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Abstract

One of the most famous problems in theoretical fluid mechanics concerns the question
whether the 3D Navier-Stokes equations always produce smooth solutions. More specif-
ically, it is not known whether all sufficiently smooth initial data lead to the existence
of regular solutions for all time or if singularities may form in finite time. One approach
to study this problem is based on the so called “conditional regularity results”; if such
statements are shown to hold, this would imply that the corresponding flows are regular
and satisfy the Navier-Stokes system in the classical sense. Arguably, the best known
result of this type is the enstrophy condition. It has inspired recent works attempting
to search for initial conditions that maximize the enstrophy over a certain time window
to identify the worst-case scenarios that could result in singularity formation in finite
time. Motivated by these studies, in this investigation we conduct a systematic compu-
tational search for potential singularities in three-dimensional Navier-Stokes flows using
the Ladyzhenskaya-Prodi-Serrin conditions. They assert that for a solution u(t) of the
Navier-Stokes system to be regular on an interval [0, 7], the integral fOT a ()[40 dt.
where 2/p+3/q = 1, ¢ > 3, must be bounded. Our main contribution is to conduct
a systematic search for flows that might become singular and violate this condition,
by solving a family of variational PDE optimization problems on a periodic domain 2.
In these problems, we identify initial conditions ug that locally maximizes the integral
fOT [a(t)[|7q( dt for a range of different values of ¢ and p, different time windows 7" and
several sizes ||uo||za(o) of the initial data. Such local maximizers are found numerically
with a state-of-the-art adjoint-based Riemannian gradient method. Four formulations
are considered with optimal solutions sought in Hilbert-Sobolev and Lebesgue function
spaces. This is the first time the worst-case behavior of Navier-Stokes flows is thor-
oughly investigated through the lens of the Ladyzhenskaya-Prodi-Serrin conditions. In
order to study how a hypothetical singularity could develop, we analyze the rate of

growth of ||u(t)||za(q) and of the enstrophy in the extreme flows obtained by solving the
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optimization problems. We derive and analyze explicit bounds on the rate of growth
for the L9(€2) norm of Navier-Stokes flows for which singularity formation is impossi-
ble. By combining them with existing bounds on the rate of growth of ||u(t)||Le(q), we
identify specific regimes such that if the corresponding rate of growth is sustained, this
would lead to singularity formation in finite time in Navier-Stokes flows. Although we
did not find any evidence for blow-up, these relations allow us to quantify how “close”

the extreme flows arising in such worst-case scenarios come to producing a singularity.
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Chapter 1

Introduction

One of the most important models in the field of fluid dynamics are the Navier-Stokes
equations. They are essential for studying fluid flows in different applications across
a wide range of spatio-temporal scales, from representing blood flow to helping design
bioartificial pancreas [56] to modeling tsunami waves [57], numerical weather prediction
[49] and aircraft design [19], in addition to many other important applications. In this
thesis, we will consider the incompressible Navier-Stokes system defined on the 3D torus
Q) = T3 :=R3/Z3, where “:=” means “equal to by definition”, with periodic boundary

conditions

Ju+(u-Vy)u+Vyp—rvAu=0 in Q x (0,77, (1.1a)
Vx-u=0 in Q x [0, 77, (1.1b)

u(0) = uy, (1.1¢c)

where the vector u = [uy,us,u3]” is the velocity field, p is the pressure, v > 0 is
the coefficient of kinematic viscosity, Vy denotes the gradient with respect to the
space variable x = [z, x9, :1:3]T (this notation is needed to distinguish it from another
notion of a gradient that will be introduced later) and uy is the initial condition. The

velocity gradient Vy u is a tensor with components [V u];; = d;u;, 1,7 = 1,2,3. For
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simplicity and unless stated otherwise, both the fluid density p and the viscosity v are
assumed to be equal to unity (v = 1, p = 1). The choice of this domain €2 is motivated
by our interest in intrinsic mechanisms governing flow evolution, without considering
interactions with the boundary.

As it is usual in the theory of Partial Differential Equations (PDEs), several notions
of solutions are often defined in order to study their most fundamental properties:
existence, uniqueness and regularity. These general properties are important as they
determine whether or not a given mathematical model is well posed and can therefore
serve as a description of natural phenomena. For the Navier-Stokes system (1.1), one
typically works with strong (or classical) solutions, mild and weak solutions, including
Leray-Hopf weak solutions. Classical or strong solutions are time-dependent vector
fields u(x, t) with enough regularity to directly satisfy the PDE at each point in time and
space. Weak solutions, however, may lack in smoothness and can be defined in several
ways depending on how regular the velocity field u should be, which is determined by
how one performs integration by parts. Here, we define weak solutions as vector fields

u that satisfy the following identity [13, 51]

/08 —(u, Opp) dt + /:(qu, Vi) dt+ /Os((u -Viu, ) dt =
{ug, (0)) — (u(s),¢(s)), (1.2)

for all test functions ¢ and almost every s > 0. Here, (f,g) := [, f(x) - g(x) dx is the

L? inner product and test functions belong to the set
{peCX(x[0,00)): Vx-¢(t)=0 forall te€[0,00)},

where C2°(€2 x [0,00)) is the space of infinitely differentiable functions with compact

support on 2 x [0, 00). If, in addition, the weak solution u satisfies the energy inequality

1 t 1
S 70 + / IV u()lfa0) d7 < S 10(0) 720, (13)
0
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for almost all times t € (0,00), u is called a Leray-Hopf weak solution of the Navier-
Stokes system. In expression (1.3), || - ||z2(q) is the norm in the L*(€2) space induced
by the L? inner product defined above. We can find other definitions of weak solutions
in the literature, however, in the present work we will focus on weak solutions of the
Leray-Hopf type.

The study of the existence and uniqueness of Navier-Stokes flows dates back to the
beginning of the 20th century, but the problem still lacks resolution. Due to the wide
variety of applications of this set of equations, ranging from physics to engineering,
it is of an extreme importance to build a solid mathematical framework concerning
the existence and uniqueness of their solutions. In fact, this is one of the ‘millennium
problems’ named by the Clay Mathematics Institute [18]. It can stated as follows: given
a smooth initial vector field ug, does system (1.1) have a unique classical solution that
exists for all ¢ > 0? The question can be addressed on a periodic domain or R3.

Major progress concerning the existence of weak solutions on R? was made by Leray
in 1934 [32]. Later in 1951, Hopf [25] established global existence of weak solutions,
but without uniqueness, on bounded domains. It is worth mentioning that inequality
(1.3) holds for the weak solutions that Hopf and Leray considered. In 1959, J.-L.
Lions [33] proved global existence and uniqueness of Leray-Hopf weak solutions of the
Navier-Stokes equations with hyper-viscosity i.e., he considered equation (1.1a) with the
Laplacian A replaced with the fractional Laplacian (—A)? with 6 > 5/4. As regards
uniqueness, Luo & Titi (2020) [38] proved non uniqueness of weak solutions with finite
kinetic energy for # < 5/4. This implies that § = 5/4 is a critical value with respect to
uniqueness of weak solutions. However, uniqueness of Leray-Hopf weak solutions is a
problem that remains open. In 2022, Albitron, Brué & Colombo [3] were able to prove
non uniqueness of Leray-Hopf weak solutions in the 3D Navier-Stokes system with a
time-dependent force. They also showed that, if the source term has a certain form, it

might lead to blow up. In the same year, 2022, Hou [27] presented numerical evidence
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of a potentially singular behavior of solutions to the 3D Navier-Stokes equations in a
cylindrical domain periodic in the axial direction which was verified by applying the
enstrophy and the Ladyzhenskaya-Prodi-Serrin conditions. This is an intriguing result
that motivates a systematic search for singularities in the Navier-Stokes system.

One approach to study the regularity of Leray-Hopf weak solutions of the Navier-
Stokes equations (1.1) is by using the so-called “conditional regularity results”. These
are conditions, which if met by the weak solutions, will ensure the regularity of these
solutions. In Chapter 2, we will discuss some conditional regularity results that we will
use in this thesis in detail, namely, the enstrophy [20] and the Ladyzhenskaya-Prodi-
Serrin [51] conditions.

Although solving the problem of existence and uniqueness of solutions for the Navier-
Stokes equations is a mathematical analysis question, several computational studies
have been carried out exploring the possibility of a finite-time blow-up in the 3D setting.
Some of these investigations are Brachet [11] and Orlandi, Pirozzoli & Carnevale [43].
However, no evidence for blow-up has been found from the computations.

Another model that has received considerable attention is the inviscid Euler system

obtained by setting the viscosity ¥ = 0 in the 3D Navier-Stokes equation (1.1)

du+(u-Vy)u=—-Vyp inQx(0,7], (1.4a)
Vi-u=0 in Q x [0,7], (1.4b)
u(0) = uy, (1.4c)

where Q, p, T, ug are as in (1.1). It describes the dynamics of incompressible ideal
fluids. Unlike for the Navier-Stokes equations, there is some numerical evidence of
blow-up for the 3D inviscid Euler equations while using certain type of initial data, Luo
& Hou [36, 37].

A novel method to tackle certain questions related to understanding the extreme
and possibly singular behavior in Navier-Stokes flows was introduced by Doering & Lu

in [34]. Recognizing that the regularity of classical solutions to the 3D Navier-Stokes

4
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system is controlled by the enstrophy, they proposed a variational optimization problem
to study the sharpness of an a priori estimate on the rate of growth of enstrophy.
More specifically, they studied the maximum rate of growth of enstrophy, not only
for the Navier-Stokes equations, but also for the 1D Burgers equation. This method
was later adopted and expanded by Ayala & Protas [6, 7], where they analyzed the
sharpness of various energy-type a priori estimates for the 1D Burgers and 2D Navier-
Stokes equations. Although these two systems are known to be globally well-posed
under certain conditions, understanding the sharpness of those estimates could provide
insights also for the 3D Navier-Stokes problem. Kang et al. also adapted the method
in [29, 28]. They worked with the 3D Navier-Stokes equations this time and searched
for initial data that could potentially produce finite-time singularities by considering
the enstrophy and the Ladyzhenskaya-Prodi-Serrin conditions. Zhao & Protas [59] also
used the same idea but in the context of the 3D Euler equations, where they presented
numerical evidence of a possible singularity in finite time. An overview of the research
program focusing on a systematic search for extreme and singular behavior in the
Navier-Stokes and other models can be found in [47].

In this thesis, we are extending Kang’s & Protas’ work [28]. They analyzed extreme
behavior in Navier-Stokes flows using the Ladyzhenskaya-Prodi-Serrin conditions. They
formulated several optimization problems in order to identify initial conditions that
maximize a certain quantity controlling the regularity of solutions. As a limitation
of their approach, they focused on finding initial conditions within a certain Sobolev
space with Hilbert structure embedded in the Lebesgue space L%(£2) in which the op-
timization problem would otherwise be naturally formulated. This simplification was
crucial for the solution of the optimization problems, using a gradient descent method.
The presence of an inner product allowed them to define the gradient directly using
the Riesz theorem based on the solution of the adjoint system. In our study, how-

ever, we will take a different approach. Our optimization problems will be formulated
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within more general function spaces, namely, suitable Lebesgue spaces. In addition to
formulating the optimization problems in a different, larger, function space, we will
also analyze a large family of the Ladyzhenskaya-Prodi-Serrin conditions. The lack
of Hilbert structure significantly complicates the solution of the optimization problem
from the numerical point of view, specially while evaluating the gradient. Therefore,
we will have to compute the gradient using different tools, adopting ideas from Protas
[46].

In terms of technical innovations, our two main contributions are the development
of an efficient computational approach to solve PDE optimization problems formulated
on function spaces without Hilbert structure and identification of the regimes of the
rate of growth of the different L9(€2) norms where a singularity will occur. Firstly,
we consider a Riemannian gradient descent method on a Hilbert space, and extend it
to the more general case of Banach spaces. The mathematical problems considered
are generalizations of the problems studied by Kang & Protas [28, 46]. Although a
novel conjugate gradient method is also introduced to tackle constrained optimization
problems in Banach spaces, it will not be used to produce results in this document
for reasons that will be explained later. Secondly, we examine well-known a priori
bounds on integrals of the L(€2) norm of the solutions of the Navier-Stokes equations
and derive conditions under which singularities cannot form. This allows us to identify
growth rate regimes of the L9({2) norm, where the solution must lie if a singularity is to
develop. These conditions will serve as a useful indicator on how “close” the extreme
flows found by solving optimization problems come to forming a singularity.

Although we found no numerical evidence of unbounded growth for Navier-Stokes
flows in the L9(2) spaces, this research provides insights into how flows that maxi-
mize objective functionals based on the Ladyzhenskaya-Prodi-Serrin conditions behave
when subject to constraints in Lebesgue spaces, as well as in Sobolev spaces embedded

within the latter spaces. In both cases, we construct sequences of initial conditions that
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approach optimal solutions locally maximizing the objective functionals. We observe
that initial conditions become less regular as we approach local maximizers. In general,
we found that optimal initial conditions in the Sobolev-Hilbert spaces produce larger
values of the objective functional compared to those found in the Lebesgue spaces. Ad-
ditionally, we established that local maximizers in the Sobolev-Hilbert spaces are also
local maximizers in the Lebesgue spaces.

The structure of this thesis is as follows: In Chapter 2, we will define key quantities
and state certain well-known conditional regularity conditions, namely, the enstrophy
and Ladyzhenskaya-Prodi-Serrin conditions. Additionally, we will introduce some a
priori bounds for the norms of the Navier-Stokes flows in Lebesgue spaces together
with their rates of change; in Chapter 3, we will formulate our optimization problems,
emphasizing how these formulations generalize those used by Kang & Protas; then, in
Chapter 4, we will discuss numerical approaches to solving optimization problems on
general Banach spaces, particularly, on Lebesgue spaces; two main methods are studied
here: the gradient descent method and the conjugate gradient method; it will be also
explained in detail how to evaluate such gradients in both Sobolev and Lebesgue spaces;
finally, in Chapter 5, we will present our main numerical results and compare them with

what was found in earlier studies.



Chapter 2

Conditional Regularity Results

In this chapter, we will first state relevant definitions and theorems [2] followed by a
summary of some conditional regularity results for the Navier-Stokes equations. Addi-
tionally, we will present some known bounds for the norms of solutions of the Navier-
Stokes equations in Lebesgue spaces. Furthermore, we identify growth rate regimes
of the L(Q2) norm of the velocity such that, if a solution of the Navier-Stokes system
(1.1) is to develop a singularity, the rate of growth of the norm must fall within these
regimes. For brevity, the space, and occasionally time, dependence of certain vector
fields is sometimes omitted when it does not cause confusion. Although v was set
equal to 1 in the previous chapter, in the interest of generality in this section we derive

estimates in which explicit dependence on v is retained.

2.1 Definitions of Key Quantities

Relevant definitions used in this thesis are presented below.

Definition 2.1 (Lebesgue space). We denote

LYQ) == {f:Q—R®: f is measurable and || f||zs() < co}
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where ¢ € [1, oo] and the norm is defined as

1
1o = ( [ 176017 x) 21
for 1 < ¢ < oo and
Fllza) :=esssupeo [ £(x)];
(a2 (©) €Q (2.2)
=inf{aeR:p({xeQ:|f(x)]>a}) =0}
for ¢ = oo, in which | - | and u denote the Euclidean vector norm and the Lebesgue

measure, respectively.

Definition 2.2. The Fourier expansion of a real-valued function f € L!(Q) has the

form

Fx) =Y fre?rx,

kez3

where /f\k € C, k € Z?, are the Fourier coefficients of f defined as
/f\k = / e Ik £ (x) dx.
Q
Definition 2.3. For s > 0, the Sobolev space H*(£2) is defined as

H*(Q) = {f € L*(Q) : || ]

lzqs(Q) < OO} ,

where the norm of f is defined in terms of its Fourier coefficients as

1£]

ey = D [14 @7k)?]" | Fi)

kez3

where k := |k|.

It is useful to define the seminorm || - [| ;. () as the expression

1£]

?’_]‘s(Q) = Z(27Tk)28‘fk|2a

kez3

for any f € H*(Q).

(2.3)

(2.4)

(2.5)

(2.6)
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Definition 2.4 (Gevrey class). For o, s > 0 given, we define the Gevrey class G7 as
the set of all divergence-free functions f € C*°(§2) (the space of functions continuously
differentiable infinitely many times) such that they admit a Fourier series representation
(2.3), and

fk‘Q < Q.

Z 62cr(27r k)2s

keZ3

We can think the Gevrey class as a bridge between C'* and analytic functions, for

which the Fourier coefficients vanish exponentially fast as k — oo.

Definition 2.5 (Enstrophy). The enstrophy! of a time-dependent velocity field u(t) is
defined as

1 1
() =5 [ bt dx = 3O, 27)
where w(x,t) := V X u(x,t) is the vorticity of u.

For incompressible flows with periodic or no-slip boundary conditions, we have the

following useful identity [15]

|w ()] 22 () —/Q!w(x, t)|* dx

:/Q(Vx x u(x,t)) - (Vy x u(x,t)) dx

:/Q [Vx x (Vi xu(x,t))]-u(x,t)dx (integration by parts)

:/Q [Vx (Vi u(x,t) — Au(x,t)] - u(x,t) dx (double cross-product
identity)

:/Q —Au(x,t) - u(x,t)dx (divergence-free condition)

:/Q IV u(x, t)? dx (integration by parts)

=1V u(t)llz @),

!The enstrophy is often defined without the factor of 1/2. However, for consistency with earlier

studies belonging to this research program [5, 6, 7, 8, 58, 29], we choose to retain this factor here.

10
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where all the boundary terms resulting from integration by parts vanish due to the

boundary conditions on u(x,t). Then, we can also compute the enstrophy as
1 1
£(ut)) = 51IVxu®)lrze = 5lu@®lmq)- (2.8)
For simplicity, when there is no risk of confusion, we will denote £(t) = E(u(t)).

Definition 2.6 (Kinetic energy). The kinetic energy of a time-dependent flow u(t) is
defined as

Kl = [ utx O dx = 3 ) o, (2.9
At t =0, we write Iy := K(u(0)) and & := £(u(0)).

Definition 2.7 (Dual Space). Let X be a Banach space. The dual space of X, X*, is

the space of all continuous linear functionals from X to R.

In the case of the Lebesgue spaces, L4(Q), we have that (L(€))" is isometrically iso-
morphic to the space LP(£2), where % + % = 1. Additionally, we use the notation

%@mmmwmzﬁwmmwmwﬁéﬂ@ﬂﬂﬂ (2.10)

to denote the duality pairing between the elements f € LP(2) and g € L4().

