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Lay Abstract

In practical acoustic environments, sound reflects off physical surfaces resulting in

a sequence of echoes called reverberation. This acoustic phenomenon makes speech

perception more challenging, especially for individuals with hearing impairment. It is

therefore important for speech reproduction systems such as hearing aids to include

techniques for managing the effects of reverberation. In this thesis one of the most

prevalent signal processing algorithms for “dereverberation”, namely the delay-and-

predict algorithm, is evaluated. To provide new insights into the complex impacts of

reverberation/dereverberation on speech perception, recent advancements in numer-

ical methods for predicting speech intelligibility are leveraged. The results suggest

that the delay-and-predict algorithm provides a distinct perceptual benefit under

ideal conditions, but its performance is limited in many practical environments. Ad-

ditionally, the results highlight potential advantages and disadvantages of different

types of intelligibility predictors in the context of evaluating complex signal processing

algorithms.

iii



Abstract

In practical acoustic environments, reflections give rise to reverberation which makes

speech perception more challenging, especially for individuals with hearing impair-

ment. This creates a need for speech reproduction systems such as hearing aids to

include strategies for reducing the perceptual impacts of reverberation (i.e., derever-

beration algorithms). In this thesis, an evaluation of one of the most prevalent tech-

niques, namely delay-and-predict dereverberation (Triki and Slock, 2006), is provided.

Recent advancements in physiologically motivated predictors of speech intelligibility

(SI) are leveraged to explain the complex impacts of reverberation/dereverberation

on speech perception. In particular, the neurogram similarity index measure (NSIM)

and the spectro-temporal modulation index (STMI) are utilized in addition to the

well-known hearing aid speech perception index (HASPI) and short-time objective

intelligibility (STOI). The results suggest that delay-and-predict dereverberation is

relatively effective at reducing the earlier part of room impulse responses (RIRs),

which provides sufficient restoration of temporal fine structure (TFS) and envelope

(ENV) acoustic cues to reduce listening effort (LE) and compensate deficits in SI for

normal-hearing and hearing-impaired listeners. The algorithm is incapable of can-

celling the later part of RIRs, but by introducing a small amount of autocorrelation

regularization to the algorithm, its impact on this late reverberation is shown to
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greatly improve. In practice however, delay-and-predict performance is shown to be

limited by the number of microphones available, the need for large amounts of sig-

nal data, the presence of interfering acoustic signals, and potentially by time-varying

acoustics. The evaluation also demonstrates that the NSIM and STMI provide a more

complete picture of the perceptual impacts of reverberation than HASPI or STOI.

However, the NSIM is found to be highly sensitive to phase distortions which may or

may not reflect a realistic impact on speech perception, thus potentially limiting its

usefulness in the evaluation of complex signal processing algorithms.
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Notation and abbreviations

AR Auto-Regressive

BSI Blind System Identification

BTE Hearing Aid Behind-the-Ear Hearing Aid

CF Characteristic Frequency

DAP Delay-and-Predict (Dereverberation)

DOA Direction of Arrival

EDT Early Decay Time

EIR Equalized Impulse Response

ENV Envelope

FTC Frequency Tuning Curve

FT-NSIM Fine-Timing NSIM (i.e., spike-timing NSIM)

HASPI Hearing Aid Speech Perception Index

HASQI Hearing Aid Speech Quality Index

HOS Higher-Order Statistics

IHC Inner Hair Cell

i.i.d. Independent Identically Distributed

LE Listening Effort

LP Linear Prediction
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MINT Multiple-input/output Inverse Theorem

MC-LP Multichannel Linear Prediction

MR-NSIM Mean-Rate NSIM

NSIM Neurogram Similarity Index Measure

OHC Outer Hair Cell

RIR Room Impulse Response

RTF Room Transfer Funtion

SI Speech Intelligibility

SOS Second-Order Statistics

SQ Speech Quality

SNR Signal-to-Noise Ratio

SIR Signal-to-Interference Ratio

STI Speech Transmission Index

STMI Spectro-Temporal Modulation Index

STOI Short-Time Objective Intelligibility

TFS Temporal Fine Structure

VISQOL Virtual Speech Quality Objective Listener
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Chapter 1

Introduction and Background

1.1 Introduction

In practical acoustic environments, reflections give rise to reverberation, which is

perceived as a sustained decaying tail following the onset of acoustic signals. Re-

verberation blurs acoustic cues which has a negative impact on speech perception,

especially for listeners who are hearing impaired. Even if reverberation is not sign-

ficant enough to impact speech intelligibility, it still may have a significant impact

on listening effort. As such, it is important for sound reproduction systems such as

hearing aids to include techniques for managing reverberation. While many derever-

beration algorithms have been proposed, this remains a problem with much room for

innovation. Additionally, recent advancements in auditory modeling (Bruce et al.,

2017) have provided new avenues for analyzing the complex impact of reverberation

on speech perception, and thus for evaluating the performance of dereverberation

algorithms. The purpose of this thesis is to investigate the behavior of recent percep-

tually motivated predictors of speech intelligibility and listening effort in the context
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of reverberation, and to employ these predictors in the evaluation of an existing ap-

proach to dereverberation.

Dereverberation algorithms can be generally categorized as reverberation suppres-

sion and reverberation cancellation. Reverberation suppression algorithms aim to es-

timate/remove the most perceptually impactful components of reverberation, usually

by means of a time/frequency gain function or by spectral subtraction. Reverbera-

tion cancellation algorithms directly estimate and equalize the transfer function of the

acoustic space. Many practical approaches consist of a two-stage algorithm including

cancellation and suppression. Most of the effective approaches to reverberation can-

cellation employ multichannel linear-predictive modeling of the a multi-microphone

array. Key algorithms in this area include the delay-and-predict algorithm (Triki

and Slock, 2006), the linear-predictive multiple-input equalization algorithm (LIME,

Delcroix et al., 2007), and the weighted prediction error algorithm (WPE, Nakatani

et al., 2008). The focus of this thesis is on the delay-and-predict algorithm.

In this chapter, a review of room acoustics and the perceptual impacts of re-

verberation is provided. Additionally the impacts of hearing loss on the perceptual

encoding of speech are reviewed, and this is related to perception in reverberation.

Lastly, existing predictors of speech intelligibility, which have various degrees of audi-

tory modeling, are discussed. As a slightly separate topic, a review of linear prediction

theory is provided, which lays the groundwork for some of the key algorithms in the

next chapter.

Chapter 2 provides a review of existing approaches to dereverberation, and the

performance and limitations of these algorithms are discussed. Delay-and-predict

2
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dereverberation (Triki and Slock, 2006) is proposed as the focal point for the inves-

tigation of multichannel linear-predictive approaches to reverberation cancellation to

be conducted in this thesis.

In Chapter 3, the impact of various delay-and-predict algorithm parameters and

signal/acoustics variables on dereverberation performance are investigated. The re-

sults from this initial evaluation are used to tune the algorithm for the perceptual

evaluation in the following chapter.

Chapter 4 begins with a proposed method for evaluating the perceptual impacts

of reverberation using objective predictors of speech performance, and this method

is analyzed for perceptual validity. A final perceptual evaluation method is then

presented which analyzes delay-and-predict dereverberation performance on the basis

of speech intelligibility / listening effort, speech quality, and clarity (C50). Five

predictors of speech intelligibility are employed: the hearing aid speech perception

index (HASPI, Kates and Arehart, 2022), the neurogram similarity index method

(NSIM, Hines and Harte, 2012), the spectro-temporal modulation index (STMI,

Zilany and Bruce, 2007) and the short-time objective intelligibility measure (STOI,

Taal et al., 2010). For speech quality, two predictors are used: the hearing aid

speech quality index (HASPI, Kates and Arehart, 2022) and virtual speech quality

objective listener (VISQOL, Hines et al., 2015). Using this evaluation method,

the perceptual benefit of the delay-and-predict algorithm under realistic/practical

reverberant conditions is investigated and discussed.

In Chapter 5 the big picture conclusions from the evaluation in Chapter 4 are

provided, and future work is proposed.
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1.2 Acoustics of Reverberation

This overview of room acoustics was based on Beranek and Mellow (2012) and Kut-

truff (2016).

1.2.1 Room Acoustics

When sound is produced in a practical room, it interacts with many physical sur-

faces such as walls, ceilings, floor and objects, resulting in a wide array of reflections

and defraction/refraction effects. Surfaces that are smooth and large relative to the

wavelength cause the effective plane wave front to be reflected off in an individual di-

rection (i.e., specular reflection). When surfaces are smaller or highly uneven, sound

is reflected in many directions (i.e., scattering) resulting in a spreading of energy (i.e.,

diffuse reflection). Curved surfaces cause sound to be focused for concave curves, or

dispersed for convex curves. When reflections are sparse, they are perceived as dis-

tinct echoes, while dense concentrations of reflections are perceived as persistance of

the direct sound (i.e., reverberation).

Reflected sound results in a series of wavefronts reaching the listener with different

amplitudes and phases, which can be modeled by the convolution of the dry (i.e.,

clean) speech signal with a sequence of impulses called the room impulse response

(RIR). Similarly, the transfer function corresponding to the RIR (i.e., its Z-Transform)

is referred to as the room transfer function (RTF). Like any impulse response, the

RIR can be convolved with a theoretical source signal to compute the (noise-free)

soundfield that would be perceived at a listening location. The sound that arrives

at the listener via line-of-sight is called the direct sound, which is typically the first
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impulse in the RIR.

Symmetric acoustic spaces such as rectangular rooms tend to produce consistent

reflection patterns which results in concentration of reflections from particular direc-

tions and patterns of constructive and destructive interference throughout the room

(i.e., room modes). Irregular room shapes, and the presence of objects in the room

result in more scattering of waves, resulting in a sound field that is more symmetric

in the dispersion of energy (i.e., more diffuse). In the extreme case, when the direct

sound is the same level as the reflections, a diffuse sound field is produced. Under

this condition, sound appears to arrive from all directions equally, sound pressure is

distributed evenly throughout the room, and phase relationships between waves can

be considered uncorrelated.

Reflection is not uniform over frequency, so reflected sound waves have different

spectra from their corresponding incident waves. Common surfaces such as walls and

fabric tend to have a lowpass response. This effect is particularly pronounced in the

presence of multiple reflections, giving typical room frequency responses some roll-

off at high frequencies. Room frequency response can be divided into three primary

regions: a low frequency “mode-dominated” region, a mid frequency “transition”

region, and a high frequency “diffuse field dominated” region. At low frequencies,

where wavelengths are similar to room dimensions, standing waves give rise to strong

room modes (i.e., room resonances), which results in a frequency response with a

smoother pattern of spectral peaks and notches. As frequency increases through

the transition zone, these spectral peaks and notches become more dense. Above a

frequency threshold called the Shroeder Frequency (Schroeder and Kuttruff, 1962),

the reverberant sound field is highly diffuse and the frequency response becomes
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highly irregular.

1.2.2 Early and Late Reflections

RIRs are often divided conceptually into three temporal sections: direct sound, early

reflections and late reflections (Figure 1.1). The direct sound is an acoustically at-

tenuated version of the transmitted sound, delayed by the time of flight between the

sound source and the listening location. Early reflections are generally considered to

be the reflections which arrive within 50 – 100 ms of the direct sound, and late reflec-

tions represent the rest of the reflections that follow. Early reflections are generally

not perceived as distinct reflections, instead being integrated with the direct sound

by perceptual adaptations which will be discussed later. This results in a perceptual

SNR boost of up to of up to approximately 9 dB, which aids in speech perception.

Conversely, late reflections are perceived as distinct from the direct sound and collec-

tively create a dense decaying sound “tail” after the perceived direct and early sound.

This produces the characteristic decaying sustained sound of reverberation (i.e., the

reverberant tail), which has a negative impact on speech perception. As such, in

the design of an acoustic space for speech perception, the goal is not to minimize

reverberation, but rather it is often to minimize late reflections and maximize early

reflections. It should be noted however, that for in certain acoustic spaces (e.g., music

performance halls), some late reflections are also subjectively preferable.
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Figure 1.1: Example of a room impulse response (RIR), energy decay curve (EDC,
defined in Equation 1.4) and room transfer function (RTF) magnitude response. RIR
is the “office II” room from the HRIR database (Kayser et al., 2009).

In simple room geometries and diffuse field conditions, the sound pressure level of

reverberation decays exponentially.This is evident in Figure 1.1 where the EDC shows
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approximately linear decay of energy on a logarithmic scale. Early reflections primar-

ily consist of the first reflections off the walls, floor and ceiling of the room. These

reflections are more sparse in nature, making the early part of the RIR sporadic and

non-exponential. Since late reflections involve many wavefronts produced by repeated

reflections around the room, they are much more dense and diffuse in nature. The

initial time delay gap (ITDG) between the direct sound and the first early reflection,

as well as the duration of these first reflections increases with room size. Although

early reflections are not perceptually distinct, they still provide a perceptual sense of

room size.

The perceptual distinction between early and late reflections has led to a number

of useful metrics which describe amount of reverberation in terms of their relative

energies. The direct-to-reverberant ratio (DRR) which is the ratio of direct sound to

all reverberant energy expressed in dB, i.e.,

DRR = 10 log10

(∫ td+t0
td−t0

h2(t)dt∫∞
td+t0

h2(t)dt

)
dB (1.1)

where h(t) is the RIR, td is the time of the direct sound, and t0 represents a small

window around the direct sound. Typically t0 is approximately 1.0 to 2.5ms, not

the early reflection window. A more perceptually relevant metric is “clarity” (Cte ,

commonly C50) which is the ratio of direct and early energy to late energy expressed

in dB, i.e.,

Cte = 10 log10

(∫ td+te
td

h2(t)dt∫∞
td+te

h2(t)dt

)
dB (1.2)

where td is the time of the direct sound, and te is the duration after the direct sound

8



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

defined as early reflections (i.e., around 50ms for speech). Another related metric

is “definition” (Dte , commonly D50) which is the ratio of direct and early energy to

total RIR energy 1, i.e.,

Dte = 10 log10

(∫ td+te
td

h2(t)dt∫∞
0
h2(t)dt

)
dB (1.3)

Another common way of analyzing reverberation is using the energy decay curve

(EDC), which is a metric of the amount of energy remaining in the RIR h(n) at time

t.

EDC(t) =

∫ ∞

t

h2(τ)dτ (1.4)

Note in Figure 1.1 how the EDC decays approximately linearly in the log domain

(i.e., exponentially in the linear domain) during late reflections, but is more step-like

during early reflections. The rapid drop off of energy towards the end of the RIR

in this example is due to a time window applied during the measurement process

(Kayser et al., 2009). The EDC is much smoother than the RIR, making it much

more useful for analyzing the decay rate of reverberation.

An extention of the EDC is the energy decay relief (EDR), which uses the short-

time fourier transform (STFT) to represent the EDC per frequency band.

EDR(tn, fk) =
M∑

m=n

|H(m, k)|2 (1.5)

where H(m,n) is the STFT at time window m and frequency bin k, and M is the

total number of time windows in the RIR. tn and fk represent the equivalent physical

1To avoid confusion between clarity/definition implying the metrics of reverberation and the
general usage of those words, these metrics will only ever be referred to as C50 and D50.
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times and frequencies.

The most common objective metric of reverberation is reverberation time (RT60,

or simply T60) which describes the time required for the reverberant energy to decay

by 60 dB, becoming effectively inaudibile. Sabine (1922) proposed a closed-form

estimate for T60 from the volume V in m3 of the room, the surface area S in m2 of

the room boundary surfaces and the average absorption α of the surfaces.

T60 =
0.161V

Sα
s (1.6)

Alternatives to T60 are T30 and T20, both of which attempt to estimate T60 from

the more exponentially decaying parts of the RIR. T30 performs linear extrapolation

of the log-domain EDC from -5 dB to -35 dB down to -60 dB. i.e., T30 is an estimate

of T60 based on the first 30 dB of the EDC. Similarly, T20 estimates T60 based on

the first 20 dB of the EDC.

Reverberation time alone, however, provides a limited description of reverberant

decay, since it is primarily focuses on describing the exponential decay of late rever-

berant tail and does not give much information about the early portion of the RIR

which generally follows a different decay rate. Since two RIRs with the same T60

may have different proportions of early and late reflections, the perceptual impact of

those RIRs may be substantially different. As such, the early decay time (EDT) has

been introduced to model the early part of the RIR. EDT is a measure of how long

the EDC takes to decay by 10 dB. It is important to note, however, that this early

decay region of the the RIR is not necessarily the same as the early reflections. EDT

is defined based on a certain amount of attenuation (10 dB), whereas early reflections

are defined based on a certain time window (around 50m sec). This is an important
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distinction because, as will be discussed further, the early reflections generally provide

a perceptual benefit, while a lower EDT (i.e., a stronger early decay region) may have

a negative impact on perception if the early decay region is longer than the boundary

between early/late reflections. In this thesis, the two regions of the RIR (described

by EDT and reverberation time respectively) will be referred to as the “early decay

region” and “late decay region”.

1.3 The Auditory System

The human auditory system is a complex biological system which has evolved to

optimally transform acoustical stimulus into neurological excitations that can be un-

derstood by the brain and interpreted as sound. It is made up of many acoustical,

mechanical, fluid dynamic, chemical and neurological subsystems, each of which plays

a key role in this process.

A detailed description of the auditory system can be found in Pickles (2013), but

the important details have been reviewed in this section.
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1.3.1 The Outer and Middle Ear

Figure 1.2: The human auditory system. Permission requested from Brill, Figure 2.1
from Pickles (2013) ©2013.

The outer ear is an acoustical/mechanical system which transfroms and transfers

acoustical signals to the middle ear. When air is pushed and pulled by a sound

source (e.g., a loudspeaker or glottal pulsing in human speech production), this gives

rise to a pattern of compression and rarefraction in the volume of air particles, which

propagates away from the sound source as a pressure wave (i.e., an acoustical signal).

Acoustical signals in the vicinity of the human ear are collected by the pinna which

consists of an exposed cartelage structure (i.e., the flange) and a resonant cavity (i.e.,

the concha). The sound propagates through the external auditory meatus (i.e., the

ear canal) and excites the tympanic membrane (i.e., the ear drum). The shape of the
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pinna and ear canal maximize transfer of acoustical energy to the ear drum. Addi-

tionally, the complex shape of the flange gives rise to a frequency-selective directional

response known as a head-related tranfer function (HRTF), which plays an important

role in sound localization.

The middle ear transfers the mechanical energy from the vibration of the tym-

panic membrane to the inner ear via a collection of bones called the ossicles. The

three osiccles are the malleus, incus and stapes, and together their rotation/motion

performs a lever-like action which trasfers energy from the tympanic membrane to

a much smaller flexible membrane-covered opening into the cochlea of the inner ear

known as the oval window. The middle ear ossicles act as an impedance-matching

mechanical transformer, maximizing energy transfer from the outer ear to the cochlea

and minimizing the reflection of energy back into the outer ear.

1.3.2 The Inner Ear

The inner ear consists of two complex fluid-filled bone structures: the vestibular sys-

tem which is responsible for balance and the cochlea which is responsible for hearing.

The cochlea is a spiral-shaped structure made up of three separate bone cavities

(i.e., scalae) which extend its full length: the scala vestibuli, scala tympani and scala

media. The scala vestibuli and scala tympani share the same cochlear fluid (peri-

lymph) and are connected at the apex of the cochlea by a narrow opening called the

helicotrema. The scala media sits between the other two scalae and is filled with a

separate cochlear fluid called endolymph. The scala media is separated from the scala

tympani by the basilar membrane.

Inside the scala media, the organ of corti sits on top of the basilar membrane,
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and is the primary organ involved in transduction of auditory signals. Its base holds

thousands of hair cells, each of which have clusters of hair-like structures called stere-

ocilia. The stereocilia connect hair cells on the base of the organ of corti to the

upper part of its structure which is called the tectorial membrane. The hair cells

are innervated by auditory nerve fibres (ANFs) which carry messages to and from

the brain. Inner hair cells (IHCs) are primarily innervated by afferent ANFs which

carry auditory sensory information to the brain, whereas outer hair cells (OHCs) are

mostly innervated by efferent ANFs which modulate the OHCs’ mechanism for active

amplification (discussed later).

Figure 1.3: Cross-section of the organ of corti, the primary transduction mechanism
of the cochlea. Permission requested from Brill, Figure 3.1D from Pickles (2013)
©2013.

When the middle ear ossicles push the oval window in response to an acoustic

stimulus, a pressure wave is induced inside the cochlear fluids. The pressure wave

propagates from the oval window at the base of the cochlea, through the scala vistibuli

to the apex of the cochlea, and then returns to the base via the scala tympani, reaching

the round window. The basilar membrane moves in response to the pressure wave,
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which in turn moves the organ of corti. The base of the organ of corti moves relative

to the more rigid tectorial membrane, causing the stereocilia to flex. This results in

the opening/closing of transduction channels which modulate the flow of positively

charged ions from the cochlear fluid in the scala media into the hair cells. This

modulation to the electrical potential in the hair cells induces an electrical signal into

the ANFs via neurotransmitter release.

To summarize, acoustic stimulus propagates through the pinna and ear canal,

vibrating the ear drum. The signal is transfered from the ear drum to the oval

window of the cochlea by the ossicles in the middle ear. A fluid pressure wave is

generated in the cochlear fluids which flexes the stereocilia, modulating current flow

into the hair cells and generating an electrical signal in the auditory nerve.

The electrical signal generated in the ANFs consists of a sequence of spikes. These

impulses represent depolarization (i.e., rising phase) and subsequent repolarization

(i.e., falling phase) of a neuron cell membrane due to opening and closing of voltage-

gated ion channels in the membrane. In the absense of auditory stimulation, action

potentials firing continues at a rate called the spontaneous firing rate. Spontaneous

firing rates vary from near-zero up to around 160 spikes/sec. At the onset of auditory

stimulation, the firing rate increases by approximately 5 – 30 spikes/sec above the

spontaneous rate if the intensity of auditory stimulation is above a certain treshold.

Auditory stimuli below this threshold will not produce any detectable change to

electrical activity in the auditory nerve, and therefore will not be detected by the

brain. This threshold therefore results in a minimum acoustic level that can be

detected by the auditory system (i.e., the threshold of hearing). In response to a low

frequency sinusoidal stimulus, ANFs do not spike on every cycle of the sinusoid, but
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when they do always fire at the same phase of the cycle (i.e., ANF firing is phase-locked

to the simulus). This phase-locking is key to the perceptual encoding of temporal

signal information. For frequencies above approximately 4 – 5 kHz this behaviour

starts to diminish, which reduces temporal resolution. However, at higher frequencies

ANFs tend to be phase-locked to the slower temporal amplitude modulation.

1.3.3 Tuning, Non-Linearities and Active Amplification in

the Cochlea

At the base of the cochlea, the basilar membrane is narrow and rigid making it

sensitive to high frequencies. The basilar membrane becomes progressively wider

and less rigid towards the apex, making it more sensitive to low frequencies. This

frequency selectivity is responsible for a frequency decomposition whereby each ANF

responds electrically to a certain range of frequencies. As such, each point along

the basilar membrane (or similarly each ANF) is described as having a characteristic

frequency (CF) to which it is most sensitive, and a tuning curve that describes its

frequency response as a whole. The frequency mapping as a function of displacement

along the basilar membrane is more linear at low frequencies, and more logarithmic

at high freqeuencies. The bandwidth of the tuning increases as CF increases which

gives the time-frequency analysis of the cochlea better frequency resolution at low

frequencies, and better time resolution at high frequencies. It has been shown that

this analysis is similar to a gammatone filterbank (Lewicki, 2002) and it is believed to

have evolved this way as an optimization for classification of the sounds experienced

in nature. This frequency tuning is a key part of the neurological encoding of sounds

and is fundamental to speech perception.
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At low frequencies the tuning curves are reasonably symmetric about the CF.

For higher CFs, the tuning curve is increasingly broader on the low-frequency side,

generating more of a low-pass response. This results in effect known as upward

spread of masking, whereby low frequency signals have a tendency to activate higher

frequency ANFs, perceptually interfering with (i.e., masking) high frequency content.

The hair cells also provide some additional tuning which slightly shifts the effective

lowpass cutoff of the basilar membrane at that point.

Additionally, the basilar membrane responds non-linearly to higher intensity sig-

nals, resulting in a broadening of tuning curves. Due to this loss of frequency resolu-

tion, it is often easier to understand speech at lower levels (i.e., conversational speech

levels). This results in a worsening of the effects of upward spread of masking.

Due to a property known as electromotility, the length of the OHC bodies are

modulated by changes in cell membrane potential, resulting in energy being injected

back into the motion of the basilar membrane. This provides non-linear amplification

by means of an active mechanical process which produces a sharp tuning in the

vicinity of the CF for lower input levels. In this way, the OHCs provide dynamic

range compression on a per-hair cell basis.

The efferent innervation of the OHCs provides a mechanism to reduce the gain of

the active amplification process in the OHCs, which provides further dynamic range

compression. This process adapts much slower than the compression inherit to the

electromotility of the OHCs, and has been shown to further extend the dynamic range

of the auditory system, protect against over-stimulation and to facilitate selective

listening / perceptual noise reduction.

ANFs inherit the tuning of the basilar membrane and hair cells. The frequency
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tuning of the entire auditory system up to each ANF is thus collectively described as

the frequency tuning curve (FTC) of the ANFs.

Figure 1.4: Example frequency tuning curve (FTC) for a CF of approximately 1.5 kHz,
and the impact of stimulus level on tuning (broadening of bandwidth and increase
in upward spread of masking). Permission requested from Brill, Figure 4.11C from
Pickles (2013) ©2013.

The combined FTCs of all the ANFs innervating the cochlea results in frequency-

dependent minimum acoustic level that can be detected by the auditory system. In

the presence of background noise, the activation of the cochlea and subsequent firing

of the corresponding ANFs due to the interfering noise obscures the firing due to

the desired signal (i.e., spectral masking). This perceptual masking effect reduces

audibility at the frequencies where noise is present, and raises the effective threshold

of hearing.
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1.3.4 Sound Localization

The detection of the direction of arrival (DOA) and distance of sound sources plays

an important role in everyday life. Not only is sound localization useful for spatial

awareness, but there are several auditory mechanisms by which spatial information

is used help with speech perception when in adverse listening conditions (e.g., the

cocktail party effect, reviewed by Bronkhorst, 2000)). A detailed review of the sound

localization cues and physiology was provided by Risoud et al. (2018), but has been

summarized below.

Acoustic properties of the human auditory system enable sound localization by

means of a number of binaural and monaural spatial cues. Firstly, when sound orig-

inates from a source to one side of the head, the acoustic level is attenuated on the

other side due to reduction in direct line-of-sight propagation. This is referred to as

the head-shadow effect and produces a difference in acoustic level between the ears

called an interaural level difference (ILD). This effect is less pronounced at low fre-

quencies (approximately below 1960Hz), and most pronounced above approximately

3 kHz. ILD magnitude varies depending on individual head acoustics and horizontal

angle of arrival (i.e., azimuth angle), and is one of the two spatial cues decoded by

the brain to estimate azimuth DOA. The smallest perceiveable ILD has been shown

to be approximately 0.5 – 1 dB.

Sound arriving from an off-axis azimuth angle will also arrive at the closer ear first,

resulting in an interaural time delay (ITD). The auditory system estimates DOA from

ITDs by analyzing phase differences between the ears. For wavelengths less than the

distance between the two ears, multiple periods can occur within the time difference,

resulting in an ambiguous mapping between phase difference and DOA. For this
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reason, ITDs become less reliable for frequencies above approximately 1500Hz. In

the case of complex amplitude modulation waveforms such as speech, the auditory

system can use some higher frequency ITD information by tracking delays in the

temporal envelope rather than the high frequency carrier. The shortest perceivable

ITD has been shown to be around 10 µs.

For vertical location finding (i.e., sound localization on the elevation angle), the

auditory system takes advantage of the acoustic characteristics provided by the shape

of the outer ear. The exposed flange of the pinna has a complex shape with many

different ridges which introduce acoustic reflections in the vicinity of the ear canal.

These reflections and those provided by the head and upper body result in a DOA-

dependent spectral coloration which is referred to as a head-related transfer function

(HRTF). Spectral notches produced by destructive interference of head-related reflec-

tions are particularly used by the auditory system in estimation of the elevation angle.

HRTF have been shown to be most reliable for frequencies above approximately 7 kHz

To estimate the distance of a sound source, the auditory system takes advantage of

spectral cues and reverberation-related cues. In the presence of reverbant reflections,

the listener first detects the direct sound (i.e., not reflected), and then receives a

number of reflections dependent on the room acoustics. Due to the inherit attenation

of acoustic signals as they propagate, as the separation between the sound source

and the listener increases, the direct sound is attenuated and becomes increasingly

dominated by the reflections. In this way, the auditory system is able to use an

estimate of the direct-to-reverberant ratio to detect the distance of the sound source.

Similarly, the time delay between the direct sound and the first reflections (i.e., the

initial time delay gap, ITDG) decreases with distance, and can be used to estimate
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distance. Additionally, since higher frequency acoustic signals decay more rapidly

over distance, the auditory system is able to use the lowpass-filtered quality of signal

spectrum to estimate distance.

There are also several dynamic methods by which humans reinforce the spatial

information decoded from the above described cues. Head turning is often performed

instinctively to manually adjust spatial cues and confirm the changes that occur.

Visual information is also incorporated both as a means of detecting and maintaing

location estimates.

1.4 Hearing Loss

A detailed discussion of this topic can be found in Pickles (2013) and the review by

Shapiro et al. (2021), but the important concepts have been summarized here.

1.4.1 Overview of Hearing Loss

Hearing loss has many causes and impacts, which are broadly grouped into three cat-

egories: Conductive, Sensorineural and mixed hearing loss. Conductive hearing loss

describes any damage to the structures of the outer and/or middle ear. Sensorineural

hearing loss describes any damage to the inner ear organs and auditory nerve, and is

the most common type. Mixed hearing loss represents any combination of conductive

and sensorineural hearing loss. Hearing loss can be in a single ear or in both ears

(i.e., unilateral or bilateral), and can be symmetric or asymmeric between the two

ears. Impairment may be present since birth (i.e., congenital hearing loss), or may

accumulate over time (i.e., progressive hearing loss), or happen rapidly at some point
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in life (i.e., sudden hearing loss).

Conductive hearing loss includes blockages of the ear canal (e.g., due to ear wax

build up), infections in the outer/middle ear, fixation of the ossicles, and damage to

the tympanic membrane or oval/round windows. The general result of these issues

is reduced energy transfer to the inner ear. Conductive damage can often be treated

by medication or surgery, and otherwise is still easily treated by hearing aids since

the inner ear is not affected and therefore the mapping/encoding of frequencies is not

changed.

Sensorineural hearing loss can be caused by infection, aging, genetics, noise ex-

posure, and most commonly results in damage or loss of stereocillia and hair cells

in the cochlea. Hair cells and stereocilia are fragile and irreplaceable, and as will

be described in the next section, loss of these structures significantly changes the

neural encoding of sounds making it very hard to treat effectively. Age-induced sen-

sorineural hearing loss (i.e., presbycusis) is thought to be caused by a combination

of genetics and environmental factors. It is typically symmetric and bilateral, and

primarily occurs at high frequencies. Chronic loud noise exposure primarily impacts

frequencies in the 3 kHz to 6 kHz range, and is usually bilateral and symmetric, but

may be asymetric if the exposure is asymmetric. Individual acoustic events of sub-

stantial loudness may also cause temporary or permanent damage to stereocilia (i.e.,

acute acoustic trauma). Mild trauma may only result in temporary damage, while

more severe trauma are more likley to permanently bend or break stereocilia resulting

in complete loss of transduction. The stereocilia of OHCs are more likely to be lost

completely, while IHCs tend to only lose some stereocilia resulting in some trans-

duction remaining with weaker sensitivity. Since sensorineural hearing loss largely
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impacts the auditory system on a per-hair cell basis, and since hearing aids process

the acoustic signal before transimission into the cochlea, the efficacy of hearing aids

at compensating these impairments is somewhat limited.

