̂121 ≤
1
s

dθ̂121 +

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d

 ≤ 2 − θ̂121


= PD

θ̂121(s − d) ≤
(s−1)−d∑

i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d ≤ 2s − θ̂121(s + d)


= PD

{
s − d

d

[ d∑
i=1

Xi:n + (n − d)T
]
≤

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d

≤ 2s −
s + d

d

[ d∑
i=1

Xi:n + (n − d)T
]}
. (3.3.9)

Again, we approach this problem by finding the distribution of the expression
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in the middle of the inequality shown in Equations (3.3.8) and (3.3.9). Consider:

B12 B

(s−1)−d∑
i=1

Yi:n−d + [n − (s − 1)]Ys−d:n−d. (3.3.10)

To find the distribution of B12, we use the same method as Equation (3.2.8), where

if we claim Y0:n−d = 0 then we notice that B12 is the sum of spacings. That is,

B12 =

s−d∑
i=1

((n − d) − i + 1)(Yi:n−d − Yi−1:n−d). (3.3.11)

We again use Theorem (2.1.1) to claim that Z1,Z2, . . . ,Zn are independent and have

standard exponential distributions. In addition, combining Theorem (2.1.1) and

Lemma (2.1.1) allows us to claim:

B12 =

s−d∑
i=1

((n − d) − i + 1)(Yi:n−d − Yi−1:n−d) =

s−d∑
i=1

Zi ∼ Gamma(s − d, 1). (3.3.12)

Now, we would like to consider the bounds on B12, which depend on A12 B∑d
i=1 Xi:n, which represents the sum of a complete sample of size d that are exponen-

tially distributed but right-truncated at T. Again, we use Proposition (3.2.1) where

we set m = d and L = T to obtain:

fA12|D=d(a) =
1

(1 − e−T)d

d∑
i=0

(−1)i

(
d
i

)
e−iT 1

Γ(d)
(a − iT)d−1e−(a−iT)I(a > iT). (3.3.13)

Furthermore, we have 0 ≤ A12 ≤ dT.

The inequalities defining π121 and π122 as defined in Equations (3.3.8) and (3.3.9)

impose additional constraints for A12. For clarity, we denote these bounds explicitly
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as:

L12(A12) B 2s−
1
d

(A12 + (n−d)T)[s+d], U12(A12) B
1
d

(A12 + (n−d)T)[s−d]. (3.3.14)

For π121, we need to pay attention to the case when L12(A12) ≤ U12(A12):

L12(A12) ≤ U12(A12)⇔ 2s −
1
d

(A12 + (n − d)T)[s + d] ≤
1
d

(A12 + (n − d)T)[s − d]

⇔ 2s ≤
1
d

(A12 + (n − d)T)[2s]

⇔ 1 ≤ d(A12 + (n − d)T)

⇔ d − (n − d)T ≤ A12. (3.3.15)

Similarly, for π122 we focus on L12(A12) ≥ U12(A12) which implies A12 ≤ d− (n− d)T.

Thus, utilising the total law of probability, π121 and π122 can be calculated using:

π121 = PD

{
2s −

s + d
d

[ d∑
i=1

Xi:n + (n − d)T
]
≤ B12

≤
s − d

d

[ d∑
i=1

Xi:n + (n − d)T
]}

=

∫ dT

d−(n−d)T
PD (L12(a) ≤ B12 ≤ U12(a) |A12 = a) fA12|D=d(a) da

=

∫ dT

d−(n−d)T

[
FB12(U12(a)) − FB12(L12(a))

]
fA12|D=d(a) da, (3.3.16)

and

π122 = PD

{
s − d

d

[ d∑
i=1

Xi:n + (n − d)T
]
≤ B12
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≤ 2s −
s + d

d

[ d∑
i=1

Xi:n + (n − d)T
]}

=

∫ d−(n−d)T

0
PD (U12(a) ≤ B12 ≤ L12(a)) fA12|D=d(a) da

=

∫ d−(n−d)T

0

[
FB12(L12(a)) − FB12(U12(a))

]
fA12|D=d(a) da. (3.3.17)

Hence, the PC probability associated with the second case is calculated by:

s−1∑
d=r

P(D = d)PD(|θ̂122 − 1| ≤ |θ̂121 − 1|) =

s−1∑
d=r

P(D = d)[π121 + π122]. (3.3.18)

3.4 Case 3

This is the case where D ∈ {s, . . . ,n}. Here, the estimators are the same:

θ̂131 = θ̂132 =
1
D

 D∑
i=1

Xi:n + (n −D)T

 . (3.4.1)

Therefore, we can easily say that

n∑
d=s

P(D = d)PD(|θ̂132 − 1| ≤ |θ̂131 − 1|) =

n∑
d=s

P(D = d). (3.4.2)

3.5 Pitman Closeness Criterion for Comparison of θ̂1

and θ̂2

Now that we have derived the exact expressions for the three separate cases, we

can combine them to find the PC probability between estimators θ̂1 and θ̂2. We
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have that:

P(|θ̂2 − 1| ≤ |θ̂1 − 1|) =

r−1∑
d=0

P(D = d)PD(|θ̂112 − 1| ≤ |θ̂111 − 1|)

+

s−1∑
d=r

P(D = d)PD(|θ̂122 − 1| ≤ |θ̂121 − 1|)

+

n∑
d=s

P(D = d)PD(|θ̂132 − 1| ≤ |θ̂131 − 1|)

=

r−1∑
d=0

P(D = d)[π111 + π112]

+

s−1∑
d=r

P(D = d)[π121 + π122]

+

n∑
d=s

P(D = d), (3.5.1)

where P(D = d) is given in Equation (3.1.7). Computational results can be found

in Chapter 5.1, and the associated R code can be found in Appendix A.2.
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Chapter 4

Comparison of θ̂1 and θ̂3

Similar to the previous chapter, we now focus on deriving the Pitman closeness (PC)

of two estimators based on Type-II HCS experiments to examine which estimator

is Pitman closer to the scale parameter θ of the exponential distribution once you

increase the time allocated for the study.

4.1 Estimators and Case Breakdown

Assume a similar setting as the previous chapter, except now we introduce a

longer termination time T∗ > T. Let D∗ be a random variable which represents

the random number of failures between (0,T∗]. Employing an argument parallel

to that used for deriving the distribution of D, we find that D∗ =
∑n

i=1 1Xi(0,T
∗]

for Xi ∼ Exponential(1) for i ∈ {1, 2, . . . ,n}. This further informs us that D∗ ∼

Binomial(n, 1 − e−T∗). Figure 4.1 demonstrates the relationship between D and D∗,

assuming that D and D∗ are unequal. It is possible for D = D∗; this occurs when

there are no additional failures observed between T and T∗.
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Figure 4.1: Timeline showcasing D and D∗ and their relation to times T and T∗.

Let θ̂1 be the same as Equation (3.1.1):

θ̂1 =


1
r

{∑r
i=1 Xi:n + (n − r)Xr:n

}
D = 0, 1, . . . , r − 1

1
D

{∑D
i=1 Xi:n + (n −D)T

}
D = r, r + 1, . . . ,n,

(4.1.1)

and θ̂3 be the respective MLE for θ under the termination times max{Xr:n,T∗}.

Again, the result from Childs et al. [11] suggests this third estimator is of the form:

θ̂3 =


1
r

{∑r
i=1 Xi:n + (n − r)Xr:n

}
D∗ = 0, 1, . . . , r − 1,

1
D∗

{∑D∗
i=1 Xi:n + (n −D∗)T∗

}
D∗ = r, r + 1, . . . ,n.

(4.1.2)

The expressions for θ̂1 and θ̂3 depend on the values of D and D∗, hence we

consider the following cases:

Case 1: D,D∗ ∈ {0, 1, . . . , r − 1},

Case 2: D,D∗ ∈ {r, r + 1, . . . ,n},

Case 3: D ∈ {0, 1, . . . , r − 1} and D∗ ∈ {r, r + 1, . . . ,n}.

In case 1, we have that:

θ̂211 B
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 , θ̂213 B
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 . (4.1.3)
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Furthermore, for case 2, we have that:

θ̂221 B
1
D

 D∑
i=1

Xi:n + (n −D)T

 , θ̂223 B
1

D∗

 D∗∑
i=1

Xi:n + (n −D∗)T∗
 . (4.1.4)

Finally, for case 3, we have that:

θ̂231 B
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 , θ̂233 B
1

D∗

 D∗∑
i=1

Xi:n + (n −D∗)T∗
 . (4.1.5)

For convenient notation, allow PD,D∗(·) B P{·|D = d,D∗ = d∗}. We also borrow

the earlier notation where PD(·) B P{·|D = d}. Then, utilising the total law of

probability, we can compute the PC probability via the following formula:

P(|θ̂3 − 1| ≤ |θ̂1 − 1|) =

r−1∑
d=0

P(D = d)
r−1∑
d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂213 − 1| ≤ |θ̂211 − 1|)

+

n∑
d=r

P(D = d)
n∑

d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|)

+

r−1∑
d=0

P(D = d)
n∑

d∗=r

PD(D∗ = d∗)PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|).

(4.1.6)

Again, P(D = d) can be found through Equation (3.1.7). It is worth recalling that:

P(D = d) =

(
n
d

)
(1 − e−T)d(e−T)n−d, (4.1.7)

but calculating PD(D∗ = d∗) is more challenging. Conditioning on D = d, let D′

represent the number of lifetimes between Xd:n and XD∗:n. That is, D′ = D∗− d. With
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(n−d) lifetimes remaining, the probability of a “success” (i.e., the probability that a

lifetime from a standard exponential distribution lies between T and T∗, conditional

on exceeding T) is:

P(T < Xi ≤ T∗ |Xi > T) =
P(T < Xi ≤ T∗)
P(Xi > T)

=
P(Xi ≤ T∗) − P(Xi < T)

P(Xi > T)

=
(1 − e−T∗) − (1 − e−T∗)

e−T

= 1 − e−(T∗−T). (4.1.8)

Thus, we claim that D′ |D = d ∼ Binomial(n− d, 1− e−(T∗−T)), and we make the claim

that PD(D∗ = d∗) = PD(D′ = d∗ − d). Therefore,

PD(D′ = d′) =

(
n − d

d′

)
(1 − e−(T∗−T))d′(e−(T∗−T))(n−d)−d′ . (4.1.9)

Similar to before, we will compute the following cases for the next subchapters:

Case 1:
∑r−1

d=0P(D = d)
∑r−1

d∗=dPD(D∗ = d∗)PD,D∗(|θ̂213 − 1| ≤ |θ̂211 − 1|),

Case 2:
∑n

d=rP(D = d)
∑n

d∗=dPD(D∗ = d∗)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|),

Case 3:
∑r−1

d=0P(D = d)
∑n

d∗=rPD(D∗ = d∗)PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|).
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4.2 Case 1

If we have that D,D∗ ∈ {0, 1, . . . , r − 1}, then it is the case that:

θ̂211 = θ̂213 =
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 . (4.2.1)

These are the same estimators, hence:

r−1∑
d=0

P(D = d)
r−1∑
d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂213 − 1| ≤ |θ̂211 − 1|)

=

r−1∑
d=0

P(D = d)
r−1∑
d∗=d

PD(D∗ = d∗)

=

r−1∑
d=0

P(D = d)
r−d−1∑
d′=1

PD(D′ = d′).

(4.2.2)

4.3 Case 2

If we have that D,D∗ ∈ {r, r + 1, . . . ,n} then:

θ̂221 =
1
D

 D∑
i=1

Xi:n + (n −D)T

 , θ̂223 =
1

D∗

 D∗∑
i=1

Xi:n + (n −D∗)T∗
 . (4.3.1)

We need to consider two sub-cases: either D = D∗ or D < D∗.

4.3.1 Case 2.1

If D = D∗ then we have the following:

D∑
i=1

Xi:n = Dθ̂221 − (n −D)T. (4.3.2)
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Therefore,

θ̂223 =
1

D∗

 D∗∑
i=1

Xi:n + (n −D∗)T∗


=
1
D

 D∑
i=1

Xi:n + (n −D)T∗


=
1
D

(
Dθ̂221 − (n −D)T + (n −D)T∗

)
= θ̂221 +

(n −D)(T∗ − T)
D

. (4.3.3)

We then have the following computation:

PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|) = PD,D∗(2 − θ̂221 ≤ θ̂223 ≤ θ̂221)

+ PD,D∗(θ̂221 ≤ θ̂223 ≤ 2 − θ̂221)

= π2211 + π2212, say, (4.3.4)

where π2211 and π2212 are used for short-hand. For further convenience, let M B

(n−D)(T∗−T)
D . We will try to solve for π2211 and π2212 separately.

