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Abstract

In this thesis, we develop the model theory of higher-order logic by working in Alonzo, a classical
higher-order logic based on Church’s formulation of simple type theory that extends first-order logic
and that admits undefined expressions. In particular, we sharpen the Léwenheim-Skolem theorem
(Theorem 9.39 in William M. Farmer’s Simple Type Theory) such that there exists a structural
relationship between the starting and produced models, we develop model-theoretic types and
prove a corresponding higher-order version of the omitting types theorem, and we give syntactic
and semantic characterizations of how first-order theories are embedded in Alonzo.
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Chapter 1

Introduction

Appendix B in Chang and Keisler’s Model Theory [2] contains a famous list of open problems in
classical model theory. We shall tackle the last open problem:

Develop the model theory of second- and higher-order logic.

In particular, we take “higher-order logic” to mean a version of simple type theory. The nature
of this identification is semantic and historical, and so we motivate the task of developing the model
theory of higher-order logic by defining and briefly elucidating the history of simple type theory
below. A more complete account of the development of simple type theory can be found in [5].

1.1 History

In 1908, Bertrand Russell presented a logic for mathematics that he called the theory of types
[16]. A recursively defined syntactic type heirarchy of objects was set up such that the first logical
type consists of a fixed collection of individual terms which act as subjects in propositions with no
quantifiers; the second logical type consists of propositions, called first-order propositions, in which
members of the first logical type are quantified over; the third logical type consists of second-order
propositions in which members of the second logical type are quantified over; and so on. Notice that
second-order propositions quantify over (first-order) propositions and that a proposition containing
a particular quantified variable of a given type a must itself be of type higher than a. The first
departure from first-order logic occurs with second-order logic since quantifying over (first-order)
propositions is permitted. More generally, n*P-order logic is just a logic that has a type hierarchy
up to the (n 4 1) logical type. We thus have a stratification of propositions by type.

Now in 1902, Russell discovered that unrestricted set comprehension leads to the following
paradox: if X = {x | & x} is a set, then

X € X if and only if X ¢ X.

That is, the set X of all sets that do not contain themselves cannot itself be a set since X contains
itself if and only if it does not. In particular, Russell noticed that the paradox arose because such
a definition is impredicative; that is, the definition of X contains the circular property =z & =z.
So, Russell proposed a ramified theory of types in which there is a second heirarchical constraint
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based on predicativity: an n'*-order predicative function is one such that its value is a third-order
proposition which has an (n — 1)*-order predicative function as its largest argument with respect
to the hierarchy of logical types.!

However, in the same 1908 publication mentioned above, Russell saw that the constraint due to
predicativity was too restrictive for a logic for mathematics. Consider the definition of the infimum
inf(X) of a partial order (X, <). We say that y = inf(X) if and only if

1. For all z € X, y < z; that is, y is a lower bound of X.
2. For all z € X, z is a lower bound of X implies that z < y.

The definition of y is impredicative since we quantify over all X, which includes y. Russell’s solution
to the restrictiveness of his type theory was to introduce the axiom of reducibility, which states
that every function is extensionally equivalent to some predicative function of the same argument.
However, the axiom of reducibility negates exactly that which Russell wished to accomplish with
the ramified theory of types, as impredicative functions come to exist through their predicative
counterparts.

Now Leon Chwistek [4] and Frank Ramsey [14] noticed that the resulting “simplified” type
theory, now called simple type theory — with the hierarchical constraint of predicativity removed
— was adequate for mathematics. Indeed, the heirarchy of logical types prevents set theoretic
paradoxes, and the ability to have impredicative definitions — such as the infimum of a partial order
— is a virtue rather than a pitfall of non-ramified type theory.

In 1940, Alonzo Church introduced a version of simple type theory called Church’s type theory
which incoroporated features of A-calculus into simple type theory [3]. The hierarchy of logical
types in Church’s type theory is defined inductively by the following formation rules: o and ¢ are
types; and if «, 8 are types, then (o) is a type. In particular, o denotes the type of booleans, ¢
denotes the type of individuals, and («a/3) denotes the type of functions from 5 to a. Proper symbols
are contained in the infinite list

Noo, A(oo)m Ho(oa)7 la(oa)s Qas bOm t

and well-formed formulas (of type indicated by the subscript) are defined inductively by the following
formation rules: a single proper symbol is a well-formed formula; if xg is a variable and M,, is a
well-formed formula, then (AxgM,) is a well-formed formula; if Fog and Ag are well-formed
formulas, then (F,3Apg) is a well-formed formula. Notice how the formation rules for well-formed
formulas correspond to the variable, A-abstraction, and function application term formation rules
in the A-calculus. Perhaps most importantly, this addition of A-terms paired with the hierarchy of
logical types induced a built-in theory of functions in type theory, making it a logic well-suited for
computing.

1.2 Remarks

Church’s presentation of simple type theory with A-calculus in his 1940 paper was of a syntactic
flavour, in the sense that the logic consisted of a formal notion of syntax along with a proof
system. In 1950, Leon Henkin introduced two kinds of semantics for Church’s type theory: the

LFor first-order predicative functions, we alter the definition such that individuals act as (the highest) arguments
in place of 00 order predicative functions.
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standard semantics considers models whose typed domains are all full, while the general semantics
considers models where typed function domains contain some (but not necessarily all) functions
of corresponding type [9]. These semantics are wildly different: since Peano arithmetic can be
developed within the formal system of Church’s type theory [3], then by Godel’s first incompleteness
theorem, there is a well-formed formula which is valid with respect to the standard semantics but
is not a theorem of the formal system. However, in [9], Henkin showed that with respect to the
general semantics, there is a complete proof system for Church’s type theory. Broadly speaking,
then, simple type theory can be viewed in two ways: firstly, with respect to the general semantics,
as a first-order set theory that is equivalent (with respect to equi-consistency) to bounded Zermelo
set theory [13]; and secondly, with respect to the standard semantics, as an w-order logic.

Recalling the last open problem in Chang and Keisler, in this thesis we will develop the model
theory of Alonzo, a classical higher-order logic based on Church’s type theory that extends first-order
logic and that admits undefined expressions. By undefinedness, we mean that there are expressions
of Alonzo that do not denote anything. Unlike the presentation of Church’s type theory above,
undefinedness arises in Alonzo since partial functions can populate typed domains. Alonzo employs
the traditional approach to undefinedness, which is based on three principles [6]:

1. Atomic expressions (i.e., variables and constants) are always defined.

2. Compound expressions may be undefined. A function application f(z) is undefined if f is
undefined, x is undefined, or f is undefined at x. A definite description (Iz € S.E) is
undefined if is no s € S or more than one s € S such that E[z — s] is true, where E[z > s]
denotes the expression resulting from replacing all free occurences of x in F with s.

3. Formulas are always true or false and hence always defined. This implies that a predicate
application p(x) is false, rather than undefined, if p is undefined, x is undefined, or p is
undefined at x.

The principles extend to n-ary functions and predicates in the obvious way. Furthermore,
undefinedness naturally induces two notions of equality. We say a is equal to b, written a = b, if a
and b are both defined and have the same value. We say that a is quasi-equal to b, written a ~ b,
if a =0 or a and b are both undefined.

Undefinedness is useful for a several reasons. Examples include:

1. We can have meaningful statements, such as Vo € R.z > 0 = €*(®) = z, even though, say,
In(—5) is undefined.

2. We can define function applications extensionally, such as e* ~Iy € R.y > 0 A In(y) = z.

Note that a more extensive discussion on undefinedness, its benefits, and its use in Alonzo can be
found in [7].

Finally, we answer the question regarding why we chose to work in Alonzo rather than another
version of Church’s type theory. Alonzo is a highly developed and practice-oriented version of
Church’s type theory. It is highly developed in the sense that there exists a graduate-level textbook
[7] covering the logic and it is practice-oriented in the sense that the syntax of Alonzo is close to
mathematical practice. A possible alternative to Alonzo would be Peter Andrews’ Qg, which does
not admit language families (see Section 55 of [1]), nor does it have the benefits of undefinedness
mentioned above.
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1.3 Scope

The overarching goal of this thesis is to develop higher-order analogues of various model theoretic
definitions, constructions, and techniques from first-order logic. Most of the results are done with
respect to the general models semantics.

The structure of this thesis is as follows. In Chapter 2, we introduce the syntax and seman-
tics of Alonzo. In Chapter 3, we develop the corresponding higher-order notions of embedding,
inclusion, submodel, elementary submodel, elementary diagram, elementary chain, and the upward
and downward Lowenheim-Skolem theorems from first order logic. In Chapter 4, we define model
theoretic types for Alonzo, and show how the omitting types theorem and constructions involving
partial elementary maps lift to higher-order logic. In Chapter 5, we show how first-order theories
embed into Alonzo from syntacic and semantic points of view.
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Chapter 2

Syntax and Semantics

We introduce the syntax and semantics of Alonzo, modelling the presentation given in [7]. Most
of the text in this chapter is taken verbatim from [7]. For a full treatment that includes (equiv-
alent) formal notation, beta-reduction, alpha-conversion, quasitypes, many auxillary notational
definitions, and more, see Chapters 4 — 7 of [7].

2.1 Syntax

In this section, we will define types, which denote nonempty sets of values; and expressions, which
either denote values (when they are defined) or do not denote anything (when they are undefined).
We start with an overview of the different symbols that make up the syntax of Alonzo.

Let Spt, Svar, be fixed countably infinite sets of symbols and S., be a fixed (possibly un-
countably) infinite set of symbols that will serve as names of base types, variables, and constants,
respectively. We assume that Sp; contains the symbols A, B,C, ..., XY, Z, etc., S,ar contains the
symbols a,b,c,...,z,y, 2z, etc., and Scon contains the symbols A, B,C, ..., X,Y, Z, etc., numeric
symbols, nonalphanumeric symbols, and words in lowercase sans sarif font.! We will employ the
following syntactic variables for these symbols and the syntactic entities defined later in this chapter:

1. a, b, etc. range over Spt.
2. fg.hijkmmnuv wxy,z, etc. range over Sy, .
c,d, etc. range over Scop.

a, 8,7, 9, etc. range over types.

oo W

A, B, C,,...,X,, Yy, Z,, etc. range over expressions of type a.

Definition 2.1 (Type). A type of Alonzo is a string of symbols defined inductively by the following
formation rules:

1. Type of truth values: o is a type.

LAn expression like “u,v,w, etc.” means, here and elsewhere, the set of symbols that includes u, v, and w, and
all possible annotated forms of u, v, and w such as u’, v1, and .
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2. Base types: a € Sy is a type.

3. Function type: Given a, 8 are types, (a« — ) is a type.

4. Product type: Given «, [ are types, (a X ) is a type.
Let 7 denote the set of types of Alonzo.

Definition 2.2 (Expression). An expression of type « of Alonzo is a string of symbols defined
inductively by the following formation rules:

1. Variable: (x : @) is an expression of type a.

2. Constant: c, is an expression of type a.

3. Equality: (A, = B,) is an expression of type o.

4. Function application: (Fa_p A,) is an expression of type (.

5. Function abstraction: (Ax : « . Bpg) is an expression of type (o — ).

6. Definite description: (Ix:« . A,) is an expression of type o where a # o.
7. Ordered pair: (Aq,Bg) is an expression of type (o x ).

Let £ denote the set of expressions of Alonzo. A formula is an expression of type o. Notice how the
treatment of formulas as special kinds of expressions — in other words, terms — differs from treating
formulas as separate from terms in first-order logic. We write A, = B, when the expressions
denoted by A, and B, are the same.

Definition 2.3. We can say the following about occurences of a variable in an expression:

1. An occurrence of a variable (x : @) in Bg is bound [free] if it is [is not] within a subexpression
of B of either the form Ax: . C, or the form Ix: o . C,.

o

A variable (x : «) is bound [free] in Bg if there is a bound [free] occurrence of (x : @) in Bg.
An expression is closed if it contains no free variables.

. A sentence is a closed formula.

AN Ot

. A, is free for (x : @) in Bg if no free occurrence of (x : @) in Bg is within a subexpression
of Bg of either the form Ay : . Cs or the form Iy : v . C, where (y : 7) is free in A,.

Definition 2.4 (Substitution). The substitution of A, for (x : a) in Bg, written Bg[(x : a) —
A,], is the result of replacing each free occurrence of (x : ) in Bg with A,. Notice that Bg[(x :
a) — A,] € € since the free occurrences of (x : ) in By are replaced with A, an expression of
the same type as the type of (x : ). This operation on expressions is defined using recursion and
pattern matching by the following identities:

1. (x:a)[(x:a) —» A,] = A,.

2. (y:B)[x:a)— Al =(y: B)

where (x: o) and (y : ) are distinct.
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4. Bp=Cp)[(x:a)— Ay] = (Bpl(x:a) = Ayl = Cpl(x: o) = A,l).
5. (FB—VYBIB)[(X Oé) — A, =
(Fonl(x: a) > Aa) Bal(x : @) > Au)).
6. Ax:a.Bg)[(x:a)— A= (Ax:a.Bg).
7. Ay:v.Bg)x:a)= A=Ay :v.Bgl(x:a) = A,])

where (x : «) and (y : ) are distinct.
8 (Ix:a.By)[(x:a)— A, =Ix:a.B,).
0. (Iy 7. By)l(x: ) = Aa = (Ty 7. Byl(x: a) o Ag])
where (x: «) and (y : ) are distinct.
10. (By, Cy)l(x: ) = Au] = (Bal(x: a) = Al Cyl(x : @) o Ad)).

Definition 2.5 (Language). A language of Alonzo is a pair L = (B,C) where B is a finite set of
base types and C is a set of constants ¢, where each base type occurring in « is a member of B.

A type « is a type of L if all the base types occurring in o are members of B, and an expression
A, is an expression of L if all the base types occurring in A, are members of B and all the constants
occurring in A, are members of C. Let T (L) C T denote the set of types of L and £(L) C & denote
the set of expressions of L. Notice that B and C may be empty, but 7(L) and £(L) are always
nonempty since o € T(L). The minimum language is the language Lmin = (0, 0).

The base types and constants of a language are used to represent, respectively, the base domains
and distinguished values of a structure. So it is sometimes convenient, when the set of constants is
finite, to write a language

L=({ai,...,an}{ct,-...c })

as the tuple
1
(@i, -ym,Cq,,---5Cq, )

in the same way a structure can be written as a tuple.

Definition 2.6. Let L; = (B;,C;) be a language for ¢ € {1,2}. Ly is an extension of Ly (or Ly is
a sublanguage of Lg), written Ly < Lo, if By C By and C; C Cy. Notice that Ly, < L for every
language L.

Recall that the cardinality of a set S, denoted |S], is the cardinal number x such that there is a
bijection f : kK — S. The power of a language L = (B,C), written ||L||, is |£(L)|. In the usual case,
when C is countable (i.e., finite or countably infinite), ||L|| = w. When C is uncountable, ||L|| = |C|.

We end off the section by introducing theories and a proof system for Alonzo.