Hearing loss may also be induced by medications with ototoxic effects, which

describe a wide range of biochemical reactions with various parts of the auditory

system. Most often this begins with fusion or loss of stereocilia, eventually resulting

loss of hair cells. Examples of ototoxic medications include many chemotherapies and

antibiotics.

1.4.2 Perceptual Impacts of Sensorineural Hearing Loss

When sensorineural hearing loss impacts OHC function, this usually results in re-

duction of the active amplification mechanism provided by the electromotility of the

OHCs. This and the reduction of IHC sensitivity produces reduced excitation at the

auditory nerve. This results in an increase in the threshold of hearing, which can

have a significant impact on audibility at conversational speech levels.

The loss of the active amplification provided by OHCs also results in a reduc-

tion in the non-linearities of the auditory system. The dynamic range compression

provided by these non-linearities is crucial for the perception of the wide dynamic

range of environmental sounds. As a result, individuals with sensorineural hearing

loss tend to lose perception of quiet sounds, but still perceive louder sounds at the

same level. In other words, the dynamic range between audibility of quiet sounds,

and discomfort of loud sounds, is less for individuals with sensorineural hearing loss.

An additional related effect is an increased rate of change in perceived loudness with

respect to acoustic stimulus level, which is referred to as loudness recruitment. These
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issues motivate the usage of wide dynamic range compression (WDRC) algorithms

for hearing aid amplification instead of linear gains (Dillon, 2012). If linear gains are

used and set high enough to make quieter sounds audible, this would make louder

sounds uncomfortably loud.

Additionally, the loss of OHC function results in loss of the sharp tuning of the

auditory ANFs. This results in a broadening of the ANF tuning and reduces the

frequency resolution of the cochlea.

A reduction in temporal sensitivity has also been correlated to both aging and

sensorineural hearing loss. The physiological explanations for these effects are com-

plex and still under study, but it is generally explained by reduced ability to track

the temporal fine structure (TFS) in complex broadband stimuli, especially in the

presence of noise (Xia et al., 2018). There are a number of proposed physiological

explanations for this including a reduced number of ANFs, reductions to phase lock-

ing of neurons with periodic waveforms, the broadening of cochlear tuning resulting

in more complex waveforms arriving at each ANF, and distorted basilar membrane

phase response (Tsironis et al., 2024).

The reduction of spectral and temporal resolution results in a coarse and distorted

neurological encoding of sound, which significantly impacts speech perception (i.e.,

impairs the classification of phonemes, as will be described later). In addition, loss of

temporal resolution impairs the ability of the auditory system to track ITDs which

has a significant impact on sound localization.
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1.5 Speech Production

The ability of humans to generate speech sounds is central to our social communica-

tion and societal organization. Speech communication is fasciliated by manipulating

the body to generate audible sounds from the mouth and/or nose. A specific configu-

ration of the speech-related physiology produces a specific sound which is referred to

as a phoneme. Phonemes are produced together to form words, which are spoken in

sequence to form sentences. By inversely mapping acoustic signal properties to the

speech-related configuration used to produce them, listeners are able to decode the

intended sentence and perceive its meaning.

A detailed discussion of this topic can be found in Quatieri (2002), but the im-

portant details have been summarized here.

1.5.1 Anatomy of Speech Production

The physiology underlying speech production can be braodly broken down into three

sections: The lungs, the larynx and the vocal tract. The lungs act as a power supply,

contracting and expanding to provide air pressure to the larynx. The larynx uses

the power from the lungs to generate a specific of acoustic waveform. The vocal

tract shapes the acoustic waveform before its emission from the mouth and/or nasal

passage.
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Figure 1.5: Human speech production system. Used with permission of Pearson,
Figure 3.2 from Quatieri (2002) ©2002.

Inside the larynx, air flow into the vocal tract is controlled by opening and closing

three separate muscle-controled barriers: the false vocal folds, the true vocal folds,

and the epiglottis. The vocal folds are composed of two masses of flesh which can

be pulled towards the sides of the sides of the larynx revealing a opening known as

the glottis (i.e., glottal slit). Muscle-activated control over both the size of the glottis

and the tension in the vocal folds give rise to three different modes of operation:

breathing, voicing and unvoicing. When the glottis is fully open, the lungs push air

into the vocal tract with minimal resistance (i.e., breathing). When the glottis is

closed slightly and pulled tight, the applied air pressure initiates an periodic pattern

of glottal opening and closing (i.e., glottal pulsing). This process releases a periodic

acoustic waveform into the vocal tract (i.e., voicing). The pitch period of voiced

speech is controled by tightening and loosening the vocal folds. During unvoicing,
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the glottis is left open similar to breathing, but the folds are pulled tighter generating

audible turbulence. Unvoicing is used in the speech sounds such as the “h” in “house”

The vocal tract is an oral cavity extending from the larynx to the lips and nasal

passage. Manipulation of the position of the tonge, lips and mouth changes the acous-

tic resonances of the cavity to modulate the spectral shape of the emitted acoustic

waveform. These resonances, called formants, emphasize certain harmonics of the

glottal pulse waveform. The relative positioning of formants is central to the clas-

sification of different voiced phonemes (e.g., “a”, “e”, “o”). When the lips or tonge

are used to seal the mouth during voiced speech, the glottal pulsing waveform is

forced through the nose, generating nasal phonemes (e.g., “ng” in “sing”, or “m” in

“mother”). Applying pressure behind the lip or tonge seal before releasing it pro-

duces a sudden burst of air from the mouth, generating an impulsive sound known

as a plosive phoneme (e.g., “p” in “pop”, “t” in “train” or “c” in “cane”). When

the lips or tonge are positioned to provide a partial seal of the mouth, an audible

turbulance is produced which is classified as a fricative phoneme (e.g., “sh” in “she”

or “s” in “snake”).

1.5.2 Classification of Speech Sounds

Together the voicing state of the glottis (i.e., voiced, unvoiced or breathed) and

the vocal tract configuration (i.e., formant ratios, fricatives, plosives, nasals) form

a collection of acoustic cues which are used by the listener to interpret what is being

said. The interaction between each of these speech parameters forms a much wider

set of phonemes. Vowels are voiced phonemes with no frication or obstruction of the

vocal tract (e.g., “a” in “apple”). Fricatives can be unvoiced (e.g., “f” in “flake”) or
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voiced (e.g., “v” in “van”). Plosives can be unvoiced (e.g., “p” in “pop”) or voiced

(e.g., “b” in “boot”). Diphthongs, liguids and glides are all characterized by a time-

varying vocal tract between vowels (e.g., “y” in “boy”). Affricatives are describe the

time-varying transition between plosives and fricatives (e.g., “ch” in “chew”).

1.5.3 Discrete-Time Speech Production Model

The process of speech production can largely be described with a source-filter model.

The acoustic waveform generated by the lungs and larynx are modeled as a source,

which is processed by a filter which models the vocal tract and acoustic raditation

from the lips. A complete discrete-time model of this process is shown in Figure 1.6.

Linear/
Nonlinear
Combiner

Speech

Av

An

Ai

×

×

×

ZeroPoles

G(z) R(z)
H(z)

V(z) R(z)

Poles & Zeros Zero

Figure 1.6: Discrete-time speech production model. Used with permission of Pearson,
Figure 4.20 from Quatieri (2002) ©2002.

In this paradigm, the lungs and larynx are grouped into an idealized source model

which generates a combination of idealized source signals depending on voicing mode:
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ug(n) =
∞∑

k=−∞

δ(n− kP ) (1.7)

ui(n) = δ(n) (1.8)

un(n) ∼ N (0, 1) (1.9)

where ug(n) represents idealized glottal pulsing during voiced phonemes, ui(n) rep-

resents idealized inpulsive bursts during plosive phonemes, and un(n) representation

idealized turbulance during fricative phonemes.

To obtain an accurate model of the glottal pulse train waveform, the idealized

impulse train ug(n) is convolved with an individual cycle of glottal pulsing. The Z-

transform of a typical glottal flow waveform can be modeled by two identical poles

outside the unit circle (i.e., two maximum phase poles representing a left sided se-

quence).

G(z) =
1

(1− βz)2
β < 1 (1.10)

Therefore the Z-transform of the glottal pulse train modeled is Ug(z)G(z), and

the Z-transform of the overall source model is

U(z) = AvUg(z)G(z) + AiUi(z) + AnUn(z) (1.11)

During oral voiced speech, it has been shown that the vocal tract effect can be

modeled by a minimum-phase all-pole filter (Atal and Hanauer, 1971). However,
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when the oral tract is sealed by the tonge or lips (e.g., during nasalized phonemes)

and during unvoiced speech, the effective filter has been shown to have some mixed-

phase zeros. Therefore a complete model for the vocal tract is a mixed-phase filter

with poles and zeros, i.e.,

V (z) =

∏Mmin

k=1 (1− b̃min,kz
−1)
∏Mmax

k=1 (1− b̃max,kz
−1)∏Nmin

k=1 (1− ãmin,kz−1)
(1.12)

The acoustic radiation from the lips (i.e., the radiation impedance) imparts a

highpass response which can be approximately modeled by a single zero just inside

the unit circle, i.e.,

R(z) ≈ 1− αz−1 α < 1 (1.13)

Therefore the complete filter model is H(z) = V (z)R(z), and the complete source-

filter model of speech production is

S(z) = U(z)H(z) (1.14)

It is also common to group the Z-transform of the glottal pulse waveform, G(z),

into the filter model so the source can always be treated as an idealized uncorre-

lated excitation (i.e., impulse train, impulse or white noise). In this case the speech

production filter, H(z), has mixed-phase poles and zeros.

H(z) = G(z)V (z)R(z) =

∏Mmin

k=1 (1− b̃min,kz
−1)
∏Mmax

k=1 (1− b̃max,kz
−1)∏Nmin

k=1 (1− ãmin,kz−1)
∏Nmax

k=1 (1− ãmax,kz−1)
(1.15)
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From the geometric series expansion, it can be shown that a single zero inside the

unit circle can be represented by a set of infinite poles inside the unit circle, i.e.,

1− b̃z−1 =
1∏∞

k=0(1− ãkz−1)
, |a| < 1 (1.16)

and in practice, a sufficiently large finite number of poles works with reasonable

accuracy. Therefore an all-pole, i.e., autoregressive (AR), model of speech production

is often used. i.e.,

H(z) =
A∏p

k=1(1− ãkz−1)
=

A

1−
∑p

k=1 akz
−k

(1.17)

S(z) = U(z)H(z) (1.18)

s(n) =

p∑
k=1

aks(n− k) + Au(n) (1.19)

It is important to note that this time-invariant model of the speech production

system is incomplete when in comes to modeling full utterances that span multiple

phonemes, or even phonemes that involve time variance in the vocal tract (e.g., diph-

thongs). To address this, the source weights (Av, Ai and An) and the filter parameters

must all be made time-varying.

1.6 Speech Perception in Reverberation

1.6.1 Characterizing Speech Perception

As a whole, speech perception describes a listener’s ability to hear and understand

what is being said by a talker. This is directly dependent on the listener’s ability to
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detect the presence of the acoustic speech signal, and decode the speech cues to accu-

rately reconstruct the spoken utterances. There are several characteristics of speech

perception which are related but distinct: speech audibility, speech intelligibility and

listening effort.

Audibility describes the listener’s ability to detect the presence of sound. The

auditory system is physically capable of detecting any sound that is above the absolute

threshold of hearing. As such, speech audibility may be defined as the fraction of

speech content over time that is above the listener’s threshold of hearing.

Speech intelligibility (SI) describes how accurately the listener is able to identify

what is being said, and is usually measured as a fraction of phonemes or words

correctly identified. SI is typically evaluated based on objective tests involving human

participants. Speech is presented, and the participant attempts to identify what is

being spoken. Sometimes nonsense utterances are used to remove effects of lexical

knowledge.

SI =
Correctly Identified [words/syllables/phonemes]

Total Presented [words/syllables/phonemes]
(1.20)

Listening effort (LE) describes the allocation of mental resources required to un-

derstand speech. When speech cues are obscured (e.g., in noisy or reverberant en-

vironments), the brain has to work harder to fill in missing information (i.e., post-

diction). LE is often evaluated by presenting a test signal to participants and asking

them to complete an effort-related questionnaire, but in general it is too complex to

evaluate in a single test. It has been proposed that a more statistically consistent

evaluation of listening effort is based on three separate factors (Shields et al., 2023):

self-reported LE, behavioral signs of LE, and physiological signs of LE. Self-reported
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LE is usually evaluated by having particpants complete questionairres assessing their

effort during listening, and fatigue after listening. Behavioral signs of LE describe re-

duced ability to complete mentally-intensive tasks due to exhaustion, and is assessed

by evaluating their performance on a selected test task. Physiological signs of LE are

widespread and can be assessed via objective biological measurements such as elec-

troencephalogram analysis (EEG), functional magnetic resonance imaging (fMRI),

eye tracking and heart rate tracking. Increased listening effort in every day life can

have psychological effects such as distress or fatigue and has been shown to lead to

social withdrawal and to increase with prevalence of stress-related leave from work

(Ohlenforst et al., 2017). Although speech intelligibility and listening effort are closely

related, an increase listening effort is not always correlated to a decrease in speech

intelligibility (Winn and Teece, 2021).

When evaluating the performance of a speech reproduction system such as a hear-

ing aid, speech quality is also an important consideration in the subjective experience

of the user. Speech quality (SQ) is usually evaluated based on subjective ranking of

a test/distorted signal on a provided scale. The most common test is the so-called

mean opinion score (MOS) test in which the participants are asked to rank the qual-

ity of a test signal on a five point scale (i.e., absolute category rating, ACR). The

MOS test procedure consists first of a training phase (i.e., anchoring phase) where

the participant is presented with example signals for the low, middle and high quality

categories. After the training phase, the evaluation phase is completed using the real

test signal. The test is repeated for a group of participants, and the MOS rating is

computed as the average ACR accross all participants. An alternative quality test

is the comparative mean opinion score (CMOS) where the participants are presented
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with a test signal and a separate clean reference signal, and are asked rank how much

better or worse the quality of the test signal is relative to the reference signal.

1.6.2 Neural Encoding of Acoustic Speech Cues

Complex broadband speech signals can be modeled as a superposition of narrowband

amplitude modulation signals. In each of these bands the high frequency carrier

information is referred to as the temporal fine structure (TFS) and the amplitude

modulation is referred to as the envelope (ENV). The cochlear filters in the auditory

system perform this narrowband signal decomposition, and the TFS/ENV acoustic

cues are encoded into the neural representation and are analyzed to percieve speech.

TFS acoustic cues are primarily encoded into the precise ANF spike-timing due the

phase-locking of spiking to the carrier. Since ANF phase-locking breaks down for

frequencies over 4 – 5 kHz, the neural encoding of TFS is only effective at lower

frequencies. TFS acoustic cues provide information on details such as the pitch/pe-

riodicity and harmonics of of the signal, formant transitions, and timing information

for sound localization. ENV acoustic cues are encoded mainly in fluctuations to the

ANF firing rate and in the phase-locking of ANF spiking to the amplitude modulation

phase which occurs at higher frequencies. ENV cues provide information on speech

amplitude fluctuations, unvoiced fricatives, voiced/unvoiced segment detection and

syllable/word onset and stop detection. Although harmonic/formant information is

described by TFS acoustic cues, ENV cues are analyzed on a per auditory filter basis,

thus also providing spectral information such as formant locations and spectral tilt.

ENV acoustic cues are generally described as varying at rates of less than 20 – 50

Hz, while TFS acoustic cues vary at much higher carrier frequency rates. Moreover,
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word/syllable rates described by ENV cues are even slower, having periods of around

250 – 500 ms (i.e., 2 – 4 Hz). ENV acoustic cues also have a much larger dynamic

range than TFS cues.

It is well understood that in quiet environments ENV cues provide sufficient infor-

mation for to maintain intelligibility and that TFS cues play a more significant role

in noisy/reverberant environments (Shannon et al., 1995; Smith et al., 2002). It has

been shown that full intelligibility can be achieved in quiet for noise vocoded speech

because phonemes can be identified from the spectral information encoded into ENV

cues on a per frequency band basis. In noise vocoded speech, only the perception of

pitch/harmonics/sound localization is lost which are note crucial for intelligibility in

quiet. However, it has also been shown that TFS cues play a key role in intelligibility

in noise, and that in quiet they still play an signficant supportive role which impacts

LE (Wirtzfeld et al., 2017). The mean-rate information of ANF spike patterns has

been shown to primarily represent ENV acoustic cues on a per-CF basis (i.e.,temporal

envelope and formants), while the fine ANF spike-timing information encodes TFS

acoustic cues (i.e., pitch, harmonics and timing information).

At higher sound pressure levels and for hearing impaired listeners, TFS cues can

be severely distorted by the broadening of auditory filter tuning, upward spread of

masking and reductions in ANF phase-locking. ENV cues are also distorted but are

much more robust due their slower time-variance which does not require as precise

time resolution and due to their broadband nature not requiring as precise frequency

resolution. Since higher sound pressure levels have a severe negative impact on the

encoding of TFS cues, using a linear hearing gain to compensate speech audibility

will not be effective at restoring TFS cues. Conversely, the robustness of ENV cues to
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these distortions makes them easier to restore by linear amplification. Additionally,

since full intelligibility can be acheived from ENV cues alone, distortions of TFS cues

at higher gains does not impact intelligibility (in absense of noise and reverberation).

However, distortions to TFS cues will still have a negative impact on LE and there

additionally still exists a trade off between audibility and listener comfort. This will

be discussed more later on.

1.6.3 Impact of Reverberation on Speech Cues

As previously discussed, phoneme recognition relies on the identification of acoustic

cues. Temporal cues such as periodicity, onsets, offsets and stops are important

to detect the boundaries of words and identify phonemes as voiced, fricative and

plosive. Spectral cues such as phoneme ratios and spectral tilt are important to

differentiate specific voiced phonemes. Accurate phoneme identification therefore is

strongly dependent on tem.

Reverberation smears energy accross time, blurring temporal and spectral cues.

Periods of low energy are filled with reverberant energy, smoothing out temporal

envelope, thus blurring word onsets, offsets and stops. Phonemes also overlap in time,

resulting in a masking effect. Speech perception is particularly impacted during highly

time-varying speech segments (e.g., consonants or word boundaries) and following

loud bursts which take longer to decay. Formant transitions during diphthongs, liguids

and glides are also flattened making them harder to identify.
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1.6.4 Impact of Reverberation on Speech Intelligibility and

Listening Effort

It has been shown that reverberation and noise both have a negative impact on speech

intelligibility and listening effort. However, in most realistic listening environments,

where reverberation time is fairly short and SNR is positive, the effects on speech

intelligibility are minimal (Schepker et al., 2016). This can be explained by the fact

that the higher time-variance and smaller dynamic range of TFS acoustic cues makes

them more sensitive to reverberation than ENV acoustic cues. Since ENV acoustic

cues are generally more crucial for intelligibility, signficant reverberation energy and

long reverberation times are required to obscure ENV cues and thus negatively impact

intelligibility. Conversely, even small amounts of reverberation distort TFS cues thus

impacting listening effort.

Normal hearing listeners are generally able maintain good speech undestanding

even under reasonably severe listening conditions (Schepker et al., 2016) due largely to

perceptual adaptations which will be explained in the next section. This is especially

true when the listeners has prior exposure to the listening environment (George et al.,

2010).

Hearing impaired individuals are more sensitive to the effects of reverb and noise.

Even when audibility is good, intelligibility and listening effort tend to be worse due to

degraded temporal and spectral resolution from sensorineural hearing loss (Reinhart

and Souza, 2018) and reduced perceptual adaptations (Srinivasan et al., 2017; Roberts

et al., 2003). There is a lot of variability in the impact of reverberation for hearing

impaired listeners, and the reasons are not fully understood. However it has generally
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been shown that more severe impairment equates to more difficulty in reverberant

environments (Xia et al., 2018).

The individual and combined impacts of reverberation and noise are often investi-

gated through from the perspective of speech transmission index (STI). This is done

by mapping both variables onto a 2D grid showing iso-STI contours (e.g., Figure

1.7). In this way the impacts of reverberation and/or noise can be analyzed through

a single variable. STI has been shown to be correlated to speech intelligibility and

listening effort regardless of whether the changes in STI are due to reverberation or

noise.

Figure 1.7: Mapping of SNR and reverberation time (synthetically generated expo-
nentially decaying Gaussian RIRs) to STI. The dotted contour denotes the speech
recongition threshold (SRT). Used with permission of American Speech-Language-
Hearing Association, Figure 1 from George et al. (2010) ©2010; permission conveyed
through Copyright Clearance Center, Inc.

For normal hearing listeners, George et al. (2010) showed that the minimum con-

ditions for 50% speech intelligibility (i.e., the speech recognition threshold, or SRT)
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is approximately an STI of 0.36, which is represented by the dotted contour in Fig-

ure 1.7. This translates to a reverberation time of approximately 2 sec, or a SNR of

approximately −4 dB, which are very severe conditions not typically experienced in

everyday life. As the conditions improve from this point (i.e., as reverberation time

decreases and/or SNR increases), speech intelligibility very rapidly returns to 100%.

This shows the insensitivity of speech intelligibility as a measurement of the impacts

of reverberation under typical conditions.

Conversely, listening effort has been shown to vary monotonically with reverbera-

tion time and noise even under moderately severe conditions. For this reason, listening

effort is generally considered a better metric under typical listening conditions, and a

combination of listening effort and speech intelligibility is best for a reliable analysis

over a wide range of conditions (Schepker et al., 2016).

Independent of hearing loss, other factors such as age related neurological/audi-

tory deteriorations and differences in working memory capacity have been shown to

impact the extent to which reverberation inhibits speech perception (Reinhart and

Souza, 2018).

1.6.5 Impact of Reverberation on Spatial Cues

As perviously discussed, detection of the directional of arrival (DOA) of sound is im-

portant for spatial awareness and speech perception. In anechoic environments, sound

arrives from a single distinct direction, making localization a relatively simple task.

In reverberant environments, sound arrives from many directions due to reflections,

which blurs the spatial cues which are central to sound localization (i.e., ILDs, ITDs

and HRTFs).

39



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

However, It has been shown that with extended exposure to a reverberant envi-

ronment, the auditory system’s ability to estimate direction and distance improves

greatly. This is due to perceptual adaptations which are described in the next section.

1.6.6 Perceptual Adaptation to Reverberation and Noise

Normal hearing (NH) auditory systems have a strong ability to maintain speech per-

ception in adverse listening conditions due a number of perceptual adaptations which

work to provide phonetic perceptual consistency. A detailed overview of these per-

ceptual adaptations can be found in the review by Tsironis et al. (2024), but the key

information is summarized below.

1.6.6.1 The Precedence Effect

The precedence effect (PE) describes a perceptual phenomena whereby delayed repi-

tions of the same sound are perceived as an individual sound, provided the delay

between the sounds is short enough. This effect was originally demonstrated by

Wallach et al. (1949) and Haas (1951) and was reviewed by Litovsky et al. (1999).

Studies of the percedence effect usually involve playing two identical stimuli with a

delay between them (i.e., a lead-lag pair). Commonly clicks are used but studies

have also been done involving more complex stimuli such as noise and speech. The

precedence effect is most pronounced for brief/transient sounds such as clicks but is

still reasonably effective for complex stimuli like speech. The effect is much weaker

for stationary sounds such as sustained tones.

Under the umbrella of the precedence effect there are three phenomena which

are separate but related: Lead-lag fusion, lead-lag localization dominance, lead-lag
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discrimination suppression.

Lead-lag fusion describes the process whereby lead-lag pairs of stimuli are per-

ceived as a single auditory event provided the delay between the stimuli is less than

the so-called echo threshold (i.e., the echo fusion threshold). This results in a sort

of echo suppression for reverberation whereby reflections that arrive within the echo

threshold are fused with the direct sound. Reflections with delays greater than the

echo threshold are perceived as distinct and have an adverse affect on speech percep-

tion. Echo thresholds are typically in the range of 5m sec to 30m sec, but can be as

low as 2m sec or as high as more than 100m sec. This wide range is dependent on

stimulus characteristics (i.e., spatial, spectral and temporal properties) and the lis-

tener’s age, hearing status and extent of prior exposure to the current room acoustics.

Lead-lag fusion has been shown to occur even when the lagging stimulus is up to 10

to 15 dB louder than the leading stimulus.

Lead-lag localization dominance is a phenomena whereby the fused signal is per-

ceived to arrive from or near the direction of the leading stimulus. Lead-lag discrim-

ination suppression describes the listener’s inability perceive the location of the lag-

ging stimulus. Together, localization dominance and discrimination suppression are

responsible for reducing disruptions to sound localization due to reflections in rever-

berant environments. Although fusion occurs for delays lower than the echo threshold,

localization dominance and discrimination suppression only occur for shorters delays.

Additionally, for very short delays less than approximately 0.5 to 1 milliseconds, lo-

calization dominance and discrimination suppression break down, and summation

localization occurs. For these delays, sound is perceived to arrive from the average

direction between the leading and lagging stimuli (i.e., weak precedence).
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The precedence effect also includes an adaptive mechanism called the build-up

effect. When lead-lag pairs are repeated, over time the echo threshold has been

shown to increase, resulting in fusing of longer and longer delays with the direct

sound. As a result, when a listener is exposed to stimuli in a relatively stationary

acoustic environment, their ability to perceptually suppress reverberant reflections

increases over time. This is an example of how normal hearing individuals benefit

from prior exposure to room acoustics. Conversely, when room acoustics change, this

can result in a mismatch between the lead-lag relationships mapped by the auditory

system and the true characteristics of the acoustic reflections. In this situation,

the mechanisms of the precedence effect reset to their base states, and the listeners

perceives an increase in amount of echo. This is referred to as the breakdown effect.

Hearing impaired listeners have been shown to experience less of the benefits of

the precedence effect (Roberts et al., 2003; Rennies et al., 2022b). Research into the

physiological explanations for this is ongoing, but it is generally thought to be related

to reduction of temporal resolution in impaired auditory systems. This contributes

to the difficulties hearing impaired listeners experience in reverberant environments.

1.6.6.2 Spatial Release From Masking

Another key perceptual adaptation involved in handling adverse listening conditions

is spatial release from masking (SRM), which was reviewed by Litovsky (2012). This

phenominon encompasses several mechanisms by which the auditory system leverages

the spatial diversity between the ears to process spatially separated sound sources.

In the presence of many interfering acoustic signals, a normal-hearing auditory sys-

tem has a strong ability to isolate the target talker and maintain speech perception.
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This phenomena was originally explored by Cherry (1953), who referred to it as the

“cocktail party effect”, and has since been largely attributed to SRM. Since this effect

leverages spatial diversity, speech perception is better in noisy environments if the

maskers are separated spatially (i.e., not co-located).

There are three main mechanisms involved in SRM: The better ear effect, the bin-

aural squelch effect and binaural summation. The better ear effect describes how the

auditory system will increase focus on a single ear, chosen based on SNR estimated

from ILD cues. It is well known that sounds arriving from one side of the head can

be attenuated by up to approximately 9 dB on the other side of the head due to the

so-called head shadow effect. The binaural squelch effect (i.e., binaural unmasking)

describes how the auditory system uses binaural cues to focus on the target. This

effect is similar to beamforming in signal processing theory. Lastly, binaural sum-

mation is a mechanism whereby binaural listening improves perception of a target

that is co-located with its masker. This is distinct from the binaural squelch effect in

that it does not depend on binaural cues, and is more similar to signal averaging for

noise reduction in signal processing theory. The better ear effect has been shown to

be the most significant contributor to SRM, while the binaural squelch effect is less

significant, and binaural summation is the least significant.

In a normal-hearing auditory system, SRM has been shown to provide from SNR

improvements ranging from several dB to upwards of 25 dB. The benefits of SRM are

much less for hearing impaired listeners, which is generally attributed to degraded

binaural sensitivity caused by reduced temporal resolution.

In reverberant environments, binaural cues are distorted, which reduces the effects

43



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

of SRM. Generally, it has been shown that the benefits of SRM diminish as reverber-

ation time increases. However SRM can also provide a small amount of reverberation

reduction by suppressing the spatial directions corresponding to reflections. To ex-

plain this Leclere et al. (2015) proposed a distinction between conventional binaural

unmasking which reduces the effects of noise maskers, and binaural dereverberation

which reduces the effects of self-masking due to reverberation. Binaural unmasking

has been shown to be negatively impacted by reverberation, and interestingly bin-

aural dereverberation has been shown to be negatively impacted by the presence of

noise maskers.

1.7 Metrics of Speech Perception

As previously discussed, it has been shown that a combination of speech intelligibility

and listening effort is best for evaluating the impacts of reverberation on speech

perception under a wide range of acoustic conditions. Additionally speech quality is

an important consideration in the subjective experience of hearing aid users.

While evaluations of SI, LE and SQ involving test participants are the most ef-

fective, they are time consuming and often not practical. A number of objective

prediction metrics have been developed to estimate SI, LE and SQ by quantitative

signal analysis. Although these prediction metrics are only approximations, many

of them have proven to be strongly correlated to the true test metrics under certain

conditions, and they are easily repoducible and greatly reduce the time required to

evaluate speech reproduction systems such as hearing aids.

When selecting a prediction metric for a study, careful attention must be given to

ensure that the metric is suitable for the test conditions and the processing performed
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by the system under test (SUT). Since this thesis is focused on speech perception of

hearing aid users in reverberant environments, it is important to include metrics

that incorporate some modeling of the auditory system and the impacts of hearing

loss (i.e., audibility, frequency tuning and non-linearities). If the metric does not

include any modeling of the non-linearities in the human auditory system, it will not

accurately predict the target speech perception metric accross a wide range of input

levels, under non-linear distortions or under non-linear hearing aid processing such as

dynamic range compression or statistical time frequency masking. Additionally, it is

important to include binaural metrics that are capable of representing the perceptual

adaptations that are key to speech perception in reverberant environments (i.e., the

precedence effect and SRM).

1.7.1 Objective Predictors of Speech Intelligibility

Objective predictors of SI generally consist of a signal analysis procedure which gen-

erates an intelligibility-related metric, and often provide a function that maps this

objective metric to a prediction of subjective SI. Since the mapping between objective

metrics and subjective SI ratings varies depending on the SI metric definition (e.g.,

phonemes or words identified correctly) and due to other factors such as participant

knowledge of context, the mapping function is usually separate from the objective

metric itself. The mapping is often non-linear due to floor and ceiling effects at 0%

and 100% intelligibility respectively.

One of the earliest objective predictors is the articulation index (AI) (Kryter, 1962)

which estimates intelligibility from audibility by analyzing SNR across frequencies.

Under the assumption that speech has a dynamic range of approximately 30 dB,
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if SNR (plus 15 dB to get maxima of dynamic range) is greater than 30 dB at all

frequencies, all speech cues are assumed to be audible, and therefore intelligibility is

assumed to be perfect. AI splits the noise and speech spectra into bands that roughly

approximate human auditory filters and for each band specifies a lower and upper

SNR limit corresponding to 0% and 100% audibility respectively (i.e., the articulation

window). The AI metric is computated as the percentage of the articulation window

covered, with frequencies weighted by perceptual importance.

