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ABSTRACT

This study involves a numerical investigation of turbulent, mixed convection flow
within a rectangular enclosure. Previous numerical and experimental research conducted
at McMaster University, Hamilton (Canada) found that the influence of buoyancy was
éenerally overpredicted when the standard k-e low-Reynolds number turbulence model
was employed. The main purpose of this study is to determine the effect of representing
the turbulent heat flux components using the more physically realistic Algebraic Heat Flux
Model (AFM). The AFM model is shown to have a significant effect on the turbulence
parameters involved leading to even higher rates of hedt transfer and buoyant influence
than the standard eddy Viscosity representation for all test cases.

As a secondary study, the sensitivity of the predicted results to the choice of inlet
turbulence conditions is considered. The results show that the choice of inlet conditions
can have a significant effect on the predicted flow field and therefore must be accurately

selected when dealing with this type of flow.
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NOMENCLATURE

Inlet ratio (D/H) of the cavity
Empirical turbulence model constant (see Table 2.1)
Inlet height (see Figure 2.1)

Low Reynolds number model damping function (see Equation 3.34)
acceleration due to gravity

Generation of turbulence

Grashof number

Cavity height (see Figure 2.1)
Dimensional turbulence kinetic energy
Mixing length
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Dimensional fluid pressure
Dimensionless fluid pressure

Prandt]l number

Time scale ratio (see Equation 2.27)
Reynolds number

Richardson number (see Equation 2.30)
Source term

Fluctuating temperature

Dimensional fluid temperature

Velocity component in the x - direction
Dimensionless u - velocity -

Velocity component in the y - direction
Dimensionless v - velocity

Cavity width (see Figure 2.1)
Dimensional horizontal component
Dimensionless horizontal component
Dimensional vertical component
Dimensionless vertical component

Greek Variables

o

Thermal diffusivity of the fluid




NOMENCLATURE (continued)

B Coefficient of thermal expansion of the fluid
T Eddy diffusivity of heat (see Equation 2.8)
8 Kronecker delta
e Dimensional rate of dissipation of turbulent kinetic energy
1 AFM constant
0 Dimensionless temperature
v Kinematic viscosity
'3 AFM constant
[+ Fluid density
] Turbulent Prandtl-Schmidt number (see Table 2.1)
T Time, Shear stress (see Equation 2.5)
¢ General flow variable (see Equation 2.1)
b4 Turbulent intensity (see Equation 3.37)
Subscripts
AFM Algebraic Flux Model
C Constant part

Inlet boundary condition
jet  Inletjet
1 Laminar
out  Outlet boundary condition
P Variable part
pen  Penetration location
R Reference value
sep  Separation location
SGD Simple Gradient Diffusion
t Turbulent
w Wall boundary condition
Superscripts
- Average quantity

Fluctuating quantity

*

Dimensionless quantity
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CHAPTER ONE

INTRODUCTION

1.1  Background

The development of computational approaches to fluid mechanics and heat and
mass transfer has had an immeasurable effect on these fields in recent years. Numerical
solutions can now be generated for complicated problems once considered impossible to
solve. As a result, the need for elaborate experimentation has been reduced or entirely
rémoved in many instances, translating to savings of time and money.

One of the most difficuit problems in computational fluid dynamics (CFD) has
been and continues to be the incorporation of turbulent effects within a numerical
formulation. Many turbulence models have been proposed, with varying degrees of
success associated with each. The most popular turbulence models currently employ a
two-equation k-g€ model based on a simple eddy viscosity/diffusivity hypothesis. Such
models have demonstrated an ability to predict the solution to a wide variety of fluid fiow
problems.

There are, however, certain types of flows which have not been well-predicted by
this type of model. Among these are turbulent flows induced by thermal buoyancy. Such

flows have many applications within the engineering field including space heating and
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cooling, nuclear reactor components, electronic equipment, and solar collectors. Despite
the practical importance, many of these problems have not and cannot be successfully
solved using the current industrial standard models.

The modelling of the turbulent heat flux components, which is considered by some
to be at the root of the problem, has received attention in the recent CFD literature. While
some success has been attained, it is clear that more work is required before a suitable

‘model is developed.

1.2  Objective

The present study involves ﬂle numerical investigation of turbulent mixed
convective flow within an enclosure. The main objective is to determine the effect on the
predicted results when an algebraic turbulent heat flux model is incorporated into the
governing equations. As a secondary study, the sensitivity of the predicted results to inlet
turbulence conditions is also examined. While this topic does not normally receive a great
deal of attention, it is believed that this may be an important factor when dealing with this
type of flow.

The final results are compared with detailed velocity, temperature, and heat

transfer data obtained previously at McMaster University, Hamilton (Canada).

13 Outline

The study is comprised of six chapters. The following chapter reviews previous

related research in buoyancy-induced flows and turbulence modelling. Chapter Three




details the mathematical formulation of the problem while Chapter Four deals with the
numerical approach. Chapter Five presents the results and compares them to previous
experimental and numerical values. The final chapter contains conclusions and

suggestions for further study.




CHAPTER TWO

LITERATURE SURVEY

This chapter is intended to serve as a concise review of the topics directly related
to this study. Other, exhaustive review articles and books or‘l these subjects are referenced
where appropriate.

Section 2.1 provides an introduction to turbulence modelling, with the focus on
models which are most commonly used today. Section 2.2 contains an examin.ation of
previous numerical studies of buoyancy-induced cavity flows. Finally, Section 2.3

describes the particular flow geometry and summarizes the previous results.

2.1  Turbulence Modelling
2.1.1 Time-Averaged Equations

Turbulent flow is governed by the same set of instantaneous conservation
equations which govern laminar flow. For the problem considered, these include the
continuity equation, the Navier-Stokes equations, and the energy equation. However, due
to the small-scale nature of turbulence it is generally impractical to deal with these
equations in their instantaneous form. Instead, the instantaneous variables are separated

into mean and fluctuating quantities as in Equation (2.1),




d=0+¢ 2.1)

where ¢ represents the dependent variables u, v, T, etc. The overbar denotes the time
averaged value of the component while the prime refers to the fluctuating value. After
substitution into the instantaneous equations and the subsequent averaging of the

individual terms, the time-averaged governing equations for turbulent flow are derived.

Continuity
% =0 . . 2:2)
Momentum
%’?4-71%:-%.2%+%[v,%-u’ju’i}-gﬁ(?-fﬂ) 2.3)
Energy

Tt should be noted that the Boussinesq approximation has been introduced to
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account for density fluctuations. Thus the influence of variable density appears only in the
last term on the right hand side of Equation (2.3). For convenience, the overbars will be
dropped from all terms containing only mean quantities from this point on.

The terms involving correlations of fluctuating components make this equation set
different from the laminar equation set. Specifically, these include the mean Reynolds
stresses and the turbulent heat fluxes. These terms are responsible for the effect of
turbulence on the mean flow.

For a two-dimensional flow (i = 1, 2), there are nine unknowns but only four
equations. To close this equation set, relationships for the turbulent stress and flux terms

must be developed.

2.1.2 Effective Viscosity Concept

Turbulent flows involve rapid mixing and, therefore, increased rates of momentum
and heat transfer. One approach then, is to attempt to mimic these turbulent effects
through the use of artificial or ‘eddy’ viscosity and diffusivity coefficients.

Boussinesq proposed this concept in 1877 in analogy to the existing relationship
for viscous stresses in laminar flow [1]. Boussinesq suggested that the turbulent stresses

could be expressed as,

t, =alul = v, [__f+_z] - i;. k5, 2.5)

where v, represents the turbulent or ‘eddy’ viscosity. The turbulence kinetic energy, k,




defined as,

2 72

k== u{ +u.; Uy ) (2.6)

1
2
is incorporated to insure that the relationship also holds for the normal stresses (wherei=
)2

In direct analogy to the eddy viscosity concept, the turbulent heat flux is expressed

I ¢f = YL
u :'t axf (2.7)

where T is the eddy diffusivity of heat. The Reynolds analogy is often used to- relate this

diffusivity to the eddy viscosity,

V.
= ;; (2.8)

where oy is the turbulent Prandt] number.

Equations (2.5) and (2.7) can be used to eliminate the turbulent stresses and heat
fluxes from the mean flow equations. It is still necessary to determine the turbulent
viscosity at alt points in the flow field before the equation set is closed.

Many methods have been proposed for the determination of eddy viscosity within
a flow field. In general this quantity can be expressed as the product of a length scale, L,

and a velocity scale, V, such that,




v LV . 2.9)

These scales can be prescribed algebraically based on an a priori knowledge of the flow
field but it has become popular to use differential relationships which attempt to account
for the transport and history of the turbulence. Models of the eddy viscosity type are
often characterized by the number of additional differential equations which must be

solved to close the equation set.

2.1.3 Zero-Equation Models
The first turbulence model was proposed by Prandtl [1] who related the eddy
* - viscosity to the transverse velocity gradient and a prescribed length scale, I, which

Prandtl called the mixing length:

=]2 ou
v, =1, Iayl (2.10)

Despite its simplicity, Prandtl's mixing length model has been applied successfully to many
types of flows. The model works very well in situations where a single velocity scale
governs the flow and the mixing length, which is related to the size of the largest eddies,
can be predicted accurately. This prescription becomes very difficult as the complexity of

a problem and the number of relevant length and velocity scales increases.

