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Abstract

In the property and casualty (P&C) insurance industry, reserves comprise most of
a company’s liabilities. These reserves are the best estimates made by actuaries for
future unpaid claims. The actuarial industry has developed both parametric and
non-parametric methods for loss reserving. However, the use of machine learn-
ing tools to capture dependence between loss reserves from multiple LOBs and
calculate the aggregated risk capital remains uncharted. This thesis introduces
the use of the Deep Triangle (DT), a recurrent neural network, for multivariate
loss reserving, incorporating an asymmetric loss function to combine incremental
paid losses of multiple LOBs. Further, we extend generative adversarial networks
(GANS) by transforming the two loss triangles into a tabular format and generat-
ing synthetic loss triangles to obtain the predictive distribution for reserves. We
refer to the integration of DT for multivariate loss reserving and GAN for risk
capital analysis as the extended Deep Triangle (EDT). As the second contribution
of this thesis, we propose SUR copula mixed models to enhance SUR copula re-
gression with multiple companies’ data for loss prediction and risk capital analysis.
Due to the heterogeneous history of losses between companies and different LOBs,
we model this heterogeneity using random effects and select varying distributions
for losses from each LOB. We model the development and accident year effects as
fixed effects and apply shrinkage to make it more robust to the decreasing number
of observations over accident year and development year. To illustrate EDT and

SUR copula mixed models, we apply and calibrate these methods using data from

il



multiple companies from the National Association of Insurance Commissioners
database. For validation, we compare the EDT and SUR copula mixed model to
the SUR copula regression models and find that the EDT and SUR copula mixed
model outperform the SUR copula regression models in predicting total loss re-
serve. Furthermore, with the obtained predictive distribution for reserves, we show
that risk capital calculated from the EDT and SUR copula mixed model is smaller
than that of the SUR copula regression models, suggesting a more considerable
diversification benefit. We also confirmed these findings in simulation studies. Fi-
nally, we introduce a chapter on a hybrid semi-parametric approach, which bridges
the interpretability of dependence structures with the flexibility to capture com-
plex effects, including interactions; its deeper application and simulation studies

are left for future work.
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Chapter 1

Introduction

1.1 Background

Insurance firms are tasked with the crucial responsibility of establishing reserve
funds to guarantee the future compensation of policyholders who have made claims.
To meet their commitments, insurers maintain claim reserves, ensuring sufficient
funds are available for all future payouts. These reserves are largely based on
historical claim data, which helps in estimating future claims through various
reserving methods. Loss reserving generally follows two approaches: a micro-level
approach focusing on individual claims, or a macro-level approach dealing with
claims in aggregate.

The macro-level approach aggregates individual claims, organizing them into
loss triangles according to accident and development years. For loss reserving,
the chain ladder method (Mack, 1993) has been widely used in practice with the
assumption that claims will continue to develop similarly in the future. However,
a notable limitation of this method is its exclusion of uncertainty in its calcula-
tions. Mack (1993) present a method to compute the distribution-free standard
error of the reserve based on the chain ladder method to address this gap. For

further insight into stochastic loss reserving methods, specifically for a single line
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of business (LOB) and at the macro-level, the works of England and Verrall (2002)
and Wiithrich and Merz (2008) provide comprehensive reviews.

Insurance companies typically assess risk measures across all their LOBs. These
measures are calculated based on the predictive distribution of the total reserve,
which includes reserves allocated for each LOB. Insurers must estimate this pre-
dictive distribution accurately, as it offers valuable insights for them, especially in
risk management. When dealing with multiple LOBs, a common assumption is the
independence of claims across different LOBs. In such scenarios, the portfolio’s
total reserve and risk measure is the sum of each LOB. This approach, known as
the “silo” method (Ajne, 1994), does not account for any diversification benefits.
However, insurance companies often operate across multiple LOBs, where claims
can be related. For example, claims across different LOBs can be related due
to a common factor like inflation, which impacts the cost of claims in different
LOBs. When a claim involves different coverages from different lines of business,
losses can also become correlated. Therefore, it becomes imperative for insurers
to account for the dependencies between claims in different LOBs. Acknowledg-
ing these dependencies is essential for accurately estimating total reserves and

effectively leveraging diversification benefits in calculating risk capital.

1.2 Reserve and Risk Capital

Let X;; denote the incremental paid losses of all claims in accident year ¢ (1 <
i < I) and development year j (1 < j < I). The accident year refers to the year
the insured event happened. The first accident year is denoted with 1, and the
most recent accident year is denoted with /. The development year indicates the
time the payment is made. The incremental paid loss refers to all payments in
development year j for the claims in year i. For one company and one business

line, the observed data X;; for i =1,2,....7 and j =1,2,...,] — ¢+ 1 is shown in
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the upper triangle of Table 1.1.

Table 1.1: The Loss Triangle

Development year j
Accident year i 1 2 I-1 I
1 X1 Xig | | Xuga | Xag
2 Xo1 Xog | oo | Xogg
I-1 Xrig | Xioie
I X]71

Note: The upper triangle is the loss triangle. The rows
are accident year, and the columns are development year.
X;; denotes the incremental paid loss in accident year ¢ and
development year j.

The incremental paid loss X;; is adjusted for each LOB’s exposure to ensure
comparability across accident years. The exposure variable, such as premiums or
the number of policies, provides a scaling factor. The standardized incremental

paid loss is then defined as Y;; = X;;/w;, where w; represents the exposure for the

i*h accident year. In the case of multiple LOBs from one company, the standardized

incremental paid loss for the /" LOB is denoted by Y;(]l), with its predicted value
represented as Yig@.

)

To estimate the lower triangle values X}f , we multiply Yig@ by the correspond-

(

ing exposure wig). This yields a point estimate of the outstanding claims for each

~

LOB, given by R® = S>7_, Z]I: I—it2 wy)Y;g-Z). Finally, the total reserve for the
entire insurance portfolio is R = Y,_, RY).

In actuarial practice, reserve estimation extends beyond point estimates to in-
clude measures of reserve variability. Given the predictive distribution of reserves,
denoted by Fgr, we compute commonly used actuarial risk measures, such as value
at risk (VaR) and tail value at risk (TVaR). Risk measures evaluate potential loss
and are crucial for determining the amount of capital to hold to cover severe losses.

The VaRy, is the 100 %k percentile of R, i.e., VaRx(R) = Fj' (k) while TVaRy is

the expected loss conditional on exceeding the VaRy, i.e., TVaRy(R) = E[R|R >
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VaRg(R)].

Tail Value-at-Risk (TVaR) is more informative than Value-at-Risk (VaR) in
risk assessment. TVaR, a coherent risk measure captures the expected shortfall
and adherence to the sub-additive property (Acerbi and Tasche, 2002). This means
that for any two reserves Ry and Rs, corresponding to two LOBs, the combined risk
measure p of their sum is less than or equal to the sum of their individual risk mea-
sures. That is, p(R1+Rz2) < p(R1)+p(R2). This ensures that the total risk measure
does not exceed the sum of the individual risk measures, reflecting diversification
benefits in risk assessment. Contrarily, VaR lacks this sub-additivity, especially in
skewed distributions, making TVaR a more reliable indicator in risk management.
From the insurance perspective, risk measures lacking the sub-additivity can be
misleading because they can increase the company’s liability, resulting in a larger
tax deduction.

From the TVaR, we calculate the risk capital, which is the difference between
the risk measure and the liability value. (see, e.g., Dhaene et al. (2006)). Risk
capital is also set aside as a buffer against potential losses from extreme events. In
practice, the risk measure is set at a high-risk tolerance k, and the liability value is
set at a lower risk tolerance between 60% and 80%, according to the risk appetite.
We set the risk tolerance at 60% for the reserve in our risk capital analysis.

