
NEUROPLASTICITY IN GENETIC

PROGRAMMING AGENTS FOR ADAPTIVE

AND CONTINUAL DECISION MAKING

NEUROPLASTICITY IN GENETIC PROGRAMMING AGENTS

FOR ADAPTIVE AND CONTINUAL DECISION MAKING

By ALI NAQVI, BSc

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Science

McMaster University © Copyright by Ali Naqvi, July 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF SCIENCE (2025)

Hamilton, Ontario, Canada (Computing and Software)

TITLE: Neuroplasticity in Genetic Programming Agents for

Adaptive and Continual Decision Making

AUTHOR: Ali Naqvi

BSc (Computer Engineering),

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Stephen Kelly

NUMBER OF PAGES: xiii, 61

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Abstract

Dynamically decomposing complex tasks into reusable sub-policies remains a core

challenge in Reinforcement Learning. Tangled Program Graphs, a genetic-programming

framework for general-purpose machine learning (applied here to reinforcement learn-

ing), addresses this by evolving connections between different agents in order to break

down complex problems into manageable sub-problems.

Inspired by memetic algorithms, which accelerate evolutionary search through

agentic refinement, we introduce Neuro-Tangled Program Graphs. This biologically

grounded extension utilizes hierarchical plasticity within the structure of an agent,

applying a homeostatic rule at the initial decision edges and a competitive Oja-style

update in each subsequent decision edge.

Evaluated on both a static and dynamic variant of the MuJoCo Ant environment,

this approach yields higher peak returns and evolves with 59-88% fewer mean effective

instructions used per step, demonstrating stronger performance and a more compact

search.

Next, we add an TD-style online value baseline and eligibility traces to stabi-

lize and distribute dense step-wise rewards over time, sharpening temporal updates

iii

within each agent. We then examine how trace length and a per-team plasticity

decay factor shape learning dynamics. To set these, we compare end-to-end evolu-

tionary tuning with MAP-Elites using a multi-archive that explores (trace length x

decay).

The benefits of reward modulation are then tested for with TPG and NeuroTPG

variants on a customized static and dynamic maze environment. This addition show

a consistently better performance across all seeds and also a more interpretable final

structure.

Overall, our findings highlight the vital role of a local search within population

search algorithms. Our studies hope to open a new avenue to gradient-free memetic

algorithms which offer many benefits and opportunities from various already devel-

oped field of studies.

iv

Acknowledgements

“Think where man’s glory most begins and ends, and say my glory was I

had such friends.”

— W.B. Yeats

I would like to express my gratitude to the following people:

• My supervisor, Dr. Stephen Kelly, for his patience, guidance, and invaluable

advice throughout my graduate studies.

• My classmates and the many others who made this journey enjoyable.

• My close friends, whose constant support and encouragement would merit a

thesis of their own.

• My siblings, Hiba, Batul, and Wasay, for always being there through the ups

and downs—even if that meant bothering me exactly when I needed it.

• And finally, my parents, whose countless sacrifices have made all of this possi-

ble. This thesis is dedicated to you, Bushra and Shabab.

v

Table of Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Statement of Problem . 1

1.2 Research Objectives . 2

1.3 Contributions . 4

2 Literature Review 6

2.1 Evolutionary Computation . 6

2.2 Tangled Program Graphs . 9

2.3 Lifetime Learning in Evolutionary Computation 12

2.4 Hebbian Plasticity . 13

2.5 Homeostatic Plasticity and Synaptic Scaling 14

2.6 Temporal Credit Assignment in Evolutionary Computation 15

2.7 Quality-Diversity . 18

vi

3 Methodology 19

3.1 Hierarchal Neuroplasticity in Agents 19

3.2 Graph Path Refinement with Reward Signals 25

4 Environments 29

4.1 MuJoCo-Ant . 30

4.2 Maze Navigation . 31

5 Experimental Setup 34

5.1 Architecture Setup . 34

5.2 Environmental Setup . 36

6 Results and Discussion 37

6.1 Neuroplasticity (Ant) . 37

6.2 TD-style Reward Modulation (Maze) 43

7 Conclusion 52

vii

List of Figures

2.1 An abstract representation of the digital evolution process. It begins

with the random initialization of individuals, followed by evaluation.

The best-performing individuals are then selected, and variation op-

erators such as mutation and crossover are applied. This cycle of

evaluation, selection, and variation continues until a termination con-

dition is met, such as a wall-clock time limit or a specified generation

count. 7

2.2 Abstract representation of program memory used in this paper. A pro-

gram has three types of memory registers (scalar, vector, and matrix)

that can interact with the observation and each other. This enables an

output of high-dimensional actions. More information can be found

in [10]. 10

2.3 Illustration on how emergence of program graphs can occur through

evolution. Through the mutation process, solutions can connect with

one another, encouraging problem decomposition. A node (T) repre-

sents a team, and an edge (P) is a program. 11

viii

3.1 Graph showing the transition from a root-level selection to a sub-

level selection of a program. Each program is initialized with a noise-

based weight, which is thereafter an evolvable attribute (Sec. Evolved

Program Parameters). The appropriate program-specific learning rule

is then utilized where the highest-weight is selected. 20

4.1 The MuJoCo Ant robot used as our benchmark environment. 30

4.2 (a) Maze used in this work. The red rectangle indicates the region

from which start positions are sampled for each episode (trial); the

red circle within the region marks a particular sampled start; green

circle marks the stationary goal. (b) is the robot and its sensors.

An agent has three distance-to-wall sensors (arrows) and four sensors

(gray wedges) used as a ”compass” towards the goal irrespective to

walls. 32

6.1 Performance of TPG variants on the Ant tasks where Ant is the static

and Ant Immediate-Break (IB) is the dynamic variant. Abbrev.: SF

= stateful; SL = stateless. Solid lines denote the median, and shaded

regions indicate the standard deviation across 20 runs. (a) Ant test

set: best agent per seed (60 episodes/seed). (b) Ant IB test set:

best agent per seed (same protocol). (c) Mutation-rate ablation on

the held-out test set. (d,e) Evolution-time complexity : mean effective

instructions per step across generations. (f,g) Evolution-time fitness :

mean episodic return across generations in each environment. 39

ix

6.2 Replay of the best NeuroTPG agent trained in the standard Ant en-

vironment, now tested on the Dynamic variant. Performance with ac-

tive neuroplasticity weights is compared to a frozen version in which

raw bids determine program selection. (a) Reward per step for the

first five episodes (500 steps each). A negative reward means the Ant

moves backwards. (b) XY trajectory of the ant at every step; each line

represents one episode. NeuroTPG agents with plastic weights consis-

tently traverse farther distances, highlighting the benefit of adaptive

program selection. 42

6.3 Row 1: static, Row 2: dynamic Maze. Solid lines denote the me-

dian, and shaded regions indicate the standard deviation across 20

runs.(a,d) fitness across generations for each variant; (b,e) Variance

in final performance of NeuroTPG+TD variants shown as box plots;

(c,f) Box plots of effective instructions per step (complexity) for each

variant in the final generation. 45

6.4 Trajectory of three distinct starting positioning successful episodes

(trials). a) NeuroTPG and b) NeuroTPG + TD. 47

6.5 Evolved graphs for best fitness agents in all variants for static Maze

environment. Blue nodes: teams (labels show ID, λ and γ (these two

parameters are ignored and not evolved in TPG and NeuroTPG vari-

ants)); Edges: programs (labels show ID, learning rate (LR)) where

the LR is not applicable to the TPG variant. 48

x

6.6 The best NeuroTPG + TD agent of the static environment. The

programs map to their specific individual action. 49

6.7 ME archive heatmaps (top: static; bottom: dynamic maze). for the

top three seeds per environment. Vertical axis: λ, horizontal axis: γ;

cell intensity: fitness. 50

xi

List of Tables

5.1 Hyper-parameters used by all evolutionary seeds (unless specified in

subsequent paragraph). Structural limits, mutation/crossover set-

tings, population-generation parameters, action-pointer mutation. . . 34

5.2 Hyper-parameters used by TD-learning and MAP-Elites. (ME) in-

dicates parameter settings specific only to Map-Elites. Values are

regarding mutation/crossover settings and population-generation pa-

rameters. 35

6.1 Best agent performance and median performance across seeds (± stan-

dard deviations) on two MuJoCo Ant variants. Abbrev.: SF = state-

ful; SL = stateless. Fitness (Fit) is the mean episodic return; Com-

plexity (Comp) is the mean effective instructions per step. 38

6.2 Learning-rule sequence for each TPG variant. Step 1 applies the rule

at the root team; Step 2 applies it within each sub-team. Abbrev.: H

= Homeostasis (Eq. 2); O = Oja (Eq. 3). 40

6.3 Ablation study: removal of steps from the proposed pipeline. The

best agent’s fitness and its complexity are reported. 41

xii

6.4 Best agent performance and population means on maze variants. Fit-

ness (Fit) is the mean episodic return; Complexity (Comp) is the

average effective instructions per decision. 44

6.5 Best agent and median test-set pass rates (goal reached). Values are

all divided by the total number of episodes, 100. 44

6.6 Evaluation–horizon sensitivity with max episode (trial) length increased

at test time from 1,000 to 5,000 steps (training unchanged). Values

reported are median pass rates across all seeds on 50 episodes. 48

xiii

Chapter 1

Introduction

1.1 Statement of Problem

Adaptive agents in non-stationary environments must continually integrate new ex-

perience without costly retraining [31]. Biology achieves such rapid, within-lifetime

adjustment through neuroplasticity: synapses and circuits change their influence as a

function of recent activity and feedback. A parallel goal in artificial life is to provide

learning systems with similar within-trial adaptability such that behaviour can track

shifting contingencies.

Tangled Program Graphs (TPGs) are an evolutionary control framework that en-

code behaviour as a directed graph of teams (decision nodes) connected by edges la-

beled with programs (<state,action> value functions). At run time, the agent starts

at the root team and executes each outgoing edge’s program. Each program, imple-

mented here as a linear genetic program [5]—a simple register machine—produces

1

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

a scalar bid (for routing) and a candidate action, stored in its action register. The

edge with the highest bid is chosen (winner-takes-all), and this routing repeats until

a leaf (action) is reached, at which point the winning program’s action is used [16].