Definition 2.7 (Theory). A theory of Alonzo is a pair T' = (L,T") where L is a language and T is
a set of sentences of L. We say that L is the language of T and I' are the azioms of T

Definition 2.8 (Proof System). A proof system B (P in fraktur font) for Alonzo consists of a
decidable set of axioms and rules of inference. Each axiom is a formula of Alonzo and each rule
of inference has the following form: From the formulas Al ... A" infer the formula B, (possibly
subject to certain constraints).
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Proofs in a proof system P are defined as follows:

Definition 2.9 (Proof). A proof of A, in ‘P is a finite sequence II of formulas of Alonzo ending
with A, such that every formula in II is an axiom of 8 or inferred from previous formulas in II by
one of the rules of inference of 8. Now let I" be a set of formulas of Alonzo. A proof of A, from
T in P is a pair (IIy, 1) of finite sequences of formulas of Alonzo ending with A, such that II; is
a proof in P, I ends with A,, and every formula in II5 is a member of ', a member of IT; (and
thus a theorem of 3), or inferred from previous formulas in II5 by one of the rules of inference of 3
modified, if necessary, so that the free variables in members of I' are treated as constants instead
of as universally quantified variables as they are in axioms.

In particular, we are interested in the proof system 2(, whose axioms and rules of inference are
presented in [7, Section 8.2]. 2l is noteworthy for being sound and complete with respect to the
general semantics [7, Corollary 8.13].

Definition 2.10. Now let T' = (L,T’) be a theory, A, € £(L), and ‘B be a proof system for Alonzo.
1. A theorem of B is a formula that has a proof in B, written Fqp A,.

2. Let I' be a set of formulas. We write I' Fz A, to assert that there is a proof of A, from I' in
T.

3. Let I' be a set of formulas. I' is consistent in P if not I' kg Fy.

4. A, is provable from T in B, written T Fp A,, if I' g Ag.

5. T is consistent in P if " is consistent in B.

Definition 2.11. Let L; = (B;,C;) be a language and T; = (L;,I';) be a theory for i € {1,2}. Ty
is an extension of Ty if L1 < Ly and I'y C I's.

2.2 Semantics

We define the general and standard semantics for Alonzo. We start with the corresponding
notion of a universe from first-order logic.

Definition 2.12 (Frame). A frame for L is a collection D = {D, | a € T(L)} of nonempty
domains (sets) of values such that:
1. Domain of truth values: D, =B = {F, T}.

2. Predicate domain: Ds—, is a set of some total functions from D, to D, for a € T(L).

3. Function domain: D,_,g is a set of some partial and total functions from D, to Dg for

a, € T(L) with 8 # o.
4. Product domain: Dyxp = Do x Dg for o, 5 € T(L).

A predicate domain D,_,, is full if it is the set of all total functions from D, to D,, and a function
domain D,_,g with 8 # o is full if it is the set of all partial and total functions from D, to Dg.
The frame is full if D, is full for all o, € T(L). Notice that the only restriction on a base
domain, i.e., D, for some a € B, is that it is nonempty and that the frame is completely determined
by its base domains when the frame is full.
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An interpretation of L is a pair M = (D, I) where D = {D,, | a € T(L)} is a frame for L and I
is an interpretation function that maps each constant in C of type « to an element of D,,.

Definition 2.13 (Assignment). Let D = {D,, | « € T (L)} be a frame for L. An assignment into D
is a function ¢ whose domain is the set of variables of L such that ¢((x : a)) € D, for each variable
(x:a) of L. Given an assignment ¢, a variable (x : @) of L, and d € D,,, let ¢[(x : a) — d] be the
assignment ¢ in D such that ¢¥((x: «)) = d and ¥((y : 8)) = ¢((y : 8)) for all variables (y : 8) of
L distinct from (x : o). Given an interpretation M of L, let assign(M) be the set of assignments
into the frame of M.

Definition 2.14 (General Model). Let D = {D,, | « € T(L)} be a frame for L and M = (D, I) be
an interpretation of L. M is a general model of L if there is a partial binary valuation function VM
such that, for all assignments ¢ € assign(M) and expressions C, of L, (1) either V}'(C,) € D, or
Vqﬁw (C,) is undefined? and (2) each of the following conditions is satisfied:

V1. Vé”((x ca)) = o((x: @)).
V2. wa\/l(ca) =I(cq).

V3. VM(Ay = By) = T if VWN( ) is defined, V) (B,) is defined, and V'(A,) = VM (B,).
Otherwise, VM (Ay = B,) =

V4. VM(FospAs) = VM (Fassp) (VM (As)) — ie., the application of the function V2 (Fo_,4)
to the argument V2 (A,) — if VM (Foyp) is defined, VM (A,) is defined, and VM (F,_5) is
defined at Vé\/[(Aa). Otherwise, V@M (FasgAy) =Fif f=o0and V¢M (Fa—p Ay) is undefined
if 8 # o.

V5. VM(Ax : o . Bg) is the (partial or total) function f € Dy, such that, for each d € Dy,
fld) = V(p]‘[/[(x aysq (Bp) if VM ooy (Bp) is defined and f(d) is undefined if V@A[/[(X:Q)Hd] (Bg)
is undefined.

V6. Vé‘/I(Ix ca. A,) is the d € D, such that V@A[/I(x 0] (A,) = T if there is exactly one such d.
Otherwise, VM (Ix : a. A,) is undefined.

V7. VM((Aa,Bg)) = (V)(AL), VM (Bp)) if VM(A,) and V) (Bg) are defined. Otherwise,

Vé‘/f ((Aq,Bg)) is undefined.

It follows that V™ is unique when it exists. Vé”(CA,) is called the value of C, in M with respect
to ¢ when V(C,) is defined. C, is said to have no value in M with respect to ¢ when V/(C,)
is undefined.

Now the syntax and semantics of Alonzo allow us to define familiar boolean operators and
quantifiers such that they are interpreted as expected.

2We write Vé\l(CW) instead of VM (p, Cy).

10
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T, stands for (Az:0.z)=(Az:0.x).
F, stands for (Az:0.T,)=(Az:0.xz).
No—so—so stands for Ax:o0.Ay:o0.

Ag:o—0—0.9T,T,) =
(Ag:o—=0—0.gxy).
(A, AB,) stands for  A,_00 Ao Bo.

=000 stands for Az:o0.Ay:o0.z=(zAy).
(A, = B,) stands for =,_,., A, B,.

o0 stands for Az :0.x =F,.

(—A,) stands for —,_,, A,.

Vossomo stands for Az:o0.Ay:o0.-(—z A -y).

(A, VB,) stands for Vo050 Ao Bo.
(Vx:a.A,) standsfor (Az:a.T,)=Ax:a.A,).
(Ix:a.A,) standsfor —(Vx:a.—-A,).

Table 2.1: Notational Definitions for Boolean Operators and Quantifiers

For example, if M is a general model of L and ¢ € assign(M),

VY (Vx:ia. Ay =T iff Vi l(xeaysd) (Ao) = T for all d € D)),

M _ : M _ M _
VM(A,AB,) =T iff VM(A,) =T and VM(B,) =T,
and so on. See Exercises 1 and 3 in Chapter 6 of [7].
Definition 2.15.

1. The size of M, written |M], is the cardinality of | J
infinite otherwise.

acB DM M is finite if its size is finite and

2. The power of M, written ||M]||, is the least cardinal x such that |[D}| < k for all a € T(L).

The power of a model need not exist; whether it exists can depend on the underlying set-theoretic
assumptions that one makes. For instance, the power of a model of countably infinite size with a
full frame exists if a strongly inaccessible cardinal exists.

Now the following are two useful classifications of general models:

Definition 2.16. Let M = (D, ) be a general model of L.

1. M is a standard model of L if D is full. Note that it is sufficient for M to be just an
interpretation of L by [7, Proposition 5.7].

2. M is a frugal general model of L if | M| < ||L].

Now we have two kinds of semantics; namely, general models semantics and standard models
semantics:

Definition 2.17. Let M be a general model L and A, € £(L).
1. ¢ satisfies A, in M, written M =, A,, if VS;‘/I(AO) =T for ¢ € assign(M).

11
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A, is satisfiable in M if M F, A, for some ¢ € assign(M).

A, is satisfiable if M F, A, for some general model M and some ¢ € assign(A]).

A, is valid in M (or M is a model of A,), written M F A,, if M F, A, for all ¢ € assign(M).
If A, is a sentence, then A, is true [false] in M if VSDM(AO) =T [F] (for all ¢ € assign(M)).

A, is valid (in the general sense), written F A,, if M £ A, for all general models M that
interpret A,.

A, is valid in the standard sense, written E° A,, if M E A, for all standard models M that
interpret A,.

. A, is logically equivalent to B, if Vé” (A,) = Vg,M (B,) for all general models M that interpret

A, and B, and all ¢ € assign(M).

Now let M be a general model that interprets a set I' of formulas.

1.

2
3
4.
)

@ satisfies I' in M, written M F, I', if M F, A, for all A, €T

. T is satisfiable in M if M &, T for some ¢ € assign(M).

. I is satisfiable if M F, I' for some general model M of L and some ¢ € assign(M).

M is a model of T, written M E T, if M F A, for all A, € T.

. A, is a semantic consequence of I' (in the general sense), written I' E A,, if M F, I' implies

M E, A, for all general models M that interpret A, and I' and all ¢ € assign(M).

A, is a semantic consequence of I' in the standard sense, written I' F° A,,, if M F, I" implies
M E, A, for all standard models M that interpret A, and I' and all ¢ € assign(M).

Now let T'= (L,T') be a theory and A, € £(L).

1
2
3
4

A, is valid in T (in the general sense), written T E A if T E A,.
A, is valid in T in the standard sense, written T E® A if I' E® A,.

A theorem of T is a sentence that is valid in 7.

M is a model of T, written M ET, if M ET.

5. T is satisfiable if T is satisfiable.

Notice how there are two notions of satisfiability: one that considers all general models, and one
that considers just standard models. The following example illustrates the difference:

Example 2.18 (Skolem’s paradox). Let T' = (L,T') be the theory of complete ordered fields as
specified in [7, Theory Definition 13.4]. The syntax of Alonzo is strong enough to express that the
reals are uncountable; namely, we have that

(x) TE=(3f:R— R.BU-ON(f,N(ry,Uiry)).>

3See Chapter 6 of [7] for a primer on quasitypes and the notational definition of BIJ-ON.

12
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So, if M E T, there is no bijection fr_, g from the naturals (treated as a subset of the reals) to
the reals in D% ', r- T is obviously satisfiable by the reals, but the Léwenheim-Skolem Theorem [7,
Theorem 9.39] implies the existence of a countable model N of T. How could this be?

The reason is that the Henkin construction for Alonzo (Lemma A.1 and Theorem A.2) produces
a frugal general model for a theory consistent in 2. Since ||L|| = w, the frugality of N implies that
we have that Dg—m < w. So, N E T implies that N is missing a bijection from VN(N{R}) — the
naturals — to VN(U{R}) — the reals. Now let S be a standard model such that S = T". The scenario
changed: because D7,_,  is full, (x) implies that D, = V¥ (U{py) is uncountable.

Like in first-order logic, the resolution to Skolem’s paradox is found at the level of how a model
interprets a sentence akin to

ﬂ(ﬂf R— R. BU—ON(f, N{R},U{R})).

Since Alonzo has a built in theory of functions — vis-a-vis typed function domains in a frame — the
notion of “missing” functions is not a metatheoretic one, as it is in first-order logic. Additionally,
unlike in first-order logic, we do not have to axiomatize a version of set theory in order for the
seeming paradox to arise.

We end off the section by introducing expansions of a general model. Let f : X — Y and
X C X. Then f[a (the strong restriction of f to A) denotes the function g : A — Y such that
g(a) = f(a) for all a € A.

Definition 2.19 (Expansion of a model). Let M; be a general model of L; for ¢ € {1,2}. Assume
Ly < Ly. My is an expansion of My to Lo (or My is a reduct of My to Ly), written My < Mo, if
Dl g Dg and Il E IQ.

If Ly # Lo, then M; has many possible expansions to Lo, one for each way of assigning domains
to the types in T (Ls) \ T(L1) and values to the constants in Cs \ C;. However, My has only one
reduct to Ly, namely, the general model M; where Dy = {D2 € Dy |« € T(L1)} and I = L, It
is noteworthy that expansions and reducts are not only defined similarly but also behave similarly
to their counterparts in first-order logic; this is illustrated by the following (Lemma 5.14 in [7]):

Proposition 2.20. Let M; be a general model of L; for i € {1,2} such that L1 < Lo and My is
an expansion of My to Lo. If A, is a formula of Ly, then My E A, iff Ms F A,.

In the subsequent chapter, will see that capturing the behaviour of (elementary) extensions from
first-order logic requires much more work, particularly because adding members to base domains
impacts function and product domains.

13
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Chapter 3

Sharpened Lowenheim- Skolem
Theorems

3.1 Preliminaries

Recall Theorem 9.39 in [7]:

Theorem 3.1 (Lowenheim-Skolem Theorem). Let T be a theory. If T has an infinite general
model, then T has a general model of size and power & for every cardinal k > || L||.

Given an infinite model of some theory T, Theorem 3.1 allows you to construct smaller (going
down) and larger (going up) infinite models of T. However, there is no structural relationship
between the model M that T has and a model N produced by Theorem 3.1. To this end, we will
develop the analogues of the “sharpened” first-order Lowenheim-Skolem theorems in Alonzo, such
that the models M and N will be related by a strong' embedding. First, we develop analogues of
various definitions and constructions from the first-order world. We model our development after
[12, Theorem 2.3.4, Proposition 2.3.5, Theorem 2.3.7].

Definition 3.2 (Embedding). Let M; = (D% I*) be interpretations of L for i € {1,2}. An embed-
ding from Mj to My is a set € = {e, | a € T(L)} of mappings? such that:

1. g4 is an injection from D} to D2 for all a« € T(L);

2. g,(F) =F and €,(T) = T;

3. e5(f(a)) = casp(f)(cala)) for all a, 8 € T(L), f € D}, 5, and a € D/;
4. eaxp((a,b)) = (ca(a),ep(b)) for all a, 8 € T(L), a € D}, and b € D};

5. ea(I'(c,)) = I*(cy) for all ¢, € C.

L“Strong” is the analogue of “elementary” from first-order logic.
2We allow the omission of the type of €4 € £ when it can be easily inferred.
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Notice how the definition of an embedding is slightly weaker than the definition of an isomor-
phism in [7, Chapter 5.6]. The single difference is that mappings e, € € only ought to be injective
(rather than bijective).

Definition 3.3 (Inclusion). Let M; = (D I%) be interpretations of L for i € {1,2}. We say
J={ta| @€ T(L)} an embedding from M; to Ms is an inclusion if, in addition to the conditions
in Definition 3.2, we have that:

ta(d) =dfor alla € Band d € D].

We say M is a substructure of My (or conversely, My an extension of My).

