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Abstract
In this thesis, we develop the model theory of higher-order logic by working in Alonzo, a classical
higher-order logic based on Church’s formulation of simple type theory that extends first-order logic
and that admits undefined expressions. In particular, we sharpen the Löwenheim-Skolem theorem
(Theorem 9.39 in William M. Farmer’s Simple Type Theory) such that there exists a structural
relationship between the starting and produced models, we develop model-theoretic types and
prove a corresponding higher-order version of the omitting types theorem, and we give syntactic
and semantic characterizations of how first-order theories are embedded in Alonzo.
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Chapter 1

Introduction

Appendix B in Chang and Keisler’s Model Theory [2] contains a famous list of open problems in
classical model theory. We shall tackle the last open problem:

Develop the model theory of second- and higher-order logic.

In particular, we take “higher-order logic” to mean a version of simple type theory. The nature
of this identification is semantic and historical, and so we motivate the task of developing the model
theory of higher-order logic by defining and briefly elucidating the history of simple type theory
below. A more complete account of the development of simple type theory can be found in [5].

1.1 History

In 1908, Bertrand Russell presented a logic for mathematics that he called the theory of types
[16]. A recursively defined syntactic type heirarchy of objects was set up such that the first logical
type consists of a fixed collection of individual terms which act as subjects in propositions with no
quantifiers; the second logical type consists of propositions, called first-order propositions, in which
members of the first logical type are quantified over; the third logical type consists of second-order
propositions in which members of the second logical type are quantified over; and so on. Notice that
second-order propositions quantify over (first-order) propositions and that a proposition containing
a particular quantified variable of a given type α must itself be of type higher than α. The first
departure from first-order logic occurs with second-order logic since quantifying over (first-order)
propositions is permitted. More generally, nth-order logic is just a logic that has a type hierarchy
up to the (n+ 1)th logical type. We thus have a stratification of propositions by type.

Now in 1902, Russell discovered that unrestricted set comprehension leads to the following
paradox: if X = {x | x ̸∈ x} is a set, then

X ∈ X if and only if X ̸∈ X.

That is, the set X of all sets that do not contain themselves cannot itself be a set since X contains
itself if and only if it does not. In particular, Russell noticed that the paradox arose because such
a definition is impredicative; that is, the definition of X contains the circular property x ̸∈ x.
So, Russell proposed a ramified theory of types in which there is a second heirarchical constraint
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based on predicativity: an nth-order predicative function is one such that its value is a third-order
proposition which has an (n− 1)th-order predicative function as its largest argument with respect
to the hierarchy of logical types.1

However, in the same 1908 publication mentioned above, Russell saw that the constraint due to
predicativity was too restrictive for a logic for mathematics. Consider the definition of the infimum
inf(X) of a partial order (X,≤). We say that y = inf(X) if and only if

1. For all x ∈ X, y ≤ x; that is, y is a lower bound of X.

2. For all z ∈ X, z is a lower bound of X implies that z ≤ y.

The definition of y is impredicative since we quantify over all X, which includes y. Russell’s solution
to the restrictiveness of his type theory was to introduce the axiom of reducibility, which states
that every function is extensionally equivalent to some predicative function of the same argument.
However, the axiom of reducibility negates exactly that which Russell wished to accomplish with
the ramified theory of types, as impredicative functions come to exist through their predicative
counterparts.

Now Leon Chwistek [4] and Frank Ramsey [14] noticed that the resulting “simplified” type
theory, now called simple type theory – with the hierarchical constraint of predicativity removed
– was adequate for mathematics. Indeed, the heirarchy of logical types prevents set theoretic
paradoxes, and the ability to have impredicative definitions – such as the infimum of a partial order
– is a virtue rather than a pitfall of non-ramified type theory.

In 1940, Alonzo Church introduced a version of simple type theory called Church’s type theory
which incoroporated features of λ-calculus into simple type theory [3]. The hierarchy of logical
types in Church’s type theory is defined inductively by the following formation rules: o and ι are
types; and if α, β are types, then (αβ) is a type. In particular, o denotes the type of booleans, ι
denotes the type of individuals, and (αβ) denotes the type of functions from β to α. Proper symbols
are contained in the infinite list

Noo, A(oo)o,Πo(oα), ια(oα), aα, bα, · · ·

and well-formed formulas (of type indicated by the subscript) are defined inductively by the following
formation rules: a single proper symbol is a well-formed formula; if xβ is a variable and Mα is a
well-formed formula, then (λxβMα) is a well-formed formula; if Fαβ and Aβ are well-formed
formulas, then (FαβAβ) is a well-formed formula. Notice how the formation rules for well-formed
formulas correspond to the variable, λ-abstraction, and function application term formation rules
in the λ-calculus. Perhaps most importantly, this addition of λ-terms paired with the hierarchy of
logical types induced a built-in theory of functions in type theory, making it a logic well-suited for
computing.

1.2 Remarks

Church’s presentation of simple type theory with λ-calculus in his 1940 paper was of a syntactic
flavour, in the sense that the logic consisted of a formal notion of syntax along with a proof
system. In 1950, Leon Henkin introduced two kinds of semantics for Church’s type theory: the

1For first-order predicative functions, we alter the definition such that individuals act as (the highest) arguments
in place of 0th order predicative functions.
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standard semantics considers models whose typed domains are all full, while the general semantics
considers models where typed function domains contain some (but not necessarily all) functions
of corresponding type [9]. These semantics are wildly different: since Peano arithmetic can be
developed within the formal system of Church’s type theory [3], then by Gödel’s first incompleteness
theorem, there is a well-formed formula which is valid with respect to the standard semantics but
is not a theorem of the formal system. However, in [9], Henkin showed that with respect to the
general semantics, there is a complete proof system for Church’s type theory. Broadly speaking,
then, simple type theory can be viewed in two ways: firstly, with respect to the general semantics,
as a first-order set theory that is equivalent (with respect to equi-consistency) to bounded Zermelo
set theory [13]; and secondly, with respect to the standard semantics, as an ω-order logic.

Recalling the last open problem in Chang and Keisler, in this thesis we will develop the model
theory of Alonzo, a classical higher-order logic based on Church’s type theory that extends first-order
logic and that admits undefined expressions. By undefinedness, we mean that there are expressions
of Alonzo that do not denote anything. Unlike the presentation of Church’s type theory above,
undefinedness arises in Alonzo since partial functions can populate typed domains. Alonzo employs
the traditional approach to undefinedness, which is based on three principles [6]:

1. Atomic expressions (i.e., variables and constants) are always defined.

2. Compound expressions may be undefined. A function application f(x) is undefined if f is
undefined, x is undefined, or f is undefined at x. A definite description (Ix ∈ S.E) is
undefined if is no s ∈ S or more than one s ∈ S such that E[x 7→ s] is true, where E[x 7→ s]
denotes the expression resulting from replacing all free occurences of x in E with s.

3. Formulas are always true or false and hence always defined. This implies that a predicate
application p(x) is false, rather than undefined, if p is undefined, x is undefined, or p is
undefined at x.

The principles extend to n-ary functions and predicates in the obvious way. Furthermore,
undefinedness naturally induces two notions of equality. We say a is equal to b, written a = b, if a
and b are both defined and have the same value. We say that a is quasi-equal to b, written a ≃ b,
if a = b or a and b are both undefined.

Undefinedness is useful for a several reasons. Examples include:

1. We can have meaningful statements, such as ∀x ∈ R . x ≥ 0 ⇒ eln(x) = x, even though, say,
ln(−5) is undefined.

2. We can define function applications extensionally, such as ex ≃ I y ∈ R. y ≥ 0 ∧ ln(y) = x.

Note that a more extensive discussion on undefinedness, its benefits, and its use in Alonzo can be
found in [7].

Finally, we answer the question regarding why we chose to work in Alonzo rather than another
version of Church’s type theory. Alonzo is a highly developed and practice-oriented version of
Church’s type theory. It is highly developed in the sense that there exists a graduate-level textbook
[7] covering the logic and it is practice-oriented in the sense that the syntax of Alonzo is close to
mathematical practice. A possible alternative to Alonzo would be Peter Andrews’ Q0, which does
not admit language families (see Section 55 of [1]), nor does it have the benefits of undefinedness
mentioned above.

4
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1.3 Scope

The overarching goal of this thesis is to develop higher-order analogues of various model theoretic
definitions, constructions, and techniques from first-order logic. Most of the results are done with
respect to the general models semantics.

The structure of this thesis is as follows. In Chapter 2, we introduce the syntax and seman-
tics of Alonzo. In Chapter 3, we develop the corresponding higher-order notions of embedding,
inclusion, submodel, elementary submodel, elementary diagram, elementary chain, and the upward
and downward Löwenheim-Skolem theorems from first order logic. In Chapter 4, we define model
theoretic types for Alonzo, and show how the omitting types theorem and constructions involving
partial elementary maps lift to higher-order logic. In Chapter 5, we show how first-order theories
embed into Alonzo from syntacic and semantic points of view.

5
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Chapter 2

Syntax and Semantics

We introduce the syntax and semantics of Alonzo, modelling the presentation given in [7]. Most
of the text in this chapter is taken verbatim from [7]. For a full treatment that includes (equiv-
alent) formal notation, beta-reduction, alpha-conversion, quasitypes, many auxillary notational
definitions, and more, see Chapters 4 – 7 of [7].

2.1 Syntax

In this section, we will define types, which denote nonempty sets of values; and expressions, which
either denote values (when they are defined) or do not denote anything (when they are undefined).
We start with an overview of the different symbols that make up the syntax of Alonzo.

Let Sbt, Svar, be fixed countably infinite sets of symbols and Scon be a fixed (possibly un-
countably) infinite set of symbols that will serve as names of base types, variables, and constants,
respectively. We assume that Sbt contains the symbols A,B,C, . . . ,X, Y, Z, etc., Svar contains the
symbols a, b, c, . . . , x, y, z, etc., and Scon contains the symbols A,B,C, . . . ,X, Y, Z, etc., numeric
symbols, nonalphanumeric symbols, and words in lowercase sans sarif font.1 We will employ the
following syntactic variables for these symbols and the syntactic entities defined later in this chapter:

1. a,b, etc. range over Sbt.

2. f ,g,h, i, j,k,m,n,u,v,w,x,y, z, etc. range over Svar.

3. c,d, etc. range over Scon.

4. α, β, γ, δ, etc. range over types.

5. Aα,Bα,Cα, . . . ,Xα,Yα,Zα, etc. range over expressions of type α.

Definition 2.1 (Type). A type of Alonzo is a string of symbols defined inductively by the following
formation rules:

1. Type of truth values: o is a type.

1An expression like “u, v, w, etc.” means, here and elsewhere, the set of symbols that includes u, v, and w, and
all possible annotated forms of u, v, and w such as u′, v1, and w̃.

6
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2. Base types: a ∈ Sbt is a type.

3. Function type: Given α, β are types, (α→ β) is a type.

4. Product type: Given α, β are types, (α× β) is a type.

Let T denote the set of types of Alonzo.

Definition 2.2 (Expression). An expression of type α of Alonzo is a string of symbols defined
inductively by the following formation rules:

1. Variable: (x : α) is an expression of type α.

2. Constant : cα is an expression of type α.

3. Equality : (Aα = Bα) is an expression of type o.

4. Function application: (Fα→βAα) is an expression of type β.

5. Function abstraction: (λx : α . Bβ) is an expression of type (α→ β).

6. Definite description: (Ix : α . Ao) is an expression of type α where α ̸= o.

7. Ordered pair : (Aα,Bβ) is an expression of type (α× β).

Let E denote the set of expressions of Alonzo. A formula is an expression of type o. Notice how the
treatment of formulas as special kinds of expressions – in other words, terms – differs from treating
formulas as separate from terms in first-order logic. We write Aα ≡ Bα when the expressions
denoted by Aα and Bα are the same.

Definition 2.3. We can say the following about occurences of a variable in an expression:

1. An occurrence of a variable (x : α) in Bβ is bound [free] if it is [is not] within a subexpression
of Bβ of either the form λx : α . Cγ or the form Ix : α . Co.

2. A variable (x : α) is bound [free] in Bβ if there is a bound [free] occurrence of (x : α) in Bβ .

3. An expression is closed if it contains no free variables.

4. A sentence is a closed formula.

5. Aα is free for (x : α) in Bβ if no free occurrence of (x : α) in Bβ is within a subexpression
of Bβ of either the form λy : γ . Cδ or the form Iy : γ . Co where (y : γ) is free in Aα.

Definition 2.4 (Substitution). The substitution of Aα for (x : α) in Bβ , written Bβ [(x : α) 7→
Aα], is the result of replacing each free occurrence of (x : α) in Bβ with Aα. Notice that Bβ [(x :
α) 7→ Aα] ∈ E since the free occurrences of (x : α) in Bβ are replaced with Aα, an expression of
the same type as the type of (x : α). This operation on expressions is defined using recursion and
pattern matching by the following identities:

1. (x : α)[(x : α) 7→ Aα] ≡ Aα.

2. (y : β)[(x : α) 7→ Aα] ≡ (y : β)

where (x : α) and (y : β) are distinct.

7
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3. cβ [(x : α) 7→ Aα] ≡ cβ .

4. (Bβ = Cβ)[(x : α) 7→ Aα] ≡ (Bβ [(x : α) 7→ Aα] = Cβ [(x : α) 7→ Aα]).

5. (Fβ→γ Bβ)[(x : α) 7→ Aα] ≡
(Fβ→γ [(x : α) 7→ Aα]Bβ [(x : α) 7→ Aα]).

6. (λx : α . Bβ)[(x : α) 7→ Aα] ≡ (λx : α . Bβ).

7. (λy : γ . Bβ)[(x : α) 7→ Aα] ≡ (λy : γ . Bβ [(x : α) 7→ Aα])

where (x : α) and (y : γ) are distinct.

8. (Ix : α . Bo)[(x : α) 7→ Aα] ≡ (Ix : α . Bo).

9. (Iy : γ . Bo)[(x : α) 7→ Aα] ≡ (Iy : γ . Bo[(x : α) 7→ Aα])

where (x : α) and (y : γ) are distinct.

10. (Bβ ,Cγ)[(x : α) 7→ Aα] ≡ (Bβ [(x : α) 7→ Aα],Cγ [(x : α) 7→ Aα]).

Definition 2.5 (Language). A language of Alonzo is a pair L = (B, C) where B is a finite set of
base types and C is a set of constants cα where each base type occurring in α is a member of B.

A type α is a type of L if all the base types occurring in α are members of B, and an expression
Aα is an expression of L if all the base types occurring in Aα are members of B and all the constants
occurring in Aα are members of C. Let T (L) ⊆ T denote the set of types of L and E(L) ⊆ E denote
the set of expressions of L. Notice that B and C may be empty, but T (L) and E(L) are always
nonempty since o ∈ T (L). The minimum language is the language Lmin = (∅, ∅).

The base types and constants of a language are used to represent, respectively, the base domains
and distinguished values of a structure. So it is sometimes convenient, when the set of constants is
finite, to write a language

L = ({a1, . . . ,am}, {c1α1
, . . . , cnαn

})
as the tuple

(a1, . . . ,am, c
1
α1
, . . . , cnαn

)

in the same way a structure can be written as a tuple.

Definition 2.6. Let Li = (Bi, Ci) be a language for i ∈ {1, 2}. L2 is an extension of L1 (or L1 is
a sublanguage of L2), written L1 ≤ L2, if B1 ⊆ B2 and C1 ⊆ C2. Notice that Lmin ≤ L for every
language L.

Recall that the cardinality of a set S, denoted |S|, is the cardinal number κ such that there is a
bijection f : κ→ S. The power of a language L = (B, C), written ∥L∥, is |E(L)|. In the usual case,
when C is countable (i.e., finite or countably infinite), ∥L∥ = ω. When C is uncountable, ∥L∥ = |C|.

We end off the section by introducing theories and a proof system for Alonzo.

Definition 2.7 (Theory). A theory of Alonzo is a pair T = (L,Γ) where L is a language and Γ is
a set of sentences of L. We say that L is the language of T and Γ are the axioms of T .

Definition 2.8 (Proof System). A proof system P (P in fraktur font) for Alonzo consists of a
decidable set of axioms and rules of inference. Each axiom is a formula of Alonzo and each rule
of inference has the following form: From the formulas A1

o, . . . ,A
n
o , infer the formula Bo (possibly

subject to certain constraints).

8
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Proofs in a proof system P are defined as follows:

Definition 2.9 (Proof). A proof of Ao in P is a finite sequence Π of formulas of Alonzo ending
with Ao such that every formula in Π is an axiom of P or inferred from previous formulas in Π by
one of the rules of inference of P. Now let Γ be a set of formulas of Alonzo. A proof of Ao from
Γ in P is a pair (Π1,Π2) of finite sequences of formulas of Alonzo ending with Ao such that Π1 is
a proof in P, Π2 ends with Ao, and every formula in Π2 is a member of Γ, a member of Π1 (and
thus a theorem of P), or inferred from previous formulas in Π2 by one of the rules of inference of P
modified, if necessary, so that the free variables in members of Γ are treated as constants instead
of as universally quantified variables as they are in axioms.

In particular, we are interested in the proof system A, whose axioms and rules of inference are
presented in [7, Section 8.2]. A is noteworthy for being sound and complete with respect to the
general semantics [7, Corollary 8.13].

Definition 2.10. Now let T = (L,Γ) be a theory, Ao ∈ E(L), and P be a proof system for Alonzo.