We define risk capital associated with total reserve R as in (1.1).

Risk capital (R) = TVaRy(R) — TVaRgx(R). (1.1)

Moreover, exploring the diversification benefits between two LOBs is essential
in risk management. The “silo” approach computes risk measures for each LOB
independently and aggregates them, disregarding potential diversification benefits.
In contrast, our study compares the risk capital estimates obtained using the

proposed method with those from the “silo” approach, as defined in (1.2). This
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comparison highlights the impact of recognizing interdependencies between LOBs
in risk capital (RC) estimation. Further details on this approach can be found in

Abdallah and Wang (2023).

Gain = (RCSHO(R) - RC(;Opula(R)> /RCsio(R). (1.2)

1.3 Copula Model for Loss Reserving

1.3.1 Copulas

According to Sklar’s theorem (Nelsen, 2006), any cumulative distribution function

(cdf) F'(xq,x2) of a two-dimensional random vector (X;, X3) can be expressed as
F(ZEl,JfQ) = C(Fl (I1>7F2 (l‘g)), (13)

where Fi(-) and Fy(-) are the marginal cdfs of X; and X, and C' is a bivariate
function, called a copula. If X; and X5 are independent, then C' is the product
copula.

The most common measure of dependence between two random variables is
Pearson’s correlation coefficient, which only measures linear dependence. To mea-
sure nonlinear dependence, rank correlation coefficients such as Kendall’s 7 and

Spearman’s p are more suitable. They can be expressed in terms of the copula as

(X1, X5) = 4/ C (w1, u3) dC (w1, u3) — 1 = 4B [C (ug, w)] — 1, (1.4)
[0,1]2

p (X1, Xs) = 12 //[0 € (0,12) 40 11, 0) =3 = B[O (uy02)) =3, (19

where (ug,us) is a two-dimensional random vector on [0, 1]? and C' (uy,ug) is

the corresponding cdf.
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Next, we give examples of copulas and briefly summarize the main properties

used in this study.

Gaussian copula

The Gaussian copula allows for positive and negative dependence. The Gaussian

copula is defined as

22+ 23 — 2rwa,

o~ Hur) P (u2) 1
C (uy,uz) = —————exp |— dzq dao,
(11,0 /_oo /_Oo o/l —r2 ¥ 2(1—1r2) P
(1.6)

where —1 < r < 1 is Pearson’s correlation coefficient between z; and x, and
® is the cdf of the standard normal random variable. Parameter r is related to

Kendall’s 7 and Spearman’s p coefficients by the relations 7 = (2/7)sin"!(r) and

p=(6/7)sin"(r/2).

Student’s t copula

The Student’s t copula allows for positive and negative dependence. Student’s t

copula takes the form

v+2

T (w) T (u2) x2 — 2rxywe + 2] 2
C (ug,ug) = / dxl/ dxs [1 + = e —17"22) 2 , (1.7)

— 00 —0o0

where r is the correlation coefficient between x; and x, and 7, is the cdf of a
Student distribution with v degrees of freedom. When v goes to infinity, the T

copula converges to the Gaussian copula.
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Frank copula

The Frank copula allows for positive and negative dependence. The corresponding

copula function is given by

(1.8)

C (uy, up) = —%ln (1 n (exp (—0uy) — 1) (exp (—Ouz) — 1)) |

exp(—0) — 1
where 6 € (—o0,400)\{0}. Positive values of 6 indicate positive dependence,
whereas negative values indicate negative dependence. The independence copula is
obtained when 6§ — 0. The relationship between rank and the Pearson correlation

coefficient and 6 is

B 4 Dy(0)
T=1 7 +4 0
and
12
p=1-— 7 [D1(0) — Da(0)],

where Dy (0) is defined as

ko[t
D) = — | ———— =1,2.

1.3.2 Copula Regression

Now we detail the background of the copula regression. Consider the cumulative

distribution of Y,

{4 4 4 l 4
FY) = Prob(Y\" <)) = F(yinly 4), (1.9)

)

where ¢ denote /** LOB, ng) denotes the systematic component, which determines

the location and v) determines the shape.

(¢

We assume ¥ is the same for all the cells (i, j) for each loss triangle. Now

O using ol(i € 1,2,..,10) and A(j €

we model the systematic component 7;; :
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1,2,...,10) as predictors that characterize the effect of the accident year and the

development year corresponding to Y( ) as in (1.10).

) = €9+ ol + 81, (1.10)

where £ is the intercept and constraints are a§‘) =0 and 5}‘) = 0 for parameter
identification. We use the goodness-of-fit test to choose the distribution for Y(Q.

In addition to the specified marginal densities, we assume that Y, 9 and Y, )
from different LOBs with the same accident and development year are dependent.
This is called pair-wise dependence. Moreover, we consider the copulas to model
the dependence structure between the two lines of business (Shi and Frees, 2011).

Next, we write the joint distribution of (Y;f),Y;g )> using copulas based on

Sklar’s theorem (Nelsen, 2006) as follows

oy (02, 0) = Prob (Y9 < 40, v < ) = € (KO0, KOG 0),

(1.11)

where Fi(f) and E(f) are the marginal distributions for Y( and Y( ) , respectively,

and C(-, ) is the copula function such that C(-,6) : [0, 1] — [0, 1] with parameter
6.

By getting derivative of (1.11) with respect to Y( and Y#ﬂ), we get the join

1] ) 1]

PDF for (Y“) v ')> in (1.12).

{4 l ) {4
Fs ) ) = e (FY R )Hffﬁ, (1.12)

=1
where ¢(-) denotes the PDF corresponding to copula C(-) and fi(f) denotes the
PDF associated with the marginal distribution Fl-(f).
Next, we use the maximum likelihood method to estimate the parameters in the
regression model in (1.10) using the copula density in (1.12). We denote estimators

as /lz(f), 6 and (13(5)
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The log-likelihood for all joint (Y@ Y“”) is given by

i ey

J4 A / ¢ Va
L A9 A9, =>" > log (c (FS)FS );9>>

where 79 = ¢, y(*) = ¢, Ug) = #Ef), m(f/) = log (u(gl)gb), and ng) is a function of

ozz(g) and ﬁ](-e) as in regression model (1.10).

1.4 Predictive Distribution of the Total Reserve

In practice, insurance companies are interested in understanding the uncertainty
of reserves. The bootstrapping technique can provide this information and allows
for the determination of the entire predictive distribution. The two most popular
approaches to generating the predictive distribution of the reserve based on the
copulas are simulation and parametric bootstrapping.

Simulation is based on the estimated copula regression model, in which we use
the Monte Carlo simulation to generate the predictive distribution of the reserve.

The simulation is summarized as the following procedure (Shi and Frees, 2011):

(1) Simulate (ugjl-), ui?) (i +j — 1> I) from estimated copula function C(-;6).

©)
1)

_ 0) ~(f) ~ ~(£ L ~ (€ (€
PO, 50), where 70 = 60 1 a(0 4 40

to predictions of the lower triangles by inverse function y; © =

(2) Transform u j

(3) Obtain a prediction of the total reserve by
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Repeat Steps (1) - (3) many times to obtain the bootstrap replicates of R.
However, the limitation of Monte Carlo simulation is the inability to incorpo-
rate estimated parameter uncertainty. To address this constraint, we consider the
parametric bootstrapping.

