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ABSTRACT

This study involves a numerical investigation of turbulent, mixed convection flow 

within a rectangular enclosure. Previous numerical and experimental research conducted 

at McMaster University, Hamilton (Canada) found that the influence of buoyancy was 

generally overpredicted when the standard k-e low-Reynolds number turbulence model 

was employed. The main purpose of this study is to determine the effect of representing 

the turbulent heat flux components using the more physically realistic Algebraic Heat Flux 

Model (AFM). The AFM model is shown to have a significant effect on the turbulence 

parameters involved leading to even higher rates of heat transfer arid buoyant influence 

than the standard eddy Viscosity representation for all test cases.

As a secondary study, the sensitivity of the predicted results to the choice of inlet 

turbulence conditions is considered. The results show that the choice of inlet conditions 

can have a significant effect on the predicted flow field and therefore must be accurately 

selected when dealing with this type of flow.
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NOMENCLATURE

a Inlet ratio (DZH) of the cavity
C Empirical turbulence model constant (see Table 2.1)
D Inlet height (see Figure 2.1)
f Low Reynolds number model damping function (see Equation 3.34)
g acceleration due to gravity
G Generation of turbulence
Gr Grashof number
H Cavity height (see Figure 2.1)
k Dimensional turbulence kinetic energy
1 Mixing length
L Turbulence length scale
p Dimensional fluid pressure
P Dimensionless fluid pressure
Pr Prandtl number
R Time scale ratio (see Equation 2.27)
Re Reynolds number
Ri Richardson number (see Equation 2.30) 
S Source term
t Fluctuating temperature
T Dimensional fluid temperature
u Velocity component in the x - direction 
U Dimensionless u - velocity ‘
v Velocity component in the y - direction
V Dimensionless v - velocity
W Cavity width (see Figure 2.1)
x Dimensional horizontal component
X Dimensionless horizontal component
y Dimensional vertical component
Y Dimensionless vertical component

Greek Variables

a Thermal diffusivity of the fluid
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NOMENCLATURE (continued)

p Coefficient of thermal expansion of the fluid
T Eddy difiusivity of heat (see Equation 2.8)
6 Kronecker delta
£ Dimensional rate of dissipation of turbulent kinetic energy 
q ATM constant
6 Dimensionless temperature
v Kinematic viscosity
5 AFM constant
p Fluid density
o Turbulent Prandtl-Schmidt number (see Table 2.1)
r Time, Shear stress (see Equation 2.5)
4> General flow variable (see Equation 2.1)
T Turbulent intensity (see Equation 3.37)

Subscripts

AFM Algebraic Flux Model
C Constant part
in Inlet boundary condition
jet Inlet jet
1 Laminar
out Outlet boundary condition
P Variable part
pen Penetration location
R Reference value
sep Separation location
SGD Simple Gradient Diffusion
t Turbulent
w Wall boundary condition

Superscripts

Average quantity 
' Fluctuating quantity
* Dimensionless quantity
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CHAPTER ONE

INTRODUCTION

1.1 Background

The development of computational approaches to fluid mechanics and heat and 

mass transfer has had an immeasurable effect on these fields in recent years. Numerical 

solutions can now be generated for complicated problems once considered impossible to 

solve. As a result, the need for elaborate experimentation has been reduced or entirely 

removed in many instances, translating to savings of time and money.

One of the most difficult problems in computational fluid dynamics (CFD) has 

been and continues to be the incorporation of turbulent effects within a numerical 

formulation. Many turbulence models have been proposed, with varying degrees of 

success associated with each. The most popular turbulence models currently employ a 

two-equation k-£ model based on a simple eddy viscosity/diffusivity hypothesis. Such 

models have demonstrated an ability to predict the solution to a wide variety of fluid flow 

problems.

There are, however, certain types of flows which have not been well-predicted by 

this type of model. Among these are turbulent flows induced by thermal buoyancy. Such 

flows have many applications within the engineering field including space heating and

1
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cooling, nuclear reactor components, electronic equipment, and solar collectors. Despite 

the practical importance, many of these problems have not and cannot be successfully 

solved using the current industrial standard models.

The modelling of the turbulent heat flux components, which is considered by some 

to be at the root of the problem, has received attention in the recent CFD literature. While 

some success has been attained, it is clear that more work is required before a suitable 

model is developed.

1.2 Objective

The present study involves the numerical investigation of turbulent mixed 

convective flow within an enclosure. The main objective is to determine the effect on the 

predicted results when an algebraic turbulent heat flux model is incorporated into the 

governing equations. As a secondary study, the sensitivity of the predicted results to inlet 

turbulence conditions is also examined. While this topic does not normally receive a great 

deal of attention, it is believed that this may be an important factor when dealing with this 

type of flow.

The final results are compared with detailed velocity, temperature, and heat 

transfer data obtained previously at McMaster University, Hamilton (Canada).

13 Outline

The study is comprised of six chapters. The following chapter reviews previous 

related research in buoyancy-induced flows and turbulence modelling. Chapter Three
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details the mathematical formulation of the problem while Chapter Four deals with the 

numerical approach. Chapter Five presents the results and compares them to previous 

experimental and numerical values. The final chapter contains conclusions and 

suggestions for further study.



CHAPTER TWO

LITERATURE SURVEY

This chapter is intended to serve as a concise review of the topics directly related 

to this study. Other, exhaustive review articles and books on these subjects are referenced 

where appropriate.

Section 2.1 provides an introduction to turbulence modelling, with the focus on 

models which are most commonly used today. Section 2.2 contains an examination of 

previous numerical studies of buoyancy-induced cavity flows. Finally, Section 2.3 

describes the particular flow geometry and summarizes the previous results.

2.1 Turbulence Modelling

2.1.1 Time-Averaged Equations

Turbulent flow is governed by the same set of instantaneous conservation 

equations which govern laminar flow. For the problem considered, these include the 

continuity equation, the Navier-Stokes equations, and the energy equation. However, due 

to the small-scale nature of turbulence it is generally impractical to deal with these 

equations in their instantaneous form. Instead, the instantaneous variables are separated 

into mean and fluctuating quantities as in Equation (2.1),

4
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tj, = ^ + ^ (2.1)

where 4> represents the dependent variables u, v, T, etc. The overbar denotes the time 

averaged value of the component while the prime refers to the fluctuating value. After 

substitution into the instantaneous equations and the subsequent averaging of the 

individual terms, the time-averaged governing equations for turbulent flow are derived.

Continuity

^ = o 
tel

(2.2)

Momentum

St ^ ^j p Sr,
-«>; - «£ (r-^) (2.3)

Energy

dr J dXj dXj oT dxj J
(2.4)

It should be noted that the Boussinesq approximation has been introduced to
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account for density fluctuations. Thus the influence of variable density appears only in the 

last term on the right hand side of Equation (2.3). For convenience, the overbars will be 

dropped from all terms containing only mean quantities from this point on.

The terms involving correlations of fluctuating components make this equation set 

different from the laminar equation set. Specifically, these include the mean Reynolds 

stresses and the turbulent heat fluxes. These terms are responsible for the effect of 

turbulence on the mean flow.

For a two-dimensional flow (i = I, 2), there are nine unknowns but only four 

equations. To close this equation set, relationships for the turbulent stress and flux terms 

must be developed.

2.1.2 Effective Viscosity Concept

Turbulent flows involve rapid mixing and, therefore, increased rates of momentum 

and heat transfer. One approach then, is to attempt to mimic these turbulent effects 

through the use of artificial or ‘eddy’ viscosity and diffusivity coefficients.

Boussinesq proposed this concept in 1877 in analogy to the existing relationship 

for viscous stresses in laminar flow [1]. Boussinesq suggested that the turbulent stresses 

could be expressed as,

S ”“ ? / = V,
dut du 
dxf dx.

- - *6.
3 ’

(2.5)

where vt represents the turbulent or ‘eddy’ viscosity. The turbulence kinetic energy, k,
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defined as.

, 1 Z /2 /2 /2\
* = 7 (“1 +«2 +U3 ) (2-0

is incorporated to insure that the relationship also holds for the normal stresses (where i -

j).

In direct analogy to the eddy viscosity concept, the turbulent heat flux is expressed

as,

VT> = -r 31 (2.7)

where Pis the eddy diffusivity of heat. The Reynolds analogy is often used to relate this

diffusivity to the eddy viscosity.

r = ^ 
aT

(2.8)

where oT is the turbulent Prandtl number.

Equations (2.5) and (2.7) can be used to eliminate the turbulent stresses and heat 

fluxes from the mean flow equations. It is still necessary to determine the turbulent 

viscosity at all points in the flow field before the equation set is closed.

Many methods have been proposed for the determination of eddy viscosity within 

a flow field. In general this quantity can be expressed as the product of a length scale, L, 

and a velocity scale, V, such that,
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^t^LV (2.9)

These scales can be prescribed algebraically based on an a priori knowledge of the flow 

field but it has become popular to use differential relationships which attempt to account 

for the transport and history of the turbulence. Models of the eddy viscosity type are 

often characterized by the number of additional differential equations which must be 

solved to close the equation set.