The speech intelligibility index (SII) (ASA/ANSI S3.5-1997, 1997) was provided as

an extension of and replacement for AI. SII defines a generic framework for specifying

signal spectrum levels, noise spectrum levels, hearing thresholds, and the measure-

ment reference point (e.g., free field or ear drum). Additionally, it includes some

simplistic modeling of the non-linearities of the auditory system, namely the upward

spread of masking which occurs at higher acoustic levels. SII is calculated as:

SII =
n∑

i=1

IiAi (1.21)

where i is the frequency band index, n is the number of bands, Ii is a frequency

weighting function and Ai is an audibility function. The frequency weighting is se-

lected to represent the perceptual importance of different frequencies. The audibility

function is calculated as the per-band ratio of SNR to 30 dB to represent the fraction

of speech cues in 30 dB dynamic speech that are audible. Finally the SII is limited to

values ranging from 0 to 1. The speech and noise spectra are often pre-processed with

a spectral weighting that better represents perceptual loudness / frequency dependent

thresholds of hearing (e.g., A-weighting which approximates 40-phon equal-loudness

contour, IEC 61672-1, 2003), and can be weighted differently to model hearing loss.
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The speech transmission index (STI) (IEC 60268-16:2020, 2003) modified SII to

estimate intelligibility by measuring changes to the spectrum of the temporal envelope

rather than SNR. STI is based on the concept of the so-called modulation transfer

function (MTF) which measures the ratio of temporal envelope per-bin from the in-

put to the output of an acoustic channel. Specific narrowband test signals are used to

measure MTF in octave frequency bands for a range of modulation frequencies. The

STI metric is calculated by averaging over modulation frequencies, and performing a

perceptually-weighted average over frequency bands. The calculation includes adjust-

ments for auditory thresholds, noise levels and upward spread of masking. STI has

been shown to have a strong correlation to SI under reverberation (Schepker et al.,

2016).

Although STI and SII are correlated to SI, they both emphasize audibility and

apart from accounting for upward spread of masking, they do not model the non-

linearities in the auditory system. Additionally, even with hearing thresholds incor-

porated, they do not take into account the many non-linear complexities of hearing

loss which extend beyond audibility. This particularly limits their ability to assess

the benefits of non-linear processing in hearing aids such as wide dynamic range

copmression (WDRC) and speech enhancement techniques for noise reduction. Fur-

thermore, these metrics are all monaural and do not take into account important

binaural perceptual adaptations.

To acheive better prediction of SI under non-linear signal processing techniques

such as time-frequency masks for noise reduction (i.e., ideal binary masks), the short-

time objective intelligibility measure (STOI) was proposed by Taal et al. (2010). Un-

like STI and SII, which are based on stationary spectra, STOI performs a STFT-based
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decomposition with short time windows of approximately 400ms. An intermediate

measure of intelligibility is computed for each time-frequency region, using one-third

octave bands. The measure is based on correlation of the STFT decomposition of the

signal under test to a clean reference signal which has not been distorted or processed.

The final STOI metric is computed by averaging the intermediate intelligibility mea-

sures accross time and frequency. STOI has been shown to outperform STI and SII at

predicting SI for noisy speech with and without ideal binary masking applied. How-

ever, it does not include any modeling of the auditory system or hearing loss, and

thus its performance is still limited in this regard.

More recently, several objective predictors of SI have been developed which in-

corporate improved modeling of the auditory system and hearing loss. The hearing

aid speech perception index (HASPI), proposed by Kates and Arehart (2022), was

specifically developed for evaluating the effects of hearing aid processing. Its auditory

periphery model uses a fourth-order gammatone filterbank to approximate the time-

frequency decomposition of the cochlea, and modulates the filter bandwidths with

signal level to model cochlear non-linearities. The model accounts for upward spread

of masking, active amplification by OHCs, and compression provided by the basilar

membrane and OHCs. It includes a configurable hearing loss model which increases

the threshold of hearing, modifies the filterbank structure to model broadening of

cochlear filters, and models changes to cochlear non-linearities. The auditory model

outputs a per-band temporal envelope signal (ENV) and temporal fine structure sig-

nal (TFS). The test signal is passed through the model with hearing loss configured,

and a reference is acquired by passing the clean reference signal (i.e., not degraded or

processed) through the model with no hearing loss. The two outputs are compared
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via correlation of their modulation rates on a MEL-frequency scale. HASPI has been

used extensively in hearing aid research, but is still considered somewhat simplisitic

in the field of auditory modeling.

To take into account the benefits of binaural perceptual adaptations on SI, many

monaural predictors have been extended to include a binaural front-end. The most

common approach is to use an equalization-cancellation stage (EC) proposed by

Durlach (1960), which is an adaptive strategy of cancelling directional interfering

noise that emulates how the brain exploits ILDs and ITDs. The EC front-end com-

bines the binaural inputs, generating a monaural output which is then processed by

a monaural predictor of SI. While an EC can be used as a binaural front-end for any

monaural predictor of SI, it should be noted however that it does not model any of the

reductions to binaural processing which have been shown to occur with hearing loss.

Beutelmann and Brand (2006) proposed a binaural extension of SII called the bin-

aural speech intelligibility model (BSIM), which was later improved upon by Rennies

et al. (2022a). STI was extended with a binaural front-end by van Wijngaarden and

Drullman (2008). Developing upon many previously proposed binaural extensions

of STOI, Andersen et al. (2018) proposed the modified binaural STOI (MBSTOI).

Although there has been recent development (Lavandier et al., 2023), HASPI has yet

to see a widely accepted binaural extension.
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1.7.1.1 Neurologically-Motivated Objective Predictors of Speech Intelli-

gibility

The accuracy of SI predictors can be improved by introducing more detailed auditory

modeling. Bruce et al. (2018) provided an auditory model that includes physiologi-

cally accurate modeling of ANF firing in response to acoustic stimuli. It builds upon

the auditory periphery model provided by Zilany et al. (2014) and includes most of

the nonlinearities in auditory nerve responses such as non-linear frequency tuning due

to cochlear active amplification, dynamic range compression in the BM and hair cell

responses, two-tone suppression effects, level-dependent phase responses, and shifts

in the peak frequency of ANF tuning curves as a function of level. Configurable

sensorineural hearing loss is also provided, including impacts on hearing thresholds

and degradations to encoding due to reductions in non-linearities and broadening of

frequency tuning.

The model, shown in Figure 1.8, accepts the acoustic sound pressure at the ear

drum as an input, and generates ANF spike patterns at each CF along the BM as

output.
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Figure 1.8: Mammalian auditory periphery model used in the NSIM and STMI pre-
dictors of speech intelligibility (Bruce et al., 2018) Used with permission of Elsevier
Science, Figure 3 from Bruce et al. (2018) ©2018; permission conveyed through Copy-
right Clearance Center, Inc.

ANF spike patterns are often visualized via a neurogram which is a 2D represen-

tation of spike density as a function of CF and time (e.g., Figure 1.9). Similar to a

spectrogram, a neurogram describes how energy is distributed in time and acoustic

frequency from a neurological perspective. As such, it provides a visual representation

of spectro-temporal modulation cues which are used by the brain to decode speech.
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Hines and Harte (2010) presented two different types of neurograms: an average

discharge neurogram (i.e., mean-rate or envelope neurogram, ENV) and a fine timing

neurogram (i.e., spike timing or temporal fine structure neurogram, TFS). Both are

smoothed in time by filtering the spike pattern with a 50% overlap hamming window.

The mean-rate neurogram uses a longer window in the order of several milliseconds,

while the spike timing neurogram uses a window in the order of several microseconds.

In general, mean-rate neural cues have been shown to correlate more to envelop

acoustic cues, and spike timing neural cues have been correlated more to temporal

fine structure acoustic cues.

Hines and Harte (2010) proposed an objective speech intelligibility predictor that

used image processing of neurograms to compare the neural representation of a de-

graded signal to a clean reference signal. The degraded neurogram represents the

result of a degraded acoustic signal and/or hearing impairment, while the clean refer-

ence represents a clean acoustic signal and normal hearing. The comparison is done

using the structural similarity index (SSIM) which measures image quality based

on comparison three measured parameters: luminance (i.e., intensity), contrast (i.e.,

variance), and structure (i.e., cross-correlation), i.e.,

S(r, d) = l(r, d)α · c(r, d)β · s(r, d)γ (1.22)

where r is the reference image, d is the degraded image, l is luminance, c is contrast,

s is structure, and α, β and γ are weights.

Hines and Harte (2012) developed the neurogram similarity index measure (NSIM)

which improved upon the SSIM, providing optimal weighting values, and separately

defining the mean-rate NSIM (MR NSIM)and fine timing NSIM (FT NSIM) for the
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respective neurogram types. The NSIM also dropped the contrast parameter for

simplicity, since it was shown to have very little correlation to subjective speech

intelligibility.

Zilany and Bruce (2007) extended the model to better represent how the central

auditory system analyzes the effective spectrogram generated by the cochlear analysis

and extracts the spectro-temporal modulation cues that are used to decode speech.

This process is modeled as a bank of modulation-sensitive filters (i.e., a modulation

filter bank), each having a corresponding impulse response called a spectro-temporal

response field (STRF). Each STRF is centred around a certain time/frequency and is

sensitive to a specific spectral modulation frequency (scale, i.e., density, in cycles/oct)

and a specific temporal modulation frequency (rate, i.e., velocity, in Hz). The result

is a 4D complex-valued analysis generated by convolving the auditory spectrogram

with the bank of STRFs. This analysis is performed on the test signal and the clean

reference signal, and the two results are compared by a 4-dimensional distance metric,

resulting in the so-called spectro-temporal modulation index (STMI Wirtzfeld et al.,

2017).

STMI = 1− ∥T −N∥2

∥T∥2
(1.23)

where T is the template stimulus (i.e., corresponds to the clean reference), and N is

the test stimulus (i.e., corresponds to the degraded signal/representation). ∥·∥ is the

Euclidian-norm operator.
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Figure 1.9: Schematic for generation of NSIM and STMI predictors of speech intelli-
gibility. Note that the usage of Chimaeric speech as the test signal in this depiction
is specific to the study being conducted by (Wirtzfeld et al., 2017). Reproduced with
permission from Springer Nature, Figure 2 from Wirtzfeld et al. (2017) ©2017; per-
mission conveyed through Copyright Clearance Center, Inc.

Wirtzfeld et al. (2017) performed a comparison of the STMI, mean-rate NSIM and

spike-timing NSIM for estimation of subjective speech intelligibility, and found that

a synthesis of STMI and spike-timing NSIM provided the most consistent results.

While the auditory modeling described in this section is monaural, making is

suboptimal for evaluating reverberation, an EC front-end could potentially be added

to provide a simplistic model of binaural perceptual adaptations.

1.7.2 Objective Predictors of Listening Effort

As previously discussed, SI is only impacted by reverberation in severe conditions

which are not typically experienced in every day life, but LE is impacted even in mild

reverb. In other words as reverberation time decreases, SI increases and LE decreases,

but SI eventually plateaus at 100%, while LE continues to decrease.

Objective predictors of SI such as STI continue to increase after subjective SI rat-

ings plateau. These ceiling effects are accounted for by applying a nonlinear mapping
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from objective predictor of SI to subjective SI rating. However, it has been suggested

that that the full range of these predictors can be used to predict LE due to the strong

correlation between SI and LE over the range in which SI has not reached saturation

(Schepker et al., 2016).

1.7.3 Objective Predictors of Speech Quality

As reviewed by Torcoli et al. (2021), several objective predictors of SQ have been pro-

posed which aim to estimate subjective ratings such as MOS. Generally, this is done

by extracting and analyzing quality features such as loudness, coloration, noisiness

and distortion. One of the earliest and most common predictors is the perceptual

evaluation of speech quality (PESQ) (ITU P.862, 2001) and its successor the per-

ceptual objective listening quality assessment (POLQA) (ITU P.863, 2011). Both of

these predictors use a simplified perceptual model that emulates the time-frequency

decomposition of the cochlea, and compare the extracted quality features of the de-

graded signal to a clean reference signal. More recently, Hines et al. (2015) proposed

the virtual speech quality objective listener (VISQOL) which used an improved per-

ceptual model. VISQOL was originally developed using the NSIM to compare the

degraded and clean signals, but switched to using a spectrogram rather than a neu-

rogram, which proved to be equally effective and much less complex. Compared to

PESQ and POLQA, VISQOL has been shown to be less complex and equally effective

at predicting subjective SQ (Hines et al., 2013). Similar to HASPI for SI, Kates and

Arehart (2022) proposed the hearing aid speech quality index (HASQI), which uses

the same perceptual model as HASPI to predict SQ.
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1.8 Linear Prediction

The concept of linear prediction (LP) was originally proposed by Wiener (1949) in

his seminal contributions on modeling discrete time signals as stochastic processes,

and equivalently modeling filtering and prediction as a statistical problem. The first

formal discussions of linear prediction in the context of speech signals were presented

concurrently by Saito and Itakura (1966) and Atal and Schroeder (1970).

As described in Section 1.5.3, speech production can be roughly modeled as the

excitation of time-varying all-pole filter with a source signal made up of a combination

of ideal impulse trains, white noise and individual impulse spikes. Motivated by this

source-filter/AR model of speech (Equation 1.19), linear prediction was proposed as

an efficient method for encoding speech by estimating and storing the poles of the

effective all-pole vocal tract filter, and later using them to re-synthesize the original

speech waveform. This is commonly used in speech codecs where the speech is broken

into frames and the parameters of the source/filter model can be encoded at a lower

bit rate than the raw sampled waveform.

The process of linear prediction can be viewed from three separate but related per-

spectives, namely as a method for predicting a signal, identifying/inverting a system

(i.e., the speech production filter), and estimtaing/whitening the signal spectrum.

These perspectives each present important insights. A detailed discussion of this lin-

ear prediction theory can be found in Quatieri (2002), but the important details have

been summarized here.
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1.8.1 Signal Prediction Perspective

Posed as a prediction problem, the approximately AR model of speech motivates the

prediction, ŝ(n), of a speech signal, s(n), from only its previous samples. i.e.,

ŝ(n) =

p∑
k=1

αks(n− k) (1.24)

where {αk, k = 1, . . . , p} are referred to as the prediction coefficients. The corre-

sponding prediction error (i.e., the prediction residual) is

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

αks(n− k) (1.25)

If the original speech signal is indeed an AR process, if the prediction order is

sufficiently high, and if the poles of the effective speech production filter are correctly

estimated (equivalently, if αk = ak, k = 1, . . . , p), Equation 1.24 exactly matches the

equation for the AR model of speech (Equation 1.19) and therefore the residual will

be equal to the idealized excitation sequence, i.e.,

e(n)
∣∣∣
αk=ak, ∀k=1,...,p

= u(n) =


ug(n) during voiced speech

ui(n) during unvoiced plosive speech

un(n) during unvoiced fricative speech

(1.26)

In estimation of the coefficients of the all-pole model, the optimal prediction co-

efficients are found by minimizing prediction error in a mean squared error (MSE)

sense. From a speech coding stand point, the MSE cost function is defined differently
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when modeling voiced speech which is considered deterministic, and unvoiced frica-

tive speech which is stochastic in nature. In the deterministic modeling case, MSE is

defined as the total squared error over all time, i.e.,

J =
∞∑

n=−∞

e2(n) =
∞∑

n=−∞

(
s(n)−

p∑
k=1

αks(n− k)

)2

(1.27)

Equivalently, in the stochastic modeling case, MSE is defined as the as the ensem-

ble average (i.e., expectation) of the squared error process, i.e.,

J = E
[
e2(n)

]
= E

(s(n)− p∑
k=1

αks(n− k)

)2
 (1.28)

which can be exactly computed by time-averaging over all time (i.e., is exactly equiv-

alent to Equation 1.27) provided s(n) is an ergodic random process. Under this

condition, the two formulations, and thus the resulting solutions, are identical.

The MSE metric is ideally computed/averaged over all time. However, in practice

minimization is done for a short-term signal frame (i.e., prediction error interval) due

to availability of a finite amount of data, and/or due to time-varying nature of speech

which makes it only short-time stationary. In both the stochastic and deterministic

cases, the MSE is estimated in this way, and thus their formulations/solutions are

indeed identical in practice. The specific definition of short-term MSE in the vicinity

of time n, denoted Jn, differs for the autocorrelation method and covariance method

which will be discussed in the next section.

It turns out that the MSE cost function, J , forms a (p + 1)-dimensional error
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surface which is a quadradic function of the prediction coefficients, with exactly one

global minimum corresponding to the optimal set of coefficients (i.e., a quadratic

bowl). Therefore the optimal solution, minimizing J , can be found by taking its

partial derivative with respect to each prediction coefficient, and setting it equal to

zero:

{αk} = argmin
{αk}

J (1.29)

∂J

∂αk

= 0 (1.30)

From the orthogonality principle, the optimal solution will produce an error signal

that is orthogonal to, and therefore uncorrelated with, the input signal except at a

lag of zero (i.e., uncorrelated with a unit-delayed version of the speech signal). Since

any autocorrelation in the residual also implies correlation between the residual and

the input, the optimal prediction residual is also uncorrelated with itself except at a

lag of zero, i.e.,

res(τ) = E[e(n)s(n− τ)] = 0, τ = 0, . . . , p (1.31)

ree(τ) = E[e(n)e(n− τ)] = δ(τ), τ = 0, . . . , p (1.32)

This makes intuitive sense because by optimally predicting and subtracting the

part of the speech signal that can be predicted from its past samples, linear prediction

exploits and removes temporal correlation from the signal. Since this is also the

autocorrelation function of the idealized excitation sequence (impulse, pulse train or
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white noise), this reinforces that the optimal prediction residual will be the idealized

excitation sequence and therefore the prediction coefficients will correspond to the

AR parameters of the underlying process.

It is important to note that Equations 1.31 and 1.32 only hold for certain lags,

which is dictated by the prediction order, p. This will be discussed more later.

1.8.2 System Identification / Inverse Filtering Perspective

In describing speech as the excitation of an all-pole filter with an idealized uncorre-

lated excitation sequence, we can also describe linear prediction as identification of

the corresponding all-pole filter (i.e., system identification).

In this context, the prediction coefficients form a pth order FIR prediction filter

P (z), i.e.,

P (z) =

p∑
k=1

αkz
−k (1.33)

Ŝ(z) = P (z)S(z) (1.34)

and a corresponding pth order FIR prediction error filter, A(z).

A(z) = 1− P (z) = 1−
p∑

k=1

αkz
−k (1.35)

E(z) = A(z)S(z) = S(z)− P (z)S(z) = S(z)− Ŝ(z) (1.36)

where S(z), Ŝ(z) and E(z) are the Z-transforms of the speech signal, s(n), ŝ(n), and
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e(n) respectively.

The inverse of the prediction error filter (i.e., the inverse filter in linear prediction

theory), which is a pth order all-pole filter, re-synthesizes the original speech signal

when excited with the prediction residual, i.e.,

1

A(z))
=

1

1− P (z)
=

1

1−
∑p

k=1 αkz−k
(1.37)

S(z) =
1

A(z)
E(z) (1.38)

The block diagrams corresponding to these three filters are shown in Figure 1.10.

(a) (b)

Figure 1.10: Block diagram for LP prediction-error filter, A(z) (a), and LP inverse
filter,. 1

A(z)
(b)

If the s(n) truly represents an the excitation of an all-pole system,

H(z) =
A

1−
∑p

k=1 akz
−k

(1.39)
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where A is a linear gain term to scale for signal amplitude, and if the prediction

coefficients are correctly estimated (i.e., αk = ak, k = 1, . . . , p), the inverse filter will

be identical to the actual all-pole system. Consequently, the prediction error filter

will be the exact inverse of the all-pole system, i.e.,

1

A(z)

∣∣∣
{αk}={ak}

= H(z) (1.40)

A(z) =
1

H(z)
(1.41)

If however the system has zeros, the linear prediction solution will be forced ap-

proximate these zeros with a finite number of poles in the inverse filter. As previously

explained, an infinite number of poles are required to perfectly model a zero (Equa-

tion 1.16), so the inverse filter will always be approximate when the true system has

zeros.

When the all-pole inverse filter, 1/A(z), is used for re-synthesis of the speech sig-

nal, careful attention must be given to ensure that it is stable (i.e., all poles must be

inside the unit circle). This implies that the prediction error filter, generated by the

optimization solution, must have all zeros inside the unit circle (i.e., minimum-phase).

If the real system is truly a physical all-pole system, it will be inherently causal and

stable, and therefore the optimization process will be able to achieve perfect predic-

tion with a minimum phase prediction error filter. However, if the system has zeros,

the all-pole model will be approximate, and in some cases it may be optimal to incor-

porate some maximum-phase zeros into the prediction error filter. Additionally, if the

underlying process has acausal maximum-phase poles (e.g., the left-sided glottal pulse
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shape in speech production, Equation 1.10), the optimal prediction error filter would

include zeros at these locations, even though the inverse filter would be unstable.

To handle the issue of inverse filter stability, two different formulations of the

optimization problem have been developed: the autocorrelation method and the co-

variance method. These two methods differ in their definition of the short-term MSE

cost function, Jn(n), which is to be minimized.

1.8.2.1 Autocorrelation Method

In the autocorrelation method, the speech signal is windowed to the prediction error

interval n ∈ [n, n + Nw − 1] and the MSE is computed using error samples over all

time, i.e.,

sn(m) = s(m+ n)w(m) (1.42)

en(m) = sn(m)− ŝn(m) = sn(m)−
p∑

k=1

αks(m− k) (1.43)

Jn =
∞∑

m=−∞

e2n(m) =

Nw+p−1∑
m=0

e2n(m) (1.44)

where the subscript n implies “in the vicinity of time n”, and w(n) is the length-Nw

window function, which is non-zero only in the range n ∈ [0, Nw − 1]. The window

function could be rectangular, or some other non-uniform window (e.g., Hamming).

Note that the change in summation bounds in Equation 1.44 is a result of the limited

range of of non-zero elements in en(n) due to the windowing of s(n).

Minimization of Jn with respect to the prediction cofficients (i.e., setting ∂Jn/∂αk =

0) results in the so-called Yule-Walker equations.
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p∑
k=1

αkrn(i− k) = rn(i), i = 1, . . . , p (1.45)

where rn(τ) =
∑Nw−1−τ

m=0 sn(m)sn(m − τ) is the short-term autocorrelation function

of s(n). This is simply the least-squares normal equations applied to linear predic-

tion. The short-term autocorrelation function, which is a function of only time-lag

as opposed to absolute time, appears due to the infinite summation over the error

signal, and implies an inherit assumption of stationary speech. This implies that the

signal is inheritly assumed to be a realization of a wide-sense stationary (WSS) er-

godic stochastic process. In speech coding, where the goal is to model and encode the

time-varying speech production system, the duration of analysis window (i.e., Nw)

is selected short enough that speech may be considered approximately stationary,

typically 20-30 m sec. However, when linear prediction is applied to system identi-

fication problems where the system is slower time-varying, a larger analysis window

may be selected, in which case the statistics of speech are smoothed out and may be

considered long-term stationary (Gazor and Zhang, 2003).

The Yule-Walker equations can be restated in matrix form as

Rnα = rn (1.46)

rn(0) rn(1) rn(2) . . . rn(p− 1)

rn(1) rn(0) rn(1) . . . rn(p− 2)

rn(2) rn(1) rn(0) . . . rn(p− 3)

...
...

...
. . .

...

rn(p− 1) rn(p− 2) rn(p− 3) . . . rn(0)





α1

α2

α3

...

αp


=



rn(1)

rn(2)

rn(3)

...

rn(p)


(1.47)
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which can be solved by any method for solving systems of linear equations (e.g., by

Gaussian elimination).

α = R−1
n rn (1.48)

The Toeplitz symmetric nature of the autocorrelation matrix, resulting from the

underlying WSS assumption, additionally enables usage of the recursive Levinson-

Durbin algorithm (Durbin, 1960). This algorithm is highly efficient compared to

other methods of solving systems of linear equations, but is known to be prone to

numerical instability due to its inherit recursion when the autocorrelation matrix is

ill-conditioned.

It has been shown that due to the Toeplitz symmetric nature of the autocorrelation

matrix Rn, the autocorrelation method produces a minimum-phase prediction error

filter. Therefore the resulting inverse filter used for speech re-synthesis is a stable all-

pole filter. It has also been shown that the autocorrelation function of the inverse filter

produced by the autocorrelation method is identical to the autocorrelation function

of the signal being predicted, up to a lag of p, i.e.,

rĥ(τ) = rs(τ) τ = 0, . . . , p (1.49)

where ĥ(n) = Z−1{ 1
A(z)

}. Since the autocorrelation function completely defines the

power spectral density (i.e., PSD is the fourier transform of the autocorrelation func-

tion), it can be concluded that the magnitude response of the inverse filter is identical
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to that of the true system up to a spectral resolution defined by the prediction or-

der. Therefore, for large enough prediction orders, the inverse filter resulting from

the autocorrelation method represents the equivalent minimum phase representation

of the true system. That is, if the true system, H(z) is non-minimum phase and we

decompose it into its equivalent minimum phase and all-pass components,

H(z) = Hmin(z)Hallpass(z) (1.50)

|Hmin(z)| = |H(z)| (1.51)

then as p→ ∞, 1
A(z)

→ Hmin(z), and

H(z)A(z) = Hallpass(z) (1.52)

However the windowing of the speech signal prior to error calculation means that

only part of the infinite-length system impulse response will be captured in the au-

tocorrelation function. This can result in distortion of the estimated all-pole inverse

filter, an effect that can be minimized but never avoided entirely by using a longer

window. When attempting to model the vocal tract as an all-pole filter, the window

must also be short enough that the signal is considered short-time stationary, other-

wise the analyzed spectrum will be smoothed by the time-varying nature of speech.

The window size thus represents a trade off between capturing short-time spectra and

capturing the entirety of the IIR system impulse response.

To summarize, the autocorrelation method can therefore be described as a biased

solution, which may be sub-optimal in an MSE sense. The resulting prediction error
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filter is guaranteed to be minimum phase, and the resulting inverse filter is guaranteed

to be a stable minimum-phase filter that matches the magntitude response of the true

system up to a spectral resolution defined by the prediction order.

1.8.2.2 Covariance Method

In the covariance method, the speech signal is not windowed, but the prediction

error is computed using error samples only within the prediction error interval n ∈

[n, n + Nw − 1]. This means that the error samples are computed using samples

outside of the prediction error interval, and thus represent the true error signal over

the entire interval, i.e.,

sn(m) = s(m+ n) (1.53)

en(m) = sn(m)− ŝn(m) = sn(m)−
p∑

k=1

αks(m− k) (1.54)

Jn =
Nw−1∑
m=0

e2n(m) (1.55)

Minimization of short-term MSE, Jn, with respect to the prediction coefficients

(i.e., setting ∂Jn/∂αk = 0) results in a different set of normal equations in terms of

the short-term covariance function.

p∑
k=1

αkϕn(i, k) = ϕn(i, 0) (1.56)

where ϕn(i, k) =
∑Nw−1

m=0 sn(m − i)sn(m − k) is the short-term covariance. It is im-

portant to note that by convention in signal processing theory, short-term covariance
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is not used to mean the short-term parallel of long-term covariance. While long-term

covariance is formally defined as the autocorrelation function with its mean removed,

short-term covariance is defined as the short-term parallel of non-stationary correla-

tion. In other words short-term correlation is a function of lag and implies analysis of

stationary processes, while short-term covariance is a function of two time instances

and implies analysis of non-stationary processes.

The covariance method normal equations can also be represented in matrix form.

Φnα = ϕn (1.57)

ϕn(1, 1) ϕn(1, 2) ϕn(1, 3) . . . ϕn(1, p)

ϕn(2, 1) ϕn(2, 2) ϕn(2, 3) . . . ϕn(2, p)

ϕn(3, 1) ϕn(3, 2) ϕn(3, 3) . . . ϕn(3, p)

...
...

...
. . .

...

ϕn(p, 1) ϕn(p, 2) ϕn(p, 3) . . . ϕn(p, p)





α1

α2

α3

...

αp


=



ϕn(1)

ϕn(2)

ϕn(3)

...

ϕn(p)


(1.58)

which can be solved by any method for solving systems of linear equations (e.g., by

Gaussian elimination).

α = Φ−1
n ϕn (1.59)

The covariance matrix is symmetric but not Toeplitz, therefore more correlation

coefficients must be calculated compared to the autocorrelation method, and it can-

not be solved efficiently with the Levinson-Durbin algorithm. However covariance

matrices are always positive definite allowing use of Cholesky decomposition (Reilly,
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2025, chapter 5). Cholesky is less efficient than the Levinson-Durbin algorithm but

is more numerically stable.

Unlike the autocorrelation method where windowing enforces an implicit station-

ary assumption and derives a minimum-phase prediction error filter, the covariance

method represents an unconstrained/unbiased optimization problem. As such the

covariance method tends to perform better than the autocorrelation method when

the system/process is known to be non-stationary, since the time-varying statistics

are captured in the covariance matrix and used in the optimization. Being uncon-

strained, the covariance method may derive a non-minimum phase prediction error

filter in cases where such a filter achieves a lower prediction error (e.g., in some cases

when the underlying process includes zeros and/or acausal maximum phase poles).

The covariance method is only guaranteed to come up with a minimum-phase pre-

diction error filter if the underlying process is indeed minimum-phase all-pole. It

is important to note however, that the prediction error filter is only required to be

minimum-phase if the inverse filter is intended to be used for speech re-synthesis (e.g.,

speech codecs). In some cases, only the prediction error filter is used (e.g., equaliz-

er/whitening filter design), in which case the non-minimum phase solution may be

prefereable.

Additionally, while the windowing in the autocorrelation method means that the

modeling of the true all-pole system is always approximate (except as the window size

approaches infinity), the covariance method can perfectly estimate the coefficients of

an all-pole system with only a finite number of data points.

To summarize, the covariance method represents an unbiased solution for the opti-

mal prediction error filter (in a MSE sense) which may outperform the minimum-phase
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solution produced by the autocorrelation method if the underlying system/process is

non-stationary, not all-pole, or has non-minimum phase acausal poles. However, the

covariance method is more computationally complex and does not guarantee that the

inverse filter used for speech re-synthesis will be stable.

1.8.3 Spectral Estimation / Spectral Whitening Perspective

The process of linear prediction can also be viewed as an estimation of the speech

spectrum or the speech spectrum envelope. In the previous section, speech was mod-

eled as the excitation of an all-pole filter with an uncorrelated input sequence. Under

these conditions, it was explained that the autocorrelation method produces an in-

verse filter with an impulse response that has an autocorrelation function matching

that of the signal, up to p + 1 lags. It was explained that the resulting inverse filter

exactly matches the magnitude response of the all-pole speech production filter, up

to a spectral resolution defined by the prediction order. Identically, if the signal being

analyzed is a realization of an AR process (i.e., the output of the system previously

described), the autocorrelation method will generate an inverse filter with a magni-

tude response that exactly matches the signal spectrum up to a spectral resolution

defined by the prediction order

Similarly, the prediction error filter represents the inverse of the signal spectrum

and therefore flattens it. This explanation aligns with the prediction perspective

previously outlined, since the autocorrelation of the optimal solution was found to be

an impulse, which corresponds to a flat PSD. It also aligns with the previous inverse

filtering perspective where the prediction error filter inverts and therefore equalizes

(i.e., whitens) the all-pole speech production filter. For this reason the prediction
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error filter is commonly referred to as a whitening filter.

In speech spectrum analysis, it may be desirable to use a lower prediction order

which underfits the spectrum, so as to only model the vocal tract resonances and

spectral tilt (i.e., model the speech spectrum envelope). If the spectral resolution

is increased too much, the inverse filter will begin to model not only the spectral

envelope, but also the harmonics of glottal pulsing during voiced speech. This is

undesirable in many speech codecs where the goal is to generate a model of the vocal

tract and use it to resynthesize the speech signal using synthetically generated impulse

trains.
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Chapter 2

Dereverberation Literature Review

In this chapter, an overview of the challenges with and existing approaches to speech

dereverberation is provided. At a high level, dereverberation techniques can be

grouped into two categories: reverberation suppression and reverberation cancella-

tion. Reverberation cancellation techniques aim to directly invert and equalize the

RTF, thus removing reverberation without distorting the clean speech signal. Con-

versely, reverberation suppression techniques aim to estimate and remove the com-

ponents of the signal which contribute most significantly to the perceptual impact of

reverberation, without directly estimating the RTF inverse. Reverberation suppres-

sion is usually fascilitated by means of a spatial/time-frequency masking process.