2.2 Some Key Results

In this section we state some well-known results that we use throughout this thesis

[2, 12, 17, 51].

Theorem 2.1 (Sobolev embedding). Let Q C R be any smooth bounded domain or
QO=R30orQ="T3 If0<s<3/2, then

H*(Q) — LY/B=2)(Q), (2.11)

11
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i.e., the identity mapping i : H*(Q) — LY/G=29)(Q) is a continuous operator, meaning

that there exists a constant C', which depends only on ), such that

||u||L6/(3—2s)(Q) S C||u] H3(Q)5 fOT all u - HS(Q)

Lemma 2.1 (Gronwall). Let n: [0,T] — [0,00) be an absolutely continuous function

that satisfies the differential inequality
1 (t) < (t)n(t) + (1), (2.12)
where ¢ and 1 are non-negative integrable functions. Then
n(t) < elo o(r)dr [77(0) + /tzD(T) d7':| for all t €10,T). (2.13)
0

Theorem 2.2 (Hoélder’s inequality). Let 2 be a measurable set in R™, either bounded
or unbounded. If f € LP(Q2) and g € L1(2), where

11
_+_:17 1Sp,qg0@,
p q
then fg € LY(Q) and
/Q F)a() dx < ]|y lgl oo (2.14)

Theorem 2.3 (Riesz representation). Let H be a Hilbert space with an inner product
(-, Yu. Given any continuous linear map ¢ : H — R there exists a unique f € H such

that
e(g) =(f.9)n Vg€ H. (2.15)

2.3 Conditional Regularity Results

It is common to find conditions on quantities defined on solutions of the Navier—Stokes
system that will guarantee the smoothness of these solutions. While we do not know
whether these conditions are true, if they are satisfied for a given solution u, they
guarantee that u is smooth and satisfies the Navier-Stokes system in the classical sense.

Here we will mention some of the best results of this type.

12
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2.3.1 The Enstrophy Condition

The first result we will state is based on the enstrophy of the time-dependent velocity

field u(t) [20, 51].

Theorem 2.4 (Foias & Temam (1989)). Assume that there exist a Leray-Hopf weak
solution u(t) of the Navier-Stokes system (1.1) on [0,T]. Then,
sup E(u(t)) < oo (2.16)
0<t<T
holds up to a certain time T > 0, if and only if u(t) satisfies the Navier-Stokes system

in the classical sense on [0,T).

Foias & Temam (1989) presented the previous theorem as an implication; i.e., the
boundedness of the enstrophy implies that the solution is classical. However, the reverse
is also true since classical solutions of (1.1) are actually analytic functions on (0, 7]
[51]. This means that their Fourier coefficients decay to zero exponentially fast, which
in turns implies that the enstrophy is a bounded function.
Theorem 2.4 then implies that if a singularity is formed in a classical solution u(t)
of the Navier-Stokes system (1.1), there exists a time 0 < 7% < oo where
lim &E(u(t)) = oo. (2.17)
T

Although it is not known whether relation (2.16) holds for all smooth initial data

and arbitrary large time windows, Leray-Hopf weak solutions (1.3) satisfy

/TS(u(t)) dt < o,

for all times T' (see expression (2.22)).
A priori upper bounds on the rates of growth of quantities of interest, such as the

enstrophy, typically have the general form

% <C&% a>1 and C >0. (2.18)

13
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Hereafter, C' will denote a generic positive constant whose numerical value may be
different from instance to instance. Under the assumption that system (1.1) admits a
classical solution on [0, T, Lu & Doering [34] found a sharp bound for the instantaneous
rate of change of the enstrophy

€ 27
<

— 3, 2.1
dt — 87T4V38 (2.19)

By integrating both sides in time, it yields

E(u(t) < 2 (2.20)
1— 27 52

Art3

which provides an a priori bound on the enstrophy valid only up to the time t* =
47t /(27£2). Global bounds on the enstrophy and fOT E%(u(t)) dt remain as open prob-
lems. However, when 1 < o < 2 in (2.18), it is possible to prove that the enstrophy
is bounded for all times. To do that, we need a relation between the kinetic energy
and the enstrophy valid for the classical solutions of the 3D Navier-Stokes system (1.1),

which is obtained as

2
dt 2dt/||dx

:/u-&gudx
Q

:/u~(—(u-Vx)u—pr+VAu) dx
Q

:—/u-[(u-Vx)u] dx—/u-prdx—l—y/u-Audx,
Q Q

Q

14
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where
/ u-[(u-Vy)u] dx :/ w; uj0ju; dx (Einstein’s summation
Q Q
convention)
=— / 1;0;(u; uy) dx (integration by parts)
0
=— / w; uj0ju; dx — / u?Ouj dx (product rule)
Q Q
=— / w; u;O0u; dx — / u?Vx -udx
Q Q
=— / w; uj0ju; dx (divergence-free vector field)
0
:—/u- [(u- Vi) u] dx,
Q
so then
/u- [(u-Vx)u] dx =0,
Q
and
/ u-Vyp :/ (Vi -u)pdx (integration by parts)
Q Q
=0,
and
V/ u-Audx = — 1// |V yu|dx (integration by parts)
Q Q
= —2U€,

where all the boundary terms that appear after integrating by parts vanish due to the

periodic boundary conditions on u(x,t). Therefore, we finally have

dK

— = €. 2.21
o vE (2.21)

By integrating both sides with respect to time we obtain

/0 E(s)ds — % Ky — K(u(t))] < %/co. (2.22)

15
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For 1 < a <2, we can bound expression (2.18) as

% < CE* < CE&% (2.23)

Applying Gronwall’s Lemma 2.1 to (2.23), we provide a bound for the enstrophy valid

for all times when 1 < o < 2,

E(t) < & exp {%} . (2.24)

Relations (2.18), (2.19) and (2.24) suggest that for a blow-up to occur the rate of change
of the enstrophy must be sustained at a level proportional to £ with 2 < a < 3 for a
sufficiently long period of time.

Additionally, global existence of smooth solutions of (1.1) is known for “small” initial

data ug [34, 8]. Observe that we can manipulate expression (2.19) in the following way,

dt — 8rip3
1 d€ 27

— < =&
52 dt — 8miy3

£(t)
/50 ?dg_ 87r41/3/ £l

1 1 27
- _ < - Ko.
& &)~ (misT’

Now, using (2.22), we get

So then, we can bound max;>q E(t) as

4,3
max £(t) < (zw)(%)—VQ(;Oeolco' (2.25)
Inequality (2.25) implies that a uniform bound for the enstrophy is obtained if the
initial data satisfy the inequality

(2m)*?

<
oo < 27

(2.26)

Therefore, by the enstrophy condition (2.16), if inequality (2.26) holds, we have global

classical solutions.
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2.3.2 Ladyzhenskaya-Prodi-Serrin Conditions

Another well-known conditional regularity result is given by the family of the Ladyzhenskaya-

Prodi-Serrin (LPS) conditions [31, 45, 52].
Theorem 2.5. Let u(t) be a weak solution of the Navier-Stokes equations (1.1). Then

uec LP([0,T; LYQ)), 2/p+3/¢g=1, q>3. (2.27)

( / )P dt)’l’ < oo, (2.28)

if and only if u(t) is a smooth classical solution of (1.1).

i.e.

It is worth mentioning that this condition also holds for 2/p 4+ 3/¢ < 1, but here we
will be focusing only on the borderline case corresponding to the equality. As regards

the limiting case with ¢ = 3, the corresponding condition was established in [16] as
ue L>([0,T]; L*(Q)) (2.29)

and a related blow-up criterion was recently obtained in [54]. Condition (2.27) implies
that if a singularity is formed in a classical solution u(¢) of the Navier-Stokes system
(1.1) at a time T* € (0, 00), then necessarily

t
lim/ Ja(r) [y dr =00, 2/p+3/g=1, g>3. (2.30)
0

t—T*

In a recent study, Kang & Protas examined the LPS condition for ¢ = 4 and p = 8
[28]. They proposed an optimization formulation to search for initial data that could
potentially lead to the behavior given in (2.30). However, they did not find any evidence

for blowup.
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2.4 A Priori Bounds for %HU(t)HLq(Q)

A well-known upper bound for the rate of growth of the L? norm is given by Robinson

& Sadowski in [50]

d 3((1_—})
S @®lzae) < Cllu®)l g = Cllu(t Wity a>3, (2.31)

where C' is a positive constant that might depend on ¢ and 2/p+3/q = 1. Its derivation
can be found in Appendix A.
By simply integrating in time inequality (2.31), we get

1
J(®) ey < —— - (2.32)
(Ilaoll ey = »C')
Hence, we cannot guarantee boundedness of the L%(£2) norm beyond the time
- 1
= — 2.33
pOTwol .
As regards the limiting case ¢ = 3, it is known that [51].
Ld 3 2 3
37 MOz < Cllu®)zs@ [0z
which implies that
Ol < Clu)]}
—||u : u
dt e = v (2.34)

< C’|\u(t)\|L3(Q)||u(t)||%oo(g) (by Holder’s inequality (2.14)).

However, this inequality is not in the form of 2Y < COY?, which is the type of relation
we are interested in. It is also known that the integral of the solution norm ||u(t)|| L«
raised to a certain power smaller than in (2.28) on the time interval [0, 7] is a bounded
quantity for Leray-Hopf weak solutions [50]. In this context, Kang & Protas [28] stated
the bounds explicitly,

T
| OIS a < ek 2<q<o 239
0
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and
T
[ ol @< ot a>o. (2.36)

These bounds allow us to determine a growth rate of the solution norm in the space

L49(Q) ensuring that there is no blow-up in finite time:

Cllu(t )Hd(q My 2<q<6,
— (@) Lo(e) < (2.37)

2q—3

Cla(t) iy 0> 6
To show this, let us first consider the case with 2 < ¢ < 6. So then

d 3q 2 3q 2
2 Ollze) < Cllu®) i ) = Cllu(®)l| ol ) -

By Gronwall’s lemma 2.1 and estimate (2.35), we can bound the L9(€2) norm of the
solution on any interval [0, 7], T' > 0, by

T 4q
la(®)|lzag) < |[uollLe(q) exp (O/ HU(t)HE?(Ef)) dt)
0

2q
< [Jug|| La(yexp (OICS(Q‘”) < 0.

Similarly, for ¢ > 6, we have

d 2q9—3 %
@l < Clua®ll foq) = Clua®la@ [u®)] £

Again, by Gronwall’s lemma 2.1, we can obtain a bound on the L(€2) norm of the

solution on any interval [0, 7]
()o@ < ollzacey exp (C i 11alt)]| i)
< luo|| zaeyexp (CK) < oc.
Additionally, assuming that there is a finite-time blow-up of the solution to the Navier-

c

Stokes system (1.1) at ¢t = T, it is commonly supposed that ||u(t)||Le) = T
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a > 0. Plugging this ansatz in expression (2.30), we then have that ap > 1, and

Dra(®) ey =
dt HO (e —pyia

1 e
-¢ [(T* - t>a]
= CHu(t)HgtI(Q)a
where

1 3(qg—1
ﬂ=—+1§p+1zw.

« qg—3
We therefore conclude that, somewhat counter-intuitively, for a blow-up to occur in
Navier-Stokes flows, 4||u(t)||zs() cannot be arbitrarily large. In fact, it must be at

most proportional to Hu(t)||i(qq($)/(q—3)

as otherwise the integrand expression in (2.30)
would blow-up before the integral becomes unbounded. These results are summarized
and illustrated in Figure 2.1. Due to inequality (2.31), the rate of growth of the L4(Q)
norm of Navier-Stokes flows cannot be sustained over a long time at a level proportional
to the norm itself raised to a power given by the solid line in the figure. Additionally,
if the sustained rate of growth of the norm of Navier-Stokes flows is not larger than the
values given by dashed lines, which correspond to inequalities (2.37), the L?(2) norm
will remain bounded for arbitrary times 7" and blow-up cannot occur. Therefore, to
trigger a singularity, the rate of change of the L7(€2) norm of the Navier-Stokes flows
must fall between the values given by the solid and dashed lines. Additionally those
rates must be sustained over a sufficient long time which tends to infinity as the growth
rate is reduced to the rates given in (2.37). The constant prefactors in inequalities
(2.31) and (2.37) are irrelevant in this analysis since we are interested in understanding
how fast the L?(£2) norm of extremal Navier-Stokes flows may grow over time windows

[0, T]. These results will be used to inspect how “close” the extreme flows obtained by

solving the optimization problems in Section 5 come to producing a singularity.
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Figure 2.1: Dependence of the exponents in the upper bounds in inequalities (2.31)

(solid line) and (2.37) (dashed line) on g.

2.4.1 Gibbon’s Conditions

A more comprehensive family of conditional regularity results which generalizes both

the enstrophy (2.16) and LPS conditions (2.28) was introduced in [22].

Theorem 2.6 (Gibbon (2018)). For 1 <m < oo whenn > 1 and 3/2 < m < oo when
n =0, if a Leray-Hopf weak solution u(x,t) of the 3D Navier-Stokes system (1.1) obeys

the following condition, for arbitrary large values of T > 0,

1 /7 N
[ vl < o (2.38)
0

where
2m

Qnym = 2m(n+1) — 3’
then u is a strong (classical) solution of the 3D Navier-Stokes system on [0, T].

We can regard Theorem 2.6 as a generalization of the LPS conditions (2.27)-(2.28), in

the sense that we can recover the latter as a special case by taking 2m = ¢ and n = 0.
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2.5 Properties of Weak Solutions

In this section we present a series of well-known results concerning properties of the
Leray-Hopf weak solutions related to the possible blow-up and eventual regularity of the
associated classical solution(s). Under the assumption that singularities exist, Lemma
2.2 asserts the compactness of the set of all possible singularity times 7™ of a Leray-
Hopf weak solution u(x, t), i.e., those times at which a Leray-Hopf weak solution is not

a classical solution [51].

Lemma 2.2. The set T of singular times T* of a Leray-Hopf weak solution u(x,t) is

compact.

Additionally, Theorem 2.7 reveals a remarkable result. We now know that any Leray-

Hopf weak solution eventually becomes smooth.

Theorem 2.7. Any global-in-time Leray—Hopf weak solution u(x,t) of (1.1) is even-

tually a strong solution.

The proofs of Lemma 2.2 and Theorem 2.7 can be found in [51]. Furthermore, expression
(2.25) shows that a singularity cannot form too early, and it is also known that if a
singularity has not formed before certain time, the solution will not blow up [42]. This
creates a time window where the smoothness of solutions of the Navier-Stokes (1.1) is

uncertain. Figure 2.2 schematically summarizes the results mentioned in this section.
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Figure 2.2: (Top) Hypothetical time evolution of the enstrophy, where a singularity
occurs at t = T}. After that, uniqueness can no longer be guaranteed and several
solutions may emerge. Some of the new solutions might remain smooth while other
might blow up again at t = T. However, there exits a time ¢ after which every Leray-
Hopf weak solution becomes a strong solution. (Bottom) The corresponding evolution

of the kinematic energy of the solutions presented in the top figure.
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Chapter 3

Optimization Formulations

In this chapter we will formulate a number of optimization problems we will consider in
this study. These problems are motivated by the conditional regularity results studied in
Chapter 2 and aim at finding optimal initial conditions ugy that will produce “extreme”
flows, in the sense of maximizing the different regularity indicators involved in the
conditional regularity results. The goal is to see whether a singularity might occur in
such flows. With the domain € and the viscosity v fixed, each problem is defined by
three parameters, namely, the function space where the initial data is sought, the size

of the optimal initial data and the length of the time window.

3.1 Motivation

This work is motivated by the study conducted by Kang & Protas in [28]. They
investigated the following objective functional with ¢ = 4,

1 [T 29
O (wp) = — [ u(r)] ey a7, (3.1)
T 0

and numerically found local maximizers of Problem 0 defined below for a range of
parameter values. Note that expression (3.1) coincides with the integral expression

(2.28) from the family of the LPS conditions in Theorem 2.5, except for the prefactor
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T~1 which ensures expression (3.1) remains bounded even if the integral grows without

bound when T tends to infinity.

Problem 0. Given B,T € R, := (0,00), and the objective functional ®%(ug) from
equation (3.1), find

Ug.pr = argmax ®L(ug), where (32)
ugEMp

My = {110 € HY*(Q) : Vy-uo=0, /uodx:o, o[ 20y =B}- (3.3)
Q

The space H3/ 4(Q) is the largest Hilbert-Sobolev space embedded in the Lebesgue space
L*(€). In this thesis, we will extend this optimization formulation to other Lebesgue
spaces L%(§2) with ¢ > 3. An explanation of how to obtain the corresponding Hilbert-

Sobolev space H*(2) from a given Lebesgue space L?(£2) is provided in the next section.

3.2 Choice of the Lebesgue and Sobolev Spaces

It will be necessary to correctly define the largest Sobolev space embedded in a given
Lebesgue space L9(f), so that we can deduce the gradient of the objective functional us-
ing standard techniques relying on Theorem 2.3 (Riesz representation). From Theorem

2.1 (Sobolev embedding), we know that

H(Q) = LY(Q), if s> g _3 (3.4)
q

Therefore, the largest Sobolev space H®(§2) embedded in the Lebesgue space L%(£2)
is obtained when s = 3/2 — 3/q. Figure 3.1 shows the values of the parameter s
corresponding to different values of g. The solid symbols in Figure 3.1(a) represent the
values of ¢ that we will consider in this study in addition to the limiting case ¢ = 3.
The reason behind these choices is that those are the only cases where p and ¢ are
simultaneously integers, which will facilitate interpretation of the results. The symbols
in Figure 3.1(b) represent the corresponding values of s that make the space H*(f2) the
largest Sobolev space embedded in the Lebesgue space L?(2).
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Figure 3.1: (a) The black solid line represents all the possible choices of p and ¢ for
which the LPS condition (2.27) holds. The solid symbols represent the situations where
p and ¢ are both integer numbers. Additionally, the limiting case ¢ = 3 will also be
considered. The dashed line is the horizontal asymptote given by expression (2.27). (b)
The black solid line represents the index of the largest Sobolev space H*(€2) embedded
in the Lebesgue space L(2) for a given value of q. The solid symbols represent the
cases that are analyzed in detail in this study. The dashed line represents the limiting

value of expression (3.4) when ¢ tends to infinity.

