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Abstract 

 The application of additive manufacturing (AM) to multiple 

technological industries has become extremely prevalent in recent years. 

With this move, there has been a need to qualify new materials for first time 

use within a conventional AM system. One such common system is that of 

laser powder bed fusion (LPBF). It is also known as Selective Laser Melting 

(SLM). As it is already extensively used with metals, LPBF is an excellent 

tool for exploratory research with powdered materials such as 

semiconductors and semimetals that are traditionally used in electronic 

devices in bulk crystalline form. An excellent candidate in this subset of 

materials is thermoelectrics. The work in this thesis focuses on the use of 

AM to produce thermoelectric devices with the bismuth telluride semimetal 

alloy, and to use the knowledge of laser-material interactions to develop a 

framework that can forecast optimal process parameters for this material 

system, and ultimately, any system that is conducive to LPBF.  

 An EOSINT M280 Direct Metal Laser Sintering machine was used to 

carry out experiments on the powdered bismuth telluride alloys. These were 

unfit to be readily used within the machine due to their nonspherical 

morphology and wide particle distribution. A sieving of the powder, followed 

by optical and thermal characterization and a consultation of literature, 

provided the necessary information to create the necessary manufacturing 

jig and semi-analytical model to explore appropriate laser powers and 
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speeds to use. A custom powder delivery system was developed in order 

to  overcome flowability issues, and to obtain uniform layer height within a 

build. The delivery system used metallic solder stencil masks of a fixed 

76μm thickness, that were able to be stacked with relative ease. The 

substrates upon which the AM took place were prefabricated printed circuit 

boards that were designed to have the electrode layout of a conventional 

thermoelectric module. The developed model used a semi-analytical energy 

balance to determine laser power/speed pairs that satisfy the thermal 

requirements of the melt process with some associated losses. It uses an 

approach to divide the incident beam into solid- and liquid- interacting 

components, to attempt to deliver power at a rate that would allow for 

melting to the bottom of the powder bed with minimal evaporative loss. 

 Both p-type and n-type bismuth telluride elements were successfully 

manufactured on PCB substrates and showed interesting triangular 

microstructures upon their rapid solidification after laser melting. They also 

maintained their stoichiometry to the point that their alloy types did not 

change. The p-type bismuth telluride was tested using the Harman 

Technique and was determined to have a room temperature ZT of 1.1. For 

an understanding of the optimal process parameters, the semi-analytical 

model was compared to two widely different material systems in literature, 

the well-characterized Ti6Al4V metallic alloy and other attempts at AM of 

bismuth telluride. It was able to provide a good approximation to the 
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empirically observed process windows for each material that used the 

metric of maximal relative density.    
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1. Introduction 

 One of the largest driving forces in a country’s infrastructure is its 

production of energy. Unfortunately, the total amount that is accessible to 

the end users is a fraction of the total produced, yet the latter amount is 

what is paid for. For example, during 2018 in the United States alone, over 

68% of the energy that was generated was lost [1]. This loss manifests itself 

as waste heat during the generation and delivery stages and is regrettably 

included in the final cost to the end user. Since it is already paid for, it would 

be advantageous to reclaim some of this lost energy and divert it to other 

useful processes. The technology that can facilitate this task is known as 

thermoelectrics. As their namesake implies, thermoelectrics convert 

thermal energy delivered via a temperature gradient into electrical energy. 

Thermoelectric materials and devices are ranked based on their figure of 

merit, ZT, as given in equation (1): 

𝑍𝑇 =
𝛼2

𝜌𝜅
𝑇 

(1)  

Where α is the Seebeck coefficient in (V/K), κ is the thermal conductivity in 

(W/m∙K), ρ is the electrical resistivity in (Ω∙m) and T is the absolute, average 

temperature of operation between the hot and cold sides of the device, in 

(K). The ratio of 
𝛼2

𝜌
 is known as the power factor and is responsible for the 
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maximum output power of a thermoelectric material. Improving this factor 

alone increases the total output power of the device. The higher ZT, the 

better the thermoelectric material is deemed. For reference, thermoelectric 

generators (TEGs) that are considered viable for commercial applications 

are fabricated with a ZT of approximately unity [2]. In addition to the 

optimization of ZT, however, there are other aspects of TEG production that 

contribute to their overall performance. These include their manufacturing 

method and geometry, both of which exhibit room for improvement. The 

prevalent configuration of a TEG module is that of the flat-plate design. This 

type of module is shown in Figure 1. The module is composed of a series 

of thermocouples, which are p-type and n-type semiconductor materials 

that are joined electrically in series and thermally in parallel. The 

semiconductors used are typically p-type and n-type bismuth telluride-

based alloys. The electrical contacts between adjacent semiconductor 

materials are made from metals such as copper and zinc, and the entire 

arrangement is sandwiched in between two ceramic plates to accept heat 

flow.   

 One of the drawbacks of manufacturing flat-plate TEGs is the 

excessive material loss due to the dicing process of the thermocouple legs. 

These materials are grown as polycrystalline ingots and then diced into the 

cubic leg structures observed in Figure 1. A nonlinear temperature gradient 

during growth coupled with the anisotropic thermal expansion of the 
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randomly oriented polycrystalline grains lead to the formation of 

microcracks in the ingot [3]. Regions of the growth in which these are 

prevalent are therefore discarded and unusable in finalized TEG modules. 

This intentionally discarded amount is added to the kerf losses from dicing 

the cubes TEG legs, which can be up to 50% [4,5]. Thus, a switch to a less 

wasteful manufacturing process would be important if devices can be made 

to the current commercial performance standards. 

 

 

Figure 1: Semi cross-sectional view of a flat-plate commercial TEG module with inset 

showing the different layers within the module, as recreated from [6].  

Additionally, small dimensional variations in each layer during 

manufacturing induce an inherent mechanical stress in the device when it 

is fully assembled between its outer ceramic surfaces. As such, the largest 

a device can be made is roughly 100 x 100 mm2. Since this arrangement is 
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connected between a heat source and a heat sink, it needs to be applied 

pressure from both sides such that the external thermal contact resistance 

is minimized. Once heat begins to flow and a temperature gradient is 

developed, the differences in the temperature-dependent thermal 

expansion coefficient in each layer provide additional stresses [7]. This in 

turn causes fluctuations in the thermal conductance which lead to different 

thermal gradients across the device than those predicted for a given heat 

input. The result is the slow degradation of the TEG module and thus a 

diminished electrical output over time. It would therefore be preferable to 

design thermoelectric devices for manufacture with a low waste, high 

volume method that can maintain or improve upon the performance of those 

currently available. One such method that meets these criteria and has 

gained much attention in recent years is additive manufacturing (AM). 

1.1 Scope of Work 

 The insights gained from the current research apply to not only 

thermoelectrics, but additive manufacturing at large. The objective of this 

work was two-fold in that there was a desire to attempt to manufacture a 

TEG using SLM. This relied on a material system that, until recently, had 

not been used in commercial AM machines. The second part of this 

objective was to develop a model that could predict a process window for a 

previously unused material system in the additive manufacturing space.  
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1.2 Thesis Outline 

The content of this thesis is structured into six chapters, each containing 

numerous subsections. This first chapter provides the reader an insight into 

the initial motivating factors that led to the pursuit of this research. It 

introduces the existence of an aging technology – thermoelectrics – that 

can by significantly improved with the help of additive manufacturing. The 

second chapter provides context and support for the claim of the additive 

manufacturing of thermoelectric devices while also examining their current 

state-of-the-art. The third chapter describes the proposed coarse semi-

analytical model for determining an initial process window for any powder 

system. The fourth chapter details the experimental methods used in 

characterizing both the powder and the additively-manufactured samples 

that were produced in this thesis. It also describes the custom powder 

delivery system that was constructed to overcome the challenges of using 

a powder with low flowability and an irregular morphology. The fifth chapter 

provides both the experimental results of the characterized, additively-

manufactured thermoelectric material, and also a validation of the proposed 

model with sources in literature. Finally, the sixth chapter provides 

conclusions based on the work contained herein and offers guidance as to 

potential paths that this research could take in the future. 
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2. Background and Literature Review 

2.1 Argument for the Additive Manufacturing of TEGs 

2.1.1 Conventional TEG Manufacturing Process 

Flat-plate TEGs like those observed in Figure 1 are generally fabricated 

the same way by all manufacturers. The current process flow is outlined 

below. 

 

Figure 2: Conventional TEG Process flow, adapted from [4]. 

In Figure 2, the semiconductor material is mechanically alloyed from the 

stoichiometric components needed for the desired thermoelectric material 

properties. An example of this is Bi and Te in a 2:3 mass ratio creating 

Bi2Te3. This alloyed powder is then pressed and sintered into an ingot and 
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then diced and polished to the thickness that will be used in the module. 

The diced pieces are then metalized for contacting to the electrical 

connections, and then diced again into cubes that are of the final 

dimensions within the TEG. These are typically 1mm3. The ceramic 

substrates are then prepared with the electrical contact materials, typically 

Zn on one side and Cu on the other to allow for a flame brazing and 

soldering process, respectively. This ensures that one side can withstand 

hotter temperatures than the other during the module assembly, so that the 

TEG legs can be held in place during the bonding of the top substrate to the 

bottom. As mentioned previously, the combination of kerf, chipping, and 

cracking losses that can occur during the dicing has been approximated to 

be up to 50% of the overall ingot that was used originally [4,5]. This is 

significant when viewing the raw and processed material costs for different 

semiconductors used in thermoelectric modules, as given in Table 1. 

Material Type Material Name 
Material Cost ($USD/kg) 

Raw Pure 

Chalcogenide 
Bi2Te3 110 806 

AgPb18SbTe20 84 581 

SiGe Si0.8Ge0.2 371 7081 

Clathrate Ba8Ga16Ge28Zn2 615 3973 

Skutterudite Yb0.2In0.2Co4Sb12 24 204 

Half-Heusler Ti0.8Hf0.2NiSn 11 530 

Silicide Mg2Si0.85Bi0.15 7 191 

Oxide (Zn0.98Al0.02)O 2 50 

Table 1: Comparison of different semiconductors used in TEG manufacturing. Their 

raw material constituents and processed (pure) costs are given in $USD/kg . 

Recreated from [4]. 
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The most industrially mature devices use chalcogenide materials which can 

be found in the first two rows of the above table. It is startling to see that the 

material cost is between $581-$806 per kilogram for the processed material. 

These numbers are paramount to the understanding that the manufacturing 

of TEG modules is by no means inexpensive and none of the source 

material that is produced can afford to be wasted through the previously 

mentioned losses. 

     In addition to the semiconductor materials, the costs associated with the 

fabrication of the module and the heat exchanger also need to be 

considered when selecting thermoelectrics as a viable option for waste heat 

recovery. For the mostly common, Chalcogenide materials that were 

previously mentioned, Leblanc et al [4] outlined the cost per watt of this 

renewable energy source ranges from $60/W to $75/W. This is due to the 

associated back end costs of manufacturing the heat exchanger, 

surrounding ceramic plates for the module, and all of the preparation such 

as dicing, polishing, and metalizing the semiconductor material (areal 

manufacturing). As a reference, the photovoltaic industry strives to reduce 

its costs for the final module price of $1/W [8]. Therefore, to compete in the 

renewable energy market either significant improvements to the device 

performance must be made, or its cost of manufacturing must decrease. 

One potential solution is to focus on additive manufacturing of the 

entire device and its associated system from the bottom-up. The most 
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logical starting point would be to selectively melt the powder of the 

semiconductor material on to a prepared ceramic substrate that already 

contains metal interconnects [6]. However, since all of the constituent 

materials of the system – metals and ceramics – are current materials that 

are used in AM today, the entire module can eventually theoretically be 

made using an AM process such as powder bed fusion (PBF) from top to 

bottom.    

2.1.2 Segmented Thermoelement Compositions 

Thermoelectric devices composed of a single material system are 

optimized for use in a specific temperature range. Outside of this range, 

their electrical output for a given thermal input will decrease, or they may 

have a melt temperature that is lower than the application they are to be 

used in. Thus, based on the temperature dependence of thermoelectric 

material properties, there is no single material that is optimized over a large 

temperature range [9]. A solution to this is the segmentation of 

thermoelements within a device. This was first proposed by the NASA Jet 

Propulsion Lab (JPL) as shown in Figure 3. 
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Figure 3: Segmented TEG proposed by the JPL, recreated from [10]. 

Each of the segments is optimized for the portion of the overall temperature 

gradient it is subjected to. There are a few caveats to overcome, however, 

in order to make a successful device using this principle. 

 The materials under consideration should have similar coefficients of 

thermal expansion such that any stresses caused by thermal mismatch can 

be negated. This will increase the lifetime and durability of the device. They 

should also be chemically compatible such that the electrical and thermal 

resistances are minimized between adjacent materials, as well as mass 

diffusion between the two [2]. The latter situation can be prevented by the 

intermediate application of a diffusion barrier, however. There is also the 

aspect of thermoelectric compatibility, s, determined by Snyder et al [11] 

and given in the following equation : 

𝑠(𝑇) =
√1 + 𝑍𝑇 − 1

𝛼𝑇
 

(2)  
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This parameter was determined from an efficiency optimization of a 

segmented module and is temperature dependent like the figure of merit. If 

s differs more than a factor of two for a given pair of materials, they are 

deemed thermoelectrically incompatible and would decrease the efficiency 

and ZT of the device they are implemented in. A notable example of this is 

the incompatibility between TAGS (compounds containing a combination of 

Te, Ag, Ge and Sb) and SiGe for high temperature space applications [12]. 

The replacement of the SiGe segment with Yb14MnSb11 provided an 

efficiency increase from 4.5% to 18.6% over a 975 K temperature difference 

[13]. The compatibility factors for the aforementioned materials, as well as 

some other p-type thermoelectrics are given in Figure 4. 
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Figure 4: Compatibility factors for different p-type materials as recreated from [13]. 

 A fully comprehensive model was created by Ouyang et al that 

incorporated the highest performing materials currently available. It 

accounted for thermoelectric compatibility between the materials as well as 

all potential thermal and electrical losses inherent to the module. In the 

industrial waste heat regime with a temperature difference of 200K, THOT = 

500K, a TEG efficiency of 10.6% was predicted [14]. This value shows great 

promise as commercially available TEG modules composed of single 

materials have an efficiency of roughly 3%. For a higher temperature range 

of 700K, THOT = 1000K, 20.9% with a power density of 2.1 W/cm2 for a [14].  
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The selected materials for the simulation were analytically solved to each 

be within the required factor of two envelope of thermoelectric compatibility.  

 If the appropriate resources are available, the process of 

segmentation should be the standard to which high performance TEGs are 

created. This principle can be taken from the standard flat-plate 

thermocouple configuration and applied to other unique geometries which 

can receive a higher heat flux. The coupling of these two aspects could 

produce reliable TEGs that overshadow those currently available. The use 

of SLM to combine different materials in a vertical arrangement is conducive 

to the development of segmented TEGs. 

2.1.3 Geometry Enhancement 

 The thermal and mechanical stresses associated with a flat-plate 

TEG are limiting factors to its lifecycle. Since the device is subjected to 

thermal gradients, its parallel plate structure will undergo much expansion 

and contraction upon heating and cooling. Other designs have been 

suggested to ease this stress, including the annular TEG. Two of these are 

shown in Figure 5. 
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(a) (b) 

Figure 5: Different annular TEG designs recreated from literature. Top view is 

isometric, bottom view is a cross section of the isometric view;  (a) Rowe et al [15] (b) 

Schmitz [16]. 

The annular designs are meant to fit around pipes to alleviate the thermal 

stresses associated with the flat-plate design. Their geometry would enable 

them to receive all escaping heat since it travels radially by nature. The 

design from Rowe et al uses spark plasma sintered (SPS) ring structures 

bonded between adjacent metal conducting rings [15]. The design from 

Schmitz also uses SPS-manufactured rings of thermoelectric material with 

sintered metal interconnects, in a structure that resembles the flat plate TEG 
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cross section that is rotated about an axis [16]. It is evident that both of 

these designs are extremely difficult to manufacture, and in the case of 

Schmitz, a more exotic method of SPS was needed. However, the versatility 

of additive manufacturing could allow these, and other unconventional 

designs to be made in a single process. An initial attempt at an annular 

geometry was performed by Su et al [17] using direct writing and a 

thermoelectric powder slurry. This showcases the potential of TEG 

technology uninhibited by manufacturing constraints and is where the 

research in this field will ultimately lead. 

2.2 Current State-of-the-Art in TEG AM 

In recent years, additive manufacturing techniques have become 

increasingly more commonplace since the mainstream integration of the 3D 

printer. Metals are commonly 3D printed via SLM. In recent years, some 

research groups have attempted to see the effectiveness of SLM on the 

consolidation of thermoelectric powders [6,18–26]. SLM has advantages 

over other additive manufacturing techniques in that it allows for direct 

assembly onto a variety of substrates, in virtually any geometry, with an 

ever-growing number of materials [6]. 

A useful method to evaluate the state-of-the-art of the additive 

manufacturing of thermoelectrics is to examine the Process-Structure-

Property relationship that is referenced in AM literature [27–29]. This 

methodology, seemingly first mentioned by Olson [30], describes a process 
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flow wherein a comprehensive understanding of the manufacturing process 

and its limitations resulted in the control of a material’s microstructure, and 

this in turn affected the magnitude of many of its physical properties. 

2.2.1 Process 

In order to process a powder in a PBF system, the limitations of its 

material system must be understood. The major such limitation being poor 

powder flowability. In general, poor flowability leads to non-uniform layer 

thicknesses during the PBF process [31]. The bismuth telluride alloys that 

are commercially available have, for the most part been mechanically 

alloyed. The particle size ranges from the nm to the 100μm range, with a 

wide distribution between the two, unfortunately. Attempts have been made 

to make gas atomized (GA) bismuth telluride, however the infrastructure 

and demand for that material is not as prevalent as those in the fields of 

metallurgy so it is not currently cost effective to produce it in this manner for 

mass production [32–34]. Recently, one group showed promise in using 

radio-frequency plasma high-energy spheroidization and created a narrow 

spherical powder distribution for both p-type and n-type alloys  [35]. The 

poor quality of the powder for AM standards has led to researchers finding 

other methods of additive manufacturing for thermoelectrics including inkjet 

printing [19,36–38], thermal spray methods [39–41], and the use of 

stereolithography apparatus (SLA) printing [22]. 
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In terms of first using powder, El-Desouky et al [18] published initial 

attempts at melting bismuth telluride using an SLM machine. They used an 

Nd:YLF 5kHz pulsed laser to melt lines into pressed compacts of bismuth 

telluride powder to observe melt morphology. The power and speed were 

studied in the space of 1 to 2 W and from 5 to 20mm/s, respectively. The 

initial low power and speed range was likely selected due to the low melting 

temperature of Bi2Te3 of 585°C, which is much lower than almost all of the 

metal powders used in AM today [42]. A trend of lower material ejection was 

observed at higher speeds. They continued this investigation in a higher 

power range from 3 to 5 W while fixing the speed to 40 mm/s [6]. These 

initial results indicated that the powder can be melted without significant 

ablation, and that a parameter space in the low power, low speed range 

seemed promising for manufacturing in the Bi2Te3 alloy system. 

As the research evolved, attempts were made to print with loose powder 

or slurries as opposed to processing upon powder compacts. Greifzu et al 

[43] used a syringe deposition system for 15μm particle size bismuth 

telluride suspended in an organic binder and printed samples using a fiber 

laser with a wavelength of 1064nm. Shi et al [21] utilized SLM to print 

Bi0.5Sb1.5Te3 powder with an average particle size of 100μm, using a 

custom-built screening apparatus that acted as an in-situ dry sieve to 

ensure only grains less than or equal to the desired maximum particle size 

were incorporated into the build. This process was aimed at maximizing 
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porosity in the finished part, so that thermal conductance could be 

minimized. Zhang and LeBlanc [44] characterized mechanically alloyed 

bismuth telluride powder by its angle of repose and compared it to a 

stainless steel powder with good flowability for a reference metric. They 

sieved and continually mixed the powder until it showed an angle 

approaching that of the reference and built a custom powder delivery 

system to create sample thermoelectric elements. Most recently, Bian [24] 

fabricated thermoelectric devices based on a slurry with a gel-like organic 

binder that contained Cu particles for increased electric conductivity. These 

were created on custom Al substrates.  

Currently, the poor flowability of mechanically alloyed bismuth telluride 

does present a processing issue for SLM. The aforementioned solutions 

ranging from melting lines in powdered compacts to using slurries with 

binding agents, provide a foundation for exploration. With such a powder, 

there is an importance to develop a process that can produce repeatable 

layer thicknesses. Also, since this is an electronically functional material, it 

would be beneficial to print directly onto a device-ready substrate as 

opposed to a generic metallic build plate. These items, in addition to 

quantifying a laser power and speed process window based on material 

properties, are aspects of investigation in the upcoming chapters of this 

thesis. 
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2.2.2 Structure 

The microstructure of AM produced Bi2Te3 alloys has been 

demonstrated in the literature as well. The initial attempts by El-Desouky 

[18] showed the formation of microcracks in the melted region. The 

formation of these cracks is detrimental to future device development, as it 

will compromise its mechanical stability when used in an industrial setting. 

The authors postulated that the cracks were a result of performing the lasing 

at room temperature rather than at an elevated bed temperature as 

observed in PBF processes. 

Zhang et al [19] showed the melting of nanopowder bismuth telluride 

on a glass surface using a 532nm CW laser. The power and speed were 

not given in the publication. The results showed a coalescing of the grains 

for thicker regions of the deposited nanoparticles, and a lateral film 

formation for thinner regions. This early work aided in the knowledge that 

the Bi2Te3 material system could be processed with a laser. 

Further work of El-Desouky et al [45] increased the power and speed, 

as well as scanned areas of bismuth telluride to incorporate hatch spacing. 

They again used pressed compacts and observed the effects on the 

microstructure in the parameter space of 10 to 25 W, with a constant speed 

of 350mm/s and hatch spacing of 70μm. In this power range, the melt depth 

grew deeper into the specimen as the power was increased. There were 

large granular structures present as well, indicating a polycrystalline nature 
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of the sample. The stoichiometry and crystallinity were tested in and showed 

that between different power ranges, no new phases of the material were 

formed, and the stoichiometry of the powder remained consistent between 

specimens. This is evident from the fact that there are not any new peak 

locations between each of the four measurements. Also, the crystallinity 

improved in the (0015) and (0018) directions, as the peaks became taller 

and narrower with increasing laser power. This represents a large number 

of counts received in the XRD system due to the large concentration of 

crystallites oriented in these directions present within the sample.  

 Mao et al [46] performed XRD on the powder before and after the 

SLM process, and showed that the melting did not cause significant 

evaporation of one of the constituents of the thermoelectric alloy, keeping 

the stoichiometry between the unmelted and melted powder intact. The 

power was 6W, speed 200mm/s, layer thickness 50μm and hatch spacing 

30μm. The microstructure of the powder is paramount to the final device 

performance. It is undoubtedly tied to the process and the underlying 

powder that is used. With such a low melting-point alloy, it is necessary to 

confirm that the stoichiometry of the initial powder is not drastically changed 

during the laser interaction. 

 Welch et al [23] used SLM to manufacture samples of Bi2Se0.3Te2.7 

using a customized setup and observed a grain structure similar to that of 

El-Desouky. They analyzed the microstructure and determined that low 
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angle grain boundaries of approximately two degrees formed along the scan 

path during the solidification process. They noticed that microcracking was 

more prevalent in areas of higher angle grain boundaries, which occurred 

in the growth direction, perpendicular to the scan path. They also performed 

EDS mapping during TEM and observed the presence of oxide formation at 

the nanoscale, indicating the need for material purity and potential post-

processing efforts. 

2.2.3 Property 

In addition to the standard high strength and toughness mechanical 

quantities that are always desired in AM parts, the thermoelectric materials 

manufactured need to exhibit the enhanced thermal and electrical 

properties that allow them to function in a waste heat recovery device. The 

Figure of Merit (ZT) given at the beginning of this report in equation (1), is 

composed of the Seebeck coefficient, thermal conductivity and electrical 

resistivity of the material. Commercial devices are generally manufactured 

with a ZT on the order of unity for their temperature specific application. 

Earlier work by Mao et al [46] provided a comparison between SLM and 

zone melted (ZM) materials. The ZM method is a popular method to grow 

the semiconductor element by using a traveling heater to traverse across a 

region of unmelted material, slowly melting and solidifying it into a 

polycrystalline ingot. Here, electrical conductivity (the inverse of resistivity) 

is given and is shown to be lower in the SLM sample. The Seebeck 
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coefficient also is not as high as in the ZM sample on average, while the in-

plane and cross-plane thermal conductivities are lower. The in-plane 

thermal conductivity is decreased by a factor of 2. The peak ZTs for the in- 

and cross-plane measurements were respectively increased to 0.85 and 

decreased to 0.45 from the ZM peak of 0.8. As observed in the equation for 

ZT, performance improvements come with enhanced Seebeck coefficient 

and electrical conductivity and reduced thermal conductivity. The SLM 

manufactured specimen was able to at least reduce the thermal conductivity 

of the Bi2Te3 in one crystallographic direction substantially. This in turn 

yielded a better thermoelectric material than its zone-melted counterpart. 

Bismuth telluride is an extremely brittle alloy and so much of the effort 

to manufacture it using SLM are heavily focused on both approaching 

theoretical density and having high-performing thermoelectric properties. 

Recent work by Hu et al [35] showed that they managed to obtain 97.4% 

relative density for the p-type alloy, and 96.4% for the n-type alloy. They 

also observed a ZT of 1.2 and 0.9, respectively, for these alloys at room 

temperature. They reasoned that multiscale defects introduced by the 

layering process during AM are responsible for reducing the thermal 

conductivity of the manufactured part, and therefore increasing its ZT. 

Additionally, Headley et al [25] used machine learning to predict optimal 

parameters that resulted in an experimentally low porosity of 0.9%. This 

corresponded to a relative density of 99.1%. Models involving numerical 
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software or machine learning were used in these references to determine 

the process window. While excellent results were achieved using these 

methods, they can be resource intensive and thus there is an opportunity to 

investigate the creation of a closed form model for novel material systems. 

2.3 The Modeling of Laser-Material Interactions 

The current state of the additive manufacturing (AM) process known as 

powder bed fusion (PBF) has allowed it to shift from being used solely as a 

rapid-prototyping technology, to a mainstream production method. Since 

parts can be manufactured with mechanical properties similar to those 

made from traditional manufacturing techniques, the evolving attractiveness 

of additive manufacturing continues to move in the positive direction. 

Despite this however, sources such as [47] have reported that 

approximately 47% of surveyed manufacturers have expressed concern 

that uncertainty in the quality of the completed part has provided a barrier 

to entry of AM into their production run. PBF involves many complex 

physical phenomena that are difficult to model. This is due to the severely 

coupled thermal, optical, and physical properties that are present within the 

powder material in the presence of applied laser energy. Thus, a focused 

effort must be made on modeling the process to remove this concern. 

The three main user-defined parameters that influence the melting 

behaviour of a material during SLM are the laser power 𝑃, speed 𝑣, and 
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hatch spacing ℎ. Together, along with the powder layer thickness 𝑙, they 

comprise a number that is used to qualitatively classify the energy 

requirements for melting. This is known as the volumetric energy density 

and is given in equation (3) [48–50]. 

𝐸𝑑 =
𝑃

𝑣ℎ𝑙
 [

𝐽

𝑚3
] (3)  

The volumetric energy density is heavily used in parameterization studies 

where any or all the above are permutated about a test matrix. Functional 

relationships are made between 𝐸𝑑   and properties of interest (ie. chemical, 

physical, mechanical), such that a process window can be obtained for that 

specific material. The experimental process of doing this can be time 

consuming and costly, and does not guarantee that optimal parameters will 

be obtained [51]. In fact some authors have stated that 𝐸𝑑  should not be 

used as a metric for production as it does not adequately represent all of 

the physics of the melt process [52,53]. Therefore, an effort to model as 

much of the physics within the melt process as possible will allow for a better 

understanding of the correct parameters to use during SLM. 

The necessity of modeling is paramount to the optimization of any 

manufacturing process. It can save time, money and resources that would 

otherwise be spent on producing numerous iterations of a product to obtain 

its best characteristics by brute force – although as it will be seen later, this 
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process is itself a form of modeling. The simplest depiction of a model is 

given in Figure 6. 

 

Figure 6: Basic representation of a model as recreated from [54]. 

As observed above, a model is used to forecast an output given a set of 

inputs. These inputs can be experimentally determined or simply estimated 

and are generally related to the perceived output through a mathematical 

relationship. The fundamental structure of this relationship is in the form of 

equation (1): 

𝑦 = 𝑓(𝑥) + 𝜀 (4)  

This represents a response, y, to an unknown relation, f, of process 

parameter x, with an associated error, ε [51]. This is the basic formulism for 

any model that can be used to predict an outcome based on given inputs 

and it is the skeleton of the three types of models discussed in this report.  

Steen et al [54] summarize modeling three levels. The first is to obtain a 

semiquantitative understanding of the physical mechanisms of the process 

for the design of experiments. This is the creation of the so called, “order of 

magnitude” calculations that describe the feasibility of the proposed model. 

At the second level, it is expected that one must gain a parametric 
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understanding of the process so that it can be controlled and modified for 

different material systems and conditions. The final level is to detailed 

understanding of the process mechanisms so that prediction of outcomes 

and potential improvement can be applied. This is the point at which the 

analytical and numerical models can be tested. 

The physics of the melt process are coupled between one another 

through various types of phenomena, thus it is important for the 

experimenter to determine what they wish to obtain from their model. The 

interaction of the laser with the material is impacted by numerous effects, 

many of which are given in Figure 7. As many of these effects as possible 

are taken into account so that the melt and solidification process can be 

understood, as well as an investigation into modeling the desired properties 

of the manufactured part [55]. 

 

Figure 7: Different phenomena present during the PBF process, as recreated from  

[56]. 
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 Fortunately for laser-based AM, much of the physics surrounding the 

process is identical to other laser processes that preceded it. These include 

laser hardening, cutting, welding, and ablation. Initial modeling of laser 

melting can be traced back to Rosenthal’s solution of a moving point source 

model for cutting and welding metal using an arc welder [57]. He developed 

solutions to the heat equation that incorporated a moving line and point 

sources on the surface of a semi-infinite medium to visualize the three-

dimensional isotherms created as the source propagated. This analytical 

solution did not incorporate any losses due to convection, radiation, 

evaporation, or even phase change upon melting. The Rosenthal solution 

has been noted to provide a good benchmark for laser melting, although as 

coordinates closer to the beam center are evaluated the temperature tends 

toward infinity due to a singularity at this point. Building upon this work, the 

analytical solution for a moving Gaussian beam was developed using a 

similar approach by Cline and Anthony [58]. They also considered a semi-

infinite medium but included a volumetric heat source rather than a surface 

source.  

 The types of modeling that exist are empirical, numerical and 

analytical. All three modeling schemes contain inherent advantages and 

disadvantages. The empirical model, while simplest to perform, requires the 

physical production of numerous parts by means of applying a build 

parameter matrix. Here, many experiments are essentially performed and 
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their outcomes are correlated to produce a trend that can be validated by 

further experimentation. An understanding of the underlying physics is not 

necessarily required for the implementation of an empirical model, but this 

would be useful in determining the magnitude and placement of the 

constants that fit the relation [59]. Numerical simulations require the use of 

specialized software or a coding language to perform FEM approximations. 

Depending on the complexity of the solving mechanism, the user can be 

met with an easy-to-use graphical user interface or become consumed with 

debugging code. Also, many of the software suites, such as ANSYS require 

the purchasing of a license which can be expensive. Furthermore, some 

software may be proprietary therefore it is impossible to be provided to the 

research community at large, which can impede advancements in this field, 

such as the case for the ALE3D software designed by Lawrence Livermore 

National Laboratory [56]. 

The numerical and analytical approaches can be performed without the 

need to manufacture parts, but do require knowledge of the optical, thermal, 

and physical mechanisms of the melt process to provide a physically 

relevant result. This is the trade-off between these two methodologies and 

the empirical model, as it is possible to become lost in the minutiae of the 

physics by consistently trying to improve upon the model before testing it 

[54].  
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Despite the previous points however, it is the analytical approach that 

has the industrial advantage, if it exists. This is because a closed form 

solution can be obtained, and the results of the temperature profile obtained 

using this method can be passed into the AM process control system during 

a live build to monitor the part quality in-situ by adjusting the build 

parameters accordingly. Unfortunately, there exists no fully complete 

analytical model that can predict the quality of an additively manufactured 

part with 100% accuracy yet. This shortcoming can be a result of the type 

and number of assumptions surrounding the analytical approach [59]. 

One such set of assumptions is the universal use of the heat equation 

for the determination of the thermal history of the part. In [60], Bäuerle 

describes limits to the validity of this equation for modeling purposes. For 

example, the relevant optical and thermal properties are usually taken from 

data that utilized test methods to obtain these properties where small 

thermal gradients were applied across the sample. This is not the case in 

laser processing, however, since there is a lot of energy delivered in such 

a short amount of time. In fact, since the dominant mechanisms involve 

conduction and absorption, laser processing of materials usually lead to the 

creation of large thermal gradients whereby the expected contribution of the 

input parameters may deviate from their perceived values. These properties 

also depend on the crystallinity and surface morphology of the material to 

be melted. Since the PBF process uses powder as a medium, its optical 
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absorption and thermal conductivity, for example, will be radically different 

than for a homogeneous and isotropic slab of the same material of 

equivalent thickness. Finally, the coupling between different aspects of the 

melt phenomenon, such as the local temperature and density of the powder, 

can lead to the necessity of solving coupled non-linear equations that will 

only add further complexity to the model and a source of error if not properly 

understood. 

Some models neglect certain physical phenomena for simplicity. The 

numerical model proposed by King et al [47] describes the omission of 

characteristics such as the interaction of intensely vaporized material with 

the incident laser beam and the convective losses to the surrounding gas 

medium. The intense vaporization of material is typically observed during 

the process of keyhole welding, where this vaporization is caused by the 

creation of a plasma due to the extremely high laser energy. There exist 

models for this laser-plasma interaction however the authors determined 

that as the laser energy approaches the welding regime the build quality 

would begin to deteriorate. In the matter of the gas-driven convective 

losses, their neglect from the model is due to limits in computational power. 

The software they used would only allow for the modeling of extremely small 

regions of the build area at a time, over small timescales on the order of a 

few milliseconds. They reasoned that within these conditions heat losses 

from the melt track due to evaporation, radiation and conduction into the 



Ph.D. Thesis – M.V. Cino                   McMaster University – Engineering Physics 

31 

 

substrate would dominate over convection and that modeling convection 

would only be advantageous when they could accommodate the 

computation of a larger region of the build area.  

These limitations are not by any means exhaustive and may be 

exceeded as the current state-of-the-art in PBF modeling practices continue 

to develop. 

2.4 Research Implications 

The remainder of this thesis provides experimental and modeling efforts 

to emphasize the role that additive manufacturing can play in 

thermoelectrics, as well as the benefits of modeling an uncharacterized 

material system for first time use with SLM. In Chapter 3, a semi-analytical 

model is developed to provide an elementary process window based on 

some coarse physical assumptions of the laser interaction. It employs a 

novel approach of separating the beam into two portions; one that is incident 

on powder and the remainder that is incident on the lagging melt pool as 

the beam traverses across the powder bed. The material properties of both 

the powder bed and the liquid are taken into account, and often additional 

modeling from known physical relationships was employed to determine 

properties that were either unknown or difficult to measure. The process 

window that is created via this model is a first approximation to allow an 

experimenter to begin processing their material with a laser power and 



Ph.D. Thesis – M.V. Cino                   McMaster University – Engineering Physics 

32 

 

speed that should facilitate melting with minimal evaporative loss, and 

provide values that would be consistent with the conduction regime of laser 

processing. This window acts as an initial guide and is meant to be 

improved upon as experimentation develops. Chapter 4 outlines the 

experimental challenges of getting an unfit-for-AM powder into a 

commercial LPBF system. It details the powder and bulk characterization 

techniques as custom powder delivery system used to overcome these 

challenges. This custom system acts as a foundation to allow for further 

experimentation with the AM of metallic powders of different morphology, 

by allowing for the manual stackability of powder layers of repeatable 

thickness. The fifth chapter combines the successful experimental efforts of 

producing an AM-manufactured thermoelectric device, with the validation of 

the semi-analytical model to act as a guide for future experimentation in the 

semiconductor or semimetal space, where the preservation of both 

stoichiometry and crystal structure of the underlying powder are of 

paramount importance. 
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3. Model Setup 

3.1 Semi-Analytical Component 

3.1.1 Relevant Physical Properties 

The powder and liquid properties required for effective modeling of the 

laser melting process are organized into optical, thermal, and physical 

property categories. In this thesis, when a measurement was unable to be 

performed or data did not exist in literature, the property was modelled 

based on related physical processes. This is meant to emphasize 

overcoming the challenges of obtaining reasonable values for difficult-to-

obtain material properties. Below is a table of all necessary properties for 

the modeling of Bi2Te3 noting those which were estimated. The properties 

for both the powder and the bulk solid are both categorized under “powder”.  
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 Necessary Properties for the Modeling of SLM of Bi2Te3 
(Symbol for Powder/Symbol for Liquid) 

● = Modeled 

 Property Powder Liquid 

O
p

ti
c
a
l Absorption Coefficient (𝛽/𝛼) ● N/A 

Reflectivity (𝑅𝑝/𝑅𝐿) ● ● 

Absorptivity (𝐵𝑝/𝐴𝐿) ● ● 

T
h

e
rm

a
l 

Thermal Conductivity (𝑘𝑝/𝑘𝐿) ●  

Heat Capacity (𝑐𝑝𝑠/𝑐𝑝𝐿)   

Melt Temperature (𝑇𝑚)   

Effective Boiling Temperature 
(𝑇𝑏) 

N/A ● 

Latent Heat of Fusion (𝛥𝐻𝑚)  N/A 

Latent Heat of Vaporization 
(𝛥𝐻𝑣) 

N/A ● 

Emissivity = Absorptivity [61] ● ● 

Table 2: Necessary properties for the Modeling of the SLM of Bi2Te3. 