In the parametric bootstrapping, we generate a new upper triangle for each
simulation with estimated parameters and fit the corresponding copula regression
model to this new upper triangle (Taylor and McGuire, 2007; Shi and Frees, 2011).

The detailed algorithm is as follows:

(1) Simulate (uf?,uf?) (t+j—1 < I) from estimated copula cdf function
C(-0).

(0

(¢ (0 _
]

to estimate the upper triangles by inverse transform y,; ' =

(2) Transform u j

_ 0. A0 » N : NGOER

FOr U(ul(j);nl(j),v“)), where 771'(]') = 5(5) + ozg ) + B](- )

3) Generate an estimate of the total reserve using y?k-(g) from step (2).
ij

— Estimate the parameters ﬁ:j(e),’}*(g) and 6 by performing MLE for the

copula regression model for y:j(z).

O

— Use ﬁ:j(e)ﬁ*(é) and 6* to simulate the lower triangle, y;‘; using the

simulation Steps (1) and (2).

— Obtain a prediction of the total reserve by

I
=1 i=2 j=I—i+2

Repeat Steps (1)-(3) many times to obtain bootstrap replicates of R.

1.5 Thesis Objectives

The motivation and objectives of the thesis are as follows:

10



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

e Develop machine learning tools for multivariate loss reserving that capture
dependence between two lines of business (LOBs). Traditional copula regres-
sion is limited in flexibility for modeling the tail of the marginal distribu-
tions and does not account for time dependence in incremental paid losses.
While machine learning techniques are increasingly used in loss reserving,
few models capture dependence between LOBs using recurrent neural net-
works (RNNs). In this thesis, we develop a Deep Triangle (DT), a gated

recurrent neural network framework for multivariate loss reserving.

e Develop machine learning methods to generate aggregated risk capital from
the predictive distribution, capturing pairwise dependence between the two
LOBs and leveraging diversification benefits. We use generative adversarial
networks (GANSs) to generate synthetic loss triangles and forecast the predic-
tive distribution of reserves for the DT. The combination of DT and GAN,
called extended Deep Triangle (EDT), provides a framework for multivariate

loss reserving and risk capital analysis.

e Develop seemingly unrelated regression (SUR) copula mixed models to model
dependence between LOBs and to address the heterogeneous history of losses
across companies and LOBs. The SUR copula regression incorporates de-
pendence between two LOBs through a copula using loss triangles from one
company, but tends to produce a relatively large bias. We enhance this ap-
proach by developing SUR copula mixed models that incorporate multiple

companies’ data for improved loss prediction and risk capital analysis.

e Develop a sparse SUR copula mixed model to improve the robustness of
the SUR copula mixed model. In the most recent accident and development
years, the number of observed incremental paid losses decreases substantially.
To address this, we combine the SUR copula mixed model with LASSO to

shrink coefficients toward zero, thereby reducing variability.

11
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e Develop a hybrid model combining the EDT and SUR copula mixed model to
interpret the dependence between the two LOBs in the EDT. While the EDT
is effective in prediction, it is limited in interpreting the sign and strength of
dependence. In this thesis, we estimate dependence using the SUR copula
mixed model applied to the residuals from the EDT. Due to heterogeneity
in residuals across companies and LOBs, we incorporate random effects into

the model.

1.6 Scope of the thesis

The work is organized as follows: In Chapter 2, we comprehensively describe
the extended Deep Triangle (EDT) employed in this study for loss reserving and
predictive distribution of reserves. We apply and calibrate the EDT and copula
models using a dataset focused on personal and commercial automobile LOBs from
30 companies. Additionally, we conduct a comparative analysis of the computed
risk capitals against other models, revealing that the EDT model yields smaller
risk capital estimates. We also introduce a simulation study to illustrate that
the EDT framework consistently generates smaller risk capital than the copula
regression models. The copula regression incorporates the dependence between
two LOBs through a copula and multiple company fixed effects and produces a
relatively larger percentage of error compared to the EDT.

In Chapter 3, we propose Seemingly Unrelated Regression (SUR) copula mixed
models to enhance SUR copula regression with multiple companies’ data for loss
prediction and risk capital analysis. Due to the heterogeneous history of losses be-
tween companies and different LOBs, we model this heterogeneity using random
effects and select varying distributions for losses from each LOB. To overcome
the computational complexity of the SUR copula mixed model, we develop a two-

stage estimation approach to estimate the parameters for the proposed model .

12
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This approach is illustrated with multiple pairs of loss triangles from the National
Association of Insurance Commissioners database. We find that the SUR cop-
ula mixed model produces a smaller bias between predicted and actual reserves
than the SUR copula regression model. Moreover, we generate the predictive dis-
tribution of the reserves using a modified bootstrap method and show that the
SUR copula mixed models provide a larger risk capital gain than the SUR copula
regression, indicating a greater diversification benefit.

Moving on to Chapter 4, we combine the SUR copula mixed model with the
least absolute shrinkage and selection operator (LASSO) for loss reserving to re-
duce bias due to too many covariates. We first provide an overview of the LASSO
for generalized linear models. Then we discuss the methodologies for loss reserving
and predictive distribution estimation, with an emphasis on the sparse SUR cop-
ula mixed model approach. We apply and calibrate the sparse SUR copula mixed
model using a dataset that includes personal and commercial automobile LOBs
from multiple companies.

In Chapter 5, we combine the SUR copula mixed model with the EDT model to
capture the dependence between the two LOBs. We first generate predicted losses
from EDT for each LOB. Then we obtain the residuals of the predicted loss from
EDT. We model the residual heterogeneity between companies and different LOBs
using random effects. We estimate the dependence between the LOB through a
copula.

Finally, Chapter 6 presents a summary of the thesis and discusses potential

directions for future work.

13



Chapter 2

Recurrent Neural Networks for
Multivariate Loss Reserving and

Risk Capital Analysis

This chapter is adapted from a paper published by the North American Actuarial
Journal (Cai et al., 2025). hitps://doi.org/10.1080/10920277.2025.2517149

2.1 Introduction

The non-parametric and the parametric approaches are the two primary approaches
to modeling the dependence between two LOBs. In the non-parametric approach,
the multivariate Mack model (Prohl and Schmidt, 2005) extends the traditional
Mack model to capture dependence across multiple LOBs. The multivariate ad-
ditive model (Ludwig and Schmidt, 2010) uses flexible, data-driven methods to
estimate dependence structures without assuming a specific functional form. In
the parametric approach, Shi and Frees (2011) proposes a copula regression model
for two LOBs, which links the claims with the same accident and development year

with copulas. This model assumes that claims from different triangles with the

14
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same accident year and development year are dependent, called pair-wise depen-
dence. Moreover, studies have incorporated dependence between LOBs through
Gaussian or Hierarchical Archimedean copulas and derived the predictive distribu-
tion of the reserve, the reserve ranges, and risk capital (Abdallah et al., 2015; Shi
et al., 2012; De Jong, 2012). However, copula regression is limited in its flexibility
in modeling the marginal distribution and does not account for time dependence
in the incremental paid losses.

Various machine learning techniques have recently been developed in micro-
level loss reserving for a single LOB. These methods are either tree-based learning
methods or neural networks. The tree-based method is based on recursively split-
ting the claims into more homogeneous groups to predict the number of payments
(Wiithrich, 2018a). It can include numerical and categorical attributes of the
claimant, such as type of injury and payment history, as predictors. Moreover,
Duval and Pigeon (2019) uses a gradient boosting algorithm with a regression tree
as the base learner for loss reserving. Gabrielli et al. (2018) proposes separate
over-dispersed Poisson models for claim counts and claim sizes embedded in neu-
ral network architecture. Neural networks are used as a boosting mechanism to
learn the model structure.