In the conventional stateless TPG baseline, program parameters are fixed after

evolution and the registers of all programs are reset after each decision. Program

selection depends on the current observation only; TPG retains no explicit memory

of the paths it has taken. In contrast, a stateful variant preserves selected registers

across decisions to provide short-horizon memory along the active path, which has

been shown to help on partially observable tasks [19].

Both variants offer no explicit memory of paths chosen, limiting an agent’s ability

to adapt its exploration of a changing environment post-training.

A second limitation comes from TPG following conventional evolutionary-computation

algorithms: the emphasis on population-level optimization gives individual programs

little scope on how each of their actions can be meaningful and instead focuses on

total behavior. The two primary research objectives in this thesis address these

challenges, outlined in Section 1.2.

1.2 Research Objectives

1.2.1 Objective 1: Path Memory

To enhance an agent’s ability to adapt within its structure after each decision, we

introduce a biologically inspired two-level plasticity pipeline in TPG:

• Root team homeostasis. The root team maintains a smoothed estimate

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

of each edge’s effective utility by homeostatically tracking normalized bids

(Sec. 3.1.2), biasing toward consistent use of useful edges while damping tran-

sient spikes.

• Sub-team Oja adaptation. When traversal flows from a root team to a sub-

team, the sub-team’s member programs undergo a normalized Hebbian update

using an Oja-style rule [12] (Sec. 3.1.3). This ensures competitive learning

within the sub-team that correlates with the activating root program.

Crucially, these weight updates persist across episodes (trials) within a genera-

tion, and reset between generations. This mechanism allows the graph to accumulate

and refine structural knowledge over many interactions with the environment, aiming

to strike a balance between stability and adaptability.

We evaluate this approach on both static and dynamic variants of the Mu-

JoCo Ant environment [6]. Our results demonstrate that the biologically plausible

modifications—homeostatic adjustment at the root and normalized Hebbian refine-

ment in following connections—not only improve performance but also significantly

reduces the complexity of the solutions in each generation, mitigating the bloating

problem commonly observed in genetic programming [27].

1.2.2 Objective 2: Temporal Credit Assignment

While NeuroTPG improves on vanilla TPG, it struggles to assign credit to decisions

that influence future rewards (see Sec. 6.1.3). We therefore add temporal-difference

(TD) learning [40] to NeuroTPG and pair it with a Quality Diversity (QD) method

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

[33] that searches the TD parameter space, providing insight into which parameter

values are required for TD learning yield the best behavior. The QD method does

not raise performance compared to the absence of it but offers interpretability on

which parameter niches improve results.

Each agent maintains its own reward-modulated decision structure during an

episode, which begins with random initial conditions; all path-specific credit is reset

between episodes. Experiments on static and dynamic maze tasks confirm that TD-

augmented NeuroTPG is effective across seeds in a dense-reward task relative to

TPG and plain NeuroTPG.

1.3 Contributions

Our main contributions according to each objective are as follows.

Objective 1: Path Memory

• A novel two-level plasticity framework in TPG that operates hierarchically:

root-level homeostatic weight adjustment for global optimization, and sub-team

normalized Hebbian learning (Oja’s rule) for local specialization.

• Efficiency without compromise: Across static and dynamic variants of MuJoCo

Ant tasks, the NeuroTPG design reduces complexity, requiring 59–88% fewer

mean effective instructions per step. At the same time, it promotes stronger

and more consistent high-performing tails, achieving efficiency without loss of

robustness.

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Objective 2: Temporal Credit Assignment

• TD-augmented NeuroTPG: Integrating TD learning enables the agent to sta-

bilize and distribute frequent, small rewards across recent decisions, improving

robustness in the dense-feedback maze.

• MAP-Elites insight: A MAP-Elites archive used for keeping diversity in the TD

learning variables, providing an interpretable view of temporal-credit dynamics.

Together, these contributions establish NeuroTPG and its variants as a biolog-

ically inspired framework that unifies plasticity and temporal credit assignment,

yielding agents that are both efficient and adaptive across diverse sequential decision

tasks.

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 2

Literature Review

For the foundation of this work, we first introduce Evolutionary Computation. In

the following section, we position our two-level plasticity pipeline within four strands

of prior work: Tangled Program Graphs, Lifetime Learning in Evolutionary Com-

putation, Hebbian Plasticity, and Homeostatic Plasticity and Synaptic Scaling. The

prior work for the addition of TD-learning is then followed in the subsequent sections:

Temporal-Difference Learning and Quality-Diversity.

2.1 Evolutionary Computation

Evolutionary Computation refers to a family of population-based stochastic search

methods inspired by natural selection. A candidate solution (the genotype) expresses

a behavior (the phenotype) that is scored by a task-specific objective (fitness). As

shown in Figure 2.1, each generation applies selection operators that bias repro-

duction toward higher-fitness individuals, and variation operators (mutation and

6

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

crossover) that introduce diversity. The resulting search dynamics balance exploita-

tion of discovered structure with exploration of novel behaviors [22].

Initialization

Variation (mutation,
crossover)

Selection

Evaluation

Termination

Figure 2.1: An abstract representation of the digital evolution process. It begins
with the random initialization of individuals, followed by evaluation. The best-
performing individuals are then selected, and variation operators such as mutation
and crossover are applied. This cycle of evaluation, selection, and variation continues
until a termination condition is met, such as a wall-clock time limit or a specified
generation count.

2.1.1 Genetic Programming

Genetic Programming (GP) evolves computer programs as individuals [23]. A pro-

gram maps inputs to outputs (e.g., actions) and is evaluated on task-specific fitness;

selection and variation then act on its code. Main forms include (i) tree-based GP :

programs as expression trees (ii) Linear GP : instruction sequences over registers,

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

(iii) Graph-based GP : reusable subgraphs/modules; includes team–program struc-

tures as in Tangled Program Graphs (Sec. 2.2)), and (iv): grammar-guided forms

that constrain semantics.

Variation operators act by mutation functions, registers, constants, or control

flow, and by recombining sub-trees, or blocks depending on the representation. Op-

erator rates are tuned to balance exploration (new code) with exploitation (refining

current code).

State and temporal credit. In sequential decision problems, Evolutionary Com-

putation faces a well-known temporal credit assignment challenge: fitness aggregates

returns over long horizons, providing weak guidance about which micro-decisions

improve performance. Classic strategies to mitigate this include shaping objectives,

hierarchical decomposition, and hybridization with within-lifetime learning (e.g., re-

inforcement learning) so that individuals can adapt during an episode while evolution

searches over the structure that provides such adaptation [14, 25].

Bloat and introns. Another practical consideration is bloat : inactive or weakly

contributing code (introns) tends to accumulate under neutral drift, sometimes im-

proving robustness to mutation but at the cost of increasing evaluation time. Com-

mon countermeasures include parsimony pressure [32] or structural limits.

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

2.2 Tangled Program Graphs

The Tangled Program Graph (TPG) framework has emerged as a promising approach

for decomposing tasks and building composite agents from a set of previously discov-

ered behaviours [18, 16]. This framework is particularly useful in settings that benefit

from automatic problem decomposition and temporal memory [10]. TPGs treat pol-

icy learning as the evolution of a directed graph whose vertices are teams (decision

routing nodes) and edges/leaves are programs (computing nodes) (Fig. 2.3).

2.2.1 Program Representation

Each program assumes a Linear Genetic Program (LGP) representation [5]: where

their first scalar register supplies a bid, and their second register encodes the action.

In these programs, TPGs employ a built-in temporal memory by preserving register

values from the previous step, which accumulate to make the programs stateful.

Recently, a new variant which adds vector and matrix registers to each program

has enabled the possibility of having a high-dimensional action space, with the scalar

LGP still used to produce the scalar bid [10].

An abstract version of a program’s register memory representation can be seen

in Figure 2.2, where programs are represented as a linear sequence of instructions

which operate on this memory, and state variables are drawn from the observation

space (see Alg. 1).

In the stateful variant, the registers retain their values across time steps, resetting

only at the end of an evaluation. This allows the registers to accumulate and encode

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Bid
s0 s1 s2 s3 s4

v0 Action
v1 v2 v3 v4

m0 m1 m2 m3 m4

Output
[bid, action]

Figure 2.2: Abstract representation of program memory used in this paper. A pro-
gram has three types of memory registers (scalar, vector, and matrix) that can inter-
act with the observation and each other. This enables an output of high-dimensional
actions. More information can be found in [10].

a rough mental model of the environment, capturing temporal patterns that guide

future decisions. In contrast, in the stateless variant the registers are re-initialized

at each step, so this internal temporal memory is not available.

Algorithm 1 Illustrative register-machine program used by a Tangled Program
Graph (TPG) agent. Each program contains eight scalar (s), vector (v), and ma-
trix (m) memory instances. Two evolved constants—mw (vector/matrix width) and oi
(observation offset)—control how the current observation o⃗bs(t) is copied (Lines 1–3).
Memory is reset at the start of each episode; the program returns a bid and contin-
uous action (Line 7).

1: v0 = roll(o⃗bs(t), -oi)[:mw] ▷ Copy observation to vector memory

2: vi = roll(o⃗bs(t), -oi)[:mw*mw] ▷ Copy observation to temporary vector vi
3: m0 = vi.reshape(mw,mw) ▷ Copy observation to matrix memory
4: v3 = s0*vi ▷ Program execution begins
5: v1 = s4*v3

6: s0 = mean(v3)

7: return s0,v1 ▷ bid, continuous action vector

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Teams

An agent’s decision begins at a single root team. The root’s member programs exe-

cute in series, produce bids, and the program with the highest bid is chosen, with its

corresponding action used to update the environment. Through evolutionary selec-

tion, mutation, and crossover, highly adapted teams of programs gradually emerge.

Mutations can also allow a program to reference another team in the population

rather than directly selecting an action (Fig. 2.3). This encourages problem decom-

position, breaking down a complex problem into smaller, more manageable parts.

Time (generations)

Initial Populations Program Graphs Emerge

Team
Population T1 T2

P1 P2 P3 P4 P5 P6

v1 v1v1v1v1v1 v1v1v1 v1v1

T1 T2

P1 P2 P3 P4 P5 P6
Program
Population

Figure 2.3: Illustration on how emergence of program graphs can occur through
evolution. Through the mutation process, solutions can connect with one another,
encouraging problem decomposition. A node (T) represents a team, and an edge (P)
is a program.