3.3 Optimization Problems

A natural extension of Problem 0 to any Lebesgue space L%(2) with ¢ > 3 is

Problem 1. Given B,T € Ry, ¢ > 3, s = 3/2 — 3/q and the objective functional
P (ug) from equation (3.1), find

Uo.pr = argmax ®L(ug), where (3.5)
uEMp
Mp = {uo € H(Q): Vyx-ug=0, /uodx =0, [[uollze) = B} ) (3.6)
Q

The space H*(€2) with s = 3/2 — 3/q is the largest Hilbert-Sobolev space embedded in
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the space L4(Q2) (see Section 3.2). We intentionally denoted the manifold Mg with the
same symbol as in Problem 0 since they coincide for ¢ = 4.

Notice that Problem 1 is defined on the Sobolev space H*(§2), which is endowed
with an inner product structure, that one can use when constructing a solution to the
optimization problem.

To generalize the work of Kang & Protas [28], we will solve a further extension of
Problem 1 where the optimal initial condition ug is sought in the Lebesgue space L9(€2),
rather than in H*(Q2) with 1/2 < s < 3/2, and we will do so for different values of ¢

shown in Figure 3.1(a). We will therefore solve the following problem

Problem 2. Given B,T € Ry, ¢ > 3 and the objective functional ®L(ug) from equation
(3.1), find

Uy, = argmax ®L(ug), where (3.7)
wELp
Lp = {uo € LYQ): Vx-u=0, /uo dx =0, [[uol[ra@e) = B} : (3.8)
Q

Notice that this modification of the functional setting makes Problem 2 considerably
harder than Problem 1 from a numerical point of view due to the lack of the Hilbert
structure in the Lebesgue spaces L(Q2), ¢ > 3. In this thesis, we will first consider
Problems 1 and 2 for integer values of ¢ equal to 4, 5 and 9 since they also produce
integer values in p (see Figure 3.1(a)). Another formulation that we are interested in is
the limiting case ¢ = 3. In this case, as was mentioned in Section 2.3.2, in order for the
solution to remain smooth, we need to ensure the solution belongs to L>([0, T; L3(Q)),
ie.,

sup |lu(t)||z3@) < oo.
0<t<T

Due to the nondifferentiability of the supremum function involved in the definition of
the L°°(Q2) norm, the formulations we consider here are different from Problems 1 and

2. Now, we consider the following objective functional
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(o) = (D) ey / a(x, T)[*dx, for some T > 0, (3.9)
and pose the following two problems.

Problem 3. Given B, T € R, and the objective functional Wr(ug) from equation (3.9),
find

Uo.pr = argmax VUr(ug), where (3.10)
uoENB

Noi= {10 Voo =0, [ wods =0, sl = B (1)
Q

Problem 4. Given B, T € R, and the objective functional Wr(ug) from equation (3.9),
find

Ug.pr = argmax Vr(ug), where (3.12)
ugESR
SB = {uo S L3(Q> . Vx - Up = 0, /uo dx = 0, ||u0HL3(Q) = B} . (313)
Q

Problems 3 and 4 are analogous to Problems 1 and 2, but, this time, Problems 3 and 4
are associated with the objective functional (3.9) in the Sobolev and Lebesgue spaces,
respectively. An even more general formulation is possible motivated by the regularity
condition (2.38) and based on the objective functional

n 1 4 n q(n+1
o) = 7 [ IR (3.14)

where n, ¢ > 1. We thus pose our last optimization problem.

Problem 5. Given B,T € R, and n, ¢ > 1 and the objective functional pk(ug) from
equation (3.14), find

Uo.p 1 = argmax @m(ug), where
uoEIB

IB = {uo € Wn’q<Q) : Vx Uy = O7 / Up dx = 0, HV:L{ U.()HLq(Q) = B} .
Q
However, no computations are performed based on this problem.
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Chapter 4

Solution Approach

In this chapter, we will briefly discuss the numerical approach to solve Problems 1, 2, 3,
and 4. First, we will explain in detail how to discretize the gradient flow used to solve
these problems, followed by an innovative way to compute the gradient in the Sobolev
space H*(Q)) and the Lebesgue L%(2) space. Finally, we will explain how to solve
the adjoint systems that naturally arise in the solution of this type of optimization
problem. We will close this chapter by discussing the conjugate Lebesgue gradient

method in Hilbert and Banach spaces.

4.1 The Steepest Ascent Method

Assume we want to solve the following unconstrained optimization problem

u = argmax J(u), (4.1)
ucX

where X is a Banach space and J : X — R is an objective functional. The steepest

ascent method [41] approximates the optimal state u as

u = lim u,,
n—o0
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where the sequence of {u,},en is computed as
Upt1 = Up + @, VI (uy), n=01,2 . (4.2)

with uy being an initial guess, V.J(u,) is the gradient of the objective functional J
evaluated at the current state u,, and «, > 0 is the length of the step along the
direction of the negative gradient. The parameter «,, is determined as the solution of
a line-search problem

o, = arg %%1 J (up, + BV I (uy)), (4.3)

which can be solved using standard techniques, such as Brent’s method [41]. The idea
behind of this approach is that locally optimal solutions of (4.1) are sought along the

direction in which J increases, namely V.J.

4.2 Riemannian Optimization

We now describe how to solve Problems 1-4 for given values of B and T. We adapted
the algorithm used by Kang & Protas in [28] with ideas taken from [46] in regard to
how to compute gradients in Lebesgue spaces. This algorithm is an adaptation of the
“optimize-then-discretize” approach [24] in which a gradient method is first formulated
in the infinite-dimensional (continuous) setting and only then the resulting equations
and expressions are discretized for the purpose of numerical solution. A similar approach
was used to solve the problem of determining the maximum growth of enstrophy in [29].
This time the motivation came from the enstrophy condition given in Theorem 2.4, and
the corresponding 1D problem studied earlier in [5].

Problem 1 is Riemannian in the sense that local maximizers uy,p 1 belong to a
constraint manifold Mp [1]. To locally characterize this manifold, we define the tangent
space T,Mp at a point z € Mp. To do so, the fixed-norm constraint, i.e., ||ug||re) =

B, can be expressed in terms of the function G, : H*(Q) — Ry, where G, := [[z]|7,q
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and H*(?) is the largest Hilbert space embedded in L?(€2), as discussed in Section 3.2
with the value of s given by Theorem 2.1. Then, the subspace tangent to the manifold
M at z and defined in the space H*(2) by the relation G,(z) = B is given by

TMp = {V € H°(QQ) : Vyx-v=0, /de =0, (VGy(2),V) () = O} . (4.4)
Q

where <f, g>Hs = [, f-gdx+0* [ A¥2f. A*/?g dx is the inner product in H*(Q), with
¢ > 0 being an adjustable parameter, and VG, (z) being the gradient of the function
G, at z. A local maximizer uy.pr will then be found by constructing a sequence of
divergence-free and zero-mean vector fields with a fixed L9(€2) norm, {ué%}T}neN, such
that

Ug;pr = lim ug'h -
This sequence is defined using the following iterative procedure representing a dis-

cretization of a gradient flow projected on the manifold Mp

i) = Rany (b 5 P, V0 (ilh ) ).

. (4.5)

=
2
»m\_/
~
I
<

(n)

Here u,. 3  is an approximation of the maximizer obtained at the n-th iteration, u°

is
an initial guess, Pram, © LI(Q) — ToMp = 7:1(()7;%,TMB is an operator representing
projection onto the tangent subspace (4.4) at the nth iteration, T, is the step size,
V7 ®4 is the gradient of the functional ®% in the Sobolev space H*(Q), whereas
Ry @ TaMp — Mp is a retraction from the tangent space to the constraint manifold
[1]. Precise definitions of Pz, a1y, T and R, will be given in Section 4.5, while the
definition of V# S<I>qT will be stated in Section 4.3. The approach to solution of Problem
3 is analogous, the only difference being that now one needs to consider the objective
functional (3.9), so these steps are omitted.

As regards the discretization of the gradient flow in Problem 2, the setting is quite

similar to Problem 1, with the difference that now we will solve the optimization problem
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in the Banach space L9(€2), which lacks Hilbert structure. This time the maximizer
Uy, belongs to a constraint manifold £p5. To locally characterize this manifold, we
define the tangent space T,Lp at a point z € Lp. In a similar way as before, the fixed-
norm constraint is expressed in terms of the function Fy : LI(Q) — Ry, Fy := [[z]|7,q
which is now defined on the Lebesgue space L(2). Then, the subspace tangent to the
manifold Lp at z € L(Q2) defined by the relation F,(z) = B is given by

T.Lp = {V e L) : Vi -v=0, / vdx =0,(VFy(2), V) 1y xra@) = 0} , (4.6)
Q

where (L7(Q2))* is the dual space of L7(€2), which is identified with LP(Q2) with %—I—% =1
[2]. This definition of the tangent space at a point z € L is a natural extension of this
concept from a Hilbert space to a general Banach space with the inner product replaced
by a duality pairing (2.10). So then, the maximizer tg.pr is found by constructing
a sequence of divergence free and zero-mean vector fields with a fixed L9(2)-norm,

{ug%j}neN, such that

and the iterative procedure representing the discretization of the gradient flow projected
on the manifold Lp is
n+1 n n
u(();;—ﬂ2 = RLB ( u(();J)B,T + Ty ,PTnEBVLq CI)% (u(();g,T) ) ) (4 7)

1 _ .0
Uppr = U,

where ug%j is an approximation of the maximizer obtained at the n-th iteration, u

0
is a initial guess, Pr,c, : LY(Q) — T.Lp = 7;87%T£B is the operator representing
projection onto the tangent subspace (4.4) at theﬁ ﬁth iteration, T, is the step size,
VL is the gradient of the functional ®4 in the Lebesgue space L4(Q) whereas R, :
T.Lp — Lp is a retraction from the tangent space to the constraint manifold [1]. The

approach to solution of Problem 4 is analogous, the only difference being that now one

needs to consider the objective functional (3.9), so these steps are also omitted.
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4.3 Evaluation of the Gradient

A key element of the iterative procedures (4.5) and (4.7) is the evaluation of the gradi-
ents V0L and V¥ ®Z of the objective functional ®%,, cf. (3.1) with ¢ > 3. The first
step in determining these gradients is to find the gradient of (3.1) with respect to the
L? topology. Then, it will be possible to find the gradient in Hilbert-Sobolev spaces H*

and other Lebesgue spaces L9.

4.3.1 Gradient in L2

Let us consider the Gateaux (directional) differential (®%.) (ug;-) : L*(Q) — R of the

objective functional ®%. defined as

oy 1y _ Pl
() (g5 up) o= Ly 220 V0 —
€e—> €

(4.8)

for some arbitrary perturbation uj € L*(2). The gradient, VLQCIDqT, can then be ex-
tracted from the Gateaux differential (®7.)'(ug; ug) as follows. Note that for a fixed
ug, (D7) (up; up) is a bounded linear functional of the second argument uj. Then, by

Theorem 2.3 (Riesz representation), we can write it as

(24)'(wormp) = (VH '@ ) (49)

Given the definition of the objective functional in (3.1), its Gateaux differential can be

expressed as

@ i) = 2 /OT(nu Ollieh [ T 0l 2t 0wl )i )t
(4.10)

where the perturbation field v’ = u/(x,t) is a solution of the Navier-Stokes system

33



Ph.D. Thesis — Elkin Ramirez McMaster University

linearized around the trajectory corresponding to the initial data ug [24], i.e.,

u’ ou' +u' - Vyu+u-Vyu' + Vyp —vAd 0

c = =11, (4.11a)
P Vy - u 0
u'(0) =uy, (4.11D)

which is subject to periodic boundary conditions and where p’ is the perturbation to
the pressure.

Observe that expression (4.10) for the Gateaux differential is not in the Riesz form
(4.9), because the perturbation uj of the initial data does not appear in it explicitly as
a factor; instead, it appears in the initial condition (4.11b) of the perturbation system.
In order to transform the Gateaux differential to the required Riesz form (4.9), we
introduce the adjoint states u* : Q x [0,T7] — R? and p* : Q x [0,7] — R, and the
following duality-pairing relation

(®7)" (uosug)

/ / *

oM /T/zul R e o L Vol R R
) = : X = )
1 o Jo" ol | " ; (4.12)

[T w i Ty dx = [ wo,0)wx,0)dx =0

Q

wn

where in the first integrand expression denotes the Euclidean dot product evaluated
at (x,t). Performing integration by parts with respect to both space and time allows

us to define the following adjoint system

u* —ou* — [Vx u* + (Vy u*)T u— Vp* —rvAu* f
L = = . (4.13a)
p* —V,-u* 0
2(] q(qS_—gq) -2
[ 1) = en (D)) [ O ulx.t). x €0 e 0T, (4130
u’(T) =0 (4.13c)

which is also subject to periodic boundary conditions. In identity (4.12) all boundary

terms that appear as a result of integrating by parts with respect to the space variable
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vanish due to the periodic boundary conditions. The term [, u'(x,T) - u*(x,T)dx
resulting from integration by parts with respect to time vanishes because of the choice
of the terminal condition (4.13c), and with the choice of the source term (4.13b), identity
(4.12) implies

(@) () = [ o) w0 dx = (w0 () (4.14)
Therefore, we obtain the L?*(2) gradient from (4.9) and (4.14) as
vl = u(0). (4.15)

4.3.2 Gradient in the Sobolev Space H*

Once the gradient over the Hilbert space L*(Q) is computed, we can then calculate the
gradient over more regular Hilbert spaces, namely, the Sobolev spaces H*({2), s > 0.
First, we proceed to identify the Gateaux differential with the inner product in H*(2)

in light of Theorem 2.3 (Riesz representation),

o) (ugs uf) = (V0w ) 4.16
(®7)"(uo; up) 7> Uo Ho(@) (4.16)
where V" ®4, is the Riesz representer of the gradient in H*(f2). Then, recalling that
that perturbations uj are arbitrary and expressions (4.9) and (4.16) are equivalent,

integrating by parts over the periodic domain €2 leads us to the following fractional

elliptic boundary-value problem [48]
[Id — A ] V0l = V0L inQ, (4.17)
subject to periodic boundary conditions. The solution of equation (4.17) is the gradient

in H*(€2) and it can be easily found in Fourier space. More precisely, after taking the

Fourier transform, we obtain

[1+ k)] [VHScp?rL VLchgfp]k, keZ\ o, (4.18a)

[VHSCD%] 0, (4.18b)

0
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where [ﬂ ) € C? represents the Fourier coefficients of the vector field f with wavenumber
k. As discussed by Protas et al. [48, 28], there are important observations to take into
account at this stage. First, the gradients in H® can be understood as a result of a
low-pass filtering applied to the L? gradients where the parameter ¢ acts as the cutoff
length scale. Second, the Sobolev gradients obtained with different 0 < ¢ < oo are
equivalent in the sense of norm equivalence [9], however, the value of ¢ tends to have
a significant effect on the rate of convergence of gradient iterations in the numerical
solution of Problems 1 and 2. Finally, note that equation (4.18a)—(4.18b) preserves the
divergence-free property, i.e., if the VL2<I>qT is divergence-free, then so is the V" &%

and the L? gradient is divergence-free by construction cf. (4.13a) and (4.15).

4.3.3 Gradient in the Lebesgue Space L1

To compute the gradient in a L9(2) space for ¢ > 3 (in fact, the approach discussed
below also works for ¢ > 1, though the values ¢ < 3 will not be considered here), we
follow the method proposed in [35, 46, 40]. This gradient is, in fact, a metric gradient
[23], which is a generalization of the notion of the gradient to normed spaces. It uses
the fact that the gradient is the element that maximizes the directional derivative of
the objective functional under certain constraints. In the absence of the Hilbert-space
structure represented by an inner product and Theorem 2.3 (Riesz representation),
we can then define the gradient of the objective functional (3.1) as a solution of the
following optimization problem subject to the constraints inherited from Problems 1
and 2, which are the divergence-free and a fixed L? norm properties,

Vo - amma (VV04.0) | 16
! 1®llLa()=1, Vx-©=0 r (L9(Q))* x L9(Q) ( )

Optimization problem (4.19) can be converted to an unconstrained form by introducing

the Lagrange multipliers ¢ € R and n € L%(2) associated with each of these two
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constraints. We thus get

VYL = argmin arg max {<VL2<I>(1T,®> +
HER, NELY(Q) OCLI(Q) (L9($2))*xLa(2)

+2 (18l —1) + [0V 0) ax] . (120

where the expression in the bracket can be interpreted as the Lagrangian corresponding

to the right-hand side of (4.19). After performing integration by parts, it becomes

VYol = argmin arg max/ (u*(()) - O+ H\®|q -1 _e.v, n) dx. (4.21)
jER, neL1(Q) @eLa(©) Jo q q/9|

Now, using the optimality condition requiring the Gateaux differential of (4.21) with

respect to ©, p and 7 to vanish, we obtain the following expressions
/Q (u*(0) + pVHRLIVH L1 — Vi n) - O dx = 0, VO e L), (4.22a)
/Q |®]7dx =1, Ve e L), (4.22b)
/Q (Vyx-0O) ndx =0, Ve LiQ). (4.22¢)

Conditions (4.22b) and (4.22¢) trivially say that solutions of the optimization problem
(4.19) have a fixed unit L(2) norm and are divergence free. Since @' is arbitrary,

condition (4.22a) is equivalent to the following relation
L9 xq L9 %49 |19g—2 __ 1 *
VZLIVH dL|9™? = = (—u*(0) + V7)), x€Q. (4.23)
i

As mentioned by Protas in [46], expression (4.23) is similar to the Helmholtz-Weyl
decomposition of vector fields in L4(Q2) [51], where a vector field in L9(Q2) can be written
as the sum of a divergence-free vector field and the gradient of a certain potential. So
then, noticing that both u*(0) and VLQQD% are divergence-free vector fields, applying
the divergence operator to (4.23), we obtain an elliptic boundary-value problem which

can be used to determine 7
An=p (Vi |VHOL72) . VHoL, xe (4.24)
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which is subject to periodic boundary conditions. Therefore, to extract the gradient
in the space L?(f), it is necessary to solve the coupled non-linear system (4.23)-(4.24)
subject to the normalization condition ||V ®%| 4y = 1. In other words, we need to

solve the following non-linear system

’ |
vHeL v er|? = L (00 + V), xEQ (4.252)
An=pu (V| VL% . VHel, x €, (4.25b)
IV | Lao) = 1. (4.25¢)

To find a solution of system (4.25), we proceed with an iterative splitting method as
in [48], where at each iteration we first apply Newton’s method with globalization to
equation (4.25a) while keeping 7 fixed and then we apply a standard Poisson solver to
equation (4.25b). Note that when ¢ = 2, system (4.25) becomes

1
vl = m (—u*(0)+Vxn), x€Q (4.26a)
Ap=0, x€. (4.26b)
Since in this case 7 is a harmonic and periodic function defined on €2, then 7 is bounded.

