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Abstract

One of the most famous problems in theoretical fluid mechanics concerns the question

whether the 3D Navier-Stokes equations always produce smooth solutions. More specif-

ically, it is not known whether all sufficiently smooth initial data lead to the existence

of regular solutions for all time or if singularities may form in finite time. One approach

to study this problem is based on the so called “conditional regularity results”; if such

statements are shown to hold, this would imply that the corresponding flows are regular

and satisfy the Navier-Stokes system in the classical sense. Arguably, the best known

result of this type is the enstrophy condition. It has inspired recent works attempting

to search for initial conditions that maximize the enstrophy over a certain time window

to identify the worst-case scenarios that could result in singularity formation in finite

time. Motivated by these studies, in this investigation we conduct a systematic compu-

tational search for potential singularities in three-dimensional Navier-Stokes flows using

the Ladyzhenskaya-Prodi-Serrin conditions. They assert that for a solution u(t) of the

Navier-Stokes system to be regular on an interval [0, T ], the integral
∫ T

0
‖u(t)‖pLq(Ω) dt,

where 2/p + 3/q = 1, q > 3, must be bounded. Our main contribution is to conduct

a systematic search for flows that might become singular and violate this condition,

by solving a family of variational PDE optimization problems on a periodic domain Ω.

In these problems, we identify initial conditions u0 that locally maximizes the integral
∫ T

0
‖u(t)‖pLq(Ω) dt for a range of different values of q and p, different time windows T and

several sizes ‖u0‖Lq(Ω) of the initial data. Such local maximizers are found numerically

with a state-of-the-art adjoint-based Riemannian gradient method. Four formulations

are considered with optimal solutions sought in Hilbert-Sobolev and Lebesgue function

spaces. This is the first time the worst-case behavior of Navier-Stokes flows is thor-

oughly investigated through the lens of the Ladyzhenskaya-Prodi-Serrin conditions. In

order to study how a hypothetical singularity could develop, we analyze the rate of

growth of ‖u(t)‖Lq(Ω) and of the enstrophy in the extreme flows obtained by solving the

i



Ph.D. Thesis – Elkin Ramı́rez McMaster University

optimization problems. We derive and analyze explicit bounds on the rate of growth

for the Lq(Ω) norm of Navier-Stokes flows for which singularity formation is impossi-

ble. By combining them with existing bounds on the rate of growth of ‖u(t)‖Lq(Ω), we

identify specific regimes such that if the corresponding rate of growth is sustained, this

would lead to singularity formation in finite time in Navier-Stokes flows. Although we

did not find any evidence for blow-up, these relations allow us to quantify how “close”

the extreme flows arising in such worst-case scenarios come to producing a singularity.
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Chapter 1

Introduction

One of the most important models in the field of fluid dynamics are the Navier-Stokes

equations. They are essential for studying fluid flows in different applications across

a wide range of spatio-temporal scales, from representing blood flow to helping design

bioartificial pancreas [56] to modeling tsunami waves [57], numerical weather prediction

[49] and aircraft design [19], in addition to many other important applications. In this

thesis, we will consider the incompressible Navier-Stokes system defined on the 3D torus

Ω = T3 := R3/Z3, where “:=” means “equal to by definition”, with periodic boundary

conditions

∂tu + (u ·∇x) u + ∇x p− ν∆u = 0 in Ω× (0, T ], (1.1a)

∇x · u = 0 in Ω× [0, T ], (1.1b)

u(0) = u0, (1.1c)

where the vector u = [u1, u2, u3]T is the velocity field, p is the pressure, ν > 0 is

the coefficient of kinematic viscosity, ∇x denotes the gradient with respect to the

space variable x = [x1, x2, x3]T (this notation is needed to distinguish it from another

notion of a gradient that will be introduced later) and u0 is the initial condition. The

velocity gradient ∇x u is a tensor with components [∇x u]ij = ∂jui, i, j = 1, 2, 3. For
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simplicity and unless stated otherwise, both the fluid density ρ and the viscosity ν are

assumed to be equal to unity (ν = 1, ρ = 1). The choice of this domain Ω is motivated

by our interest in intrinsic mechanisms governing flow evolution, without considering

interactions with the boundary.

As it is usual in the theory of Partial Differential Equations (PDEs), several notions

of solutions are often defined in order to study their most fundamental properties:

existence, uniqueness and regularity. These general properties are important as they

determine whether or not a given mathematical model is well posed and can therefore

serve as a description of natural phenomena. For the Navier-Stokes system (1.1), one

typically works with strong (or classical) solutions, mild and weak solutions, including

Leray-Hopf weak solutions. Classical or strong solutions are time-dependent vector

fields u(x, t) with enough regularity to directly satisfy the PDE at each point in time and

space. Weak solutions, however, may lack in smoothness and can be defined in several

ways depending on how regular the velocity field u should be, which is determined by

how one performs integration by parts. Here, we define weak solutions as vector fields

u that satisfy the following identity [13, 51]

∫ s

0

−〈u, ∂tϕ〉 dt+

∫ s

0

〈∇x u,∇x ϕ〉 dt+

∫ s

0

〈(u ·∇x u,ϕ〉 dt =

〈u0,ϕ(0)〉 − 〈u(s),ϕ(s)〉, (1.2)

for all test functions ϕ and almost every s > 0. Here, 〈f , g〉 :=
∫

Ω
f(x) · g(x) dx is the

L2 inner product and test functions belong to the set

{ϕ ∈ C∞c (Ω× [0,∞)) : ∇x ·ϕ(t) = 0 for all t ∈ [0,∞)} ,

where C∞c (Ω × [0,∞)) is the space of infinitely differentiable functions with compact

support on Ω× [0,∞). If, in addition, the weak solution u satisfies the energy inequality

1

2
‖u(t)‖2

L2(Ω) +

∫ t

0

‖∇x u(τ)‖2
L2(Ω) dτ ≤

1

2
‖u(0)‖2

L2(Ω), (1.3)

2
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for almost all times t ∈ (0,∞), u is called a Leray-Hopf weak solution of the Navier-

Stokes system. In expression (1.3), ‖ · ‖L2(Ω) is the norm in the L2(Ω) space induced

by the L2 inner product defined above. We can find other definitions of weak solutions

in the literature, however, in the present work we will focus on weak solutions of the

Leray-Hopf type.

The study of the existence and uniqueness of Navier-Stokes flows dates back to the

beginning of the 20th century, but the problem still lacks resolution. Due to the wide

variety of applications of this set of equations, ranging from physics to engineering,

it is of an extreme importance to build a solid mathematical framework concerning

the existence and uniqueness of their solutions. In fact, this is one of the ‘millennium

problems’ named by the Clay Mathematics Institute [18]. It can stated as follows: given

a smooth initial vector field u0, does system (1.1) have a unique classical solution that

exists for all t > 0? The question can be addressed on a periodic domain or R3.

Major progress concerning the existence of weak solutions on R3 was made by Leray

in 1934 [32]. Later in 1951, Hopf [25] established global existence of weak solutions,

but without uniqueness, on bounded domains. It is worth mentioning that inequality

(1.3) holds for the weak solutions that Hopf and Leray considered. In 1959, J.-L.

Lions [33] proved global existence and uniqueness of Leray-Hopf weak solutions of the

Navier-Stokes equations with hyper-viscosity i.e., he considered equation (1.1a) with the

Laplacian ∆ replaced with the fractional Laplacian (−∆)θ with θ ≥ 5/4. As regards

uniqueness, Luo & Titi (2020) [38] proved non uniqueness of weak solutions with finite

kinetic energy for θ < 5/4. This implies that θ = 5/4 is a critical value with respect to

uniqueness of weak solutions. However, uniqueness of Leray-Hopf weak solutions is a

problem that remains open. In 2022, Albitron, Brué & Colombo [3] were able to prove

non uniqueness of Leray-Hopf weak solutions in the 3D Navier-Stokes system with a

time-dependent force. They also showed that, if the source term has a certain form, it

might lead to blow up. In the same year, 2022, Hou [27] presented numerical evidence

3
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of a potentially singular behavior of solutions to the 3D Navier-Stokes equations in a

cylindrical domain periodic in the axial direction which was verified by applying the

enstrophy and the Ladyzhenskaya-Prodi-Serrin conditions. This is an intriguing result

that motivates a systematic search for singularities in the Navier-Stokes system.

One approach to study the regularity of Leray-Hopf weak solutions of the Navier-

Stokes equations (1.1) is by using the so-called “conditional regularity results”. These

are conditions, which if met by the weak solutions, will ensure the regularity of these

solutions. In Chapter 2, we will discuss some conditional regularity results that we will

use in this thesis in detail, namely, the enstrophy [20] and the Ladyzhenskaya-Prodi-

Serrin [51] conditions.

Although solving the problem of existence and uniqueness of solutions for the Navier-

Stokes equations is a mathematical analysis question, several computational studies

have been carried out exploring the possibility of a finite-time blow-up in the 3D setting.

Some of these investigations are Brachet [11] and Orlandi, Pirozzoli & Carnevale [43].

However, no evidence for blow-up has been found from the computations.

Another model that has received considerable attention is the inviscid Euler system

obtained by setting the viscosity ν = 0 in the 3D Navier-Stokes equation (1.1)

∂tu + (u ·∇x) u = −∇x p in Ω× (0, T ], (1.4a)

∇x · u = 0 in Ω× [0, T ], (1.4b)

u(0) = u0, (1.4c)

where Ω, p, T, u0 are as in (1.1). It describes the dynamics of incompressible ideal

fluids. Unlike for the Navier-Stokes equations, there is some numerical evidence of

blow-up for the 3D inviscid Euler equations while using certain type of initial data, Luo

& Hou [36, 37].

A novel method to tackle certain questions related to understanding the extreme

and possibly singular behavior in Navier-Stokes flows was introduced by Doering & Lu

in [34]. Recognizing that the regularity of classical solutions to the 3D Navier-Stokes
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system is controlled by the enstrophy, they proposed a variational optimization problem

to study the sharpness of an a priori estimate on the rate of growth of enstrophy.

More specifically, they studied the maximum rate of growth of enstrophy, not only

for the Navier-Stokes equations, but also for the 1D Burgers equation. This method

was later adopted and expanded by Ayala & Protas [6, 7], where they analyzed the

sharpness of various energy-type a priori estimates for the 1D Burgers and 2D Navier-

Stokes equations. Although these two systems are known to be globally well-posed

under certain conditions, understanding the sharpness of those estimates could provide

insights also for the 3D Navier-Stokes problem. Kang et al. also adapted the method

in [29, 28]. They worked with the 3D Navier-Stokes equations this time and searched

for initial data that could potentially produce finite-time singularities by considering

the enstrophy and the Ladyzhenskaya-Prodi-Serrin conditions. Zhao & Protas [59] also

used the same idea but in the context of the 3D Euler equations, where they presented

numerical evidence of a possible singularity in finite time. An overview of the research

program focusing on a systematic search for extreme and singular behavior in the

Navier-Stokes and other models can be found in [47].

In this thesis, we are extending Kang’s & Protas’ work [28]. They analyzed extreme

behavior in Navier-Stokes flows using the Ladyzhenskaya-Prodi-Serrin conditions. They

formulated several optimization problems in order to identify initial conditions that

maximize a certain quantity controlling the regularity of solutions. As a limitation

of their approach, they focused on finding initial conditions within a certain Sobolev

space with Hilbert structure embedded in the Lebesgue space Lq(Ω) in which the op-

timization problem would otherwise be naturally formulated. This simplification was

crucial for the solution of the optimization problems, using a gradient descent method.

The presence of an inner product allowed them to define the gradient directly using

the Riesz theorem based on the solution of the adjoint system. In our study, how-

ever, we will take a different approach. Our optimization problems will be formulated

5
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within more general function spaces, namely, suitable Lebesgue spaces. In addition to

formulating the optimization problems in a different, larger, function space, we will

also analyze a large family of the Ladyzhenskaya-Prodi-Serrin conditions. The lack

of Hilbert structure significantly complicates the solution of the optimization problem

from the numerical point of view, specially while evaluating the gradient. Therefore,

we will have to compute the gradient using different tools, adopting ideas from Protas

[46].

In terms of technical innovations, our two main contributions are the development

of an efficient computational approach to solve PDE optimization problems formulated

on function spaces without Hilbert structure and identification of the regimes of the

rate of growth of the different Lq(Ω) norms where a singularity will occur. Firstly,

we consider a Riemannian gradient descent method on a Hilbert space, and extend it

to the more general case of Banach spaces. The mathematical problems considered

are generalizations of the problems studied by Kang & Protas [28, 46]. Although a

novel conjugate gradient method is also introduced to tackle constrained optimization

problems in Banach spaces, it will not be used to produce results in this document

for reasons that will be explained later. Secondly, we examine well-known a priori

bounds on integrals of the Lq(Ω) norm of the solutions of the Navier-Stokes equations

and derive conditions under which singularities cannot form. This allows us to identify

growth rate regimes of the Lq(Ω) norm, where the solution must lie if a singularity is to

develop. These conditions will serve as a useful indicator on how “close” the extreme

flows found by solving optimization problems come to forming a singularity.

Although we found no numerical evidence of unbounded growth for Navier-Stokes

flows in the Lq(Ω) spaces, this research provides insights into how flows that maxi-

mize objective functionals based on the Ladyzhenskaya-Prodi-Serrin conditions behave

when subject to constraints in Lebesgue spaces, as well as in Sobolev spaces embedded

within the latter spaces. In both cases, we construct sequences of initial conditions that

6
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approach optimal solutions locally maximizing the objective functionals. We observe

that initial conditions become less regular as we approach local maximizers. In general,

we found that optimal initial conditions in the Sobolev-Hilbert spaces produce larger

values of the objective functional compared to those found in the Lebesgue spaces. Ad-

ditionally, we established that local maximizers in the Sobolev-Hilbert spaces are also

local maximizers in the Lebesgue spaces.

The structure of this thesis is as follows: In Chapter 2, we will define key quantities

and state certain well-known conditional regularity conditions, namely, the enstrophy

and Ladyzhenskaya-Prodi-Serrin conditions. Additionally, we will introduce some a

priori bounds for the norms of the Navier-Stokes flows in Lebesgue spaces together

with their rates of change; in Chapter 3, we will formulate our optimization problems,

emphasizing how these formulations generalize those used by Kang & Protas; then, in

Chapter 4, we will discuss numerical approaches to solving optimization problems on

general Banach spaces, particularly, on Lebesgue spaces; two main methods are studied

here: the gradient descent method and the conjugate gradient method; it will be also

explained in detail how to evaluate such gradients in both Sobolev and Lebesgue spaces;

finally, in Chapter 5, we will present our main numerical results and compare them with

what was found in earlier studies.

7



Chapter 2

Conditional Regularity Results

In this chapter, we will first state relevant definitions and theorems [2] followed by a

summary of some conditional regularity results for the Navier-Stokes equations. Addi-

tionally, we will present some known bounds for the norms of solutions of the Navier-

Stokes equations in Lebesgue spaces. Furthermore, we identify growth rate regimes

of the Lq(Ω) norm of the velocity such that, if a solution of the Navier-Stokes system

(1.1) is to develop a singularity, the rate of growth of the norm must fall within these

regimes. For brevity, the space, and occasionally time, dependence of certain vector

fields is sometimes omitted when it does not cause confusion. Although ν was set

equal to 1 in the previous chapter, in the interest of generality in this section we derive

estimates in which explicit dependence on ν is retained.

2.1 Definitions of Key Quantities

Relevant definitions used in this thesis are presented below.

Definition 2.1 (Lebesgue space). We denote

Lq(Ω) :=
{
f : Ω→ R3 : f is measurable and ‖f‖Lq(Ω) <∞

}

8
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where q ∈ [1, ∞] and the norm is defined as

‖f‖Lq(Ω) :=

(∫

Ω

|f(x)|q dx
) 1

q

(2.1)

for 1 ≤ q <∞ and

‖f‖Lq(Ω) := ess supx∈Ω |f(x)|,

= inf {a ∈ R : µ ({x ∈ Ω : |f(x)| ≥ a}) = 0}
(2.2)

for q = ∞, in which | · | and µ denote the Euclidean vector norm and the Lebesgue

measure, respectively.

Definition 2.2. The Fourier expansion of a real-valued function f ∈ L1(Ω) has the

form

f(x) =
∑

k∈Z3

“fk e
2πik·x, (2.3)

where “fk ∈ C, k ∈ Z3, are the Fourier coefficients of f defined as“fk =

∫

Ω

e−2πik·xf(x) dx. (2.4)

Definition 2.3. For s ≥ 0, the Sobolev space Hs(Ω) is defined as

Hs (Ω) :=
{
f ∈ L2 (Ω) : ‖f‖2

Hs(Ω) <∞
}
,

where the norm of f is defined in terms of its Fourier coefficients as

‖f‖2
Hs(Ω) :=

∑

k∈Z3

[
1 + (2πk)2

]s|“fk|2, (2.5)

where k := |k|.

It is useful to define the seminorm ‖ · ‖Ḣs(Ω) as the expression

‖f‖2
Ḣs(Ω)

:=
∑

k∈Z3

(2πk)2s|“fk|2, (2.6)

for any f ∈ Hs(Ω).

9
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Definition 2.4 (Gevrey class). For σ, s > 0 given, we define the Gevrey class Gσ as

the set of all divergence-free functions f ∈ C∞(Ω) (the space of functions continuously

differentiable infinitely many times) such that they admit a Fourier series representation

(2.3), and
∑

k∈Z3

e2σ(2π k)2s |“fk|2 <∞.

We can think the Gevrey class as a bridge between C∞ and analytic functions, for

which the Fourier coefficients vanish exponentially fast as k →∞.

Definition 2.5 (Enstrophy). The enstrophy1 of a time-dependent velocity field u(t) is

defined as

E(u(t)) :=
1

2

∫

Ω

|ω(x, t)|2 dx =
1

2
‖ω(t)‖L2(Ω), (2.7)

where ω(x, t) := ∇x × u(x, t) is the vorticity of u.

For incompressible flows with periodic or no-slip boundary conditions, we have the

following useful identity [15]

‖ω(t)‖L2(Ω) =

∫

Ω

|ω(x, t)|2 dx

=

∫

Ω

(∇x × u(x, t)) · (∇x × u(x, t)) dx

=

∫

Ω

[∇x × (∇x × u(x, t))] · u(x, t) dx (integration by parts)

=

∫

Ω

[∇x (∇x · u(x, t))−∆u(x, t)] · u(x, t) dx (double cross-product

identity)

=

∫

Ω

−∆u(x, t) · u(x, t) dx (divergence-free condition)

=

∫

Ω

|∇x u(x, t)|2 dx (integration by parts)

=‖∇x u(t)‖L2(Ω),

1The enstrophy is often defined without the factor of 1/2. However, for consistency with earlier

studies belonging to this research program [5, 6, 7, 8, 58, 29], we choose to retain this factor here.

10
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where all the boundary terms resulting from integration by parts vanish due to the

boundary conditions on u(x, t). Then, we can also compute the enstrophy as

E(u(t)) =
1

2
‖∇x u(t)‖L2(Ω) =

1

2
‖u(t)‖Ḣ1(Ω). (2.8)

For simplicity, when there is no risk of confusion, we will denote E(t) = E(u(t)).

Definition 2.6 (Kinetic energy). The kinetic energy of a time-dependent flow u(t) is

defined as

K(u(t)) :=
1

2

∫

Ω

|u(x, t)|2 dx =
1

2
‖u(t)‖2

L2(Ω). (2.9)

At t = 0, we write K0 := K(u(0)) and E0 := E(u(0)).

Definition 2.7 (Dual Space). Let X be a Banach space. The dual space of X, X∗, is

the space of all continuous linear functionals from X to R.

In the case of the Lebesgue spaces, Lq(Ω), we have that (Lq(Ω))∗ is isometrically iso-

morphic to the space Lp(Ω), where 1
q

+ 1
p

= 1. Additionally, we use the notation

〈f, g〉(Lq(Ω))∗×Lq(Ω) = 〈f, g〉Lp(Ω)×Lq(Ω) :=

∫

Ω

f(x) g(x) dx (2.10)

to denote the duality pairing between the elements f ∈ Lp(Ω) and g ∈ Lq(Ω).

2.2 Some Key Results

In this section we state some well-known results that we use throughout this thesis

[2, 12, 17, 51].

Theorem 2.1 (Sobolev embedding). Let Ω ⊂ R3 be any smooth bounded domain or

Ω = R3 or Ω = T3. If 0 ≤ s < 3/2, then

Hs(Ω) ↪→ L6/(3−2s)(Ω), (2.11)

11
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i.e., the identity mapping i : Hs(Ω) → L6/(3−2s)(Ω) is a continuous operator, meaning

that there exists a constant C, which depends only on Ω, such that

‖u‖L6/(3−2s)(Ω) ≤ C‖u‖Hs(Ω), for all u ∈ Hs(Ω).