2.1.4 One-Equation Models

Attempting to account for the transport of turbulence, one-equation models
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determine the velocity scale from its own transport equation. The most common velocity
scale used is the square root of turbulence kinetic energy, vk. When substituted into

Equation (2.9), the Kolmogorov-Prandtl expression [1] results,

v, = C/VEL (2.11)

where C,’ is an empirical constant.

The exact equation for the transport of k can be derived from the Navier-Stokes

equations [1],
ok . ak __al, w0 ph| o o O3
= —_—= - L Je ) -utu — - u't' - v — 2.12
&r +ui&i gx;[u ,'( 2 p) uj J&j Bgi i [__axj ax} ( )

The left hand side of the equation describes the time rate of change and convection
of turbulence kinetic energy, while the first term on the right hand side is responsible for
the diffusive transport of k due to pressure and velocity fluctuations. Since the diffusion
term is a function of unknown correlations this term must be modelled. The second and
third terms on the right hand side represent the generation of kinetic energy due to shear
and buoyancy respectively. The last term on the right is always negative and thus
represents the viscous dissipation of k. This term aiso requires modelling.

In analogy to the diffusion of temperature and other scalar quantities, the diffusion

flux of k is often expressed as [1],

!
U, v
ol (B, Py Y G (2.13)
k i
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where 0, is an empirical constant.

The dissipation of turbulence kinetic energy, €, is usually modelled as [1],

B=vau’iau",=c K32
l&j&j DL

(2.14)
following from dimensional arguments employing k and L as the scales for the dissipation
of kinetic energy.

The final modelled form of the turbulence kinetic energy equation is,

% + 5g&g -

o, ‘o, ox,

ou,
Sk L,k i[.fiilf.] + v, [__’-i-a—uZ] e (2.15)

& ‘ox, ox ax, ax,) ax,
where Equations (2.5) and (2.7) have been substituted for the turbulent stresses and heat
fluxes.

The one-equation model is comprised of Equation (2.15) and the Kolmogorov-
Prandt] relationship (Equation (2.11)). Although some account of the transport of
turbulence is introduced, it remains necessary to define an appropriate length scale. Thus
the one-equation model is limited by the same restriction as Prandil's mixing-length model.
For this reason, researchers have moved on to a two-equation formulation in which the

length scale is determined from a second transport equation.

2.1.5 Two-Equation Models

Although some models employ a transport equation for the length scale L itself, it
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is not necessary or even most convenient to do so. Several twq-equation models have
been proposed including the k-L, k-kL, and k- (vorticity) models, but it is the k- model
which has been the most popular to date. Although all of the models are similar, the €
equation has a practical advantage over the others because it requires one less source term
[1}

The exact equation for € can be derived from the Navier-Stokes equations, but the
inherent complexity leads to dramatic modelling requirements. As a result, a form of the €

equation based on physical arguments is employed,

(2.16) .

¥

38 a :a £ 82
G 3l N%) ¢ 2p.ci-C2
Mar™ 6x[08x]+ ug kT Cap kT ey

where P, is the generation of turbulence kinetic energy by shear and G; is the generation of

k by buoyancy,
ou Ou,| Ju,
P =v [__f + _1) — .17
‘Lo, &) ox
Ve aT
G, = pg. L2
= Pg; o 3. (2.18)
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Substitution for L in terms of k and € in the Kolmogorov-Prandtl relationship

(Equation (2.11)) yields the following expression for eddy viscosity,

v, = —& (2.19)

This expression, along with the two transport equations (2.15 and 2.16) make up the

standard k-¢ turbulence model. The generally adopted constants are listed in Table 2.1.

1.92 1.44 1.3 1.0 1.0

Table 2.1: k-e Model Constants

This model has been used to predict several types of flows and has to be recognized as the
most popular turbulence model to date. More complete reviews of turbulence modelling

can be found in references [1}, [2], and [3].

2.1.6 Near-Wall and Low-Reynolds Number Flows
The preceding models are restricted to situations where the local Reynolds number
is high enough that viscous effects are unimportant. Near boundaries and in other low-

Reynolds number regions, the effects of molecular viscosity must be accounted for.




13

In dealing with wall effects, one of the more popular approaches has been the use of “wall
functions’ which relate surface boundary conditions to points outside the low-Reynolds
number region based on experimental data. This insures the correct distribution of mean
flow and turbulent quantities in the near-wall region. While researchers have had some
success using this approach, the use of wall functions in connection with buoyancy-
induced flows has been ineffective in many instances. This has led some to suggest that
wall functions must be abandoned when dealing with such flow phenomena [22].

Another proposed method is the extension of the turbulence model such that it still
applies within the low-Reynolds number region. This is accomplished through the use of
-damping functions which attempt to mimic the effects of the wall and molecular viscosity.
These functions, derived from numerical and experimental data, are incorporated as
modifications to the already existing model constants.

Several low-Reynolds number turbulence models have been proposed with varying
degrees of success associated with each. The models of Jones and Launder [4], Launder
and Sharma [5], and Lam and Bremhorst [6] have become popular in the CFD community.

A complete review of near-wall and low-Reynolds number flows is presented by

Patel et al. [7].

2.1.7 Second - Order Differential Reynolds Stress/Flux Models
Perhaps the most obvious approach to the closure problem is to derive exact
transport equations for the turbulent stresses and heat fluxes. The exact Reynolds stress

equation was first derived by Chou [1] in 1945, while the analogous turbulent heat flux
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equation followed shortly thereafter.

Exact Reynolds Stress Equation

auliul_ au’f”{i:_i
b, ox,

- u'p’ ou'p'\ ——r u,
Taluly.- 1| S4P P ) T %Y
(u'yu’ p[ ax aj] S~y (2.20)

— O, —_— —_— ou’, ou’ ou’ ou’,
Y P et B T v gul thy+ BV 14 ZJ| gy 13

Exact Turbulent Heat Flux Equation

ou’,t’ u’,t! 0 (777, 1 o7 7T ot ; O,
+ u, ) =-—1¢ (u et +_p S, p t) -u ‘uf—axj-uljt —ij (2.21)
7, 1 ou’, at!
cBot+ = p!' S (et R L
Bg, ppa, ('v’)hak

Both equations contain complicated higher order terms involving double and triple-
correlations of fluctuating quantities. These terms must be approximated if the equation
set is to be closed at this level.

Launder et al. and Gibson and Launder proposed [1], respectively, the following

modelled forms for the transport of the Reynolds stress and the turbulent heat flux:
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Modelled Reynolds Stress Equation
ou’ul ou’u’ dlr———Fou'u’| —-0u
B s, am

7.2 2
- 01% @' w3 8,k) ~ ey (Pr38,P) - cs(Gﬁ'%ay’Gk) ¥ Gﬁ_éaaﬁ

Modelled Turbulent Heat Flux Eguation

ou't! Su';t! 2 Itr_—/a'—‘f_x‘dr 7 T _ —7779% 22
5 + u >, = csa—a—; ;ufku , a, ) - ulu jng -u't ?x: - Bg,t"? (2.23)

3

ou —_
£ i

- cw—u’,,t’ + ot — & c3(,[5g,.l"2
k ax,

where stress production, P;, and buoyancy production, G, are given by:

P,o=ul gl ot - ulul (2.24)

G; = P(gu't' +gu'th (2.25)
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The differential stress/flux model is comprised of Equations (2.22) and (2.23),
transport equations for k and ¢, and an expression for temperature variance. The inherent
complexity and immense computing power requirement has limited the popularity of this

model thus far.

2.1.8 Algebraic Stress/Flux Models

For practical applications, researchers have attempted to simplify the Reynolds
stress and turbulent heat flux transport equations without a significant loss of physical
accuracy. As gradients of the dependent variables occur only in the rate of change,
convection, and diffusion terms, these equations can be rendered algebraic with
appropriate modelling.
Rodi [8], and Gibson and Launder [1] proposed relationships for the transport of turbulent
stresses and heat flux, respectively. Both use the assumption that this transport is

proportional to the transport of turbulence kinetic energy:

—

Du'u’ —  u'u'( D u'ul
i J i = ! - Di = i -
- D{ﬁ' (u I‘-u Ij) = 2 J( E Dlﬁ. (k)) = 2 1 (P k+Gk 8) (2.26)
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Du'ft! ——  ult’

Substituting these relationships into the modelled transport equations (Equations (2.22)

and (2.23)) gives simpler, algebraic forms for the Reynolds stress and turbulent heat flux:

Algebraic Reynolds Stress Equation

2
_ %(1—c,) B33P +1-C) (Gf-%ﬁgGk) 2.
ulu! = + kO, (2.28)
P,,+Gk__1+ ¢, 3
-4

Algebraic Turbulent Heat Flux Equation

k|7 o — 7 O pr7
e u'u Ij'a? * (I'Cza)"’:rl‘éf’ +(1-Co) gt ”
u't! = : L (2.29)

1| P+G,
"‘( - -1 +Cye

2




18

These equations are often simplified further by assuming that the turbulence is in a state of
local equilibrium (P, + G; =¢).
The algebraic stress/flux model consists of Equations (2.28) and (2.29), the

transport equations for k and €, and an equation for the temperature variance.