2.1.3 Zero-Equation Models

The first turbulence model was proposed by Prandtl [1] who related the eddy 

viscosity to the transverse velocity gradient and a prescribed length scale, 1^, which 

Prandtl called the mixing length:

- V i Ji (2.io)

Despite its simplicity, Prandtl's mixing length model has been applied successfully to many 

types of flows. The model works very well in situations where a single velocity scale 

governs the flow and the mixing length, which is related to the size of the largest eddies, 

can be predicted accurately. This prescription becomes very difficult as the complexity of 

a problem and the number of relevant length and velocity scales increases.

2.1.4 One-Equation Models

Attempting to account for the transport of turbulence, one-equation models



9

determine the velocity scale from its own transport equation. The most common velocity 

scale used is the square root of turbulence kinetic energy, A. When substituted into

Equation (2.9), the Kolmogorov-Prandtl expression [1] results,

vf = C^L

where C/ is an empirical constant.

The exact equation for the transport of k can be derived from the Navier-Stokes 

equations [I],

dk dk 
dr *dxt

a u'J-u ju i^P \
2 P

u jii'.—- ~ ii - ----------- (2-12)f ' dr. : raT dx{ v

The left hand side of the equation describes the time rate of change and convection 

of turbulence kineticenergy, while the first term on the right hand side is responsible for 

the diffusive transport of k due to pressure and velocity fluctuations. Since the diffusion 

term is a frmction of unknown correlations this term must be modelled. The second and 

third terms on the right hand side represent the generation of kinetic energy due to shear 

and buoyancy respectively. The last term on the right is always negative and thus 

represents the viscous dissipation of k. This term also requires modelling.

In analogy to the difiusion of temperature and other scalar quantities, the difiusion 

flux of k is often expressed as [1],

(2-13)
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where ak is an empirical constant.

The dissipation of turbulence kinetic energy, c, is usually modelled as [1],

du'.du? Ir3^
E = V.---- ^---- 1 - CD —

1 fy dXj D L (2.14)

following from dimensional arguments employing k and L as the scales for the dissipation 

of kinetic energy.

The final modelled form of the turbulence kinetic energy equation is.

at dk 9 ( vf dk

St dxt &([ot&J
, (^]!!!' + 8£M 
f dtj dx^ dx^ 1 gt dxi

(2.15)

where Equations (2.5) and (2.7) have been substituted for the turbulent stresses and heat 

fluxes.

The one-equation model is comprised of Equation (2.15) and the Kolmogorov- 

Prandtl relationship (Equation (2.11)). Although some account of the transport of 

turbulence is introduced, it remains necessary to define an appropriate length scale. Thus 

the one-equation model is limited by the same restriction as Prandtl's mixing-length model. 

For this reason, researchers have moved on to a two-equation formulation in which the 

length scale is determined from a second transport equation.

2.1.5 Two-Equation Models

Although some models employ a transport equation for the length scale L itself, it
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is not necessary or even most convenient to do so. Several two-equation models have 

been proposed including the k-L, k-kL, and k-m (vorticity) models, but it is the k-e model, 

which has been the most popular to date. Although all of the models are similar, the e 

equation has a practical advantage over the others because it requires one less source term 

[«•

The exact equation for e can be derived from the Navier-Stokes equations, but the 

inherent complexity leads to dramatic modelling requirements. As a result, a form of the e 

equation based on physical arguments is employed,

de de 8 vt 3s — + u.— - —-------  
dr Sr, dx^dx^ ^k ^k ^k

(2.16).

where Pk is the generation of turbulence kinetic energy by shear and Gk is the generation of

k by buoyancy.

dtij cu. duj
(2.17)

Gt = P«( v, ar 
aT 8*1 (2.18)
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Substitution for L in terms of k and e in the Kolmogorov-Prandtl relationship

(Equation (2.11)) yields the following expression for eddy viscosity,

C k2
v, = -1!— (2.19)

£

This expression, along with the two transport equations (2.15 and 2.16) makeup the

standard k-e turbulence model. The generally adopted constants are listed in Table 2.1.

Table 2.1: k-E Model Constants

c. ^2 C3 oe Oy

. 0.09 1.44 1.92 1.44 1.3 1.0 1.0

This model has been used to predict several types of flows and has to be recognized as the 

most popular turbulence model to date. More complete reviews of turbulence modelling 

can be found in references [1], [2], and [3].

2.1.6 Near-Wall and Low-Reynolds Number flows

The preceding models are restricted to situations where the local Reynolds number 

is high enough that viscous effects are unimportant. Near boundaries and in other low- 

Reynolds number regions, the effects of molecular viscosity must be accounted for.
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In dealing with wall effects, one of the more popular approaches has been the use of ‘wall 

functions’ which relate surface boundary conditions to points outside the low-Reynolds 

number region based on experimental data. This insures the correct distribution of mean 

flow and turbulent quantities in the near-wall region. While researchers have had some 

success using this approach, the use of wall functions in connection with buoyancy- 

induced flows has been ineffective in many instances. This has led some to suggest that 

wall functions must be abandoned when dealing with such flow phenomena [22],

Another proposed method is the extension of the turbulence model such that it still 

applies within the low-Reynolds number region. This is accomplished through the use of 

damping functions which attempt to mimic the effects of the wall and molecular viscosity. 

These functions, derived from numerical and experimental data, are incorporated as 

modifications to the already existing model constants.

Several low-Reynolds number turbulence models have been proposed with varying 

degrees of success associated with each. The models of Jones and Launder [4], Launder 

and Shanna [5], and Lam and Bremhorst [6] have become popular in the CFD community.

A complete review of near-wall and low-Reynolds number flows is presented by 

Patel et al. [7].

2.1.7 Second - Order Differential Reynolds Stress/Flux Models

Perhaps the most obvious approach to the closure problem is to derive exact 

transport equations for the turbulent stresses and heat fluxes. The exact Reynolds stress 

equation was first derived by Chou [1] in 1945, while the analogous turbulent heat flux
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equation followed shortly thereafter.

Exact Reynolds Stress Equation

— ------ 1----- + ------------- “y^ (2.20)

- “/“^ ■ Pte^'X + ^^+ pd du', + du'}

H a^ &ZJ
du^duL 

_ 2 v,  —i

Exact Turbulent Heat Flux Equation

du^t1 
St

+ “k
du^t' = --£r{u'lu'l'‘' + ±:6ll'p't' 

“i \ p J (22I)

- P^+ h1^-^ */) 
p

d< dt'

Both equations contain complicated higher order terms involving double and triple­

correlations of fluctuating quantities. These terms must be approximated if the equation 

set is to be closed at this level.

Launder et al. and Gibson and Launder proposed [1], respectively, the following 

modelled forms for the transport of the Reynolds stress and the turbulent heat flux:
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Modelled Reynolds Stress Equation

du ^u ^
- u'.Uj--- -

9 (2.22)

- cif Wrlw-^Pr-jW - Mvl8^) + Gr|e6?

Modelled Turbulent Heed Flux Equation

du't' duf F 
ut-----—1 ^

= ^^r^'^'i^r^ - u'iu'j^ ■ "'/^ - (2.23)
* dx} e dxt J dx. J dx.

where stress production, P^, and buoyancy production, Qj, are given by:

(2*24)

G^-Mg^t'+gju'S1) (2.25)
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The differential stress/flux model is comprised of Equations (2.22) and (2.23), 

transport equations for k and e, and an expression for temperature variance. The inherent 

complexity and immense computing power requirement has limited the popularity of this 

model thus far.

2.1.8 Algebraic Stress/Flux Models

For practical applications, researchers have attempted to simplify the Reynolds 

stress and turbulent heat flux transport equations without a significant loss of physical 

accuracy. As gradients of the dependent variables occur only in the rate of change, 

convection, and diffusion terms, these equations can be rendered algebraic with 

appropriate modelling.

Rodi [8], and Gibson and Launder [1] proposed relationships for the transport of turbulent 

stresses and heat flux, respectively. Both use the assumption that this transport is 

proportional to the transport of turbulence kinetic energy:

(W’) P-26’
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Du'tf uti^ ( Dk , utit
----- !- - Difffu't') = -L —-Mt------ i-Dt 1 7 2k \Dt 2k

(2-27)

Substituting these relationships into the modelled transport equations (Equations (2.22)

and (2.23)) gives simpler, algebraic forms for the Reynolds stress and turbulent heat flux:

Algebraic Reynolds Stress Equation

Algebraic Turbulent Heat Flux Equation

_k 

u7^ = — (2.29)

- —- +CIB2 t J 18
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These equations are often simplified further by assuming that the turbulence is in a state of 

local equilibrium (Pk + Gk = e).

The algebraic stress/flux model consists of Equations (2.28) and (2.29), the 

transport equations for k and e, and an equation for the temperature variance.

2.2 Previous Numerical Studies

2.2.1 Two - Equation Models

In one of the earliest applications of a two-equation model to buoyant flow, Plumb 

and Kennedy [9] applied the Jones and Launder low-Reynolds number k-e model to 

natural convection ftom a vertical constant temperature surface. The researchers reported 

satisfactory agreement with available experimental data as the model overpredicted 

velocity in the outer portion of the boundary layer, overpredicted the heat transfer rate and 

failed to predict the sharp peak in k near the wall.

Markatos and Pericleous [10] used a k-e model with wall functions to model 

natural convection in a side-heated square cavity. Although no comparison to turbulent 

data was made, the researchers reported that ‘the results showed some of the 

experimentally observed features indicating qualitative agreement’.