Hence 1 must be a constant function by Liouville’s theorem. Therefore, equation (4.26a)

becomes

1
V) = - u(0),

which, up to normalization, is the same expression as in (4.15).

4.4 Limiting Case ¢ =3
For the limiting case ¢ = 3, let us recall that the objective functional is, cf. (3.9),

(o) = (T ey = [ fuo ).
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It is therefore necessary to reformulate the adjoint problem, although most of the the

steps are quite similar to the case ¢ > 3. The Gateaux differential of (3.9) is
(Ur) (ug;up) =3 / lu(x, T)|u(x,T) - u'dx, (4.27)
Q

where the perturbation field u’ = u'(x,t) is also a solution of the linearized Navier-
Stokes system around the trajectory corresponding to the initial data uy (4.11). Since
the expression in (4.27) for the Gateaux differential is not in the Riesz form (4.9), we
again need to introduce the adjoint states u* and p* as in (4.12) and define the new

adjoint system as

u* —ou* — [Vx u* + (Vy u*)T u— Vp* —rvAu* 0

L = = . (4.28a)
P -V, -u* 0

u'(x,T) =3lu(x,T)|u(x,T), xe€Q, tel0,T]. (4.28b)

This allows us to compute the L? gradient of the objective functional (3.9) in the same
way as in (4.15). Once the gradient in L? is computed, we can now solve system (4.25)

to obtain V° Y.

4.5 Projection, Retraction and Arc-Maximization

We use equation (4.5) to approximate a solution of Problems 1 and 3, where the projec-
tion operator Pr, a1, @ H*(2) — TnMp and the retraction operator R, @ ToMp —
M are defined as in [28],

<z VG, (uoBT>>Hs(Q) W
q ;

Primpz =2 — ——— .51 (4.29)
<VF (u)r). VG, (UOBT>>
H(Q)
and
Rmp(2) = Lz, for all z € T, Mp, (4.30)
12| o0
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Figure 4.1: Schematic representation of how the projection operator (4.32) and the
retraction operator (4.33) are used at each step in the iterations (4.7). The figure was

taken from [28].

where (VGy(2),2) o) = (¢1277%2,2') o » for all 2’ € H*(Q). As regards Problems

(©)
2 and 4, the tangent space to the constraint manifold L£p is defined using the function

Fy(2) = ||z||74(qy- Since Fy(z) = B for all z € L, we then have that

(VE(2), Zl)(Lq(Q))*XLq(Q) = (q2|" 2, z') (Lo(e)r <L) = 0, (4.31)

for all 2 € L9(Q). Note that given the nonlinearity of the term |z|?"?z, the element
V Frq(z) does not, in general, satisfy the divergence-free and zero-mean conditions,
even if they are satisfied by z. Thus, the projection Pr, .z, : LI(Q) — T,Lp, is defined

in a similar way to what was done in [28], namely,

>(L‘1(Q)

=

<VFq <u(()"}3T) 2 *x La(Q)
T;%,T) dx

fQ VI, <ug;%,T) - VI, (u

Propys =7 — VE, (ug:gj), (4.32)

o~

for all z € L(2), which preserves the divergence-free and zero-mean properties of the

argument. Observe that in this case, inner products have been replaced by duality

40



Ph.D. Thesis — Elkin Ramirez McMaster University

parings (2.10) due to the lack of Hilbert structure in Lebesgue spaces. The retraction
operator R, : T,Lp — Lp is defined as the normalization [1]

B

= 7 forallz € 7,Lp. (4.33)
12| s (52)

RgB (Z) .

The step size T, in the iterations (4.5) and (4.7) is computed by solving the problems

T, = arg max &%, [RMB ( uéﬁ%’T + TPy, VI 0L (u(()’;%,T> )] . (4.34)
™0
and
v, = argmax @ | Re, (g +Pre, VE0F (ulh ) )], (4.35)
™0

respectively. They are solved using a variant of Brent’s derivative-free algorithm [41, 44].
Equations (4.34) and (4.35) can be interpreted as a modification of the standard line-
search problem with maximization performed following an arc (a geodesic in the limit
of infinitesimal step sizes) lying on the constraint manifold Lg, rather than along a
straight line.

Computations involved in the discrete gradient flow (4.7) applied to solve Problem

2 are summarized as Algorithm 1.
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Algorithm 1 Solution of Problem 2 for fixed T" and B.
Input:
B - size of the initial data.
T - time window.
U - initial guess.
€ - tolerance in the solution of optimization problem 2 via iterations (4.7).
Npax - maximum number of iterations allowed in (4.7).
Output:
Optimal initial data ug.pr € Lp.

11(0) =u
0;B, 7 — Y0

Compute ®%.(up)
n=>0
repeat
{ Optimization Iterations (4.7) }

Solve the Navier-Stokes system with initial condition ug.% -, see equation (1.1)

Solve the adjoint system to obtain u* and p*, see equation (4.13)
Compute the L? gradient V"2, (ug%’T), see equation (4.15)
Compute the Lebesgue gradient V' &, (u(()’;%j) see system (4.25)
Compute the optimal step size T, see equation (4.35)
Set u((J?g,lT) =Rep ( uE)T;L]_)%,T + T, Pr,c, VIO (ué?])B,T) >
o (ugry ) ~24 (uf) 1)

Evaluate the termination condition relative_change = o)
5 (“o;B,T)

Setn=n-+1

until relative_change < € or n > Npax

~ . (n+1)
Uo;B,7 = Ug.p 1
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4.6 Conjugate Gradient Method

In this section, we will describe the conjugate gradient method which is an accelerated
version of the steepest descent method introduced in Section 4.1. First, we will show
how it works in Hilbert spaces [41]. Then, we will present an adaptation of the method
to solve constrained optimization problems on Lebesgue spaces L?(€2), leveraging ideas

from Stein in [53], and Protas et al. in [14, 59].

4.6.1 Hilbert Space Formulation

The conjugate gradient method [41] is a powerful iterative algorithm to solve uncon-
strained optimization problems, especially involving quadratic objective functions and
defined on a finite dimensional space because it can rapidly converge to the optimal
state in a finite number of iterations. However, it is still a useful method when it is
applied to non-convex problems on Hilbert spaces. Here, we will briefly describe the
method in a standard setting. Assume we want to solve the following optimization
problem,

argmax J(u), (4.36)

ueH

where H is a Hilbert space with inner product (-,-)y and J : H — R is an objective

functional. The conjugate gradient method approximates the optimal state u as

u= lim u,,
n—oo

where the sequence of {u, },en is computed as
Upy1 = Up + apd,, n=0,1,2,.. (4.37)

with uy being an initial guess and the conjugate directions d,, calculated as

do = VJ(U()),
(4.38)
dy = VI (up) + Budp_1, n=1,2,3,...
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where (,, is a “momentum” term that depends on the conjugate directions only. It can
be chosen in different ways, however, in this thesis, we work with the Polak-Ribiere

momentum term S2% defined as

(VJ(un), V(u,) — VI (up_1))n
(VI (tn-1), VI (tn-1)) 1 ’

pPE = (4.39)

The parameter «, in (4.37) is chosen to be the value that maximizes the functional J
along the direction d,, via line maximization, i.e.,

o, = argmax J(u, + ad,). (4.40)

aeR

4.6.2 Riemannian Optimization

To solve a constrained optimization problem, we must address a key detail after char-
acterizing a constraint manifold M and its tangent bundle 7 M defined as [1]

TM:= ] TuM. (4.41)

ueM

The terms on the right-hand side of expression (4.38) belong to different tangent spaces,
the gradient V.J(u,,) is in the tangent space T,, M since it is evaluated at w,, whereas
the conjugate direction d,,_; lies in 7,,_, M, as it is derived at the state u,_;. Therefore,
a proper setting needs to be defined for this addition. Also observe that the expression
for the momentum (4.39) is subject to a similar issue when subtracting two gradients
that belong to different tangent spaces. The formulation described below is taken from

[14, 28, 59]. Let us consider the following constrained optimization problem

arg max J(u), (4.42)
ueM

where J is an objective functional as in (4.36) and M is a smooth manifold. We want
to approximate a local maximizer 4 on M with a sequence of elements {u, }nen in M
such that

w= lim u,.
n—oo
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This sequence is defined as
Upt1 = R (up + T dn), n=0,1,.., (4.43)

where ug is an initial guess, d, is a conjugate direction at u,, Ry : TM — M is
the retraction onto the manifold M and T, maximizes the functional J along the arc

tangent to the direction d,, at u,, i.e.,

T, = argmax J (R (u, +Tdy)), (4.44)
TeR

and the conjugate directions are computed as
do = P V" J(wo),  dps1 = Propoid V" I (Uni1) + BLE T2 ay s (4.45)

forn =0,1,..., where Py o : H — T, M is the projection onto the tangent space 7, M,
T ToM X ToM — T,.1M is the parallel vector transport. Given u, v € T, M, the

parallel vector transport Z,v € T,.1M of v along the direction u is defined as

d
Tuv) = ZR(u+tv)| .

and P2 is the Polak-Ribiere momentum defined as in [14],

<,P771+1MVHJ(U'H+1)’ (P%+1MVH‘](UTL+1) - j[n dn,P"/;LMvHJ(un))>H

Bati = (4.46)

The introduction of parallel vector transport is necessary because of the way the
conjugate directions are updated. This process involves a linear combination of the
gradient at the current iteration and the conjugate direction from the previous iteration.
Since these two objects lie in different tangent spaces, the vectors must be mapped to
the same space, so that their linear combination is well defined. This latter operation
is realized by the parallel vector transport.

Explicit forms of the projection P and the retraction R depend on the structure
of the manifold M. However, if M is given by with Mp defined in (3.6), then the

projection and the retractions are as in (4.29) and (4.30), respectively.
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4.6.3 Riemannian Formulation in a Lebesgue Space

The following approach is an adaptation of the conjugate gradient method to solve a
constrained optimization problem over a Banach space, where the main difficulty con-
sists in the absence of an inner product structure. The main ideas were borrowed from
Stein [53], who presents the conjugate gradient method in Banach spaces for uncon-
strained optimization problems, and Protas et al. [14, 59], where they implemented
the conjugate gradient method in the context of Riemannian optimization problems on
Hilbert spaces. A major obstacle here is the lack of Hilbert structure in the function
spaces in which Problem 2 is formulated. However, we present a natural extension of
the method to Lebesgue spaces where we generalize the notion of the gradient as the
metric gradient [23], which is an element locally maximizing the Gateaux differential
of the objective functional with respect to the Lebesgue topology.
Assume we want to solve the following optimization problem

arg max J(u), (4.47)

ueLl
given a functional J : L(2) — R, ¢ > 1, with local maximizers constrained to a
smooth manifold £. We approximate a local maximizer u with a sequence of elements
{tn }nen in L such that

= lim u,.
n—0o0

This sequence is defined as

Upt1 = Re (U +Tdy), n=01,... (4.48)
where ug is an initial guess, d, is a conjugate direction at w,, R, is the retraction
onto the manifold £ and T, maximizes the functional J along the arc tangent to the
direction d,, at u,, i.e.,

T, = argmax J (R (u, +7d,)), (4.49)

TeR
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and the conjugate directions are computed as
do = PreVE J(wo),  dusr = Pry eV T(tngr) + B Tn 4, do, (4.50)

for n = 0,1, ..., where Pr, v is the projection of v onto the tangent space T,L, Z,v is

the parallel vector transport of v along the direction u which is defined as

d
T(v) = %Rg(u +tv)

)

t=0

and SI'% is the Polak-Ribiere momentum defined as

I (tni1; Pr VY T(ung1)) = T (tn; T, P11 VY T (Un 1))

BPR _
et J' (n; Pr, e VE I (uy,))

(4.51)

As previously stated, the explicit expressions for the projection P, and the retraction
R. depend on the manifold £. However, if the manifold £ is defined as in (3.8),
the projection and the retractions are defined as in (4.32) and (4.33), respectively.
Expression (4.51) is defined by combining the results from [53] and expression (4.46).

4.7 Numerical Implementation

To solve the Navier-Stokes system (1.1) and the adjoint system (4.13) numerically,
we use a standard approach [10]. For spatial discretization, we used a pseudospectral

Galerkin method, and a semi-explicit Runge-Kutta method for time integration.

4.7.1 Discretization in Space

Suppose u : Q x [0,7] — R? is a vector field with 7" > 0. Additionally, consider the
set Wy ={k €Z?: k< N} where k = |k| and N € N* is the spatial resolution. The

Galerkin approximation of u(x,t) is defined as

uy(x,t) = ) Ag(t)e’™ X, (4.52)

keWn
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where Ug(t) € C? are the Fourier coefficients. If u(-,t) € L'(Q), then its Fourier
coefficients Ug(t) are computed as in (2.3). For uy to be an approximate solution
of (1.1), its Fourier coefficients must satisfy the following finite-dimensional system of
ordinary differential equations obtained by performing a Galerkin projection of system

(1.1) onto the subspace spanned by the Fourier modes with wavenumbers lying within

Wn
dug(t) - ~ _
— AUg(t) +r(Ug)(t) =0, forallkeWy,te (0,7T), (4.53a)
fu(t) - k=0, forallkeWy, e (0,T), (4.53b)
6 (0) = [w), . for all k € Wy (4.53¢)

The linear and the nonlinear operators A and r are defined as:

A ﬁk<t) = (271')2 ]{72 ﬁk (t), (454)

r (T (1) = [(u-vx) u} —omik P, (4.55)

respectively. The Fourier coefficients of the nonlinear term, [(u - Vi) u] 7 e evaluated
by first computing the product (u- Vy)u in the physical space and then calculating its
Fourier transform, while the Fourier coefficients of the pressure term, py, are computed
via the solution of the Poisson equation Ap = —Vy - ((u- V) u) subject to periodic

boundary conditions, which is also performed in the Fourier space as

Pk = g : [(u Vi) u]k. (4.56)

Additionally, partial dealiasing is performed using the Gaussian filter [26]

3

g(k) = e3(3)", (4.57)

Tests performed using the standard dealiasing following the 3/2 rule [55] were also per-

formed; however, in the results we did not observe any appreciable difference compared
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to the use of the Gaussian filter (4.57). For the discretization of the solution of the ad-
joint system (4.13), the Fourier coefficients of the solution satisfy the following system

of ordinary differential equations

duy(t
u;t( ) + Su,(t)+ Ruy(t) =0, for all k € Wy, t € (0,7), (4.584a)
Qs(t) k=0, for all k € Wy, t € (0,7), (4.58D)
u,(T) =0, for all k € Wy. (4.58¢)

where the linear operators S and R are defined as

STL(t) = (2m)2 kL), (4.59)

Riig(t) = [(vx u) u] B+ {(vx u)? u] RORI0 (4.60)

and fi(t) are the Fourier coefficients of the function f(x,¢) in (4.13b). The terms

(Vxu*)u and (Viu*)Tu are first evaluated in physical space as in (4.55), and then
transformed to the Fourier space. Unlike system (4.53), system (4.58) has a terminal

condition, meaning it needs to be integrated backwards in time.

4.7.2 Discretization in Time

The integration in time is performed employing a hybrid approach combining the Crank-

Nicolson method with a three-step Runge-Kutta method [10]. The scheme is given by

hr - I TR - ok
(I — 2k A) arttt = a4 TI‘EAu”'C + B B (W) + Dy (W1, (4.61)

where rk = 1,2, 3 and
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In this scheme, u! and u? represent the solutions of systems (4.53) and (4.58) at the
current and future time, respectively. Important features to highlight concerning the
numerical method (4.61) are an explicit and an implicit treatment of the nonlinear
and linear part of equation (4.53), respectively. Treating the linear terms implicitly
takes advantage of good stability properties that implicit methods offer, while the ex-
plicit treatment of the nonlinear term effectively linearizes it with respect to the time-
dependent variable at the new time level such that this term is evaluated more readily.
It is worth mentioning that, since the linear part of the Navier-Stokes system (1.1) is
given by the Laplacian operator, inverting it in Fourier space is fairly simple given that
it is diagonal in that space. Hybrid methods also allow for the use of coarser time steps
in comparison with fully explicit numerical methods. A systematic validation of the
numerical method (4.61) was carried out by Ayala in [4], whereas a validation of the
gradients of the different objective functionals considered in this study is presented in
Appendix C. As regards the computational time, solving Problems 1, 2, 3 and 4 took
between O(10) and O(100) hours using O(100) CPUs on Compute Canada systems.
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Chapter 5

Numerical Results

In this chapter, we solve Problems 1, 2, 3 and 4 for different values of ¢, B, T', as well as
different initial guesses u’, cf. (4.7). The problems were solved using different variants of
the gradient descent method described in Chapter 4. Our analysis will focus on several
integer values of p and ¢ that satisfy relation (2.27) and the choice of the parameter s
in (2.11) which will depend on the value of ¢q. The dependence of the values of p and
s on ¢ is shown in Figures 3.1(a) and 3.1(b), respectively. In addition to ¢ = 4, 5, 9,
we will also consider the limiting case ¢ = 3. Unless is stated otherwise, the numerical
resolution is N = 2563. As regards the choice of the initial guess u’, we used the optimal
initial conditions found by Kang et al. [29] to solve the the optimization problems with
q = 4. For the cases ¢ = 3, 5, and 9, we considered rescaled optimal initial conditions
obtained for ¢ = 4 as initial guesses, in order to keep the Reynolds number Re [21]
approximately equal at ¢ = 0 across all values of q. The reason for fixing the Reynolds
number is to ensure that our computations are comparable across all the values of ¢.

The number Re is computed using the so-called Taylor-scale Reynolds number defined

10 Ky
Re = | ——F+=. 5.1
T\ 319l vE (5.1)

Additionally, we also examined random initial guesses.

in [21] as
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Figure 5.1: [¢ = 4, B = 562.34] (a) Dependence of the objective functional on iterations
n while solving Problem 1 (blue) and Problem 2 (red). (b) Time evolution of the L*()
norm of the velocity field at certain iterations n. Curves with darker colors correspond
to later iterations closer to the local optimum of Problem 1 (blue) and Problem 2
(red). In both panels, blue and red curves correspond to optimization problems with

T =2x10"%and T = 8 x 1074, respectively.