The definition of an inclusion necessitates that for all a € T(L), ¢(dM) is an “expanded” version
of dM:

Lemma 3.4. Let M = (DM M) N = (DN, I%) be interpretations of L and J = {1, | @ € T(L)}
be an inclusion from M to N. Let Z = {(s : ran(ta) — DM | a € T(L)} be a set of mappings such
that:
Co(u(dM)) = dM for all dM € D
Ca(e(dX)) = d for alla € T(L) and d¥' € DM,
gwﬁ(b(djfgﬁ)) = the ga—p such that for all o, B € T(L), d¥ € DY, and
da—)B € Dy—wv ga%ﬁ((a(b(dy))) = Cﬁ(L( aaﬁ(dM)))v
Caxs(u(d!,di"))) = (Cale(dd)), Co(u(df'))) for all a, B € T(L),
d) € D), and dj' € D}
Then (, acts as the inverse to t,. That is,
(%) for all « € T(L) and d¥ € DM, ((u(d¥)) = dM 3

Proof We prove (%) by structural induction on the complexity of types.
Base: o= o or a € B. Then ((¢(dM)) = dM follows directly from the definition of (.
Step:

Case 1. a = — . Pick any d]BVI € Dé”. Then

¢(u(d5h))(d5")
)¢

~ ((u(d 5ﬁ7) (L((dé/[))) (induction hypothesis)
~ C(u(dyr, (d5"))) (definition of ¢)
~ dﬁﬂv(dﬂ ). (induction hypothesis)

Since dg/f was arbitrary, we conclude

C(u(dhh,,(d5") = it (df").

3Here, and below, we allow the omission of the type of (o € Z when it can be easily inferred.
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Case 2. a = (8 x . Then

C(u((d5",d3))

= (C(e(dg), ¢(e(dd"))) (definition of ¢)

= (dy', d"). (induction hypothesis)
Thus, we have demonstrated (x). O

Definition 3.5 (Strong Embedding). Let M; be an interpretation of L for ¢ = {1,2}. Let € =
{€a | @ € T(L)} be an embedding from M; to My. Let ¢ € assign(M;) and define v € assign(Ma)
to be ¥((x: a)) = ea(p((x: ))) for all variables (x : ). Call € a strong embedding if

M E, A, iff My g A,

for all A, € £(L). Furthermore, call M; a strong substructure of Ms (or conversely, My a strong
extension of My) if € is an inclusion. In this case, we write My < Ma.

We can use Definition 3.5 to define a limit structure with respect to the strong embedding
relation.

Definition 3.6 (Strong Chain). Let (Z, <) be a well-order of order type ¢ < w. Let M; be an
interpretation of L for i € Z. Call (M; | ¢ € Z) an strong chain if M; = M; for all i < j where
i,j € Z. In particular, denote the inclusion from M; to M;41 as 3° = {¢!, | « € T(L)}. Given
any di, € D!, let 1" denote the composition® of inclusions +® o t*71 o --- 0 "1 0, such that
1®i(dl) € D2.

Definition 3.7. Let (Z, <) be a well-order of order type o < w and (M; | ¢ € Z) be a strong chain.
Define the corresponding union general model of the strong chain to be M = (D, I), where

DY = {r,¥};
DY = | DM for all a € T(L);
1€L
Di\f_)ﬁ = UD;‘@B for all o, 8 € T(L);
i€L
D). 5 =D} x D}

M7 s mi g i M;
and where D7, 5 = {;LI)I}TL (fasp) | fosp € Dalipt

a—f

Immediately, our definition gives us I (c,) = lim (**(I’(c,)) for all i € 7 and ¢, € C. Now
r—0

DM = |J DM is well-defined for all a € B, and at this stage, the construction mirrors the one
i€T
in first-order logic (e.g., see [12, Proposition 2.3.11]). Recall that function and product domains

are determined by the base domains. For example, f € D), has domain and range D} and

(a,b) € DM _ is a member of DM x DM . Tt is thus straightforward to show that limits of the form

s mi( fi o mi( i pi ] : ; :
g}lg(lf W (foyp) and g}lg}r 1**(ag,, by) are well-defined by induction on the complexity of types.

4Note that we define function composition differently than in [7]. There, (f o g)(z) denotes g(f(x)).
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Proposition 3.8. Let (Z, <) be a well-order of order type 0 < w, (M; | i € Z) be a strong chain, and
M be the corresponding union general model. Given d € DM, denote the corresponding element’
in DM as 17 (d). This naturally induces the inclusion 3° = {15 | « € T(L)}.% Then it follows that
foralli € Z, A,, and ¢ € assign(M;) we have (%)

VMi(AL) = O (V) (AL)),

where ¥ = 17 (p((x : @))) for all (x : @), and the collection of mappings Z° = {5 | a € T(L)} is
defined similarly to Z in Lemma 3.4.

Proof We prove (%) by structural induction on the complexity of expressions.

EL A is (x: ). Then ¢7(V ((x : a))) = ¢7(((x : a))) = ¢7(t7 (p((x : @)))) = p((x : @) =

Vé”i((x : a)) follows from Condition V1 of a general model and Lemma 3.4.7

E2. A, is €a. Then ¢7(V (ca)) = (I (c,)) = ¢7 (1131 W(ﬂ(ca)))
= I'(cq) = VMi(cs) follows from Condition V2 of a general model and Lemma 3.4.
E3. Aa is (Bﬁ = Cﬁ)

Case 1. V}1(Bg = Cp) = T or V)(Bg = Cp) = T. Then ¢7(V)'(Bg)) = V) i(Bg) =
V2 Mi(Cg) = gU(VéW(Cg)) follows from Condition V3 of a general model and by the
induction hypothesis. The definition of (° implies that Vdf\/[ (Bg =Cp) = chMi (Bg =
Cg) =18

Case 2. VMi(Bg = Cp) = F or VusI(BB = Cp) = F. One of Vi (Bg) or VMi(Cp) is un-
defined iff one of V¢M (Bg) or V¢M (Cp) is undefined by the induction hypothesis; and
so, VM(Bg = Cp) = Vi(Bs = Cp) = F from Condition V3 of a general model.
Véwl(Bﬁ) # Vyi(CB) or Véw(Bﬁ) #* VSDM(C,(J) implies that VS@M(B/; =Cg) =F by a

similar argument to Case 1.
EA4. A(, is (F5_>a B[—})

Case 1. Vi (Fs_,4Bp) is defined. We have that (7 (.7 (VM (Fp_4))) = C"(VJI(FB_,O[)) and
¢7 (17 (V) (Bg))) = C"(VJ)W(BB)) by the induction hypothesis and Lemma 3.4. Since
(7 is defined only on images under the injective map (7, we have that LU(Véwi (Fgoa)) =
VJIW(Fg_m) and 7 (VM(Bg)) = Vlf)”(Bg). The fact that V2 (Fs_,oBp) is defined
and J7 is an inclusion implies that .7 (VM (Fs_, Bg)) = Vdf‘/[ (Fg—a Bg). Lemma 3.4
implies that
VM (FpaBg) = (VY (Fpoa Bg)).

5Built via Definition 3.7.

6Below, we allow the omission of the type of g when it can be easily inferred.

“Throughout the proof, we appeal to this lemma since the definition of (7 is similar to ¢ and it is easy to see that
a similar result holds.

8For example, C"(Vfl(Bﬁ)) is defined implies qu)‘/[ (Bg) is in the range of the injection ..
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Case 2. V;/f‘/[ (Fg_a Bg) is defined. By the construction of M, the induction hypothesis, and
Lemma 34 there is j > 4 such that ¢7(.7(V, (Fgﬁa))) = C"(VwM(Fgga)) and

¢ (17 (V2" (Bp))) = ¢ (VM (Bp)).” Now let
Co=(y:8—a)(x:08)=FsaBsgAx=Bsg Ay =Fg_,,.
Since M; = M; by assumption, we have that
MiF,dy:B—=a,x:8.C,if MjF,»Jy:8—=0a,x:5.C,.

A similar argument to Case 1 that uses the fact that 37 is an inclusion and the
notational definition for the existential quantifier allows us to conclude that

V' (FpoaBg) = 7 (V) (Fsma Bp)).

Case 3. Vi (F3_,4Bp) is undefined. Holds similarly to Case 2.
Case 4. VM(F3_,4Bg) is undefined. Holds similarly to Case 1.

E5. Aqis(Ax:f.B,). Pickanydy" € D3". Then V:(Ax: 8. B,) (d}) ~ Vé\ﬁ; B 1}(37) ~
7 B,)) ~
C V. loeyne @iy Br)
C"(VM(/\X : 0. BA,)(L”(dIﬁVIi)) ~ "(quj‘/f(/\x 2B Bv))(dg/[) Since our choice of dg/[i was
arbitrary, we conclude that VML Ax:f.By) = C“(Vdf‘/[()\x 15 .B,)).

E6. Ay is (Ix:a.B,).

Case 1. VMi(Ix : o . B,) is defined. Then for exactly one d}: € D}, Vj\f(i Yl ,](Bo) T
pl(x:a
by Condition V6 of a general model. By the induction hypothesis, V¥ (B,) =

T for said d:. Suppose that there was another d* € DM such thali[(Vlz):; HdM)]( B,).
Then by construction and the induction hypothesis there is j > i with ¢/ ‘(dﬁ/f ) =
di € DY and (17)71(dM) = d2 € DAV such that Vi . (B,) = T and
V<pA//{f(x;a)Hdg](Bo) = T;% contradicting the assumption that M; < M;. Therefore,
VMi(Ix:a.B,) =¢ (V) (Ix:a.By)).

Case 2. VwM(Ix :a . B,) is defined. Then for exactly one d¥ € DM VA‘?X a)»—)dM](BB) =T

by Condition V6 of a general model. By construction and the induction hypothesis,
. M; .
there is j > 4 such that for only the same dé\é/[, th”[(x:a)H(La)’l(ng)] (Bg) = T. Since
M; =< Mj by assumption, Vi(Ix: a . B,) = Q”(V¢M(Ix ta.By)).
Case 3. Vi (Ix: o . B,) is undefined. Follows similarly to Case 2.

Case 4. qu\/[ (Ix:a.B,) is undefined. Follows similarly to Case 1.
E7. A, is (Bs,C,).

9 Really, the assignment ¢ ought to change to reflect the transition from M; to M . We alter ¢ to ¢’ such that
) > M
the map (x: @) — do € DM is instead (x:a) = itl(dy) € Dy
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Case 1. One of V'/((Bg, C,)) or VY ((Bg, C,)) is defined. Then
quwi((Bg, C,)) = C"(Vléw((Bﬁ,C,y))) follows from Condition V7 of a general model,
the induction hypothesis, and the definition of ¢7.8

Case 2. One of Vi((Bg, C,)) or Vuf\/[((Bg,C,y)) is undefined. By the induction hypothesis
and Condition V7 of a general model, Vyi((Bﬂ,Cw)), C"(V%((Bg,cv))) are both
undefined.

O

Corollary 3.9. Let (Z,<) be a well-order of order type 0 < w and (M; | i € I) be a strong chain.
Then the union general model M is a strong extension of M; for alli € T.

Proof Let &,(L) be the set of formulas of L. We must show that for all i € Z, A, € &,(L),
¢ € assign(M;), and d, € DM ... d2 € DA, we have

M By, ] ez vz, | Ao

HE M E (s :00) 00 (A3 [(xnzan e (d2))] Aoy

an

where ¢ € assign(M) is the assignment defined as 9((x : a)) = “(¢((x : «))). This follows
immediately from Proposition 3.8 as £,(L) C £(L). O

Definition 3.10 (Strong Diagram). Let L = (B,C) be a language and let D = {D,, | « € T(L)}
be a frame for L. We want to add a constant that corresponds to every d € D, for all o € T(L).
So, for each «, well-order D,, such that D, = {d},d2,...} and let C, = {c%,cd2, ...} be a set of
constants such that C, N C =0 and |Co| = |Dy|- Let C'= | C,. Let

aeT (L)

Lp = (B,CcuUC).

If M = (D,I) is an interpretation of L, then Lj; denotes Lp. Now define f : &, x assign(M) —
C’' to be the function that, given some formula A, and ¢ € assign(M) for a general model M,
substitutes the corresponding constants in C’ for the free variables in A,. More precisely, if ¢ €
assign(M) and (x1 : a1),...,(Xn : ap) are free in A, for some n, then f(A,, ¢) = Ay[(x1: 1) —
crxran)] | l(x,, : o) = ¢?n@n)] Then the strong diagram of M, denoted Diag, (M), is'

{f(Ao, ) | M F, Aol

For convenience, we introduce a notational definition for the full frame defined by some collection
of base domains:

Definition 3.11 (Generated Full Frame). Let L = (B,C) and B = {DEF | a € B}. Denote the full

frame generated by B as
DPP = (D3P |a e T(L)},

where DI'P = DB for all a € B and for all other o € T (L), define DE*B appropriately such that
DB is full. Alternatively, if M is a general model of L, then DF*M denotes the full frame generated
by the base domains of M.

10We do not specify the type of an expression when it is easily inferred.
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3.2 Sharpened Upward Lowenheim-Skolem
Theorem

Theorem 3.1 allows us to build an arbitrarily large model N of some theory T" with an infinite
model M. With an eye toward the sharpened upward Lowenheim Skolem theorem, we want to
come up with a theory such that M strongly embeds into N. Conceptually, if N F Diagg, (M), then
it satisfies the (higher-order) sentences that capture the structure of M. With this motivation in
mind, we have the following:

Lemma 3.12. Let M be a general model of L. Suppose N = (DN, IN) is a general model of
Ly = (B,CUC) such that N & Diag,(M). Then there exists a strong embedding of M into N.

Proof Let € = {e, | « € T(L)} be the set of mappings such that for all d € DM ¢,(d) = IV (c?).
That is, £4(d) is the interpretation of the constant c¢? € C’ that corresponds to d € DM. We will
now show that € is a strong embedding by showing that (i) € is an embedding and that (i) it is
strong. We now demonstrate that criteria 1 — 5 for an embedding as per Definition 3.2 are satisfied.

1. For any a € T(L), suppose that d,e € D,, are distinct. Then c? # c® € Diag,, (M), and so
ga(d) = IV (c?) # IN(c®) = e4(e). Thus for all a € T(L), €, is an injection.

2. £,(T) = IV (cT) = T by the definition of ¢, and assumption; &,(F) = F by similar reasoning.

3. Let a, 3 € T(L). Let d € DM and f € DM .. Suppose f(d) is defined. Then

a—f"

/@ = ¢f ¢ € Diag, (M),

and so
es(f(d))
= IV (cf(@) (definition of €g)
= IV(cH) (TN () (N E Diag(M))
= cas(f)(eal(d)) (definition of e4— 5 and £4(d))

Now suppose that f(d) is undefined. Then
cf CdT € Dia‘gst (M)a

and so £4,5(f)eq(d) is undefined by similar reasoning to the above and we can conclude that
eg(f(d)) is undefined.

4. Let a € D, b € Dg. By the definition of a frame for L, (a,b) € Dyxp is defined [7]. We have

that
¢ = (¢, cb) e Diag,, (M),
and so
Eaxp(a,b)
= IV (c(@Y) (definition of e4xsp)
= (IV(c"), I"(c") (N F Diagg (M))
= (eal(a),es(b)). (definition of €, and eg)
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5. Let d = I"(c,) € D,. Then
{co = ¢} € Diag,, (M),

and so
ea(IM(ca))
=1V(c? (definition of €4)
— Y(ea). (N F Diag,, (M)

This completes the proof for (i). Let ¢ € assign(M). Define ¥ € assign(N) to be ¥((x : a)) =
ealp((x:a))) for all @ € T(L) and (x : ).