In the context of neural networks, Mulquiney (2006) explored their use for
predicting claim sizes, finding better performance compared to generalized linear
models. Wiithrich (2018b) extended Mack’s Chain-Ladder method using neural
networks for individual claim reserving, modeling development year ratios with
claim features but without prediction uncertainty. Taylor (2019) noted that neu-
ral networks can capture interactions between covariates with minimal feature
selection, though at the cost of interpretability and prediction accuracy.

Machine learning techniques are increasingly used in loss reserving; however,
few models have been developed to capture dependence across LOBs using recur-

rent neural networks (RNN), as noted by Cossette and Pigeon (2021). Kuo (2019)

15
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introduced the Deep Triangle (DT) multitask learning framework for a single LOB,
leveraging gated recurrent units (GRU) to model incremental paid losses and out-
standing claims. DT is under-explored for reserve prediction for multiple LOBs.
Moreover, the predictive distribution of the reserve and risk capital analysis for
the DT is not straightforward and understudied in the current literature. In this
chapter, we utilize the multi-task DT model for multivariate loss reserving and
introduce an asymmetric loss function to reflect the volatility in the paid losses
in different LOBs. Further, we propose to use GAN to generate the predictive
distribution of reserves, which allows us to conduct risk capital analysis. Thus,

the summary of our contributions is as follows

1. We propose an asymmetric loss function for DT, an unequal weighting scheme
that uses the inverse of the standard deviation of the incremental paid losses
in the sequence from each LOB to weight the prediction task, reflecting the

volatility in the paid losses of that LOB.

2. We introduce a GAN-based technique to generate the predictive distribu-
tion for loss reserves. Specifically, we utilize conditional tabular GAN (CT-
GAN) and CopulaGAN to create synthetic loss triangles (Goodfellow et al.,
2014; Patki et al., 2016; Xu et al., 2019; Cote et al., 2020). By integrating
these approaches with DT, we propose two models: DT-CTGAN and DT-

CopulaGAN;, collectively referred to as the Extended Deep Triangle (EDT).

3. We investigate the optimal input sequence length for DT. Since accident
years have varying lengths of development years, we examine the effect of
different input sequence lengths and find that longer sequences generally

yield improved performance.

4. We implement pre-trained model weight initialization to train DT on the
GAN-generated samples (thousands of samples), thereby reducing the com-

putational time in generating the predictive distribution of loss reserves.

16
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Next, we describe the Deep Triangle model, which uses GRU to capture the

complex dependence between two LOBs.

2.2 Methods

2.2.1 Deep Triangle Architecture for Multivariate Sequence

Prediction

The DT framework of Kuo (2019) utilizes a multi-task framework to stabilize
training. While it can be trivially extended to accept multivariate inputs, the
differing volatilities of paid losses in the multiple-LLOB setting necessitates a more
nuanced approach. Hence, we propose moving away from the multi-task frame-
work as a stabilizing mechanism, instead replacing it with a loss function which is
asymmetric across the various LOBs.

Figure 2.1 illustrates the architecture of the DT model. We employ a vector
sequence-to-sequence architecture to model the time series of incremental paid
losses, effectively capturing both the pairwise dependence between two LOBs
and the temporal dependence of incremental paid losses within each accident
year (Sutskever et al., 2014; Srivastava et al., 2015). To our knowledge, this
approach has not been previously explored in multivariate loss reserving analy-
sis. As depicted in Figure 2.1, consider the i*" accident year and ;'™ develop-
ment year. The input sequence is the pair of vectors: (Y;(ll), Y;g), o ,YZ(Jl)4> and

y Xi5-1

(Y“) vy oy,

4,j 0 T4+ &

(Y;Sf), Yig), L Y® > The corresponding output sequence is the pair of vectors:
(11)) and <Y;(]2), Y;(JQJ)FI, e ,Y;(?) We predict [ — 741 time steps
into the future for the j* development year, resulting in an output sequence length
of I — 1. Note that we assume the standardized incremental paid loss is indepen-

dent across accident years. Since there is only one value for the last accident year,

we do not use that incremental paid loss for training.

17
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Repeat I-1 times
Paid loss from

(1) +,(1) (1) business line 1

(2) +(2) (2)
Y Y2 ""'Yi.j—l

Paid loss from
business line 1

Paid loss from
business line 2

it Lije1r e

Company code i Vi1

Paid loss from
business line 2

Distributed across I-1 time steps

Figure 2.1: The DT architecture for multivariate sequence prediction.

DT uses GRU to handle the time series of incremental paid losses for each
accident year ¢ over development year j. GRUs are preferred over Long Short-
Term Memory (LSTM) networks due to their fewer training parameters and faster
execution (Goodfellow et al., 2016). The GRU processes each element in the input
sequence vector and includes mechanisms to determine when a hidden state should
be updated or reset at each time step. For each input sequence and for the current
time step v;v =1,...,7 — 1, the input to the GRU is ¢, = (Yif,l), Yi,(?)) along with
the previous time step’s hidden state h,_; = (h,,l_l, h,(j2_)1). The GRU outputs reset

and update gates, 7, and z, respectively, which take values between 0 and 1.

The reset gate r, and update gate z, for time step v are computed as follows:
Ty = O-<W7"€[hl/—17 QV] + bre); (21)

and

2y = U<Wz [hufla QV] + bz)7 (22)

where W,.. and W, are weight parameters, b,. and b, are biases and h,, is the hidden
state value at v. The weights and bias parameters are learned during training. In
(2.1) and (2.2), the sigmoid function o (.) is used to transform input values to the

interval (0,1). The candidate’s hidden state at v is of the form

18
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hy, = tanh(Wh;[r,h,—1, q] + bri). (2.3)

The update gate z, determines the extent to which the new state h, is just
the old state h,_; and how much of the new candidate state ;L,, is used. The final

update equation for the GRU is as follows:

hy = 2,hy, + (1 — 2,)hy_1. (2.4)

When the update gate z, is close to 0, the information from ¢, is ignored,
skipping time step v in the dependency chain. However, when z, is close to 1, the
new state h, approaches the candidate state h,. These designs help better capture
sequence dependencies for (Yz(ll), Y;S), o »3/@(;11> and (Yz(f), Yig), e 7}/;(511> The
outputs of the decoder GRU are then passed to two sub-networks of fully connected

layers, which correspond to LOB 1 and LOB 2. Each consists of a hidden layer of

64 units, followed by an output layer of 1 unit representing the incremental paid

loss at a time step v. The final output sequences are denoted by ( Az(jl ), ffl(]lll, ey
o (1 (2) (2 (2
Yi,(l)) and (Yifj), Y;Ejzrl? AR YZ(I))

To enhance the robustness and generalizability of our model, we utilize data
from multiple companies to train the DT model. We use ¢;; to denote the company

code associated with Yiy),

which is processed through an embedding layer. This
layer converts each company code into a fixed-length vector, where the length is
a predetermined hyperparameter. In our implementation, we set the length as
C — 1, the number of companies minus one. This embedding process is an integral
component of the neural network and is trained with the network itself rather
than as a separate pre-processing step. Consequently, companies with similar

characteristics are mapped to vectors that exhibit proximity regarding Euclidean

distance.