2.2  Previous Numerical Studies
2.2.1 Two - Equation Models

In one of the earliest applications of a two-equation model to buoyant flow, Plumb
and Kennedy [9] applied the Jones and Launder low-Reynolds number k-¢ model to
natural convection from a vertical constant temperature surface. The researchers reported
satisfactory agreement with available experimental data as the model overpredicted
velocity in the outer portion of the boundary layer, overpredicted the heat transfer rate and
failed to predict the sharp peak in k near the wall.

Markatos and Pericleous [10] used a k-g model 'with wall functions to model
natural convection in a side-heated square cavity. Although no comparison to turbulent
data was made, the researchers reported that ‘the results showed some of the
experimentally observed features indicating qualitative agreement’.

Humphrey and To [11] studied free and mixed convection in a strongly heated
cavity using a low-Reynolds number k- model. For the natural convection case, the
researchers found that the eddy diffusion coefficient was underpredicted leading to an

overprediction of Nusselt number. The mixed convection tests indicated that buoyancy
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dominated flow occurred when the Richardson number was greater than 2, and inertia

dominated flow occurred for Richardson number less than 0.4. For both free and mixed
convection, the results were in good qualitative agreement with available flow
visualization data.

Ince and Launder [12] studied natural convection in rectangular cavities using the
Jones and Launder low-Reynolds number model. Although satisfactory results were
initially obtained, the researchers found excellent agreement with experimental data when
the Yap source term [13] was added to the € equation. The purpose of this term is to
increase the dissipation near the wall thereby decreasing the excessive length scales
predicted in this region by the origigal model. The authors also found that the results
could be marginally improved through the use of the ‘generalized gradient diffusion
hypothesis’ in calculating the turbulent heat flux.

Henkes et al. [14] performed a comparative study involving the k-€ model in
connection with various low-Reynolds number models and the wall function approach.
For natural convection in a square cavity, the researchers found that the use of wall
functions leads to overpredicted heat transfer rates. It was also argued that the
combination of buoyant source terms in the k and € equations has a small net effect on the
resulting turbulent viscosity.

Davidson [15] studied natural convection in a rectangular cavity employing a
modified low-Reynolds number model. Corrections to the damping functions were made
to account for viscous effects in free flows while remaining consistent in its near-wall

behaviour. The predictions showed very good agreement with both the experimental data
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of Cheesewright et al. [16] and results obtained with the Lam and Bremhorst model.

2.2.2 Differential and Algebraic Stress/Flux Models

Several studies of buoyancy-induced cavity flow involving more physically realistic
turbulence models have been carried out in the past.

Rodi [8] studied vertical buoyant jets with the aid of an algebraic stress/flux model.
It was found that the predicted spreading rates were in better agreement with the
experimental data than those calculated using the standard k-¢ model. The temperature
variance, based on an algebraic relationship assuming a constant time scale ratio R
(defined in Equation (3.27)), was generally overpredicted and not propely distributed.
Rodi suggests solving a complete transport equation for temperature variance.

To and Humphrey [17] studied natural convection from a heated, vertical plate
using a low-Reynolds number k-¢ model and an algebraic stress/flux model. The latter
also employed an algebraic expression for temperature variance while assuming a constant
R value. Both models were shown to predict the mean flow and heat transfer well with
only minor discrepancies between the data. The researchers also found that the algebraic
model was capable of predicting the anisotropic turbulence characteristics.

Silva and Emery [18] used an algebraic stress/flux model to predict natural
f:onvection flow in a square enclosure and compared the results to those obtained using a
k-¢ model. It was found that the algebraic model predicted higher average Nusselt
numbers and a more developed momentum boundary layer.

Davidson [19], again investigating flow in a rectangular cavity, used a hybrid of
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the eddy viscosity and algebraic approaches. Specifically, Davidson added the buoyant |
part of the algebraic Reynolds stress equation (Equation 2.28) to the standard eddy
viscosity relationship (Equation 2.5). Davidson also made use of the generalized gradient
diffusion hypothesis when calculating the turbulent heat flux. While noting that the model
predicted turbulent quantities more realistically, the results showed a small effect on the
heat transfer and mean flow.

In an evaluation of turbulence models for predicting iJuoyant flow, Shabbir and
Taulbee [20] studied the axisymmetric buoyant plume. By substituting experimental data
into the closure equations, the authors were able to investigate the validity of the k-¢
model and the algebraic stress/flux model. The researchers found that the k- model could
not predict the proper axial heat flux distribution, while the algebraic model could not
yield realistic values for this quantity if the magnitude of the temperature variance was
properly predicted. Shabbir and Taulbee suggest that models such as Rodi's have made up
for incorrect predictions of the axial heat flux by overpredicting the temperature variance
thus leading to a well-predicted mean flow. The authors also state that not onlyisa
transport equation for the temperature variance required, but a full differential stress/flux
treatment before the axial heat flux and the temperature variance can be calculated
properly.

Hanjalic and Vasic [21] studied natural convection in rectangular and square
cavities using an algebraic heat flux model. The authors proposed that the accurate
calculation of Reynolds stress components is not necessary and thus used the eddy

viscosity representation (Equation (2.5)) for this quantity ( an algebraic expression for
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temperature variance was also employed with constant time-scale ratio R). Satisfactory
results were obtained for side and bottom heated, and mixed configuration cavities. The
researchers also indicated that three-dimensional effects are probably the major cause of
reported disagreement in cavity flows.

In a review of the modelling practices associated with turbulent buoyant flows,
Hanjalic [22] states that the minimum level required to obtain satisfactory resuits is the
algebraic flux model. The author recommends the solution of transport equations for the
temperature variance and its dissipation suggesting that the assumption of constant time
scale ratio, R, is invalid. Hanjalic also states that the inadequacy of the turbulent diffusion
model for turbulent quantities seems to be compensated by mean flow advection resulting
- in stronger reckcﬁafory motion than detected by experiment. Results generated using a
three equation model (k-e-t) and a four equation model (k-e-t*-g,) for some cavity and
annulus flows were presented.

Murakami et al. [23] investigated the flow of a nonisothermal horizontal jet in an
enclosure using the k-¢, algebraic stress/flux (with temperature variance transport
equation) and differential stress/flux models. The authors found that the k-¢ model
predicted much lower values for the streamwise heat flux than the higher order models
leading to poorer prediction of temperature profiles. All three models showed poor
agreement just after the discharge. The results were slightly better for the differential
stress/flux model as opposed to the algebraic model. The researchers attributed this to
inadequate modelling of the transport of the turbulent stress and heat flux (Equations

(2.26) and (2.27)).
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Kato et al. [24] studied two-dimensional room airflow using an algebraic model

similar to that used by Murakami et al. The authors reported a remarkable difference in
the values of turbulent heat flux predicted by the k-¢ and algebraic models. No
comparison with experimental values was made.

Kenjeres and Hanjalic [25] studied natural convection in concentric and eccentric
horizontal annuli using a three equation model. Good agreement with experimental data
was obtained after adjustment of the model constants. The authors expect that better
results could be obtained with a four equation model.

So and Sommer [26] present an explicit formulation of the algebraic heat flux as
opposed to the implicit form given in Equation (2.29). The researchers report that this
approach will prevent numerical instabilities from occurring in the heat flux equations.

Sommer and So [27] discuss the need to solve transport equations for the
temperature variance and its dissipation. The authors claim that this level of modelling is
necessary to predict the countergradient heat transport phenomena. Sommer and So also
use the thermal time scale, in addition to the mechanical time scale, in modelling the heat

flux equation.

23  Problem History

The present study involves the investigation of turbulent convection within a
rectangular enclosure shown in Figure 2.1. Water, at temperature T;, flows through an
inlet at the top of the cavity. Heat transfer to the fluid occurs on the right vertical surface

which is maintained at a constant temperature, T,. The water exits through the outlet at
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the bottom of the enclosure. The height to width aspect ratio is 2 for all cases considered.

This specific problem has previously been investigated experimentally and

numerically by Nurnberg [28]. A summary of the test cases used is provided below in

Table 2.2.

## 1
ﬂ CASE 1 2 3 4

u; (m/s) 123 124 063 063

T, (°C) 20 425 63.0 80.6

T, (°C) 20 223 24.0 25.9

Rey 36100 47600 36000 35300

|

0 2.87 10.7 242

0 - 1.27 11.9 19.4
Wﬁ

Table 2.2 - Summary of Test Cases

These cases have been chosen to study flows covering a range of Richardson (Ri)

numbers. This important convection parameter is defined as the ratio of buoyant to

inertial forces,

(2.30)
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Figure 2.1: Problem Specification
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The first test case, being isothermal, is purely inertia driven, while the fourth case is
predominantly controlled by buoyancy. Cases Two and Three are designed for mixed

convection flow where the magnitudes of these forces are comparable.