1. A theorem of P is a formula that has a proof in P, written ⊢P Ao.

2. Let Γ be a set of formulas. We write Γ ⊢P Ao to assert that there is a proof of Ao from Γ in
P.

3. Let Γ be a set of formulas. Γ is consistent in P if not Γ ⊢P Fo.

4. Ao is provable from T in P, written T ⊢P Ao, if Γ ⊢P Ao.

5. T is consistent in P if Γ is consistent in P.

Definition 2.11. Let Li = (Bi, Ci) be a language and Ti = (Li,Γi) be a theory for i ∈ {1, 2}. T2
is an extension of T1 if L1 ≤ L2 and Γ1 ⊆ Γ2.

2.2 Semantics

We define the general and standard semantics for Alonzo. We start with the corresponding
notion of a universe from first-order logic.

Definition 2.12 (Frame). A frame for L is a collection D = {Dα | α ∈ T (L)} of nonempty
domains (sets) of values such that:

1. Domain of truth values: Do = B = {f,t}.

2. Predicate domain: Dα→o is a set of some total functions from Dα to Do for α ∈ T (L).

3. Function domain: Dα→β is a set of some partial and total functions from Dα to Dβ for
α, β ∈ T (L) with β ̸= o.

4. Product domain: Dα×β = Dα ×Dβ for α, β ∈ T (L).

A predicate domain Dα→o is full if it is the set of all total functions from Dα to Do, and a function
domain Dα→β with β ̸= o is full if it is the set of all partial and total functions from Dα to Dβ .
The frame is full if Dα→β is full for all α, β ∈ T (L). Notice that the only restriction on a base
domain, i.e., Da for some a ∈ B, is that it is nonempty and that the frame is completely determined
by its base domains when the frame is full.

9
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An interpretation of L is a pair M = (D, I) where D = {Dα | α ∈ T (L)} is a frame for L and I
is an interpretation function that maps each constant in C of type α to an element of Dα.

Definition 2.13 (Assignment). Let D = {Dα | α ∈ T (L)} be a frame for L. An assignment into D
is a function φ whose domain is the set of variables of L such that φ((x : α)) ∈ Dα for each variable
(x : α) of L. Given an assignment φ, a variable (x : α) of L, and d ∈ Dα, let φ[(x : α) 7→ d] be the
assignment ψ in D such that ψ((x : α)) = d and ψ((y : β)) = φ((y : β)) for all variables (y : β) of
L distinct from (x : α). Given an interpretation M of L, let assign(M) be the set of assignments
into the frame of M .

Definition 2.14 (General Model). Let D = {Dα | α ∈ T (L)} be a frame for L and M = (D, I) be
an interpretation of L. M is a general model of L if there is a partial binary valuation function VM

such that, for all assignments φ ∈ assign(M) and expressions Cγ of L, (1) either VMφ (Cγ) ∈ Dγ or

VMφ (Cγ) is undefined
2 and (2) each of the following conditions is satisfied:

V1. VMφ ((x : α)) = φ((x : α)).

V2. VMφ (cα) = I(cα).

V3. VMφ (Aα = Bα) = t if VMφ (Aα) is defined, VMφ (Bα) is defined, and VMφ (Aα) = VMφ (Bα).

Otherwise, VMφ (Aα = Bα) = f.

V4. VMφ (Fα→βAα) = VMφ (Fα→β)(V
M
φ (Aα)) — i.e., the application of the function VMφ (Fα→β)

to the argument VMφ (Aα) — if VMφ (Fα→β) is defined, V
M
φ (Aα) is defined, and V

M
φ (Fα→β) is

defined at VMφ (Aα). Otherwise, VMφ (Fα→βAα) = f if β = o and VMφ (Fα→βAα) is undefined
if β ̸= o.

V5. VMφ (λx : α . Bβ) is the (partial or total) function f ∈ Dα→β such that, for each d ∈ Dα,

f(d) = VMφ[(x:α)7→d](Bβ) if V
M
φ[(x:α)7→d](Bβ) is defined and f(d) is undefined if VMφ[(x:α)7→d](Bβ)

is undefined.

V6. VMφ (Ix : α . Ao) is the d ∈ Dα such that VMφ[(x:α)7→d](Ao) = t if there is exactly one such d.

Otherwise, VMφ (Ix : α . Ao) is undefined.

V7. VMφ ((Aα,Bβ)) = (VMφ (Aα), V
M
φ (Bβ)) if VMφ (Aα) and VMφ (Bβ) are defined. Otherwise,

VMφ ((Aα,Bβ)) is undefined.

It follows that VM is unique when it exists. VMφ (Cγ) is called the value of Cγ in M with respect

to φ when VMφ (Cγ) is defined. Cγ is said to have no value in M with respect to φ when VMφ (Cγ)
is undefined.

Now the syntax and semantics of Alonzo allow us to define familiar boolean operators and
quantifiers such that they are interpreted as expected.

2We write VMφ (Cγ) instead of VM (φ,Cγ).

10
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To stands for (λx : o . x) = (λx : o . x).
Fo stands for (λx : o . To) = (λx : o . x).
∧o→o→o stands for λx : o . λ y : o .

(λ g : o→ o→ o . g To To) =
(λ g : o→ o→ o . g x y).

(Ao ∧Bo) stands for ∧o→o→oAoBo.
⇒o→o→o stands for λx : o . λ y : o . x = (x ∧ y).
(Ao ⇒ Bo) stands for ⇒o→o→o AoBo.
¬o→o stands for λx : o . x = Fo.
(¬Ao) stands for ¬o→oAo.
∨o→o→o stands for λx : o . λ y : o . ¬(¬x ∧ ¬y).
(Ao ∨Bo) stands for ∨o→o→oAoBo.
(∀x : α . Ao) stands for (λx : α . To) = (λx : α . Ao).
(∃x : α . Ao) stands for ¬(∀x : α . ¬Ao).

Table 2.1: Notational Definitions for Boolean Operators and Quantifiers

For example, if M is a general model of L and φ ∈ assign(M),

VMφ (∀x : α . Ao) = t iff VMφ[(x:α)7→d](Ao) = t for all d ∈ DM
α ,

VMφ (Ao ∧Bo) = t iff VMφ (Ao) = t and VMφ (Bo) = t,

and so on. See Exercises 1 and 3 in Chapter 6 of [7].

Definition 2.15.

1. The size of M , written |M |, is the cardinality of
⋃

a∈B DM
a . M is finite if its size is finite and

infinite otherwise.

2. The power of M , written ∥M∥, is the least cardinal κ such that |DM
α | ≤ κ for all α ∈ T (L).

The power of a model need not exist; whether it exists can depend on the underlying set-theoretic
assumptions that one makes. For instance, the power of a model of countably infinite size with a
full frame exists if a strongly inaccessible cardinal exists.

Now the following are two useful classifications of general models:

Definition 2.16. Let M = (D, I) be a general model of L.

1. M is a standard model of L if D is full. Note that it is sufficient for M to be just an
interpretation of L by [7, Proposition 5.7].

2. M is a frugal general model of L if ∥M∥ ≤ ∥L∥.

Now we have two kinds of semantics; namely, general models semantics and standard models
semantics:

Definition 2.17. Let M be a general model L and Ao ∈ E(L).

1. φ satisfies Ao in M , written M ⊨φ Ao, if V
M
φ (Ao) = t for φ ∈ assign(M).

11
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2. Ao is satisfiable in M if M ⊨φ Ao for some φ ∈ assign(M).

3. Ao is satisfiable if M ⊨φ Ao for some general model M and some φ ∈ assign(M).

4. Ao is valid in M (orM is a model of Ao), writtenM ⊨ Ao, ifM ⊨φ Ao for all φ ∈ assign(M).

5. If Ao is a sentence, then Ao is true [false] in M if VMφ (Ao) = t [f] (for all φ ∈ assign(M)).

6. Ao is valid (in the general sense), written ⊨ Ao, if M ⊨ Ao for all general models M that
interpret Ao.

7. Ao is valid in the standard sense, written ⊨s Ao, if M ⊨ Ao for all standard models M that
interpret Ao.

8. Ao is logically equivalent to Bo if V
M
φ (Ao) = VMφ (Bo) for all general modelsM that interpret

Ao and Bo and all φ ∈ assign(M).

Now let M be a general model that interprets a set Γ of formulas.

1. φ satisfies Γ in M , written M ⊨φ Γ, if M ⊨φ Ao for all Ao ∈ Γ.

2. Γ is satisfiable in M if M ⊨φ Γ for some φ ∈ assign(M).

3. Γ is satisfiable if M ⊨φ Γ for some general model M of L and some φ ∈ assign(M).

4. M is a model of Γ, written M ⊨ Γ, if M ⊨ Ao for all Ao ∈ Γ.

5. Ao is a semantic consequence of Γ (in the general sense), written Γ ⊨ Ao, if M ⊨φ Γ implies
M ⊨φ Ao for all general models M that interpret Ao and Γ and all φ ∈ assign(M).

6. Ao is a semantic consequence of Γ in the standard sense, written Γ ⊨s Ao, if M ⊨φ Γ implies
M ⊨φ Ao for all standard models M that interpret Ao and Γ and all φ ∈ assign(M).

Now let T = (L,Γ) be a theory and Ao ∈ E(L).

1. Ao is valid in T (in the general sense), written T ⊨ A if Γ ⊨ Ao.

2. Ao is valid in T in the standard sense, written T ⊨s A if Γ ⊨s Ao.

3. A theorem of T is a sentence that is valid in T .

4. M is a model of T , written M ⊨ T , if M ⊨ Γ.

5. T is satisfiable if Γ is satisfiable.

Notice how there are two notions of satisfiability: one that considers all general models, and one
that considers just standard models. The following example illustrates the difference:

Example 2.18 (Skolem’s paradox). Let T = (L,Γ) be the theory of complete ordered fields as
specified in [7, Theory Definition 13.4]. The syntax of Alonzo is strong enough to express that the
reals are uncountable; namely, we have that

(⋆) T ⊨ ¬(∃ f : R→ R . BIJ-ON(f,N{R}, U{R})).
3

3See Chapter 6 of [7] for a primer on quasitypes and the notational definition of BIJ-ON.
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So, if M ⊨ T , there is no bijection fR→R from the naturals (treated as a subset of the reals) to
the reals in DM

R→R. T is obviously satisfiable by the reals, but the Löwenheim-Skolem Theorem [7,
Theorem 9.39] implies the existence of a countable model N of T . How could this be?

The reason is that the Henkin construction for Alonzo (Lemma A.1 and Theorem A.2) produces
a frugal general model for a theory consistent in A. Since ∥L∥ = ω, the frugality of N implies that
we have that DN

R→R ≤ ω. So, N ⊨ T implies that N is missing a bijection from V N (N{R}) – the
naturals – to V N (U{R}) – the reals. Now let S be a standard model such that S ⊨ T . The scenario
changed: because DS

R→R is full, (⋆) implies that DS
R = V S(U{R}) is uncountable.

Like in first-order logic, the resolution to Skolem’s paradox is found at the level of how a model
interprets a sentence akin to

¬(∃ f : R→ R . BIJ-ON(f,N{R}, U{R})).

Since Alonzo has a built in theory of functions – vis-à-vis typed function domains in a frame – the
notion of “missing” functions is not a metatheoretic one, as it is in first-order logic. Additionally,
unlike in first-order logic, we do not have to axiomatize a version of set theory in order for the
seeming paradox to arise.

We end off the section by introducing expansions of a general model. Let f : X → Y and
X ⊆ X. Then f↾A (the strong restriction of f to A) denotes the function g : A → Y such that
g(a) = f(a) for all a ∈ A.

Definition 2.19 (Expansion of a model). Let Mi be a general model of Li for i ∈ {1, 2}. Assume
L1 ≤ L2. M2 is an expansion of M1 to L2 (or M1 is a reduct of M2 to L1), written M1 ≤ M2, if
D1 ⊆ D2 and I1 ⊑ I2.

If L1 ̸= L2, then M1 has many possible expansions to L2, one for each way of assigning domains
to the types in T (L2) \ T (L1) and values to the constants in C2 \ C1. However, M2 has only one
reduct to L1, namely, the general model M1 where D1 = {D2

α ∈ D2 | α ∈ T (L1)} and I1 = I2↾C1
. It

is noteworthy that expansions and reducts are not only defined similarly but also behave similarly
to their counterparts in first-order logic; this is illustrated by the following (Lemma 5.14 in [7]):

Proposition 2.20. Let Mi be a general model of Li for i ∈ {1, 2} such that L1 ≤ L2 and M2 is
an expansion of M1 to L2. If Ao is a formula of L1, then M1 ⊨ Ao iff M2 ⊨ Ao.

In the subsequent chapter, will see that capturing the behaviour of (elementary) extensions from
first-order logic requires much more work, particularly because adding members to base domains
impacts function and product domains.

13



M.Sc. Thesis – Dennis Y. Zvigelsky; McMaster University – Dept. of Computing and Software

Chapter 3

Sharpened Löwenheim- Skolem
Theorems

3.1 Preliminaries

Recall Theorem 9.39 in [7]:

Theorem 3.1 (Löwenheim-Skolem Theorem). Let T be a theory. If T has an infinite general
model, then T has a general model of size and power κ for every cardinal κ ≥ ∥L∥.

Given an infinite model of some theory T , Theorem 3.1 allows you to construct smaller (going
down) and larger (going up) infinite models of T . However, there is no structural relationship
between the model M that T has and a model N produced by Theorem 3.1. To this end, we will
develop the analogues of the “sharpened” first-order Löwenheim-Skolem theorems in Alonzo, such
that the models M and N will be related by a strong1 embedding. First, we develop analogues of
various definitions and constructions from the first-order world. We model our development after
[12, Theorem 2.3.4, Proposition 2.3.5, Theorem 2.3.7].

Definition 3.2 (Embedding). Let Mi = (Di, Ii) be interpretations of L for i ∈ {1, 2}. An embed-
ding from M1 to M2 is a set E = {εα | α ∈ T (L)} of mappings2 such that:

1. εα is an injection from D1
α to D2

α for all α ∈ T (L);

2. εo(f) = f and εo(t) = t;

3. εβ(f(a)) ≃ εα→β(f)(εα(a)) for all α, β ∈ T (L), f ∈ D1
α→β , and a ∈ D1

α;

4. εα×β((a, b)) = (εα(a), εβ(b)) for all α, β ∈ T (L), a ∈ D1
α, and b ∈ D1

β ;

5. εα(I
1(c

α
)) = I2(cα) for all cα ∈ C.

1“Strong” is the analogue of “elementary” from first-order logic.
2We allow the omission of the type of εα ∈ E when it can be easily inferred.
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Notice how the definition of an embedding is slightly weaker than the definition of an isomor-
phism in [7, Chapter 5.6]. The single difference is that mappings εα ∈ E only ought to be injective
(rather than bijective).

Definition 3.3 (Inclusion). Let Mi = (Di, Ii) be interpretations of L for i ∈ {1, 2}. We say
I = {ια | α ∈ T (L)} an embedding from M1 to M2 is an inclusion if, in addition to the conditions
in Definition 3.2, we have that:

ιa(d) = d for all a ∈ B and d ∈ D1
a.

We say M1 is a substructure of M2 (or conversely, M2 an extension of M1).

The definition of an inclusion necessitates that for all α ∈ T (L), ι(dMα ) is an “expanded” version
of dMα :

Lemma 3.4. Let M = (DM , IM ), N = (DN , IN ) be interpretations of L and I = {ια | α ∈ T (L)}
be an inclusion from M to N . Let Z = {ζα : ran(ια) → DM

α | α ∈ T (L)} be a set of mappings such
that:

ζo(ι(d
M
o )) = dMo for all dMo ∈ DM

o ;

ζa(ι(d
M
a )) = dMa for all a ∈ T (L) and dMa ∈ DM

a ;

ζα→β(ι(d
M
α→β)) = the gα→β such that for all α, β ∈ T (L), dMα ∈ DM

α , and

dMα→β ∈ DM
α→β , gα→β(ζα(ι(d

M
α ))) = ζβ(ι(d

M
α→β(d

M
α )));

ζα×β(ι((d
M
α , d

M
β ))) = (ζα(ι(d

M
α )), ζβ(ι(d

M
β ))) for all α, β ∈ T (L),

dMα ∈ DM
α , and dMβ ∈ DM

β .

Then ζα acts as the inverse to ια. That is,

(⋆) for all α ∈ T (L) and dMα ∈ DM
α , ζ(ι(dMα )) = dMα .

3

Proof We prove (⋆) by structural induction on the complexity of types.
Base: α = o or α ∈ B. Then ζ(ι(dMα )) = dMα follows directly from the definition of ζ.
Step:

Case 1. α = β → γ. Pick any dMβ ∈ DM
β . Then

ζ(ι(dMβ→γ))(d
M
β )

≃ ζ(ι(dMβ→γ))ζ(ι((d
M
β ))) (induction hypothesis)

≃ ζ(ι(dMβ→γ(d
M
β ))) (definition of ζ)

≃ dMβ→γ(d
M
β ). (induction hypothesis)

Since dMβ was arbitrary, we conclude

ζ(ι(dMβ→γ(d
M
β ))) = dMβ→γ(d

M
β ).

3Here, and below, we allow the omission of the type of ζα ∈ Z when it can be easily inferred.
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Case 2. α = β × γ. Then

ζ(ι((dMβ , d
M
γ )))

= (ζ(ι(dMβ )), ζ(ι(dMγ ))) (definition of ζ)

= (dMβ , d
M
γ ). (induction hypothesis)

Thus, we have demonstrated (⋆). □

Definition 3.5 (Strong Embedding). Let Mi be an interpretation of L for i = {1, 2}. Let E =
{εα | α ∈ T (L)} be an embedding from M1 to M2. Let φ ∈ assign(M1) and define ψ ∈ assign(M2)
to be ψ((x : α)) = εα(φ((x : α))) for all variables (x : α). Call E a strong embedding if

M1 ⊨φ Ao iff M2 ⊨ψ Ao

for all Ao ∈ E(L). Furthermore, call M1 a strong substructure of M2 (or conversely, M2 a strong
extension of M1) if E is an inclusion. In this case, we write M1 ⪯M2.