π2211 = PD,D∗
{
2 − θ̂221 ≤ θ̂221 + M ≤ θ̂221

}
= PD,D∗

{
2 − 2θ̂221 ≤M ≤ 0

}
. (4.3.5)

Since n > D and T∗ > T, it is impossible for M ≤ 0 and therefore π2211 = 0. For the

second probability in Equation (4.3.4):

π2212 = PD,D∗
{
θ̂221 ≤ θ̂221 + M ≤ 2 − θ̂221

}
= PD,D∗

{
0 ≤M ≤ 2 − 2θ̂221

}
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= PD,D∗

{M − 2
−2

≥ θ̂221

}
= PD,D∗

1 −
M
2
≥

∑d
i=1 Xi:n + (n − d)T

d


= PD,D∗

d
(
1 −

M
2

)
− (n − d)T ≥

d∑
i=1

Xi:n

 . (4.3.6)

From Theorem (2.1.2), we have that X1:n ≤ X2:n ≤ · · · ≤ Xd:n represents a complete

sample of size d of i.i.d. exponential random variables that are right-truncated at

T. Note that we derived the pdf of A12 B
∑d

i=1 Xi:n earlier in first comparison in

Chapter 3 as Equation (3.3.13). Thus, let:

U221(A12, d, d∗) = d
(
1 −

M
2

)
− (n − d)T, M =

(n −D)(T∗ − T)
D

. (4.3.7)

Note that A12 does not depend on D∗ = d∗, hence that extra condition is omit-

ted when writing the pdf. Therefore, the probability in Equation (4.3.6) can be

calculated using:

π2212 =

∫ U221(A12,d,d∗)

0
fA12|D=d(a)da. (4.3.8)

4.3.2 Case 2.2

Here, we aim to compute:

PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|) = PD,D∗
{
2 − θ̂221 ≤ θ̂223 ≤ θ̂221

}
+ PD,D∗

{
θ̂221 ≤ θ̂223 ≤ 2 − θ̂221

}
= π2221 + π2222, say, (4.3.9)
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whereπ2221 andπ2222 are denoted for convenience. If we condition on D = d,D∗ = d∗

then for d < d∗ then we have the following:

d∗∑
i=1

Xi:n =

d∑
i=1

Xi:n +

d∗∑
i=d+1

Xi:n, (4.3.10)

thus,
d∑

i=1

Xi:n = dθ̂221 − (n − d)T. (4.3.11)

This implies that:

θ̂223 =
1
d∗

 d∗∑
i=1

Xi:n + (n − d∗)T∗


=
1
d∗

dθ̂221 − (n − d)T +

d∗∑
i=d+1

Xi:n + (n − d∗)T∗
 . (4.3.12)

Notice Xd+1:n ≤ Xd+2:n ≤ · · · ≤ Xd∗:n are the order statistics from a sample of size (d∗−d)

from the exponential distribution doubly truncated between (T,T∗]. Suppose:

d∗∑
i=d+1

Xi:n =

d∗∑
i=d+1

(Xi:n − T) + (d∗ − d)T

=

d∗−d∑
i=1

Yi:d∗−d + (d∗ − d)T, (4.3.13)

where Y1:d∗−d ≤ Y2:d∗−d ≤ · · · ≤ Yd∗−d:d∗−d represent a complete sample of order

statistics of the exponential distribution right-truncated at T′ = T∗ − T of size

(d∗ − d). We now have:

θ̂223 =
1
d∗

dθ̂221 − (n − d)T +

d∗−d∑
i=1

Yi:d∗−d + (d∗ − d)T

 + (n − d∗)T∗

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=
1
d∗

dθ̂221 +

d∗−d∑
i=1

Yi:d∗−d + (n − d∗)(T∗ − T)

 . (4.3.14)

Since we have θ̂221 = 1
d

(∑d
i=1 Xi:n + (n − d)T

)
, we will want to condition on

A12 B
∑d

i=1 Xi:n. As mentioned in the previous case, the pdf for A12 was found

in Equation (3.3.13) where its bounds are 0 ≤ A12 ≤ dT, so we have:

π2221 = PD,D∗

2 − θ̂221 ≤
1
d∗

dθ̂221 +

d∗−d∑
i=1

Yi:d∗−d + (n − d∗)(T∗ − T)

 ≤ θ̂221


= PD,D∗

{
2d∗ − θ̂221d∗ − dθ̂221 − (n − d∗)(T∗ − T)

≤

d∗−d∑
i=1

Yi:d∗−d ≤ θ̂221d∗ − dθ̂221 − (n − d∗)(T∗ − T)
}

= PD,D∗

{
2d∗ − θ̂221(d∗ + d) − (n − d∗)(T∗ − T)

≤

d∗−d∑
i=1

Yi:d∗−d ≤ θ̂221(d∗ − d) − (n − d∗)(T∗ − T)
}

= PD,D∗

{
2d∗ −

(A12 + (n − d)T)
d

(d∗ + d) − (n − d∗)(T∗ − T)

≤

d∗−d∑
i=1

Yi:d∗−d ≤
(A12 + (n − d)T)

d
(d∗ − d) − (n − d∗)(T∗ − T)

}
. (4.3.15)

Furthermore,

π2222 = PD,D∗

θ̂221 ≤
1
d∗

dθ̂221 +

d∗−d∑
i=1

Yi:d∗−d + (n − d∗)(T∗ − T)

 ≤ 2 − θ̂221


= PD,D∗

{ (A12 + (n − d)T)
d

(d∗ − d) − (n − d∗)(T∗ − T) (4.3.16)

≤

d∗−d∑
i=1

Yi:d∗−d ≤ 2d∗ −
(A12 + (n − d)T)

d
(d∗ + d) − (n − d∗)(T∗ − T)

}
.
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We are now interested in finding the pdf for the middle expression in the

inequalities shown in Equations (4.3.15) and (4.3.16), which we will denote as

B22 B
∑d∗−d

i=1 Yi:d∗−d. Conditioning on D = d,D∗ = d∗, this density function can also

be found using Proposition (3.2.1) where m = d∗ − d and L = T′ = T∗ − T. Thus, we

have:

fB22|D=d,D∗=d∗(b) =
1

(1 − e−T′)(d∗−d)

d∗−d∑
i=0

(
d∗ − d

i

)
(−1)ie−T′i

×
1

Γ(d∗ − d)
(b − T′i)(d∗−d)−1e−(b−T′i)I(b > T′i). (4.3.17)

Now, we will define the bounds on B22 found in Equations (4.3.15) and (4.3.16):

L222(A12, d, d∗) B 2d∗ −
(A12 + (n − d)T)

d
(d∗ + d) − (n − d∗)(T∗ − T), (4.3.18)

U222(A12, d, d∗) B
(A12 + (n − d)T)

d
(d∗ − d) − (n − d∗)(T∗ − T). (4.3.19)

Note that,

L222(A12, d, d∗) ≤ U222(A12, d, d∗)⇔ 2d∗ −
(A12 + (n − d)T)

d
(d∗ + d)

≤
(A12 + (n − d)T)

d
(d∗ − d)

⇔ 2d∗ ≤
(A12 + (n − d)T)

d
(2d∗)

⇔ d ≤ (A12 + (n − d)T)

⇔ d − (n − d)T ≤ A12. (4.3.20)
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Similarly, U222(A12, d, d∗) ≤ L222(A12, d, d∗) tells us that A12 ≤ d−(n−d)T. Therefore,

utilising the total law of probability, we claim that:

π2221 =

∫ dT

d−(n−d)T
P(L222(a, d, d∗) ≤ B22 ≤ U222(a, d, d∗) |A12 = a,D = d,D∗ = d)

× fA12|D=d(a) da

=

∫ dT

d−(n−d)T
[FB22|(A12=a,D=d,D∗=d∗)(U222(a, d, d∗)) − FB22|(A12=a,D=d,D∗=d∗)(L222(a, d, d∗))]

× fA12|D=d(a) da, (4.3.21)

and similarly,

π2222 =

∫ d−(n−d)T

0
P(U222(a, d, d∗) ≤ B22 ≤ L222(a, d, d∗) |A12 = a,D = d,D∗ = d∗)

× fA12|D=d(a) da

=

∫ d−(n−d)T

0
[FB22|(A12=a,D=d,D∗=d)(L222(a, d, d∗)) − FB22|(A12=a,D=d,D∗=d)(U222(a, d, d∗))]

× fA12|D=d(a) da. (4.3.22)

Therefore, the PC probability corresponding to the second case is:

n∑
d=r

P(D = d)
n∑

d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|)

=

n∑
d=r

P(D = d)

PD(D∗ = d)π221 +

n∑
d∗=d+1

PD(D∗ = d∗)[π2221 + π2222]


=

n∑
d=r

P(D = d)

PD(D′ = 0)π221 +

n−d∑
d′=1

PD(D′ = d′)[π2221 + π2222]

 . (4.3.23)
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4.4 Case 3

In this case, D ∈ {0, 1, . . . , r − 1} and D∗ ∈ {r, r + 1, . . . ,n}. Hence, we will compare

the following estimators:

θ̂231 =
1
r

 r∑
i=1

Xi:n + (n − r)Xr:n

 , θ̂233 =
1

D∗

 D∗∑
i=1

Xi:n + (n −D∗)T∗
 . (4.4.1)

Again, we consider two sub-cases, either D∗ = r or D∗ > r.

4.4.1 Case 3.1

Suppose that D∗ = r. Since D∗ is the number of failures observed before time T∗, we

have T∗ ≥ Xr:n. Therefore, we have that:

T∗ ≥ Xr:n ⇔ (n − r)T∗ ≥ (n − r)Xr:n

⇔

r∑
i=1

Xi:n + (n − r)T∗ ≥
r∑

i=1

Xi:n + (n − r)Xr:n

⇔
1
r

 r∑
i=1

Xi:n + (n − r)T∗
 ≥ 1

r

 r∑
i=1

Xi:n + (n − r)Xr:n


⇔ θ̂233 ≥ θ̂231. (4.4.2)

Deriving the conditional PC probability, we obtain:

π231 B PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|)

= PD,D∗{2 − θ̂231 ≤ θ̂233 ≤ θ̂231} + PD,D∗{θ̂231 ≤ θ̂233 ≤ 2 − θ̂231}

= 0 + PD,D∗(θ̂233 ≤ 2 − θ̂231), (4.4.3)
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where the last line arises from the fact that θ̂233 ≥ θ̂231. For convenience, let us

denote π231 B PD,D∗(θ̂233 ≤ 2 − θ̂231). Now, note that:

θ̂233 ≤ 2 − θ̂231 ⇔
1
r

 D∗∑
i=1

Xi:n + (n −D∗)T∗
 ≤ 2 −

1
r

 r∑
i=1

Xi:n + (n − r)Xr:n


⇔

1
r

 r∑
i=1

Xi:n + (n − r)T∗
 ≤ 2 −

1
r

 r∑
i=1

Xi:n + (n − r)Xr:n


⇔

2
r

r∑
i=1

Xi:n +
(n − r

r

)
Xr:n ≤ 2 −

(n − r
r

)
T∗

⇔

r∑
i=1

Xi:n +
(n − r

2

)
Xr:n ≤ r −

(n − r
2

)
T∗

⇔

r−1∑
i=1

Xi:n +
(
1 +

n − r
2

)
Xr:n ≤ r −

(n − r
2

)
T∗

⇔

d∑
i=1

Xi:n +

r−1∑
i=d+1

Xi:n +
(
1 +

n − r
2

)
Xr:n ≤ r −

(n − r
2

)
T∗. (4.4.4)

When deriving the conditional PC probability for this case, we must consider two

things. First, by Theorem (2.1.2) we have that X1:n ≤ X2:n ≤ · · · ≤ Xd:n represent

the order statistics from a complete sample of size d drawn from an exponential

distribution that is right-truncated at T. Furthermore, the pdf of A12 B
∑d

i=1 Xi:n has

been calculated before in Equation (3.3.13) and its bounds are 0 ≤ A12 ≤ dT.