Lemma 2.1 (Grönwall). Let η : [0, T ] → [0,∞) be an absolutely continuous function

that satisfies the differential inequality

η′(t) ≤ φ(t)η(t) + ψ(t), (2.12)

where φ and ψ are non-negative integrable functions. Then

η(t) ≤ e
∫ t
0 φ(τ) dτ

[
η(0) +

∫ t

0

ψ(τ) dτ

]
for all t ∈ [0, T ]. (2.13)

Theorem 2.2 (Hölder’s inequality). Let Ω be a measurable set in Rn, either bounded

or unbounded. If f ∈ Lp(Ω) and g ∈ Lq(Ω), where

1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞,

then fg ∈ L1(Ω) and
∫

Ω

|f(x)g(x)| dx ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω). (2.14)

Theorem 2.3 (Riesz representation). Let H be a Hilbert space with an inner product

〈·, ·〉H . Given any continuous linear map ϕ : H → R, there exists a unique f ∈ H such

that

ϕ(g) = 〈f, g〉H ∀g ∈ H. (2.15)

2.3 Conditional Regularity Results

It is common to find conditions on quantities defined on solutions of the Navier–Stokes

system that will guarantee the smoothness of these solutions. While we do not know

whether these conditions are true, if they are satisfied for a given solution u, they

guarantee that u is smooth and satisfies the Navier-Stokes system in the classical sense.

Here we will mention some of the best results of this type.

12
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2.3.1 The Enstrophy Condition

The first result we will state is based on the enstrophy of the time-dependent velocity

field u(t) [20, 51].

Theorem 2.4 (Foias & Temam (1989)). Assume that there exist a Leray-Hopf weak

solution u(t) of the Navier-Stokes system (1.1) on [0, T ]. Then,

sup
0≤t≤T

E(u(t)) <∞ (2.16)

holds up to a certain time T > 0, if and only if u(t) satisfies the Navier-Stokes system

in the classical sense on [0, T ).

Foias & Temam (1989) presented the previous theorem as an implication; i.e., the

boundedness of the enstrophy implies that the solution is classical. However, the reverse

is also true since classical solutions of (1.1) are actually analytic functions on (0, T ]

[51]. This means that their Fourier coefficients decay to zero exponentially fast, which

in turns implies that the enstrophy is a bounded function.

Theorem 2.4 then implies that if a singularity is formed in a classical solution u(t)

of the Navier-Stokes system (1.1), there exists a time 0 < T ∗ <∞ where

lim
t→T ∗−

E(u(t)) =∞. (2.17)

Although it is not known whether relation (2.16) holds for all smooth initial data

and arbitrary large time windows, Leray-Hopf weak solutions (1.3) satisfy

∫ T

0

E(u(t)) dt <∞,

for all times T (see expression (2.22)).

A priori upper bounds on the rates of growth of quantities of interest, such as the

enstrophy, typically have the general form

dE
dt

< CEα, α > 1, and C > 0. (2.18)

13
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Hereafter, C will denote a generic positive constant whose numerical value may be

different from instance to instance. Under the assumption that system (1.1) admits a

classical solution on [0, T ], Lu & Doering [34] found a sharp bound for the instantaneous

rate of change of the enstrophy

dE
dt
≤ 27

8π4ν3
E3. (2.19)

By integrating both sides in time, it yields

E(u(t)) ≤ E0√
1− 27

4π4ν3E2
0 t
, (2.20)

which provides an a priori bound on the enstrophy valid only up to the time t∗ =

4π4/(27E2
0 ). Global bounds on the enstrophy and

∫ T
0
E2(u(t)) dt remain as open prob-

lems. However, when 1 < α ≤ 2 in (2.18), it is possible to prove that the enstrophy

is bounded for all times. To do that, we need a relation between the kinetic energy

and the enstrophy valid for the classical solutions of the 3D Navier-Stokes system (1.1),

which is obtained as

dK
dt

=
1

2

d

dt

∫

Ω

|u|2 dx

=

∫

Ω

u · ∂tu dx

=

∫

Ω

u · (− (u ·∇x) u−∇x p+ ν∆u) dx

=−
∫

Ω

u · [(u ·∇x) u] dx−
∫

Ω

u ·∇x p dx + ν

∫

Ω

u ·∆u dx,

14
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where
∫

Ω

u · [(u ·∇x) u] dx =

∫

Ω

ui uj∂jui dx (Einstein’s summation

convention)

=−
∫

Ω

ui∂j(ui uj) dx (integration by parts)

=−
∫

Ω

ui uj∂jui dx−
∫

Ω

u2
i∂juj dx (product rule)

=−
∫

Ω

ui uj∂jui dx−
∫

Ω

u2
i ∇x · u dx

=−
∫

Ω

ui uj∂jui dx (divergence-free vector field)

=−
∫

Ω

u · [(u ·∇x) u] dx,

so then ∫

Ω

u · [(u ·∇x) u] dx = 0,

and ∫

Ω

u ·∇x p =

∫

Ω

(∇x · u) p dx (integration by parts)

=0,

and

ν

∫

Ω

u ·∆u dx =− ν
∫

Ω

|∇xu| dx (integration by parts)

=− 2νE ,
where all the boundary terms that appear after integrating by parts vanish due to the

periodic boundary conditions on u(x, t). Therefore, we finally have

dK
dt

= −2νE . (2.21)

By integrating both sides with respect to time we obtain

∫ t

0

E(s) ds =
1

2ν
[K0 −K(u(t))] ≤ 1

2ν
K0. (2.22)

15
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For 1 < α ≤ 2, we can bound expression (2.18) as

dE
dt
≤ CEα ≤ CE2. (2.23)

Applying Grönwall’s Lemma 2.1 to (2.23), we provide a bound for the enstrophy valid

for all times when 1 < α ≤ 2,

E(t) ≤ E0 exp

[K0

2ν

]
. (2.24)

Relations (2.18), (2.19) and (2.24) suggest that for a blow-up to occur the rate of change

of the enstrophy must be sustained at a level proportional to Eα with 2 < α ≤ 3 for a

sufficiently long period of time.

Additionally, global existence of smooth solutions of (1.1) is known for “small” initial

data u0 [34, 8]. Observe that we can manipulate expression (2.19) in the following way,

dE
dt
≤ 27

8π4ν3
E3,

1

E2

dE
dt
≤ 27

8π4ν3
E ,

∫ E(t)

E0

1

E2
dE ≤ 27

8π4ν3

∫ t

0

E(s) ds.

Now, using (2.22), we get

1

E0

− 1

E(t)
≤ 27

(2π)4ν3
K0.

So then, we can bound maxt≥0 E(t) as

max
t≥0
E(t) ≤ (2π)4ν3E0

(2π)4ν3 − 27E0K0

. (2.25)

Inequality (2.25) implies that a uniform bound for the enstrophy is obtained if the

initial data satisfy the inequality

E0K0 ≤
(2π)4ν3

27
. (2.26)

Therefore, by the enstrophy condition (2.16), if inequality (2.26) holds, we have global

classical solutions.
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2.3.2 Ladyzhenskaya-Prodi-Serrin Conditions

Another well-known conditional regularity result is given by the family of the Ladyzhenskaya-

Prodi-Serrin (LPS) conditions [31, 45, 52].

Theorem 2.5. Let u(t) be a weak solution of the Navier-Stokes equations (1.1). Then

u ∈ Lp([0, T ];Lq(Ω)), 2/p+ 3/q = 1, q > 3. (2.27)

i.e. (∫ T

0

‖u(t)‖pLq(Ω) dt

) 1
p

<∞, (2.28)

if and only if u(t) is a smooth classical solution of (1.1).

It is worth mentioning that this condition also holds for 2/p + 3/q ≤ 1, but here we

will be focusing only on the borderline case corresponding to the equality. As regards

the limiting case with q = 3, the corresponding condition was established in [16] as

u ∈ L∞([0, T ];L3(Ω)) (2.29)

and a related blow-up criterion was recently obtained in [54]. Condition (2.27) implies

that if a singularity is formed in a classical solution u(t) of the Navier-Stokes system

(1.1) at a time T ∗ ∈ (0,∞), then necessarily

lim
t→T ∗

∫ t

0

‖u(τ)‖pLq(Ω) dτ =∞, 2/p+ 3/q = 1, q > 3. (2.30)

In a recent study, Kang & Protas examined the LPS condition for q = 4 and p = 8

[28]. They proposed an optimization formulation to search for initial data that could

potentially lead to the behavior given in (2.30). However, they did not find any evidence

for blowup.
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2.4 A Priori Bounds for d
dt‖u(t)‖Lq(Ω)

A well-known upper bound for the rate of growth of the Lq norm is given by Robinson

& Sadowski in [50]

d

dt
‖u(t)‖Lq(Ω) ≤ C‖u(t)‖

3(q−1)
q−3

Lq(Ω) = C‖u(t)‖p+1
Lq(Ω), q > 3, (2.31)

where C is a positive constant that might depend on q and 2/p+3/q = 1. Its derivation

can be found in Appendix A.

By simply integrating in time inequality (2.31), we get

‖u(t)‖Lq(Ω) ≤
1

(
‖u0‖−pLq(Ω) − pC t

)1/p
. (2.32)

Hence, we cannot guarantee boundedness of the Lq(Ω) norm beyond the time

t :=
1

pC ‖u0‖pLq(Ω)

. (2.33)

As regards the limiting case q = 3, it is known that [51].

1

3

d

dt
‖u(t)‖3

L3(Ω) ≤ C‖u(t)‖2
L3(Ω)‖u(t)‖3

L9(Ω),

which implies that

d

dt
‖u(t)‖L3(Ω) ≤ C‖u(t)‖3

L9(Ω)

≤ C‖u(t)‖L3(Ω)‖u(t)‖2
L∞(Ω) (by Hölder’s inequality (2.14)).

(2.34)

However, this inequality is not in the form of d
dt
Y ≤ CY α, which is the type of relation

we are interested in. It is also known that the integral of the solution norm ||u(t)||Lq(Ω)

raised to a certain power smaller than in (2.28) on the time interval [0, T ] is a bounded

quantity for Leray-Hopf weak solutions [50]. In this context, Kang & Protas [28] stated

the bounds explicitly,

∫ T

0

‖u(t)‖
4q

3(q−2)

Lq(Ω) dt ≤ CK
2q

3(q−2)

0 , 2 ≤ q ≤ 6, (2.35)
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and ∫ T

0

‖u(t)‖
q
q−3

Lq(Ω) dt ≤ CK3
0, q > 6. (2.36)

These bounds allow us to determine a growth rate of the solution norm in the space

Lq(Ω) ensuring that there is no blow-up in finite time:

d

dt
‖u(t)‖Lq(Ω) ≤





C‖u(t)‖
7q−6

3(q−2)

Lq(Ω) 2 ≤ q ≤ 6,

C‖u(t)‖
2q−3
q−3

Lq(Ω) q > 6.

(2.37)

To show this, let us first consider the case with 2 ≤ q ≤ 6. So then

d

dt
‖u(t)‖Lq(Ω) ≤ C‖u(t)‖

7q−6
3(q−2)

Lq(Ω) = C‖u(t)‖Lq(Ω)‖u(t)‖
4q

3(q−2)

Lq(Ω) .

By Grönwall’s lemma 2.1 and estimate (2.35), we can bound the Lq(Ω) norm of the

solution on any interval [0, T ], T > 0, by

‖u(t)‖Lq(Ω) ≤ ‖u0‖Lq(Ω) exp

(
C

∫ T

0

‖u(t)‖
4q

3(q−2)

Lq(Ω) dt

)

≤ ‖u0‖Lq(Ω)exp

(
CK

2q
3(q−2)

0

)
<∞.

Similarly, for q > 6, we have

d

dt
‖u(t)‖Lq(Ω) ≤ C‖u(t)‖

2q−3
q−3

Lq(Ω) = C‖u(t)‖Lq(Ω)‖u(t)‖
q
q−3

Lq(Ω).

Again, by Grönwall’s lemma 2.1, we can obtain a bound on the Lq(Ω) norm of the

solution on any interval [0, T ]

‖u(t)‖Lq(Ω) ≤ ‖u0‖Lq(Ω) exp
(
C
∫ T

0
‖u(t)‖

q
q−3

Lq(Ω)dt
)

≤ ‖u0‖Lq(Ω)exp (CK3
0) <∞.

Additionally, assuming that there is a finite-time blow-up of the solution to the Navier-

Stokes system (1.1) at t = T ∗, it is commonly supposed that ‖u(t)‖Lq(Ω) = C
(T ∗−t)α ,
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α > 0. Plugging this ansatz in expression (2.30), we then have that α p ≥ 1, and

d

dt
‖u(t)‖Lq(Ω) =

C

(T ∗ − t)1+α

= C

[
1

(T ∗ − t)α
] 1+α

α

= C‖u(t)‖βLq(Ω),

where

β =
1

α
+ 1 ≤ p+ 1 =

3(q − 1)

q − 3
.

We therefore conclude that, somewhat counter-intuitively, for a blow-up to occur in

Navier-Stokes flows, d
dt
‖u(t)‖Lq(Ω) cannot be arbitrarily large. In fact, it must be at

most proportional to ‖u(t)‖3(q−1)/(q−3)
Lq(Ω) as otherwise the integrand expression in (2.30)

would blow-up before the integral becomes unbounded. These results are summarized

and illustrated in Figure 2.1. Due to inequality (2.31), the rate of growth of the Lq(Ω)

norm of Navier-Stokes flows cannot be sustained over a long time at a level proportional

to the norm itself raised to a power given by the solid line in the figure. Additionally,

if the sustained rate of growth of the norm of Navier-Stokes flows is not larger than the

values given by dashed lines, which correspond to inequalities (2.37), the Lq(Ω) norm

will remain bounded for arbitrary times T and blow-up cannot occur. Therefore, to

trigger a singularity, the rate of change of the Lq(Ω) norm of the Navier-Stokes flows

must fall between the values given by the solid and dashed lines. Additionally those

rates must be sustained over a sufficient long time which tends to infinity as the growth

rate is reduced to the rates given in (2.37). The constant prefactors in inequalities

(2.31) and (2.37) are irrelevant in this analysis since we are interested in understanding

how fast the Lq(Ω) norm of extremal Navier-Stokes flows may grow over time windows

[0, T ]. These results will be used to inspect how “close” the extreme flows obtained by

solving the optimization problems in Section 5 come to producing a singularity.
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Figure 2.1: Dependence of the exponents in the upper bounds in inequalities (2.31)

(solid line) and (2.37) (dashed line) on q.

2.4.1 Gibbon’s Conditions

A more comprehensive family of conditional regularity results which generalizes both

the enstrophy (2.16) and LPS conditions (2.28) was introduced in [22].

Theorem 2.6 (Gibbon (2018)). For 1 ≤ m ≤ ∞ when n ≥ 1 and 3/2 ≤ m ≤ ∞ when

n = 0, if a Leray-Hopf weak solution u(x, t) of the 3D Navier-Stokes system (1.1) obeys

the following condition, for arbitrary large values of T > 0,

1

T

∫ T

0

‖∇n
x u‖2αn,m

L2m dt <∞, (2.38)

where

αn,m :=
2m

2m(n+ 1)− 3
,

then u is a strong (classical) solution of the 3D Navier-Stokes system on [0, T ].

We can regard Theorem 2.6 as a generalization of the LPS conditions (2.27)-(2.28), in

the sense that we can recover the latter as a special case by taking 2m = q and n = 0.
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2.5 Properties of Weak Solutions

In this section we present a series of well-known results concerning properties of the

Leray-Hopf weak solutions related to the possible blow-up and eventual regularity of the

associated classical solution(s). Under the assumption that singularities exist, Lemma

2.2 asserts the compactness of the set of all possible singularity times T ∗ of a Leray-

Hopf weak solution u(x, t), i.e., those times at which a Leray-Hopf weak solution is not

a classical solution [51].

Lemma 2.2. The set Υ of singular times T ∗ of a Leray-Hopf weak solution u(x, t) is

compact.

Additionally, Theorem 2.7 reveals a remarkable result. We now know that any Leray-

Hopf weak solution eventually becomes smooth.

Theorem 2.7. Any global-in-time Leray–Hopf weak solution u(x, t) of (1.1) is even-

tually a strong solution.

The proofs of Lemma 2.2 and Theorem 2.7 can be found in [51]. Furthermore, expression

(2.25) shows that a singularity cannot form too early, and it is also known that if a

singularity has not formed before certain time, the solution will not blow up [42]. This

creates a time window where the smoothness of solutions of the Navier-Stokes (1.1) is

uncertain. Figure 2.2 schematically summarizes the results mentioned in this section.
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t

E(t)

T ∗1 T ∗2 ζ

t

K(t)

T ∗1 T ∗2 ζ

Figure 2.2: (Top) Hypothetical time evolution of the enstrophy, where a singularity

occurs at t = T ∗1 . After that, uniqueness can no longer be guaranteed and several

solutions may emerge. Some of the new solutions might remain smooth while other

might blow up again at t = T ∗2 . However, there exits a time ζ after which every Leray-

Hopf weak solution becomes a strong solution. (Bottom) The corresponding evolution

of the kinematic energy of the solutions presented in the top figure.
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Chapter 3

Optimization Formulations

In this chapter we will formulate a number of optimization problems we will consider in

this study. These problems are motivated by the conditional regularity results studied in

Chapter 2 and aim at finding optimal initial conditions u0 that will produce “extreme”

flows, in the sense of maximizing the different regularity indicators involved in the

conditional regularity results. The goal is to see whether a singularity might occur in

such flows. With the domain Ω and the viscosity ν fixed, each problem is defined by

three parameters, namely, the function space where the initial data is sought, the size

of the optimal initial data and the length of the time window.

3.1 Motivation

This work is motivated by the study conducted by Kang & Protas in [28]. They

investigated the following objective functional with q = 4,

Φq
T (u0) :=

1

T

∫ T

0

‖u(τ)‖
2q
q−3

Lq(Ω) dτ, (3.1)

and numerically found local maximizers of Problem 0 defined below for a range of

parameter values. Note that expression (3.1) coincides with the integral expression

(2.28) from the family of the LPS conditions in Theorem 2.5, except for the prefactor
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T−1 which ensures expression (3.1) remains bounded even if the integral grows without

bound when T tends to infinity.

Problem 0. Given B, T ∈ R+ := (0,∞), and the objective functional Φ4
T (u0) from

equation (3.1), find

ũ0;B,T = arg max
u0∈MB

Φ4
T (u0), where (3.2)

MB :=

{
u0 ∈ H3/4(Ω) : ∇x · u0 = 0,

∫

Ω

u0 dx = 0, ‖u0‖L4(Ω) = B

}
. (3.3)

The space H3/4(Ω) is the largest Hilbert-Sobolev space embedded in the Lebesgue space

L4(Ω). In this thesis, we will extend this optimization formulation to other Lebesgue

spaces Lq(Ω) with q ≥ 3. An explanation of how to obtain the corresponding Hilbert-

Sobolev space Hs(Ω) from a given Lebesgue space Lq(Ω) is provided in the next section.

3.2 Choice of the Lebesgue and Sobolev Spaces

It will be necessary to correctly define the largest Sobolev space embedded in a given

Lebesgue space Lq(Ω), so that we can deduce the gradient of the objective functional us-

ing standard techniques relying on Theorem 2.3 (Riesz representation). From Theorem

2.1 (Sobolev embedding), we know that

Hs(Ω) ↪→ Lq(Ω), if s ≥ 3

2
− 3

q
. (3.4)

Therefore, the largest Sobolev space Hs(Ω) embedded in the Lebesgue space Lq(Ω)

is obtained when s = 3/2 − 3/q. Figure 3.1 shows the values of the parameter s

corresponding to different values of q. The solid symbols in Figure 3.1(a) represent the

values of q that we will consider in this study in addition to the limiting case q = 3.

The reason behind these choices is that those are the only cases where p and q are

simultaneously integers, which will facilitate interpretation of the results. The symbols

in Figure 3.1(b) represent the corresponding values of s that make the space Hs(Ω) the

largest Sobolev space embedded in the Lebesgue space Lq(Ω).
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Figure 3.1: (a) The black solid line represents all the possible choices of p and q for

which the LPS condition (2.27) holds. The solid symbols represent the situations where

p and q are both integer numbers. Additionally, the limiting case q = 3 will also be

considered. The dashed line is the horizontal asymptote given by expression (2.27). (b)

The black solid line represents the index of the largest Sobolev space Hs(Ω) embedded

in the Lebesgue space Lq(Ω) for a given value of q. The solid symbols represent the

cases that are analyzed in detail in this study. The dashed line represents the limiting

value of expression (3.4) when q tends to infinity.