5.1 Extremal Flows in L)

In this section, we fix ¢ = 4 and vary the parameters B and T while solving Problems
1 and 2. Because of expression (2.33), we know that there is an explicit dependence
between the minimum time ¢ for which a classical solution exists and the parameter B.
Then, the minimum existence time of the solution of the Navier-Stokes equations (1.1) is
of order O (B?) . Therefore, the choice of T" should be adjusted according to expression
(2.33) as the parameter B increases. Although a significant transient growth of the
norm |[u(t)||z« was found, there was no evidence for it to become unbounded which
would signal singularity formation according to (2.30). In Figure 5.1(a), we observe
the convergence of the objective functional (3.1) with iterations n when the Lebesgue

gradients and Sobolev gradients are used. The time window T is chosen such that it
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Figure 5.2: [¢ = 4, Problem 1, B = 562.34, T = 2 x 107%] (a) Energy spectra of
the approximations of the optimal initial condition obtained at different iterations n
in the solution of Problem 1. (b) Energy spectra e (k,t) during the time evolution
of the solution of the Navier-Stokes system (1.1) corresponding to the optimal initial
condition 1y (represented by red symbols). Black solid lines represent the Gaussian
filter (4.57). Red symbols illustrate the optimal initial condition. The time instances
in panel 5.2(b) are (red) t = 0, (yellow) ¢t = 0.2 x 107*, (brown) ¢t = 1.2 x 107, (green)
t=1.6 x 107%, and (coral) t =2 x 10~

corresponds to the largest value of the objective functional obtained with each type of
gradient. The constraint parameter is fixed at B = 562.34. In Figure 5.1(b), we see
how the time evolution of the L*(2) norm of the velocity field changes with iterations
as we approach the local maxima.
Next, we analyze the evolution of the energy spectra defined as

ek, 1) = % S fam®? k=27m. (5.2)

m<|m|<m+1
mez3

We denote e"(k,t) and e>(k,t) as the energy spectra at iteration n and at the
optimal state, respectively. Figures 5.2(a) and 5.3(a) show the energy spectra e"(k,t)

for different iterations n when solving Problems 1 and 2, respectively. The values of
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Figure 5.3: [¢ = 4, Problem 2, B = 562.34, T = 8 x 107*] (a) Energy spectra of
the approximations of the optimal initial condition obtained at different iterations n
in the solution of Problem 2. (b) Energy spectra e*(k,t) during the time evolution
of the solution of the Navier-Stokes system (1.1) corresponding to the optimal initial
condition ug (represented by red symbols). The time instances indicated in panel 5.3(b)

are (red) t = 0, (yellow) ¢t = 1.6 x 107, (brown) ¢t = 4 x 10~* and (coral) ¢ = 8 x 10™%.

the parameters B and T are as in Figure 5.1. These figures show that, as expected,
approximations of the optimal initial conditions ué") tend to become less regular with
iterations since the spectra decay less rapidly at later iterations. In fact, when using
the Lebesgue gradients, we observe a drastic lost of regularity of the approximation of
the optimal initial condition which occurs right after the first iteration. This is because

these initial conditions are defined in the Lebesgue space L*(2) and therefore need not

possess any regularity properties (only integrability).
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Figure 5.4: [¢ = 4] Time evolution of ||u(t)||;+ for Navier-Stokes flows with the optimal
initial conditions obtained by solving Problem 1 (blue) and Problem 2 (red). The values
of the constraint parameter are (a) B = 376.06, (b) B = 562.34 and (c¢) B = 707.1.
Solutions are computed over the time window [0,7] where T" was chosen to be the

shortest and longest considered time window for the given value of B.

Figures 5.3(b) and 5.2(b) show the time evolution of the energy spectra (5.2) in the
solutions of the Navier-Stokes system (1.1) corresponding to the optimal initial condi-
tions found by solving Problems 2 and 1, respectively. We see that, as a result of the
regularizing property of the Navier-Stokes system, due to the presence of the viscous

term, the solutions immediately become smooth, i.e., u(t) € C*() for all ¢ > 0
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————————— 1.25

0.00005 0.0003 0.0006

Figure 5.5: [¢ = 4] Time evolution of the total enstrophy £(u(t)) normalized with
respect to the initial entrophy & in the solutions of the Navier-Stokes system (1.1)
corresponding to the optimal initial conditions obtained by solving Problem 1 (blue)
and Problem 2 (red). The values of the constraint parameter are (a) B = 376.06, (b)
B = 562.34 and (c) B = 707.1. Solutions of (1.1) are computed over the time window
[0, T] where T" was chosen to be the shortest and longest considered for each value of

B.

(Theorem 7.3 in [51]) when the initial condition is not smooth as is the case here. This
is evident in the exponentially fast decay of the energy spectrum (5.2). Unlike Figure
5.3, Figure 5.2 exhibits the effect of the filter (4.57) on the spectra which is represented

o6
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by the black curve.

As a sign that our computations are well resolved, the filter acts only on Fourier
coefficients with magnitudes not exceeding O (1071%). In Figures 5.4 (a)-(c), we show
the time evolution of the L*(2) norm of the solution of the Navier-Stokes system (1.1),
using the optimal initial conditions found by solving Problems 1 and 2 with B = 376.06,
B =562.34 and B = 707.1, respectively. For each value of the constraint parameter B,
the evolution of this norm is plotted for the shortest and longest time window considered
T. We see that ||u(t)||z« attains its maximum earlier in time when we use the optimal
initial conditions found by solving Problem 1. These maxima are also characterized by
larger values of the objective functional than in the ones found by solving Problem 2.
This is somewhat counterintuitive since solutions of Problem 2 are sought in a larger
function space than the one considered in Problem 1.

The evolution of the enstrophy &(¢) normalized with respect to the initial enstrophy
&y is displayed in Figure 5.5. Values of the parameters B, T, as well as the color coding
is identical as in Figure 5.4. We observe that the enstrophy initially decays but then
grows. The growth seems more prominent as the parameter B increases.

We also notice that the enstrophy decays at early times before experiencing any

growth. This behavior was already reported by Kang et al. [28, 29].

5.1.1 Branches of Local Maximizers

We define a “branch” as a family of local maximizers parametrized by the length of
the time window T and obtained by solving Problem 1 or 2 with the parameter B
fixed. Kang et al. [29] characterized the structure of extremal flow based on certain
spatial symmetries of the vorticity field reflected in the behavior of the componentwise
enstrophy &;(t), i = 1, 2, 3, providing information about the contributions to the total

enstrophy (2.7) from the vorticity components in the different Cartesian directions. It
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Symmetric 81 ~ 52 ~ 53

El ~Ey v E30r
Partially Symmetric E1~E3 = & or
82 ~ 53 0 51

Asymmetric El &y &3 &

Table 5.1: Definition of the symmetries of the velocity field based on the behavior of

7

its componentwise enstrophy. The symbol “~” means “similar in both magnitude and

2

monotonicity” and “~<” is the negation of “~7”.

is defined as

Ei(t) = /Q (Ve xu(x,t) e)|*dx, i=1,2,3, (5.3)

where {e;, €5, e3} is the canonical basis of R3. Naturally, we have the identity

Three types of symmetries were identified based on the relative values of the compo-
nentwise enstrophies at different times t, namely, symmetric, partially symmetric and
asymmetric and they are summarized in Table 5.1. In this work, however, we are not
going to distinguish between partially symmetric and asymmetric configurations and
will refer to both of them as “nonsymmetric”.

In Figure 5.6(a) we show the dependance of the objective functional (3.1) on the
length of the optimization window T for different values of the constraint B. In solu-
tions of Problems 1 and 2, flows on each branch exhibit similar behavior of the norm
[u(t)|]74 () 10 time as already shown in Figure 5.4. In general, maximum values of the
objective functional obtained by solving Problem 1, with optimization performed over
the Sobolev space H3/4, are larger than in Problem 2, where optimization is performed
over the Lebesgue space L*(€2). Additionally, the flows corresponding to the solutions

of Problem 1 are always nonsymmetric. All the branches reveal the presence of a sin-
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Figure 5.6: [¢ = 4] (a) Dependence of the local maxima of the objective functional (3.1)
on the length of the optimization window in Problems 1 (blue) and 2 (red) for different
values of the constraint B = 376.06, B = 562.34 and B = 707.1. Dashed and solid lines
represent the nonsymmetric and symmetric branches, respectively, whereas the arrow

indicates the trend with the increase of B. (b) Dependence of maxy @ (Ug.57) on

B* = [[805774(0)-

gle maximum which shifts towards smaller values of 7" as the value of the constraint
parameter B increases. We also conclude that nonsymmetric branches produce larger
values of the objective functional, consistent with the observations made by Kang et al.
[28].

An interesting finding from Figure 5.6(a) is that local maximizers of Problem 1
are also local maximizers of Problem 2. To observe this, notice that the asymmetric
branches obtained by solving Problem 2 and Problem 1 coincide for certain lengths of
the time window (7" = 10~* and T' = 2 x 10~ for the top and middle branches, respec-
tively). Those points correspond to the maxima of branches obtained using Sobolev
gradients. Such optimal initial conditions were then taken as initial guesses to con-
struct asymmetric branches when solving Problem 2. However, no improvement in the

objective functional was found compared to the solutions of Problem 1, suggesting the
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above relation between the local maximizers of Problems 1 and 2.
We now aim to establish a relationship between the maximum value of the objective

functional over each branch and the value of the constraint parameter B? in the form
~ N gl
max oI (Up.pr) ~ C <||u0;B,T||C£q(Q)> ,  wherevy > 0. (5.4)

We quantify this dependence in Figure 5.6(b) by performing least-square fits,

2.19
max O (o,n.7) ~ 0023 (|[figprls(o)) (5.5)

for solutions of Problem 1 and
s B A 2.20
max O (fo,sr) ~ 0.012 (|l .7l[L4(o)) (5.6)

for solutions of Problem 2. The exponents in both of these relations are close to the
exponent 2.26 that Kang & Protas found in [28]. In the absence of a rigorous a priori
bound on the objective functional (2.28), relations (5.5)-(5.6) suggest how it might scale
with the “size” of the the initial data in the worst case realized by solutions of Problems
1 and 2.

To understand whether or not the Navier-Stokes flows corresponding to the optimal
initial conditions found by solving Problems 1 and 2 saturate a priori bounds on the
rate of growth of the enstrophy and the L*(Q) norm, cf. (2.19), (2.31) and (2.37), in
Figure 5.7 we plot the corresponding time-dependent trajectories using the coordinates
{Ia(®)||2@), £ [Ju(®)||za@) } and {E(t), dE(t)/dt}. Since these plots use a logarithmic
scaling, parts of the trajectories where the quantity of interest is decreasing are not
shown. The exponent « in the relation dY'(t)/dt ~ Y, where Y is either ||u(t)||z4q)
or £(t), is then represented by the slope of the tangent to the curve representing the
trajectory at time ¢, which makes it possible to relate these results to the a priori bounds
(2.19), (2.31) and (2.37). Unlike Figure 5.7(b), in Figure 5.7(a) the trajectories form

clusters corresponding to different values of the parameter B*.
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In Section 2.3 we discussed the existence of a regime for potential blow-up in terms
of the rate of change of the enstrophy and the L4(€2) norm of velocity field in the
Navier-Stokes flows. Figure 5.7 allows us to determine whether optimal solutions of
Problems 1 and 2 fall into those regimes. In Figures 5.7(a) and 5.7(b), we show how
the quantities of interest grow and how long their growth rates are sustained. For a
finite-time blow-up to be possible, we would need to observe solutions where the rate of
growth of the enstrophy and the L*(2) norm of the velocity field remain higher than the
rate represented by the dashed lines, which indicate the minimum growth rate required
for a flow to potentially develop a singularity. We identify some trajectories, such as
the orange trajectory in Figure 5.7(a), which do show growth of the L*(2) norm of
velocity field at a rate higher than the rate represented by the dashed line. However,
this growth rate is not sustained sufficiently long for blow-up to occur and we eventually
observe a depletion of the rate of change of the norm. A similar behavior is also found
for the enstrophy in Figure 5.7(b), where we observe several trajectories exhibiting a
growth rate higher than indicated by the slope of the dashed lines (see the green curve,
for example). However, as was the case with the growth of the L*(2) norm, the rate
of growth is not sustained long enough to give rise to a singularity. We then conclude
that some solutions of the Navier-Stokes system (1.1) corresponding to optimal initial
conditions obtained by solving Problems 1 and 2 do fall into the potential blow-up

regime, although this behavior does not persist long enough to trigger a singularity.
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Figure 5.7: [¢ = 4] Navier-Stokes flows corresponding to the optimal initial conditions
found by solving Problem 1 and 2 for different B and 7" shown using the coordinates (a)
{Ila(®)||za(), L |lu®)||z3@) } and (b) {E(t),dE(t)/dt}. Black solid lines show the upper
bounds on the rate of change of the L*(2) norm of the solution and of the enstrophy
given by the relations (a) < ||lu(t)||za() ~ [u(t)[[74(q) from (2.31) and (b) d&/dt ~ £,
respectively. Dashed lines show the relations 4 |[u(t)||za(q) ~ ||u(t)||1Li/(§’]) from (2.37)
and d€/dt ~ £? in (a) and (b), respectively. Blue trajectories are optimal solutions of
Problem 1 while red trajectories are solutions of Problem 2. The intensity of the color

increases with the length of the time window 7. The time evolution of the vorticity

field in the trajectories marked orange and green is presented in Figures 5.12 and 5.14.

5.1.2 Structure of the Extremal Flows

We will now discuss the structure of the extremal flows belonging to the different
branches shown in Figure 5.6(a). Figures 5.8 and 5.9 show the time evolution of the
componentwise enstrophies (5.3) for different values of the constraint parameter B in
solutions of Problem 1 and 2, respectively. We were also able to capture nonsymmetric
branches in Problem 2 with the two largest values of the constraint parameter B and

the evolution of the componentwise enstrophy in these flows is shown in Figure 5.10.
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Figure 5.8: [¢ = 4, Problem 1, nonsymmetric flows| Evolution of (solid lines) the total

enstrophy £(t) and (dotted lines) the componentwise enstrophies &;(t), & (t) and E;(t)

for optimal solutions of Problem 1. The values of the parameters are (a) B = 376.06,

T=8x10"*%(b) B=562.34, T =8 x 10~4 and (c) B =707.1, T = 4 x 104,
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Figure 5.9: [¢ = 4, Problem 2, symmetric flows] Evolution of (solid lines) the total
enstrophy £(t) and (dotted lines) the componentwise enstrophies &;(t), & (t) and E;(t)
for optimal solutions of Problem 2. The values of the parameters are (a) B = 376.06,

T=8x10"*%(b) B=562.34, T =8 x 10~4 and (c) B =707.1, T = 4 x 104,
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Figure 5.10: [¢ = 4, Problem 2, nonsymmetric flows| Evolution of (solid lines) the total
enstrophy £(t) and (dotted lines) the componentwise enstrophies &;(t), £ (t) and Es(t)
for optimal solutions of Problem 2. The values of the parameters are (a) B = 562.34,

T=4x10"%and (b) B=7071,T =2 x 10~

The time window in each panel corresponds to when the objective functional reaches
its maximum on each branch.

Below we visualize flow fields focusing on their velocity u(x, t) and vorticity w(x,t).

More specifically, we will show |w(x,t;)| and |u(x,t;)|* at different time instances

with ¢ = 0, ..., 3, defined as follows.

Definition 5.1. The time instances t;, ¢ = 0, ..., 3, where we analyze the magnitude of

the vorticity |w(x,t)| and |u(x,t)|? are
e {y is the initial time, i.e., tg = 0,
® {1 A argmaxco %Hu(t)HL‘I(Q%
® 1y = argmaxcg 1) [u@®)] L),
e 13 is the final time, ie., t3="T.
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Figure 5.11: [¢ = 4, B = 707.1] Time evolution of the norm ||u(t)||z+ in the flow with the
optimal initial condition that produces the maximum value of the objective functional
for the largest value of the constraint in Problem 1 (blue) and Problem 2 (red). Black
and green symbols represent the time instances t;, © = 0, ..., 3, in Definition 5.1, when

the flow is visualized in Figures 5.12 and 5.13.

These times are indicated in Figures 5.11 and 5.24. The quantities |w(x,t;)| and
lu(x,t;)|? are shown in Figures 5.12 and 5.13 for the Navier-Stokes flows with the
optimal initial conditions found by solving Problems 1 and 2.

The flow structures shown in Figure 5.12 are quite similar to what was found by
Kang & Protas [28]. We observe a bent vortex ring that stretches as time evolves. We
also note that the maxima of |u(x,t)[* occur within the gap formed by the vortex ring
as it entangles and these are precisely the regions driving the growth of the objective
functional (3.1). As regards the solutions of Problem 2, the time evolution of the
vorticity is shown in Figure 5.13. While at the initial instant ¢ = 0 there is no clear
pattern in the flow, as the time evolves we observe the formation of two tightly spaced
vortex tubes which are stretched to fill the entire flow domain 2. Figure 5.14 shows
the time evolution of the vorticity of the solution of the Navier-Stokes system (1.1)
represented by the trajectory marked in green in Figure 5.7(b). Interestingly, it also

features two vortex rings approaching each other while also expanding to fill the entire

flow domain.
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Figure 5.12: [¢ = 4, Problem 1, B = 707.1 and T = 10~*] Snapshots of the magnitude
of the vorticity |w(x,t;)| (red) in the solution of the Navier-Stokes system (1.1) along
with vortex lines (red) and the quantity |u(x,;)|* (blue) shown at the times fo, ..., 3
defined in Definition 5.1. The values of the parameters B and T correspond to the
maximum over the branch with the largest value of B in Figure 5.6(a). The trajectory

representing this solution is marked in orange in Figure 5.7(a).
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Figure 5.13: [¢ = 4, Problem 2, B = 707.1 and T = 4 x 10~%] Snapshots of the
magnitude of the vorticity |w(x,t;)| (red) in the solution of the Navier-Stokes system
(1.1) along with vortex lines (red) and the quantity |u(x, t;)|[* (blue) shown at the times
to, ..., t3 defined in Definition 5.1. The values of the parameters B and T correspond to

the maxima over the symmetric branch with the largest value of B in Figure 5.6(a).
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Figure 5.14: [¢ = 4, Problem 1, B = 707.1 and T = 4 x 10~%] Snapshots of the
magnitude of the vorticity |w(x,#;)| (red) in the solution of the Navier-Stokes system
(1.1) along with vortex lines (red), the quantity |u(x,t;)|* (blue) and streamlines of
the solution (green) shown at the times to, ..., t3 defined in Definition 5.1. The values

of the parameters B and T correspond to the green trajectory in Figure 5.7(b).