3.1.1.1 Optical Properties 

3.1.1.1.1 Powder Absorption Coefficient (β) 

Light is absorbed to a depth into a homogeneous body via the Lambert-

Beer Law. For an incident intensity, such as one provided by a laser, the 

absorbed radiation in the z-direction will follow equation (5) 
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𝑑𝐼(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑧
= −𝛼𝐼(𝑥, 𝑦, 𝑧, 𝑡) [

𝑊

𝑚3
] (5)  

where 𝐼(𝑥, 𝑦, 𝑧, 𝑡) is the intensity [W/m2] and 𝛼 is the absorption coefficient 

in [m-1] that determines the attenuation of that intensity at a depth in the z-

direction [62]. However when the medium is nonhomogeneous and 

contains voids, as is the case with a powder bed used in additive 

manufacturing, the absorption of light is characterized by the Radiative 

Transfer Equation (RTE) [63–66]. This equation considers the analogous 

absorption from the Lambert-Beer law, while also considering the effects of 

scattering from the particles in the system internally. The equation is given 

below and the additional coordinate notation for x, y, and t have been 

dropped for simplicity but are implied in the intensity equation [64,67]. 

𝜇
𝑑𝐼(𝑧, 𝜇)

𝑑𝑧
=  𝛽 {

𝜔

2
∫ 𝐼(𝑧, 𝜇′)𝑃(𝜇′, 𝜇)𝑑𝜇′
1

−1

− 𝐼(𝑧, 𝜇)} [
𝑊

𝑚3
] (6)  

Where 𝜇 = 𝑐𝑜𝑠𝛳 , 𝜔  is the scattering albedo, 𝛽  in [m-1] is the powder 

absorption coefficient similar to α in the Lambert-Beer law, and 𝑃(𝜇′, 𝜇) is 

the scattering phase function. This phase function is assumed equal to unity 

to provide isotropic scattering from the spherical particles [64]. A sample 

powder bed system showing powder placed upon a substrate is given in 

Figure 8 that illustrates the effects of the RTE. The solution to this equation 

will be revisited in the derivation of the powder bed absorptivity in the next 

section. 
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 The absorption coefficient 𝛽  first needs to be determined for a 

powder bed system, and will be shown to be explicitly based on the 

geometry of the powder bed particles alone, and have no dependence on 

wavelength or material properties [63]. Thus, it is first important to 

understand the geometry of the particles present within a powder bed. A 

powder size distribution is given in Figure 24 for a p-type bismuth telluride 

ternary alloy.  

 

Figure 8: Incident laser radiation 𝑰𝒐on a powder bed surface at z=0. The radiation 

propagates through the powder to the substrate which begins at z=L. The intensity is 

both absorbed by the system and scattered by the particles at angle ϴ to a resultant 

intensity 𝑰(𝒛, 𝜭). This image is recreated from [64]. 

The powder packing factor 𝑃𝐹𝑝  is equal to the sum volume of particles 

divided by a fixed bounding volume. This value can be measured 

experimentally and evaluated using the following equation. 
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𝑃𝐹𝑝 =
𝑚𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑉𝑓𝑖𝑥𝑒𝑑 · 𝜌𝑏𝑢𝑙𝑘

=
𝜌𝑝𝑜𝑤𝑑𝑒𝑟

𝜌𝑏𝑢𝑙𝑘
=
𝑉𝑝𝑜𝑤𝑑𝑒𝑟

𝑉𝑓𝑖𝑥𝑒𝑑
  (7)  

Where the measured mass 𝑚𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 of powder in [kg] that is contained 

within some fixed volume 𝑉𝑓𝑖𝑥𝑒𝑑 in [m3] provides the powder density 𝜌𝑝𝑜𝑤𝑑𝑒𝑟 

in [kg/m3]. This value is then divided by the theoretical bulk density of the 

powder material 𝜌𝑏𝑢𝑙𝑘 in [kg/m3] that can be obtained from literature. The 

packing factor is scalable to a powder distribution where the sum of the 

particle volumes 𝑉𝑠 in [m3] can be divided by a minimal characteristic volume 

𝑉𝑐 in [m3] that is representative of the powder packing on a larger scale. 

𝑃𝐹𝑝 =
∑ 𝑉𝑠𝑖
𝑁
𝑖=1

𝑉𝑐
=
𝑉𝑠
𝑉𝑐

 
 (8)  

The concept of a packing factor defined by characteristic volume is provided 

in Figure 9, with definitions of the volume of spheres and the volume of the 

surrounding gas with respect to the characteristic volume, 𝑉𝑐. 
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a 

 

b 

 

c 

 

d 

 

Figure 9: a) Characteristic volume 𝑽𝒄 which represents the minimal bounding volume 

that can be repeated. The colour blue represents the gaseous environment that the 

particles inhabit. b) A distribution of particles of different diameters, indicated both 

by their sizes and fill texture. The sum of the volumes of these spheres is denoted as 

𝑽𝒔. c) The spheres are placed within their characteristic volume, where the packing 

factor given as  𝑷𝑭𝒑 =
𝑽𝒔

𝑽𝒄
. Thus the volume of spheres with respect to the 

characteristic volume is equal to 𝑽𝒔 = (𝑷𝑭𝒑)𝑽𝒄. d) The particles have been omitted 

and the remaining blue region is the volume of gas that is present in 𝑽𝒄 after the 

particles have been added and displace their volume in gas. This remaining volume 
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is equal to 𝑽𝒄 − 𝑽𝒔  making the volume of gas within a characteristic volume of 

particles equal to 𝑽𝒈𝒂𝒔 = (𝟏 − 𝑷𝑭𝒑)𝑽𝒄. 

For a given powder size distribution such as that given in Figure 24, the total 

volume of all particles in a given sample is given by equation (9).  

𝑉𝑠 =∑𝑉𝑠𝑖

𝑁

𝑖=1

=∑𝑁𝑠(𝑑𝑖) ·
𝜋

6
𝑑𝑖
3

𝑁

𝑖=1

 [𝑚3] (9)  

where in a multimodal powder of N different diameters the number of 

spheres in the ith diameter size is given by 𝑁𝑠(𝑑𝑖) with 𝑑𝑖 being the diameter 

in [m]. The multimodal powder in Figure 24  provides these diameters, 

although they are given in [μm] and therefore must be converted to [m] for 

all subsequent calculations. For single mode powders, N=1 and the 

summation vanishes. The distribution in Figure 24 is given as percent 

volume per diameter size. This percentage is calculated by equation (10). 

(%)𝑖 =
𝑉𝑠𝑖
∑ 𝑉𝑠𝑖
𝑁
𝑖=1

=
𝑁𝑠(𝑑𝑖) · (

𝜋
6 𝑑𝑖
3)

𝑉𝑠
  (10)  

Solving equation (10) for 𝑁𝑠(𝑑𝑖) yields equation (11) : 

𝑁𝑠(𝑑𝑖) =
6𝑉𝑠
𝜋
·
(%)𝑖

𝑑𝑖
3   (11)  

With these values in place, it is important to return to the characteristic 

volume to once again state the volume of gas present in between the 
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particles. Within the Figure 9 description, this volume is denoted as 𝑉𝑔𝑎𝑠. It 

can be formally defined in terms of the packing factor and 𝑉𝑐 by equations 

(12) – (14) with the help of the substitution of equation (8) into equation (13). 

𝑉𝑔𝑎𝑠 = 𝑉𝑐 − 𝑉𝑠 [𝑚3] (12)  

𝑉𝑔𝑎𝑠

𝑉𝑐
=
𝑉𝑐
𝑉𝑐
−
𝑉𝑠
𝑉𝑐
= 1 −

𝑉𝑠
𝑉𝑐
= 1 − 𝑃𝐹𝑝 

 (13)  

𝑉𝑔𝑎𝑠 = (1 − 𝑃𝐹𝑝)𝑉𝑐 
[𝑚3] (14)  

Even with the specific particle and characteristic volumes unknown, there is 

now enough information to calculate 𝛽  using knowledge of the powder 

distribution of volumes and the measured packing factor. The powder 

absorption coefficient is defined in the literature as the ratio of the surface 

area of a particle population to the volume of its voids, multiplied by a factor 

of ¼. The void volume is the volume of the gas between particles, given by 

equation (14). Further information about its derivation can be found in 

numerous sources [63–68]. Using equation (11) for the number of particles 

in the distribution of a certain diameter, the surface area of this subset can 

be calculated in equation (15) with the surface area of a single particle equal 

to that of a sphere.  

𝑆𝐴𝑖 = 𝑁𝑠(𝑑𝑖) · 𝜋𝑑𝑖
2 = (
6𝑉𝑠
𝜋
·
(%)𝑖

𝑑𝑖
3 ) · 𝜋𝑑𝑖

2 = 6𝑉𝑠 ·
(%)𝑖
𝑑𝑖

 [𝑚2] (15)  
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The description of 𝛽  given in the preceding paragraph can now be 

formulated using both equations (14) and (15). 

𝛽 =
1

4
·
∑ 𝑆𝐴𝑖
𝑁
𝑖=1

𝑉𝑔𝑎𝑠
=
1

4
·
6𝑉𝑠 · ∑

(%)𝑖
𝑑𝑖

𝑁
𝑖=1

(1 − 𝑃𝐹𝑝)𝑉𝑐

=
3

2
·
𝑉𝑠
𝑉𝑐
·
1

1 − 𝑃𝐹𝑝
·∑
(%)𝑖
𝑑𝑖

𝑁

𝑖=1

 

[𝑚2] (16)  

Finally, with the definition of the packing factor provided in equation (8), 

equation (16) can be further simplified to remove the two unknowns of 𝑉𝑠 

and 𝑉𝑐 and leave 𝛽 only in terms of experimentally determined quantities. 

The equation value for 𝛽 is given for a powder distribution in [63]. 

𝛽 =
3

2
·
𝑃𝐹𝑝

1 − 𝑃𝐹𝑝
·∑
(%)𝑖
𝑑𝑖

𝑁

𝑖=1

 [
1

𝑚
] (17)  

All of the necessary values needed to calculate 𝛽 in equation (17) have 

been provided; the packing factor can be experimentally determined from a 

simple mass and containing volume measurement, and the volume 

percentage per diameter (%)𝑖  as well as the diameters of the particles 

themselves 𝑑𝑖 are given in the distribution shown in Figure 24, where the 

values in the y-axis need to be divided by 100 to be used in the calculation 

above. 
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 For the powder distribution of p-type (Bi0.15Sb0.85)2Te3 given in Figure 

24, the absorption coefficient 𝛽 calculated using equation (17) is equal to 

3.36·105 m-1. This yields an optical penetration depth of 
1

𝛽
 equal to 2.98 μm. 

 It is evident in equation (17) that the powder absorption coefficient is 

not dependent on the incident light wavelength or the reflectivity of the bulk 

powder material itself, but rather simply on geometrical factors. These 

factors are clearly the packing factor and diameter distribution of the 

powder. In order to forecast the effects of changing these parameters in 𝛽, 

a substitution for the sum in this equation can be provided by equation (18).  

1

𝑑𝑒𝑞
=∑

(%)𝑖
𝑑𝑖

𝑁

𝑖=1

 [
1

𝑚
] (18)  

The above equation converts the diameter distribution into a single 

equivalent powder diameter 𝑑𝑒𝑞. Again, for a single mode powder where 

there is only one diameter grain size present, this equivalent diameter is 

equal to that single mode diameter of the distribution. Making the above 

substitution, the absorption coefficient can be parametrized for PF and 𝑑𝑒𝑞 

using the following equation.  

𝛽 =
3

2
·
𝑃𝐹𝑝

1 − 𝑃𝐹𝑝
·
1

𝑑𝑒𝑞
 [

1

𝑚
] (19)  
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The relationship between 𝛽, 𝑃𝐹𝑝 and 𝑑𝑒𝑞 are shown in Figure 10. To make 

the results more meaningful, the plot is shown as 
1

𝛽
, the optical penetration 

depth of the powder.  

 

Figure 10: Surface plot trend of optical penetration depth vs. changing equivalent particle 

diameter and powder packing factor.  

The general trend is understood to be that the optical penetration depth 

increases with increasing equivalent particle size and decreasing packing 

factor. It is important to note, however, that a nonspherical powder 

containing a wide distribution of sizes from the nano to macro scale will not 
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interact with light in the same manner as a narrow distribution of spherical 

particles. The irregular powder morphology implemented in the layer 

thicknesses used in this research create optically thick powder layers that 

are estimated to be better at isotropic scattering within the powder bed. A 

narrow distribution of spherical particles that have high flowability will 

arrange themselves in such a way that that they are not uniformly distributed 

and thus the concept of the equivalent diameter will be a less accurate 

representation of the powder particle size. It will also decrease the accuracy 

of the powder absorption coefficient. Nevertheless, the initial assumptions 

and the aforementioned calculation methodology still lead to the production 

of a process window that suitable for first-time use with a novel powder 

system. 

3.1.1.1.2 Powder Absorptivity (Bp) 

 Since part of the beam will interact with powder and part will interact 

with liquid, both the solid and liquid absorptivities will be discussed. 

Beginning with the solid absorptivity, this is the effective absorptivity of the 

powder that is determined from the RTE solution of the heat flux as a 

function of depth. This solution is given in Appendix A.1 with the final 

equation of heat flux 𝑞(𝜉)  provided in subsection A.1.3, where the 

dimensionless variable 𝜉 = 𝛽𝑧 . The powder absorptivity was completely 

derived also in the same appendix, with its equation restated below: 
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𝐵𝑝 =
𝐴

2
(1 − 𝑒−2𝑎𝜆) +

𝐵

2
(1 − 𝑒2𝑎𝜆)

+ (
𝑅𝑏
4𝑅𝑏 − 3

− 1) (𝑅𝑠𝑒
−2𝜆 + 𝑒−𝜆(1 − 𝑅𝑠) − 1) 

(20)  

The absorptivity of the powder – the amount of energy absorbed only in the 

powder layer, 𝐵𝑝  – is the difference between the powder-substrate and 

substrate absorptivities [63,64]: 

𝐵𝑝 = 𝐵𝑝𝑠 − 𝐵𝑠 = 𝑞(0) − 𝑞(𝜆) (21)  

where in the equations above,  𝑎 = √1 − 𝑅𝑏  , 𝜆 = 𝛽𝛥𝑧𝑝, and 𝐴 and 𝐵 are 

respectively defined in equations (A1.103) and (A1.102) . For a powder 

depth of 76μm, 𝑅𝑠 = 0.97 for a copper substrate, 𝑅𝑏 = 0.72 for bulk bismuth 

telluride and 𝛽 of 3.36·105 m-1, the powder absorptivity was calculated to be 

0.77. 

3.1.1.1.3 Liquid Absorptivity (AL) 

For conductive materials, the liquid absorptivity can be derived from the 

implementation of the DC electrical conductivity in the Fresnel equations for 

the real component of the refractive index (𝑛) and the extinction coefficient 

(𝑘). The relevant equations are [69]: 

𝑛2 − 𝑘2 = 1 (22)  

2𝑛𝑘 =
𝜎

𝜀𝑜𝜔
 

(23)  
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where σ is the DC electrical conductivity in [Ω·m]-1, 𝜔 is the frequency of the 

incident light in rad/s, and 𝜀𝑜 is the permittivity of free space. Isolating both 

𝑛  and 𝑘  separately and using temperature-dependent values for the 

electrical conductivity, the resulting equations yield a temperature 

dependency in the optical properties as well.   

𝑛(𝑇) = √
1

2
+
1

2
√1 + (

𝜎(𝑇)

𝜀𝑜𝜔
)
2

 (24)  

𝑘(𝑇) = √−
1

2
+
1

2
√1 + (

𝜎(𝑇)

𝜀𝑜𝜔
)
2

 

(25)  

With these coefficients determined vs. temperature, the reflectivity can be 

subsequently calculated as shown below. 

𝑅𝐿(𝑇) =
(𝑛(𝑇) − 1)2 + 𝑘(𝑇)2

(𝑛(𝑇) + 1)2 + 𝑘(𝑇)2
 (26)  

Finally, with the assumption that light is only absorbed or reflected, the 

absorptivity as a function of temperature is equal to 𝐴𝐿(𝑇) = 1 − 𝑅𝐿(𝑇) and 

can be temperature averaged between the melt temperature 𝑇𝑚 and the 

boiling temperature 𝑇𝑏 in the following equation. 

𝐴𝐿 =
1

𝑇𝑏 − 𝑇𝑚
∫ (1 − 𝑅𝐿(𝑇))𝑑𝑇
𝑇𝑏

𝑇𝑚

  (27)  
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Using temperature-dependent values for the DC electrical conductivity of 

liquid Bi2Te3 from [70] and equations (24) to (27), the value of 𝐴𝐿 calculated 

for bismuth telluride was 0.50. 

3.1.1.2 Thermal Properties 

3.1.1.2.1 Powder Thermal Conductivity (kp) 

The effective thermal conductivity of the powder was estimated using 

the model put forward by Thümmler and Oberacker: 

𝑘𝑝 = 𝑘𝑠(1 − 𝜙) [
𝑊

𝑚 · 𝐾
] (28)  

where 𝑘𝑠 is the thermal conductivity of the bulk solid material and 𝜙 = 1 − 𝑃𝐹𝑝 

is the porosity of the powder [71]. It neglects the thermal conductivity of the 

surrounding gaseous medium as its thermal conductivity is much less than the 

bulk solid material. This method of determination was used extensively in the 

literature, see for example [72–74], and was selected over more complex 

empirical models [75–77] based on its simplistic formation and its justification 

to be a good first order estimate of the effective thermal conductivity of a porous 

medium.  

With a bulk thermal conductivity 𝑘𝑠 =0.945 W/(m·K) and 𝑃𝐹𝑝 =0.41, the 

thermal conductivity of the powder bed was calculated for bismuth telluride 

to be roughly 0.39 W/(m·K). 
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3.1.1.2.2 Effective Boiling Point (Tb) 

Due to the different evaporative pressures for components in alloys, a 

single effective boiling temperature for the bulk material must be 

approximated. This is approximated by the effusion pressure-temperature 

relationship. For example, for bismuth telluride, this is given in the literature 

as [78]: 

log(𝑝) = 7.579 −
1.020 · 104

𝑇
  (29)  

where 𝑝 is the pressure in atm and 𝑇 is the temperature in Kelvin. Since 

processing occurs at roughly 1 atm of pressure, the corresponding 

temperature can be solved for by equating the left side of equation (29) to 

zero and solving for temperature. For bismuth telluride, this effective boiling 

temperature was determined to be 1346 K.  

3.1.1.2.3 Latent Heat of Vaporization (ΔHv) 

That latent heat of vaporization is difficult to obtain for nonhomogeneous 

materials because different components may evaporate at different 

pressures. However, an acceptable approximation can be made from the 

ablation threshold of the material [79]. An energy balance with the ablation 

threshold must first be evaluated. 

𝜌𝑠(𝑐𝑝𝑠(𝑇𝑚 − 𝑇𝑜) + 𝛥𝐻𝑚) + 𝜌𝐿(𝑐𝑝𝐿(𝑇𝑏 − 𝑇𝑚) + 𝛥𝐻𝑣) = 𝐹𝑡ℎ𝛼𝑠 [
𝐽

𝑚3
] (30)  
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Rearranging (30) and solving for 𝛥𝐻𝑣, the latent heat of vaporization is given 

below. 

𝛥𝐻𝑣 =
𝐹𝑡ℎ𝛼𝑠 − 𝜌𝑠(𝑐𝑝𝑠(𝑇𝑚 − 𝑇𝑜) + 𝛥𝐻𝑚) − 𝜌𝐿𝑐𝑝𝐿(𝑇𝑏 − 𝑇𝑚)

𝜌𝐿
 [

𝐽

𝑘𝑔
] (31)  

The ablation threshold is denoted as 𝐹𝑡ℎ, the absorption coefficient for solid 

bulk material is 𝛼𝑠, the latent heat of melting is 𝛥𝐻𝑚, and the remaining 

symbols have their usual meanings. To calculate the latent heat of 

vaporization for generic Bi2Te3 using equation (31), the following properties 

are used which yields 𝛥𝐻𝑣 = 4.37 x106 J/kg for Bi2Te3: 

Property Value Reference 

𝑭𝒕𝒉 350 [J/m2] 
[80] 

𝜶𝒔 9.81x107 [m-1] Calculated at 800nm corresponding to 
laser used in [80] ,from [81] 

𝝆𝒔 7.64 x103 [kg/m3] 
Temperature averaged from [70] 

𝒄𝒑𝒔 172 [J/(kg·K)] 
Temperature averaged from [82] 

𝑻𝒎 858 [K] 
[42] 

𝜟𝑯𝒎 1.51 x105 [J/kg] 
[42] 

𝝆𝑳 7.09 x103 [kg/m3] 
Temperature averaged from [70] 

𝒄𝒑𝑳 407 [J/(kg·K)] 
Temperature averaged from [82] 

𝑻𝒃 1.35 x103 [K] 
Effectively approximated from [78] 

𝑻𝒐 300 [K] 
[80] 

Table 3: Thermal properties used for the approximation of the latent heat of 
vaporization for Bi2Te3. 
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3.1.2 Model Assumptions  

The output of this model acts as a starting point for experimentation, in 

a parameter space that spans hundreds of watts of power and thousands 

of mm/s. It contains many coarse assumptions that will lead to the formation 

of an elementary process window that will reduce the planning time before 

initial experimentation in a new material system can occur. The following is 

a list of assumptions made to simplify the analysis and close the form of the 

solution: 

• The laser beam will travel along the x-axis. 

• The beam area will be split into two parts; one that interacts 

volumetrically with the powder and one that acts volumetrically 

with the liquid. 

• The portion of the beam that interacts with the powder will utilize 

a simplified approach of the  Radiative Transfer Equation. It will 

be Lambert-Beer in application, but its absorption coefficient will 

come from the Radiative Transfer Equation.   

• The beam radius is defined by its 
1

𝑒𝜒
 intensity waist, denoted as 

𝜔𝜒. 

• The beam will start at time 𝑡 = 0 at position (0,0,0) and move 

with velocity 𝑣 in the positive x-direction. 
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• There exists a time 𝑡 = 𝜏𝑠 > 0  when the beam will have 

deposited enough energy at (𝜔𝜒,0,0) such that a liquid melt front 

will begin to form that can begin to be evaluated by the Stefan 

formulation. 

o 𝜏𝑠 is solved for semi-analytically from an energy balance 

that meets the requirements for the laser to begin melting 

the surface. There are combinations of laser power and 

speed that do not allow for this initial surface melting and 

therefore would not be appropriate for experimentation. 

o This is assumed to be the time at which the optical 

penetration depth of the powder is melted. 

• 𝑃 and 𝑣 are solved for by considering the melt requirements for 

the powder contained within the powder layer, at 𝜏𝑠 as well as an 

overall energy balance for the system that necessitates melting 

to the bottom of the powder layer for the center point of the beam. 

o The power and speed combinations are determined for 

melt requirements on a cubical region of powder that has 

a top surface side length of the laser diameter, and the 

depth of the powder bed. The melt requirements are 

assumed to be the amount of energy deposited into the 

absorption depths of the liquid and solid media to satisfy 

the sensible and latent heats of the material system 
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accounting for  surface losses such as radiation and 

evaporation. 

o Only the melt requirements of the powder contained 

within the powder layer are considered. The additional 

energy needed for the remelting of the solid layer beneath 

was omitted in this approximation in order to provide a 

window as close to the conduction regime as possible. 

Future considerations for the energy component 

associated with remelting of the layer beneath are 

recommended. 

o Convection, both in the ambient medium and within the 

melt are neglected but could be included in the future. 

3.1.3 Laser Parameter Determination 

The goal of the semi-analytical model is to outline an elementary 

process window for laser power and speed that can then be further verified 

with more in-depth modeling or experimentation. This model is based upon 

an energy balance that recognizes the laser beam can be divided into two 

portions; one that interacts solely with solid powder and the other that 

interacts with liquid. 
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3.1.3.1 Gaussian Beam Profile 

A stationary Gaussian beam has an intensity profile described by 

equation (32) which is given in radial dimensions. 

𝐼(𝑟) = 𝐼𝑂𝑒
−
𝑟2

𝜔1
2
 [

𝑊

𝑚2
] (32)  

where 𝜔1 is the radius at which the intensity drops to 1/e of its maximum 

value near the focal plane. The intensity is related to the total laser power 

𝑃 through equation (33). 

𝑃 = ∫ 𝐼(𝑟)𝑑𝐴
𝑟=∞

𝑟=0

 [𝑊] (33)  

where the infinitesimally small area 𝑑𝐴 is related to the shape of the circular 

beam area by: 

𝐴 = 𝜋𝑟2 [𝑚2] (34)  

𝑑𝐴 = 2𝜋𝑟𝑑𝑟 [𝑚2] (35)  

Thus, the total power in equation (33) can be rewritten and the maximum 

intensity Io can be solved for: 

𝑃 = 2𝜋∫ 𝐼(𝑟)𝑟𝑑𝑟
𝑟=∞

𝑟=0

 [𝑊] (36)  

𝑃 = 2𝜋∫ 𝐼𝑂𝑟𝑒
−
𝑟2

𝜔1
2
𝑑𝑟 = 𝐼𝑂𝜋𝜔1

2
𝑟=∞

𝑟=0

 
[𝑊] (37)  
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𝐼𝑂 =
𝑃

𝜋𝜔1
2 [

𝑊

𝑚2
] 

(38)  

This allows the intensity to be written in terms of laser power and beam 

radius: 

𝐼(𝑟) =
𝑃

𝜋𝜔1
2 𝑒
−
𝑟2

𝜔1
2
 [

𝑊

𝑚2
] (39)  

If the upper limit of integration in equation (33) was changed from infinity to 

the 1/e beam radius, 𝜔1, the integral would equal 0.63𝑃. This indicates that 

only 63% of the total beam power is present within that radius. In order to 

encompass more of the beam, a larger radius can be chosen such that: 

𝜔𝜒 = 𝜔1√𝜒 [𝑚] (40)  

where 𝜒 can be any number greater than zero, however practically integer 

values are used. This creates a new radius of 1/𝑒𝜒  intensity. Figure 11 

shows a Gaussian beam that is labelled with the 1/e, 1/e2, 1/e3, and 1/e4 

intensity radii. These correspond to 63%, 86%, 95% and 98% of the total 

beam power, respectively. In general, the sensitivity of the radius selection 

can be taken into account with a modification to the intensity equation as a 

result of equation (40) . The generalized intensity equation is then given 

below: 
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𝐼(𝑟) =
𝜒𝑃

𝜋𝜔𝜒2
𝑒
−
𝜒𝑟2

𝜔𝜒
2

 [
𝑊

𝑚2
] (41)  

Equation (41) can be modified to represent a moving beam but must first be 

converted into Cartesian coordinates from the familiar relationship: 

𝒓2 = 𝒙2 + 𝒚2 [𝑚2] (42)  

𝒙 = 𝑥 − 𝑣𝑥𝑡,    𝒚 = 𝑦 − 𝑣𝑦𝑡 [𝑚] (43)  

with the Cartesian intensity equation equal to: 

𝐼(𝑥, 𝑦, 𝑡) =
𝜒𝑃

𝜋𝜔𝜒2
𝑒
−(
𝜒(𝑥−𝑣𝑥𝑡)

2

𝜔𝜒
2 )

𝑒
−(
𝜒(𝑦−𝑣𝑦𝑡)

2

𝜔𝜒
2 )

 [
𝑊

𝑚2
] (44)  

When integrating the above equation for a heat balance, it is convenient to 

assume the beam travels solely in the x-direction with speed vx = v. This 

causes vy to equal zero and simplifies the equation. 

𝐼(𝑥, 𝑦, 𝑡) =
𝜒𝑃

𝜋𝜔𝜒2
𝑒
−(
𝜒(𝑥−𝑣𝑡)2

𝜔𝜒
2 )

𝑒
−(
𝜒𝑦2

𝜔𝜒
2 )

 [
𝑊

𝑚2
] (45)  

A value of 𝜒 = 2 is used in the literature and is standard in industry as well 

[62,83]. 
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Figure 11: (Top) Gaussian intensity profile of a laser beam as a function of radius. 

(Bottom) Projection of the beam on a surface with specific radii labelled.  

3.1.3.2 Solid and Liquid-Interacting Beam Components 

In the proposed model, the beam is assumed to start at the origin in 

the xy-plane at time t=0s. The melt region of interest (ROI) is a cube with 

dimensions of the square of the beam diameter in the xy plane, multiplied 

by the powder depth in the z plane. A diagram of the laser starting position 

is given below. 
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Figure 12: Starting point of laser beam before entering the ROI. (Top) Setting up the 

laser scan path along the positive x-direction in the xy plane. The view in the xy plane 

exists between ω and 3ω. (Bottom) The  depth in the xz direction is shown to be the 

length of the powder layer. The subscript 𝝌 has been dropped for clarity. 

 As observed in Figure 12 the laser begins just outside of the ROI, in 

fact it is one beam radius from entering the region of interest. It will traverse 

along the dotted path with some speed, 𝑣, until it reaches its end point at 

(4ω, 0) in the xy plane. The total time taken for the laser to enter, pass 

through and exit the ROI entirely is given in equation (46). 

𝜏𝐿 =
4𝜔

𝑣
 [𝑠] (46)  

It is important to note that the energy contributions in the hatched regions 

in Figure 12 are not considered in the model, and any energy deposited in 

those regions are neglected. They are simply included to show the path that 

the laser will take in order to traverse across the ROI. 
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It is assumed that along a given scan path, part of the beam will begin 

to melt the powder while the remaining part will encounter a liquid interface. 

This is illustrated in Figure 13. The portion of the beam that interacts with 

the solid enters the ROI at time 𝜏𝑆 . The portion of the beam area that 

crosses into the ROI, 𝑓𝑠,  can be calculated from equation (48) which was 

derived from simple trigonometry in Figure 14.  
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

 

Figure 13: (a) through (f) portrays the path of a laser beam as it traverses a distance 

of two diameters (or four radii). The top portion of each frame is referenced to the xy 

plane, while the bottom is a side view of the xz plane, looking at a cross section of 
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the powder layer ROI. (a) The laser begins at (0,0) and at time t=0s. (b) The laser 

has moved a distance of 𝒗𝝉𝒔, enough such that a portion of its beam will pass into 

the ROI. (c) The red line that appears at the left side of the ROI represents the 

beginning of the melt front. The melt is assumed to have zero initial lateral width and 

has a depth equal to the solid optical penetration depth, 𝒍𝑶𝑺. (d) The beam has moved 

fully into the ROI now, and it leads with a portion that only interacts with solid powder, 

while the remaining portion of the beam is incident upon liquid. The portion absorbed 

in the liquid reaches the liquid optical penetration depth, 𝒍𝑶𝑳. (e) The beam has begun 

to exit the ROI, and only the portion of the beam interacting with a liquid interface 

remains inside, however there is still solid material inside the cell that the melt front 

has not reached. (f) The laser beam has left the ROI entirely, and the melt front has 

propagated completely through the powder depth, 𝒍𝑷, and the process repeats. The 

laser scan vector, indicated by the black arrow joining the start and end positions of 

the beam is assumed to have lasted for the same amount of time as the melt 

propagation vector, which moves from the beginning of the melt front position at the 

top left of the ROI, down to the opposite corner.  
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Figure 14: Determination of the fraction of the beam that interacts with solid 

powder, 𝒇𝒔.  

𝛳 = cos−1 (
𝜔 − 𝑣𝜏𝑆
𝜔
) [𝑟𝑎𝑑] (47)  

𝑓𝑠 =
𝜔2 cos−1 (

𝜔 − 𝑣𝜏𝑆
𝜔 ) − (𝜔 − 𝑣𝜏𝑆) · √2𝜔𝑣𝜏𝑆 − 𝑣2𝜏𝑆

2

𝜋𝜔2
  (48)  

 

where 𝑣 is again the laser speed and 𝜏𝑆 the time taken for the beam to enter 

into the ROI and for the melt front to begin. It is the time taken for powder 

of the optical absorption depth to begin melting. Conversely, the portion of 

the beam that interacts with the liquid is therefore (1 − 𝑓𝑠). This implies that 

both liquid and effective solid optical properties are needed for the laser 

source term, and it will have to be modified to contain both components of 

the beam, as will be observed later. 
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The propagation of the melt front in Figure 13 should coincide with one 

whole beam width entering and exiting the ROI. Thus, in the time it takes 

for the laser to travel 4ω in the x-direction, the melt front must move 

throughout the entire cell, indicating that all the energy supplied by the beam 

should be used to melt the entire powder volume. Recalling the definition of 

𝜏𝐿 as the total time for the laser to travel 4ω metres, and introducing 𝜏𝑀 as 

the length of time it takes for the melt front to cross the diagonal of the ROI, 

then the portion of time spent by the beam interacting with the solid powder, 

𝜏𝑆 ,  is related to both times in the following manner: 

𝜏𝐿 = 𝜏𝑆 + 𝜏𝑀 [𝑠] (49)  

Rearranging for 𝜏𝑆 and substituting equation (46) for 𝜏𝐿 we get 

𝜏𝑆 =
4𝜔

𝑣
− 𝜏𝑀 [𝑠] (50)  

An appropriate estimate for 𝜏𝑀 would be the thermal diffusion time of the 

melt front across the diagonal distance of the ROI. Since the dimensions of 

the ROI are known, 𝜏𝑀 can be calculated by [84] 

𝜏𝑀 =
(𝑙𝑃 − 𝑙𝑂𝑆)

2 + (2𝜔)2

4𝐷𝐿
 [𝑠] (51)  

where, as observed in the bottom portion of Figure 14, 

𝑙𝑃 = 𝛥𝑧𝑝 [𝑚] (52)  
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𝑙𝑂𝑆 =
1

𝛽
 

[𝑚] (53)  

𝐷𝐿 is the liquid thermal diffusivity as taken from [85]. Equations (49) through 

(51) can be combined to provide the two unknowns, the solid interaction 

time 𝜏𝑆 and the laser speed 𝑣 into a single equation: 

𝜏𝑆 =
4𝜔

𝑣
−
(𝑙𝑃 − 𝑙𝑂𝑆)

2 + (2𝜔)2

4𝐷𝐿
 [𝑠] (54)  

 All the necessary background has now been covered to approach 

the solid- and liquid-interacting beam portions. It is important to note that for 

the solid-interacting portion, a simplified approach to the RTE will be taken 

such that the applied laser source will be Lambert-Beer in nature, but will 

contain a powder absorptivity and absorption coefficient that are derived 

from the RTE. This simplified approach is best applied to optically thick 

powder beds, where the beam is expected to be almost fully attenuated by 

the time it penetrates to the bottom of the powder layer, acting similarly to 

a laser encountering a homogeneous material under the Lambert-Beer 

Law. The effects on the accuracy of the results due to this substitution is 

addressed at the end of section 3.1.3.3. 

The energy contents in the beam portions are described as 

quadruple integrals over the observed powder region in Figure 14.  

 For the solid-interacting portion: 



Ph.D. Thesis – M.V. Cino                   McMaster University – Engineering Physics 

64 

 

∫ ∫ ∫ ∫ 𝐵𝑝𝛽𝐼(𝑥, 𝑦, 𝑡 + 𝜏𝑠)𝑒
−𝛽𝑧 · 𝐻(𝑥 − 𝑣𝑡 − 𝜔)𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

∞

−∞

3𝜔

𝜔

𝜔

−𝜔

1
𝛽

0

 
[𝐽] (55)  

 

and for the liquid-interacting portion: 

∫ ∫ ∫ ∫ 𝐴𝐿𝛼𝐼(𝑥, 𝑦, 𝑡 + 𝜏𝑠)𝑒
−𝛼𝑧 · 𝐻(−(𝑥 − 𝑣𝑡 − 𝜔))𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧

∞

−∞

3𝜔

𝜔

𝜔

−𝜔

1
𝛼

0

 
[𝐽] (56)  

where 𝐵𝑝 and 𝐴𝐿 are the powder and liquid absorptivities, and β and α are 

the powder and liquid absorption coefficients, respectively. Each of the 

integrals in (55) and (56) are evaluated over a square shaped spatial region, 

with side length equal to the laser diameter. The integral in the z-direction 

is from the top surface of the powder to the absorption depth determined by 

the solid or liquid absorption coefficient. The temporal integral from -∞ to 

+∞ signifies the use of an infinite scan vector, as mentioned previously in 

the assumptions. The Heaviside step function is also used in each equation 

to permit only one part of the laser source to deposit energy, depending on 

the medium of interaction. It helps to separate the energy contributions from 

each beam portion, belonging to the same source. The desired effect of the 

Heaviside function is illustrated in the following figure. 
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Figure 15: Solid- and liquid-interacting beam components of the laser, applied 

mathematically via the Heaviside function. The energy delivered from the entire beam 

is the sum of both components, acting volumetrically within each medium’s 

absorption depth. The ROI used here is the same as in Figure 13 and Figure 14, and 

the area fraction interacting with the solid, 𝒇𝒔, is defined in equation (48). 