3.3 Optimization Problems

A natural extension of Problem 0 to any Lebesgue space Lq(Ω) with q > 3 is

Problem 1. Given B, T ∈ R+, q > 3, s = 3/2 − 3/q and the objective functional

Φq
T (u0) from equation (3.1), find

ũ0;B,T = arg max
u0∈MB

Φq
T (u0), where (3.5)

MB :=

{
u0 ∈ Hs(Ω) : ∇x · u0 = 0,

∫

Ω

u0 dx = 0, ‖u0‖Lq(Ω) = B

}
. (3.6)

The space Hs(Ω) with s = 3/2− 3/q is the largest Hilbert-Sobolev space embedded in
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the space Lq(Ω) (see Section 3.2). We intentionally denoted the manifoldMB with the

same symbol as in Problem 0 since they coincide for q = 4.

Notice that Problem 1 is defined on the Sobolev space Hs(Ω), which is endowed

with an inner product structure, that one can use when constructing a solution to the

optimization problem.

To generalize the work of Kang & Protas [28], we will solve a further extension of

Problem 1 where the optimal initial condition u0 is sought in the Lebesgue space Lq(Ω),

rather than in Hs(Ω) with 1/2 ≤ s < 3/2, and we will do so for different values of q

shown in Figure 3.1(a). We will therefore solve the following problem

Problem 2. Given B, T ∈ R+, q > 3 and the objective functional Φq
T (u0) from equation

(3.1), find

ũ0;B,T = arg max
u0∈LB

Φq
T (u0), where (3.7)

LB :=

{
u0 ∈ Lq(Ω) : ∇x · u0 = 0,

∫

Ω

u0 dx = 0, ‖u0‖Lq(Ω) = B

}
. (3.8)

Notice that this modification of the functional setting makes Problem 2 considerably

harder than Problem 1 from a numerical point of view due to the lack of the Hilbert

structure in the Lebesgue spaces Lq(Ω), q > 3. In this thesis, we will first consider

Problems 1 and 2 for integer values of q equal to 4, 5 and 9 since they also produce

integer values in p (see Figure 3.1(a)). Another formulation that we are interested in is

the limiting case q = 3. In this case, as was mentioned in Section 2.3.2, in order for the

solution to remain smooth, we need to ensure the solution belongs to L∞([0, T ];L3(Ω)),

i.e.,

sup
0≤t≤T

‖u(t)‖L3(Ω) <∞.

Due to the nondifferentiability of the supremum function involved in the definition of

the L∞(Ω) norm, the formulations we consider here are different from Problems 1 and

2. Now, we consider the following objective functional
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ΨT (u0) := ‖u(T )‖3
L3(Ω) =

∫

Ω

|u(x, T )|3dx, for some T > 0, (3.9)

and pose the following two problems.

Problem 3. Given B, T ∈ R+ and the objective functional ΨT (u0) from equation (3.9),

find

ũ0;B,T = arg max
u0∈NB

ΨT (u0), where (3.10)

NB :=

{
u0 ∈ H1/2(Ω) : ∇x · u0 = 0,

∫

Ω

u0 dx = 0, ‖u0‖L3(Ω) = B

}
. (3.11)

Problem 4. Given B, T ∈ R+ and the objective functional ΨT (u0) from equation (3.9),

find

ũ0;B,T = arg max
u0∈SB

ΨT (u0), where (3.12)

SB :=

{
u0 ∈ L3(Ω) : ∇x · u0 = 0,

∫

Ω

u0 dx = 0, ‖u0‖L3(Ω) = B

}
. (3.13)

Problems 3 and 4 are analogous to Problems 1 and 2, but, this time, Problems 3 and 4

are associated with the objective functional (3.9) in the Sobolev and Lebesgue spaces,

respectively. An even more general formulation is possible motivated by the regularity

condition (2.38) and based on the objective functional

ϕn,q
T (u0) :=

1

T

∫ T

0

‖∇n
x u(τ)‖

2q
q(n+1)−3

Lq(Ω) dτ, (3.14)

where n, q ≥ 1. We thus pose our last optimization problem.

Problem 5. Given B, T ∈ R+, and n, q > 1 and the objective functional ϕq
T (u0) from

equation (3.14), find

ũ0;B,T = arg max
u0∈IB

ϕq
T (u0), where

IB :=

{
u0 ∈ W n,q(Ω) : ∇x · u0 = 0,

∫

Ω

u0 dx = 0, ‖∇n
x u0‖Lq(Ω) = B

}
.

However, no computations are performed based on this problem.
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Chapter 4

Solution Approach

In this chapter, we will briefly discuss the numerical approach to solve Problems 1, 2, 3,

and 4. First, we will explain in detail how to discretize the gradient flow used to solve

these problems, followed by an innovative way to compute the gradient in the Sobolev

space Hs(Ω) and the Lebesgue Lq(Ω) space. Finally, we will explain how to solve

the adjoint systems that naturally arise in the solution of this type of optimization

problem. We will close this chapter by discussing the conjugate Lebesgue gradient

method in Hilbert and Banach spaces.

4.1 The Steepest Ascent Method

Assume we want to solve the following unconstrained optimization problem

ũ = arg max
u∈X

J(u), (4.1)

where X is a Banach space and J : X → R is an objective functional. The steepest

ascent method [41] approximates the optimal state ũ as

ũ = lim
n→∞

un,
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where the sequence of {un}n∈N is computed as

un+1 = un + αn∇J(un), n = 0, 1, 2, ... (4.2)

with u0 being an initial guess, ∇J(un) is the gradient of the objective functional J

evaluated at the current state un, and αn > 0 is the length of the step along the

direction of the negative gradient. The parameter αn is determined as the solution of

a line-search problem

αn = arg min
β>0

J (un + β∇J(un)) , (4.3)

which can be solved using standard techniques, such as Brent’s method [41]. The idea

behind of this approach is that locally optimal solutions of (4.1) are sought along the

direction in which J increases, namely ∇J.

4.2 Riemannian Optimization

We now describe how to solve Problems 1–4 for given values of B and T . We adapted

the algorithm used by Kang & Protas in [28] with ideas taken from [46] in regard to

how to compute gradients in Lebesgue spaces. This algorithm is an adaptation of the

“optimize-then-discretize” approach [24] in which a gradient method is first formulated

in the infinite-dimensional (continuous) setting and only then the resulting equations

and expressions are discretized for the purpose of numerical solution. A similar approach

was used to solve the problem of determining the maximum growth of enstrophy in [29].

This time the motivation came from the enstrophy condition given in Theorem 2.4, and

the corresponding 1D problem studied earlier in [5].

Problem 1 is Riemannian in the sense that local maximizers ũ0;B,T belong to a

constraint manifoldMB [1]. To locally characterize this manifold, we define the tangent

space TzMB at a point z ∈MB. To do so, the fixed-norm constraint, i.e., ‖u0‖Lq(Ω) =

B, can be expressed in terms of the function Gq : Hs(Ω)→ R+, where Gq := ‖z‖qLq(Ω)
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and Hs(Ω) is the largest Hilbert space embedded in Lq(Ω), as discussed in Section 3.2

with the value of s given by Theorem 2.1. Then, the subspace tangent to the manifold

MB at z and defined in the space Hs(Ω) by the relation Gq(z) = B is given by

TzMB :=

{
v ∈ Hs(Ω) : ∇x · v = 0,

∫

Ω

v dx = 0, 〈∇Gq(z),v〉Hs(Ω) = 0

}
, (4.4)

where
〈
f ,g
〉
Hs

:=
∫

Ω
f ·g dx+`2s

∫
Ω

∆s/2f ·∆s/2g dx is the inner product in Hs(Ω), with

` > 0 being an adjustable parameter, and ∇Gq(z) being the gradient of the function

Gq at z. A local maximizer ũ0;B,T will then be found by constructing a sequence of

divergence-free and zero-mean vector fields with a fixed Lq(Ω) norm, {u(n)
0;B,T}n∈N, such

that

ũ0;B,T = lim
n→∞

u
(n)
0;B,T .

This sequence is defined using the following iterative procedure representing a dis-

cretization of a gradient flow projected on the manifold MB

u
(n+1)
0;B,T = RMB

(
u

(n)
0;B,T + τnPTnMB

∇Hs

Φq
T

(
u

(n)
0;B,T

) )
,

u
(1)
0;B,T = u0.

(4.5)

Here u
(n)
0;B,T is an approximation of the maximizer obtained at the n-th iteration, u0 is

an initial guess, PTnMB
: Lq(Ω) → TnMB := T

u
(n)
0;B,T
MB is an operator representing

projection onto the tangent subspace (4.4) at the nth iteration, τn is the step size,

∇Hs

Φq
T is the gradient of the functional Φq

T in the Sobolev space Hs(Ω), whereas

RMB
: TnMB →MB is a retraction from the tangent space to the constraint manifold

[1]. Precise definitions of PTnMB
, τn and RMB

will be given in Section 4.5, while the

definition of ∇Hs

Φq
T will be stated in Section 4.3. The approach to solution of Problem

3 is analogous, the only difference being that now one needs to consider the objective

functional (3.9), so these steps are omitted.

As regards the discretization of the gradient flow in Problem 2, the setting is quite

similar to Problem 1, with the difference that now we will solve the optimization problem
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in the Banach space Lq(Ω), which lacks Hilbert structure. This time the maximizer

ũ0;B,T belongs to a constraint manifold LB. To locally characterize this manifold, we

define the tangent space TzLB at a point z ∈ LB. In a similar way as before, the fixed-

norm constraint is expressed in terms of the function Fq : Lq(Ω)→ R+, Fq := ‖z‖qLq(Ω)

which is now defined on the Lebesgue space Lq(Ω). Then, the subspace tangent to the

manifold LB at z ∈ Lq(Ω) defined by the relation Fq(z) = B is given by

TzLB :=

{
v ∈ Lq(Ω) : ∇x · v = 0,

∫

Ω

v dx = 0, 〈∇Fq(z),v〉(Lq(Ω))∗×Lq(Ω) = 0

}
, (4.6)

where (Lq(Ω))∗ is the dual space of Lq(Ω), which is identified with Lp(Ω) with 1
p

+ 1
q

= 1

[2]. This definition of the tangent space at a point z ∈ LB is a natural extension of this

concept from a Hilbert space to a general Banach space with the inner product replaced

by a duality pairing (2.10). So then, the maximizer ũ0;B,T is found by constructing

a sequence of divergence free and zero-mean vector fields with a fixed Lq(Ω)-norm,

{u(n)
0;B,T}n∈N, such that

ũ0;B,T = lim
n→∞

u
(n)
0;B,T ,

and the iterative procedure representing the discretization of the gradient flow projected

on the manifold LB is

u
(n+1)
0;B,T = RLB

(
u

(n)
0;B,T + τnPTnLB∇LqΦq

T

(
u

(n)
0;B,T

) )
,

u
(1)
0;B,T = u0,

(4.7)

where u
(n)
0;B,T is an approximation of the maximizer obtained at the n-th iteration, u0

is a initial guess, PTnLB : Lq(Ω) → TnLB := T
u

(n)
0;B,T
LB is the operator representing

projection onto the tangent subspace (4.4) at the nth iteration, τn is the step size,

∇LqΦq
T is the gradient of the functional Φq

T in the Lebesgue space Lq(Ω) whereas RLB :

TnLB → LB is a retraction from the tangent space to the constraint manifold [1]. The

approach to solution of Problem 4 is analogous, the only difference being that now one

needs to consider the objective functional (3.9), so these steps are also omitted.
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4.3 Evaluation of the Gradient

A key element of the iterative procedures (4.5) and (4.7) is the evaluation of the gradi-

ents ∇Hs

Φq
T and ∇LqΦq

T of the objective functional Φq
T , cf. (3.1) with q > 3. The first

step in determining these gradients is to find the gradient of (3.1) with respect to the

L2 topology. Then, it will be possible to find the gradient in Hilbert-Sobolev spaces Hs

and other Lebesgue spaces Lq.

4.3.1 Gradient in L2

Let us consider the Gâteaux (directional) differential (Φq
T )′(u0; ·) : L2(Ω) → R of the

objective functional Φq
T defined as

(Φq
T )′(u0; u′0) := lim

ε→0

Φq
T (u0 + εu′0)− Φq

T

ε
(4.8)

for some arbitrary perturbation u′0 ∈ L2(Ω). The gradient, ∇L2

Φq
T , can then be ex-

tracted from the Gâteaux differential (Φq
T )′(u0; u′0) as follows. Note that for a fixed

u0, (Φq
T )′(u0; u′0) is a bounded linear functional of the second argument u′0. Then, by

Theorem 2.3 (Riesz representation), we can write it as

(Φq
T )′(u0; u′0) =

〈
∇L2

Φq
T ,u

′
0

〉
L2(Ω)

. (4.9)

Given the definition of the objective functional in (3.1), its Gâteaux differential can be

expressed as

(Φq
T )′(u0; u′0) =

2q

(q − 3)T

∫ T

0

(
‖u(t)‖

q(5−q)
q−3

Lq(Ω)

∫

Ω

|u(x, t)|q−2u(x, t) · u′(x, t)dx
)
dt,

(4.10)

where the perturbation field u′ = u′(x, t) is a solution of the Navier-Stokes system
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linearized around the trajectory corresponding to the initial data u0 [24], i.e.,

L


u′

p′


 :=


∂tu

′ + u′ ·∇x u + u ·∇x u′ + ∇x p
′ − ν∆u′

∇x · u′


 =


0

0


 , (4.11a)

u′(0) =u′0, (4.11b)

which is subject to periodic boundary conditions and where p′ is the perturbation to

the pressure.

Observe that expression (4.10) for the Gâteaux differential is not in the Riesz form

(4.9), because the perturbation u′0 of the initial data does not appear in it explicitly as

a factor; instead, it appears in the initial condition (4.11b) of the perturbation system.

In order to transform the Gâteaux differential to the required Riesz form (4.9), we

introduce the adjoint states u∗ : Ω × [0, T ] → R3 and p∗ : Ω × [0, T ] → R, and the

following duality-pairing relation


L


u′

p′


 ,


u∗

p∗




 :=

∫ T

0

∫

Ω

L


u′

p′


 ·


u∗

p∗


 dx dt =

(ΦqT )′(u0;u′0)︷ ︸︸ ︷


u′

p′


 ,L∗


u∗

p∗




+

∫

Ω

u′(x, T ) · u∗(x, T ) dx−
∫

Ω

u′(x, 0) · u∗(x, 0) dx = 0,

(4.12)

where “·” in the first integrand expression denotes the Euclidean dot product evaluated

at (x, t). Performing integration by parts with respect to both space and time allows

us to define the following adjoint system

L∗

u∗

p∗


 :=


−∂tu

∗ −
[
∇x u∗ + (∇x u∗)T

]
u−∇x p

∗ − ν∆u∗

−∇x · u∗


 =


f

0


 , (4.13a)

f(x, t) :=
2q

(q − 3)T
‖u(t)‖

q(5−q)
q−3

Lq(Ω) |u(x, t)|q−2u(x, t), x ∈ Ω, t ∈ [0, T ], (4.13b)

u∗(T ) =0 (4.13c)

which is also subject to periodic boundary conditions. In identity (4.12) all boundary

terms that appear as a result of integrating by parts with respect to the space variable
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vanish due to the periodic boundary conditions. The term
∫

Ω
u′(x, T ) · u∗(x, T ) dx

resulting from integration by parts with respect to time vanishes because of the choice

of the terminal condition (4.13c), and with the choice of the source term (4.13b), identity

(4.12) implies

(Φq
T )′(u0; u′0) =

∫

Ω

u′0(x) · u∗(x, 0) dx =
〈
u′0,u

∗(0)
〉
L2(Ω)

. (4.14)

Therefore, we obtain the L2(Ω) gradient from (4.9) and (4.14) as

∇L2

Φq
T = u∗(0). (4.15)

4.3.2 Gradient in the Sobolev Space Hs

Once the gradient over the Hilbert space L2(Ω) is computed, we can then calculate the

gradient over more regular Hilbert spaces, namely, the Sobolev spaces Hs(Ω), s > 0.

First, we proceed to identify the Gâteaux differential with the inner product in Hs(Ω)

in light of Theorem 2.3 (Riesz representation),

(Φq
T )′(u0; u′0) =

〈
∇Hs

Φq
T ,u

′
0

〉
Hs(Ω)

, (4.16)

where ∇Hs

Φq
T is the Riesz representer of the gradient in Hs(Ω). Then, recalling that

that perturbations u′0 are arbitrary and expressions (4.9) and (4.16) are equivalent,

integrating by parts over the periodic domain Ω leads us to the following fractional

elliptic boundary-value problem [48]

[
Id− `2s∆s

]∇Hs

Φq
T = ∇L2

Φq
T in Ω, (4.17)

subject to periodic boundary conditions. The solution of equation (4.17) is the gradient

in Hs(Ω) and it can be easily found in Fourier space. More precisely, after taking the

Fourier transform, we obtain

[
1 + `2s|k|s

] [ÿ�∇Hs
Φq
T

]
k

=
[
∇L2

Φq
T

]
k
, k ∈ Z3 \ 0, (4.18a)

[ÿ�∇Hs
Φq
T

]
0

= 0, (4.18b)
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where
[
f̂
]
k
∈ C3 represents the Fourier coefficients of the vector field f with wavenumber

k. As discussed by Protas et al. [48, 28], there are important observations to take into

account at this stage. First, the gradients in Hs can be understood as a result of a

low-pass filtering applied to the L2 gradients where the parameter ` acts as the cutoff

length scale. Second, the Sobolev gradients obtained with different 0 < ` < ∞ are

equivalent in the sense of norm equivalence [9], however, the value of ` tends to have

a significant effect on the rate of convergence of gradient iterations in the numerical

solution of Problems 1 and 2. Finally, note that equation (4.18a)–(4.18b) preserves the

divergence-free property, i.e., if the ∇L2

Φq
T is divergence-free, then so is the ∇Hs

Φq
T

and the L2 gradient is divergence-free by construction cf. (4.13a) and (4.15).

4.3.3 Gradient in the Lebesgue Space Lq

To compute the gradient in a Lq(Ω) space for q ≥ 3 (in fact, the approach discussed

below also works for q > 1, though the values q < 3 will not be considered here), we

follow the method proposed in [35, 46, 40]. This gradient is, in fact, a metric gradient

[23], which is a generalization of the notion of the gradient to normed spaces. It uses

the fact that the gradient is the element that maximizes the directional derivative of

the objective functional under certain constraints. In the absence of the Hilbert-space

structure represented by an inner product and Theorem 2.3 (Riesz representation),

we can then define the gradient of the objective functional (3.1) as a solution of the

following optimization problem subject to the constraints inherited from Problems 1

and 2, which are the divergence-free and a fixed Lq norm properties,

∇LqΦq
T = arg max

‖Θ‖Lq(Ω)=1,∇x·Θ=0

〈
∇L2

Φq
T ,Θ

〉
(Lq(Ω))∗×Lq(Ω)

. (4.19)

Optimization problem (4.19) can be converted to an unconstrained form by introducing

the Lagrange multipliers µ ∈ R and η ∈ Lq(Ω) associated with each of these two
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constraints. We thus get

∇LqΦq
T = arg min

µ∈R, η∈Lq(Ω)

arg max
Θ∈Lq(Ω)

[〈
∇L2

Φq
T ,Θ

〉
(Lq(Ω))∗×Lq(Ω)

+

+
µ

q

(
‖Θ‖qLq(Ω) − 1

)
+

∫

Ω

η (∇x ·Θ) dx

]
, (4.20)

where the expression in the bracket can be interpreted as the Lagrangian corresponding

to the right-hand side of (4.19). After performing integration by parts, it becomes

∇LqΦq
T = arg min

µ∈R, η∈Lq(Ω)

arg max
Θ∈Lq(Ω)

∫

Ω

(
u∗(0) ·Θ +

µ

q
|Θ|q − µ

q|Ω| −Θ ·∇x η

)
dx. (4.21)

Now, using the optimality condition requiring the Gâteaux differential of (4.21) with

respect to Θ, µ and η to vanish, we obtain the following expressions

∫

Ω

(
u∗(0) + µ∇LqΦq

T |∇LqΦq
T |q−2 −∇x η

)
·Θ′ dx = 0, ∀ Θ′ ∈ Lq(Ω), (4.22a)

∫

Ω

|Θ|q dx = 1, ∀ Θ ∈ Lq(Ω), (4.22b)
∫

Ω

(∇x ·Θ) η dx = 0, ∀ η ∈ Lq(Ω). (4.22c)

Conditions (4.22b) and (4.22c) trivially say that solutions of the optimization problem

(4.19) have a fixed unit Lq(Ω) norm and are divergence free. Since Θ′ is arbitrary,

condition (4.22a) is equivalent to the following relation

∇LqΦq
T |∇LqΦq

T |q−2 =
1

µ
(−u∗(0) + ∇x η) , x ∈ Ω. (4.23)

As mentioned by Protas in [46], expression (4.23) is similar to the Helmholtz-Weyl

decomposition of vector fields in Lq(Ω) [51], where a vector field in Lq(Ω) can be written

as the sum of a divergence-free vector field and the gradient of a certain potential. So

then, noticing that both u∗(0) and ∇LqΦq
T are divergence-free vector fields, applying

the divergence operator to (4.23), we obtain an elliptic boundary-value problem which

can be used to determine η

∆η = µ
(∇x |∇LqΦq

T |q−2
)
·∇LqΦq

T , x ∈ Ω (4.24)
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which is subject to periodic boundary conditions. Therefore, to extract the gradient

in the space Lq(Ω), it is necessary to solve the coupled non-linear system (4.23)-(4.24)

subject to the normalization condition ‖∇LqΦq
T‖Lq(Ω) = 1. In other words, we need to

solve the following non-linear system

∇LqΦq
T |∇LqΦq

T |q−2 =
1

µ
(−u∗(0) + ∇x η) , x ∈ Ω, (4.25a)

∆η = µ
(∇x |∇LqΦq

T |q−2
)
·∇LqΦq

T , x ∈ Ω, (4.25b)

‖∇LqΦq
T‖Lq(Ω) = 1. (4.25c)

To find a solution of system (4.25), we proceed with an iterative splitting method as

in [48], where at each iteration we first apply Newton’s method with globalization to

equation (4.25a) while keeping η fixed and then we apply a standard Poisson solver to

equation (4.25b). Note that when q = 2, system (4.25) becomes

∇L2

Φq
T =

1

µ
(−u∗(0) + ∇x η) , x ∈ Ω (4.26a)

∆η = 0, x ∈ Ω. (4.26b)

Since in this case η is a harmonic and periodic function defined on Ω, then η is bounded.