5.2 Extremal Flows in L°(9)

In this section, we consider ¢ = 5 while varying the parameters B and T in Problems

1 and 2. Similarly to the case with ¢ = 4, although we did observe some growth of the
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Figure 5.15: [¢ = 5, B = 1500.2] (a) Dependence of the objective functional on the
iteration n when solving Problem 1 (blue) and Problem 2 (red). (b) Time evolution
of the L3(2) norm of the velocity field at certain iterations n. Curves with darker
colors correspond to later iterations closer to the local optimum of Problem 1 (blue)

and Problem 2 (red). Blue and red curves correspond to optimization problems with

T =5x10"%and T = 6 x 107%, respectively.

norm |[u(¢)||zs, we did not find evidence for its unbounded growth that could signal
singularity formation according to (2.30). In Figure 5.15(a), we observe the convergence
of the objective functional (3.1) with iterations n when the Sobolev gradients and
Lebesgue gradients are used to solve Problems 1 and 2, respectively. The time window
T is chosen such that it corresponds to the largest value of the objective functional
obtained when solving Problems 1 and 2 for the given value of the constraint B =
1500.2. In Figure 5.15(b), we see how the time evolution of the L°(2) norm of the
velocity field changes with iterations as we approach the local maxima.

The evolution of the energy spectra (5.2) at different iterations in solutions of Prob-
lems (1) and (2) is presented in Figures 5.16(a) and 5.17(a), respectively. In the case
q = 4, we observed a clear difference in the regularity of the initial conditions between

the two problems (see Figures 5.2(b) and 5.3(b)); however, here we do not observe
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Figure 5.16: [¢ = 5, Problem 1, B = 867, T = 10~%] (a) Energy spectra of the
approximations of the optimal initial condition obtained at different iterations n in
the solution of Problem 1. (b) Energy spectra e>(k,t) during the time evolution of the
solution of the Navier-Stokes system (1.1) corresponding to the optimal initial condition
U, (represented by red symbols). The time instances indicated in panel (b) are (red)
t =0, (yellow) t =4 x 107, (brown) ¢t = 8 x 1075, and (green) ¢t = 10~*. Black solid

lines represent the Gaussian filter (4.57).

such a distinction. This is explained by the choice of the initial guess, which will be
discussed in a later section. Figures 5.16(b) and 5.17(b) show the time evolution of the
energy spectra (5.2) in the solutions of the Navier-Stokes system (1.1) corresponding
to the optimal initial conditions found by solving Problems 1 and 2, respectively. As
was the case for ¢ = 4, we observe that, as a result of the regularizing property of the
Navier-Stokes system, solutions become smoother than the initial condition. Figures
5.16 and 5.17 exhibit the effect of the filter (4.57) on the spectra. A sign that our
computations are well resolved is that the filter acts only on Fourier coefficients with
magnitudes not exceeding O (1078).

In Figures 5.18 (a)—(c), we show the time evolution of the L?(€2) norm of the solution

of the Navier-Stokes system (1.1), using the optimal initial conditions found by solving
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Figure 5.17: [¢ = 5, Problem 2, B = 1500.2, T = 6 x 107%] (a) Energy spectra of
the approximations of the optimal initial condition obtained at different iterations n in
the solution of Problem 2. (b) Energy spectra e>(k,t) during the time evolution of the
solution of the Navier-Stokes system (1.1) corresponding to the optimal initial condition
1, (represented by red symbols). The time instances indicated in panel 5.17(b) are (red)
t =0, (yellow) t = 1.2 x 107%, (brick) ¢ = 2.4 x 107*, (coral) t = 3.6 x 10™*, (brown)
t =4.8x 1074, and (blue) t = 6 x 10~%. Black line in panel 5.17(b) represents the filter
(4.57).

Problems 1 and 2 with B = 571, B = 867 and B = 1500.2, respectively. For each value
of the constraint parameter B, the evolution of the norm of the solution of the Navier-
Stokes system (1.1) is plotted for the shortest and longest time window 7' considered,
except for B = 1500.2 where the shortest considered time window was too small to
plot. In this case, we decided to present the results for 7' =5 x 10~>. We observe that
|lu(t)||Ls attains its maximum earlier in time when we use the optimal initial conditions
found by solving Problem 1. These maxima are also characterized by larger values of
the objective functional (3.1) than in the ones found by solving Problem 2. This mirrors

the behavior of ||u(t)||z« which was discussed earlier, cf. Figure 5.4.
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Figure 5.18: [¢ = 5] Time evolution of ||u(t)||;s for Navier-Stokes flows with optimal
initial conditions obtained by solving Problem 1 (blue) and Problem 2 (red). The values
of the constraint parameter are (a) B = 571, (b) B = 867 and (c) B = 1500.2. Solutions
are computed over the time window [0, 7] where T" was chosen to be the shortest and

longest considered time window, except for the last case where T = 5 x 10~ was chosen.
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Figure 5.19: [¢ = 5] Time evolution of the total enstrophy £(u(t)) normalized with
respect to the initial enstrophy & in the solutions of the Navier-Stokes system (1.1)
corresponding to the optimal initial conditions obtained by solving Problem 1 (blue)
and Problem 2 (red). The values of the constraint parameter are (a) B = 571, (b)
B = 867 and (c) B = 1500.2. Solutions are computed over the time window [0, 7]
where T" was chosen to be the shortest and longest considered time window, except for

the last case where T'=5 x 107° was chosen.

The evolution of the enstrophy £(¢) normalized with respect to the initial enstrophy &
is displayed in Figure 5.19. Values of the parameters B, T, as well as the color coding

are the same as in Figure 5.18. We observe that the enstrophy initially decays but then
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Figure 5.20: [¢ = 5] (a) Dependence of the local maxima of the objective functional (3.1)
with ¢ = 5 on the length of the optimization window in Problems 1 (blue) and 2 (red) for
different values of the constraint B = 571, B = 867 and B = 1500.2. Dashed and solid
lines represent the nonsymmetric and symmetric branches, respectively, whereas the
arrow indicates the trend with the increase of B. (b) Dependence of maxy @3 (Uo.p1)

on B° = [[to;p,7|[750)-

grows, and the growth seems more prominent as the parameter B increases.

5.2.1 Branches of Local Maximizers

In Figure 5.20(a) we show the dependance of the objective functional (3.1) on the length
of the optimization window T for different values of the constraint B. In analogy with

what was observed in the case with ¢ = 4, we note that:

i. Maximum values of the objective functional (3.1) obtained by solving Problem
1, with optimization performed over the Sobolev space H*/'% are larger than in

Problem 2, where optimization is performed over the Lebesgue space L*((2).

ii. The flows corresponding to the solutions of Problem 1 are again nonsymmetric.
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iii. The branches reveal the presence of a single maximum which shifts towards

smaller values of T as the value of the constraint parameter B increases.
iv. Nonsymmetric solutions produce larger values of the objective functional.

The relation between the maximum value of the objective functional over each branch
and the value of the constraint parameter B® is presented in the Figure 5.20(b). By

performing least-square fits, we obtain the following power-law relations describing this

dependence
. _ . 1.085
max Of (o) ~ 0.224 (I[Tosnrl o)) (5.7)
for solutions of Problem 1 and
. N - 1113
max Of (fio,5,r) ~ 0.064 (I[Tosn 30 (5.8)

for solutions of Problem 2. Since the exponents are so close to one, we conclude that the
maximum values of the objective functional scale almost proportionately to B5. This
means that the growth of the maximum value of the objective functional decreases by
half of the growth of the same quantity when ¢ = 4.

Figures 5.21(a) and 5.21(b) show the quantity < ||u(t)||zs(q) as a function of |[u(t)|| s (o)
and d€(t)/dt as a function of £(t), respectively. For a singularity formation to be possi-
ble, we would need to observe trajectories in which the rate of growth of the enstrophy
and of the L>(Q2) norm of the velocity field remains higher than the rate represented
by the dashed lines, which correspond to the minimum sustained growth rate necessary
for a flow to potentially develop a singularity. In this case, several such trajectories
are indeed observed, especially in Figure 5.21(a). However, this growth rate does not
persist long enough for a blow-up to occur and we eventually observe a decline in the
rate of change of the norm. We then arrive at a similar conclusion as in the case with
q = 4: although some solutions of the Navier-Stokes system (1.1) corresponding to op-

timal initial conditions obtained by solving Problems 1 and 2 do fall into the potential
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Figure 5.21: [¢ = 5] Navier-Stokes flows corresponding to the optimal initial conditions
found by solving Problem 1 and 2 for different B and T shown using the coordinates
(a) {Ilu(®)]lrs@), % |[u(t)||rs} and (b) {E(t),dE(t)/dt}. Black solid lines show the
upper bounds in the rate of change of the L3(€2) norm of the solution and the enstrophy
given by the relations (a) < ||[u(t)||s ) ~ [[u(t)]|%5 (g from (2.31) and (b) d&/dt ~ £,
igg,/(?z) from

(2.37) and (b) d€/dt ~ E%. Blue trajectories are solutions of Problem 1 while red

respectively. Dashed lines show the relations (a) < [|[u(t)||zs@) ~ [[u(t)|

trajectories are solutions of Problem 2. The intensity of the color is related to the
length of the time window with darker colors correspond to solutions with longer time

windows T'.

blow-up regime, the growth rate of the L5(2) norm is not sustained long enough to

induce a singularity.

5.2.2 Structure of the Extremal Flows

We will now discuss the structure of the extremal flows belonging to the different
branches shown in Figure 5.20(a). Figures 5.22 and 5.23 show the time evolution of the

componentwise enstrophies (5.3) for different values of the constraint parameter B in
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Figure 5.22: [¢ = 5, Problem 1, nonsymmetric flows] Evolution of (solid lines) the total
enstrophy £(t) and (dotted lines) the componentwise enstrophies &;(t), & (t) and E;(t)
for optimal solutions of Problem 2. The values of the parameters are (a) B = 571,

T =10"* (b) B=2867, T =10~* and (c) B = 1500.2, T =5 x 107°.

solutions of Problem 1 and 2, respectively. The time window in each panel corresponds
to the value of T" for which the objective functional reaches its maximum on each branch.
Here, we observe a similar behavior to what we saw in the case with ¢ = 4. Solutions of

Problem 1 produce nonsymmetric flow evolutions, while solutions to Problem 2 yield
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Figure 5.23: [¢ = 5, Problem 2, symmetric flows| Evolution of (solid lines) the total
enstrophy £(t) and (dotted lines) the componentwise enstrophies &;(t), & (t) and E;(t)
for optimal solutions of Problem 1. The values of the parameters are (a) B = 571,

T=8x10"%(b) B=867,T =6 x 10~ and (¢c) B =1500.2, T =4 x 1074

symmetric flow evolutions. Additionally, as the parameter B, increases, we observe, as
expected, that the total enstrophy tends to grow more rapidly.
Below we visualize flow fields focusing on their velocity u(x, t) and vorticity w(x,t).

More specifically, we will show the magnitude of the vorticity |w(x,¢;)| at different time
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Figure 5.24: [¢ = 5, B = 1500.2] Time evolution of the norm |ju(¢)||5; in the flow
with the optimal initial condition that produces the maximum value of the objective
functional for the largest value of the constraint in Problem 1 (blue) and Problem 2
(red). Black and green symbols represent the time instances t;, i = 0, ..., 3, in Definition

5.1, when the flow is visualized in Figures 5.26 and 5.25.

instances t; with ¢ = 0, ..., 3, together with |u(x,¢;)|®> with ¢; as in Definition 5.1. We
marked these time instances with green and black symbols in Figure 5.24. The choice
of the parameters B and T in Figures 5.25 and 5.26 corresponds to the maximum value
of the objective functional (3.1) along the branch associated with the largest value of
the constraint B. The flow structures shown in Figure 5.26 are quite similar to what we
found for the case with ¢ = 4, featuring two tightly spaced vortex tubes which stretch
to fill the entire flow domain, i.e., see Figure 5.13. However, we observe a different
behavior at the final time ¢3, where the vortex tubes appear to break up and become
entangled to form a complicated flow pattern. Turbulent snapshots like this one were
not observed for ¢ = 4. As for the flow structure in Figure 5.25, the time evolution of
the vorticity seems to be less turbulent. We observe two closely spaced vortex tubes
that stretch as time evolves. This time, however, they do not fill the entire domain. A
possible explanation for the chaotic final stage evident in Figure 5.26, as opposed to the
one in Figure 5.25, could be related to the function space in which the initial conditions

are obtained. The fact that initial conditions obtained by solving Problem 1 possess
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Figure 5.25: [¢ = 5, Problem 1, B = 1500.2 and T = 5 x 10~°] Snapshots of the mag-
nitude of the vorticity |w(x,t;)| (red) in the solution of the Navier-Stokes system (1.1)
and the quantity |u(x,t;)|°> (blue) shown at the times ty, ..., t3 defined in Definition 5.1.
The values of the parameters B and T' correspond to the maxima over the symmetric

branch with the largest value of B in Figure 5.20(a).

certain degree of regularity may cause the time evolution of the vorticity to proceed

more smoothly than when using initial conditions obtained by solving Problem 2.
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Figure 5.26: [¢ = 5, Problem 2, B = 1500.2 and T = 4 x 10~%] Snapshots of the mag-
nitude of the vorticity |w(x,t;)| (red) in the solution of the Navier-Stokes system (1.1)
and the quantity |u(x,t;)|°> (blue) shown at the times ty, ..., t3 defined in Definition 5.1.
The values of the parameters B and T' correspond to the maxima over the symmetric

branch with the largest value of B in Figure 5.20(a).
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Figure 5.27: [¢ = 9, B = 500] Time evolution of the L(2) norm of the velocity field
at certain iterations n. Curves with darker colors correspond to later iterations closer
to the local optimum of Problem 1 (blue) and Problem 2 (red). Blue and red curves

correspond to optimization problems with 7' = 2 x 10~* and T' = 4 x 10~%, respectively.

5.3 Extremal Flows in L°(0)

In this section, we consider ¢ = 9 and will vary the parameter 7' while keeping the
parameter B fixed and equal to 500, 800 and 1200 (although some figures also use
B =1037.92) in Problems 1 and 2.

Similarly as in the cases with ¢ = 4 and ¢ = 5, we did observe some increase of
the norm |[u(t)||ze, though we did not find evidence for its unbounded growth that
could signal singularity formation according to (2.30). In Figure 5.27, we see how the
time evolution of the L?(Q) norm of the velocity field changes with iterations as we
approach the local maxima when solving Problems 1 and 2. The time window T’ is
chosen such that it corresponds to the largest value of the objective functional obtained

when solving Problems 1 and 2 for the given value of the constraint B = 500.
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Figure 5.28: [¢ = 9] Time evolution of ||u(t)||ze for the Navier-Stokes flows with optimal
initial conditions obtained by solving Problem 1 (blue) and Problem 2 (red). The values
of the constraint parameter are (a) B = 500, (b) B = 800 and (c¢) B = 1200. Solutions
are computed over the time window [0, 7] where T" was chosen to be the shortest and

longest considered time window.
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Figure 5.29: [¢ = 9] Time evolution of the total enstrophy £(u(t)) normalized with
respect to the initial entrophy & in the solutions of the Navier-Stokes system (1.1)
corresponding to the optimal initial conditions obtained by solving Problem 1 (blue)
and Problem 2 (red). The values of the constraint parameter are (a) B = 500, (b)
B =800 and (c¢) B = 1200. Solutions are computed over the time window [0, 7] where

T was chosen to be the shortest and longest considered time window.

In Figures 5.28(a)—(c), we show the time evolution of the L?(2) norm of the solution
of the Navier-Stokes system (1.1), using the optimal initial conditions found by solving
Problems 1 and 2 with B = 500, B = 800 and B = 1200.

For each value of the constraint parameter B, the evolution of the norm of the so-
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Figure 5.30: [¢ = 9] (a) Dependence of the local maxima of the objective functional (3.1)
with ¢ = 9 on the length of the optimization window in Problems 1 (blue) and 2 (red)
for different values of the constraint B = 500, 800, 1200. The arrow indicates the trend

with the increase of B. (b) Dependence of maxy @7 (to,p,r) on B® = |[Uo;,7|[7sq)-

lution of the Navier-Stokes system (1.1) is plotted for the shortest and longest time
window 7" considered. We observe that the maxima of ||[u(t)||zo are generally larger
when we use the optimal initial conditions found by solving Problem 1 than the op-
timal initial conditions from Problem 2. This mirrors the behavior of the norm when
the optimal solutions were found in the spaces L*(2) and L?(2), as discussed earlier,
cf. Figures 5.4 and 5.18. The time evolution of the enstrophy £(¢) normalized with
respect to the initial enstrophy & is displayed in Figure 5.29. Values of the parameters
B, T, as well as the color coding are the same as in Figure 5.28. We observed that the
enstrophy initially decays and then grows, and the growth seems more prominent as
the parameter B increases. This is exactly what we observed in earlier cases, cf. Figures

5.5 and 5.19, where the enstrophy initially decreases, followed by substantial growth.
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Figure 5.31: [¢ = 9] Navier-Stokes flows corresponding to the optimal initial conditions
found by solving Problem 1 and 2 for different B and T shown using the coordinates
(a) {Ilu(®)]lro@), % |[u(t)||ro} and (b) {E(t),dE(t)/dt}. Black solid lines show the
upper bounds in the rate of change of the L?(€) norm of the solution and the enstrophy
given by the relations (a) & |[u(t)||zo) ~ [[u(t)]|}s g, from (2.31) and (b) d€/dt ~ &%,
respectively. Dashed lines show the relations (a) < ||u(t)||ro@) ~ ||u(t)||i/92(m from
(2.37) and (b) d€/dt ~ E%. Blue trajectories are solutions of Problem 1 while red
trajectories are solutions of Problem 2. The intensity of the color is related to the
length of the time window with darker colors correspond to solutions with longer time

windows T'.