19



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

2.2.2 Learning/Validation
Training/Testing Setup

The input for the training sample associated with accident year i (1 <i <1 —1)
and development year j (2 < j < I4+1—1) are the sequences (mask,. . ., mask, Yifll),

3/;§21)’ LYW ) and (mask,. .., mask, Yﬁ), Yﬁ), ce y@ ). The assumption is

» Xigo1 ij—1
that Y;(jl) and Yl(f) are predicted using the past I — 1 time steps. While RNNs
can handle variable-length sequences, in practice, we use masks to fix sequence
lengths for efficient batch processing. Note that there is no historical data before
development year 1. Thus, we use a mask value where j < 1 and j > [. Masking
selectively ignores certain parts of the sequences during training. If the value at
a timestep is equal to the mask value, that timestep is skipped in subsequent
calculations, including the computation of the loss for backpropagation.

The output for the training sample associated with accident year i (1 < i <
I — 1) and development year j (2 < j < I+ 1 — i) are the sequences (Y;(j]‘), Yl(JlJ)rl,

o Y.fl) _;, mask, ..., mask) and (Yz(f), Yz(j{)q, e Yﬁll_i? mask, ..., mask).
Note that the output sequences also consist of I — 1 time steps. We use a mask
value because we do not have the lower part of the triangle.

The training data is randomly split into training and validation sets using an
80-20 split. When splitting, the training data corresponding to the same accident
year and development year from different companies stay in the same training or
validation sets. We train the DT model for a maximum of 1000 epochs, employing
an early stopping scheme. If the loss on the validation set does not improve over
a 100-epoch window, we stop training and keep the weights on the epoch with the
lowest validation loss. In the DT, we initialize the neural networks with random
weights using the He initialization technique (He et al., 2015), recommended for

ReLU activation function (Murphy, 2022).

Next, we predict future incremental paid loss with the trained and validated
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DT and obtain a point estimate of the reserve. The input for the testing sample

associated with accident year i (2 < ¢ < I) and development year j (j = I +2 —1)

are the sequences (mask, ..., mask,Y;-fll), Y;S), . YZ(}L_Z) and (mask, ..., mask,
Yﬁ), Y;g), Ce Y;(?Zﬂ_z) There are I — 1 testing samples whose accident year and

development year satisfy i +j = I +2 (2 <1i < I). For accident year 1, we have all
the data from development year 1 to development year I. The input sequences for
testing also consist of I —1 time steps. At each accident year and development year
for which we have data, we predict future incremental paid loss (ffz(}iz—w 371.7(}13_1.,
ey f/z(})) and (Yz(?lz_w Yz‘fﬁ?)—w ey }72(?)) Next, we obtain a point estimate of
the outstanding claims for each LOB by R = ZLQ ij Ito—i wi(@}}i;@ .

Weighted Loss Function

For the DT model, the loss function is the average over the predicted time steps

~

of the mean squared error of predictions. For each output sequence (172(]1 ), YZ(]lJ)rl,
. ffif}ll_i, mask, ..., mask) and (Yz(f), ffgll, e Yifﬁl_i, mask, ..., mask),

the symmetric loss is defined as

I+1—i - (1) (1)y2 o (2) (2)y2
1 }EV __yzu + }ZV _Ey;u
- - Z ( ) ) ) ( ) ) ) . (2.5)
I—i+1—-(j—1) = 2

We define an asymmetric loss function as

I+1—1

1 L o)y L oo @y
: —— > — ) -0+ V2 -y (26)
_ _ _ 1 2( 1,V 1,V 9 2 i,V i,V )
[—it1=(j=1) &= 2(oM) 2(0?)
2 2
where (ai(,lj)) and (ij)) are variances for sequences (Y;(Jl), Y;(Jlil, cee 3/1-7(}11_1,
mask, ..., mask) and (YZ(JQ), Yl(ﬁrl, o Yifﬁl_i, mask, ..., mask), respectively.

The volatilities in the paid losses are different between the two LOBs, and we use

uncertainty-based weighting to balance the two prediction tasks. When calculating
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the variances (01(71]-))2 and (af?j))Q , we exclude the mask value from the sequences.

To optimize the parameters for the DT model, we employ the AMSGRAD
method (Reddi et al., 2018), which is a variant of the Adaptive Moment Esti-
mation (ADAM) algorithm. AMSGRAD is chosen specifically due to its ability
to manage the high variability in gradients that arise from the small size of the
training sample, a common issue in stochastic gradient descent (SGD) methods.
AMSGRAD addresses this by incorporating the gradients’ moment into the pa-
rameter update process, thus offering a more stable and effective optimization in
scenarios with limited data.

Once total loss reserves are estimated using the DT model, our approach in-

cludes generating the predictive distribution of total loss reserves.

2.2.3 Predictive Distribution of the Total Reserve

We adapt Generative Adversarial Nets (GANs), as introduced by Goodfellow et al.
(2014), to generate synthetic loss triangles and to generate the predictive distribu-
tion of the total reserve. This approach provides a novel way of applying advanced
machine learning methods to the traditional actuarial problem of reserve estima-
tion. GAN generates new data based on learned distributions from the original
data. Bootstrap resamples the data with replacement to create multiple simulated
data. Bootstrap may not sufficiently capture the underlying data distribution,
especially in complex scenarios.

GAN simultaneously trains two models: a generative model, G, which cap-
tures the data distribution and generates new data, and a discriminative model,
D, which outputs the probability of how likely the generated data belongs to the
training data. Figure 2.2 shows the relationship between the generator G and the
discriminator D. The generator G generates realistic samples while the discrimi-

nator D distinguishes between genuine and counterfeit samples. The generator G
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takes some noise z as input and outputs a synthetic sample.

Generator G

Synthetic data sample —l

Discriminator D

Real data sample R :

— Real or fake?

Noise source z ~ P(z)

Figure 2.2: The architecture of GANSs.

Generating New Samples

The traditional GAN model utilizes the latent variable z sampled from a standard
multivariate normal distribution. However, for our purposes, we require a GAN
approach that can capture the pairwise dependence between two LOBs and the
sequential structure inherent in the standardized incremental paid losses. To ad-
dress this, we utilize the GAN method for tabular data generation, considering the
pairwise dependency and the sequential structure.

To generate synthetic data from loss triangles, we employ conditional tabular
GAN (CTGAN), a GAN variant (Xu et al., 2019), which is adept at modeling
dependencies in data. For CTGAN, numerical inputs Yigz) are normalized to fit

)

within the (-1, 1) range using mode-specific normalization. Each nge is represented

as a one-hot vector ﬁl-(f), indicating the mode, and a scalar ag), indicating the value
within the mode. The company code categorical variable ¢;; is represented as a
one-hot vector d;;.

CTGAN generates data conditioned on additional information by combining
random noise z sampled from a standard normal vector with a condition (such

as company code ¢;;). This is done by concatenating the noise z and the con-
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dition and then passing the combined input through the generator network G,
which learns to generate synthetic data that satisfies the given condition. Addi-
tionally, to maintain the sequential integrity of the data, we generate synthetic
data for each development year separately. This approach ensures that the se-
quential properties of standardized incremental paid losses are preserved, allowing
for more accurate and realistic simulation of loss triangles across multiple LOBs.

Generating a synthetic loss triangle involves a three-stage process:

(1) Combination of Data: For each development year j (1 < j < I), we combine
Yigl) and Y,f) of all accident years i (1 < i < ) from all companies into one
table. The first column of the table is Yigl) of all accident years from the
personal auto line. The predicted loss from the DT model is used if the Yigl)
is not available. Similarly, the data from the commercial auto line is used

for the second column. The third column of the table is the company code.