2.3.1 Experimental Results

Detailed velocity data was collected using a single component laser Doppler
anemometer system while horizontal temperature profiles at three vertical locations were
obtained using thermocouples. Flow visualization was also performed using the laser
induced fluorescence technique.

. Figure 2.2 shows the velocity measurements on the vertical plane of symmetry for

Case 1. A large clockwise recirculating cell dominates the flow in the cavity while smalil
secondary cells form in the corners. An important factor in this study is the location of
flow separation along either the heated vertical surface or the adiabatic top wall. For
inertia dominated flow, the fluid separates along the heated wall at a distance y,, from the
bottom of the cavity. Ifthe flow is dominated by buoyancy, the ﬂqid penetrates a distance
Xpe from the opening to the cavity before separating along the top wall. For the
isothermal case, the fluid separates on the vertical wall at a height of approximately 70 mm
or 0.24 when made dimensionless by the cavity height.

Velocity measurements for Case 2 are presented in Figure 2.3. In this case
buoyant effects become evident as the primary recirculating cell has decreased in size and
a larger counterclockwise secondary cell has formed in the bottom right corner of the

cavity. The increased secondary cell is the result of buoyancy providing a source of
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positive momentum in the vertical direction along the heated wall. The resuit is an
increase in the separation height location to 120 mm or 0.4 dimensionless units.

In Case 3 the flow is further influenced by buoyancy, as shown in Figure 2.4.
Here, two recirculating cells of approximately equal size have formed and the resulting
separation height has increased to 190 mm or 0.64 dimensionless units.

Finaily, the velocity measurements for Case 4 are presented in Figure 2.5. In this
case the inertially driven cell seen in the previous three cases is completely overcome by
buoyant forces. This results in a single large counterclockwise cell dominating the cavity
flow. The fluid separates along the horizontal top wall, having a penetration depth into

.the cavity of 25 mm or .084 dimensionless units.
All of the LDA data described previously was supported by the flow visualization

study.

2.3.2 Numerical Results

The problem was modelled in two-dimensions using the Lam and Bremhorst low-
Reynolds number k-g approach [28]. The simple eddy viscosity relationships were
employed for both the Reynolds stress and turbulent heat flux terms.

Streamlines for the isothermal case are shown in Figure 2.6. The inertially driven
cell has size and strength comparable to the experimental values. The predicted separation
height is 0.31 dimensionless units.

Results for Case 2 are presented in Figure 2.7. Although the simulated and

measured flow fields are similar, the predicted buoyant cell is larger. The separation
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height was found to be 0.76 dimensionless units. |

Case 3 results are shown in Figure 2.8. The simulations show the buoyant forces
overcoming inertia resulting in one large counterclockwise rotating cell. The penetration
depth of the fluid into the cavity was found to be .025 dimensionless units.

The predictions for Case 4 are shown in Figure 2.9. The flow field is similar to the
experiment as it is completely dominated by buoyancy. The predicted penetration depth is
025 dimensionless units. '

A summary of experimental and predicted dimensionless separation locations, Y,

and penetration depths, X, is given in Table 2.3.

Expetimental Numerical
Data Predictions
Case Y, X Y., Xoen "
I 1 0.24 - 031 ) - "
2 0.40 - 0.76 - .
3 0.64 - - 0.025 'F
4 - 0.084 - 0.025 ll

Table 2.3: Separation Locations
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Based on the data, it may be concluded that the buoyant force is overpredicted by

the current numerical model. This leads to a higher separation point in Case 2, separation
along the horizontal top wall in Case 3, and decreased penetration depth in Case 4.
Clearly, an accurate estimation of the buoyant force is necessary before agreement with

experimental results is possible.




CHAPTER THREE

MATHEMATICAL FORMULATION

3.1 Intreduction

This chapter serves as an outline of the mathematical formulation employed in
modelling the problem. Section 3.2 contains the conservation equations for velocity,
temperature, turbulence kinetic energy, and dissipation of turbulence kinetic energy. The
Aequations are presented in dimensional and dimensionless forms. Section 3.3 discusses the
modelling of the turbulent heat flux and the fluctuating temperature variance. Boundary
conditions for the differential equations and the Lam and Bremhorst low-Réynolds

number damping functions are discussed in Section 3.4.

3.2 Governing Equations
3.2.1 Dimensional Governing Equations
The time-averaged equations governing the mean flow include the continuity, x-

momentum, y-momentum, and energy equations:

38
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Continuity
ou _ ov .
?3; + -a; =0 (3.1)
x-Momentum
ou du 13 d Su a Su
‘% -;-é‘% t ((":"V;) 'gx-] ‘% (("z"":) 5;] 32
3oy -3od) 32
y-Momentum
v v _ 13 . 3 ) . 3 v
S5 33 Eemg) Flomg) e
3 AR ) 2%k
+ a‘(("l"’"z) ‘5) + Ey'—((vg""’,) 5;) = SB(T"T,-,;') - 35
Energy

or ,,or_ o (wer| , amar| 2 gy .2 G
S ax[ozax]+6y[0183:] AR AR D

The momentum equations were obtained by substituting the eddy viscosity relationship for
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the Reynolds stress terms (Equation (2.5)) into Equation (2.3). The turbulent viscosity,

Vv, , is given by,
v, =Gty ry (3.5)

where f, is a damping term to be discussed in Section 3.4.2. Forms ofthek and ¢

equations incorporating low-Reynolds number damping functions are used:

Turbulent Kinetic Energy

ok ok _ d Vey Ok <) Vey Ok Py
U= +v= = ] (v,+2L) =) o+ = (v+L) =] + G -e + Pgvis 3.6
(’o,, ax] ay[’o,, By]. (3.6

Dissipation of Turbulent Kinetic Energy
de de @ Vey Ot d Ve O
i + vEy_ = -é"x-{("z*?') —] + 5[(":"’?: 5] 3.7

&2 —
+C1£%G—Czj;-;+csj;g[5%vf

where the generation of turbulence, G, is

oL@ @ Eg) e
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The standard model constants are given in Table 2.1 while the damping functions
are discussed in Section 3.4.2. Representation of the turbulent heat flux, which appears in
the energy, kinetic energy, and dissipation of kinetic energy equations, is discussed in

Section 3.3.
3.2.2 Dimensionless Variables
The governing equations can be cast into a non-dimensional form when the

following variable definitions are employed:

Dimensionless Distance

= X = J
X = 52 Y= " 3.9)
where H is the cavity height.
Dimensionless Velocity
U-=-% V=2 3.10
U, U, (3.10)
where Uy, is the average inlet jet velocity.
Dimensionless Temperature
Tr-T
6 - 2 (3.11)
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where T is the inlet temperature of the fluid and Ty, is the temperature of the heated wall.

Dimensionless Pressure
o
Pz ¢G.12)
Dimensionless Kinetic Energy
k
k* = —
3.13
U2 (3.13)
Dimensionless Dissipation of Turbulent Kinetic Energy
e = =% (3.14)
UJ_“EI .

3.2.3 Dimensionless Governing Equations
Substitution of the dimensionless dependent variables into the governing equations

yields the following equations:

Dimensionless Continuity

-5 T =0 (3.15)
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Dimensionless X-Momentum

U ,oU_ o 03 (,a_a,0U),d
v ,pyoU_ A 38 [a,a,3%U
x| ar aX+a,Y[(Re,+Re,) ax] ' ((

c2|a,aydu)  8la a2
x| e, R, & | ¥

Dimensionless Y-Momentum

4 o _ P  3df,a  a W), K 8, a a,dV
o Ly ot ol & AV L Ol Q8N
"=V w” ax{(Re,+Re,) ax) i ay[(Re,+Re,) ar] (3.17)

where Re; and Re, are Reynolds numbers based on laminar and turbulent viscosity,

respectively,

v, t E (3.18)




Dimensionless Energy
g ,p0 _06([ a 0), 0( a B (3.19)
X Y aX|Reo, X) Y| Reo, oY '
d Tely= d Tely»
- = - = (vt
ax @) T )

Dimensionless Turbulent Kinetic Energy

k* " _d(,a. a o) .0 (, a  a &
U y &k _ 2 (e 38 [
ax o ax[(zze, t R ax) +_ar[(3e, * ok, ar] (3.20)

2 2
a* (Gr)!
Re?

+G*-¢g" + vit!

Dimensionless Dissipation of Turbulent Kinetic Energy

ge” ot _ 9 (,a a , oe* 3 |,a a , o
v -9 | (& LN A e
U= + ax[( + ) ] t =5 [(Re, + oeRe,) 61’] (3.21)
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where the dimensionless generation of turbulence, G, is

2
A RN E )
Re, |“\a&x oy ¥ X

3.3 Representation of Turbulent Heat Flux

45

(3.22)

The turbulent heat flux, appearing in the energy, kinetic energy of turbulence, and

dissipation equations, is calculated according to Equation (2.29). The additional

simplifying assumption of local equilibrium (P, + G; = €) is also invoked. The resulting

algebraic turbulent heat flux equations are,

Dimensional Turbulent Heat Flux Equation

— ar ou,
u't H—C_("u’_..+gu t"_._+1][3gt’2)
i 7
T ex ox; !