We can use Definition 3.5 to define a limit structure with respect to the strong embedding
relation.

Definition 3.6 (Strong Chain). Let (I, <) be a well-order of order type σ ≤ ω. Let Mi be an
interpretation of L for i ∈ I. Call (Mi | i ∈ I) an strong chain if Mi ⪯ Mj for all i < j where
i, j ∈ I. In particular, denote the inclusion from Mi to Mi+1 as Ii = {ιiα | α ∈ T (L)}. Given
any diα ∈ Di

α, let ι
x,i denote the composition4 of inclusions ιx ◦ ιx−1 ◦ · · · ◦ ιi+1 ◦ ιi, such that

ιx,i(diα) ∈ Dx
α.

Definition 3.7. Let (I, <) be a well-order of order type σ ≤ ω and (Mi | i ∈ I) be a strong chain.
Define the corresponding union general model of the strong chain to be M = (D, I), where

DM
o = {t, f};

DM
a =

⋃
i∈I

DMi
a for all a ∈ T (L);

DM
α→β =

⋃
i∈I

D
M∗

i

α→β for all α, β ∈ T (L);

DM
α×β = DM

α ×DM
β ;

and where D
M∗

i

α→β = { lim
x→σ

ιx,i(f iα→β) | f iα→β ∈ DMi

α→β}.

Immediately, our definition gives us IM (cα) = lim
x→σ

ιx,i(Ii(cα)) for all i ∈ I and cα ∈ C. Now

DM
a =

⋃
i∈I

DMi
a is well-defined for all a ∈ B, and at this stage, the construction mirrors the one

in first-order logic (e.g., see [12, Proposition 2.3.11]). Recall that function and product domains
are determined by the base domains. For example, f ∈ DM

a→a has domain and range DM
a and

(a, b) ∈ DM
a×a is a member of DM

a ×DM
a . It is thus straightforward to show that limits of the form

lim
x→σ

ιx,i(f iα→β) and lim
x→σ

ιx,i(aiα, b
i
β) are well-defined by induction on the complexity of types.

4Note that we define function composition differently than in [7]. There, (f ◦ g)(x) denotes g(f(x)).
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Proposition 3.8. Let (I, <) be a well-order of order type σ ≤ ω, (Mi | i ∈ I) be a strong chain, and
M be the corresponding union general model. Given d ∈ DMi

α , denote the corresponding element5

in DM
α as ισα(d). This naturally induces the inclusion Iσ = {ισα | α ∈ T (L)}.6 Then it follows that

for all i ∈ I, Aα, and φ ∈ assign(Mi) we have (⋆)

VMi
φ (Aα) ≃ ζσ(VMψ (Aα)),

where ψ = ισ(φ((x : α))) for all (x : α), and the collection of mappings Zσ = {ζσα | α ∈ T (L)} is
defined similarly to Z in Lemma 3.4.

Proof We prove (⋆) by structural induction on the complexity of expressions.

E1. Aα is (x : α). Then ζσ(VMψ ((x : α))) = ζσ(ψ((x : α))) = ζσ(ισ(φ((x : α)))) = φ((x : α)) =

VMi
φ ((x : α)) follows from Condition V1 of a general model and Lemma 3.4.7

E2. Aα is cα. Then ζ
σ(VMψ (cα)) = ζσ(IM (cα)) = ζσ

(
lim
x→σ

ιx,i(Ii(cα))
)

= Ii(cα) = VMi
φ (cα) follows from Condition V2 of a general model and Lemma 3.4.

E3. Aα is (Bβ = Cβ).

Case 1. VMi
φ (Bβ = Cβ) = t or VMφ′ (Bβ = Cβ) = t. Then ζσ(VMψ (Bβ)) = VMi

φ (Bβ) =

VMi
φ (Cβ) = ζσ(VMψ (Cβ)) follows from Condition V3 of a general model and by the

induction hypothesis. The definition of ζσ implies that VMψ (Bβ = Cβ) = VMi
φ (Bβ =

Cβ) = t.8

Case 2. VMi
φ (Bβ = Cβ) = f or VMψ (Bβ = Cβ) = f. One of VMi

φ (Bβ) or VMi
φ (Cβ) is un-

defined iff one of VMψ (Bβ) or VMψ (Cβ) is undefined by the induction hypothesis; and

so, VMφ (Bβ = Cβ) = VMi
φ (Bβ = Cβ) = f from Condition V3 of a general model.

VMi
φ (Bβ) ̸= VMi

φ (Cβ) or VMφ (Bβ) ̸= VMφ (Cβ) implies that VMφ (Bβ = Cβ) = f by a
similar argument to Case 1.

E4. Aα is (Fβ→αBβ).

Case 1. VMi
φ (Fβ→αBβ) is defined. We have that ζσ(ισ(VMi

φ (Fβ→α))) = ζσ(VMψ (Fβ→α)) and

ζσ(ισ(VMi
φ (Bβ))) = ζσ(VMψ (Bβ)) by the induction hypothesis and Lemma 3.4. Since

ζσ is defined only on images under the injective map ισ, we have that ισ(VMi
φ (Fβ→α)) =

VMψ (Fβ→α) and ισ(VMi
φ (Bβ)) = VMψ (Bβ). The fact that VMi

φ (Fβ→αBβ) is defined

and Iσ is an inclusion implies that ισ(VMi
φ (Fβ→αBβ)) = VMψ (Fβ→αBβ). Lemma 3.4

implies that
VMi
φ (Fβ→αBβ) = ζσ(VMψ (Fβ→αBβ)).

5Built via Definition 3.7.
6Below, we allow the omission of the type of ισα when it can be easily inferred.
7Throughout the proof, we appeal to this lemma since the definition of ζσ is similar to ζ and it is easy to see that

a similar result holds.
8For example, ζσ(VMψ (Bβ)) is defined implies VMψ (Bβ) is in the range of the injection ισ .
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Case 2. VMψ (Fβ→αBβ) is defined. By the construction of M , the induction hypothesis, and

Lemma 3.4, there is j ≥ i such that ζσ(ισ(V
Mj
φ (Fβ→α))) = ζσ(VMψ (Fβ→α)) and

ζσ(ισ(V
Mj
φ (Bβ))) = ζσ(VMψ (Bβ)).

9 Now let

Co ≡ (y : β → α) (x : β) = Fβ→αBβ ∧ x = Bβ ∧ y = Fβ→α.

Since Mi ⪯Mj by assumption, we have that

Mi ⊨φ ∃y : β → α, x : β . Co iff Mj ⊨φ′′ ∃y : β → α, x : β . Co.

A similar argument to Case 1 that uses the fact that Ij,i is an inclusion and the
notational definition for the existential quantifier allows us to conclude that

VMi
φ (Fβ→αBβ) = ζσ(VMψ (Fβ→αBβ)).

Case 3. VMi
φ (Fβ→αBβ) is undefined. Holds similarly to Case 2.

Case 4. VMφ (Fβ→αBβ) is undefined. Holds similarly to Case 1.

E5. Aα is (λx : β . Bγ). Pick any d
Mi

β ∈ DMi

β . Then VMi
φ (λx : β . Bγ) (d

Mi

β ) ≃ VMi

φ[(x:β)7→d
Mi
β ]

(Bγ) ≃

ζσ(VM
ψ[(x:β)7→ισ(d

Mi
β )]

(Bγ)) ≃

ζσ(VMψ (λx : β . Bγ)(ι
σ(dMi

β ))) ≃ ζσ(VMψ (λx : β . Bγ))(d
Mi

β ). Since our choice of dMi

β was

arbitrary, we conclude that VMi
φ (λx : β . Bγ) = ζσ(VMψ (λx : β . Bγ)).

E6. Aα is (Ix : α . Bo).

Case 1. VMi
φ (Ix : α . Bo) is defined. Then for exactly one dMi

α ∈ DMi
α , VMi

φ[(x:α)7→d
Mi
α ]

(Bo) = t

by Condition V6 of a general model. By the induction hypothesis, VM
ψ[(x:α)7→ισ(d

Mi
α )]

(Bo) =

t for said dMi
α . Suppose that there was another dMα ∈ DM

α such that VMψ[(x:α)7→dMα ](Bo).

Then by construction and the induction hypothesis, there is j ≥ i with ιj,i(dMi
α ) =

d1α ∈ D
Mj
α and (ισ)−1(dMα ) = d2α ∈ D

Mj
α such that V

Mj

φ′′[(x:α)7→d1α](Bo) = t and

V
Mj

φ′′[(x:α)7→d2α](Bo) = t;9 contradicting the assumption that Mi ⪯ Mj . Therefore,

VMi
φ (Ix : α . Bo) = ζσ(VMψ (Ix : α . Bo)).

Case 2. VMψ (Ix : α . Bo) is defined. Then for exactly one dMα ∈ DM
α , VMψ[(x:α)7→dMα ](Bβ) = t

by Condition V6 of a general model. By construction and the induction hypothesis,

there is j ≥ i such that for only the same dMα , V
Mj

φ′′[(x:α)7→(ισ)−1(dMα )]
(Bβ) = t. Since

Mi ⪯Mj by assumption, VMi
φ (Ix : α . Bo) = ζσ(VMψ (Ix : α . Bo)).

Case 3. VMi
φ (Ix : α . Bo) is undefined. Follows similarly to Case 2.

Case 4. VMψ (Ix : α . Bo) is undefined. Follows similarly to Case 1.

E7. Aα is (Bβ ,Cγ).

9 Really, the assignment φ ought to change to reflect the transition from Mi to Mj . We alter φ to φ′′ such that

the map (x : α) 7→ dα ∈ D
Mi
α is instead (x : α) 7→ ιj,i+1(dα) ∈ D

Mj
α .
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Case 1. One of VMi
φ ((Bβ ,Cγ)) or V

M
ψ ((Bβ ,Cγ)) is defined. Then

VMi
φ ((Bβ ,Cγ)) = ζσ(VMψ ((Bβ ,Cγ))) follows from Condition V7 of a general model,

the induction hypothesis, and the definition of ζσ.8

Case 2. One of VMi
φ ((Bβ ,Cγ)) or VMψ ((Bβ ,Cγ)) is undefined. By the induction hypothesis

and Condition V7 of a general model, VMi
φ ((Bβ ,Cγ)), ζ

σ(VMψ ((Bβ ,Cγ))) are both
undefined.

□

Corollary 3.9. Let (I, <) be a well-order of order type σ ≤ ω and (Mi | i ∈ I) be a strong chain.
Then the union general model M is a strong extension of Mi for all i ∈ I.

Proof Let Eo(L) be the set of formulas of L. We must show that for all i ∈ I, Ao ∈ Eo(L),
φ ∈ assign(Mi), and d

1
α1

∈ DMi
α1
, . . . , dnαn

∈ DMi
αn

, we have

Mi ⊨φ[(x1:α1)7→d1α1
]...[(xn:αn)7→dnαn

] Ao

iff M ⊨ψ[(x1:α1)7→ισ(d1α1
)]...[(xn:αn)7→ισ(dnαn

)] Ao,

where ψ ∈ assign(M) is the assignment defined as ψ((x : α)) = ισ(φ((x : α))). This follows
immediately from Proposition 3.8 as Eo(L) ⊂ E(L). □

Definition 3.10 (Strong Diagram). Let L = (B, C) be a language and let D = {Dα | α ∈ T (L)}
be a frame for L. We want to add a constant that corresponds to every d ∈ Dα for all α ∈ T (L).
So, for each α, well-order Dα such that Dα = {d1α, d2α, . . .} and let Cα = {cd1α , cd2α , . . .} be a set of
constants such that Cα ∩ C = ∅ and |Cα| = |Dα|. Let C′ =

⋃
α∈T (L)

Cα. Let

LD = (B, C ∪ C′).

If M = (D, I) is an interpretation of L, then LM denotes LD. Now define f : Eo × assign(M) →
C′ to be the function that, given some formula Ao and φ ∈ assign(M) for a general model M ,
substitutes the corresponding constants in C′ for the free variables in Ao. More precisely, if φ ∈
assign(M) and (x1 : α1), . . . , (xn : αn) are free in Ao for some n, then f(Ao, φ) = Ao[(x1 : α1) 7→
cφ(x1:α1)] . . . [(xn : αn) 7→ cφ(xn:αn)]. Then the strong diagram of M , denoted Diagst(M), is10

{f(Ao, φ) |M ⊨φ Ao}.

For convenience, we introduce a notational definition for the full frame defined by some collection
of base domains:

Definition 3.11 (Generated Full Frame). Let L = (B, C) and B = {DB
a | a ∈ B}. Denote the full

frame generated by B as
DF,B = {DF,B

α | α ∈ T (L)},

where DF,B
a = DB

a for all a ∈ B and for all other α ∈ T (L), define DF,B
α appropriately such that

DF,B is full. Alternatively, ifM is a general model of L, then DF,M denotes the full frame generated
by the base domains of M .

10We do not specify the type of an expression when it is easily inferred.
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3.2 Sharpened Upward Löwenheim-Skolem
Theorem

Theorem 3.1 allows us to build an arbitrarily large model N of some theory T with an infinite
model M . With an eye toward the sharpened upward Löwenheim Skolem theorem, we want to
come up with a theory such that M strongly embeds into N . Conceptually, if N ⊨ Diagst(M), then
it satisfies the (higher-order) sentences that capture the structure of M . With this motivation in
mind, we have the following:

Lemma 3.12. Let M be a general model of L. Suppose N = (DN , IN ) is a general model of
LM = (B, C ∪ C′) such that N ⊨ Diagst(M). Then there exists a strong embedding of M into N .

Proof Let E = {εα | α ∈ T (L)} be the set of mappings such that for all d ∈ DM
α , εα(d) = IN (cd).

That is, εα(d) is the interpretation of the constant cd ∈ C′ that corresponds to d ∈ DM
α . We will

now show that E is a strong embedding by showing that (i) E is an embedding and that (ii) it is
strong. We now demonstrate that criteria 1 – 5 for an embedding as per Definition 3.2 are satisfied.

1. For any α ∈ T (L), suppose that d, e ∈ Dα are distinct. Then cd ̸= ce ∈ Diagst(M), and so
εα(d) = IN (cd) ̸= IN (ce) = εα(e). Thus for all α ∈ T (L), εα is an injection.

2. εo(t) = IN (ct) = t by the definition of εo and assumption; εo(f) = f by similar reasoning.

3. Let α, β ∈ T (L). Let d ∈ DM
α and f ∈ DM

α→β . Suppose f(d) is defined. Then

cf(d) = cf cd ∈ Diagst(M),

and so

εβ(f(d))

= IN (cf(d)) (definition of εβ)

= IN (cf )(IN (cd)) (N ⊨ Diagst(M))

= εα→β(f)(εα(d)) (definition of εα→β and εα(d))

Now suppose that f(d) is undefined. Then

cf cd↑ ∈ Diagst(M),

and so εα→β(f)εα(d) is undefined by similar reasoning to the above and we can conclude that
εβ(f(d)) is undefined.

4. Let a ∈ Dα, b ∈ Dβ . By the definition of a frame for L, (a, b) ∈ Dα×β is defined [7]. We have
that

c(a,b) = (ca, cb) ∈ Diagst(M),

and so

εα×β(a, b)

= IN (c(a,b)) (definition of εa×b)

= (IN (ca), IN (cb)) (N ⊨ Diagst(M))

= (εα(a), εβ(b)). (definition of εα and εβ)
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5. Let d = IM (cα) ∈ Dα. Then
{cα = cd} ∈ Diagst(M),

and so

εα(I
M (cα))

= IN (cd) (definition of εα)

= IN (cα). (N ⊨ Diagst(M))

This completes the proof for (i). Let φ ∈ assign(M). Define ψ ∈ assign(N) to be ψ((x : α)) =
εα(φ((x : α))) for all α ∈ T (L) and (x : α).

To demonstrate that E is strong, we must show that M ⊨φ Ao if and only if N ⊨ψ Ao. Recall
the substitution function f from Definition 3.10. We have

M ⊨φ Ao

iff f(Ao, φ) ∈ Diagst(M) (definition of Diagst(M))

iff V N (f(Ao, φ)) = t (N ⊨ Diagst(M))

iff N ⊨ψ Ao. (definition of f , Ao, ψ, and E)

This completes the proof for (ii) and thus the lemma. □
Now we can go one step further: we can refactor the resulting model N from the previous lemma

and obtain a new model N ′ such that there is an inclusion from M into N ′ and N ′ ≡ N .

Lemma 3.13. Let N be a general model of LM such that N ⊨ Diagst(M). Then there exists a
general model N ′ such that M ⪯ N ′ and N ′ ≡ N .

Proof By Lemma 3.12, we have a strong embedding E = {εα | α ∈ T (L)} from M to N . Let
DF,M,N denote the full frame determined by the base domains DM,N

a = DM
a ∪ (DN

a \ ran(εa)).
Define a collection of mappings Θ = {θα : DN

α → DF,M,N
α } as follows:11

θo(do) = do;

θa(da) =

{
ε−1(da); if da ∈ ran(εa)

da; otherwise

θα→β(dα→β) = the fα→β such that for all dα ∈ DN
α ,

fα→β(θα(dα)) ≃ θβ(dα→β(dα));

θα×β((dα, dβ)) = (θα(dα), θβ(dβ)).