To demonstrate that € is strong, we must show that M F, A, if and only if N F, A,. Recall
the substitution function f from Definition 3.10. We have

MFE, A,

iff f(A,, ) € Diag, (M) (definition of Diag (M))

iff VY(f(Ao, ) =T (N F Diagg, (M)

iff NEy A,. (definition of f, A,, ¥, and &)
This completes the proof for (i) and thus the lemma. O

Now we can go one step further: we can refactor the resulting model N from the previous lemma
and obtain a new model N’ such that there is an inclusion from M into N’ and N’ = N.

Lemma 3.13. Let N be a general model of Ly; such that N E Diag,,(M). Then there exists a
general model N’ such that M < N’ and N' = N.

Proof By Lemma 3.12, we have a strong embedding ¢ = {¢, | @ € T(L)} from M to N. Let
DFMN denote the full frame determined by the base domains DN = DM U (DX \ ran(ea)).
Define a collection of mappings © = {0, : DY — DEMN1 a5 follows: !

eo(do) = do;
-1 a 5 .f a a
0u(da) = et (da); ifd elran(s )
da; otherwise

0 p(da—p) = the fo_ 5 such that for all d, € DY,
fa—sp(0a(da)) = 05(da—p(da));
Oaxp((dasdg)) = (Balda),05(ds)).

Now denote DY’ = {0(d,) | do € DN} and define the frame for N’ to be
DN = (DN | a e T}

Since 6, is an injection for all € T(L), DY and DY are in bijective correspondence under 6, for
all a € T(L). Now given 1 € assign(N), define ¢’ € assign(D"") such that for all « € T(L) and

(x:a),
P((x: 0)) =0(4((x : ).

11We allow for the omission of the type of 6, for some a € T(L) when the type is easily inferred.
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Now define a partial evaluation function VN on Ly such that given some 1)’ € assign(DN/)7
VY (Aq) = 0(V)Y (Aq)).

Let IV (c) = VN'(cy) for all ¢q € CUC'. Tt is easy to verify that N’ = (DN, IN"), with the
partial evaluation function Vv /, satisfies conditions V1-V7, so N’ is a general model of Lj;.'2 It
is also easy to verify that there is an inclusion from M into N’ and that N’ & Diag, (M), and so
M < N'.

It is easy to verify that © is an isomorphism from N to N’ by its construction. Thus, N’ = N.
O

We are now ready to prove the sharpened upward Lowenheim-Skolem theorem.

Theorem 3.14 (Sharpened upward Lowenheim-Skolem theorem). Let T = (L,T') be a theory. If
T has an infinite general model M of L, then for all cardinals  such that k > || M| +||L||,**> T has
a general model N of L of size and power k such that M < N.

Proof We can expand M to a general model M’ of Ly such that for all ¢? € ¢, 1M (¢?) = d;
it follows that M’ F Diag, (M). By Theorem 3.1, Diag, (M) has a general model N of size and
power k. By Lemma 3.12, there is a strong embedding from M into N. By Lemma 3.13, there is a
model N’ such that M < N’ and N’ = N. It is easy to verify that the reduct of N’ to L is a model
of T of size and power k. O

3.3 Sharpened Downward Lowenheim-Skolem
Theorem

With an eye toward the sharpened downward Lowenheim-Skolem theorem, we prove the analogue
of the Tarski-Vaught test from first-order logic which gives us useful criteria for finding strong
submodels. In particular, if there is an inclusion from M into N, always being able to find an
existential witness from M inside of N (up to the inclusion) is sufficient and necessary for M < N.

Proposition 3.15. Let M, N be general models of L. Suppose that there is an inclusion J = {14 |
a € T(L)} from M to N. Define Z = {Co | « € T(L)} to be the collection of mappings that, like
in Lemma 3.4, satisfy the property that (o (1o(dM)) = dM for all « € T(L) and d¥ € DM . Then
for all A, € E(L), and ¢ € assign(M), we have

(*) VI (AL) =~ (VY (Aa))
iff for any A, € E(L), if there is dY € DY such that
then there is d% IS Dg” such that
N ':w[(xlzal)HL(dgfl )] Am

where ¥ = 1(p((x: @))) for all (x: ).

12As M, N are general models.
13 Assuming that || M| exists.
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Proof The forward direction follows easily from [7, Lemma 6.4] and M < N. We prove (%) by
structural induction on the complexity of expressions. Cases E1, E2, E3, E5, and E7 follow similarly
to the same cases in the proof of Proposition 3.8. The remaining cases are E4 and EG.

(E4) Aa is (Fﬂ_>a Bﬂ)

Case 1. VM(Fp_oBp) is defined. We have that C(L(V¢N[(F6—>a))) = C(Vdfv(Fg_,a)) and
(VM (Bg))) = ((VUfW(Bg)) by the induction hypothesis and a similar argument
to the one in Lemma 3.4. Since ( is defined only on images under the injective map
1, we have that (VM (Fsa)) = ViV (Fpa) and (V2 (Bg)) = VY (Bg). The fact
that V) (Fs_.q Bp) is defined and J is an inclusion implies that «(V} (Fs_,o Bg)) =
VY (FsaBp). Lemma 3.4 implies that

V. (FsaBg) = (V) (Fsma Bg)).
Case 2. Vlf)v(Fgﬁa Byp) is defined. Let
Co=(y:8—a)(x:8)=FsaBgAx=Bg Ay =Fp_,.

Since VY (Fp o Bp) is defined, we have that for some djy € DY and d}) ,, € DY

. B—a
N Ey(ep)—dd(y:6-a)—ay , ] Co- By assumption, (a) Ny ). (a3)][(y:8—apsu(dde, )]
C, for some dg/l € Dg/f and dgﬂa € Dé\ga. Hence,

(VY (Fs—a Bg))

~ (VY (Fama) (VY (By))) (V¥ (Fya By) is defined)
(Vi (Fpa)) (C(VEY (Bg))) ((a) and Lemma 3.4)

= VSOA,/I (Fﬁﬁa)(Vwﬂf[ (Bg)) (induction hypothesis)
Vé\/[(FB_),JZ Bj). (Condition V4 of a general model)

Case 3. VM (Fp_,o Bp) is undefined. Holds similarly to Case 2.

Case 4. V.Y (F3_,o Bp) is undefined. Holds similarly to Case 1.
(E6). Ay is (Ix:a.B,). W.lo.g, let (y: ) be free for (x: ) in B,. Let
Co=3x:a,y:a.(x#y)AB,ABy[(x:0) = (y:a)].

Case 1. VM(Ix : a . B,) is defined. Then there is (exactly one) d)f € D} such that
M F(x:a)—sam] Bo. By the induction hypothesis, N Fy((x.a)-s.(aM)) Bo. Now suppose
that there was some dY ¢ ran(i,) such that N Fyl(x:aypsdy] Bo. Then N Fy C,.
By assumption and the notational definition for the existential quantifier, there are
two distinct members of DM that satisfy B,, a contradiction. Now suppose that
there was some df € ran(to) such that N Eyxaysay] Bo. Then dY = «(d}); for
otherwise, there would be two distinct witnesses in M that satisfy B,, contradicting
our induction hypothesis. Hence (VM (Ix: a . B,)) = Vl/fV(Ix : . B,) by Condition
V6 of a general model; and so by Lemma 3.4, VM (Ix: o . B,) = C(Vé\[(Ix ta.By)).
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Case 2. VY (Ix : o . B,) is defined. Then there is (exactly one) d)f € D} such that
N Ey(x:a)—say] Bo. By assumption, there is exactly one d® € DM such that
M Fy(xia)msam) B,.'* By the induction hypothesis, N Fol(x:a)ysu(@m) Bo. Since
VléV(Ix ta . B,) is defined, we have L(Véw(IX ca.B,)) = Vd{\'(Ix ta . B,) by Con-
dition V6 of a general model; and so by Lemma 3.4, Vy(lx ca.B,) = C(Vé\’(lx :
a.By)).

Case 3. VM (Ix: . B,) is undefined. Similar to Case 2.
Case 4. Vév(lx : . B,) is undefined. Similar to Case 1.
O

Corollary 3.16 (Higher-order Tarski-Vaught test). Let M, N be general models of L. Suppose that
there is an inclusion J from M to N. Then M < N iff for any A, and ¢ € assign(N), if there is
dY € DY such that

N Fylxi:ar)—dd,] Ao

then there is d% IS ny such that
N Fyixrzan) @ty Ao

Proof The forward direction follows easily from [7, Lemma 6.4] and M < N. The backward
direction follows from Proposition 3.15 as &,(L) C £(L). O
We are now ready to prove the sharpened downward Lowenheim-Skolem Theorem.

Theorem 3.17 (Sharpened downward Léwenheim-Skolem theorem). Let L = (B,C) be a language
and T = (L,T) be a theory. If T has an infinite general model N of L, then for every infinite
cardinal k such that ||L|| < k < ||N||, T has a general model M of L of size and power k such that
M < N.

Proof Let x be an infinite cardinal such that ||L|| < k < ||[N||. Choose a collection of typed
domains D’ = {DY | o € T(L)} such that D € DY for all a € T(L), |Upes D2 = &, and
|D%| < k for all a € T(L).'> Notice how the only restriction we have on our choice of domains is
in terms of cardinality. Given D?, define the collection of typed domains

D ={D, U DY [ae T(L)},
where
DY ={d, |j €N, o € assign(N) and d,, witnesses
Voler on)m s, - [(tyapos(a)) (3% @ - o), where

(xg : ) are free in A, and dka € Dék for 1 <k < j}.

Define D> = {|J, Di, | « € T(L)}.

MAsIIx:a. Ao =TFy:a.(Ax:a.A,) = (Ax:a.x=y), provided (y: a) does not occur in (Ax: a . A,).
15Determine members of the product domains by the choice of members in non-product domains.
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Now define a reduction to be the collection of mappings {p, : DY — DI | o € T(L)} such
that!®

po(do) = do;
da; if dy € DY°
Po(da) = .
undefined; otherwise

Pa—p(da—p) = the fo_p such that for all d, € D(JXV7 if po(dy) is defined, then
f(palda)) = pp(da—sp(da));
p((da,dg)) = (p(da), p(dgs)).
Define the frame for L
DM = {{p(da) | do € D} | € T(L)}.M7

By construction, |,ep DA'| =+ and |D)| < k for each o € T(L).
Define 1™ (cy) = p(I(cy)),'® M = (DM, M) an interpretation of L, and a partial valuation
function VM such that given ¢ € assign(M),

Vc,aM(Aa) = p(Vv,zjjv(Aa))v

where ¢ € assign(V) such that if p((x: @) = p(da), Y((x: @) = dy. It is easy to verify that M
is a general model of L. Define a set of injective mappings

Jz{La:Dy—)DéV|a€T(L)}

where 14(p(dy)) = dy, for all a € T(L).
We now show that M < N under J. Conditions 1, 2, 5, and 6 for an inclusion are satisfied by
the definition of ¢ and p. Now take any p(d,) € DM and p(fa—s) € Dé‘égﬁ. We have that

L(p(f)p(d))

~ (p(f(d))) (definition of p)
~ f(d) (definition of ¢)
~ 1(p(f))(t(p(d))). (definition of ¢, p)

Hence, Condition 3 is satisfied. Take any doxs = p(a,b) € Dyxﬁ. Observe that

= 1(p((a,0)))

— U(p(a), p(1))) (definition of p)

= (t(p(a)), t(p(b))). (definition of ¢)
Hence, Condition 4 is satisfied. By the construction of M and Corollary 3.16, M < N. O

16We allow for the omission of the type of ps for some o when the type is easily inferred.
171f there are dJ,...,d? such that p(d}) = --- = p(d?), pick one to keep and remove the rest. Construct the

product domains appropriately.
18 This is valid since N F3x:a.cq = (x: a) for any c, € C.
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Chapter 4

Model-Theoretic Types

4.1 Preliminaries

We introduce model-theoretic types for Alonzo, following the development in chapter 4 of [12].
Where the meaning is obvious, we omit the prefix and refer to them as just “types”. First, we state

—

the compactness theorem — Corollary 8.16 in [7] — for Alonzo.

Theorem 4.1 (Compactness theorem). Let I' be a set of sentences. Then T is satisfiable iff every
finite subset of T is satisfiable.

Definition 4.2. Let D¢ be frames for L for i € {1,2}. Call D! a subframe of D? if D} C D2 for
all @ € T(L). We write D! < D? in this case.

Let M = (D, I) be a general model of L and A < D. Denote the set of all L 4-sentences true in
M by Tha(M).

Definition 4.3. Let M = (D, I) be a general model of L and A < D. Let L denote the set of L 4-
formulas with n free variables. Let p C L. Call p an n-type (over A) if p U Th4(M) is satisfiable
(in the general sense). Call an n-type p complete if A, € p or —=A, € p for all L 4-formulas A,.

We adopt the convention that if the free variables of A, € p for p an n-type are not mentioned
explictly, they are (x; : a;) for 1 <7 < n. The set of all complete n-types is denoted as CM(A).
Let do, € DM for 1 <i < n. Then tp}/(d/A) denotes the complete type

{Ao € LZ‘ | M hLp[(xl:ocl)»—>da1}...[(xn:()m)»—ni(,m] A, for any p € aSSign(M)}'

Definition 4.4. Let p be an n-type over A. We say that d,, € Dg{ for 1 < i < n realize p if
M Fpf(xy:01)msda, ]...[(5n 0m) s da ] Ao fOr any ¢ € assign(M) and A, in p. If p is not realized, we say
M omats p.

We can always realize a given n-type in some general model.

Proposition 4.5. Let M = (D,I) be a general model of L, A < D, and p be an n-type over A.
Then there is a strong extension N of M such that p is realized in N.
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Proof Let I' = pUDiag, (M). Let A C T be a finite subset. W.l.o.g., A is equivalent to A, A B,
where A, is an L"-formula with (y; : 8;) free for 1 <i < n — corresponding to a finite subset of p
—and B, is an L), formula with parameters in A and X = {DM \ DA | a € T(L)} such that

B, =B)[(x1: 1) = cf ] [(xp ) > B,
where B/ is the appropriate L 4-formula with (x; : ;) free for 1 < ¢ < k — corresponding to a finite

subset of Diag (M). By Definition 4.3, there is a general model Ny such that Ny F p U Th4(M).
Since B, € Diag, (M), we have 3x3 : a1, ..., X : a . B, € Thy(M), and so

NoEA,ANTIX) 10, ..o, Xg tay - B

So, Ny E A by interpreting cd for 1 <4 < k as the appropriate witnesses. By the Compactness
Theorem [7, Corollary 8.16], T' is satisfiable; so let N’ E . By Lemma 3.12, there is a strong
embedding of M into N’. By Lemma 3.13, there is a strong extension N of M such that N F T.
Thus p is realized by the interpretations of (y; : 5;). O

Corollary 4.6. Let M = (D, I) be a general model of L and A <D. Then p € CY(A) iff there is
a strong extension N of M and do, € DY for 1 <i <n such that p = tp} (d/A).