Humphrey and To [11] studied free and mixed convection in a strongly heated 

cavity using a low-Reynolds number k-£ model. For the natural convection case, the 

researchers found that the eddy diffusion coefficient was underpredicted leading to an 

overprediction of Nusselt number. The mixed convection tests indicated that buoyancy
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dominated flow occurred when the Richardson number was greater than 2, and inertia 

dominated flow occurred for Richardson number less than 0.4. For both free and mixed 

convection, the results were in good qualitative agreement with available flow 

visualization data.

Ince and Launder [12] studied natural convection in rectangular cavities using the 

Jones and Launder low-Reynolds number model. Although satisfactory results were 

initially obtained, the researchers found excellent agreement with experimental data when 

the Yap source term [13] was added to the £ equation. The purpose of this term is to 

increase the dissipation near the wall thereby decreasing the excessive length scales 

predicted in this region by the original model. The authors also found that the results 

could be marginally improved through the use of the ‘generalized gradient diffusion 

hypothesis7 in calculating the turbulent heat flux.

Henkes et al. [14] performed a comparative study involving the k-e model in 

connection with various low-Reynolds number models and the wall function approach. 

For natural convection in a square cavity, the researchers found that the use of wall 

functions leads to overpredicted heat transfer rates. It was also argued that the 

combination of buoyant source terms in the k and £ equations has a small net effect on the 

resulting turbulent viscosity.

Davidson [15] studied natural convection in a rectangular cavity employing a 

modified low-Reynolds number model. Corrections to the damping functions were made 

to account for viscous effects in free flows while remaining consistent in its near-wall 

behaviour. The predictions showed very good agreement with both the experimental data
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of Cheesewright et al. [16] and results obtained with the Lam and Bremhorst model.

2.2.2 Differentia] and Algebraic Stress/Flux Models

Several studies of buoyancy-induced cavity flow involving more physically realistic 

turbulence models have been carried out in the past.

Kodi [8] studied vertical buoyant jets with the aid of an algebraic stress/flux model. 

It was found that the predicted spreading rates were in better agreement with the 

experimental data than those calculated using the standard k-e model. The temperature 

variance, based on an algebraic relationship assuming a constant time scale ratio R 

(defined inEquation (3.27)), was generally overpredicted and not properly distributed. 

Rodi suggests solving a complete transport equation for temperature variance.

To and Humphrey [17] studied natural convection from a heated, vertical plate 

using a low-Reynolds number k-e model and an algebraic stress/flux model. The latter 

also employed an algebraic expression for temperature variance while assuming a constant 

R value. Both models were shown to predict the mean flow and heat transfer well with 

only minor discrepancies between the data. The researchers also found that the algebraic 

model was capable of predicting the anisotropic turbulence characteristics.

Silva and Emery [18] used an algebraic stress/flux model to predict natural 

convection flow in a square enclosure and compared the results to those obtained using a 

k-e model. It was found that the algebraic model predicted higher average Nusselt 

numbers and a more developed momentum boundary layer.

Davidson [19], again investigating flow in a rectangular cavity, used a hybrid of
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the eddy viscosity and algebraic approaches. Specifically, Davidson added the buoyant 

part of the algebraic Reynolds stress equation (Equation 2.28) to the standard eddy 

viscosity relationship (Equation 2.5). Davidson also made use of the generalized gradient 

diffusion hypothesis when calculating the turbulent heat flux. While noting that the model 

predicted turbulent quantities more realistically, the results showed a small effect on the 

heat transfer and mean flow.

In an evaluation of turbulence models for predicting buoyant flow, Shabbir and 

Taulbee [20] studied the axisymmetric buoyant plume. By substituting experimental data 

into the closure equations, the authors were able to investigate the validity of the k-e 

model and the algebraic stress/flux model. The researchers found that the k-e model could 

not predict the proper axial heat flux distribution, while the algebraic model could not 

yield realistic values for this quantity if the magnitude of the temperature variance was 

properly predicted. Shabbir and Taulbee suggest that models such as Rodi’s have made up 

for incorrect predictions of the axial heat flux by overpredicting the temperature variance 

thus leading to a well-predicted mean flow. The authors also state that not only is a 

transport equation for the temperature variance required, but a full differential stress/flux 

treatment before the axial heat flux and the temperature variance can be calculated 

properly.

Hanjalic and Vasic [21] studied natural convection in rectangular and square 

cavities using an algebraic heat flux model. The authors proposed that the accurate 

calculation of Reynolds stress components is not necessary and thus used the eddy 

viscosity representation (Equation (2.5)) for this quantity ( an algebraic expression for
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temperature variance was also employed with constant time-scale ratio R). Satisfactory 

results were obtained for side and bottom heated, and mixed configuration cavities. The 

researchers also indicated that three-dimensional effects are probably the major cause of 

reported disagreement in cavity flows.

In a review of the modelling practices associated with turbulent buoyant flows, 

Hanjalic [22] states that the minimum level required to obtain satisfactory results is the 

algebraic flux model. The author recommends the solution of transport equations for the 

temperature variance and its dissipation suggesting that the assumption of constant time 

scale ratio, R, is invalid. Hanjalic also states that the inadequacy of the turbulent diffusion 

model for turbulent quantities seems to be compensated by mean flow advection resulting 

in stronger recirculatory motion than detected by experiment. Results generated using a 

three equation model (k-e-t2) and a four equation model (k-e-t2-^ for some cavity and 

annulus flows were presented.

Murakami et al. [23] investigated the flow of a nonisothermal horizontal jet in an 

enclosure using the k-£, algebraic stress/flux (with temperature variance transport 

equation) and differential stress/flux models. The authors found that the k-e model 

predicted much lower values for the streamwise heat flux than the higher order models 

leading to poorer prediction of temperature profiles. All three models showed poor 

agreement just after the discharge. The results were slightly better for the differential 

stress/flux model as opposed to the algebraic model. The researchers attributed this to 

inadequate modelling of the transport of the turbulent stress and heat flux (Equations 

(2.26) and (2.27)).
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Kato et al. [24] studied two-dimensional room airflow using an algebraic model 

similar to that used by Murakami et al. The authors reported a remarkable difference in 

the values of turbulent heat flux predicted by the k-e and algebraic models. No 

comparison with experimental values was made.

Kenjeres and Hanjalic [25] studied natural convection in concentric and eccentric 

horizontal annuli using a three equation model. Good agreement with experimental data 

was obtained after adjustment of the model constants. The authors expect that better 

results could be obtained with a four equation model.

So and Sommer [26] present an explicit formulation of the algebraic heat flux as 

opposed to the implicit form given in Equation (2.29). The researchers report that this 

approach will prevent numerical instabilities from occurring in the heat flux equations.

Sommer and So [27] discuss the need to solve transport equations for the 

temperature variance and its dissipation. The authors claim that this level of modelling is 

necessary to predict the countergradient heat transport phenomena. Sommer and So also 

use the thermal time scale, in addition to the mechanical time scale, in modelling the heat 

flux equation.

23 Problem History

The present study involves the investigation of turbulent convection within a 

rectangular enclosure shown in Figure 2.1. Water, at temperature Tj, flows through an 

inlet at the top of the cavity. Heat transfer to the fluid occurs on the right vertical surface 

which is maintained at a constant temperature, Tw. The water exits through the outlet at
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the bottom of the enclosure. The height to width aspect ratio is 2 for all cases considered.

This specific problem has previously been investigated experimentally and 

numerically by Numberg [28]. A summary of the test cases used is provided below in 

Table 2.2.

Table 2.2 - Summary of Test Cases

CASE 1 2 3 4

Uj (m/s) .123 .124 .063 .063

T„ (°C) 20 42.5 63.0 80.6

Tj (°C) 20 22.3 24.0 25.9

36100 47600 30000 35300

GrH(10*) 0 2.87 10.7 24.2

0 1.27 11.9 19.4

These cases have been chosen to study flows covering a range of Richardson (Ri) 

numbers. This important convection parameter is defined as the ratio of buoyant to 

inertial forces,

GrH 

to#
(230)
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Figure 2.1: Problem Specification
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The first test case, being isothermal, is purely inertia driven, while the fourth case is 

predominantly controlled by buoyancy. Cases Two and Three are designed for mixed 

convection flow where the magnitudes of these forces are comparable.

23.1 Experimental Results

Detailed velocity data was collected using a single component laser Doppler 

anemometer system while horizontal temperature profiles at three vertical locations were 

obtained using thermocouples. Flow visualization was also performed using the laser 

induced fluorescence technique.

. Figure 2.2 shows the velocity measurements on the vertical plane of symmetry for 

Case 1. A large clockwise recirculating cell dominates the flow in the cavity while small 

secondary cells form in the comers. An important factor in this study is the location of 

flow separation along either the heated vertical surface or the adiabatic top wall. For 

inertia dominated flow, the fluid separates along the heated wall at a distance y^ from the 

bottom of the cavity. If the flow is dominated by buoyancy, the fluid penetrates a distance 

Xpm from the opening to the cavity before separating along the top wall. For the 

isothermal case, the fluid separates on the vertical wall at a height of approximately 70 mm 

or 0.24 when made dimensionless by the cavity height.