Hence η must be a constant function by Liouville’s theorem. Therefore, equation (4.26a)

becomes

∇L2

Φq
T = − 1

µ
u∗(0),

which, up to normalization, is the same expression as in (4.15).

4.4 Limiting Case q = 3

For the limiting case q = 3, let us recall that the objective functional is, cf. (3.9),

ΨT (u0) := ‖u(T )‖3
L3(Ω) =

∫

Ω

|u(x, T )|3dx.
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It is therefore necessary to reformulate the adjoint problem, although most of the the

steps are quite similar to the case q > 3. The Gâteaux differential of (3.9) is

(ΨT )′(u0; u′0) = 3

∫

Ω

|u(x, T )|u(x, T ) · u′dx, (4.27)

where the perturbation field u′ = u′(x, t) is also a solution of the linearized Navier-

Stokes system around the trajectory corresponding to the initial data u0 (4.11). Since

the expression in (4.27) for the Gâteaux differential is not in the Riesz form (4.9), we

again need to introduce the adjoint states u∗ and p∗ as in (4.12) and define the new

adjoint system as

L∗

u∗

p∗


 :=


−∂tu

∗ −
[
∇x u∗ + (∇x u∗)T

]
u−∇x p

∗ − ν∆u∗

−∇x · u∗


 =


0

0


 , (4.28a)

u∗(x, T ) =3|u(x, T )|u(x, T ), x ∈ Ω, t ∈ [0, T ]. (4.28b)

This allows us to compute the L2 gradient of the objective functional (3.9) in the same

way as in (4.15). Once the gradient in L2 is computed, we can now solve system (4.25)

to obtain ∇L3

ΨT .

4.5 Projection, Retraction and Arc-Maximization

We use equation (4.5) to approximate a solution of Problems 1 and 3, where the projec-

tion operator PTnMB
: Hs(Ω)→ TnMB and the retraction operator RMB

: TnMB →
MB are defined as in [28],

PTnMB
z := z−

〈
z,∇Gq

(
u

(n)
0;B,T

)〉
Hs(Ω)〈

∇Fq

(
u

(n)
0;B,T

)
,∇Gq

(
u

(n)
0;B,T

)〉

Hs(Ω)

∇Gq

(
u

(n)
0;B,T

)
, (4.29)

and

RMB
(z) :=

B

‖z‖Lq(Ω)

z, for all z ∈ TnMB, (4.30)
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TnLB

∇ΦqT

PTnLB
∇ΦqT

PTnLB

RLB

LB

u
(n+1)
0;B,T

u
(n)
0;B,T

Figure 4.1: Schematic representation of how the projection operator (4.32) and the

retraction operator (4.33) are used at each step in the iterations (4.7). The figure was

taken from [28].

where 〈∇Gq(z), z′〉Hs(Ω) = 〈q |z|q−2z, z′〉Ḣs(Ω) , for all z′ ∈ Hs(Ω). As regards Problems

2 and 4, the tangent space to the constraint manifold LB is defined using the function

Fq(z) := ‖z‖qLq(Ω). Since Fq(z) = B for all z ∈ LB, we then have that

〈∇Fq(z), z′〉(Lq(Ω))∗×Lq(Ω) = 〈q |z|q−2z, z′〉(Lq(Ω))∗×Lq(Ω) = 0, (4.31)

for all z′ ∈ Lq(Ω). Note that given the nonlinearity of the term |z|q−2z, the element

∇FLq(z) does not, in general, satisfy the divergence-free and zero-mean conditions,

even if they are satisfied by z. Thus, the projection PTnLB : Lq(Ω)→ TnLB, is defined

in a similar way to what was done in [28], namely,

PTnLBz := z−

〈
∇Fq

(
u

(n)
0;B,T

)
, z
〉

(Lq(Ω))∗×Lq(Ω)

∫
Ω
∇Fq

(
u

(n)
0;B,T

)
·∇Fq

(
u

(n)
0;B,T

)
dx

∇Fq

(
u

(n)
0;B,T

)
, (4.32)

for all z ∈ Lq(Ω), which preserves the divergence-free and zero-mean properties of the

argument. Observe that in this case, inner products have been replaced by duality
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parings (2.10) due to the lack of Hilbert structure in Lebesgue spaces. The retraction

operator RLB : TnLB → LB is defined as the normalization [1]

RLB(z) :=
B

‖z‖Lq(Ω)

z, for all z ∈ TnLB. (4.33)

The step size τn in the iterations (4.5) and (4.7) is computed by solving the problems

τn = arg max
τ>0

Φq
T

[
RMB

(
u

(n)
0;S,T + τPTnMB

∇Hs

Φq
T

(
u

(n)
0;B,T

) )]
. (4.34)

and

τn = arg max
τ>0

Φq
T

[
RLB

(
u

(n)
0;S,T + τPTnLB∇LqΦq

T

(
u

(n)
0;B,T

) )]
, (4.35)

respectively. They are solved using a variant of Brent’s derivative-free algorithm [41, 44].

Equations (4.34) and (4.35) can be interpreted as a modification of the standard line-

search problem with maximization performed following an arc (a geodesic in the limit

of infinitesimal step sizes) lying on the constraint manifold LB, rather than along a

straight line.

Computations involved in the discrete gradient flow (4.7) applied to solve Problem

2 are summarized as Algorithm 1.
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Algorithm 1 Solution of Problem 2 for fixed T and B.

Input:

B - size of the initial data.

T - time window.

u0 - initial guess.

ε - tolerance in the solution of optimization problem 2 via iterations (4.7).

Nmax - maximum number of iterations allowed in (4.7).

Output:

Optimal initial data ũ0;B,T ∈ LB.
u

(0)
0;B,T = u0

Compute Φq
T (u0)

n = 0

repeat

{———————— Optimization Iterations (4.7) —————————–}
Solve the Navier-Stokes system with initial condition u

(n)
0;B,T , see equation (1.1)

Solve the adjoint system to obtain u∗ and p∗, see equation (4.13)

Compute the L2 gradient ∇L2Φq
T

(
u

(n)
0;B,T

)
, see equation (4.15)

Compute the Lebesgue gradient ∇LqΦq
T

(
u

(n)
0;B,T

)
, see system (4.25)

Compute the optimal step size τn, see equation (4.35)

Set u
(n+1)
0;B,T = RLB

(
u

(n)
0;B,T + τnPTnLB∇LqΦq

T

(
u

(n)
0;B,T

) )

Evaluate the termination condition relative change =
ΦqT

(
u

(n+1)
0;B,T

)
−ΦqT

(
u

(n)
0;B,T

)
ΦqT

(
u

(n)
0;B,T

)
Set n = n+ 1

until relative change < ε or n > Nmax

ũ0;B,T = u
(n+1)
0;B,T
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4.6 Conjugate Gradient Method

In this section, we will describe the conjugate gradient method which is an accelerated

version of the steepest descent method introduced in Section 4.1. First, we will show

how it works in Hilbert spaces [41]. Then, we will present an adaptation of the method

to solve constrained optimization problems on Lebesgue spaces Lq(Ω), leveraging ideas

from Stein in [53], and Protas et al. in [14, 59].

4.6.1 Hilbert Space Formulation

The conjugate gradient method [41] is a powerful iterative algorithm to solve uncon-

strained optimization problems, especially involving quadratic objective functions and

defined on a finite dimensional space because it can rapidly converge to the optimal

state in a finite number of iterations. However, it is still a useful method when it is

applied to non-convex problems on Hilbert spaces. Here, we will briefly describe the

method in a standard setting. Assume we want to solve the following optimization

problem,

arg max
u∈H

J(u), (4.36)

where H is a Hilbert space with inner product 〈·, ·〉H and J : H → R is an objective

functional. The conjugate gradient method approximates the optimal state ũ as

ũ = lim
n→∞

un,

where the sequence of {un}n∈N is computed as

un+1 = un + αndn, n = 0, 1, 2, ... (4.37)

with u0 being an initial guess and the conjugate directions dn calculated as

d0 = ∇J(u0),

dn = ∇J(un) + βndn−1, n = 1, 2, 3, ...
(4.38)
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where βn is a “momentum” term that depends on the conjugate directions only. It can

be chosen in different ways, however, in this thesis, we work with the Polak-Ribière

momentum term βPRn defined as

βPRn :=
〈∇J(un),∇J(un)−∇J(un−1)〉H
〈∇J(un−1),∇J(un−1)〉H

, (4.39)

The parameter αn in (4.37) is chosen to be the value that maximizes the functional J

along the direction dn via line maximization, i.e.,

αn = arg max
α∈R

J(un + αdn). (4.40)

4.6.2 Riemannian Optimization

To solve a constrained optimization problem, we must address a key detail after char-

acterizing a constraint manifold M and its tangent bundle TM defined as [1]

TM :=
⋃

u∈M

TuM. (4.41)

The terms on the right-hand side of expression (4.38) belong to different tangent spaces,

the gradient ∇J(un) is in the tangent space TunM since it is evaluated at un, whereas

the conjugate direction dn−1 lies in Tun−1M, as it is derived at the state un−1. Therefore,

a proper setting needs to be defined for this addition. Also observe that the expression

for the momentum (4.39) is subject to a similar issue when subtracting two gradients

that belong to different tangent spaces. The formulation described below is taken from

[14, 28, 59]. Let us consider the following constrained optimization problem

arg max
u∈M

J(u), (4.42)

where J is an objective functional as in (4.36) and M is a smooth manifold. We want

to approximate a local maximizer ũ on M with a sequence of elements {un}n∈N in M
such that

ũ = lim
n→∞

un.
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This sequence is defined as

un+1 = RM (un + τn dn) , n = 0, 1, ..., (4.43)

where u0 is an initial guess, dn is a conjugate direction at un, RM : TM → M is

the retraction onto the manifold M and τn maximizes the functional J along the arc

tangent to the direction dn at un, i.e.,

τn = arg max
τ∈R

J (RM (un + τ dn)) , (4.44)

and the conjugate directions are computed as

d0 = PT0M∇LqJ(u0), dn+1 = PTn+1M∇LqJ(un+1) + βPRn+1Tτn dn dn, (4.45)

for n = 0, 1, ..., where PTnM : H → TnM is the projection onto the tangent space TnM,

T : TnM× TnM → Tn+1M is the parallel vector transport. Given u, v ∈ TnM, the

parallel vector transport Tuv ∈ Tn+1M of v along the direction u is defined as

Tu(v) =
d

dt
R(u+ t v)

∣∣∣
t=0
,

and βPRn is the Polak-Ribière momentum defined as in [14],

βPRn+1 =
〈PTn+1M∇HJ(un+1),

(
PTn+1M∇HJ(un+1)−Tτn dnPTnM∇HJ(un)

)
〉H

〈PTnM∇HJ(un),PTnM∇HJ(un)〉H
. (4.46)

The introduction of parallel vector transport is necessary because of the way the

conjugate directions are updated. This process involves a linear combination of the

gradient at the current iteration and the conjugate direction from the previous iteration.

Since these two objects lie in different tangent spaces, the vectors must be mapped to

the same space, so that their linear combination is well defined. This latter operation

is realized by the parallel vector transport.

Explicit forms of the projection PM and the retraction RM depend on the structure

of the manifold M. However, if M is given by with MB defined in (3.6), then the

projection and the retractions are as in (4.29) and (4.30), respectively.

45



Ph.D. Thesis – Elkin Ramı́rez McMaster University

4.6.3 Riemannian Formulation in a Lebesgue Space

The following approach is an adaptation of the conjugate gradient method to solve a

constrained optimization problem over a Banach space, where the main difficulty con-

sists in the absence of an inner product structure. The main ideas were borrowed from

Stein [53], who presents the conjugate gradient method in Banach spaces for uncon-

strained optimization problems, and Protas et al. [14, 59], where they implemented

the conjugate gradient method in the context of Riemannian optimization problems on

Hilbert spaces. A major obstacle here is the lack of Hilbert structure in the function

spaces in which Problem 2 is formulated. However, we present a natural extension of

the method to Lebesgue spaces where we generalize the notion of the gradient as the

metric gradient [23], which is an element locally maximizing the Gâteaux differential

of the objective functional with respect to the Lebesgue topology.

Assume we want to solve the following optimization problem

arg max
u∈L

J(u), (4.47)

given a functional J : Lq(Ω) → R, q > 1, with local maximizers constrained to a

smooth manifold L. We approximate a local maximizer ũ with a sequence of elements

{un}n∈N in L such that

ũ = lim
n→∞

un.

This sequence is defined as

un+1 = RL (un + τn dn) , n = 0, 1, .... (4.48)

where u0 is an initial guess, dn is a conjugate direction at un, RL is the retraction

onto the manifold L and τn maximizes the functional J along the arc tangent to the

direction dn at un, i.e.,

τn = arg max
τ∈R

J (RL (un + τ dn)) , (4.49)
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and the conjugate directions are computed as

d0 = PT0L∇LqJ(u0), dn+1 = PTn+1L∇LqJ(un+1) + βPRn+1Tτn dn dn, (4.50)

for n = 0, 1, ..., where PTnL v is the projection of v onto the tangent space TnL, Tuv is

the parallel vector transport of v along the direction u which is defined as

Tu(v) =
d

dt
RL(u+ t v)

∣∣∣
t=0
,

and βPRn is the Polak-Ribière momentum defined as

βPRn+1 =
J ′
(
un+1;PTn+1L∇LqJ(un+1)

)
− J ′(un; T−τndnPTn+1L∇LqJ(un+1))

J ′ (un;PTnL∇LqJ(un))
. (4.51)

As previously stated, the explicit expressions for the projection PL and the retraction

RL depend on the manifold L. However, if the manifold L is defined as in (3.8),

the projection and the retractions are defined as in (4.32) and (4.33), respectively.

Expression (4.51) is defined by combining the results from [53] and expression (4.46).

4.7 Numerical Implementation

To solve the Navier-Stokes system (1.1) and the adjoint system (4.13) numerically,

we use a standard approach [10]. For spatial discretization, we used a pseudospectral

Galerkin method, and a semi-explicit Runge-Kutta method for time integration.

4.7.1 Discretization in Space

Suppose u : Ω × [0, T ] → R3 is a vector field with T > 0. Additionally, consider the

set WN = {k ∈ Z3 : k ≤ N} where k = |k| and N ∈ N+ is the spatial resolution. The

Galerkin approximation of u(x, t) is defined as

uN(x, t) :=
∑

k∈WN

ûk(t)e2πik·x, (4.52)
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where ûk(t) ∈ C3 are the Fourier coefficients. If u(·, t) ∈ L1(Ω), then its Fourier

coefficients ûk(t) are computed as in (2.3). For uN to be an approximate solution

of (1.1), its Fourier coefficients must satisfy the following finite-dimensional system of

ordinary differential equations obtained by performing a Galerkin projection of system

(1.1) onto the subspace spanned by the Fourier modes with wavenumbers lying within

WN

dûk(t)

dt
+ A ûk(t) + r(ûk)(t) = 0, for all k ∈ WN , t ∈ (0, T ), (4.53a)

ûk(t) · k = 0, for all k ∈ WN , t ∈ (0, T ), (4.53b)

ûk(0) = [”u0]k , for all k ∈ WN . (4.53c)

The linear and the nonlinear operators A and r are defined as:

A ûk(t) := (2π)2 k2 ûk(t), (4.54)

r(ûk)(t) :=
[¤�(u ·∇x) u

]
k
− 2π ik p̂k, (4.55)

respectively. The Fourier coefficients of the nonlinear term,
[¤�(u ·∇x) u

]
k
, are evaluated

by first computing the product (u ·∇x) u in the physical space and then calculating its

Fourier transform, while the Fourier coefficients of the pressure term, p̂k, are computed

via the solution of the Poisson equation ∆p = −∇x · ((u ·∇x) u) subject to periodic

boundary conditions, which is also performed in the Fourier space as

p̂k =
k

k2
·
[¤�(u ·∇x) u

]
k
. (4.56)

Additionally, partial dealiasing is performed using the Gaussian filter [26]

g(k) := e−36( 3 k
2K )

36

. (4.57)

Tests performed using the standard dealiasing following the 3/2 rule [55] were also per-

formed; however, in the results we did not observe any appreciable difference compared
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to the use of the Gaussian filter (4.57). For the discretization of the solution of the ad-

joint system (4.13), the Fourier coefficients of the solution satisfy the following system

of ordinary differential equations

dû∗k(t)

dt
+ S û∗k(t) + R û∗k(t) = 0, for all k ∈ WN , t ∈ (0, T ), (4.58a)

û∗k(t) · k = 0, for all k ∈ WN , t ∈ (0, T ), (4.58b)

û∗k(T ) = 0, for all k ∈ WN . (4.58c)

where the linear operators S and R are defined as

S û∗k(t) := (2π)2 k û∗k(t), (4.59)

R ûk(t) :=
[¤�(∇x u∗) u

]
k

(t) +
[ ¤�(∇x u∗)T u

]
k

(t)− f̂k(t) (4.60)

and f̂k(t) are the Fourier coefficients of the function f(x, t) in (4.13b). The terms¤�(∇x u∗) u and ¤�(∇x u∗)T u are first evaluated in physical space as in (4.55), and then

transformed to the Fourier space. Unlike system (4.53), system (4.58) has a terminal

condition, meaning it needs to be integrated backwards in time.

4.7.2 Discretization in Time

The integration in time is performed employing a hybrid approach combining the Crank-

Nicolson method with a three-step Runge-Kutta method [10]. The scheme is given by
(
I − hrk

2
A

)
ûrk+1 = ûrk +

hrk
2

Aûrk + hrkβrkr(ûrk) + hrkζrkr(ûrk−1), (4.61)

where rk = 1, 2, 3 and

h1 = 8
15

∆t, h2 = 2
15

∆t, h3 = 1
3
∆t,

β1 = 1, β2 = 25
8
, β3 = 9

4
,

ζ1 = 0, ζ2 = −17
8
, ζ3 = −5

4
.
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In this scheme, û1 and û4 represent the solutions of systems (4.53) and (4.58) at the

current and future time, respectively. Important features to highlight concerning the

numerical method (4.61) are an explicit and an implicit treatment of the nonlinear

and linear part of equation (4.53), respectively. Treating the linear terms implicitly

takes advantage of good stability properties that implicit methods offer, while the ex-

plicit treatment of the nonlinear term effectively linearizes it with respect to the time-

dependent variable at the new time level such that this term is evaluated more readily.