As new interconnections between teams are established, agents consisting of mul-

tiple teams may arise. All evolutionary modifications (mutation and crossover) con-

tinue to occur exclusively at the agent’s root team. This ensures that agents are

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

constructed from the bottom-up, and lower-level structures are protected from vari-

ation as long as the graph as a whole is performing well. However, this property

also implies that components deeper in the hierarchy change more slowly over evo-

lutionary time, thus further motivating additional mechanisms which support rapid

lifetime adaptation.

This framework has shown notable success in various applications, including Atari

game playing agents [16], visual reinforcement learning in ViZDoom [17, 20], and

multi-task learning [18]. In these applications, the TPG framework has been com-

petitive with deep learning approaches while producing agents that are several orders

of magnitude less computationally complex.

2.3 Lifetime Learning in Evolutionary Computa-

tion

An intra-generational plasticity mechanism known as the Baldwin effect, which ac-

celerates convergence through individual learning, has long been explored in neuro-

evolution [1]. Under the Baldwin effect, individual learning improves an agent’s

fitness without directly transmitting acquired knowledge to offspring. In Genetic

Programming (GP), this often leads to the learned traits during the genotypes life-

time; the ability to learn is inherited, closely aligning with biological learning and

the Baldwin effect. However, much existing research focuses on embedding gradient-

based local search within an agent’s structure [42] and follows Lamarckian evolution

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

in which these changes are inherited by offspring. Although not a biological mech-

anism, Lamarckian updates are popular because they can speed convergence and

improve sample efficiency; however, they may reduce evolvability or encourage pre-

mature convergence [7]. Our pipeline follows the Baldwin effect while remaining

entirely gradient-free, hence maintaining GP’s compatibility with non-differentiable

programs.

2.4 Hebbian Plasticity

Hebbian plasticity refers to the broader class of biologically inspired mechanisms

that adjust synaptic strengths based on neural co-activity [15]. Hebbian Learning is

a biologically inspired unsupervised learning strategy that has gained significant at-

tention in the field of deep learning. An extension of this, Oja’s rule [30], a stabilized

variant of Hebbian Learning, has been central to unsupervised learning, particularly

for Principal Component Analysis (PCA) and dynamic weight stabilization in neu-

ral networks [38]. PCA is an unsupervised dimensionality-reduction technique that

finds the orthogonal directions (principal components) which captures the greatest

variance in the data. It projects high-dimensional inputs onto a lower-dimensional

space, aiming to retain as much of the original variability as possible. Recent work

demonstrates that Oja’s rule can replace biologically implausible engineering tricks

(e.g., batch normalization) in deep networks, enabling robust learning under con-

straints like online training and sub-optimal initialization [37]. Traditional Hebbian

Learning strengthens connections between simultaneously activated neurons, while

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Competitive Hebbian Learning introduces a selection mechanism in which neurons

compete for activation, allowing only the strongest connections to emerge [28]. This

competitive principle has proven valuable across various neural architectures; when

applied to train early convolutional layers, Competitive Hebbian Learning produced

features that rivaled or surpassed backpropagation in downstream classification ac-

curacy [24].

Position in this work: While Hebbian Learning is usually applied inside neu-

ral networks to directly adjust synaptic weights, we embed Hebbian updates in a

TPG agent such that the updates steer which programs (edges) are followed dur-

ing an episode, without those Hebbian-modified values themselves being parts of the

genome or evolutionary search (Fig. 3.1). This allows the agent to adapt its decision-

making within a lifetime, complementing the slower process of evolution with rapid,

experience-driven adjustments.

2.5 Homeostatic Plasticity and Synaptic Scaling

Homeostatic plasticity (HP) provides essential negative feedback to counteract the

unbounded growth induced by Hebbian Learning: when a neuron’s firing rate drifts

from its target, all its synapses undergo synaptic scaling, where synapses are multi-

plicatively scaled to restore activity to a stable setpoint [41]. Unlike correlation-based

Hebbian updates which are fast, local, and destabilizing, HP acts on a slower time-

scale and preserves the relative strengths of incoming weights while normalizing their

sum, attaining information retention and network stability [43].

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Position in this work: We implement synaptic scaling at the TPG’s root team,

the only team guaranteed to be visited at every decision. This makes homeostatic

plasticity a global gain control on routing: it preserves relative edge strengths while

normalizing their sum, preventing over-potentiated edges from monopolizing traver-

sal. Because each individual is a TPG rooted at a single team, stabilizing bids at the

root regularizes the structure that mutation and crossover operate on (Sec. 3.1.2).

2.6 Temporal Credit Assignment in Evolutionary

Computation

A core difficulty in sequential tasks is temporal credit assignment : fitness aggregates

many-step outcomes while genomes encode local structures whose effects are delayed

and irregular. With sparse or deceptive rewards, purely episodic signals are not

robust and can induce short-horizon overfitting.

Two broad responses recur in the literature. (i) Reshape evaluation to expose in-

termediate structure—potential-based shaping, curricula, or sub-goal decompositions—

acknowledging bias and optimality tradeoffs, and the need for expert domain knowl-

edge [2]. (ii) Combine evolution with within-episode adaptation, where evolution

searches structure/hyperparameters and short-lag credit comes from reinforcement-

learning updates during evaluation [8]. In such hybrids, one-step temporal-difference

learning, TD(0), often supplies low-variance credit signals; optional eligibility traces

bias updates toward recent selections without constructing multi-step targets [40, 21].

We next review TD learning as the canonical short-horizon credit mechanism

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

used in these hybrids (Sec. 2.6.1).

2.6.1 Temporal-Difference Learning

A central challenge in reinforcement learning is learning the value of states from

experience. Temporal-Difference (TD) learning provides an elegant solution by com-

bining the bootstrapping of dynamic programming with the sampling-based approach

of Monte Carlo methods [40]. Instead of waiting for a final outcome, a TD agent

updates its value estimate V(st) using the currently observed reward rt+1 and its own

estimate of the next state’s value, V(st+1). This process is driven by the one-step

TD error (TD(0)), δt, which measures the discrepancy in a single-step prediction:

δt = rt+1 + γ V (st+1) − V (st), (2.6.1)

where γ ∈ [0, 1] is the discount factor controlling the effective planning horizon (larger

γ places more weight on distant rewards, smaller γ on near-term rewards).

Eligibility Traces

Eligibility traces provide a backward-view mechanism that assigns decaying credit

to recent features or parameters. In TD(λ), the forward view mixes n-step returns;

the equivalent online backward view maintains traces:

et ← γλ et−1 +∇θVθ(st), (2.6.2)

∆θ ∝ α δt et. (2.6.3)

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

where the eligibility trace is given with et, and carries decaying credit; γ is the

same discount factor weighting future outcomes in Equation 2.6.1; λ, the trace-decay

parameter controlling the backward credit span; θ are the parameters being updated;

α is the learning rate.

Equation 2.6.2 is used to update the traces and Equation 2.6.3 is to update the

parameters.

Eligibility-like mechanisms also underlie three-factor plasticity rules in computa-

tional neuroscience, where a Hebbian term is gated by a delayed neuromodulatory

signal; these provide a biological lens on TD-style credit assignment at synapses [44].

TD in evolutionary systems. Early Learning Classifier Systems (LCS) estab-

lished that evolutionary search over structures and TD updates over values can coex-

ist: evolution discovers rule structures while TD(0) updates their “strengths” [14, 25].

This EvoRL pattern where we establish structure by evolution and value by learning,

motivates our integration for TPGs.

Position in this work. We adopt a scalar running baseline at the agent level in

a TD-style, and maintain eligibility traces on program–program transitions to gate

Hebbian plasticity. The trace parameter λ and a decay rate γ are set per team

(evolved across generations), so a single agent may express different credit spans

and forgetting rates as it routes through different teams. This mitigates classical

TPG’s local credit-assignment limitation, enabling rapid within-structure adaptation

without genome changes. We analyze the roles of γ (discount) and λ (backward credit

span), and use MAP-Elites to explore the per-team (λ, decay) landscape across tasks

(Sec. 2.7).

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

2.7 Quality-Diversity

Quality-Diversity (QD) algorithms aim to produce a diverse set of solutions that

cover a defined feature space, while simultaneously maximizing performance across

this space. These algorithms assess solution performance using standard fitness eval-

uations and ensure diversity through an n-dimensional descriptor. In this study, we

utilize Map-Elites (ME) [29], a QD algorithm that maintains an archive of solutions

organized by their respective descriptors. The ME process begins with the initializa-

tion phase, where npop random individuals are generated, evaluated, and placed into

the archive based on their descriptors. The algorithm then iteratively progresses by

uniformly selecting nbatch individuals from the archive, applying variation operators

to produce new offspring, and evaluating these new solutions. Each newly gener-

ated solution is subsequently considered for insertion into the archive based on its

descriptor and fitness. If an archive cell corresponding to a solution’s descriptor is

identified and empty, the solution is directly inserted; if the cell already contains a

solution, a local fitness-based competition determines which individual occupies the

cell, with the superior individual retained.

Position in this work: In the work, we incorporate ME into the NeuroTPG

+ TD learning variant to track and analyze the dynamics of γ and λ in relation

to the problem domain. While ME did not lead to a performance improvement

and introduced additional variance across final fitness scores, the interpretability it

provides justifies its inclusion.

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 3

Methodology

This chapter is organized into two sections. The first examines how to incorporate

neuroplasticity into TPG agents (Sec 3.1); the second outlines how to add reward

signals to the rules (Sec 3.2). In both cases, what is inherited is the capacity to

learn—architectural biases and plasticity mechanisms—not the learned parameters.

3.1 Hierarchal Neuroplasticity in Agents

We enhance TPG with a hierarchal neuroplasticity scheme. By first stabilizing the

raw bids using shifted softmax [4], we can apply our learning rules. A homeostatic

synaptic-scaling rule nudges pointer weights toward normalized bids in [0,1] at the

root team, while competitive Hebbian (Oja) updates correlation weights inside each

child team visited (Fig. 3.1). This division reflects biological observations: global

activity is stabilized, whereas local synapses compete on short time-scales. The goal is

for NeuroTPG to achieve both long-term robustness and in-episode adaptation. The

19

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

T1 T2

P1 P2 P3 P4 P5 P6

T1 T2

P1 P2 P3 P4 P5 P6

Root-level Selection

∆𝑤! 	= η! y! −𝑤! (2)
 𝑤! ← 𝑤! + ∆𝑤!