Now denote DN ′

α = {θ(dα) | dα ∈ DN
α } and define the frame for N ′ to be

DN ′
= {DN ′

α | α ∈ T }.

Since θα is an injection for all α ∈ T (L), DN
α and DN ′

α are in bijective correspondence under θα for
all α ∈ T (L). Now given ψ ∈ assign(N), define ψ′ ∈ assign(DN ′

) such that for all α ∈ T (L) and
(x : α),

ψ′((x : α)) = θ(ψ((x : α))).

11We allow for the omission of the type of θα for some α ∈ T (L) when the type is easily inferred.
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Now define a partial evaluation function V N
′
on LM such that given some ψ′ ∈ assign(DN ′

),

V N
′

ψ′ (Aα) ≃ θ(V Nψ (Aα)).

Let IN
′
(cα) = V N

′
(cα) for all cα ∈ C ∪ C′. It is easy to verify that N ′ = (DN ′

, IN
′
), with the

partial evaluation function V N
′
, satisfies conditions V1–V7, so N ′ is a general model of LM .12 It

is also easy to verify that there is an inclusion from M into N ′ and that N ′ ⊨ Diagst(M), and so
M ⪯ N ′.

It is easy to verify that Θ is an isomorphism from N to N ′ by its construction. Thus, N ′ ≡ N .
□

We are now ready to prove the sharpened upward Löwenheim-Skolem theorem.

Theorem 3.14 (Sharpened upward Löwenheim-Skolem theorem). Let T = (L,Γ) be a theory. If
T has an infinite general model M of L, then for all cardinals κ such that κ ≥ ∥M∥+ ∥L∥,13 T has
a general model N of L of size and power κ such that M ⪯ N .

Proof We can expand M to a general model M ′ of LM such that for all cd ∈ C′, IM
′
(cd) = d;

it follows that M ′ ⊨ Diagst(M). By Theorem 3.1, Diagst(M) has a general model N of size and
power κ. By Lemma 3.12, there is a strong embedding from M into N . By Lemma 3.13, there is a
model N ′ such that M ⪯ N ′ and N ′ ≡ N . It is easy to verify that the reduct of N ′ to L is a model
of T of size and power κ. □

3.3 Sharpened Downward Löwenheim-Skolem
Theorem

With an eye toward the sharpened downward Löwenheim-Skolem theorem, we prove the analogue
of the Tarski-Vaught test from first-order logic which gives us useful criteria for finding strong
submodels. In particular, if there is an inclusion from M into N , always being able to find an
existential witness from M inside of N (up to the inclusion) is sufficient and necessary for M ⪯ N .

Proposition 3.15. Let M,N be general models of L. Suppose that there is an inclusion I = {ια |
α ∈ T (L)} from M to N . Define Z = {ζα | α ∈ T (L)} to be the collection of mappings that, like
in Lemma 3.4, satisfy the property that ζα(ια(d

M
α )) = dMα for all α ∈ T (L) and dMα ∈ DM

α . Then
for all Aα ∈ E(L), and φ ∈ assign(M), we have

(⋆) VMφ (Aα) ≃ ζ(V Nψ (Aα))

iff for any Ao ∈ E(L), if there is dNα1
∈ DN

α1
such that

N ⊨ψ[(x1:α1)7→dNα1
] Ao,

then there is dMα1
∈ DM

β such that

N ⊨ψ[(x1:α1)7→ι(dMα1
)] Ao,

where ψ = ι(φ((x : α))) for all (x : α).

12As M, N are general models.
13Assuming that ∥M∥ exists.
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Proof The forward direction follows easily from [7, Lemma 6.4] and M ⪯ N . We prove (⋆) by
structural induction on the complexity of expressions. Cases E1, E2, E3, E5, and E7 follow similarly
to the same cases in the proof of Proposition 3.8. The remaining cases are E4 and E6.

(E4). Aα is (Fβ→αBβ).

Case 1. VMφ (Fβ→αBβ) is defined. We have that ζ(ι(VMφ (Fβ→α))) = ζ(V Nψ (Fβ→α)) and

ζ(ι(VMφ (Bβ))) = ζ(VMψ (Bβ)) by the induction hypothesis and a similar argument
to the one in Lemma 3.4. Since ζ is defined only on images under the injective map
ι, we have that ι(VMφ (Fβ→α)) = V Nψ (Fβ→α) and ι(VMφ (Bβ)) = V Nψ (Bβ). The fact

that VMφ (Fβ→αBβ) is defined and I is an inclusion implies that ι(VMφ (Fβ→αBβ)) =

V Nψ (Fβ→αBβ). Lemma 3.4 implies that

VMφ (Fβ→αBβ) = ζ(V Nψ (Fβ→αBβ)).

Case 2. V Nψ (Fβ→αBβ) is defined. Let

Co ≡ (y : β → α) (x : β) = Fβ→αBβ ∧ x = Bβ ∧ y = Fβ→α.

Since V Nψ (Fβ→αBβ) is defined, we have that for some dNβ ∈ DN
β and dNβ→α ∈ DN

β→α,
N ⊨ψ[(x:β)→dNβ ][(y:β→α)→dNβ→α] Co. By assumption, (a)N ⊨ψ[(x:β)7→ι(dMβ )][(y:β→α)7→ι(dMβ→α)]

Co for some dMβ ∈ DM
β and dMβ→α ∈ DM

β→α. Hence,

ζ(V Nψ (Fβ→αBβ))

≃ ζ(V Nψ (Fβ→α)(V
N
ψ (Bβ))) (V Nψ (Fβ→αBβ) is defined)

= ζ(V Nψ (Fβ→α))(ζ(V
N
ψ (Bβ))) ((a) and Lemma 3.4)

= VMφ′ (Fβ→α)(V
M
φ′ (Bβ)) (induction hypothesis)

= VMφ (Fβ→αBβ). (Condition V4 of a general model)

Case 3. VMφ (Fβ→αBβ) is undefined. Holds similarly to Case 2.

Case 4. V Nψ (Fβ→αBβ) is undefined. Holds similarly to Case 1.

(E6). Aα is (Ix : α . Bo). W.l.o.g, let (y : α) be free for (x : α) in Bo. Let

Co ≡ ∃x : α, y : α . (x ̸= y) ∧Bo ∧Bo[(x : α) 7→ (y : α)].

Case 1. VMφ (Ix : α . Bo) is defined. Then there is (exactly one) dMα ∈ DM
α such that

M ⊨φ[(x:α)7→dMα ] Bo. By the induction hypothesis, N ⊨ψ[(x:α)7→ι(dMα )] Bo. Now suppose

that there was some dNα ̸∈ ran(ια) such that N ⊨ψ[(x:α)7→dNα ] Bo. Then N ⊨ψ Co.
By assumption and the notational definition for the existential quantifier, there are
two distinct members of DM

α that satisfy Bo, a contradiction. Now suppose that
there was some dNα ∈ ran(ια) such that N ⊨ψ[(x:α)7→dNα ] Bo. Then dNα = ι(dMα ); for
otherwise, there would be two distinct witnesses in M that satisfy Bo, contradicting
our induction hypothesis. Hence ι(VMφ (Ix : α . Bo)) = V Nψ (Ix : α . Bo) by Condition

V6 of a general model; and so by Lemma 3.4, VMφ (Ix : α . Bo) = ζ(V Nψ (Ix : α . Bo)).
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Case 2. V Nψ (Ix : α . Bo) is defined. Then there is (exactly one) dNα ∈ DN
α such that

N ⊨ψ[(x:α)7→dNα ] Bo. By assumption, there is exactly one dMα ∈ DM
α such that

M ⊨φ[(x:α)7→dMα ] Bo.
14 By the induction hypothesis, N ⊨φ[(x:α)7→ι(dMα )] Bo. Since

V Nψ (Ix : α . Bo) is defined, we have ι(VMφ (Ix : α . Bo)) = V Nψ (Ix : α . Bo) by Con-

dition V6 of a general model; and so by Lemma 3.4, VMφ (Ix : α . Bo) = ζ(V Nψ (Ix :
α . Bo)).

Case 3. VMφ (Ix : α . Bo) is undefined. Similar to Case 2.

Case 4. V Nψ (Ix : α . Bo) is undefined. Similar to Case 1.

□

Corollary 3.16 (Higher-order Tarski-Vaught test). Let M,N be general models of L. Suppose that
there is an inclusion I from M to N . Then M ⪯ N iff for any Ao and ψ ∈ assign(N), if there is
dNα1

∈ DN
α1

such that
N ⊨ψ[(x1:α1)7→dNα1

] Ao,

then there is dMα1
∈ DM

β such that

N ⊨ψ[(x1:α1)7→ι(dMα1
)] Ao.

Proof The forward direction follows easily from [7, Lemma 6.4] and M ⪯ N . The backward
direction follows from Proposition 3.15 as Eo(L) ⊂ E(L). □

We are now ready to prove the sharpened downward Löwenheim-Skolem Theorem.

Theorem 3.17 (Sharpened downward Löwenheim-Skolem theorem). Let L = (B, C) be a language
and T = (L,Γ) be a theory. If T has an infinite general model N of L, then for every infinite
cardinal κ such that ∥L∥ ≤ κ ≤ ∥N∥, T has a general model M of L of size and power κ such that
M ⪯ N .

Proof Let κ be an infinite cardinal such that ∥L∥ ≤ κ ≤ ∥N∥. Choose a collection of typed
domains D0 = {D0

α | α ∈ T (L)} such that D0
α ⊆ DN

α for all α ∈ T (L), |
⋃

a∈BD
0
a| = κ, and

|D0
α| ≤ κ for all α ∈ T (L).15 Notice how the only restriction we have on our choice of domains is

in terms of cardinality. Given Di, define the collection of typed domains

Di+1 = {Di
α ∪Dw,i+1

α | α ∈ T (L)},

where

Dw,i+1
α = {dα | j ∈ N, φ ∈ assign(N) and dα witnesses

V Nφ[(x1:α1)7→(diα1
)]...[(xj :αj)7→(diαj

)](∃x : α . Ao), where

(xk : αk) are free in Ao and diαk
∈ Di

αk
for 1 ≤ k ≤ j}.

Define D∞ = {
⋃
iD

i
α | α ∈ T (L)}.

14As ∃!x : α . Ao ≡ ∃ y : α . (λx : α . Ao) = (λx : α . x = y), provided (y : α) does not occur in (λx : α . Ao).
15Determine members of the product domains by the choice of members in non-product domains.
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Now define a reduction to be the collection of mappings {ρα : DN
α → DF,∞

α | α ∈ T (L)} such
that16

ρo(do) = do;

ρo(da) ≃

{
da; if da ∈ D∞

a

undefined; otherwise

ρα→β(dα→β) = the fα→β such that for all dα ∈ DN
α , if ρα(dα) is defined, then

f(ρα(dα)) ≃ ρβ(dα→β(dα));

ρ((dα, dβ)) ≃ (ρ(dα), ρ(dβ)).

Define the frame for L

DM = {{ρ(dα) | dα ∈ D∞
α } | α ∈ T (L)}.17

By construction, |
⋃

a∈BD
M
a | = κ and |DM

α | ≤ κ for each α ∈ T (L).
Define IM (cα) = ρ(I(cα)),

18 M = (DM , IM ) an interpretation of L, and a partial valuation
function VM such that given φ ∈ assign(M),

VMφ (Aα) ≃ ρ(V Nψ (Aα)),

where ψ ∈ assign(N) such that if φ((x : α)) = ρ(dα), ψ((x : α)) = dα. It is easy to verify that M
is a general model of L. Define a set of injective mappings

I = {ια : DM
α → DN

α | α ∈ T (L)}

where ια(ρ(dα)) = dα for all α ∈ T (L).
We now show that M ⪯ N under I. Conditions 1, 2, 5, and 6 for an inclusion are satisfied by

the definition of ι and ρ. Now take any ρ(dα) ∈ DM
α and ρ(fα→β) ∈ DM

α→β . We have that

ι(ρ(f)ρ(d))

≃ ι(ρ(f(d))) (definition of ρ)

≃ f(d) (definition of ι)

≃ ι(ρ(f))(ι(ρ(d))). (definition of ι, ρ)

Hence, Condition 3 is satisfied. Take any dα×β = ρ(a, b) ∈ DM
α×β . Observe that

= ι(ρ((a, b)))

= ι((ρ(a), ρ(b))) (definition of ρ)

= (ι(ρ(a)), ι(ρ(b))). (definition of ι)

Hence, Condition 4 is satisfied. By the construction of M and Corollary 3.16, M ⪯ N . □

16We allow for the omission of the type of ρα for some α when the type is easily inferred.
17If there are d1α, . . . , d

n
α such that ρ(d1α) = · · · = ρ(dnα), pick one to keep and remove the rest. Construct the

product domains appropriately.
18This is valid since N ⊨ ∃x : α . cα = (x : α) for any cα ∈ C.
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Chapter 4

Model-Theoretic Types

4.1 Preliminaries

We introduce model-theoretic types for Alonzo, following the development in chapter 4 of [12].
Where the meaning is obvious, we omit the prefix and refer to them as just “types”. First, we state
the compactness theorem – Corollary 8.16 in [7] – for Alonzo.

Theorem 4.1 (Compactness theorem). Let Γ be a set of sentences. Then Γ is satisfiable iff every
finite subset of Γ is satisfiable.

Definition 4.2. Let Di be frames for L for i ∈ {1, 2}. Call D1 a subframe of D2 if D1
α ⊆ D2

α for
all α ∈ T (L). We write D1 ≤ D2 in this case.

Let M = (D, I) be a general model of L and A ≤ D. Denote the set of all LA-sentences true in
M by ThA(M).

Definition 4.3. LetM = (D, I) be a general model of L and A ≤ D. Let LnA denote the set of LA-
formulas with n free variables. Let p ⊆ LnA. Call p an n-type (over A) if p ∪ ThA(M) is satisfiable
(in the general sense). Call an n-type p complete if Ao ∈ p or ¬Ao ∈ p for all LA-formulas Ao.

We adopt the convention that if the free variables of Ao ∈ p for p an n-type are not mentioned
explictly, they are (xi : αi) for 1 ≤ i ≤ n. The set of all complete n-types is denoted as CMn (A).
Let dαi

∈ DM
αi

for 1 ≤ i ≤ n. Then tpMn (d̄/A) denotes the complete type

{Ao ∈ LnA |M ⊨φ[(x1:α1)7→dα1 ]...[(xn:αn)7→dαn ] Ao for any φ ∈ assign(M)}.

Definition 4.4. Let p be an n-type over A. We say that dαi
∈ DM

αi
for 1 ≤ i ≤ n realize p if

M ⊨φ[(x1:α1)7→dα1
]...[(xn:αn)7→dαn ] Ao for any φ ∈ assign(M) and Ao in p. If p is not realized, we say

M omits p.

We can always realize a given n-type in some general model.

Proposition 4.5. Let M = (D, I) be a general model of L, A ≤ D, and p be an n-type over A.
Then there is a strong extension N of M such that p is realized in N .
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Proof Let Γ = p ∪Diagst(M). Let ∆ ⊆ Γ be a finite subset. W.l.o.g., ∆ is equivalent to Ao ∧Bo

where Ao is an LnA-formula with (yi : βi) free for 1 ≤ i ≤ n – corresponding to a finite subset of p
– and Bo is an LM formula with parameters in A and X = {DM

α \DA
α | α ∈ T (L)} such that

Bo ≡ B′
o[(x1 : α1) 7→ cd

X
1 ] . . . [(xk : αk) 7→ cd

X
k ],

where B′
o is the appropriate LA-formula with (xi : αi) free for 1 ≤ i ≤ k – corresponding to a finite

subset of Diagst(M). By Definition 4.3, there is a general model N0 such that N0 ⊨ p ∪ ThA(M).
Since Bo ∈ Diagst(M), we have ∃x1 : α1, . . . ,xk : αk . B

′
o ∈ ThA(M), and so

N0 ⊨ Ao ∧ ∃x1 : α1, . . . ,xk : αk . B
′
o.

So, N0 ⊨ ∆ by interpreting cd
X
i for 1 ≤ i ≤ k as the appropriate witnesses. By the Compactness

Theorem [7, Corollary 8.16], Γ is satisfiable; so let N ′ ⊨ Γ. By Lemma 3.12, there is a strong
embedding of M into N ′. By Lemma 3.13, there is a strong extension N of M such that N ⊨ Γ.
Thus p is realized by the interpretations of (yi : βi). □

Corollary 4.6. Let M = (D, I) be a general model of L and A ≤ D. Then p ∈ CMn (A) iff there is
a strong extension N of M and dαi

∈ DN
αi

for 1 ≤ i ≤ n such that p = tpNn (d̄/A).

Proof (⇒) Let p ∈ CMn (A). By Proposition 4.5, there is a strong extension N of M that realizes
p, say with dαi ∈ DN

αi
for 1 ≤ i ≤ n. Let Ao be any LnA-formula with (xi : αi) free for 1 ≤ i ≤ n.

Since p is a complete type, exactly one of Ao or ¬Ao is in p; hence p = tpNn (d̄/A).
(⇐) Let N be a strong extension of M and dαi

∈ DN
αi

for 1 ≤ i ≤ n such that p = tpNn (d̄/A).
We have that p ∈ CNn (A); furthermore, since M ⪯ N , we have that CNn (A) = CMn (A).1 Hence
p ∈ CMn (A). □

4.2 Constructions Through Partially Strong Extensions

Definition 4.7. Let M = (D, I) and N be general models of L and X ≤ D. Let F = {fα | α ∈
T (L)} be a collection of mappings, where given α ∈ T (L), fα is a total map from DX

α to DN
α . We

say that F is a partially strong set of mappings if

M ⊨φ Ao iff N ⊨ψ Ao

for all Ao ∈ E(L) where if φ is an assignment into X , then ψ is the assignment into DN defined by
ψ((x : α)) = fα(φ((x : α))).