In addition to the laser energy portions, the melt requirements must 

also be defined for each medium. It is important to note that the delivered 

energy from the laser was evaluated to guarantee a certain energy content 

to the absorption depth of the medium of interaction. Conversely, the energy 

sinks that comprise the melt requirements are evaluated for the entire 

powder volume. The premise here is that there needs to be sufficient energy 

deposited within the absorption depth to meet the basic melt requirements 

of the powder within the powder volume. These requirements at least 
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confine the associated parameters of laser power and speed to the 

dimensionality and material parameters of the powder system and allow for 

the development of material-specific process windows. For the solid-

interacting region: 

𝐸𝑠𝑜𝑙𝑖𝑑 = ρs(𝑐𝑝𝑠(𝑇𝑚 − 𝑇𝑜) + 𝛥𝐻𝑚)(2𝜔𝜒)
2
(𝑙𝑝)

+ 𝑓𝑠𝜎𝐵𝐵𝑝(𝑇𝑚
4 − 𝑇𝑎

4)(2𝜔𝜒)
2
(
2𝜔𝜒

𝑣
) 

[𝐽] (57)  

Equation (57) is composed of two terms; the first being the sensible heat 

and latent heat of fusion for the solid material, multiplied by the ROI volume. 

The second is the radiative loss at the top surface which is combined with 

the product of the top surface total area, the fraction of solid-interaction, and 

the laser interaction time for the ROI. The liquid-interacting region, contains 

an additional term: 

𝐸𝑙𝑖𝑞𝑢𝑖𝑑 = ρL(𝑐𝑝𝐿(𝑇𝑏 − 𝑇𝑚))(2𝜔𝜒)
2
(𝑙𝑝) 

+(1 − 𝑓𝑠)[𝜎𝐵𝐴𝐿(𝑇𝑏
4 − 𝑇𝑎

4) + ρL𝑣𝑎𝛥𝐻𝑣](2𝜔𝜒)
2
(
2𝜔𝜒

𝑣
) 

[𝐽] (58)  

Here, the remaining beam fraction is multiplied into the areal term, which is 

composed of both radiative and evaporative losses. Also, the upper 

temperature limit of the system is assumed to be the liquid’s boiling 

temperature. This is a starting approximation that can also be modified in 

the future. The ablation velocity, 𝑣𝑎, is determined via the Hertz-Knudsen 
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equation that is referenced in the literature [62,79,86]. It is given below for 

a surface at an arbitrary temperature, 𝑇𝑠 : 

𝑣𝑎 =

𝑝𝑜 exp (−(
𝑀𝑎𝛥𝐻𝑣
𝑅
) (
1
𝑇𝑠
−
1
𝑇𝑏
))

𝜌𝐿√
2𝜋𝑅𝑇𝑠
𝑀𝑎

 

 

[
𝑚

𝑠
] (59)  

where 𝑝𝑜  is the ambient pressure, 𝑀𝑎 is the molar mass of the ablated 

product, and 𝑅 is the gas constant. For this model, the assumed surface 

temperature is equal to the boiling point of the material, which significantly 

simplifies the numerator of equation (59). It should be emphasized that the 

melt requirements in equations (57) and (58) are by no means exhaustive 

and can be modified with additional energy sinks such as convective losses 

to the surroundings, ablation above the material boiling point, and 

conduction to the laser bed to further refine the model in the future. 

 Equating the sum of (55) and (56) to the sum of (57) and (58) and 

isolating for laser power provides the main governing equation for the 

process window: 

𝑃 =
(𝐸𝑠𝑜𝑙𝑖𝑑 + 𝐸𝑙𝑖𝑞𝑢𝑖𝑑)𝑣

((𝐵𝑝 − 𝐴𝐿) erf (
√𝜒(𝑣𝜏𝑠 − 𝜔𝜒)
𝜔𝜒

) + 𝐵𝑝 + 𝐴𝐿) (1 − 𝑒
−1) erf(√𝜒)𝜔𝜒

 
[𝑊] (60)  

 The above equation produces recommended power values to 

corresponding speed values for a given material system. The methodology 
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to arrive at this point assumes sufficient energy is delivered to a 

representative volume of powder within the time scale of one laser pass, to 

fully melt to the bottom of the powder layer. Although there were many 

assumptions made regarding dimensions, beam profile, and surface 

temperature, the process windows that can be developed using this method 

will be shown to be material system-dependent and have use for a first order 

approximation to laser parameter selection. 

3.1.3.3 Process Windows 

The objective of the semi-analytical model is to create material-specific 

process windows for the laser power and speed, to act as a guide for initial 

additive manufacturing endeavours in a relatively uncharacterized material 

system. The material process window was created by evaluating equation 

(60) at parameterized values of laser speed, 𝑣. The speed variable was 

cycled from the lowest to the highest achievable speeds for the AM system 

in use. In this case, these values were between 0.05 to 7 m/s for the 

EOSINT M280 system. For reference, this system also has a laser power 

upper limit of 400W. Since equation (60) contains the variable 𝑓𝑠 defined by 

equation (48), it contains a dependency on a square root term that can 

produce imaginary values depending on the selected value of laser speed. 

Thus, the window is created by only taking the corresponding speeds  that 

produce real values of power within the evaluation limits. Figure 16 displays 
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the calculated process windows using the semi-analytical model for two 

vastly different material systems; bismuth telluride and Ti6Al4V.  

 

Figure 16: Calculated process windows of power and speed that attempt to yield full 

melting to the bottom of a powder depth, and to the width of one laser diameter . 

Calculations performed for bismuth telluride and for Ti6Al4V alloy. 

Taking the optical, thermal, and dimensional properties of each system 

into account, the semi-analytical model was able to produce two distinctly 

different domains for speed and ranges for laser power. The properties for 

bismuth telluride were those determined in section 3.1.1, for a powder 

depth, 𝑙𝑝, of 76μm and are summarized again in Table 4. They represent 
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the alloy used experimentally as best as possible. The properties used for 

Ti6Al4V were taken from literature for a powder depth of 30μm [87], with 

the particle size distribution from [88] analyzed in ImageJ and used to 

estimate the powder absorption coefficient and the powder absorptivity . 

These windows can change based on material system, powder thickness, 

particle size distribution, particle shape, presence of surfactants, laser 

wavelength, and other experimental factors. 
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Bi2Te3  

Property Value Reference 

𝜷 3.36·105 [m-1] 

Calculated in section 3.1.1.1.1 with  
𝑷𝑭𝒑 = 0.41 and 𝒅𝒆𝒒 = 3.10E-6 from the 

experimental powder distribution in 
Figure 24. 

𝑹𝒃 0.72 
Calculated using equation (26) with 
room temperature 𝑛 and 𝑘 values at 

1080nm from [81] 

𝑩𝒑 0.77 
Calculated in section 3.1.1.1.2 

𝑨𝑳 0.50 
Calculated in section 3.1.1.1.3 

𝝆𝒔 7.64 x103 [kg/m3] 
Temperature averaged from [70] 

𝒄𝒑𝒔 172 [J/(kg·K)] 
Temperature averaged from [82] 

𝑻𝒎 858 [K] 
[42] 

𝜟𝑯𝒎 1.51 x105 [J/kg] 
[42] 

𝝆𝑳 7.09 x103 [kg/m3] 
Temperature averaged from [70] 

𝒄𝒑𝑳 407 [J/(kg·K)] 
Temperature averaged from [82] 

𝑻𝒃 1.35 x103 [K] 
Effectively approximated from [78] 

𝑻𝒐 473.15 [K] 
Assumed base plate temperature 

𝒍𝒑 76 [μm] 
Used experimentally 

𝜟𝑯𝒗 4.37 x106 [J/kg] 
Calculated in section 3.1.1.2.3 

Table 4: Collected properties of bismuth telluride used to generate its process 
window. 

As mentioned the previous section, this model uses a hybridized 

approach to solving the energy balance in that the portion of the beam that 

interacts with the powder is mathematically treated with the Lambert-Beer 

law whilst using an absorption coefficient and an effective absorptivity that 

were derived from the RTE. It was assumed that this could keep the process 
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window equations more compact and that the predicted parameters would 

be similar between the methods. To quantify this, the model was evaluated 

twice; once with the effective Lambert-Beer approximation for the solid-

interacting beam, and then with the solution to the Radiative Transfer 

Equation for the aforementioned beam portion. The liquid-interacting beam 

was treated with the Lambert-Beer model in both cases, as the dominant 

mechanism that necessitated the use of the RTE, scattering, was not 

considered when interacting with the liquid. The comparison between the 

models for both the bismuth telluride and Ti6Al4V material systems  is 

provided in Figure 17. 
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Figure 17: (Top) Comparison between the Lambert-Beer (LB) and the Radiative 
Transfer Equation (RTE) methods for treating the powder-interacting portion of the 
beam. (Bottom) Percent difference between the calculated laser power values 
obtained by both of the aforementioned methods. 
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 The above comparison shows the difference in predicted laser power 

for the same speed using both models. The maximum deviation was 

calculated as 26% and occurred in the Bi2Te3 system. As speed increased 

within each process window, the percent deviation approached less than 

1% for both materials. This overall low deviation between the models, 

observed for two vastly different material systems, supports the effort to use 

the hybridized Lambert-Beer approximation with RTE-derived absorption 

parameters. 

4. Experimental Method 

4.1 Custom Powder Delivery System 

Thermoelectric p-type (Bi0.15Sb0.85)2Te3 and n-type Bi2(Se0.17Te0.83)3 bulk 

structures were produced from the melting of powder layers using an 

EOSINT M280 SLM machine. The ternary alloy powders were first wet 

sieved in acetone using a pore diameter of 70μm to limit the maximum 

particle size. The powder-acetone slurry was kept in individual containers 

to be removed and applied to the build plate via a syringe. 

A custom build plate assembly was implemented in order to repeatedly 

apply limited amounts of powder to the same area for multiple layer 

processing. This assembly is given in Figure 18. 
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Figure 18: Left: Exploded assembly of the custom build plate insert. (a) Mask guide 

threaded rods. (b) Fastening screws. (c) Quick release nuts to allow for the immediate 

addition of subsequent masks. (d) 76µm stainless steel mask to allow powder to sit 

within its exposed areas. (e) Metallized substrate upon which powder will be melted. 

(f) Substrate holder. (g) Sample-centering jig piece. (h) Milled double-sided PCB used 

for machining guide holes that contains thermal vias and offers a flat surface for the 

substrate to be set upon. (i) Aluminum base plate. Right: Isometric view of assembled 

build plate insert. 

Multiple layers of powder were able to be deposited at relatively 

constant thicknesses with the help of the stainless steel masks (Figure 

18(e)). The amount of powder melted after each laser exposure is dictated 

by the mask thickness. The mask with its exposed regions is highlighted in 

Figure 19 with an illustrated view of its cross section. 

(a) 

(b) 

(c) 

(d) 

(e) 
(f) 
(g) 

(h) 

(i) 
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(a) 

 

(b) 

 

 

(c) 

Figure 19: (a) Stainless steel mask of thickness 76μm from Figure 18(e). (b) 

Magnified view of mask regions that receive powder, with sample cross section 

selected in red. (c) Simplified cross section of a single mask region introduced in (b). 

The corresponding red line indicates the cut view from (b).  

The powder deposition and melting processes are shown in Figure 

20. After the insertion of the substrate, a stainless steel mask of thickness 

76µm was placed over it. The powder slurry was applied via a syringe and 

the excess was scraped off with a razor blade. Once the areas of interest 

were covered with a uniform layer of powder, the print chamber was sealed 

and purged with N2 gas at roughly 1 atm until less than one percent of 

oxygen was detected in the environment. The print bed was also brought to 

a temperature of 150°C through its internal heater. The laser was then 

scanned over the areas of interest with a specific power, speed and hatch 

spacing. After the powder was melted, the excess powder was wiped from 

the areas of interest. The consolidated powder regions were roughly half 

the thickness in the z-direction than they were before melting. Thus before 

adding a second mask, powder was deposited onto these regions once 

more and levelled using a razor blade. The refilled regions were again 

scanned with the same power and speed but with a perpendicular hatch 
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direction than that used previously to reduce internal stresses between 

subsequent layers. 
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(a) 

The first mask is 
applied, and 
powder is 
deposited on its 
surface, filling 
the regions to be 
exposed to the 
laser. 

 
(g) 

The second mask 
is applied to the 
stack and powder 
is deposited on 
top and fills the 
desired area. 

 
(b) 

Excess powder 
is removed. 

 
(h) 

Excess powder is 
removed. 

 
(c) 

Laser is scanned 
across filled 
areas with Y-
direction 
hatching and 
melts powder. 

 
(i) 

Laser is scanned 
across filled areas 
with Y-direction 
hatching and 
melts powder. 

 
(d) 

More powder is 
applied to the 
original mask 
and the 
remaining empty 
regions are 
topped up. 

 
(j) 

More powder is 
applied to the 
surface of the 
second mask and 
the remaining 
empty regions are 
topped up. 

 
(e) 

Excess powder 
is removed 

 
(k) 

Excess powder is 
removed. 

 
(f) 

The laser is 
scanned again 
over the desired 
regions, but with 
X-direction 
hatching, and 
the height of the 
initial structure is 
increased. 

 
(l) 

The laser is 
scanned again 
over the desired 
regions, but with 
X-direction 
hatching, and the 
height of the initial 
structure is 
increased. 

Figure 20: Powder deposition and growth processes of the additive manufacturing of 

TEGs. Two layers of deposition are shown, and this process is repeated with up to 

four masks. 
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After the laser has scanned and melted the powder, the area was wiped 

and a second mask was added. This process was repeated until four masks 

were used. Images of a single layer deposition process are given below, 

followed by the finished product after four mask layers were deposited. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 21: (a) Insertion of the PCB substrate into the TEG manufacturing assembly. 

(b) Application of the mask to the substrate. (c) Deposition of a single powder layer 

2.54 cm 
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on top of the mask. (d) Resolidified regions of the single powder layer after additive 

manufacturing. (e) Resolidified powder on substrate with mask removed.  

4.2 Morphology 

4.2.1 Scanning Electron Microscopy (SEM) 

The powder morphology was initially observed using scanning electron 

microscopy in order to gain an understanding of the powder grain sizes and 

deviation from conventionally spherical, AM powders. Images were taken 

of both the p-type and n-type powder samples on the JEOL-7000F 

Scanning Electron Microscope. The accelerating voltage was 15 kV and 

working distance of 10 mm. 

  
Figure 22: SEM images of (Left) p-type (Bi0.15Sb0.85)2Te3 and (Right) n-type 

Bi2(Se0.17Te0.83)3. 

4.2.2 Transmission Electron Microscopy (TEM) 

TEM was performed to determine the presence of any amorphous 

phases that would be consistent with the presence of oxides [89]. Oxides 
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were contemplated to be of importance if their thickness was on the order 

of the wavelength of the laser light. This would mean that their contribution 

to scattering and attenuation would be significant as they would enter the 

regime of geometrical optics and would cause errors in the modeling of the 

light coupling into the powder. From the literature, oxides typically found on 

the surface of bulk bismuth telluride alloys occur in thicknesses of a few nm 

[89]. Thus, the confirmation of this thickness would allow for the neglection  

of the surface oxides in the optical portion of the laser-material model since 

the laser wavelength is 1080nm. 

Individual powder grains were observed using the JEOL 2010F 

transmission electron microscope. The powder was separated in an 

ultrasonic bath of isopropanol and placed onto a copper grid. The 

accelerating voltage was 200 kV. The images were then analyzed with 

ImageJ software . 
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a) 

 

b) 

 
 

c) 

 

 
d) 

 

Figure 23: Images of (a)-(b) n-type and (c)-(d) p-type grains. Amorphous regions 

consistent with oxide growth are outlined in the dotted yellow lines.  

 As observed above, the native oxide thickness on both the p-type 

and n-type powders was within the range of 2-10nm therefore it is not 

expected to significantly affect the predicted laser process parameters. 

4.2.3 Particle Size Analysis 

The powder morphology was measured with a Mastersizer 3000 Particle 

Size Analyzer. It was suspended in liquid and measured before and after 

sieving with a 70 μm pore size to attempt to remove particles that were 

larger than the powder layer thickness of 76 μm. The volume percentages 
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assume contributions from particles of equivalent spherical volume to those 

that are irregularly shaped as outlined in [90]. The total volume is the sum 

volume of all particles observed, with the binned volume fractions according 

to diameter. This sample data is for the p-type (Bi0.15Sb0.85)2Te3.  

 

Figure 24: Powder particle diameter distribution according to percentage total 

volume of the observed sample. 

4.3 Composition 

4.3.1 X-Ray Diffraction (XRD) 

The stoichiometry of the powders was first compared to a reference 

standard via XRD phase analysis using a Bruker SMART6000 CCD on a 

Bruker 3-circle D8 goniometer with a Rigaku RU-200 rotating anode x-ray 
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generator and parallel focusing optics. The powder patterns were taken to 

understand the initial stoichiometry of the powders before melting. These 

patterns were compared to those in literature with reference peak positions 

that best aligned with the experimental peaks. No cell refinement was 

performed, but the general peak positions corresponded best to the 

reference p-type and n-type powders that were taken from the literature. 

 

Figure 25: XRD powder pattern of (Bi0.15Sb0.85)2Te3 for unmelted powder compared 

to reference [91]. 
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Figure 26: XRD powder pattern of Bi2(Se0.17Te0.83)3 for unmelted powder compared 
to reference [92]. 

 As observed in the above figures, the experimental powder plot for 

the n-type material aligns better with its reference than the p-type. 

Therefore, the n-type is stoichiometry is most likely correct whereas the p-

type may have slightly different proportions of bismuth and antimony due to 

the small offset in peak positions. 

4.4 Thermal Properties 

4.4.1 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry was performed on the p-type and n-

type powders using the TGA/DSC 3+ LF/1100/537 by Metter Toledo with 

an Argon gas flow rate of 70ml/min to determine the enthalpy of melting. 

The latent heat of melting is an important parameter for the consideration 

of the laser parameters required for melting. A temperature ramp of 20 
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K/min was applied to bring the samples from ambient temperature up to 

1000 K. The powder samples were weighed and put into 70 μL alumina 

sample holders that were also weighed and initially measured for a baseline 

measurement. The mass of the p-type powder used was 128.42 mg and the 

n-type mass was 63.81 mg. The heat flow vs. time profiles were taken for 

each sample, and the baseline subtracted to yield the enthalpy vs 

temperature and enthalpy vs. time curves. Integrals of the melt peaks and 

data analysis were performed in Origin. Figure 27 and Figure 28 show the 

enthalpy valleys that correspond to the latent heat of melting in each 

material. The calculation of the latent heats of melting for each alloy system 

is given in Table 5.  

 

Figure 27: DSC of p-type (Bi0.15Sb0.85)2Te3 for the determination of ΔHm. 
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Figure 28: DSC of n-type Bi2(Se0.17Te0.83)3 for the determination of ΔHm. 

 

Mass, Energy and Latent Heat of Melting for p-type and n-type 

Alloys 

 𝒎 [kg] 𝜟𝑯𝒎 · 𝒎  [J] 𝜟𝑯𝒎 [J/kg] 

p-type 1.284218·10-4 12.39 9.65 x104 

n-type 6.38068 ·10-5 5.61 8.79 x104 

Table 5: Experimentally determined mass, energy and latent heat of melting for p-
type and n-type alloys. 
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5. Results 

5.1 Composition 
 

Next to the ability to simply melt and adhere these alloys to a 

substrate, the composition of the created structures is the most 

important property. If the stoichiometry of the powder is altered during 

the melt process, the material is expected to no longer have the 

thermoelectric properties of its bulk form and therefore may not perform 

adequately. A change in stoichiometry is possible and could  come from 

loss of one of the elemental constituents of the materials due to 

evaporation during the laser heating process. A good indicator of which 

material will steadily evaporate first is the consideration of the vapor 

pressures of these containing elements. As the alloys studied are the p-

type (Bi0.15Sb0.85)2Te3 and the n-type Bi2(Se0.17Te0.83)3, it is useful to look 

at the vapor pressures of Bi, Sb, Se and Te as given in Figure 29. 
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Figure 29: Vapor pressures of Bi, Sb, Se and Te vs. Temperature taken from [93]. 

Ambient pressure and the melt temperature are denoted as horizontal and vertical 

lines, respectively. 

The consideration of the individual elemental vapor pressures deviates 

from the model assumption that each alloy has an effective boiling 

temperature and enthalpy of vaporization wherein all the elements 

evaporate stoichiometrically. This assumption was made for simplicity to 

make a first order approximation of the processing parameters. However, it 

is important to state that the operating pressure during the SLM process 

was kept at ambient and based on the plots in Figure 29, it is likely that 

material loss in the p-type Bi-Sb-Te system due to evaporation could be 

mainly attributed to loss of Te since it begins to steadily evaporate at a lower 

temperature. Likewise, it is assumed the n-type Bi-Se-Te alloy could see a 

decrease in its Se content.  
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5.1.1 Energy Dispersive Spectroscopy (EDS) 

EDS measurements were performed as a qualitative check on the two 

alloys that were processed with different powers and speeds, using 

parameters that were directly taken from use with other metallic powders 

such as Ti6Al4V. This was simply an observation of the effects of using 

unmodeled parameters for an initial test. The atomic percent of the 

constituent elements of each alloy are given in the tables below. The results 

provide the absolute atomic fraction of each element as well as the ratio of 

the assumed readily-evaporative element to the more stable ones. 

P-Type Atomic Percentages from EDS for P-Type (Bi0.15Sb0.85)2Te3 

Power 
[W] 

Speed 
[m/s] 

Linear 
Energy 
Density 

[J/m] 

Bi 
atomic 
fraction 

Sb 
atomic 
fraction 

Te 
atomic 
fraction 

Te: 
(Bi 

+Sb) 

powder 0 0.06 0.34 0.60 1.50 

50 2.5 20 0.05 0.40 0.55 1.22 

250 2.5 100 0.11 0.38 0.51 1.04 

250 1.5 166.67 0.11 0.46 0.43 0.75 

Table 6: Atomic fractions of the constituent atoms of resolidified (Bi0.15Sb0.85)2Te3 at 

different powers and speeds obtained using EDS. 

N-Type Atomic Percentages from EDS for N-Type Bi2(Se0.17Te0.83)3 

Power 
[W] 

Speed 
[m/s] 

Linear 
Energy 
Density 

[J/m] 

Bi 
atomic 
fraction 

Se 
atomic 
fraction 

Te 
atomic 
fraction 

Se: 
(Bi+Te) 

None 0 0.40 0.10 0.50 0.11 

50 2.5 20 0.38 0.07 0.55 0.08 
Table 7: Atomic fractions of the constituent atoms of resolidified Bi 2(Se0.17Te0.83)3 at 

different powers and speeds obtained using EDS. 
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The linear energy density is simply obtained by dividing the power by the 

speed and allows both parameters to be combined. Based on the 

information given above, the ratio of Te to the Bi and Sb is seen to decrease 

in the p-type alloy with increasing energy density. Similarly for the n-type 

data, the same trend is observed for the Se content with respect to Bi and 

Te, although more datapoints should be taken to confirm this. 

5.1.2 X-Ray Diffraction (XRD) 

The following XRD results for the p-type and n-type materials are 

collected for only the power and speed combinations that yielded multilayer-

built samples. These are 17W, 0.071m/s and 18W,0.075m/s in the p-type 

alloy and 16W,0.067m/s, 17W,0.071m/s and 18W,0.075m/s for the n-type 

alloy. 

5.1.2.1 P-Type Results 

The p-type alloy, (Bi0.15Sb0.85)2Te3, exists in the functional chemical 

formula of (BixSb1-x)2Te3. Below is a collection of literature data showing the 

transition from pure Bi2Te3 to Sb2Te3 by varying the ratios of bismuth and 

antimony while leaving the contribution of tellurium unchanged. 
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Figure 30: (BixSb1-x)2Te3 powder pattern comparison from literature data [91,94–
96]. 

All the powder patterns in the above figure look relatively similar with 

regards to the number of peaks and their general locations. This indicates 

that as Sb is substituted for Bi and Bi2Te3 transitions into Sb2Te3, there is 

not a significant effect on the crystal structure of the system. The pattern for 

(Bi0.5Sb0.5)2Te3, which is included in Figure 30, is plotted again in Figure 31 

along with a pattern for (Bi0.5Sb0.5)2Te2 which contains one less Te atom in 

its formula, and finally Bi0.5Sb0.5 which is completely devoid of Te. 
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Figure 31: Bi-Sb-Te alloy powder pattern comparison from literature with reduced Te 

content [95,97]. 

It is important to note the differences in powder patterns for the (BixSb1-

x)2Te3 alloy as it changes its Bi and Sb content versus a change in only the 

Te content as given by the differences in the above figures. This implies 

that altering the Te content will have much more radical consequences on 

the initial crystal structure. In fact, as noted in [95], the crystal structure of 

(Bi0.5Sb0.5)2Te3 is in the rhombohedral space group 𝑅̅ − 3𝑚 whereas the 

structure for (Bi0.5Sb0.5)2Te2 is of the primitive group 𝑃̅ − 3𝑚.  

Figure 32 depicts the powder patterns of the resolidified p-type material 

that was classified in Figure 25 as resembling the stoichiometry of 

(Bi0.15Sb0.85)2Te3. The pattern of the unmelted powder is provided there for 

reference as well. It is interesting to note that the powers and speeds used 

to melt the powder correspond to an almost identical linear energy density, 
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yet the powder melted at 18W seems to have more pronounced features 

corresponding with a reduction in Te. Therefore, it can be inferred that the 

power of the beam has a more significant effect on the temperature reached 

during the melt than the speed does.  

 

Figure 32: Powder patterns of resolidified p-type material at 17W, 0.071m/s and 

18W, 0.075m/s overlaid with the pattern of the unmelted powder of stoichiometry 

(Bi0.15Sb0.85)2Te3. 

Figure 33 combines the results of Figure 32 with the peak positions of the 

different alloys in Figure 31. The emergence of peaks between 2𝜃 angles of 

24 to 26° may be interpreted as a decrease in Te content upon melting and 

solidification, as observed by the reference peaks in the (Bi0.5Sb0.5)2Te2 

system in that location. This along with the EDS data presented in the  

previous section for the p-type alloy melted at different powers and speeds 

are consistent with Te loss in this alloy system.  
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Figure 33: Overlay of Figure 32 with peak positions of Figure 31 to show the 

transition to a reduced Te alloy system during the melt process at the listed powers 

and speeds [95,97]. 

5.1.2.2 N-Type Results 

Like the p-type analysis in section 5.1.2.1, the n-type stoichiometry 

identified in Figure 26 is of the family of Bi2(SeyTe1-y)3 alloys. The family of 

powder patterns obtained by varying y is obtained from various sources in 

Figure 34. Although the limited EDS data in the n-type system predicts a 

primary loss of Se, the XRD patterns in Figure 35 show significant texturing 

of phases that are both devoid of Se and Te. Two main characteristic peaks 

that do not occur in the unmelted powder are at 18.5°, which corresponds 

to pure Bi2Se3, and at 31.5°, which corresponds to the pure Bi2Te3 system. 

These are better exemplified in the overlay plot in Figure 36. A texture 

analysis is necessary to determine all phases present, but the overall 
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impression is that within the n-type alloy Se and Te contents are mostly 

affected by the melt process, implying that the temperatures reached during 

manufacturing likely approach or exceed the vaporization temperatures at 

ambient for these elements at the powers and speeds listed. 

 

Figure 34: Bi2(SeyTe1-y)3 powder pattern comparison from literature data [92,94,98–
100]. 
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Figure 35: Powder patterns of resolidified n-type material at 16W, 0.067m/s, 17W, 

0.071m/s and 18W, 0.075m/s overlaid with the pattern of the unmelted powder of 

stoichiometry Bi2(Se0.17Te0.83)3. 

 

Figure 36: Overlay of Figure 35 with peak positions of Figure 34 to show the effects 

of varying the ratio of Se to Te during the melt process at the listed powers and 

speeds [92,94,98–100]. 
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5.2 Relative Density 

5.2.1 Porosity 

The porosity of the p-type alloy system after melting and resolidification 

was measured using a custom-made Archimedes density setup with a 

sample that was manufactured with four layers detached from the PCB 

substrate. This was verified by the counting of pores in the remaining 

samples on that substrate that remained attached. These were counted by 

analyzing the pore size in ImageJ. 

5.2.1.1 Archimedes Density 

The principle of the Archimedes density measurement is given by the 

following equation: 

𝑚𝑑𝑟𝑦 −𝑚𝑤𝑒𝑡 = 𝜌𝑤𝑎𝑡𝑒𝑟𝑉𝑠𝑎𝑚𝑝𝑙𝑒 [𝑘𝑔] (61)  

With measurements of the mass both in air and submerged in water, the 

volume of the sample is then able to be isolated: 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑚𝑑𝑟𝑦 −𝑚𝑤𝑒𝑡

𝜌𝑤𝑎𝑡𝑒𝑟
 [𝑚3] (62)  

The effective density can then be calculated dividing the mass of the sample 

in air by its newly determined volume: 

𝜌𝑒𝑓𝑓 =
𝑚𝑑𝑟𝑦

𝑉𝑠𝑎𝑚𝑝𝑙𝑒
 [

𝑘𝑔

𝑚3
] (63)  

Finally, using the theoretical bulk density of the sample from literature, the 

relative density factor can be calculated: 
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𝑓𝑟𝑒𝑙 =
𝜌𝑒𝑓𝑓

𝜌𝑇ℎ𝑒𝑜
  (64)  

The factor given in equation (64) is analogous to the concept of the powder 

packing factor given in equation (7). The measurements performed on a p-

type sample processed at 17W and 0.071 mm/s are given in Table 8. 

Determination of Packing Factor and Porosity of p-type 
(Bi0.15Sb0.85)2Te3 Sample using Archimedes Density Test 

Measurement 
Number 

𝒎𝒅𝒓𝒚 

[mg] 

𝒎𝒘𝒆𝒕 
[mg] 

𝝆𝒆𝒇𝒇 

[kg/m3] 

𝝆𝑻𝒉𝒆𝒐 
[kg/m3] 

Relative 
Density 
Factor 
(𝒇𝒓𝒆𝒍) 

Porosity 
(𝟏 − 𝒇𝒓𝒆𝒍) 

1 34.6 28.6 5780 

7662 

[101] 

0.754 0.246 

2 34.2 28.2 5700 0.744 0.256 

3 34.4 28.3 5600 0.731 0.269 

4 34.4 28.3 5690 0.743 0.257 

Table 8: Determination of Packing Factor and Porosity of p-type (Bi0.15Sb0.85)2Te3 

Sample using Archimedes Density Test. Reference bulk theoretical density taken 

from [101]. 

 The average relative density was calculated to be 0.743, making the 

porosity within the sample 0.257.  

5.2.1.2 Image Processing 

In order to perform thermoelectric testing, the remaining samples that 

adhered to the PCB substrate were coated with Crystalbond and polished 

until the planarized surfaces of the thermoelectric elements were exposed. 
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However, once the polishing was complete, it was observed that relatively 

large pores were present in the processed materials. Subsequently the total 

area of the pores was analyzed with the help of ImageJ software and is 

used to compare to the relative density determined by the Archimedes 

method. The average relative density among the five samples measured 

here was 0.69 which is only five percent less than that measured using the 

Archimedes method. 
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(a) 

 

(b) 

 
 

(c) 

 

Figure 37: (a) P-type legs manufactured at 17W, 0.071 m/s. Two of the seven had 

detached, leaving five. (b) Sample image of site 5 processed in ImageJ. Here the 

areas of the porous regions were summed and compared to the nonporous region. 

(c) Nonporous area fraction per site compared to the relative density determined by 

the Archimedes method. 

5.3 Morphology 

Both halves of an attempted additively manufactured TEG are shown  

in Figure 38, although they were unable to be bonded to one another directly 

after the manufacturing process.  
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(a) (b) 

Figure 38: (a) P-type bismuth telluride on PCB, manufactured at P=17W and 

v=70mm/s. (b) N-type bismuth telluride on PCB, manufactured at P=17W and 

v=70mm/s. Designed to form a complete TEG when sandwiched together. 

5.3.1 Optical Microscopy 

The morphology of the resolidified squares was observed using optical 

microscopy. Completed p-type and n-type samples manufactured on a PCB 

substrate are given in Figure 39. The external surfaces of each type had 

angular features that were resultant from the rapid solidification process. It 

is also noteworthy that although the intention was to create rectangles, the 

precision of the sample shape seemed to be low. This is likely due to the 

nonuniformity of the powder grain sizes. Powder nonuniformity would permit 

the light to reach different depths at different locations in the layer and melt 

regions inconsistently. 
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(a) 
(b) 

 

 

 
(c) (d) 

Figure 39: Stitched optical images of an (a) n-type and (b) p-type additively 

manufactured TEG element on a PCB substrate, with (c) and (d) being the respective 

enhanced  regions denoted by their coloured outlines. Images were taken in 

segments using an Olympus DSX500 microscope and joined together with its 

accompanying software. (c) and (d) are corresponding to the selected regions in (a) 

and (b), respectively. 

 Additional images were taken of p-type samples that gave insight 

into surface features both on the top surface and at the substrate interface. 
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Figure 40 depicts the top surface of one such sample, where triangular 

surface features can be clearly observed. These features are interesting as 

they seem to manifest always during the SLM process but occur in different 

sizes depending on the power and speed combination used. The features 

created here are roughly 25-50 μm in size and smaller ones were created 

using larger power and speed parameters in the following section. 

 

Figure 40: Stacked composite image of p-type sample created with 17W power and 

70mm/s speed. Images taken at different focus levels using a Zeiss Axioplan 2 optical 

microscope. 15 images in total were taken and stack focused using ImageJ software. 

The interface region of a fully intact p-type element was imaged after it 

readily detached from the PCB substrate. This gave insight into the 
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thickness of the melt tracks created for the first layer. The power and speed 

used were 17W and 70mm/s, respectively. The detaching of some samples 

from the PCB substrate was not fully investigated and could have been 

caused by numerous issues, such as surfactants on the powder or on the 

substrate, coefficient of thermal expansion mismatch between the powder 

and copper, or degree of surface roughness. One item that was interesting 

was that the hatch spacing could have been decreased to allow for more 

significant overlap between adjacent tracks. The implemented hatch 

spacing was equal to one laser diameter of 100μm. Although the samples 

were able to be created with some degree of success, it appears that at the 

current power and speed, a tightening of the hatch spacing by at least a 

factor of two may have produced more homogeneous samples. 
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(a) (b) 

Figure 41: (a) Interface of detached p-type element made at 17W, 70mm/s at 5X 

zoom. (b) 20X zoom of element in (a). Melt tracks clearly visible on initial layer  with 

average track width of 33μm, measured using ImageJ software. Images were taken 

with a Zeiss Axioplan 2 optical microscope. 

5.3.2 Scanning Electron Microscopy 

SEM was performed on additional samples that were created at 

different power and speed combinations. Both the p-type and n-type 

materials were imaged. Figures Figure 42 through Figure 45 show the 

microstructure for p-type and n-type samples created with laser power of 

50W and 250W, and speeds of 1500 mm/s and 2500 mm/s. The power 

increases from left to right, and speed increases from top to bottom. 

Corresponding low and high resolution images are shown in the figures for 

each of the samples. 
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a b 

  
c d 

Figure 42: Lower resolution p-type samples manufactured at a) 50W, 1500 mm/s b) 

50W, 2500mm/s c) 250W, 1500mm/s d) 250W, 2500mm/s. 

  



Ph.D. Thesis – M.V. Cino                   McMaster University – Engineering Physics 

109 
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c d 

Figure 43: Higher resolution p-type samples manufactured at a) 50W, 1500 mm/s 

b) 50W, 2500mm/s c) 250W, 1500mm/s d) 250W, 2500mm/s. 
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C d 

Figure 44: Lower resolution n-type samples manufactured at a) 50W, 1500 mm/s b) 

50W, 2500mm/s c) 250W, 1500mm/s d) 250W, 2500mm/s. 
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C d 

Figure 45: Higher resolution n-type samples manufactured at a) 50W, 1500 mm/s 

b) 50W, 2500mm/s c) 250W, 1500mm/s d) 250W, 2500mm/s. 