(3.23)
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Dimensionless Turbulent Heat Flux Equation '
a?(Gr))

i tae Y -ar]f "2
”’f"’j) 5._2'; +E (uijf) Ej +1 Z (+%) (3.24)

ey = - ¢
e.
where C, §, and 1} are model constants discussed in Chapter Five.
All of the quantities in the above relationship are known with the exception of the

fluctuating temperature variance. This quantity can be accounted for using a modelled

transport equation [22],

Dimensionless Fluctuating Temperature Variance Equation

a”?" 3 [C,f k2 g ]alﬁ‘ —7y. 30 .
U, =9 BT . SN CT D My, I (3.25)
ax,[ ax, 77X 8

where €, represents the dimensionless dissipation of temperature variance. This quantity

is calculated from a simple, algebraic relationship given below,

_8_' (f, )-
® S5 (3.26)

Be=

The quantity R is defined as the ratio of the mechanical to the thermal time scale,

kle

R = —
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The dimensionless temperature variance equation can also be modelled using a simplified

algebraic expression,

(%) " = 2R—(u W) "2 (328)
f

The fluctuating temperature variance is modelled using both the algebraic (Equation

(3.28)) and differential (Equation (3.25)) relationships within this study.

3.4 Boundary Conditions
3.4.1 Velocity and Temperature Boundary Conditions
The following boundary conditions are used to simulate the velocity and

temperature fields:

No Ship Wall:
Velocities normal and adjacent to a solid boundary are set equal to zero. For

example, along the lower horizontal wall,

Ul,_,=0

4

y=0

o (3.29)

y =0
Adiabatic Wall:
Temperature gradients normal to the insulated surfaces are set equal to zero

indicating zero heat flux. For the lower, horizontal wall,
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30
Sply-0=0 (3.30)

Isothermal Wall:

The dimensionless temperature of the heated surface is set equal to one,

Oliom=1 (3.31)

Inflow Boundary:
Inflow conditions are specified at the point of expansion into the cavity. A power-
law profile is used for the X-momentum component while the Y-momentum component is

set equal to zero. The dimensionless temperature at this location is also set equal to zero.

Outflow Boundary:
Outflow conditions are specified at the end of the developing length added to the
bottom outlet of the cavity. The flow is assumed to be fully-developed upon exit at this

location such that,

0, (3:32)

3.4.2 Turbulence Boundary Conditions
Turbulence effects are incorporated using the Lam and Brembhorst low-Reynolds

number turbulence model [28]. The boundary conditions for turbulence kinetic energy
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and dissipation of turbulence kinetic energy next to a solid wall are,
k* |y = 0 E;uw=o (3.33)

where n is the direction normal to the surface.
To account for viscous effects in the vicinity of the solid walls or in other low-

Reynolds number regions, the following damping functions are used,

-2.5
Ju = exp
B )
50
h=1 (3.34)
H=1-3exp(-R)?

s=1

where the turbulent Reynolds number, R, , is given by,

R = B ) (3.35)

The effect of the Yap source term [13] in the dissipation equation is also studied.
The purpose of this term is to increase the dissipation in the near-wall region thereby

reducing the turbulent length-scale to a more reasonable level. The term proposed by Yap

is,

F32 E32 2 &2
=0. - L
s, sa[w 1][ ] 3 (3:36)
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where y is the distance from the wall such that the term goes to zero outside the near-wall

region.

The turbulent kinetic energy at the entrance to the cavity is specified as [28],

wlw

kE° =

]

($U,)?
z (3.37)
jet
where P, the turbulence intensity, is taken to be 10%.

The dissipation of turbulence kinetic energy at the inlet was varied to investigate a
range of inlet turbulent length scales, 1,,, where

(3.38)
]

Because the equation for turbulent heat flux is algebraic, no boundary conditions
are required for this quantity. When the full transport equation for fluctuating temperature

variance is employed (Equation (3.25)), the following boundary condition is imposed at
the solid surface:

(t?) |z = 0 (3.39)




CHAPTER FOUR

NUMERICAL FORMULATION

4.1 Introduction

This chapter provides a description of the numerical approach to the problem.
Section 4.2 provides a general overview of the solution process. Complete details of the
numerical aspects of this process are available in reference [28]. Section 4.3 provides a
description of the features added to the code to facilitate the current study. These include
the calculation of algebraic heat flux and fluctuating temperature variance, and a modified

treatment of the energy equation.

4.2  Solution Strategy
4.2.1 General Conservation Equation
All of the dependent variables obey a generalized conservation principle. If the

dependent variable is denoted by &, the general differential equation is,

) 9 3 [~ o 3 [ @
a(“@"'é;("d’) =3x'[r¢§ "'5[1}.% + S, “.1)

where I' is a diffusion coefficient. The terms on the left hand side represent convection of

the dependent variable, while the first two terms on the right hand side are responsible for
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diffusion. The final term, S, is a general source term incorporated to include all other
relevant processes.
The dimensionless governing equations (Equations (3.15) to (3.22)) can be expressed in

this form using the values in Table 4.1.

¢ Ty Se
dl¢a ,ayoUul, 08 a  a,&
U a . .a ax| Re, Re, X 3Y| Re, Re, aX
Re’ Re‘ _ 2 ak.
3 ax
dla ,ayoUu|, 8la , a,%
v a .. a aX| Re; Re, oY oY) "Re, Re, oY
Re, Re‘ (ny)taza _ _2_8’5.
Re? 3
a a -y a Tl »
- — - f
0 Re,0, e A\
a(Gr)? ___
kt _5__.;. a G'-e‘-i' ( })I (v/tl)-
Re, O.Re, Re}
- 2 - az(Gr 2 —
. a a crEl e -cri- vl 2 )
1 R ok, s S P ST )

Table 4.1: Governing Equations in General Form
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The benefit of writing the governing equations in this manner is that it is only
necessary to have an algorithm designed to solve Equation (4.1). This process can then be

used repeatedly for various values of ¢, I'y, and S,

4.2.2 Discretization of the Governing Equations
Discretization of the general conservation equation is accomplished using the
control-volume approach described by Patankar [29]. The grid is staggered such that
velocities are calculated on the control volume faces while pressure, temperature, and the
other scalars are calculated at the centre of the control volume. This m;thod prevents the
occurrence of a ‘checkerboard’ distribution within the solution set. |
| To reduce the possibility of false diffusion, the Quadratic Upstream Interpolation for
Convective Kinematics (QUICK) scheme is used to deal with the convective terms [28].
Following Patankar’s nomenclature, individual source terms, S,, are linearized as

shown below:
S 4.2)

This linearization, in accordance with Patankar’s recommendation, was found to provide

greater stability as opposed to simply including the entire source in the constant term, Sc.
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4.2.3 Solution Algorithm

The algorithm used to calculate the flow field is the Semi-Implicit Method for
Pressure-Linked Equations Revised (SIMPLER) method. Complete details of this
approach are available in [29].

The simultaneous equation sets are solved with the aid of the Modified Strongly
Implicit Procedure. This method was found to provide more stability than the popular

Alternating Direction Implicit (ADI) or Strongly Implicit Procedure (SIP) techniques [28].

4.3  Algebraic Heat Flux Model
4.3.1 Explicit Algebraic Heat Flux Calculation

The turbulent heat flux is calculated at interior grid points according to Equation
(3.24) with one modification. To improve stability, the explicit heat flux formulation of
Sommer and So [27] was incorporated. This method involves the use of a simple gradient
diffusion approximation to the terms containing heat flux components within the heat flux

equation as shown below,

au,  a*@Gr)

(u"tl).w= -C;_Ii (u’,.u’f)'a_ + E(u! t’) > X +1 3 ’(’2)
! 4.3)
a0
h t =_4 &
where (u’ ‘)SGD Rerop X

Sommer and So point out that the implicit formulation given by Equation (3.24)
can become singular and, therefore, unstable under certain conditions. While the explicit

model is slightly less accurate from a physical standpoint, Sommer and So have obtained




results which support the use of this model.

4.3.2 Fluctuating Temperature Variance

55

The temperature variance is calculated either algebraically (Equation (3.28)) or

from its transport equation (Equation (3.25)). The algebraic formulation works well and

requires no special attention. The transport equation fits the general conservation form

(Equation (4.1)) as shown below,

¢ Ty Se

—e 2 —1+90 — 30
2 °r a “2ith =-2With=-2¢"
! e* * GIReI : ( I) )4 ( l) oY 8

Table 4.2: Dimensionless Temperature Variance in General Form

For convenience the diffusion coefficient was simplified,

2
cof. k C
Lid =4 where oy = -t

e* Re, Oy cr

4.9)

When the source terms were linearized according to the procedure given in Section 4.2.2,

no difficulties were found when solving the temperature variance transport equation.
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4.3.3 Modified Energy Equation Formulation
The energy equation (Equation (3.19)) requires a different treatment when the
algebraic heat flux model is used. When the turbulent effects are represented by simple
gradient diffusion, the energy equation fits the general conservation form without the need
for source terms. With the algebraic flux model, a turbulent diffusion source term given

by,

—

Sy = -z u'it (4.5)

3
ex;
must be incorporated as the diffusion coefficient, I, accounts only for the laminar effects
(see Table 4.1).