Velocity measurements for Case 2 are presented in Figure 2.3. In this case 

buoyant effects become evident as the primary recirculating cell has decreased in size and 

a larger counterclockwise secondary cell has formed in the bottom right comer of the 

cavity. The increased secondary cell is the result of buoyancy providing a source of
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positive momentum in the vertical direction along the heated wall. The result is an 

increase in the separation height location to 120 mm or 0.4 dimensionless units.

In Case 3 the flow is further influenced by buoyancy, as shown in Figure 2.4. 

Here, two recirculating cells of approximately equal size have formed and the resulting 

separation height has increased to 190 mm or 0.64 dimensionless units.

Finally, the velocity measurements for Case 4 are presented in Figure 2.5. In this 

case the inertially driven cell seen in the previous three cases is completely overcome by 

buoyant forces. This results in a single large counterclockwise cell dominating the cavity 

flow. The fluid separates along the horizontal top wall, having a penetration depth into 

the cavity of 25 mm or .084 dimensionless units.

All of the LDA data described previously was supported by the flow visualization 

study.

23.2 Numerical Results

The problem was modelled in two-dimensions using the Lam and Bremhorst low- 

Reynolds number k-e approach [28]. The simple eddy viscosity relationships were 

employed for both the Reynolds stress and turbulent heat flux terms.

Streamlines for the isothermal case are shown in Figure 2.6. The inertially driven 

cell has size and strength comparable to the experimental values. The predicted separation 

height is 0.31 dimensionless units.

Results for Case 2 are presented in Figure 2.7. Although the simulated and 

measured flow fields are similar, the predicted buoyant cell is larger. The separation
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height was found to be 0.76 dimensionless units.

Case 3 results are shown in Figure 2.8. The simulations show the buoyant forces 

overcoming inertia resulting in one large counterclockwise rotating cell. The penetration 

depth of the fluid into the cavity was found to be .025 dimensionless units.

The predictions for Case 4 are shown in Figure 2.9. The flow field is similar to the 

experiment as it is completely dominated by buoyancy. The predicted penetration depth is 

.025 dimensionless units.

A summary of experimental and predicted dimensionless separation locations, Y^ 

and penetration depths, X^ is given in Table 2.3.

Table 2.3: Separation Locations

Experimental 
Data

Numerical 
Predictions

Case Y •ep «P

1 0.24 - 0.31 -

2 0.40 » 0.76 -

3 0.64 - - 0.025

4 - 0.084 - 0.025
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Based on the data, it may be concluded that the buoyant force is overpredicted by 

the current numerical model. This leads to a higher separation point in Case 2, separation 

along the horizontal top wall in Case 3, and decreased penetration depth in Case 4. 

Clearly, an accurate estimation of the buoyant force is necessary before agreement with 

experimental results is possible.



CHAPTER THREE

MATHEMATICAL FORMULATION

3.1 Introduction

This chapter serves as an outline of the mathematical formulation employed in 

modelling the problem. Section 3.2 contains the conservation equations for velocity, 

temperature, turbulence kinetic energy, and dissipation of turbulence kinetic energy. The 

equations are presented in dimensional and dimensionless forms. Section 3.3 discusses the 

modelling of the turbulent heat flux and the fluctuating temperature variance. Boundary 

conditions for the differential equations and the Lam and Bremhorst low-Reynolds 

number damping functions are discussed in Section 3.4.

3.2 Governing Equations

3.2.1 Dimensional Governing Equations

The time-averaged equations governing the mean flow include the continuity, x- 

momentum, y-momentum, and energy equations:

38
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Continuity

^ +± =0 
dx dy (3.1)

x-Momentum

du t du 1 dp
dx dy p dx (3-2)

y-Momentum

u* 
dx

d 
dx

dv _ _ 1 dp + d 
dy p dy dx

^ +i 
dy (v/+vt) T (3.3)

—| + 2 (v.+v,) —I - gper-T.) - -—
Sy} Sy{ ’ dy} 3dy

Energy

u$L +v^_ = -d- 22^
dx

d ^idT - JL (u't') - — (y't') 
dx ’ dy ' (3.4)

The momentum equations were obtained by substituting the eddy viscosity relationship for
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the Reynolds stress terms (Equation (2.5)) into Equation (2.3). The turbulent viscosity,

vt, is given by.

where fg is a damping term to be discussed in Section 3.4.2. Forms of the k and £ 

equations incorporating low-Reynolds number damping functions are used:

Turbulent Kinetic Energy

etc dy a* dx^
+ G - e + ^gv,tf (36)

Dissipation of Turbulent Kinetic Energy

s*+v^.l[(vlt^)^

etc dy dx a dx
(3-7)

+ Cl/! |G - C2/2 ^ + C3f3 gp | VT

where the generation of turbulence, G, is

(38)
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The standard model constants are given in Table 2.1 while the damping functions 

are discussed in Section 3.4.2. Representation of the turbulent heat flux, which appears in 

the energy, kinetic energy, and dissipation of kinetic energy equations, is discussed in 

Section 3.3.

3.2.2 Dimensionless Variables

The governing equations can be cast into a non-dimensional form when the 

following vanable definitions are employed:

Dimensionless Distance

i = - r = 2 (3 9)

where H is the cavity height.

Dimensionless Velocity

U = — V = 10\Up Up P-1®)

where U^ is the average inlet jet velocity.

Dimensionless Temperature

0 • (3.11)
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where Tj is the inlet temperature of the fluid and Tw is the temperature of the heated wall.

Dimensionless Pressure

(3-12)

Dimensionless Kinetic Energy

(3-13)

Dimensionless Dissipation of Turbulent Kinetic Energy

e* = eH
Uj (3.14)

3.2.3 Dimensionless Governing Equations

Substitution of the dimensionless dependent variables into the governing equations 

yields the following equations:

Dimensionless Continuity

au + w 
dX dY
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Dimensionless X-Momentum

TT^U ^vdU 8P d (. a a . du} d (, a a . 3Uy
ax dr ax ax[Rel Re/ ax dY[ Re; Re/ ar} (3.16)

ax^; Re/ ax,
d (, a + a . dV 1 
an ite, Re* ax

2dk*
3 ax

Dimensionless Y-Momentum

ttW ^vdV 3? aC a s> ar) di, a .dv\
ar dY dY dX^ Re; Re/ dX) dY\/Ret Re/ dY (3.17)

ar^^ Re/ dY dY^Rej Re/ dY
Grya2d _ 2 dk*

Re2 3 dY

where Ret and Ret are Reynolds numbers based on laminar and turbulent viscosity, 

respectively,

Re? =
vi

U„D 
He, = -^— 

. vr
(318)
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Dimensionless Energy

U — + f ----  = ■■ I — *-----i + -----  I — —
ar ar ax[Relalaxj ax {Ren ax t (3-19)

- A {u't'y - A [y't') 
ax ax

Dimensionless Turbulent Kinetic Energy

3^* f . a dk*\ t a a . dk*
U ------ + K ------ = ---- (----- + --------- I ------ 1 + -----  1 (----- + --------- ) ------

ax ax ax [ Re, <J*Re, ax) ax [ Re, a^, ax (3.20)

z +----------- — v't'
Ref

Dimensionless Dissipation of Turbulent Kinetic Energy

u — + v— - — \ (— + —) ^l + AI ) — 
ar ar arl ^ ozRet ar I ar ^ oeRet ar
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where the dimensionless generation of turbulence, G*, is

G* = — 2
f—r
l arj + 2 arV 

ad
4^ 
(ar

+ ^]2
(3.22)

3.3 Representation of Turbulent Heat Flux

The turbulent heat flux, appearing in the energy, kinetic energy of turbulence, and 

dissipation equations, is calculated according to Equation (2.29). The additional 

simplifying assumption of local equilibrium (Pk + Gk = e) is also invoked. The resulting 

algebraic turbulent heat flux equations are,

Dimensional Turbulent Heat Flux Equation

«' H = -C - (a>' + ^u^t' + nfe/'2 ) (3.23)
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Dimensionless Turbulent Heat Flux Equation

(“7') Ck' 
e*

____ an ___ ATT
(u'.U*) •----  + 5 (u^') *----- + 1] -----------f v J ' dXj 1 Re? (3-24)

where C, £, and q are model constants discussed in Chapter Five.

All of the quantities in the above relationship are known with the exception of the 

fluctuating temperature variance. This quantity can be accounted for using a modelled 

transport equation [22],

Dimensionless Fluctuating Temperature Variance Equation

(3-25)

where £0* represents the dimensionless dissipation of temperature variance. This quantity 

is calculated from a simple, algebraic relationship given below,

Ee*
e* G'2)*
R 2k'

(3-26)

The quantity R is defined as the ratio of the mechanical to the thermal time scale.

klz 
ta !2z& (3.27)
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The dimensionless temperature variance equation can also be modelled using a simplified 

algebraic expression,

(3.28)

The fluctuating temperature variance is modelled using both the algebraic (Equation 

(3.28)) and differential (Equation (3.25)) relationships within this study.

3.4 Boundary Conditions

3.4.1 Velocity and Temperature Boundary Conditions

The following boundary conditions are used to simulate the velocity and 

temperature fields:

No Slip Wall:

Velocities normal and adjacent to a solid boundary are set equal to zero. For 

example, along the lower horizontal wall,

^1^-0 = 0

%-o = O
(3.29)

Adiabatic Wall:

Temperature gradients normal to the insulated surfaces are set equal to zero 

indicating zero heat flux. For the lower, horizontal wall,
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^1 = 0
az1^0 (3.30)

Isothermal Wall:

The dimensionless temperature of the heated surface is set equal to one,

(3.31)

Inflow Boundary:

Inflow conditions are specified at the point of expansion into the cavity. A power­

law profile is used for the X-momentum component while the Y-momentum component is 

set equal to zero. The dimensionless temperature at this location is also set equal to zero.