2.1 Reverberation Suppression

Reverberation suppression can be further categorized into techniques that employ

beamforming and speech enhancement methods such as linear prediction residual

enhancement and statistical methods.
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2.1.1 Beamforming

Beamforming is a well understood topic in signal processing whereby multiple micro-

phones are used to spatially sample the incoming acoustic signal (Elko, 1996; Van Veen

and Buckley, 1988; Flanagan et al., 1985). By computing a linear combination of the

signals captured at each microphone, an output signal is produced which increases

the energy captured from certain spatial directions while reducing the energy from

other spatial directions. If a desired signal is known to arrive from a particular spatial

direction, this process will emphasize that desired signal, which can improve SNR.

The linear combination of the microphone signals usually consists of filtering and

summing the signals. In the simplest case, the filters applied to the microphones are

simply a delayed scalar value, resulting in a wideband weighting of the delayed signals

(i.e., a delay-and-sum beamformer).

Since the perceptually detrimental part of a reverberant signal (i.e. the late re-

flections) tend to be more diffuse than the direct sound and early reflections, beam-

forming can be employed to reduce the energy of the late reflections, thus reducing

the reverberant quality of the speech. Beamforming approaches to dereverberation

are powerful in their simplicity and their easy portability to an adaptive framework.

However beamforming performance degrades at higher frequencies where spatial alias-

ing occurs, and dereverberation efficacy is limited in highly diffuse rooms where much

of the useful energy and reverberant energy are co-located.
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2.1.2 Linear Prediction Residual Enhancement

As discussed in Section 1.8.1, when a speech signal is passed through an well-fitted

linear prection error filter, the residual signal is effectively reduced to impulsive peaks

due to voiced speech and plosive sounds and to uncorrelated noise sequences due to

unvoiced fricatives. When linear prediction analysis is applied to reverberant speech,

the reverberant reflections are theoretically visible as additional/spurious peaks in

the prediction residual signal. Based on this observation, several dereverberation ap-

proaches have been proposed which aim to detect and remove the excess reverberant

peaks from the prediction residual before re-synthesizing the speech signal (Yegna-

narayana and Murthy, 2002; Thomas et al., 2007). However, there is an underlying

assumption here that reverberation does not change the autoregressive parameteres

of speech (i.e., reverberation adds spurious impulses, but does not change the spec-

tral shape), which is not generally true. This limitation has a severe impact on the

performance of these approaches.

In a different but related approach, Gillespie et al. (2001) observed that the kur-

tosis of linear prediction residual descreases with the amount of reverberation, and

proposed a relatively low-complexity algorithm which adapts an equalizer filter based

on kurtosis maximizatation rather than conventional MSE minimization.

While linear prediction residual enhancement can theoeretically be applied to

single-microphone observations of reverberant speech, many practical appraoches use

multiple microphones to better estimate the autoregressive parameters of the clean

speech signal (i.e., to average impact of reverberation on the source spectrum). Alter-

natively, some appraoches have used multiple microphones to perform beamforming

as a pre-processing stage. Linear prediction residual enhancement approaches to
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dereverberation are relatively low complexity, making them suitable for real-time ap-

plications, but their efficacy is limited and they tend to make speech sound somewhat

unnatural.

2.1.3 Statistical Speech Enhancement Methods

As discussed in Section 1.6.3, reverberation and noise both fill dips in speech with

masking energy which blurs speech cues. This similarity has motivated researchers to

extend existing approaches for noise reduction to be used for reducing reverberation.

Noise reduction is a well researched topic in signal processing with many practical

techniques, most of which build on the seminal work of Ephraim and Malah (1984,

1985). Statistical noise reduction approaches generally perform a time-frequency

analysis on the noisy speech signal and apply either spectral subtraction or a gain

function (i.e., a mask, often a Wiener filter) to come up with enhanced signal with a

magnitude spectrum that is optimally similar (i.e., statistically optimal, typically in

a minimum-mean-squared error sense) to that of the unknown clean speech signal.

While these approaches can provide some dereverberation as-is, a number of sin-

gle and multichannel extensions have been developed which incorporate a statistical

model of the RIR (e.g., Polack’s Model, Polack, 1988) into the derivation of the spec-

tral subtraction component or gain function (Lebart et al., 2001; Habets, 2005, 2007;

Erkelens and Heusdens, 2010; Braun et al., 2013; Schwartz et al., 2014). In the same

way that noise reduction algorithms often require blind estimation of SNR, exten-

sions to dereverberation often require blind estimation of reverberation parameters

such as DRR, reverberation time and reverberation spectral variance. Recently im-

proved estimators of the so-called signal-to-diffuse ratio (SDR) have been developed
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and applied to dereverberation (Thiergart et al., 2012, 2014).

Statistical speech enhancement methods are relatively low complexity, but their

performance is limited due their focus on magnitude/power spectrum estimation and

due to the required blind estimation of reverberation parameters. Additionally they

are prone to speech distortions due to the non-linear modification of the speech spec-

trum (e.g., musical noise).

2.2 Reverberation Cancellation

2.2.1 Room Response Equalization

This section outlines the invertability of practical RTFs, and gives an overview of

existing approaches to computing the inverse of a known room response. The first

several approaches are single-channel room inversion methods which (as will be dis-

cussed) are only capable of approximately equalizing the room response, while the

so-called multiple-input/output inverse theorem (MINT, described in Section 2.2.1.3)

acheives near-perfect equalization using multiple microphones.

2.2.1.1 Invertibility of Room Impulse Response

To perfectly cancel reverberation, an equalizer filter must be designed such that the

IR produced by cascading the RIR with the equalizer is an impulse. For a RIR g(n)

and an equalizer h(n), the ideal equalized impulse response (EIR) d(n) is

d(n) = g(n) ∗ h(n) = δ(n) (2.1)

In the Z-transform domain this becomes
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D(z) = G(z)H(z) = 1 (2.2)

H(z) =
1

G(z)
(2.3)

Therefore, the ideal equalizer would be the inverse of the RTF. However Neely

and Allen (1979) showed that RTFs are typically non-minimum phase, making the

realization of a causal and stable inverse impossible. The non-minimum phase nature

of RTFs is related to the acoustics of the room and the positioning of the sound

source and listener. In particular, Neely and Allen (1979) showed that for synthetic

room acoustics there is a threshold of wall reflectivities over which the RTF becomes

non-minimum phase. Similarly, it was shown that by increasing room size, increasing

source/listener separation, or placing the source and listener at more symmetrical

positions, the RTF was more likely to be non-minimum phase. In typical conditions

(e.g., an office room), these conditions for a minimum phase RTF are not met. From

a time-domain perspective, to be minimum phase the first non-zero sample of the RIR

(i.e., the direct sound or first arriving reflection when there is no direct sound) must

be larger than the later reflections, and the RIR must decay rapidly. Even in rooms

with relatively short reverberation times (e.g., approximately 200ms), the decay is

not short enough to produce a minimum phase RTF.

For typical RIRs, the ideal inverse system has a very long impulse response, often

being infinite length (IIR) or even two-sided IIR. This can be explained largely by

RTFs having strong notches which appear as zeros very close to or on the unit circle.

The resulting inverse filter therefore has poles very close to the unit circle resulting

in very long decay. For this reason, equalizer filter structure selection is an important

factor in performance. A FIR equalizer will always be an approximation of the true
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IIR inverse, even for a minimum phase system. However, reasonable performance can

be acheived for a long enough FIR filter. On the other hand, an IIR filter can acheive

perfect equalization for minimum phase systems and often requires lower complexity

than its FIR counterpart.

Additionally, perfect equalization of strong spectral notches is undesirable in prac-

tice since the equalizer will include strong peaks which will substantially amplify noise.

In the extreme case, this narrowband noise resonance was reported by Neely and Allen

(1979) as an audible chime-like artifact. Furthermore, if the RTF has zeros exactly

on the unit circle, this results in complete loss of content at that frequency, making

it unrecoverable even in absense of background noise.

For maximum phase RTFs with zeros strictly outside the unit circle, the inverse

systems are one-sided IIR, and are either causal unstable (i.e., right-sided) or acausal

stable (i.e., left-sided). For mixed-phase RTFs, the inverse system is always two-

sided IIR regardless of stability. Since a practical filter must be stable, the ideal

equalizer would have to be acausal or two-sided. Infinitely left-sided filters are not

implementable in realtime since they would require prior knowledge of infinite future

data. However, it is theoretically possible to implement an infinitely left-sided fil-

ter offline, by performing two filtering operations: one in forward-time (i.e., causal

filtering) and one in reverse-time (i.e., acausal filtering) (Kormylo and Jain, 1974).

However, Treitel and Robinson (1966) showed that by introducing a modeling delay

D to the desired EIR (i.e., equalizing to a delayed impulse), it is possible to provide

partial implementation of the left side of the ideal system inverse, i.e.,
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d(n) = g(n) ∗ h(n) = δ(n−D) (2.4)

D(z) = G(z)H(z) = z−D (2.5)

H(z) =
z−D

G(z)
(2.6)

This has the effect of shifting some of the acausal portion of the ideal stable inverse

filter to causal side, and greatly improves equalizer performance. Increasing model-

ing delay always improves equalizer performance, but equalization is still approximate

since perfect equalization would in general require infinite delay. Additionally, intro-

duction of signficant delay can reduce user experience, and can result in unnatural

audible artifacts due to equalizer error, i.e., pre-ringing and pre-echo, (Brannmark and

Ahlén, 2009). The design of an effective equalizer must carefully manage the tradeoff

between reverberation cancellation and these other adverse perceptual effects.

Another challenge in the design of a practical room response equalizer arises from

the highly non-stationary nature of the RTF, both in space and time. Mourjopoulos

(1985) showed that RIR varies signficantly with respect to loudspeaker and micro-

phone location and as a result an equalizer only applies exactly within a very small

spatial region (i.e., the equalized zone). It was shown that the equalized zone is

smaller than the interaural distance at high frequencies. Movement of the sound

source, listener and objects in the room, as well as temperature variations result in

significant variation of the RIR over time (Omura et al., 1999). For similar reasons, it

has been shown that small errors in the equalizer (e.g., due to errors in the model of

the RIR and due to computational error) result in significant worsening of equalizer

performance, often resulting in making the effect of reverberation worse. To make

equalizers more robust to variation, several design approaches have been proposed
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which attempt to equalize the room response at multiple locations simultaneously

(Elliott and Nelson, 1989; Haneda et al., 1997). This reduces equalizer performance

at each individual location, but results in a more stable solution.

In the context of dereverberation for speech perception, it is also important to

consider the perceptual benefit of early reflections which provide an effective SNR

boost as previously described. Several authors have proposed modifications to existing

equalizer design methods which maintain early reflections (Karjalainen and Paatero,

2006; Maamar et al., 2006; Mei et al., 2009). These appraoches are referred to as

room response reshaping, channel shortening or partial equalization.

It is also important to make a distinction between the problem of equalizing the

RTF at a certain location by preprocessing the signal sent to a spatially separated

loudspeaker, and equalizing the RTF locally at the microphone (e.g., on a hearing

aid).

2.2.1.2 Single Channel Room Response Equalization

While it is strictly impossible to perfectly equalize an RTF with a single-channel

causal/stable FIR filter, a number of approaches have been developed which aim to

provide partial equalization.

One approach to equalization of a non-minimum phase RTF, is to decompose the

RTF into its minimum-phase and all-pass mixed-phase components, and to equalize

only the minimum-phase component. Neely and Allen (1979) accomplished this by

modeling the RTF with a FIR RIR and extracting the minimum-phase component

from the cepstrum of the RIR. Alternatively, Mourjopoulos and Paraskevas (1991)

and Haneda et al. (1997) modeled the RTF as an all-pole filter, and estimated it by
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using the autocorrelation method for linear prediction to minimize modeling error.

The all-pole model generally outperforms the FIR model since it emphasizes equal-

ization of the high energy spectral peaks (Toole and Olive, 1988) and de-emphasizes

equalization of deep notches thus reducing sensitivity to their time-variance and min-

imizing noise amplification. These approaches can perfectly equalize the magnitude

response of the channel, but the residual phase response has been shown to contain

most of the reverberant energy and as such is not perceptually negligible (Johansen

and Rubak, 1996). In other words, the all-pass mixed-phase component is responsi-

ble for the temporal smearing of reverberation. The shortcomings of minimum-phase

equalization motivate the need for an alternative form of partial equalization which

emphasizes the importance of phase equalization.

To better account for the importance of the all-pass component in terms of re-

verberant energy, several authors (e.g., Clarkson et al., 1985) have proposed the

usage of least-squares optimization to directly minimize the error energy between the

desired EIR and the acheived EIR. The desired EIR is set to a delayed impulse to

enable partial implementation of the acausal portion of the ideal RTF inverse. Several

authors have proposed methods for determining the optimal delay which trades off

between equalizer performance and undesireable effects such as pre-ringing/pre-echo

(Clarkson et al., 1985; Ford, 1978).

Perhaps the most obvious approach to RTF inversion, as explored by authors such

as Kulp (1988), is to directly invert the DFT of the FIR RIR. Since the inverse of

an RTF is generally infinite in length, time domain aliasing occurs regardless of DFT

size. To mitigate this issue, several RIR pre-processing methods have been proposed

such as applying a window function to emphasize key parts of the RIR (Kulp, 1988)
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or using regularization to reduce depth of spectral notches with the goal of reducing

noise amplification (Bean and Craven, 1989; Kirkeby et al., 1996). As in the previous

methods, modeling delay can be introduced to partially shift the acausal portion of

the RTF inverse to the causal side.

Since frequency domain inversion methods and unconstrained least squares opti-

mization methods do not constrain the equalizer to be minimum-phase, they have

been shown to provide better reduction of reverberant energy for sufficient modeling

delay (and for a large enough DFT size for frequency domain inversion) (Mourjopou-

los et al., 1982). However, these approaches are still always approximate, and are

still susceptible to the issues of RTF variation in space and time, and artifacts such

as noise amplification, pre-ringing and pre-echo.

2.2.1.3 Multiple Input-Output Inverse Theorem (MINT)

In their seminal paper, Miyoshi and Kaneda (1986) proposed the multiple-input/output

inverse theorem (MINT), which performed RTF equalization by exploiting multiple

acoustic channels, i.e., multiple spatially separated loudspeakers and/or microphones.

Two separate forms for MINT equalizers were presented, and their applications were

described as sound reproduction and dereverberation (Figure 2.1).
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(a) Dereverberation (b) Sound Reproduction

Figure 2.1: Block diagram the formulations of MINT filtering: dereverberation (a)
and sound reproduction (b)

Sound reproduction describes a multiple-input single-output (MISO) system, where

each loudspeaker signal is pre-processed with a unique FIR filter so as to equalize the

RTF at a certain location in the room. Dereverberation describes a single-input

multiple-output (SIMO) system where multiple microphone signals are filtered and

summed, with the intention obtaining a clean signal that can be played back elsewhere

(e.g., a hearing aid loudspeaker).

In the SIMO dereverberation case, which is relevant to this thesis, Miyoshi and

Kaneda (1986) showed that perfect equalization of an arbitrary multichannel FIR

RTF can be achieved provided there are no zeros that are common to all N individual

RTFs and provided the individual FIR equalizer filters are of length

m ≥ n− 1

N − 1
(2.7)

where n is the length of the FIR RIRs (or the longest RIR length if they are different).

The multichannel inverse filtering problem can be stated in matrix form as
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Gh = d (2.8)

Gh =

[
G1 G2 . . . GN

]


h1

h2

...

hN


=



d(0)

d(1)

...

d(m+ n− 2)


= d (2.9)

where hi is the vector form of the FIR equalizer applied to microphone i, d =[
1 0 . . . 0

]T
is the desired equalized impulse response, and Gi ∈ R(m+n−1)×m

is the Toeplitz convolution matrix which represents the convolution of gi(n) with

hi(n).

The MINT equalizer is computed by solving Equation 2.8 using the pseudo-inverse,

i.e.,

h = G+d = GT (GGT )−1d (2.10)

Unlike the previously discussed single-channel methods which only approach per-

fect equalization of non-minimum phase RTFs as the modeling delay approaches

infinity, the MINT is capable of equalizing the room response with zero delay. Ad-

ditionally by exploiting multiple channels, the MINT equalizer is less susceptible to

noise amplification for channels with deep spectral notches, and in fact is capable of

equalizing channels with zeros exactly on the unit circle.

It is interesting to note that FIR channels inheritly have inverse filters that are

all-pole and therefore IIR. Single channel FIR equalization of a FIR channel will
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thus always be approximate, even if the channel is minimum phase. This makes

sense intuitively, but Miyoshi and Kaneda (1986) also proved this numerically by

demonstrating that the matrix formulation of the single channel equalization problem

is always overdetermined regardless of equalizer filter length. Remarkably, the MINT

can acheive perfect equalization of a FIR channel with individual FIR equalizer filters

that are shorter in length than the FIR channels. It is important to remember that

real RTFs are not generally speaking FIR, so the MINT is still approximate. However,

for a sufficiently long FIR measurement of the true RIR, the residual reflections may

be considered negligible. The MINT was proven to greatly outperform the single

channel least squares equalization method, acheiving more than 40 dB additional

reverberation attenuation accross all frequencies.

In a follow-up discussion of the MINT, Miyoshi and Kaneda (1988) extended the

technique to simultaneously equalize multiple listening locations using multiple loud-

speakers (i.e., MIMO sound reproduction). In another extension, Nakajima et al.

(1997) proposed the indefinite MINT filter (IMF) which exploits the additional de-

grees of freedom gained when the FIR equalizer length m is strictly greater than its

minimum required length. In this underdetermined case, there are infinite solutions.

While the classical MINT recommended using the pseudo inverse to compute the

minimum norm solution, IMF makes use of the additional degrees to equalize nearby

points. This has the effect of expanding the equalized zone and improving robustness

to spatial variation of the RTF.
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2.2.1.4 Perceptually Motivated Room Response Equalization

Several authors have proposed extensions to RTF equalization appraoches which con-

strain the solution to improve perception rather than simply to equalize the channel.

This includes the partial MINT (i.e., PMINT Kodrasi and Doclo, 2012), the relaxed

multichannel least-squares (Zhang et al., 2010), and channel shortening (Kallinger

and Mertins, 2006).

2.2.2 Blind Deconvolution Problem

All of the room response equalization approaches discussed in the previous section

were dependent on having prior knowledge of the RIR (e.g., by measurement). How-

ever, typically in the context of dereverberation, the RIR is not known and must be

estimated by other means. The approaches to estimation of a unknown linear system

can be divided into supervised methods (i.e., trained/supervised deconvolution) and

unsupervised methods (i.e., blind/unsupervised deconvolution).

2.2.2.1 The Wiener Filter (Supervised Optimal Filtering)

Traditional supervised optimal filtering is formulated as the selection of a filter H(z)

which, for a known input sequence x(n), produces a output y(n) that is optimally

close (in a mean-squared error sense) to a desired/reference signal d(n). That is, the

goal is to design H(z) such that the energy in the error signal e(n) = d(n)− y(n) (as

depicted in Figure 2.2) is minimized.
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Figure 2.2: Block diagram for supervised optimal filtering, which attempts to produce
a desired output, d(n), from a known input, x(n)

The derivation for this optimal solution, originally proposed by Wiener (1949), is

performed in a stochastic framework using expectations for computing mean-squared

error (MSE). Considering a length-N FIR filter, H(z) =
∑N−1

k=0 hkz
−k, the MSE cost

function J(h) is:

J(h) = E
[
|e(n)|2

]
= E

[∣∣d(n)− hHx(n)
∣∣2] (2.11)

with x(n) =

[
x(n) x(n− 1) . . . x(n−N + 1)

]T
and h =

[
h∗0 h∗1 . . . h∗N−1

]T
.

The MSE cost function is a quadratic form that represents a quadratic bowl in

N+1 dimensions with exactly one global minimum. Taking the derivative of the cost

function and setting it equal to zero, i.e., setting ∂J(h)
∂h∗ = 0, the optimal solution is

found to be:

Rh = p (2.12)

where p = E [x(n)d∗(n)] is the cross-correlation vector between the input process and

the desired/reference process, and R = E
[
x(n)xH(n)

]
is the autocorrelation matrix

of the input process.

Equation 2.12 is referred to as the Wiener-Hopf equation and can be solved by any

number of methods for solving systems of linear equations. Under the assumption that

87



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

x(n) is a WSS random process, R is a Toeplitz symmetric matrix, and thus Equation

2.12 can be solved efficiently via the Levinson-Durbin algorithm. This equation can

also be viewed as a stochastic extension of the LS normal equations, and equivalently

the Yule-Walker equations in linear prediction. That is, the Wiener filter is optimal

for known stationary processes, whereas the LS normal equations produce a filter that

is optimal for a known set of data. In practice the statistical correlation functions that

make up p and R in the Wiener-Hopf equations must be estimated from a finite set of

data, and given certain short-term estimation techniques, the Wiener-Hopf equations

become identical to the LS normal equations.

The conditioning of the Wiener-Hopf equation is dictated by the eigenvalue spread

of the autocorrelation matrix, R, which has been shown to be correlated to the dy-

namic range of the input spectrum (i.e., the “peakiness”). When the input process

is white, the eigenvalue spread is equal to 1, and the autocorrelation matrix is the

identity matrix. When the input sequence is coloured, the non-zero off-diagonal auto-

correlation values result in a larger eigenvalue spread (i.e., higher condition number),

which can lead to a less numerically stable solution.

In practice there is always additional sensor noise present which interferes with the

measured input, x(n), and/or error signal, e(n). This interference leads to additional

misadjustments of the final solution due to distortions in the autocorrelation matrix.

The Wiener filter has also been extended to the optimal derivation of an IIR filter

(i.e., the unconstrained Wiener filter), which is computed in the frequency domain.

The Wiener filter and all resulting adaptive extensions can be applied to both single-

channel transversal filters (as described above) and multichannel linear combiners

(e.g., beamforming).
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2.2.2.2 Supervised Adaptive Filtering

To allow tracking of time-varying systems, adaptive algorithms have been proposed

which aim to converge on the Wiener filter. For a detailed discussion of the details

of adaptive filtering theory, refer to Farhang-Boroujeny (2013).

Adaptive filtering theory leverages the fact that the MSE cost function forms a

quadratic error surface, and generally performs some form of gradient descent to make

iterative steps towards the optimal solution. The most common adaptive algorithm

is the least-mean-squares (LMS) algorithm, which performs gradient descent using a

stochastic estimate of the true gradient. The LMS algorithm is very low complexity

and does not require prior knowledge/estimation of the statistics of the input process

or desired/reference process.

Separate from gradient-based algorithms described above, the recursive least squares

(RLS) algorithm forms an adaptive extension of least squares optimization. This data-

centric approach minimizes deterministic total-squared-error for the specific data ob-

served. RLS performs LS optimization over all data observed since the start of time,

with an added forgetting factor to allow tracking of time-varying systems.

As was the case with Wiener filtering, in practice there is additional sensor noise

present in the measured input signal, x(n), and/or error signal, e(n), which inter-

feres with the adaptation and leads to misadjustments. This can be particularly

problematic when the interfering noise is correlated with itself.

All adaptive algorithms are derived in the complex domain to allow implementa-

tion in the frequency domain and subband domain. Adaptation in the frequency/-

subband domain is often desirable for computational efficiency and to allow control of

the adaptation on a frequency-selective basis. Additionally, convergence tends to be
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faster in the frequency/subband since narrowband signals tend to have flatter spec-

tra than wideband signals. However, the DFT/Inverse DFT or subband filterbank

adds computational complexity and memory of its own, and increases system latency

which may not be desirable.

2.2.2.3 Blind Deconvolution Challenges

When applied to system equalization (e.g., RTF equalization), as depicted in Figure

2.3, the desired/reference signal is the input to the unknown system, i.e., d(n) = s(n),

and input to the equalizer filter, H(z), is the output of the unknown system, i.e.,

x(n) = s(n) ∗ h(n).

Figure 2.3: Block diagram for supervised inverse filtering / equalization, which at-
tempts to produce reproduce the known input, s(n), to an unknown system G(z),
from the measured system output, y(n), using a filter, H(z)

Blind deconvolution (i.e., unsupervised inverse filtering) refers to the problem of

inverse filtering when the input, s(n), to the unknown system, G(z), is unknown as

well. This generally requires two stages: unsupervized estimation of the unknown

(i.e., blind system identification, or BSI), and inverse filtering. This implies that the

error signal e(n) is unknown. For completeness, measurement noise, v(n), is included

(Figure 2.4).
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Figure 2.4: Block diagram for blind deconvolution, which attempts to produce re-
produce the unknown input, s(n), to an unknown system G(z), from the measured
system output, y(n), including additive noise v(n), using a filter, H(z)

Speech dereverberation is generally a blind problem since the source is a human

talker, and the corresponding speech signal is only measured at the listening point

(i.e., only the RTF system output is available). This creates a challenging problem

since the system input, s(n), and system itself, G(z), are both unknown and must

be derived from the measured signal at the output, y(n) (i.e., microphone signal).

Therefore, there is an ambiguity as to whether the poles and zeros of the measured

output signal correspond to the input signal or the system.

In the context of blind wireless channel equalization, the unknown source often

falls into a discrete set of known symbols that are stationary within a symbol period.

This can be exploited to make assumptions about the source when estimating the

system. Conversely, in speech dereverberation the speech signal is virtually arbitrary

and highly non-stationary, making the problem even more challenging.

Additionally, as discussed in Section 2.2.1.1, reverberant channels vary signifi-

cantly with respect to spatial location and slight misadjustments to the equalizer can

result in making the effects of reverberation worse. This spatial variance results in a

highly time-varying channel, which must be tracked adaptively. Also, as discussed,

RTFs tend to be non-minimum-phase thus not having a causal stable single-channel

inverse, and may have strong or perfect zeros which can result in severe narrowband
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noise amplification.

As with traditional supervised system equalization, interfering noise can result in

misconvergence of the inverse filter, and must be handled accordingly.

Lastly, since reverberation times can be in the order of several seconds, resulting

in sampled RIRs spanning thousands or even tens of thousands of taps, computations

in reverberation cancellation also tend to be very complex and sensitive to numerical

error.

2.2.2.4 SOS and HOS Methods for Blind System Identification

Techniques for BSI can generally by categorized by their usage of second order statis-

tics (SOS) or higher order statistics (HOS).

It is well understood that SOS such as autocorrelation and power spectrum only

capture the magnitude information of a signal, and do not directly capture any phase

information. Referring back to Figure 2.4, the power spectrum of the system output,

y(n), (neglecting noise) is given by

Syy(ω) = |G(ω)|2Sss(ω) (2.13)

Therefore, if only the SOS of the system output is known, then only the magnitude

response of the channel, |G(ω)|, can be identified. For this reason, SOS methods

for BSI are limited in their ability to perfectly identify the true underlying system.

Since the phase response of an RTF contains significant reverberant energy (Section

2.2.1.2), this has a strong impact on dereverberation performance. Also note that

correct identification of |G(ω)| from only the SOS of the system’s output, Syy(ω),

additionally requires knowledge of the SOS of the system’s input, Sss(ω). As such,
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truly blind estimation of |G(ω)| requires that the input is white and stationary (i.e.,

independent and identically distributed, i.i.d., up to the 2nd order).

In the seminal work by Giannakis and Mendel (1989), it was shown that the

complete magnitude and phase information of an LTI system are captured in the

HOS of the system’s output. Specifically, it was shown that the magnitude and

phase information are retreivable from the k-order cumulant or the (k − 1)-order

polyspectrum of the system’s output for k > 2, provided the input is non-Gaussian

(i.e., it has non-zero HOS). Similar to the SOS case, identification of the system,

G(z), from only the HOS of the system’s output requires knowledge of the HOS

of the input. Alternatively, for the source properties to be neglected the samples

of the source process must be i.i.d. up to the kth order. If the input is not i.i.d.,

the identified system will include the source statistics, and therefore the designed

equalizer will whiten the source as well. To avoid this undesired result, additional

processing is needed to estimate and restore the source spectrum.

In practice, HOS methods are not often used for dereverberation due to the mas-

sive amount of signal data needed to reduce the high level of variance that arises in

numerical estimates of HOS. This data constraint results in high computational com-

plexity and greatly reduces the ability of algorithms to track time-varying channels.

2.2.2.5 Multichannel SOS Methods for Blind System Identification

In the previous section, it was explained that SOS do not capture phase information,

which can severely impact dereverberation performance. However, it has been shown

that using multiple channels, partial phase information can be captured. Originally

demonstrated by Slock (1994), the spatial diversity gained from a multichannel setup
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gives rise to spatial cross-correlations from which relative phase information can be

extracted. In the context of dereverberation, this is realized using multiple micro-

phones. Since only the relative phase is known, the system can only be identified up

to a linear-phase term.

Additionally, the spatial diversity gained by using multiple microphones provides

a mechanism for mitigating the source/filter ambiguity that is inherit to the BSI

problem. Intuitively, if the poles and zeros of each microphone signals are known (or

can be estimated), the source components will be common to all microphone signals,

while the channel/filter components will be different for each microphone. Therefore,

it is possible to uniquely identify the channel RTFs provided there are no poles or

zeros that are common to all channels.

As discussed in Section 2.2.1.3, the usage of multiple channels in equalizer design

also makes it possible to perfectly equalize non-minimum phase systems (i.e., a MINT

equalizer). This is possible provided the MINT conditions are met, i.e., the individual

channel RTFs do not share common zeros and the individual FIR equalizer filters are

of length m ≥ n−1
N−1

, where n is the length of the individual RIRs and N is the number

of microphones. Multichannel SOS methods for BSI can thus be viewed as a blind

estimation of the MINT equalizer.

In summary, using multiple microphones, it is possible to identify an arbitrary

multichannel RTF from only its output signals for any arbitrary source signal, pro-

vided the individual channels do not share common poles/zeros. Using a multichannel

inverse filter, it is also possible to perfectly equalize this channel up to a gain factor

and linear-phase term provided the MINT conditions are met. These properties, and

the relatively small amount of data required to compute SOS, have given rise to a
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number of blind deconvolution methods for derverberation, which will be discussed

in the following section.

2.2.3 Multichannel SOS Methods for Reverberation Cancel-

lation

This section outlines existing methods for dereverberation by blind deconvolution

using multichannel SOS methods for BSI. While all the following methods rely on

multichannel SOS to separate the poles and zeros of the RTF from those of the

source signal, they differ in the details of how this is done.

The Multichannel equalization problem is shown in Figure 2.5

Figure 2.5: Block diagram for multichannel inverse filtering, which attempts to
produce reproduce the known input, s(n), to an unknown multichannel system
{G1(z), G2(z), . . . , GM(z)}, by filtering and summing the M microphone signals,
{y1(n), y2(n), . . . , yM(n)}, with a set of FIR filters, {H1(z), H2(z), . . . , HM(z)}

.

Gk(z) will be used to denote the RTF from the source to the kth microphone, and

Hk(z) will be used to denote the FIR equalizer filter applied to microphone signal k
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before summation with the other channels. M will be used to denote the number of

microphones/channels.

2.2.3.1 Homomorphic Deconvolution

One of the earliest proposed methods to blind deconvolution was accomplished in

the complex cepstral domain (Oppenheim et al., 1976). The complex cepstrum of a

clean speech signal has been shown to be concentrated around the zero quefrencies,

while complex cepstrum of the RIR tend to be concentrated at higher quefrencies.

As such a simple single-channel blind deconvolution technique consists of applying a

window function (i.e., a short-pass lifter) to the complex cepstrum which attenuates

the higher quefrencies. However, this effectively results in a minimum phase modeling

of the system, which severely limits dereverberation performance. Petropulu and

Subramaniam (1994) proposed a multichannel extension of this approach, and showed

that an arbitrary mixed-phase RIR could be estimated from just the phases of two

microphone signals. However, all homomorphic deconvolution methods tend to lead

to severe speech distortions, and their performance is severely limited by the selection

of the window function cutoff.