Second, Xd+1:n ≤ Xd+2:n ≤ · · · ≤ Xr:n are the order statistics doubly truncated

between T and T∗ from a complete sample of size (r−d). Then, Lemma (2.1.4) allows

us to claim that X j:n − T represents an order statistic that is only right-truncated at

T′′ = T∗−T for j = d+1, d+2, . . . , r. Hence, let Y1:r−d ≤ Y2:r−d ≤ · · · ≤ Yr−d:r−d represent

these order statistics that are right-truncated at T′′ from a complete sample of size
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(r − d), and consider the following:

r−1∑
i=d+1

Xi:n +
(
1 +

n − r
2

)
Xr:n

=

r−1∑
i=d+1

Xi:n +
(
1 +

n − r
2

)
Xr:n−(r − d − 1)T + (r − d − 1)T

=

r−1∑
i=d+1

(Xi:n − T) +
(
1 +

n − r
2

)
Xr:n + (r − d − 1)T

=

r−1∑
i=d+1

(Xi:n − T) +
(
1 +

n − r
2

)
Xr:n + (r − d − 1)T−

(
1 +

n − r
2

)
T +

(
1 +

n − r
2

)
T

=

r−1∑
i=d+1

(Xi:n − T) +
(
1 +

n − r
2

)
(Xr:n − T) + (r − d − 1)T +

(
1 +

n − r
2

)
T

=

r−d−1∑
i=1

Yi:r−d +
(
1 +

n − r
2

)
Yr−d:r−d + (r − d − 1)T +

(
1 +

n − r
2

)
T. (4.4.5)

So instead, we can focus on:

θ̂233 ≤ 2 − θ̂231 ⇔

d∑
i=1

Xi:n +

r−1∑
i=d+1

Xi:n +
(
1 +

n − r
2

)
Xr:n ≤ r −

(n − r
2

)
T∗

⇔ A12 +

r−d−1∑
i=1

Yi:r−d +
(
1 +

n − r
2

)
Yr−d:r−d + (r − d − 1)T

+
(
1 +

n − r
2

)
T ≤ r −

(n − r
2

)
T∗

⇔ A12 +

r−d−1∑
i=1

Yi:r−d +
(
1 +

n − r
2

)
Yr−d:r−d

≤ r −
(n − r

2

)
T∗ − (r − d − 1)T −

(
1 +

n − r
2

)
T. (4.4.6)

To proceed further, we would be interested in computing the pdf for B231 B∑r−d−1
i=1 Yi:r−d + ωYr−d:r−d where ω ∈ R. We next present a proposition corresponding
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to Equation (65) in Davies [13]:

Proposition 4.4.1. Sum of Right-Truncated Ordered Exponential with Weighted

Maximum. Let τi = L(ω + i), θi = ω+i
i+1 and J represents the lower incomplete gamma

function:

J(a, x) B
1

Γ(a)

∫ x

0
ta−1e−tdt. (4.4.7)

Now, suppose X1:n ≤ · · · ≤ Xn:n be the order statistics obtained from a sample of size n

from the Exponential(1) distribution. If the obtained data are truncated on the right at

L, and exactly m of the X′i s are less than or equal to L, then, the first m order statistics

X1:n ≤ · · · ≤ Xm:n form a complete random sample of size m from the right-truncated

exponential distribution at L. Then, for ω ∈ R, the pdf of Z′ B
∑m−1

i=1 Xi:n + ωXm:n is:

fZ∗(z) =
m

(1 − e−L)m

m−1∑
i=0

(−1)i

(
m − 1

i

)[
1

θi(i + 1)
e−z/θi

1(
1 − 1

θi

)(m−1)
J
(
m − 1,

(
1 −

1
θi

)
z
)

−
e−L(i+1)

θi(i + 1)
e−(z−τi)/θi

1(
1 − 1

θi

)m−1 J
(
m − 1,

(
1 −

1
θi

)
(z − τi)

)]
,

(4.4.8)

Furthermore, 0 ≤ Z′ ≤ (m − 1 + ω)L.

Using Proposition (4.4.1), we can substitute m = r − d and L = T′′ = T∗ − T to

obtain the pdf for B231:

fB231(b) =
r − d

(1 − e−T′′)(r−d)

r−d−1∑
i=0

(−1)i

(
r − d − 1

i

)
×

[
1

θi(i + 1)
e−b/θi

1(
1 − 1

θi

)(r−d−1)
J
(
r − d − 1,

(
1 −

1
θi

)
b
)
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−
e−T′′(i+1)

θi(i + 1)
e−(b−τi)/θi

1(
1 − 1

θi

)r−d−1
J
(
r − d − 1,

(
1 −

1
θi

)
(b − τi)

)]
. (4.4.9)

Here, ω = 1 + n−r
2 and τi = T′′(ω + i). Returning to deriving the conditional PC

probability shown in Equation (4.4.6):

θ̂233 ≤ 2 − θ̂231 ⇔ A12 +

r−d−1∑
i=1

Yi:r−d +
(
1 +

n − r
2

)
Yr−d:r−d

≤ r −
(n − r

2

)
T∗ − (r − d − 1)T −

(
1 +

n − r
2

)
T

⇔ B231 ≤ r −
(n − r

2

)
T∗ − (r − d − 1)T −

(
1 +

n − r
2

)
T − A12. (4.4.10)

For notational convenience, let:

U231(A12) B r −
(n − r

2

)
T∗ − (r − d − 1)T −

(
1 +

n − r
2

)
T − A12. (4.4.11)

Then we have that,

π231 = PD,D∗ (B231 ≤ U231(A12))

=

∫ dT

0
PD,D∗(B231 ≤ U231(a)|A12 = a) fA12|D=d,D∗=d(a) da

=

∫ dT

0
FB231|A12=a(U231(a)) fA12|D=d,D∗=d(a) da

=

∫ dT

0
FB231(U231(a)) fA12|D=d(a) da. (4.4.12)
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4.4.2 Case 3.2

Suppose that D∗ > r. Then, one way to rewrite the conditional PC probability is:

PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|) = PD,D∗(2 − θ̂231 ≤ θ̂233 ≤ θ̂231)

+ PD,D∗(θ̂231 ≤ θ̂233 ≤ 2 − θ̂231)

= π2321 + π2322, say, (4.4.13)

where π2321 and π2322 are introduced for notational convenience. First, we will

focus on evaluating π2321:

π2321 = PD,D∗

{
2 −

1
r

[ r∑
i=1

Xi:n + (n − r)Xr:n

]
≤

1
d∗

[ d∗∑
i=1

Xi:n + (n − d∗)T
]

≤
1
r

[ r∑
i=1

Xi:n + (n − r)Xr:n

]}

= PD,D∗

{
2 −

1
r

[ r−1∑
i=1

Xi:n + (n − r + 1)Xr:n

]
−

( 1
d∗

r∑
i=1

Xi:n +
(n − d∗)T

d∗

)
≤

1
d∗

[ d∗∑
i=r+1

Xi:n

]
≤

1
r

[ r−1∑
i=1

Xi:n + (n − r + 1)Xr:n

]
−

( 1
d∗

r∑
i=1

Xi:n +
(n − d∗)T

d∗

)}

= PD,D∗

{
2 −

(1
r

+
1
d∗

) r−1∑
i=1

Xi:n −

(n − r + 1
r

+
1
d∗

)
Xr:n −

(n − d∗)T
d∗

≤
1
d∗

[ d∗∑
i=r+1

Xi:n

]
≤

(1
r
−

1
d∗

) r−1∑
i=1

Xi:n +
(n − r + 1

r
−

1
d∗

)
Xr:n −

(n − d∗)T
d∗

}
. (4.4.14)

Consider the following:

1
d∗

d∗∑
i=r+1

Xi:n =
1
d∗

d∗∑
i=r+1

(Xi:n − Xr:n) +
d∗ − r

d∗
Xr:n. (4.4.15)
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Thus, we have that:

π2321 = PD,D∗

{
2 −

(1
r

+
1
d∗

) r−1∑
i=1

Xi:n −

(n − r + 1
r

+
1
d∗

)
Xr:n −

(n − d∗)T
d∗

≤
1
d∗

d∗∑
i=r+1

(Xi:n − Xr:n) +
d∗ − r

d∗
Xr:n

≤

(1
r
−

1
d∗

) r−1∑
i=1

Xi:n +
(n − r + 1

r
−

1
d∗

)
Xr:n −

(n − d∗)T
d∗

}

= PD,D∗

{
2 −

(1
r

+
1
d∗

) r−1∑
i=1

Xi:n −

(n − r + 1
r

+
d∗ − r + 1

d∗

)
Xr:n −

(n − d∗)T
d∗

≤
1
d∗

d∗∑
i=r+1

(Xi:n − Xr:n)

≤

(1
r
−

1
d∗

) r−1∑
i=1

Xi:n +
(n − r + 1

r
−

d∗ − r + 1
d∗

)
Xr:n −

(n − d∗)T
d∗

}
. (4.4.16)

To derive this conditional PC probability, we will first condition on Xr:n = xr. This

gives us:

π2321 = PD,D∗

{
d∗
[
2 −

(1
r

+
1
d∗

) r−1∑
i=1

Xi:n −

(
n − r + 1

r
+

d∗ − r + 1
d∗

)
xr −

(n − d∗)T∗

d∗

]
≤

d∗∑
i=r+1

(Xi:n − xr)

≤ d∗
[ (1

r
−

1
d∗

) r−1∑
i=1

Xi:n +

(
n − r + 1

r
−

d∗ − r + 1
d∗

)
xr −

(n − d∗)T∗

d∗

]}
. (4.4.17)

Using similar steps for computing π2322 from Equation (4.4.13), we have that:

π2322 = PD,D∗

{
d∗
[ (1

r
−

1
d∗

) r−1∑
i=1

Xi:n +

(
n − r + 1

r
−

d∗ − r + 1
d∗

)
xr −

(n − d∗)T∗

d∗

]
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≤

d∗∑
i=r+1

(Xi:n − xr)

≤ d∗
[
2 −

(1
r

+
1
d∗

) r−1∑
i=1

Xi:n −

(
n − r + 1

r
+

d∗ − r + 1
d∗

)
xr −

(n − d∗)T∗

d∗

]}
. (4.4.18)

Now we focus on finding the distribution of the middle expression of the

inequality found in Equations (4.4.17) and (4.4.18), which is
∑d∗

i=r+1(Xi:n − xr). Notice

that Xr+1:n ≤ Xr+2:n ≤ · · · ≤ Xd∗:n are order statistics from a complete sample of size

(d∗ − r) from an exponential distribution doubly truncated between [xr,T∗]. Again,

using a result from Lemma (2.1.4) Let

d∗∑
i=r+1

(Xi:n − xr) =

d∗−r∑
i=1

Yi:n−r,

where Y1:n−r ≤ Y2:n−r ≤ · · · ≤ Yd∗−r:n−r represent order statistics from a complete

sample of size (d∗−r) that is now only right-truncated at T′′ = T∗−xr. For notational

convenience, B23 B
∑d∗−r

i=1 Yi:n−r.

Using Proposition (3.2.1) where m = d∗ − r and L = T′′, we propose the pdf for

B23 to be:

fB23(b) =
1

(1 − e−T′′)(d∗−r)

d∗−r∑
i=0

(
d∗ − r

i

)
(−1)ie−T′′i

×
1

Γ(d∗ − r)
(b − T′′i)(d∗−r)−1e−(b−T′′i)I(b > T′′i). (4.4.19)

Furthermore, 0 ≤ B23 ≤ (d∗ − r)T′′.

Next, we aim to find the pdf of A11 B
∑r−1

i=1 Xi:n. The corresponding result was
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established earlier in comparison 1; see Equation (3.2.17).

Finally, let us focus on finding the pdf for Xr:n. Since we have D ∈ {0, 1, . . . , r−1},

we know that Xr:n > T. But since D∗ ∈ {r + 1, r + 2, . . . ,n}we have Xr:n ≤ T∗. That is,

conditioning on both D = d,D∗ = d∗ we have that Xr:n is the (r − d)th order statistic

from (d∗ − d) observations truncated between (T,T∗]. Thus, using Lemma (2.1.2),

we can derive the the pdf for Xr:n conditional on D = d and D∗ = d∗:

fXr:n|D=d,D∗=d∗(xr)

=
(d∗ − d)!