Proof (=) Let p € CM(A). By Proposition 4.5, there is a strong extension N of M that realizes
p, say with d,, € DY for 1 <i <n. Let A, be any L%-formula with (x; : a;) free for 1 < i < n.
Since p is a complete type, exactly one of A, or —A, is in p; hence p = tpl¥ (d/A).

(<) Let N be a strong extension of M and do, € DY for 1 < i < n such that p = tp) (d/A).
We have that p € C2(A); furthermore, since M < N, we have that C)(A) = CM(A).! Hence
peCM(A). O

4.2 Constructions Through Partially Strong Extensions

Definition 4.7. Let M = (D,I) and N be general models of L and X < D. Let F = {f, | a €
T (L)} be a collection of mappings, where given a € T(L), f, is a total map from DX to DY. We
say that F' is a partially strong set of mappings if

ME, A, iff N Ey A,

for all A, € £(L) where if ¢ is an assignment into X, then 1 is the assignment into DV defined by
P((x:a)) = fale((x:a))).

We proceed to show that we can always grow a partially strong set of mappings by considering
strong extensions.

Lemma 4.8. Let M = (D,I) and N be general models of L and X <D. Let F = {f, | a € T(L)}
be a partially strong set of mappings from X into N. Then given any dM € DM there is a strong
extension N’ of N and F' = {f} | B € T(L)} a partially strong set of mappings extending f, up to
the inclusion from N into N'.

IThe definition of M < N entails that M and N satisfy the same L _4-sentences.
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M
aM.

Proof Below, assume A, € Ly has (x; : ;) free for 1 <i <k and p((x1: a1)) =

T ={A,[(x2: a2) > /%)) (3 ag) = /)] | M, A, and
dy € DY for 2 <i < k}UDiagy(N).

We will show that I is satisfiable. Let A C T" be a finite subset. The diagram component of A is
satisfiable by N, = (D¢, I¢) an expansion of N where I¢(c?) = d,, for all d, € D¢. Now well-order
the non-diagram component X = {Al ... A"}. By definition, there is ¢; € assign(M) such that
M E,, Af for 1 < i < n; and across each assignment, we have that ¢;((x1 : 1)) = d¥ remains
fixed. Hence we just need to show that there is ¢ € assign(Ne) such that N Fy 3x3 @ o1 . A, for
any A, € X, giving us a witness. Let A, = A’ for some 1 < i < n. So, we have

ME,, A,
implies M E,, 3x1 1o . A, (by definition)
implies N Fy 3x1 1 . Ay, (f is partially strong)

where 1) € assign(N,) is defined as ¥((x : @)) = f(p;((x: «@))) for all (x: ). By the Compactness
Theorem [7, Corollary 8.16], I' is satisfiable; so let Ny E I'. Now take the reduct of Ny to L.
By Lemma 3.12 and Lemma 3.13, there is a strong extension N’ of N such that N’ = N;, with
corresponding inclusion J = {1, : DY — DY | a € T(L)}. Let d” € DY be the witness
that satisfies the existential statements in I We construct F' = {f; | 8 € T(L)} such that
f5(d) = 15(fs(d)) for all d € DY and f(d}) = 1o (d)). O

Corollary 4.9. Let M = (D,I) and N be interpretations of L and X < D. Let F = {fo | a €
T (L)} be partially strong from X into N. Then there is N' = N and € = {e, | @« € T(L)} a strong
embedding from M into N'.

Proof Well-order 7(L) and denote the j'™ type in this order as a;. Let r; = |Dg{| Using
induction, we will build a strong chain (N; | j < w) and a partially strong set of mappings
Fi={fl:XJ — DNJ | aecT(L)} such that for all « € T(L) and a < b, f& can be extended to
fo

Base: Let {d!, | i < ro} be a well-order of D). Let X3% = X, U{d}, | i < k}. Using
transfinite induction, we will build a strong chain (Noj | k < ko) and a partially strong set of
mappings FOF = {fOF . X0k — DN.OK | o € T(L)} such that for all « € T(L) and a < b, fO¢ can
be extended to fO°.

k is 0: Let FO9 = F and No,o = N.

k is a successor ordinal { 4+ 1: Using Lemma 4.8, we can find a strong extension Ny ¢4
of Np¢ and a partially strong set of mappings F%¢t! where fgf“ extends fgf with
&, .

k is a limit ordinal: Let Ny be the union general model of the strong chain (No |
h < k). Given fO" for some h, let Ain}cfg’h denote the function g, where g,(d,)

—

lim (& (f9"(dy)) for all dy € dom(fO"). Let FO* = { {J lim fo" | o € T(L)}. By
Corollary 3.9, Npx is a strong extension of Ny 5, for all [ < k and by construction, F0F
is a partially strong set of mappings.
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Now let Ny be the union general model of the strong chain (Ng | k < ko) and FY =
{ U lim f%% | @ € T(L)}. By Corollary 3.9, Ny is a strong extension of Ny for

k<o ko
all k < ko and by construction, FU is a partially strong set of mappings. Notice that
dom(fa,) = Dé\fo.

Step: Suppose the claim holds for j. Let {d},  , | i < ro} be a well-order of D3! . Let X1+ =
Xa; 1, U{dy,,, |7 < k}. Using transfinite induction, we will build a strong chain (Nj 1,4 | k < Kj+1)
and a partially strong set of mappings F/T1F = {fitLk . xi+Lk  DNJ+LE | o ¢ T(L)} such
that for all « € T(L) and a < b, f271% can be extended to fi1.

The construction is similar to the one in the base case. For the k = 0 case, we let Fi+1.0 = FJ
and Nji1,0 = N;. The successor and limit ordinal cases follow almost identically. We are left with
a similar result: by Corollary 3.9, N;i1 is a strong extension of N;i1 for all ¥ < x;41 and by

construction, F7T1 is a partially strong set of mappings. Also, dom(fa,,,) = D%H.

Finally, let N’ be the union general model of the strong chain (N; | j < w) and € = { |J lim fJ |
jwi—w

a € T(L)}. By Corollary 3.9, N’ is a strong extension of N; for all j < w and by construction, &

is a strong embedding since dom(f,) = DM for all a € T(L). O

We now show that like in the first-order case, two distinct tuples (in some general model M)
realizing the same n-type implies the existence of an automorphism of a strong extension N of M,
fixing the appropriate elements and mapping one tuple to the other.

Proposition 4.10. Let M = (D, I) be an interpretation of L and X < D. Suppose there are two
sequences d' and d? with d, ,d2 € DX for 1 <i < mn such that tp} (d'/X) = tpA'(d?/X). Then
there is a strong extension N = M with 3 = {1, : DM — DN | a € T(L)} the corresponding
inclusion and © = {0, | « € T(L)} an automorphism of N fixing all elements of X (up to J) and

Ou, (La, (dé)) = lg, (di) foralll <i<n.
Proof Let

F={fo:DyU{d,,...,d5 } = DXu{d ,...,d% }|aeT(L)}

) «q?

be the collection of mappings where

d; if d € DX
fa(d) = 2 . . . 1 .
d;.; if dis d,, for some i

Using the fact that tp™ (d! /X)) = tp™(d2/X) and by Corollary 4.9, we can find a strong extension
Ny = M with €,; a strong embedding from M into Ny that extends F. We can recursively
construct a strong chain as follows: given No; < Ng;41 with corresponding €s;, we show how
to construct Najyo, Noji3 such that No;11 = Na;io = Na;y3 and we have corresponding strong
embeddings €9;11, €;40. Given €y, we can view Fy; 1 = {f2H1 i ran(e?’) — DN2i | a € T(L)} as
a partially strong set of mappings. By Corollary 4.9, we can find Ng;19 = No;11 and extend Fb;yq
to a strong embedding €g;; = {2l . D2l 5 D242 | o € T(L)}. With €24 in mind, we
can similarly view Fhiyp = {f2+2 : ran(e2+!) — DY**' | a € T(L)} as a partially strong set of
mappings. By Corollary 4.9, we can find Ng; 13 = No;yo and extend Fb;1o to a strong embedding
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Coipo = {2172 D212 5 D23 | o € T(L)}. Pictorially, we have

E10¢, €oi420€s;
No ——— N2 Naiya

\@‘0 / \@‘2 Y‘m@an \@jz+2
N, Nj Noi1 Noits
where strong extensions are represented by — and labelled with their corresponding strong embed-
dings. Let J; = {¢!, | & € T(L)} denote the inclusion from N; into N,y; for all i. Notice that by
construction, (212 0 g2t C £20+2 for all ¢ and o € T(L). Now let N be the union general model

of the strong chain (Ng; | i < w) and 3 = {1, : DM — DN | o € T(L)} be the corresponding
inclusion. Define © = {0, = lime%? | a € T(L)}.? By construction, © is an automorphism;
1—w

furthermore, the construction ensures that 0q, (1o, (d5,)) = ta, (d2,) for all 1 <i < n. O

4.3 Stone Spaces and Omitting Types

As in first-order logic, the Stone topology on CM(A) has (basic) open sets

[A]={p€ C'VZL\4(A) | A, € p}.

Now
\/Aé stands for Alv.. . VA"
i€T
/\Ag stands for ALAN . ANAT
i€T

where Z = {1,...,n}. Notice that [\/ Al] = J[A!] and [ \ A] = (N [A!] since open sets are
i€z €T i€ i€

complete types. Furthermore, [A,] is closed since [A,] = CM(A) \ [-A,]. We now show that

C,Jl\/[ (A) is indeed a Stone space; that is, it is compact, Hausdorff, and totally disconnected.

Proposition 4.11. CM(A) is compact.

Proof We show that every cover of CM(A) has a finite subcover. A.fs.o.c.® that not. Let

X ={[A%] | i € T} be a cover of CM(A). Let p={—=A! | i € Z}. We will show that pUThA(M) is

satisfiable. Let Zy C Z be a finite subset. By assumption, we have an n-type ¢ such that ¢ ¢ |J [A?].
€Ly

By Proposition 4.5 and De Morgan’s law, there is Ny = M with dN0 € DOZYIO, ceey d]a\[nO € chylo such

that for any ¢ € assign(Np),

No oy a¥0). [ ) aio] TRAM /> A
1€Zp

By the Compactness Theorem [7, Corollary 8.16], pU Th 4(M) is satisfiable, and so p is an n-type.
By Proposition 4.5, there is N = M with dgl € D(];’l, .. .,dol\[n € Dévl such that N E pU Tha(M).

2See the proof of Corollary 4.9 for the meaning of lim :—:2;21}
11— w

3 Assume for the sake of contradiction.
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then tpN(dlei JA) ¢ UX = CM(A) a contradiction. O

By definition, tpN(dgVi JA) € CM(A) but since N ':<p[(X1:a1)HdaNl} [(niam)—d | -A! for all i € Z,

Proposition 4.12. CM(A) is totally disconnected.

Proof We will show that for distinct p,q € CM(A) there is A, such that p € [A,] and ¢ & [A,].
Since p # g and p, g are complete n-types, there is A, such that A, € p and -A, € ¢q. Hence
p € [Ao] and ¢ ¢ [A,]. O

Proposition 4.13. CY(A) is Hausdorff.

Proof We will show that distinct p,q € CM(A) can be separated by open sets. Since p # ¢
and p,q are complete n-types, there is A, such that p € [A,] and ¢ € [-A,]. A.fs.o.c. that
[A,]N[-A,] # 0. Then there is 7 € CM(A) such that (A, A —~A,) € r, a contradiction. Therefore,
the claim holds. O

Definition 4.14. An n-type p € CM(A) is isolated if {p} is an open set.
Proposition 4.15. Let p € CM(A). Then the following are equivalent:
1. p is isolated.
2. There exists an L4 formula A, such that {p} = [A,].

3. There exists an L 4 formula A, € p such that for all B, € E(L4) with (X1 : a1), ..., (X : @)
free, B, € p iff Tha(M)EF A, = B,.

Proof

(1 = 2): Suppose p is isolated. By definition, {p} is an open set. So for some well-order Z,
{p} = U[A!]. Hence for some j € Z, we have {p} = [AJ].

i€T

(2 = 3): Suppose {p} = [A,] and let B, € E(L4). We will show that B, € p iff Tha(M) E
A, = B,. Suppose B, € p. A.fs.o.c. that Tha(M) ¥ A, = B,. Then there is a gen-
eral model N F Thu(M) and dY € DY ,....dY € DY such that for all ¢ € assign(N),
N ':¢[(X1:al)defl]---[(xn:an)'%dgn] (AO N _\BO). It follows that AO,_\BO S tpN(déX/A) Since
{p} = [A,], p = tp"(d} /A) € CM(A). But by assumption, B, € p, a contradiction. Now
suppose B, € p. Because p is complete, =B, € p. By the same argument, Th4(M) E A, = —B,.
Since A, € p by assumption, Th4(M) U {A,} is satisfiable. Hence Tha(M) F A, = B,.

(3 = 1): Suppose there exists an L4 formula A, € p such that for all B, € £(L4), B, € p iff
Th4(M) E A, = B,. We will show that A, isolates p; that is, {p} = [A,]. By assumption, p €
[A,]. Suppose g € [A,] and let B, € £(L4). If B, € p, then by assumption Th4(M) E A, = B,.
Afs.o.c. that B, & ¢. Since ¢ is a complete n-type, =B, € ¢q. But then Th 4(M)Ugq is unsatisfiable,
a contradiction. Hence B, € ¢. If on the other hand B, ¢ p, then p is a complete n-type implies
-B, € p. By the same argument, B, ¢ ¢q. Thus, since p = ¢ for arbitrary ¢ € [A,], {p} = [A,] is
an open set. O

Let T = (L,T"). Then C,(T) denotes the set of complete n-types (over T') where p € Cp(T')
implies p U T is satisfiable. Let basic open sets of C,,(T) be [A,] = {p | A, € p}.

Proposition 4.16. C,(T) is a Stone space.
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Proof Follows similarly to the proofs of Propositions 4.11, 4.12, and 4.13. O
Similar to the CM(A) case, p is isolated in C,(T) if {p} = [A,] for some A, € E(L).

Definition 4.17. Let A, € £(L) such that TU{A,} is satisfiable and p be an n-type over T. Then
[A,] isolates p if for all B, € p,

TEVX) :a1,...,X,: 0, . A, = B,.

Proposition 4.18. If p is a complete n-type and A, isolates p, then for all B, € E(L) with
(x1:0a1)y...,(Xp : ) free, B, €p iff TE A, = B,.

Proof Follows similarly to the proof of Proposition 4.15. U
The notion of isolation with respect to CM(A) extends naturally to C,,(T).

Proposition 4.19. Suppose p € S,(T) is isolated by A,. Then p is realized in any model of
TU{IX1:Q1,. ..y, Xp : Qy . Ay},

Proof Suppose M ETU{3x;1:a1,...,, Xy : @y . Ay}. Then there are dgfl € D(JXV{, . ,dé‘ﬁ € Dé‘i
such that for all ¢ € assign(M),

M ':ap[(xl:al)»—>dﬁx\/fl]...[(xn:an)>—>d{1yn] A,.
But then by assumption, d%, ceey di{l realize p. O

Proposition 4.20. If T is complete, then every isolated type p can be realized.