2.2.3.2 Subspace Methods

Several methods have been proposed which build on a key observation from Gurelli

and Nikias (1995) that the RIRs of multiple channels can be extracted from the null

space of the multichannel microphone data matrix. This was originally demonstrated

in a two-channel noise-free configuration, where a source signal s(n) is passed through

two channels with RIRs g1(n) and g2(n), producing microphone signals,y1(n) and
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y2(n).

y1(n) = s(n) ∗ g1(n) (2.14)

y2(n) = s(n) ∗ g2(n) (2.15)

Conceptually, if each RIR is applied as a filter to the opposite microphone signal,

the difference between the resulting signals should be zero, i.e., the so-called cross

relation equality,

y1(n) ∗ g2(n)− y2(n) ∗ g1(n) = s(n) ∗ g1(n) ∗ g2(n)− s(n) ∗ g2(n) ∗ g1(n) = 0 (2.16)

Gurelli and Nikias (1995) proved that the RIRs were consequently identical to

the null space eigen-vectors of the multichannel data matrix (i.e., the data matrix

of y1(n) and y2(n)). A similar proof was shown to hold for an arbitrary number of

channels.

In the presence of noise, the multichannel data matrix generally does not have

a null space since Equation 2.16 will not produce a difference of zero. Instead, the

RIRs are extracted from the so-called “noise subspace” which is defined to have the

smallest eigenvalues (i.e., minimizes cross-relation error).

Several more practical algorithms have been proposed to more heuristically mini-

mize the cross-relation error, often using an adpative algorithm such as LMS, NLMS

or RLS (Xu et al., 1995; Huang and Benesty, 2003, 2002).

In addition to the requirements already stated for BSI to be possible with multi-

channel SOS, this method also requires that the channel orders are known exactly so

that the multichannel data matrix can be sized correctly. If the channel orders are

over-estimated, the produced RIR estimates will include a common term of arbitrary

97



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

extra zeros, e(n), since

s(n) ∗ g1(n) ∗ g2(n) ∗ e(n)− s(n) ∗ g2(n) ∗ g1(n) ∗ e(n) = 0 (2.17)

which will degrade performance. This is a severe limitation of technique, and for this

reason subspace methods are not often useful in practice.

2.2.3.3 Multichannel Linear Prediction Methods

While multichannel linear prediction is a well understood topic with many high-level

descriptions such as the one provided in Naylor and Gaubitch (2010), no detailed

derivation or final solution for the multichannel Yule-Walker equations was found

during literature review. Therefore the solution was derived and presented in detail

below.

Multichannel Linear Prediction Theory

As discussed in Section 1.8, linear prediction models speech as an autoregres-

sive process, and consequently the prediction error filter
(
A(z) = 1−

∑p
k=1 akz

−k
)

removes autocorrelation from the signals and thus acts as a whitening filter. Concep-

tually we can model a speech signal, s(n), as the excitation of an all-pole filter with

an uncorrelated input sequence,

S(z) = Z{s(n)} = U(z)
1

1−
∑p

k=1 akz
−k

= U(z)SAP(z) (2.18)

where SAP (z) is an all-pole filter encapsulating all autocorrelation in s(n), and U(z)

is the Z-transform of the uncorrelated residual part of s(n) that does not fit the

autoregressive model. The linear prediction “inverse filter”
(

1
A(z)

= 1
1−

∑p
k=1 αkz−k

)
is
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an estimate of that all-pole model, i.e., of SAP(z) =
1

1−
∑p

k=1 akz
−k .

If we extend this modeling concept to a reverberant speech signal, y(n), that is

produced by filtering s(n) with an RIR, g(n), we get

Y (z) = S(z)G(z) = Ũ(z)SAP(z)GAP(z) (2.19)

where GAP(z) is an all-pole model of G(z), and Ũ(z) encapsulates the uncorrelated

residual part of both s(n) and g(n) that does not fit the autoregressive model. As

described in Section 1.5.3, an arbitrary transfer function can be perfectly represented

by an infinite number of poles and can be represented reasonably with a sufficient

number of poles.

Since linear prediction estimates SAP(z)GAP(z) without any knowledge of the

input sequence s(n), it effectively performs blind system identification, and the pre-

diction error filter fascilitates blind deconvolution. However, the prediction error filter

will also remove the autoregressive properties of the source signal, which will result

in over-whitening of the speech signal. The handling of this will be discussed later.

As proved by the MINT (Section 2.2.1.3), it is theoretically possible to perfectly

identify and equalize an arbitrary RTF by using multiple channels. For this reason,

multichannel linear prediction has proven to be one of the most promising approaches

to blind deconvolution for dereverberation. The multichannel extension of linear

prediction in the context of equalizing a multichannel system is formulated as shown

in Figure 2.6
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Figure 2.6: Block diagram for multichannel linear prediction applied to channel equal-
ization, where an estimate of reverberant microphone signal 1 is produced by filtering
and summing past samples of reverberant microphone signals 1-M

.

As shown, the current samples of y1(n) are estimated by filtering and summing the

past p samples of all M microphone signals. Note that since all output signals reflect

the same source data, s(n), it is important that the output signals are time-aligned.

This is necessary so that the window of source data included in the delayed signals,

{y1(n−1), . . . , yM(n−1)}), indeed lags the data included in y1(n) by 1 sample. If the

signals are not aligned in this way, the prediction error filter will cancel y1(n) instead

of whitening it.

The prediction error signal e1(n) is thus

e1(n) = y1(n)− ŷ1(n)) = y1(n)−
M∑

m=1

p∑
k=1

αm,kym(n− k) (2.20)

which can be represented in vector form as
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e1(n) = y1(n)−
p∑

k=1

αT
k y(n− k) (2.21)

e1(n) = y1(n)− α̃T ỹ(n− 1) (2.22)

with

y(n) =

[
y1(n) y2(n) . . . yM(n)

]T
∈ RM×1 (2.23)

αk =

[
α1,k α2,k . . . αM,k

]T
∈ RM×1 (2.24)

and

ỹ(n− 1) =

[
yT (n− 1) yT (n− 2) . . . yT (n− p)

]T
∈ RMp×1 (2.25)

α̃ =

[
αT

1 αT
2 . . . αT

p

]T
∈ RMp×1 (2.26)

It is more common, however, to formulate multichannel linear prediction as esti-

mating the sample of a vector-valued signal, y(n), from its past p vector-valued sam-

ples. This results in a vector-valued error signal, e(n) =

[
e1(n) e2(n) . . . eM(n)

]T
,

defined as

e(n) = y(n)− ŷ(n) = y(n)−
p∑

k=1

Aky(n− k) (2.27)

where Ak ∈ RM×M is the multichannel prediction coefficient matrix for a k-sample

delay. This can also be fully encapsulated in vector form as
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e(n) = y(n)−Amcỹ(n− 1) (2.28)

where

Amc =

[
A1 A2 . . . Ap

]
∈ RM×Mp (2.29)

Note that the first row of Equation 2.28 is exactly Equation 2.22. Similarly, row 2

represents the prediction of y2(n), row 3 represents the prediction of y3(n), and so on.

The multichannel versions of the prediction error filter, Ape,mc(z) is thus

Ape,mc(z) = I −
p∑

k=1

Akz
−k (2.30)

where I ∈ RM×M is the identity matrix. Note that these are vector-valued filters,

i.e.,

e(z) = Ape,mc(z)y(z) (2.31)

with

e(z) = Z{e(n)} =

[
Z{e1(n)} . . . Z{eM(n)}

]T
(2.32)

y(z) = Z{y(n)} =

[
Z{y1(n)} . . . Z{yM(n)}

]T
(2.33)

Like in Section 1.8.2.1, we define a mean-squared error cost function,
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J = E
[
eT (n)e(n)

]
(2.34)

where the definition of the estimator for the expectation operator, E[·], distinguishes

between the autocorrelation method and the covariance method. The optimal predic-

tion coefficients are derived by minimizing J (i.e., by setting ∂J/∂αl,m,k = 0, where

l is the channel being predicted, m is the channel being used in prediction, and k is

the prediction delay).

Each row of Equation 2.28 represents the formulation of an independent Wiener

Filter (Section 2.2.2.1), where the “desired” output is dWiener(n) = ym(n), and the

input is xWiener(n) = ỹ(n − 1). Therefore, the solution for row m of Amc (i.e., α̃T
m)

is given by the corresponding Wiener-Hopf equations (Equation 2.12, Rx(n)x(n)h =

rx(n)d(n)):

Rỹ(n)ỹ(n)α̃m = rỹ(n−1)ym(n) (2.35)

(Rỹ(n)ỹ(n)α̃m)
T = (rỹ(n−1)ym(n))

T → α̃T
mRỹ(n)ỹ(n) = rT

ỹ(n−1)ym(n) (2.36)

with

Rỹ(n)ỹ(n) = E[ỹ(n)ỹT (n] ∈ RMp×Mp (2.37)

rỹ(n−1)ym(n) = E[ỹ(n− 1)ym(n)] ∈ RMp×1 (2.38)

Packing all M Wiener-Hopf equations together we get the final solution for Amc,
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

α̃T
1

α̃T
2

...

α̃T
M


Rỹ(n)ỹ(n) =



rT
ỹ(n−1)y1(n)

rT
ỹ(n−1)y2(n)

...

rT
ỹ(n−1)yM (n)


(2.39)

AmcRmc = rmc (2.40)

Amc = rmcR
−1
mc (2.41)

with

Rmc=E[ỹ(n)ỹ
T (n]=



Ryy(0) Ryy(1) . . . Ryy(p− 1)

Ryy(1) Ryy(0) . . . Ryy(p− 2)

...
...

. . .
...

Ryy(p− 1) Ryy(p− 2) . . . Ryy(0)


∈RMp×Mp (2.42)

rmc=E[y(n)ỹ
T (n− 1)]=

[
Ryy(1) Ryy(2) . . . Ryy(p)

]
∈RM×Mp (2.43)

where Ryy(l) is the spatial correlation matrix of the microphone signals for lag l, i.e.,

Ryy(l) = E[y(n)yT (n− l)] =



ry1y1(l) ry1y2(l) . . . ry1yM (l)

ry2y1(l) ry2y2(l) . . . ry2yM (l)

...
...

. . .
...

ryMy1(l) ryMy2(l) . . . ryMyM (l)


(2.44)
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where ryiyk(l) = E[yi(n)yk(n− l)] is the cross-correlation between microphone signal

i and microphone signal k at lag l.

Equation 2.40 is known as the multichannel Yule-Walker equation. Note that the

multichannel spatio-temporal correlation matrix, Rmc, has a block-Toeplitz form due

to an underlying assumption that the microphone signals are stationary. Although

speech is highly non-stationary, it has been shown that speech signals can be modeled

as long-term stationary, taking on a roughly Laplacian probability distribution (Gazor

and Zhang, 2003). Long-term speech statistics are acceptable in this case because

the goal is to estimate the RTF, not to model the speech production system. The

analysis window used in computing the autocorrelation values is still limited, however,

by the need to capture and track the time-varying RTF. The block-Toeplitz shape of

Rmc is dependent on the selection of space-first packing in the multichannel spatio-

temporal data vector, ỹ(n), and enables usage of the block Levinson algorithm (i.e.,

the multichannel Levinson algorithm, Whittle, 1963) which is a generalization of the

traditional Levinson-Durbin algorithm to block-toeplitz systems of linear equations.

Similar to traditional single-channel linear prediction, the formulation of the mul-

tichannel Yule-Walker equation using estimates of short-term autocorrelation (i.e., the

autocorrelation method) and the underlying stationary assumption have been shown

to produce a stable linear prediction inverse filter, (Ape,mc(z))
−1 (Inouye, 1983). While

this does not imply that the individual scalar prediction filters are minimum phase, it

does imply that the autocorrelation method is a constrained solution. Therefore, like

single-channel linear prediction, the covariance method may produce a more accurate

model of the system, at the cost of increased computational complexity.

As previously mentioned, the multichannel prediction error filter (Equation 2.30)
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can be applied to the microphone signals to blindly equalize the RTF, but will also

whiten the source (i.e., over-whitening). Moreover, if an equalizer is designed based

on one source signal s1(n) and then applied to a different one s2(n), the autoregres-

sive parameters of s1(n) will greatly distort (rather than whiten) s2(n), potentially

increasing the perceived amount of reverberation. To compensate these undesired

effects, a number of algorithms have been proposed which leverage spatial diversity

to estimate the autoregressive properties of the source, separate from the channel. Of

particular note, there are two seminal appraoches: delay and predict (i.e., DAP) dere-

verberation (Triki and Slock, 2006) and linear-predictive multiple-input equalization

(i.e., LIME) (Delcroix et al., 2007).

Delay-and-Predict Dereverberation

DAP dereverberation is described in Figure 2.7.

Figure 2.7: Block diagram for delay-and-predict dereverberation

This approach consists of three stages:

1. Source Whitening Stage: The AR parameters of the source are estimated and
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the corresponding prediction error filter is applied to each of the reverberant mi-

crophone signals, {y1(n), . . . , yM(n)} (i.e., vector-valued y(n)), thus whitening

only the AR properties of the source. The result is a set of “source-whitened”

reverberant microphone signals, {x1(n), . . . , xM(n)} (i.e., vector-valued x(n)).

2. Multichannel Linear Prediction Stage: The source-whitened reverberant mi-

crophone signals are used in the multichannel Yule-Walker eqution (Equation

2.40) to compute the multichannel prediction coefficients, Amc, and generate a

multichannel prediction error filter, Ape,mc(z).

3. Dereverberation Stage: The multichannel prediction error filter from step 2 is

combined in series with a time-alignment filter and a linear combiner to form the

full delay-and-predict equalizer, H(z), which is applied to the original reverber-

ant microphone signals, y(n). Since this prediction error filter was computed

using the source-whitened signals, it should not include the AR parameters of

the source signal, and thus should not whiten the source part of the microphone

signals. Therefore the resulting prediction error signal should only whiten the

channel, thus fascilitating dereverberation.

In the source whitening stage, the AR parameters of the source are estimated as

those that minimize the single-channel prediction error for all M microphone signals.

This is formulated as minimizing the sum of the single-channel prediction errors, i.e.,

the cost function is

J =
M∑

m=1

E[e2m(n)] =
M∑

m=1

E[ym(n)−
p1∑
k=1

αs,kym(n− k)] (2.45)

Minimization of J (i.e., setting ∂J
∂αs,k

= 0), assuming the microphone signals are
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stationary, the resulting normal equations are



r̄yy(0) r̄yy(1) . . . r̄yy(p1 − 1)

r̄yy(1) r̄yy(0) . . . r̄yy(p1 − 2)

...
...

. . .
...

r̄yy(p1 − 1) r̄yy(p1 − 2) . . . r̄yy(0)





αs,1

αs,2

...

αs,p1


=



r̄yy(1)

r̄yy(2)

...

r̄yy(p1)


(2.46)

Ravgαs = ravg (2.47)

where

r̄yy(l) =
M∑

m=1

rymym(l) =
M∑

m=1

E[ym(n)ym(n− l)] (2.48)

i.e., r̄yy(l) is the average autocorrelation accross all microphones. Thus the source-

whitening stage blindly estimates the AR parameters of the source by smoothing

autocorrelation values accross spatial sampling points to effectivelty average out the

effects of the RTFs which are assumed not to have common AR parameters.

The resulting single-channel prediction error filter (i.e., the source-whitening fil-

ter), As(z) = 1−
∑p1

k=1 αs,kz
−k, is applied to the reverberant microphone signals to get

the source-whitened reverberant signals, x(n), i.e., x(n) = y(n)−
∑p1

k=1 αs,ky(n−k).

In the multichannel linear prediction stage, the multichannel Yule-Walker equa-

tions (Equation 2.40) are solved using the source-whitened signals, i.e.,

Amc = rmcR
−1
mc (2.49)

with Rmc = E[x̃(n)x̃T (n)], rmc = E[x(n)x̃T (n− 1)], and
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x̃(n) =

[
xT (n) xT (n− 1) . . . xT (n− p2 + 1)

]T
. The resulting multichannel pre-

diction error filter is Amc(z) = I −
∑p2

k=1Akz
−k.

In the dereverberation stage, the actual multichannel equalizer filter, H(z), is

computed as

H(z) = g0Ape,mc(z)D(z) (2.50)

where D(z) is a diagonal matrix of delay elements (D(z) = diag{z−d1 . . . z−dM}) used

to time-align the microphone signals, and g0 is a weighting vector that computes a

linear combination of the length-M vector output of the multichannel prediction error

filter. Together D(z) and g0 effectively perform delay-weight-and-sum beamforming

on the equalized vector output of the multichannel prediction error filter. To generate

D(z), the time delay between the microphones must be estimated, which is a well

understood topic with many practical approaches. In the original DAP algorithm,

the linear combiner weights g0 were selected to be the vector coefficient of the SIMO

channel, i.e., g0 =

[
g1(0) . . . gM(0)

]T
. It was shown that g0 can be blindly estimated

with reasonable accuracy as the eigenvector corresponding to the largest eigenvalue

of the autocorrelation matrix corresponding to the multichannel prediction error sig-

nal from the second algorithm stage, ex(n), i.e., g0 is estimated as the principal

component of the matrix Rex(n)ex(n) = E[ex(n)e
T
x(n)], where

ex(n) = x(n)− x̂(n) = x(n)−
p2∑
k=1

Akx(n− k) (2.51)

The final output of the DAP equalizer is thus computed as
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Ŝ(z) = H(z)y(z) (2.52)

or equivalently

ŝ(n) =
M∑

m=1

gm(0)ŝm(n− dm) (2.53)

with


ŝ1(n− d1)

. . .

ŝM(n− dM)

 = y(n)−
p2∑
k=1

Aky(n− k) (2.54)

Triki and Slock (2006) explained that the prediction order for the multichannel

linear prediction stage (p2) should be selected such that it meets the MINT require-

ments, i.e., p2 = Lg/(M − 1), where Lg is the length of the FIR channels. It was

suggested that the prediction order for the source-whitening stage (p1) should be

selected such that that the source is sufficiently undistorted by the multichannel pre-

diction error filter. For a sample rate of 8 kHz, p1 = 100 was considered sufficient.

However, it should be noted that the higher order AR parameters of the source (i.e.,

higher than those reflected by p1) will still be included in the multichannel prediction

error filter, distorting the estimate of the true system inverse, which will limit its

applicability to other source signals.

Additionally, note that the source signal does not need to be stationary (only long-

term stationary), but rather it is only important that the same window of speech is

used in the estimation of the source AR parameters and the multichannel prediction

coefficients. As such, it was recommended that the entire speech stimulus be used in
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analysis so as to reduce estimation variance.

As per the MINT, DAP requires that the RTFs have no common zeros, and

have the additional requirement that the AR parameters of the channels (i.e., the

effective poles) do not overlap. If the effective poles of the RTFs overlap, these will

be wrongly associated with the source and will not be equalized. As channel order

increases (i.e., longer reverberation times), the concentration of zeros around the unit

circle increases and the likelihood of overlapping or numerically overlapping zeros

increases, thus requiring more microphones to acheive reasonable performance.

When formulated as MIMO prediction of signal vector y(n) (i.e., as in Equation

2.27), there is potential to constrain the solution so that the phase of the individual

dereverberated signals in e(n) are not distorted. In this way the output of the algo-

rithm can be input to further spatial processing and/or spatial cues can be preserved

to aid in speech perception (Section 1.6.6).

LIME and other MC-LP-Based Dereverberation Algorithms

In the linear-predictive multiple-input equalizatino (LIME) dereverberation algo-

rithm, the multichannel prediction coefficients are estimated directly from the re-

verberant microphone signals, {y1(n), . . . , yM(n)}. The multichannel prediction error

filter thus whitens the source signal, and then an un-whitening filter is applied after.

Delcroix et al. (2007), showed that under a certain matrix formulation, the multi-

channel prediction coefficients corresponding to the reverberant microphone signals

and the source AR parameters can be independently extracted.

Several extensions of DAP and LIME have been proposed, such as methods for

compensating the effects of additive noise (e.g., Triki and Slock, 2007), alternative
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methods for combining the M dereverberated signals in e(n) (e.g., Triki and Slock,

2008), and adaptive extensions which generally use RLS for adaptation and often

operate in the FFT/subband domain (e.g., Jukić et al., 2016a,b). Usage of delayed

linear prediction (i.e., multi-step linear prediction originally presented by Gesbert

and Duhamel, 1997) has also been proposed, whereby a multi-sample delay is ap-

plied to the signals being used in prediction instead of the traditional single-sample

delay. Delayed linear prediction allows algorithms to avoid cancelling the early re-

flections and also reduces the over-whitening effects of linear prediction, but is more

computationally complex.

Multichannel linear predictive techniques are often considered to be the most prac-

tical approach to reverberation cancellation due to the fact they can be performed

in a truly blind manner, not requiring any knowledge of the source or channel or-

der, and since linear prediction is a well understood topic that is easily extensible

to an adaptive framework. These approaches have generally proven to perform well

for shorter reverberation times, but their performance diminishes with increased re-

verberation due to estimation variance and the massive amounts of data needed to

reduce estimation variance. Additionally, the underlying assumption that RTFs are

time-invariant severly limits performance in practice since real acoustics are highly

time varying. For longer reverberation times, where channel orders can reach up to

tens of thousands (e.g., a T60 of 2 s at a sample rate of 16 kHz represents an RIR of

length 32 ksamples), solving the normal equations also becomes impractical due to the

massive matrices involved, and equalizers can introduce substantial delay. However,

the computational cost can be reduced at the cost of decreased performance by using

stochastic gradient descent algorithms which do not require matrix inversion.
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To manage the performance limitations of these approaches, several authors have

suggested the enhancement of multichannel linear predictive inverse filtering with

a spectral subtraction post-processing stage to reduce residual late reflections (e.g.,

Furuya and Kataoka, 2007). Some authors have also suggested using linear prediction

to estimate reverberation, but then removing it via spectral subtraction rather than

inverse filtering (e.g., Kinoshita et al., 2007; Nakatani et al., 2008, 2010), claiming

that this approach is more robust to imperfections in system estimate.

2.2.3.4 Blind System Identification Using Estimation Theory

In recent years, significant research has gone into blind reverberation cancellation

techniques that use statistical estimation methods for BSI. One of the most seminal

approaches is the so-called weighted prediction error algorithm (i.e., WPE Nakatani

et al., 2008, 2010), which is one of the most common algorithms applied in practice. In

this multichannel method, the reverberant speech signal is conceptually divided into a

“desired” direct/early component and a late reverberant component, and an estimate

of the late reverberant component is subtracted from the observed signal. A single

reverberant microphone signal is modeled as a multichannel delayed linear-predictive

process as a function of all microphone signals, with a prediction delay matching

the defined boundary between early and late reflections. The desired component is

modeled as a Gaussian process that is short-time quasi-stationary with time varying

variance over longer time. The delayed prediction coefficients of the process are

estimated via maximum likelihood estimation, and the resulting prediction error filter

is used to subtract the late reflections. The technique was also extended to the

STFT/subband domains to reduce computational complexity. The WPE algorithm
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is iterative and models speech as having time-varying variance, which allows it to

track time-varying RTFs, and track/exploit time-varying speech statistics. The time-

variant formulation of WPE generally has allowed it to outperform conventional MC-

LP approaches such as DAP dereverberation.

A number of appraoches have also been proposed which setup Bayesian priors (e.g.,

Hopgood, 2005), with some priors more recently being based on the assumed sparsity

of the time-frequency representation of clean speech (Jukić et al., 2015, 2016b).

Several authors have also enhanced this concept with techniques for modeling

the time-varying nature of the acoustics. This has been done by treating the pre-

diction coefficients (i.e., the model parameters) themselves as random variables with

parameters to be estimated. Parameter estimation in this case has been proposed pri-

marily using recursive estimation procedures such as Kalman filtering (e.g., Braun

and Habets, 2016; Schmid et al., 2014). The simplest example of such a model is

the so-called random-walk time-varying all-pole system, where individual poles are

modeled as having Gaussian variation about their true value/mean. The ability of

a probablistic framework to include modeling of the time-varying nature of acoustic

represents a major potential benefit of these appraoches. Similarly, the clean speech

source signal can be assigned a source-filter model, and the time-varying vocal tract

can be modeled probablistically (Grenier, 2003). In this way the time-varying nature

of speech can be leveraged rather than simply modeling the long-term statistics of

speech as is done in non-probablistic approaches. Since a noise model can also be

included in the setup, probablistic approaches tend to be less sensitive to noise.

Probablistic methods for estimating the clean speech and/or channel generally

tend to outperform traditional inverse filtering approaches such as delay-and-predict
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and LIME dereverberation, especially in non-stationary reverberation. Although

these approaches are incredibly computationally complex, simplified (lower-order)

configurations and online variants have made their way into many practical applica-

tions.

More recently, several approaches have exploited the emerging field of deep learn-

ing in the design of dereverberation algorithms. This concept has been applied both

to design of optimal spectral subtraction / time-frequency masks (as reviewed re-

cently by Wang and Chen, 2018), and the design of RTF equalizers. Most of the

reverberation cancellation strategies are deep learning extensions of classical MC-LP

equalization strategies such as WPE, delay-and-predict and LIME (e.g., Kinoshita

et al., 2017; Nakatani and Kinoshita, 2019).

2.3 Thesis Goals

In this chapter, a review of existing approaches to dereverberation was presented. It

was explained that many many practical/effective approaches to dereverberation use

multichannel linear predictive blind deconvolution to cancel the strong early part of

the RIR, and are enhanced with statistical speech enhancement post-processing to

suppress the diffuse/weak late tail of the RIR. The goal set for this thesis was to

provide a physiologically motivated perceptual analysis of the performance of MC-

LP approaches to reverberation cancellation under practical conditions. For a case

study, the delay-and-predict algorithm proposed by Triki and Slock (2006) was im-

plemented and parameter-tuned for efficacy (Chapter 3), and its performance was

assessed (Chapter 4).
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Chapter 3

Delay and Predict Dereverberation

Parameters

The goal of this chapter was to analyze the influence of the various algorithm pa-

rameters and signal properties on the performance of the delay-and-predict (DAP)

dereverberation algorithm, and tune them accordingly for the evaluation conducted

in the next chapter. The parameters/properties that were analyzed are:

1. Multichannel Linear Prediction Order (p2): The filter order used in the

multichannel linear prediction stage, i.e., the order of the multichannel predic-

tion error filter, Ape,mc(z). Note that this refers to the prediction order in a

vector-valued sense, i.e., the order the individual FIR filters applied to each

microphone signal.

2. Source Whitening Linear Prediction Order (p1): The filter order used

to pre-whiten the source spectrum before the multi-channel linear prediction

stage.
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3. Number of Microphones (M)

4. Source Data Length: The amount of signal data used in computation of

both the source-whitening prediction coefficients and the multichannel linear

prediction coefficients

5. Source Spectrum: The degree of colouration in the source signal, i.e., the

properties of the source which must be pre-whitened by the source-whitening

stage.

6. Time Alignment of RIRs: How well aligned the microphone signals were

before computation of the multichannel linear prediction coefficents, i.e., the

influence of the diagonal matrix-valued time-delay filter, D(z).

7. Linear Combiner (g0): The impact of computing the final dereverberated

signal by linearly combining theM individual dereverberated signals (i.e., linear

combination of the dereverberated vector-valued signal).

3.1 Multichannel Linear Prediction Order

3.1.1 MINT Inverse Filtering Results

Neglecting the performance impact of blind RTF estimation, the MINT (Section

2.2.1.3) dictates that it is theoretically possible to perfectly invert the room re-

sponse by filtering and summing multiple microphones, provided the channels do not

share common zeros, and provided the individual FIR equalizer filters are of length

(p2 + 1) ≥ (L− 1) / (M − 1), where L is the length of the individual FIR RIRs and

M is the number of microphones. To confirm this, the MINT was implemented and
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applied to a set of known RIRs over a range of values for p2. A four-channel setup was

used (M = 4), and the four RIRs used were real RIR measurements taken from the

“SAL” room that is part of the MYRiAD database (Dietzen et al., 2023, discussed in

more detail in Section 4.1.2). The T60 of the original RIRs was 2.1 sec, but this was

synthetically reduced to 100m sec by applying an exponentially decaying window.

This exponential windowing method is described in more depth in Section 4.1.5. The

equalized impulse responses (EIR) was generated by filtering and summing the RIRs

of the four channels with the MINT equalizer. The corresponding energy decay curve

(EDC) was generated from the EIR via Equation 1.4. The EIR and EDC for several

MINT filter orders is shown in Figure 3.1.
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Figure 3.1: MINT equalizer performance for various equalizer orders. Equalizer orders
(p2) are quantified relative to the actual length of the FIR channel (L) and the number
of samples corresponding to the T60 of the channel (N60 = T60 · sample rate)

As expected, near-perfect equalization was acheived by the MINT for p2 = L/ (M − 1),

with the EDC decaying by > 250 dB almost instantaneously (Figure 3.1a). Simi-

larly, when the T60 was used to set the equalizer length rather than the actual FIR

RIR length, the EDC decayed by about approximately 60 dB almost instaneously
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(Figure 3.1b). As the equalizer length was decreased relative to the T60, the EDC

performance of the MINT dropped substantially. Based on these observations, The

p2 should be selected such that it is possible to acheive the amount of attenuation

desired. If the goal is to reduce the T60, p2 = N60/ (M − 1) is sufficient.

3.1.2 Multichannel Linear Prediction Inverse Filtering Re-

sults

To analyze the behavior of the MC-LP of the DAP algorithm stage in isolation, with-

out the performance impact of blindly estimating the AR properties of the source

signal, the source-whitening stage was trained on the clean speech signal (i.e., super-

vised estimation of AR properties). One might suggest instead using a white noise

sequence as the source signal and bypassing the source whitening stage altogether,

but it was found that due to the high frequency resolution of the high-order MC-LP

stage, the ripples in the specific realization of the uncorrelated random process would

be whitened thus distorting the estimate of the true multichannel RTF inverse. A

source-whitening prediction order of p1 = 4000 was used accross all cases. The sample

rate was 16 kHz, the source signal was 21.8 sec of speech taken from the TMIT speech

sample database (Garofolo et al., 1993). The same four RIRs were used as in the pre-

vious section. The RIRs were manually time aligned, and the non-zero measurement

noise samples leading the direct sound were manually set to zero. If leading measure-

ment noise were not removed from the RIRs, these noise samples would be convolved

with the source signal in simulation as though they were real reflections that lead

the direct sound. The MC-LP stage will always equalize to the first non-zero impulse

because later impulses will be predictable from previous ones and therefore will be
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cancelled. Leaving the leading measurement noise samples would have an unrealistic

negative impact on dereverberation performance since these samples are small rela-

tive to the actual RIR and thus also small relative to the residual reverberation left

un-cancelled by the algorithm.

The results of the source-whitening stage that was common throughout this ex-

periment are shown in Figure 3.2. The top pane shows the estimated source spectrum

(i.e., the LP inverse filter) compared to the true power spectrum of the clean source

signal in the first pane, and the second pane shows resulting whitened power spectrum

of the clean source signal, which was generated by applying the source-whitening filter

to the clean speech signal instead of the reverberant speech. The EIRs and EDCs

resulting from the MC-LP stage for each prediction order are shown in Figure 3.3.