((r − d) − 1)!((d∗ − d) − (r − d))!
{FXr(xr)}(r−d)−1 {1 − FXr(xr)

}(d∗−d)−(r−d) fXr(xr)

=
(d∗ − d)!

(r − d − 1)!(d∗ − r)!

(
e−T
− e−xr

e−T − e−T∗

)(r−d−1) (
1 −

e−T
− e−xr

e−T − e−T∗

)(d∗−r) ( e−xr

e−T − e−T∗

)
=

(d∗ − d)!
(r − d − 1)!(d∗ − r)!

(
e−T
− e−xr

e−T − e−T∗

)(r−d−1) (e−xr − e−T∗

e−T − e−T∗

)(d∗−r) ( e−xr

e−T − e−T∗

)
=

(d∗ − d)!
(r − d − 1)!(d∗ − r)!

1
(e−T − e−T∗)(d∗−d)

(e−T
− e−xr)(r−d−1)(e−xr − e−T∗)(d∗−r)(e−xr),

T < xr < T∗. (4.4.20)

Now we want to return to the bounds expressed within π2321 and π2322, which

were shown in Equation (4.4.17) and (4.4.18). Consider the following:

L232(A11, xr, d∗) B d∗
[
2 −

(1
r

+
1
d∗

)
A11 −

(
n − r + 1

r
+

d∗ − r + 1
d∗

)
xr −

(n − d∗)T∗

d∗

]
,

(4.4.21)

U232(A11, xr, d∗) B d∗
[(1

r
−

1
d∗

)
A11 +

(
n − r + 1

r
−

d∗ − r + 1
d∗

)
xr −

(n − d∗)T∗

d∗

]
.

(4.4.22)
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Note that π2321 is associated with the case where L232(A11, xr, d∗) ≤ U232(A11, xr, d∗).

Writing out this inequality, we obtain:

L232(A11, xr, d∗) ≤ U232(A11, xr, d∗)

⇔ 2 −
(1

r
+

1
d∗

)
A11 −

(
n − r + 1

r
+

d∗ − r + 1
d∗

)
xr

≤

(1
r
−

1
d∗

)
A11 +

(
n − r + 1

r
−

d∗ − r + 1
d∗

)
xr

⇔ 2 − A11

(
1
r

+
�
�
�1

d∗
+

1
r
−
�
�
�1

d∗

)
≤ xr

(
n − r + 1

r
−
���

���d∗ − r + 1
d∗

+
n − r + 1

r
+
���

���d∗ − r + 1
d∗

)
⇔ 1 −

A11

r
≤

xr(n − r + 1)
r

⇔ −A11 ≤ xr(n − r + 1) − r

⇔ A11 ≥ r − xr(n − r + 1). (4.4.23)

Similarly, L232(A11, xr, d∗) ≥ U232(A11, xr, d∗) implies that A11 ≤ r−xr(n− r+1). Hence,

utilising the total law of probability, we can compute the π2321 and π2322 using:

π2321 =

∫ T∗

T

∫ (r−1)xr

r−xr(n−r+1)
[FB23(U232(a, xr, d∗)) − FB23(L232(a, xr, d∗))]

× fXr:n,A11(xr, a) da dxr

=

∫ T∗

T

∫ (r−1)xr

r−xr(n−r+1)
[FB23(U232(a, xr, d∗)) − FB23(L232(a, xr, d∗))]

× fA11|Xr=xr(a) fXr:n|D=d(xr) da dxr, (4.4.24)
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and for the other case, we have that

π2322 =

∫ T∗

T

∫ r−xr(n−r+1)

0
[FB23(L232(a, xr, d∗)) − FB23(U232(a, xr, d∗))]

× fXr:n,A11(xr, a) da dxr

=

∫ T∗

T

∫ r−xr(n−r+1)

0
[FB23(L232(a, xr, d∗)) − FB23(U232(a, xr, d∗))]

× fA11|Xr=xr(a) fXr:n|D=d(xr) da dxr. (4.4.25)

Thus, the PC probability corresponding to the last case is:

r−1∑
d=0

P(D = d)
n∑

d∗=r

PD(D∗ = d∗)PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|)

=

r−1∑
d=0

P(D = d)

PD(D∗ = r)π231 +

n∑
d∗=r+1

PD(D∗ = d∗)[π2321 + π2322]


=

r−1∑
d=0

P(D = d)
(
PD(D

′

= r − d)π231 +

n−d∑
d′=r+1−d

PD(D′ = d′)[π2321 + π2322]
)
. (4.4.26)

4.5 Pitman Closeness Criterion for Comparison of θ̂1

and θ̂3

Having derived expressions for the PC probability in three distinct cases, we now

combine the results to obtain the PC probability between the estimators θ̂1 and θ̂3.

Specifically, we have:

P(|θ̂3 − 1| ≤ |θ̂1 − 1|)
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=

r−1∑
d=0

P(D = d)
r−1∑
d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂213 − 1| ≤ |θ̂211 − 1|)

+

n∑
d=r

P(D = d)
n∑

d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|)

+

r−1∑
d=0

P(D = d)
n∑

d∗=r

PD(D∗ = d∗)PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|)

=

r−1∑
d=0

P(D = d)
r−d−1∑
d′=1

PD(D′ = d′)

+

n∑
d=r

P(D = d)
(
PD(D′ = 0)π221 +

n−d∑
d′=1

PD(D′ = d′)[π2221 + π2222]
)

+

r−1∑
d=0

P(D = d)
(
PD(D

′

= r − d)π231 +

n−d∑
d′=r+1−d

PD(D′ = d′)[π2321 + π2322]
)
, (4.5.1)

where we have P(D = d) and PD(D′ = d′) from Equations (3.1.7) and (4.1.9),

respectively. The computational results are presented in Chapter 5.2, and the

corresponding R code is provided in Appendix A.3.

71

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Chapter 5

Numerical Results

This chapter presents the numerical results computing the Pitman closeness prob-

abilities for different settings and with varying n, r, s,T, and T∗.

5.1 Comparison of θ̂1 and θ̂2

For the first comparison, we consider two possible values for n with varying values

of r, s, and T, with the restriction that r < s. The case for n = 10 can be found in

Table 5.1 and Figure 5.1, and n = 15 can be found in Table 5.2 and Figure 5.2. Each

cell represents the result obtained by Equation (3.5.1). We see that the estimator

based on s is always Pitman closer to θ than the estimator based on r, as expected.

The code used for these results can be found in Appendix A.2.

Interestingly, as the number of observed failures associated with θ̂2 increases

(s), the PC probability decreases. However, the PC probability is still always above

the 0.5 threshold. This may imply that for a fixed T, a substantial increase in the

number of observed failures may not be necessary.

72



M.Sc. Thesis – A. Ly; McMaster University – Mathematics and Statistics

Figure 5.1: Line plots featuring the Pitman closeness probabilities between θ̂1 and
θ̂2 for n = 10 and varying values of r, s, and T.
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Figure 5.2: Line plots featuring the Pitman closeness probabilities between θ̂1 and
θ̂2 for n = 15 and varying values of r, s, and T.
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T

r s 0.75 1.00 1.25 1.50 1.75 2.00

3 4 0.9854 0.998 0.9997 1.000 1.000 1.000

5 0.9485 0.9868 0.9971 0.9994 0.9999 1.000

6 0.8191 0.9489 0.9826 0.9947 0.9985 0.9996

7 0.6691 0.8252 0.9349 0.9724 0.9889 0.9958

8 0.6077 0.6677 0.7872 0.8928 0.9476 0.9737

9 0.6044 0.5988 0.6372 0.7145 0.8024 0.8745

4 5 0.9375 0.9844 0.9967 0.9994 0.9999 1.000

6 0.8098 0.9474 0.9824 0.9947 0.9985 0.9996

7 0.6614 0.8243 0.9348 0.9724 0.9889 0.9958

8 0.6013 0.6672 0.7872 0.8928 0.9476 0.9737

9 0.5990 0.5984 0.6372 0.7145 0.8024 0.8745

5 6 0.7906 0.9388 0.9797 0.9940 0.9984 0.9996

7 0.6380 0.8167 0.9329 0.9720 0.9889 0.9958

8 0.5761 0.6607 0.7858 0.8926 0.9476 0.9737

9 0.5727 0.5928 0.6362 0.7143 0.8023 0.8745

6 7 0.6311 0.8013 0.9248 0.9685 0.9876 0.9954

8 0.5646 0.6421 0.7782 0.8899 0.9467 0.9735

9 0.5602 0.5732 0.6294 0.7122 0.8018 0.8743

7 8 0.5702 0.6367 0.7638 0.8814 0.9420 0.9712

9 0.5649 0.5625 0.6111 0.7033 0.7975 0.8725

Table 5.1: Pitman closeness probabilities between θ̂1 and θ̂2 for n = 10 and
varying values of r, s, and T.
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T

r s 0.75 1.00 1.25 1.50 1.75 2.00

4 6 0.9874 0.9987 0.9999 1.0000 1.0000 1.0000

8 0.9066 0.9771 0.9955 0.9993 0.9999 1.0000

10 0.6565 0.8463 0.9503 0.9837 0.9953 0.9988

12 0.5936 0.6180 0.7287 0.8611 0.9369 0.9716

14 0.6167 0.5872 0.5787 0.6036 0.6646 0.7453

6 8 0.8991 0.9763 0.9954 0.9993 0.9999 1.0000

10 0.6512 0.8459 0.9503 0.9837 0.9953 0.9988

12 0.5898 0.6179 0.7287 0.8611 0.9369 0.9716

14 0.6139 0.5871 0.5787 0.6036 0.6646 0.7453

8 10 0.6150 0.8362 0.9480 0.9833 0.9953 0.9988

12 0.5507 0.6099 0.7273 0.8609 0.9369 0.9716

14 0.5741 0.5806 0.5778 0.6035 0.6646 0.7453

10 12 0.5586 0.5863 0.7131 0.8553 0.9351 0.9711

14 0.5816 0.5539 0.5640 0.5991 0.6634 0.7450

12 14 0.5555 0.5530 0.5554 0.5833 0.6514 0.7385

Table 5.2: Pitman closeness probabilities between θ̂1 and θ̂2 for n = 15 and
varying values of r, s, and T.
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It is worth noting that the PC probability also accounts for cases where the

estimators are equal. The cases regarding ties are generally uninformative; if

increasing the sample size or experiment duration produces the same estimator,

there is no insight to be gained for estimating the true parameter. To illustrate how

P(|θ̂2 − 1| ≤ |θ̂1 − 1|) changes once we condition on the estimators being unequal,

we provide additional tables with three entries for each combination of r, s, and T.

In each cell (same combination of r, s, and T):

• The first row represents the conditional probability P(|θ̂2 − 1| ≤ |θ̂1 − 1|) given

that the estimators are different,

• the second row represents the conditional probability P(|θ̂1 − 1| ≤ |θ̂2 − 1|)

given that the estimators are different,

• and the last row represents the probability that the estimators tie; that is,

P(|θ̂1 − 1| = |θ̂2 − 1|).

By construction, the probability that they tie is explicitly written for the third case

where D ∈ {s, . . . ,n} as outlined in the subchapter (3.4). As a clarification, this

second set of tables cannot be used for PC comparisons since the equality case is

included for the original definition and the criterion.

In Tables 5.3 and 5.4, we consider n = 10 and values T = 0.75, 1.00, 1.25,

1.50, 1.75, 2.00, r = 3, 4, 5, 6, 7, and values of s that are greater than r but up to 9.

Meanwhile, in Tables 5.5 and 5.6 consider the same values for T, r = 4, 6, 8, 10, 12,

and even values of s that are greater than r but up to 14.

Overall, for smaller values of s, the likelihood of ties decreases. This supports the

earlier observation that while using a larger number of observed failures improves
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estimator performance, the benefit tapers off as s becomes too large.

Additionally, for fixed values of r and s, increasing T leads to a higher probability

of ties, while also raising the probability that P(|θ̂2 − 1| ≤ |θ̂1 − 1|) given that they

are different.

5.2 Comparison of θ̂1 and θ̂3

For the second comparison, we again consider sample sizes n = 10 and n = 15,

examining various combinations of r, T, and T∗. Results corresponding to n = 10

are presented in Table 5.7 and Figure 5.3, while those for n = 15 appear in Table 5.8

and Figure 5.4. Each cell in the tables reflects values computed using Equation

(4.5.1). The code used to generate these results is provided in Appendix A.3.