(2) GAN Model Training: We train a GAN model for each development year j
using the combined data from (1). The representation r;; of a row in the
combined table is the concatenation of the three columns: r;; = 041(31-) &) Bl(; )@
Oég) S ﬁsz ) ®d,;. This training enables the GAN model to learn the underlying

distribution of the combined data in (1).

(3) Sampling and Loss Triangle Formation: After training, we use the GAN to
sample I new rows for each development year j for each company. These
sampled data are then sequentially arranged according to their development
years. We remove the lower triangle to form a new loss triangle, ensuring

the structure aligns with the loss triangle format.

Note that the loss triangles from the two LOBs are on different scales, presenting a
challenge for effective modeling. To address this, we employ a CopulaGAN (Patki
et al., 2016), which leverages the scale-invariant property of copulas to define the

covariance of z. In addition to the marginal distributions, CopulaGAN uses a
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Gaussian copula. CopulaGAN is a variation of the CTGAN model that leverages
the CDF-based transformation applied by the Gaussian Copula, making it easier
for the underlying CTGAN model to fit the data. For computing, we use the
SDV (Patki et al., 2016) library to build GAN models by constructing the input

as follows.
(1) Let the marginal CDFs of columns Yig-l) and Y;gz) be F and F3, respectively.

(2) Go through the table row-by-row. Each row is denoted as y = (Y(l) Y(Q)).

(3) Transform each row using the inverse probability transform:

c= [0 (R (7)) 0 (m ()

where @' () is the inverse CDF of the Gaussian distribution.

(4) After all the rows are transformed, estimate the covariance matrix ¥ of the

transformed values.

The parameters for each column distribution and the covariance matrix X are
used in the generative model for that table. The CDF transformed data Fl(Y;g-l))
and FQ(YZ-E.Q)) are then fed into the CTGAN architecture. After generating synthetic
data in the transformed space, CopulaGAN uses the inverse CDF to bring the
data back to the original space. For the new table generated using CopulaGAN,

we consider only the upper loss triangle as a new sample.

Initializing Weights for the DT

Next, we introduce a new weight initialization mechanism to speed up the train-
ing of DT for the newly generated samples. In order to generate the predictive
distribution of the reserve, we apply the DT model to the loss triangles generated

as in Subsection 2.3.1. For each set of newly generated loss triangles, we obtain a

25



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

point estimate of the reserves. We repeat this procedure many times to construct
a predictive distribution for the reserve. Given the high computational cost aris-
ing from the need to train DTs for each generated sample, we implement a more
efficient approach. We propose to leverage a pre-trained DT model from the real
data to fine-tune weights for new samples, instead of training DTs using random
weight initialization for every generated sample.

Subsequently, the risk capital gain is calculated using the methodology out-
lined in (1.2). The proposed EDT method, which includes DT-CTGAN or DT-
CopulaGAN;, integrates the predictive capabilities of the DT model with the dis-
tributional insights provided by GAN, offering a comprehensive view of the reserve

estimation and its associated risks.

2.3 Applications

2.3.1 Data Description

In this section, we demonstrate the proposed EDT approach on a real dataset.
We use 30 companies’ loss triangles from Schedule P of the National Association
of Insurance Commissioners (NAIC) database (Meyers and Shi, 2011) to illustrate
and compare the EDT. Each pair comprises two loss triangles from the personal
and commercial auto LOBs and is associated with a company code. Each triangle
contains incremental paid losses for accident years 1988-1997 and ten development
years. Here, we demonstrate prediction and risk capital analysis for a major US
property-casualty insurer. Table 2.1 and Table 2.2 show the incremental paid

losses for this company’s personal and commercial auto LOBs.
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Table 2.1: Incremental paid losses (Xi(jl)) for personal auto LOB.

year  premium 1 2 3 4 5 6 7 8 9

10

1988 4711333 1376384 1211168 535883 313790 168142 79972 39235 15030 10865 4 086

1989 5335525 1576278 1437150 652445 342694 188799 76 956 35042 17089 12507
1990 5947504 1763277 1540231 678959 364199 177108 78169 47 391 25288

1991 6354 197 1779698 1498 531 661 401 321 434 162 578 84 581 53 449

1992 6738172 1843224 1573604 613095 299473 176 842 106 296

1993 7079444 1962385 1520298 581932 347 434 238 375

1994 7254832 2033371 1430541 633500 432257

1995 7739379 2072061 1458541 727 098

1996 8154 065 2210 754 1517 501

1997 8 435918 2 206 886

Table 2.2: Incremental paid losses (Xi(j?)) for commercial auto LOB.

year premium 1 2 3 4 5 6 7 8 9 10
1988 267 666 33 810 45318 46549 35206 23360 12502 6602 3373 2373 778
1989 274526 37663 51771 40998 29496 12669 11204 5785 4220 1910

1990 268 161 40630 56318 56 182 32473 15828 8409 7120 1125

1991 276821 40475 49697 39313 24044 13156 12595 2 908

1992 270214 37127 50983 34 154 25455 19421 5728

1993 280568 41125 53302 40289 39912 6 650

1994 344915 57515 67881 86734 18 109

1995 371139 61553 132208 20923

1996 323 753 112103 33 250

1997 221 448 37 554

2.3.2 Prediction of Total Reserve

First, we apply the DT model to the losses in the two LOBs from 30 companies.
In the pairwise training sample, the first component is the incremental paid loss
from the personal LOB, and the second component corresponds to the incremental
paid loss from the commercial LOB.

To train the DT, we consider the incremental paid losses up to 1997, which is the
current calendar year for this dataset. We use the lower part of the loss triangle
to evaluate the EDT’s predictive performance. In particular, we compare the
percentage errors of actual and predicted loss reserves to evaluate the performance
of different models. We predict the reserve using DT with both the symmetric
loss function as in (2.5) and the asymmetric loss function as in (2.6). Table 2.4
displays the predicted reserves from DT alongside the actual reserves. In terms of
the percentage error from the actual reserve, DT with the asymmetric loss function

generates a more accurate estimation of the reserve, which is shown in Table 2.5.
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As demonstrated in Table 2.5, introducing the asymmetric loss function leads to
a substantial reduction in bias for the reserve of the commercial LOB, a sector
characterized by more volatile incremental paid losses.

Next, we apply the copula regression model to the two loss triangles from the
major US property-casualty insurer. For the marginal distribution, we use the
log-normal and the gamma distributions for personal and commercial LOBs (Shi
and Frees, 2011), respectively. We consider the systematic component 7;; = p;;
for the log-normal distribution with location parameter j,;; and shape parameter
o. For the gamma distribution with location parameter p;; and shape parameter
¢, we use 1;; = log(4i;®).

We use the Gaussian and Frank copulas to model the dependence between
the two LOBs. These copula functions are specified using the R package copula
(Hofert et al., 2020). The gjrm function from the R package GIRM estimates the
copula regression model (Marra and Radice, 2023). The log-likelihood, Akaike
information criterion (AIC), and Bayesian information criterion (BIC) for all cop-
ula models are provided in Table 2.3. According to Table 2.4, independence and
copula models generate comparable point estimates for the total reserve, about 7

million dollars.

Table 2.3: Summary statistics for fitted copula regression models with product
copula, Gaussian copula, and Frank copula.

Copula
Product Gaussian Frank
Dependence Parameter (6) . -0.3656  -2.7977
Log-Likelihood 346.6 350.4 350.3
AIC -613.2 -618.9 -618.5
BIC -505.2 -508.2 -507.8

In addition to DT, Table 3 shows the percentage error of prediction to the actual
reserve for the copula regression model. Interestingly, the DT model provides a
more accurate point estimation of the reserve for personal and commercial auto

LOBs. This improved performance can be attributed to the neural network’s
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Table 2.4: Point estimates of the reserves from DT and copula regression models.