 Each of the samples created above are single layers of powder 

applied in squares of 1mm side length on a bulk copper substrate. A 

qualitative analysis of  Figure 42 and Figure 44 illustrates that at any power, 

an increase in laser speed shows more defined melt tracks and thus less 

melting of intermediate material between lines. Higher power of course 

injects more lateral heat flow and thus can melt more material. The 

agglomeration of some of the powder at higher energy densities is a 

demonstration of the balling effect [49,102]. This is consistent with the use 

of a wide multimodal powder distribution that has grains ranging in size from 
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the nm to the hundreds of μm scale. Also the presence of surface oxides, 

which were detected in the TEM analysis, can contribute to balling as well 

by affecting the liquid surface tension during the solidification process [83]. 

 The higher resolution images for both p-type and n-type material 

systems show the formation of triangular structures within the solidified 

portions. These appear similar to those observed in the optical microscopy 

image in Figure 40, although they are on the order of 1-2 μm in size. More 

investigation is needed as to how and why these occur, and if they enhance 

or hinder the thermoelectric performance of a device made using AM. The 

main differences between the samples containing the smaller features and 

those containing the larger ones are that the power was increased by up to 

a factor of 15 and the speed was increased by up to a factor of 50. One or 

likely both parameter increases led to the creation of smaller feature size.  

5.4 Comparison to Model 

From a traditional AM perspective, it is valuable to understand which 

power/speed combinations will lead to the production of a sample with 

minimal porosity. However, in this new space of thermoelectric materials, 

some porosity may actually improve performance [103] and therefore may 

be of use in the future. Lee et al. [104] modeled the effect of porosity on 

thermal and electrical transport properties and suggested that the time 

between scattering events for both phonons and electrons were affected by 

the inclusion of pores. They primarily focused on the inclusion of nanopores 
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in the SiGe material system and calculated the reduction of both the 

electrical and thermal conductivities versus porosity. The result was that 

there were regimes of porosity where the decrease in thermal conductivity 

exceeded that of the electrical conductivity and therefore, increased the ZT. 

Recent attempts at incorporating porosity into thermoelectric materials for 

ZT enhancement can also be found in the literature [105–108]. 

Nevertheless, the semi-analytical model assumes that the delivered 

energy corresponding to a specific power/speed combination will facilitate 

melting to the bottom of the melt pool with minimal mass loss due to 

evaporation occurring only at the material boiling point. In this regime, the 

saturated vapor pressure above the melt pool would be extremely close to 

that of the ambient environment, as dictated by the Clausius-Clapeyron 

relation [62]. Here, a minimal recoil pressure is assumed be imparted on the 

melt pool with little to no liquid expulsion being able to occur. 
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Figure 46: Experimental process parameters attempted in this work, as well as the 

modelled process window. (Top) All parameters included, (Bottom) Enhanced region 

shown in Top. 

In terms of the present work, the model was developed after initial 

melting of bismuth telluride was attempted. Thus, the optimal process 
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parameters dictated by the model were not explicitly investigated but rather 

forecasted. This experimental work is captured in Figure 46. Here, the 

lowest power/speed combination that began sintering was 12W and 0.05 

m/s, which is the lowest speed at which the laser can scan in the EOSINT 

M280 system. All powers below 12W were applied in combination with this 

speed with no change in the powder bed observed. This is denoted as the 

“No Interaction” dataset. At the sintering threshold, the powder darkened 

and solidified but did not look visibly melted. Powers applied above 15W at 

the 0.05m/s subsequently showed melting with a visible change in surface 

finish. The dataset labelled “Successful Melting/Adhesion” describes power 

and speed combinations in this work that led to the successful creation of 

multilayer p-type and n-type thermoelements. The “Unsuccessful” 

parameter set, while melting the initial layer to the substrate, did not allow 

for multilayered structures to be built with the application of subsequent 

powder layers. Likely, the power was too high such that most of the powder 

applied in the secondary layers was vaporized. It was noteworthy, however 

that the lower limit for the laser power of the modelled parameter set 

coincided well with the experimentally observed sintering threshold power 

to within one watt.  

In the following paragraphs, comparisons to literature are provided for 

model validation. The two material systems utilized for this comparison will 

again be bismuth telluride and the well-characterized Ti6Al4V. 
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A recent article published by Headley et al [25] investigated the optimal 

process parameters for n-type bismuth telluride using a combination of 

experimentation and machine learning (ML). The experiments were carried 

out for a layer thickness of 35μm with a laser wavelength of 1070nm and 

spot size of 60μm. The substrate was bulk bismuth telluride ingot. The 

particle size distribution was estimated in this thesis using ImageJ and a 

sample image of the powder provided in the reference. An average particle 

size of 1.5μm was assumed when applying the semi-analytical model. A 

series of line scans at different speeds and powers were attempted in the 

reference and the resulting geometry of the melt pool was used with ML to 

predict the optimal process parameters. The goal was to obtain the lowest 

achievable porosity. The final values predicted by the ML algorithm were 

selected to be used instead with a 75μm layer thickness in order to achieve 

minimal porosity and to reduce build time. The model in this thesis was 

applied at both the 35 and 75μm to predict the complete melt of the powder 

at those layer thicknesses as shown in Figure 49. 
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Figure 47: Semi-analytical model comparison to [25]. 

Headley predicted a power of 25W and 0.4 m/s for a layer thickness of 

75μm. This also included values for hatch spacing, which the semi-

analytical model does not account for, as it deals with only single melt 

tracks. The lowest porosity achieved was 0.9%. For the same layer 

thickness, the closest point to Headley’s optimal combination in the 

proposed semi-analytical model is 25W and 0.34 m/s. This exercise was 

valuable as it illustrates the sensitivity of the process window prediction to 

the layer thickness.  

The work of Shi et al [26] provides a second comparison to the bismuth 

telluride material system. Here, powder with an average particle size of 
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roughly 58μm was spread in 2mm layers on a stainless steel substrate and 

processed with a laser of 1070nm, similar to that of Headley. The spot size 

was 50μm.  

 

Figure 48: Semi-analytical model comparison to [26]. 

The reported layer thickness was optically large and it was mentioned 

that two laser passes were necessary to fully melt the powder at 2mm 

thickness. This thickness also was unable to be inserted into the semi-

analytical model as it did not yield any suggested power/speed 

combinations that could facilitate complete melting without significant 

evaporative losses. Thus, since the author mentioned multiple passes to 

melt this layer, an intermediate layer thickness can be assumed where 
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partial melting  may have occurred. The semi-analytical model in Figure 48 

is applied for three partial-layer thicknesses of 50, 100, and 250μm powder, 

and the resulting process windows agree reasonably with experimentally 

observed combinations used in the reference. The minimal porosity 

reported here was 3.42%. 

Finally, Hu et al [35] modelled bismuth telluride single melt tracks using 

COMSOL and iterated over a power and speed space of 10 to 40 W and 

0.1 to 0.6m/s, respectively. They used a 1064nm laser with a 50μm radius.  

Their powder layer thickness was given as 36μm, and they provided a 

particle size distribution from which their powder absorption coefficient for a 

given packing factor could be calculated. From their numerical modeling, 

they used the resulting morphology of the individual tracks to predict an 

optimal parameter set. Their parameter datasets were separated into those 

that modelled unmelted, flat, or overheated track morphologies. The set 

labelled “flat” contained what the author deemed were the optimal 

parameters and resulted in a smooth top surface morphology. The set 

labelled “overheated” indicated that high intensity laser interaction had 

caused surface contouring consistent with the effects of recoil pressure and 

significant material evaporation. After modelling this space, they determined 

the combination of 30W, 0.5m/s to be optimal and used this to create their 

samples. This set of values yielded them a relative density of 97.4% when 

used experimentally. A comparison of their data to the model present in this 
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work is given in Figure 49. Their powder packing factor was not given and 

thus a range of 0.3 to 0.5 was used for the semi-analytical model, which still 

showed good agreement. 

 

Figure 49: Semi-analytical model comparison to numerically modelled (COMSOL) 

values and the decided upon optimal experimental set [35]. 

Since the porosity was almost eliminated in the work performed by 

Headley et al, the optimum process parameters predicted by ML seemed to 

be in the realm of those provided by the semi-analytical model. The low, but 

markedly higher residual porosity in the best sample prepared by Shi et al 

may be due to many factors including different powder morphology and 
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overly large layer thickness. Also, since no measurement was made for 

mass loss due to evaporation, it is also possible parameters were used that 

permitted full densification at the expense of some material ablation.  The 

work of Hu was valuable as it used established numerical simulation 

software to iterate through a parameter space and showed that the semi-

analytical model tended towards their optimal parameter set. The resulting 

process windows in each of the references above appear to capture 

possible power/speed combinations in each material system that used 

minimal porosity as a figure of merit. 

For further validation purposes, the semi-analytical model was applied 

to the Ti6Al4V system for power/speed combinations yielding minimal 

porosity in literature. 
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Figure 50: Semi-analytical model comparison to experimental, empirically modelled, 

and vendor-recommended parameters for Ti6Al4V [88,109,110]. 

The Ti6Al4V powder is a very prevalent material system studied in AM 

literature and has been reported upon frequently. Figure 50 includes 

experimental data from Dilip et al [88] that corresponds power/speed 

combinations with resultant porosity. Denti et al [109] experimented with the 

an EOSINT M290 machine and reported using the EOS recommended 

processing parameters for their Ti6Al4V powder. Finally, Gu et al [110] used 

empirical modeling to arrive at a power/speed combination that would yield 

near theoretical density to the underlying material system. All three 

references use a 30μm powder layer with similar powder morphology. The 
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applied semi-analytical model used the powder relative density – or packing 

factor – from Gu et al, as well as readily available material properties from 

[87]. As observed above, the experimental parameter sets yielding 0% 

porosity, as well as the empirically determined combination and EOS-

recommended combination are all consistent with the semi-analytical model 

presented. The power and speed range predicted is clearly distinct from that 

of the vastly different, bismuth telluride system, and using minimal physical 

phenomena in the melt requirements, can predict within 11% of an 

experimentally observed optimal laser power value for the same 

experimentally observed speed.  

To reiterate the versatility of the model, the key comparisons for both 

material systems are combined in the following figure. 
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Figure 51: Combination of Bismuth Telluride and Ti6Al4V modeled process windows 

with corresponding experimental results from literature. 

As mentioned above, the hatch spacing was a parameter that was 

reported and experimented with in the literature datasets that were 

presented, however the semi-analytical model did not take this into account. 

The proposed model currently deals only with single melt tracks on a 

powder bed. With some modifications to both the melt requirements and the 

geometry of the solid- and liquid-interacting beam components, this model 

may be able to be adapted in the future to include additional thermal 

phenomena as well as provide parameters that take hatch spacing into 

account. 
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5.5 Thermoelectric Characterization 

A preliminary set of measurements was carried out on the p-type 

material to determine its room temperature ZT. This was performed using 

a custom-made Harman Technique apparatus built within previous work 

[111]. The test system is based upon the work of Buist, where a bipolar, 

DC current is applied to the sample and the resulting voltage waveform 

provides the key voltages that can be used to calculate ZT [112]. Seven 

samples manufactured on a printed circuit board substrate were sputtered 

with 100nm each of titanium and gold and tested in a vacuum environment 

at 10-6 Torr, at ambient temperature [113]. A DC current pulse of 200 mA 

was applied to each sample for 120s to develop a steady state 

thermoelectric voltage, and then the same pulse was applied again in 

reverse polarity after a 10s wait time. The voltages obtained from these two 

waveforms were then averaged to remove any influence of thermal offset 

voltages that would be present based on any asymmetry in the thermal 

transport geometry of the system.  

The average measured room temperature ZT is presented in Figure 52 

and compared to two other recent references that use almost the same 

stoichiometric p-type alloy as in this thesis [21,35]. The reference data uses 

material with stoichiometry given as Bi0.5Sb1.5Te3 whereas the p-type 

stoichiometry used in this thesis slightly differs at (Bi0.15Sb0.85)2Te3. It has 

also been noted in the literature that a ZT of 1 is the minimum commercial 
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industry standard [42]. The propagated 2σ uncertainty was calculated to be 

±9%. The relatively high room temperature ZT is promising, and further 

investigation should be carried out to determine its trend vs. temperature. 

 

Figure 52: Comparison of room temperature ZT for p-type bismuth telluride samples 

manufactured by selective laser melting [21,35]. The error bar given represents ±9%. 

6. Conclusions and Future Work 

6.1 Contributions to Knowledge 

The recognized usefulness of additive manufacturing in industry is 

gaining, and with this, there is a focus to understand and characterize novel 
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material systems so that new opportunities can present themselves for 

technological development. In the area of energy harvesting, thermoelectric 

devices are a definite contender for additive manufacturing given their bulk 

multilayered structures for heat transfer and electrical conduction. The initial 

idea to take powdered bismuth telluride that was not conducive to 

commercial laser powder bed fusion, was full of hurdles that could be 

representative of using any non-conventional powder system. These 

hurdles were methodically overcome to ultimately produce functioning 

thermoelectric devices.  

The custom power delivery system outlined in section 4.1 allowed for 

the mitigation of many of these hurdles using a design for manufacturing 

approach. The randomized powder morphology that deviated from the 

conventional spherical morphology presented problems in obtaining 

uniform layer thickness, and good flowability. Widely used AM powders 

such as the Ti6Al4V alloy are available in spherical form with narrow particle 

size distributions and can be readily loaded into a hopper for uniform layer 

distribution on a powder bed. Since the bismuth telluride could not be readily 

spread, it was sieved and mixed with acetone to form a slurry. The uniform 

layer thickness was achieved by designing and applying solder stencils of 

uniform thickness such that repeatability can be maintained between layers. 

The masks were designed to be applied in a stackable formation, and to be 

fastened with quick-release nuts, a feature borrowed from machining. The 
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substrate that was selected to be printed upon was a customized, double 

layered printed circuit board. This was done to accommodate the 

thermoelectric  since the PCB was designed with all of the necessary 

electrical pathways to form a finished TEG. Being double layered, it was 

able to be fitted with thermal vias to facilitate increased heat transfer from 

one side to the other in order to reach a uniform temperature quickly. In 

short, the customized powder delivery system was designed to allow for 

rapid prototyping of powdered thermoelectric material of arbitrary 

morphology, in a commercial laser powder bed fusion machine that would 

otherwise not be able to accommodate it during normal use. The 

customized substrate allowed for device manufacturing on a thermally and 

electrically functional substrate with incorporated contacts in lieu of the 

additional manufacturing that would have been required as seen in 

conventional TEG modules. 

There are multiple aspects of the semi-analytical model that act as 

foundational points of knowledge moving forward. When determining the 

process parameters for a novel material system, it is important to have a 

deep understanding of the optical, thermal, and physical characteristics of 

the powder in question. If the infrastructure is available to the researcher to 

readily measure all these required characteristics, they should do so. 

However, this availability is not always guaranteed. Many of the material 

constants used within the modeling of this research were derived by 
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adjacent physical phenomena using temperature-averaged literature values 

for the material system. Examples of this include approximating the effective 

boiling temperature and latent heat of vaporization from effusion data and 

laser ablation thresholds, respectively. Regardless of the  dependence on 

literature values, the rationale for the determination of effective optical and 

thermal material parameters proved to still produce useful predictions when 

applied to the semi-analytical model. 

The model itself presented a unique method of analyzing the laser 

interaction with the powder. The intention was to obtain a process window 

for laser power and speed that could effectively melt a given powder of a 

given layer thickness. The separation of solid- and liquid-interacting beam 

components in a volumetric capacity was novel in that it proved to yield 

acceptable forecasting power. The melt process was analyzed for a 

representative volume, rather than for a macroscopic structure and the 

assumption that the melt time had to coincide with the laser interaction time 

over this volume was consistent with attempted process parameters that 

provided efficient melting. Looking at the laser interaction in this way 

allowed for the simplification of the energy delivery and distribution into the 

system. The gaussian beam was spatially and temporally integrated, and a 

single melt track width was imposed that was equivalent to the beam width, 

which was used in the selected AM process experiments. The core of the 

model was to leverage the energy deposited in the characteristic optical 
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absorption depths of both the powder and the ensuing liquid layer that 

formed, with the thermal and optical requirements of the material contained 

within this representative volume. Its simplistic mathematical relationship 

allows for the quick determination of process windows that could be used 

as a guideline for exploratory research in an otherwise untested materials 

system for AM, and it is not impeded by the need for large computational 

power or sophisticated software.  

Finally, for the bismuth telluride material system in question, it is evident 

that additive manufacturing has the potential to be a suitable process for 

bulk thermoelectric devices in the future. The main stoichiometry was 

maintained as optimal process parameters were approached, indicating 

that an additively manufactured TEG could still function with the 

thermoelectric properties of its bulk constituent materials. Any material loss 

that was observed occurred in a predictable manner, where lighter elements 

such as Se and Te were the first to reduce in concentration in samples that 

were created with higher delivered energy densities. The resulting triangular 

microstructures that were formed during the melt process contributed to a 

notable residual porosity that seemed to decrease the device thermal 

conductance without much detriment to the electrical conductance. This 

yielded an measured room temperature ZT of approximately unity, which is 

promising as it is the commercial benchmark value. Thermoelectrics 

represent a new paradigm for additive manufacturing, as their functionality 
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is not only reliant on their structural and mechanical integrity, but also on 

their electronic properties. The utilization of the custom powder delivery 

system for low flowability powder, the customized PCB substrates, and the 

semi-analytical modeling scheme create a foundation for thermoelectric 

generator prototyping with any material system. 

6.2 Future Work  

6.2.1 Proposed Modifications to the Semi-Analytical 

Model 

The created process windows are limited in their accuracy due to both 

the fixed assumptions and impositions on the model, as well as the number 

of phenomena that have been unaccounted for. The model currently makes 

predictions assuming a single powder layer on a substrate, with the laser 

interacting on a single melt track. The model can be adapted to provide 

process windows for subsequent layers that are on solidified bulk materials 

rather than the initial metallic substrate. This would require solving the 

radiative transfer equation with the optical properties of the bulk material 

substituted for that of the substrate. A consideration for partial melting into 

the underlying solidified layer can be added to the energy balance for this 

consideration as well. 

The individual melt track application can be expanded to include 

adjacent/overlapping melt tracks as well, and therefore, an estimation on 
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the effects of hatch spacing. The solid- and liquid-interacting beam portions 

would each forfeit a portion of their incident energy to a third area which 

would represent solidified material. Therefore, some assumptions as to the 

area of the beam that would be in contact with an adjacent, recently melted 

track, can additionally be considered with the areas that are in contact with 

the powder and forming liquid of the new melt track. This would require 

knowledge of the absorptivity, reflectivity, and absorption depth of the solid, 

as well as its thermal properties in the case of remelting during close hatch 

distances. 

Currently, only radiation and evaporation at the boiling temperature are 

included as loss terms in the energy balance. This can be expanded to 

include terms such as convective surface losses, forced liquid convection 

due to recoil pressure and capillary action, as well as melt ejection which 

also results from the recoil pressure overcoming the liquid surface tension. 

Higher order effects such as plasma generation may also be able to be 

included, if simplified as well. 

 It would be useful to add a metric for determining the absolute 

proximity of experimentally observed optimal power and speed 

combinations to the modelled process window. One such metric could be 

the residual porosity of the system. To add a porosity model to the process 

window, the corresponding melt time to the modelled power and speed 

combination can be used in a mass balance to convert powder and 
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surrounding gas medium to and evaporating liquid with entrapped gas, and 

finally solidified bulk material. An estimation of how much vaporized liquid 

and entrapped gas can escape during the melt time, which again is 

influenced by the process parameters, can then allow for the calculation of 

the residual porosity in the system.   

6.2.2 Considerations for TEG Fabrication 

If the gas atomization of thermoelectric powders is not widely pursued, 

the custom facility that was designed in this research will allow for their use 

in established powder bed systems. Automating this powder deposition 

process would improve yield in the future. 

An attempt to build an entire thermoelectric module using constituent 

powders would also be a useful endeavour. Instead of prefabricating the 

substrates, they can be built from the bottom up using the LPBF process. 

Subsequently, electrodes could be built and finally the thermoelectric 

material. This could all be performed without breaking the print bed 

atmospheric seal so that exposure to contaminants and oxidation are 

minimized. 

Now that bismuth telluride has been shown to maintain its thermoelectric 

properties after laser processing, the investigation of other thermoelectrics 

should be pursued. An evaluation with the semi-analytical model of the 

optical and thermal properties of a proposed powder can determine a rough 
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process window. This, in combination with the process window 

determination of powder on a solidified layer, can lead to a process for 

advanced AM segmented thermoelectric devices. Prospective materials 

should first be modelled for thermoelectric compatibility, and subsequently 

for thermal expansion mismatch. An emphasis should also be placed on 

searching for an appropriate diffusion barrier between adjacent materials, 

and if this barrier can be included in the AM process. One such material that 

should be considered would be MgSi due to its constituent elements’ low 

vapor pressures.  

Since this form of manufacturing involves laser interaction, the laser can 

also be used to post-process TEG materials after the initial melt process. A 

different parameter set may be able to be either empirically or semi-

analytically modelled for a given material that would be used to anneal the 

thermoelectric after a layer deposition. Deliverables from this process could 

include a method for in-situ laser annealing, smoothing of physical features, 

decreasing porosity, and the introduction of stresses or strains into the 

system for thermoelectric enhancement. 
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8. Appendices 

A.1  Solution to the Radiative Transfer Equation 

 The Radiative Transfer Equation (RTE) describes the energy 

conservation along a given path 𝒓  of light that enters a scattering and 

absorbing medium within an infinitesimally small solid angle 𝑑Ω′. It is given 

in equation (A1.1). 

𝒔̂ · ∇𝐼(𝒓, 𝒔̂) = 𝜅𝐼𝑏(𝒓) − 𝛽𝐼(𝒓, 𝒔̂) +
𝜎𝑠
4𝜋
∫𝐼(𝒓, 𝒔̂′)Φ(𝒔̂′, 𝒔̂)𝑑Ω′

4𝜋

 [
𝑊

𝑚3
] 

 
(A1.1)  

Where 𝜅  and 𝜎𝑠  are the absorption and scattering coefficients of the 

medium at a given wavelength. The scattering phase function Φ(𝒔̂′, 𝒔̂) 

represents the probability that light entering the medium from direction 𝒔̂′ 

will scatter in the direction of 𝒔̂ . For isotropic scattering, which is a 

reasonable assumption for a light interacting with powder, this function is 

equal to unity [63,64]. The emission term denoted by the subscript b can be 

omitted when solving the RTE for an incident laser intensity since the 

temperature of the medium is generally not high enough during the laser 

interaction time to contribute any significant radiation loss [114]. 

 The terms on the right hand side in the RTE can be described in 

order as follows; the gain in intensity due to emission minus the sum of 

losses due to absorption and scattering outwards, plus the gain from inward 
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scattering [5]. Some simplifications can be performed to reduce equation 

(A1.1) into simpler notation as seen in [64]. The scattering albedo 𝜔 for a 

given wavelength is related to the scattering and absorption coefficients 

through the following relation: 

𝜔 =
𝜎𝑠
𝛽

  
 

(A1.2)  

The reliability on the solid angle of incidence and scattering can be reduced 

based on the definition of a solid angle for in equation (A1.3) [114]. Here, 𝛳 

refers to the incident or scattering angle with respect to the surface normal, 

and 𝜙 is the azimuthal angle. The direction vector 𝒔̂ is defined in [114] by 

equation (A1.4) and is composed of both 𝛳 and 𝜙, where 𝒕𝟏̂  and 𝒕𝟐̂  are 

orthogonal unit vectors on the material surface. Gusarov makes a 

simplification by integrating the RTE over the 2π azimuth component to 

place it only in terms of the incident and scattering angle [64]. 

∫𝑑Ω = ∫ ∫ 𝑠𝑖𝑛𝛳𝑑𝛳𝑑𝜙
𝜋

𝛳=0

2𝜋

𝜙=0
4𝜋

 [𝑠𝑟] (A1.3)  

𝒔̂ = 𝑐𝑜𝑠𝛳𝒏̂ + 𝑠𝑖𝑛𝛳(𝑐𝑜𝑠𝜙𝒕𝟏̂ + 𝑠𝑖𝑛𝜙𝒕𝟐̂) 

 

 (A1.4)  

Taking the integral through 𝜙  creates a new direction vector that is 

independent of azimuth angle, provided in equation (A1.5). 
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𝒔̂𝑛𝑒𝑤 = 𝑐𝑜𝑠𝛳𝒏̂  (A1.5)  

Substituting equation (A1.2) and (A1.5) into equation (A1.1), integrating 

over the azimuth in the scattering term and removing the emission term, the 

RTE is updated below. 

𝒔̂𝑛𝑒𝑤 · ∇𝐼(𝒓, 𝒔̂𝒏𝒆𝒘)

= −𝛽𝐼(𝒓, 𝒔̂𝒏𝒆𝒘) +
𝛽𝜔

4𝜋

· (2𝜋∫ 𝐼(𝒓, 𝒔̂𝒏𝒆𝒘
′ )Φ(𝒔̂𝒏𝒆𝒘

′ , 𝒔̂𝒏𝒆𝒘)𝑠𝑖𝑛𝛳′𝑑𝛳′
𝜋

𝛳′=0

) 

[
𝑊

𝑚3
] (A1.6)  

Dropping the vector notation, changing the path of 𝒓  to simply the z-

direction and substituting 𝜇 = 𝑐𝑜𝑠𝜃, the one-dimensional RTE can be finally 

written as equation (A1.7) where again 𝜇′ represents incident angle and 𝜇 

represents scattering angle. Updated versions of the solid angle from 

equation (A1.3) and phase function are also provided in terms of 𝜇  in 

equations (A1.8) and (A1.9) respectively. 

𝜇
𝑑𝐼(𝑧, 𝜇)

𝑑𝑧
=  𝛽 {

𝜔

2
∫ 𝐼(𝑧, 𝜇′)𝑃(𝜇′, 𝜇)𝑑𝜇′
1

−1

− 𝐼(𝑧, 𝜇)} [
𝑊

𝑚3
] (A1.7)  

∫𝑑Ω = ∫ ∫ 𝑑𝜇𝑑𝜙
1

𝜇=−1

2𝜋

𝜙=0
4𝜋

 [𝑠𝑟] 
 

(A1.8)  

𝑃(𝛳′, 𝛳) =
1

2𝜋
∫ 𝑃(𝜇′, 𝜇)𝑑𝜙 = 1
2𝜋

0
 for isotropic scattering   (A1.9)  
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The laser radiation is modelled as collimated incident radiation on the 

boundary surface. Beginning with the upper boundary condition at z=0, the 

general relationship between incident collimated radiation at a certain 

incident angle 𝛳𝑜 and azimuth angle 𝜙𝑜 is provided in equation (A1.10) from 

[114]. 

𝐼(0, 𝜇, 𝜙) = 𝑄𝑜𝛿(𝜇 − 𝜇𝑜)𝛿(𝜙 − 𝜙𝑜) [
𝑊

𝑚2 · 𝑠𝑟
] (A1.10)  

However, since the intensity is isotropic, both sides are integrated over 2π 

in 𝜙 to account for incidence from all azimuthal angles. This provides a top 

boundary condition independent of azimuth angle. 

𝐼(0, 𝜇) · 2𝜋 = 𝑄𝑜𝛿(𝜇 − 𝜇𝑜) [
𝑊

𝑚2
] (A1.11)  

Assuming normal incidence (𝛳0=0), this provides 𝜇𝑜 = cos(0) = 1 and the 

upper boundary condition is therefore written as equation (A1.12), 

𝐼(0, 𝜇) =
𝑄𝑜
2𝜋
𝛿(𝜇 − 1) 𝜇 > 0 [

𝑊

𝑚2
] (A1.12)  

where 𝑄𝑜  is the power density on the surface in [
𝑊

𝑚2
], and the possible 

angles of incidence correspond to 𝜇 > 0. The bottom boundary condition is 

at the interface between the powder layer and the substrate surface. At the 

substrate, z=L and the corresponding boundary condition is given in 

equation (A1.13) where 𝑅𝑠 is the reflectivity of the substrate. 
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𝐼(𝐿, 𝜇) = 𝑅𝑠𝐼(𝐿, −𝜇) 𝜇 < 0 [
𝑊

𝑚2
] (A1.13)  

The general solution to the RTE for collimated laser radiation normally 

incident at the top surface will be assumed to take the form in accordance 

with the two-flux method. The solution will have a forward collimated term, 

a backward reflected collimated term and a diffuse term [63,64,66,114]. This 

solution is given in equation (A1.14). 

𝐼(𝑧, 𝜇) = 𝐼𝑐+(𝑧, 𝜇) + 𝐼𝑐−(𝑧, 𝜇) + 𝐹(𝑧, 𝜇) [
𝑊

𝑚2
] (A1.14)  

The above equation describes the superposition of collimated and diffuse 

terms and can be separated as such so that each component can be solved 

for independently. 

A.1.1. Collimated Component 

 The forward and backward normally incident collimated intensities 

are the respective first and second terms in equation (A1.14). 

Correspondingly, the forward and backward power densities as a function 

of depth into the z-direction are 𝑄+(𝑧)  and 𝑄−(𝑧) . This creates two 

collimated solutions for the top and bottom surface involving the Dirac-delta 

function, 𝛿: 

𝐼𝑐+(𝑧, 𝜇) =
𝑄+(𝑧)

2𝜋
𝛿(𝜇 − 1) 𝜇 > 0 [

𝑊

𝑚2
] (A1.15)  
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𝐼𝑐−(𝑧, 𝜇) =
𝑄−(𝑧)

2𝜋
𝛿(𝜇 − 1) 

𝜇 < 0 
[
𝑊

𝑚2
] 

(A1.16)  

These power densities can be solved for by inserting each of these 

equations into the RTE given in equation (A1.7), however the integral term 

describing diffuse scattering will not be evaluated at this point. The 

contribution of the collimated beam portions to the diffuse component will 

be carried over to the diffuse solution to the RTE given in the following 

section. Again, this can be performed due to the principle of superposition. 

Performing the aforementioned substitutions, two separate equations are 

generated: 

𝜇
𝑑𝐼𝑐+(𝑧, 𝜇)

𝑑𝑧
= 𝜇 (
𝛿(𝜇 − 1)

2𝜋

𝑑𝑄+(𝑧)

𝑑𝑧
) = −𝛽 (

𝑄+(𝑧)

2𝜋
𝛿(𝜇 − 1)) [

𝑊

𝑚3
] (A1.17)  

𝜇
𝑑𝐼𝑐−(𝑧, 𝜇)

𝑑𝑧
= 𝜇 (
𝛿(𝜇 + 1)

2𝜋

𝑑𝑄−(𝑧)

𝑑𝑧
) = −𝛽 (

𝑄−(𝑧)

2𝜋
𝛿(𝜇 + 1)) [

𝑊

𝑚3
] 

(A1.18)  

These simplify into the following equations, taking for the forward term 𝜇 =

cos(0) = 1 and for the backward term 𝜇 = cos(𝜋) = −1 due to reflection. 

Thus, the power densities are given as: 

𝑑𝑄+(𝑧)

𝑑𝑧
= −𝛽𝑄+(𝑧) 𝜇 = cos(0) = 1 [

𝑊

𝑚3
] (A1.19)  

𝑑𝑄−(𝑧)

𝑑𝑧
= +𝛽𝑄−(𝑧) 

𝜇 = cos(𝜋) = −1 
[
𝑊

𝑚3
] 

(A1.20)  
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Applying the boundary conditions in (A1.12) and (A1.13) to (A1.19) and 

(A1.20), respectively, the power densities can be solved for in the following 

manner: 

𝑑𝑄+(𝑧)

𝑄+(𝑧)
= −𝛽𝑑𝑧  [

𝑊

𝑚2
] (A1.21)  

𝑄+(𝑧) = 𝐶1𝑒
−𝛽𝑧 + 𝐶2 →  𝑄+(0) = 𝑄𝑜𝑒

0 → 𝐶1 = 𝑄𝑜 , 𝐶2

= 0 

 
[
𝑊

𝑚2
] 

(A1.22)  

𝑄+(𝑧) = 𝑄𝑜𝑒
−𝛽𝑧  

[
𝑊

𝑚2
] 

(A1.23)  

Based on the back boundary condition being related to the forward 

collimated component, the backward component is solved for with the 

substitution of this boundary condition into the forward component solution 

defined above in (A1.23): 

𝑑𝑄−(𝑧)

𝑄−(𝑧)
= 𝛽𝑑𝑧 

 
[
𝑊

𝑚2
] 

(A1.24)  

𝑄−(𝑧) = 𝐶3𝑒
𝛽𝑧 + 𝐶4  

[
𝑊

𝑚2
] 

(A1.25)  

𝑄−(𝐿) = 𝑅𝑠𝑄+(𝐿) = 𝑅𝑠𝑄𝑜𝑒
−𝛽𝐿 = 𝐶3𝑒

𝛽𝐿 + 𝐶4 

→ 𝐶3 = 𝑅𝑠𝑄𝑜𝑒
−2𝛽𝐿 , 𝐶4 = 0 

 
[
𝑊

𝑚2
] 

(A1.26)  

𝑄−(𝑧) = 𝑅𝑠𝑄𝑜𝑒
𝛽𝑧−2𝛽𝐿  

[
𝑊

𝑚2
] 

(A1.27)  
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Thus the forward and reverse power densities that are present in the 

collimated terms of the solution have been solved for in equations (A1.23) 

and (A1.27). 

A.1.2. Diffuse Component 

The diffuse contributions from the collimated sources above can now be 

calculated and included in the overall diffuse solution. Recall the RTE from 

equation (A1.7) written below but expanded. 

𝜇
𝑑𝐼(𝑧, 𝜇)

𝑑𝑧
=  
𝛽𝜔

2
∫ 𝐼(𝑧, 𝜇′)𝑃(𝜇′, 𝜇)𝑑𝜇′
1

−1

− 𝛽𝐼(𝑧, 𝜇) [
𝑊

𝑚3
] (A1.28)  

The integral term in (A1.28) was omitted in the previous section because it 

calculates the contribution to diffuse radiation. The collimated term 

definitions given in equations  (A1.15) and (A1.16) can be inserted into the 

integral term above with the limits of integration modified to allow incident 

angles of 0 ≤ 𝜇′ ≤ 1 for the forward diffuse component and −1 ≤ 𝜇′ ≤ 0 for 

the backward diffuse component. 

 
𝛽𝜔

2
{∫ 𝐼𝑐+(𝑧, 𝜇

′)𝑃(𝜇′, 𝜇)𝑑𝜇′ +∫ 𝐼𝑐−(𝑧, 𝜇
′)𝑃(𝜇′, 𝜇)𝑑𝜇′

0

−1

1

0

}  

=
𝛽𝜔

2
{∫ (
𝑄+(𝑧)

2𝜋
𝛿(𝜇′ − 1))𝑃(𝜇′, 𝜇)𝑑𝜇′ +∫ (

𝑄−(𝑧)

2𝜋
𝛿(𝜇′ + 1))𝑃(𝜇′, 𝜇)𝑑𝜇′

0

−1

1

0

} 
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=
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
∫ 𝛿(𝜇′ − 1)𝑃(𝜇′, 𝜇)𝑑𝜇′ +

𝑄−(𝑧)

2𝜋
∫ 𝛿(𝜇′ + 1)𝑃(𝜇′, 𝜇)𝑑𝜇′
0

−1

1

0

} 
 

=
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
𝑃(1, 𝜇) +

𝑄−(𝑧)

2𝜋
𝑃(−1, 𝜇)}  

 

(A1.29)  

Equation (A1.29) represents the contribution of the collimated components 

to diffuse scattering. The diffuse radiation solution to the RTE can now be 

solved for below by adding this term to the general RTE equation for the 

diffuse term, 𝐹(𝑧, 𝜇) . 

𝜇
𝑑𝐹(𝑧, 𝜇)

𝑑𝑧
=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
𝑃(1, 𝜇) +

𝑄−(𝑧)

2𝜋
𝑃(−1, 𝜇)}

+
𝛽𝜔

2
∫ 𝐹(𝑧, 𝜇′)𝑃(𝜇′, 𝜇)𝑑𝜇′
1

−1

− 𝛽𝐹(𝑧, 𝜇) 

[
𝑊

𝑚3
] (A1.30)  

Continuing with the two-flux method, Gusarov proposes that the diffuse 

radiation can be approximated with a two term solution that is angularly 

dependent based on the forward and backward definitions above. This 

approximate solution is given below [64]. 

𝐹(𝑧, 𝜇) = 𝐹+(𝑧)𝐻(𝜇) + 𝐹−(𝑧)(1 − 𝐻(𝜇)) [
𝑊

𝑚2
] (A1.31)  

Here, 𝐻(𝜇) is the Heaviside step function which acts to allow the forward 

(+) component to be nonzero for incident or scattered angles 0 ≤ 𝜇 ≤ 1 and 

the backward (-) component to be negative for angles −1 ≤ 𝜇 ≤ 0. Inserting 
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(A1.31) into the integral term of (A1.30) for incident angles allows the diffuse 

RTE solution to be further simplified. 