As anticipated, the estimator based on T∗ is always Pitman closer to θ than T,

however, for a fixed r there is no discernible pattern that significantly increasing T∗

will make θ̂3 Pitman closer to θ compared to θ̂1.
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T
r s 0.75 1.00 1.25 1.50 1.75 2.00
3 4 0.8883 0.9406 0.9685 0.9833 0.9911 0.9952

0.1117 0.0594 0.0315 0.0167 0.0089 0.0048
0.8697 0.9655 0.9920 0.9983 0.9996 0.9999

5 0.8343 0.8880 0.9236 0.9481 0.9649 0.9763
0.1657 0.1120 0.0764 0.0519 0.0351 0.0237
0.6889 0.8824 0.9619 0.9888 0.9970 0.9992

6 0.6732 0.8232 0.8639 0.8953 0.9195 0.9381
0.3268 0.1768 0.1361 0.1047 0.0805 0.0619
0.4465 0.7110 0.8719 0.9494 0.9816 0.9937

7 0.5752 0.6729 0.7932 0.8326 0.8604 0.8834
0.4248 0.3271 0.2068 0.1674 0.1396 0.1166
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642

8 0.5750 0.5714 0.6334 0.7271 0.7859 0.8163
0.4250 0.4286 0.3666 0.2729 0.2141 0.1837
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568

9 0.5977 0.5688 0.5621 0.5861 0.6340 0.6868
0.4023 0.4312 0.4379 0.4139 0.3660 0.3132
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

4 5 0.7991 0.8672 0.9128 0.9428 0.9623 0.9751
0.2009 0.1328 0.0872 0.0572 0.0377 0.0249
0.6889 0.8824 0.9619 0.9888 0.9970 0.9992

6 0.6564 0.8180 0.8625 0.8949 0.9194 0.9381
0.3436 0.1820 0.1375 0.1051 0.0806 0.0619
0.4465 0.7110 0.8719 0.9494 0.9816 0.9937

7 0.5653 0.6712 0.7929 0.8326 0.8604 0.8834
0.4347 0.3288 0.2071 0.1674 0.1396 0.1166
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642

8 0.5681 0.5707 0.6334 0.7271 0.7859 0.8163
0.4319 0.4293 0.3666 0.2729 0.2141 0.1837
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568

9 0.5922 0.5684 0.5621 0.5861 0.6340 0.6868
0.4078 0.4316 0.4379 0.4139 0.3660 0.3132
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

Table 5.3: Tables displaying the following probabilities: P(|θ̂2 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂2 − θ|), and P(|θ̂2 − θ| = |θ̂1 − θ|) with n = 10 across varying r, s, and

T values (Part 1).
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T
r s 0.75 1.00 1.25 1.50 1.75 2.00
5 6 0.6217 0.7881 0.8412 0.8814 0.9113 0.9334

0.3783 0.2119 0.1588 0.1186 0.0887 0.0666
0.4465 0.7110 0.8719 0.9494 0.9816 0.9937

7 0.5353 0.6569 0.7868 0.8303 0.8596 0.8831
0.4647 0.3431 0.2132 0.1697 0.1404 0.1169
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642

8 0.5408 0.5623 0.6310 0.7265 0.7858 0.8163
0.4592 0.4377 0.3690 0.2735 0.2142 0.1837
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568

9 0.5655 0.5624 0.5609 0.5860 0.6339 0.6868
0.4345 0.4376 0.4391 0.4140 0.3661 0.3132
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

6 7 0.5264 0.6281 0.7611 0.8094 0.8443 0.8726
0.4736 0.3719 0.2389 0.1906 0.1557 0.1274
0.2210 0.4656 0.6852 0.8350 0.9207 0.9642

8 0.5283 0.5383 0.6179 0.7195 0.7824 0.8148
0.4717 0.4617 0.3821 0.2805 0.2176 0.1852
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568

9 0.5528 0.5413 0.5527 0.5828 0.6329 0.6865
0.4472 0.4587 0.4473 0.4172 0.3671 0.3135
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

7 8 0.5344 0.5314 0.5930 0.6979 0.7631 0.7989
0.4656 0.4686 0.4070 0.3021 0.2369 0.2011
0.0770 0.2247 0.4196 0.6073 0.7551 0.8568

9 0.5575 0.5299 0.5307 0.5700 0.6250 0.6819
0.4425 0.4701 0.4693 0.4300 0.3750 0.3181
0.0166 0.0695 0.1715 0.3101 0.4600 0.5992

Table 5.4: Tables displaying the following probabilities: P(|θ̂2 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂2 − θ|), and P(|θ̂2 − θ| = |θ̂1 − θ|) with n = 10 across varying r, s, and

T values (Part 2).
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T
r s 0.75 1.00 1.25 1.50 1.75 2.00
4 6 0.8809 0.9292 0.9577 0.9748 0.9851 0.9912

0.1191 0.0708 0.0423 0.0252 0.0149 0.0088
0.8943 0.9818 0.9975 0.9997 1.0000 1.0000

8 0.7744 0.8416 0.8836 0.9142 0.9368 0.9534
0.2256 0.1584 0.1164 0.0858 0.0632 0.0466
0.5862 0.8553 0.9614 0.9914 0.9983 0.9997

10 0.5667 0.6889 0.7926 0.8299 0.8594 0.8833
0.4333 0.3111 0.2074 0.1701 0.1406 0.1167
0.2071 0.5058 0.7603 0.9043 0.9669 0.9897

12 0.5815 0.5565 0.5903 0.6836 0.7538 0.7891
0.4185 0.4435 0.4097 0.3164 0.2462 0.2109
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654

14 0.6164 0.5830 0.5592 0.5494 0.5603 0.5905
0.3836 0.4170 0.4408 0.4506 0.4397 0.4095
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

6 8 0.7561 0.8359 0.8820 0.9138 0.9367 0.9534
0.2439 0.1641 0.1180 0.0862 0.0633 0.0466
0.5862 0.8553 0.9614 0.9914 0.9983 0.9997

10 0.5600 0.6882 0.7925 0.8299 0.8594 0.8833
0.4400 0.3118 0.2075 0.1701 0.1406 0.1167
0.2071 0.5058 0.7603 0.9043 0.9669 0.9897

12 0.5775 0.5563 0.5903 0.6836 0.7538 0.7891
0.4225 0.4437 0.4097 0.3164 0.2462 0.2109
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654

14 0.6136 0.5830 0.5592 0.5494 0.5603 0.5905
0.3864 0.4170 0.4408 0.4506 0.4397 0.4095
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

Table 5.5: Tables displaying the following probabilities: P(|θ̂2 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂2 − θ|), and P(|θ̂2 − θ| = |θ̂1 − θ|) with n = 15 across varying r, s, and

T values (Part 1).
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T
r s 0.75 1.00 1.25 1.50 1.75 2.00
8 10 0.5144 0.6684 0.7833 0.8260 0.8578 0.8827

0.4856 0.3316 0.2167 0.1740 0.1422 0.1173
0.2071 0.5058 0.7603 0.9043 0.9669 0.9897

12 0.5372 0.5471 0.5883 0.6833 0.7537 0.7891
0.4628 0.4529 0.4117 0.3167 0.2463 0.2109
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654

14 0.5737 0.5764 0.5582 0.5493 0.5603 0.5905
0.4263 0.4236 0.4418 0.4507 0.4397 0.4095
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

10 12 0.5454 0.5196 0.5669 0.6706 0.7467 0.7854
0.4546 0.4804 0.4331 0.3294 0.2533 0.2146
0.0291 0.1388 0.3377 0.5608 0.7439 0.8654

14 0.5812 0.5493 0.5438 0.5443 0.5587 0.5901
0.4188 0.4507 0.4562 0.4557 0.4413 0.4099
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

12 14 0.5551 0.5485 0.5347 0.5263 0.5430 0.5796
0.4449 0.4515 0.4653 0.4737 0.4570 0.4204
0.0010 0.0100 0.0444 0.1203 0.2372 0.3780

Table 5.6: Tables displaying the following probabilities: P(|θ̂2 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂2 − θ|), and P(|θ̂2 − θ| = |θ̂1 − θ|) with n = 15 across varying r, s, and

T values (Part 2).
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Figure 5.3: Line plots featuring the Pitman closeness probabilities between θ̂1 and
θ̂3 for n = 10 and varying values of r,T, and T∗.
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Figure 5.4: Line plots featuring the Pitman closeness probabilities between θ̂1 and
θ̂3 for n = 15 and varying values of r,T, and T∗.
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r

T T∗ 4 5 6 7 8 9

0.50 0.75 0.5364 0.6816 0.8854 0.9546 0.9868 0.9984

1.00 0.5156 0.5681 0.6698 0.8607 0.9506 0.9903

1.25 0.5377 0.5553 0.5805 0.6843 0.8724 0.9679

1.50 0.5454 0.5646 0.5652 0.5999 0.7332 0.9206

1.75 0.5580 0.5748 0.5620 0.5525 0.6218 0.8320

2.00 0.5631 0.5819 0.5685 0.5497 0.5785 0.7141

0.75 1.00 0.5683 0.5629 0.6307 0.8365 0.9456 0.9915

1.25 0.5780 0.5403 0.5437 0.6774 0.8707 0.9684

1.50 0.5743 0.5420 0.5386 0.5887 0.7316 0.9210

1.75 0.5888 0.5541 0.5299 0.5424 0.6194 0.8324

2.00 0.5896 0.5583 0.5357 0.5400 0.5760 0.7145

1.00 1.25 0.5714 0.5606 0.5529 0.6353 0.8718 0.9758

1.50 0.5616 0.5507 0.5319 0.5859 0.7200 0.9247

1.75 0.5747 0.5627 0.5380 0.5244 0.6185 0.8351

2.00 0.5691 0.5587 0.5310 0.5169 0.5726 0.7172

1.25 1.50 0.5857 0.5814 0.5751 0.5856 0.7561 0.9477

1.75 0.5278 0.5257 0.5227 0.5370 0.5967 0.8504

2.00 0.5802 0.5756 0.5586 0.5247 0.5711 0.7267

Table 5.7: Pitman closeness probabilities between θ̂1 and θ̂3 for n = 10 and
varying values of r,T, and T∗.
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r

T T∗ 4 6 8 10 12 14

0.50 0.75 0.6155 0.5662 0.7761 0.9528 0.9952 0.9999

1.00 0.5937 0.5259 0.5945 0.8280 0.9694 0.9990

1.25 0.6212 0.5528 0.5684 0.6437 0.9024 0.9938

1.50 0.6342 0.5691 0.5764 0.5746 0.7665 0.9780

1.75 0.6427 0.5794 0.5889 0.5575 0.6425 0.9411

2.00 0.6481 0.5858 0.5984 0.5653 0.5721 0.8691

0.75 1.00 0.5513 0.5458 0.5506 0.8244 0.9684 0.9990

1.25 0.5916 0.5808 0.5257 0.6366 0.9015 0.9939

1.50 0.6010 0.5925 0.5375 0.5659 0.7656 0.9780

1.75 0.6054 0.5986 0.5508 0.5492 0.6418 0.9411

2.00 0.6118 0.6059 0.5596 0.5567 0.5713 0.8691

1.00 1.25 0.5277 0.5256 0.5327 0.6345 0.8875 0.9947

1.50 0.5529 0.5511 0.5412 0.5442 0.7636 0.9784

1.75 0.5782 0.5771 0.5640 0.5250 0.6369 0.9414

2.00 0.5848 0.5842 0.5712 0.5333 0.5665 0.8694

1.25 1.50 0.5343 0.5339 0.5305 0.5505 0.7367 0.9835

1.75 0.5739 0.5737 0.5685 0.5429 0.6388 0.9445

2.00 0.5650 0.5649 0.5612 0.5354 0.5595 0.8714

Table 5.8: Pitman closeness probabilities between θ̂1 and θ̂3 for n = 15 and
varying values of r,T, and T∗.
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Similar to the previous section, we provide additional tables to show exactly

how the probabilities P(|θ̂3 − 1| ≤ |θ̂1 − 1|) and P(|θ̂1 − 1| ≤ |θ̂3 − 1|) are affected once

you account for the ties for each combination of r, T, and T∗. For each cell (same

combination of r,T, and T∗):

• The first row represents the conditional probability P(|θ̂3 − 1| ≤ |θ̂1 − 1|) given

that the estimators are different,

• the second row represents the conditional probability P(|θ̂1 − 1| ≤ |θ̂3 − 1|)

given that the estimators are different,

• and the last row represents the probability that the estimators tie; that is,

P(|θ̂1 − 1| = |θ̂3 − 1|).