Reserves

Model LoB 1, Ry LoB 2, R, Total, R

DT (symmetric) 7 756 417 327 517 8 083 934
DT (asymmetric) 7 781 299 324 024 8105 323
Product Copula 6 464 083 490 653 6 954 736
Gaussian Copula 6 423 246 495925 6919 171
Frank Copula 6 511 360 487 893 6 999 253
Actual Reserve 8 086 094 318 380 8 404 474

ability to learn complex non-linear relationships of incremental paid losses between
LOBs and within accident years (Murphy, 2022).

Table 2.5: Performance comparison using percentage error of actual and estimated loss reserve.

LOB DT (symmetric) DT (asymmetric) Product Copula Gaussian Copula Frank Copula
Personal Auto -4.1% -3.8% -20.1% -20.6% -19.5%
Commercial Auto 2.9% 1.8% 54.1% 55.8% 53.2%
Total -3.8% -3.6% -17.3% -17.7% -16.7%

Note: The best metric for each LOB is in bold.

For a fair comparison between copula regression and DT, we also utilize 30
companies’ data for copula regression. The results in Appendix A.2 show similar
results to those with one company. However, the company heterogeneity should
be modeled as a random effect, and to our knowledge, there is no software imple-

mentation of such a model to be used in this analysis.

2.3.3 Predictive Distribution of Total Reserve

First, we obtain the marginal predictive distribution of reserves to evaluate diver-
sification benefits. Assuming log-normal and gamma marginal distributions for
personal and commercial LOBs, respectively, we use parametric bootstrapping to
generate predictive reserve distributions separately for each LOB. Figure 2.3 illus-
trates that the personal LOB exhibits heavier tails compared to the commercial
LOB. To capture the benefits of risk diversification for this data, we generate the
predictive distributions of the total reserves.

To obtain the predictive distribution of the reserve for the DT model, we first
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Figure 2.3: Marginal predictive distributions of the reserves from parametric boot-
strapping.

Note: The vertical dotted lines indicate the maximum likelihood estimates of the reserve
from the observed data.

utilize the CTGAN model. We train the CTGAN model with data from 30 com-
panies for each development year. New incremental paid losses are generated for
each of the ten development years. The newly generated data for each develop-
ment year are then stacked in the order of development years to form new upper
loss triangles. The DT model estimates reserves for these newly created loss tri-
angles. This process is repeated multiple times to construct a predictive reserve
distribution. In addition to CTGAN, CopulaGAN is employed to create new up-
per triangles to generate the predictive distribution of the reserve. Moreover, we
use block bootstrapping to generate the predictive distribution of the reserve, with
full details provided in Appendix A.3.

To reduce the computational expense associated with the EDT, stemming from
training numerous DTs for GAN samples, we leverage the trained model on the
observed data to fine-tune weights for new samples. For each newly generated sam-
ple, DT takes two minutes to run when trained from a random weight initialization,

and about one minute when trained from a saved model that was previously fitted
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on real data. It takes about 4 hours to obtain the predictive distribution using
parallel computing with 32 CPUs.

For copula regression models, we used the parametric bootstrap to generate
the predictive distributions of the reserves. Table 3.5 shows the estimated reserve,
bias, and standard errors for the different models. The percentage bias is computed
as the percentage error between the bootstrap mean reserves and estimated loss
reserves. It has been observed that the standard deviations from the DT-GAN are
smaller than those from the copula regression models, and the biases are slightly
higher, likely due to heterogeneity across companies and between LOBs. This
is also corroborated in Table 2.5, which shows positive and negative bias for the
commercial and personal LOB, respectively. CTGAN uses Gaussian mixtures to
model distributions when generating synthetic loss triangles (Xu et al., 2019).
These modeling assumptions in GANs introduce a certain bias compared to the
bootstrapping method. However, the DT-GAN models, by capturing the inter-
LOB dependence, generate a smaller risk capital than the copula regression models,
as discussed in the next subsection. The coefficient of variation (CV) can be used
to measure the risks when the insurance company has more than one LOB. Based
on the CV in Table 3.5, all the copula regression models and the EDT have CVs
smaller than one, which complies with the insurance standards. However, the EDT
stands out because its CVs are consistently smaller than the copula regression
models.

Table 2.6: Bias, Standard deviation, Coefficient of variation (CV)

Reserve  Bootstrap mean reserve Bias Std. dev. CV

DT-CTGAN 8 105 323 8 261 718 1.93% 197 465 0.024
DT-CopulaGAN 8 105 323 8 255 638 1.85% 196 791  0.023
Product Copula 6 954 736 6 972 792 0.26% 399 758  0.057
Gaussian Copula 6 919 171 6 941 806 0.33% 368 555  0.053
Frank Copula 6 999 253 7 043 309 0.63% 388 357  0.056

We compare the predictive distributions of the reserves for the EDT and the
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Figure 2.4: Predictive distributions of total reserves from the EDT and copula
regression.
Note: The vertical dotted lines indicate the estimated reserves for each model.

copula regression in Figure 2.4, which shows that the bootstrap mean reserves
of these models are pretty similar. In summary, for this insurer, the dependence
between triangles only results in small changes in the point estimates of reserves.
Though the point estimates are similar, the dependencies between LOBs affect the
reserve’s predictive distribution, which helps diversify risk within the portfolio.

Using the predictive distributions we generated, Table 2.7 and Figure 2.5 show-
case the 95% confidence interval of the total reserve, where the lower bound is the
2.5th percentile of the predictive distribution and the upper bound is the 97.5th
percentile of the predictive distribution. We observe that the EDT models generate
the narrowest confidence intervals.

Table 2.7: 95% confidence intervals for the total reserve using the predictive dis-
tribution.

Lower bound Upper bound
DT-CTGAN 7900 272 8 683 653
DT-CopulaGAN 7 875 828 8 653 414
Product Copula 6 241 016 7 756 950
Gaussian Copula 6 280 339 7715 924
Frank Copula 6 315 438 7 807 835
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Figure 2.5: 95% confidence interval for the total reserves for different models.

2.3.4 Risk Capital Calculation

In actuarial practice, a common method to calculate the risk measure for the entire
portfolio, which here includes both personal auto and commercial auto LOBs, is
the “silo” method, as in the Methods section. We denote “Silo-GLM” and “Silo-
DT” as the aggregate of risk measures derived from copula regression models and
EDT model, respectively.

We compared these silo methods with the risk measures calculated from both
the EDT and copula regression models to evaluate the benefits of diversification.
Table 3.6 indicates that the risk measures from both the EDT and copula regression
models are lower than their respective silo totals. This might be due to the fact
that there is a negative association between the incremental paid losses of the
two LOBs. Table 2.3 and Appendix A.1 show negative dependence through the
copula parameter estimates of the copula regression and Kendall’s tau for the
dependence, respectively. The dependence estimated by the Student’s t copula
regression is not significant because its confidence interval includes zero. All these
results suggest that incorporating the interdependencies between LOBs into the
risk measurement process can yield lower risk estimates, highlighting the potential
value of these more integrated approaches in risk management.