We proceed to show that we can always grow a partially strong set of mappings by considering
strong extensions.

Lemma 4.8. Let M = (D, I) and N be general models of L and X ≤ D. Let F = {fα | α ∈ T (L)}
be a partially strong set of mappings from X into N . Then given any dMα ∈ DM

α , there is a strong
extension N ′ of N and F ′ = {f ′β | β ∈ T (L)} a partially strong set of mappings extending f , up to
the inclusion from N into N ′.

1The definition of M ⪯ N entails that M and N satisfy the same LA-sentences.
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Proof Below, assume Ao ∈ LM has (xi : αi) free for 1 ≤ i ≤ k and φ((x1 : α1)) = dMα .

Γ ={Ao[(x2 : α2) 7→ cf(d
X
α2

)] . . . [(xk : αk) 7→ cf(d
X
αk

)] |M ⊨φ Ao and

dXαi
∈ DX

αi
for 2 ≤ i ≤ k} ∪Diagst(N).

We will show that Γ is satisfiable. Let ∆ ⊆ Γ be a finite subset. The diagram component of ∆ is
satisfiable by Ne = (De, Ie) an expansion of N where Ie(cdα) = dα for all dα ∈ De

α. Now well-order
the non-diagram component X = {A1

o, . . . ,A
n
o}. By definition, there is φi ∈ assign(M) such that

M ⊨φi
Ai
o for 1 ≤ i ≤ n; and across each assignment, we have that φi((x1 : α1)) = dMα remains

fixed. Hence we just need to show that there is ψ ∈ assign(Ne) such that Ne ⊨ψ ∃x1 : α1 . Ao for
any Ao ∈ X, giving us a witness. Let Ao ≡ Ai

o for some 1 ≤ i ≤ n. So, we have

M ⊨φi
Ao

implies M ⊨φi
∃x1 : α1 . Ao (by definition)

implies Ne ⊨ψ ∃x1 : α1 . Ao, (f is partially strong)

where ψ ∈ assign(Ne) is defined as ψ((x : α)) = f(φi((x : α))) for all (x : α). By the Compactness
Theorem [7, Corollary 8.16], Γ is satisfiable; so let Ns ⊨ Γ. Now take the reduct of Ns to L.
By Lemma 3.12 and Lemma 3.13, there is a strong extension N ′ of N such that N ′ ≡ Ns, with
corresponding inclusion I = {ια : DN

α → DN ′

α | α ∈ T (L)}. Let dnα ∈ DN
α be the witness

that satisfies the existential statements in Γ. We construct F ′ = {f ′β | β ∈ T (L)} such that

f ′β(d) = ιβ(fβ(d)) for all d ∈ DX
β and f ′α(d

M
α ) = ια(d

N
α ). □

Corollary 4.9. Let M = (D, I) and N be interpretations of L and X ≤ D. Let F = {fα | α ∈
T (L)} be partially strong from X into N . Then there is N ′ ⪰ N and E = {εα | α ∈ T (L)} a strong
embedding from M into N ′.

Proof Well-order T (L) and denote the jth type in this order as αj . Let κj = |DM
αj
|. Using

induction, we will build a strong chain (Nj | j < ω) and a partially strong set of mappings
F j = {f jα : Xj

α → DN,j
α | α ∈ T (L)} such that for all α ∈ T (L) and a < b, faα can be extended to

f bα.
Base: Let {diα0

| i < κ0} be a well-order of DM
α0
. Let X0,k

α0
= Xα0 ∪ {diα0

| i < k}. Using
transfinite induction, we will build a strong chain (N0,k | k < κ0) and a partially strong set of
mappings F 0,k = {f0,kα : X0,k

α → DN,0,k
α | α ∈ T (L)} such that for all α ∈ T (L) and a < b, f0,aα can

be extended to f0,bα .

k is 0: Let F 0,0 = F and N0,0 = N .

k is a successor ordinal ξ +1: Using Lemma 4.8, we can find a strong extension N0,ξ+1

of N0,ξ and a partially strong set of mappings F 0,ξ+1 where f0,ξ+1
α0

extends f0,ξα0
with

dξα0
.

k is a limit ordinal : Let N0,k be the union general model of the strong chain (N0,h |
h < k). Given f0,hα for some h, let lim

h→k
f0,hα denote the function gα where gα(dα) =

lim
x→k

ιx,hα (f0,hα (dα)) for all dα ∈ dom(f0,hα ). Let F 0,k = {
⋃
h<k

lim
h→k

f0,hα | α ∈ T (L)}. By

Corollary 3.9, N0,k is a strong extension of N0,h for all l < k and by construction, F 0,k

is a partially strong set of mappings.
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Now let N0 be the union general model of the strong chain (N0,k | k < κ0) and F 0 =
{

⋃
k<κ0

lim
k→κ0

f0,kα | α ∈ T (L)}. By Corollary 3.9, N0 is a strong extension of N0,k for

all k < κ0 and by construction, F 0 is a partially strong set of mappings. Notice that
dom(fα0

) = DM
α0
.

Step: Suppose the claim holds for j. Let {diαj+1
| i < κ0} be a well-order of DM

αj+1
. Let Xj+1,k

α =

Xαj+1∪{diαj+1
| i < k}. Using transfinite induction, we will build a strong chain (Nj+1,k | k < κj+1)

and a partially strong set of mappings F j+1,k = {f j+1,k
α : Xj+1,k

α → DN,j+1,k
α | α ∈ T (L)} such

that for all α ∈ T (L) and a < b, f j+1,a
α can be extended to f j+1,b

α .
The construction is similar to the one in the base case. For the k = 0 case, we let F j+1,0 = F j

and Nj+1,0 = Nj . The successor and limit ordinal cases follow almost identically. We are left with
a similar result: by Corollary 3.9, Nj+1 is a strong extension of Nj+1,k for all k < κj+1 and by
construction, F j+1 is a partially strong set of mappings. Also, dom(fαj+1

) = DM
αj+1

.

Finally, let N ′ be the union general model of the strong chain (Nj | j < ω) and E = {
⋃
j<ω

lim
j→ω

f jα |

α ∈ T (L)}. By Corollary 3.9, N ′ is a strong extension of Nj for all j < ω and by construction, E
is a strong embedding since dom(fα) = DM

α for all α ∈ T (L). □
We now show that like in the first-order case, two distinct tuples (in some general model M)

realizing the same n-type implies the existence of an automorphism of a strong extension N of M ,
fixing the appropriate elements and mapping one tuple to the other.

Proposition 4.10. Let M = (D, I) be an interpretation of L and X ≤ D. Suppose there are two
sequences d̄1 and d̄2 with d1αi

, d2αi
∈ DM

αi
for 1 ≤ i ≤ n such that tpMn (d̄1/X ) = tpMn (d̄2/X ). Then

there is a strong extension N ⪰ M with I = {ια : DM
α → DN

α | α ∈ T (L)} the corresponding
inclusion and Θ = {θα | α ∈ T (L)} an automorphism of N fixing all elements of X (up to I) and
θαi(ιαi(d

1
αi
)) = ιαi(d

2
αi
) for all 1 ≤ i ≤ n.

Proof Let

F = {fα : DX
α ∪ {d1α1

, . . . , d1αn
} → DX

α ∪ {d2α1
, . . . , d2αn

} | α ∈ T (L)}

be the collection of mappings where

fα(d) =

{
d; if d ∈ DX

α

d2αi
; if d is d1αi

for some i

Using the fact that tpM (d̄1/X ) = tpM (d̄2/X ) and by Corollary 4.9, we can find a strong extension
N0 ⪰ M with EM a strong embedding from M into N0 that extends F . We can recursively
construct a strong chain as follows: given N2i ⪯ N2i+1 with corresponding E2i, we show how
to construct N2i+2, N2i+3 such that N2i+1 ⪯ N2i+2 ⪯ N2i+3 and we have corresponding strong
embeddings E2i+1,E2i+2. Given E2i, we can view F2i+1 = {f2i+1

α : ran(ε2iα ) → DN2i
α | α ∈ T (L)} as

a partially strong set of mappings. By Corollary 4.9, we can find N2i+2 ⪰ N2i+1 and extend F2i+1

to a strong embedding E2i+1 = {ε2i+1
α : D2i+1

α → D2i+2
α | α ∈ T (L)}. With E2i+1 in mind, we

can similarly view F2i+2 = {f2i+2
α : ran(ε2i+1

α ) → D
N2i+1
α | α ∈ T (L)} as a partially strong set of

mappings. By Corollary 4.9, we can find N2i+3 ⪰ N2i+2 and extend F2i+2 to a strong embedding
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E2i+2 = {ε2i+2
α : D2i+2

α → D2i+3
α | α ∈ T (L)}. Pictorially, we have

N0 N2 . . . N2i N2i+2 . . .

N1 N3 . . . N2i+1 N2i+3 . . .

E0

E1◦E0

E2 E2i

E2i+2◦E2i

E2i+2E1 E2i+1

where strong extensions are represented by ↪→ and labelled with their corresponding strong embed-
dings. Let Ii = {ιiα | α ∈ T (L)} denote the inclusion from Ni into Ni+1 for all i. Notice that by
construction, ι2i+1,2i

α ◦ ε2i ⊆ ε2i+2 for all i and α ∈ T (L). Now let N be the union general model
of the strong chain (N2i | i < ω) and I = {ια : DM

α → DN
α | α ∈ T (L)} be the corresponding

inclusion. Define Θ = {θα = lim
i→ω

ε0,2iα | α ∈ T (L)}.2 By construction, Θ is an automorphism;

furthermore, the construction ensures that θαi
(ιαi

(d1αi
)) = ιαi

(d2αi
) for all 1 ≤ i ≤ n. □

4.3 Stone Spaces and Omitting Types

As in first-order logic, the Stone topology on CMn (A) has (basic) open sets

[Ao] = {p ∈ CMn (A) | Ao ∈ p}.

Now ∨
i∈I

Ai
o stands for A1

o ∨ . . . ∨An
o∧

i∈I
Ai
o stands for A1

o ∧ . . . ∧An
o

where I = {1, . . . , n}. Notice that [
∨
i∈I

Ai
o] =

⋃
i∈I

[Ai
o] and [

∧
i∈I

Ai
o] =

⋂
i∈I

[Ai
o] since open sets are

complete types. Furthermore, [Ao] is closed since [Ao] = CMn (A) \ [¬Ao]. We now show that
CMn (A) is indeed a Stone space; that is, it is compact, Hausdorff, and totally disconnected.

Proposition 4.11. CMn (A) is compact.

Proof We show that every cover of CMn (A) has a finite subcover. A.f.s.o.c.3 that not. Let
X = {[Ai

o] | i ∈ I} be a cover of CMn (A). Let p = {¬Ai
o | i ∈ I}. We will show that p∪ThA(M) is

satisfiable. Let I0 ⊆ I be a finite subset. By assumption, we have an n-type q such that q ̸∈
⋃
i∈I0

[Ai
o].

By Proposition 4.5 and De Morgan’s law, there is N0 ⪰ M with dN0
α1

∈ DN0
α1
, . . . , dN0

αn
∈ DN0

α1
such

that for any φ ∈ assign(N0),

N0 ⊨
φ[(x1:α1)7→d

N0
α1

]...[(xn:αn)7→d
N0
αn ]

ThA(M) ∪
∧
i∈I0

¬Ai
o.

By the Compactness Theorem [7, Corollary 8.16], p∪ThA(M) is satisfiable, and so p is an n-type.
By Proposition 4.5, there is N ⪰ M with dNα1

∈ DN
α1
, . . . , dNαn

∈ DN
α1

such that N ⊨ p ∪ ThA(M).

2See the proof of Corollary 4.9 for the meaning of lim
i→ω

ε0,2iα .

3Assume for the sake of contradiction.
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By definition, tpN ( ¯dNαi
/A) ∈ CMn (A) but since N ⊨φ[(x1:α1)7→dNα1

]...[(xn:αn)7→dNαn
] ¬Ai

o for all i ∈ I,
then tpN ( ¯dNαi

/A) ̸∈
⋃
X = CMn (A) a contradiction. □

Proposition 4.12. CMn (A) is totally disconnected.

Proof We will show that for distinct p, q ∈ CMn (A) there is Ao such that p ∈ [Ao] and q ̸∈ [Ao].
Since p ̸= q and p, q are complete n-types, there is Ao such that Ao ∈ p and ¬Ao ∈ q. Hence
p ∈ [Ao] and q ̸∈ [Ao]. □

Proposition 4.13. CMn (A) is Hausdorff.

Proof We will show that distinct p, q ∈ CMn (A) can be separated by open sets. Since p ̸= q
and p, q are complete n-types, there is Ao such that p ∈ [Ao] and q ∈ [¬Ao]. A.f.s.o.c. that
[Ao]∩ [¬Ao] ̸= ∅. Then there is r ∈ CMn (A) such that (Ao ∧¬Ao) ∈ r, a contradiction. Therefore,
the claim holds. □

Definition 4.14. An n-type p ∈ CMn (A) is isolated if {p} is an open set.

Proposition 4.15. Let p ∈ CMn (A). Then the following are equivalent:

1. p is isolated.

2. There exists an LA formula Ao such that {p} = [Ao].

3. There exists an LA formula Ao ∈ p such that for all Bo ∈ E(LA) with (x1 : α1), . . . , (xn : αn)
free, Bo ∈ p iff ThA(M) ⊨ Ao ⇒ Bo.

Proof
(1 ⇒ 2): Suppose p is isolated. By definition, {p} is an open set. So for some well-order I,

{p} =
⋃
i∈I

[Ai
o]. Hence for some j ∈ I, we have {p} = [Aj

o].

(2 ⇒ 3): Suppose {p} = [Ao] and let Bo ∈ E(LA). We will show that Bo ∈ p iff ThA(M) ⊨
Ao ⇒ Bo. Suppose Bo ∈ p. A.f.s.o.c. that ThA(M) ̸⊨ Ao ⇒ Bo. Then there is a gen-
eral model N ⊨ ThA(M) and dNα1

∈ DN
α1
, . . . , dNαn

∈ DN
αn

such that for all φ ∈ assign(N),

N ⊨φ[(x1:α1)7→dNα1
]...[(xn:αn)7→dNαn

] (Ao ∧ ¬Bo). It follows that Ao,¬Bo ∈ tpN ( ¯dNαi
/A). Since

{p} = [Ao], p = tpN ( ¯dNαi
/A) ∈ CMn (A). But by assumption, Bo ∈ p, a contradiction. Now

suppose Bo ̸∈ p. Because p is complete, ¬Bo ∈ p. By the same argument, ThA(M) ⊨ Ao ⇒ ¬Bo.
Since Ao ∈ p by assumption, ThA(M) ∪ {Ao} is satisfiable. Hence ThA(M) ̸⊨ Ao ⇒ Bo.

(3 ⇒ 1): Suppose there exists an LA formula Ao ∈ p such that for all Bo ∈ E(LA), Bo ∈ p iff
ThA(M) ⊨ Ao ⇒ Bo. We will show that Ao isolates p; that is, {p} = [Ao]. By assumption, p ∈
[Ao]. Suppose q ∈ [Ao] and let Bo ∈ E(LA). If Bo ∈ p, then by assumption ThA(M) ⊨ Ao ⇒ Bo.
A.f.s.o.c. that Bo ̸∈ q. Since q is a complete n-type, ¬Bo ∈ q. But then ThA(M)∪q is unsatisfiable,
a contradiction. Hence Bo ∈ q. If on the other hand Bo ̸∈ p, then p is a complete n-type implies
¬Bo ∈ p. By the same argument, Bo ̸∈ q. Thus, since p = q for arbitrary q ∈ [Ao], {p} = [Ao] is
an open set. □

Let T = (L,Γ). Then Cn(T ) denotes the set of complete n-types (over T ) where p ∈ Cn(T )
implies p ∪ T is satisfiable. Let basic open sets of Cn(T ) be [Ao] = {p | Ao ∈ p}.

Proposition 4.16. Cn(T ) is a Stone space.

31



M.Sc. Thesis – Dennis Y. Zvigelsky; McMaster University – Dept. of Computing and Software

Proof Follows similarly to the proofs of Propositions 4.11, 4.12, and 4.13. □
Similar to the CMn (A) case, p is isolated in Cn(T ) if {p} = [Ao] for some Ao ∈ E(L).

Definition 4.17. Let Ao ∈ E(L) such that T ∪{Ao} is satisfiable and p be an n-type over T . Then
[Ao] isolates p if for all Bo ∈ p,

T ⊨ ∀x1 : α1, . . . , xn : αn . Ao ⇒ Bo.

Proposition 4.18. If p is a complete n-type and Ao isolates p, then for all Bo ∈ E(L) with
(x1 : α1), . . . , (xn : αn) free, Bo ∈ p iff T ⊨ Ao ⇒ Bo.

Proof Follows similarly to the proof of Proposition 4.15. □
The notion of isolation with respect to CMn (A) extends naturally to Cn(T ).

Proposition 4.19. Suppose p ∈ Sn(T ) is isolated by Ao. Then p is realized in any model of
T ∪ {∃x1 : α1, . . . , , xn : αn . Ao}.

Proof Suppose M ⊨ T ∪{∃x1 : α1, . . . , , xn : αn . Ao}. Then there are dMα1
∈ DM

α1
, . . . , dMαn

∈ DM
αn

such that for all φ ∈ assign(M),

M ⊨φ[(x1:α1)7→dMα1
]...[(xn:αn)7→dMαn

] Ao.