To prevent fhe dimensionless temperature from acquiring erroneous values greater

than one or less than zero, a special treatment of this source term is necessary. The

procedure, shown below, is suggested by Patankar [29] as a solution to this problem,

Sy 07
Sp= —
L 46
s “6)
P e -8
where S, is the source term, 0 is the current temperature, and 0° is defined as,
8* = -g- > Jor S(; <0
“.7)
o=+l ars,>o0

2 >
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This provision ensures that the dimensionless temperature can move only halfway towards
the physical limit within one iteration and, more importantly, can never exceed this

physical limit.




CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Imtroduction

The present work is divided into three studies. The first study involves an
examination of the sensitivity of the predicted results to the choice of inlet turbulence
conditions. The second study deals solely with the effect of adding the algebraic heat flux
.model (AFM). The final study involves the incorporation of both factors and compares

these final results to the experimental data.

5.2  Inlet Turbulent Viscosity Study

The effect of varied inlet eddy viscosity and turbulent length scale in conjunction
with the low Reynolds number k- model was studied. This was accomplished through
adjustment of the inlet dissipation of turbulent kinetic energy while holding the inlet
turbulent intensity constant at 10%.

The corresponding dimensionless eddy viscosity and dimensionless turbulent length

scale are calculated according to,

v <=2 B (5.1)
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e (5.2)

n

O~

I
nj=
..,_.v

The turbulent length scale, L, can be estimated based on the height of the inlet section, D.
A dimensionless turbulence length scale, 1*, of up to 10 % is considered reasonable
whereas much larger values are generally unacceptable [30]. Within the course of this
study the inlet turbulence conditions are specified such that the effect of a range of
dimensionless turbulence length scales up to 60 % can be examined.

The effect of the inlet parameters on the predicted results will be discussed for
each case independently, followed by some general comments on their selection when

dealing with buoyant flows.

52.1 Casel

Two sets of inlet conditions were chosen for this simpler, isothermal case. The
purpose of the study is to determine the effect of increasing the inlet length scale to a
larger, but still realistic, value when dealing with isothermal flow conditions. The

conditions and predicted dimensionless separation heights are summarized in Table 5.1.
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Test k*, e* A A 1* Separation
1(2) .015 1.15 0.0467 0.000393 0.33
1) 015 0.08 6.311 0.0531 0.16

Figure 5.1 compares the predicted streamlines for the two tests while Figure 5.2
presents turbulent viscosity contours. Although the streamlines are qualitatively similar,
the reduced inlet dissipation rate (with inlet length scale of approximately 5 %) results in a
lower separation location on the right wall and further penetration along the top wall. The
tqrbuient viscosity contours ﬁre very similar except in the inlét region where the reduced
dissipation rate test shows significantly higher levels. The effect of the varied inlet
turbulent conditions on the midheight turbulent viscosity profile is minimal as shown in
Figure 5.3.

The important result is the significant decrease in separation height as the result of
increasing the inlet turbulent length scale. This effect can be attributed to an increase in
mean flow momentum resulting when the dissipation rate, which removes energy from the

mean flow, is reduced.

5.2.2 Case2
Four inlet dissipation levels were examined in conjunction with Case 2. The inlet
turbulence parameters and the predicted dimensionless separation heights are summarized

below in Table 5.2. A large range of dimensionless length scales were employed for this
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case. Test 2 (d) involves a physically unrealistic value of approximately 60 % leading to

flow separation along the top horizontal wall.

Test k*, e* v*, 1* Separation
2 (a) 0.015 1.15 0.075 0.000477 0.7478
2(®) 0.015 0.09 7.97 0.0507 0.7596
2(c) 0.015 0.05 17.09 0.109 0.7673
2(d) 0.015 0.01 95.80 0.611 0.3377 (pen)

Predicted streamlines for Tests 2 (a), 2 (b), and 2 (d) are presented in Figure 5.4,
while turbulent viscosity contours are compared in Figure 5.5.

The streamline plots show slight increases in separation point lt;cation with
corresponding increases in inlet turbulent viscosity. Test 2 (d), with the highest level of
inlet turbulent viscosity, predicts a flow pattern where the inlet jet does not even reach the
heated wall.

Figure 5.6 shows profiles of turbulent viscosity at the cavity midheight. While the
profiles exhibit similar shapes, significant increases in magnitude occur throughout the
cavity as the inlet turbulent viscosity is increased. This result is consistent with Figure 5.5
showing turbulent viscosity contours.

This increase in inlet turbulent viscosity leads to increased heat transfer at the hot

wall as shown in Figure 5.7. Test 2 (d), having the highest level of inlet turbulent
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viscosity, has the steepest temperature gradient and therefore, the highest heat transfer
rate. This results in an increased buoyant force which translates to additional vertical

momentum and a higher separation point.

523 Case3
Seven sets of inlet conditions were tested for this case. These conditions and the

corresponding predicted penetration depths are listed below in Table 5.3.

Test k*, ¥ V¥ P, Penetration
3 (a) 0.015 115 | 00347 | 0000350 | 0.03030
3 (b) 0.015 0.30 0402 | 000407 | 0.2380
3 0.015 0.20 0904 | 000915 | 03744
3 (d) 0.015 0.10 328 | 00332 0.3569
3 (¢) - 0.015 0.075 5.26 0.0531 0.3539
3 0.015 0.050 9.50 0.0959 0.3502
3(g) 0.015 0.010 59.8 0.605 0.3279

The predicted penetration depths are quite sensitive to the choice of inlet
" dissipation rate. As the inlet dissipation is decreased from the original level of 1.15 to 0.20
the fluid penetrates further into the cavity, nearly coming into contact with the heated

wall. However, further decreases in the inlet dissipation rate result in a slight regression of
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this penetration depth.

Figures 5.8 and 5.9 show streamline plots and turbulent viscosity contours for
Tests 3 (2), 3 (c), and 3 (g). When the inlet dissipation rate is decreased from the original
level of 1.15 (Tests 3 (c) and 3 (g)), the predictions become more representative of the
mixed flow conditions involved as two similarly-sized cells, rotating in opposite directions,
are formed.

Figure 5.10 shows temperature profiles at the cavity midheight. The profiles are
surprisingly similar but the significance of any comparison involving Test 3 (a) is
questionable due to the substantial difference in the predicted flow field.. The results do
show a slightly steeper temperature gradient and higher core temperature for Test 3 (g),
- . which has the minimum inlet dissipation rate, when compared to Test 3 (c).

Apparently, two effects related to the inlet turbulence conditions contribute to the
penetration of the fluid into the cavity. As the inlet dissipation rate is initially reduced, the
extended penetration into the cavity can be attributed to additional mean flow momentum
due to the smaller energy losses as evidenced in Case 1, while the slight regression of this
penetration depth is the result of increased buoyancy due to a slightly higher heat transfer

rate. This effect was found to be dominant in Case 2.

5§24 Cased
Three sets of inlet turbulence conditions were tested in conjunction with Case 4.

The test cases and corresponding penetration depths are shown in Table 5.4.
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Test k*, e*, LA I*, Penetration
4 (2) 0.015 1.15 0.0450 0.000387 0.0178
4(0) 0.015 0.09 5.0910 0.0438 0.0229
4(c) 0.015 0.01 70.635 0.607 0.0471

Table 5.4 - Tnlet Viscosity Study (Case 4)

As shown above, the penetration depth of the fluid increases slightly as the inlet
dissipation rate is decreased. Figures 5.12 and 5.13 show the streamline and turbulent
viscosity plots, respectively. The streamline plots show increased buoyant recirculation as
the inlet turbulent viscosity is initially increased. This éffect is the result of increased heat
transfer rates due to higher levels of turbulent viscosity throughout the cavity. Further
increases in inlet turbulent viscosity leads to similar resuits.

Figure 5.14 shows dimensionless temperature profiles at the midheight of the
cavity. The profiles for Tests 4 (b) and 4 (c) are also very similar. Again, it is difficult to
make comparisons between Test 4 (a) and the other cases because of the differences in the
predicted flow fields.

Figure 5.15 shows turbulent viscosity profiles at the cavity midheight. Once again,
significant increases in turbulent viscosity levels arise in the reduced inlet dissipation test

Cases.
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5.2.5 Inlet Viscosity Study Summary

The purpose of this study was to determine the sensitivity of the' results to changes
in inlet turbulence parameters. While many researchers select these values without
reporting or even conducting a sensitivity analysis, the results have shown that
modification of these quantities within reasonable limits can have a significant effect when
dealing with this type of flow.