𝜇
𝑑𝐹(𝑧, 𝜇)

𝑑𝑧
=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
𝑃(1, 𝜇) +

𝑄−(𝑧)

2𝜋
𝑃(−1, 𝜇)}

+
𝛽𝜔

2
∫ (𝐹+(𝑧)𝐻(𝜇

′) + 𝐹−(𝑧)(1 − 𝐻(𝜇
′))) 𝑃(𝜇′, 𝜇)𝑑𝜇′

1

−1

− 𝛽𝐹(𝑧, 𝜇) 

 

𝜇
𝑑𝐹(𝑧, 𝜇)

𝑑𝑧
=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
𝑃(1, 𝜇) +

𝑄−(𝑧)

2𝜋
𝑃(−1, 𝜇)} +

𝛽𝜔

2
(𝐹+(𝑧) + 𝐹−(𝑧)) − 𝛽𝐹(𝑧, 𝜇) 

(A1.32)  

To obtain diffuse component for all scattering angles, the diffuse solution of 

(A1.31) can now be inserted into equation (A1.32) and an integral over the 

range −1 ≤ 𝜇 ≤ 1 must be performed. 

∫ 𝜇
𝑑𝐹(𝑧, 𝜇)

𝑑𝑧
𝑑𝜇

1

−1

=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
∫ 𝑃(1, 𝜇)𝑑𝜇
1

−1

+
𝑄−(𝑧)

2𝜋
∫ 𝑃(−1, 𝜇)𝑑𝜇
1

−1

} 

+
𝛽𝜔

2
(𝐹+(𝑧) + 𝐹−(𝑧))∫ 𝑑𝜇

1

−1

− 𝛽∫ 𝐹(𝑧, 𝜇)𝑑𝜇
1

−1

 

(A1.33)  

However the substitution of the approximate diffuse solution (A1.31) now 

for scattered angles into (A1.33) necessitates the separation of integral 

ranges and creates two moment equation; one valid for 0 ≤ 𝜇 ≤ 1 and the 

other for −1 ≤ 𝜇 ≤ 0 . Thus, (A1.33) is converted into the following two 

equations. 

∫ 𝜇
𝑑𝐹+(𝑧)

𝑑𝑧
𝐻(𝜇)𝑑𝜇

1

0

= 
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
∫ 𝑃(1, 𝜇)𝑑𝜇
1

0

+
𝑄−(𝑧)

2𝜋
∫ 𝑃(−1, 𝜇)𝑑𝜇
1

0

}  
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+
𝛽𝜔

2
(𝐹+(𝑧)+ 𝐹−(𝑧))∫ 𝑑𝜇

1

0

− 𝛽∫ 𝐹+(𝑧)𝐻(𝜇)𝑑𝜇
1

0

 

∫ 𝜇
𝑑𝐹−(𝑧)

𝑑𝑧
(1 − 𝐻(𝜇))𝑑𝜇

0

−1

=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
∫ 𝑃(1, 𝜇)𝑑𝜇
0

−1

+
𝑄−(𝑧)

2𝜋
∫ 𝑃(−1, 𝜇)𝑑𝜇
0

−1

} 

+
𝛽𝜔

2
(𝐹+(𝑧)+ 𝐹−(𝑧))∫ 𝑑𝜇

0

−1

− 𝛽∫ 𝐹−(𝑧)(1 − 𝐻(𝜇))𝑑𝜇
0

−1

 

 

These further simplify below by evaluating the integrals: 

1

2

𝑑𝐹+(𝑧)

𝑑𝑧
=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
+
𝑄−(𝑧)

2𝜋
} +
𝛽𝜔

2
(𝐹+(𝑧) + 𝐹−(𝑧)) − 𝛽𝐹+(𝑧) 

 

−
1

2

𝑑𝐹−(𝑧)

𝑑𝑧
=  
𝛽𝜔

2
{
𝑄+(𝑧)

2𝜋
+
𝑄−(𝑧)

2𝜋
} +
𝛽𝜔

2
(𝐹+(𝑧) + 𝐹−(𝑧)) − 𝛽𝐹−(𝑧) 

 

The above two equations can be factored and written in compact form: 

±
1

2

𝑑𝐹±(𝑧)

𝑑𝑧
=  𝛽 (

𝜔

2
(
𝑄+(𝑧)

2𝜋
+
𝑄−(𝑧)

2𝜋
+ 𝐹+(𝑧) + 𝐹−(𝑧)) − 𝐹±(𝑧)) 

(A1.34)  

It is now time to introduce two dimensionless variables for length that will 

aid in the simplification of these moment equations. 

𝜉 = 𝛽𝑧 (A1.35)  

𝜆 = 𝛽𝐿 (A1.36)  

Equation (A1.35) normalizes any depth in the z-direction with the absorption 

coefficient 𝛽  and (A1.36) does the same with the powder depth 𝐿. This 
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unitless depth 𝜆 is denoted as the optical thickness of the powder. These 

substitutions can be applied to equations (A1.23) and (A1.27) to normalize 

them as well: 

𝑄+(𝜉) = 𝑄𝑜𝑒
−𝜉 

[
𝑊

𝑚2
] 

(A1.37)  

𝑄−(𝜉) = 𝑅𝑠𝑄𝑜𝑒
𝜉−2𝜆 

[
𝑊

𝑚2
] 

(A1.38)  

Equation (A1.40) can be normalized by introducing the dimensionless 

relationships for 𝑄±(𝜉) and 𝐹±(𝜉). 

𝑞± =
𝑄±(𝜉)

𝑄𝑜
 

(A1.39)  

𝑓± =
2𝜋𝐹±(𝜉)

𝑄𝑜
 

(A1.40)  

Substituting (A1.39) and (A1.40) into (A1.34) yield the following equation: 

±
1

2
(
𝑄𝑜
2𝜋
) 
𝑑𝑓±
𝑑𝑧
=  𝛽 (

𝜔

2
(
𝑄𝑜𝑞+
2𝜋
+
𝑄𝑜𝑞−
2𝜋
+
𝑄𝑜𝑓+
2𝜋
+
𝑄𝑜𝑓−
2𝜋
) −
𝑄𝑜𝑓±
2𝜋
) 

(A1.41)  

The derivative on the LHS of equation (A1.41) is in terms of 𝑧 but needs to 

be in terms of 𝜉  as defined in equation (A1.35). Therefore the following 

modification can be performed: 
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𝑑𝑓±
𝑑𝑧
=
𝑑𝑓±
𝑑𝜉
·
𝑑𝜉

𝑑𝑧
= 𝛽
𝑑𝑓±
𝑑𝜉
  

(A1.42)  

Inserting (A1.42) into (A1.41) and dividing by the factor 
𝑄𝑜𝛽

2𝜋
 on both sides 

yields the dimensionless moment equations for ±
1

2

𝑑𝑓±

𝑑𝜉
 which will be 

separated again below. 

1

2

𝑑𝑓+
𝑑𝜉
=  
𝜔

2
(𝑞+ + 𝑞− + 𝑓+ + 𝑓−) − 𝑓+ 

(A1.43)  

−
1

2

𝑑𝑓−
𝑑𝜉
=  
𝜔

2
(𝑞+ + 𝑞− + 𝑓+ + 𝑓−) − 𝑓− 

(A1.44)  

Equations (A1.43) and (A1.44) can be added, as well as subtracted, to form 

two new differential equations of (𝑓+ − 𝑓−)  and (𝑓+ + 𝑓−) , respectively. 

These manipulations are given in the following two equations, where both 

sides have also been multiplied by a factor of two to remove the 
1

2
 from the 

LHS and simplified. 

𝑑

𝑑𝜉
(𝑓+ − 𝑓−) =  2𝜔(𝑞+ + 𝑞−) + (2𝜔 − 2)(𝑓+ + 𝑓−) 

(A1.45)  

𝑑

𝑑𝜉
(𝑓+ + 𝑓−) =  −2(𝑓+ − 𝑓−) 

(A1.46)  

The second derivatives are then taken of the above two equations to yield: 
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𝑑2

𝑑𝜉2
(𝑓+ − 𝑓−) =  2𝜔

𝑑

𝑑𝜉
 (𝑞+ + 𝑞−) + (2𝜔 − 2)

𝑑

𝑑𝜉
(𝑓+ + 𝑓−) 

(A1.47)  

𝑑2

𝑑𝜉2
(𝑓+ + 𝑓−) =  −2

𝑑

𝑑𝜉
(𝑓+ − 𝑓−) 

(A1.48)  

Inserting (A1.45) into (A1.48) and (A1.46) into (A1.47), and simplifying, the 

resulting second order differential equations are created: 

 

𝑑2

𝑑𝜉2
(𝑓+ − 𝑓−) =  2𝜔

𝑑

𝑑𝜉
 (𝑞+ + 𝑞−) + (4 − 4𝜔)(𝑓+ − 𝑓−) 

(A1.49)  

𝑑2

𝑑𝜉2
(𝑓+ + 𝑓−) =  −4𝜔(𝑞+ + 𝑞−) + (4 − 4𝜔)(𝑓+ + 𝑓−) 

(A1.50)  

Making the following substitutions: 

𝑦1(𝜉) = 𝑓+ − 𝑓− (A1.51)  

𝑦2(𝜉) = 𝑓+ + 𝑓− (A1.52)  

Equations (A1.47) and (A1.48) can be written as two second-order 

nonhomogeneous linear differential equations (LDEs) in the form: 

𝑦1
′′ − (4 − 4𝜔)𝑦1 = 2𝜔

𝑑

𝑑𝜉
 (𝑞+ + 𝑞−) 

(A1.53)  

𝑦2
′′ − (4 − 4𝜔)𝑦2 = −4𝜔(𝑞+ + 𝑞−) (A1.54)  
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The right hand sides of the above two equations are composed entirely of 

the normalized functions 𝑞+ and 𝑞−. These functions in terms of 𝜉 are given 

below by inserting equations (A1.37) and (A1.38) into (A1.39). Their 

derivatives are provided as well. 

𝑞+ =
𝑄+(𝜉)

𝑄𝑜
= 𝑒−𝜉 

(A1.55)  

𝑞− =
𝑄−(𝜉)

𝑄𝑜
= 𝑅𝑠𝑒

𝜉−2𝜆 
(A1.56)  

𝑑𝑞+
𝑑𝜉
= −𝑒−𝜉 

(A1.57)  

𝑑𝑞−
𝑑𝜉
= 𝑅𝑠𝑒

𝜉−2𝜆 = (𝑅𝑠𝑒
−2𝜆)𝑒𝜉 

(A1.58)  

The normalized 𝑞± functions and their derivatives in equations (A1.55) to 

(A1.58) can be inserted into (A1.53) and (A1.54) for further simplification of 

the nonhomogeneous equations. 

𝑦1
′′ − (4 − 4𝜔)𝑦1 = −2𝜔𝑒

−𝜉 + 2𝜔(𝑅𝑠𝑒
−2𝜆)𝑒𝜉 (A1.59)  

𝑦2
′′ − (4 − 4𝜔)𝑦2 = −4𝜔𝑒

−𝜉 − 4𝜔(𝑅𝑠𝑒
−2𝜆)𝑒𝜉 (A1.60)  

The solution to a second-order nonhomogeneous LDE, the general solution 

takes the form as: 
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𝑦(𝜉) = 𝑦𝑐(𝜉) + 𝑦𝑝(𝜉) (A1.61)  

where 𝑦𝑐(𝜉) is known as the complimentary solution that is obtained by 

equating the left hand sides of (A1.59) and (A1.60) to zero, and 𝑦𝑝(𝜉) is a 

particular solution to these equations in their current form. The solutions will 

be obtained by the use of the Method of Undetermined Coefficients outlined 

in [115]. 

 Beginning with the solution for 𝑦1(𝜉), the complimentary solution is 

first framed by equating the LHS of (A1.59) to zero. 

𝑦1
′′ − (4 − 4𝜔)𝑦1 = 0 (A1.62)  

The corresponding auxiliary equation to (A1.62) is written below and solved 

as: 

𝑟2 + 0 · 𝑟 − (4 − 4𝜔) = 0  

𝑟2 − 4(1 − 𝜔) = 0  

𝑟2 = 4(1 − 𝜔)  

𝑟 = ±2√1 − 𝜔 (A1.63)  

Therefore the solution to the complimentary equation for 𝑦1(𝜉) is given as: 
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𝑦𝑐1 = 𝐴𝑒
−2√1−𝜔𝜉 + 𝐵𝑒2√1−𝜔𝜉 (A1.64)  

For the particular solution to 𝑦1(𝜉), it is necessary to look at the form of the 

RHS of equation (A1.59) and model the solution accordingly. It is evident 

that this form will be a sum of exponentials as given below: 

𝑦𝑝1 = 𝐴𝑝𝑒
−𝜉 + 𝐵𝑝𝑒

𝜉 (A1.65)  

The first and second derivatives of equation (A1.65) are derived in the 

following two equations. 

𝑦𝑝1
′ = −𝐴𝑝𝑒

−𝜉 + 𝐵𝑝𝑒
𝜉 (A1.66)  

𝑦𝑝1
′′ = 𝐴𝑝𝑒

−𝜉 + 𝐵𝑝𝑒
𝜉 (A1.67)  

Since the first derivative does not appear in equation (A1.59), only (A1.65) 

and (A1.67) need to be reinserted into it to obtain the particular solution. 

This is performed below and the resulting equation is factored to determine 

the unknowns 𝐴𝑝 and 𝐵𝑝. 

𝐴𝑝𝑒
−𝜉 + 𝐵𝑝𝑒

𝜉 − (4 − 4𝜔)(𝐴𝑝𝑒
−𝜉 + 𝐵𝑝𝑒

𝜉) = −2𝜔𝑒−𝜉 + 2𝜔(𝑅𝑠𝑒
−2𝜆)𝑒𝜉  

𝐴𝑝(4𝜔 − 3)𝑒
−𝜉 + 𝐵𝑝(4𝜔 − 3)𝑒

𝜉 = −2𝜔𝑒−𝜉 + 2𝜔(𝑅𝑠𝑒
−2𝜆)𝑒𝜉  

𝐴𝑝 = −
2𝜔

4𝜔 − 3
     &     𝐵𝑝 =

2𝜔𝑅𝑠𝑒
−2𝜆

4𝜔 − 3
 

(A1.68)  
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With the unknowns determined, the particular solution is given as: 

𝑦𝑝1 = −
2𝜔

4𝜔 − 3
𝑒−𝜉 +

2𝜔𝑅𝑠𝑒
−2𝜆

4𝜔 − 3
𝑒𝜉 

(A1.69)  

Inserting equations (A1.64) and (A1.69) into (A1.61) yields the solution to  

𝑦1(𝜉), granted with two unknowns remaining; 𝐴 and 𝐵. 

𝑦1(𝜉) = 𝐴𝑒
−2√1−𝜔𝜉 + 𝐵𝑒2√1−𝜔𝜉 −

2𝜔

4𝜔 − 3
𝑒−𝜉 +

2𝜔𝑅𝑠𝑒
−2𝜆

4𝜔 − 3
𝑒𝜉 

(A1.70)  

Pausing with 𝑦1(𝜉)  and moving to 𝑦2(𝜉) , the same procedure can be 

followed to determine its complimentary and particular solutions. 

Conveniently, the complimentary solution will be easy to determine since 

setting the LHS of (A1.60) equal to zero yields the same result as previously 

found for 𝑦1(𝜉) in (A1.62). 

𝑦2
′′ − (4 − 4𝜔)𝑦2 = 0 (A1.71)  

This automatically makes the zeroes for complimentary solution 𝑦1(𝜉) equal 

to those of 𝑦2(𝜉), and thus its complimentary solution has the form of: 

𝑦𝑐2 = 𝐶𝑒
−2√1−𝜔𝜉 + 𝐷𝑒2√1−𝜔𝜉 (A1.72)  

Again, looking at the RHS of (A1.60), the form of the particular solution for 

𝑦2(𝜉) will also be the same sum of exponentials although naturally with 

different unknown coefficients. 
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𝑦𝑝2 = 𝐶𝑝𝑒
−𝜉 + 𝐷𝑝𝑒

𝜉 (A1.73)  

The first and second derivatives of the particular solution are given below 

as well. 

𝑦𝑝2
′ = −𝐶𝑝𝑒

−𝜉 + 𝐷𝑝𝑒
𝜉 (A1.74)  

𝑦𝑝2
′′ = 𝐶𝑝𝑒

−𝜉 + 𝐷𝑝𝑒
𝜉 (A1.75)  

Substitution of (A1.73) and (A1.75) into (A1.60) and simplifying leads to: 

𝐶𝑝𝑒
−𝜉 + 𝐷𝑝𝑒

𝜉 − (4 − 4𝜔)(𝐶𝑝𝑒
−𝜉 + 𝐷𝑝𝑒

𝜉) = −4𝜔𝑒−𝜉 − 4𝜔(𝑅𝑠𝑒
−2𝜆)𝑒𝜉  

𝐶𝑝(4𝜔 − 3)𝑒
−𝜉 + 𝐷𝑝(4𝜔 − 3)𝑒

𝜉 = −4𝜔𝑒−𝜉 − 4𝜔(𝑅𝑠𝑒
−2𝜆)𝑒𝜉  

𝐶𝑝 = −
4𝜔

4𝜔 − 3
     &     𝐷𝑝 = −

4𝜔𝑅𝑠𝑒
−2𝜆

4𝜔 − 3
 

(A1.76)  

Therefore with the definitions of the unknowns in (A1.77), the particular 

solution for 𝑦2(𝜉) from (A1.73) is given as: 

𝑦𝑝2 = −
4𝜔

4𝜔 − 3
𝑒−𝜉 −

4𝜔𝑅𝑠𝑒
−2𝜆

4𝜔 − 3
𝑒𝜉 

(A1.77)  

The general solution for 𝑦2(𝜉) can now be constructed by inserting (A1.72) 

and (A1.77) into (A1.61), again with the unknowns of 𝐶 and 𝐷 to still be 

determined. 
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𝑦2(𝜉) = 𝐶𝑒
−2√1−𝜔𝜉 + 𝐷𝑒2√1−𝜔𝜉 −

4𝜔

4𝜔 − 3
𝑒−𝜉 −

4𝜔𝑅𝑠𝑒
−2𝜆

4𝜔 − 3
𝑒𝜉 

(A1.78)  

Making the appropriate substitutions for (A1.51) into (A1.70) and (A1.52) 

into (A1.78), the normalized sum and difference equations for 𝑓±  are 

obtained as follows: 

𝑓+ − 𝑓− = 𝐴𝑒
−2√1−𝜔𝜉 + 𝐵𝑒2√1−𝜔𝜉 −

2𝜔

4𝜔 − 3
(𝑒−𝜉 − 𝑅𝑠𝑒

𝜉−2𝜆) 
(A1.79)  

𝑓+ + 𝑓− = 𝐶𝑒
−2√1−𝜔𝜉 + 𝐷𝑒2√1−𝜔𝜉 −

4𝜔

4𝜔 − 3
(𝑒−𝜉 + 𝑅𝑠𝑒

𝜉−2𝜆) 
(A1.80)  

At this point isolated 𝑓+ and 𝑓− equations are now attainable. The former is 

created by adding (A1.79) to (A1.80) and dividing by two, while the latter is 

created by the difference between these two equations and also dividing by 

two. These individual equations are given below as well as their derivatives. 

  

𝑓+ =
𝐴 + 𝐶

2
𝑒−2√1−𝜔𝜉 +

𝐵 + 𝐷

2
𝑒2√1−𝜔𝜉 −

𝜔

4𝜔 − 3
(3𝑒−𝜉 + 𝑅𝑠𝑒

𝜉−2𝜆) (A1.81)  

𝑓− =
𝐶 − 𝐴

2
𝑒−2√1−𝜔𝜉 +

𝐷 − 𝐵

2
𝑒2√1−𝜔𝜉 −

𝜔

4𝜔 − 3
(𝑒−𝜉 + 3𝑅𝑠𝑒

𝜉−2𝜆) 
(A1.82)  

Dividing the positive first derivative of equation (A1.81) and the negative 

first derivative of equation (A1.82) by two yields: 

1

2

𝑑𝑓+
𝑑𝜉
 = (−

𝐴 + 𝐶

2
√1 − 𝜔) 𝑒−2√1−𝜔𝜉 + (

𝐵 + 𝐷

2
√1 − 𝜔)𝑒2√1−𝜔𝜉 +

𝜔

2

(3𝑒−𝜉 − 𝑅𝑠𝑒
𝜉−2𝜆)

4𝜔 − 3
 (A1.83)  
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−
1

2

𝑑𝑓−
𝑑𝜉
= (
𝐶 − 𝐴

2
√1 − 𝜔)𝑒−2√1−𝜔𝜉 + (−

𝐷 − 𝐵

2
√1 − 𝜔)𝑒2√1−𝜔𝜉 −

𝜔

2

(𝑒−𝜉 − 3𝑅𝑠𝑒
𝜉−2𝜆)

4𝜔 − 3
 

(A1.84)  

Inserting equations (A1.55), (A1.56), (A1.81) and (A1.82) into both (A1.43) 

and (A1.44), and simplifying, creates two new first derivative equations that 

are equivalent to (A1.83) and (A1.84). The simplification was performed with 

the aid of Maple numerical software. 

1

2

𝑑𝑓+
𝑑𝜉
= (
𝐶𝜔 − 𝐶 − 𝐴

2
) 𝑒−2√1−𝜔𝜉 + (

𝐷𝜔 − 𝐷 − 𝐵

2
) 𝑒2√1−𝜔𝜉 +

𝜔

2

(3𝑒−𝜉 − 𝑅𝑠𝑒
𝜉−2𝜆)

4𝜔 − 3
 

(A1.85)  

−
1

2

𝑑𝑓−
𝑑𝜉
=  (
𝐶𝜔 − 𝐶 + 𝐴

2
) 𝑒−2√1−𝜔𝜉 + (

𝐷𝜔 − 𝐷 + 𝐵

2
) 𝑒2√1−𝜔𝜉 −

𝜔

2

(𝑒−𝜉 − 3𝑅𝑠𝑒
𝜉−2𝜆)

4𝜔 − 3
 

(A1.86)  

With (A1.85) equal to (A1.83) and (A1.86) equal to (A1.84), the 

corresponding factors in front of the exponential terms are equivalent and 

the third term in each pair of equations is identical. Therefore 𝐶 can be solved 

in terms of 𝐴, and 𝐷  in terms of 𝐵  to reduce the number of unknowns in the general 

solution. Only one of these pairs of equations is necessary to obtain these new unknown 

definitions, and so choosing (A1.83) and (A1.85) leads to the following equations: 

−
𝐴 + 𝐶

2
√1 − 𝜔 = (

𝐶𝜔 − 𝐶 − 𝐴

2
) 

(A1.87)  

𝐵 + 𝐷

2
√1 − 𝜔 = (

𝐷𝜔 − 𝐷 − 𝐵

2
) 

(A1.88)  

This simplifies to: 

𝐶 =
𝐴

√1 − 𝜔
 

(A1.89)  
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𝐷 = −
𝐵

√1 − 𝜔
 

(A1.90)  

With the substitution of (A1.89) and (A1.90) into (A1.80), both the 𝑓+ + 𝑓− 

and the 𝑓+ − 𝑓−  equations can now be written with only two unknowns 

present, 𝐴 and 𝐵. 

𝑓+ − 𝑓− = 𝐴𝑒
−2√1−𝜔𝜉 + 𝐵𝑒2√1−𝜔𝜉 −

2𝜔

4𝜔 − 3
(𝑒−𝜉 − 𝑅𝑠𝑒

𝜉−2𝜆) 
(A1.91)  

𝑓+ + 𝑓− =
𝐴

√1 − 𝜔
𝑒−2√1−𝜔𝜉 −

𝐵

√1 − 𝜔
𝑒2√1−𝜔𝜉

−
4𝜔

4𝜔 − 3
(𝑒−𝜉 + 𝑅𝑠𝑒

𝜉−2𝜆) 

(A1.92)  

The single 𝑓+  and 𝑓−  equations can also be updated from (A1.81) and 

(A1.82) with the new definitions of 𝐶  and 𝐷  in terms of 𝐴  and 𝐵 , 

respectively: 

𝑓+ =
𝐴

2
(1 +

1

√1 − 𝜔
) 𝑒−2√1−𝜔𝜉 +

𝐵

2
(1 −

1

√1 − 𝜔
) 𝑒2√1−𝜔𝜉

−
𝜔

4𝜔 − 3
(3𝑒−𝜉 + 𝑅𝑠𝑒

𝜉−2𝜆) 
(A1.93)  

𝑓− =
𝐴

2
(
1

√1−𝜔
− 1) 𝑒−2√1−𝜔𝜉 −

𝐵

2
(
1

√1−𝜔
+ 1) 𝑒2√1−𝜔𝜉

−
𝜔

4𝜔 − 3
(𝑒−𝜉 + 3𝑅𝑠𝑒

𝜉−2𝜆) 

(A1.94)  

It is now time to invoke boundary conditions for the diffuse radiation 

component to solve the above two equations. For the dimensionalized 
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function, 𝐹(𝑧, 𝜇) , Gusarov provides the upper and lower boundary 

conditions as the two following equations, respectively. 

𝐹(0, 𝜇) = 0 𝜇 > 0 [
𝑊

𝑚2
] (A1.95)  

𝐹(𝐿, 𝜇) = 𝑅𝑠𝐹(𝐿, −𝜇) 𝜇 < 0 [
𝑊

𝑚2
] (A1.96)  

Taking the nondimensionalized equivalents of (A1.95) and (A1.96) in terms 

of 𝑓±(𝜉)  with the help of (A1.40) allows the boundary conditions to be 

redefined below: 

𝑓+(0) = 0 𝜇 > 0 [
𝑊

𝑚2
] (A1.97)  

𝑓−(𝜆) = 𝑅𝑠𝑓+(𝜆) 𝜇 < 0 [
𝑊

𝑚2
] (A1.98)  

The top boundary condition given in equation (A1.97) can first be inserted 

into the standalone equation for 𝑓+  in (A1.93) with 𝜉 = 0. Simplifying the 

resulting equation provides function of 𝐴 in terms of 𝐵. 

0 =
𝐴

2
(1 +

1

√1 − 𝜔
) 𝑒−2√1−𝜔(0) +

𝐵

2
(1 −

1

√1 − 𝜔
) 𝑒2√1−𝜔(0)

−
𝜔

4𝜔 − 3
(3𝑒−0 + 𝑅𝑠𝑒

0−2𝜆) 

 

0 =
𝐴

2
(1 +

1

√1 − 𝜔
) +
𝐵

2
(1 −

1

√1 − 𝜔
) −

𝜔

4𝜔 − 3
(3 + 𝑅𝑠𝑒

−2𝜆)  
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𝐴 =

(
2𝜔
4𝜔 − 3

(3 + 𝑅𝑠𝑒
−2𝜆) − 𝐵 (1 −

1

√1 − 𝜔
))

(1 +
1

√1 − 𝜔
)

 

(A1.99)  

Inserting the bottom boundary condition at 𝜉 = 𝜆  from (A1.98) into both 

equations (A1.91) and (A1.92) yields: 

𝑓+(𝜆) − 𝑅𝑠𝑓+(𝜆) = 𝐴𝑒
−2√1−𝜔𝜆 + 𝐵𝑒2√1−𝜔𝜆 −

2𝜔

4𝜔 − 3
(𝑒−𝜆 − 𝑅𝑠𝑒

𝜆−2𝜆) (A1.100)  

𝑓+(𝜆) + 𝑅𝑠𝑓+(𝜆) =
𝐴

√1 − 𝜔
𝑒−2√1−𝜔𝜆 −

𝐵

√1 − 𝜔
𝑒2√1−𝜔𝜆 −

4𝜔

4𝜔 − 3
(𝑒−𝜆 + 𝑅𝑠𝑒

𝜆−2𝜆) (A1.101)  

Isolating the LHS of both of the above equations for 𝑓+(𝜆) then allows for 

the solution of the unknown 𝐵 by subtracting the resultant two equations 

and inserting (A1.99) for 𝐴. 

𝑓+(𝜆) =

(𝐴𝑒−2√1−𝜔𝜆 + 𝐵𝑒2√1−𝜔𝜆 −
2𝜔
4𝜔 − 3

(𝑒−𝜆 − 𝑅𝑠𝑒
𝜆−2𝜆))

1 − 𝑅𝑠
 

 

𝑓+(𝜆) =

(
𝐴

√1 − 𝜔
𝑒−2√1−𝜔𝜆 −

𝐵

√1 − 𝜔
𝑒2√1−𝜔𝜆 −

4𝜔
4𝜔 − 3

(𝑒−𝜆 + 𝑅𝑠𝑒
𝜆−2𝜆))

1 + 𝑅𝑠
 

 

𝐵 =
2𝜔 (𝑒𝜆(1 − 𝑅𝑠)(1 + 𝑅𝑠)(1 + 𝑎 − 𝜔)(𝑒

2𝑎𝜆) − (𝑅𝑠 + 3(𝑒
2𝜆)) ((1 − 𝑅𝑠)𝑎 + (1 + 𝑅𝑠)(𝜔 − 1)))

(4𝜔 − 3)(𝑒2𝜆)((𝜔(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒
4𝑎𝜆) − 2(𝑎 − 1) − 𝜔(1 + 𝑅𝑠)) 

 
(A1.102)  
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The above solution for 𝐵 can now be inserted into (A1.99) to obtain the 

solution for the unknown 𝐴 . A substitution of 𝑎 = √1 − 𝜔  has been 

implemented in equations (A1.102) and (A1.103) to reduce their size. 

𝐴 =
2𝜔(𝑒2𝑎𝜆) ((𝑅𝑠 + 3(𝑒

2𝜆)) ((𝜔(1 + 𝑅𝑠) − 2)𝑎 − 2(1 − 𝜔))(𝑒
2𝑎𝜆) + 𝜔𝑎(1 − 𝑅𝑠)(1 + 𝑅𝑠)𝑒

𝜆)

(4𝜔 − 3)(𝑒2𝜆) ((𝜔(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒
4𝑎𝜆) − 2(𝑎 − 1) − 𝜔(1 + 𝑅𝑠)) (1 + 𝑎)

 

(A1.103)  

 

A.1.3. Full RTE Solution 

 With the unknowns now solved for in terms of known variables, the 

solution to the RTE can be formulated from the definition of heat flux given 

in [64,114] restated below: 

𝑄 = 2𝜋∫ 𝐼(𝑧, 𝜇)𝜇𝑑𝜇
1

−1

 
(A1.104)  

Inserting (A1.14), (A1.15), and (A1.16) into (A1.104) and simplifying leads 

to: 

 

𝑄 = 2𝜋 {∫ (
𝑄+(𝑧)

2𝜋
𝛿(𝜇 − 1) +

𝑄−(𝑧)

2𝜋
𝛿(𝜇 + 1) + 𝐹+(𝑧)𝐻(𝜇)

1

−1

+ 𝐹−(𝑧)(1 − 𝐻(𝜇)))𝜇𝑑𝜇} 
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𝑄 = 2𝜋 {
𝑄+(𝑧)

2𝜋
∫ 𝜇𝛿(𝜇 − 1)𝑑𝜇 +

𝑄−(𝑧)

2𝜋
∫ 𝜇𝛿(𝜇 + 1)𝑑𝜇 + 𝐹+(𝑧)∫ 𝜇𝐻(𝜇)𝑑𝜇

1

0

0

−1

1

0

+ 𝐹−(𝑧)∫ 𝜇(1 − 𝐻(𝜇))𝑑𝜇
0

−1

} 

𝑄 = 𝑄+ − 𝑄− + 𝜋𝐹+ − 𝜋𝐹− (A1.105)  

Finally, the dimensionless solution to heat flux is obtained by dividing the 

above equation by 𝑄𝑜 and applying the definitions for each dimensionless 

term according to (A1.39) and (A1.40) [64]: 

𝑞 = 𝑞(𝜉) =
𝑄

𝑄𝑜
= 𝑞+ − 𝑞− +

𝑓+ − 𝑓−
2

 
(A1.106)  

Equation (A1.106) is the solution to the RTE that yields heat flux as a 

function of dimensionless depth into the powder. The definitions of all the 

above terms will be re-stated in the equations below for ease: 

𝑞+ = 𝑒
−𝜉 (A1.107)  

𝑞− = 𝑅𝑠𝑒
𝜉−2𝜆 (A1.108)  

𝑓+ − 𝑓− = 𝐴𝑒
−2𝑎𝜉 + 𝐵𝑒2𝑎𝜉 −

2𝜔

4𝜔 − 3
(𝑒−𝜉 − 𝑅𝑠𝑒

𝜉−2𝜆) 
(A1.109)  

𝐴 =
2𝜔(𝑒2𝑎𝜆) ((𝑅𝑠 + 3(𝑒

2𝜆)) ((𝜔(1 + 𝑅𝑠) − 2)𝑎 − 2(1 − 𝜔))(𝑒
2𝑎𝜆) + 𝜔𝑎(1 − 𝑅𝑠)(1 + 𝑅𝑠)𝑒

𝜆)

(4𝜔 − 3)(𝑒2𝜆) ((𝜔(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒
4𝑎𝜆) − 2(𝑎 − 1) − 𝜔(1 + 𝑅𝑠)) (1 + 𝑎)

 
(A1.110)  
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𝐵 =
2𝜔 (𝑒𝜆(1 − 𝑅𝑠)(1 + 𝑅𝑠)(1 + 𝑎 − 𝜔)(𝑒

2𝑎𝜆) − (𝑅𝑠 + 3(𝑒
2𝜆)) ((1 − 𝑅𝑠)𝑎 + (1 + 𝑅𝑠)(𝜔 − 1)))

(4𝜔 − 3)(𝑒2𝜆)((𝜔(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒
4𝑎𝜆) − 2(𝑎 − 1) − 𝜔(1 + 𝑅𝑠)) 

 
(A1.111)  

𝑎 = √1 − 𝜔 (A1.112)  

𝜉 = 𝛽𝑧 (A1.113)  

𝜆 = 𝛽𝐿 (A1.114)  

Where 𝛽 is the powder absorption coefficient, 𝐿 is the powder depth, 𝑅𝑠 is 

the substrate reflectivity, and 𝜔 is the scattering albedo of the powder which 

is equal to its bulk reflectivity, 𝑅𝑏 [64]. 

 Two useful items arise from the dimensionless solution 𝑞(𝜉). These 

are the absorptivity of the powder layer and the volumetric heat source 

within the powder due to the laser. The absorptivity of the powder is 

determined by evaluating the amount of flux at the powder-substrate 

interface and subtracting it from the flux incident at the top powder surface. 

This is evaluated and simplified below, where 𝐵𝑝 is the absorptivity of the 

powder alone: 

𝐵𝑝 =
𝐴

2
(1 − 𝑒−2𝑎𝜆) +

𝐵

2
(1 − 𝑒2𝑎𝜆)

+ (
𝑅𝑏
4𝑅𝑏 − 3

− 1) (𝑅𝑠𝑒
−2𝜆 + 𝑒−𝜆(1 − 𝑅𝑠) − 1) 

(A1.115)  

In the above equation,  𝐵𝑝 = 𝑞(0)− 𝑞(𝜆) where the terms on the RHS are the 

evaluations of equation (A1.106) at 𝜉 = 0 and 𝜉 = 𝜆, respectively, using the 
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definitions from (A1.113) and (A1.114). The coefficients 𝐴 and 𝐵 were also 

fully defined in equations (A1.103) and (A1.102), respectively. The 

absorptivity is not explicitly stated in the final form of the volumetric heat 

source equation but is good to know when calculating how much of the laser 

energy was coupled into the system. Its effect is still included, however, 

when the volumetric heat source is applied as it is consequential of the 

derivation. 

 The function that defines volumetric heat source is created using the 

negative derivative of (A1.106) with respect to 𝜉. It is given below [64]: 

−
𝑑𝑞

𝑑𝜉
= 𝑎(𝐴𝑒−2𝑎𝜉 − 𝐵𝑒2𝑎𝜉) + (𝑒−𝜉 + 𝑅𝑠𝑒

𝜉−2𝜆) (1 −
𝑅𝑏
4𝑅𝑏 − 3

) [−] (A1.116)  

Equation (A1.116) is constructed from dimensionless variables and must be 

modified with the help of the derivative of (A1.35) via the chain rule to be 

put in units of [m-1]. 