Outflow Boundary:

Outflow conditions are specified at the end of the developing length added to the 

bottom outlet of the cavity. The flow is assumed to be fully-developed upon exit at this 

location such that,

*i=o ^|=o <332)

3.4.2 Turbulence Boundary Conditions

Turbulence effects are incorporated using the Lam and Bremhorst low-Reynolds

number turbulence model [28]. The boundary conditions for turbulence kinetic energy



and dissipation of turbulence kinetic energy next to a solid wall are,

^* I waff " 0 (3.33)

where n is the direction normal to the surface.

To account for viscous effects in the vicinity of the solid walls or in other low-

Reynolds number regions, the following damping functions are used,

4 = e*P
-2.5

(3-34)

.3 exp (-R,) 2

where the turbulent Reynolds number, Rt, is given by,

The effect of the Yap source term [13] in the dissipation equation is also studied.

The purpose of this term is to increase the dissipation in the near-wall region thereby 

reducing the turbulent length-scale to a more reasonable level. The term proposed by Yap 

is.

5 = 0-83
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where y is the distance from the wall such that the term goes to zero outside the near-wall

region.

The turbulent kinetic energy at the entrance to the cavity is specified as [28],

hl1^)2
(3-37)

where T, the turbulence intensity, is taken to be 10%.

The dissipation of turbulence kinetic energy at the inlet was varied to investigate a

range of inlet turbulent length scales, 1^, where

m e
(3-38)

Because the equation for turbulent heat flux is algebraic, no boundary conditions

are required for this quantity. When the full transport equation for fluctuating temperature

variance is employed (Equation (3.25)), the following boundary condition is imposed at

the solid surface:

waff “ 0 (3-39)



CHAPTER FOUR

NUMERICAL FORMULATION

4.1 Introduction

This chapter provides a description of the numerical approach to the problem.

Section 4.2 provides a general overview of the solution process. Complete details of the 

numerical aspects of tins process are available in reference [28]. Section 4.3 provides a 

description of the features added to the code to facilitate the current study. These include 

the calculation of algebraic heat flux and fluctuating temperature variance, and a modified 

treatment of the energy equation.

4.2 Solution Strategy

4.2.1 General Conservation Equation

All of the dependent variables obey a generalized conservation principle. If the 

dependent variable is denoted by $, the general differential equation is,

(«4>) + — (v 4>) = 
etc

_L r — 
etc * etc

5 p 9^
* ay.

+ (4-1)

where r is a diffusion coefficient. The terms on the left hand ride represent convection of 

the dependent variable, while the first two terms on the right hand side are responsible for

51



52

diffusion. The final term, S$, is a general source term incorporated to include all other 

relevant processes.

The dimensionless governing equations (Equations (3.15) to (3.22)) can be expressed in 

this form using the values in Table 4.1.

Table 4.1: Governing Equations in General Form

so

u
Be, Re,

_a_’ 
ax

_ 2 
3

,_a_ + a \ ^
^Ret Re/dX 

ak^ 
ar

dY Re, Re, ax \

V -2- + °- 
Re, Re,

a 
ar

(
+ -

' t a a x 3U 
Re, + Re} SY

Ref 3 dy

dY
, a a . dV 1 
(----  + ---- ) —

Rei Ret dY j

0
_a_ 
Rej Gj

- J-iu't')’-—(v't'y 
ax ay

k*
a2(Gr^

G" - b* +--------— (v't'y
Ref

• e + _E_
Rej °zRet

.- B*2 B’ a2(Gry^l -T7
cj^G' - c^ + ^77 p 2 <v f r 

k k k Ref
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The benefit of writing the governing equations in this manner is that it is only 

necessary to have an algorithm designed to solve Equation (4.1). This process can then be 

used repeatedly for various values of <j), f^, and S^.

4.2.2 Discretization of the Governing Equations

Discretization of the general conservation equation is accomplished using the 

control-volume approach described by Patankar [29]. The grid is staggered such that 

velocities are calculated on the control volume faces while pressure, temperature, and the 

other scalars are calculated at the centre of the control volume. This method prevents the 

occurrence of a ‘checkerboard’ distribution within the solution set.

To reduce the possibility of false diffusion, the Quadratic Upstream Interpolation for 

Convective Kinematics (QUICK) scheme is used to deal with the convective terms [28].

Following Patankar’s nomenclature, individual source terms, Sw are linearized as 

shown below:

5r = S , if S > 0

yf4’ ^ s»<o (4.2)

This linearization, in accordance with Patankar’s recommendation, was found to provide 

greater stability as opposed to simply including the entire source in the constant term, Sc.
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4.23 Solution Algorithm

The algorithm used to calculate the flow field is the Semi-Implicit Method for 

Pressure-Linked Equations Revised (SIMPLER) method. Complete details of this 

approach are available in [29].

The simultaneous equation sets are solved with the aid of the Modified Strongly 

Implicit Procedure. This method was found to provide more stability than the popular 

Alternating Direction Implicit (ADI) or Strongly Implicit Procedure (SIP) techniques [28].

4.3 Algebraic Heat Flux Model

4.3.1 Explicit Algebraic Heat Flux Calculation

The turbulent heat flux is calculated at interior grid points according to Equation 

(3.24) with one modification. To improve stability, the explicit heat flux formulation of 

Sommer and So [27] was incorporated. This method involves the use of a simple gradient 

diffusion approximation to the terms containing heat flux components within the heat flux 

equation as shown below.

(a't^*
,,—/,. ^l °2(-Gr^

+ ^(u't1) ----- + T]-----------
J ' sgdbXj 1 Re*

(4.3)

where 'j ' sgd
a 30

RetoT dXj

Sommer and So point out that the implicit formulation given by Equation (3.24) 

can become singular and, therefore, unstable under certain conditions. While the explicit 

model is slightly less accurate from a physical standpoint, Sommer and So have obtained
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results which support the use of this model

433 fluctuating Temperature Variance

The temperature variance is calculated either algebraically (Equation (3.28)) or 

from its transport equation (Equation (3.25)). The algebraic formulation works well and 

requires no special attention. The transport equation fits the general conservation form 

(Equation (4.1)) as shown below.

Table 4.2: Dimensionless Temperature Variance in General Form

4>

7*' fr^ + a 

e* o1^[
- 2 (^- 2 O^T^- 2 ^ 

QA 01

For convenience the diSusion coefficient was simplified.

where oT ~ (4.4)

When the source terms were linearized according to the procedure given in Section 4.2.2, 

no difficulties were found when solving the temperature variance transport equation.
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4.3.3 Modified Energy Equation Formulation

The energy equation (Equation (3.19)) requires a different treatment when the 

algebraic heat flux model is used. When the turbulent effects are represented by simple 

gradient diffusion, the energy equation tits the general conservation form without the need 

for source terms. With the algebraic flux model, a turbulent diffusion source term given 

by.

(4-5)

must be incorporated as the diffusion coefficient, F, accounts only for the laminar effects 

(see Table 4.1).

To prevent the dimensionless temperature from acquiring erroneous values greater 

than one or less than zero, a special treatment of this source term is necessary. The 

procedure, shown below, is suggested by Patankar [29] as a solution to this problem,

where So is the source term, 0 is the current temperature, and 6* is defined as,

0* = y , ^r Se s 0

0* = ^p , forSe>0
(4-7)
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This provision ensures that the dimensionless temperature can move only halfway towards 

the physical limit within one iteration and, more importantly, can never exceed this 

physical limit.



CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Introduction

The present work is divided into three studies. The first study involves an 

examination of the sensitivity of the predicted results to the choice of inlet turbulence 

conditions. The second study deals solely with the effect of adding the algebraic heat flux 

model (AFM). The final study involves the incorporation of both factors and compares 

these final results to the experimental data.

5.2 Inlet Turbulent Viscosity Study

The effect of varied inlet eddy viscosity and turbulent length scale in conjunction 

with the low Reynolds number k-e model was studied. This was accomplished through 

adjustment of the inlet dissipation of turbulent kinetic energy while holding the inlet 

turbulent intensity constant at 10%.

The corresponding dimensionless eddy viscosity and dimensionless turbulent length 

scale are calculated according to.

V, a £* (5.1)

58



59

3

/• = 2 = 1 C>2'2 (5.2)
Da^

The turbulent length scale, 1, can be estimated based on the height of the inlet section, D. 

A dimensionless turbulence length scale, 1*, of up to 10 % is considered reasonable 

whereas much larger values are generally unacceptable [30]. Within the course of this 

study the inlet turbulence conditions are specified such that the effect of a range of 

dimensionless turbulence length scales up to 60 % can be examined.

The effect of the inlet parameters on the predicted results will be discussed for 

each case independently, followed by some general comments on their selection when 

dealing with buoyant flows.