For this mixed-convection study, changes to the inlet rate of dissipation has two
noticeable effects. The first involves an additional source of mean flow momentum
resulting from reduced turbulent energy losses. This leads to further penetration into the
cavity towards the heated wall. The second effect involves increases in the vertical
. buoyant force near the heated wall due to higher levels of turbulent viscdsity which seéms
to diffuse throughout the cavity when the inlet dissipation rate is reduced. This leads to
higher separation heights along the heated wall. Although both effects are present in all
cases involving heat transfer, the first effect was generally prevalent in Case 3 while the
second effect dominated Case 2. Such behaviour could be a function of inlet Reynolds
number as Case 3 has a lower inlet jet velocity than Case 2. It could be that a decreased
inlet dissipation rate does not have as great an effect on the mean flow momentum for

higher Reynolds number or more turbulent flows.

53  Algebraic Flux Model (AFM) Study
The effect of adding the algebraic heat flux model to the existing k-€ equations was

studied. The original simple gradient diffusion (SGD) representation for the turbulent heat




80

flux components is given by,

T\ _ Q4 a0
= Reyax, ¢3)
T %y
while the algebraic heat flux is given by,
—_— ck*® P a0 S aU’i az(GI‘i)I -
(Wt = S T 2 + E ) =+ GO
i e L | ax, J BA} Re,z

where C, 1, § are constants. The fluctuating temperature variance was also evaluated

algebraically, according to,

TN L kE* =5, =30
(¢%) - = 2R -E(u{ft) —6?1 (5.5)

where time-scale ratio R is constant.

The constants 1, £ were assumed to have a value of 0.6. This value is commonly
used within the literaturé although some researchers have employed a value of 0.5 [21,8].
Selection of the constants C and R has been much more controversial and problem-
dependent. For the purpose of this study, two values of C were employed, 0.28 and 0.10.
These values represent the range of values reported in the literature. A constant vaiue of
0.5 was chosen for the time-scale ratio R. In some tests, this value was modified and will
be mentioned when appropriate.

Studies were conducted for each of the cases involving heat transfer. The effect of
the AFM model on the predicted streamlines, turbulent heat flux, temperature and

turbulent viscosity distributions will be discussed.
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It should be noted that the inlet turbulence conditions were held constant for this
particular study. The inlet turbulent intensity was set at 10% and the dimensionless inlet
dissipation rate was defined as 1.15. The inlet length scale and turbulent viscosity are
dependent on Reynolds number and therefore vary for each case. These values are

available in the inlet viscosity study (Section 5.2).

5.3.1 Case2
Figure 5.16 shows the predicted streamlines for the AFM study, while separation

locations are presented in Table 5.5.

Model Model Constant C - Separation Height

SGD . - 7478

AFM 0.28 .7108

AFM 010 7242
Table 5.5 - AFM Study (Case 2)

Although only small differences arise when the algebraic flux model is employed, a
few interesting trends are apparent. It was expected that the use of the AFM model would
lead to higher rates of heat transfer, and, therefore, more buoyant flow and higher
separation locations. The results show a slightly decreased separation location when the
flux model, with C=0.28, is employed. Furthermore, the use of a decreased model

constant (C=0.10) leads to a small increase in separation location.
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Figure 5.17 shows turbulent heat flux profiles at the midheight of the cavity. Use
of the AFM model leads to significantly higher levels, especially for the vertical heat flux.
The heat transfer rate, although predominantly controlied by the horizontal gradient of the
horizontal turbulent heat flux, should increase under these conditions. Figure 5.18 shows
the dimensionless temperature distribution at the cavity midheight. As expected, the AFM
model, with C=0.28, results in the steepest temperature gradient and, therefore, the
highest rate of heat transfer. The increased vertical turbulent heat flux also leads to higher
levels of turbulent viscosity due to the buoyant source term appearing in the k and €
equations. This effect is illustrated in Figure 5.19.

. Although the separation location decreases slightly when the AFM model is employed; the
width of the buoyant cell increases, as does the strength of recirculation. These results are
consistent with increased heat transfer resulting from higher Ievels of turbulent heat flux.
It is expected that further increases in heat transfer rate would resuit in corresponding

increases in separation location.

-5.3.2 Case 3

Figure 5.20 shows the predicted streamlines for Case 3. Use of the AFM model
results in increased buoyant recirculation as the fluid is driven back closer to the inlet.
Predicted penetration depths are shown in Table 5.6. As expected, the effect is more

exaggerated for C=0.28 than for C=0.10.
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Model Model Constant C Penetration Depth

SGD - 0.02290

AFM 0.28 0.01987

AFM 0.10 0.02222
Table 5.6 - AFM Study (Case 3)

Figure 5.21 shows the horizontal and vertical heat flux distributions at the cavity
midheight. The AFM model, with C=0.28, predicts levels as much as three times larger
than the SGD model for the horizontal component. The vertical SGD component, based
only upon the vertical temperature gradient (see Equation 5.3), is essentially non-existent
v‘vhen compared with the AFM predictions.

Temperature profiles at the cavity midheight are shown in Figure 5.22. The
increased horizontal heat flux associated with the AFM models leads to steeper
temperature gradients or higher heat transfer rates near the heated wall.

Turbulent viscosity profiles are shown in Figure 5.23. When compared to the
SGD model, the increase in vertical turbulent heat flux leads to significantly higher levels
of turbulent viscosity for C=0.28 while only minor differences arise for C=0.10.

The effect of model constant R was also studied in conjunction with this case. As
R is lowered, the fluctuating temperature variance decreases leading to a smaller vertical
component of turbulent heat flux. This results in lower turbulent viscosity near the heated
wall but only slightly lower heat transfer rates. Significant changes in the mean flow field

were not detected.




92

533 Cased

Figure 5.24 shows the predicted streamlines associated with the AFM study for
Case 4. Again, much greater buoyant recirculation occurs when the AFM model is
employed. This is especially evident when model constant C=0.28.

The turbulent heat flux profiles appear in Figure 5.25. As with the previous cases,
the heat flux components predicted by the AFM model are significantly greater than those
predicted by the SGD model. The difference in predicted values for C=0.28 and C =
0.10 is not as great as in the other cases. This is probably due to the large difference in the
predicted SGD and AFM results.

Dimensionless temperature profiles are shown in Figure 5.26. Once again the
AFM model, with C=0.28, has the steepest temperature gradient near the wall and,
therefore, the highest rate of heat transfer. This high rate of heat transfer accounts for the
large buoyant contribution to the flow.

Finally, Figure 5.27 shows turbulent viscosity profiles at the cavity midheight. The
viscosity levels are once again significantly higher for the AFM models due to the large

increase in vertical turbulent heat flux.

5.3.4 AFM Study Summary
The incorporation of the algebraic heat flux model leads to higher levels of both
components of turbulent heat flux. This results in higher heat transfer rates and higher

levels of turbulent viscosity for all cases studied. This effect is more pronounced as the
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model constant C is increased. |
It appears that the use of an AFM model, by itself, is not the solution to the

modelling problem associated with this mixed convection flow field. It is possible that a
higher level of turbulent heat flux modelling involving transport equations for fluctuating
temperature variance and dissipation of temperature variance could improve the resulits.
However, it is hard to imagine this fine tuning of model accuracy leading to the much

lower required levels of heat transfer.

8.4  Final Results

The previous two studies have shown that the predicted results can be Qigniﬂcanﬂy
affected by two factors, the inlet turbulence conditions and the turbulent heat flux
representation. The combination of modified inlet turbulence levels and the AFM model
will be presented as a final study. The purpose is to determine the net effect of iimluding
both factors and to compare these results to the experimental findings.

The inlet turbulence conditions employed in this study are summarized in Table
5.7. Asin all of the previous tests, an inlet turbulence intensity of 10% was specified.
The inlet dissipation rate of 0.20 was chosen because this value produced the furthest
penetration depth into the cavity for Case 3 in Section 5.2. The inlet turbulent length scale

and turbulent viscosity change depending on the Reynolds number for each case.
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Case Re, k* e* v* I*
1 973. 0.015 0.20 1.30 0.0109
2 1283. 0.015 0.20 2.18 0.0139
3 808. 0.015 0.20 0.904 0.00915
4 950. 0.015 0.20 1.24 0.0107
= Fin Its ; Inl len nditi

The AFM model, employing the algebraic relationship for fluctuating temperature
variance, was used to model the turbulent heat flux. Based on the results of the AFM
study, model constant C was set to 0.10 while the time-scale ratio R was set-to 0.25.

- These values repre:se;ﬁt an attempt to minimize the overprediction of the heat transfer
rates.

Comparison with the experimental results is based on streamline plots and Nussult

number data, Predicted turbulent viscosity contours are also presented.

54.1 Casel

Due to the isothermal nature of Case 1, the present results are basically an
extension to the inlet viscosity study presented in Section 5.2.1. The earlier findings
showed decreased separation height due to increased mean flow momentum as the inlet
dissipation rate was decreased.

Predicted streamlines for the current inlet conditions are shown in Figure 5.28

while the predicted turbulent viscosity distribution appears as Figure 5.29. The
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experimental and predicted flow fields are qualitatively similar but the predicted streamline
levels are higher in the centre of the cavity due to higher velocities near the right vertical
wall. As discussed earlier, the increase in velocity is presumably the result of the increase

in mean flow momentum which results from a decrease in the original dissipation rate.