−
𝑑𝑞

𝑑𝑧
= −
𝑑𝑞

𝑑𝜉
·
𝑑𝜉

𝑑𝑧
= −𝛽

𝑑𝑞

𝑑𝜉
|𝜉=𝛽𝑧 [𝑚−1] (A1.117)  

This finally yields the general form of the volumetric heating equation based 

on the solution of the RTE: 

𝐼(𝑥, 𝑦, 𝑧, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) · 𝛽 (−
𝑑𝑞

𝑑𝜉
|𝜉=𝛽𝑧) [

𝑊

𝑚3
] (A1.118)  

where 𝐼(𝑥, 𝑦, 𝑡)  is the surface intensity in [
𝑊

𝑚2
]  and 𝛽  is the absorption 

coefficient in [𝑚−1].  
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A.2  Green’s Function Solution Derivation 

The analytical modeling of laser-material interactions with respect to the 

propagation of heat can best be performed by the use of Green’s functions 

[62,86]. Green’s functions (GFs) are used in many aspects of physics, and 

specifically in heat transfer, represent the temperature response to a unit 

point heat source spontaneously generated at point (𝑥1, 𝑦1, 𝑧1) and at time 

𝑡1 on a point of interest at (𝑥, 𝑦, 𝑧) at time 𝑡 ≥ 𝑡1. It is written with the notation 

𝐺(𝑥, 𝑦, 𝑧, 𝑡 | 𝑥1, 𝑦1, 𝑧1, 𝑡1)  where the coordinates on the left describe the 

response and those on the right describe the impulse [116]. The 

effectiveness of this method is limited to boundary conditions of constant 

temperature, constant flux, or convection. Radiation and higher order 

boundary conditions have not been used in the literature due to their 

difficulty to implement. Also, the effect of phase change is unable to be 

accounted for explicitly, so the results are based purely on heat conduction. 

Nevertheless, the isothermal regions generated by this method provide 

insight into the temperature field surrounding the laser heat source, as well 

as an implicit determination of the melt width due to that temperature field.  

One of the greatest features of Green’s functions is that their form in 

higher dimensions is obtained by a multiplication of one-dimensional 

Green’s functions [117]. For example, the powder bed in SLM can be 

considered an infinite medium in the 𝑥 − and 𝑦 − directions, and as a slab 
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of finite thickness in the 𝑧-direction. Therefore, the appropriate functions for 

two one-dimensional infinite media are multiplied together and then 

subsequently multiplied by the function for a one-dimensional finite medium. 

The following will derive the equations necessary to create the three-

dimensional Green’s function solution for steady-state heat equation. 

A.2.1. Dimensionless Numbers 

The use of dimensionless numbers proves to be a powerful tool to 

reduce the number of symbols during derivations and to increase the 

efficiency of numerical calculations by working with smaller quantities. For 

modeling of the heat equation, Bäuerle proposes substitutions for the spatial 

and time dimensions, as well as for some other properties [62]. These are 

given in Table 9. 

Common Dimensionless Variables Normalized to Laser Radius 𝝎𝝌 

𝒙∗ =
𝒙

𝝎𝝌
  

 
 
 
 

Dimensionless 
Space 

𝒗∗ =
𝑣𝜔𝜒

𝐷
 Dimensionless Laser 

Speed 

𝒚∗ =
𝒚

𝝎𝝌
 𝛥𝒛𝒑

∗ =
𝛥𝑧𝑝

𝜔𝜒
 Dimensionless 

Powder Thickness 

𝒛∗ =
𝒛

𝝎𝝌
 𝜷∗ = 𝛽𝜔𝜒 

Dimensionless 
Powder Absorption 

Coefficient  

𝒕∗ =
𝑫𝒕

𝝎𝝌𝟐
 Dimensionless 

Time 

𝑯∗ = 𝐻𝜔𝜒 
Dimensionless 
Lumped Heat 

Transfer Coefficient 

Table 9: Common dimensionless variables to use during the solution of the heat 

equation for laser-material interactions. 
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It is important to add a few clarifications for some of the symbols 

found in Table 9. The factor of normalization is a characteristic length of the 

system, in this case it is the laser radius 𝜔𝜒 which was defined in section 

3.1.3.1, but could be any characteristic length of the system [62]. The 

character 𝐷 represents the thermal diffusivity of either powder or liquid and 

will usually include a “p” or “L” subscript denoting it as such. The equation 

for the dimensionless powder absorption coefficient from the solution of the 

RTE can also be applied to the bulk solid or liquid absorption coefficient 

from the Lambert-Beer law by simply substituting 𝜶∗ and 𝜷∗ and 𝛼 for 𝛽, 

respectively. The lumped heat transfer coefficient, written as 𝐻 , is a 

combination of the heat transfer coefficient and the thermal conductivity of 

whatever surface is being considered. It is given as: 

𝐻 =
ℎ

𝑘
 [𝑚−1] (A2.1)  

The dimensionless quantities given above will be used throughout the 

derivation of the three-dimensional Green’s function equation and can be 

consulted as a reference. 

A.2.2. 1-D Green’s Function in an Infinite Domain in 

Dimensionless Coordinates 

As stated previously, the powder bed can be treated as an infinite slab 

in x and y that has finite thickness in the z-direction. The Green’s function 
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(GF) for each dimension can be derived separately and then combined as 

a product to form the three-dimensional solution. To begin the derivation in 

the x- and y-directions, the nonhomogeneous heat equation is first 

presented in one dimension in equation (A2.2). 

𝜕2𝑇

𝜕𝑥2
+
𝑔(𝑥, 𝑡)

𝑘
=
1

𝐷

𝜕𝑇

𝜕𝑡
 [

𝐾

𝑚2
] (A2.2)  

The above equation must first be converted into dimensionless variables 

with the help of the chain rule and Table 9.  

𝜕𝑇

𝜕𝑥
=
𝜕𝑇

𝜕𝒙∗
·
𝜕𝒙∗

𝜕𝑥
=
1

𝜔𝜒

𝜕𝑇

𝜕𝒙∗
 [

𝐾

𝑚
] (A2.3)  

𝜕2𝑇

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝜕𝑇

𝜕𝑥
) =
𝜕

𝜕𝑥
(
1

𝜔𝜒

𝜕𝑇

𝜕𝒙∗
) =
1

𝜔𝜒

𝜕

𝜕𝒙∗
(
𝜕𝒙∗

𝜕𝑥
·
𝜕𝑇

𝜕𝒙∗
) =
1

𝜔𝜒
2

𝜕2𝑇

𝜕𝒙∗2
 [

𝐾

𝑚2
] 

(A2.4)  

𝜕𝑇

𝜕𝑡
=
𝜕𝑇

𝜕𝒕∗
·
𝜕𝒕∗

𝜕𝑡
=
𝐷

𝜔𝜒
2

𝜕𝑇

𝜕𝒕∗
 [

𝐾

𝑠
] 

(A2.5)  

Substituting equations (A2.3) to (A2.5) into (A2.2) and changing the heat 

source term 𝑔(𝑥, 𝑡) into its nondimensionalized counterpart, the 1-D heat 

equation with dimensionless variables is given below: 

1

𝜔𝜒2
𝜕2𝑇

𝜕𝒙∗2
+
𝑔(𝒙∗, 𝒕∗)

𝑘
=
1

𝜔𝜒2
𝜕𝑇

𝜕𝒕∗
 [

𝐾

𝑚2
] (A2.6)  

Simplifying the above equation, the familiar form of the 1-D 

nonhomogeneous heat equation is presented in equation (A2.7). The 
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equation is now strictly in terms of units of temperature as the positional and 

time variables have been nondimensionalized.  

𝜕2𝑇

𝜕𝒙∗2
+
𝜔𝜒
2

𝑘
𝑔(𝒙∗, 𝒕∗) =

𝜕𝑇

𝜕𝒕∗
 [𝐾] (A2.7)  

Hahn et al describes that to determine the GF for a given geometry, the 

solution to the homogeneous heat equation must be obtained in the form of 

a kernel of integration [118]. Beginning with equation (A2.7) and removing 

the heat source term, the 1-D homogeneous heat equation is portrayed 

below with a change in nomenclature from 𝑇 to 𝛹 over the infinite domain 

of the dimensionless 𝒙∗. 

𝜕2𝛹

𝜕𝒙∗2
=
𝜕𝛹

𝜕𝒕∗
 [𝐾] (A2.8)  

The initial conditions are given as a function of 𝒙∗: 

𝛹(𝒙∗, 𝒕∗ = 0) = 𝐹(𝒙∗)                      − ∞ < 𝒙∗ < ∞ [𝐾] (A2.9)  

The solution will proceed with the separation of variables method as 

outlined in [118]. First a general trial solution is presented: 

𝛹(𝒙∗, 𝒕∗) = 𝑋(𝒙∗)𝛩(𝒕∗) [𝐾] (A2.10)  

Taking the appropriate derivatives of the above trial solution, applying them 

to equation (A2.8), and separating the variables yields: 
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𝜕2𝛹(𝒙∗, 𝒕∗)

𝜕𝒙∗2
=
𝜕2𝑋(𝒙∗)

𝜕𝒙∗2
𝛩(𝒕∗) [𝐾] (A2.11)  

𝜕𝛹(𝒙∗, 𝒕∗)

𝜕𝒕∗
= 𝑋(𝒙∗)

𝜕𝛩(𝒕∗)

𝜕𝒕∗
 

[𝐾] (A2.12)  

𝜕2𝑋(𝒙∗)

𝜕𝒙∗2
𝛩(𝒕∗) = 𝑋(𝒙∗)

𝜕𝛩(𝒕∗)

𝜕𝒕∗
 

[−] (A2.13)  

1

𝑋(𝒙∗)

𝜕2𝑋(𝒙∗)

𝜕𝒙∗2
=
1

𝛩(𝒕∗)

𝜕𝛩(𝒕∗)

𝜕𝒕∗
 

[−] (A2.14)  

The PDE of (A2.8) has now been converted into two ODEs in equation 

(A2.14). This will be rewritten below and the variables of dimensionless time 

and space in the brackets will be dropped for simplicity. 

1

𝑋

𝜕2𝑋

𝜕𝒙∗2
=
1

𝛩

𝜕𝛩

𝜕𝒕∗
= −𝜈2 

 (A2.15)  

𝜕2𝑋

𝜕𝒙∗2
+ 𝜈2𝑋 = 0 

 (A2.16)  

𝜕𝛩

𝜕𝒕∗
+ 𝜈2𝛩 = 0 

 (A2.17)  
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The respective trial solutions to equations (A2.16) and (A2.17) are given 

below: 

𝑋(𝒙∗) = 𝐴1(𝜈) cos(𝜈𝒙
∗) + 𝐵1(ν)sin (𝜈𝒙

∗)  (A2.18)  

𝛩(𝒕∗) = 𝐶1𝑒
−𝜈2𝒕∗  (A2.19)  

The coefficients 𝐴1 and 𝐵1 are both functions of the ODE solution variable, 

𝜈. Since the domain is infinite and equation (A2.18) is a sum of a sine and 

cosine term, an integral of all possible values for 𝜈  is needed for the 

complete solution. Therefore, inserting equations (A2.18) and (A2.19) into 

equation (A2.10) and integrating over all values of 𝜈 , the general trial 

solution becomes: 

𝛹(𝒙∗, 𝒕∗) = ∫ (𝐴1(𝜈) cos(𝜈𝒙
∗)

∞

𝜈=0

+ 𝐵1(ν) sin(𝜈𝒙
∗))𝐶1𝑒

−𝜈2𝒕∗ 𝑑𝜈 

[𝐾] (A2.20)  

The coefficients can be combined for simplification to yield: 

𝛹(𝒙∗, 𝒕∗) = ∫ (𝐴2(𝜈) cos(𝜈𝒙
∗)

∞

𝜈=0

+ 𝐵2(ν) sin(𝜈𝒙
∗))𝑒−𝜈

2𝒕∗ 𝑑𝜈 

[𝐾] (A2.21)  

where 
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𝐴2(𝜈) = 𝐴1(𝜈)𝐶1 and 𝐵2(𝜈) = 𝐵1(𝜈)𝐶1  (A2.22)  

The initial condition from equation (A2.9) can be applied to the updated 

solution in (A2.21) to determine the unknown coefficients. 

𝛹(𝒙∗, 0) = 𝐹(𝒙∗)

= ∫ (𝐴2(𝜈) cos(𝜈𝒙
∗)

∞

𝜈=0

+ 𝐵2(ν) sin(𝜈𝒙
∗)) 𝑑𝜈 

[𝐾] (A2.23)  

The integral in (A2.23) has the form of a Fourier integral and its coefficients 

therefore can be expressed analytically as in the following two equations 

[119]. 

𝐴2(𝜈) =
1

𝜋
∫ 𝐹(𝒙𝟏

∗) cos(𝜈𝒙𝟏
∗) 𝑑𝒙𝟏

∗
∞

−∞

  (A2.24)  

𝐵2(𝜈) =
1

𝜋
∫ 𝐹(𝒙𝟏

∗) sin(𝜈𝒙𝟏
∗) 𝑑𝒙𝟏

∗
∞

−∞

 
 (A2.25)  

The variable of integration in each of (A2.24) and (A2.25) is now that of the 

space domain, although it has been altered to be 𝒙𝟏
∗  to indicate that for each 

𝜈 considered, the coefficients depend upon the integration of the spatial 

domain with a dummy variable before being inserted into the general 

solution with respect to a desired position in 𝒙∗ . Substituting these two 

coefficient solutions into (A2.23) yields: 
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𝐹(𝒙∗) = ∫ (
1

𝜋
∫ 𝐹(𝒙𝟏

∗) cos(𝜈𝒙𝟏
∗)

∞

−∞

cos(𝜈𝒙∗) 𝑑𝒙𝟏
∗

∞

𝜈=0

+
1

𝜋
∫ 𝐹(𝒙𝟏

∗) sin(𝜈𝒙𝟏
∗)

∞

−∞

sin(𝜈𝒙∗)𝑑𝒙𝟏
∗)𝑑𝜈 

[𝐾] (A2.26)  

The trigonometry in (A2.26) can be further simplified by the use of standard 

trigonometric identities that are widely available and thus the initial 

conditions can now be written as: 

𝐹(𝒙∗) = ∫ (
1

𝜋
∫ 𝐹(𝒙𝟏

∗)
∞

−∞

cos(𝜈(𝒙∗ − 𝒙𝟏
∗)) 𝑑𝒙𝟏

∗)
∞

𝜈=0

𝑑𝜈 [𝐾] (A2.27)  

Equating (A2.23) to (A2.27) for 𝐹(𝒙∗) and recognizing that the integrands 

are necessarily equal provides: 

𝐴2(𝜈) cos(𝜈𝒙
∗) + 𝐵2(ν) sin(𝜈𝒙

∗)

=
1

𝜋
∫ 𝐹(𝒙𝟏

∗)
∞

−∞

cos(𝜈(𝒙∗ − 𝒙𝟏
∗ )) 𝑑𝒙𝟏

∗  
 (A2.28)  

This allows for an update of the initial trial solution in equation (A2.21) to 

have the form: 

𝛹(𝒙∗, 𝒕∗) = ∫ (
1

𝜋
∫ 𝐹(𝒙𝟏

∗)
∞

−∞

cos(𝜈(𝒙∗
∞

𝜈=0

− 𝒙𝟏
∗)) 𝑑𝒙𝟏

∗) 𝑒−𝜈
2𝒕∗ 𝑑𝜈 

[𝐾] (A2.29)  

The integration in the above equation can be rearranged in the following 

way: 
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𝛹(𝒙∗, 𝒕∗) =
1

𝜋
∫ 𝐹(𝒙𝟏

∗)
∞

−∞

[∫ 𝑒−𝜈
2𝒕∗cos(𝜈(𝒙∗ − 𝒙𝟏

∗))
∞

𝜈=0

𝑑𝜈] 𝑑𝒙𝟏
∗  [𝐾] (A2.30)  

The term in the square brackets in equation (A2.30) can be simplified with 

the help of identity 863.3 from [120]: 

∫ 𝑒−𝜈
2𝒕∗cos(𝜈(𝒙∗ − 𝒙𝟏

∗))
∞

𝜈=0

𝑑𝜈 =
√𝜋

2√𝒕∗
𝑒−
(𝒙∗−𝒙𝟏

∗ )2

4𝒕∗   (A2.31)  

Substituting (A2.31) into (A2.30) and simplifying, the solution to the 

homogeneous heat equation finally becomes: 

𝛹(𝒙∗, 𝒕∗) = ∫
1

√4𝜋𝒕∗
𝑒−
(𝒙∗−𝒙𝟏

∗ )2

4𝒕∗ 𝐹(𝒙𝟏
∗)

∞

−∞

𝑑𝒙𝟏
∗  [𝐾] (A2.32)  

The above solution to the homogeneous problem can be  rewritten in terms 

of the GF kernel multiplied by the initial condition, that is: 

𝛹(𝒙∗, 𝒕∗) = ∫ 𝐺∗(𝒙∗, 𝒕∗|𝒙𝟏
∗ , 0)𝐹(𝒙𝟏

∗)
∞

−∞

𝑑𝒙𝟏
∗  [𝐾] (A2.33)  

Thus, the solution to the homogeneous version of the problem yields the 

GF evaluated at 𝒕𝟏
∗ = 0 [118]. For later use in the Green Function Solution 

Equation (GFSE), the general 1-D GF in an infinite domain evaluated for 

0 ≤ 𝒕𝟏
∗ ≤ 𝒕∗ is obtained by replacing 𝒕∗ with 𝒕∗ − 𝒕𝟏

∗ : 

𝐺∗(𝒙∗, 𝒕∗|𝒙𝟏
∗ , 𝒕𝟏
∗) =

1

√4𝜋(𝒕∗ − 𝒕𝟏
∗)
𝑒
−
(𝒙∗−𝒙𝟏

∗ )2

4(𝒕∗−𝒕𝟏
∗ )   (A2.34)  
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The asterisk notation is used with the 𝐺 as well to clarify that it has been 

derived with dimensionless components and it itself is also a dimensionless 

quantity.  

 With respect to SLM as previously mentioned, the x- and y- 

dimensions are both considered to extend to infinity. As such, each 1-D GF 

is provided below by a simple variable change. 

𝐺𝒙
∗(𝒙∗, 𝒕∗| 𝒙𝟏

∗ , 𝒕𝟏
∗) =

1

√4𝜋(𝒕∗ − 𝒕𝟏
∗ )
𝑒
−
(𝒙∗−𝒙𝟏

∗ )2

4(𝒕∗−𝒕𝟏
∗ )   (A2.35)  

𝐺𝒚
∗(𝒚∗, 𝒕∗| 𝒚𝟏

∗ , 𝒕𝟏
∗) =

1

√4𝜋(𝒕∗ − 𝒕𝟏
∗)
𝑒
−
(𝒚∗−𝒚𝟏

∗ )2

4(𝒕∗−𝒕𝟏
∗ )  

 (A2.36)  

 

A.2.3. 1-D Green’s Function in a Finite Domain in 

Dimensionless Coordinates 

The GF for a finite domain, such as the depth of a powder bed in the z-

direction, will now be derived. The procedure is the same wherein the 

homogeneous version of the heat equation is used, however since the 

domain is finite, there exist boundary conditions which need to be converted 

to their homogeneous equivalents. The nondimensionalized heat equation 

is again presented below, but with the variable 𝒛∗ instead of 𝒙∗. 

𝜕2𝑇

𝜕𝒛∗2
+
𝜔𝜒
2

𝑘
𝑔(𝒛∗, 𝒕∗) =

𝜕𝑇

𝜕𝒕∗
 [𝐾] (A2.37)  
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 The one-dimensional domain that will be used for this derivation is 

given in Figure 53. 

 

Figure 53: 1-D finite domain representing an infinitesimally thin slice of the powder 

bed. The hatched regions signify the only direction considered is the positive z-

direction, which in this case moves downwards from the top surface.  

In the above figure, 𝛥𝑧𝑝  is the powder depth, ℎ𝐴  and ℎ𝐵  are the 

respective heat transfer coefficients of the top and bottom surfaces, and 𝑇𝐴 

and 𝑇𝐵  are the top and bottom surrounding temperatures. The top 

temperature would typically be the ambient temperature in the build 

chamber and the bottom temperature would be the top surface temperature 

of the preceding power layer or baseplate. The boundary conditions at the 

top and bottom of the plate as demonstrated above are presented below in 

equation form and must be nondimensionalized before proceeding. The 
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sign conventions used in this case are consistent with the flow of heat in the 

negative direction, as without laser interaction, heat would flow up from the 

build plate and out of the top powder surface by convection. 

𝑘
𝜕𝑇

𝜕𝑧
|𝑧=0 = ℎ𝐴𝑇(0, 𝑡) − ℎ𝐴𝑇𝐴  [

𝑊

𝑚2
] (A2.38)  

𝑘
𝜕𝑇

𝜕𝑧
|𝑧=𝛥𝑧𝑝 = −ℎ𝐵𝑇(𝛥𝑧𝑝, 𝑡) + ℎ𝐵𝑇𝐵 [

𝑊

𝑚2
] 

(A2.39)  

The above two boundary conditions can be nondimensionalized using the 

same process applied in equation (A2.3), with again the normalization 

constant being the laser radius 𝜔𝜒. 

𝜕𝑇

𝜕𝑧
=
𝜕𝑇

𝜕𝒛∗
·
𝜕𝒛∗

𝜕𝑧
=
1

𝜔𝜒

𝜕𝑇

𝜕𝒛∗
 [

𝐾

𝑚
] (A2.40)  

Applying (A2.40) to equations (A2.38) and (A2.39), and simplifying, 

provides the boundary conditions in terms of a dimensionless z variable. It 

will also be shown that the heat transfer coefficient can be made into a 

dimensionless quantity with the help of equation (A2.1) and Table 9. 

Beginning with the top boundary condition: 

𝑘
𝜕𝑇

𝜕𝑧
|𝑧=0 = ℎ𝐴𝑇(0, 𝑡) − ℎ𝐴𝑇𝐴   

𝜕𝑇

𝜕𝑧
=
ℎ𝐴
𝑘
𝑇 −
ℎ𝐴
𝑘
𝑇𝐴   
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𝜕𝑇

𝜕𝑧
= 𝐻𝐴𝑇 − 𝐻𝐴𝑇𝐴   

  

1

𝜔𝜒

𝜕𝑇

𝜕𝒛∗
= 𝐻𝐴𝑇 − 𝐻𝐴𝑇𝐴   

  

𝜕𝑇

𝜕𝒛∗
= 𝐻𝐴𝜔𝜒𝑇 − 𝐻𝐴𝜔𝜒𝑇𝐴   

  

𝜕𝑇

𝜕𝒛∗
|𝒛∗=𝟎 = 𝑯𝑨

∗𝑇 − 𝑯𝑨
∗𝑇𝐴   

[𝐾] (A2.41)  

The bottom boundary condition is nondimensionalized in the same manner: 

𝑘
𝜕𝑇

𝜕𝑧
|𝑧=𝛥𝑧𝑝 = −ℎ𝐵𝑇(𝛥𝑧𝑝, 𝑡) + ℎ𝐵𝑇𝐵   

𝜕𝑇

𝜕𝑧
=
−ℎ𝐵
𝑘
𝑇 +
ℎ𝐵
𝑘
𝑇𝐵   

  

𝜕𝑇

𝜕𝑧
= −𝐻𝐵𝑇 + 𝐻𝐵𝑇𝐵   

  

1

𝜔𝜒

𝜕𝑇

𝜕𝒛∗
= −𝐻𝐵𝑇 + 𝐻𝐵𝑇𝐵   

  

𝜕𝑇

𝜕𝒛∗
= −𝐻𝐵𝜔𝜒𝑇 + 𝐻𝐵𝜔𝜒𝑇𝐵   

  

𝜟𝒛𝒑
∗ =
𝛥𝑧𝑝

𝜔𝜒
   

 (A2.42)  

𝜕𝑇

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗ 𝑇 + 𝑯𝑩
∗ 𝑇𝐵   

[𝐾] (A2.43)  

It is convenient to rewrite equations (A2.41) and (A2.43) with the terms 

including the temperature variable on one side and the constant terms on 
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the other. This will help when converting them into their homogeneous 

equivalents for the GF derivation. 

𝜕𝑇

𝜕𝒛∗
|𝒛∗=𝟎 −𝑯𝑨

∗𝑇 = −𝑯𝑨
∗𝑇𝐴   

[𝐾] (A2.44)  

𝜕𝑇

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ +𝑯𝑩

∗ 𝑇 = 𝑯𝑩
∗ 𝑇𝐵   

[𝐾] (A2.45)  

The initial condition is given again as a function of the position variable. In 

this case it will be a constant temperature such that: 

𝑇(𝑧, 0) = 𝐹(𝑧) = 𝐹(𝒛∗) = 𝑇𝑜 [𝐾] (A2.46)  

As with the derivation of the GF in the infinite domain, it is necessary to start 

with the homogeneous form of the heat equation. The nomenclature of 𝑇 

will again be converted to 𝛹 to indicate it is the homogeneous solution being 

sought. 

𝜕2𝛹

𝜕𝒛∗2
=
𝜕𝛹

𝜕𝒕∗
 [𝐾] (A2.47)  

However, since this is a finite domain the boundary conditions must be 

applied in their homogeneous form. Thus equations (A2.44) and (A2.45) are 

rewritten as: 

𝜕𝛹

𝜕𝒛∗
|𝒛∗=𝟎 −𝑯𝑨

∗𝛹 = 0 →   
𝜕𝛹

𝜕𝒛∗
|𝒛∗=𝟎 = 𝑯𝑨

∗𝛹 
[𝐾] (A2.48)  

𝜕𝛹

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ +𝑯𝑩

∗𝛹 = 0 →   
𝜕𝛹

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗𝛹   
[𝐾] (A2.49)  
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The method of separation of variables will again be used, starting with the 

general solution of: 

𝛹(𝒛∗, 𝒕∗) = 𝑍(𝒛∗)𝛩(𝒕∗) [𝐾] (A2.50)  

Substituting (A2.50) into (A2.47) and simplifying, the PDE is converted into 

two ODEs: 

1

𝑍

𝜕2𝑍

𝜕𝒛∗2
=
1

𝛩

𝜕𝛩

𝜕𝒕∗
= −𝜈2 

 (A2.51)  

𝜕2𝑍

𝜕𝒛∗2
+ 𝜈2𝑍 = 0 

 (A2.52)  

𝜕𝛩

𝜕𝒕∗
+ 𝜈2𝛩 = 0 

 (A2.53)  

The assumed solution that satisfies equation (A2.52) in the positional 

variable, 𝒛∗, and its first derivative are given as: 

𝑍(𝒛∗, 𝜈) = 𝐴1 sin(𝜈𝒛
∗) + 𝐵1cos(𝜈𝒛

∗)  (A2.54)  

𝜕𝑍

𝜕𝒛∗
= 𝜈𝐴1 cos(𝜈𝒛

∗) − 𝜈𝐵1sin(𝜈𝒛
∗) 

 (A2.55)  

The general 𝑍 solution is first simplified using equations (A2.48), (A2.50), 

(A2.54) and (A2.55) all evaluated at 𝒛∗ = 0. 

𝜕𝛹(𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝟎 = 𝑯𝑨

∗𝛹(0, 𝒕∗) 
  

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝟎𝛩(𝒕

∗) = 𝑯𝑨
∗𝑍(0, 𝜈)𝛩(𝒕∗) 
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𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝟎 = 𝑯𝑨

∗𝑍(0, 𝜈) 
  

𝑍(0, 𝜈) = 𝐴1 sin(𝜈(0)) + 𝐵1cos(𝜈(0))   

𝑍(0, 𝜈) = 𝐵1   

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝟎 = 𝜈𝐴1 cos(𝜈(0)) − 𝜈𝐵1sin(𝜈(0)) 

  

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝟎 = 𝜈𝐴1 

  

𝑯𝑨
∗𝑍(0, 𝜈) = 𝜈𝐴1   

𝑯𝑨
∗𝐵1 = 𝜈𝐴1   

𝐴1 =
𝑯𝑨
∗𝐵1
𝜈

 
 (A2.56)  

Therefore, the top boundary condition has removed the coefficient 𝐴1 from 

the general solution. At this point, the bottom boundary condition can be 

invoked by evaluating equations (A2.49), (A2.50), (A2.54), (A2.55) at 𝒛∗ =

𝜟𝒛𝒑
∗  and using the substitution for 𝐴1 from (A2.56). 

𝜕𝛹(𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗𝛹(𝜟𝒛𝒑
∗ , 𝒕∗) 

  

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗𝛩(𝒕

∗) = −𝑯𝑩
∗ 𝑍(𝜟𝒛𝒑

∗ )𝛩(𝒕∗) 
  

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗ 𝑍(𝜟𝒛𝒑
∗ ) 

  

𝑍(𝜟𝒛𝒑
∗ , 𝜈) = 𝐴1 sin(𝜈𝜟𝒛𝒑

∗ ) + 𝐵1cos(𝜈𝜟𝒛𝒑
∗ )   
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𝑍(𝜟𝒛𝒑
∗ , 𝜈) =

𝑯𝑨
∗𝐵1
𝜈
sin(𝜈𝜟𝒛𝒑

∗ ) + 𝐵1cos(𝜈𝜟𝒛𝒑
∗ ) 

  

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = 𝜈𝐴1 cos(𝜈𝜟𝒛𝒑

∗ ) − 𝜈𝐵1sin(𝜈𝜟𝒛𝒑
∗ ) 

  

𝜕𝑍

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = 𝑯𝑨

∗𝐵1 cos(𝜈𝜟𝒛𝒑
∗ ) − 𝜈𝐵1sin(𝜈𝜟𝒛𝒑

∗ ) 
  

−𝑯𝑩
∗ 𝑍(𝜟𝒛𝒑

∗ ) = −𝑯𝑩
∗ (
𝑯𝑨
∗𝐵1
𝜈
sin(𝜈𝜟𝒛𝒑

∗ ) + 𝐵1cos(𝜈𝜟𝒛𝒑
∗)) 

  

𝑯𝑨
∗𝐵1 cos(𝜈𝜟𝒛𝒑

∗) − 𝜈𝐵1sin(𝜈𝜟𝒛𝒑
∗ )

= −𝑯𝑩
∗ (
𝑯𝑨
∗𝐵1
𝜈
sin(𝜈𝜟𝒛𝒑

∗) + 𝐵1cos(𝜈𝜟𝒛𝒑
∗)) 

  

𝑯𝑨
∗𝐵1 cos(𝜈𝜟𝒛𝒑

∗) − 𝜈𝐵1sin(𝜈𝜟𝒛𝒑
∗ )

=
−𝑯𝑩
∗𝑯𝑨
∗𝐵1
𝜈

sin(𝜈𝜟𝒛𝒑
∗)−𝑯𝑩

∗ 𝐵1cos(𝜈𝜟𝒛𝒑
∗) 

  

𝑯𝑨
∗𝐵1 cos(𝜈𝜟𝒛𝒑

∗) + 𝑯𝑩
∗ 𝐵1cos(𝜈𝜟𝒛𝒑

∗)

=
−𝑯𝑩
∗𝑯𝑨
∗𝐵1
𝜈

sin(𝜈𝜟𝒛𝒑
∗) + 𝜈𝐵1sin(𝜈𝜟𝒛𝒑

∗ ) 

  

𝐵1 cos(𝜈𝜟𝒛𝒑
∗ ) (𝑯𝑨

∗ +𝑯𝑩
∗ ) = 𝐵1sin(𝜈𝜟𝒛𝒑

∗ ) (𝜈 −
𝑯𝑩
∗𝑯𝑨
∗

𝜈
) 

  

sin(𝜈𝜟𝒛𝒑
∗)

cos(𝜈𝜟𝒛𝒑
∗ )
=
(𝑯𝑨
∗ +𝑯𝑩

∗ )

(𝜈 −
𝑯𝑩
∗𝑯𝑨
∗

𝜈
)
 

  

tan(𝜈𝜟𝒛𝒑
∗) =
𝜈(𝑯𝑨

∗ +𝑯𝑩
∗ )

(𝜈2 −𝑯𝑩
∗𝑯𝑨
∗ )

 
 (A2.57)  

Thus the application of the bottom boundary condition has led to the 

determination of a transcendental equation for the ODE variable, 𝜈, that 
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depends on the normalized depth of the finite region and the top and bottom 

normalized heat transfer coefficients. This equation, (A2.57), will be revisited 

later in the derivation. At this point, the solution for the 𝑍 component has been 

simplified to become: 

𝑍(𝒛∗, 𝜈) = 𝐵1 (
𝑯𝑨
∗

𝜈
sin(𝜈𝒛∗) + cos(𝜈𝒛∗)) 

 (A2.58)  

The solution of the 𝛩  component which satisfies equation (A2.53) is 

assumed to be: 

𝛩(𝒕∗) = 𝐶1𝑒
−𝜈2𝒕∗  (A2.59)  

Applying equations (A2.58) and (A2.59) to (A2.50) yields the updated 

general solution: 

𝛹(𝒛∗, 𝒕∗) = 𝐵1𝐶1 (
𝑯𝑨
∗

𝜈
sin(𝜈𝒛∗) + cos(𝜈𝒛∗)) 𝑒−𝜈

2𝒕∗ [𝐾] (A2.60)  

Since this equation contains a sum of a sine and cosine, the complete 

solution involves an infinite sum of 𝜈 values. Therefore, it is necessary to 

change 𝜈 into 𝜈𝑛 and combine 𝐵1𝐶1 into a single coefficient, 𝐶𝑛: 

𝛹(𝒛∗, 𝒕∗) = ∑𝐶𝑛 (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗)) 𝑒−𝜈𝑛

2𝒕∗
∞

𝑛=1

 [𝐾] (A2.61)  

This coefficient can be solved for by invoking the initial conditions provided 

in equation (A2.46). 
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𝛹(𝒛∗, 0) = 𝐹(𝒛∗) = ∑𝐶𝑛 (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))

∞

𝑛=1

 [𝐾] (A2.62)  

The form of equation (A2.62) is that of a Fourier series expansion, where 

𝜈𝑛  are called eigenvalues of the solution. Thus, using the principle of 

orthogonality, both sides of this equation can first be multiplied by the term 

in brackets and integrated over the entire domain [118]. An arbitrary 

eigenvalue will be used in the multiplication, denoted as 𝜈𝑚. 

∫ 𝐹(𝒛∗)(
𝑯𝑨
∗

𝜈𝑚
sin(𝜈𝑚𝒛

∗) + cos(𝜈𝑚𝒛
∗))𝒅𝒛∗

𝜟𝒛𝒑
∗

0

 

=∑∫ 𝐶𝑛 (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))(
𝑯𝑨
∗

𝜈𝑚
sin(𝜈𝑚𝒛

∗) + cos(𝜈𝑚𝒛
∗))

𝜟𝒛𝒑
∗

0

∞

𝑛=1

𝒅𝒛∗ 

 (A2.63)  

By orthogonality, the RHS of equation (A2.63) is equal to zero for every 

eigenvalue where the subscript 𝑛 ≠ 𝑚 upon summing. Therefore, the only 

value that satisfies this nontrivial solution is 𝑛 = 𝑚. Upon simplifying and 

using this characteristic, the unknown coefficient 𝐶𝑛 can be determined: 

∫ 𝐹(𝒛∗) (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗)) 𝒅𝒛∗

𝜟𝒛𝒑
∗

0

= ∫ 𝐶𝑛 (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))

2
𝜟𝒛𝒑
∗

0

𝒅𝒛∗ 

 

𝐶𝑛 =

∫ 𝐹(𝒛∗) (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))𝒅𝒛∗

𝜟𝒛𝒑
∗

0

∫ (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛∗) + cos(𝜈𝑛𝒛∗))

2

𝒅𝒛∗

𝜟𝒛𝒑
∗

0

 

 (A2.64)  
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The integral in the denominator of equation (A2.64) can be explicitly 

evaluated and further simplified by considering the transcendental solution 

derived earlier in equation (A2.57), as well as the identity cos2(𝜃) =

1

1+tan2(𝜃)
. There are many intermediate steps to this simplification, so an 

equation-solving software package (MAPLE) was used to yield: 

𝐶𝑛 =

∫ 𝐹(𝒛∗) (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))𝒅𝒛∗

𝜟𝒛𝒑
∗

0

1
2(
𝜟𝒛𝒑∗ (𝜈𝑛2 +𝑯𝑨

∗ 𝟐)

𝜈𝑛2
+
(𝑯𝑨
∗ +𝑯𝑩

∗ )(𝜈𝑛2 +𝑯𝑨
∗𝑯𝑩
∗ )

𝜈𝑛2(𝜈𝑛2 +𝑯𝑩
∗ 𝟐)

)

 

 (A2.65)  

The simplified denominator expression is referred to as the norm of the 

eigenfunction [118]. Before reinserting this new expression for 𝐶𝑛 into the 

general homogeneous solution defined previously, two changes will be made 

for clarification. The first is that since the integral is performed over the entire 

domain regardless of what position in the overall solution is being considered, 

the variable 𝒛∗ will be changed to 𝒛𝟏
∗  to make this distinction. Secondly, the 

norm will be represented by the function identifier 𝑁(𝜈𝑛). 