∆𝑤!" = η!	(𝑥! ∗ 𝑦! 	− 𝑦"# ∗ 𝑤!") (3)
𝑤!" ← 𝑤!" + ∆𝑤!"

Bid: 0.2
η: 0.08
w: 0.3

Bid: 0.2
η: 0.17
w: 0.15

Bid: 0.6
η: 0.065
w: 0.4

Bid: 0.4
η: 0.08
w: 0.3

Bid: 0.1
η: 0.17
w: 0.15

Bid: 0.5
η: 0.065
w: 0.4

Bid: 0.4
η: 0.09
w: 0.3

Bid: 0.4
η: 0.03
w: 0.27

Bid: 0.2
η: 0.25
w: 0.12

𝒙𝒊 = previous bid
𝒚𝒊 = current bid
η𝒊 = current learning rate
w𝒊	= synaptic weight (or
𝑤"# 	for sub-level)

Sub-level Selection

Figure 3.1: Graph showing the transition from a root-level selection to a sub-level
selection of a program. Each program is initialized with a noise-based weight, which
is thereafter an evolvable attribute (Sec. Evolved Program Parameters). The ap-
propriate program-specific learning rule is then utilized where the highest-weight is
selected.

following subsections detail the two learning rules, the program hyper-parameters

which allow these learning rules to be more effective, and how they are embedded in

the TPG architecture.

3.1.1 Softmax Bid Normalization

Raw bid values produced by each program can vary significantly. Before any learning

rule is used, we pass the vector of bids of the current team, x through a shifted

soft-max:

yi =
exj−a∑n
i=1 e

xi−a
j = 1 : n. (1)

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

where n is the number of programs; a = maxk=1,...,n xk, i.e., the maximum bid value

among the n programs, yi is the scaled bid for program i. This maps bids to value

in [0, 1] while preserving relative magnitudes and avoiding overflow which can occur

due to the unbounded range of bid values.

3.1.2 Root-level Homeostatic Synaptic Scaling

In cortex, homeostatic synaptic scaling multiplicatively normalizes a neuron’s inputs

to stabilize firing rates [41]. Here, we apply an analogous mechanism to the root

team’s member program’s pointer weights. After each decision step, we update the

pointer weight wi of the program i with

∆wi = ηi(yi − wi) (2)

where yi ∈ [0, 1] is the program i’s normalized bid and ηi is its learning rate (discussed

in Sec. Evolved Program Parameters). Equation (2) is a commonly used delta rule [9]

that nudges every weight towards its average bid, all while preserving their relative

ordering. In practice this means the root’s traversal concentrates on the high-bidders,

while low-bidding paths are gradually de-emphasized, focusing the search on the best

candidates. Because the rule is only applied at the root, it guides the global decision-

making without interfering with the competitive specialization that occurs deeper in

the graph.

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

3.1.3 Competitive Local Learning inside Child Teams

The outgoing pointers to non-root teams form a fully connected, directed graph.

Each edge is dynamically weighted by Oja’s stabilized Hebbian update:

∆wij = ηi(xiyj − y2jwij) (3)

where xi is the mapped bid of the preceding program, yj is the bid of the candidate

program, and ηi is the post-synaptic learning rate carried by program i (an evolved

parameter discussed in Sec. Evolved Program Parameters). Oja’s negative normal-

ization term (−y2jwij) prevents runaway growth, ensuring that useful pathways are

amplified while the total input to each program remains bounded. Typically, Oja’s

rule leverages the PCA advantage by adaptively identifying directions of maximum

variance in multi-dimensional inputs, however, since we apply this learning rule to

scalar values, we lose this benefit, reducing its role primarily to a normalization

method [3].

To prevent the possibility of a positive-feedback lock-in where the same program

repeatedly wins, we add an upper bound of 5 on reinforcement (i.e., on the effective

strengthening of an edge). In vanilla TPG, selection ultimately penalizes overbidding

programs; the cap simply accelerates stabilization without changing that long-run

pressure.

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

3.1.4 Evolved Program Parameters

With the addition of the local learning rules, each program maintains two scalar pa-

rameters: the learning rate η and the initial noise ν. The purpose of these parameters

is to break the bid symmetry which is established and prevent the selection of the

same program every time. The initialization of the learning rate is a random value

taken from the log normal distribution between 0.00 and 0.25. The initialization

of the noise is the same, instead between 0.00 and 0.50. We use this distribution

due to its biological plausibility [35]. At the beginning of every new generation, we

mutate both values so there is always a log-normal self-adaptation. With probability

p, we draw a Gaussian perturbation δ ∼ N (0, σ), multiply the current value by eδ,

and clamp the result to the interval [0, 1]. Each register also maintains constants as

the starting values. These evolved constants are passed down through generations

and adjusted via mutation to initialize registers. Initially, they are assigned at ran-

dom, but evolution refines them over time alongside other mutation and crossover

operations in LGPs and TPGs. Following the method in [34], each constant can be

mutated by scaling it with a random value drawn uniformly from [0.5,2.0], with a

50% chance of mutation. Additionally, constants have a 10% chance of having their

sign flipped.

3.1.5 NeuroTPG Execution with Learning Rules

Algorithm 2 performs a single decision step in NeuroTPG. At each time-step, bids are

normalized, adjusted according to the team type, and the program with the highest

adjusted weight is executed. Weights are cleared at the end of each generation so

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Algorithm 2 NeuroTPG selection (single decision step). Raw bids are normalized
by a shifted softmax (Eq. (1)); these pi modulate plasticity: at the root, connections
are rescaled homeostatically (Eq. (2)); in sub-teams, an Oja-style update (Eq. (3))
uses the previous-edge regularized weight prev. The program with the largest post-
update weight wi is selected. Connection-specific weights reset at the end of each
generation.

1: procedure SelectProgram(bids, team, prev)

2: p← ShiftedSoftmax(bids) ▷
pi used to

modulate updates
3: for each program i in team do
4: wi ← CurrentWeight(i)
5: if team.is root then
6: wi ← HomeostaticScale(wi, pi)
7: else
8: wi ← OjaUpdate(wi, i, prev, pi)
9: end if
10: end for
11: return argmaxiwi

12: end procedure

that lifetime adaptations are not inherited.

This dual-scale plasticity lets NeuroTPG discover task-specific decompositions

rapidly (via Oja) while maintaining long-term stability and search diversity (root-level

homeostasis), yielding lower complexity through all agents and producing a stronger

solution (Sec. Results and Discussion). Here, long-term stability refers to the home-

ostatic scaling at the root team, which prevents any single program from dominating

the population and thereby avoids runaway growth or collapse of candidate solutions

over many generations. Search diversity refers to the preservation of alternative path-

ways that remain viable, keeping the evolutionary search open to novel adaptations.

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

3.2 Graph Path Refinement with Reward Signals

Learning in maze environments is dominated by the credit-assignment problem: the

agent must infer which decisions along a trajectory were responsible for the even-

tual outcome. NeuroTPG + TD tackles this challenge by embedding a lightweight

temporal-difference (TD) learner inside each agent and by augmenting the bidding

mechanism with eligibility-traced probabilities. This section details the TD compo-

nent and its integration with program selection.

3.2.1 Temporal-Difference Credit Assignment

We follow the ideas in Sutton and Barto [40] to propagate reward information across

time. Rather than training a separate parametric critic, we keep a scalar running

baseline V (per team) and use an online TD-style update. Approximating V (st+1)≈

V (st) from Equation 2.6.1 yields the practical update used in our code: Let vt ∈ R

denote the current value baseline (a scalar maintained online). After executing action

at in state st and receiving the current step reward rt, the one-step TD error is

computed with a state independent version and the baseline is updated with:

δt = rt − (1− γ)Vt, (3.2.1)

Vt+1 = Vt + α δt, (3.2.2)

where γ ∈ [0, 1] is the discount factor, α > 0 is the baseline learning rate (for all

experiments, α = 0.02).

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

3.2.2 Eligibility-Traced Bids

To propagate credit across a chain of calls, each program maintains a scalar bid-

eligibility trace ei. At every decision step, traces decay and the executed program

receives an additive boost proportional to the product of consecutive bids along the

call chain. Concretely, let prevbid be initialized to 1.0 at the root team and set to

the winning program’s (current) bid thereafter. If program i executes at time t with

(current) bid currbid, then

ei ← γ λ ei for all i, (3.2.3)

ei ← ei + prevbid · currbid for the executed program i, (3.2.4)

and we update the program preferences in the active team by

ui ← ui + wiδt ei, (3.2.5)

where the weight wi is the pointer weight of the program i changed through the

learning rules (Sec. 2.5) and η > 0 is the bid learning rate. After the update,

preferences are re-normalized into probabilities via the softmax and sampled for the

next decision. Traces are reset to zero after the completion of an episode.

The error δt is a one-step prediction error that supplies the signed learning sig-

nal. Eligibility traces et are not used to form a TD(λ) target, instead, they distribute

δt over recently co-active program to program transitions to gate Hebbian updates.

The multiplicative co-activity term prevbid·currbid emphasizes strongly expressed

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

choices, while the trace decay γλ controls how quickly influence from previous selec-

tions fades:

et(i→j) = γλ et−1(i→j) + pret(i)× postt(j)︸ ︷︷ ︸
bid co-activity

, (3.2.6)

where et(i→ j) is the eligibility trace for the transition from program i to j; pret(i)

is the normalized bid of the presynaptic program i at time t; and postt(j) is the

bid of the postsynaptic program j. This equation uses uses δt to modulate Hebbian

plasticity; for the gated update mechanism, we apply a target-tracking update:

∆wij ∝
(
postt(j)− wij

)
× δt et(i→j) (3.2.7)

where wij is the synaptic weight between programs i and j. The difference term

postt(j) − wij pulls the weight toward the current postsynaptic activation. This

gated mechanism has updates more dependent on the reward signal; we leave an

additive reward signal for future work.