It is worth mentioning that, since the linear part of the Navier-Stokes system (1.1) is

given by the Laplacian operator, inverting it in Fourier space is fairly simple given that

it is diagonal in that space. Hybrid methods also allow for the use of coarser time steps

in comparison with fully explicit numerical methods. A systematic validation of the

numerical method (4.61) was carried out by Ayala in [4], whereas a validation of the

gradients of the different objective functionals considered in this study is presented in

Appendix C. As regards the computational time, solving Problems 1, 2, 3 and 4 took

between O(10) and O(100) hours using O(100) CPUs on Compute Canada systems.
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Chapter 5

Numerical Results

In this chapter, we solve Problems 1, 2, 3 and 4 for different values of q, B, T , as well as

different initial guesses u0, cf. (4.7). The problems were solved using different variants of

the gradient descent method described in Chapter 4. Our analysis will focus on several

integer values of p and q that satisfy relation (2.27) and the choice of the parameter s

in (2.11) which will depend on the value of q. The dependence of the values of p and

s on q is shown in Figures 3.1(a) and 3.1(b), respectively. In addition to q = 4, 5, 9,

we will also consider the limiting case q = 3. Unless is stated otherwise, the numerical

resolution is N = 2563. As regards the choice of the initial guess u0, we used the optimal

initial conditions found by Kang et al. [29] to solve the the optimization problems with

q = 4. For the cases q = 3, 5, and 9, we considered rescaled optimal initial conditions

obtained for q = 4 as initial guesses, in order to keep the Reynolds number Re [21]

approximately equal at t = 0 across all values of q. The reason for fixing the Reynolds

number is to ensure that our computations are comparable across all the values of q.

The number Re is computed using the so-called Taylor-scale Reynolds number defined

in [21] as

Re :=

√
10

3 |Ω|
K0

ν
√E0

. (5.1)

Additionally, we also examined random initial guesses.
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Figure 5.1: [q = 4, B = 562.34] (a) Dependence of the objective functional on iterations

n while solving Problem 1 (blue) and Problem 2 (red). (b) Time evolution of the L4(Ω)

norm of the velocity field at certain iterations n. Curves with darker colors correspond

to later iterations closer to the local optimum of Problem 1 (blue) and Problem 2

(red). In both panels, blue and red curves correspond to optimization problems with

T = 2× 10−4 and T = 8× 10−4, respectively.

5.1 Extremal Flows in L4(Ω)

In this section, we fix q = 4 and vary the parameters B and T while solving Problems

1 and 2. Because of expression (2.33), we know that there is an explicit dependence

between the minimum time t̄ for which a classical solution exists and the parameter B.

Then, the minimum existence time of the solution of the Navier-Stokes equations (1.1) is

of order O (B−p) . Therefore, the choice of T should be adjusted according to expression

(2.33) as the parameter B increases. Although a significant transient growth of the

norm ‖u(t)‖L4 was found, there was no evidence for it to become unbounded which

would signal singularity formation according to (2.30). In Figure 5.1(a), we observe

the convergence of the objective functional (3.1) with iterations n when the Lebesgue

gradients and Sobolev gradients are used. The time window T is chosen such that it
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Figure 5.2: [q = 4, Problem 1, B = 562.34, T = 2 × 10−4] (a) Energy spectra of

the approximations of the optimal initial condition obtained at different iterations n

in the solution of Problem 1. (b) Energy spectra e∞(k, t) during the time evolution

of the solution of the Navier-Stokes system (1.1) corresponding to the optimal initial

condition ũ0 (represented by red symbols). Black solid lines represent the Gaussian

filter (4.57). Red symbols illustrate the optimal initial condition. The time instances

in panel 5.2(b) are (red) t = 0, (yellow) t = 0.2× 10−4, (brown) t = 1.2× 10−4, (green)

t = 1.6× 10−4, and (coral) t = 2× 10−4.

corresponds to the largest value of the objective functional obtained with each type of

gradient. The constraint parameter is fixed at B = 562.34. In Figure 5.1(b), we see

how the time evolution of the L4(Ω) norm of the velocity field changes with iterations

as we approach the local maxima.

Next, we analyze the evolution of the energy spectra defined as

e(k, t) :=
1

2

∑

m≤|m|<m+1
m∈Z3

|ûm(t)|2, k = 2πm. (5.2)

We denote en(k, t) and e∞(k, t) as the energy spectra at iteration n and at the

optimal state, respectively. Figures 5.2(a) and 5.3(a) show the energy spectra en(k, t)

for different iterations n when solving Problems 1 and 2, respectively. The values of
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Figure 5.3: [q = 4, Problem 2, B = 562.34, T = 8 × 10−4] (a) Energy spectra of

the approximations of the optimal initial condition obtained at different iterations n

in the solution of Problem 2. (b) Energy spectra e∞(k, t) during the time evolution

of the solution of the Navier-Stokes system (1.1) corresponding to the optimal initial

condition ũ0 (represented by red symbols). The time instances indicated in panel 5.3(b)

are (red) t = 0, (yellow) t = 1.6× 10−4, (brown) t = 4× 10−4 and (coral) t = 8× 10−4.

the parameters B and T are as in Figure 5.1. These figures show that, as expected,

approximations of the optimal initial conditions u
(n)
0 tend to become less regular with

iterations since the spectra decay less rapidly at later iterations. In fact, when using

the Lebesgue gradients, we observe a drastic lost of regularity of the approximation of

the optimal initial condition which occurs right after the first iteration. This is because

these initial conditions are defined in the Lebesgue space L4(Ω) and therefore need not

possess any regularity properties (only integrability).
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Figure 5.4: [q = 4] Time evolution of ||u(t)||L4 for Navier-Stokes flows with the optimal

initial conditions obtained by solving Problem 1 (blue) and Problem 2 (red). The values

of the constraint parameter are (a) B = 376.06, (b) B = 562.34 and (c) B = 707.1.

Solutions are computed over the time window [0, T ] where T was chosen to be the

shortest and longest considered time window for the given value of B.

Figures 5.3(b) and 5.2(b) show the time evolution of the energy spectra (5.2) in the

solutions of the Navier-Stokes system (1.1) corresponding to the optimal initial condi-

tions found by solving Problems 2 and 1, respectively. We see that, as a result of the

regularizing property of the Navier-Stokes system, due to the presence of the viscous

term, the solutions immediately become smooth, i.e., u(t) ∈ C∞(Ω) for all t > 0
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Figure 5.5: [q = 4] Time evolution of the total enstrophy E(u(t)) normalized with

respect to the initial entrophy E0 in the solutions of the Navier-Stokes system (1.1)

corresponding to the optimal initial conditions obtained by solving Problem 1 (blue)

and Problem 2 (red). The values of the constraint parameter are (a) B = 376.06, (b)

B = 562.34 and (c) B = 707.1. Solutions of (1.1) are computed over the time window

[0, T ] where T was chosen to be the shortest and longest considered for each value of

B.

(Theorem 7.3 in [51]) when the initial condition is not smooth as is the case here. This

is evident in the exponentially fast decay of the energy spectrum (5.2). Unlike Figure

5.3, Figure 5.2 exhibits the effect of the filter (4.57) on the spectra which is represented
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by the black curve.

As a sign that our computations are well resolved, the filter acts only on Fourier

coefficients with magnitudes not exceeding O (10−10). In Figures 5.4 (a)–(c), we show

the time evolution of the L4(Ω) norm of the solution of the Navier-Stokes system (1.1),

using the optimal initial conditions found by solving Problems 1 and 2 with B = 376.06,

B = 562.34 and B = 707.1, respectively. For each value of the constraint parameter B,

the evolution of this norm is plotted for the shortest and longest time window considered

T . We see that ‖u(t)‖L4 attains its maximum earlier in time when we use the optimal

initial conditions found by solving Problem 1. These maxima are also characterized by

larger values of the objective functional than in the ones found by solving Problem 2.

This is somewhat counterintuitive since solutions of Problem 2 are sought in a larger

function space than the one considered in Problem 1.

The evolution of the enstrophy E(t) normalized with respect to the initial enstrophy

E0 is displayed in Figure 5.5. Values of the parameters B, T, as well as the color coding

is identical as in Figure 5.4. We observe that the enstrophy initially decays but then

grows. The growth seems more prominent as the parameter B increases.

We also notice that the enstrophy decays at early times before experiencing any

growth. This behavior was already reported by Kang et al. [28, 29].

5.1.1 Branches of Local Maximizers

We define a “branch” as a family of local maximizers parametrized by the length of

the time window T and obtained by solving Problem 1 or 2 with the parameter B

fixed. Kang et al. [29] characterized the structure of extremal flow based on certain

spatial symmetries of the vorticity field reflected in the behavior of the componentwise

enstrophy Ei(t), i = 1, 2, 3, providing information about the contributions to the total

enstrophy (2.7) from the vorticity components in the different Cartesian directions. It
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Symmetric E1 ∼ E2 ∼ E3

Partially Symmetric

E1 ∼ E2 � E3 or

E1 ∼ E3 � E2 or

E2 ∼ E3 � E1

Asymmetric E1 � E2 � E3 � E1

Table 5.1: Definition of the symmetries of the velocity field based on the behavior of

its componentwise enstrophy. The symbol “∼” means “similar in both magnitude and

monotonicity” and “�” is the negation of “∼”.

is defined as

Ei(t) :=

∫

Ω

|(∇x × u(x, t) · ei)|2 dx, i = 1, 2, 3, (5.3)

where {e1, e2, e3} is the canonical basis of R3. Naturally, we have the identity

E(t) =
3∑

i=1

Ei(t).

Three types of symmetries were identified based on the relative values of the compo-

nentwise enstrophies at different times t, namely, symmetric, partially symmetric and

asymmetric and they are summarized in Table 5.1. In this work, however, we are not

going to distinguish between partially symmetric and asymmetric configurations and

will refer to both of them as “nonsymmetric”.

In Figure 5.6(a) we show the dependance of the objective functional (3.1) on the

length of the optimization window T for different values of the constraint B. In solu-

tions of Problems 1 and 2, flows on each branch exhibit similar behavior of the norm

||u(t)||4L4(Ω) in time as already shown in Figure 5.4. In general, maximum values of the

objective functional obtained by solving Problem 1, with optimization performed over

the Sobolev space H3/4, are larger than in Problem 2, where optimization is performed

over the Lebesgue space L4(Ω). Additionally, the flows corresponding to the solutions

of Problem 1 are always nonsymmetric. All the branches reveal the presence of a sin-
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Figure 5.6: [q = 4] (a) Dependence of the local maxima of the objective functional (3.1)

on the length of the optimization window in Problems 1 (blue) and 2 (red) for different

values of the constraint B = 376.06, B = 562.34 and B = 707.1. Dashed and solid lines

represent the nonsymmetric and symmetric branches, respectively, whereas the arrow

indicates the trend with the increase of B. (b) Dependence of maxT Φ4
T (ũ0;B,T ) on

B4 = ||ũ0;B,T ||4L4(Ω).

gle maximum which shifts towards smaller values of T as the value of the constraint

parameter B increases. We also conclude that nonsymmetric branches produce larger

values of the objective functional, consistent with the observations made by Kang et al.

[28].

An interesting finding from Figure 5.6(a) is that local maximizers of Problem 1

are also local maximizers of Problem 2. To observe this, notice that the asymmetric

branches obtained by solving Problem 2 and Problem 1 coincide for certain lengths of

the time window (T = 10−4 and T = 2× 10−4 for the top and middle branches, respec-

tively). Those points correspond to the maxima of branches obtained using Sobolev

gradients. Such optimal initial conditions were then taken as initial guesses to con-

struct asymmetric branches when solving Problem 2. However, no improvement in the

objective functional was found compared to the solutions of Problem 1, suggesting the
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above relation between the local maximizers of Problems 1 and 2.

We now aim to establish a relationship between the maximum value of the objective

functional over each branch and the value of the constraint parameter Bq in the form

max
T

Φq
T (ũ0;B,T ) ∼ C

(
||ũ0;B,T ||qLq(Ω)

)γ
, where γ > 0. (5.4)

We quantify this dependence in Figure 5.6(b) by performing least-square fits,

max
T

Φ4
T (ũ0;B,T ) ∼ 0.023

(
||ũ0;B,T ||4L4(Ω)

)2.19

(5.5)

for solutions of Problem 1 and

max
T

Φ4
T (ũ0;B,T ) ∼ 0.012

(
||ũ0;B,T ||4L4(Ω)

)2.20

(5.6)

for solutions of Problem 2. The exponents in both of these relations are close to the

exponent 2.26 that Kang & Protas found in [28]. In the absence of a rigorous a priori

bound on the objective functional (2.28), relations (5.5)-(5.6) suggest how it might scale

with the “size” of the the initial data in the worst case realized by solutions of Problems

1 and 2.

To understand whether or not the Navier-Stokes flows corresponding to the optimal

initial conditions found by solving Problems 1 and 2 saturate a priori bounds on the

rate of growth of the enstrophy and the L4(Ω) norm, cf. (2.19), (2.31) and (2.37), in

Figure 5.7 we plot the corresponding time-dependent trajectories using the coordinates
{
||u(t)||L4(Ω),

d
dt
||u(t)||L4(Ω)

}
and {E(t), dE(t)/dt}. Since these plots use a logarithmic

scaling, parts of the trajectories where the quantity of interest is decreasing are not

shown. The exponent α in the relation dY (t)/dt ∼ Y α, where Y is either ||u(t)||L4(Ω)

or E(t), is then represented by the slope of the tangent to the curve representing the

trajectory at time t, which makes it possible to relate these results to the a priori bounds

(2.19), (2.31) and (2.37). Unlike Figure 5.7(b), in Figure 5.7(a) the trajectories form

clusters corresponding to different values of the parameter B4.
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In Section 2.3 we discussed the existence of a regime for potential blow-up in terms

of the rate of change of the enstrophy and the Lq(Ω) norm of velocity field in the

Navier-Stokes flows. Figure 5.7 allows us to determine whether optimal solutions of

Problems 1 and 2 fall into those regimes. In Figures 5.7(a) and 5.7(b), we show how

the quantities of interest grow and how long their growth rates are sustained. For a

finite-time blow-up to be possible, we would need to observe solutions where the rate of

growth of the enstrophy and the L4(Ω) norm of the velocity field remain higher than the

rate represented by the dashed lines, which indicate the minimum growth rate required

for a flow to potentially develop a singularity. We identify some trajectories, such as

the orange trajectory in Figure 5.7(a), which do show growth of the L4(Ω) norm of

velocity field at a rate higher than the rate represented by the dashed line. However,

this growth rate is not sustained sufficiently long for blow-up to occur and we eventually

observe a depletion of the rate of change of the norm. A similar behavior is also found

for the enstrophy in Figure 5.7(b), where we observe several trajectories exhibiting a

growth rate higher than indicated by the slope of the dashed lines (see the green curve,

for example). However, as was the case with the growth of the L4(Ω) norm, the rate

of growth is not sustained long enough to give rise to a singularity. We then conclude

that some solutions of the Navier-Stokes system (1.1) corresponding to optimal initial

conditions obtained by solving Problems 1 and 2 do fall into the potential blow-up

regime, although this behavior does not persist long enough to trigger a singularity.
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Figure 5.7: [q = 4] Navier-Stokes flows corresponding to the optimal initial conditions

found by solving Problem 1 and 2 for different B and T shown using the coordinates (a)
{
||u(t)||L4(Ω),

d
dt
||u(t)||L4(Ω)

}
and (b) {E(t), dE(t)/dt}. Black solid lines show the upper

bounds on the rate of change of the L4(Ω) norm of the solution and of the enstrophy

given by the relations (a) d
dt
||u(t)||L4(Ω) ∼ ||u(t)||9L4(Ω) from (2.31) and (b) dE/dt ∼ E3,

respectively. Dashed lines show the relations d
dt
||u(t)||L4(Ω) ∼ ||u(t)||11/3

L4(Ω) from (2.37)

and dE/dt ∼ E2 in (a) and (b), respectively. Blue trajectories are optimal solutions of

Problem 1 while red trajectories are solutions of Problem 2. The intensity of the color

increases with the length of the time window T . The time evolution of the vorticity

field in the trajectories marked orange and green is presented in Figures 5.12 and 5.14.

5.1.2 Structure of the Extremal Flows

We will now discuss the structure of the extremal flows belonging to the different

branches shown in Figure 5.6(a). Figures 5.8 and 5.9 show the time evolution of the

componentwise enstrophies (5.3) for different values of the constraint parameter B in

solutions of Problem 1 and 2, respectively. We were also able to capture nonsymmetric

branches in Problem 2 with the two largest values of the constraint parameter B and

the evolution of the componentwise enstrophy in these flows is shown in Figure 5.10.
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Figure 5.8: [q = 4, Problem 1, nonsymmetric flows] Evolution of (solid lines) the total

enstrophy E(t) and (dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t)

for optimal solutions of Problem 1. The values of the parameters are (a) B = 376.06,

T = 8× 10−4 (b) B = 562.34, T = 8× 10−4 and (c) B = 707.1, T = 4× 10−4.
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Figure 5.9: [q = 4, Problem 2, symmetric flows] Evolution of (solid lines) the total

enstrophy E(t) and (dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t)

for optimal solutions of Problem 2. The values of the parameters are (a) B = 376.06,

T = 8× 10−4 (b) B = 562.34, T = 8× 10−4 and (c) B = 707.1, T = 4× 10−4.
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Figure 5.10: [q = 4, Problem 2, nonsymmetric flows] Evolution of (solid lines) the total

enstrophy E(t) and (dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t)

for optimal solutions of Problem 2. The values of the parameters are (a) B = 562.34,

T = 4× 10−4 and (b) B = 707.1, T = 2× 10−4.

The time window in each panel corresponds to when the objective functional reaches

its maximum on each branch.

Below we visualize flow fields focusing on their velocity u(x, t) and vorticity ω(x, t).

More specifically, we will show |ω(x, ti)| and |u(x, ti)|4 at different time instances ti

with i = 0, ..., 3, defined as follows.

Definition 5.1. The time instances ti, i = 0, ..., 3, where we analyze the magnitude of

the vorticity |ω(x, t)| and |u(x, t)|q are

• t0 is the initial time, i.e., t0 = 0,

• t1 ≈ argmaxt∈[0,T ]
d
dt
‖u(t)‖Lq(Ω),

• t2 ≈ argmaxt∈[0,T ] ‖u(t)‖Lq(Ω),

• t3 is the final time, i.e., t3 = T.
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Figure 5.11: [q = 4, B = 707.1] Time evolution of the norm ‖u(t)‖L4 in the flow with the

optimal initial condition that produces the maximum value of the objective functional

for the largest value of the constraint in Problem 1 (blue) and Problem 2 (red). Black

and green symbols represent the time instances ti, i = 0, ..., 3, in Definition 5.1, when

the flow is visualized in Figures 5.12 and 5.13.

These times are indicated in Figures 5.11 and 5.24. The quantities |ω(x, ti)| and

|u(x, ti)|q are shown in Figures 5.12 and 5.13 for the Navier-Stokes flows with the

optimal initial conditions found by solving Problems 1 and 2.

The flow structures shown in Figure 5.12 are quite similar to what was found by

Kang & Protas [28]. We observe a bent vortex ring that stretches as time evolves. We

also note that the maxima of |u(x, t)|4 occur within the gap formed by the vortex ring

as it entangles and these are precisely the regions driving the growth of the objective

functional (3.1). As regards the solutions of Problem 2, the time evolution of the

vorticity is shown in Figure 5.13. While at the initial instant t = 0 there is no clear

pattern in the flow, as the time evolves we observe the formation of two tightly spaced

vortex tubes which are stretched to fill the entire flow domain Ω. Figure 5.14 shows

the time evolution of the vorticity of the solution of the Navier-Stokes system (1.1)

represented by the trajectory marked in green in Figure 5.7(b). Interestingly, it also

features two vortex rings approaching each other while also expanding to fill the entire

flow domain.
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(a) t0 = 0 (b) t1 = 3.95× 10−5

(c) t2 = 6.8× 10−5 (d) t3 = 10−4

Figure 5.12: [q = 4, Problem 1, B = 707.1 and T = 10−4] Snapshots of the magnitude

of the vorticity |ω(x, ti)| (red) in the solution of the Navier-Stokes system (1.1) along

with vortex lines (red) and the quantity |u(x, ti)|4 (blue) shown at the times t0, ..., t3

defined in Definition 5.1. The values of the parameters B and T correspond to the

maximum over the branch with the largest value of B in Figure 5.6(a). The trajectory

representing this solution is marked in orange in Figure 5.7(a).
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(a) t0 = 0 (b) t1 = 2× 10−4

(c) t2 = 3.37× 10−4 (d) t3 = 4× 10−4

Figure 5.13: [q = 4, Problem 2, B = 707.1 and T = 4 × 10−4] Snapshots of the

magnitude of the vorticity |ω(x, ti)| (red) in the solution of the Navier-Stokes system

(1.1) along with vortex lines (red) and the quantity |u(x, ti)|4 (blue) shown at the times

t0, ..., t3 defined in Definition 5.1. The values of the parameters B and T correspond to

the maxima over the symmetric branch with the largest value of B in Figure 5.6(a).
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(a) t0 = 0 (b) t1 = 3.95× 10−5

(c) t2 = 6.8× 10−5 (d) t3 = 10−4

Figure 5.14: [q = 4, Problem 1, B = 707.1 and T = 4 × 10−4] Snapshots of the

magnitude of the vorticity |ω(x, ti)| (red) in the solution of the Navier-Stokes system

(1.1) along with vortex lines (red), the quantity |u(x, ti)|4 (blue) and streamlines of

the solution (green) shown at the times t0, ..., t3 defined in Definition 5.1. The values

of the parameters B and T correspond to the green trajectory in Figure 5.7(b).