But then by assumption, dMα1
, . . . , dMαn

realize p. □

Proposition 4.20. If T is complete, then every isolated type p can be realized.

Proof Let {p} = [Ao]. Since p is isolated, T ∪{Ao} is satisfiable. LetM ⊨ T . Since T is complete,
we must have T ⊨ ∃x1 : α1, . . . , , xn : αn . Ao. But then p is isolated implies we can realize p in
M . □

We now aim to prove the omitting types theorem. We first show that given a theory T in a
countable language, we can extend T to a theory T ′ (also in a countable language) such that T ′ is
satisfiable by a frugal general model and the axioms of T ′ ensure that a given n-type is omitted.
Note that there exists a sound and complete proof system for Alonzo called A [7, Corollary 8.13].
We include the following definitions from [7, Appendix C].

Definition 4.21. Let T = (L,Γ) and P be a proof system for Alonzo. T is syntatically complete
in P if either T ⊢P Ao or T ⊢P ¬Ao holds for all Ao ∈ E(L).

Definition 4.22. Let T = (L,Γ) and P be a proof system for Alonzo. T is extensionally complete
in P if for all Ao of the form Fα→β = Gα→β , there is a closed expression Cα such that:

1. T ⊢P Cα↓.

2. T ⊢P (Fα→β↓ ∧Gα→β↓) ⇒ (Fα→β Cα ≃ Gα→β Cα ⇒ Fα→β = Gα→β).

Lemma 4.23. Let L = (B, C) with ∥L∥ = ω, T = (L,Γ), and p be a non-isolated n-type. For
each α ∈ T (L), let Cα be a well-ordered set of constants such that Cα ∩ C = ∅ and |Cα| = ∥L∥.
Let C0 =

⋃
α∈T (L)

Cα, C′ = C ∪ C0, and L′ = (B, C′). If T is consistent in A, then there is a theory

T ′ = (L′,Γ′) such that:

1. T ≤ T ′.
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2. T ′ is consistent in A.

3. T ′ is syntactically complete in A.

4. T ′ is extensionally complete in A.

5. ∥L∥ = ∥L′∥ = ω.

6. For all cα1 , . . . , cαn ∈ C0, there is Ao ∈ p such that

T ′ ⊢A ¬Ao[(x1 : α1) 7→ cα1
] . . . [(xn : αn) 7→ cαn

].

Proof We provide a modified version of the construction in Lemma A.1. By construction, ∥L′∥ =
∥L∥ and so condition 5 is satisfied.

Now well-order the sentences of L′ and n-tuples cα1 , . . . , cαn ∈ C0. For each ordinal ξ < ∥L′∥,
denote the ξth sentence in the well-order as Aξ

o. For each ξ ≤ ∥L′∥, we will define a set of sentences
Γξ of L′ by induction such that

ζ < ξ implies Γζ ⊆ Γξ (⋆)

Base: ξ = 0. Then Γ0 = Γ.
Step: Let ζ = 2i for i ≥ 0.

Case 1. ξ = 2i+ 1. We consider three subcases:

Subcase a. Γζ ∪ {Ai
o} is consistent in A. Then Γξ = Γζ ∪ {Ai

o}.
Subcase b. Γζ ∪{Ai

o} is inconsistent in A and Ai
o does not have the form Bα→β = Cα→β .

Then Γξ = Γζ .

Subcase c. Γζ ∪ {Ai
o} is inconsistent in A and Ai

o has the form Bα→β = Cα→β . Then

Γξ = Γζ ∪ {¬(Bα→β↓ ∧Cα→β↓ ∧Bα→β cα ≃ Cα→βcα)}

where cα is the first constant in Cα that does not occur in Γζ or Ai
o.

Case 2. ξ = 2i+2. Let c̄i = cα1 , . . . , cαn be the ith n-tuple in the well-order of n-tuples from
C0. W.l.o.g. let dα1 , . . . ,dαj be the constants in c̄iα that are not in Ai

o. Define4

Bo ≡ Ai
o ∧ (dα1

= dα1
∧ . . . ∧ dαn

= dαn
).

Let eβ1 , . . . , eβm be the constants in Bo that are in C0 \ c̄iα. Define

Co ≡ ∃y1 : β1, . . . , , ym : βm . Bo[cα1
7→ (x1 : α1)]

. . . [cαn
7→ (xn : αn)][eβ1

7→ (y1 : β1)]

. . . [eβm
7→ (ym : βm)].

That is, we remove any constant from C0 in Bo by either existentially quantifying
over it or replacing it with a (free) variable.

Because p is non-isolated, there is a formula Do ∈ p such that

T ̸⊨ ∀x1 : α1, . . . , xn : αn . Co ⇒ Do. (†)

Let Γξ = Γζ+1 ∪ {¬Do[(x1 : α1) 7→ cα1
] . . . [(xn : α1) 7→ cαn

]}.
4In contrast to the presentations of this construction in, say, [12, Theorem 4.2.3] and [11, 7.2.1], we want to ensure

that we have n free variables in Co to be in accordance with the definition of p being non-isolated.
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It is easy to verify by induction that (⋆) holds. Let Γ′ =
⋃
ξ<ω

Γξ and T ′ = (L′,Γ′). Since T ≤ T ′,

condition 1 holds. Conditions 3 and 4 follow by a similar argument to the one in Lemma A.1.
Case 2 of the inductive construction ensures that condition 6 holds. Lemma A.1 handles the fact
that additions to Γ′ from case 1 of the inductive construction preserve consistency. Thus, it only
remains to show that case 2 preserves consistency.

We will show that for all ξ = 2i + 2 < ∥L′∥, Γξ is satisfiable. Let Co and Do be from step
ξ = 2i + 2. (†) implies that there is a general model M ⊨ T and dMα1

∈ DM
α1
, . . . , dMα1

∈ DM
α1

such
that for all φ ∈ assign(M),

M ⊨φ[(x1:α1)7→dMα1
]...[(xn:αn)7→dMαn

] Co ∧ ¬Do.

Therefore we can turn M = (D, I) into a model of

¬Do[(x1 : α1) 7→ cα1
] . . . [(xn : α1) 7→ cαn

]

by expanding I such that I(cαi
) = dMαi

for 1 ≤ i ≤ n. By [7, Corollary 8.15], Γξ is consistent in A.
Therefore, condition 2 holds, completing the proof. □

Proposition 4.24. Let T = (L,Γ) be consistent in A where L = (B, C). Let L′ = (B, C ∪ C0) and
T ′ = (L′,Γ′) be the language and theory obtained from Lemma 4.23. Let M = (D, I) be the frugal
general model obtained from Theorem A.2 such that M ⊨ T ′. Then for all dMα ∈ DM

α , there exists
cα ∈ C0 such that (⋆) I(cα) = dMα .

Proof We will prove (⋆) by structural induction on types. Recall from Theorem A.2 that for any
α ∈ T (L), Eα = {Aα | Aα ∈ E(L′) that is closed} and for all α ∈ T (L′),

(1α) Dα = {V (Aα) | Aα ∈ Eα and V (Aα) is defined};

(2α) V (Aα) is defined iff Γ′ ⊢A Aα↓ for all Aα ∈ Eα;

(3α) V (Aα) = V (Bα) iff Γ′ ⊢A Aα = Bα for all Aα,Bα;

and I = V ↾C′ . Let dMα ∈ DM
α . Then dMα = V (Aα) for some Aα ∈ Eα such that V (Aα) is defined

by (1α). Since M ⊨ ∃x : α . (Aα = x) and T ′ is syntactically complete, then by [7, Theorem 8.12],
Γ′ ⊢A ∃x : α . (Aα = x). Since ¬∃x : α . (Aα = x) is inconsistent with T ′, then for some ξ < ∥L′∥,
we have that at step ξ = 2i+ 1 of Lemma 4.23,

Γξ = Γζ ∪ {¬(Bα→β↓ ∧Cα→β↓ ∧Bα→β cα ≃ Cα→β cα)}

for some cα where Bα→o ≡ λx : α . To and Cα→o ≡ λx : α . x ̸= Aα.
5 Since function abstractions

are always defined and T ′ is syntatically complete and consistent, we have that Γ′ ⊢A cα = Aα.
Since I(cα) = V (Aα) = dMα by (3α), the claim holds. □

Theorem 4.25 (Omitting types theorem). Let L = (B, C) such that ∥L∥ = ω, T = (L,Γ) be
consistent in A, and p be a non-isolated n-type of T . Then there exists a frugal general model
M ⊨ T that omits p.

5¬∃x : α . Aα = x stands for (λx : α . To) ̸= (λx : α . Aα ̸= x)
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Proof Let T ′ ≥ T be obtained from Lemma 4.23 and let M ′ = (D, I ′) ⊨ T ′ be the frugal
general model obtained from Theorem A.2 applied to T ′. Suppose that dMα1

∈ DM ′

α1
, . . . , dMαn

∈ DM ′

αn
.

Proposition 4.24 implies that there are constants c̄jα such that for all 1 ≤ j ≤ n, I(cαj
) = dMαj

.

Let this n-tuple of constants be the ith element in the enumeration of n-tuples from C0 in Lemma
4.23. At stage ξ = 2i+ 2, we ensure that ¬Do[(x1 : α1) 7→ cα1 ] . . . [(xn : α1) 7→ cαn ] ∈ Γ′ for some
Do ∈ p. Thus for all φ ∈ assign(M ′),

M ′ ⊨φ[(x1:α1)7→dMα1
]...[(xn:α1)7→dMαn

] ¬Do.

Since dMα1
, . . . , dMαn

were arbitrary, M ′ omits p; and so, the reduct M of M ′ to L omits p and
M ⊨ T . □

We can extend the result to omit a countable number of non-isolated types.

Corollary 4.26. Let L = (B, C) such that ∥L∥ = ω, T = (L,Γ) be consistent in A, and P be a
countable set of non-isolated types of T . Then there exists a frugal general model M ⊨ T that omits
all p ∈ P .

Proof (Sketch) We will show how to augment Lemma 4.23 such that condition 6 becomes the
following: for all finite sequences of constants cα1 , . . . , cαn from C0 and p ∈ P , if p is an n-type,
then there is Ao ∈ p such that

T ′ ⊢A ¬Ao[(x1 : α1) 7→ cα1 ] . . . [(xn : αn) 7→ cαn ].

To this end, let {p1, p2, . . .} be a well-order of P and {c̄1, c̄2, . . .} be a well-order of all finite sequences
from C0. Now fix a bijection f : N× N → N.

We change the case where ξ = 2i+2 in the inductive construction in Lemma 4.23 in the following
manner. We have i = f(m,n) for some m,n. Now if pm is a |c̄n|-type, then proceed in the same
way as in the original lemma. Otherwise, let Γξ = Γζ+1.

Now let T ′ ≥ T be obtained from Lemma 4.23 with the refinements mentioned above and M ′

be the frugal general general model obtained from Theorem A.2 applied to T ′. Then the reduct M
of M ′ to L omits all p ∈ P and M ⊨ T . □
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Chapter 5

First-Order Logic

The notions of language, term, formula, and theory from first-order logic are easily expressible in
Alonzo. We will see how to capture first-order theories either syntactically or semantically.

5.1 Syntactic First-Order Theories

In this section we will formalize first-order theories (and languages) from a syntactic point of view.
That is, a first-order theory (and language) can be captured explicitly using the syntax of Alonzo.

Definition 5.1. A language L = (B, C) is called first-order if B = {a} and members of C have the
form c(a×···×a)→o or c(a×···×a)→a.

Definition 5.2. Let L = (B, C) be a first-order language. The set of first-order L-terms Tω,ω is
the smallest set satisfying:

1. ca ∈ Tω,ω for all ca ∈ C,

2. (x : a) ∈ Tω,ω for all variables (x : a),

3. A1
a, . . . ,A

n
a ∈ Tω,ω and c(a×···×a)→a ∈ C with arity n implies

c(A1
a, . . . ,A

n
a) ∈ Tω,ω.

Definition 5.3. Let L = (B, C) be a first-order langauge. The set of atomic first-order L-formulas
Φaω,ω is the smallest set satisfying:

1. A1
a,A

2
a ∈ Tω,ω implies A1

a = A2
a ∈ Φaω,ω,

2. A1
a, . . . ,A

n
a ∈ Tω,ω and c(a×···×a)→o with arity n implies

c(A1
a, . . . ,A

1
a) ∈ Φaω,ω.

Definition 5.4. Let L = (B, C) be a first-order langauge. The set of first-order L-formulas Φω,ω
is the smallest set satisfying:

1. Ao ∈ Φω,ω for all Ao ∈ Φaω,ω,

2. A1
o,A

2
o ∈ Φω,ω implies (¬A1

o), (A
1
o ∨A2

o), (A
1
o ∧A2

o), (A
1
o ⇒ A2

o),
(A1

o ⇔ A2
o) are in Φω,ω,
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3. Ao ∈ Φω,ω implies (∃x : a . Ao), (∀x : a . Ao) are in Φω,ω.

Definition 5.5. Let T = (L,Γ) be a theory. Call T a syntactic first-order theory if Γ ⊆ Φω,ω.

The specific base type a ∈ B is arbitrary; as in first-order logic the universe is made up entirely
of individuals. It is easy to modify Definitions 5.1 – 5.5 to accomodate many-sorted first-order logic
through a correspondence between base types and sorts.

First-order notions that depend on the relationship between models carry over as well, though
we need a way of dealing with higher-order domains. A näıve approach would be to treat those
domains as containing only the relevant interpretations of c(a×···×a)→o and c(a×···×a)→a, but this
is incorrect due to the definability of various interpretations of Alonzo expressions. For example,
the identity function (λx : α → α . x) is defined for all α ∈ T (L) [7, Lemma 5.4]. We resolve the
problem by adapting the following convention:

Definition 5.6. Given an L-structure M = (M,F ,R) from first-order logic, identify it with the
corresponding first-order full interpretation N = (D, I) of L = ({a}, C) where

1. Da =M ;

2. D is the full frame generated by the singular base domain Da;

3. For each f :Mn →M ∈ F , we have c(a×···×a)→a ∈ C where for all m1, . . . ,mn ∈ Da,

I(c)(m1, . . . ,mn) = fM(m1, . . . ,mn);

4. For each R :Mn → {t, f} ∈ F , we have c(a×···×a)→o ∈ C where for all m1, . . . ,mn ∈ Da,

I(c)(m1, . . . ,mn) = RM(m1, . . . ,mn).

This embedding preserves isomorphisms across logics:

Proposition 5.7. Let T be an L-theory from first-order logic. Suppose M , N are (first-order)
isomorphic models of T . Let L′ = (B, C) be the corresponding first-order language in Alonzo,
T ′ = (L′,Γ) be the corresponding first-order theory in Alonzo, and M ′ = (DM , IM ), N ′ = (DN , IN )
be the corresponding first-order full interpretations of T ′. Then M ′, N ′ are isomorphic (higher-
order) standard models of T ′.

Proof By assumption, we have an isomorphism j : M → N . Now let Θ = {θα | α ∈ T (L)} be a
set of mappings from DM

α to DN
α defined by:

1. θo is the identity function on DM
o ;

2. θa(d) = j(d) for all d ∈ DM
a ;

3. For all α, β ∈ T (L) and fα→β ∈ DM
α→β , θα→β(f) is the unique function gα→β ∈ DN

α→β such

that for all d ∈ DM
α , g(θα(d)) ≃ θβ(f(d));

1

4. θα×β(a, b) = (θα(a), θβ(b)) for all α, β ∈ T (L) and a ∈ DM
α , b ∈ DN

β .

1This definition is well-defined since there is a bijection from DM
a to DN

a and DM and DN are full.

37



M.Sc. Thesis – Dennis Y. Zvigelsky; McMaster University – Dept. of Computing and Software

It is easy to see that conditions (1)–(4) of an isomorphism [7, Ch. 5.6] are satisfied, and condition
(5) follows from (2) and (3) above. Since DM and DN are full, they are isomorphic standard models
of L′. □

While our choice of embedding models of first-order logic by way of a corresponding standard
model is sufficient, it is not necessary; for example, we could have instead added in all of the
higher-order elements necessary to satisfy definability criteria.

5.2 Semantic First-Order Theories

In this section we will formalize first-order theories (and languages) from a semantic point of view.
That is, we will show how a first-order theory (and language) can be captured using the semantics
of Alonzo.

The development in the previous section suggests that we can extend any general model of a
first-order theory to a standard model. Indeed, just extend a given (non-full) interpretation of L to
the corresponding first-order full interpretation of L. We can define a first-order theory semantically,
as follows:

Definition 5.8. Let L = (B, C) be a language and T = (L,Γ) be a theory. T is a semantic first-
order theory if every model M of T extends to a standard model N of T where DN

a = DM
a for all

a ∈ B.

The advantages of Definition 5.8 over Definition 5.5 are the following: (1) it captures the notion
of being agnostic towards higher-order domains: a first-order theory T is one such that for any
model M of T , you can lift M to a standard model of T by making each domain full; and (2) it
also captures syntactic first-order theories as they are a proper subset.
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Chapter 6

Conclusion

6.1 Summary and Insights

In Chapter 3, we developed the corresponding sharpened upward and downward Löwenheim-Skolem
theorems for Alonzo. In order to do this, we needed a suitable notion of an inclusion in the context
of the submodel and strong submodel relations. Recall from Definition 3.3 that I = {ια | α ∈ T (L)}
is an inclusion if it is an embedding and ιa(d) = d for all a ∈ B. Unlike in first-order logic, not
all maps ια act as the identity, as this would be problematic: Suppose we had an inclusion from
M into N and that DM

a ⊂ DN
a for some a ∈ B. Then DM

a→a ∩ DN
a→a = ∅ since DM

a ̸= DN
a .