5.3.1 Branches of Local Maximizers

In Figure 5.30(a) we show the dependance of the objective functional (3.1) on the length
of the optimization window T for different values of the constraint B. Similarly to the

observations made in the cases ¢ = 4 and ¢ = 5, we note that:

i. The maximum of the objective functional (3.1) along the branch is generally

higher when solving Problem 1 than when solving Problem 2.

ii. The flows corresponding to the solutions of Problem 1 are again nonsymmetric.
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iii. The branches reveal the presence of a single maximum.

The relation between the maximum value of the objective functional over each branch
and the value of the constraint parameter BY is presented in the Figure 5.30(b). By
performing least-square fits, we obtain the following power-law relations describing this

dependence

5 _ 9 0.3936
max O (Ho.5.7) ~ 009 (|[Hosrfs)) (5.9)

for solutions of Problem 1 and
. N 0 0.3958
max O (g.5.7) ~ 007 (|[figsrfs(e)) (5.10)

for solutions of Problem 2. When the exponents obtained are compared to their values
in expressions (5.5), (5.6), (5.7) and (5.8), we observe that they are smaller than the
exponents obtained for smaller values of q.

Figure 5.31 show the quantity £ ||u(t)||z9(q) as a function of |[u(t)||rs(o) and dE(¢)/dt
as a function of £(t), respectively. As mentioned before, we aim to observe trajectories
in which the rate of growth of the enstrophy and of the L°() norm of the velocity
field remains higher than the rate represented by the dashed lines, which is the lowest
growth rate a trajectory must sustain if a singularity is to develop. In this case, a few
such trajectories are observed, especially in Figure 5.31(a). However, similarly to what
we saw before, their growth rate does not persist long enough for a blow-up to occur,
and we eventually observe a decline in the rate of change of the norm. We then reach
the same conclusion as in the cases with ¢ = 4 and ¢ = 5: although some solutions of
the Navier-Stokes system (1.1) corresponding to optimal initial conditions obtained by
solving Problems 1 and 2 do fall into the potential blow-up regime, the growth rate of

the L(2) norm is not sustained long enough for a singularity to develop.
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Figure 5.32: [¢ = 9, Problem 1] Evolution of (solid lines) the total enstrophy £(t) and
(dotted lines) the componentwise enstrophies & (t), £(t) and E3(t) for optimal solutions
of Problem 1. The values of the parameters are (a) B = 500, T' = 2x107*, (b) B = 800,
T =2x 107, and (c) B = 1200, T = 10~*.
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Figure 5.33: [¢ = 9, Problem 2] Evolution of (solid lines) the total enstrophy £(t) and
(dotted lines) the componentwise enstrophies & (t), £(t) and E3(t) for optimal solutions
of Problem 2. The values of the parameters are (a) B = 500, T' = 2x107%, (b) B = 800,
T =2x 107, and (c) B = 1200, T = 10~*.

5.3.2 Structure of the Extremal Flows

Here, we discuss the structure of the extremal flows belonging to the different branches

shown in Figure 5.30(a). Figures 5.32 and 5.33 show the time evolution of the com-
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Figure 5.34: [¢ = 9, B = 1037.92] Time evolution of the norm |[u(t)|/zs in the flow
with the optimal initial condition that produces the maximum value of the objective
functional in Problem 1 (blue) and Problem 2 (red). Black and green symbols represent
the time instances t;, 7 = 0, ..., 3, in Definition 5.1, when the flow is visualized in Figures

5.35 and 5.36.

ponentwise enstrophies (5.3) in solutions of Problem 1 and 2, respectively. The time
window in each panel corresponds to the value of 7" for which the objective functional
reaches its maximum on each branch. Unlike the case ¢ = 5, solutions of Problem 1 and
Problem 2 are both nonsymmetric. Unsurprisingly, we observe that the total enstrophy
of solutions to Problems 1 and 2 initially decreases, followed by growth.

Below we visualize the flow fields focusing on their velocity u(x,t) and vorticity
w(x,t). More specifically, we will show the magnitude of the vorticity |w(x,t;)| at
different time instances ¢; with i = 0, ..., 3, together with |u(x,;)|° where ¢; is as in
Definition 5.1. We marked these time instances as the green and black symbols in
Figure 5.34. In Figure 5.35, the time evolution of the vorticity appears different from
what we observed in the cases ¢ = 4 and ¢ = 5. Although we observe vortex tubes, they
do not seem to close, unlike in the previous cases. As for the flow structure in Figure
5.36, they reveal similar features to what we saw for the case with ¢ = 4 and ¢ = 5,

with two tightly spaced vortex rings which stretch to fill the entire flow domain, cf.

Figure 5.13 and 5.26. This time, however, the rings seem to twist across the domain.
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Figure 5.35: [¢ = 9, Problem 1, B = 1037.92 and T' = 2 x 10~%] Snapshots of the
magnitude of the vorticity |w(x,t;)| (red) along with vortex lines (red) of the solution
of the Navier-Stokes system (1.1) and the quantity |u(x,t;)|° (blue) shown at the times
to, ..., t3 defined in Definition 5.1.
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Figure 5.36: [¢ = 9, Problem 2, B = 1037.92 and T' = 4 x 10~%] Snapshots of the
magnitude of the vorticity |w(x,t;)| (red) along with vortex lines (red) in the solution

of the Navier-Stokes system (1.1) and the quantity |u(x,t;)|° (blue) shown at the times
to, ..., t3 defined in Definition 5.1.

5.4 Extremal Flows in L3(Q)

In this section, we consider the limiting case ¢ = 3 and vary the parameters B and T’
while solving Problems 3 and 4. As before, we found no evidence of unboundedness

of the L3(Q2) norm of solutions to the Navier-Stokes system (1.1), which would indi-
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Figure 5.37: [¢ = 3, B = 562.34] (a) Dependence of the objective functional (3.9) on
the iteration n when solving Problem 3 (blue) and Problem 4 (red). (b) Time evolution
of the L3(2) norm of the velocity field at certain iterations n. Curves with darker
colors correspond to later iterations closer to the local optimum of Problem 1 (blue)

and Problem 2 (red). Blue and red curves correspond to optimization problems with

T =5x107% and T = 2 x 1074, respectively.

cate singularity formation according to (2.30). We should point out that the objective
functional in this case (3.9) is different from the previous cases (3.1), and in the op-
timization problem, we aim to maximize the L9(€) norm at a terminal time ¢t = T,
rather than an integral of the norm over the entire time window [0, 7']. Unlike the case
of the other values of q considered in the previous sections, we found that the L3(Q)
norm of Navier-Stokes flows did not exhibit significant growth. For example, we can

see in Figure 5.37(b) that the L?(Q) norm at the optimal states grew less than 10%.
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Figure 5.38: [¢ = 3] Time evolution of [|u(t)||zs in the Navier-Stokes flows with optimal
initial conditions obtained by solving Problem 3 (blue) and Problem 4 (red). The values
of the constraint parameter are (a) B = 376.06, (b) B = 562.34 and (c¢) B = 707.10.
Solutions are computed over the time window [0,7] where T was chosen to be the

shortest and longest considered time window.

This is unsurprising, since it is well know that the the L3(2) norm of Navier-Stokes
flows grows at a slow rate [27].

In Figure 5.37(a), we observe the convergence of the objective functional (3.9) with
iterations n when solving Problems 3 and 4. The constraint parameter B is fixed at

562.34, while the time window 1" was chosen as follows: for the solution to Problem 3,
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Figure 5.39: [¢ = 3] Time evolution of the total enstrophy £(u(t)) normalized with
respect to the initial entrophy & in the solutions of the Navier-Stokes system (1.1)
corresponding to the optimal initial conditions obtanied by solving Problem 3 (blue)
and Problem 4 (red). The values of the constraint parameter are (a) B = 376.06, (b)
B = 562.34 and (c¢) B = 707.10. Solutions are computed over the time window [0, 7]

where T" was chosen to be the shortest and longest considered time window.

it maximizes the objective functional (3.9) along the middle branch in Figure 5.40(a),
and for the solution to Problem 4, it corresponds to one of the values where more
iterations were needed in (4.7).

In Figure 5.37(b), we see how the time evolution of the L3(2) norm of the velocity
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field changes with iterations as we approach the local maxima. The evolution of the
spectrum of the solution to the Navier-Stokes system (1.1) is not presented here, as it
behaves in an analogous manner as in the cases ¢ = 4 and ¢ = 5, cf. see Figures 5.2,
5.3, 5.16, and 5.17.

In Figures 5.38 (a)—(c), we show the time evolution of the L3(€2) norm of the solution
to the Navier-Stokes system (1.1), using the optimal initial conditions found by solving
Problems 3 and 4 with B = 376.06, B = 562.34 and B = 707.10, respectively. For
each value of the constraint parameter B, the evolution of its L3(2) norm is plotted
for the shortest and longest time window considered T. We see that the maximum
of ||u(t)||z3(q) is typically larger when we use the optimal initial conditions found by
solving Problem 3. This resembles the behavior we already observed in the cases with
q > 3 even though the objective functional here is different. The evolution of the
enstrophy £(t) normalized with respect to the initial enstrophy & is displayed in Figure
5.39. The values of the parameters B, T, as well as the color coding is identical as in
Figure 5.38. As in the previous cases, we observe that the enstrophy initially decays
but then eventually grows. This time, however, larger values of the parameter B do

not correspond to higher variation in the increasing section of the enstrophy.

5.4.1 Branches of Local Maximizers

In Figure 5.40(a) we show the dependance of the objective functional (3.9) on the length
of the optimization window T for different values of the constraint B. In solutions to
Problems 3 and 4 flows on each branch exhibit similar behavior of the norm ||u(t)||3q)
in time as already shown in Figure 5.38. We observe that the maximum values of
the objective functional (3.9) obtained by solving Problem 3, where the optimization
is performed over the Sobolev space H'Y?, are larger than in Problem 4, where the
optimization is performed over the Lebesgue space L3(€2). This behaviour is consistent

with what was observed for the previous values of ¢, where solutions found in Sobolev
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3] (a) Dependence of the local maxima of the objective functional

(3.1) with ¢ = 3 on the length of the optimization window in Problems 3 (blue) and
4 (red) for different values of the constraint B = 376.06, B = 562.34 and B = 707.10.
Dashed lines represent nonsymmetric branches, whereas the arrow indicates the trend

with the increase of B. (b) Dependence of maxy Wr (Uo;p,r) on B® = |[Uo;51[730)-

spaces produced larger values of the objective functional (3.1) than those over Lebesgue
spaces. Furthermore, we found that the flows corresponding to the solutions of Problems
3 and 4 are always nonsymmetric. Interestingly, even though the solutions of Problems
3 and 4 preserve the same symmetry, solutions of Problem 3 continue to produce higher
values of the objective functional (3.9). However, the difference between these maxima
is small. Notice that all the branches reveal the presence of a single maximum which
slightly shifts towards smaller values of T" as the value of the constraint parameter B
increases. The relation between the maximum value of the objective functional (3.9)
along each branch and the value of the constraint parameter B? is presented in the
Figure 5.40(b).

By performing least-square fits, we obtain the following power-law

relations describing this dependence

max Ur (Gop.r) ~ 031 (|[ion /i) (5.11)

98



Ph.D. Thesis — Elkin Ramirez McMaster University

13

10 ] 10
10% |
S e = ]
S 10 Lo \ —
= - ~ \]\‘ v‘ 0%+
= I IS
= 108 | B | |~
=T 10 ﬂ 1010 [
10* 10°
10° 10°
[[a(®)]| 30 E(t)
(a) (b)

Figure 5.41: [¢ = 3] Navier-Stokes flows corresponding to the optimal initial conditions
found by solving Problem 3 and 4 for different B and 7" shown using the coordinates

a) {[lu(®)]|z3@), % [Ju(t)||r3@ } and (b) {E(t),dE(t)/dt}. Black solid line shows the
upper bounds in the rate of change of the enstrophy given by the relation d€/dt ~ 3.
Panel (a) does not have a black solid line since an upper bound on the rate of growth
of the L3(2) norm does not seem to be available. Dashed lines show the relations
(a) @l ~ [[u®)]|}sq from (2.37) and (b) d€/dt ~ £*. Blue trajectories
correspond to solutions of Problem 3 while red trajectories show solutions of Problem
4. The intensity of the color is related to the length of the time window with darker

colors correspond to solutions with longer time windows 7.

for solutions of Problem 3, and

1.09
max Wy (ig,p,7) ~ 0.22 (HﬁO;B,TH;S(m) (5.12)

for solutions of Problem 4. We can conclude that there appears to be a linear de-
pendency between the maximum of the objective functional (3.9) and the constraint
parameter B3.

In Figure 5.41, we now plot the corresponding time-dependent trajectories using the

coordinates {||u(t)||zz(), & |[u(t)||r3@) } and {E(t),dE(t)/dt}. As in Sections 5.1.1,
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5.2.1 and 5.3.1, we aim to check whether or not there are trajectories in which the rate
of growth of the enstrophy and the L3() norm of the velocity field remains higher,
for a sufficient long time, than the rate represented by the dashed lines. Unlike the
cases with ¢ > 3, in this limiting case we observe only a few trajectories that satisfy
this condition, e.g., the green and the gold trajectories in Figures 5.31(a) and 5.31(b),
respectively. These correspond to solutions of Problem 3 (Figure 5.31(b)) and Problem
4 (Figure 5.31(a)). However, their rate of growth does not persist long enough for a

blow-up to occur and we eventually observe a decline in the rate of change of the
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Figure 5.42: [¢ = 3, Problem 3] Evolution of (solid lines) the total enstrophy £(t)

and (dotted lines) the componentwise enstrophies & (t), &(t) and &£3(t) for optimal

solutions of Problem 3. The values of the parameters are (a) B = 53.18, T =5 x 107°
(b) B=177.82, T =5 x 107° and (¢) B = 353.55, T =5 x 107°.
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Figure 5.43: [¢ = 3, Problem 4] Evolution of (solid lines) the total enstrophy £(t) and
(dotted lines) the componentwise enstrophies & (t), £(t) and E;3(¢) for optimal solutions
of Problem 4. The values of the parameters are (a) B = 562.34, T = 10~* and (b)
B =707.10, T = 5 x 1077,

norm. The gold trajectory is particularly interesting because it appears to grow in
proportion to the upper bound on the rate of change of the enstrophy represented by
the black solid line. We then reach a similar conclusion that only a few solutions of the
Navier-Stokes system (1.1), corresponding to the optimal initial conditions obtained by
solving Problems 3 and 4, fall into the potential blow-up regime. Nevertheless, this
behavior does not persist long enough to trigger a singularity. This time, however,

there are considerably fewer such trajectories.

5.4.2 Structure of the Extremal Flows

We will now discuss the structure of the extremal flows belonging to the different
branches shown in Figure 5.40(a). Figures 5.42 and 5.43 show the time evolution of the
componentwise enstrophies (5.3) for different values of the constraint parameter B in

solutions of Problems 3 and 4, respectively. The time window in each panel corresponds
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Figure 5.44: [¢ = 3] Time evolution of the norm [|u(t)||3; in the flow with the optimal
initial condition that produces the maximum value of the objective functional for solu-
tions of (a) Problem 3, and (b) Problem 4. Black and green symbols represent the time
instances t;, i« = 0, ..., 2, in Definition 5.1, when the flow is visualized in Figures 5.46
and 5.45. The parameter values are (a) B = 562.34 and T'= 107", and (b) B = 707.10
and T =5 x 107°.

to when the objective functional reaches its maximum on each branch. Unlike in Figures
5.11, 5.24 and 5.34, t3 as defined in Definition 5.1 does not appear in Figure 5.44. This
is because of the form of the objective functional (3.9) in the limiting case. Since it
involves the L3(2) norm at the terminal point ¢ = T, it is natural that the maximum
of the L3(€2) norm is attained at or very close to the end point ¢ = T. Therefore, in
this case ty ~ t3 in Definition 5.1.

The flow structures shown in Figure 5.46 are quite similar to what we obtained in
the case ¢ = 4 (see Figure 5.12); both cases were obtained by solving the optimization
problem over a Lebesgue space. We observe a bent vortex ring that stretches as time
evolves. As before, we note that the maxima of |u(x,t)|* occur within the gap formed
by the vortex ring as it entangles and these are precisely the regions driving the growth

of the objective functional (3.9). It is likely that such similarity is related to the fact
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that the gradient descent method converges within a few iterations. As regards the

solutions of Problem 3, the time evolution of the vorticity is shown in Figure 5.45.
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Figure 5.45: [¢ = 3, Problem 3, B = 562.34 and T' = 107°] Snapshots of the magnitude
of the vorticity |w(x,t;)| (red) in the solution of the Navier-Stokes system (1.1) along
with vortex lines (red) and the quantity |u(x, ;)|> shown at the times ¢, ..., to defined in
Definition 5.1. The values of the parameters B and T correspond to the gold trajectory
in Figure 5.41(b).
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Figure 5.46: [¢ = 3, Problem 4, B = 707.10 and T = 5 x 107°] Time evolution of the
vorticity’s magnitude |w(x,t;)| (red) of the solution of the Navier-Stokes system (1.1)
shown at the times tg, ..., t5 defined in Definition 5.1. The values of the parameters B

and T correspond to the green trajectory in Figure 5.41(a).
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Figure 5.47: Dependence of AE defined in (5.13) on the initial enstrophy & in Navier-
Stokes flows with the optimal initial conditions constructed in (blue) a Sobolev space,
i.e., solutions of Problems 1 and 3, and in (red) a Lebesgue space, i.e., solutions of
Problems 2 and 4. Each symbol corresponds to a different value of ¢, (squares) ¢ = 3,
(circles) ¢ = 4, (triangles) ¢ = 5 and (diamonds) ¢ = 9. Solid blue straight lines
represent the relation max;sq E(t) ~ CE /2 with different values of C. Panel (b) shows
a subset of points from Panel (a), where each point corresponds to the maximum value

per branch taken from Figures 5.6(a), 5.20(a), 5.30 and 5.40(a).