5.2 Extremal Flows in L5(Ω)

In this section, we consider q = 5 while varying the parameters B and T in Problems

1 and 2. Similarly to the case with q = 4, although we did observe some growth of the
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Figure 5.15: [q = 5, B = 1500.2] (a) Dependence of the objective functional on the

iteration n when solving Problem 1 (blue) and Problem 2 (red). (b) Time evolution

of the L5(Ω) norm of the velocity field at certain iterations n. Curves with darker

colors correspond to later iterations closer to the local optimum of Problem 1 (blue)

and Problem 2 (red). Blue and red curves correspond to optimization problems with

T = 5× 10−5 and T = 6× 10−4, respectively.

norm ‖u(t)‖L5 , we did not find evidence for its unbounded growth that could signal

singularity formation according to (2.30). In Figure 5.15(a), we observe the convergence

of the objective functional (3.1) with iterations n when the Sobolev gradients and

Lebesgue gradients are used to solve Problems 1 and 2, respectively. The time window

T is chosen such that it corresponds to the largest value of the objective functional

obtained when solving Problems 1 and 2 for the given value of the constraint B =

1500.2. In Figure 5.15(b), we see how the time evolution of the L5(Ω) norm of the

velocity field changes with iterations as we approach the local maxima.

The evolution of the energy spectra (5.2) at different iterations in solutions of Prob-

lems (1) and (2) is presented in Figures 5.16(a) and 5.17(a), respectively. In the case

q = 4, we observed a clear difference in the regularity of the initial conditions between

the two problems (see Figures 5.2(b) and 5.3(b)); however, here we do not observe
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Figure 5.16: [q = 5, Problem 1, B = 867, T = 10−4] (a) Energy spectra of the

approximations of the optimal initial condition obtained at different iterations n in

the solution of Problem 1. (b) Energy spectra e∞(k, t) during the time evolution of the

solution of the Navier-Stokes system (1.1) corresponding to the optimal initial condition

ũ0 (represented by red symbols). The time instances indicated in panel (b) are (red)

t = 0, (yellow) t = 4 × 10−5, (brown) t = 8 × 10−5, and (green) t = 10−4. Black solid

lines represent the Gaussian filter (4.57).

such a distinction. This is explained by the choice of the initial guess, which will be

discussed in a later section. Figures 5.16(b) and 5.17(b) show the time evolution of the

energy spectra (5.2) in the solutions of the Navier-Stokes system (1.1) corresponding

to the optimal initial conditions found by solving Problems 1 and 2, respectively. As

was the case for q = 4, we observe that, as a result of the regularizing property of the

Navier-Stokes system, solutions become smoother than the initial condition. Figures

5.16 and 5.17 exhibit the effect of the filter (4.57) on the spectra. A sign that our

computations are well resolved is that the filter acts only on Fourier coefficients with

magnitudes not exceeding O (10−8).

In Figures 5.18 (a)–(c), we show the time evolution of the L5(Ω) norm of the solution

of the Navier-Stokes system (1.1), using the optimal initial conditions found by solving
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Figure 5.17: [q = 5, Problem 2, B = 1500.2, T = 6 × 10−4] (a) Energy spectra of

the approximations of the optimal initial condition obtained at different iterations n in

the solution of Problem 2. (b) Energy spectra e∞(k, t) during the time evolution of the

solution of the Navier-Stokes system (1.1) corresponding to the optimal initial condition

ũ0 (represented by red symbols). The time instances indicated in panel 5.17(b) are (red)

t = 0, (yellow) t = 1.2 × 10−4, (brick) t = 2.4 × 10−4, (coral) t = 3.6 × 10−4, (brown)

t = 4.8× 10−4, and (blue) t = 6× 10−4. Black line in panel 5.17(b) represents the filter

(4.57).

Problems 1 and 2 with B = 571, B = 867 and B = 1500.2, respectively. For each value

of the constraint parameter B, the evolution of the norm of the solution of the Navier-

Stokes system (1.1) is plotted for the shortest and longest time window T considered,

except for B = 1500.2 where the shortest considered time window was too small to

plot. In this case, we decided to present the results for T = 5× 10−5. We observe that

‖u(t)‖L5 attains its maximum earlier in time when we use the optimal initial conditions

found by solving Problem 1. These maxima are also characterized by larger values of

the objective functional (3.1) than in the ones found by solving Problem 2. This mirrors

the behavior of ‖u(t)‖L4 which was discussed earlier, cf. Figure 5.4.

72



Ph.D. Thesis – Elkin Ramı́rez McMaster University

560

600

640

680

720

0.00005 0.0008 0.001

||u
(t
)||

L
5

t

(a)

850

950

1050

1150

1250

0.00005 0.0004 0.0008

||u
(t
)||

L
5

t

(b)

1400

1600

1800

2000

2200

2400

0.00005 0.0003 0.0006

||u
(t
)||

L
5

t

(c)

Figure 5.18: [q = 5] Time evolution of ||u(t)||L5 for Navier-Stokes flows with optimal

initial conditions obtained by solving Problem 1 (blue) and Problem 2 (red). The values

of the constraint parameter are (a) B = 571, (b) B = 867 and (c) B = 1500.2. Solutions

are computed over the time window [0, T ] where T was chosen to be the shortest and

longest considered time window, except for the last case where T = 5×10−5 was chosen.
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Figure 5.19: [q = 5] Time evolution of the total enstrophy E(u(t)) normalized with

respect to the initial enstrophy E0 in the solutions of the Navier-Stokes system (1.1)

corresponding to the optimal initial conditions obtained by solving Problem 1 (blue)

and Problem 2 (red). The values of the constraint parameter are (a) B = 571, (b)

B = 867 and (c) B = 1500.2. Solutions are computed over the time window [0, T ]

where T was chosen to be the shortest and longest considered time window, except for

the last case where T = 5× 10−5 was chosen.

The evolution of the enstrophy E(t) normalized with respect to the initial enstrophy E0

is displayed in Figure 5.19. Values of the parameters B, T, as well as the color coding

are the same as in Figure 5.18. We observe that the enstrophy initially decays but then
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Figure 5.20: [q = 5] (a) Dependence of the local maxima of the objective functional (3.1)

with q = 5 on the length of the optimization window in Problems 1 (blue) and 2 (red) for

different values of the constraint B = 571, B = 867 and B = 1500.2. Dashed and solid

lines represent the nonsymmetric and symmetric branches, respectively, whereas the

arrow indicates the trend with the increase of B. (b) Dependence of maxT Φ5
T (ũ0;B,T )

on B5 = ||ũ0;B,T ||5L5(Ω).

grows, and the growth seems more prominent as the parameter B increases.

5.2.1 Branches of Local Maximizers

In Figure 5.20(a) we show the dependance of the objective functional (3.1) on the length

of the optimization window T for different values of the constraint B. In analogy with

what was observed in the case with q = 4, we note that:

i. Maximum values of the objective functional (3.1) obtained by solving Problem

1, with optimization performed over the Sobolev space H9/10, are larger than in

Problem 2, where optimization is performed over the Lebesgue space L5(Ω).

ii. The flows corresponding to the solutions of Problem 1 are again nonsymmetric.
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iii. The branches reveal the presence of a single maximum which shifts towards

smaller values of T as the value of the constraint parameter B increases.

iv. Nonsymmetric solutions produce larger values of the objective functional.

The relation between the maximum value of the objective functional over each branch

and the value of the constraint parameter B5 is presented in the Figure 5.20(b). By

performing least-square fits, we obtain the following power-law relations describing this

dependence

max
T

Φ5
T (ũ0;B,T ) ∼ 0.224

(
||ũ0;B,T ||5L5(Ω)

)1.085

(5.7)

for solutions of Problem 1 and

max
T

Φ5
T (ũ0;B,T ) ∼ 0.064

(
||ũ0;B,T ||5L5(Ω)

)1.113

(5.8)

for solutions of Problem 2. Since the exponents are so close to one, we conclude that the

maximum values of the objective functional scale almost proportionately to B5. This

means that the growth of the maximum value of the objective functional decreases by

half of the growth of the same quantity when q = 4.

Figures 5.21(a) and 5.21(b) show the quantity d
dt
||u(t)||L5(Ω) as a function of ||u(t)||L5(Ω)

and dE(t)/dt as a function of E(t), respectively. For a singularity formation to be possi-

ble, we would need to observe trajectories in which the rate of growth of the enstrophy

and of the L5(Ω) norm of the velocity field remains higher than the rate represented

by the dashed lines, which correspond to the minimum sustained growth rate necessary

for a flow to potentially develop a singularity. In this case, several such trajectories

are indeed observed, especially in Figure 5.21(a). However, this growth rate does not

persist long enough for a blow-up to occur and we eventually observe a decline in the

rate of change of the norm. We then arrive at a similar conclusion as in the case with

q = 4: although some solutions of the Navier-Stokes system (1.1) corresponding to op-

timal initial conditions obtained by solving Problems 1 and 2 do fall into the potential
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Figure 5.21: [q = 5] Navier-Stokes flows corresponding to the optimal initial conditions

found by solving Problem 1 and 2 for different B and T shown using the coordinates

(a)
{
||u(t)||L5(Ω),

d
dt
||u(t)||L5(Ω)

}
and (b) {E(t), dE(t)/dt}. Black solid lines show the

upper bounds in the rate of change of the L5(Ω) norm of the solution and the enstrophy

given by the relations (a) d
dt
||u(t)||L5(Ω) ∼ ||u(t)||6L5(Ω) from (2.31) and (b) dE/dt ∼ E3,

respectively. Dashed lines show the relations (a) d
dt
||u(t)||L5(Ω) ∼ ||u(t)||29/9

L5(Ω) from

(2.37) and (b) dE/dt ∼ E2. Blue trajectories are solutions of Problem 1 while red

trajectories are solutions of Problem 2. The intensity of the color is related to the

length of the time window with darker colors correspond to solutions with longer time

windows T .

blow-up regime, the growth rate of the L5(Ω) norm is not sustained long enough to

induce a singularity.

5.2.2 Structure of the Extremal Flows

We will now discuss the structure of the extremal flows belonging to the different

branches shown in Figure 5.20(a). Figures 5.22 and 5.23 show the time evolution of the

componentwise enstrophies (5.3) for different values of the constraint parameter B in
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Figure 5.22: [q = 5, Problem 1, nonsymmetric flows] Evolution of (solid lines) the total

enstrophy E(t) and (dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t)

for optimal solutions of Problem 2. The values of the parameters are (a) B = 571,

T = 10−4 (b) B = 867, T = 10−4 and (c) B = 1500.2, T = 5× 10−5.

solutions of Problem 1 and 2, respectively. The time window in each panel corresponds

to the value of T for which the objective functional reaches its maximum on each branch.

Here, we observe a similar behavior to what we saw in the case with q = 4. Solutions of

Problem 1 produce nonsymmetric flow evolutions, while solutions to Problem 2 yield
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Figure 5.23: [q = 5, Problem 2, symmetric flows] Evolution of (solid lines) the total

enstrophy E(t) and (dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t)

for optimal solutions of Problem 1. The values of the parameters are (a) B = 571,

T = 8× 10−4 (b) B = 867, T = 6× 10−4 and (c) B = 1500.2, T = 4× 10−4.

symmetric flow evolutions. Additionally, as the parameter B, increases, we observe, as

expected, that the total enstrophy tends to grow more rapidly.

Below we visualize flow fields focusing on their velocity u(x, t) and vorticity ω(x, t).

More specifically, we will show the magnitude of the vorticity |ω(x, ti)| at different time
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Figure 5.24: [q = 5, B = 1500.2] Time evolution of the norm ‖u(t)‖5
L5 in the flow

with the optimal initial condition that produces the maximum value of the objective

functional for the largest value of the constraint in Problem 1 (blue) and Problem 2

(red). Black and green symbols represent the time instances ti, i = 0, ..., 3, in Definition

5.1, when the flow is visualized in Figures 5.26 and 5.25.

instances ti with i = 0, ..., 3, together with |u(x, ti)|5 with ti as in Definition 5.1. We

marked these time instances with green and black symbols in Figure 5.24. The choice

of the parameters B and T in Figures 5.25 and 5.26 corresponds to the maximum value

of the objective functional (3.1) along the branch associated with the largest value of

the constraint B. The flow structures shown in Figure 5.26 are quite similar to what we

found for the case with q = 4, featuring two tightly spaced vortex tubes which stretch

to fill the entire flow domain, i.e., see Figure 5.13. However, we observe a different

behavior at the final time t3, where the vortex tubes appear to break up and become

entangled to form a complicated flow pattern. Turbulent snapshots like this one were

not observed for q = 4. As for the flow structure in Figure 5.25, the time evolution of

the vorticity seems to be less turbulent. We observe two closely spaced vortex tubes

that stretch as time evolves. This time, however, they do not fill the entire domain. A

possible explanation for the chaotic final stage evident in Figure 5.26, as opposed to the

one in Figure 5.25, could be related to the function space in which the initial conditions

are obtained. The fact that initial conditions obtained by solving Problem 1 possess

80



Ph.D. Thesis – Elkin Ramı́rez McMaster University

(a) t0 = 0 (b) t1 = 2× 10−5

(c) t2 = 3.6× 10−5 (d) t3 = 5× 10−5

Figure 5.25: [q = 5, Problem 1, B = 1500.2 and T = 5× 10−5] Snapshots of the mag-

nitude of the vorticity |ω(x, ti)| (red) in the solution of the Navier-Stokes system (1.1)

and the quantity |u(x, ti)|5 (blue) shown at the times t0, ..., t3 defined in Definition 5.1.

The values of the parameters B and T correspond to the maxima over the symmetric

branch with the largest value of B in Figure 5.20(a).

certain degree of regularity may cause the time evolution of the vorticity to proceed

more smoothly than when using initial conditions obtained by solving Problem 2.
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(a) t0 = 0 (b) t1 = 1.5× 10−4

(c) t2 = 2.1× 10−4 (d) t3 = 4× 10−4

Figure 5.26: [q = 5, Problem 2, B = 1500.2 and T = 4× 10−4] Snapshots of the mag-

nitude of the vorticity |ω(x, ti)| (red) in the solution of the Navier-Stokes system (1.1)

and the quantity |u(x, ti)|5 (blue) shown at the times t0, ..., t3 defined in Definition 5.1.

The values of the parameters B and T correspond to the maxima over the symmetric

branch with the largest value of B in Figure 5.20(a).
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Figure 5.27: [q = 9, B = 500] Time evolution of the L9(Ω) norm of the velocity field

at certain iterations n. Curves with darker colors correspond to later iterations closer

to the local optimum of Problem 1 (blue) and Problem 2 (red). Blue and red curves

correspond to optimization problems with T = 2×10−4 and T = 4×10−4, respectively.

5.3 Extremal Flows in L9(Ω)

In this section, we consider q = 9 and will vary the parameter T while keeping the

parameter B fixed and equal to 500, 800 and 1200 (although some figures also use

B = 1037.92) in Problems 1 and 2.

Similarly as in the cases with q = 4 and q = 5, we did observe some increase of

the norm ‖u(t)‖L9 , though we did not find evidence for its unbounded growth that

could signal singularity formation according to (2.30). In Figure 5.27, we see how the

time evolution of the L9(Ω) norm of the velocity field changes with iterations as we

approach the local maxima when solving Problems 1 and 2. The time window T is

chosen such that it corresponds to the largest value of the objective functional obtained

when solving Problems 1 and 2 for the given value of the constraint B = 500.

83



Ph.D. Thesis – Elkin Ramı́rez McMaster University

480

560

640

720

800

0.0 0.00015 0.0003 0.00045 0.0006

||u
(t
)||

L
9

t

(a)

875

1050

1225

1400

0.0 0.0001 0.0002 0.0003 0.0004

||u
(t
)||

L
9

t

(b)

1050

1400

1750

2100

0.0 0.00005 0.0001 0.00015 0.0002

||u
(t
)||

L
9

t

(c)

Figure 5.28: [q = 9] Time evolution of ||u(t)||L9 for the Navier-Stokes flows with optimal

initial conditions obtained by solving Problem 1 (blue) and Problem 2 (red). The values

of the constraint parameter are (a) B = 500, (b) B = 800 and (c) B = 1200. Solutions

are computed over the time window [0, T ] where T was chosen to be the shortest and

longest considered time window.
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Figure 5.29: [q = 9] Time evolution of the total enstrophy E(u(t)) normalized with

respect to the initial entrophy E0 in the solutions of the Navier-Stokes system (1.1)

corresponding to the optimal initial conditions obtained by solving Problem 1 (blue)

and Problem 2 (red). The values of the constraint parameter are (a) B = 500, (b)

B = 800 and (c) B = 1200. Solutions are computed over the time window [0, T ] where

T was chosen to be the shortest and longest considered time window.

In Figures 5.28(a)–(c), we show the time evolution of the L9(Ω) norm of the solution

of the Navier-Stokes system (1.1), using the optimal initial conditions found by solving

Problems 1 and 2 with B = 500, B = 800 and B = 1200.

For each value of the constraint parameter B, the evolution of the norm of the so-
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Figure 5.30: [q = 9] (a) Dependence of the local maxima of the objective functional (3.1)

with q = 9 on the length of the optimization window in Problems 1 (blue) and 2 (red)

for different values of the constraint B = 500, 800, 1200. The arrow indicates the trend

with the increase of B. (b) Dependence of maxT Φ9
T (ũ0;B,T ) on B9 = ||ũ0;B,T ||9L9(Ω).

lution of the Navier-Stokes system (1.1) is plotted for the shortest and longest time

window T considered. We observe that the maxima of ‖u(t)‖L9 are generally larger

when we use the optimal initial conditions found by solving Problem 1 than the op-

timal initial conditions from Problem 2. This mirrors the behavior of the norm when

the optimal solutions were found in the spaces L4(Ω) and L5(Ω), as discussed earlier,

cf. Figures 5.4 and 5.18. The time evolution of the enstrophy E(t) normalized with

respect to the initial enstrophy E0 is displayed in Figure 5.29. Values of the parameters

B, T, as well as the color coding are the same as in Figure 5.28. We observed that the

enstrophy initially decays and then grows, and the growth seems more prominent as

the parameter B increases. This is exactly what we observed in earlier cases, cf. Figures

5.5 and 5.19, where the enstrophy initially decreases, followed by substantial growth.
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Figure 5.31: [q = 9] Navier-Stokes flows corresponding to the optimal initial conditions

found by solving Problem 1 and 2 for different B and T shown using the coordinates

(a)
{
||u(t)||L9(Ω),

d
dt
||u(t)||L9(Ω)

}
and (b) {E(t), dE(t)/dt}. Black solid lines show the

upper bounds in the rate of change of the L9(Ω) norm of the solution and the enstrophy

given by the relations (a) d
dt
||u(t)||L9(Ω) ∼ ||u(t)||4L9(Ω) from (2.31) and (b) dE/dt ∼ E3,

respectively. Dashed lines show the relations (a) d
dt
||u(t)||L9(Ω) ∼ ||u(t)||5/2L9(Ω) from

(2.37) and (b) dE/dt ∼ E2. Blue trajectories are solutions of Problem 1 while red

trajectories are solutions of Problem 2. The intensity of the color is related to the

length of the time window with darker colors correspond to solutions with longer time

windows T .