5.2.1 Case 1

Two sets of inlet conditions were chosen for this simpler, isothermal case. The

purpose of the study is to determine the effect of increasing the inlet length scale to a 

larger, but still realistic, value when dealing with isothermal flow conditions. The 

conditions and predicted dimensionless separation heights are summarized in Table 5.1.
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Table 5.1 - Inlet Viscosity Study ( Case 1)

Test £*.
m in 1* Separation

Ka) .015 1.15 0.0467 0.000393 0.33

1(b) .015 0.08 6.311 0.0531 0.16

Figure 5.1 compares the predicted streamlines for the two tests while Figure 5.2 

presents turbulent viscosity contours. Although the streamlines are qualitatively similar, 

the reduced inlet dissipation rate (with inlet length scale of approximately 5 %) results in a 

lower separation location on the right wall and further penetration along the top wall. The 

turbulent viscosity contours are very similar except in the inlet region where the reduced 

dissipation rate test shows significantly higher levels. The effect of the varied inlet 

turbulent conditions on the midheight turbulent viscosity protile is minimal as shown in 

Figure 5.3.

The important result is the significant decrease in separation height as the result of 

increasing the inlet turbulent length scale. This effect can be attributed to an increase in 

mean flow momentum resulting when the dissipation rate, which removes energy from the 

mean flow, is reduced.

5.2.2 Case!

Four inlet dissipation levels were examined in conjunction with Case 2. The inlet 

turbulence parameters and the predicted dimensionless separation heights are summarized 

below in Table 5.2. A large range of dimensionless length scales were employed for this
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Figure 5,1 - Inlet Viscosity Study (Case 1) : Streamlines
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Figure 5.3 - Inlet Viscosity Study (Case 1): Turbulent Viscosity Profile (Y = 0.5)
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case. Test 2 (d) involves a physically unrealistic value of approximately 60 % leading to 

flow separation along the top horizontal wall.

Table 5.2 - Inlet Viscosity Study ( Case 2 )

Test m vt in Separation

2(a) 0.015 1.15 0.075 0.000477 0.7478

2(b) 0.015 0.09 7.97 0.0507 0.7596

2(c) 0.015 0.05 17.09 0.109 0.7673

2(d) 0.015 0.01 95.80 0.611 0.3377 (pen)

Predicted streamlines for Tests 2 (a), 2 (b), and 2 (d) are presented in Figure 5.4, 

while turbulent viscosity contours are compared in Figure 5.5.

The streamline plots show slight increases in separation point location with 

corresponding increases in inlet turbulent viscosity. Test 2 (d), with the highest level of 

inlet turbulent viscosity, predicts a flow pattern where the inlet jet does not even reach the 

heated wall.

Figure 5.6 shows profiles of turbulent viscosity at the cavity midheight. While the 

profiles exhibit similar shapes, significant increases in magnitude occur throughout the 

cavity as the inlet turbulent viscosity is increased. This result is consistent with Figure 5.5 

showing turbulent viscosity contours.

This increase in inlet turbulent viscosity leads to increased heat transfer at the hot 

wall as shown in Figure 5.7. Test 2 (d), having the highest level of inlet turbulent
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Figure 5.6 - Inlet Viscosity Study (Case 2) ; Turbulent Viscosity Profile (¥=0.5)
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Figure 5.7 - Inlet Viscosity Study (Case 2) : Temperature Profiles (Y-0.5)
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viscosity, has the steepest temperature gradient and therefore, the highest heat transfer 

rate. This results in an increased buoyant force which translates to additional vertical 

momentum and a higher separation point.

5.23 Case 3

Seven sets of inlet conditions were tested for this case. These conditions and the 

corresponding predicted penetration depths are listed below in Table 5.3.

Table 5.3 - Inlet Viscosity Study (Case33

Test vt m 1*. Penetration

3(a) 0.015 1.15 0.0347 0.000350 0.03030

3(b) 0.015 0.30 0.402 0.00407 0.2380

3(c) ' 0.015 0.20 0.904 0.00915 0.3744

3(d) 0.015 0.10 3.28 0.0332 0.3569

3(e) - 0.015 0.075 5.26 0.0531 0.3539

3(0 0.015 0.050 9.50 0.0959 0.3502

3(g) 0.015 0.010 59.8 0.605 0.3279

The predicted penetration depths are quite sensitive to the choice of inlet 

dissipation rate. As the inlet dissipation is decreased from the original level of 1.15 to 0.20 

the fluid penetrates further into the cavity, nearly coming into contact with the heated 

wall. However, further decreases in the inlet dissipation rate result in a slight regression of
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Figure 5.8 - Inlet Viscosity Study (Case 3) : Streamlines
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Figure 5.10 - Inlet Viscosity Study (Case 31: Temperature Profile (Y=0^
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Figure 5.11 - Inlet Viscosity Study (Case 3): Turbulent Viscosity Profile (Y=0.5)
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this penetration depth.

Figures 5.8 and 5.9 show streamline plots and turbulent viscosity contours for 

Tests 3 (a), 3 (c), and 3 (g). When the inlet dissipation rate is decreased from the original 

level of 1.15 (Tests 3 (c) and 3 (g)), the predictions become more representative of the 

mixed flow conditions involved as two similarly-sized cells, rotating in opposite directions, 

are formed.

Figure 5.10 shows temperature profiles at the cavity midheight. The profiles are 

surprisingly similar but the significance of any comparison involving Test 3 (a) is 

questionable due to the substantial difference in the predicted flow field. The results do 

show a slightly steeper temperature gradient and higher core temperature for Test 3 (g), 

which has the minimum inlet dissipation rate, when compared to Test 3 (c).

Apparently, two effects related to the inlet turbulence conditions contribute to the 

penetration of the fluid into the cavity. As the inlet dissipation rate is initially reduced, the 

extended penetration into the cavity can be attributed to additional mean flow momentum 

due to the smaller energy losses as evidenced in Case 1, while the slight regression of this 

penetration depth is the result of increased buoyancy due to a slightly higher heat transfer 

rate. This effect was found to be dominant in Case 2.

5.2.4 Case 4

Three sets of inlet turbulence conditions were tested in conjunction with Case 4. 

The test cases and corresponding penetration depths are shown in Table 5.4.



74

LVL STS.

B 0.04 
A 0.03 
9 0.02
8 0.01
7 0.00
6 -0.01
5 -0.02
4 -0.03
3 -0.04
2 -0.05
1 -006

Test 4 (a)

Test 4 (b)

Figure 5.12 - Inlet Viscosity Study (Case 4): Streamlines



WL VIS

B 100.0 
A 90.00 
9 90.00
8 70.00
7 60.00
6 50.00
5 40.00
4 3000 
3 20.00
2 10.00
1 2.00

Test 4 (a)

Test 4 (b) Test 4 (c)
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Figure 5.14 - Inlet Viscosity Study (Case 4): Temperature Profile (Y = 0.5)
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Figure 5.15 - Inlet Viscosity Study (Case 4) : Turbulent Viscosity Profile (Y^0.5)
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Table 5.4 - Inlet Viscosity Study (Case 4)

Test k*. L in vt m 1*1 m Penetration

4(a) 0.015 1.15 0.0450 0.000387 0.0178

4(b) 0.015 0.09 5.0910 0.0438 0.0229

4(c) 0.015 0.01 70.635 0.607 0.0471

As shown above, the penetration depth of the fluid increases slightly as the inlet 

dissipation rate is decreased. Figures 5.12 and 5.13 show the streamline and turbulent 

viscosity plots, respectively. The streamline plots show increased buoyant recirculation as 

the inlet turbulent viscosity is initially increased. This effect is the result of increased heat 

transfer rates due to higher levels of turbulent viscosity throughout the cavity. Further 

increases in inlet turbulent viscosity leads to similar results.

Figure 5.14 shows dimensionless temperature profiles at the midheight of the 

cavity. The profiles for Tests 4 (b) and 4 (c) are also very similar. Again, it is difficult to 

make comparisons between Test 4 (a) and the other cases because of the differences in the 

predicted flow fields.

Figure 5.15 shows turbulent viscosity profiles at the cavity midheight. Once again, 

significant increases in turbulent viscosity levels arise in the reduced inlet dissipation test

cases.
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5.2.5 Inlet Viscosity Study Summary

The purpose of this study was to determine the sensitivity of the results to changes 

in inlet turbulence parameters. While many researchers select these values without 

reporting or even conducting a sensitivity analysis, the results have shown that 

modification of these quantities within reasonable limits can have a significant effect when 

dealing with this type of flow.

For this mixed-convection study, changes to the inlet rate of dissipation has two 

noticeable effects. The first involves an additional source of mean fiow momentum 

resulting from reduced turbulent energy losses. This leads to further penetration into the 

cavity towards the heated wall. The second effect involves increases in the vertical 

buoyant force hear the heated wall due to higher levels of turbulent viscosity which seems 

to diffuse throughout the cavity when the inlet dissipation rate is reduced. This leads to 

higher separation heights along the heated wall. Although both effects are present in all 

cases involving heat transfer, the first effect was generally prevalent in Case 3 while the 

second effect dominated Case 2. Such behaviour could be a function of inlet Reynolds 

number as Case 3 has a lower inlet jet velocity than Case 2. It could be that a decreased 

inlet dissipation rate does not have as great an effect on the mean flow momentum for 

higher Reynolds number or more turbulent flows.

53 Algebraic Flux Model (AFM) Study

The effect of adding the algebraic heat flux model to the existing k-e equations was 

studied. The original simple gradient diffusion (SGD) representation for the turbulent heat
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flux components is given by.