For more detailed plots of the inner-workings of the algorithm in this evaluation, refer

to Appendix A.2.1.
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Figure 3.2: Source whitening results using a p1 = 4000 order linear predictor. The
prediction error filter coefficients were computed based on clean speech and the same
filter was used in all tests in this section to assess the MC-LP stage of the DAP
algorithm in isolation.
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Figure 3.3: Impact of MC-LP order (p2) on DAP dereverberation performance. Pre-
diction orders are quantified relative to the actual length of the FIR channel (L) and
the number of samples corresponding to the T60 of the channel (N60). Figure 3.2
shows the common source whitening filter used.
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Accross all test cases, it was noted that reverberation cancellation performance of

the inverse filter produced by MC-LP was significantly worse than the MINT inverse

filter. While p2 = L/ (M − 1) results in 250 dB of reverberation cancellation in the

MINT inverse filter, the MC-LP-estimated inverse filter only acheives approximately

32 dB cancellation. This makes sense since the MC-LP normal equations (Equation

2.40) are susceptable to numerical error which results in estimation variance. This is

especially true for the equalization of the later part of the RIR, where reverberation

energy is lower (i.e., the effective SNR of the reverberation is lower). This increase

in estimation variance occurs due to the reduced reverberant energy and due to the

longer autocorrelation lags involved in the normal equations, for which there is less

data available (i.e., there is less overlapping data between the lagged and not-lagged

signals). This practical effect of estimating correlation at longer lags is well known and

is the motivation for biased estimators such as the windowed autcorrelation estimator

used in the periodogram PSD estimate (Oppenheim, 1999). Additionally, although

the source-whitening filter was trained on the clean speech signal, it has its own

estimation variance and its performance is also limited by its finite prediction order

(p1 = 4000). Any imperfections in the source-whitening will distort the MC-LP

results.

Interestingly, reverberation suppression was observed to effectively plateau at

around 30 dB – 35 dB for p2 ≥ 0.75 · N60/ (M − 1). Essentially, the RIR is near-

perfectly equalized almost instantaneously (like the MINT), but towards the end of

the reverberation tail, increased estimation variance leads to increasingly worse per-

formance, resulting in reverberation energy increasing again. Note that a flat EDC

implies that there is no energy in that range, but there is some remaining later in the
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RIR. Beyond the time spanned by the prediction error filter, delay-and-predict has

no impact on the RIR, thus the decay rate returns to that which is dictated by the

original RIR.

Therefore, it was concluded that it is not possible in practice to acheive the same

dereverberation performance as the MINT when using MC-LP-based dereverberation

algorithms. For this reason, it does not make sense to choose p2 based on the MINT

conditions for perfect equalization, but rather based on the practical boundaries re-

sulting from numerical limitations. Figure 3.3 suggests that setting p2 greater than

approximately 0.75 · N60/ (M − 1)) is reasonable. In practice, the N60 is unknown,

so the MC-LP prediction order should be set as high as is computationally acceptable

to sufficiently cancel the longest T60s possible.

3.2 Source Whitening Linear Prediction Order

To evaluate the impact of the source-whitening prediction order (p1), the MC-LP

order was fixed at p2 = N60/ (M − 1), and p1 was varied. The same sample rate,

source signal/length, and four-channel RIR from the last section was used. The

source-whitening prediction order p1 = 200 was evaluated first to match the orig-

inal configuration of Triki and Slock (2006) (scaled by sample rate from 8 kHz to

16 kHz). Next, p1 = p2 · (M − 1) was evaluated to match the spectral resolution of

the source-whitening stage to the effective spectral resolution of the MC-LP stage.

Since the MINT dictates that a length-L RIR can be perfectly equalized using M

channels with M corresponding length (p2 + 1) = (L− 1) / (M − 1) equalizer fil-

ters, it can be said that the effective spectral resolution of MINT equalizer (and

therefore any multichannel filter-and-sum equalizer) is that of a FIR filter of length
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L = (p2 + 1)·(M − 1)+1 ≈ p2 ·(M − 1). Therefore setting p1 = p2 ·(M−1) effectively

matches the spectral resolution of the source-whitening stage to the MC-LP stage as

previously stated. Figure 3.4 shows the EIR and EDC performance for each case. For

more detailed plots of the inner-workings of the algorithm in this evaluation, refer to

Appendix A.2.2.
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Figure 3.4: Impact of source-whitening prediction order (p1) on DAP dereverberation
performance. Prediction orders are quantified relative to the MC-LP order, which
was set to p2 = N60/ (M − 1)
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It was noted that the algorithm provides very little reverberation cancellation for

low source-whitening prediction orders, and that reverberation attenuation plateaus

around 35 dB when the source-whitening prediction order rises above approximately

p1 = 1.25 · p2 · ((M − 1). This demonstrates the importance of selecting a source-

whitening prediction order such that that its spectral resolution matches or exceeds

the effective spectral resolution of the MC-LP stage. This makes intuitive sense since

any AR characteristics of the source that are visible within the spectral resolution the

MC-LP analysis which have not been removed by the source-whitening stage, will be

captured in the MC-LP analysis and thus will distort the estimate of the true system

inverse. Note that Triki and Slock (2006) selected the source-whitening order to

avoid over-whitening of the signal that the algorithm was trained on, whereas in this

thesis we have instead considered the more general system identification performance

via the EIR and equalized EDC. As already discussed, a low-order source-whitening

filter may be sufficient to avoid over-whitening of the training signal, but will actually

result in the MC-LP stage introducing an additional reverberant effect if applied to

a different signal.

3.3 Blind Deconvolution Performance

To analyze the behaviour of the full blind dereverberation algorithm (i.e., blindly

estimating the source AR properties), a single test condition was used to compare

the performance of the MINT equalizer, the DAP equalizer generated using a source-

whitening filter trained on clean speech (i.e., the supervised DAP equalizer), and

the blind DAP equalizer. The source signal used was a 60 sec sample from the TMIT

database and the four-channel RIR was the “SAL” room from the MYRiAD database,
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exponentially windowed to a T60 of 1 sec. The MC-LP order was set to p2 = 1.25 ·

N60/ (M − 1) = 6667 and the source-whitening prediction order was set to p1 = 1.25·

p2 · (M − 1) = 25001. The spectrogram plots were generated using a different speech

signal from the one used in training. This was done to emphasize the potential that

the “over-whitening” of the training source signal may lead to an added reverberant

effect when the equalizer is applied to a different signal (as described in Section

2.2.3.3). The results for the the MINT, supervised DAP and DAP equalizers are

shown in Figure 3.5, Figure 3.6 and Figure 3.7 respectively.
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MINT Dereverberation Results (Reapplied DAP-EQ to SA2.wav, without noise)

Figure 3.5: MINT Equalizer performance (EDC and Spectrogram)
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Figure 3.6: DAP Equalizer performance (EDC and Spectrogram) with the source-
whitening filter computed using clean speech (i.e., not blind)
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Figure 3.7: DAP Equalizer performance (EDC and Spectrogram) with the source-
whitening filter computed using reverberant speech (i.e., blind)

As observed before, the MINT equalizer and the supervised DAP equalizer both

produced EDCs that show a nearly instanteous substantial decay of reverberation.

Like before, the EDC corresponding to the supervised DAP equalizer was observed

to plateau around 30-35 dB and to remain roughly flat over the time spanned by the

equalizer length due to increased estimation variance at longer autocorrelation lags.

The EDC corresponding to the blind DAP equalizer (Figure 3.7) showed much

less attenuation of the early part of the RIR (approximately 6 dB attenuation). The

EDC then continues to decay at approximately the same rate as the original RIR,

until it levels out at a similar attenuation as the supervised case (approximately 30

– 35 dB), and similarly was observed to fall off at the end of the time spanned by

the equalizer length. Thus the blind version of the DAP algorithm provides a similar

result to the supervised version, but its performance is degraded by having to blindly

estimate the source-whitening filter. The performance degradation was presumed to

be due to common or near-common AR parameters (i.e., the effective poles) between

the acoustic channels since RTFs tend to have some similarity in their frequency

response, and due to the finite number of spatial sampling points (i.e., microphones)
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being used to average out the non-common AR parameters in the estimation of the

source-whitening filter (i.e., Equation 2.48).

Looking at the spectrogram results, a clear benefit of all three equalizers was

noted. For example, note that the diphthong around 1500m sec, is almost completely

obsecured by the smearing of reverberant energy (row 2), whereas it is more clearly

defined in the spectrogram of the dereverberated speech signals (row 3) in all three

cases. While this improvement is less pronounced in the blind DAP case than the

MINT or supervised DAP cases, there is still a clear benefit of the algorithm.

3.4 Number of Microphones

To evaluate the impact of the number of microphones/channels, M , on performance,

theM -channel RIR had to be generated synthetically since none of the RIR databases

available had more than 6 channels. For this evaluation 21.8 sec of speech was used,

exponentially decaying Gaussian RIRs were generated with T60 = 100ms and predic-

tion orders of p2 = N60/ (M − 1) and p1 = 1.25 · p2 · (M − 1) were used. The source

whitening stage was trained on reverberant speech (i.e., fully blind). The results are

shown in Figure 3.8.
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Figure 3.8: Impact of number of microphones M on DAP dereverberation perfor-
mance. Source whitening prediction order was p1 = 1.25 · p2 · (M − 1) and MC-LP
order was p2 = N60/(M − 1). Source Whitening stage was performed on reverberant
speech (i.e., blind estimation). RIRs were synthetically generated exponentially de-
caying Gaussians.
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A significant increase in performance was observed in all three columns as the

number of microphones was increased. This makes sense because the blind estima-

tion of the source spectrum (Equation 2.48), which averages autocorrelation accross

the spatial sampling points, requires many microphones to average out the effects

of the channels. Additionally, increasing the number of microphones decreases the

likelihood that channels will have common or numerically similar poles/zeros. This

is particularly evident in the source-whitening results (column 1): the source spec-

trum was only whitened to approximately ±10 dB for M = 2, versus approximately

±5 dB for M = 16. A similar impact was observed on how flat the equalized mag-

nitude/phase response (column 2). In terms of EDC results (column 3), using more

microphones was found to only improve cancellation of the stronger early part of

the RIR, having minimal impact on equalization of the late tail. This makes sense

since increasing the number of microphones only improves the spatial averaging of

the source spectrum, and does not have any impact on the estimation variance that

arises at longer autocorrelation lags / weaker reverberation-to-noise ratios. In other

words, as the number of microphones increases, the performance of the blind DAP

algorithm converges towards the performance of the supervised DAP algorithm.

3.5 Source Properties

Two properties of the source speech stimulus were analyzed: source data length (i.e.,

length of the source sequence), and its spectral colouration. It was hypothesized that

larger amounts of source data would decrease variance in the estimates of the auto-

correlation functions used for both linear prediction stages, improving performance.

It was also hypothesized that the amount of colour (i.e., the “peakiness”) of the
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source spectrum would have a negative impact on performance due to the increased

demand on the source-whitening stage, and due to the known fact that the condition

number of autocorrelation matrices is proportional to the signals spectral dynamic

range which results in worse-conditioned normal equations for more “peaky” spectra

(Farhang-Boroujeny, 2013).

Since the power spectrum of a signal generally becomes smoother as sequence

length increases, the evaluation method had to be designed carefully to isolate these

two properties.

In both evaluations, the four-channel RIR was the “SAL” room from the MYRiAD

database, exponentially windowed to T60 = 100ms, and prediction orders were p2 =

N60/ (M − 1) and p1 = 2 · p2 · (M − 1). The fully blind DAP algorithm was used in

this evaluation.

3.5.1 Source Data Length

To test the source data length, the same 3.6 sec speech sample from the TMIT

database was used in each test case, but was looped synthetically (1, 2, 3 and 4

times respectively) to the desired data length. In this way, the data length was in-

creased without changing the spectrum. The results for each case are shown in Figure

3.9. The first column shows the performance of the source-whitening stage. The sec-

ond column shows the equalized magnitude/phase response generated by taking the

fourier transform of the EIR. The third column shows the resulting EDC.
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Figure 3.9: Impact of source data length on DAP dereverberation performance. In
each case, the same 3.6 sec speech sample (58 ksamples at fs = 16 kHz) was looped to
a different data length to preserve the same spectrum. Source whitening prediction
order was p1 = 2 · p2 · (M − 1) and MC-LP order was p2 = N60/(M − 1). Source
Whitening stage was performed on reverberant speech (i.e., blind estimation).
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Comparing the EDC results (third column in Figure 3.9), it is clear that the

amount of source data used in training the algorithm has an impact on reverbera-

tion cancellation performance, independent of the source spectrum. Specifically, it

was observed that the level at which the EDC plateaus (i.e., the point at which es-

timation variance is strong relative to reverberation as previously discussed) scales

approximately from 20 dB in Figure 3.9a to 35 dB in Figure 3.9d. The dependency

of performance on the amount of source data used in training makes sense because

using more data decreases autocorrelation estmation variance which is a key limiting

factor of performance. The difference in estimation variance between the four cases

is visible as subtle changes to the amount of ripples in the whitened source spectra

and equalized magnitude/phase responses. Note that linear prediction in the context

of traditional speech coding uses lower orders (often modeling as few as 8-16 poles),

thus requiring far less data to sufficiently reduce estimation variance.

The EDC benefit of increasing the amount of source data was observed to hit

a ceiling over about 10 sec of data (i.e., over approximately 160 ksamples for fs =

16 kHz), which is highly dependent on the specific prediction orders used in this test.

If the prediction orders were increased, more data would be needed to acheive the same

performance. Therefore, the amount of data used in training the algorithm (i.e., used

in the normal equations) should be selected as needed to minimize estimation variance

for the selected prediction orders. However, in practice the amount of data used is

limited by the time-varying nature of RTFs. An analysis window of 10 sec of data

was used for the remainer of this thesis, since anything larger would be completely

unreasonble to assume a stationary RTF. The massive amount of data needed severely
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impacts the ability of MC-LP approaches to reverberation cancellation to track time-

varying acoustics.

3.5.2 Source Spectrum

To evaluate the impact of source spectrum, in each test case the source was pro-

duced by synthetically generating a random white noise sequence of a different length

(100m sec, 1 sec and 10 sec respectively), then looping these sequences to the same

length (a duration of 60 sec). Since shorter realizations of the same uncorrelated

(white) random process have a higher degree of correlation, this results in sequences

of the same length with controllable spectral dynamic range. The results for each

case are shown in Figure 3.10. The same four-channel RIR, and prediction orders

were used as in the last section.
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Figure 3.10: Impact of source signal spectrum on DAP dereverberation performance.
The source signal in each case was generated by synthetically looping a different
length white noise sequence to the same duration of 60 sec (i.e., same data length,
different spectra). Source whitening prediction order was p1 = 2 · p2 · (M − 1) and
MC-LP order was p2 = N60/(M − 1). Source Whitening stage was performed on
revererbant speech (i.e., blind estimation).

As expected, reverberation cancellation performance was found to scale with how

uncorrelated (i.e., white) the source signal was. As previously mentioned, this can

potentially be attributed to two effects: the inverse proportionality between the con-

ditioning of the normal equations and the spectral dynamic range of source signal,
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and the increased demand on the source-whitening stage as the source spectrum be-

comes more detailed (i.e., fine details of spectrum). To distinguish between these

two explanations, an additional test was conducted whereby the source signals were

generated by filtering the same white noise sequence with filters of varying peakiness.

In this way, the fine details of the source spectrum were kept the same between tests,

but the spectral dynamic range was varied.
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Figure 3.11: Impact of source spectral dynamic range on DAP dereverberation per-
formance. The source signal was generated by filtering 60m sec of speech with filters
of various peakiness. Source whitening prediction order was p1 = 2 · p2 · (M − 1)
and MC-LP was p2 = N60/(M − 1). Source Whitening stage was performed on
revererbant speech (i.e., blind estimation).

As shown in Figure 3.11, the spectral dynamic range alone has very minimal

impact on performance. This makes sense because the normal equations are con-

structed using the reverberant microphone signals, not the clean speech. RTFs are

known to have strong notches and resonances, thus reverberant signals tend to have

a large spectral dynamic range irrespective of the source signal spectrum. Thus it
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was concluded that the primary spectral characteristic of the source signal that im-

pacts performance is the complexity of fine spectral details, which make the job of

the source-whitening stage more difficult.

3.6 Time Alignment of RIRs and Linear Combiner

To evaluate the influence of time alignment of the RIRs on dereverberation perfor-

mance, the DAP algorithm was run excluding the diagonal delay matrix, D(z). The

four RIRs were generated synthetically by applying an exponentially decaying win-

dow to a Gaussian white noise sequence and then were maually delayed to misalign

them. Figure 3.12 shows the results when the RIRs are time aligned, and Figure 3.13

shows the results when an incremental delay of two samples was introduced accross

the microphones. The delay increases from channel 1 to channel 4, i.e., channel 1

leads all other channels. The left column of the results plots shows RIRs for each

channel. The right column shows the four EIRs prior to linear combination, i.e., the

vector-valued EIR eir(z) excluding the linear combiner vector, i.e.,

eir(z) = g(z)Ape,mc(z) =

[
eir1(z) . . . eirM(z)

]T
(3.1)

where g(z) =

[
G1(z) . . . GM(z)

]T
is the vector-valued M -channel RTF.
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Figure 3.12: Vector-valued EIR performance prior to linear combiner with no time
delay between channels (i.e., time aligned).
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Figure 3.13: Vector-valued EIR performance prior to linear combiner with an incre-
mental 2-sample delay added to each channel (i.e., not time aligned).
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From Figure 3.12, note that all four individual EIRs show an impulse-like shape,

suggesting reasonable equalization. However, in Figure 3.13, it was observed that

whenever the signal being predicted by the MC-LP stage lags the other signals, the

signal is eliminated instead of the channel being equalized (i.e., the EIR is all zeros

instead of becoming impulse-like). This is an expected behavior of MC-LP since the

whitening nature of linear prediction is reliant on the signal only being estimated

strictly from past samples. If channel 2 lags channel 1 by samples, prediction of

channel 2 from channel 1 will have access to current source information, thus being

able to perfectly cancel it instead of only whitening. Additionally, when predicting

the channel that leads the rest (thus remaining a whitening process), the lack of

time alignment still negatively impacts performance, which is evident from the burst

of unequalized reverberation in the row 1 EIR from Figure 3.13. Time alignment

has a clear impact on dereverberation performance after linear combination as well:

compare Figure 3.14 and Figure 3.15 below.
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Figure 3.14: DAP dereverberation performance (after linear combiner) with no time
delay between channels (i.e., time aligned)
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Figure 3.15: DAP dereverberation performance (after linear combiner) with an incre-
mental 2-sample delay added to each channel (i.e., not time aligned).

The linear combiner used (g0) was the estimate of the first vector coefficient of

the SIMO channel, as proposed by Triki and Slock (2006) and as discussed in Section

2.2.3.3. From this analysis, the motivation for using this linear combiner is evident:

a larger scalar element from the vector g0 implies that the corresponding channel

leads the others and as such will act as a whitening filter, which is desired, and not a

signal cancellation filter. Thus this linear combiner method puts larger weights on the

EIRs that are impulse-like and therefore provides some protection against poor time

alignment. For the remainder of this thesis, the RIRs were manually time aligned,

but this linear combination method was still used.

3.7 Algorithmic Complexity Analysis

An important consideration in selecting the linear prediction orders for the source-

whitening and MC-LP stages is the memory and computational requirements required

to implement the algorithm. Figure 3.16 and Figure 3.17 show how the required

mathematical operations and memory scale with these parameters for an assumed

embedded system with 32 bits of numerical precision. The x-axis for these plots is
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T60, and the prediction orders used for each T60 are given by p2 = 0.75·N60/ (M − 1)

and p1 = 1.25 ·p2 · (M − 1). These prediction orders were selected based on acheiving

maximum performance for the given T60, as per the discussion in Section 3.1.2 and

Section 3.2. As such, the plots may be interpreted as showing the memory/computa-

tions required to provide maximum dereverberation performance for RIRs up to the

given T60. These plots were generated assuming M = 4 microphones, a sample rate

of 16 kHz.
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Figure 3.16: Analysis of the computational complexities of Least Squares solution
and Inverse filter implementations as a function of T60, For M = 4 microphones,
p2 = 0.75 · N60/(M − 1) and p1 = 1.25 · p2 · (M − 1). Complexity of LMS Solution
also shown for comparison.
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Figure 3.17: Analysis of the algorithmic memory requirements of Least Squares so-
lution (could be temporary memory) and Inverse filter implementations (persistent
memory) as a function of T60, For M=4 microphones, p2 = 0.75 · N60/(M − 1) and
p1 = 1.25 · p2 · (M − 1). Memory requirements of LMS Solution also shown for com-
parison.

Both memory and computations associated with solving the normal equations

scale exponentially with the T60 up to which we wish to optimally cancel. Equalizing

RIRs up to a T60 of 2 sec requires approximately 5 × 109 operations and 8GB of

memory, which is completely unrealistic in any practical system. Therefore for the

purposes of the experiments in this thesis, it was decided to choose prediction orders

to equalize RIRs up to a 1 sec T60, which requires approximately 1× 109 operations

and 2GB of memory. This may be realistic in systems with tremendous amounts

of processing power and memory but is still completely unrealistic in an embedded

application such as a hearing aid. To implement the algorithm in a more constrained

system, the prediction orders would have to be reduced signficantly. This is a severe

limitation of the algorithm, and presents a motivation for the to enhance the algorithm

with other reverberation suppression techniques in any practical system. Another

approach to reduce algorithmic complexity would be to estimate the source-whitening

and MC-LP filters using an adaptive algorithm such as LMS instead of directly solving
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the normal equations. Unlike the normal equations solution, LMS updates scale

linearly with prediction order, only requiring approximately 4.5× 104 operations and

250 kB for T60 = 1 sec, which could be improved further by using frequency/subband-

domain adaptation. Using an adaptive algorithm would of course come at a cost of

worse performance but could potentially do a better job of tracking time varying

acoustics. This was left for a future study.
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Chapter 4

Methods and Results

The goal outlined in this thesis was to analyze the perceptual impacts of reverberation

with and without hearing loss, and evaluate the perceptual benefit of applying delay-

and-predict dereverberation (i.e., DAP dereverberation, Section 2.2.3.3) to remove

reverberant effect. It was intended to perform an evaluation of realistic and practical

conditions and to use performance metrics that reflect realistic perceptual impacts

with and without hearing loss. This section describes the evaluation method that

was initially proposed, how it was analyzed for perceptual validity, and how it was

modified as a result. The modified method is then used to evaluate the perceptual

performance of DAP dereverberation.
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4.1 Evaluation of Proposed SI/LE Prediction Method

for Reverberation

4.1.1 Proposed Method

As described in Section 1.6.1, perception is commonly characterized by speech intel-

ligibility (SI) and listening effort (LE), and additionally speech quality (SQ) is often

used to characterize the subjective quality of speech reproduction systems such as

hearing aids. To accurately evaluate the perceptual impacts of reverberation, a per-

ceptually accurate predictor of SI was needed, which would also correlate implicitly

to LE. Among the objective predictors of SI described in Section 1.7.1, the mean-

rate NSIM (MR-NSIM), fine-timing/spike-timing NSIM (FT-NSIM) and STMI were

selected since they provide the most physiologically accurate model of the auditory

system and the impacts of hearing loss. Although HASPI incorporates a more sim-

plisitic model the auditory system and hearing loss, it is standard in the hearing aid

industry and therefore was included to provide a data that could be easily understood

by researchers in the field. Lastly STOI, which includes no explicit modeling of the

auditory system or hearing loss, was included as well because of its standardization

accross the entire speech processing industry. Since these are all monaural predictors,

an equalization-cancellation (EC) front-end was proposed to be included to provide

some modeling of binaural perceptual benefits (Section 1.6.6). Recall, however, that

the EC algorithm is relatively simplistic and provides no modeling of the degradation

of perceptual adaptations due to hearing loss.

To simulate practical reverberation, real measured RIRs were collected from two

148



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

databases: the Multi-arraY Room Acoustic Database (MYRiAD, Dietzen et al., 2023)

and the head-related impulse response (HRIR) database from Universitat Olden-

burg (Kayser et al., 2009), the latter of which will be referred to as the “HRIR

database”. The MYRiAD database includes a four-channel RIR measurement taken

in the SONORA Audio Laboratory (SAL) which has a listed T20 of 2.1 sec and was

measured on a binaural pair of two-microphone behind-the-ear (BTE) hearing aids

that were mounted on a head and torso simulator. The HRIR database includes

several six-channel RIR measurements that were collected in three rooms: the “of-

fice II” room, “courtyard” room, and “cafeteria” room, which have listed T60s of

300m sec, 900m sec and 1.25 sec respectively. The HRIR database RIRs were mea-

sured using a binaural pair of three-microphone BTE hearing aids that were mounted

on a head and torso simulator. Both databases include RIR measurements using sev-

eral source/talker locations in the room to enable evaluations including multi-talker

situations. Both databases also include multi-microphone spatial noise recordings.

An analysis of the RIR databases and an evaluation of the perceptual validity of

each of the SI predictors as well as the EC front-end is provided in the the following

sections.

For SI predictors with hearing loss models, the results were analyzed both with

and without impairment, using a standard high-frequency hearing loss profile (IEC

60118-15 moderate hearing loss, moderately sloping group, Bisgaard et al., 2010).

In the more sophisticated Bruce et al. (2018) auditory periphery model, the default

cochlear hair cell impairment distribution of 2/3 OHC loss/dysfunction and 1/3 IHC

dysfunction was used, and ANF loss was excluded from the synapse model. A lin-

ear hearing aid gain was included in the hearing impaired case to compensate the
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impairment, as will be discussed in Section 4.1.4.

4.1.2 Analysis of RIR Databases

The RIRs and corresponding EDCs for each of the rooms from the HRIR and MYR-

iAD databases are shown in Figures 4.1 – 4.4.
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Figure 4.1: EIR and EDC of the HRIR database office II room
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Figure 4.2: EIR and EDC of the HRIR database courtyard room

150



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

0 0.1 0.2 0.3 0.4 0.5

Time [sec]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Real Measured RIRs (HRIR cafeteria)

Left Front

Right Front

Left Middle

Right Middle

Left Front

Right Front

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time [sec]

-60

-50

-40

-30

-20

-10

0

d
B

Energy Decay Curve (HRIR cafeteria)

Left Front

Right Front

Left Middle

Right Middle

Left Front

Right Front

Figure 4.3: EIR and EDC of the HRIR database cafeteria room
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Figure 4.4: EIR and EDC of the MYRiAD database SAL room

As expected, the EDCs all were found to decay approximately exponentially (lin-

early in dB) during the late decay region and have more distinct steps during the

early decay region. All the RIRs from the HRIR database fall off rapidly around

the 400m sec mark due to windowing applied during the IR measurement process.

This windowing was applied because measurements were collected in the presence of

ambient noise and therefore the later part of the RIRs was close to the noise floor.
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Table 4.1 summarizes the reverberation times specified in the original papers for

each database and various reverberation metrics measured from the EDCs shown

above.

Table 4.1: Reverberation times specified for RIRs in their original papers, and various
reverberation metrics measured from the EDCs above.

HRIR

Office

HRIR

Courtyard

HRIR

Cafeteria

MYRiAD

SAL

Cited

Reverberation

Time

T60 =

300m sec

T60 =

900m sec

T60 =

1250m sec

T20 =

2100m sec

Measured T60 T60 =

413m sec

T60 =

426m sec

T60 =

437m sec

T60 =

2200m sec

Measured T30 T30 =

400m sec

T30 =

390m sec

T30 =

542m sec

T30 =

2118m sec

Measured EDT EDT =

4m sec

EDT =

8m sec

EDT =

2m sec

EDT =

230m sec

Measured C50 C50 =

11.9 dB

C50 =

29 dB

C50 =

20.8 dB

C50 =

1.3 dB

The reverberation time in the SAL room in the MYRiAD database is reported as

a T20, which roughly matched the T30 that was observed from the plotted EDC in

Figure 4.4. The measured T60 of the SAL room also closely matched the reported

T20 since the decay rate of the early decay region was similar to that of the late decay

region (i.e., the SAL room is more diffuse).

Due to the windowing applied to the RIRs from the HRIR database, the measured

152



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

T60 was similar accross all rooms, and therefore T60 is not a valid metric. However,

the original paper reported reverberation time as “T60” which was computed from

a linear fit of the EDC. This reverberation time definition is more similar to a T20

or T30, but is not exactly the same. The measured T30 was thus found to be quite

different from the originally reported T60 as well.

The measured T30s in Table 4.1 will be used as “reverberation time” for the

following evaluations.

4.1.3 Evaluation of Equalization-Cancellation Front-End

While it was desired to use the EC algorithm as binaural front-end for the monaural

predictors of SI, it was found that the EC focuses on canceling spatially isolated

noise and therefore provides very little benefit in the context of reverberation. It is

not clear whether these limitations hold perceptual grounds. This evaluation can be

found in Appendix A.3.1. In general, limited information exists on the applicability

of EC to reverberation since it was designed to model perceptual noise cancellation.

Since the perceptual validity of the EC could not be confirmed in the context of SRM

for reverberation suppression, it was decided that the EC should be left out of the

evaluation and to focus on a monaural evaluation. A study using a more advanced

binaural front-end was left for a future study. Not only should such a front-end be

validated for perceptual validity in the context of reverberation processing but also

should account for degradation of binaural perceptual adaptations due to hearing

loss.
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4.1.4 Hearing Aid Gain Comparison

When evaluating the impact of reverberation on speech perception (and subsequently

the benefit of a dereverberation algorithm) in the context of hearing loss, it was

important to include some gain to compensate the impairment. Without any gain,

audibility would impact intelligibility and may obscure the impact of reverberation

on speech cues. As discussed in Section 1.4.2, hearing loss has a severe impact on

quiet sounds but less so on louder sounds, motivating the use of wide dynamic range

compression (WDRC) algorithms in hearing aids. Moreover, as discussed in Section

1.6.2, WDRC and other more sophisticated algorithms are necessary to jointly restore

ENV and TFS acoustic cues. It was not desirable to include more complex algorithms

such as WDRC in this study, since the goal is to solely evaluate the impact of dere-

verberation, therefore a linear hearing aid gain vector had to be selected. A linear

equalizer that directly compensates the specific hearing loss (i.e., audiogram mirror

equalizer) is optimal for making quiet sounds audible but would make louder sounds

far too loud. Additionally TFS acoustic cues are more heavily distorted by higher

sound pressure levels, thus higher gains are generally beneficial for the audibility of

ENV cues but have a negative impact on TFS cue perception. These tradeoffs were

discussed by Byrne and Dillon (1986), and a perceptually optimal linear gain known

as the NAL-R (National Acoustic Laboratories Revised) fitting procedure was pro-

posed. Note however that this research was based on clean speech in noise, and did

not consider reverberation. Bruce et al. (2007) showed that a similar impact of linear

gain selection exists for restoring spike-timing and mean-rate neural cues, and that

NAL-R is indeed optimal for speech in quiet. To confirm that the NAL-R gain is

perceptually optimal, four hearing aid gains setings were compared: no hearing aid
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gain, audiogram mirror gain, NAL-R gain, and a “hybrid” gain which was placed

halfway between the audiogram mirror and NAL-R (as shown in Figure 4.5). Figure

4.6 shows a comparison on the basis of predicted intelligibility as a function of T60,

using HASPI, FT-NSIM, MR-NSIM and STMI. The RIRs used were synthetic expo-

nentially decaying Gaussians. The acoustic stimulius level was set to 65 dB SPL to

evaluate conversational speech, since this is what will be used for the remainer of this

thesis.

102 103 104

Frequency [Hz]

0

10

20

30

40

50

60

70

d
B

Hearing Aid Gain Designs

True Audiogram Mirror

No Compensation

Audiogram Mirror Design

Hybrid

NAL-R Filter

Figure 4.5: Hearing aid gains used in evaluation. The audiogram corresponds to IEC
60118-15 Moderate HL Moderately Sloping Group (Bisgaard et al., 2010), and NAL-
R refers to the gain proposed by Byrne and Dillon (1986).