Proof Let {p} = [A,]. Since p is isolated, TU{A,} is satisfiable. Let M E T. Since T is complete,
we must have T E 3x7 : aq,...,, X, : ay . A,. But then p is isolated implies we can realize p in
M. O

We now aim to prove the omitting types theorem. We first show that given a theory T in a
countable language, we can extend T to a theory 7" (also in a countable language) such that 7" is
satisfiable by a frugal general model and the axioms of 7" ensure that a given n-type is omitted.
Note that there exists a sound and complete proof system for Alonzo called 2l [7, Corollary 8.13].
We include the following definitions from [7, Appendix C].

Definition 4.21. Let T = (L,T') and 8 be a proof system for Alonzo. T is syntatically complete
in P if either T' ko A, or T gy = A, holds for all A, € E(L).

Definition 4.22. Let T'= (L,I") and 8 be a proof system for Alonzo. T is extensionally complete
in B if for all A, of the form F,_,3 = G, 3, there is a closed expression C, such that:

1. T l_q3 C.l.
2. T l—qg (Fa—ﬂﬂr/\ Ga—)[ﬁi) = (Fa—>6 C, ~ Ga—>ﬁ C,=> Fa_>/3 e Ga_>/3).

Lemma 4.23. Let L = (B,C) with |L|| = w, T = (L,T'), and p be a non-isolated n-type. For
each a € T(L), let Cy, be a well-ordered set of constants such that Co, NC = 0 and |Co| = || L]

Let Co = U Co, O =CUCy, and L' = (B,C"). If T is consistent in A, then there is a theory
a€T (L)
T = (L',T") such that:

1. T<T.
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T’ is consistent in 2.
T’ is syntactically complete in 2.
T’ is extensionally complete in 2A.

MET=1E] = w.

SR NS

. Forallcy,,...,cq, € Co, there is A, € p such that
T o ~AL[(X1: 1) = Cayl - [(Xn : ) +5 €]

Proof We provide a modified version of the construction in Lemma A.1. By construction, ||L/| =
IL]| and so condition 5 is satisfied.

Now well-order the sentences of L' and n-tuples cq,,...,Cq, € Co. For each ordinal £ < ||L'||,
denote the ¢ sentence in the well-order as A§. For each ¢ < ||L/||, we will define a set of sentences
I of L' by induction such that

¢ < ¢ implies I'c C T’ (%)

Base: £ =0. Then I'y =T.
Step: Let ¢ = 2i for i > 0.

Case 1. £ =21+ 1. We consider three subcases:
Subcase a. I'c U{A’} is consistent in 2. Then I'e =T'c U{A%}.
Subcase b. T'¢ U{A?} is inconsistent in 2 and A? does not have the form B,_,53 = Co_p.
Then I'c = T'¢.
Subcase c. T'¢ U{A%} is inconsistent in A and A? has the form B,_,3 = Co— 5. Then
F§ = FC U {_‘(Ba~>5¢ A Ca—)ﬂ\L A Baﬁﬂ Co = Ca%ﬁca)}
where c,, is the first constant in C, that does not occur in I'¢ or Al

Case 2. £ =2i+2. Let ¢ =cg,,...,Cq, be the i'" n-tuple in the well-order of n-tuples from
Co. W.lo.g. let dy,,...,da; be the constants in ¢!, that are not in A¢. Define!

B,=A A(dy, =da, A...Ady, =da,).
Let eg,,...,es, be the constants in B, that are in Cy \ ¢,. Define
Co=3y1:061,- -y, Ym : Bm - Bolca, — (X1 : 1)]
[, = (Xn s an)][es, = (y1: A1)
o legn, = (Ym Bl

That is, we remove any constant from Cy in B, by either existentially quantifying
over it or replacing it with a (free) variable.

Because p is non-isolated, there is a formula D, € p such that
THEYX :a1,..., Xy an . C, = D,. ()
Let T'e =T¢p1 U{-Do[(z1 : 1) = €ay] ... [(Tn : 1) = Cq, |}

4In contrast to the presentations of this construction in, say, [12, Theorem 4.2.3] and [11, 7.2.1], we want to ensure
that we have n free variables in C, to be in accordance with the definition of p being non-isolated.
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It is easy to verify by induction that () holds. Let I' = |J I'c and 7" = (L',I"). Since T' < 7",
E<w
condition 1 holds. Conditions 3 and 4 follow by a similar argument to the one in Lemma A.1.

Case 2 of the inductive construction ensures that condition 6 holds. Lemma A.1 handles the fact
that additions to IV from case 1 of the inductive construction preserve consistency. Thus, it only
remains to show that case 2 preserves consistency.

We will show that for all £ = 26 4+ 2 < ||L'||, T¢ is satisfiable. Let C, and D, be from step
& = 2i+ 2. (T) implies that there is a general model M E T and df‘x/{ € Dg{, . ,d% € Dg{ such
that for all ¢ € assign(M),

M Fg(x1:a1) = d . [(xn:an) i | Co A Do
Therefore we can turn M = (D, Z) into a model of
—Do[(z1: 1) = cqy] .- [(Tn s 1) = ca, ]

by expanding I such that I(co,) = d3 for 1 <i < n. By [7, Corollary 8.15], I'¢ is consistent in 2.
Therefore, condition 2 holds, completing the proof. O

Proposition 4.24. Let T = (L,T") be consistent in A where L = (B,C). Let L' = (B,CUCy) and
T = (L',T) be the language and theory obtained from Lemma 4.23. Let M = (D, I) be the frugal
general model obtained from Theorem A.2 such that M & T'. Then for all d* € DM there eists
Co € Co such that (%) I(cy) = dM.

Proof We will prove (%) by structural induction on types. Recall from Theorem A.2 that for any
ae€T(L), & ={An| Ay € E(L’) that is closed} and for all & € T(L'),

(1%) Do ={V(A,) | Ay € &, and V(A,,) is defined};
(2%) V(A,) is defined iff TV o A, for all A, € E,;
(3%) V(A,) =V(B,) if TV by A, = B, for all A,,B,;

and I = Ve Let d® € DM. Then d = V(A,,) for some A, € &, such that V(A,) is defined
by (1%). Since M F 3Ix: . (A, = x) and T” is syntactically complete, then by [7, Theorem 8.12],
Iy 3x:a. (Ay =x). Since =3x : a . (A, = x) is inconsistent with 7", then for some & < ||L||,
we have that at step £ = 2i + 1 of Lemma 4.23,

F& = FC U {_‘(Ba—>ﬁ\L A Ca—)B\L A Ba—>,8 Co = Ca—)ﬁ Ca)}

for some ¢, where Boyo = Az :a. T, and Ca_yo = AX : . X # A,.% Since function abstractions
are always defined and T’ is syntatically complete and consistent, we have that IV kg ¢, = A,.
Since I(c,) = V(A,) = dM by (3%), the claim holds. O

Theorem 4.25 (Omitting types theorem). Let L = (B,C) such that |L|| = w, T = (L,T) be
consistent in A, and p be a non-isolated n-type of T. Then there exists a frugal general model
M E T that omits p.

5-Ix:a.As =xstands for Az:a.Tp) # (Ax:a. Ay #X)

34



M.Sc. Thesis — Dennis Y. Zvigelsky; McMaster University — Dept. of Computing and Software

Proof Let T > T be obtained from Lemma 4.23 and let M’ = (D,I') £ T’ be the frugal
general model obtained from Theorem A.2 applied to T’. Suppose that dg{ € D(])‘t/{ o d(ly € Di\fn/.
Proposition 4.24 implies that there are constants ¢/ such that for all 1 < j < n, I (Ca;) =
Let this n-tuple of constants be the i*" element in the enumeration of n-tuples from Cy in Lemma
4.23. At stage £ = 2i + 2, we ensure that =D, [(z1 : @1) = €qo,] ... [(Tn : @1) = €4, ] € T for some

D, € p. Thus for all € assign(M’),
M’ Fol(ai:an)—dd ]...[(zq:a1)—dt ] "Do-
Since d%, .. .,d% were arbitrary, M’ omits p; and so, the reduct M of M’ to L omits p and

MET. O
We can extend the result to omit a countable number of non-isolated types.

Corollary 4.26. Let L = (B,C) such that |L|| = w, T = (L,T") be consistent in A, and P be a
countable set of non-isolated types of T'. Then there exists a frugal general model M E T that omits
allpe P.

Proof (Sketch) We will show how to augment Lemma 4.23 such that condition 6 becomes the
following: for all finite sequences of constants cq,,...,Cq, from Cy and p € P, if p is an n-type,
then there is A, € p such that

T o ~AL[(X1: 1) = Cay - [(Xn : ) +5 €]

To this end, let {py, pa, ...} be a well-order of P and {¢',¢?, ...} be a well-order of all finite sequences
from Cy. Now fix a bijection f: N x N — N.

We change the case where £ = 2i+2 in the inductive construction in Lemma 4.23 in the following
manner. We have ¢ = f(m,n) for some m,n. Now if p,, is a |¢"|-type, then proceed in the same
way as in the original lemma. Otherwise, let I'c = I'¢c1.

Now let TV > T be obtained from Lemma 4.23 with the refinements mentioned above and M’
be the frugal general general model obtained from Theorem A.2 applied to 7”. Then the reduct M
of M’ to L omits all pe P and M ET. O
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Chapter 5

First-Order Logic

The notions of language, term, formula, and theory from first-order logic are easily expressible in
Alonzo. We will see how to capture first-order theories either syntactically or semantically.

5.1 Syntactic First-Order Theories

In this section we will formalize first-order theories (and languages) from a syntactic point of view.
That is, a first-order theory (and language) can be captured explicitly using the syntax of Alonzo.

Definition 5.1. A language L = (B,C) is called first-order if B = {a} and members of C have the
form C(ax---xa)—o O Clax...xa)—a-
Definition 5.2. Let L = (B,C) be a first-order language. The set of first-order L-terms T, ., is
the smallest set satisfying:
1. ca € Ty forall c, €C,
2. (x:a) € T, for all variables (x : a),
3. AL, . A} € Ty, and Clax...xa)—a € C with arity n implies
c(Agy, .-, A) € T
Definition 5.3. Let L = (B,C) be a first-order langauge. The set of atomic first-order L-formulas
F, , is the smallest set satisfying:
1. AL A2 € T, implies Al = A2 € ¢,
2. AL ...,A" €T, and C(ax-.-xa)—o With arity n implies
c(Al,...,Al) e ®? .

Definition 5.4. Let L = (B,C) be a first-order langauge. The set of first-order L-formulas ®y, .,
is the smallest set satisfying:

1. A, € ®,, forall A, € &7

w,w?

2. A}, A2 € @, implies (A}), (AJ V AZ), (A) ANAD), (AL = AD),
(Al & A2) are in @,
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3. A, €D, implies (Ix:a.A,),(Vx:a.A,) arein .
Definition 5.5. Let T' = (L,T') be a theory. Call T a syntactic first-order theory if I' C ®,, .

The specific base type a € B is arbitrary; as in first-order logic the universe is made up entirely
of individuals. It is easy to modify Definitions 5.1 — 5.5 to accomodate many-sorted first-order logic
through a correspondence between base types and sorts.

First-order notions that depend on the relationship between models carry over as well, though
we need a way of dealing with higher-order domains. A naive approach would be to treat those
domains as containing only the relevant interpretations of Ciax...xa)—o and Cax...xa)—a, but this
is incorrect due to the definability of various interpretations of Alonzo expressions. For example,
the identity function (Ax : @ — « . x) is defined for all & € T(L) [7, Lemma 5.4]. We resolve the
problem by adapting the following convention:

Definition 5.6. Given an L-structure M = (M, F,R) from first-order logic, identify it with the
corresponding first-order full interpretation N = (D, I) of L = ({a},C) where

1. Do = M;
2. D is the full frame generated by the singular base domain Dy;

3. For each f: M" — M € F, we have C(ax...xa)—a € C where for all my,...,m;,, € Da,

I(c)(my,...,my,) = fM(ml,...7mn);
4. For each R: M" — {T,F} € F, we have C(ax...xa)—o € C where for all my,...,m, € D,
I(c)(m17"'amn) :RM(mla"'amn)'

This embedding preserves isomorphisms across logics:

Proposition 5.7. Let T be an L-theory from first-order logic. Suppose M, N are (first-order)
isomorphic models of T. Let L' = (B,C) be the corresponding first-order language in Alonzo,
T' = (L',T) be the corresponding first-order theory in Alonzo, and M' = (DM M) N’ = (DN, IV)
be the corresponding first-order full interpretations of T'. Then M’', N’ are isomorphic (higher-
order) standard models of T".

Proof By assumption, we have an isomorphism j : M — N. Now let © = {6, | « € T(L)} be a
set of mappings from DM to DY defined by:

1. 0, is the identity function on DM;
2. 0a(d) = j(d) for all d € DM;

3. For all o, B € T(L) and fo—p € DM, .. 0, 5(f) is the unique function g,—p € Dé\gﬁ such

a—fB

that for all d € DM, g(0,(d)) =~ 05(f(d));*
4. Oaxp(a,b) = (0a(a),05(b)) for all o, 8 € T(L) and a € D), b € DY

IThis definition is well-defined since there is a bijection from DM to DY and DM and DY are full.

37



M.Sc. Thesis — Dennis Y. Zvigelsky; McMaster University — Dept. of Computing and Software

It is easy to see that conditions (1)—(4) of an isomorphism [7, Ch. 5.6] are satisfied, and condition
(5) follows from (2) and (3) above. Since D and DY are full, they are isomorphic standard models
of L'. O

While our choice of embedding models of first-order logic by way of a corresponding standard
model is sufficient, it is not necessary; for example, we could have instead added in all of the
higher-order elements necessary to satisfy definability criteria.

5.2 Semantic First-Order Theories

In this section we will formalize first-order theories (and languages) from a semantic point of view.
That is, we will show how a first-order theory (and language) can be captured using the semantics
of Alonzo.

The development in the previous section suggests that we can extend any general model of a
first-order theory to a standard model. Indeed, just extend a given (non-full) interpretation of L to
the corresponding first-order full interpretation of L. We can define a first-order theory semantically,
as follows:

Definition 5.8. Let L = (B,C) be a language and T' = (L,I') be a theory. T is a semantic first-
order theory if every model M of T extends to a standard model N of T where DY = DM for all
acB.

The advantages of Definition 5.8 over Definition 5.5 are the following: (1) it captures the notion
of being agnostic towards higher-order domains: a first-order theory 7' is one such that for any
model M of T, you can lift M to a standard model of T' by making each domain full; and (2) it
also captures syntactic first-order theories as they are a proper subset.
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Chapter 6

Conclusion

6.1 Summary and Insights

In Chapter 3, we developed the corresponding sharpened upward and downward Lowenheim-Skolem
theorems for Alonzo. In order to do this, we needed a suitable notion of an inclusion in the context
of the submodel and strong submodel relations. Recall from Definition 3.3 that 3 = {1o | @« € T(L)}
is an inclusion if it is an embedding and ta(d) = d for all a € B. Unlike in first-order logic, not
all maps ¢, act as the identity, as this would be problematic: Suppose we had an inclusion from
M into N and that DM C DY for some a € B. Then D), , N DY, = 0 since DM # DY.
Lemma 3.4 justifies our definition by providing a way to exactly recover the corresponding function

(]y_w € Dé‘/[_)ﬂ from the extensional behaviour of fév_w, = L(f(y_}ﬁ) € ran(t,). However, the fact
that it is possible that f, 57 (M, B) means we have to keep track of inclusions when considering
strong chains. Unlike in first-order logic, members f?_, ; € DM s for some strong chain member
M; embed into the union of the strong chain (of order type o) as limits iILI}TLwZ(fé_}B) in which we
take repeated compositions of inclusions.