' ReTdXi (5-3)

while the algebraic heat flux is given by,

Ck 
e*

90 dUf O2^)

Re?
(5.4)

where C, i), 5 are constants. The fluctuating temperature variance was also evaluated 

algebraically, according to,

(P5) - -2fi ^ (P/) *|| (5.5)
E

where time-scale ratio R is constant.

The constants q, 5 were assumed to have a value of 0.6. This value is commonly 

used within the literature although some researchers have employed a value of 0.5 [21,8]. 

Selection of the constants C and R has been much more controversial and problem­

dependent. For the purpose of this study, two values of C were employed, 0.28 and 0.10. 

These values represent the range of values reported in the literature. A constant value of 

0.5 was chosen for the time-scale ratio R In some tests, this value was modified and will 

be mentioned when appropriate.

Studies were conducted for each of the cases involving heat transfer. The effect of 

the AFM model on the predicted streamlines, turbulent heat flux, temperature and 

turbulent viscosity distributions will be discussed.
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It should be noted that the inlet turbulence conditions were held constant for this 

particular study. The inlet turbulent intensity was set at 10% and the dimensionless inlet 

dissipation rate was defined as 1.15. The inlet length scale and turbulent viscosity are 

dependent on Reynolds number and therefore vary for each case. These values are 

available in the inlet viscosity study (Section 5.2).

5.3.1 Case 2

Figure 5.16 shows the predicted streamlines for the AFM study, while separation 

locations are presented in Table 5.5.

Table 5.5 - AFM Study (Case 2)

Model Model Constant C Separation Height

SGD - .7478

AFM 0.28 .7108

AFM 0.10 .7242

Although only small differences arise when the algebraic flux model is employed, a 

few interesting trends are apparent. It was expected that the use of the AFM model would 

lead to higher rates of heat transfer, and, therefore, more buoyant flow and higher 

separation locations. The results show a slightly decreased separation location when the 

flux model, with C=0.28, is employed. Furthermore, the use of a decreased model 

constant (C=0.10) leads to a small increase in separation location.
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Figure 5.16 - AFM Study (Case 2); Streamlines
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Figure 5.17 - AFM Study (Case 2): Turbulent Heat Flux Profiles (Y=0.5)
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Figure 5.18 - AFM Study (Case 2): Dimensionless Temperature Profiles fY=O5)
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Figure 5.19 - AFM Study (Case 2): Turbulent Viscosity Profiles (Y=05)
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Figure 5.17 shows turbulent heat flux profiles at the midheight of the cavity. Use 

of the AFM model leads to significantly higher levels, especially for the vertical heat flux. 

The heat transfer rate, although predominantly controlled by the horizontal gradient of the 

horizontal turbulent heat flux, should increase under these conditions. Figure 5.18 shows 

the dimensionless temperature distribution at the cavity midheight. As expected, the AFM 

model, with 00.28, results in the steepest temperature gradient and, therefore, the 

highest rate of heat transfer. The increased vertical turbulent heat flux also leads to higher 

levels of turbulent viscosity due to the buoyant source term appearing in the k and e 

equations. This effect is illustrated in Figure 5.19.

Although the separation location decreases slightly when the AFM model is employed, the 

width of the buoyant cell increases, as does the strength of recirculation. These results are 

consistent with increased heat transfer resulting from higher levels of turbulent heat flux. 

It is expected that further increases in heat transfer rate would result in corresponding 

increases in separation location.

53.2 Case 3

Figure 5.20 shows the predicted streamlines for Case 3. Use of the AFM model 

results in increased buoyant recirculation as the fluid is driven back closer to the inlet. 

Predicted penetration depths are shown in Table 5.6. As expected, the effect is more 

exaggerated for C=0.28 than for C=0.10.
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Figure 5.20 - AFM Study (Case 3): Streamlines
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Figure 5.22 - AFM Study (Case 3) : Dimensionless Temperature Profiles (Y - 05)
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Figure 5.23 - AFM Study (Case 3): Turbulent-Viscosity Profiles (Y = 0.5)
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Model Model Constant C Penetration Depth

SGD - 0.02290

AFM 0.28 0.01987

AFM 0.10 0.02222

Table,5.eLAl mJl Study (Case 3)

Figure 5.21 shows the horizontal and vertical heat flux distributions at the cavity 

midheight. The AFM model, with C=0.28, predicts levels as much as three times larger 

than the SGD model for the horizontal component. The vertical SGD component, based 

only upon the vertical temperature gradient (see Equation 5.3), is essentially non-existent 

when compared with the AFM predictions.

Temperature profiles at the cavity midheight are shown in Figure 5.22. The 

increased horizontal heat flux associated with the AFM models leads to steeper 

temperature gradients or higher heat transfer rates near the heated wall.

Turbulent viscosity profiles are shown in Figure 5.23. When compared to the 

SGD model, the increase in vertical turbulent heat flux leads to significantly higher levels 

of turbulent viscosity for C=0.28 while only minor differences arise for C-0.10.

The effect of model constant R was also studied in conjunction with this case. As 

R is lowered, the fluctuating temperature variance decreases leading to a smaller vertical 

component of turbulent heat flux. This results in lower turbulent viscosity near the heated 

wall but only slightly lower heat transfer rates. Significant changes in the mean flow field 

were not detected.
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5.33 Case 4

Figure 5.24 shows the predicted streamlines associated with the AFM study for 

Case 4. Again, much greater buoyant recirculation occurs when the AFM model is 

employed. This is especially evident when model constant C=0.28.

The turbulent heat flux profiles appear in Figure 5.25. As with the previous cases, 

the heat flux components predicted by the AFM model are significantly greater than those 

predicted by the SGD model. The difference in predicted values for C = 0.28 and C = 

0.10 is not as great as in the other cases. This is probably due to the large difference in the 

predicted SGD and AFM results.

Dimensionless temperature profiles are shown in Figure 5.26. Once again the 

AFM model, with C=0.28, has the steepest temperature gradient near the wall and, 

therefore, the highest rate of heat transfer. This high rate of heat transfer accounts for the 

large buoyant contribution to the flow.

Finally, Figure 5.27 shows turbulent viscosity profiles at the cavity midheight. The 

viscosity levels are once again significantly higher for the AFM models due to the large 

increase in vertical turbulent heat flux.

53.4 AFM Study Summary

The incorporation of the algebraic heat flux model leads to higher levels of both 

components of turbulent heat flux. This results in higher heat transfer rates and higher 

levels of turbulent viscosity for all cases studied. This effect is more pronounced as the
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Figure 5.24 - AFM Study (Case 4) : Streamlines
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Figure 5.25 - AFM Study (Case 4) : Turbulent Heat Flux Profiles (Y=05)
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Figure 5.26 - AFM Study (Case 4): Dimensionless Temperature Profile (¥=0.5)
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Figure 5.27 - AFM Study (Case 4): Turbulent Viscosity Profiles (Y= 05)
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model constant C is increased.

It appears that the use of an AFM model, by itself is not the solution to the 

modelling problem associated with this mixed convection flow field. It is possible that a 

higher level of turbulent heat flux modelling involving transport equations for fluctuating 

temperature variance and dissipation of temperature variance could improve the results. 

However, it is hard to imagine this fine tuning of model accuracy leading to the much 

lower required levels of heat transfer.

5.4 Final Results

The previous two studies have shown that the predicted results can be significantly 

affected by two factors, the inlet turbulence conditions and the turbulent heat flux 

representation. The combination of modified inlet turbulence levels and the AFM model 

will be presented as a final study. The purpose is to determine the net effect of including 

both factors and to compare these results to the experimental findings.

The inlet turbulence conditions employed in this study are summarized in Table 

5.7. As in all of the previous tests, an inlet turbulence intensity of 10% was specified. 

The inlet dissipation rate of 0.20 was chosen because this value produced the furthest 

penetration depth into the cavity for Case 3 in Section 5.2. The inlet turbulent length scale 

and turbulent viscosity change depending on the Reynolds number for each case.
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Table 5.7 - Final Results : Inlet Turbulence Conditions

Case Red k* e* 1*

1 973. 0.015 0.20 1.30 0.0109

2 1283. 0.015 0.20 2.18 0.0139

3 808. 0.015 0.20 0.904 0.00915

4 950. 0.015 0.20 1.24 0.0107

The AFM model, employing the algebraic relationship for fluctuating temperature 

variance, was used to model the turbulent heat flux. Based on the results of the AFM 

study, model constant C was set to 0.10 while the time-scale ratio R was set to 0.25. 

These values represent an attempt to minimize the overprediction of the heat transfer 

rates.

Comparison with the experimental results is based on streamline plots and Nussult 

number data. Predicted turbulent viscosity contours are also presented.

5.4.1 Case 1

Due to the isothermal nature of Case 1, the present results are basically an 

extension to the inlet viscosity study presented in Section 5.2.1. The earlier findings 

showed decreased separation height due to increased mean flow momentum as the inlet 

dissipation rate was decreased.

Predicted streamlines for the current inlet conditions are shown in Figure 5.28 

while the predicted turbulent viscosity distribution appears as Figure 5.29. The
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Figure 5.28 - Final Results (Case D: Streamline Comparison
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experimental and predicted flow fields are qualitatively similar but the predicted streamline 

levels are higher in the centre of the cavity due to higher velocities near the right vertical 

wall. As discussed earlier, the increase in velocity is presumably the result of the increase 

in mean flow momentum which results from a decrease in the original dissipation rate.