155



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

0 0.5 1 1.5 2 2.5

T60 (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
A

S
P

I
HASPI for various hearing aid gains

(Synthetic RIR, SNR = 300 dB, Stimulus = 65 dBSPL, HL = [35 35 40 50 60 65])

No Gain

Mirror Audiogram Gain

Hybrid Gain

NAL-R Gain

(a)

0 0.5 1 1.5 2 2.5

T60 (sec)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

F
T

 N
S

IM

FT NSIM for various hearing aid gains

(Synthetic RIR, SNR = 300 dB, Stimulus = 65 dBSPL, HL = [35 35 40 50 60 65])

No Gain

Mirror Audiogram Gain

Hybrid Gain

NAL-R Gain

(b)

0 0.5 1 1.5 2 2.5

T60 (sec)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
R

 N
S

IM

MR NSIM for various hearing aid gains

(Synthetic RIR, SNR = 300 dB, Stimulus = 65 dBSPL, HL = [35 35 40 50 60 65])

No Gain

Mirror Audiogram Gain

Hybrid Gain

NAL-R Gain

(c)

0 0.5 1 1.5 2 2.5

T60 (sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
T

M
I

STMI for various hearing aid gains

(Synthetic RIR, SNR = 300 dB, Stimulus = 65 dBSPL, HL = [35 35 40 50 60 65])

No Gain

Mirror Audiogram Gain

Hybrid Gain

NAL-R Gain

(d)

Figure 4.6: Comparison of perceptual benefit of four different linear hearing aid gains
in the presence of reverberation. Moderate high frequency hearing loss used in the
perceptual models (IEC 60118-15 Moderate HL, Moderately Sloping Group), and
RIRs were generated synthetically.

As seen in Figure 4.6, the intelligibility predictors presented significantly different

conclusions on which gain vector was perceptually optimal. This makes sense since

each of the predictors is different either in their auditory modeling or in how the

metric is computed from the model output.

The HASPI results suggested the audiogram mirror to be the best gain vector

and no gain to be the worst, regardless of the amount of reverberation. This is likely
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due to the simpler auditory modeling in HASPI, thus emphasizing audibility over the

complexities of non-linear hearing loss.

In absense of reverberation (i.e., at T60 = 0 sec), the MR-NSIM results gener-

ally suggested more gain to be more optimal, which aligned with the restoration of

ENV cues audibility being achievable by linear amplification with minimal distortion.

However, some impacts of distortion at very high sound pressure levels were reflected

by the mirror audiogram performing the worst. The FT-NSIM results interestingly

suggested more gain to be preferable in absense of reverberation. This seems contra-

dictory to the understanding that TFS cues are more severely impacted by auditory

non-linearities and thus benefit from a lower gain. This discrepency may be explained

by the fact that work conducted by Byrne and Dillon (1986) and Bruce et al. (2007)

did not directly consider speech in reverberation and neither one used NSIM or STMI

to predict intelligibility.

In reverberation, both the FT-NSIM and MR-NSIM results suggested the NAL-R

gain vector to be optimal, and the audiogram mirror to be the worst. This aligns

with the conclusions by Byrne and Dillon (1986) on the optimality of NAL-R gain in

the context of noise masking and shows how the better auditory modeling used in the

NSIM/STMI better reflects the non-linearities in the auditory system which result in

a roll-off of perceptual performance for higher levels.

Interestingly, with and without reverberation, the STMI results suggested the

audiogram mirror to be most optimal and no gain to be the least optimal. Like

the MR-NSIM, STMI is more correlated to ENV acoustic cues, however STMI is a

modulation-sensitive metric and is therefore less sensitive to absolute level. Specif-

ically, while the NSIM has a luminance term which reflects absolute level (i.e., the
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brightness of the neurogram) in addition to the structure term which reflects mod-

ulations (i.e., the visible speech structure in the neurogram), the STMI puts more

emphasis on only the modulations visible in the neurogram. Additionally, if the

speech stimulus were to be raised above conversational speech levels, a greater roll-off

effect would be expected for all three neurogram-based metrics.

Since these results generally agreed with the literature, and since the NAL-R gain

is well understood in the field of audiology, it was selected to be used going forward.

4.1.5 Evaluation of Monaural Speech Intelligibility Metrics

In Context of Reverberation

In this section, the validity of the proposed SI predictors in the context of reverbera-

tion was evaluated. As described in Section 1.6.4, George et al. (2010) demonstrated

that a T60 of approximately 2 sec results in 50% SI for normal-hearing listeners.

This was determined via a subjective study using synthetic exponentially decaying

Gaussian RIRs. It was also explained that SI can roll off at much lower T60s for

hearing-impaired listeners, depending on the particular hearing loss. To validate the

chosen SI predictors, each predictor was evaluated as a function of a variable T60 with

and without hearing loss. As before, a moderate high frequency hearing loss used in

the perceptual models (IEC 60118-15 Moderate HL, Moderately Sloping Group), and

NAL-R linear hearing aid amplification was included in the hearing impaired case. To

match the methods used by George et al. (2010), the SI predictors were first evaluated

using synthetic exponentially decaying RIRs. The results are shown in Figure 4.7.
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Figure 4.7: Impact of synthetic reverberation (exponentially decaying gaussian RIRs)
on SI predictors with and without hearing loss. In the hearing-impaired case, moder-
ate high frequency hearing loss used in the perceptual models (IEC 60118-15 Moderate
HL, Moderately Sloping Group), and NAL-R linear hearing aid amplification was in-
cluded.

Looking at the normal-hearing case (left), It was first noted that while HASPI

and STOI map exactly to a value of 1 for a T60 of 0 sec (i.e., for clean speech),

which was expected. However, FT-NSIM, MR-NSIM and STMI all generated a value

less than 1 for a T60 of 0 sec. This makes sense because HASPI and STOI have an

implicit mapping to SI which scales the predictors appropriately and accounts for

floor/ceiling effects. NSIM and STMI have no such mapping and as such can not be

directly interpreted as the value of SI.

To better compare all metrics on the same plot, MR-NSIM, FT-NSIM and STMI

were normalized by their respective value computed at T60 = 50m sec (i.e., direct

sound + early reflections) without hearing loss. In other words, the plots are scaled

such that the direct sound + early reflections provides a value of 1 for the normal-

hearing listener. The results with this scaling are shown in Figure 4.8.
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Figure 4.8: Impact of synthetic reverberation (exponentially decaying gaussian RIRs)
on SI predictors with and without hearing loss. NAL-R linear hearing aid amplifica-
tion included in hearing loss case for metrics that including modeling of hearing loss.
Scaling applied to NSIM and STMI values to better view all metrics on the same
plot.

From the normal-hearing case in Figure 4.8 (left), HASPI, STOI and MR-NSIM

all reflect roughly 50% of their maximum values at around T60 = 2 sec, aligning

with the observations of George et al. (2010). However, STMI and FT-NSIM fall by

50% for much shorter T60s, especially FT-NSIM. The severe impact of even mild

amounts of reverberation on FT-NSIM reflects the blurring TFS acoustic cues which

require very fine temporal resolution to resolve, as described in Section 1.6.2. This

is an example of how a combination of MR-NSIM/STMI (which correlate mainly to

ENV acoustic cues) with FT-NSIM (which correlates mainly to TFS acoustic cues)

provides a more complete picture of the imacts of reverberation on speech perception

as discussed in Section 1.7.1.1. While a significant amount of reverberation is required

to obscure speech sufficiently that it impacts SI, even small amounts of reverberation

blur the rapidly varying TFS cues which can make perception a more challenging
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(i.e., impacting LE). As expected, all metrics show worse perception quality accross

the board when a hearing-impairment is included (right plot in Figure 4.8).

Additionally, while HASPI follows an approximately reverse-sigmoidal pattern due

to saturation of SI, all other metrics follow a roughly-exponential decay over the full

range of T60s. This demonstrates how the exclusion of an explicit non-linear mapping

to SI allows metrics such as NSIM and STMI to show impacts on perception beyond

the saturation points of SI (i.e., can be correlated to LE). It should be noted however

that some saturation is implicit in the perceptual model used in NSIM and STMI

(Bruce et al., 2018) which results in a slight leveling out of the metrics at very low

T60s.

In Figure 4.9, this experiment was repeated with real RIR measurements of various

T60s taken from the MYRiAD and HRIR databases discussed in Section 4.1.2. The

results were plotted against the T30s described in Table 4.1 rather than the T60s.
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Figure 4.9: Impact of practical reverberation (several real measured RIRs) on SI
predictors with and without hearing loss. NAL-R linear hearing aid amplification
included in hearing loss case for metrics that including modeling of hearing loss.
Scaling applied to NSIM and STMI values to better view all metrics on the same
plot.
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Note that none of the metrics decay monotonically with T30. This demonstrates

how reverberation time provides an incomplete depiction of the perceptual impacts of

reverberation due to the different decay rates of the early decay region and late decay

region. As discussed in Section 1.2.2, a more complete description would include both

reverberation time and early decay time (EDT). The early decay region of the SAL

RIR from the MYRiAD database (Figure 4.4), which has T30 = 2.1 sec, is much

stronger than the late decay region. Conversely, the cafeteria RIR from the HRIR

database (Figure 4.3), has a much lower T30 of 542ms, but has much a stronger early

decay region. Even though the SAL RIR has a longer reverberation time than the

cafeteria RIR, the reverberant tail overall is weaker in the SAL room, thus reducing

the perceptual reverberant effect of the room. This also explains why in Figure 4.9

when T30 was increased from 542m sec to 2.1 sec, STMI and MR-NSIM decreased

but FT-NSIM actually increased. ENV acoustic cues are only signifantly impacted

by the long-term smearing caused by longer/stronger late decay region, while TFS

acoustic cues are more also impacted by the presence of a strong early decay region

of the RIR due to their rapid time-variance.

Recall as mentioned in Section 1.2.2: the early decay region of the RIR, which

is described by the EDT, is distinct in its definition and perceptual impact from the

distinction between early/late reflections. EDT and reverberation time are used to

described the two different decay regions of an RIR (loosely referred to in this thesis

as the “early decay region” and “late decay region”), whereas early/late reflections

are a perceptual concept.

Figure 4.9 was replotted against C50 in Figure 4.10. In the normal-hearing case

MR-NSIM, STMI, HASPI and STOI were all found to decay monotonically with C50.
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This makes sense because C50 is a more perceptually-motivated metric considering

the ratio between perceptually “useful” energy to perceptually “detrimental”. FT-

NSIM was not found to vary monotonically with C50, perhaps due to certain reflection

delay ranges having a more pronounced effect on TFS information (e.g., reflections at

the word/syllable rate). HASPI was not found to vary monotonically in the hearing

impaired case, possibly reflecting an increase in dependence on TFS cues for hearing

impaired individuals in severe reverberation. Further investigation into this matter

was left for a future study.
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Figure 4.10: Relationship between SI predictors and C50 (Figure 4.9 replotted against
C50)

To analyze the impact on perception of variable amounts of realistic reverberation

in a consistent/controllable way, the SAL RIR from the MYRiAD database was ex-

ponentially windowed to manipulate the T60. An example of this procedure is shown

in Figure 4.11, where the original T60 of 2.2 sec was exponentially windowed to a T60

of 1 sec.
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Figure 4.11: Example of how SAL was processed by applying additional exponential
decay as a window to manipulate T60 synthetically.

Manipulating the T60 of the SAL RIR in this way, all perceptual metrics were

evaluated over a range of T60s. The results are shown in Figure 4.12.
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Figure 4.12: Impact of practical reverberation (SAL room from MYRiAD database
exponentially truncated to control T60) on SI predictors with and without hearing
loss. NAL-R linear hearing aid amplification included in hearing loss case for metrics
that including modeling of hearing loss. Scaling applied to NSIM and STMI values
to better view all metrics on the same plot.

164



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

In this experiment all metrics were found to decay monotonically with T60, fol-

lowing a similar relation to that which was observed with synthetic RIRs in Figure

4.8. Interestingly, in the normal-hearing case HASPI was found to predict effectively

100% SI right up to a T60 of 2.1 sec, compared to a prediction of 50% SI in the

synthetic RIR case (Figure 4.8). This is because the synthetic RIRs were generated

by using a single exponential decay rate over the full T60, resulting in a much longer

EDT and therefore a much louder reverberant tail. This again reinforces the impact

of the early decay region on perception. However, the other metrics do not have this

saturation, and show variation in speech perception over the full range of T60s, which

is expected to correlate to LE as previously discussed.

As a final example of the impact of EDT on speech perception, the same experi-

ment was conducted, but the direct impulse / early reflection impulses were manually

attenuated by 6 dB to increase the EDT slightly (i.e., to increase the late reverberant

energy relative to the early decay region). The RIR/EDC for the processed SAL RIR,

and the experiment results are shown in Figure 4.13 and Figure 4.14 respectively.
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Figure 4.13: Example of how early reflections of SAL RIR were reduced in magnitude
by 6 dB to make reverberation effect stronger
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Figure 4.14: Impact of practical reverberation (SAL room from MYRiAD database
exponentially windowed to control T60) on SI predictors with and without hearing
loss. NAL-R linear hearing aid amplification included in hearing loss case for metrics
that including modeling of hearing loss. Scaling applied to NSIM and STMI values
to better view all metrics on the same plot. The direct sound / early reflections of
SAL RIR were reduced by 6 dB as shown in Figure 4.13.
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With a relatively subtle attenuation of the early reflections (6 dB), a very signifi-

cant change in the perceptual metrics was observed. Note that this pre-processing of

the early reflections actually has very minimal impact on the T60. Figure 4.13 shows

a change in T60 from 2.18 sec to only 2.27 sec. This further reinforces the perceptual

importance of EDT, distinct from reverberation time.

Although reverberation time provides an incomplete picture of the perceptual im-

pacts of reverberation, it was still desirable to use T60 as the control variable for the

experiments in this thesis going forward since it provides a very easy to understand

description of the amount of reverberation. Therefore, it was decided to use RIRs

generated by exponentially windowing the SAL RIR from the MYRiAD database as

a means to evaluate the perceptual impacts of reverberation (and therefore derever-

beration algorithms) under realistic reverberant conditions with controllable T60. By

using the same base RIR, the early decay rate and late decay rate remain constant

accross all cases, and perceptual metrics decay monotonically.

4.2 Final Method Used

In this section, the method used for evaluating the perceptual benefit of delay-

and-predict (DAP) dereverberation is outlined. Based on the analysis of the initial

proposed method in Section 4.1, enhancements were made and the final evaluation

method was defined. The evaluation methodology was designed to allow three sepa-

rate experiments:

1. Evaluate the perceptual benefit of DAP dereverberation over a range of T60s

using realistic reverberation
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2. Evaluate the impact of realistic ambient noise on DAP performance

3. Evaluate the impact of a secondary talker in the same reverberant room on

DAP performance

Each experiment was conducted in two stages: a training phase and a evaluation

phase. In the training phase (Figure 4.15), the DAP equalizer was blindly estimated

from the reverberant microphone signals, corrupted by any interfering noise or sec-

ondary talker. In the evaluation phase (Figure 4.16), the resulting DAP equalizer was

applied to the reverberant microphone signals, without any noise or interfering talker,

producing a dereverberated speech signal. The evaluation of the dereverberated sig-

nal in comparison to the reverberant microphone signal (i.e., before dereverberation)

was done on the basis of SI/LE prediction to evaluate the perceptual benefit of the

DAP equalizer. The noise/interfering talker were omitted from the evaluation phase

to remove the impact these interfering signals on SI/LE, and to focus only on their

impact on dereverberation performance. Additionally, a different source signal was

used in the training phase and evaluation phase to emphasize the potential that the

“over-whitening” of the training source signal may lead to an added reverberant effect

when the equalizer is applied to a different signal (as described in Section 2.2.3.3).

As explained in Section 4.1.5, it was decided to simulate reverberation over a

range of T60s by applying an exponentially decaying window function to the four-

channel SAL RIR from the MYRiAD database (measured on a binaural pair of two-

microphone BTE hearing aids), which has an initial T60 of 2.2 sec.

The RIRs were manually time-aligned, since time-of-flight estimation is a well

understood field in signal processing and was left outside of the scope of this exper-

iment. Additionally, all RIR measurement noise leading to the direct sound impulse
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was manually removed using a fixed magnitude threshold to avoid unrealistic convo-

lution of these noise samples with the source signals as described in Section 3.1.2

The source speech signal used accross all experiments was 10 sec of male speech

from the TMIT speech sample database (Garofolo et al., 1993). A 10 sec duration

speech stimulus was selected as per the conclusions in Section 3.5.1. The speech signal

was calibrated to a conversational speech level of 65 dB SPL. This calibration was

done based on the convolution of the the source speech signal with the the direct sound

/ early reflections from the RIR (i.e., the first 50m sec), since this is the perceived

speech level due to the temporal integration of early reflections. The source signal

was then convolved with the full exponentially windowed RIR and added with the

interfering noise / secondary talker.

To generate realistic ambient noise, the multichannel noise recordings from the

HRIR database were used. Two separate noise recordings were included in the evalu-

ation: a ventilation noise recording from the “office” room (approximately stationary),

and a babble noise recording from the “cafeteria” room (highly non-stationary). The

average RMS level accross the four channels was then calibrated to achieve the desired

SNR before adding with the reverberant speech signal above.

To generate a realistic secondary talker in the same room, a separate 10 sec speech

stimulus from the TMIT database was convolved with a different four-channel RIR

measurement corresponding to another location in the the SAL room in the MYR-

iAD database. This four-channel RIR was also exponentially windowed to the same

T60. The target talker was placed in front of the head-and-torso simulator (0◦) and

the interfering talker was placed to the side (90◦). After convolving the interfering

169



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

talker source signal with the corresponding four-channel RIR, the resulting rever-

berant signals were level-calibrated to the desired signal-to-interference ratio (SIR)

before adding with the target reverberant speech signal above.

The resulting four-channel simulated microphone signals, y(n), were then used

as input to the DAP algorithm, producing the DAP equalizer, H(z). As per the

conclusions in Section 3.1.2, the MC-LP prediction order was initially set to p2 =

(T60max · fs) / (M − 1), with a sample rate of fs = 16 kHz, T60max = 1 sec andM = 4.

The source-whitening prediction order was set to p1 = 1.25·p2 ·(M − 1) as per Section

3.2. This resulted in prediction orders of p2 = 5333 and p1 = 20000.

In the evaluation phase (Figure 4.16), one of the unprocessed reverberant mi-

crophone signals and the dereverberated DAP output signal were both analyzed for

SI/LE. The analysis of SI/LE was done for each case by comparing the test signal

to a clean source reference signal, producing STOI, HASPI, FT-NSIM, MR-NSIM

and STMI. Like in Section 4.1.5, these metrics were scaled such that a value of 1.0

is acheived for the convolution of the source signal with just the direct sound and

early reflections of the RIR. Additionally, VISQOL and HASQI were produced to

evaluate speech quality (SQ). Lastly, clarity (C50) was computed to provide a phys-

ical reveberation-specific metric. Metrics that include perceptual models of hearing

loss were additionally re-computed with a standard moderate high-frequency hearing

loss profile was used (IEC 60118-15 moderate hearing loss, moderately sloping group,

Bisgaard et al., 2010), and a NAL-R linear hearing aid gain vector was applied.

To show the impact of any stochasticity in the test conditions and auditory mod-

els, all experiments were repeated 10 times and results were plotted with error bars

showing standard deviation.
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4.3 Delay-and-Predict Dereverberation Evaluation

in Variable Reverberation

In this section, DAP dereverberation performance was evaluated over various amounts

of reverberation by manipulating the T60 of the MYRiAD SAL RIR using the method

described Section 4.2. Using the algorithm training/evaluation methods described

in Figure 4.15 and Figure 4.16, all objective predictors of SI (STOI, HASPI, FT-

NSIM, MR-NSIM and STMI), all objective predictors of SQ (VISQOL, HASQI) and

C50 were generated at each T60 for both the unprocessed reverberant signal and

the dereverberated output of the DAP algorithm. Metrics before and after DAP

processing were plotted over T60s. The results for this initial evaluation with and

without hearing loss included are shown in Figure 4.17.
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Figure 4.17: Evaluation of delay-and-predict dereverberation performance as a func-
tion of T60. Prediction orders were p2 = 5333 and p1 = 20000 (i.e., set according
to T60max = 1 sec for M = 4 and fs = 16 kHz). RIRs were generated by applying a
variable decay-rate exponential window to a measured RIR (The SAL room from the
MYRiAD database, T60 = 2.2 s) to control T60. No Noise or Interfering talker were
included.
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Firstly, it was noted that C50 results showed an improvement over most T60s,

peaking at a C50 gain of approximately 6 dB at a T60 of 1 sec. However, since DAP

does not differentiate between cancellation of early reflections and late reflections, the

algorithm was found to have a negative impact on C50 for T60s below 250m sec where

more early reflection energy was reduced than late reflection energy. Similarly, the

algorithm was found to provide a boost in predicted SQ for all T60s above 250m sec,

reflecting impact of reduced reverberation on quality and the absense of any other

algorithmic distortions that would have a negative impact on quality.

Generally all SI predictors showed that DAP provided a boost in perceptual per-

formance. In the hearing impaired case, HASPI was found to increase from approx-

imately 0.6 to 0.95 at T60 = 2 sec, suggesting that the algorithm almost completely

restored SI. The improvements in MR-NSIM and STMI for both the normal hear-

ing and hearing impaired cases were more subtle, reflecting the fact that the ENV

acoustic cues were not completely restored, and that the residual reverberation likely

would still impact LE if not SI. In the hearing imparied case, restoration of ENV

cues was even more subtle, likely due to the sub-optimality of the linear hearing aid

gain which results in limited audibility, as discussed in Section 4.1.4. Recall that the

NSIM and STMI values were normalized such that a value of 1.0 is achieved for the

clean speech convolved with only direct sound and early reflections without hearing

loss. Therefore the NSIM/STMI values can be interpreted roughly a ratio of the

corresponding acoustic cues that are represented with sufficient fidelity.

The FT-NSIM results generally showed an improvement, suggesting that TFS

cues were at at least partially restored. However, FT-NSIM was found to decrease

at certain T60s. This was explained by the fact that the SSIM neurogram image
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comparison that underlies the NSIM is sensitive to subtle pixel shifts in the time

axis, making the FT-NSIM very sensitive to phase distortions. The MC-LP prediction

error equalizer in the DAP algorithm has zero algorithmic delay overall (as do all LP

prediction error filters) because of the branch of the filter that passes one of the

signals through unprocessed (i.e., the first FIR coefficient is b0 = 1). However, the

prediction error filter is also non-linear phase and therefore imposes phase distortions.

These phase distortions are minimum due to the minimum-phase constraint imposed

by the autocorrelation method of LP, but are non-negligible. It is at this point

unclear whether these phase distortions have a significant impact on human SI/LE.

Therefore when interpreting the FT-NSIM predictions, it is reasonable to say that

an increase in value implies restoration of TFS cues, but a decrease in value has an

unclear meaning. There is therefore a need for more research into the perceptual

impact of phase distortions to determine the perceptual validity of the NSIM as a

predictor of SI/LE. This was left for future work. Neglecting the dips in value due to

phase distortions, the FT-NSIM results in Figure 4.17 show a greater increase than

MR-NSIM/STMI, suggesting that TFS cues are better restored than ENV cues. This

makes sense because DAP is only effective at cancelling the earlier part of the RIR

which can have a less significant impact on ENV cues, as discussed in Section 3.1.2.

The improvement in TFS cue fidelity is likely responsible for the restoration of SI

suggested by the HASPI results, since TFS cues play a stronger role in SI in adverse

listening conditions such as reverberation (Section 1.6.2).

For a closer look at the behaviour of the algorithm in this evaluation, the EIR

and EDC performance for a T60 of 1 sec are shown in Figure 4.18.
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Figure 4.18: EDC and EIR performance from a single iteration of the results shown
in Figure 4.17 for a T60 of 1 sec

Although the prediction orders were selected as per the discussion in Section 3.1.2

to optimally cancel a T60 of 1 sec (i.e., prediction orders p2 = 5333 and p1 = 20000),

the EDC was only found to show reduction in reverberation up to the 250m sec. This

is because the limited amount of signal data used in this evaluation was insufficient

to reduce the amount of autocorrelation variance that occurs at the lags dictated by

the prediction orders. Therefore the experiment was repeated with prediction orders

set to optimally cancel a T60 of 500m sec (i.e., p2 = 2667 and p1 = 10000) to reduce

computations. The results are shown in Figure 4.19.
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Figure 4.19: Evaluation of delay-and-predict dereverberation performance as a func-
tion of T60. Prediction orders were p2 = 2667 and p1 = 10000 (i.e., set according to
T60max = 500m sec for M = 4 and fs = 16 kHz). RIRs were generated by applying
a variable decay-rate exponential window to a measured RIR (The SAL room from
the MYRiAD database, T60 = 2.2 s) to control T60. No Noise or Interfering talker
were included.

In this experiment, similar perceptualy performance to the previous experiment

was observed accross all predictors of SI and SQ for lower T60s, but for very high

T60s performance dropped off and the algorithm was observed to actually make things

worse. As discussed in Section 3.1.2, the equalizer generated by MC-LP does a good

job of cancelling the early part of the RIR, but towards the end of the time spanned

by the equalizer, reverberation energy can actually increase due higher estimation
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variance at longer autocorrelation lags (as shown in Figure 4.20a below). This effect

was initially accepted as an inevitable side effect of MC-LP-based reverberation can-

cellation, and it was assumed that the benefits in the early part of the RIR would

outweigh the negative side effects in the later/weaker part of the RIR. However, it is

clear from this evaluation that for very long reverberation times, the increase in late

reverberation becomes significant and the perceptual impact is non-negligible. This

was also confirmed by informal listening tests performed by the author.This makes

sense because for longer reverberation times, the energy of the reverberation in the

vicinity of high autocorrelation variance is higher, and therefore the impact of the

variance is more pronounced. Moreover, while ENV acoustic cues are have a larger

dynamic range / energy and are therefore not significantly impacted by low-level re-

verberation, TFS acoustic cues are more heavily distorted by low-level reverberation.

As discussed in Section 1.6.2, in mild reverberation the fidelity of TFS cues generally

only impacts LE, but in more severe reverberation, TFS fidelity can impact SI.

Since the increase in autocorrelation variance occurs at long lags where the re-

verberant energy is generally lower, it was hypothesized that adding a small amount

of autocorrelation regularization could reduce this side effect without significantly

reducing performance in the earlier/higher energy part of the RIR. This was done by

adding a small offset (ψ = 2.5×10−5) to the diagonal entires of the spatially averaged

temporal autocorrelation matrix that is used in the source-whitening stage (i.e., Ravg

in Equation 2.47) and also to the multichannel spatio-temporal correlation matrix

used in the MC-LP stage (i.e., Rmc in Equation 2.49). Regularization of autocorre-

lation matrices in LP Yule-Walker equations has the effect of improving numerical

stability and making the resulting prediction error filters more white. The impact of
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this regularization on EIR/EDC performance is shown in Figure 4.20.
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Figure 4.20: Impact of autocorrelation matrix regularization on dereverberation per-
formance. Prediction orders were p2 = 2667 and p1 = 10000 (i.e., according to
T60max = 500m sec for M = 4 and fs = 16 kHz).

Note that with the right choice of regularization magnitude, DAP indeed provides

nearly the same amount reverberation suppression in the early part of the RIR and

does not increase reverberant energy in the later part of the RIR. The evaluation

of the perceptual predictors was repeated with this regularization included, and the

results are shown in Figure 4.21.
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Figure 4.21: Evaluation of delay-and-predict dereverberation performance with auto-
correlation regularization as a function of T60. Prediction orders were p2 = 2667 and
p1 = 10000 (i.e., according to T60max = 500m sec for M = 4 and fs = 16 kHz). RIRs
were generated by applying a variable decay-rate exponential window to a measured
RIR (The SAL room from the MYRiAD database, T60 = 2.2 s) to control T60. No
Noise or Interfering talker were included.
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With regularization added, all predictors of SI and SQ except for FT-NSIM sug-

gested a perceptual benefit of DAP dereverberation accross all T60s. The variance of

the FT-NSIM previously discussed was also present in these results.

This experiment with regularization included was repeated with higher prediction

orders used previously (the results are in Appendix A.3.2). Even with regularization,

the higher-order DAP algorithm was found to minimal perceptual benefit over the

lower-order one shown in Figure 4.21. Therefore it was concluded that for the selected

training data size used in this evaluation (10 sec of speech sampled at fs = 16 kHz),

prediction orders of approximately p2 = 2000 – 3000 provide the maximum perfor-

mance possible over a wide range of T60s.

To summarize, it was shown that in absense of noise or interfering talkers and for

time-invariant RTFs, DAP dereverberation with regularization should be capable of

providing a perceptual benefit in a wide range of reverberant conditions by reducing

the earlier/stronger part of the reverberant energy. While the HASPI results showed

that DAP can restore TFS/ENV acoustic cues sufficiently to fully restore SI, the other

predictors of SI suggest that the residual reverberation still has a negative impact on

LE. Although the sensitivity of the FT-NSIM to phase distortion obscured results,

they generally seem to suggest that TFS cues are much better restored by DAP than

ENV cues. To improve perceptual performance further, DAP could be paired with a

speech enhancement strategy as described in Section 2.1.3.
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4.4 Delay-and-Predict Dereverberation Evaluation

with Several Real RIR Measurements

As an additional test, the same perceptual evaluation was conducted using all four of

the original RIR measurements described in Section 4.1.2. This was done to compare

the performance of DAP with regularization under different distributions of energy

between the early decay region and late decay region (i.e, different EDTs and T60s).

The results were plotted against the measured T30s that were summarized in Table

4.1, and are shown in Figure 4.22. The EDC results for each room are also shown in

Figure 4.23.
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Figure 4.22: Evaluation of delay-and-predict dereverberation performance with auto-
correlation regularization for several real RIR measurements. Left to right the RIRs
are: HRIR Courtyard room, HRIR Office room, HRIR Cafeteria room, MYRiAD
SAL room. Prediction orders were p2 = 2667 and p1 = 10000 (i.e., according to
T60max = 500m sec for M = 4 and fs = 16 kHz).
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Figure 4.23: EDC performance results corresponding to a single iteration of the test
results shown in Figure 4.22.

From the EDC results in Figure 4.23 it is clear that the performance of the DAP

algorithm is impacted not just by reverberation time, but by the distribution of energy

in the earlier part of the RIR relative to the later part. As previously discussed,

DAP does a good job of cancelling the earlier part of the RIR where reverberation

energy is higher (i.e., reverberation-to-noise ratio is higher) and due to the shorter

autocorrelation lags involved in the solving of the Yule-Walker equations, both of
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which result in lower equalizer estimation variance. Therefore the DAP algorithm

performs well with RIRs that have more energy in the earlier part than the later

part. Note that the boundary between these two time regions is a different but related

concept to early/late reflections (i.e., the region of perceptual temporal integration)

and also different from but related to the early/late decay region (i.e., the regions of

the RIR with different rates of decay).

If the early decay region is strong and very short, DAP will do a good job of

canceling the reverberant energy, but the impact of the original reverberation on

perception is minimal since it most will be integrated with the direct sound and

therefore DAP will not be of significant benefit. Two examples of this are the HRIR

courtyard room (Figure 4.23a) and the HRIR cafeteria room (Figure 4.23c). Both of

these RIRs have very significant energy in the first 50m sec, causing the EDC to drop

very rapidly, and DAP to provide very little cancellation of reverberation beyond the

perceptual temporal integration boundary.

If the early decay region is strong and slightly longer, DAP will do a good job of

canceling the perceptually impactful reverberant energy. Two examples of this are

the HRIR office room (Figure 4.23b) and the MYRiAD SAL (Figure 4.23d). Both of

these rooms have significant energy between 50m sec and 500m sec which DAP does

a good job of cancelling and this provides significant perceptual benefit. If the early

decay region is strong and very long (i.e., there is significant reverberant energy far

beyond 500m sec), DAP will not do a great job of canceling its later part, and thus

much of the reverberant energy will remain.