Evolved parameters. Within a team, TD hyper-parameters are shared: the dis-

count γ and the bid-trace decay λ (Sec. 3.2.2). Because agents are graphs of teams

(via team pointers), a single agent may implicitly contain multiple (γ, λ) settings;

The team which contains the final action program executed has the agent use its pa-

rameters. In the Map-Elites variant, (γ, λ) serve as genotypic descriptors (Sec. 3.2.3),

encouraging diversity in credit-assignment dynamics. In the non–Map-Elites variant,

both are evolved directly, constrained to [0, 1]. Mutation follows the methodology

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

presented for program parameters (Sec. 3.1.4). Crossover is done by choosing either

parent’s parameter with equal probability.

3.2.3 Map-Elites

Building upon TD-learning hyperparameters and their critical roles, we leverage QD

algorithms to ensure a diverse set of solutions effectively spanning the feature space

defined by these parameters. The solutions’ structural characteristics, represented

by an n-dimensional descriptor, form the basis for maintaining this diversity in ME.

Specifically, each bin in ME corresponds to a unique combination of λ and γ, where

each parameter is discretized into 10 sequential intervals ranging between 0 and 1.

This discretization results in a total of 100 bins, each uniquely characterized by

distinct parameter combinations.

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 4

Environments

Modern reinforcement-learning studies typically evaluate algorithms on a suite of

environments rather than a single task. This thesis follows that convention but

focuses on two complementary benchmarks:

1. The continuous-control MuJoCo Ant locomotion task, whose high-dimensional

dynamics test scalability.

2. A custom Maze Navigation task with dense, step-wise shaping rewards that

evaluates how TD stabilizes and distributes temporal updates, with the dynamic

variant further testing rapid adaptation via hidden action remapping.

Together they expose both the symbolic search component of NeuroTPG and the

TD-style baseline to qualitatively different challenges.

29

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

4.1 MuJoCo-Ant

Figure 4.1 depicts the quadruped robot used in the standard MuJoCo Ant task intro-

duced by Schulman et al. [36]. The agent observes a 27-dimensional state vector and

applies torques in an 8-dimensional action space. Its high-dimensional, continuous

dynamics and requirement for coordinated limb motion make it a challenging bench-

mark for testing the capabilities of our neuroplasticity enhanced TPG (NeuroTPG).

The reward (R) at each time step is

R = healthy + forward − control cost (4)

where healthy is a constant bonus for maintaining an upright posture, forward is

proportional to forward displacement, and control cost penalizes large torques.

Figure 4.1: The MuJoCo Ant robot used as our benchmark environment.

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

4.1.1 Damaged Morphology Variant

In the Immediate-Break (IB) variant, one randomly chosen leg is disabled at the start

of each episode: its two actuator commands are clamped to zero for all timesteps.

This contrasts with the standard Ant (Baseline), where all four legs remain func-

tional. Both share identical state, action, and reward definitions, differing only in

the disability of a leg. By disabling a different leg in each episode, we introduce

hidden variability in the transition dynamics, effectively creating a dynamic environ-

ment [31], enabling a direct comparison of performance under a static morphology

(Baseline) versus a dynamic morphology that demands rapid policy adjustment (IB).

4.2 Maze Navigation

To assess TD learning under dense, stepwise feedback, we use a 2D maze in which

progress toward a fixed goal requires sustained sequences of moves. This setting em-

phasizes stabilizing and distributing frequent small updates over extended horizons,

rather than bridging sparse rewards.

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

(a) (b)

Figure 4.2: (a) Maze used in this work. The red rectangle indicates the region from
which start positions are sampled for each episode (trial); the red circle within the
region marks a particular sampled start; green circle marks the stationary goal. (b)
is the robot and its sensors. An agent has three distance-to-wall sensors (arrows)
and four sensors (gray wedges) used as a ”compass” towards the goal irrespective to
walls.

Figure 4.2 shows the 600 × 600 pixel maze used throughout, inspired by [13].

Unlike classic mazes that feature deep local minima, this layout is closer to a path

navigation task. Agent observations follow [26] (see Fig. 4.2b for sensor geometry).

The distance-to-wall sensors are normalized to a range of [0,1] where the maximum

distance is 100 pixels. The four ”compass” values are one-hotted where values are

either 0 or 1 if the goal is in the direction. The action space is discrete with unit-pixel

moves: up, down, left, and right. At each timestep t, the agent receives a shaping

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

reward proportional to its reduction in distance to the goal:

Rt =
dt−1 − dt
Dmax

, (4.2.1)

where dt is the agent–goal distance at time t and Dmax is a fixed normalizer (we use

the maze diagonal, Dmax =
√
W 2 + H2 for a W ×H maze). Upon reaching the goal

at time t, a one-time terminal bonus is awarded,

Goalt = 100 · Tmax − t

Tmax

, (4.2.2)

which scales by completion earliness; otherwise Goalt = 0.Because the shaping term

−(dt−dt−1)/Dmax is typically O(10−2), we multiply all rewards by 100 before passing

them to the TD-style reward baseline. This rescaling stabilizes TD errors without

changing optimal policies.

4.2.1 Dynamic Variant: Hidden Action Permutation

To probe rapid adaptation, we introduce a hidden non-stationarity. At the start of

each episode, we sample a switch time in the first 20 timesteps and a permutation over

the four actions. For the remaining timesteps, the environment applies the remapped

action while observations remain unchanged. Thus the transition dynamics shift mid-

episode without any explicit cue. NeuroTPG’s eligibility-traced bids (Sec. 3.2.2)

allow value information to propagate across this switch, enabling recovery without

explicit system identification.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 5

Experimental Setup

5.1 Architecture Setup

Table 5.1: Hyper-parameters used by all evolutionary seeds (unless speci-
fied in subsequent paragraph). Structural limits, mutation/crossover settings,
population-generation parameters, action-pointer mutation.

Parameter Value (p = probability)

Team max size ∞
Team mutation rate 0.6 (p)
Team crossover rate 0.5 (p)

Program max size ∞
Program mutation rate 0.175 (p)
Instruction mutation rate 0.1 (p)

Root teams kept per generation 1 000
Root teams generated per generation 500
Action-pointer mutation rate 0.125 (p)

Table 5.1 lists the values shared by all seeds in this study. By leaving both

34

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

team size and program size unconstrained (set to ∞), we allow maximal structural

flexibility, with consideration of the risk of unbounded bloat. In each generation,

1000 root teams are retained, of which 500 are preserved as elites from the previous

generation and the remaining 500 are generated. Parents are selected from this elite

set using tournament selection with size 3, and the 500 new root teams are generated

from them via crossover and/or mutation. These genetic operators are applied only

at the root team level and include independent events—addition and deletion, which

ensures balanced structural variation. The probability of an action pointer switching

to a team pointer is set to 0.125.

SF denotes the stateful variant and SL denotes the stateless variant. Both variants

were evaluated in single-task static and dynamic environments, comparing fitness

scores and agent complexity over 250 generations.

TD-learning and Map-Elites With the addition of TD-learning and Map-Elites,

there is an increase in hyper-parameters. Here we discuss the values changed/added

from Table 5.2. The root teams kept in the ME variant is set to 100 due to the total

bins in the archive we preserve being 100 (see Sec. 3.2.3).

Parameter Value (p = probability)

λ mutation rate 0.5 (p)
γ mutation rate 0.5 (p)

Root teams kept per generation (ME) 100
Root teams generated per generation (ME) 600

Table 5.2: Hyper-parameters used by TD-learning and MAP-Elites. (ME) indi-
cates parameter settings specific only to Map-Elites. Values are regarding muta-
tion/crossover settings and population-generation parameters.

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

5.2 Environmental Setup

Unlike most prior work, each episode is 500 steps (vs. the usual 1,000) per simula-

tion. This shorter duration focuses our testing on the initial behaviour following leg

damage. We maintain this as the baseline across all test cases to ensure consistent

measurement metrics. An episode here refers to one complete run of the Ant agent,

starting from its initial state and ending after the specified number of time-steps.

Therefore, the evaluation of each agent is over 40 independent episodes—preserving

only program weights between episodes—and the average results are reported.

For the maze we use a default value of 1000 time-steps per simulation with a total

of 20 independent episodes. These episodes would always have a random starting

position for the agent where orientation of the agent will always face west, towards the

origin of the map. Furthermore, all non-TD learning variants are run with stateful

programs, as credit assignment requires a dependence on memory (further explained

in Sec. 6.2.1). In contrast, TD-embedded agents use stateless programs to isolate

the contribution of the TD-style baseline to decision quality.

The memory register size (vector and matrix) of all variants are changed depend-

ing on the environment where the Mujoco-Ant tests are kept at 27 to match the

observation dimension and the Maze environment uses a size of 7.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 6

Results and Discussion

6.1 Neuroplasticity (Ant)

In this section, we compare the performance of NeuroTPG and TPG across static

and dynamic environments using both SF and SL variants. Performance is assessed

in terms of fitness and complexity, with additional analysis of variability across runs.

6.1.1 Performance

Both the SF and SL NeuroTPG variants produce higher-fitness agents at the end of

evolution and lower complexity—measured as mean effective instructions per step—

relative to vanilla TPG in both environments (Tab. 6.1). Convergence trends are

broadly similar (Fig. 6.1f,g). NeuroTPG’s within-generation plasticity, however,

makes outcomes more sensitive to initial conditions than vanilla TPG: fitness vari-

ance across seeds is higher, as reflected by larger standard deviations (Tab. 6.1). The

37

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Table 6.1: Best agent performance and median performance across seeds (± standard
deviations) on two MuJoCo Ant variants. Abbrev.: SF = stateful; SL = stateless.
Fitness (Fit) is the mean episodic return; Complexity (Comp) is the mean effective
instructions per step.

Variant
Ant Ant Immediate-Break

Best Agent:
Fit/Comp

Median Fitness Best Agent:
Fit/Comp

Median Fitness

TPG:SF 592.78 / 7198 531.546±12.05 532.94 / 2367 525.52±2.55
TPG:SL 583.66 / 5485 533.24±23.09 549.07 / 1304 522.29±10.05
NeuroTPG:SF 884.70 / 79 533.43±89.28 598.98 / 1264 526.45±11.76
NeuroTPG:SL 815.22 / 342 531.51±67.10 560.56 / 288 522.63±11.01

Bold: best agent produced in respective environment.

agents were run for an additional 60 post-evolution test episodes, which still showed

a wide spread in the box plots (Fig. 6.1a,b). Despite this variability, NeuroTPG

achieves substantially lower complexity than vanilla TPG (Fig. 6.1d,e), especially in

the SL variant.