5.4.2 Case 2

The inlet viscosity study for Case 2 showed increased separation height for 

decreased inlet dissipation rate. This effect was attributed to increased turbulent viscosity 

throughout the cavity which led to higher rates of heat transfer and, therefore, more 

buoyancy. It is believed that this increase in the buoyant force overcomes the 

corresponding increase in momentum resulting in the higher separation location. The 

application of the AFM model resulted in increased heat transfer rates and stronger 

buoyant recirculation.

Predicted and experimental streamlines for the present study are compared in 

Figure 5.30, while the predicted turbulent viscosity distribution is shown in Figure 5.31. It 

is apparent from the streamline comparison that the predicted ratio of buoyant to inertial 

forces is still too high. The predicted buoyant cell is much larger and stronger than in the 

experiment resulting in a predicted separation height which is significantly higher than the 

experimental location.

Figure 5.32 compares the predicted and experimental Nusselt number distributions 

along the heated wall. The predicted Nusselt numbers are calculated from the 

dimensionless temperature gradient at the heated wall while the experimental Nusselt
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number is calculated from the electrical power input to the heaters [28]. Both profiles 

show the highest levels of heat transfer occurring above the respective separation points. 

This is the result of the cold inlet jet impinging on the heated surface. The model predicts 

higher rates of heat transfer than the experiment within this region. This would indicate 

lower fluid temperatures in the predicted impingement zone probably due to less 

interaction with the hotter recirculating buoyant cell. Below the separation location, heat 

transfer occurs as the fluid rises along the heated wall. The model correctly predicts a 

decrease in this heat transfer rate as the fluid rises and increases in temperature. The 

locally minimum heat transfer rate at the separation location is also correctly predicted.

5.4.3 Case 3

The inlet viscosity study for Case 3 showed increased penetration for initial 

decreases in inlet dissipation rate. Further decreases in the dissipation rate below 0.20 

resulted in a regression of the fluid towards the inlet. This is the result of counteracting 

increases in mean flow momentum and heat transfer due to the modified turbulent 

viscosity levels. The addition of the AFM model also resulted in higher heat transfer rates. 

The combination of the two factors is now discussed.

The streamline comparison for Case 3 appears as Figure 5.33 while the predicted 

turbulent viscosity contours appear in Figure 5.34. The size of the buoyant cell is once 

again overpredicted drastically. The inlet turbulent viscosity study shows the fluid nearly 

reaching the heated wall for an inlet dissipation rate of 0.20. The subsequent addition of 

the AFM model leads to increased heat transfer and, thus, decreased penetration as the
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Figure 5.35 - Final Results (Case 3): Nusselt Number Comparison
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fluid is driven back from the heated surface. The present results do represent some 

improvement over previous predictions where higher inlet turbulent viscosity was 

employed and the flow was nearly entirely dominated by buoyancy.

A comparison between predicted and experimental Nusselt numbers is presented in 

Figure 5.35. The experimental proflie is very similar to that seen in Case 2. The highest 

heat transfer rates occur above the separation location and the Nusselt number decreases 

as the fluid rises within the buoyant cell. The predicted profile is similar with a local 

minimum occurring at the separation point. However, the predicted maximum heat 

transfer rate does not occur in the upper part of the cavity as in the experiment. This is 

the result of the cold inlet jet not reaching the heated wall which leads to smaller 

temperature differences and lower heat transfer rates in this region.,

5.4.4 Case 4

The inlet viscosity study for Case 4 showed increased buoyant recirculation due to 

higher heat transfer rates as the inlet dissipation was decreased. The AFM study found 

that heat transfer was greatly enhanced when the turbulent heat flux representation was 

modified.

Streamline results for the combined model are compared with experiment in Figure 

5.36. Predicted turbulent viscosity contours are shown in Figure 5.37. The predicted 

flow field is buoyancy-dominated with one large recirculating cell. These results are 

consistent with the experimental findings. The decrease in time-scale ratio R from 0.5 to 

0.25 has had a noticeable weakening effect on the strength of the buoyant cell (compare
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with Figure 5.24). This would indicate that the fluctuating temperature variance plays an 

important role in determining the heat transfer rate for this case.

Nussult number profiles are compared in Figure 5.38. The predicted profile shows 

decreased heat transfer as the fluid rises along the heated wall. The experimental data 

shows a similar profile in the bottom of the cavity but not in the top half where the heat 

transfer rate increases as the fluid rises. This could be the result of the separated flow 

which occurs in the top comer of the cavity.

5.4.5 Final Results Summary

As expected, the combination of modifed inlet turbulence conditions and the 

algebraic flux model still results in flow fields which are representative of overpredicted 

heat transfer rate and buoyant recirculation. Despite the obvious changes in predicted 

turbulence parameters, the mean flow results are qualitatively similar to those obtained in 

previous modelling attempts. However, some improvement is evident in Case 3 where the 

predicted flow penetrates further into the cavity and therefore agrees more closely with 

the experiment. This result is encouraging as it was this case which previously presented 

the most difficulty.



CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Purpose

The main focus of this study involved the implementation and testing of an 

algebraic heat flux representation used in conjunction with a low-Reynolds number k-e 

turbulence model. This approach has been employed in the past by researchers hoping to 

exploit the greater physical accuracy inherent within the AFM model. In most 

circumstances, the effect on the mean flow has been limited despite very noticeable 

differences in the predicted turbulent quantities. The purpose here was to determine if the 

the algebraic flux model would have a significant effect on the predicted flow field when 

dealing with mixed convection conditions.

As a secondary study, the effect of varying the prescribed inlet turbulence 

parameters was also examined. Although this topic is rarely discussed within the 

literature, it is believed that the predicted results are sensitive to the selection of these 

parameters when certain flows and flow conditions are involved.

6.2 Conclusions

The use of the algebraic heat flux model leads to significant increases in the

no
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magnitudes of both components of turbulent heat flux near the heated surface. Although 

the larger vertical component results in increased buoyant source terms for both the k and 

e equations, the combined effect is higher levels of turbulent viscosity. The increased 

horizontal component and corresponding increase in the horizontal gradient of this 

quantity leads to enhanced heat transfer rates and stronger buoyant recirculation for all 

cases.

The sensitivity of the predicted results to two of the model constants associated 

with the AFM model was also studied. Lowering model constant C directly decreases 

both components of turbulent heat flux resulting in lower rates of heat transfer and 

buoyant recirculation. The reduction of time-scale ratio R translates to smaller fluctuating 

temperature variance and, thus, smaller vertical turbulent heat flux. Although the 

turbulent viscosity levels decrease slightly, the mean flow is not significantly affected.

The incorporation of the algebraic flux model, on its own, is not the solution to the 

problem associated with this flow field. The buoyant effects are already overpredicted 

compared to the available data when the simple gradient diffusion model is employed, and 

increase in strength when the AFM model is added. However, the use of the AFM model 

is appropriate and necessary if the predicted turbulent heat flux field is more accurate than 

that which results when the simpler model is employed. If this is the case, some other 

factor is responsible for the discrepencies between the predicted results and the 

experimental findings.

The study of the sensitivity of the predicted results to the choice of inlet turbulence 

conditions showed that this factor is an important consideration when dealing with this
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type of flow. Two effects were noticed as the inlet dissipation rate was decreased while 

holding the turbulence intensity constant. The first involves an increase in mean flow 

momentum resulting from a reduction of energy removal from the mean flow through the 

decreased dissipation rate. This effect was predominant in the isothermal Case 1 and also 

in Case 3 where the inlet jet was shown to penetrate further into the cavity for a reduced 

inlet dissipation rate. The {second effect involves the increase in heat transfer rates and 

buoyant recirculation due to increased levels of turbulent viscosity throughout the cavity. 

This effect was noticed primarily in Case 2, where the separation location increased, and in 

Case 4, where noticeably stronger buoyant recirculation occurred, as the inlet dissipation 

rate was decreased. Although both effects are present for all cases involving heat transfer, 

it seems that the relevant strength of these effects is dependent on the flow conditions 

involved. One such factor may be the inlet Reynolds number which is not constant for all 

of the cases. Case Three is the least turbulent at the inlet and therefore may benefit most 

from a reduction in dissipation rate. Nevertheless, until the exact turbulence conditions at 

the inlet are known, prescription of these values and any further discussion must be 

considered pure speculation.

6.3 Recommendations

To successfully predict this specific flow it is necessary to accurately predict the 

turbulent heat flux components. Experimental evidence must be secured which can 

provide the researcher with the confidence that these parameters are being represented 

accurately. If it is then determined that the turbulent heat flux is not being treated
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properly, the extension of the model to a higher order can then be considered.

With respect to the inlet turbulence conditions, experimental data regarding these 

parameters is also necessary to avoid speculation regarding their specific value. It would 

also be very useful to conduct further experimental and numerical studies involving higher 

inlet Reynolds numbers. The fact that the current studies involve relatively low inlet 

Reynolds numbers may account for some or all of the dependence on these inlet 

turbulence conditions.

Finally, the suggestion of Hanjaic and Vasic [21] that three-dimensional effects are 

a major source of inaccuracy when dealing with buoyancy-induced flows must be 

considered in connection with any further modelling effort.
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