Now there are two main points of interest related to the proofs of Corollary 3.9, i.e., the union
general model of a strong chain is a strong extension of all the chain members; and Corollary 3.16,
i.e, the higher-order Tarski-Vaught test. First, notice that both are corollaries of more general
theorems, which are Proposition 3.8 and Proposition 3.15 respectively. The generality comes from
the fact that in Alonzo, formulas are special kinds of expressions/terms of type o, while in first-
order logic, formulas and terms are entirely different species. Second, the fact that Alonzo admits
undefined expressions required us to have, in some instances, four cases when proving statements by
induction on the complexity of expressions. For example, consider (E4) in Proposition 3.15. Notice
that Case 1 does not use the assumption of the proposition, while Case 2 does. If we translated the
results to a logic that is a version of Church’s type theory that does not admit undefined expressions,
e.g., Peter Andrews’ Qg [1], we would alter the argument to consider Cases 1 — 4 concurrently, and
thus would have to appeal to the assumption and the induction hypothesis simultaneously in a
single step of the proof.

In Chapter 4, we defined model-theoretic types for Alonzo and proved some theorems related
to them. Notably, we showed that if two sequences in some interpretation M satisfy the same set

of L" formulas, then we can construct an automorphism of a strong extension of M that sends one
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sequence to the other and fixes all elements otherwise, up to an inclusion J. We ended off Chapter 4
by showing that the Stone topology with [A,] as basic open sets functions similarly as in first-order
logic and we also proved a higher-order version of the omitting types theorem. Since the Henkin
construction for Church’s type theory is more general than the one in first-order logic, the modified
Henkin construction for omitting a particular type is more intricate (see Proposition 4.24) relative
to the one in first-order logic.

In Chapter 5, we showed that theories from first-order logic can be captured either syntactically,
through a recursive method for capturing the language of first-order logic; or semantically, by
considering those theories whose models extend to standard models.

We argue that the results of this thesis are easily translatable to different versions of Church’s
type theory (without undefinedness). Translating the work in Chapter 3 related to the Lowenheim-
Skolem theorems can be done with little effort: since versions of Church’s type theory share a
common syntax, proofs by induction on the complexity of types (e.g., the higher-order Tarski-
Vaught test) can be done similarly. The fact that in the proofs of Propositions 3.8 and 3.15
undefinedness forced us to split the cases of the structural induction into subcases — which have
corresponding first-order analogues — is a virtue. Many constructions, like the ones involving model-
theoretic types in Chapter 4, hinge on the Compactness Theorem [7, Corollary 8.16]; and so, there
is no difficulty in extending such results to other versions of Church’s type theory, which have a
corresponding theorem due to the Henkin construction. To use Qy as an example, [9, Theorems
5501 and 5503] correspond to Henkin’s Theorem (Theorem A.2) and the Compactness Theorem [7,
Corollary 8.16] respectively. In addition to the caveats related to inclusions mentioned above, the
added complexity in, say, Corollary 4.9 is with regards to the type hierarchy of Alonzo, such that
the proof required nested induction. Since versions of Church’s type theory have similar hierarchies
of types, this poses no issue in extrapolability.

Finally, this thesis demonstrates the difference between higher-order and first-order model the-
ory. The definitions, lemmas, propositions, and theorems in Chapters 3 and 4 demonstrate the
added complexity of having a built-in theory of functions in the logic. As these results utilize
the general semantics, they can be thought of as pertaining (more specifically) to a many-sorted
first-order theory of functions. In contrast, results related to the standard semantics pertain (more
generally) to an w-order logic.

6.2 Future and Related Work

We list some open problems of interest.

1. The Hanf number of a logic L is the least infinite cardinal s such that every L-sentence of
L that has a model of size k has arbitrarily large models. Let L = (B,C) be a language of
Alonzo. The Hanf number of Alonzo with respect to the general semantics is w + || L||, by
Theorem 3.14. What is the Hanf number of Alonzo with respect to the standard semantics?
We can reduce the problem to proving an equisatisfibility result between sentences of Alonzo
and sentences of Hintikka’s version of simple type theory in [10]. Theorems III and IV in [10]
imply that sentences of Hintikka’s formulation of simple type theory are equisatisfible with
sentences of second-order logic. We thus conjecture that the Hanf number of Alonzo with the
standard semantics is the same as that of second-order logic, which is, by Corollary 5.7 in
15),

sup{a | « is a ¥y definable ordinal}.
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2. Second-order logic has received a fair amount of attention in the last few years [8, 17, 19].
How translatable are these results to versions of Church’s type theory?

3. Continue the development of analogues from first-order logic. Examples include the ultraprod-
uct construction, saturated models, quantifier elimination, and Ehrenfeucht-Fraissé games.

4. Demonstrate that first-order logic is as strong as Alonzo with the general semantics as per
Lindstrom’s theorem.
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Appendix A

Henkin’s Theorem for 2l

The following is Lemma C.2 taken verbatim from [7].

Lemma A.1 (Extension Lemma). Let T' = (L,T") be a theory of Alonzo. If T is consistent in 2,
then there is a theory T' = (L', T") such that:

1. T<T.

2. T' is consistent in 2.

3. T is syntactically complete in 2.
4. T' is extensionally complete in 2.
o Il = IILI-

Proof Let L = (B,C) and k = ||L||. For each a € T (L), let C, be a well-ordered set of new
constants of type « such that |C,| = k. Define L' = (B,C UC’) where

= |J Ca
a€T (L)
Clearly, |C'| = &, so ||L'|| = k, and so ||L'|| = ||L||. Therefore, condition 5 is satisfied.

Well-order the sentences in £(L') and, for each ordinal & < &, let S§ be the &-th sentence of L'
in this well-order.

For each ordinal { < k, we will define a set I'¢ of sentences of L’ by transfinite recursion so that
(A) ¢ < & implies I'e C T'¢ and (B) the cardinality of the set of constants in C’ occurring in the
sentences of I'¢ is finite if £ is finite and is less than or equal to the cardinality of £ if & is infinite.

Case 1: £ =0. Then I'g =T.

Case 2: ¢ is a successor ordinal ( + 1. There are three subcases:
Subcase 2.a: I'c U {S$} is consistent in . Then I'¢1q = T¢ U {SS}.

Subcase 2.b: T'c U {S$} is inconsistent in 2 and S$ does not have the form A,_5 = B, 5.
Then FC-‘rl = Fc.
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Subcase 2.c: T'¢ U {S$} is inconsistent in 2 and S§ has the form A,_,3 = B,_5. Then

FC+1 = FC U {_'(Aaﬁﬁi A Ba—)ﬂi/ A Aaﬁﬂ Co = Baﬁ,@ Coc)}

where ¢, is the first constant in C, that does not occur in I'¢ or Sg.

Ie=[J Ic

¢<g
It is easy to verify by transfinite induction that conditions (A) and (B) above are satisfied for all
ordinals ¢ < k.

Case 3: ¢ is a limit ordinal. Then

We will now prove by transfinite induction that I'¢ is consistent in 2 for all ordinals § < k. We
have the same three subcases as above:

Case 1: £ =0. T = (L,T) is consistent in 2 by assumption. Hence I'g = I" must be consistent in
2.

Case 2: ¢ is a successor ordinal ( + 1. We have the same three subcases as above:

Subcase 2.a: I'c U {S} is consistent in 2. Hence I'¢c1q = I'c U{SS} is trivially consistent in
2.

Subcase 2.b: T'¢ U {S$} is inconsistent in 2 and S$ does not have the form A,_5 = B, 4.
Hence I'c 1 = I'¢ is consistent in 2 by the induction hypothesis.

Subcase 2.c: T'¢ U {S$} is inconsistent in 2 and S§ has the form A,_,3 = Bo_5. Suppose
FC-‘,—l = FC U {_‘(Aa—)ﬂ\L A Ba—)ﬁwl/ A Aa—)ﬁ Co = Boz—),@ Ca)}
is inconsistent in 2. Then
F{ FQl A-O/—>ﬁ\l/ A Ba—)ﬁxlx A A—Oz—)ﬁ Cq = Ba—>ﬁ Ca

by the Deduction Theorem [7, Theorem A.50], the notational definition of —, and the Tautol-
ogy Rule [7, Corollary A.46]. Let P be a proof of

Aa%[)’\l( A Ba~>,8\I/ A Aa%,@ Co = Ba—),@ Cqo

from a finite subset A of I'¢, (x: a) be a variable that does not occur in P or A, and P’ be
the result of replacing each occurrence of ¢, in P with (x: «). P’ is a proof of

Aa_>5¢ A Ba—>ﬁ¢ AN Aa_>5 (X : a) o~ Ba_>5 (X : Oé)

from A since ¢, does not occur in I'¢, Aq_ 3, or Bo_sg.

Abg Auspl ABasgl Ny (x:a) ~Basg (x: ). (1)
Abo Aapl. 2)
Abg Basssl. (3)
Abg Ayp(x:a)2Basg(x: ). (4)
AbgVx:a.Aspx~ By gx. (5)
Abg Assp=BapeVxia. Aupx~Bapx. (6)
Abg Aoy = Basss. (7)
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(1) is given; (2), (3), and (4) follow from (1) by the Tautology Rule [7, Corollary A.46]; (5)
follows from (4) by Universal Generalization [7, Theorem A.30] since (x : «) does not occur
in A; (6) follows from (2), (3), and Axiom A3 by the Substitution Rule [7, Theorem A.31]
and Alpha-Conversion [7, Theorem A.18]; and (7) follows from (6) and (5) by Rule R2" [7,
Lemma A.2].

Hence (a) I'¢c Fo Aqp = Baosg. However, I'c U {A,_3 = Bo_,3} is inconsistent in 2 in
Subcase 2.c, and so (b) I'c U{A,3 = Ba_,g} Fa Fo. (a) and (b) imply T'¢ is inconsistent in
2, which contradicts the induction hypothesis. Therefore, I'cy; must be consistent in 2.

Case 3: ¢ is a limit ordinal. I'¢ is consistent in 2 for all ¢ < ¢ by the induction hypothesis. Then
each finite subset of I'¢ is a subset of some I'c with ¢ < &, and so I'¢ must be consistent in .

Define I =T, and T" = (L', T”). Then T < T” and T” is consistent in . Therefore, conditions
1 and 2 are satisfied.

Now all we have left to show is that T’ is syntactically and extensionally complete in 2. Let S,
be any sentence of L’. Then S, = S§ for some ( < k.

If ¢ U{S,} is consistent in 2, then S, € I'cy; C I by Subcase 2.a, and so T" -9 S,. Otherwise
I'e U{S,} Fa F,, so I'¢ o =S, by the Deduction Theorem [7, Theorem A.50] and the notational
definition of =, and so T" k¢ —S,. Hence T” is syntactically complete in 2(. Therefore, condition 3
is satisfied.

Assume that S, has the form A,,3 =Bap. If T'¢ U {S,} is consistent in 2, then again
T ko S,, and so

T Fo (Aaﬁlg\l, A\ Baﬁlgi) = (Aaﬁﬁ C,~ Baﬁfj C,=> So)

for all expressions C,, € E(L’) by the Tautology Rule [7, Corollary A.46]. Notice that there is some
expression C, that is closed with T" o Col. If T'¢ U {S,} is inconsistent in 2, then

T/ }_Ql _‘(Aa*}ﬁ\lr A Ba%ﬁxlz A Aa%ﬁ Co = Ba%ﬁ Ca)
for some ¢, € C’ by Subcase 2.c, and so
T |_Ql (Aa—>5~|( A Ba—>,8\|/) = (A(x—>,6 Co = Ba—>5 Ca = So)

by the Tautology Rule [7, Corollary A.46]. Notice that c,, is closed and T" o ¢, by Axiom A5.2.
Hence T” is extensionally complete in 2. Therefore, condition 4 is satisfied.
This completes the proof of the Extension Lemma. O

The following is Theorem C.3 taken verbatim from [7].

Theorem A.2 (Henkin’s Theorem). FEvery theory of Alonzo that is consistent in A has a frugal
general model.

Proof Let T'= (L,I') be a theory that is consistent in 2, and let 7" = (L’,T") be an extension of T
as described in the Extension Lemma. For v € T(L'), define &, = {A, | A, € E(L’) that is closed}.

We will simultaneously define, by recursion on the syntactic structure of the types in 7(L'), a
frame D = {D, | v € T(L')} and a partial function V on the closed expressions in £(L’) so that
the following conditions hold for all v € T(L’):
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(1) D, ={V(A,)| A, €&, and V(A,) is defined}.
(27) V(A,) is defined iff IV Fo A, | for all A, € &,.
(37) V(A,) = V(B,) ifi [’ -y A, = B, for all A,, B, € &,.

Case 1: v = o. Define D, = {F,T}. For each A, € &,, define V(A,) = T if I" Foy A, and
V(A,) = Fif IV g =A,. By the syntactic completeness of T” in 2, exactly one of IV Fo A, and
I o =A, holds. Then the definition of V on &, is well-defined, (a) V is total on &,, and (1°) is
satisfied. (b) I Fo A, for all A, € &, by Proposition [7, Proposition A.8]. (a) and (b) imply
(2°) is satisfied. (3°) is satisfied by the definition of V on &, and the Tautology Rule [7, Corollary
A.46]. Therefore, (1°), (2°), and (3°) are satisfied.

Case 2: v =a. For each A, € &,, define
V(Aa) = {Ba | Ba € & and I' Fy A, = By}
if IV Fo Aal, and otherwise define V(A,) to be undefined. Define
Dy ={V(Aa) | Aa € & and V(A,) is defined}.

The definitions of D, and V on & obviously satisfy (1?) and (22). They also satisfy (32) since
I'" by Aa = B, is an equivalence relation over £,. Notice that D, is nonempty by (22) and the
extensional completeness of 7" in .

Case 3: v =« — . For each F_,3 € £,_,3, define V(F,_3) to be undefined if I -9 F, 57 and
otherwise define V(F,_3) to be the (partial or total) function from D, to D whose value at an
argument V(A,) € Dy is V(Foog Ay) if V(Foo 5 Ay) is defined and is undefined if V(F,_,5 A,) is
undefined. We must show that this definition does not depend on the choice of the particular closed
A, to represent the argument. If V(A,) = V(B,), then I" Foy A, = B, by (3%), and so I Fy
F..3A,~F, 3B, by part 5 of the Equality Rules [7, Lemma A.13], and so V(Foo5A,) ~
V(Fa—pBa) by (27), (3%), and the definition of ~. Finally, define

Doosg={V(Aus=p) | Aasp € Eamp and V(A,_,p) is defined}.