𝑁(𝜈𝑛) =
1

2
(
𝜟𝒛𝒑
∗ (𝜈𝑛
2 +𝑯𝑨

∗ 𝟐)

𝜈𝑛2
+
(𝑯𝑨
∗ +𝑯𝑩

∗ )(𝜈𝑛
2 +𝑯𝑨

∗𝑯𝑩
∗ )

𝜈𝑛2(𝜈𝑛2 +𝑯𝑩
∗ 𝟐)

) 
 (A2.66)  

This finally leads to: 
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𝐶𝑛 =

∫ 𝐹(𝒛𝟏
∗) (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛𝟏

∗) + cos(𝜈𝑛𝒛𝟏
∗))𝒅𝒛𝟏

∗

𝜟𝒛𝒑
∗

0

𝑁(𝜈𝑛)
 

 (A2.67)  

With the coefficient 𝐶𝑛 now fully defined, it can be substituted into the general 

solution of (A2.61) and simplified to yield: 

𝛹(𝒛∗, 𝒕∗)

= ∫ ∑

(
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))(
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛𝟏

∗ ) + cos(𝜈𝑛𝒛𝟏
∗))𝑒−𝜈𝑛

2𝒕∗𝐹(𝒛𝟏
∗)𝒅𝒛𝟏

∗

𝑁(𝜈𝑛)

∞

𝑛=1

𝜟𝒛𝒑
∗

0

 

[𝐾] (A2.68)  

The terms in the brackets can be represented by the following substitution: 

𝑍(𝒛∗, 𝜈𝑛) = (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗))  (A2.69)  

which makes the homogenous solution now: 

𝛹(𝒛∗, 𝒕∗) = ∫ ∑
𝑍(𝒛∗, 𝜈𝑛)𝑍(𝒛𝟏

∗ , 𝜈𝑛)𝑒
−𝜈𝑛
2𝒕∗

𝑁(𝜈𝑛)
𝐹(𝒛𝟏
∗)𝒅𝒛𝟏

∗

∞

𝑛=1

𝜟𝒛𝒑
∗

0

 [𝐾] (A2.70)  

As performed in section A.2.2, equation (A2.33), the homogeneous solution 

can again be represented as the integral the product of the GF evaluated at 

𝒕𝟏
∗ = 0 and the function 𝐹(𝒛𝟏

∗) [116,118]. 

𝛹(𝒛∗, 𝒕∗) = ∫ 𝐺∗(𝒛∗, 𝒕∗|𝒛𝟏
∗ , 0) · 𝐹(𝒛𝟏

∗)𝒅𝒛𝟏
∗

𝜟𝒛𝒑
∗

0

 [𝐾] (A2.71)  
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Therefore, the GF for a finite domain, in this case in the z-direction, is 

obtained by replacing 𝒕∗ with 𝒕∗ − 𝒕𝟏
∗ . The final form of the GF along with all 

the necessary supplementary equations are provided below. 

𝐺𝒛
∗(𝒛∗, 𝒕∗| 𝒛𝟏

∗ , 𝒕𝟏
∗ ) =  ∑

𝑍(𝜈𝑛, 𝒛
∗)𝑍(𝜈𝑛, 𝒛𝟏

∗ )𝑒−𝜈𝑛
2(𝒕∗−𝒕𝟏

∗ )

𝑁(𝜈𝑛)

∞

𝑛=1

 (A2.72)  

𝑍(𝒛∗, 𝜈𝑛) = (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗)) 

(A2.73)  

𝑁(𝜈𝑛) =
1

2
(
𝜟𝒛𝒑
∗ (𝜈𝑛
2 +𝑯𝑨

∗ 𝟐)

𝜈𝑛2
+
(𝑯𝑨
∗ +𝑯𝑩

∗ )(𝜈𝑛
2 +𝑯𝑨

∗𝑯𝑩
∗ )

𝜈𝑛2(𝜈𝑛2 +𝑯𝑩
∗ 𝟐)

) 
(A2.74)  

tan(𝜈𝑛𝜟𝒛𝒑
∗) =
𝜈𝑛(𝑯𝑨

∗ +𝑯𝑩
∗ )

(𝜈𝑛
2 −𝑯𝑩

∗𝑯𝑨
∗ )

 
(A2.75)  

 

A.2.4. Green’s Function Solution Equation (GFSE) in 

Dimensionless Coordinates 

The GFs derived so far can be used to determine the temperature of a 

system within a Green’s Function Solution Equation (GFSE). This equation 

considers the effects of the initial conditions, the source heating term, and 

the boundary conditions. It will be derived as a general solution in 

dimensionless variables that can be applicable to one-, two-, or three-

dimensional problems. For relevance to the current research, the three-

dimensional in the Cartesian system case will be derived. The derivation 

begins by stating the heat equation as used previously, however it now 
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includes a term for the fin effect, which can be useful in situations that 

involve moving coordinate systems. 

∇2𝑇(𝑥, 𝑦, 𝑧, 𝑡) +
𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝑘
− 𝑚2𝑇(𝑥, 𝑦, 𝑧, 𝑡) =

1

𝐷

𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
 [

𝐾

𝑚2
] (A2.76)  

The initial conditions can be stated as: 

𝑇(𝑥, 𝑦, 𝑧, 0) = 𝐹(𝑥, 𝑦, 𝑧) [𝐾] (A2.77)  

The boundary conditions will be assumed to be applied perpendicular to the 

xy plane, and thus parallel to the z-axis, which increases downward from 

the top surface. This orientation is considered for the infinite slab-like 

system that has a finite thickness, similar to that of a powder bed. Thus the 

generalized boundary conditions for this scenario are: 

𝜕𝑇

𝜕𝑧
|𝑧=0 −

ℎ𝐴
𝑘
𝑇(0, 𝑡) = −

ℎ𝐴
𝑘
𝑇𝐴 [

𝐾

𝑚
] (A2.78)  

𝜕𝑇

𝜕𝑧
|𝑧=𝛥𝑧𝑝 +

ℎ𝐵
𝑘
𝑇(𝛥𝑧𝑝, 𝑡) =

ℎ𝐵
𝑘
𝑇𝐵 [

𝐾

𝑚
] 

(A2.79)  

which can be further simplified due to equation (A2.1): 

𝜕𝑇

𝜕𝑧
|𝑧=0 −𝑯𝑨𝑇(0, 𝑡) = −𝑯𝑨𝑇𝐴 [

𝐾

𝑚
] (A2.80)  

𝜕𝑇

𝜕𝑧
|𝑧=𝛥𝑧𝑝 +𝑯𝑩𝑇(𝛥𝑧𝑝, 𝑡) = 𝑯𝑩𝑇𝐵 [

𝐾

𝑚
] 

(A2.81)  

In equation (A2.76), the Laplacian operator, ∇2, is used for the second order 

spatial derivatives and the fin coefficient, 𝑚2, is a constant with units of [m-

2]. The boundary conditions used are identical to those from the finite 
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domain GF derivation in section A.2.3, with the subscript 𝐴 representing the 

top boundary and 𝐵 representing the bottom boundary. It is necessary to 

first put all these equations in terms of dimensionless variables with the help 

of Table 9. 

The Laplacian will be converted to a form using its dimensionless 

equivalent with help from the following derivation: 

∇=
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
+
𝜕

𝜕𝑧
=
𝜕

𝜕𝒙∗
𝜕𝒙∗

𝜕𝑥
+
𝜕

𝜕𝒚∗
𝜕𝒚∗

𝜕𝑦
+
𝜕

𝜕𝒛∗
𝜕𝒛∗

𝜕𝑧
 [𝑚−1]  

𝛁∗ =
𝜕

𝜕𝒙∗
+
𝜕

𝜕𝒚∗
+
𝜕

𝜕𝒛∗
   

𝜕𝒙∗

𝜕𝑥
=
𝜕𝒚∗

𝜕𝑦
=
𝜕𝒛∗

𝜕𝑧
=
1

𝜔𝜒
 

[𝑚−1]  

∇=
1

ωχ
𝛁∗ 

[𝑚−1]  

∇2= ∇ · ∇ =  
1

ωχ
𝛁∗ ·
1

ωχ
𝛁∗ =

1

𝜔𝜒2
𝛁∗𝟐 

[𝑚−2] (A2.82)  

The time derivative can be converted identically as given in equation (A2.5), 

and provided again below: 

𝜕𝑇

𝜕𝑡
=
𝜕𝑇

𝜕𝒕∗
·
𝜕𝒕∗

𝜕𝑡
=
𝐷

𝜔𝜒2
𝜕𝑇

𝜕𝒕∗
 [

𝐾

𝑠
] 

(A2.83)  

Using all the above conversions, the simplified heat equation with 

dimensionless variables is given as: 
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𝛁∗2𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) +
𝜔𝜒
2

𝑘
𝑔(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) −𝒎∗𝟐𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) =

𝜕𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒕∗
 [𝐾] (A2.84)  

where the dimensionless fin coefficient is included as 𝒎∗𝟐 = 𝑚2𝜔𝜒
2 . The 

initial conditions become: 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝟎) = 𝐹(𝒙∗, 𝒚∗, 𝒛∗) [𝐾] (A2.85)  

The boundary conditions for 𝒕∗ > 0 become: 

𝜕𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝟎 −𝑯𝑨

∗𝑇(𝒙∗, 𝒚∗, 𝟎, 𝒕∗) = −𝑯𝑨
∗𝑇𝐴 [𝐾] (A2.86)  

𝜕𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ +𝑯𝑩

∗ 𝑇(𝒙∗, 𝒚∗, 𝜟𝒛𝒑
∗ , 𝒕∗) = 𝑯𝑩

∗ 𝑇𝐵 
[𝐾] (A2.87)  

Before proceeding, it is necessary to introduce the GF auxiliary equation 

which has the same form as the heat equation. As outlined by Beck et al, 

all GFs satisfy an auxiliary equation in which the heat source is replaced by 

a term involving Dirac delta functions, which symbolizes an impulse 

occurring within the dimensions of the system at some time 𝒕𝟏
∗  [116]. It is 

important first to note that the dimensions of the GF are dependent on the 

spatial dimensionality of the system being modelled. However, the 

normalized GFs are dimensionless in entirety. This is illustrated in Table 10. 

Model Spatial 

Dimensions 
Units of 𝑮 Units of 𝑮∗ 
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1 (eg. 𝒙) 𝑚−1 - 

2 (eg. 𝒙, 𝒚) 𝑚−2 - 

3 (eg. 𝒙, 𝒚, 𝒛) 𝑚−3 - 

Table 10: Dimensional dependency of GFs on the spatial dimensions of the model. 

The implications of Table 10 are that the units of the auxiliary 

equation will change depending on the spatial dimensions of the model. For 

example, the auxiliary equation for three spatial dimensions is given by 

equation (A2.88). The units of this equation are [m-5] which includes the 

three-dimensional GF of units [m-3] multiplied by various factors and 

operators which contain units of [m-2]. The Dirac delta function has units of 

[m-1] for spatial variables and [s-1] for time. Thus, to achieve the same units 

as the other terms in the equation, the term containing the product of the 

spatial and temporal delta functions must always be divided by the thermal 

diffusivity, 𝐷, in the dimensional case. 

∇2𝐺 +
1

𝐷
𝛿(𝑥 − 𝑥1)𝛿(𝑦 − 𝑦1)𝛿(𝑧 − 𝑧1)𝛿(𝑡 − 𝑡1) − 𝑚

2𝐺 =
1

𝐷

𝜕𝐺

𝜕𝑡
 [𝑚−5] (A2.88)  

When nondimensionalizing the variables of the auxiliary equation, both the 

GF itself and all its containing variables are unitless. Therefore, the entire 

equation has no units whatsoever once the normalization has been applied. 

It follows that the term containing the product of Dirac delta functions of 

dimensionless variables must now contain no factor in front of it to satisfy 
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the units of the system. The normalized GF auxiliary equation is given 

below: 

𝛁∗2𝐺∗ + 𝛿(𝒙∗ − 𝒙𝟏
∗)𝛿(𝒚∗ − 𝒚𝟏

∗)𝛿(𝒛∗ − 𝒛𝟏
∗ )𝛿(𝒕∗ − 𝒕𝟏

∗) − 𝒎∗𝟐𝐺∗ =
𝜕𝐺∗

𝜕𝒕∗
  (A2.89)  

The boundary conditions for the normalized auxiliary equation are: 

𝜕𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝟎 = 𝑯𝑨

∗𝐺∗(𝒙∗, 𝒚∗, 𝟎, 𝒕∗)  (A2.90)  

𝜕𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗ 𝐺∗(𝒙∗, 𝒚∗, 𝜟𝒛𝒑
∗ , 𝒕∗) 

 (A2.91)  

The GFSE derivation begins with applying the principle of reciprocity of the 

GF to the nondimensional auxiliary equation. This principle is given as [116]: 

𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

= 𝐺∗(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , −𝒕𝟏

∗  | 𝒙∗, 𝒚∗, 𝒛∗, −𝒕∗) 
 (A2.92)  

Applying (A2.92) to (A2.89) and making the substitutions (𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , −𝒕𝟏

∗) for  

(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) and (𝒙∗, 𝒚∗, 𝒛∗, −𝒕∗) for (𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)  yields: 

𝛁∗2𝐺∗ + 𝛿(𝒙𝟏
∗ − 𝒙∗)𝛿(𝒚𝟏

∗ − 𝒚∗)𝛿(𝒛𝟏
∗ − 𝒛∗)𝛿(−𝒕𝟏

∗+𝒕∗) − 𝒎∗𝟐𝐺∗ = −
𝜕𝐺∗

𝜕𝒕𝟏
∗   (A2.93)  

It is then necessary to express equation (A2.84) in terms of (𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)  

𝛁∗2𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ ) +
𝜔𝜒
2

𝑘
𝑔(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗) − 𝒎∗𝟐𝑇(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )

=
𝜕𝑇(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

𝜕𝒕𝟏
∗  

[𝐾] (A2.94)  
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Multiplying (A2.93) by 𝑇 and (A2.94) by 𝐺∗, dropping the variable notation 

in brackets in the 𝑇 variable for simplicity, and subtracting the former from 

the latter yields: 

𝐺∗𝛁∗2𝑇 − 𝑇𝛁∗2𝐺∗ + 𝐺∗
𝜔𝜒
2

𝑘
𝑔(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

− 𝑇𝛿(𝒙𝟏
∗ − 𝒙∗)𝛿(𝒚𝟏

∗ − 𝒚∗)𝛿(𝒛𝟏
∗ − 𝒛∗)𝛿(−𝒕𝟏

∗+𝒕∗)

= 𝐺∗
𝜕𝑇

𝜕𝒕𝟏
∗ + 𝑇
𝜕𝐺∗

𝜕𝒕𝟏
∗  

[𝐾] (A2.95)  

where the fin terms cancel each other after the subtraction. The RHS of 

(A2.95) can be further simplified as it is simply the expression of the product 

rule for derivatives: 

𝐺∗𝛁∗2𝑇 − 𝑇𝛁∗2𝐺∗ + 𝐺∗
𝜔𝜒
2

𝑘
𝑔(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

− 𝑇𝛿(𝒙𝟏
∗ − 𝒙∗)𝛿(𝒚𝟏

∗ − 𝒚∗)𝛿(𝒛𝟏
∗ − 𝒛∗)𝛿(−𝒕𝟏

∗+𝒕∗)

=
𝜕(𝐺∗𝑇)

𝜕𝒕𝟏
∗  

[𝐾] (A2.96)  

Equation (A2.96) must then be integrated over the three spatial dimensions 

and over time. The integrals will be in the form of: 

∫ ∫ ∫ ∫ 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

 [𝐾] (A2.97)  

Where the limits of integration in each spatial dimension are in accordance 

with the infinite slab description given earlier. The integral in time contains 

the upper limit  𝒕∗ + 𝜺 where 𝜺 is currently defined as an arbitrarily small 
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positive number. Applying this integral to equation (A2.96) and simplifying 

gives: 

∫ ∫ ∫ ∫ (𝐺∗𝛁∗2𝑇 − 𝑇𝛁∗2𝐺∗) 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝐺∗𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗) 𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

− 𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) = [∫ ∫ ∫ (𝐺∗𝑇)𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

]

𝒕𝟏
∗=𝟎

𝒕𝟏
∗=𝒕∗+𝜺

 

[𝐾] (A2.98)  

The term 𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) on the LHS of equation results from the integration 

in time and space of the term containing the product of Dirac delta functions. 

Isolating for this term begins to yield the form of the GFSE: 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= − [∫ ∫ ∫ (𝐺∗𝑇)𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

]

𝒕𝟏
∗=𝟎

𝒕𝟏
∗=𝒕∗+𝜺

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝐺∗𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗) 𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

+∫ ∫ ∫ ∫ (𝐺∗𝛁∗2𝑇 − 𝑇𝛁∗2𝐺∗) 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

 

[𝐾] (A2.99)  

Focusing on the first term on the RHS of equation (A2.99), this can be 

expanded with the help of equation (A2.92) and represented as: 

−[∫ ∫ ∫ (𝐺∗𝑇)𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

]

𝒕𝟏
∗=𝟎

𝒕𝟏
∗=𝒕∗+𝜺

= −∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕∗ + 𝜺)𝑇(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕∗ + 𝜺)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

+∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝑇(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

 

[𝐾] (A2.100)  
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GFs operate under the assertion of causality, which states that the effect of 

the impulse cannot take place before the impulse has been applied [116]. 

Therefore, since 𝒕∗ + 𝜺 > 𝒕∗, the first term on the RHS of equation (A2.100) 

must be unequivocally equal to zero as it describes the time of the impulse 

occurring after the effect has been observed. The remaining second term 

on the right can be further simplified because 𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎) is simply the 

expression for the initial conditions of the system, given earlier as equation 

(A2.85) , evaluated at (𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗). The fully simplified first term of the GFSE 

represents the contribution from the initial conditions and becomes: 

− [∫ ∫ ∫ (𝐺∗𝑇)𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

]

𝒕𝟏
∗=𝟎

𝒕𝟏
∗=𝒕∗+𝜺

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

 

[𝐾] (A2.101)  

The second term on the RHS of (A2.99) is the contribution of the source 

term and will be left unmodified at this point. The third and final term 

describes the role of the boundary conditions. Remembering that the 

geometry considered is that of an infinite slab of finite thickness, the only 

boundaries are on the infinite planes of 𝒛∗ = 0 and 𝒛∗ = 𝜟𝒛𝒑
∗ , where again 

𝜟𝒛𝒑
∗  is the dimensionless thickness of the powder layer. It is first important 

to note that this third term of (A2.99) can therefore be changed using 

Green’s Theorem from a volume integral to a surface integral [116]: 
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∫ ∫ ∫ ∫ (𝐺∗𝛁∗2𝑇 − 𝑇𝛁∗2𝐺∗) 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

= ∫ ∫ ∫ (𝐺∗
𝜕𝑇

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

− 𝑇
𝜕𝐺∗

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝟎)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗ 𝑑𝒕𝟏
∗

+∫ ∫ ∫ (𝐺∗
𝜕𝑇

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝜟𝒛𝒑∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

− 𝑇
𝜕𝐺∗

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝜟𝒛𝒑∗)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗ 𝑑𝒕𝟏
∗  

[𝐾] (A2.102)  

The boundary conditions for both the heat equation and the auxiliary 

equation are simplified and restated below in terms of the variables 

(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗): 

𝜕𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝟎 = 𝑯𝑨

∗ (𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗) − 𝑇𝐴)  [𝐾] (A2.103)  

𝜕𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗ (𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗) − 𝑇𝐵) 

[𝐾] (A2.104)  

𝜕𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝟎 = 𝑯𝑨

∗𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗)  (A2.105)  

𝜕𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝜟𝒛𝒑∗ = −𝑯𝑩

∗ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗)  (A2.106)  

The boundary condition contribution to the GFSE in equation (A2.102) will 

now be simplified. Equations (A2.103) and (A2.105) can be substituted into 

the bracketed portion of the first term on the RHS. This simplification yields: 
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𝐺∗
𝜕𝑇

𝜕𝒛𝟏
∗ |𝒛𝟏
∗=𝟎 − 𝑇

𝜕𝐺∗

𝜕𝒛𝟏
∗ |𝒛𝟏
∗=𝟎

= 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗)𝑯𝑨
∗ (𝑇(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗ )

− 𝑇𝐴)

− 𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗)𝑯𝑨
∗𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗ )

= −𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗)𝑯𝑨
∗𝑇𝐴 

[𝐾] (A2.107)  

Similarly, the bracketed portion of the second term in (A2.102) can be 

simplified with the help of equations (A2.104) and (A2.106): 

𝐺∗
𝜕𝑇

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝜟𝒛𝒑∗ − 𝑇

𝜕𝐺∗

𝜕𝒛𝟏
∗ |𝒛𝟏∗=𝜟𝒛𝒑∗

= 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗) (−𝑯𝑩

∗ (𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗) − 𝑇𝐵))

− 𝑇(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗) (−𝑯𝑩

∗ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗))

= 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗)𝑯𝑩
∗ 𝑇𝐵 

[𝐾] (A2.108)  

Therefore, equation (A2.102) is finally simplified to become: 

∫ ∫ ∫ ∫ (𝐺∗𝛁∗2𝑇 − 𝑇𝛁∗2𝐺∗) 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

= −𝑯𝑨
∗𝑇𝐴∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗ )𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗

+𝑯𝑩
∗ 𝑇𝐵∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗+𝜺

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗  

[𝐾] (A2.109)  

where again the dimensionless heat transfer coefficient and surrounding 

temperature of the top surface at 𝒛𝟏
∗ = 𝟎 are given respectively by 𝑯𝑨

∗  and 

𝑇𝐴. Similarly, the same respective quantities for the bottom surface at 𝒛𝟏
∗ =

𝜟𝒛𝒑
∗  are written as 𝑯𝑩

∗  and 𝑇𝐵. 
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 The terms of the GFSE, which was initially presented in equation 

(A2.99) have been found to produce the temperature in the following 

relationship in a three-dimensional Cartesian system: 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 [𝐾] (A2.110)  

The first and third terms of equation (A2.110) were simplified respectively 

in equations (A2.101) and (A2.109). The second term will remain relatively 

unchanged as it appeared in equation (A2.99). The final step is to take the 

limit as 𝜺 → 𝟎  in the time integral, to yield the final form of the 

nondimensional GFSE. Therefore, the fully derived GFSE with 

dimensionless variables is given in equation (A2.111). 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ )𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ ) 𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

−𝑯𝑨
∗𝑇𝐴∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗)𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗

+𝑯𝑩
∗ 𝑇𝐵∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗ 

[𝐾] (A2.111)  

 The GFSE that has been presented was derived for use with the 

infinite slab geometry which is representative of a powder bed. The 

boundary conditions that were implemented were of the general form of: 

𝑘
𝜕𝑇

𝜕𝑧
|𝑧=𝑠𝑖 ∓ ℎ𝑖𝑇(𝑥, 𝑦, 𝑠𝑖, 𝑡) = ∓𝑓𝑖(𝑥, 𝑦, 𝑠𝑖, 𝑡) [

𝑊

𝑚2
] (A2.112)  
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Given in dimensionless variables, the above equation is changed to: 

𝑘
𝜕𝑇

𝜕𝒛∗
|𝒛∗=𝒔𝒊∗ ∓ 𝜔𝜒ℎ𝑖𝑇(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) = ∓𝜔𝜒𝑓𝑖(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) [

𝑊

𝑚
] (A2.113)  

Here, 𝒔𝒊
∗  represents the 𝑖𝑡ℎ  surface coordinate and 𝑓𝑖(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗)  is a 

function depending on the boundary condition considered. For convective 

boundary conditions, as were used in the above derivation, 

𝑓𝑖(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗) = ℎ𝑖𝑇𝒔𝒊∗ , where 𝑇𝒔𝒊∗  is the surrounding temperature at that 

surface. For an imposed flux, 𝑓𝑖(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗) = 𝑞(𝒔𝒊, 𝒕). For simplicity, only 

the variable 𝒔𝒊
∗ is included in the function description but in multidimensional 

systems the other variables may be included as well. This explanation is 

important because the boundary condition of constant temperature modifies 

the GFSE slightly. To convert the general boundary condition of equation 

(A2.113) into one that uses a constant temperature, 𝑘 must be set equal to 

zero and ℎ𝑖 equal to 1 W/(m2K). This yields: 

𝑇(𝒙∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) = 𝑓𝑖(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) = 𝑇𝒔𝒊∗ [𝐾] (A2.114)  

Beck et al describes fully how to derive the GFSE with the constant 

temperature boundary condition, and the final result will be given below for 

both cases using the 𝑓𝑖 nomenclature [116]. 
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𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ )𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗) 𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

−∑∫ ∫ ∫ 𝑓𝑖(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝒊
∗, 𝒕𝟏
∗)
𝜕𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

𝜕𝑧1
∗ |𝒛𝟏

∗=𝒛𝒊
∗𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗

2

𝑖=1

 

[𝐾] (A2.115)  

For constant temperature boundary conditions 
  

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ )𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ ) 𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

+
𝜔𝜒

𝑘
∑∫ ∫ ∫ 𝑓𝑖(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝒊
∗, 𝒕𝟏
∗ )𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝒊
∗, 𝒕𝟏
∗ )𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗

2

𝑖=1

 

[𝐾] (A2.116)  

For all other boundary conditions   

 

A.2.5. GFSE for a Moving Coordinate System in 

Dimensionless Coordinates 

The GF derivation to this point has been for a transient system. For the 

specific case of selective laser melting, the laser can be considered as 

stationary with the powder moving at a fixed velocity underneath it. The 

arrangement described here is that of a quasistationary (QS) system. The 

benefit of approaching the powder bed as a QS system is that a constant 
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melt pool geometry can be determined with clearly defined regions of fixed 

temperature. It is not truly steady state because the temperature at any fixed 

point on the powder bed will fluctuate with time during the heating and 

cooling process. However, in terms of a moving coordinate system as time 

approaches infinity, the temperature in space is perceived as constant to 

the external observer. 

 The heat equation for a solid moving with velocity 𝑣 in the positive x-

direction is given below [116,118]: 

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
+
𝑔(𝑥, 𝑦, 𝑧, 𝑡)

𝑘
=
1

𝐷

𝜕𝑇

𝜕𝑡
+
𝑣

𝐷

𝜕𝑇

𝜕𝑥
 [

𝐾

𝑚2
] (A2.117)  

Equation (A2.117) can be nondimensionalized with the help of Table 9 and 

equations (A2.3) to (A2.5). The normalization constant is again the laser 

radius, 𝜔𝜒. The nondimensionalized terms will be restated below: 

𝜕𝑇

𝜕𝑥
=
1

𝜔𝜒

𝜕𝑇

𝜕𝒙∗
 

𝜕𝑇

𝜕𝑦
=
1

𝜔𝜒

𝜕𝑇

𝜕𝒚∗
 

𝜕𝑇

𝜕𝑧
=
1

𝜔𝜒

𝜕𝑇

𝜕𝒛∗
 [

𝐾

𝑚
] (A2.118)  

𝜕2𝑇

𝜕𝑥2
=
1

𝜔𝜒2
𝜕2𝑇

𝜕𝒙∗2
 

𝜕2𝑇

𝜕𝑦2
=
1

𝜔𝜒2
𝜕2𝑇

𝜕𝒚∗2
 

𝜕2𝑇

𝜕𝑧2
=
1

𝜔𝜒2
𝜕2𝑇

𝜕𝒛∗2
 [

𝐾

𝑚2
] 

(A2.119)  

 
𝜕𝑇

𝜕𝑡
=
𝐷

𝜔𝜒2
𝜕𝑇

𝜕𝒕∗
  [

𝐾

𝑠
] 

(A2.120)  

The relevant terms from equations (A2.118) to (A2.120) can be substituted 

into (A2.117) and then simplified in order to yield the heat equation variables 

for a moving system with dimensionless variables. 
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1

𝜔𝜒2
𝜕2𝑇

𝜕𝒙∗2
+
1

𝜔𝜒2
𝜕2𝑇

𝜕𝒚∗2
+
1

𝜔𝜒2
𝜕2𝑇

𝜕𝒛∗2
+
𝑔(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝑘

=
1

𝐷

𝐷

𝜔𝜒2
𝜕𝑇

𝜕𝒕∗
+
𝑣

𝐷

1

𝜔𝜒

𝜕𝑇

𝜕𝒙∗
 

  

𝜕2𝑇

𝜕𝒙∗2
+
𝜕2𝑇

𝜕𝒚∗2
+
𝜕2𝑇

𝜕𝒛∗2
+
𝜔𝜒
2

𝑘
𝑔(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) =

𝜕𝑇

𝜕𝒕∗
+
𝜔𝜒𝑣

𝐷

𝜕𝑇

𝜕𝒙∗
 

  

𝜕2𝑇

𝜕𝒙∗2
+
𝜕2𝑇

𝜕𝒚∗2
+
𝜕2𝑇

𝜕𝒛∗2
+
𝜔𝜒
2

𝑘
𝑔(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) =

𝜕𝑇

𝜕𝒕∗
+ 𝒗∗
𝜕𝑇

𝜕𝒙∗
 
[𝐾] (A2.121)  

The extra term on the RHS of equation (A2.121) makes it unsuitable to be 

solved by the GFSE in its current form. It is recommended in the literature 

to apply a variable transform to the general solution so that it can then be 

analyzed using GFs [116,118]. The transform is given as: 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑊(𝑥, 𝑦, 𝑧, 𝑡)𝑒
𝑣𝑥
2𝐷
 − 
𝑣2𝑡
4𝐷  [𝐾] (A2.122)  

The above equation is expressed in terms of dimensionless variables again 

with the help of Table 9: 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑊(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  [𝐾] (A2.123)  

In order to apply equation (A2.121) to (A2.123), each term must first be 

derived in terms of the 𝑊 variable change. For simplicity, the variable listing 

of (𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)  will be dropped. The following were computed using 

MAPLE software: 
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𝜕𝑇

𝜕𝒙∗
= (
𝒗∗

2
)𝑊𝑒

𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4 +
𝜕𝑊

𝜕𝒙∗
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  [𝐾] (A2.124)  

𝜕2𝑇

𝜕𝒙∗2
= (
𝒗∗

2
)
𝟐

𝑊𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4 + 𝑣
𝜕𝑊

𝜕𝒙∗
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4 +
𝜕2𝑊

𝜕𝒙∗2
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.125)  

𝜕2𝑇

𝜕𝒚∗2
=
𝜕2𝑊

𝜕𝒚∗2
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.126)  

𝜕2𝑇

𝜕𝒛∗2
=
𝜕2𝑊

𝜕𝒛∗2
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.127)  

𝜕𝑇

𝜕𝒕∗
= −(
𝒗∗

2
)
2

𝑊𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4 +
𝜕𝑊

𝜕𝒕∗
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.128)  

Inserting equations (A2.124) to (A2.128) into (A2.121) and simplifying 

yields: 

𝜕2𝑊

𝜕𝒙∗2
+
𝜕2𝑊

𝜕𝒚∗2
+
𝜕2𝑊

𝜕𝒛∗2
+
𝜔𝜒
2

𝑘
𝑔(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒− 

𝒗∗𝒙∗

2
+ 
𝒗∗
2
𝒕∗

4 =
𝜕𝑊

𝜕𝒕∗
 

[𝐾] (A2.129)  

Equation (A2.129) is now the heat equation defined in terms of the 

transformed variable, 𝑊, which is conducive to being solved in the GFSE. 

Assuming initial conditions in the form of equation (A2.85) and considering 

the variable substitution of (A2.123), the transformed initial conditions are 

presented as: 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝟎) = 𝑊(𝒙∗, 𝒚∗, 𝒛∗, 𝟎)𝑒
𝒗∗𝒙∗

2
 = 𝐹(𝒙∗, 𝒚∗, 𝒛∗) [𝐾] (A2.130)  

𝑊(𝒙∗, 𝒚∗, 𝒛∗, 𝟎) = 𝐹(𝒙∗, 𝒚∗, 𝒛∗)𝑒− 
𝒗∗𝒙∗

2
 
 

[𝐾] (A2.131)  
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Similarly, the general boundary conditions of the infinite slab 

geometry in the form of equation (A2.113) can be converted in the derivation 

below:  

𝑘
𝜕𝑇

𝜕𝒛∗
|𝒛∗=𝒔𝒊∗ ∓𝜔𝜒ℎ𝑖𝑇(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) = ∓𝜔𝜒𝑓𝑖(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) [

𝑊

𝑚
]  

𝜕𝑇

𝜕𝒛∗
=
𝜕𝑊

𝜕𝒛∗
𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾]  

𝑘
𝜕𝑊

𝜕𝒛∗
|𝒛∗=𝒔𝒊

∗𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4 ∓ 𝜔𝜒ℎ𝑖𝑊(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4

= ∓𝜔𝜒𝑓𝑖(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗) 

[
𝑊

𝑚
] 

 

𝑘
𝜕𝑊

𝜕𝒛∗
|𝒛∗=𝒔𝒊

∗ ∓ 𝜔𝜒ℎ𝑖𝑊(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗) = ∓𝜔𝜒𝑓𝑖(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗)𝑒− 
𝒗∗𝒙∗

2
+ 
𝒗∗
2
𝒕∗

4  [
𝑊

𝑚
] 

 

𝑘
𝜕𝑊

𝜕𝒛∗
|𝒛∗=𝒔𝒊∗ ∓ 𝜔𝜒ℎ𝑖𝑊(𝒙

∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) = ∓𝜔𝜒𝒇𝒊

∗(𝒙∗, 𝒚∗, 𝒔𝒊
∗, 𝒕∗) [

𝑊

𝑚
] 

(A2.132)  

The sign convention selected for the terms in the general boundary 

condition equation (A2.132) is dependant on the geometry of the system. 

The boundary condition function 𝑓𝑖(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗) has been combined with 

the exponent factor that resulted from the variable transform. This is given 

by: 

𝒇𝒊
∗(𝒙∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗) = 𝑓𝑖(𝒙
∗, 𝒚∗, 𝒔𝒊

∗, 𝒕∗)𝑒− 
𝒗∗𝒙∗

2
+ 
𝒗∗
2
𝒕∗

4  [
𝑊

𝑚2
] 

(A2.133)  

With the conversion of the boundary conditions into a form containing the 

𝑊  variable transform, the GFSE for the moving slab can be provided 

analogously as in equations (A2.115) and (A2.116). 
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𝑊(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ )𝑒− 

𝒗∗𝒙𝟏
∗

2
 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )𝑒− 

𝒗∗𝒙𝟏
∗

2
+ 
𝒗∗
2
𝒕𝟏
∗

4  𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗𝑑𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

−∑∫ ∫ ∫ 𝑓𝑖(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒔𝒊
∗, 𝒕𝟏
∗ )𝑒− 

𝒗∗𝒙𝟏
∗

2
+ 
𝒗∗
2
𝒕𝟏
∗

4
𝜕𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )

𝜕𝑧1
∗ |𝒛𝟏∗=𝒔𝒊∗𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗

2

𝑖=1

 

[𝐾] (A2.134)  

For constant temperature boundary conditions 
  

𝑊(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗)𝑒− 

𝒗∗𝒙𝟏
∗

2
 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

+
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝑮∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)𝒆− 

𝒗∗𝒙𝟏
∗

𝟐  + 
𝒗∗
𝟐
𝒕𝟏
∗

𝟒  𝒅𝒙𝟏
∗𝒅𝒚𝟏
∗𝒅𝒛𝟏
∗𝒅𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

+
𝜔𝜒

𝑘
∑∫ ∫ ∫ 𝑓𝑖(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒔𝒊
∗, 𝒕𝟏
∗ )𝑒− 

𝒗∗𝒙𝟏
∗

2
 + 
𝒗∗
2
𝒕𝟏
∗

4 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒔𝒊
∗, 𝒕𝟏
∗)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗

2

𝑖=1

 

[𝐾] (A2.135)  

For all other boundary conditions   

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑊(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.136)  

 

A.2.6. Laser Source Term in Dimensionless Coordinates 

The source term can be defined for many different beam shapes and 

attenuation factors as outlined in Bäuerle et. al [62]. For the purposes of 

the current research, a Gaussian beam as outlined in section 3.1.3.1 will 

be used and the attenuation due to the Lambert-Beer law (LB) and the 

Radiative Transfer Equation (RTE) will be applied in separate cases. 
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Thus, the general form of the stationary Gaussian source incident on the 

xy-plane is given below where 𝑓(𝑧) is the attenuation function: 

𝑔(𝑥, 𝑦, 𝑧, 𝑡) =
𝜒𝑃

𝜋𝜔𝜒2
𝑒
−𝜒(
𝑥2+𝑦2

𝜔𝜒
2 )

𝑓(𝑧) 
[
𝑊

𝑚3
] 

(A2.137)  

 The attenuation function that characterizes the Lambert-Beer law is 

given as: 

𝑓𝐿𝐵(𝑧) = 𝐴𝛼𝑒
−𝛼𝑧 [𝑚−1] (A2.138)  

where 𝛼  is the absorption coefficient in units of [m-1] and the material 

absorptivity, 𝐴 , is included. This law is described in the literature and 

mentioned earlier in section 3.1.1.1.1 [62,79,84,86]. Substituting equation 

(A2.138) into (A2.137) and converting all the spatial variables into their 

dimensionless counterparts with the help of Table 9 yields the source term 

for the Gaussian beam with Lambert-Beer attenuation: 

𝑔𝐿𝐵(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) =

𝐴𝛼𝜒𝑃

𝜋𝜔𝜒2
𝑒−𝜒(𝒙

∗𝟐+𝒚∗
𝟐
)𝑒−𝜶

∗𝒛∗ [
𝑊

𝑚3
] (A2.139)  

 The RTE must be considered as well because SLM is performed with 

powders that lie on metallic substrates. As outlined in Appendix A.1, the 

RTE considers attenuation as well as scattering and reflection from the 

bottom surface. It allows a second chance for the laser to be absorbed into 

the powder especially in optically thin layers where the underlying material 
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has a high reflectivity. The attenuation function for the RTE is more involved 

than that of the Lambert-Beer law and was derived specifically in Appendix 

A.1 and is summarized again below. 