5.3.1 Branches of Local Maximizers

In Figure 5.30(a) we show the dependance of the objective functional (3.1) on the length

of the optimization window T for different values of the constraint B. Similarly to the

observations made in the cases q = 4 and q = 5, we note that:

i. The maximum of the objective functional (3.1) along the branch is generally

higher when solving Problem 1 than when solving Problem 2.

ii. The flows corresponding to the solutions of Problem 1 are again nonsymmetric.
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iii. The branches reveal the presence of a single maximum.

The relation between the maximum value of the objective functional over each branch

and the value of the constraint parameter B9 is presented in the Figure 5.30(b). By

performing least-square fits, we obtain the following power-law relations describing this

dependence

max
T

Φ5
T (ũ0;B,T ) ∼ 0.09

(
||ũ0;B,T ||9L9(Ω)

)0.3936

(5.9)

for solutions of Problem 1 and

max
T

Φ5
T (ũ0;B,T ) ∼ 0.07

(
||ũ0;B,T ||9L9(Ω)

)0.3958

(5.10)

for solutions of Problem 2. When the exponents obtained are compared to their values

in expressions (5.5), (5.6), (5.7) and (5.8), we observe that they are smaller than the

exponents obtained for smaller values of q.

Figure 5.31 show the quantity d
dt
||u(t)||L9(Ω) as a function of ||u(t)||L9(Ω) and dE(t)/dt

as a function of E(t), respectively. As mentioned before, we aim to observe trajectories

in which the rate of growth of the enstrophy and of the L9(Ω) norm of the velocity

field remains higher than the rate represented by the dashed lines, which is the lowest

growth rate a trajectory must sustain if a singularity is to develop. In this case, a few

such trajectories are observed, especially in Figure 5.31(a). However, similarly to what

we saw before, their growth rate does not persist long enough for a blow-up to occur,

and we eventually observe a decline in the rate of change of the norm. We then reach

the same conclusion as in the cases with q = 4 and q = 5: although some solutions of

the Navier-Stokes system (1.1) corresponding to optimal initial conditions obtained by

solving Problems 1 and 2 do fall into the potential blow-up regime, the growth rate of

the L9(Ω) norm is not sustained long enough for a singularity to develop.
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Figure 5.32: [q = 9, Problem 1] Evolution of (solid lines) the total enstrophy E(t) and

(dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t) for optimal solutions

of Problem 1. The values of the parameters are (a) B = 500, T = 2×10−4, (b) B = 800,

T = 2× 10−4, and (c) B = 1200, T = 10−4.
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Figure 5.33: [q = 9, Problem 2] Evolution of (solid lines) the total enstrophy E(t) and

(dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t) for optimal solutions

of Problem 2. The values of the parameters are (a) B = 500, T = 2×10−4, (b) B = 800,

T = 2× 10−4, and (c) B = 1200, T = 10−4.

5.3.2 Structure of the Extremal Flows

Here, we discuss the structure of the extremal flows belonging to the different branches

shown in Figure 5.30(a). Figures 5.32 and 5.33 show the time evolution of the com-
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Figure 5.34: [q = 9, B = 1037.92] Time evolution of the norm ‖u(t)‖L9 in the flow

with the optimal initial condition that produces the maximum value of the objective

functional in Problem 1 (blue) and Problem 2 (red). Black and green symbols represent

the time instances ti, i = 0, ..., 3, in Definition 5.1, when the flow is visualized in Figures

5.35 and 5.36.

ponentwise enstrophies (5.3) in solutions of Problem 1 and 2, respectively. The time

window in each panel corresponds to the value of T for which the objective functional

reaches its maximum on each branch. Unlike the case q = 5, solutions of Problem 1 and

Problem 2 are both nonsymmetric. Unsurprisingly, we observe that the total enstrophy

of solutions to Problems 1 and 2 initially decreases, followed by growth.

Below we visualize the flow fields focusing on their velocity u(x, t) and vorticity

ω(x, t). More specifically, we will show the magnitude of the vorticity |ω(x, ti)| at

different time instances ti with i = 0, ..., 3, together with |u(x, ti)|9 where ti is as in

Definition 5.1. We marked these time instances as the green and black symbols in

Figure 5.34. In Figure 5.35, the time evolution of the vorticity appears different from

what we observed in the cases q = 4 and q = 5. Although we observe vortex tubes, they

do not seem to close, unlike in the previous cases. As for the flow structure in Figure

5.36, they reveal similar features to what we saw for the case with q = 4 and q = 5,

with two tightly spaced vortex rings which stretch to fill the entire flow domain, cf.

Figure 5.13 and 5.26. This time, however, the rings seem to twist across the domain.
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(a) t0 = 0 (b) t1 = 1.4× 10−4

(c) t2 = 1.6× 10−4 (d) t3 = 2× 10−4

Figure 5.35: [q = 9, Problem 1, B = 1037.92 and T = 2 × 10−4] Snapshots of the

magnitude of the vorticity |ω(x, ti)| (red) along with vortex lines (red) of the solution

of the Navier-Stokes system (1.1) and the quantity |u(x, ti)|9 (blue) shown at the times

t0, ..., t3 defined in Definition 5.1.
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(a) t0 = 0 (b) t1 = 2× 10−4

(c) t2 = 2.4× 10−4 (d) t3 = 4× 10−4

Figure 5.36: [q = 9, Problem 2, B = 1037.92 and T = 4 × 10−4] Snapshots of the

magnitude of the vorticity |ω(x, ti)| (red) along with vortex lines (red) in the solution

of the Navier-Stokes system (1.1) and the quantity |u(x, ti)|9 (blue) shown at the times

t0, ..., t3 defined in Definition 5.1.

5.4 Extremal Flows in L3(Ω)

In this section, we consider the limiting case q = 3 and vary the parameters B and T

while solving Problems 3 and 4. As before, we found no evidence of unboundedness

of the L3(Ω) norm of solutions to the Navier-Stokes system (1.1), which would indi-
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Figure 5.37: [q = 3, B = 562.34] (a) Dependence of the objective functional (3.9) on

the iteration n when solving Problem 3 (blue) and Problem 4 (red). (b) Time evolution

of the L3(Ω) norm of the velocity field at certain iterations n. Curves with darker

colors correspond to later iterations closer to the local optimum of Problem 1 (blue)

and Problem 2 (red). Blue and red curves correspond to optimization problems with

T = 5× 10−5 and T = 2× 10−4, respectively.

cate singularity formation according to (2.30). We should point out that the objective

functional in this case (3.9) is different from the previous cases (3.1), and in the op-

timization problem, we aim to maximize the Lq(Ω) norm at a terminal time t = T ,

rather than an integral of the norm over the entire time window [0, T ]. Unlike the case

of the other values of q considered in the previous sections, we found that the L3(Ω)

norm of Navier-Stokes flows did not exhibit significant growth. For example, we can

see in Figure 5.37(b) that the L3(Ω) norm at the optimal states grew less than 10%.
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Figure 5.38: [q = 3] Time evolution of ||u(t)||L3 in the Navier-Stokes flows with optimal

initial conditions obtained by solving Problem 3 (blue) and Problem 4 (red). The values

of the constraint parameter are (a) B = 376.06, (b) B = 562.34 and (c) B = 707.10.

Solutions are computed over the time window [0, T ] where T was chosen to be the

shortest and longest considered time window.

This is unsurprising, since it is well know that the the L3(Ω) norm of Navier-Stokes

flows grows at a slow rate [27].

In Figure 5.37(a), we observe the convergence of the objective functional (3.9) with

iterations n when solving Problems 3 and 4. The constraint parameter B is fixed at

562.34, while the time window T was chosen as follows: for the solution to Problem 3,
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Figure 5.39: [q = 3] Time evolution of the total enstrophy E(u(t)) normalized with

respect to the initial entrophy E0 in the solutions of the Navier-Stokes system (1.1)

corresponding to the optimal initial conditions obtanied by solving Problem 3 (blue)

and Problem 4 (red). The values of the constraint parameter are (a) B = 376.06, (b)

B = 562.34 and (c) B = 707.10. Solutions are computed over the time window [0, T ]

where T was chosen to be the shortest and longest considered time window.

it maximizes the objective functional (3.9) along the middle branch in Figure 5.40(a),

and for the solution to Problem 4, it corresponds to one of the values where more

iterations were needed in (4.7).

In Figure 5.37(b), we see how the time evolution of the L3(Ω) norm of the velocity
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field changes with iterations as we approach the local maxima. The evolution of the

spectrum of the solution to the Navier-Stokes system (1.1) is not presented here, as it

behaves in an analogous manner as in the cases q = 4 and q = 5, cf. see Figures 5.2,

5.3, 5.16, and 5.17.

In Figures 5.38 (a)–(c), we show the time evolution of the L3(Ω) norm of the solution

to the Navier-Stokes system (1.1), using the optimal initial conditions found by solving

Problems 3 and 4 with B = 376.06, B = 562.34 and B = 707.10, respectively. For

each value of the constraint parameter B, the evolution of its L3(Ω) norm is plotted

for the shortest and longest time window considered T . We see that the maximum

of ‖u(t)‖L3(Ω) is typically larger when we use the optimal initial conditions found by

solving Problem 3. This resembles the behavior we already observed in the cases with

q > 3 even though the objective functional here is different. The evolution of the

enstrophy E(t) normalized with respect to the initial enstrophy E0 is displayed in Figure

5.39. The values of the parameters B, T, as well as the color coding is identical as in

Figure 5.38. As in the previous cases, we observe that the enstrophy initially decays

but then eventually grows. This time, however, larger values of the parameter B do

not correspond to higher variation in the increasing section of the enstrophy.

5.4.1 Branches of Local Maximizers

In Figure 5.40(a) we show the dependance of the objective functional (3.9) on the length

of the optimization window T for different values of the constraint B. In solutions to

Problems 3 and 4 flows on each branch exhibit similar behavior of the norm ||u(t)||L3(Ω)

in time as already shown in Figure 5.38. We observe that the maximum values of

the objective functional (3.9) obtained by solving Problem 3, where the optimization

is performed over the Sobolev space H1/2, are larger than in Problem 4, where the

optimization is performed over the Lebesgue space L3(Ω). This behaviour is consistent

with what was observed for the previous values of q, where solutions found in Sobolev
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(ũ

0;
B
,T
)

T

n

(a)

10
8

10
9

10
8

10
9

m
ax

T
Ψ
T
(ũ
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Figure 5.40: [q = 3] (a) Dependence of the local maxima of the objective functional

(3.1) with q = 3 on the length of the optimization window in Problems 3 (blue) and

4 (red) for different values of the constraint B = 376.06, B = 562.34 and B = 707.10.

Dashed lines represent nonsymmetric branches, whereas the arrow indicates the trend

with the increase of B. (b) Dependence of maxT ΨT (ũ0;B,T ) on B3 = ||ũ0;B,T ||3L3(Ω).

spaces produced larger values of the objective functional (3.1) than those over Lebesgue

spaces. Furthermore, we found that the flows corresponding to the solutions of Problems

3 and 4 are always nonsymmetric. Interestingly, even though the solutions of Problems

3 and 4 preserve the same symmetry, solutions of Problem 3 continue to produce higher

values of the objective functional (3.9). However, the difference between these maxima

is small. Notice that all the branches reveal the presence of a single maximum which

slightly shifts towards smaller values of T as the value of the constraint parameter B

increases. The relation between the maximum value of the objective functional (3.9)

along each branch and the value of the constraint parameter B3 is presented in the

Figure 5.40(b). By performing least-square fits, we obtain the following power-law

relations describing this dependence

max
T

ΨT (ũ0;B,T ) ∼ 0.31
(
||ũ0;B,T ||3L3(Ω)

)1.07

(5.11)
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Figure 5.41: [q = 3] Navier-Stokes flows corresponding to the optimal initial conditions

found by solving Problem 3 and 4 for different B and T shown using the coordinates

(a)
{
||u(t)||L3(Ω),

d
dt
||u(t)||L3(Ω)

}
and (b) {E(t), dE(t)/dt}. Black solid line shows the

upper bounds in the rate of change of the enstrophy given by the relation dE/dt ∼ E3.

Panel (a) does not have a black solid line since an upper bound on the rate of growth

of the L3(Ω) norm does not seem to be available. Dashed lines show the relations

(a) d
dt
||u(t)||L3(Ω) ∼ ||u(t)||5L3(Ω) from (2.37) and (b) dE/dt ∼ E2. Blue trajectories

correspond to solutions of Problem 3 while red trajectories show solutions of Problem

4. The intensity of the color is related to the length of the time window with darker

colors correspond to solutions with longer time windows T .

for solutions of Problem 3, and

max
T

ΨT (ũ0;B,T ) ∼ 0.22
(
||ũ0;B,T ||3L3(Ω)

)1.09

(5.12)

for solutions of Problem 4. We can conclude that there appears to be a linear de-

pendency between the maximum of the objective functional (3.9) and the constraint

parameter B3.

In Figure 5.41, we now plot the corresponding time-dependent trajectories using the

coordinates
{
||u(t)||L3(Ω),

d
dt
||u(t)||L3(Ω)

}
and {E(t), dE(t)/dt}. As in Sections 5.1.1,
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5.2.1 and 5.3.1, we aim to check whether or not there are trajectories in which the rate

of growth of the enstrophy and the L3(Ω) norm of the velocity field remains higher,

for a sufficient long time, than the rate represented by the dashed lines. Unlike the

cases with q > 3, in this limiting case we observe only a few trajectories that satisfy

this condition, e.g., the green and the gold trajectories in Figures 5.31(a) and 5.31(b),

respectively. These correspond to solutions of Problem 3 (Figure 5.31(b)) and Problem

4 (Figure 5.31(a)). However, their rate of growth does not persist long enough for a

blow-up to occur and we eventually observe a decline in the rate of change of the
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Figure 5.42: [q = 3, Problem 3] Evolution of (solid lines) the total enstrophy E(t)

and (dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t) for optimal

solutions of Problem 3. The values of the parameters are (a) B = 53.18, T = 5× 10−5

(b) B = 177.82, T = 5× 10−5 and (c) B = 353.55, T = 5× 10−5.
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Figure 5.43: [q = 3, Problem 4] Evolution of (solid lines) the total enstrophy E(t) and

(dotted lines) the componentwise enstrophies E1(t), E2(t) and E3(t) for optimal solutions

of Problem 4. The values of the parameters are (a) B = 562.34, T = 10−4 and (b)

B = 707.10, T = 5× 10−5.

norm. The gold trajectory is particularly interesting because it appears to grow in

proportion to the upper bound on the rate of change of the enstrophy represented by

the black solid line. We then reach a similar conclusion that only a few solutions of the

Navier-Stokes system (1.1), corresponding to the optimal initial conditions obtained by

solving Problems 3 and 4, fall into the potential blow-up regime. Nevertheless, this

behavior does not persist long enough to trigger a singularity. This time, however,

there are considerably fewer such trajectories.

5.4.2 Structure of the Extremal Flows

We will now discuss the structure of the extremal flows belonging to the different

branches shown in Figure 5.40(a). Figures 5.42 and 5.43 show the time evolution of the

componentwise enstrophies (5.3) for different values of the constraint parameter B in

solutions of Problems 3 and 4, respectively. The time window in each panel corresponds
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Figure 5.44: [q = 3] Time evolution of the norm ‖u(t)‖3
L3 in the flow with the optimal

initial condition that produces the maximum value of the objective functional for solu-

tions of (a) Problem 3, and (b) Problem 4. Black and green symbols represent the time

instances ti, i = 0, ..., 2, in Definition 5.1, when the flow is visualized in Figures 5.46

and 5.45. The parameter values are (a) B = 562.34 and T = 10−5, and (b) B = 707.10

and T = 5× 10−5.

to when the objective functional reaches its maximum on each branch. Unlike in Figures

5.11, 5.24 and 5.34, t3 as defined in Definition 5.1 does not appear in Figure 5.44. This

is because of the form of the objective functional (3.9) in the limiting case. Since it

involves the L3(Ω) norm at the terminal point t = T, it is natural that the maximum

of the L3(Ω) norm is attained at or very close to the end point t = T . Therefore, in

this case t2 ∼ t3 in Definition 5.1.

The flow structures shown in Figure 5.46 are quite similar to what we obtained in

the case q = 4 (see Figure 5.12); both cases were obtained by solving the optimization

problem over a Lebesgue space. We observe a bent vortex ring that stretches as time

evolves. As before, we note that the maxima of |u(x, t)|3 occur within the gap formed

by the vortex ring as it entangles and these are precisely the regions driving the growth

of the objective functional (3.9). It is likely that such similarity is related to the fact

103



Ph.D. Thesis – Elkin Ramı́rez McMaster University

that the gradient descent method converges within a few iterations. As regards the

solutions of Problem 3, the time evolution of the vorticity is shown in Figure 5.45.
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(a) t0 = 0 (b) t1 = 6× 10−6

(c) t2 = 10−5

Figure 5.45: [q = 3, Problem 3, B = 562.34 and T = 10−5] Snapshots of the magnitude

of the vorticity |ω(x, ti)| (red) in the solution of the Navier-Stokes system (1.1) along

with vortex lines (red) and the quantity |u(x, ti)|3 shown at the times t0, ..., t2 defined in

Definition 5.1. The values of the parameters B and T correspond to the gold trajectory

in Figure 5.41(b).
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(a) t0 = 0 (b) t1 = 3× 10−5

(c) t2 = 5× 10−5

Figure 5.46: [q = 3, Problem 4, B = 707.10 and T = 5 × 10−5] Time evolution of the

vorticity’s magnitude |ω(x, ti)| (red) of the solution of the Navier-Stokes system (1.1)

shown at the times t0, ..., t2 defined in Definition 5.1. The values of the parameters B

and T correspond to the green trajectory in Figure 5.41(a).
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Figure 5.47: Dependence of ∆E defined in (5.13) on the initial enstrophy E0 in Navier-

Stokes flows with the optimal initial conditions constructed in (blue) a Sobolev space,

i.e., solutions of Problems 1 and 3, and in (red) a Lebesgue space, i.e., solutions of

Problems 2 and 4. Each symbol corresponds to a different value of q, (squares) q = 3,

(circles) q = 4, (triangles) q = 5 and (diamonds) q = 9. Solid blue straight lines

represent the relation maxt≥0 E(t) ∼ CE3/2
0 with different values of C. Panel (b) shows

a subset of points from Panel (a), where each point corresponds to the maximum value

per branch taken from Figures 5.6(a), 5.20(a), 5.30 and 5.40(a).

5.5 Diagnostic Quantities in the Extremal Flows

In this section we consolidate all the data obtained in this study to identify some

general trends. First, we focus on quantifying the maximum growth of the enstrophy.

It is important to note that, unlike in the work of Kang et al. in [29], the enstrophy

was not directly controlled (via imposed constraints) in this investigation, therefore,

what we observe here is an outcome of optimization performed while constraining other

quantities (the Lq(Ω) norms). A similar approach to analyzing the enstrophy growth

using initial conditions from the solutions to Problems 1, 2, 3 and 4 involves defining
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Figure 5.48: Dependence of ∆E (5.13) on the initial enstrophy E0 in Navier-Stokes flows

with the optimal initial conditions constructed in (blue) solutions in a Sobolev space,

i.e., solutions to Problems 1 and 3 and in (red) a Lebesgue space, i.e., solutions to

Problems 2 and 4. Each panel shows a subset of points from Figure 5.47(a) associated

to different values of q, (a) q = 3, (b) q = 4, (c) q = 5, and (d) q = 9. Straight lines

represent the relation maxt≥0 E(t) ∼ CE3/2
0 with different values of C.

the following quantity

∆E := max
t∈[argmins∈[0,T ] E(s),T ]

E(t)− Emin, (5.13)
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Figure 5.49: Dependence of the exponent γ in expression (5.4) on the value of q for flows

with optimal initial conditions constructed in (blue) a Sobolev space, i.e., solutions of

Problems 1 and 3 and in (red) a Lebesgue space, i.e., solutions of Problems 2 and 4.

where

Emin := min
t∈[0,T ]

E(t). (5.14)

The value of ∆E therefore captures the growth of the enstrophy from its lowest value

during the flow evolution to its maximum. The definition of ∆E is motivated by Figures

5.5, 5.19, and 5.39 where an initial decay in the enstrophy is followed by a prominent

increase. Interestingly, we observe in Figure 5.47 that the variation of the enstrophy

∆E seems to follows the relation maxt≥0 E(t) ∼ CE3/2
0 described by Ayala & Protas

in [5] and Kang et al. in [29]. However, this trend seems to be mostly realized by the

cases q = 3 and q = 5 as shown in Figures 5.48(a) and 5.48(c). The cases q = 4 and

q = 9, shown in Figures 5.48(b) and 5.48(d), seem to follow a slightly steeper relation,

however, more data is necessary to confirmed this finding.