54.2 Case2

The inlet viscosity study for Case 2 showed increased separation height for
decreased inlet dissipation rate. This effect was attributed to increased turbulent viscosity
throughout the cavity which led to higher rates of heat transfer and, therefore, more

'buoyancy. It is believed that this increase in the buoyant force overcomes the

corresponding increase in momentum resulting in the higher separation location. The
application of the AFM model resulted in increased heat transfer rates and stronger
buoyant recirculation.

Predicted and experimental streamlines for the present study are compared in
Figure 5.30, while the predicted turbulent viscosity distribution is shown in Figure 5.31. Tt
.is apparent from the streamline comparison that the predicted ratio of buoyant to inertial
forces is still too high. The predicted buo;rant cell is much larger and stronger than in the
experiment resulting in a predicted separation height which is significantly higher than the
experimental location.

Figure 5.32 compares the predicted and experimental Nusselt number distributions
along the heated wall. The predicted Nusselt numbers are calculated from the

dimensionless temperature gradient at the heated wall while the experimental Nusselt




FHA I




102

S0UBISI] SSOUDSUBL]

1500

1000

Nusselt Number

500




103
number is calculated from the electrical power input to the heaters [28]. Both profiles
show the highest levels of heat transfer occurring above the respective separation points.
This is the result of the cold inlet jet impinging on the heated surface. The model predicts
higher rates of heat transfer than the experiment within this region. This would indicate
lower fluid temperatures in the predicted impingement zone probably due to less
interaction with the hotter recirculating buoyant cell. Below the separation location, heat
transfer occurs as the fluid rises along the heated wall. The model correctly predicts a
decrease in this heat transfer rate as the fluid rises and increases in temperature. The

locally minimum heat transfer rate at the separation location is also correctly predicted.

5.4.3 Case3

The inlet viscosity study for Case 3 showed increased penetration for initial
decreases in inlet dissipation rate. Further decreases in the dissipation rate below 0.20
resulted in a regression of the fluid towards the inlet. This is the result of counteracting
increases in mean flow momentum and heat transfer due to the modified turbulent
viscosity levels. The addition of the AFM model also resulted in higher heat transfer rates.
The combination of the two factors is now discussed.

The streamline comparison for Case 3 appears as Figure 5.33 while the predicted
turbulent viscosity contours appear in Figure 5.34. The size of the buoyant cell is once
again overpredicted drastically. The inlet turbulent viscosity study shows the fluid nearly
reaching the heated wall for an inlet dissipation rate of 0.20. The subsequent addition of

the AFM model leads to increased heat transfer and, thus, decreased penetration as the
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fluid is driven back from the heated surface. The present results do represent some
improvement over previous predictions where higher inlet turbulent viscosity was
employed and the flow was nearly entirely dominated by buoyancy.

A comparison between predicted and experimental Nusselt numbers is presented in
Figure 5.35. The experimental profile is very similar to that seen in Case 2. The highest
heat transfer rates occur above the separation location and the Nusselt number decreases
as the fluid rises within the buoyant cell. The predicted profile is similar with a local
minimum occurring at the separation point. However, the predicted maximum heat
transfer rate does not occur in the upper part of the cavity as in the experiment. This is
the result of the cold inlet jet not reaching the heated wall which leads to smaller

temperature differences and lower heat transfer rates in this region..

5.44 Cased

The inlet viscosity study for Case 4 showed increased buoyant recirculation due to
higher heat transfer rates as the inlet dissipation was decreased. The AFM study found
that heat transfer was greatly enhanced when the turbulent heat flux representation was
modified.

Streamline results for the combined model are compared with experiment in Figure
5.36. Predicted turbulent viscosity contours are shown in Figure 5.37. The predicted
flow field is buoyancy-dominated with one large recirculating cell. These results are
consistent with the experimental findings. The decrease in time-scale ratio R from 0.5 to

0.25 has had a noticeable weakening effect on the strength of the buoyant cell (compare
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with Figure 5.24). This would indicate that the fluctuating temperature variance plays an
important role in determining the heat transfer rate for this case.

Nussult number profiles are compared in Figure 5.38. The predicted profile shows
decreased heat transfer as the fluid rises along the heated wall. The experimental data
shows a similar profile in the bottom of the cavity but not in the top half where the heat
transfer rate increases as the fluid rises. This could be the result of the separated flow

which occurs in the top comer of the cavity.

5.4.5 Final Results Summary

As expected, the combination of modifed inlet turbulence ;ondiﬁons and the
algebraic flux model still results in flow fields which are representative of overpredicted
heat transfer rate and byoyant recirculation. Despite the obvious changes in predicted
turbulence parameters, the mean flow results are qualitatively similar to those obtained in
previous modelling attempts. However, some improvement is evident in Case 3 where the
predicted flow penetrates further into the cavity and therefore agrees more closely with
the experiment. This result is encouraging as it was this case which previously presented

the most difficulty.




CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Purpose

The main focus of this study involved the implementation and testing of an
algebraic heat flux representation used in conjunction with a low-Reynolds number k-¢
turbulence model. This approach has been employed in the past by researchers hoping to
exploit the greater physical accuracy inherent within the AFM model. In most
circumstances, the effect on the mean flow has been limited despite very noticeable
differences in the predicted turbulent quantities. The purpose here was to determine if the

T

the algebraic flux model would have 2 significant effect on-the predicted flow field when

dealing with mixed convection conditions. \ !

As a secondary study, the effect of varying the prescribed inlet turbulence
parameters was also examined. Although this topic is rarely discussed within the
literature, it is believed that the predicted results are sensitive to the selection of these

parameters when certain flows and flow conditions are involved.

6.2 Conclusions

The use of the algebraic heat flux model leads to significant increases in the

110
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magnitudes of both components of turbulent heat flux near the heated surface. Although |
the larger vertical component results in increased buoyant source terms for both the k and
€ equations, the combined effect is higher levels of turbulent viscosity. The increased
horizontal component and corresponding increase in the horizontal gradient of this
quantity leads to enhanced heat transfer rates and stronger buoyant recirculation for all
cases.

The sensitivity of the predicted results to two of the I‘nodel constants associated
with the AFM model was also studied. Lowering model constant C directly decreases
both components of turbulent heat flux resulting in lower rates of heat transfer and
buoyant recirculation. The reduction of time-scale ratio R translates to smaller fluctuating
temperature variance and, thus, smaller vertical turbulent heat flux. Although the
turbulent viscosity levels decrease slightly, the mean flow is not significantly affected.

The incorporation of the algebraic flux model, on its own, is not the solution to the
problem associated with this flow field. The buoyant effects are already overpredicted
compared to the available data when the simple gradient diffusion model is employed, and
increase in strength when the AFM model is added. However, the use of the AFM model
is appropriate and necessary if the predicted turbulent heat flux field is more accurate than
that which results when the simpler model is employed. If this is the case, some other
factor is responsible for the discrepencies between the predicted results and the
experimental findings.

The study of the sensitivity of the predicted resuits to the choice of inlet turbulence

conditions showed that this factor is an important consideration when dealing with this
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type of flow. Two eﬂ'ects were noticed as the inlet dissipation rate was decreased while
holding the turbulence inténsity constant. The first involves an increase in mean flow
momentum resulting from a reduction of energy removal from the mean flow through the
decreased dissipation rate. This effect was predominant in the isothermal Case 1 and also
in Case 3 where the inlet jét was shown to penetrate further into the cavity for a reduced
inlet dissipation rate. Theisecond effect involves the increase in heat transfer rates and
buoyant recirculation due fo increased levels of turbulent viscosity throughout the cavity.
This effect was noticed primarily in Case 2, where the separation location increased, and in
Case 4, where noticeably stronger buoyant recirculation occurred, as the inlet dissipation
rate was decreased. Although both effects are present for all cases involving heat transfer,
- - it seems that the relé‘}ant strength of these effects is dependent on the flow conditions
involved. One such factor may be the inlet Reynolds number which is not constant for all
of the cases. Case Three is the least turbulent at the inlet and therefore may benefit most
from a reduction in dissipqﬁon rate. Nevertheless, until the exact turbulence conditions at
the inlet are known, prescription of these values and any further discussion must be

considered pure speculation.

6.3 Recommendations

To successfully prei:dict this specific flow it is necessary to accurately predict the
turbuient heat flux compoﬁents. Experimental evidence must be secured which can
provide the researcher w1th the confidence that these parameters are being represented

.accurately. Ifiit is then de?ermined that the turbulent heat flux is not being treated
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properly, the extension of the model to a higher order can then be considered.

With respect to the inlet turbulence conditions, experimental data regarding these
parameters is also necessary to avoid speculation regarding their specific value. It would
also be very useful to coqduct further experimental and numerical studies involving higher
inlet Reynolds numbers. The fact that the current studies involve relatively low inlet
Reynolds numbers may a?wunt for some or all of the dependence on these inlet
turbulence conditions. |

Finally, the suggestion of Hanjaic and Vasic [21] that three-dimensional effects are
a major source of inaccuriacy when dealing with buoyancy-induced flows must be

considered in connection mth any further modelling effort.

cn - b -
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