 The solution to the RTE is given by combining equations (A1.106) to 

(A1.109). It represents the absorptivity at any normalized depth within the 

powder-substrate system of 𝜉. This depth is defined in the product of the 

absorption coefficient 𝛽 and 𝑧. The variable 𝜔, which was used previously, 

represents the bulk material reflectivity and has been replaced by 𝑅𝑏 for 

clarity and distinction from the laser radius. 

𝑞(𝜉) = 𝑒−𝜉 − 𝑅𝑠𝑒
𝜉−2𝜆 +

1

2
(𝐴𝑒−2𝑎𝜉 + 𝐵𝑒2𝑎𝜉 −

2𝑅𝑏
4𝑅𝑏 − 3

(𝑒−𝜉 − 𝑅𝑠𝑒
𝜉−2𝜆)) 

(A2.140)  

The negative derivative of 𝑞(𝜉) is used to form the attenuation function that 

contributes to volumetric heating:  

−
𝑑𝑞

𝑑𝜉
= 𝑎(𝐴𝑒−2𝑎𝜉 − 𝐵𝑒2𝑎𝜉) + (𝑒−𝜉 + 𝑅𝑠𝑒

𝜉−2𝜆) (1 −
𝑅𝑏
4𝑅𝑏 − 3

) 
(A2.141)  

with the coefficients defined as: 

𝐴

=
2𝑅𝑏(𝑒

2𝑎𝜆) ((𝑅𝑠 + 3(𝑒
2𝜆)) ((𝑅𝑏(1 + 𝑅𝑠) − 2)𝑎 − 2(1 − 𝑅𝑏))(𝑒

2𝑎𝜆) + 𝑅𝑏𝑎(1 − 𝑅𝑠)(1 + 𝑅𝑠)𝑒
𝜆)

(4𝑅𝑏 − 3)(𝑒
2𝜆) ((𝑅𝑏(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒

4𝑎𝜆) − 2(𝑎 − 1) − 𝑅𝑏(1 + 𝑅𝑠)) (1 + 𝑎)
 

(A2.142)  

𝐵

=
2𝑅𝑏 (𝑒

𝜆(1 − 𝑅𝑠)(1 + 𝑅𝑠)(1 + 𝑎 − 𝑅𝑏)(𝑒
2𝑎𝜆) − (𝑅𝑠 + 3(𝑒

2𝜆)) ((1 − 𝑅𝑠)𝑎 + (1 + 𝑅𝑠)(𝑅𝑏 − 1)))

(4𝑅𝑏 − 3)(𝑒
2𝜆)((𝑅𝑏(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒

4𝑎𝜆) − 2(𝑎 − 1) − 𝑅𝑏(1 + 𝑅𝑠)) 
 

(A2.143)  
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𝑎 = √1 − 𝑅𝑏 (A2.144)  

𝜆 = 𝛽𝛥𝑧𝑝 (A2.145)  

𝜉 = 𝛽𝑧 (A2.146)  

𝑑𝜉

𝑑𝑧
= 𝛽                                                              [𝑚−1] (A2.147)  

The attenuation function for the RTE in terms of the dimensional variable 𝑧 

is obtained by applying the chain rule to equation (A2.141) with the help of 

(A2.147). 

𝑓𝑅𝑇𝐸(𝑧) = −
𝑑𝑞

𝑑𝑧
= −
𝑑𝑞

𝑑𝜉
·
𝑑𝜉

𝑑𝑧
= 𝛽 (−

𝑑𝑞

𝑑𝜉
|𝜉=𝛽𝑧) 

[𝑚−1] (A2.148)  

Substituting the RHS of (A2.141) into equation (A2.148) and evaluating at 

𝜉 = 𝛽𝑧 as instructed above, provides the semi-expanded representation of 

the dimensional RTE attenuation function: 

𝑓𝑅𝑇𝐸(𝑧) = 𝛽 (𝑎(𝐴𝑒
−2𝑎𝛽𝑧 − 𝐵𝑒2𝑎𝛽𝑧) + (𝑒−𝛽𝑧

+ 𝑅𝑠𝑒
𝛽𝑧−2𝜆) (1 −

𝑅𝑏
4𝑅𝑏 − 3

)) 

[𝑚−1] (A2.149)  

Finally, with the help of Table 9, the variable 𝑧 in equation (A2.149) can be 

put into its dimensionless form: 
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𝑓𝑅𝑇𝐸(𝒛
∗) = 𝛽 (𝑎(𝐴𝑒−2𝑎𝜷

∗𝒛∗ − 𝐵𝑒2𝑎𝜷
∗𝒛∗) + (𝑒−𝜷

∗𝒛∗

+ 𝑅𝑠𝑒
𝜷∗𝒛∗−2𝜆) (1 −

𝑅𝑏
4𝑅𝑏 − 3

)) 

[𝑚−1] (A2.150)  

The optical thickness 𝜆 as defined in equation (A2.145) does not need to 

be put into its dimensionless form as it is already a dimensionless 

constant that does not change with position in a fixed slab. Thus, 𝜆 = 𝝀∗, 

and this can be verified by using the normalized values found in Table 9 as 

well. Finally, the dimensionless source term using the RTE attenuation 

function above is given below in analogy to equation (A2.139): 

𝑔𝑅𝑇𝐸(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

=
𝛽𝜒𝑃

𝜋𝜔𝜒2
𝑒
−𝜒(𝒙∗

𝟐
+𝒚∗
𝟐
) (𝑎(𝐴𝑒−2𝑎𝜷

∗𝒛∗ − 𝐵𝑒2𝑎𝜷
∗𝒛∗) + (𝑒−𝜷

∗𝒛∗

+ 𝑅𝑠𝑒
𝜷∗𝒛∗−2𝜆) (1 −

𝑅𝑏
4𝑅𝑏 − 3

)) 

[
𝑊

𝑚3
] (A2.151)  

Two important aspects about these derivations must be noted at this 

point. The first is that the absorptivity factor which is present in the Lambert-

Beer source is not explicitly present in the RTE source. This is because the 

effects of absorptivity are already included in the RTE solution. Specifically, 

an integral over the thickness of the powder layer for equation (A2.149) 

would yield the absorptivity of the system. Secondly, both equations 

(A2.139) and (A2.151) still contain dimensional absorption coefficients as 

multiplicative factors outside of their exponentials, while inside their 

respective exponentials these coefficients are nondimensional. This will be 
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remedied once the source term is placed into the GFSE, where it is 

multiplied by a factor of 
𝜔𝜒
2

𝑘
. Equation (A2.135) can be consulted as an 

example of the implementation of this factor. One of the terms from the 

square of the laser radius will be repositioned in the source term to multiply 

with the absorption coefficient, either 𝛼 or 𝛽, to produce its dimensionless 

counterpart 𝜶∗ or 𝜷∗, respectively. 

A.2.7. Final Form of the GFSE 

All of the derivations presented until this point can now be utilized to 

form the GFSE for the infinite slab geometry in three dimensions. The first 

step is to construct the three-dimensional GF by multiplying equations 

(A2.35), (A2.36) and (A2.72) together. 

𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)

= 𝐺𝒙
∗(𝒙∗, 𝒕∗ | 𝒙𝟏

∗ , 𝒕𝟏
∗)𝐺𝒚
∗(𝒚∗, 𝒕∗ | 𝒚𝟏

∗ , 𝒕𝟏
∗)𝐺𝒛
∗(𝒛∗, 𝒕∗ | 𝒛𝟏

∗ , 𝒕𝟏
∗) 

 (A2.152)  

𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗) 

=
1

4𝜋(𝒕∗ − 𝒕𝟏
∗)
𝑒
−
(𝒙∗−𝒙𝟏

∗ )
2
+ (𝒚∗−𝒚𝟏

∗ )
2

4(𝒕∗−𝒕𝟏
∗ ) ∑

𝑍(𝒛∗, 𝜈𝑛)𝑍(𝒛𝟏
∗ , 𝜈𝑛)𝑒

−𝜈𝑛
2(𝒕∗−𝒕𝟏

∗ )

𝑁(𝜈𝑛)

∞

𝑛=1

 
 (A2.153)  

where again: 

𝑍(𝒛∗, 𝜈𝑛) = (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗)) 

 (A2.154)  

𝑁(𝜈𝑛) =
1

2
(
𝜟𝒛𝒑
∗ (𝜈𝑛
2 +𝑯𝑨

∗ 𝟐)

𝜈𝑛2
+
(𝑯𝑨
∗ +𝑯𝑩

∗ )(𝜈𝑛
2 +𝑯𝑨

∗𝑯𝑩
∗ )

𝜈𝑛2(𝜈𝑛2 +𝑯𝑩
∗ 𝟐)

) 
 (A2.155)  
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tan(𝜈𝑛𝜟𝒛𝒑
∗) =
𝜈𝑛(𝑯𝑨

∗ +𝑯𝑩
∗ )

(𝜈𝑛
2 −𝑯𝑩

∗𝑯𝑨
∗ )

 
 (A2.156)  

The GFSE for the infinite slab geometry for the moving coordinate system 

is composed of the initial conditions term, the source term, and the 

boundary conditions term as outlined in equations (A2.134) and (A2.135). 

The form of the GFSE here, however, will be based on that of (A2.135) as 

the GF in the z-direction was derived using convective boundary conditions.  

 The initial conditions term in the moving coordinate system will be 

solved for first. The initial temperature within the powder bed is assumed to 

be constant such that: 

𝐹(𝒙∗, 𝒚∗, 𝒛∗) = 𝐹(𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗) = 𝑇𝑜 [𝐾] (A2.157)  

From equation (A2.135), the initial conditions term is given as: 

𝑊𝑖𝑛(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

= ∫ ∫ ∫ 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝟎)𝐹(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗)𝑒− 

𝒗∗𝒙𝟏
∗

2
 𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

 

[𝐾] (A2.158)  

In the above equation, it is necessary to evaluate the GF at 𝒕𝟏
∗ = 0 . 

Combining equations (A2.153) to (A2.155), (A2.157), (A2.158), and 

(A2.123), and simplifying with the help of MAPLE software, the initial 

condition term is given as: 

𝑇𝑖𝑛(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑊𝑖𝑛(𝒙

∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.159)  
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𝑇𝑖𝑛(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

= 𝑇𝑜∑(
2(𝑯𝑨
∗ sin(𝜈𝑛𝒛

∗) + 𝜈𝑛 cos(𝜈𝑛𝒛
∗))(𝑯𝑨

∗ (1 − cos(𝜈𝑛𝜟𝒛𝒑
∗)) + 𝜈𝑛 sin(𝜈𝑛𝜟𝒛𝒑

∗ ))(𝜈𝑛
2 + 𝑯𝑩

∗ 𝟐)

𝜈𝑛 (𝜟𝒛𝒑
∗𝜈𝑛
4 + 𝜈𝑛

2 (𝑯𝑨
∗ +𝑯𝑩

∗ + 𝜟𝒛𝒑
∗(𝑯𝑨
∗ 𝟐 +𝑯𝑩

∗ 𝟐)) + 𝑯𝑨
∗𝑯𝑩
∗ (𝑯𝑨

∗ (1 + 𝑯𝑩
∗ 𝜟𝒛𝒑
∗) + 𝑯𝑩

∗ ))
𝑒−𝜈𝑛

2𝒕∗)

∞

𝑛=1

 

[𝐾] (A2.160)  

Equation (A2.160) can be further simplified by grouping the terms according 

to equations (A2.154) and (A2.155). This yields the more compact version 

of: 

𝑇𝑖𝑛(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑇𝑜∑(

𝑍(𝒛∗, 𝜈𝑛)𝑒
−𝜈𝑛
2𝒕∗

𝑁(𝜈𝑛)
∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛) 𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

0

)

∞

𝑛=1

 [𝐾] (A2.161)  

Equation (A2.161) represents the transient effects of the initial conditions. It 

can be put into its quasistationary form by taking its limit as 𝒕∗ → ∞. Since 

𝒕∗ only occurs within its exponential, and the exponent is negative, the limit 

is equal to zero. This is intuitive since the initial conditions of a system 

operating at a steady or quasistationary state should tend toward zero as 

time approaches infinity. 

𝑇𝑖𝑛𝑄𝑆(𝒙
∗, 𝒚∗, 𝒛∗, ∞) = 𝑇𝑜∑(

𝑍(𝒛∗, 𝜈𝑛)𝑒
−𝜈𝑛
2∞

𝑁(𝜈𝑛)
∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛) 𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

0

) = 0

∞

𝑛=1

 [𝐾] (A2.162)  

Moving on from the initial condition term, the convective boundary 

condition terms will now be determined for the top and bottom surfaces of 

the slab. At the top surface, 𝒛∗ = 𝟎, the convective boundary condition is 

given as: 
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𝜕𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝟎 −𝑯𝑨

∗𝑇(𝒙∗, 𝒚∗, 𝟎, 𝒕∗) = −𝑯𝑨
∗𝑇𝐴

=
𝜔𝜒

𝑘
𝑓1(𝒙

∗, 𝒚∗, 𝟎, 𝒕∗) 

[𝐾] (A2.163)  

This boundary condition term in the moving coordinate system GFSE is: 

𝑊𝑇𝑂𝑃(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

=
𝜔𝜒

𝑘
∫ ∫ ∫ 𝑓1(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗ )𝑒− 
𝒗∗𝒙𝟏
∗

2  + 
𝒗∗2𝒕𝟏

∗

4 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝟎, 𝒕𝟏

∗)𝑑𝒙𝟏
∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗  

[𝐾] (A2.164)  

Again invoking equation (A2.123) and using (A2.163), (A2.164) and 

(A2.153) evaluated at 𝒛𝟏
∗ = 𝟎, the top boundary condition contribution is 

given as: 

𝑇𝑇𝑂𝑃(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑊𝑇𝑂𝑃(𝒙

∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.165)  

𝑇𝑇𝑂𝑃(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

= −𝑯𝑨
∗𝑇𝐴∑(

2(𝑯𝑨
∗ sin(𝜈𝑛𝒛

∗) + 𝜈𝑛 cos(𝜈𝑛𝒛
∗))(𝜈𝑛

2 + 𝑯𝑩
∗ 2)(1 − 𝑒−𝜈𝑛

2𝒕∗)

𝜈𝑛 (𝜟𝒛𝒑
∗𝜈𝑛
4 + 𝜈𝑛

2 (𝑯𝑨
∗ +𝑯𝑩

∗ + 𝜟𝒛𝒑
∗(𝑯𝑨
∗ 2 +𝑯𝑩

∗ 2)) + 𝑯𝑨
∗𝑯𝑩
∗ (𝑯𝑩

∗ + 𝑯𝑨
∗ (1 + 𝜟𝒛𝒑

∗𝑯𝑩
∗ )))
)

∞

𝑛=1

 

[𝐾] (A2.166)  

This boundary condition can be simplified with the help of equations 

(A2.154) and (A2.155) as well to yield the compact form of: 

𝑇𝑇𝑂𝑃(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = −𝑯𝑨

∗𝑇𝐴∑(
𝑍(𝒛∗, 𝜈𝑛)

𝜈𝑛2𝑁(𝜈𝑛)
(1 − 𝑒−𝜈𝑛

2𝒕∗))

∞

𝑛=1

 [𝐾] (A2.167)  

Taking the limit as 𝒕∗ → ∞  provides the quasistationary top boundary 

contribution in the moving coordinate system: 
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𝑇𝑇𝑂𝑃𝑄𝑆(𝒙
∗, 𝒚∗, 𝒛∗, ∞) = −𝑯𝑨

∗𝑇𝐴∑(
𝑍(𝒛∗, 𝜈𝑛)

𝜈𝑛2𝑁(𝜈𝑛)
)

∞

𝑛=1

 [𝐾] (A2.168)  

Similarly, the bottom boundary contribution is constructed in the same way, 

with the condition given at 𝒛∗ = 𝜟𝒛𝒑
∗ : 

𝜕𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

𝜕𝒛∗
|𝒛∗=𝜟𝒛𝒑∗ +𝑯𝑩

∗ 𝑇(𝒙∗, 𝒚∗, 𝜟𝒛𝒑
∗ , 𝒕∗) = 𝑯𝑩

∗ 𝑇𝐵

=
𝜔𝜒
𝑘
𝑓2(𝒙

∗, 𝒚∗, 𝜟𝒛𝒑
∗ , 𝒕∗) 

[𝐾] (A2.169)  

where 

𝑊𝐵𝑂𝑇𝑇𝑂𝑀(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

=
𝜔𝜒

𝑘
∫ ∫ ∫ 𝑓2(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗)𝑒− 

𝒗∗𝒙𝟏
∗

2  + 
𝒗∗
2
𝒕𝟏
∗

4 𝐺∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗ | 𝒙𝟏
∗ , 𝒚𝟏
∗ , 𝜟𝒛𝒑

∗ , 𝒕𝟏
∗)𝑑𝒙𝟏

∗𝑑𝒚𝟏
∗

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

𝑑𝒕𝟏
∗  

[𝐾] (A2.170)  

By using the same procedure as that for the top boundary, the contribution 

from the bottom term is given as: 

𝑇𝐵𝑂𝑇𝑇𝑂𝑀(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑊𝐵𝑂𝑇𝑇𝑂𝑀(𝒙

∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.171)  

𝑇𝐵𝑂𝑇𝑇𝑂𝑀(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

= 𝑯𝑩
∗ 𝑇𝐵∑(

2(𝑯𝑨
∗ sin(𝜈𝑛𝒛

∗) + 𝜈𝑛 cos(𝜈𝑛𝒛
∗))(𝑯𝑨

∗ sin(𝜈𝑛𝜟𝒛𝒑
∗) + 𝜈𝑛 cos(𝜈𝑛𝜟𝒛𝒑

∗))(𝜈𝑛
2 +𝑯𝑩

∗ 2)(1 − 𝑒−𝜈𝑛
2𝒕∗)

𝜈𝑛
2 (𝜟𝒛𝒑

∗𝜈𝑛
4 + 𝜈𝑛

2 (𝑯𝑨
∗ + 𝑯𝑩

∗ + 𝜟𝒛𝒑
∗ (𝑯𝑨
∗ 2 + 𝑯𝑩

∗ 2)) + 𝑯𝑨
∗𝑯𝑩
∗ (𝑯𝑩

∗ + 𝑯𝑨
∗ (1 + 𝜟𝒛𝒑

∗𝑯𝑩
∗ )))

)

∞

𝑛=1

 

[𝐾] (A2.172)  

Simplifying the above equation with the help of (A2.154) and (A2.155) again 

provides the compact form of the bottom boundary contribution: 
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𝑇𝐵𝑂𝑇𝑇𝑂𝑀(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗)

= 𝑯𝑩
∗ 𝑇𝐵∑(

𝑍(𝒛∗, 𝜈𝑛)𝑍(𝜟𝒛𝒑
∗ , 𝜈𝑛)

𝜈𝑛2𝑁(𝜈𝑛)
(1 − 𝑒−𝜈𝑛

2𝒕∗))

∞

𝑛=1

 
[𝐾] (A2.173)  

To obtain the quasistationary state, the limit as 𝒕∗ → ∞ is again evaluated, 

yielding: 

𝑇𝐵𝑂𝑇𝑇𝑂𝑀𝑄𝑆(𝒙
∗, 𝒚∗, 𝒛∗, ∞) = 𝑯𝑩

∗ 𝑇𝐵∑(
𝑍(𝒛∗, 𝜈𝑛)𝑍(𝜟𝒛𝒑

∗ , 𝜈𝑛)

𝜈𝑛2𝑁(𝜈𝑛)
)

∞

𝑛=1

 [𝐾] (A2.174)  

 The final and most involved term to obtain is the contribution from 

the source. The source term under consideration is that of the RTE from 

equation (A2.151), and is restated below. The variable 𝒕∗ has been dropped 

from the notation of the source since it does not explicitly appear due to the 

source being stationary in the new moving coordinate system. 

𝑔𝑅𝑇𝐸(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑔𝑅𝑇𝐸(𝒙

∗, 𝒚∗, 𝒛∗) = 𝐼𝑜𝑔𝑥(𝒙
∗)𝑔𝑦(𝒚

∗)𝑔𝑧(𝒛
∗)   

= 𝐼𝑜𝑒
−𝜒(𝒙∗

𝟐
+𝒚∗
𝟐
)
(𝑎(𝐴𝑒−2𝑎𝜷

∗𝒛∗ − 𝐵𝑒2𝑎𝜷
∗𝒛∗) + (𝑒−𝜷

∗𝒛∗

+ 𝑅𝑠𝑒
𝜷∗𝒛∗−2𝜆) (1 −

𝑅𝑏
4𝑅𝑏 − 3

)) 

[
𝑊

𝑚3
] (A2.175)  

where 

𝐼𝑜 =
𝛽𝜒𝑃

𝜋𝜔𝜒2
 [

𝑊

𝑚3
] (A2.176)  

𝑔(𝒙∗) = 𝑒−𝜒𝒙
∗𝟐

 

 (A2.177)  
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𝑔(𝒚∗) = 𝑒−𝜒𝒚
∗𝟐

 

 (A2.178)  

𝑔(𝒛∗) = 𝑎(𝐴𝑒−2𝑎𝜷
∗𝒛∗ − 𝐵𝑒2𝑎𝜷

∗𝒛∗) + (𝑒−𝜷
∗𝒛∗

+ 𝑅𝑠𝑒
𝜷∗𝒛∗−2𝜆) (1 −

𝑅𝑏
4𝑅𝑏 − 3

) 

 (A2.179)  

Considering the laser source and the three-dimensional GF defined for the 

infinite slab in equation (A2.153), The source term in the GFSE for the 

moving system from (A2.135) is given as: 

𝑊𝑆𝑂𝑈𝑅𝐶𝐸(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

=
𝜔𝜒
2

𝑘
 ∫ ∫ ∫ ∫ 𝑮∗(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗|𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗)𝑔(𝒙𝟏

∗ , 𝒚𝟏
∗ , 𝒛𝟏
∗ , 𝒕𝟏
∗ )𝒆− 

𝒗∗𝒙𝟏
∗

𝟐  + 
𝒗∗
𝟐
𝒕𝟏
∗

𝟒  𝒅𝒙𝟏
∗𝒅𝒚𝟏
∗𝒅𝒛𝟏
∗𝒅𝒕𝟏
∗

𝜟𝒛𝒑
∗

𝒛𝟏
∗=𝟎

∞

𝒚𝟏
∗=−∞

∞

𝒙𝟏
∗=−∞

𝒕∗

𝒕𝟏
∗=𝟎

 

[𝐾] (A2.180)  

The total contribution, as determined previously for the initial conditions and 

boundary conditions, is obtained by inserting the evaluated integral above 

into equation (A2.123): 

𝑇𝑆𝑂𝑈𝑅𝐶𝐸(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑊𝑆𝑂𝑈𝑅𝐶𝐸(𝒙

∗, 𝒚∗, 𝒛∗, 𝒕∗)𝑒
𝒗∗𝒙∗

2
 − 
𝒗∗
2
𝒕∗

4  
[𝐾] (A2.181)  

Before writing the source term according to the process above, it is 

important to note that unlike for the initial and boundary conditions, there is 

no analytical quasistationary solution for the source term. This is because 

the integral in the variable 𝒕𝟏
∗  is only able to be computed numerically. Thus, 

the final form of this term will be left as an integral. This solution is obtained 

by lengthy manipulation in MAPLE software by the evaluation of the above 

equations. It was then simplified with help from (A2.154) and (A2.155) as 

done previously as well. 
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𝑇𝑆𝑂𝑈𝑅𝐶𝐸(𝒙
∗, 𝒚∗, 𝒛∗, 𝒕∗) 

=
𝜔𝜒
2

𝑘
𝐼𝑜∑

(

  
 𝑍(𝒛∗, 𝜈𝑛)

𝑁(𝜈𝑛)
[∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛)𝑔𝑧(𝒛𝟏
∗) 𝑑𝒛𝟏

∗
𝜟𝒛𝒑
∗

𝟎

]

{
 
 

 
 

∫

 
 
 
 
𝑒
−
𝜒((𝒙∗−𝒗∗(𝒕∗−𝒕𝟏

∗ ))
𝟐
+𝒚∗
2
)

1+4𝜒(𝒕∗−𝒕𝟏
∗ )

1 + 4𝜒(𝒕∗ − 𝒕𝟏
∗ )

𝒕∗

𝟎

𝑒−𝜈𝑛
2(𝒕∗−𝒕𝟏

∗ )𝑑𝒕𝟏
∗

}
 
 

 
 

)

  
 

∞

𝑛=1

 

[𝐾] (A2.182)  

The source term defined in (A2.182) has been integrated through the 𝒙𝟏
∗  

and 𝒚𝟏
∗  in their respective infinite domains. Thus, the x- and y-contributions 

to the source disappear from the above equation. However, the integral in 

𝒛𝟏
∗  has been left unevaluated and thus the z-contribution from the source 

remains. The argument of the integral is composed of equations (A2.154) 

and (A2.179) evaluated at 𝒛∗ = 𝒛𝟏
∗ . The eigenvalues are obtained as 

previously mentioned by: 

tan(𝜈𝑛𝜟𝒛𝒑
∗) =
𝜈𝑛(𝑯𝑨

∗ +𝑯𝑩
∗ )

(𝜈𝑛
2 −𝑯𝑩

∗𝑯𝑨
∗ )

 
 (A2.183)  

To obtain the source term contribution at any point (𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) , both 

integrals in 𝒛𝟏
∗  and 𝒕𝟏

∗  equation (A2.182) can be evaluated numerically, 

although the former does have an analytical solution. It was condensed into 

shorter notation to save space. The quasistationary solution is arrived at by 

means of a variable transform. If the following substitution is applied to 

equation (A2.182): 

𝜺 = 𝒕∗ − 𝒕𝟏
∗   (A2.184)  

𝑑𝜺 = −𝑑𝒕𝟏
∗   (A2.185)  

The limits of the original integral are converted as follows: 
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𝒕𝟏
∗ = 0 → 𝜺 = 𝒕∗  (A2.186)  

𝒕𝟏
∗ = 𝒕∗ → 𝜺 = 𝟎  (A2.187)  

Evaluating as 𝒕∗ → ∞ for the above two limits creates new limits of integration: 

𝒕𝟏
∗ = 0 → lim

𝒕∗→∞
𝜺 = ∞  (A2.188)  

𝒕𝟏
∗ = 𝒕∗ → lim

𝒕∗→∞
𝜺 = 𝟎  (A2.189)  

Due to the negative sign in equation (A2.185) the integral and its limits can 

be flipped according to the following representation. 

lim
𝒕∗→∞
∫ 𝑑𝒕𝟏

∗  
𝒕∗

0

= − lim
𝒕∗→∞
∫ 𝑑𝜺 = lim

𝒕∗→∞
∫ 𝑑𝜺 
𝒕∗

𝟎

= ∫ 𝑑𝜺 
∞

𝟎

𝟎

𝒕∗
 

 (A2.190)  

Applying the above variable change creates an integral that is easier to 

evaluate numerically: 

𝑇𝑆𝑂𝑈𝑅𝐶𝐸𝑄𝑆(𝒙
∗, 𝒚∗, 𝒛∗, ∞)

=
𝜔𝜒
2

𝑘
𝐼𝑜∑

(

 
 𝑍(𝒛∗, 𝜈𝑛)

𝑁(𝜈𝑛)
[∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛)𝑔𝑧(𝒛𝟏
∗) 𝑑𝒛𝟏

∗
𝜟𝒛𝒑
∗

𝟎

]

{
 
 

 
 

∫
𝑒
−
𝜒((𝒙∗−𝒗∗𝜺)𝟐+𝒚∗

2)

1+4𝜒𝜺

1 + 4𝜒𝜺

∞

𝟎

𝑒−𝜈𝑛
2𝜺𝑑𝜺

}
 
 

 
 

)

 
 

∞

𝑛=1

 

[𝐾] (A2.191)  

 Thus, all the terms of GFSE for the moving infinite slab have 

been determined with dimensionless variables and the final equation 

is given as follows for both the transient and quasistationary cases: 
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𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗) = 𝑇𝑖𝑛 + 𝑇𝑆𝑂𝑈𝑅𝐶𝐸 + 𝑇𝑇𝑂𝑃 + 𝑇𝐵𝑂𝑇𝑇𝑂𝑀 [𝐾] (A2.192)  

𝑇(𝒙∗, 𝒚∗, 𝒛∗, 𝒕∗)

= 𝑇𝑜∑(
𝑍(𝒛∗, 𝜈𝑛)𝑒

−𝜈𝑛
2𝒕∗

𝑁(𝜈𝑛)
∫ 𝑍(𝒛𝟏

∗) 𝑑𝒛𝟏
∗

𝜟𝒛𝒑
∗

0

)

∞

𝑛=1

+
𝜔𝜒
2

𝑘
𝐼𝑜∑

(

  
 𝑍(𝒛∗, 𝜈𝑛)

𝑁(𝜈𝑛)
[∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛)𝑔𝑧(𝒛𝟏
∗) 𝑑𝒛𝟏

∗
𝜟𝒛𝒑
∗

𝟎

]

{
 
 

 
 

∫

 
 
 
 
𝑒
− 
𝜒((𝒙∗−𝒗∗(𝒕∗−𝒕𝟏

∗ ))
𝟐
+𝒚∗
2
)

1+4𝜒(𝒕∗−𝒕𝟏
∗ )

 − 𝜈𝑛
2(𝒕∗−𝒕𝟏

∗ )

1 + 4𝜒(𝒕∗ − 𝒕𝟏
∗ )

𝒕∗

𝟎

𝑑𝒕𝟏
∗

}
 
 

 
 

)

  
 

∞

𝑛=1

−𝑯𝑨
∗𝑇𝐴∑(

𝑍(𝒛∗, 𝜈𝑛)

𝜈𝑛
2𝑁(𝜈𝑛)

(1 − 𝑒−𝜈𝑛
2𝒕∗))

∞

𝑛=1

+𝑯𝑩
∗ 𝑇𝐵∑(

𝑍(𝒛∗, 𝜈𝑛)𝑍(𝜟𝒛𝒑
∗ , 𝜈𝑛)

𝜈𝑛
2𝑁(𝜈𝑛)

(1 − 𝑒−𝜈𝑛
2𝒕∗))

∞

𝑛=1

 

For the transient case (finite 𝒕∗) 

(A2.193)  

 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, ∞) = 𝑇𝑆𝑂𝑈𝑅𝐶𝐸𝑄𝑆 + 𝑇𝑇𝑂𝑃𝑄𝑆 + 𝑇𝐵𝑂𝑇𝑇𝑂𝑀𝑄𝑆  
[𝐾] (A2.194)  

𝑇(𝒙∗, 𝒚∗, 𝒛∗, ∞)

=
𝜔𝜒
2

𝑘
𝐼𝑜∑

(

 
 𝑍(𝒛∗, 𝜈𝑛)

𝑁(𝜈𝑛)
[∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛)𝑔𝑧(𝒛𝟏
∗) 𝑑𝒛𝟏

∗
𝜟𝒛𝒑
∗

𝟎

]

{
 

 

∫
𝑒
−
𝜒((𝒙∗−𝒗∗𝜺)𝟐+𝒚∗2)

1+4𝜒𝜺

1 + 4𝜒𝜺

∞

𝟎

𝑒−𝜈𝑛
2𝜺𝑑𝜺

}
 

 

)

 
 

∞

𝑛=1

 

−𝑯𝑨
∗𝑇𝐴∑(

𝑍(𝒛∗, 𝜈𝑛)

𝜈𝑛
2𝑁(𝜈𝑛)

)

∞

𝑛=1

+𝑯𝑩
∗ 𝑇𝐵∑(

𝑍(𝒛∗, 𝜈𝑛)𝑍(𝜟𝒛𝒑
∗ , 𝜈𝑛)

𝜈𝑛
2𝑁(𝜈𝑛)

)

∞

𝑛=1

 

For the quasistationary case as  𝒕∗ → ∞  

(A2.195)  

The individual functions within the integrals are again stated for reference: 
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𝑍(𝒛∗, 𝜈𝑛) = (
𝑯𝑨
∗

𝜈𝑛
sin(𝜈𝑛𝒛

∗) + cos(𝜈𝑛𝒛
∗)) 

 (A2.196)  

𝑁(𝜈𝑛) =
1

2
(
𝜟𝒛𝒑
∗ (𝜈𝑛
2 +𝑯𝑨

∗ 𝟐)

𝜈𝑛2
+
(𝑯𝑨
∗ +𝑯𝑩

∗ )(𝜈𝑛
2 +𝑯𝑨

∗𝑯𝑩
∗ )

𝜈𝑛2(𝜈𝑛2 +𝑯𝑩
∗ 𝟐)

) 
 (A2.197)  

tan(𝜈𝑛𝜟𝒛𝒑
∗) =
𝜈𝑛(𝑯𝑨

∗ +𝑯𝑩
∗ )

(𝜈𝑛
2 −𝑯𝑩

∗𝑯𝑨
∗ )

 
 (A2.198)  

𝑯∗ =
𝜔𝜒

𝑘
ℎ  

(A2.199)  

𝐼𝑜 =
𝛽𝜒𝑃

𝜋𝜔𝜒2
 [

𝑊

𝑚3
] 

(A2.200)  

𝑔𝑧(𝒛
∗) = 𝑎(𝐴𝑒−2𝑎𝜷

∗𝒛∗ − 𝐵𝑒2𝑎𝜷
∗𝒛∗) + (𝑒−𝜷

∗𝒛∗

+ 𝑅𝑠𝑒
𝜷∗𝒛∗−2𝜆) (1 −

𝑅𝑏
4𝑅𝑏 − 3

) 

 (A2.201)  

𝐴

=
2𝑅𝑏(𝑒

2𝑎𝜆) ((𝑅𝑠 + 3(𝑒
2𝜆)) ((𝑅𝑏(1 + 𝑅𝑠) − 2)𝑎 − 2(1 − 𝑅𝑏))(𝑒

2𝑎𝜆) + 𝑅𝑏𝑎(1 − 𝑅𝑠)(1 + 𝑅𝑠)𝑒
𝜆)

(4𝑅𝑏 − 3)(𝑒
2𝜆) ((𝑅𝑏(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒

4𝑎𝜆) − 2(𝑎 − 1) − 𝑅𝑏(1 + 𝑅𝑠)) (1 + 𝑎)
 

(A2.202)  

𝐵

=
2𝑅𝑏 (𝑒

𝜆(1 − 𝑅𝑠)(1 + 𝑅𝑠)(1 + 𝑎 − 𝑅𝑏)(𝑒
2𝑎𝜆) − (𝑅𝑠 + 3(𝑒

2𝜆)) ((1 − 𝑅𝑠)𝑎 + (1 + 𝑅𝑠)(𝑅𝑏 − 1)))

(4𝑅𝑏 − 3)(𝑒
2𝜆)((𝑅𝑏(1 + 𝑅𝑠) − 2(1 + 𝑎))(𝑒

4𝑎𝜆) − 2(𝑎 − 1) − 𝑅𝑏(1 + 𝑅𝑠)) 
 

(A2.203)  

𝑎 = √1 − 𝑅𝑏  (A2.204)  

𝜆 = 𝛽𝛥𝑧𝑝 = 𝜷
∗𝜟𝒛𝒑
∗   (A2.205)  
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In a separate exercise, the GFSE was derived for an assumed constant 

temperature boundary between the powder and build plate on the bottom 

while keeping the convective boundary on the top of the powder bed. This 

GFSE is given below. 

𝑇(𝒙∗, 𝒚∗, 𝒛∗, ∞) = 𝑇𝑆𝑂𝑈𝑅𝐶𝐸𝑄𝑆 + 𝑇𝑇𝑂𝑃𝑄𝑆 + 𝑇𝐵𝑂𝑇𝑇𝑂𝑀𝑄𝑆 
[𝐾] (A2.206)  

𝑇(𝒙∗, 𝒚∗, 𝒛∗, ∞)

=
𝜔𝜒
2

𝑘
𝐼𝑜∑

(

 
 𝑍(𝒛∗, 𝜈𝑛)

𝑁(𝜈𝑛)
[∫ 𝑍(𝒛𝟏

∗ , 𝜈𝑛)𝑔𝑧(𝒛𝟏
∗) 𝑑𝒛𝟏

∗
𝜟𝒛𝒑
∗

𝟎

]

{
 

 

∫
𝑒
−
𝜒((𝒙∗−𝒗∗𝜺)𝟐+𝒚∗2)

1+4𝜒𝜺

1 + 4𝜒𝜺

∞

𝟎

𝑒−𝜈𝑛
2𝜺𝑑𝜺

}
 

 

)

 
 

∞

𝑛=1

 

−𝑯𝑨
∗𝑇𝐴∑(

𝑍(𝒛∗, 𝜈𝑛)sin (𝜈𝑛𝜟𝒛𝒑
∗ )

𝜈𝑛
2𝑁(𝜈𝑛)

)

∞

𝑛=1

+ 𝑇𝐵∑(
𝑍(𝒛∗, 𝜈𝑛)

𝜈𝑛𝑁(𝜈𝑛)
)

∞

𝑛=1

 

For the quasistationary case as  𝒕∗ → ∞  

(A2.207)  

 

 

 

 

 

 

 

 

 