Finally, in Figure 5.49 we show how the exponent γ in expression (5.4) depends on

the parameter q. We observe a decreasing trend in γ for values of q greater than 3.

The change of the trend at q = 3 might be due to the fact that the this case employs a

different objective functional. We confirm that the value of γ obtained in this study for

q = 4 is consistent with the result reported by Kang & Protas in [28]. It is interesting
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that the values of γ for q = 5 and q = 3 are quite similar and are approximately half

smaller than the value of γ for q = 4.
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Chapter 6

Summary and Conclusions

In this thesis, we conducted an extensive search for singularities in Navier-Stokes flows

on a periodic domain using a systematic computational approach. We solved a series of

PDE-constrained optimization problems based on the LPS conditions (2.27), where we

sought initial conditions ũ0 such that the corresponding Navier-Stokes flows maximize

the objective functionals (3.1) and (3.9). Those initial conditions were determined in

the Sobolev-Hilbert spaces Hs(Ω) (see Problems 1 and 3) and Lebesgue spaces Lq(Ω)

(see Problems 2 and 4). The latter case was particularly challenging due to the lack of

an inner product structure on top of the lack of regularity. To solve these optimization

problems, we used the “optimize-then-discretize” approach involving a state-of-the-art

adjoint-based Riemannian gradient method (4.5) and (4.7). However, the solution of

Problems 2 and 4 required a novel approach using metric gradients [23], and even in

this new setup where we search for extreme flows, we found no evidence of unbounded

growth of the quantities of interest, and thus, no indication of singularity formation.

This research is a continuation of a series of earlier studies where a systematic computa-

tional search for singularities in the Navier-Stokes system (1.1) was conducted based on

different regularity conditions [34, 8, 29, 47, 28]. In our study, we considered different

values of the Lebesgue exponent q (3, 4, 5 and 9), different “sizes” of the initial data B
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and several time windows T . Then, given q, we chose s as the index that makes Hs(Ω)

the largest Sobolev-Hilbert space embedded in Lq(Ω) (Theorem 2.1) to solve Problems

1 and 3.

The flows with initial data constructed in Sobolev spaces, i.e., solutions of Problems

1 and 3, were found to lead to larger values of the objective functional (3.1) as compared

to flows with initial data constructed in Lebesgue spaces, i.e., solutions of Problems 2

and 4 for all the considered values of q (see Figures 5.6, 5.20, 5.30 and 5.40). This is a

counterintuitive result since optimal initial conditions in Problems 2 and 4 are sought

in a “larger” space. An intuitive result, though, is that the optimal initial conditions

obtained in Problems 2 and 4 are considerably less regular than those from Problems 1

and 3, respectively (see Figures 5.2(a), 5.3(a), 5.16(a), and 5.17(a)). Additionally, we

found numerically that local maximizers of Problems 1 and 3 are also local maximizers

of Problems 2 and 4, respectively. However, the converse is not true. This observation

can be rigorously justified as the following theorem

Theorem 6.1. Consider the following optimization problems defined on the Banach

spaces X and Y ,

max
z∈X

ϕ(z) (P1)

and,

max
z∈Y

ϕ(z), (P2)

where X is densely embedded in Y and ϕ(z) is a Fréchet differentiable objective func-

tional defined on X and Y . If z0 is a local solution of (P1), then z0 is also a local

solution of (P2).

Although Problems 1–4 are constrained, we can always write them as unconstrained

problems using Lagrange multipliers, and then invoke Theorem 6.1. The proof of this

theorem is in Appendix B.
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We explored several ways to solve Problems 1–4, and also derived a Riemannian

conjugate-gradient method to solve optimization problems formulated in Banach spaces

(see Section 4.6). The motivation behind this effort was that conjugate-gradient meth-

ods have demonstrated better performance than gradient descent methods, even in

infinite-dimensional spaces [14, 59]. However, in our case, we did not observe any no-

ticeable improvement in performance in either the number of iterations required to

converge or the structure of the optimal solution reflected in the values of the objective

functionals (3.1) and (3.9). Therefore, for simplicity, we decided to continue using the

Riemannian gradient descent method rather than the Riemannian conjugate-gradient

method. Although our study did not directly benefit from this approach, the method

we introduced could be applicable to other optimization problems posed on infinite-

dimensional Banach spaces. Recent applications of such type include, for example,

image recovery problems [30].

After a comprehensive search for extreme behavior by varying the parameters q, B

and T , we constructed maximizing branches for Problems 1 and 2 illustrated in Figures

5.6, 5.20, 5.30. Additionally, Figure 5.40 shows the maximizing branches from solutions

to Problems 3 and 4. Even though the values of the objective functionals (3.1) and

(3.9) are large, we found no evidence of unbounded growth of the quantities represented

by the objective functionals. This conclusion is supported by the observation that the

objective functionals begin to decay for longer time windows T . To understand the

dynamics of the solutions of the Navier-Stokes system (1.1) with initial conditions

given by the optimal solutions of Problems 1–4, we studied the diagnostic quantities

‖u(t)‖Lq(Ω) and the enstrophy E(t). In Figures 5.4, 5.18, 5.28(a) and 5.38, we observe a

rapid growth of ‖u(t)‖Lq(Ω) driven by the nonlinear term followed by a decay as a result

of the dominance of the dissipative term. Similarly, Figures 5.5, 5.19, 5.29(a) and 5.39

show the evolution of the enstrophy normalized with the initial enstrophy E0. Here, we

observe that in most of the cases, the enstrophy starts decreasing initially but this is
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then followed by a rapid growth if the parameters T and B are “large” enough.

Symmetry of the velocity field, introduced in Table 5.1, is a feature defined based on

the behavior of its componentwise enstrophy (2.7). If the componentwise enstrophies are

similar in both magnitude and monotonicity, the velocity field is considered symmetric;

otherwise, it is considered nonsymmetric. Interestingly, the solutions of Problem 1

and 3 are nonsymmetric flows across different values of q (see Figures 5.6, 5.20, 5.30

and 5.40). However, solutions to Problem 2 can be either symmetric or nonsymmetric

flows. Regarding the solutions of Problem 4, they were found to be nonsymmetric.

Additionally, for the cases where symmetric and nonsymmetric velocity fields were

found, the nonsymmetric branches yielded higher values in the objective functional.

This is consistent with Kang’s & Protas’ findings in [28]. Additionally, we noticed that

the values of the objective functional obtained using random initial guesses in iterations

(4.5) were comparable with the values presented in Figures 5.6, 5.20, 5.30, and 5.40.

In expression (2.37), we presented explicit bounds for the rate of growth of the

Lq(Ω) norm of solutions to the Navier-Stokes system (1.1) that have bounded norm at

all times. By combining these results with a priori bounds on the rate of growth of

the Lq(Ω) from expression (2.31), we identify regimes in terms of the rate of growth

of the Lq(Ω) norm in which the solutions to the Navier-Stokes equations must lie in

order to develop a singularity, provided that the growth of the Lq(Ω) norm is sustained

over a sufficiently long time. These regimes are presented in Figure 2.1. We observe

a significant transient growth of both the Lq(Ω) norm and of the enstrophy for all the

studied values of q in Figures 5.7, 5.21, 5.31 and 5.41. However, the growth of the Lq(Ω)

norm was not sustained long enough to lead to singularity formation in a finite time.

Although we did not work with parameters that allow us to control the enstrophy, in

Figures 5.7, 5.21, 5.31 and 5.41 we did observe trajectories corresponding to solutions

of Problems 1–4 where the rate of growth of the enstrophy fell into the regime where a

singularity could form. However, similarly to what was observed for the Lq(Ω) norm,
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this growth was not sustained for a sufficiently long time to trigger a singularity.

It is interesting that the optimal solutions of Problems 1–4 can share some simi-

larities in terms of their flow structure, despite being obtained over different function

spaces and with distinct objective functionals. For example, consider Figures 5.13 and

5.14, which visualize the flow fields obtained as solutions of Problems 1 and 2, respec-

tively. They present the quantities |ω(x, t)| and |u(x, t)|4 at the time instances ti given

in Definition 5.1. Both figures show the formation of two flat vortex tubes that enclose

a region contributing most to the value of the objective functional (3.1). Another inter-

esting flow structure, observed in problems solved with different values of q, is a bent

vortex tube, as shown in Figures 5.12 and 5.46. These figures visualize the flow fields

obtained as solutions of Problems 1 and 4, respectively. Although they represent opti-

mal solutions constructed in spaces with different topologies, the vortex tube remains

confined in both cases. However, there are other cases in which the tube stretches across

the entire domain, as seen in Figure 5.36, which corresponds to solutions of Problem 2.

These appear to be the two predominant structures in the extreme flows corresponding

to the optimal initial conditions obtained by solving Problems 1–4, for different values

of q.

Another interesting finding is related to the scaling of the maximum attained en-

strophy in terms of the initial enstrophy E0. Although this relation is presented in a

different way to what Ayala & Protas in [5] and Kang et al. in [28] did, we observed

that the maximum variation of the enstrophy ∆E (5.13) also scales as CE
3
2
0 . This be-

havior is especially evident for the cases q = 3 and q = 5 (see Figure 5.48). The reason

for introducing ∆E was the need to measure the total enstrophy growth since, in most

cases, the enstrophy initially decreased and growth occurred only after certain period

of time.

We acknowledge that the approach of searching for singularities by solving Problems

1, 2, 3 or 4 has several limitations. From one side, we have the inability to distinguish
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between local and global maximizers, which is an inherent issue when solving non-

convex optimization problems such as Problems 1, 2, 3 or 4. On the other hand, we

have the computational cost of the numerical method used to solve the PDE problems.

A solution of Problem 1, 2, 3 or 4 with typical values of the parameters B and T would

take several days to complete while using O(10) − O(100) CPUs, and refining the

resolution globally would lead to even longer computation times. However, overcoming

these limitations offers valuable directions for future studies. For example:

• The use of a different numerical method, such as a variant of an adaptive finite-

element or finite-difference method that allows for local refinements, rather than

the uniform refinements used currently, could improve computational efficiency

while maintaining accuracy in regions of interest. This would be particularly

beneficial for capturing small-scale features of the extreme solutions.

• Exploring extreme solutions to Problem 5 in Sobolev spaces W n,q(Ω) for n, q > 1.

• Solving Problems 1–4 over nontrivial, non-slip, bounded domains.

• Solving analogous optimization problems for 3D Euler equations where, unlike the

Navier-Stokes system (1.1), there is numerical evidence of singularity formation

using smooth initial data in specific domains [26, 59].
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Appendix A

Rederivation of Inequality (2.31)

In this appendix we derive inequality (2.31) following Robinson’s and Sadowski’s work

[50]. First, multiplying the momentum equation (1.1a) by u|u|q−2 and integrating in

space, we obtain

∫

Ω

ut ·u|u|q−2 dx−
∫

Ω

∆u ·u|u|q−2 dx +

∫

Ω

(u ·∇)u ·u|u|q−2 dx = −
∫

Ω

∇p ·u|u|q−2 dx.

Now, we will analyze all terms, starting with the first one on the left-hand side,

∫

Ω

ut · u|u|q−2 dx =
1

q

d

dt

∫

Ω

|u|q dx. (A.1)

The second term of the left hand side can be bounded using Lemma 1 in [50] as

−
∫

Ω

∆u · u|u|q−2 dx ≥
∫

Ω

|∇u|2|u|q−2 dx. (A.2)

The third term on the left-hand side vanishes since
∫

Ω

(u ·∇)u · u|u|q−2 dx =
1

2

∫

Ω

|u|q−2∇|u|2 · u dx

=
1

q

∫

Ω

∇|u|q · u dx

= −1

q

∫

Ω

|u|q (∇ · u) dx (integration by parts)

= 0.

(A.3)

117



Ph.D. Thesis – Elkin Ramı́rez McMaster University

The right-hand side term,

−
∫

Ω

∇p · u|u|q−2 dx =

∫

Ω

pu ·∇|u|q−2 dx (integration by parts)

=
q − 2

2

∫
p |u|q−4u ·∇|u|2 dx

≤ q − 2

2

∫
|p| |u|q−4|u ·∇|u|2| dx

≤ q − 2

2

∫
|p| |u|q−4|u ·∇|u|2| dx

≤ (q − 2)

∫
|p| |u|q−2|∇u| dx since |u ·∇|u|2| ≤ 2|u|2|∇u|

≤
∫

Ω

|u|q−2

(
(q − 2)2|p|2

2
+
|∇u|2

2

)
dx (Young’s inequality)

=
(q − 2)2

2

∫

Ω

|u|q−2|p|2 dx

+
1

2

∫

Ω

|u|q−2|∇u|2 dx.
(A.4)

To estimate the pressure term, we proceed as follows

(q − 2)2

2

∫

Ω

|u|q−2|p|2 dx ≤ (q − 2)2

2
‖p‖2

Lq‖u‖q−2
Lq (Hölder’s inequality)

≤ c‖u‖4
L2q‖u‖q−2

Lq (Lemma 3 in [50])

≤ c‖u‖q−1
Lq ‖u‖3

L3q , (Lebesgue interpolation

‖u‖L2q ≤ ‖u‖1/4
Lq ‖u‖

3/4

L3q

)

≤ c1‖u‖q(q−1)/(q−3)
Lq +

1

2c2

‖u‖qL3q (Young’s inequality)

≤ c1‖u‖q(q−1)/(q−3)
Lq +

1

2

∫

Ω

|u|q−2|∇u|2 dx.
(A.5)

Combining equalities (A.1) and (A.3) with estimates (A.2), (A.4) and (A.5), we obtain

inequality (2.31)
d

dt
‖u(t)‖Lq(Ω) ≤ C‖u(t)‖

3(q−1)
q−3

Lq(Ω) , q > 3. (A.6)
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Appendix B

Proof of Theorem 6.1

In this appendix we prove Theorem 6.1.

Proof:

Suppose that z0 ∈ X is a local solution of (P1). Therefore, it satisfies the optimality

condition

ϕ′(z0,w
′) = lim

ε→0

ϕ(z0 + εw′)−ϕ(z0)

ε
= 0, for all w′ ∈ X. (B.1)

We wish to verify that the following optimality condition holds as well

ϕ′(z0, z
′) = lim

ε→0

ϕ(z0 + εz′)−ϕ(z0)

ε
= 0, for all z′ ∈ Y. (B.2)

Since ϕ is a Fréchet differentiable functional on Y, ϕ′(z, ·) is a bounded linear operator

(and hence continuous) for every z ∈ Y. Given that X is dense in Y , then every z′∈ Y
can be approximated with a sequence of elements in X i.e., there exists a sequence

{z′n}n∈N in X such that

lim
n→∞

z′n = z′.
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In particular, we have that for any n ∈ N expression (B.1) implies

0 = lim
n→∞

0 = lim
n→∞

lim
ε→0

ϕ(z0 + εz′n)−ϕ(z0)

ε

= lim
n→∞

ϕ′ (z0, z
′
n)

=ϕ′
(
z0, lim

n→∞
z′n

)
(By the continuity of ϕ′)

=ϕ′(z0, z
′).

Hence, z0 is also a local solution of Problem (P2).
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Appendix C

Validation of the Gradients

The purpose of this section is to validate the computation of the L2 gradient of the

objective functionals (3.1) and (3.9). This is a key step to ensure the correct evaluation

of the gradient in the Lebesgue spaces Lq(Ω), q ≥ 3 and the Sobolev-Hilbert spaces

Hs(Ω). To do so, we compute the quantities

κ1(ε) =
ε−1 [ΨT (u0 + εu′0)−ΨT (u0)]〈

∇L2ΨT ,u′0

〉 , ε > 0, (C.1)

and

κ2(ε) =
ε−1 [Φq

T (u0 + εu′0)− Φq
T (u0)]〈

∇L2Φq
T ,u

′
0

〉 , ε > 0, q > 3, (C.2)

with fixed vector fields u0, u′0, time window T and several decreasing values of ε. Nu-

merators in (C.1)-(C.2) represent a first-order finite-difference approximation of the

Gâteaux differential (4.8) while denominators are given by the Riesz form (4.9) of the

Gateaux differentials. We then expect that κi(ε) ≈ 1, i = 1, 2, however, the evaluation

of these quantities could give rise to a combination of three distinct types of errors:

• “Gradient errors” which are due to the discretization of the different PDE systems

(1.1) and (4.13) in space and time. These errors are controlled by the time step

∆t and the resolution N .
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Figure C.1: [T = 10−4, N = 1283] Dependance of (a) |κ1(ε) − 1| and (b) |κ2(ε) − 1|
on ε is presented in logarithmic scale. Blue circles in (a) were obtained by evaluating

expression C.1 with time step ∆t = 10−4, red diamonds with ∆t = 10−5, black squares

with ∆t = 10−6, while the constraint parameter B4 is 2× 1010. Blue circles in (b) were

obtained by evaluating expression C.2 with time step ∆t = 5 × 10−6, red diamonds

with ∆t = 10−6, black squares with ∆t = 5× 10−7, while the constraint parameter B3

is 2× 108.

• Truncation errors that are triggered by the finite-difference formula in the numer-

ators in (C.1)-(C.2). These errors are O(ε).

• Round-off errors resulting from subtractive cancellation, which are of orderO(ε−1).

As explained in [39], the dependence of log10|κi(ε) − 1| on ε for i = 1, 2, exhibits

a plateau-like shape and it is naturally divided into three regimes depending on the

values of ε. For “large” values of ε, we observe that truncation errors dominate, while

“small” values trigger round-off errors and for some intermediate values of ε we observe

gradient errors. To validate the evaluation of the L2 gradient, we want to show that the

gradient errors vanish as the parameters ∆t and N are refined. In our case, however,

we fix the resolution N and vary only ∆t since the truncation errors associated with ∆t
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tend to be larger than those related to N . This behavior is manifested in the lowering

of the plateau as ∆t decreases.

Figures C.1(a) and C.1(b) show the dependance of |κi(ε) − 1|, i = 1, 2 on ε as the

parameter ∆t is refined. We observe that the values of κi(ε), i = 1, 2, diverge away

from unity for both “small” and “large” values of ε due to the round-off and truncation

errors, respectively. However, for intermediate values of ε, the gradient errors vanish

as we refine ∆t. This demonstrates that the accuracy of the L2 gradient computation

improves as the time discretization is refined, thus providing the required validation.
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1959.

[34] L. Lu and C. Doering. Limits on enstrophy growth for solutions of the three-

dimensional Navier-Stokes equations. Indiana University Mathematics Journal,

57:2693–2727, 2008.

[35] D. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons,

1969.

[36] G. Luo and T. Hou. Potentially singular solutions of the 3D axisymmetric Euler

equations. Proceedings of the National Academy of Sciences, 111(36):12968–12973,

2014.

[37] G. Luo and T. Hou. Toward the finite-time blowup of the 3D incompressible Euler

equations: a numerical investigation. SIAM: Multiscale Modeling and Simulation,

12(4):1722–1776, 2014.

[38] T. Luo and E. Titi. Non-uniqueness of weak solutions to hyperviscous

Navier–Stokes equations: on sharpness of J.-L. Lions exponent. Calculus of Vari-

ations and Partial Differential Equations, 59(3):92, 2020.

[39] P. Matharu and B. Protas. Adjoint-based enforcement of state constraints in PDE

optimization problems. Journal of Computational Physics, 517:113298, 2024.

127



Ph.D. Thesis – Elkin Ramı́rez McMaster University

[40] J. Neuberger. Sobolev Gradients and Differential Equations. Springer, 2nd edition,

2010.

[41] J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

[42] K. Ohkitani. Late formation of singularities in solutions to the Navier-Stokes

equations. Journal of Physics A: Mathematical and Theoretical, 49(1):015502, dec

2016.

[43] P. Orlandi, S. Pirozzoli, and G. Carnevale. Vortex events in Euler and Navier-

Stokes simulations with smooth initial conditions. Journal of Fluid Mechanics,

690:288–320, 2012.

[44] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cam-

bridge University Press, 1986.
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della Università di Padova, 131:159–178, 2014.

[51] J. Robinson, J. Rodrigo, and W. Sadowski. The Three-Dimensional Navier-Stokes

Equations: Classical Theory. Cambridge University Press, 2016.

[52] J. Serrin. On the interior regularity of weak solutions of the Navier-Stokes equa-

tions. Archive for Rational Mechanics and Analysis, 9(1):187–195, Jan 1962.

[53] I. Stein. Conjugate gradient methods in Banach spaces. Nonlinear Analysis,

63:e2621–e2628, 2005.

[54] T. Tao. Quantitative bounds for critically bounded solutions to the Navier-Stokes

equations. arXiv:1908.04958, 2020.

[55] L. N. Trefethen. Spectral Methods in Matlab. SIAM, 2000.
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