Lemma 3.4 justifies our definition by providing a way to exactly recover the corresponding function
fMα→β ∈ DM

α→β from the extensional behaviour of fNα→β = ι(fMα→β) ∈ ran(ια). However, the fact

that it is possible that fMα→β ̸= ι(fMα→β) means we have to keep track of inclusions when considering

strong chains. Unlike in first-order logic, members f iα→β ∈ DMi

α→β for some strong chain member

Mi embed into the union of the strong chain (of order type σ) as limits lim
x→σ

ιx,i(f iα→β) in which we

take repeated compositions of inclusions.
Now there are two main points of interest related to the proofs of Corollary 3.9, i.e., the union

general model of a strong chain is a strong extension of all the chain members; and Corollary 3.16,
i.e, the higher-order Tarski-Vaught test. First, notice that both are corollaries of more general
theorems, which are Proposition 3.8 and Proposition 3.15 respectively. The generality comes from
the fact that in Alonzo, formulas are special kinds of expressions/terms of type o, while in first-
order logic, formulas and terms are entirely different species. Second, the fact that Alonzo admits
undefined expressions required us to have, in some instances, four cases when proving statements by
induction on the complexity of expressions. For example, consider (E4) in Proposition 3.15. Notice
that Case 1 does not use the assumption of the proposition, while Case 2 does. If we translated the
results to a logic that is a version of Church’s type theory that does not admit undefined expressions,
e.g., Peter Andrews’ Q0 [1], we would alter the argument to consider Cases 1 – 4 concurrently, and
thus would have to appeal to the assumption and the induction hypothesis simultaneously in a
single step of the proof.

In Chapter 4, we defined model-theoretic types for Alonzo and proved some theorems related
to them. Notably, we showed that if two sequences in some interpretation M satisfy the same set
of LnA formulas, then we can construct an automorphism of a strong extension of M that sends one

39



M.Sc. Thesis – Dennis Y. Zvigelsky; McMaster University – Dept. of Computing and Software

sequence to the other and fixes all elements otherwise, up to an inclusion I. We ended off Chapter 4
by showing that the Stone topology with [Ao] as basic open sets functions similarly as in first-order
logic and we also proved a higher-order version of the omitting types theorem. Since the Henkin
construction for Church’s type theory is more general than the one in first-order logic, the modified
Henkin construction for omitting a particular type is more intricate (see Proposition 4.24) relative
to the one in first-order logic.

In Chapter 5, we showed that theories from first-order logic can be captured either syntactically,
through a recursive method for capturing the language of first-order logic; or semantically, by
considering those theories whose models extend to standard models.

We argue that the results of this thesis are easily translatable to different versions of Church’s
type theory (without undefinedness). Translating the work in Chapter 3 related to the Löwenheim-
Skolem theorems can be done with little effort: since versions of Church’s type theory share a
common syntax, proofs by induction on the complexity of types (e.g., the higher-order Tarski-
Vaught test) can be done similarly. The fact that in the proofs of Propositions 3.8 and 3.15
undefinedness forced us to split the cases of the structural induction into subcases – which have
corresponding first-order analogues – is a virtue. Many constructions, like the ones involving model-
theoretic types in Chapter 4, hinge on the Compactness Theorem [7, Corollary 8.16]; and so, there
is no difficulty in extending such results to other versions of Church’s type theory, which have a
corresponding theorem due to the Henkin construction. To use Q0 as an example, [9, Theorems
5501 and 5503] correspond to Henkin’s Theorem (Theorem A.2) and the Compactness Theorem [7,
Corollary 8.16] respectively. In addition to the caveats related to inclusions mentioned above, the
added complexity in, say, Corollary 4.9 is with regards to the type hierarchy of Alonzo, such that
the proof required nested induction. Since versions of Church’s type theory have similar hierarchies
of types, this poses no issue in extrapolability.

Finally, this thesis demonstrates the difference between higher-order and first-order model the-
ory. The definitions, lemmas, propositions, and theorems in Chapters 3 and 4 demonstrate the
added complexity of having a built-in theory of functions in the logic. As these results utilize
the general semantics, they can be thought of as pertaining (more specifically) to a many-sorted
first-order theory of functions. In contrast, results related to the standard semantics pertain (more
generally) to an ω-order logic.

6.2 Future and Related Work

We list some open problems of interest.

1. The Hanf number of a logic L is the least infinite cardinal κ such that every L-sentence of
L that has a model of size κ has arbitrarily large models. Let L = (B, C) be a language of
Alonzo. The Hanf number of Alonzo with respect to the general semantics is ω + ∥L∥, by
Theorem 3.14. What is the Hanf number of Alonzo with respect to the standard semantics?
We can reduce the problem to proving an equisatisfibility result between sentences of Alonzo
and sentences of Hintikka’s version of simple type theory in [10]. Theorems III and IV in [10]
imply that sentences of Hintikka’s formulation of simple type theory are equisatisfible with
sentences of second-order logic. We thus conjecture that the Hanf number of Alonzo with the
standard semantics is the same as that of second-order logic, which is, by Corollary 5.7 in
[18],

sup{α | α is a Σ2 definable ordinal}.
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2. Second-order logic has received a fair amount of attention in the last few years [8, 17, 19].
How translatable are these results to versions of Church’s type theory?

3. Continue the development of analogues from first-order logic. Examples include the ultraprod-
uct construction, saturated models, quantifier elimination, and Ehrenfeucht-Fräıssé games.

4. Demonstrate that first-order logic is as strong as Alonzo with the general semantics as per
Lindström’s theorem.
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Appendix A

Henkin’s Theorem for A

The following is Lemma C.2 taken verbatim from [7].

Lemma A.1 (Extension Lemma). Let T = (L,Γ) be a theory of Alonzo. If T is consistent in A,
then there is a theory T ′ = (L′,Γ′) such that:

1. T ≤ T ′.

2. T ′ is consistent in A.

3. T ′ is syntactically complete in A.

4. T ′ is extensionally complete in A.

5. ∥L′∥ = ∥L∥.

Proof Let L = (B, C) and κ = ∥L∥. For each α ∈ T (L), let Cα be a well-ordered set of new
constants of type α such that |Cα| = κ. Define L′ = (B, C ∪ C′) where

C′ =
⋃

α∈T (L)

Cα.

Clearly, |C′| = κ, so ∥L′∥ = κ, and so ∥L′∥ = ∥L∥. Therefore, condition 5 is satisfied.

Well-order the sentences in E(L′) and, for each ordinal ξ < κ, let Sξo be the ξ-th sentence of L′

in this well-order.

For each ordinal ξ ≤ κ, we will define a set Γξ of sentences of L
′ by transfinite recursion so that

(A) ζ ≤ ξ implies Γζ ⊆ Γξ and (B) the cardinality of the set of constants in C′ occurring in the
sentences of Γξ is finite if ξ is finite and is less than or equal to the cardinality of ξ if ξ is infinite.

Case 1: ξ = 0. Then Γ0 = Γ.

Case 2: ξ is a successor ordinal ζ + 1. There are three subcases:

Subcase 2.a: Γζ ∪ {Sζo} is consistent in A. Then Γζ+1 = Γζ ∪ {Sζo}.

Subcase 2.b: Γζ ∪ {Sζo} is inconsistent in A and Sζo does not have the form Aα→β = Bα→β .
Then Γζ+1 = Γζ .

44



M.Sc. Thesis – Dennis Y. Zvigelsky; McMaster University – Dept. of Computing and Software

Subcase 2.c: Γζ ∪ {Sζo} is inconsistent in A and Sζo has the form Aα→β = Bα→β . Then

Γζ+1 = Γζ ∪ {¬(Aα→β↓ ∧Bα→β↓ ∧Aα→β cα ≃ Bα→β cα)}

where cα is the first constant in Cα that does not occur in Γζ or Sζo.

Case 3: ξ is a limit ordinal. Then

Γξ =
⋃
ζ<ξ

Γζ .

It is easy to verify by transfinite induction that conditions (A) and (B) above are satisfied for all
ordinals ξ ≤ κ.

We will now prove by transfinite induction that Γξ is consistent in A for all ordinals ξ ≤ κ. We
have the same three subcases as above:

Case 1: ξ = 0. T = (L,Γ) is consistent in A by assumption. Hence Γ0 = Γ must be consistent in
A.

Case 2: ξ is a successor ordinal ζ + 1. We have the same three subcases as above:

Subcase 2.a: Γζ ∪ {Sζo} is consistent in A. Hence Γζ+1 = Γζ ∪ {Sζo} is trivially consistent in
A.

Subcase 2.b: Γζ ∪ {Sζo} is inconsistent in A and Sζo does not have the form Aα→β = Bα→β .
Hence Γζ+1 = Γζ is consistent in A by the induction hypothesis.

Subcase 2.c: Γζ ∪ {Sζo} is inconsistent in A and Sζo has the form Aα→β = Bα→β . Suppose

Γζ+1 = Γζ ∪ {¬(Aα→β↓ ∧Bα→β↓ ∧Aα→β cα ≃ Bα→β cα)}

is inconsistent in A. Then

Γζ ⊢A Aα→β↓ ∧Bα→β↓ ∧Aα→β cα ≃ Bα→β cα

by the Deduction Theorem [7, Theorem A.50], the notational definition of ¬, and the Tautol-
ogy Rule [7, Corollary A.46]. Let P be a proof of

Aα→β↓ ∧Bα→β↓ ∧Aα→β cα ≃ Bα→β cα

from a finite subset ∆ of Γζ , (x : α) be a variable that does not occur in P or ∆, and P ′ be
the result of replacing each occurrence of cα in P with (x : α). P ′ is a proof of

Aα→β↓ ∧Bα→β↓ ∧Aα→β (x : α) ≃ Bα→β (x : α)

from ∆ since cα does not occur in Γζ , Aα→β , or Bα→β .

∆ ⊢A Aα→β↓ ∧Bα→β↓ ∧Aα→β (x : α) ≃ Bα→β (x : α). (1)

∆ ⊢A Aα→β↓. (2)

∆ ⊢A Bα→β↓. (3)

∆ ⊢A Aα→β (x : α) ≃ Bα→β (x : α). (4)

∆ ⊢A ∀x : α . Aα→β x ≃ Bα→β x. (5)

∆ ⊢A Aα→β = Bα→β ⇔ ∀x : α . Aα→β x ≃ Bα→β x. (6)

∆ ⊢A Aα→β = Bα→β . (7)
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(1) is given; (2), (3), and (4) follow from (1) by the Tautology Rule [7, Corollary A.46]; (5)
follows from (4) by Universal Generalization [7, Theorem A.30] since (x : α) does not occur
in ∆; (6) follows from (2), (3), and Axiom A3 by the Substitution Rule [7, Theorem A.31]
and Alpha-Conversion [7, Theorem A.18]; and (7) follows from (6) and (5) by Rule R2′ [7,
Lemma A.2].

Hence (a) Γζ ⊢A Aα→β = Bα→β . However, Γζ ∪ {Aα→β = Bα→β} is inconsistent in A in
Subcase 2.c, and so (b) Γζ ∪ {Aα→β = Bα→β} ⊢A Fo. (a) and (b) imply Γζ is inconsistent in
A, which contradicts the induction hypothesis. Therefore, Γζ+1 must be consistent in A.

Case 3: ξ is a limit ordinal. Γζ is consistent in A for all ζ < ξ by the induction hypothesis. Then
each finite subset of Γξ is a subset of some Γζ with ζ < ξ, and so Γξ must be consistent in A.

Define Γ′ = Γκ and T ′ = (L′,Γ′). Then T ≤ T ′ and T ′ is consistent in A. Therefore, conditions
1 and 2 are satisfied.

Now all we have left to show is that T ′ is syntactically and extensionally complete in A. Let So
be any sentence of L′. Then So = Sζo for some ζ < κ.

If Γζ ∪{So} is consistent in A, then So ∈ Γζ+1 ⊆ Γ′ by Subcase 2.a, and so T ′ ⊢A So. Otherwise
Γζ ∪ {So} ⊢A Fo, so Γζ ⊢A ¬So by the Deduction Theorem [7, Theorem A.50] and the notational
definition of ¬, and so T ′ ⊢A ¬So. Hence T ′ is syntactically complete in A. Therefore, condition 3
is satisfied.

Assume that So has the form Aα→β = Bα→β . If Γζ ∪ {So} is consistent in A, then again
T ′ ⊢A So, and so

T ′ ⊢A (Aα→β↓ ∧Bα→β↓) ⇒ (Aα→β Cα ≃ Bα→β Cα ⇒ So)

for all expressions Cα ∈ E(L′) by the Tautology Rule [7, Corollary A.46]. Notice that there is some
expression Cα that is closed with T ′ ⊢A Cα↓. If Γζ ∪ {So} is inconsistent in A, then

T ′ ⊢A ¬(Aα→β↓ ∧Bα→β↓ ∧Aα→β cα ≃ Bα→β cα)

for some cα ∈ C′ by Subcase 2.c, and so

T ′ ⊢A (Aα→β↓ ∧Bα→β↓) ⇒ (Aα→β cα ≃ Bα→β cα ⇒ So)

by the Tautology Rule [7, Corollary A.46]. Notice that cα is closed and T ′ ⊢A cα↓ by Axiom A5.2.
Hence T ′ is extensionally complete in A. Therefore, condition 4 is satisfied.

This completes the proof of the Extension Lemma. □

The following is Theorem C.3 taken verbatim from [7].

Theorem A.2 (Henkin’s Theorem). Every theory of Alonzo that is consistent in A has a frugal
general model.

Proof Let T = (L,Γ) be a theory that is consistent in A, and let T ′ = (L′,Γ′) be an extension of T
as described in the Extension Lemma. For γ ∈ T (L′), define Eγ = {Aγ | Aγ ∈ E(L′) that is closed}.

We will simultaneously define, by recursion on the syntactic structure of the types in T (L′), a
frame D = {Dγ | γ ∈ T (L′)} and a partial function V on the closed expressions in E(L′) so that
the following conditions hold for all γ ∈ T (L′):
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(1γ) Dγ = {V (Aγ) | Aγ ∈ Eγ and V (Aγ) is defined}.

(2γ) V (Aγ) is defined iff Γ′ ⊢A Aγ↓ for all Aγ ∈ Eγ .

(3γ) V (Aγ) = V (Bγ) iff Γ′ ⊢A Aγ = Bγ for all Aγ ,Bγ ∈ Eγ .

Case 1: γ = o. Define Do = {f,t}. For each Ao ∈ Eo, define V (Ao) = t if Γ′ ⊢A Ao and
V (Ao) = f if Γ′ ⊢A ¬Ao. By the syntactic completeness of T ′ in A, exactly one of Γ′ ⊢A Ao and
Γ′ ⊢A ¬Ao holds. Then the definition of V on Eo is well-defined, (a) V is total on Eo, and (1o) is
satisfied. (b) Γ′ ⊢A Ao↓ for all Ao ∈ Eo by Proposition [7, Proposition A.8]. (a) and (b) imply
(2o) is satisfied. (3o) is satisfied by the definition of V on Eo and the Tautology Rule [7, Corollary
A.46]. Therefore, (1o), (2o), and (3o) are satisfied.

Case 2: γ = a. For each Aa ∈ Ea, define

V (Aa) = {Ba | Ba ∈ Ea and Γ′ ⊢A Aa = Ba}

if Γ′ ⊢A Aa↓, and otherwise define V (Aa) to be undefined. Define

Da = {V (Aa) | Aa ∈ Ea and V (Aa) is defined}.

The definitions of Da and V on Ea obviously satisfy (1a) and (2a). They also satisfy (3a) since
Γ′ ⊢A Aa = Ba is an equivalence relation over Ea. Notice that Da is nonempty by (2a) and the
extensional completeness of T ′ in A.

Case 3: γ = α→ β. For each Fα→β ∈ Eα→β , define V (Fα→β) to be undefined if Γ′ ⊢A Fα→β↑ and
otherwise define V (Fα→β) to be the (partial or total) function from Dα to Dβ whose value at an
argument V (Aα) ∈ Dα is V (Fα→βAα) if V (Fα→βAα) is defined and is undefined if V (Fα→βAα) is
undefined. We must show that this definition does not depend on the choice of the particular closed
Aα to represent the argument. If V (Aα) = V (Bα), then Γ′ ⊢A Aα = Bα by (3α), and so Γ′ ⊢A

Fα→βAα ≃ Fα→β Bα by part 5 of the Equality Rules [7, Lemma A.13], and so V (Fα→βAα) ≃
V (Fα→β Bα) by (2β), (3β), and the definition of ≃. Finally, define

Dα→β = {V (Aα→β) | Aα→β ∈ Eα→β and V (Aα→β) is defined}.

(1α→β) and (2α→β) are satisfied by the definitions of Dα→β and V on Eα→β . We will now show
that (3α→β) is satisfied. Suppose V (Fα→β) = V (Gα→β). Then Γ′ ⊢A Fα→β↓ and Γ′ ⊢A Gα→β↓
by (2α→β). Since T ′ is extensionally complete in A, there is some Cα ∈ Eα such that Γ′ ⊢A Cα↓
and

Γ′ ⊢A (Fα→β↓ ∧Gα→β↓) ⇒ (Fα→β Cα ≃ Gα→β Cα ⇒ Fα→β = Gα→β).