Quantitatively, relative to vanilla TPG, NeuroTPG reduces complexity by

• Ant: SF (66.2%↓), SL (82.4%↓)

• Ant IB: SF (59.3%↓), SL (88.5%↓)

This indicates a more parameter-efficient search: reduced complexity without sacri-

ficing performance.

Statistical Significance To assess robustness, we launched 20 seeds at five team-

connection probabilities, 25%, 20%, 15%, 12.5% (the setting used elsewhere in this

paper (Tab. 5.1)), and 5%, for a total of 100 seeds. Per-seed final fitness did not

show a significant central-tendency advantage for NeuroTPG (Wilcoxon signed-rank

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

(a)

(d) (e) gens gens

Fi
tn

es
s

M
ea

n
Ef

fe
ct

iv
e

In
st

ru
ct

io
ns

 p
er

 S
te

p
Ant Ant IB

Ant

Ant IB: Mutation Rate Ablation

(c)

(b)
Ant Ant IB

(g)

Fi
tn

es
s

Fi
tn

es
s

gens

Ant IB
gens(f)

Fi
tn

es
s

Fi
tn

es
s

M
ea

n
Ef

fe
ct

iv
e

In
st

ru
ct

io
ns

 p
er

 S
te

p

Figure 6.1: Performance of TPG variants on the Ant tasks where Ant is the static
and Ant Immediate-Break (IB) is the dynamic variant. Abbrev.: SF = stateful; SL
= stateless. Solid lines denote the median, and shaded regions indicate the standard
deviation across 20 runs. (a) Ant test set: best agent per seed (60 episodes/seed).
(b) Ant IB test set: best agent per seed (same protocol). (c) Mutation-rate ablation
on the held-out test set. (d,e) Evolution-time complexity : mean effective instructions
per step across generations. (f,g) Evolution-time fitness : mean episodic return across
generations in each environment.

test). In contrast, a heavy-tail analysis using the per-config TPG q0.95 threshold

found consistent advantages: NeuroTPG produced 14/100 = 14.0% outlier seeds

[95% CI 0.085, 0.221] vs. TPG’s 5/100 = 5.0% [95% CI 0.022, 0.112]; McNemar’s

test [39] favored NeuroTPG (b = 10, c = 1), p = 0.00586. The magnitude of

above-threshold exceedance, combined across configs via Fisher’s method [11], was

significant (p = 0.0228). Hence, the chance of observing ≥ 1 outlier in a 20-seed

batch was 0.951 for NeuroTPG [95% CI 0.832, 0.993] vs. 0.642 for TPG [95% CI

0.353, 0.907]. We restrict inferential claims to the SF variant.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

6.1.2 Rule Ablation

Effect of rule placement

To isolate the contribution and examine the effects of each biological mechanism, we

retrain with different components in an ablation study on the Ant IB: SF variant:

Table 6.2: Learning-rule sequence for each TPG variant. Step 1 applies the rule at
the root team; Step 2 applies it within each sub-team. Abbrev.: H = Homeostasis
(Eq. 2); O = Oja (Eq. 3).

Variant Step 1 Step 2

TPG – Homeostasis H –
TPG – Oja – O
TPG – Global Homeostasis H H

Table 6.2 summarizes the variants. In Global Homeostasis, the homeostatic up-

date (Eq. 2) is applied at both the root and all sub-teams (replacing Oja), providing

a correlation-agnostic control. This isolates the specific contribution of Oja’s correla-

tion term by testing whether cross-program correlation is necessary for performance.

The rule-ablation results in Table 6.3 highlight distinct and complementary roles for

the two plasticity mechanisms. Removing Oja’s rule caused the largest performance

drop, underscoring its role in rapid, state-dependent adaptation within an episode.

Homeostasis alone retains some robustness but cannot prevent erratic routing from

transient high-bidders, while even simple local updates reduce complexity relative

to vanilla TPG (Tab. 6.3). These results suggest the two mechanisms are comple-

mentary, homeostasis stabilizes global routing, and Oja promotes local adaptability,

together achieving higher performance with more compact policies.

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Variant Best Agent:

Fitness / Complexity

TPG – Homeostasis Rule 533.20/1606

TPG – Oja’s Rule 586.76/1140

TPG – Global Homeostasis 541.92/289

NeuroTPG 598.98/1264

Table 6.3: Ablation study: removal of steps from the proposed pipeline. The best
agent’s fitness and its complexity are reported.

Impact of evolved parameters

In this study, we evolved two key program parameters—learning rate and initial noise

level—and then trained with different mutation probabilities p ∈ {20, 80, 100}% to

assess their impact (Fig. 6.1 c). Although both median fitness and policy complexity

remained largely unchanged across values of p, the maximum fitness achieved by

the top-performing agents increased consistently with higher mutation rates. This

finding suggests that more aggressive variation of these parameters during evolution

produces stronger agents.

6.1.3 Transfer test

The decision not to reset the synaptic weights aligns with biological plausibility in

that organisms continually learn with experience from many evaluations. However,

this raises the question of whether it enables genuine learning from experience and,

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

R
ew

ar
d

pe
r S

te
p

Global Steps

Y
 p

os
iti

on
 (m

)

X position (m)(a) (b)
Figure 6.2: Replay of the best NeuroTPG agent trained in the standard Ant environ-
ment, now tested on the Dynamic variant. Performance with active neuroplasticity
weights is compared to a frozen version in which raw bids determine program selec-
tion. (a) Reward per step for the first five episodes (500 steps each). A negative
reward means the Ant moves backwards. (b) XY trajectory of the ant at every step;
each line represents one episode. NeuroTPG agents with plastic weights consistently
traverse farther distances, highlighting the benefit of adaptive program selection.

if so, how that experience can be better utilized for dynamic environments. To test

this, we take the best NeuroTPG SF agent trained on the static Ant environment

and run it on the dynamic variant for 40 episodes. In this experiment, recovery

from a broken leg is compared with a “frozen” NeuroTPG agent which relies on

its bids rather than its weights. As shown in Figure 6.2a, the plastic NeuroTPG

achieves higher rewards on average than the frozen agent but also exhibits substantial

variance, including episodes with negative rewards—indicating that the Ant moves

backwards. This suggests that, while plasticity improves adaptability, it does not

yet guarantee stability or consistent forward progress. Figure 6.2b further shows

that the plastic agents generally travel farther, but sometimes follow inefficient or

reversed paths. These behaviours motivate potential improvements such as reward

modulation or enhanced local credit assignment to reduce undesirable movement and

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

stabilize performance without sacrificing adaptability.

6.2 TD-style Reward Modulation (Maze)

We compare TPG, NeuroTPG, and NeuroTPG + TD with and without MAP-

Elites (ME) on a Maze environment under a static and dynamic variant. We

report fitness (mean episodic return) and complexity (average effective instructions

per step).

6.2.1 Stateless vs. Stateful Programs

To evaluate the necessity of memory in TPG and NeuroTPG (without TD-learning),

we first tested agents with stateless programs. Across all seeds, both variants con-

verged to local minima, achieving median scores of 14.08 ± 0.01 in the static maze

and 8.70± 0.01 in the dynamic maze. These results highlight that memory is essen-

tial for solving this maze setup. For all subsequent experiments, we therefore utilize

stateful programs for both TPG and NeuroTPG to ensure agents retain the mem-

ory necessary for effective decision-making in the maze tasks. In contrast, all TD

variants use stateless programs to effectively credit programs without having their

internal structure accumulating.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

6.2.2 Performance

Table 6.4: Best agent performance and population means on maze variants. Fitness
(Fit) is the mean episodic return; Complexity (Comp) is the average effective in-
structions per decision.

Variant
Static Maze Dynamic Maze

Best Agent:

Fit/Comp

Median Fit Best Agent:

Fit/Comp

Median Fit

TPG 91.17/285 33.75±20.88 19.87/48 17.68±1.37

NeuroTPG 79.10/180 29.28±17.48 20.44/5 18.12±1.46

NeuroTPG+TD 98.99/1 96.80±1.28 42.68/2 31.90±3.64

NeuroTPG+TD+ME 95.05/0 92.47±7.94 38.51/3 30.42±3.38

Bold: best agent produced in respective environment.

Table 6.5: Best agent and median test-set pass rates (goal reached). Values are all
divided by the total number of episodes, 100.

Variant
Static Maze (N=100) Dynamic Maze (N=100)

Best Agent Median Best Agent Median

TPG 0.87 0.00 0.00 0.00

NeuroTPG 0.98 0.00 0.00 0.00

NeuroTPG+TD 0.86 0.77 0.02 0.01

NeuroTPG+TD+ME 0.83 0.79 0.04 0.01

Bold: best agent per environment. Underline: highest median per environment.

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Dynamic Maze Task

(f) gens

Fi
tn

es
s

(d)

M
ea

n
Ef

fe
ct

iv
e

In
st

ru
ct

io
ns

 p
er

 S
te

p

Fi
tn

es
s

(e)

Maze Task

(a) (c)

Fi
tn

es
s

M
ea

n
Ef

fe
ct

iv
e

In
st

ru
ct

io
ns

 p
er

 S
te

p

Fi
tn

es
s

(b) gens

Figure 6.3: Row 1: static, Row 2: dynamic Maze. Solid lines denote the median,
and shaded regions indicate the standard deviation across 20 runs.(a,d) fitness across
generations for each variant; (b,e) Variance in final performance of NeuroTPG+TD
variants shown as box plots; (c,f) Box plots of effective instructions per step (com-
plexity) for each variant in the final generation.

Across seeds, both TD-enabled variants outperform their non-TD counterparts on

fitness in both static and dynamic mazes (Tab. 6.4). The ME variant shows larger

across-seed variance—as expected from quality-diversity search—while its medians

are comparable to NeuroTPG+TD without ME. Complexity decreases monotoni-

cally from TPG → NeuroTPG → NeuroTPG+TD variants (Fig. 6.3c) in the static

maze environment. However, due to all variants’ low performance in the dynamic

environment, the complexity across all variants remain relatively similar.