5.5 Diagnostic Quantities in the Extremal Flows

In this section we consolidate all the data obtained in this study to identify some
general trends. First, we focus on quantifying the maximum growth of the enstrophy.
It is important to note that, unlike in the work of Kang et al. in [29], the enstrophy
was not directly controlled (via imposed constraints) in this investigation, therefore,
what we observe here is an outcome of optimization performed while constraining other
quantities (the L9(€2) norms). A similar approach to analyzing the enstrophy growth

using initial conditions from the solutions to Problems 1, 2, 3 and 4 involves defining
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Figure 5.48: Dependence of AE (5.13) on the initial enstrophy & in Navier-Stokes flows
with the optimal initial conditions constructed in (blue) solutions in a Sobolev space,
i.e., solutions to Problems 1 and 3 and in (red) a Lebesgue space, i.e., solutions to
Problems 2 and 4. Each panel shows a subset of points from Figure 5.47(a) associated
to different values of ¢, (a) ¢ = 3, (b) ¢ =4, (¢) ¢ = 5, and (d) ¢ = 9. Straight lines

represent the relation max,>o &(t) ~ C&; /? with different values of C.
the following quantity

AE = max E(t) — Emin, (5.13)

te [argminse [0, 8(3),T]
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Figure 5.49: Dependence of the exponent +y in expression (5.4) on the value of ¢ for flows
with optimal initial conditions constructed in (blue) a Sobolev space, i.e., solutions of

Problems 1 and 3 and in (red) a Lebesgue space, i.e., solutions of Problems 2 and 4.

where

i , 14
Ermin tg[lol%g(t) (5.14)

The value of AE therefore captures the growth of the enstrophy from its lowest value
during the flow evolution to its maximum. The definition of A€ is motivated by Figures
5.5, 5.19, and 5.39 where an initial decay in the enstrophy is followed by a prominent
increase. Interestingly, we observe in Figure 5.47 that the variation of the enstrophy
AE seems to follows the relation max;>oE(t) ~ ng’/ ? described by Ayala & Protas
in [5] and Kang et al. in [29]. However, this trend seems to be mostly realized by the
cases ¢ = 3 and ¢ = 5 as shown in Figures 5.48(a) and 5.48(c). The cases ¢ = 4 and
g =9, shown in Figures 5.48(b) and 5.48(d), seem to follow a slightly steeper relation,
however, more data is necessary to confirmed this finding.

Finally, in Figure 5.49 we show how the exponent v in expression (5.4) depends on
the parameter q. We observe a decreasing trend in ~ for values of ¢ greater than 3.
The change of the trend at ¢ = 3 might be due to the fact that the this case employs a
different objective functional. We confirm that the value of v obtained in this study for

q = 4 is consistent with the result reported by Kang & Protas in [28]. It is interesting
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that the values of v for ¢ = 5 and ¢ = 3 are quite similar and are approximately half

smaller than the value of v for ¢ = 4.
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Chapter 6

Summary and Conclusions

In this thesis, we conducted an extensive search for singularities in Navier-Stokes flows
on a periodic domain using a systematic computational approach. We solved a series of
PDE-constrained optimization problems based on the LPS conditions (2.27), where we
sought initial conditions 1, such that the corresponding Navier-Stokes flows maximize
the objective functionals (3.1) and (3.9). Those initial conditions were determined in
the Sobolev-Hilbert spaces H*(2) (see Problems 1 and 3) and Lebesgue spaces L?(2)
(see Problems 2 and 4). The latter case was particularly challenging due to the lack of
an inner product structure on top of the lack of regularity. To solve these optimization
problems, we used the “optimize-then-discretize” approach involving a state-of-the-art
adjoint-based Riemannian gradient method (4.5) and (4.7). However, the solution of
Problems 2 and 4 required a novel approach using metric gradients [23], and even in
this new setup where we search for extreme flows, we found no evidence of unbounded
growth of the quantities of interest, and thus, no indication of singularity formation.
This research is a continuation of a series of earlier studies where a systematic computa-
tional search for singularities in the Navier-Stokes system (1.1) was conducted based on
different regularity conditions [34, 8, 29, 47, 28]. In our study, we considered different
values of the Lebesgue exponent ¢ (3, 4, 5 and 9), different “sizes” of the initial data B
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and several time windows 7. Then, given ¢, we chose s as the index that makes H*({2)
the largest Sobolev-Hilbert space embedded in L9(€2) (Theorem 2.1) to solve Problems
1 and 3.

The flows with initial data constructed in Sobolev spaces, i.e., solutions of Problems
1 and 3, were found to lead to larger values of the objective functional (3.1) as compared
to flows with initial data constructed in Lebesgue spaces, i.e., solutions of Problems 2
and 4 for all the considered values of ¢ (see Figures 5.6, 5.20, 5.30 and 5.40). This is a
counterintuitive result since optimal initial conditions in Problems 2 and 4 are sought
in a “larger” space. An intuitive result, though, is that the optimal initial conditions
obtained in Problems 2 and 4 are considerably less regular than those from Problems 1
and 3, respectively (see Figures 5.2(a), 5.3(a), 5.16(a), and 5.17(a)). Additionally, we
found numerically that local maximizers of Problems 1 and 3 are also local maximizers
of Problems 2 and 4, respectively. However, the converse is not true. This observation

can be rigorously justified as the following theorem

Theorem 6.1. Consider the following optimization problems defined on the Banach

spaces X and Y,

max ¢ (2) (P1)
and,
max ¢(2), (P2)

where X is densely embedded in'Y and @(z) is a Fréchet differentiable objective func-
tional defined on X and Y. If zg is a local solution of (P1), then zy is also a local

solution of (P2).

Although Problems 1-4 are constrained, we can always write them as unconstrained
problems using Lagrange multipliers, and then invoke Theorem 6.1. The proof of this

theorem is in Appendix B.
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We explored several ways to solve Problems 1-4, and also derived a Riemannian
conjugate-gradient method to solve optimization problems formulated in Banach spaces
(see Section 4.6). The motivation behind this effort was that conjugate-gradient meth-
ods have demonstrated better performance than gradient descent methods, even in
infinite-dimensional spaces [14, 59]. However, in our case, we did not observe any no-
ticeable improvement in performance in either the number of iterations required to
converge or the structure of the optimal solution reflected in the values of the objective
functionals (3.1) and (3.9). Therefore, for simplicity, we decided to continue using the
Riemannian gradient descent method rather than the Riemannian conjugate-gradient
method. Although our study did not directly benefit from this approach, the method
we introduced could be applicable to other optimization problems posed on infinite-
dimensional Banach spaces. Recent applications of such type include, for example,
image recovery problems [30].

After a comprehensive search for extreme behavior by varying the parameters ¢, B
and 7', we constructed maximizing branches for Problems 1 and 2 illustrated in Figures
5.6, 5.20, 5.30. Additionally, Figure 5.40 shows the maximizing branches from solutions
to Problems 3 and 4. Even though the values of the objective functionals (3.1) and
(3.9) are large, we found no evidence of unbounded growth of the quantities represented
by the objective functionals. This conclusion is supported by the observation that the
objective functionals begin to decay for longer time windows 7. To understand the
dynamics of the solutions of the Navier-Stokes system (1.1) with initial conditions
given by the optimal solutions of Problems 1-4, we studied the diagnostic quantities
|u(t)|| a(n) and the enstrophy £(t). In Figures 5.4, 5.18, 5.28(a) and 5.38, we observe a
rapid growth of ||u(t)|| () driven by the nonlinear term followed by a decay as a result
of the dominance of the dissipative term. Similarly, Figures 5.5, 5.19, 5.29(a) and 5.39
show the evolution of the enstrophy normalized with the initial enstrophy &. Here, we

observe that in most of the cases, the enstrophy starts decreasing initially but this is
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then followed by a rapid growth if the parameters T" and B are “large” enough.
Symmetry of the velocity field, introduced in Table 5.1, is a feature defined based on
the behavior of its componentwise enstrophy (2.7). If the componentwise enstrophies are
similar in both magnitude and monotonicity, the velocity field is considered symmetric;
otherwise, it is considered nonsymmetric. Interestingly, the solutions of Problem 1
and 3 are nonsymmetric flows across different values of ¢ (see Figures 5.6, 5.20, 5.30
and 5.40). However, solutions to Problem 2 can be either symmetric or nonsymmetric
flows. Regarding the solutions of Problem 4, they were found to be nonsymmetric.
Additionally, for the cases where symmetric and nonsymmetric velocity fields were
found, the nonsymmetric branches yielded higher values in the objective functional.
This is consistent with Kang’s & Protas’ findings in [28]. Additionally, we noticed that
the values of the objective functional obtained using random initial guesses in iterations
(4.5) were comparable with the values presented in Figures 5.6, 5.20, 5.30, and 5.40.
In expression (2.37), we presented explicit bounds for the rate of growth of the
L(2) norm of solutions to the Navier-Stokes system (1.1) that have bounded norm at
all times. By combining these results with a priori bounds on the rate of growth of
the L(2) from expression (2.31), we identify regimes in terms of the rate of growth
of the L?(2) norm in which the solutions to the Navier-Stokes equations must lie in
order to develop a singularity, provided that the growth of the L%(£2) norm is sustained
over a sufficiently long time. These regimes are presented in Figure 2.1. We observe
a significant transient growth of both the L9(€2) norm and of the enstrophy for all the
studied values of ¢ in Figures 5.7, 5.21, 5.31 and 5.41. However, the growth of the L7(£2)
norm was not sustained long enough to lead to singularity formation in a finite time.
Although we did not work with parameters that allow us to control the enstrophy, in
Figures 5.7, 5.21, 5.31 and 5.41 we did observe trajectories corresponding to solutions
of Problems 1-4 where the rate of growth of the enstrophy fell into the regime where a

singularity could form. However, similarly to what was observed for the L(€2) norm,
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this growth was not sustained for a sufficiently long time to trigger a singularity.

It is interesting that the optimal solutions of Problems 1-4 can share some simi-
larities in terms of their flow structure, despite being obtained over different function
spaces and with distinct objective functionals. For example, consider Figures 5.13 and
5.14, which visualize the flow fields obtained as solutions of Problems 1 and 2, respec-
tively. They present the quantities |w(x,t)| and |u(x,t)|* at the time instances t; given
in Definition 5.1. Both figures show the formation of two flat vortex tubes that enclose
a region contributing most to the value of the objective functional (3.1). Another inter-
esting flow structure, observed in problems solved with different values of ¢, is a bent
vortex tube, as shown in Figures 5.12 and 5.46. These figures visualize the flow fields
obtained as solutions of Problems 1 and 4, respectively. Although they represent opti-
mal solutions constructed in spaces with different topologies, the vortex tube remains
confined in both cases. However, there are other cases in which the tube stretches across
the entire domain, as seen in Figure 5.36, which corresponds to solutions of Problem 2.
These appear to be the two predominant structures in the extreme flows corresponding
to the optimal initial conditions obtained by solving Problems 1-4, for different values
of q.

Another interesting finding is related to the scaling of the maximum attained en-
strophy in terms of the initial enstrophy &,. Although this relation is presented in a
different way to what Ayala & Protas in [5] and Kang et al. in [28] did, we observed
that the maximum variation of the enstrophy AE (5.13) also scales as C’EO%. This be-
havior is especially evident for the cases ¢ = 3 and ¢ = 5 (see Figure 5.48). The reason
for introducing AE was the need to measure the total enstrophy growth since, in most
cases, the enstrophy initially decreased and growth occurred only after certain period
of time.

We acknowledge that the approach of searching for singularities by solving Problems

1, 2, 3 or 4 has several limitations. From one side, we have the inability to distinguish
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between local and global maximizers, which is an inherent issue when solving non-
convex optimization problems such as Problems 1, 2, 3 or 4. On the other hand, we
have the computational cost of the numerical method used to solve the PDE problems.
A solution of Problem 1, 2, 3 or 4 with typical values of the parameters B and T would
take several days to complete while using O(10) — O(100) CPUs, and refining the
resolution globally would lead to even longer computation times. However, overcoming

these limitations offers valuable directions for future studies. For example:

e The use of a different numerical method, such as a variant of an adaptive finite-
element or finite-difference method that allows for local refinements, rather than
the uniform refinements used currently, could improve computational efficiency
while maintaining accuracy in regions of interest. This would be particularly

beneficial for capturing small-scale features of the extreme solutions.
e Exploring extreme solutions to Problem 5 in Sobolev spaces W™4(Q) for n, ¢ > 1.
e Solving Problems 1-4 over nontrivial, non-slip, bounded domains.

e Solving analogous optimization problems for 3D Euler equations where, unlike the
Navier-Stokes system (1.1), there is numerical evidence of singularity formation

using smooth initial data in specific domains [26, 59].
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Appendix A

Rederivation of Inequality (2.31)

In this appendix we derive inequality (2.31) following Robinson’s and Sadowski’s work
[50]. First, multiplying the momentum equation (1.1a) by uu|?"? and integrating in

space, we obtain
/ u, - ufu|” % dx — / Au-ujul?? dx—f—/(u-V)u-u|u|q_2 dx = —/ Vp-ulu|f?dx.
Q Q Q Q
Now, we will analyze all terms, starting with the first one on the left-hand side,
1d
/ w, - uful|”?dx = ——/ |u|? dx. (A.1)
Q qdt Jq
The second term of the left hand side can be bounded using Lemma 1 in [50] as
— / Au-uu”?dx > / |Vu|?ul!? dx. (A.2)
Q Q

The third term on the left-hand side vanishes since

1
/(u-V)u-u|u|q_2dX: —/ |u|q_2V|u|2-udx
Q 2 Jq

:1/V|ulq‘udx
4Ja (A.3)

1
= ——/ |ul?(V -u) dx (integration by parts)
qJa
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The right-hand side term,

— /Q Vp-ulu|??dx = /qu - V|u|?? dx (integration by parts)
= %2 /p lu|?*u - V|ul? dx
<T52 [ bl V| dx

q—2 -
<157 [ bl uf - Ol ax

<(0-2) [ ol af" 2| Vul dx since Ju- V]ul?| < 2uf*|Vul
-9 2 \v/ 2
/ lu| ( a 2) i + | 2u| ) dx (Young’s inequality)

__— =212 4
5 ot

1
+—/ lu|9"%|Vul|? dx.
2 Jo

(A.4)
To estimate the pressure term, we proceed as follows
q—21,,|2 dx < (q B 2)2 2 q—2 Hélder’s i 1;
u|"p[" dx < 5 1pI170 lallZs (Holder’s inequality)
< cllul| 7z a4, (Lemma 3 in [50])
< clul|t all?s., (Lebesgue interpolation
ullzze < Jally4 i)
<c ||u||Lq D/ta=3) -I— H ul|9s, (Young’s inequality)
1
< afulf Y 42 / [ul?"?|Vul? dx.
Q
(A.5)

Combining equalities (A.1) and (A.3) with estimates (A.2), (A.4) and (A.5), we obtain
inequality (2.31)

d 3(g—1)
@l < Cllu@® g, a> 3. (A.6)
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Appendix B

Proof of Theorem 6.1

In this appendix we prove Theorem 6.1.
Proof:
Suppose that zg € X is a local solution of (P1). Therefore, it satisfies the optimality

condition

/ p—
@' (zg, w') = lim Pz + ew') — p(20) =0, forall w e X. (B.1)

e—0 €

We wish to verify that the following optimality condition holds as well

/ p—
@' (29, z") = lim Pz + ) = (z) =0, forallz €Y. (B.2)

e—0 €

Since ¢ is a Fréchet differentiable functional on Y, ¢/(z, -) is a bounded linear operator
(and hence continuous) for every z € Y. Given that X is dense in Y, then every z'€ Y
can be approximated with a sequence of elements in X i.e., there exists a sequence
{2z, }nen in X such that

: / !/
lim z, =z.
n—o0
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In particular, we have that for any n € N expression (B.1) implies

/ —_
0= lim 0 lim lim £Z0t €Z) — (20)

n—o0 n—oo €—0 €
= lim ¢’ (20, 2,)
n—o0
=¢' (zo, lim z;> (By the continuity of ¢')
n—oo

=¢'(20,7).

Hence, zy is also a local solution of Problem (P2).
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Appendix C

Validation of the Gradients

The purpose of this section is to validate the computation of the L? gradient of the
objective functionals (3.1) and (3.9). This is a key step to ensure the correct evaluation
of the gradient in the Lebesgue spaces L9(f2), ¢ > 3 and the Sobolev-Hilbert spaces
H*(2). To do so, we compute the quantities

/£1<€) _ 6_1 [\I/T(uo + 6116) — \I’T(U())]’ ¢ 0’ (Cl)

<VL2\IIT, u6>

and
e ! [®F(ug + eupy) — P (up)]

(VP of,u)

with fixed vector fields ug, ug, time window 7" and several decreasing values of e. Nu-

Ko(€) = , €>0,q>3, (C.2)

merators in (C.1)-(C.2) represent a first-order finite-difference approximation of the
Gateaux differential (4.8) while denominators are given by the Riesz form (4.9) of the
Gateaux differentials. We then expect that x;(€) ~ 1, i = 1,2, however, the evaluation

of these quantities could give rise to a combination of three distinct types of errors:

e “Gradient errors” which are due to the discretization of the different PDE systems
(1.1) and (4.13) in space and time. These errors are controlled by the time step
At and the resolution N.
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Figure C.1: [T = 10~*, N = 128°] Dependance of (a) |r1(€) — 1] and (b) |ka(€) — 1]
on € is presented in logarithmic scale. Blue circles in (a) were obtained by evaluating
expression C.1 with time step At = 10™%, red diamonds with At = 1075, black squares
with At = 1075, while the constraint parameter B* is 2 x 10'°. Blue circles in (b) were
obtained by evaluating expression C.2 with time step At = 5 x 1079, red diamonds
with At = 1079, black squares with At = 5 x 1077, while the constraint parameter B>
is 2 x 108.

e Truncation errors that are triggered by the finite-difference formula in the numer-

ators in (C.1)-(C.2). These errors are O(e).

e Round-off errors resulting from subtractive cancellation, which are of order O(e™!).

As explained in [39], the dependence of log,y|ki(e) — 1| on € for ¢ = 1,2, exhibits
a plateau-like shape and it is naturally divided into three regimes depending on the
values of €. For “large” values of €, we observe that truncation errors dominate, while
“small” values trigger round-off errors and for some intermediate values of € we observe
gradient errors. To validate the evaluation of the L? gradient, we want to show that the
gradient errors vanish as the parameters At and N are refined. In our case, however,

we fix the resolution N and vary only At since the truncation errors associated with At
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tend to be larger than those related to N. This behavior is manifested in the lowering
of the plateau as At decreases.

Figures C.1(a) and C.1(b) show the dependance of |x;(€) — 1|, i = 1,2 on € as the
parameter At is refined. We observe that the values of k;(€), i = 1, 2, diverge away
from unity for both “small” and “large” values of € due to the round-off and truncation
errors, respectively. However, for intermediate values of ¢, the gradient errors vanish
as we refine At. This demonstrates that the accuracy of the L? gradient computation

improves as the time discretization is refined, thus providing the required validation.
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