To emphasise, once we condition on the estimators being different, these table no

longer represent the Pitman closeness probabilities, but they represent a dissection

after removing tie cases.

By construction, we know that the estimators tie in the first case where D,D∗ ∈

{0, 1, . . . , r − 1} as expressed in subchapter (4.2). However, there is another case

where ties could occur. Recall that in the second case, we considered the scenario

where D,D∗ ∈ {r, r + 1, . . . ,n} and the estimators corresponding to this case are:

θ̂221 B
1
D

 D∑
i=1

Xi:n + (n −D)T

 , θ̂223 B
1

D∗

 D∗∑
i=1

Xi:n + (n −D∗)T∗
 . (5.2.1)

If D = D∗ = n, then the estimators are equal. In fact, we have a complete sample.

Hence, consider the following decomposition instead:

P(|θ̂3 − 1| ≤ |θ̂1 − 1|)
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=

r−1∑
d=0

P(D = d)
r−1∑
d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂213 − 1| ≤ |θ̂211 − 1|)

+

n∑
d=r

P(D = d)
n∑

d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|)

+

r−1∑
d=0

P(D = d)
n∑

d∗=r

PD(D∗ = d∗)PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|)

=

r−1∑
d=0

P(D = d)
r−1∑
d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂213 − 1| ≤ |θ̂211 − 1|)

+ P(D = n)PD(D∗ = n)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|)

+

n−1∑
d=r

P(D = d)
n∑

d∗=d

PD(D∗ = d∗)PD,D∗(|θ̂223 − 1| ≤ |θ̂221 − 1|)

+

r−1∑
d=0

P(D = d)
n∑

d∗=r

PD(D∗ = d∗)PD,D∗(|θ̂233 − 1| ≤ |θ̂231 − 1|),

(5.2.2)

where the first two terms of the last equality correspond to the probability of ties.

Tables 5.9 and 5.10 feature cases where n = 10, r = 4, 5, 6, 7, 8, 9, T = 0.50, 0.75,

1.00, 1.25, and values of T∗ that are greater than T but up to 2.00. Furthermore,

in Tables 5.11 and 5.12 we consider same values for T and T∗ as above, but now

r = 4, 6, 8, 10, 12, 14.

Although Table 5.7 and Table 5.8 suggest that θ̂3 is always Pitman closer to θ

than θ̂1, somewhat unexpectedly, there are instances where P(|θ̂1 − 1| < |θ̂3 − 1|)

exceeds 0.5. We highlight such cases in bold text in the tables.

Nonetheless, P(|θ̂1 − 1| < |θ̂3 − 1|) does not reflect the actual PC probabilities

and therefore the PC criterion cannot be applied to this case. However, these tables

indicate that the apparent advantage of θ̂3 from the Pitman closeness criterion may
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largely be due to the probability of ties. This is similar to the results mentioned

by Davies [13], where similar estimators under a Type-I HCS, revealed instances

where conditional on the estimators being different, there is a higher probability

that the estimator based on the shorter termination time T is closer to θ compared

to the estimator based on the termination time based on T∗.
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r
T T∗ 4 5 6 7 8 9

0.50 0.75 0.4669 0.5378 0.7434 0.7944 0.8288 0.9048
0.5331 0.4622 0.2566 0.2056 0.1712 0.0952
0.1304 0.3112 0.5535 0.7791 0.9231 0.9834

1.00 0.4982 0.5104 0.5355 0.7008 0.7802 0.8608
0.5018 0.4896 0.4645 0.2992 0.2198 0.1392
0.0346 0.1177 0.2891 0.5344 0.7754 0.9306

1.25 0.5339 0.5377 0.5188 0.5392 0.6959 0.8130
0.4661 0.4623 0.4812 0.4608 0.3041 0.1870
0.0081 0.0382 0.1282 0.3149 0.5805 0.8286

1.50 0.5446 0.5596 0.5420 0.5207 0.5606 0.7437
0.4554 0.4404 0.4580 0.4793 0.4394 0.2563
0.0018 0.0113 0.0507 0.1651 0.3928 0.6900

1.75 0.5578 0.5734 0.5537 0.5138 0.4991 0.6347
0.4422 0.4266 0.4463 0.4862 0.5009 0.3653
0.0004 0.0031 0.0185 0.0794 0.2449 0.5400

2.00 0.5630 0.5815 0.5657 0.5330 0.5080 0.5228
0.4370 0.4185 0.4343 0.4670 0.4920 0.4772
0.0002 0.0009 0.0064 0.0358 0.1433 0.4009

0.75 1.00 0.5521 0.5037 0.4795 0.6477 0.7560 0.8744
0.4479 0.4963 0.5205 0.3523 0.2440 0.1256
0.0362 0.1193 0.2906 0.5360 0.7770 0.9322

1.25 0.5738 0.5212 0.4757 0.5281 0.6905 0.8139
0.4262 0.4788 0.5243 0.4719 0.3095 0.1861
0.0097 0.0398 0.1298 0.3164 0.5821 0.8302

1.50 0.5728 0.5360 0.5132 0.5065 0.5568 0.7439
0.4272 0.4640 0.4868 0.4935 0.4432 0.2561
0.0034 0.0128 0.0523 0.1667 0.3944 0.6916

1.75 0.5880 0.5520 0.5203 0.5020 0.4949 0.6344
0.4120 0.4480 0.4797 0.4980 0.5051 0.3656
0.0020 0.0047 0.0201 0.0810 0.2465 0.5416

2.00 0.5889 0.5572 0.5320 0.5221 0.5041 0.5223
0.4111 0.4428 0.4680 0.4779 0.4959 0.4777
0.0017 0.0025 0.0080 0.0374 0.1449 0.4024

Table 5.9: Tables displaying the following probabilities: P(|θ̂3 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂3 − θ|), and P(|θ̂3 − θ| = |θ̂1 − θ|) with n = 10 across varying r, s, and

T values (Part 1).
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r
T T∗ 4 5 6 7 8 9

1.00 1.25 0.5634 0.5383 0.4812 0.4598 0.6868 0.8503
0.4366 0.4617 0.5188 0.5402 0.3132 0.1497
0.0182 0.0483 0.1383 0.3250 0.5906 0.8387

1.50 0.5563 0.5409 0.5016 0.4979 0.5310 0.7489
0.4437 0.4591 0.4984 0.5021 0.4690 0.2511
0.0119 0.0214 0.0608 0.1752 0.4029 0.7001

1.75 0.5701 0.5568 0.5244 0.4777 0.4879 0.6334
0.4299 0.4432 0.4756 0.5223 0.5121 0.3666
0.0105 0.0132 0.0286 0.0895 0.2550 0.5501

2.00 0.5647 0.5538 0.5232 0.4936 0.4951 0.5199
0.4353 0.4462 0.4768 0.5064 0.5049 0.4801
0.0103 0.0110 0.0165 0.0459 0.1534 0.4110

1.25 1.50 0.5702 0.5615 0.5357 0.4825 0.5745 0.8106
0.4298 0.4385 0.4643 0.5175 0.4255 0.1894
0.0359 0.0454 0.0848 0.1992 0.4269 0.7241

1.75 0.5109 0.5074 0.4962 0.4777 0.4407 0.6486
0.4891 0.4926 0.5038 0.5223 0.5593 0.3514
0.0345 0.0372 0.0526 0.1135 0.2790 0.5741

2.00 0.5653 0.5603 0.5399 0.4889 0.4786 0.5164
0.4347 0.4397 0.4601 0.5111 0.5214 0.4836
0.0343 0.0350 0.0405 0.0700 0.1774 0.4350

Table 5.10: Tables displaying the following probabilities: P(|θ̂3 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂3 − θ|), and P(|θ̂3 − θ| = |θ̂1 − θ|) with n = 10 across varying r, s, and

T values (Part 2).
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r
T T∗ 4 6 8 10 12 14

0.50 0.75 0.6116 0.5150 0.6181 0.7722 0.8357 0.9316
0.3884 0.4850 0.3819 0.2278 0.1643 0.0684
0.0102 0.1057 0.4138 0.7929 0.9709 0.9990

1.00 0.5934 0.5171 0.5259 0.6599 0.7793 0.8989
0.4066 0.4829 0.4741 0.3401 0.2207 0.1011
0.0008 0.0182 0.1447 0.4942 0.8612 0.9900

1.25 0.6212 0.5517 0.5511 0.5314 0.7109 0.8613
0.3788 0.4483 0.4489 0.4686 0.2891 0.1387
0.0001 0.0025 0.0386 0.2397 0.6623 0.9556

1.50 0.6342 0.5690 0.5727 0.5295 0.5836 0.8171
0.3658 0.4310 0.4273 0.4705 0.4164 0.1829
0.0000 0.0003 0.0086 0.0957 0.4392 0.8797

1.75 0.6427 0.5794 0.5882 0.5424 0.5195 0.7514
0.3573 0.4206 0.4118 0.4576 0.4805 0.2486
0.0000 0.0000 0.0017 0.0331 0.2561 0.7628

2.00 0.6481 0.5858 0.5983 0.5608 0.5055 0.6536
0.3519 0.4142 0.4017 0.4392 0.4945 0.3464
0.0000 0.0000 0.0003 0.0103 0.1346 0.6220

0.75 1.00 0.5509 0.5373 0.4746 0.6528 0.7725 0.9034
0.4491 0.4627 0.5254 0.3472 0.2275 0.0966
0.0009 0.0183 0.1447 0.4942 0.8613 0.9901

1.25 0.5916 0.5798 0.5066 0.5219 0.7082 0.8614
0.4084 0.4202 0.4934 0.4781 0.2918 0.1386
0.0001 0.0026 0.0387 0.2398 0.6624 0.9557

1.50 0.6010 0.5923 0.5334 0.5199 0.5821 0.8171
0.3990 0.4077 0.4666 0.4801 0.4179 0.1829
0.0001 0.0004 0.0086 0.0958 0.4393 0.8798

1.75 0.6053 0.5985 0.5500 0.5337 0.5184 0.7515
0.3947 0.4015 0.4500 0.4663 0.4816 0.2485
0.0001 0.0001 0.0017 0.0332 0.2562 0.7629

2.00 0.6118 0.6058 0.5594 0.5521 0.5046 0.6536
0.3882 0.3942 0.4406 0.4479 0.4954 0.3464
0.0001 0.0001 0.0004 0.0103 0.1347 0.6221

Table 5.11: Tables displaying the following probabilities: P(|θ̂3 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂3 − θ|), and P(|θ̂3 − θ| = |θ̂1 − θ|) with n = 15 across varying r, s, and

T values (Part 1).
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r
T T∗ 4 6 8 10 12 14

1.00 1.25 0.5272 0.5239 0.5134 0.5186 0.6657 0.8779
0.4728 0.4761 0.4866 0.4814 0.3343 0.1221
0.0011 0.0035 0.0396 0.2408 0.6633 0.9566

1.50 0.5524 0.5505 0.5367 0.4954 0.5777 0.8188
0.4476 0.4495 0.4633 0.5046 0.4223 0.1812
0.0010 0.0013 0.0096 0.0968 0.4402 0.8808

1.75 0.5778 0.5767 0.5628 0.5082 0.5112 0.7517
0.4222 0.4233 0.4372 0.4918 0.4888 0.2483
0.0010 0.0011 0.0027 0.0341 0.2571 0.7639

2.00 0.5844 0.5837 0.5707 0.5280 0.4985 0.6535
0.4156 0.4163 0.4293 0.4720 0.5015 0.3465
0.0010 0.0010 0.0013 0.0113 0.1356 0.6230

1.25 1.50 0.5314 0.5308 0.5234 0.4994 0.5252 0.8549
0.4686 0.4692 0.4766 0.5006 0.4748 0.1451
0.0063 0.0066 0.0149 0.1021 0.4455 0.8860

1.75 0.5712 0.5710 0.5650 0.5242 0.5102 0.7596
0.4288 0.4290 0.4350 0.4758 0.4898 0.2404
0.0063 0.0064 0.0080 0.0394 0.2624 0.7692

2.00 0.5622 0.5621 0.5582 0.5276 0.4873 0.6541
0.4378 0.4379 0.4418 0.4724 0.5127 0.3459
0.0063 0.0063 0.0066 0.0166 0.1409 0.6283

Table 5.12: Tables displaying the following probabilities: P(|θ̂3 − θ| < |θ̂1 − θ|),
P(|θ̂1 − θ| < |θ̂3 − θ|), and P(|θ̂3 − θ| = |θ̂1 − θ|) with n = 15 across varying r, s, and

T values (Part 2).
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Chapter 6

Conclusion

Assuming lifetimes follow an exponential distribution with scale parameter θ, this

thesis investigates the Pitman closeness (PC) criterion among maximum likelihood

estimators (MLEs) of θ derived from observations drawn from a Type-II hybrid

censored scheme (HCS). In this scheme, the lifetime experiment is terminated at

max{Xr:n,T}, where r denotes the number of observed failures and T is a pre-fixed

termination time. The MLE of θwas initially derived by Childs et al. [11]. To derive

the PC probabilities, classical results from order statistics [3] are employed, as well

as utilising similar techniques from earlier work that derived the PC probability of

MLEs of θ under Type-I hybrid censoring [13].