In Table 6.5, the test case results (out of 100) show that the best agents across

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

all variants can consistently solve the static maze, with the NeuroTPG variant per-

forming the strongest. While other agents achieve higher final fitness by completing

successful runs more quickly (Tab. 6.4), NeuroTPG yields the most reliable success

overall. The median results highlight that non-TD variants achieve no successful

runs, underscoring the necessity of outliers for performance. For the dynamic maze,

both the best-agent and median success rates remain low across all variants.

Final-position plots indicate that failures under TD variants are sparse and not

spatially clustered but are still in the trajectory to the goal (Fig. ??c,d,g,h). In

contrast, non-TD variants in the static maze achieve higher pass rates (Fig. ??a,b)

though inspection of their policies in the next paragraph reveals overfitting. Moti-

vated by this visual pattern, we further investigate the effect of longer test horizons

in Section 6.2.2.

From the final positions of TPG and NeuroTPG (Fig. ??a,b), it can observed

that there is an extreme cluster of the best agent’s final position. These two best-

performing agents are outliers which learn to exploit a specific sequence whereas

TD-embedded agents are reactive. In the static maze, NeuroTPG (without TD)

often exploits a high-return but brittle route (Fig. 6.4a); TD-enabled agents take

shorter, more direct trajectories (Fig. 6.4b), yielding higher pass rates at similar or

lower complexity.

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

NeuroTPG NeuroTPG + TD

(a) (b)

Figure 6.4: Trajectory of three distinct starting positioning successful episodes (tri-
als). a) NeuroTPG and b) NeuroTPG + TD.

Learning curves do not appear to have plateaued by the end of the budget (Fig.

6.3a,d), additional generations may yield further gains.

Evaluation–horizon sensitivity To test whether TD-learning helps agents ex-

ploit longer time budgets at test time, we increased the max episode length from

1,000 to 5,000 steps (training unchanged). We report median [success rate/return]

over all 20 seeds (Tab. 6.6).

Across both tasks, TD-enabled variants exhibit larger gains with longer horizons

than non-TD baselines (i.e., a positive horizon–method interaction), indicating that

TD-learning can improve the agent’s ability to capitalize on extended time budgets

rather than merely needing more generations.

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

Method 1k steps 5k steps ∆ (5k−1k)

TPG 0/50 0/50 0
NeuroTPG 0/50 0/50 +0
NeuroTPG + TD 0/50 6/50 +6
NeuroTPG + TD + ME 1/50 7/50 +6

Table 6.6: Evaluation–horizon sensitivity with max episode (trial) length increased
at test time from 1,000 to 5,000 steps (training unchanged). Values reported are
median pass rates across all seeds on 50 episodes.

Maze Best Solutions

TPG

(a)

NeuroTPG + TD + ME

(b)

NeuroTPG + TD

NeuroTPG

(c) (d)
TPG

Figure 6.5: Evolved graphs for best fitness agents in all variants for static Maze
environment. Blue nodes: teams (labels show ID, λ and γ (these two parameters are
ignored and not evolved in TPG and NeuroTPG variants)); Edges: programs (labels
show ID, learning rate (LR)) where the LR is not applicable to the TPG variant.

Complexity. As shown in Fig. 6.5 and Tab. 6.4, NeuroTPG reduces structural

complexity relative to TPG, and NeuroTPG+TD is more compact still. The best

agents from each NeuroTPG+TD variant use four programs that map one-to-one to

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

the discrete actions (Fig. 6.6). The hierarchical reduction in structural complexity,

progressing from d to a, highlights the effectiveness of incorporating both TD and

the learning rules, each contributing to complexity reduction through their respective

dynamics.

Figure 6.6: The best NeuroTPG + TD agent of the static environment. The pro-
grams map to their specific individual action.

The low mean effective instructions per step in these agents (see Tab. 6.4) is also

due to evolution learning to rely on the evolved constants rather than operations in

the program 3.1.4. Since evolutionary changes adddress how much a program gets

updated if it was used, the starting time steps make every program selectable, which

discourages permanently unused programs that can persist in vanilla TPG without

immediate performance penalties.

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

6.2.3 Archive Structure

Maze Task Map-Elites Heat Map

Dynamic Maze Task Map-Elites Heat Map

La
m

bd
a

La
m

bd
a

Decay Decay Decay

Fi
tn
es
s

Fi
tn
es
s

Figure 6.7: ME archive heatmaps (top: static; bottom: dynamic maze). for the
top three seeds per environment. Vertical axis: λ, horizontal axis: γ; cell intensity:
fitness.

The MAP-Elites archive in Fig. 6.7 concentrates elites in bins with γ ≥ 0.9 and

λ < 0.1. This indicates that, for this maze task, rapid local adaptation is fa-

vored over long-range temporal assignment. The observation aligns with TD(0):

the TD error δt reflects near-term outcomes, and short-lived traces reduce interfer-

ence from weakly correlated distant events in a dense-reward setting. Because γ also

acts as the discount for the critic (here, a running baseline), this reflects a coupled

timescale, moderate critic horizon (e.g., ∼10 steps when γ ≈ 0.9) paired with near-

instantaneous within-episode plasticity. Finally, since TPG permits team-to-team

calls, these bins report the root team’s parameters and thus are most interpretable as

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

the initial decision dynamics, not a full accounting of downstream teams (although

final structures of TD-variants have only one team). We hypothesize that, across

tasks with differing temporal credit demands, MAP-Elites will partition elites along

these bins, making the archive a useful lens on task-specific timescales; exploring this

in multi-task settings is left for future work.

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 7

Conclusion

This thesis has advanced Tangled Program Graphs (TPGs) along two complementary

dimensions to address the challenges of lifelong adaptation and delayed reward in

non-stationary environments.

First, we introduced a biologically inspired two-level plasticity pipeline (Objec-

tive 1). At the root team, a homeostatic weight-scaling mechanism gradually biases

selection toward consistently high-bidding programs. At the sub-team level, we ap-

plied normalized Hebbian updates (Oja’s rule) to reinforce correlations between acti-

vating root programs and their successors. Across both static and dynamic MuJoCo-

Ant tasks, the best NeuroTPG agent with two-level plasticity achieved higher final

episodic returns than vanilla TPG while using 55–88 % fewer effective instruc-

tions per action, demonstrating more compact and efficient evolutionary searches.

Second, we addressed temporal credit assignment (Objective 2) by integrating a

lightweight TD(0)-style baseline with eligibility traces into NeuroTPG and coupling it

52

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

with a MAP-Elites archive over the TD hyperparameter space. In the dense-feedback

maze, TD primarily stabilizes and distributes frequent stepwise rewards across recent

decisions, improving within-episode adaptation in both static and dynamic variants.

MAP-Elites provides an interpretable landscape of (γ, λ) niches, revealing which

temporal-difference settings yield the best behavioral adaptation.

Together, these contributions show that embedding biologically plausible plastic-

ity and reinforcement-learning mechanisms directly within the evolutionary search

framework substantially improves adaptability, performance, and efficiency of TPG-

based agents.

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Bibliography

[1] L. Aguilar, S. Bennati, and D. Helbing. How learning can change the course

of evolution. PLOS ONE, 14:e0219502, 09 2019. doi: 10.1371/journal.pone.

0219502.

[2] H. Bai, R. Cheng, and Y. Jin. Evolutionary reinforcement learning: A sur-

vey. Intelligent Computing, 2:0025, 2023. doi: 10.34133/icomputing.0025. URL

https://spj.science.org/doi/abs/10.34133/icomputing.0025.

[3] P. Baldi and P. J. Sadowski. The ebb and flow of deep learning: a theory of

local learning. CoRR, abs/1506.06472, 2015. URL http://arxiv.org/abs/

1506.06472.

[4] P. Blanchard, D. J. Higham, and N. J. Higham. Accurate computation of the log-

sum-exp and softmax functions, 2019. URL https://arxiv.org/abs/1909.

03469.

[5] M. F. Brameier and W. Banzhaf. Linear Genetic Programming. Springer Pub-

lishing Company, Incorporated, 1st edition, 2010. ISBN 1441940480.

54

https://spj.science.org/doi/abs/10.34133/icomputing.0025
http://arxiv.org/abs/1506.06472
http://arxiv.org/abs/1506.06472
https://arxiv.org/abs/1909.03469
https://arxiv.org/abs/1909.03469

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba. OpenAI Gym. arXiv, 1606.01540, 2016.

[7] B. Burlacu, S. M. Winkler, and M. Affenzeller. Revisiting Gradient-Based Lo-

cal Search in Symbolic Regression, pages 259–273. Springer Nature Singapore,

Singapore, 2025. ISBN 978-981-96-0077-9. doi: 10.1007/978-981-96-0077-9 13.

URL https://doi.org/10.1007/978-981-96-0077-9_13.

[8] J. D. Co-Reyes, Y. Miao, D. Peng, E. Real, S. Levine, Q. V. Le, H. Lee, and

A. Faust. Evolving reinforcement learning algorithms, 2022. URL https://

arxiv.org/abs/2101.03958.

[9] M. Dawson. Connectionism and classical conditioning. Comparative Cognition

and Behavior Reviews, 3 (Monograph):1–115, 01 2008. doi: 10.3819/ccbr.2008.

30008.

[10] T. Djavaherpour, A. Naqvi, E. Zhuang, and S. Kelly. Evolving Many-Model

Agents with Vector and Matrix Operations in Tangled Program Graphs. In

Genetic Programming Theory and Practice XXI. Springer (AD), 2024.

[11] R. A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd,

Edinburgh, 1925.

[12] D. O. Hebb. (1949) donald o. hebb, the organization of behavior, new york:

Wiley, introduction and chapter 4, ”the first stage of perception: growth of the

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://doi.org/10.1007/978-981-96-0077-9_13
https://arxiv.org/abs/2101.03958
https://arxiv.org/abs/2101.03958

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

assembly,” pp. xi- xix, 60-78. In Neurocomputing, Volume 1: Foundations of Re-

search. The MIT Press, 04 1988. ISBN 9780262267137. doi: 10.7551/mitpress/

4943.003.0006. URL https://doi.org/10.7551/mitpress/4943.003.0006.

[13] D. Herel, D. Zogatova, M. Kripner, and T. Mikolov. Emergence of novelty in

evolutionary algorithms. In The 2022 Conference on Artificial Life, ALIFE

2022. MIT Press, 2022. doi: 10.1162/isal a 00501. URL http://dx.doi.org/

10.1162/isal_a_00501.