Then
V (Fα→β Cα) ≃ V (Fα→β)(V (Cα)) ≃ V (Gα→β)(V (Cα)) ≃ V (Gα→β Cα);

so Γ′ ⊢A Fα→β Cα ≃ Gα→β Cα by (2β), (3β), and the definition of ≃; and so Γ′ ⊢A Fα→β = Gα→β

by the Tautology Rule [7, Corollary A.46]. Now suppose Γ′ ⊢A Fα→β = Gα→β . Then, for all
Cα ∈ Eα,

Γ′ ⊢A Fα→β Cα ≃ Gα→β Cα

by part 4 of the Equality Rules [7, Lemma A.13]; so V (Fα→β Cα) ≃ V (Gα→β Cα) by (2β), (3β),
and the definition of ≃; and so

V (Fα→β)(V (Cα)) ≃ V (Fα→β Cα) ≃ V (Gα→β Cα) ≃ V (Gα→β)(V (Cα)).
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Hence V (Fα→β) = V (Gα→β) by the definition of V on Eα→β . Therefore, (3α→β) is satisfied, and
this is the end of Case 3.

Case 4: γ = α× β. Define Dα×β = Dα ×Dβ . For each Aα×β ∈ Eα×β , define

V (Aα×β) = (V (fst(α×β)→αAα×β), V (snd(α×β)→βAα×β))

if (a) Γ′ ⊢A Aα×β↓, and otherwise define V (Aα×β) to be undefined. (a) implies Γ′ ⊢A

(fst(α×β)→αAα×β)↓ and Γ′ ⊢A (snd(α×β)→βAα×β)↓ by Axioms A5.5, A7.2, A7.3, and A7.4 and
Universal Instantiation [7, Theorem A.14], so V (fst(α×β)→αAα×β) and V (snd(α×β)→βAα×β) are

defined by (2α) and (2β). Hence the definition of V on Eα×β is well-defined.
(2α×β) is obviously satisfied by the definitions of Dα×β and V on Eα×β .
Let D = {V (Aγ) | Aγ ∈ Eα×β and V (Aγ) is defined}. We must show that Dα×β = D to show

that (1α×β) is satisfied. Let p ∈ Dα×β . Then p = (a, b) for some a ∈ Dα and b ∈ Dβ , and so
a = V (Aα) and b = V (Bβ) for some Aα ∈ Eα and Bβ ∈ Eβ by (1α) and (1β), respectively. Then

(V (Aα), V (Bα))

= (V (fst(α×β)→α (Aα,Bβ)), V (snd(α×β)→β (Aα,Bβ))) (1)

= V ((Aα,Bβ)). (2)

(1) is by (3α), (3β), and Lemma [7, Lemma A.54]; and (2) is by the definition of V on Eα×β since
V ((Aα,Bβ)) is defined by (2α), (2β), (2α×β), and Axiom A7.1. Hence p ∈ D, and so Dα×β ⊆ D.
Now let p ∈ D. Then p = V (Aα×β) for some Aα×β ∈ Eα×β , and so

p = (V (fst(α×β)→αAα×β), V (snd(α×β)→βAα×β)).

Hence p ∈ Dα×β by (1α) and (1β), and so D ⊆ Dα×β . Therefore, (1
α×β) is satisfied.

Now we will show that (3α×β) is satisfied.

V (Aα×β) = V (Bα×β)

iff (V (fst(α×β)→αAα×β), V (snd(α×β)→βAα×β)) =

(V (fst(α×β)→αBα×β), V (snd(α×β)→β Bα×β)) (1)

iff Γ′ ⊢A fst(α×β)→αAα×β = fst(α×β)→αBα×β and

Γ′ ⊢A snd(α×β)→βAα×β = snd(α×β)→β Bα×β (2)

iff Γ′ ⊢A (fst(α×β)→αAα×β , snd(α×β)→βAα×β) =

(fst(α×β)→αBα×β , snd(α×β)→β Bα×β) (3)

iff Γ′ ⊢A Aα×β = Bα×β . (4)

(1) is by the definition of V on Eα×β ; (2) is by (3α) and (3β); (3) is by Axioms A5.4, A5.5, A7.2,
A7.3, and A7.5, the Equality Rules [7, Lemma A.13], Universal Instantiation [7, Theorem A.14],
and the Tautology Rule [7, Corollary A.46]; (4) is by (2α×β), Axiom A7.4, Universal Instantiation
[7, Theorem A.14], and the Equality Rules [7, Lemma A.13]. Therefore, (3α×β) is satisfied, and
this is the end of Case 4.

Therefore, we have shown that D is a frame and conditions (1γ), (2γ), and (3γ) are satisfied for
all γ ∈ T (L′). V clearly maps each constant of L′ of type γ to a member of Dγ . Hence M ′ = (D, I)
is an interpretation of L′ where I = V ↾C′ and C′ is the set of constants of L′.
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We will next show that M ′ is a general model of L′. Choose a well-order of E(L′) and, for each
φ ∈ assign(M ′) and variable (x : α) ∈ E(L′), let θφ((x : α)) be the first closed expression Eα in this
well-order such that φ((x : α)) = V (Eα). For each φ ∈ assign(M ′) and Cγ ∈ E(L′), let (Cγ)

φ = Cφ
γ

be the expression obtained by simultaneously replacing (xi : αi) with θφ((xi : αi)) for all i with

1 ≤ i ≤ n where (x1 : α1), . . . , (xn : αn) are the free variables in Cγ . Define VM
′

φ (Cγ) = V (Cφ
γ )

if V (Cφ
γ ) is defined, and otherwise define VM

′

φ (Cγ) to be undefined. Clearly, Cφ
γ ∈ Eγ , and so

VM
′

φ (Cγ) ∈ Dγ if VM
′

φ (Cγ) is defined. We are now ready to show that each of the seven conditions
of the definition of a general model is satisfied.

1. Let Cγ be a variable (x : α). Then

VM
′

φ (Cγ) = VM
′

φ ((x : α)) = V ((x : α)
φ
) = V (θφ((x : α))) = φ((x : α)).

2. Let Cγ be a constant cα. Then cα ∈ Eα, and so

VM
′

φ (Cγ) = VM
′

φ (cα) = V ((cα)
φ) = V (cα) = I(cα).

3. Let Cγ be an equality Aα = Bα. Then

VM
′

φ (Cγ) = VM
′

φ (Aα = Bα) = V (Aφ
α = Bφ

α).

There are three cases to consider:

a. VM
′

φ (Aα) and V
M ′

φ (Bα) are defined with VM
′

φ (Aα) = VM
′

φ (Bα). Then V (Aφ
α) = V (Bφ

α),

so Γ′ ⊢A Aφ
α = Bφ

α by (3α), and so V (Aφ
α = Bφ

α) = t by the definition of V on Eo. Hence
VM

′

φ (Cγ) = t.

b. VM
′

φ (Aα) and V
M ′

φ (Bα) are defined with VM
′

φ (Aα) ̸= VM
′

φ (Bα). Then V (Aφ
α) ̸= V (Bφ

α),

so Γ′ ⊢A ¬(Aφ
α = Bφ

α) by (3α), and so V (Aφ
α = Bφ

α) = f by the definition of V on Eo.
Hence VM

′

φ (Cγ) = f.

c. VM
′

φ (Aα) or V
M ′

φ (Bα) is undefined. Then V (Aφ
α) or V (Bφ

α) is undefined, so Γ′ ⊢A Aα↑
or Γ′ ⊢A Bα↑ by (2α), so Γ′ ⊢A ¬(Aφ

α = Bφ
α) by Axioms A5.4 or A5.5 and the Tautology

Rule [7, Corollary A.46], and so V (Aφ
α = Bφ

α) = f by the definition of V on Eo. Hence
VM

′

φ (Cγ) = f.

4. Let Cγ be a function application Fα→βAα. There are two cases to consider:

a. VM
′

φ (Fα→β) and V
M ′

φ (Aα) are defined. Then V (Fφα→β) and V (Aφ
α) are defined, and so

VM
′

φ (Cγ) ≃ VM
′

φ (Fα→βAα) ≃ V (Fφα→βA
φ
α) ≃

V (Fφα→β)(V (Aφ
α)) ≃ VM

′

φ (Fα→β)(V
M ′

φ (Aα)).

Hence, if VM
′

φ (Fα→β) is defined at VM
′

φ (Aα), then V
M ′

φ (Cγ) = VM
′

φ (Fα→β)(V
M ′

φ (Aα)),

and otherwise VM
′

φ (Cγ) is undefined.
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b. VM
′

φ (Fα→β) or VM
′

φ (Aα) is undefined. Then V (Fφα→β) or V (Aφ
α) is undefined, and so

(a) Γ′ ⊢A Fφα→β↑ by (2α→β) or (b) Γ′ ⊢A Aφ
α↑ by (2α). If β = o, then Γ′ ⊢A ¬(Fφα→βA

φ
α)

follows from (a) or (b) by Axioms A5.7 and A5.8 and the Tautology Rule [7, Corollary
A.46], and so

VM
′

φ (Cγ) = VM
′

φ (Fα→βAα) = V (Fφα→βA
φ
α) = f

by the definition of V on Eo. If β ̸= o, then Γ′ ⊢A (Fφα→βA
φ
α)↑ follows from (a) or (b)

by Axioms A5.9 and A5.10 and the Tautology Rule [7, Corollary A.46], and so

VM
′

φ (Cγ) ≃ VM
′

φ (Fα→βAα) ≃ V (Fφα→βA
φ
α)

is undefined by (2β).

5. Let Cγ be a function abstraction (λx : α . Bβ). Let V (Aα) ∈ Dα and ψ = φ[(x : α) 7→
V (Aα)]. Notice that (a) Aα is closed and (b) V (Aα) is defined. Then

VM
′

φ (Cγ)(V (Aα))

≃ VM
′

φ (λx : α . Bβ)(V (Aα)) (1)

≃ V (λx : α . Bφ
β )(V (Aα)) (2)

≃ V ((λx : α . Bφ
β )Aα) (3)

≃ V (Bψ
β ) (4)

≃ VM
′

ψ (Bβ). (5)

(1) is given; (2) and (5) are by the definition of VM
′

φ ; (3) follows from (a), (b), Axiom A5.11,

and the definition of V on Eα→β ; and (4) follows from (a), (b), Axiom A4, (2α), (2β), (3β),
and the definition of ≃. Hence the condition is satisfied.

6. Let Cγ be a definite description (Ix : α . Ao). Without loss of generality, we may assume
that (y : α) is distinct from (x : α) and does not occur in Ao. There are two cases to consider:

a. VM
′

φ (λx : α . Ao) = VM
′

φ[(y:α)7→d](λx : α . x = (y : α)) for some d ∈ Dα. Let Bα be the

first member of Eα in the well-order of E(L′) such that d = V (Bα). Notice that (a) Bα
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is closed and (b) V (Bα) is defined.

VM
′

φ (λx : α . Ao) = VM
′

φ[(y:α)7→V (Bα)](λx : α . x = (y : α)). (1)

V (λx : α . Aφ
o ) = V (λx : α . x = Bα). (2)

Γ′ ⊢A (λx : α . Aφ
o ) = (λx : α . x = Bα). (3)

Γ′ ⊢A ∃ y : α . (λx : α . Aφ
o ) = (λx : α . x = y). (4)

Γ′ ⊢A ∃!x : α . Aφ
o . (5)

Γ′ ⊢A (λx : α . Aφ
o ) (Ix : α . Aφ

o ). (6)

Γ′ ⊢A (Ix : α . Aφ
o )↓. (7)

Γ′ ⊢A (λx : α . x = Bα) (Ix : α . Aφ
o ). (8)

Γ′ ⊢A (Ix : α . Aφ
o ) = Bα. (9)

V (Ix : α . Aφ
o ) = V (Bα). (10)

VM
′

φ (Ix : α . Ao) = V (Bα). (11)

(1) is given; (2) follows from (1) by the definition of VM
′

φ ; (3) follows from (2) by (3α→o);
(4) follows from (a), (b), and (3) by Existential Generalization [7, Theorem A.51] and
(2α); (5) follows from (4) by the notational definition of ∃!; (6) follows from (5) and
Axiom A6.1 by Rule R1′ [7, Lemma A.1] and the definition of ∈; (7) follows from (6)
and Axiom A5.8 by Rule R1′ [7, Lemma A.1]; (8) follows from (3) and (6) by Rule R2′

[7, Lemma A.2]; (9) follows from (7) and (8) by Beta-Reduction Rule 1 [7, Lemma A.6];
(10) follows from (9) by (3α); and (11) follows from (10) by the definition of VM

′

φ . Hence
the condition is satisfied for this case.

b. VM
′

φ (λx : α . Ao) ̸= VM
′

φ[(y:α)7→d](λx : α . x = (y : α)) for all d ∈ Dα. Let V (Bα) ∈ Dα.
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Notice that (a) Bα is closed and (b) V (Bα) is defined.

VM
′

φ (λx : α . Ao) ̸= VM
′

φ[(y:α)7→V (Bα)](λx : α . x = (y : α)). (1)

V (λx : α . Aφ
o ) ̸= V (λx : α . x = Bα). (2)

Γ′ ⊢A (λx : α . Aφ
o ) ̸= (λx : α . x = Bα). (3)

Γ′ ⊢A (λ y : α . (λx : α . Aφ
o ) ̸= (λx : α . x = y))Bα. (4)

V ((λ y : α . (λx : α . Aφ
o ) ̸= (λx : α . x = y))Bα) = t. (5)

V (λ y : α . (λx : α . Aφ
o ) ̸= (λx : α . x = y))(V (Bα)) = t. (6)

V (λx : α . To) =

V (λ y : α . (λx : α . Aφ
o ) ̸= (λx : α . x = y)). (7)

Γ′ ⊢A (λx : α . To) =

(λ y : α . (λx : α . Aφ
o ) ̸= (λx : α . x = y)). (8)

Γ′ ⊢A ∀ y : α . (λx : α . Aφ
o ) ̸= (λx : α . x = y). (9)

Γ′ ⊢A ¬(∃ y : α . (λx : α . Aφ
o ) = (λx : α . x = y)). (10)

Γ′ ⊢A ¬∃!x : α . Aφ
o . (11)

Γ′ ⊢A (Ix : α . Aφ
o )↑. (12)

V (Ix : α . Aφ
o ) is undefined. (13)

VM
′

φ (Ix : α . Ao) is undefined. (14)

(1) is given; (2) follows from (1) by the definition of VM
′

φ ; (3) follows from (2) by (3α→o);

(4) follows from (a), (b), (3), and axiom A4 by Rule R2′ [7, Lemma A.2]; (5) follows
from (4) by the definition of V on Eo; (6) follows from (5) by the definition of V on
Eα→o; (7) follows from (6) since V (Bα) has been arbitrarily chosen; (8) follows from (7)
by (3α→o); (9) follows from (8) by the notational definition of ∀; (10) follows from (9)
by the Tautology Rule [7, Corollary A.46] and the notational definition of ∃; (11) follows
from (10) by the notational definition of ∃!; (12) follows from (11) and Axiom A6.2 by
Rule R1′ [7, Lemma A.1]; (13) follows from (12) by (2α); and (14) follows from (13) by
the definition of VM

′

φ . Hence the condition is satisfied for this case.

7. Let Cγ be an ordered pair (Aα,Bβ). Then

VM
′

φ (Cγ) ≃ VM
′

φ ((Aα,Bβ)) ≃ V ((Aφ
α,B

φ
β )).

There are two cases to consider:

a. VM
′

φ (Aα) and V
M ′

φ (Bβ) are defined. Then V (Aφ
α) and V (Bφ

β ) are defined, so Γ′ ⊢A Aφ
α↓

and Γ′ ⊢A Bφ
β↓ by (2α) and (2β), and so Γ′ ⊢A (Aφ

α,B
φ
β )↓ is defined by Axiom A7.1 and

Universal Instantiation [7, Theorem A.14].

V ((Aφ
α,B

φ
β ))

= (V (fst(α×β)→α (A
φ
α,B

φ
β )), V (snd(α×β)→β (A

φ
α,B

φ
β ))) (1)

= (V (Aφ
α), V (Bφ

β )) (2)

= (VM
′

φ (Aα), V
M ′

φ (Bβ)). (3)
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(1) is by the definition of V on Eα×β ; (2) is by (3α), (3β), and Lemma [7, Lemma A.54];

and (3) is by the definition of VM
′

φ . Hence VM
′

φ (Cγ) = (VM
′

φ (Aα), V
M ′

φ (Bβ)).

b. VM
′

φ (Aα) or V
M ′

φ (Bβ) is undefined. Then V (Aφ
α) or V (Bφ

β ) is undefined, so Γ′ ⊢A Aφ
α↑

by (2α) or Γ′ ⊢A Bφ
β↑ by (2β), so Γ′ ⊢A (Aφ

α,B
φ
β )↑ is undefined by Axioms A7.2 or A7.3

and the Tautology Rule [7, Corollary A.46], and so V ((Aφ
α,B

φ
β )) is undefined by (2α×β).

Hence VM
′

φ (Cγ) is undefined.

Therefore, M ′ is a general model of L′.

Let Ao ∈ Γ′. Then Ao ∈ Eo and Γ′ ⊢A Ao, and so V (Ao) = t. Hence VM
′

φ (Ao) = V (Aφ
o ) =

V (Ao) = t for all φ ∈ assign(M ′), and so M ′ ⊨ Ao. Therefore, M ′ is a model of T ′, and so the
reduct M of M ′ to L is a model of T .

For all γ ∈ T (L′), |Dγ | ≤ |Eγ | ≤ |E(L′)| = ∥L′∥ since V maps Eγ onto Dγ , and so ∥M ′∥ ≤ ∥L′∥.
However, ∥L′∥ = ∥L∥ by assumption, and so ∥M∥ = ∥M ′∥ ≤ ∥L∥. Therefore, M is frugal.

At last, this completes the proof of Henkin’s Theorem for A! □
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