The first comparison in this thesis considers MLEs of θ based on the termination

times max{Xr:n,T} and max{Xs:n,T} with s > r. The numerical results indicate that

the estimator with respect to the second termination time is consistently Pitman

closer to θ, suggesting that, for fixed T, observing more failures improves estimator

performance.

Meanwhile, the second comparison examines MLEs of θ based on max{Xr:n,T}
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and max{Xr:n,T∗} with T∗ > T. Here, the numerical results also reveal that the

estimator with the latter termination time is Pitman closer to θ. However, in some

cases, conditional on the estimators being different, there is a higher probability

that the estimator based on the first termination time T is closer to θ compared to

the estimator based on the termination time based on T∗.

These reveal that although extending the termination time leads to a better es-

timator under the Pitman closeness criterion, in large part this is because they tie

often. Furthermore, large increases in the number of observed failures or experi-

ment duration yield diminishing returns in PC, suggesting that slight extensions

to the study time or observations may be adequate.

This thesis has several limitations. The exact probabilities were shown for spe-

cific values of n, r, s,T, and T∗; it is plausible that other values would reveal different

patterns. For instance, cases might exist where the MLE based on the termination

time associated with a larger number of observed failures is not necessarily Pitman

closer to θ than the estimator associated with the termination time that focuses

on a smaller number of observed failures. Additionally, the second comparison is

more computationally demanding than the first due to the subcases used to de-

rive the exact expressions, but there may be more efficient derivations for the PC

probabilities.

Furthermore, Type-I and Type-II hybrid censoring schemes have inherent lim-

itations. In Type-I HCS, no failures may occur before the pre-specified time T,

whereas in Type-II HCS, T may exceed the time for Xn:n, the failure time of the

last observation. These shortcomings motivate the introduction of generalised hy-

brid censoring schemes, which incorporate additional constraints to address these
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limitations of their non-generalised counterparts.

The Generalised Type-I HCS guarantees at least k observed lifetimes, prevent-

ing the case of having no failures. Meanwhile, the Generalised Type-II HCS incor-

porates an additional pre-specified termination time, allowing the experiment to

conclude earlier. Specific details can be found in Balakrishnan et al [9].

Assuming the data arises from the exponential distribution, future work may

consider comparing alternative estimators that do not arise from the MLE of θ

under Type-II HCS to assess viable substitutes, or compare MLEs of θ under the

Generalised Type-I HCS and the Generalised Type-II HCS.
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Appendix A

R Code

A.1 Commonly Used Probability Density Functions

# Define f_A_{11}

f_A11 <- Vectorize(function(a, x_r, r){

if(a > ((r-1)*x_r)){return(0)}

total <- 0

denom <- (1 - exp(-x_r))ˆ(r-1)

for(i in 0:(r-1)){

part1 <- choose(r-1, i) * exp(-i*x_r) * (-1)ˆ(i)

q <- a - i*x_r

part2 <- if((q > 0) && (a < (r-1)*x_r)){

dgamma(q, shape = r - 1)

} else {0}

total <- total + part1*part2

}
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return(total/denom)

}, vectorize.args = "a")

# Define f_A_{12}

f_A12 <- Vectorize(function(a, term1, d){

total <- 0

denom <- (1 - exp(-term1))ˆ(d)

for(i in 0:d){

part1 <- choose(d, i) * exp(-i*term1) * (-1)ˆ(i)

q <- a - i*term1

part2 <- if((q > 0) && (a < d*term1)){

dgamma(q, shape = d)

} else {0}

total <- total + part1*part2

}

return(total/denom)

}, vectorize.args = "a")

A.2 Comparison of θ̂1 and θ̂2

We include the R code used to compute Equation (3.5.1) and results are shown in

Section (5.1).
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A.2.1 Comparison 1 Case 1

# Define f_{X_{r:n}}

comp1case1_fxrn <- Vectorize(function(x_r, n, r, term1, d){

if(x_r > term1){

part1 <- factorial(n-d)/(factorial(r-d-1) * factorial(n-r))

ex <- exp(-x_r)/exp(-term1)

part2 <- (1 - ex)ˆ(r-d-1)

part3 <- exˆ(n-r+1)

return(part1*part2*part3)

} else {

return(0)

}

}, vectorize.args = "x_r")

L_11 <- function(a, x_r, n, r, s){

part1 <- 2 - (1/r + 1/s) * a

part2 <- ((n-r)/r + (n-r)/s + 1/r + 1/s) * x_r

final <- s * (part1 - part2)

return(final)

}

U_11 <- function(a, x_r, n, r, s){

part1 <- (1/r - 1/s) * a

part2 <- ((n-r)/r - (n-r)/s + 1/r -1/s) * x_r
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final <- s * (part1 + part2)

return(final)

}

# The inner integrand

comp1case1_inner_int <- function(a, x_r, n, r, s, type = "111"){

a1 <- L_11(a, x_r, n, r, s)

a2 <- U_11(a, x_r, n, r, s)

f1 <- pgamma(a1, shape = s-r, scale = 1)

f2 <- pgamma(a2, shape = s-r, scale = 1)

f_A_val <- f_A11(a, x_r, r)

if(type == "111"){

return((f2 - f1) * f_A_val)

} else if (type == "112"){

return((f1 - f2) * f_A_val)

}

}

# The outer integrand for pi_111 and pi_112

comp1case1_outer_int <- Vectorize(function(x_r, n, r, s,

term1, d, type = "111"){

if(type == "111"){
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lower_a <- r - x_r*(n-r+1)

lower_a[lower_a < 0] <- 0

upper_a <- (r-1)*x_r

fit_call <- quote(function(a)

comp1case1_inner_int(a, x_r, n, r, s, type = "111"))

} else if (type == "112"){

upper_a <- r - x_r*(n-r+1)

lower_a <- 0

fit_call <- quote(function(a)

comp1case1_inner_int(a, x_r, n, r, s, type = "112"))

}

if (lower_a < upper_a) {

inner_result <- integrate(eval(fit_call),

lower = lower_a, upper = upper_a)$value

} else {

inner_result <- 0

}

mult2 <- comp1case1_fxrn(x_r, n, r, term1, d)

result <- inner_result * mult2

return(result)

}, vectorize.args = "x_r")

# Comparison 1 Case 1 Full Computation

comp1case1 <- function(n, r, s, term1){
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prob_d <- 1 - exp(-term1)

total <- 0

for(d in 0:(r-1)){

pid1 <- dbinom(d, size = n, prob = prob_d)

pi_111 <- integrate(

function(x_r) comp1case1_outer_int(x_r, n, r, s,

term1, d, type = "111"),

lower = term1, upper = Inf)$value

pi_112 <- integrate(

function(x_r) comp1case1_outer_int(x_r, n, r, s,

term1, d, type = "112"),

lower = term1, upper = Inf)$value

total <- total + (pid1 * (pi_111 + pi_112))

}

return(total)

}

A.2.2 Comparison 1 Case 2

# Bounds for f_B_{12}

L_12 <- function(a, n, s, term1, d){

theta_121 <- (a+(n-d)*term1)/d

val <- 2*s - (theta_121 * (s+d))

return(val)

}
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U_12 <- function(a, n, s, term1, d){

theta_121 <- (a+(n-d)*term1)/d

val <- theta_121 * (s-d)

return(val)

}

# General integrand computation (for pi_121 or pi_122)

comp1case22_integrand <- function(a, n, s, term1, d, type = "121"){

a_121 <- L_12(a, n, s, term1, d)

a_122 <- U_12(a, n, s, term1, d)

f1 <- pgamma(a_121, shape = s-d, scale = 1)

f2 <- pgamma(a_122, shape = s-d, scale = 1)

f_A_val <- f_A12(a, term1, d)

if(type == "121"){

return((f2 - f1)*f_A_val)

} else if (type == "122"){

return((f1 - f2)*f_A_val)

}

}

# Used to define pi_121 or pi_122

pi_12 <- function(n, s, term1, d, type = "121"){
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if(type == "121"){

low_bd <- d - (n-d)*term1

upp_bd <- d*term1

fit_call <- quote(function(a)

comp1case22_integrand(a, n, s, term1, d, "121"))

} else if (type == "122"){

low_bd <- 0

upp_bd <- d - (n-d)*term1

fit_call <- quote(function(a)

comp1case22_integrand(a, n, s, term1, d, "122"))

}

if(low_bd < upp_bd){

result = integrate(eval(fit_call),

lower = low_bd, upper = upp_bd)$value

} else {

result = 0

}

return(result)

}

# Comparison 1 Case 2 Full Computation

comp1case2 = function(n, r, s, term1){

total <- 0

for(d in r:(s-1)){
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probd <- 1 - exp(-term1)

PD <- dbinom(d, size = n, prob = probd)

res1 <- pi_12(n, s, term1, d, type = "121")

res2 <- pi_12(n, s, term1, d, type = "122")

total <- total + (PD*(res1+res2))

}

return(total)

}

A.2.3 Comparison 1 Case 3

comp1case3 <- function(n, s, term1){

probd <- 1 - exp(-term1)

val <- 1 - pbinom(s - 1, size = n, prob = probd)

return(val)

}

A.3 Comparison of θ̂1 and θ̂3

TheR code used to compute Equation (4.5.1) is included here, and the corresponding

results are presented in Section (5.2).