(1277) and (2*77) are satisfied by the definitions of D,_,5 and V on &,_,5. We will now show
that (3277 is satisfied. Suppose V(F,_5) = V(Ga_p). Then IV Iy Fop) and I o Gaopl
by (2278). Since T" is extensionally complete in 2, there is some C, € &, such that IV o Cgl
and

I’ l_i)l (Foz—ﬂ%L A Goz—>[3\l/) = (Foe—>[3 Ca = Goe—)ﬁ Ca = Fa—>6 = Ga—>6)-
Then

V(Fassp Ca) = V(Fasp)(V(Ca)) = V(Gasp)(V(Ca)) = V(Gasp Ca);
so T o Foys Co =~ Gosp Cq by (27), (37), and the definition of ~; and so I Fo Foy 5 = Gosp
by the Tautology Rule [7, Corollary A.46]. Now suppose I o Fo 5 = Gooyg. Then, for all
C, €&,

F/ FQ[ Fa_>5 Ca ~ Ga_>5 Ca

by part 4 of the Equality Rules [7, Lemma A.13]; so V(Fo_5Cs) =~ V(Ga_s Ca) by (2°), (37),
and the definition of ~; and so

V(Fas) (V(Ca)) 2 V(Fasss Ca) = V(Gas Ca) = V(Gassp) (V(Ca)).
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Hence V(F,_5) = V(Ga_p) by the definition of V on &,_,5. Therefore, (3277) is satisfied, and
this is the end of Case 3.

Case 4: 7= a x . Define Doxg = Do x Dg. For each Ayx5 € £y, define

V(AaxB) = (V(fSt(axB)—m Aax5)7 V(snd(axﬁ)—w Aaxﬁ))

if (a) I" Fo Auaxpd, and otherwise define V(A,xg) to be undefined. (a) implies IV Fy
(fst(axg)—a Aaxp)d and I Fo (snd(axg)—ps Aaxp)d by Axioms A5.5, A7.2, A7.3, and A7.4 and
Universal Instantiation [7, Theorem A.14], so V(fst(qaxg)—»a Aaxp) and V(snd(x5)—s Aaxs) are
defined by (2%) and (27). Hence the definition of V on E,x s is well-defined.

(22%P) is obviously satisfied by the definitions of Dqyxp and V on Eq4xp.

Let D ={V(A,) | A, € Euxp and V(A,) is defined}. We must show that Dyxg = D to show
that (19%8) is satisfied. Let p € Dyxpg. Then p = (a,b) for some a € D, and b € Dg, and so
a=V(A,) and b = V(Bg) for some A, € &, and B € & by (1) and (1), respectively. Then

(V(Aa), V(Ba))
= (V(fst(axp)—a (Aa; Bp)), V(snd(axp)—s (Aa: Bp))) (1)
=V((Aa,Bp)). (2)
(1) is by (3%), (37), and Lemma [7, Lemma A.54]; and (2) is by the definition of V on €, x4 since

V((Aa,Bp)) is defined by (29), (27), (24*#), and Axiom A7.1. Hence p € D, and so Dyxp C D.
Now let p € D. Then p = V(Ayxp) for some Ayxg € Eaxp, and so

p= (V(fst(axg)ﬁa AaxB), V(Snd(axﬂ)ﬁﬁ Aaxﬁ))-

Hence p € Daxp by (1%) and (17), and so D C D, ps. Therefore, (19%7) is satisfied.
Now we will show that (3%*5) is satisfied.
V(Aaxs) = V(Baxgs)
iff (V(fSt(axB)—)a Aax,g), V(Snd(axﬁ)_,g Aaxﬁ)) =
(V(fst(axg)ﬁa Baxﬁ),V(Snd(aXﬂ)ﬁﬁ Baxﬁ)) (1)
iff T Fo fst(axﬁ)_m Aaxﬂ = fSt(axﬁ)_m Baxﬁ and

I o snd(ax g)—5 Aaxp = Snd(axs) s Baxs (2)

iff TV Fao (fSt(aX,B)Ha Aaxg,snd(axﬁ)ﬁg Aaxﬁ) =
(fst(axp)—a Baxg: snd(axp)—s Baxs) (3)
iff T’ o Aaxp = Baxs. (4)

(1) is by the definition of V on E,xp; (2) is by (3%) and (37); (3) is by Axioms A5.4, A5.5, A7.2,
A7.3, and A7.5, the Equality Rules [7, Lemma A.13], Universal Instantiation [7, Theorem A.14],
and the Tautology Rule [7, Corollary A.46]; (4) is by (2°*8), Axiom A7.4, Universal Instantiation
[7, Theorem A.14], and the Equality Rules [7, Lemma A.13]. Therefore, (3**7) is satisfied, and
this is the end of Case 4.

Therefore, we have shown that D is a frame and conditions (17), (27), and (37) are satisfied for
all v € T(L'). V clearly maps each constant of L’ of type v to a member of D,. Hence M’ = (D, I)
is an interpretation of L’ where I = V|¢ and C’ is the set of constants of L’.
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We will next show that M’ is a general model of L’. Choose a well-order of £(L’) and, for each
¢ € assign(M’) and variable (x : ) € E(L'), let 6,((x : a)) be the first closed expression E, in this
well-order such that ¢((x : a)) = V(E,). For each ¢ € assign(M’) and C, € £(L'), let (C,)? = C¥
be the expression obtained by simultaneously replacing (x; : ;) with 6, ((x; : «;)) for all ¢ with
1 < i < n where (x1:0a1),..., (%, : ,) are the free variables in C,. Define V'(C,) = V(C¥)

if V(C¢) is defined, and otherwise define V2 '(C,) to be undefined. Clearly, CY € &,, and so

v M / (Cy) e Dy if VM /(Cv) is defined. We are now ready to show that each of the seven conditions
of the definition of a general model is satisfied.

1. Let C, be a variable (x : &). Then
Vor(Cy) =V (x:a) = V((x: a)¥) = V(B,((x : ) = p((x : @)).
2. Let C, be a constant c,. Then c, € &, and so
V21(Cy) = V3T (ea) = V((€a)?) = V(ea) = I(ca)-
3. Let C, be an equality A, = B,. Then

vr(C,) =V} (Aq =B,) = V(AL = BY).

There are three cases to consider:

a. VM'(A,) and V' (B,) are defined with V' (A,) = VM'(B,). Then V(A) = V(BY),
S0 I‘// Foa A2 = BY by (3%), and so V(AE = BY) = T by the definition of V on &,. Hence
vM(c,) =r.

b. VM (A,) and VM (B,,) are defined with V' (A,) # V' (B,). Then V(A%) # V(BE),
so IV o (A% = B¥) by (3%), and so V(A¥ = B%) = F by the definition of V on &,.
Hence V¢M'(Cv) =F.

c. VWM/(AQ) or Vé”/(Ba) is undefined. Then V(A¢) or V(B¢) is undefined, so I oy AT
or IV ko Bo1 by (29), so TV ko =(A¢ = B¥) by Axioms A5.4 or A5.5 and the Tautology
Rule [7, Corollary A.46], and so V(A¥Y = B¥) = F by the definition of V on &,. Hence
Vgﬁ”/(Cy) =F.

4. Let C, be a function application F_,3 A,. There are two cases to consider:

a. VM (Fosp) and V' (A,) are defined. Then V(F?

a—p

VA (Cy) = VI (P Aa) = VI(FZ 5 AR) =
V(FZ L 5)(V(AL) = VI (Fasp) (VY (Aa)).

Hence, if VM (Fo_,5) is defined at V' (A,), then VM'(C,) = VM (Fosp) (VM (AL)),

and otherwise VM'(C,) is undefined.

) and V(A¥) are defined, and so
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’

b. VM (Fop) or VM/( A,) is undefined. Then V(F7_, ;) or V(A¥) is undefined, and so

() TV o FZ_ 1 by (2°8) or (b) I” o AZ1 by (2%). I 8 = o, then I" by =(F¥_, | A¥)
follows from (a) or (b) by Axioms A5.7 and A5.8 and the Tautology Rule [7, Corollary
A .46], and so

VApM/(C’Y) = chM/(FOtHB Aa) = V( a—f A‘P)

by the definition of V on &,. If 8 # o, then I kg (Fiaﬂ A¥#)1 follows from (a) or (b)
by Axioms A5.9 and A5.10 and the Tautology Rule [7, Corollary A.46], and so

Véw (Cy) ~ Véw (Fasp Ao) = V(F a—pB AY)
is undefined by (27).

5. Let C, be a function abstraction (Ax:ca.Bg). Let V(A,) € D, and ¢ = ¢[(x:a) —
V(A,)]. Notice that (a) A, is closed and (b) V(A,) is defined. Then

vM(C)(V(AL))

~ VM (Ax:a.Bg)(V(AL)) (1)
~V(Ax:a.B%)(V(AL)) (2)
~V((Ax:a.Bf)A,) (3)
~ V(BY) (4)
~ V) (Bg). (5)

(1) is given; (2) and (5) are by the definition of Véw/; (3) follows from (a), (b), Axiom A5.11,
and the definition of V on &, 4; and (4) follows from (a), (b), Axiom A4, (2%), (27), (35),
and the definition of ~. Hence the condition is satisfied.

6. Let C, be a definite description (Ix: . A,). Without loss of generality, we may assume
that (y : «) is distinct from (x : ) and does not occur in A,. There are two cases to consider:

’

a. Véw’()\x fa. Aol: Vgﬂﬂf[(y:a),_}d]()\x ra.x=(y:a)) for some d € D,. Let B, be the
first member of &, in the well-order of £(L’) such that d = V(B,). Notice that (a) B,
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is closed and (b) V(B,) is defined.

VI (Axa. Ay =V ovmy (Ax e x = (y:a)). (1)
VIAx:a.AY)=V(Ax:a.x=B,). (2)
Mg Ax:a.AY)=(Ax:a.x=B,). (3)
Mg dy:a. Ax:a. AY)=Ax:a.x=y). (4)
Mg Ax:a. AL, (5)
Mg Ax:a. AY)(Ix:a. A?). (6)
I fa (Ix: . A%)L. 7)
Mg (Ax:a.x=B,)(Ix:a.A?). (8)
I by (Ix:a.A%) = B,,. 9)
V(Ix:a.Af)=V(B,). (10)
VM (Ix:a. A,) = V(Ba). (11)

(1) is given; (2) follows from (1) by the definition of VWM/; (3) follows from (2) by (3%7°);
(4) follows from (a), (b), and (3) by Existential Generalization [7, Theorem A.51] and
(2%); (5) follows from (4) by the notational definition of 3!; (6) follows from (5) and
Axiom A6.1 by Rule R1" [7, Lemma A.1] and the definition of €; (7) follows from (6)
and Axiom A5.8 by Rule R1’ [7, Lemma A.1]; (8) follows from (3) and (6) by Rule R2’
[7, Lemma A.2]; (9) follows from (7) and (8) by Beta-Reduction Rule 1 [7, Lemma A.6];
(10) follows from (9) by (3%); and (11) follows from (10) by the definition of Vgﬁw. Hence
the condition is satisfied for this case.

b. Véw()\x ta.Ay) # VM/ ((Ax:a.x=(y:a)) forall d € Dy. Let V(Bq) € Dq.

pl(y:a)—d
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Notice that (a) B, is closed and (b) V(Ba) is defined.

Vyl()\x:a.A V£V [(yaHV( By AX 1. x=(y:a)). (1)
VAx:a. AY) #V(Ax:a.x=B,). (2)
by Ax:a. AY) £ (Ax:a.x=B,). (3)
Mg Ayia.(Ax:a.A?) # (Ax:a.x=1y))B,. (4)
Vidy:a.(Ax:a . AY)£(Ax:a.x=y))B,) =T. (5)
VAy:ra. Ax:a. . A2)#Ax:a.x=y))(V(B,)) =T. (6)
Vdz:a.T,) =
VAy:a. (Ax:a.AY) # (Ax:a.x=y)). (7)
Mty Nz T,) =
Ay:a.(Ax:a. AY)# (Ax:a.x=1y)). (8)
Mg Vy:a.(Ax:a.A?) # (Ax:a.x=1y). (9)
Mg ~(Fy:a. Ax:a.A?)=(Ax:a.x=1y)). (10)
Mg ~3x:a. AY. (11)
Mg (Ix:a. A9 (12)
V(Ix:a.A?) is undefined. (13)
Vé\/ﬂ (Ix:a.A,) is undefined. (14)

(1) is given; (2) follows from (1) by the definition of V;VI/; (3) follows from (2) by (3%7°);
(4) follows from (a), (b), (3), and axiom A4 by Rule R2' [7, Lemma A.2]; (5) follows
from (4) by the definition of V on &,; (6) follows from (5) by the definition of V on
Eaoo; (7) follows from (6) since V(B,,) has been arbitrarily chosen; (8) follows from (7)
by (3%7°); (9) follows from (8) by the notational definition of V; (10) follows from (9)
by the Tautology Rule [7, Corollary A.46] and the notational definition of 3; (11) follows
from (10) by the notational definition of 3!; (12) follows from (11) and Axiom A6.2 by
Rule R1’ [7, Lemma A.1]; (13) follows from (12) by (2%); and (14) follows from (13) by
the definition of VSDM ". Hence the condition is satisfied for this case.

7. Let C, be an ordered pair (A,,Bg). Then
V(C)) ~ V) ((Aa, Bg)) ~ V((AL,BY)).
There are two cases to consider:

a. Véw,(Aa) and Vé‘/ﬂ(Bg) are defined. Then V(A%) and V(B}) are defined, so I kot AZ|
and I'" o BEJ by (2%) and (28), and so T g (A%, Bf)! is defined by Axiom A7.1 and
Universal Instantiation [7, Theorem A.14].

V((AZ,B%))

= (V(fstiaxp)sa (AL, BE)), V(snd(axs)s (AL, BY))) (1)
= (V(A%),V(BY)) (2)
= (VM'(AL), V2 (Bg)). (3)
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(1) is by the definition of V on E,xp; (2) is by (3%), (3”), and Lemma [7, Lemma A.54];
and (3) is by the definition of V@M/. Hence VWM/(CV) = (VSOM/(AQ)7 V@M/(Bﬁ)).

b. Véw(Aa) or Vfﬂ (Bp) is undefined. Then V(A¥) or V(B) is undefined, so I' -9t A&
by (2%) or I o BT by (28), 50 T o (AE, BY)1 is undefined by Axioms A7.2 or A7.3
and the Tautology Rule [7, Corollary A.46], and so V((A#, B%)) is undefined by (20%5).
Hence V'(C,) is undefined.

Therefore, M’ is a general model of L.

Let A, € I'. Then A, € &, and I" o A,, and so V(A,) = T. Hence VM'(A,) = V(A¥) =
V(A,) = T for all ¢ € assign(M'), and so M’ F A,. Therefore, M’ is a model of T”, and so the
reduct M of M’ to L is a model of T.

For all v € T(L), |D,| < |&,| < |E(L")| = ||L'|| since V maps &, onto D.,, and so || M'|| < ||L/].
However, ||L'|| = ||L|| by assumption, and so | M|| = ||M'|| < ||L||. Therefore, M is frugal.

At last, this completes the proof of Henkin’s Theorem for 21! O
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