To summarize, it was found that DAP does a good job of canceling the more

energy dominant region of the RIR provided it does not extend so far in time that

186



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

performance becomes limited by equalizer estimation variance at longer autocorrela-

tion lags. In particular, in these experiments and for the utilized amount of training

data, it was observed that DAP performance was jointly limited by not being able to

cancel reverberation that has decayed by more than approximately 30 dB, and by not

being able to reliably estimate autocorrelation at lags corresponding to reflection de-

lays of approximately 250m sec. However all of the above evaluations were performed

in absense of noise or interfering talkers. In the following sections these matters will

be discussed.

4.5 Impact of Noise on Performance

To evaluate the impact of interfering noise on the performance of DAP dereverber-

ation with regularization, an evaluation was conducted with a fixed T60 of 1 sec

with additive noise included at various SNRs. Two separate experiments were con-

ducted: one using relatively stationary noise (the multichannel office ventilation noise

recording from the HRIR database) and one using highly non-stationary noise (the

multichannel cafeteria babble noise recording from the HRIR database). As explained

in Section 4.2, the noise was included in the training of the DAP algorithm, but was

omitted from computation of the SI/SQ predictors to neglect the impact of the noise

itself on perception. The results were plotted against SNR as shown in Figure 4.24

and Figure 4.25 respectively.
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Figure 4.24: Evaluation of delay-and-predict dereverberation performance with au-
tocorrelation regularization in the presence of noise as a function of SNR. RIRs were
generated by applying a variable decay-rate exponential window to a measured RIR
(The SAL room from the MYRiAD database, T60 = 2.2 s) to set T60 = 1 s. Noise
was a multichannel recording of approximately stationary noise (Office ventilation
noise from the HRIR database).
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Figure 4.25: Evaluation of delay-and-predict dereverberation performance with au-
tocorrelation regularization in the presence of noise as a function of SNR. RIRs were
generated by applying a variable decay-rate exponential window to a measured RIR
(The SAL room from the MYRiAD database, T60 = 2.2 s) to set T60 = 1 s. Noise
was a multichannel recording of non-stationary noise (Cafeteria babble noise from the
HRIR database).

In the presence of relatively stationary noise, the C50 performance and conse-

quently the objective predictors of SI were found to fall of at very low SNRs due to

equalizer estimation variance. For SNRs below -12 to -6 dB, the equalizer observed

to have a negative impact on C50, i.e., making reverberation worse, and for SNRs

above 6 to 12 dB the C50 saturated at the algorithms noise-free performance. An

SNR as low as -12 to -6 dB is not a typical listening environment for hearing-aid users
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and therefore these results suggest that the algorithm should provide a reduction in

reverberation under most practical conditions. However, SNRs between 0 and 12 dB

are very common, and the variation of performance in this range may have a severe

impact in the practical usefulness of the algorithm.

In the presence of highly non-stationary noise, as shown in Figure 4.25, the impact

of the interfering noise was found to be much more severe. In this evaluation, the

algorithm was only found to provide a boost in C50 and in the SI predictors for

SNRs above approximately 0 dB, and did not reach full performance until an SNR of

12 – 18 dB. This result suggests that the algorithm cannot be assumed to provide

significant perceptual benefit in an arbitrary noisy listening environment. However,

the algorithm can be guaranteed to provide some perceptual benefit if the noise

field can be identified as relatively stationary and/or a high SNR can be identified.

With effective characterization of the noise field and SNR, it may be possible to

turn on and off the algorithm such that it always provides a perceptual benefit, or to

make more sophisticated state machine changes such as adjusting the prediction order

or amount of regularization. Furthermore, if the noise spectrum can be estimated,

its autocorrelation matrix could potentially be estimated and subtracted from the

correlation matrices used in the two stages of linear prediction (e.g., as described by

Triki and Slock, 2008). These topics were left for future work.

4.6 Impact of an Interfering Talker on Performance

Lastly the impact of a secondary talker being present in the room was evaluated, using

a second RIR measurement from the MYRiAD database that was captured from a

different location in the SAL room. In particular, the primary talker was placed at
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0◦ and the secondary talker was placed at 90◦. Similar to the noise investigation,

the DAP algorithm was trained with both talkers present, but the predictors of SI

and SQ were computed in absense of the secondary talker. The results were plotted

against varying signal-to-interfering talker ratios (SIR) as shown in Figure 4.26.
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Figure 4.26: Evaluation of delay-and-predict dereverberation performance with auto-
correlation regularization in the presence of a non-co-located secondary talker in the
same room as a function of signal-to-interference ratio (SIR). RIRs were generated
by applying a variable decay-rate exponential window to a measured RIR (The SAL
room from the MYRiAD database, T60 = 2.2 s) to set T60 = 1 s.

The impact of a secondary talker in the room was found to be very similar to the

impact of non-stationary noise. This makes sense since the specific non-stationary

noise recording used in the previous evaluation was a babble noise recording and thus
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included spatialized speech. The fact that the algorithm only provided a boost in

C50 for SIRs greater than 0 dB (i.e., when the primary talker was louder than the

secondary talker) suggests that the algorithm is incapable of providing any reverbera-

tion cancellation to simultaneous talkers in different locations of a room. This makes

sense because, as explained in Section 2.2.1.1, room response equalization is very sen-

sitive to location. Similar to the stationary noise case, the algorithm was not found

to reach peak performance until an SIR of approximately 12 dB, which is relatively

large. This presents a severe practical limitation of the algorithm, as its performance

quickly breaks down when there are any other significantly loud talkers in the room.

It may however be possible to incorporate a strategy for identifying the presence of

unique talkers, and restricting the algorithm to only be trained on segments where

the primary talker is prominent. This was left for a future study.
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Chapter 5

Discussion and Conclusions

5.1 Conclusion

In this thesis, three topics were explored. First in Chapter 3 the impact of vari-

ous parameters of the delay-and-predict (DAP) dereverberation algorithm (Triki and

Slock, 2006), and the impact of various signal/acoustic conditions on dereverberation

performance were analyzed. In Chapter 4, recent advancements in auditory modeling

and predictors of speech intelligibility (SI), listening effort (LE) and speech qual-

ity (SQ) were leveraged to define a physiologically motivated method for analyzing

the impacts of reverberation, and the components of this method were analyzed for

perceptual validity. Lastly, the evaluation method, test conditions and DAP algo-

rithm parameters were configured according to these findings, and an evaluation of

the perceptual performance of DAP dereverberation was conducted under a range of

practical conditions.
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5.1.1 Delay-and-Predict Dereverberation Parameter Conclu-

sions

In Chapter 3, it was discussed that DAP dereverberation is a blind estimate of the

mean-squared-error-optimal MC-LP inverse filter (i.e., the “supervised DAP”), which

is itself an estimate of the ideal multichannel equalizer for a set of known RIRs (i.e.,

the MINT equalizer Miyoshi and Kaneda, 1986, 1988). It was shown that while the

MINT equalizer is indeed capable of providing nearly perfect RTF equalization, the

performance of the DAP equalizer is severely limited due to the source-filter ambigu-

ities of the blind system identification problem and due to numerical error involved

in solving the high order multichannel Yule-Walker/normal equations. In particular

it was shown that significant estimation error arises due to increased autocorrelation

variance for the very long lags and due to the very low reverberant-energy-to-noise

ratio of the later reflections in the RIR. This estimation error increases with predic-

tion order since longer lags are required, and while it can be reduced by increasing

the amount of source data used in training, this is practically limited by computa-

tional constraints and by the time window over which the RTF may be considered

stationary. Since estimation variance increases for longer autocorrelation lags, the

dereverberation performance of the algorithm decreases for longer reflection delays,

and can even make the late reverberant tail worse. However it was shown in Chap-

ter 4, that by introducing a small amount of autocorrelation regularization to both

stages of linear prediction, the negative impact of DAP on the late part to the RIR

can be completely removed with minimal reduction of the benefit of DAP in the ear-

lier part of the RIR. Assuming the RTF can be considered stationary for 10 sec, it
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was shown that this amount of data is only sufficient to support MC-LP orders up to

approximately 2000-3000.

It was also shown that the performance of DAP dereverberation is highly de-

pendent on the performance of the source-whitening stage which estimates/removes

the AR properties of the source by spatially averaging autocorrelation across a finite

number of microphones. It was shown that to maximize performance of the algo-

rithm, the source-whitening prediction order should be set to p1 ≥ p2 · (M−1), where

p2 is the MC-LP order so that the spectral resolution of the source-whitening filter

matches the effective spectral resolution of the MC-LP prediction error filter. While

DAP performance approaches that of the supervised DAP algorithm as the number

of microphones is increased, this is practically limited by the number of microphones

available. For a lower number of microphones there is an increased likelihood of

common or numerically similar RTF channel poles (i.e., the “effective poles” of the

approximate all-pole model of the RTFs), which will be wrongly whitened by the

source-whitening stage.

Due to these practical limitations of the algorithm, it was shown that for 10 sec

of training data, 4 microphones, a stationary RTF and in absense of noise, DAP

dereverberation can only achieve supression of the earlier part of the RIR by ap-

proximately 6 – 8 dB. In particular, it was found the algorithm was only able to

provide any reverberation suppression up to the point where the original EDC has

decayed by approximately 30 dB or for reflection delays up to approximately 250m sec

(whichever comes first). Any further suppression would require an increased number

of microphones or more training data.

In Chapter 4, the performance DAP dereverberation in the presence of stationary
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noise, non-stationary noise and a secondary talker in the same room was evaluated.

Dereverberation performance was found to drop off for very low SNRs in stationary

noise environments or even for moderately low SNRs in highly non-stationary envi-

ronments such as babble noise or the presence of a secondary talker. This presents a

severe practical limitation of the algorithm and must be managed by methods such

as a state-machine for choosing which data to use in training or estimation and sub-

traction of the autocorrelation properties of the interfering noise.

5.1.2 Conclusions on Methods for Evaluating the Perceptual

Benefit of Dereverberation Algorithms

In Chapter 4, the perceptual validity of various predictors of SI in the context of

reverberation were evaluated. In general, it was demonstrated that a combination

of the FT-NSIM, MR-NSIM and STMI metrics provide a more complete picture of

the perceptual impacts of reverberation, as compared to HASPI. While HASPI was

shown to produce similar estimates of SI to those found in the subjective evaluations

conducted by George et al. (2010), its relatively simplisitic auditory modeling and the

saturation of predicted SI in regions where LE may continue to vary produce limited

perspective. Conversely, FT-NSIM and MR-NSIM/STMI were respectively found to

demonstrate the impacts of reverberation on TFS acoustic cues and ENV acoustic

cues. In particular, it was shown that for short reverberation times MR-NSIM remains

high while FT-NSIM drops substantially, depicting the impact of small amounts of

reverberation on TFS cues which impacts LE. Additionally these metrics have no

explicit saturation which allowed them to be used to predict changes to LE in typical

reverberant conditions where SI is already saturated.
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FT-NSIM, MR-NSIM and STMI were shown to provide insights into the impacts

of linear hearing aids gains and reverberation on speech perception that were aligned

with the aligned with the literature. However, since the NSIM predictor involves a

pixel-by-pixel comparison of neurograms (i.e., via the SSIM metric), it was found to

be highly sensitive to phase distortions. This was found to result in a high degree

of variance in FT-NSIM results when evaluating the impact of algorithms such as

DAP dereverberation that have undeterministic non-linear phase responses. It is

unclear whether these reductions FT-NSIM represent distortions that are perceptually

relevant.

Lastly, while reverberation time (e.g., T60) is a commonly used metric in acous-

tics/signal processing fields, it was confirmed in this thesis to provide an incomplete

picture of the effects of reverberation. Since the early decay region and late decay

region have different impacts of TFS and ENV acoustic cues, a combination of EDT

and reverberation time is much more perceptually descriptive.

5.1.3 Conclusions on the Perceptual Benefit of Delay-and-

Predict Dereverberation

In the perceptual evaluation of the DAP algorithm, it was shown via HASPI per-

formance analysis that, even though the reverberation cancellation provided by the

algorithm is limited, the benefit is sufficient to restore a substantial amount of SI in

some practical rooms. Additionally, a clear benefit of the algorithm on MR-NSIM

and STMI performance was observed accross the majority of reverberant conditions,

which represents the restoration of ENV acoustic cues which have a severe impact

on SI and LE. Although the FT-NSIM results were obsecured by the sensitivity of
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the metric to phase distortions, these results generally suggested that TFS acoustic

cues are better restored by DAP than ENV acoustuc cues. This was explained by the

stronger impact of earlier reflections, which are reduced by the algorithm, on TFS

cues. Restoration of TFS generally provides a reduction in LE, and also provides a

boost in SI in severe reverberant environments. Lastly, it was shown that the percep-

tual benefit of the DAP algorithm is highly dependent on the distribution of energy

between the earlier region in which cancellation is effective, and the later region in

which very little cancellation is achieved. DAP performs best in rooms that have sub-

stantial energy in the earlier region, and could be paired with a speech enhancement

stage to help reduce the residual late reverberation.

5.2 Future Work

In this thesis, the classical delay-and-predict (DAP) algorithm presented by Triki and

Slock (2006) was enhanced with a regularization factor to improve numerical stabil-

ity in the multichannel Yule-Walker / normal equations solution. There are many

other enhancements which could be explored and evaluated via the physiologically-

motivated evaluation method defined in this thesis.

One potential enhancement to the DAP algorithm would be to use delayed MC-

LP as described in Section 2.2.3.3. Using delayed linear prediction has the potential

perceptual benefit of avoiding cancellation of early reflections. Delayed linear pre-

diction also has potential to safeguard against non-time-aligned RIRs, and may even

allow the necessary time-alignment procedure of DAP to be omitted entirely. Recall

that time-alignment is primarily required so that MC-LP remains formulated as the

prediction of current data from past data as described in Section 2.2.3.3.
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Another enhancement that could be explored is the implications of using the

covariance method for MC-LP instead of the autocorrelation method. As described

in Section 2.2.3.3, the autocorrelation method for MC-LP is constrained such that

the MC-LP inverse filter is stable, and therefore the prediction error filter may be

sub-optimal in a mean-squared error sense. Since the MC-LP inverse filter is not

needed in this application, it may be beneficial to use the covariance method.

Lastly, an adaptive version of DAP and other related algorithms could be explored.

This could be done by employing recursive minimization of mean-squared-error using,

for example, recursive least squares or least-mean-squares adaptation. Implementa-

tion of these adaptive algorithms in the STFT or subband domains could also be

explored to improve convergence behaviour as described in Section 2.2.2.2.

There are also several existing extensions and variations of the delay-and-predict

algorithm that could be explored using the designed evaluation method. One such

algorithm which has been the foundation of many practical dereverberation strategies

is the weighted prediction error (WPE) algorithm as described in Section 2.2.3.4. As

described in Section 2.2.3.3, many practical algorithms use a lower order MC-LP

approach (such as low order WPE) to cancel the early/stronger part of the RIR,

and include a speech enhancement post-processing stage to suppress the later/weaker

reverberation. Evaluation of two-stage algorithms with the methodology defined in

this thesis could be explored in a future study.

There are also several improvements which could be made to the evaluation

method itself in future work. Most importantly, a better binaural front-end could

be developed and incorporated to model the perceptual adaptations to reverberation

199



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

described in Section 1.6.6, and to model how these adaptations deteorate with hear-

ing loss. As explained in Section 2.2.3.3, if DAP is applied as-is to all microphones

on a binaural pair of hearing aids, the output will be a single monaural signal thus

losing binaural cues which are important for speech perception in adverse conditions.

This aspect was not reflected in the studies conducted in this thesis, and is an im-

portant consideration. One option to improve algorithm performance by using more

microphones, which could potentiually avoid sacrificing binaural cues, would be to use

all microphones from a binaural pair for the source-whitening stage, but to perform

the MC-LP stage on the two devices separately. In this way, more spatial averaging

would be exploited in the blind estimation of the source AR parameters, which would

benefit the two separate MC-LP processes. This was also left for a future study.

Additionally, as discussed in Section 4.3, it is at this point unclear how impactful

the phase distortions imposed by DAP dereverberation, which are heavily penalized

by the FT-NSIM, have on perception. More research is needed into the separate

impacts of TFS phase distortions and the blurring/masking of the TFS structure

within each CF. This research question creates potential motivation to create two

separate FT-NSIMs: one that is phase-sensitive, and one that is not. The phase

insensitive one could be done for example by shifting each row (i.e., each CF) of the

test neurogram such that its correlation with the corresponding reference neurogram

is maximized. The two FT-NSIMs could be weighted and combined to provide a more

perceptually relevant metric of the distortion of TFS cues.

200



Appendix A

Additional Content

A.1 Multiple-Input Output Inverse Theorem Deriva-

tion

In the SIMO dereverberation case, which is relevant to this thesis, the solution can

be derived as follows. Let gi(n) be the length-n FIR RIR corresponding to acoustic

RTF between the source loudspeaker and microphone i. Let hi(n) be the length-m

FIR equalizer applied to microphone i before summation with the other channels.

Gi(z) = Z{gi(n)} =
n−1∑
k=0

gi(k)z
−k (A.1)

Hi(z) = Z{hi(n)} =
m−1∑
k=0

hi(k)z
−k (A.2)

(A.3)

The inverse filtering problem can be stated in matrix form as
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Gh = d (A.4)

Gh =

[
G1 G2 . . . GN

]


h1

h2

...

hN


=



d(0)

d(1)

...

d(m+ n− 2)


= d (A.5)

where hi is the vector form of the FIR equalizer applied to microphone i, i.e.,

hi =

[
hi(0) hi(1) . . . hi(m− 1)

]T
(A.6)

and Gi is the Toeplitz convolution matrix which represents the convolution of gi(n)

with hi(n), i.e.,

Gi =



gi(0) 0 0 . . . 0

gi(1) gi(0) 0 . . . 0

gi(2) gi(1) gi(0) . . . 0

...
...

...
. . .

...

gi(n− 1) gi(n− 2) gi(n− 3) . . . 0

0 gi(n− 1) gi(n− 2) . . . 0

0 0 gi(n− 1) . . . 0

...
...

...
. . .

...

0 0 0 . . . gi(n− 1)



∈ R(m+n−1)×m (A.7)
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To acheive perfect zero-delay equalization, the desired EIR should be d(n) = δ(n),

and therefore

d =

[
1 0 . . . 0

]T
(A.8)

Since G ∈ R(m+n−1)×Nm, Equation A.4 represents a problem with m + n − 1

equations and Nm variables. A perfect solution exists provided G is invertible, which

requires that it is square and full rank. For G to be square, that the equalizer filter

length, m, must be

m =
n− 1

N − 1
(A.9)

Provided G is full rank, the MINT can be computed as

h = G−1d (A.10)

For m < n−1
N−1

, the problem is overdetermined and no perfect solution exists,

i.e., it can only be solved by least squares. However, for m > n−1
N−1

, the problem

is underdetermined and therefore has infinite perfect solutions provided its rank is

greater than or equal to the number of columns/unknowns. In this case the pseudo-

inverse can be used to select the minimum norm solution, i.e.,

h = G+d = GT (GGT )−1d (A.11)

Therefore, for the SIMO dereverberation case, the equalizer filter length, m is

required to be
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m ≥ n− 1

N − 1
(A.12)

wherem is the length of the individual FIR equalizers, n is the length of the individual

FIR channels, andN is the number of microphones. Note that although the individual

FIR channels are not necessarily the same length, n can be treated as the length of

the longest FIR channel.

A.2 Chapter 3 Additional Figures

A.2.1 MC-LP Order
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Figure A.1: Delay-and-Predict dereverberation performance with multichannel linear
prediction order p2 = L/(M − 1), where L is the FIR RIR length and M is the
number of channels. Figure 3.2 shows the common source whitening filter used.
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Figure A.2: Delay-and-Predict dereverberation performance with multichannel linear
prediction order p2 = N60/(M −1), where N60 is the number of samples correspond-
ing to the T60 and M is the number of channels (i.e., the MINT condition based on
T60 rather than the FIR RIR length). Figure 3.2 shows the common source whitening
filter used.
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Figure A.3: Delay-and-Predict dereverberation performance with multichannel linear
prediction order p2 = 0.75 · N60/(M − 1), where N60 is the number of samples
corresponding to the T60 and M is the number of channels (i.e., suboptimal with
respect to the MINT condition based on T60 rather than the FIR RIR length).
Figure 3.2 shows the common source whitening filter used.
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Figure A.4: Delay-and-Predict dereverberation performance with multichannel lin-
ear prediction order p2 = 0.5 · N60/(M − 1), where N60 is the number of samples
corresponding to the T60 and M is the number of channels (i.e., More suboptimal
with respect to the MINT condition based on T60 rather than the FIR RIR length).
Figure 3.2 shows the common source whitening filter used.

206



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

A.2.2 Source Whitening Order
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Figure A.5: Delay-and-Predict dereverberation performance with source whitening
prediction order p1 = 200 and multichannel linear prediction order p2 = N60/(M−1).
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Figure A.6: Delay-and-Predict dereverberation performance with source whitening
prediction order p1 = 1000 and multichannel linear prediction order p2 = N60/(M −
1).
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Figure A.7: Delay-and-Predict dereverberation performance with source whitening
prediction order p1 = p2 · (M − 1) and multichannel linear prediction order p2 =
N60/(M − 1). I.e., The source whitening filter order is the same as the effective
MINT filter order.
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Figure A.8: Delay-and-Predict dereverberation performance with source whitening
prediction order p1 = 2 · p2 · (M − 1) and multichannel linear prediction order p2 =
N60/(M −1). I.e., The source whitening filter order is twice the effective MINT filter
order.
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A.3 Chapter 4 Additional Figures

A.3.1 Evaluation of Equalization-Cancellation Front-End

The EC algorithm was evaluated on the basis of how well it emulates the main

perceptual adaptations involved in reverberation processing, namely spatial release

from masking (SRM) and the perceptual SNR boost of early reflections (which is

largely explained by the precedence effect). Throughout this section the perceptual

benefit of EC was measured using HASPI for SI prediction.

A.3.1.1 Spatial Release from Noise Masking

As a first evaluation, the perceptual suppression of directional noise in an anechoic

environment was examined. ITDs were simulated by computing the difference in time

of flight between the two ears for a certain direction of arrival, assuming an inter-

aural separation of 15 cm, and applying it as a sample delay to the signals. ILDs were

simulated by assuming a maximum level difference of 9 dB, and linearly varying the

ILD from 0dB at 0◦ to 9 dB at 90◦. This direction of arrival is defined as a clockwise

rotation from the front of the head (i.e., −90◦ implies sound arriving from the left

side of the head). The speech source was placed at 0◦, and synthetic white noise

was generated as the noise source. An SNR of −12 dB, which is below the speech

recognition threshold (i.e., SRT as described in Section 1.6.4) was selected so that

the noise would significantly impact intelligibility. HASPI was plotted against noise

direction for each ear without EC and for the EC output (Figure A.9).
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Figure A.9: Impact of EC algorithm on speech intelligibility (using HASPI) as a
function of noise direction, anechoic directional speech and noise.

Without the EC front-end, a strong impact of the interfering noise on intelligibility

was observed. For each ear, the simulated ILDs vary SNR from −12 dB when the

noise on the corresponding side of the head, to −3 dB when it is on the other side

of the head. Since these two SNRs are below and above the SRT respectively, this

results in predicted SI varying from < 50% to approximately 100%.

The EC front-end was observed to provide a substantial perceptual benefit, except

when the direction was co-located with the speech source (i.e., at 0◦). Since co-located

speech and noise have the same ILDs and ITDs, the EC algorithm has limited spatial

diversity cues to leverage, which aligns real perception.

Next, the perceptual release from noise masking of EC was investigated in the

presence of reverberation. Synthetic white noise was generated and HASPI was plot-

ted against SNR from −12 dB to 12 dB, with and without EC. Reverberation was
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applied using the SAL room from the MYRiAD database with a T60 of 2.1 sec. The

0◦ location RIR from the database was used for the speech signal, and the 90◦ location

was used for the noise signal (i.e., they were not co-located).
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Figure A.10: Impact of EC algorithm on speech intelligibility (using HASPI) as a
function of SNR, for non co-located speech and white noise

Significant release from noise masking was observed for anechoic noise in both the

anechoic and reverberant speech cases (Figures A.10a and A.10c). However, when

the noise was reverberant (Figures A.10b and A.10d), the EC provides very little
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benefit. This demonstrates a dependency of the EC performance on the interfering

signal being focused to a particular spatial direction. This behavior holds perceptual

validty as it reflects the reduction in SRM in reverberation due to distortion of spatial

cues as described in Section 1.6.6.2.

A.3.1.2 Spatial Release from Reverberation Masking

As previously discussed, SRM also provides some preceptual suppression of rever-

beration be attenuating the directions corresponding to reflections. To assess this

behavior in the EC front-end, intelligibility was evaluated over a range of T60s in

the absense of noise. In this evaluation, the RIRs were synthetically generated ex-

ponentially decaying Gaussians. The experiment was also repeated with the leading

sample of the synthetic RIRs (i.e., the direct sound) increased by 12 dB to make the

reverberation less diffuse. The results are shown in Figure A.11.
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Figure A.11: Impact of EC algorithm on speech intelligibility (using HASPI) as a
function of varying amounts of synthetic reverb, noise-free.
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In both experiments, EC was observed to have very minimal impact on intelligi-

bility. At some T60s, the EC was actually observed to have a negative impact on

intelligibility, and increasing the level of the direct sound relative to the reverbera-

tion (i.e., making it less diffuse) only resulted in a slight improvement. The limited

benefit of the EC in reverberation can be explained by the fact that the EC focuses

on canceling spatially isolated noise as previously discussed. It is not clear whether

these limitations hold perceptual grounds.

In general, limited information exists on the applicability of EC to reverberation

since it was designed to model perceptual noise cancellation.Therefore the perceptual

validity of the EC could not be validated in the context of SRM for reverberation

suppression and it was decided that the EC should be left out of the evaluation and

to focus on a monaural evaluation. A study using a more advanced binaural front-

end was left for a future study. Not only should such a front-end be validated for

perceptual validity in the context of reverberation processing, but also should account

for degradation of binaural perceptual adaptations due to hearing loss.
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A.3.2 Higher Order Delay-and-Predict Dereverberation Eval-

uation in Variable Reverberation with Regularization
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Figure A.12: Evaluation of delay-and-predict dereverberation performance with au-
tocorrelation regularization as a function of T60. Prediction orders were p2 = 5333
and p1 = 20000 (i.e., according to T60max = 1 sec forM = 4 and fs = 16 kHz).
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Rennies, J., Röttges, S., Huber, R., Hauth, C. F., and Brand, T. (2022a). A joint

framework for blind prediction of binaural speech intelligibility and perceived lis-

tening effort. Hearing Research, 426, 108598.

Rennies, J., Warzybok, A., Kollmeier, B., and Brand, T. (2022b). Spatio-temporal

integration of speech reflections in hearing-impaired listeners. Trends in Hearing,

26, 23312165221143901.

Risoud, M., Hanson, J.-N., Gauvrit, F., Renard, C., Lemesre, P.-E., Bonne, N.-X.,

and Vincent, C. (2018). Sound source localization. European Annals of Otorhino-

laryngology, Head and Neck Diseases, 135(4), 259–264.

Roberts, R. A., Koehnke, J., and Besing, J. (2003). Effects of noise and reverberation

on the precedence effect in listeners with normal hearing and impaired hearing.

American Journal of Audiology, 12(2), 96–105.

Sabine, W. C. (1922). Collected Papers on Acoustics. Harvard University Press.

Saito, S. and Itakura, F. (1966). The theoretical consideration of statistically optimum

methods for speech spectral density. Technical report, Electrical Communication

Laboratory, NTT, Tokyo, Rep.

231



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

Schepker, H., Haeder, K., Rennies, J., and Holube, I. (2016). Perceived listening effort

and speech intelligibility in reverberation and noise for hearing-impaired listeners.

International Journal of Audiology, 55(12), 738–747.

Schmid, D., Enzner, G., Malik, S., Kolossa, D., and Martin, R. (2014). Varia-

tional bayesian inference for multichannel dereverberation and noise reduction.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(8), 1320–

1335.

Schroeder, M. R. and Kuttruff, K. (1962). On frequency response curves in rooms.

comparison of experimental, theoretical, and monte carlo results for the average fre-

quency spacing between maxima. The Journal of the Acoustical Society of America,

34(1), 76–80.

Schwartz, O., Gannot, S., and Habets, E. A. (2014). Multi-microphone speech dere-

verberation and noise reduction using relative early transfer functions. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 23(2), 240–251.

Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., and Ekelid, M. (1995).

Speech recognition with primarily temporal cues. Science, 270(5234), 303–304.

Shapiro, S. B., Noij, K. S., Naples, J. G., and Samy, R. N. (2021). Hearing loss and

tinnitus. Medical Clinics, 105(5), 799–811.

Shields, C., Sladen, M., Bruce, I. A., Kluk, K., and Nichani, J. (2023). Exploring the

correlations between measures of listening effort in adults and children: a systematic

review with narrative synthesis. Trends in Hearing, 27, 23312165221137116.

232



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

Slock, D. T. (1994). Blind fractionally-spaced equalization, perfect-reconstruction

filter banks and multichannel linear prediction. In Proceedings of ICASSP’94. IEEE

International Conference on Acoustics, Speech and Signal Processing, volume 4,

pages IV–585.

Smith, Z. M., Delgutte, B., and Oxenham, A. J. (2002). Chimaeric sounds reveal

dichotomies in auditory perception. Nature, 416(6876), 87–90.

Srinivasan, N. K., Stansell, M., and Gallun, F. J. (2017). The role of early and late

reflections on spatial release from masking: Effects of age and hearing loss. The

Journal of the Acoustical Society of America, 141(3), EL185–EL191.

Taal, C. H., Hendriks, R. C., Heusdens, R., and Jensen, J. (2010). A short-time

objective intelligibility measure for time-frequency weighted noisy speech. In 2010

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

4214–4217.

Thiergart, O., Del Galdo, G., and Habets, E. A. (2012). Signal-to-reverberant ratio

estimation based on the complex spatial coherence between omnidirectional micro-

phones. In 2012 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 309–312.

Thiergart, O., Ascherl, T., and Habets, E. A. (2014). Power-based signal-to-diffuse

ratio estimation using noisy directional microphones. In 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7440–

7444.

Thomas, M. R., Gaubitch, N. D., Gudnason, J., and Naylor, P. A. (2007). A practical

233



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

multichannel dereverberation algorithm using multichannel DYPSA and spatiotem-

poral averaging. In 2007 IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics, pages 50–53.

Toole, F. E. and Olive, S. E. (1988). The modification of timbre by resonances:

Perception and measurement. Journal of the Audio Engineering Society, 36(3),

122–142.

Torcoli, M., Kastner, T., and Herre, J. (2021). Objective measures of perceptual

audio quality reviewed: An evaluation of their application domain dependence.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 1530–

1541.

Treitel, S. and Robinson, E. (1966). The design of high-resolution digital filters. IEEE

Transactions on Geoscience Electronics, 4(1), 25–38.

Triki, M. and Slock, D. T. (2006). Delay and predict equalization for blind speech

dereverberation. In 2006 IEEE International Conference on Acoustics Speech and

Signal Processing Proceedings, volume 5, pages 97–100.

Triki, M. and Slock, D. T. (2007). Multivariate LP based MMSE-ZF equalizer design

considerations and application to multimicrophone dereverberation. In 2007 IEEE

International Conference on Acoustics, Speech and Signal Processing-ICASSP’07,

volume 1, pages I–197.

Triki, M. and Slock, D. T. (2008). Robust delay-&-predict equalization for blind

SIMO channel dereverberation. In 2008 Hands-Free Speech Communication and

Microphone Arrays, pages 248–251.

234



M.A.Sc. Thesis - Kyle O’Shaughnessy McMaster - Electrical Engineering

Tsironis, A., Vlahou, E., Kontou, P., Bagos, P., and Kopčo, N. (2024). Adaptation
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