[14] J. H. Holland. Genetic Algorithms and Adaptation, pages 317–333. Springer US,

Boston, MA, 1984. ISBN 978-1-4684-8941-5. doi: 10.1007/978-1-4684-8941-5

21. URL https://doi.org/10.1007/978-1-4684-8941-5_21.

[15] T. Keck, T. Toyoizumi, L. Chen, B. Doiron, D. Feldman, K. Fox, W. Gerstner,

P. Haydon, M. Hübener, H.-K. Lee, J. Lisman, T. Rose, F. Sengpiel, D. Stellwa-

gen, M. Stryker, G. Turrigiano, and M. van Rossum. Integrating hebbian and

homeostatic plasticity: The current state of the field and future research direc-

tions. Philosophical Transactions of the Royal Society B: Biological Sciences,

372:20160158, 03 2017. doi: 10.1098/rstb.2016.0158.

[16] S. Kelly and M. I. Heywood. Emergent tangled graph representations for

atari game playing agents. 2017. URL https://www.paperdigest.org/paper/

?paper_id=doi.org_10.1007_978-3-319-55696-3_5.

[17] S. Kelly and M. I. Heywood. Emergent solutions to high-dimensional multitask

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://doi.org/10.7551/mitpress/4943.003.0006
http://dx.doi.org/10.1162/isal_a_00501
http://dx.doi.org/10.1162/isal_a_00501
https://doi.org/10.1007/978-1-4684-8941-5_21
https://www.paperdigest.org/paper/?paper_id=doi.org_10.1007_978-3-319-55696-3_5
https://www.paperdigest.org/paper/?paper_id=doi.org_10.1007_978-3-319-55696-3_5

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

reinforcement learning. Evol. Comput., 26(3):347–380, Sept. 2018. ISSN 1063-

6560. doi: 10.1162/evco a 00232. URL https://doi.org/10.1162/evco_a_

00232.

[18] S. Kelly, R. J. Smith, and M. I. Heywood. Emergent policy discovery for

visual reinforcement learning through tangled program graphs: A tutorial.

In Genetic Programming Theory and Practice, 2018. URL https://api.

semanticscholar.org/CorpusID:59413962.

[19] S. Kelly, R. J. Smith, M. I. Heywood, and W. Banzhaf. Emergent tan-

gled program graphs in partially observable recursive forecasting and vizdoom

navigation tasks. ACM Trans. Evol. Learn. Optim., 1(3), Aug. 2021. doi:

10.1145/3468857. URL https://doi.org/10.1145/3468857.

[20] S. Kelly, T. Voegerl, W. Banzhaf, and C. Gondro. Evolving hierarchical memory-

prediction machines in multi-task reinforcement learning, 2021. URL https:

//arxiv.org/abs/2106.12659.

[21] H. Kimura and S. Kobayashi. An analysis of actor/critic algorithms using eligi-

bility traces reinforcement learning with imperfect alue functions.

[22] J. R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-

11170-5.

[23] J. R. Koza. Genetic programming as a means for programming computers by

natural selection. Statistics and computing, 4(2):87–112, 1994.

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://doi.org/10.1162/evco_a_00232
https://doi.org/10.1162/evco_a_00232
https://api.semanticscholar.org/CorpusID:59413962
https://api.semanticscholar.org/CorpusID:59413962
https://doi.org/10.1145/3468857
https://arxiv.org/abs/2106.12659
https://arxiv.org/abs/2106.12659

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

[24] G. Lagani, G. Amato, F. Falchi, and C. Gennaro. Training convolutional neural

networks with hebbian principal component analysis, 2020. URL https://

arxiv.org/abs/2012.12229.

[25] P. L. Lanzi. Classifier Systems, pages 172–178. Springer US, Boston, MA, 2010.

ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 115. URL https:

//doi.org/10.1007/978-0-387-30164-8_115.

[26] J. Li, J. Storie, and J. Clune. Encouraging creative thinking in robots im-

proves their ability to solve challenging problems. In Proceedings of the 2014

Annual Conference on Genetic and Evolutionary Computation, GECCO ’14,

page 193–200, New York, NY, USA, 2014. Association for Computing Ma-

chinery. ISBN 9781450326629. doi: 10.1145/2576768.2598222. URL https:

//doi.org/10.1145/2576768.2598222.

[27] S. Luke and L. Panait. A comparison of bloat control methods for genetic

programming. Evolutionary computation, 14:309–44, 02 2006. doi: 10.1162/

evco.2006.14.3.309.

[28] T. Martinetz. Competitive hebbian learning rule forms perfectly topology pre-

serving maps. 1993. URL https://api.semanticscholar.org/CorpusID:

123120074.

[29] J. Mouret and J. Clune. Illuminating search spaces by mapping elites. CoRR,

abs/1504.04909, 2015. URL http://arxiv.org/abs/1504.04909.

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://arxiv.org/abs/2012.12229
https://arxiv.org/abs/2012.12229
https://doi.org/10.1007/978-0-387-30164-8_115
https://doi.org/10.1007/978-0-387-30164-8_115
https://doi.org/10.1145/2576768.2598222
https://doi.org/10.1145/2576768.2598222
https://api.semanticscholar.org/CorpusID:123120074
https://api.semanticscholar.org/CorpusID:123120074
http://arxiv.org/abs/1504.04909

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

[30] E. Oja. Simplified neuron model as a principal component analyzer. Journal of

mathematical biology, 15(3):267–273, 1982.

[31] S. Padakandla. A survey of reinforcement learning algorithms for dynami-

cally varying environments. ACM Computing Surveys, 54(6):1–25, July 2021.

ISSN 1557-7341. doi: 10.1145/3459991. URL http://dx.doi.org/10.1145/

3459991.

[32] R. Poli and N. F. McPhee. Parsimony pressure made easy. In Proceedings of the

10th Annual Conference on Genetic and Evolutionary Computation, GECCO

’08, page 1267–1274, New York, NY, USA, 2008. Association for Computing

Machinery. ISBN 9781605581309. doi: 10.1145/1389095.1389340. URL https:

//doi.org/10.1145/1389095.1389340.

[33] J. Pugh, L. Soros, and K. Stanley. Quality diversity: A new frontier for

evolutionary computation. Frontiers in Robotics and AI, 3, 07 2016. doi:

10.3389/frobt.2016.00040.

[34] E. Real, C. Liang, D. R. So, and Q. V. Le. Automl-zero: evolving machine learn-

ing algorithms from scratch. In Proceedings of the 37th International Conference

on Machine Learning, ICML’20. JMLR.org, 2020.

[35] G. Scheler. Logarithmic distributions prove that intrinsic learning is hebbian.

F1000Research, 6:1222, 10 2017. doi: 10.12688/f1000research.12130.2.

[36] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional

59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
http://dx.doi.org/10.1145/3459991
http://dx.doi.org/10.1145/3459991
https://doi.org/10.1145/1389095.1389340
https://doi.org/10.1145/1389095.1389340

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

continuous control using generalized advantage estimation, 2018. URL https:

//arxiv.org/abs/1506.02438.

[37] N. Shervani-Tabar and R. Rosenbaum. Meta-learning biologically plausible plas-

ticity rules with random feedback pathways, 2023. URL https://arxiv.org/

abs/2210.16414.

[38] N. Shervani-Tabar, J. Eshraghian, A. Lindsey, and T. Lillicrap. Oja’s plas-

ticity rule overcomes challenges of training neural networks under biological

constraints. In Advances in Neural Information Processing Systems (NeurIPS),

2024. URL https://arxiv.org/abs/2406.06669.

[39] M. Smith and G. Ruxton. Effective use of the mcnemar test. Behavioral Ecology

and Sociobiology, 74:133, 10 2020. doi: 10.1007/s00265-020-02916-y.

[40] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A

Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

[41] G. G. Turrigiano. The self-tuning neuron: Synaptic scaling of excitatory

synapses. Cell, 135(3):422–435, 2008. ISSN 0092-8674.

[42] L. D. Whitley, V. S. Gordon, and K. E. Mathias. Lamarckian evolution, the

baldwin effect and function optimization. In Proceedings of the International

Conference on Evolutionary Computation. The Third Conference on Parallel

Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN III,

page 6–15, Berlin, Heidelberg, 1994. Springer-Verlag. ISBN 3540584846.

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2210.16414
https://arxiv.org/abs/2210.16414
https://arxiv.org/abs/2406.06669

M.Sc. Thesis – Ali Naqvi; McMaster University – Computing and Software

[43] F. Zenke, W. Gerstner, and S. Ganguli. The temporal paradox of heb-

bian learning and homeostatic plasticity. Current Opinion in Neurobiology,

43:166–176, 2017. ISSN 0959-4388. doi: https://doi.org/10.1016/j.conb.

2017.03.015. URL https://www.sciencedirect.com/science/article/pii/

S0959438817300910. Neurobiology of Learning and Plasticity.

[44] Lukasz Kuśmierz, T. Isomura, and T. Toyoizumi. Learning with three fac-

tors: modulating hebbian plasticity with errors. Current Opinion in Neurobi-

ology, 46:170–177, 2017. ISSN 0959-4388. doi: https://doi.org/10.1016/j.conb.

2017.08.020. URL https://www.sciencedirect.com/science/article/pii/

S0959438817300612. Computational Neuroscience.

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://www.sciencedirect.com/science/article/pii/S0959438817300910
https://www.sciencedirect.com/science/article/pii/S0959438817300910
https://www.sciencedirect.com/science/article/pii/S0959438817300612
https://www.sciencedirect.com/science/article/pii/S0959438817300612

	Abstract
	Acknowledgements
	Introduction
	Statement of Problem
	Research Objectives
	Contributions

	Literature Review
	Evolutionary Computation
	Tangled Program Graphs
	Lifetime Learning in Evolutionary Computation
	Hebbian Plasticity
	Homeostatic Plasticity and Synaptic Scaling
	Temporal Credit Assignment in Evolutionary Computation
	Quality-Diversity

	Methodology
	Hierarchal Neuroplasticity in Agents
	Graph Path Refinement with Reward Signals

	Environments
	MuJoCo-Ant
	Maze Navigation

	Experimental Setup
	Architecture Setup
	Environmental Setup

	Results and Discussion
	Neuroplasticity (Ant)
	TD-style Reward Modulation (Maze)

	Conclusion