A.3.1 Comparison 2 Case 1

comp2case1 <- function(n, r, term1, term2){

total <- 0
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for(d in 0:(r-1)){

prob_d <- 1 - exp(-term1)

pid1 <- dbinom(d, size = n, prob = prob_d)

total2 <- 0

for(dstar in d:(r-1)){

dprime <- dstar - d

prob_dprime <- 1 - exp(-(term2 - term1))

pid2 <- dbinom(dprime, size = (n-d), prob = prob_dprime)

total2 <- total2 + pid2

}

total <- total + pid1*total2

}

return(total)

}

A.3.2 Comparison 2 Case 2

U_221 <- function(n, term1, term2, d){

m <- (n-d) * (term2-term1) / d

part1 <- d * (1 - (m/2))

part2 <- (n-d) * term1

return(part1 - part2)

}

pi_2212 <- function(n, term1, term2, d){
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lower_bd <- 0

upper_bd <- U_221(n, term1, term2, d)

if(lower_bd <= upper_bd){

result <- integrate(

function(a) f_A12(a, term1, d), lower = lower_bd,

upper = upper_bd)$value

} else {

result <- 0

}

return(result)

}

# Define f_{B_{22}}

f_B22 <- Vectorize(function(b, n, term1, term2, d, dstar){

tprime <- term2 - term1

dprime <- dstar - d

total <- 0

denom <- (1 - exp(-tprime))ˆdprime

for(i in 0:dprime){

part1 <- choose(dprime, i) * exp(-i*tprime) * (-1)ˆ(i)

q <- b - i*tprime

part2 <- if((q > 0) && (b < (dprime*tprime))){

dgamma(q, shape = dprime, rate = 1)

} else {0}
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total <- total + part1*part2

}

return(total/denom)

}, vectorize.args = "b")

# Define F_{B_{22}} using numerical integration

F_B22 <- Vectorize(function(upper, n, term1, term2, d, dstar){

if(upper <= 0){return(0)}

result <- integrate(

function(b_val) f_B22(b_val, n, term1, term2, d, dstar),

lower = 0, upper = upper)$value

return(result)

}, vectorize.args = ’upper’)

L_222 <- function(a, n, term1, term2, d, dstar){

theta_221 <- (a+(n-d)*term1)/d

result <- 2*dstar - theta_221*(dstar+d) - (n-dstar)*(term2-term1)

return(result)

}

U_222 <- function(a, n, term1, term2, d, dstar){

theta_221 <- (a+(n-d)*term1)/d

result <- theta_221*(dstar-d) - (n-dstar)*(term2-term1)

return(result)
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}

# General integrand computation (for pi_2221 or pi_2222)

comp2case22_integrand <- function(a, n, term1, term2,

d, dstar, type = "2221"){

a1 <- L_222(a, n, term1, term2, d, dstar)

a2 <- U_222(a, n, term1, term2, d, dstar)

f1 <- F_B22(a1, n, term1, term2, d, dstar)

f2 <- F_B22(a2, n, term1, term2, d, dstar)

fa <- f_A12(a, term1, d)

if(type == "2221"){

result <- (f2-f1)*fa

} else if (type == "2222"){

result <- (f1-f2)*fa

}

return(result)

}

# Used to define pi_2221 or pi_2222

pi_222 <- function(n, term1, term2, d, dstar, type = "2221"){

if(type == "2221"){

lower_bd <- d - (n-d)*term1
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upper_bd <- d*term1

fit_call <- quote(function(a)

comp2case22_integrand(a, n, term1, term2,

d, dstar, type = "2221"))

} else if (type == "2222"){

lower_bd <- 0

upper_bd <- d - (n-d)*term1

fit_call <- quote(function(a)

comp2case22_integrand(a, n, term1, term2,

d, dstar, type = "2222"))

}

if(lower_bd < upper_bd){

result <- integrate(

eval(fit_call), lower = lower_bd,

upper = upper_bd)$value

} else {

result <- 0

}

return(result)

}

# Comparison 2 Case 2 Full Computation

comp2case2 <- function(n, r, term1, term2){

total <- 0
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for(d in r:n){

prob_d <- 1 - exp(-term1)

pid1 <- dbinom(d, size = n, prob = prob_d)

total2 <- 0

for(dstar in d:n){

dprime <- dstar - d

prob_dprime <- 1 - exp(-(term2 - term1))

pid2 <- dbinom(dprime, size = (n-d), prob = prob_dprime)

if(dstar == d){ # Case 2.1

value <- pid2 * pi_2212(n, term1, term2, d)

} else { # Case 2.2

part1 <- pi_222(n, term1, term2, d, dstar, type = "2221")

part2 <- pi_222(n, term1, term2, d, dstar, type = "2222")

value <- pid2 * (part1 + part2)

}

total2 <- total2 + value

}

total <- total + (pid1 * total2)

}

return(total)

}

A.3.3 Comparison 2 Case 3

# Define f_{B_{231}}(b)
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f_B231 <- function(b, n, r, term1, term2, d){

tprime <- term2 - term1

part1 <- (r-d)/((1-exp(-tprime))ˆ(r-d))

omega <- 1 + (n-r)/2

total <- 0

for(i in 0:(r-d-1)){

taui <- tprime*(omega + i)

thetai <- (omega + i)/(i + 1)

part2 <- (-1)ˆ(i) * choose((r-d-1), i)

part3 <- exp(-(b/thetai))/(thetai*(i+1))

part4 <- (1 - 1/thetai)ˆ(-(r-d-1))

incl1 <- (1 - 1/thetai) * b

part5 <- ifelse(incl1 < 0, 0,

pgamma(incl1, shape = r - d - 1, lower.tail = TRUE))

expr1 <- part3*part4*part5

part6 <- exp(-tprime*(i+1)) / (thetai * (i+1))

part7 <- exp(-(b-taui)/thetai)

part8 <- (1 - 1/thetai)ˆ(-(r-d-1))

incl2 <- (1 - 1/thetai) * (b-taui)

part9 <- ifelse(incl2 < 0, 0,

pgamma(incl2, shape = r - d - 1, lower.tail = TRUE))
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expr2 <- part6*part7*part8*part9

total <- total + part2*(expr1 - expr2)

}

result <- total * part1

return(result)

}

# Define F_{B_{231}}(b) using numerical integration

F_B231 <- Vectorize(function(upp_bd, n, r, term1, term2, d){

omega <- 1 + (n-r)/2

tprime <- term2 - term1

high_val <- (r-d-1+omega) * tprime

if(upp_bd >= high_val){

return(1)

} else if (upp_bd <= 0){

return(0)

} else {

res <- integrate(

function(b) f_B231(b, n, r, term1, term2, d),

lower = 0, upper = upp_bd)$value

}

return(res)
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},

vectorize.args = "upp_bd")

U_231 <- function(a, n, r, term1, term2, d){

part1 <- r - ((n-r)/2)*term2

part2 <- (r-d-1)*term1

part3 <- (1 + ((n-r)/2))*term1

res <- part1 - part2 - part3 - a

return(res)

}

# Integrand for pi_231

inn_int_231 <- function(a, n, r, term1, term2, d){

alph <- U_231(a, n, r, term1, term2, d)

fa <- f_A12(a, term1, d)

fb <- F_B231(alph, n, r, term1, term2, d)

return(fa*fb)

}

pi_231 <- function(n, r, term1, term2, d){

upper_bd <- d*term1

res <- integrate(

function(a) inn_int_231(a, n, r, term1, term2, d),

lower = 0, upper = upper_bd)$value
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return(res)

}

# Define f_{X_{r:n}}(x)

comp2case3_fxrn <- Vectorize(function(x_r, n, r,

term1, term2, d, dstar){

if(x_r > term1){

par1 <- factorial(dstar-d)

par2 <- (factorial(r-d-1) * factorial(dstar -r))

part1 <- par1/par2

denom <- (exp(-term1) - exp(-term2))ˆ(dstar - d)

num1 <- (exp(-term1) - exp(-x_r))ˆ(r-d-1)

num2 <- (exp(-x_r) - exp(-term2))ˆ(dstar-r)

num3 <- exp(-x_r)

value <- part1 * ((num1 * num2 * num3) / denom)

return(value)

} else {

return(0)

}

}, vectorize.args = "x_r")

# Define f_{B_{23}}

f_B23 <- Vectorize(function(b, x_r, n, r, term2, dstar){

if(x_r >= term2) {return(0)}
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tprime <- term2 - x_r

d2 <- dstar - r

if(d2 <= 0){return(0)}

total <- 0

denom <- (1 - exp(-tprime))ˆd2

for(i in 0:d2){

part1 <- choose(d2, i) * exp(-i*tprime) * (-1)ˆi

q <- b - i * tprime

part2 <- if(q > 0){

dgamma(q, shape = d2, rate = 1)

} else {0}

total <- total + part1 * part2

}

return(total / denom)

}, vectorize.args = "b")

# Define F_{B_{23}} using numerical integration

F_B23 <- Vectorize(function(upper, x_r, n, r, term2, dstar){

if(upper <= 0){return(0)}

result <- integrate(

function(b) f_B23(b, x_r, n, r, term2, dstar),

lower = 0, upper = upper, subdivisions = 500L,

stop.on.error = FALSE)$value

return(result)
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}, vectorize.args = ’upper’)

L_232 <- function(a, x_r, n, r, term2, dstar){

part1 <- (1/r + 1/dstar) * a

part2 <- ( (n-r+1)/r + (dstar - r +1)/dstar ) * x_r

part3 <- (n-dstar)*term2 / dstar

result <- dstar*(2 - part1 - part2 - part3)

return(result)

}

U_232 <- function(a, x_r, n, r, term2, dstar){

part1 <- (1/r - 1/dstar) * a

part2 <- ( (n-r+1)/r - (dstar - r +1)/dstar ) * x_r

part3 <- (n-dstar)*term2 / dstar

result <- dstar*(part1 + part2 - part3)

return(result)

}

# The inner integrand

pi_232_inner_int <- Vectorize(function(a, x_r, n, r, term2,

dstar, type = "2321"){

a1 <- L_232(a, x_r, n, r, term2, dstar)

a2 <- U_232(a, x_r, n, r, term2, dstar)
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b_upp_bd <- (term2 - x_r) * (dstar - r)

if(a1 < 0){f1 <- 0}

else if (a1 >= b_upp_bd){f1 <- 1}

else {

f1 <- F_B23(a1, x_r, n, r, term2, dstar)

if(f1 > 1){f1 <- 1}

}

if(a2 < 0){f2 <- 0}

else if (a2 >= b_upp_bd){f2 <- 1}

else {

f2 <- F_B23(a2, x_r, n, r, term2, dstar)

if(f2 > 1){f2 <- 1}

}

fa <- f_A11(a, x_r, r)

# Safeguarding cases where it’s negative but close to 0

fa[fa < 0 & abs(fa) < 1e-10] <- 0

if(type == "2321"){subtra = (f2-f1)}

else if (type == "2322"){subtra = (f1-f2)}

# Safeguarding once again

subtra[subtra < 0 & abs(subtra) < 3e-4] <- 0

result = subtra*fa
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return(result)

}, vectorize.args = "a")

# The outer integrand for pi_2321 and pi_2322

pi_232_outer_int <- Vectorize(function(x_r, n, r, term1,

term2, d, dstar, type = "2321"){

if(type == "2321"){

upper_bd <- (r-1)*x_r

lower_bd <- r - x_r*(n-r+1)

if(lower_bd <= 0){lower_bd <- 0}

fit_call <- quote(function(a)

pi_232_inner_int(a, x_r, n, r, term2, dstar, type = "2321"))

} else if (type == "2322"){

upper_bd <- r - x_r*(n-r+1)

lower_bd <- 0

fit_call <- quote(function(a)

pi_232_inner_int(a, x_r, n, r, term2, dstar, type = "2322"))

}

if(lower_bd < upper_bd){

result <- integrate(

eval(fit_call), lower = lower_bd, upper = upper_bd,

subdivisions = 500L, stop.on.error = FALSE)$value

} else {result <- 0}
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fxr <- comp2case3_fxrn(x_r, n, r, term1, term2, d, dstar)

return(result*fxr)

}, vectorize.args = "x_r")

# Comparison 2 Case 3 Full Computation

comp2case3 <- function(n, r, term1, term2){

total <- 0

prob_d <- 1 - exp(-term1)

prob_dprime <- 1 - exp(-(term2 - term1))

for(d in 0:(r-1)){

pid1 <- dbinom(d, size = n, prob = prob_d)

total2 <- 0

for(dstar in r:n){

dprime <- dstar - d

pid2 <- dbinom(dprime, size = (n-d), prob = prob_dprime)

if(dstar == r){

pi_232_r <- pi_231(n, r, term1, term2, d)

total2 <- total2 + (pid2 * pi_232_r)

} else {

pi_2321 <- integrate(

function(x_r) pi_232_outer_int(x_r, n, r, term1,

term2, d, dstar, type = "2321"),

lower = term1, upper = term2)$value
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pi_2322 <- integrate(

function(x_r) pi_232_outer_int(x_r, n, r, term1,

term2, d, dstar, type = "2322"),

lower = term1, upper = term2)$value

total2 <- total2 + (pid2 * (pi_2321 + pi_2322))

}

}

total <- total + (pid1 * total2)

}

return(total)

}

A.4 Demonstration of Code Usage

# Comparison 1 Example

c1 <- comp1case1(n = 15, r = 4, s = 6, term1 = 0.75)

c2 <- comp1case2(n = 15, r = 4, s = 6, term1 = 0.75)

c3 <- comp1case3(n = 15, s = 6, term1 = 0.75)

c1 + c2 + c3

# Comparison 2 Example

c1 <- comp2case1(n = 10, r = 4, term1 = 0.5, term2 = 0.75)

c2 <- comp2case2(n = 10, r = 4, term1 = 0.5, term2 = 0.75)

c3 <- comp2case3(n = 10, r = 4, term1 = 0.5, term2 = 0.75)

c1 + c2 + c3
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