Next, we calculate risk capital as defined in (1.1) from the predictive distribu-
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Table 2.8: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (30%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

Silo-DT 8 105 434 8 217 523 8 258 835 8 317 629 8 399 375 8 558 981
DT-CTGAN 8 452 870 8 549 295 8 582 802 8 627 247 8 699 935 8 846 865
DT-CopulaGAN 8 443 684 8 532 939 8 564 483 8 606 020 8 666 096 8 789 649
Silo-GLM 7 442 692 7 671 633 7756 992 7 872 138 8 060 489 8 460 435
Product copula 7 367 695 7 5353 768 7621 203 7710 435 7847 773 8 126 433
Gaussian copula 7 313 951 7 490 387 7 556 029 7 644 886 7 782 646 8 054 737
Frank copula 7 424 807 7 616 405 7 685 514 7776 754 7921 574 8 202 695

Risk capital

Silo-DT 112 089 153 401 212 195 293 941 453 547
DT-CTGAN 96 425 129 932 174 377 247 065 393 995
DT-CopulaGAN 89 255 120 799 162 336 222 412 345 965
Silo-GLM 228 941 314 300 429 446 617 797 1017 743
Product copula 186 073 253 508 342 740 480 078 758 738
Gaussian copula 176 436 242 078 330 935 468 695 740 786
Frank copula 191 598 260 707 351 947 496 767 777 888

tion of the reserves to set up a buffer from extreme losses. Table 3.6 shows that
the risk capital required under the Silo-DT method is less than that of Silo-GLM,
suggesting that the EDT is instrumental in reducing the insurer’s risk capital. It is
noteworthy that while the silo method tends to yield a more conservative estimate
of risk capital, both the EDT and copula models lean towards a more aggressive
estimation.

Furthermore, when comparing the risk capital from different models, those de-
rived from the EDT are consistently smaller than those from the copula regression
models. This is attributable to the EDT’s ability to capture pairwise dependen-
cies between the two LOBs and the time dependencies of incremental paid losses.
Notably, among all models evaluated, DT-CopulaGAN produces the smallest risk
capital. This could be due to its use of flexible marginals, such as truncated Gaus-
sians with varying parameters and a Gaussian copula for capturing dependencies
between these marginals. Thus, insurers can leverage the EDT as an effective tool
for risk management, particularly in reducing the required risk capital.

Next, we compute the risk capital gain defined in (1.2). Note that the risk
capital gains for both the EDT and copula regression models are computed using

silo-GLM, which is the industry standard, as the base. Table 3.7 shows that
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risk capital gain is large when we capture the association between the two LOBs.
Further, the larger risk capital gains are obtained for the EDT models compared to
the copula regression models. We can associate these gains with the diversification
effect in the insurance portfolio. For example, to better take advantage of the
diversification effect, the insurer can increase the volume of the commercial LOB,
which is smaller than the personal LOB.

Table 2.9: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
DT-CTGAN vs Silo-GLM 58.36% 58.89% 59.64% 61.06% 61.67%
DT-CopulaGAN vs Silo-GLM 61.45% 61.78% 62.42% 64.94% 66.34%
Product copula vs Silo-GLM 18.72% 19.34% 20.19% 22.29% 25.45%
Gaussian copula vs Silo-GLM 22.93% 22.98% 22.97% 24.13% 27.21%
Frank copula vs Silo-GLM 16.31% 17.05% 18.05% 19.59% 23.57%

Note: The largest risk capital gain for each risk level is in bold.

2.4 Simulation Case Study

In this section, we further validate our conclusions that the EDT produces reduced
risk capital through simulation studies. We simulate pairs of loss triangles of
personal and commercial auto LOBs with ten accident and development years for
each simulation run. The details of the simulation setup are provided below.

We begin with the estimated copula regression model for the real data in Sec-
tion 3.4. In this model, we use log-normal and gamma densities for the marginal
distributions of standardized incremental paid losses from the personal and com-
mercial LOBs, respectively. To simulate these losses in the loss triangles (Y;;l), Yi§-2)> ,
we first calculate the systematic component nff) (¢ = 1,2) from the accident year
effect al@) (Table A.3) and development year effect ﬂi(g) (Table A.4). Next, we
simulate ug)( =1,2) (i +j— 1 <1I) from Gaussian copula model ¢(+; #) with de-
pendence parameter § = —0.36. Then, we transform ugf) to the upper triangles by
inverse function yff) = F(é)(*l)(ug); 7755), v9), where ng) = §(£)+Oz§£)+ﬁy) (0=1,2).

Here, we set the shape parameter 7 = 0.089, as estimated in the copula regres-
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sion model, and larger v?) = 2 to account for higher volatility in the commercial
LOB. Moreover, ng) are derived from the marginal distribution parameters as fol-
lows. 7n;; = p;; for a log-normal distribution with location parameter p;; and shape
parameter v(!) = o. For a gamma distribution with location parameter fij and
shape parameter v?) = ¢, we use the form n;; = log(u;¢). Finally, the incre-
mental paid losses, (Xg%X?) are obtained by multiplying the simulated y,gf)
by the premium for the i-th accident year. Note that in Table A.4, most of the
development year effects are negative, which indicates that the incremental paid
losses are decreasing with development years.

Using the above procedure, we simulate the upper and lower parts of each loss
triangle. The sum of the lower triangle represents the actual reserve for each loss
triangle. We retain only the upper part of all simulated loss triangles to apply
the proposed EDT and compare its results with copula regression models. To
reflect the multiple companies of real data, we simulate 50 pairs of loss triangles
per simulation run.

For each simulation run, we train the DT model using 50 pairs of loss triangles.
We use the symmetric loss function for DT in the simulation study because the
simulated data was generated using a Gaussian copula, which assumes symmet-
ric dependencies between loss triangles. Since the data does not exhibit inherent
asymmetry, applying an asymmetric loss function in this setting would not provide
meaningful improvements and could introduce unnecessary distortions. However,
in the real-data analysis of the previous section, we implemented the asymmetric
loss function to capture better potential skewness and tail risks observed in empir-
ical loss triangles. The trained model is then used to predict the reserve for each
pair. Additionally, we generate predictive distributions of the total reserve using
CTGAN and CopulaGAN for each pair of simulated loss triangles.

Through the simulation study, we examined the impact of input and output

sequence lengths on the DT model performance. We generated input and output
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sequences of varying lengths for each accident year. As shown in Figure 2.6, the
cross-validation error was evaluated across different sequence lengths, with a length

of nine identified as optimal for the DT model.
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Figure 2.6: Cross-validation errors for different input sequence lengths in the DT.

Next, we apply the copula regression model separately to each pair of 50 sim-
ulated loss triangles. We assume log-normal and gamma distributions for the
marginals and evaluate different copula structures, including the product copula,
Gaussian copula, and Frank copula.

In Table 2.10, we evaluate the performance of all copula regression and DT
models in estimating the total reserve. To compute the true reserve R and R,
we sum up the expected values of the lower triangle exp <u£]1-) +3 (0)2> and ,ug)gb,
respectively.

Here, we compare the predicted reserves with the actual reserves for each pair
across all models, including copula regression and DT. In each simulation run,

we evaluate 50 pairs of predicted and actual reserves. To quantify the prediction

error for each LOB ¢ we compute the mean absolute percentage error (MAPE) as

defined in (2.7).

A

R(é) R®

S 27)

|5
MAPE, = — >

b=1
where fil(f) is the predicted reserves for o™ loss triangle from " LOB and R® is
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the true reserve for the ¢'" LOB. Table 2.10 shows that the DT model outperforms
the copula regression models for both LOBs and is particularly effective for the
more volatile commercial auto LOB. The MAPE is almost negligible in personal
LOB because the DT has increased flexibility than the copula regression models
and captures the time dependence in the sequence input. The MAPE is relatively
large for the commercial LOB, which is set to be more volatile than the personal
LOB in the simulation setting.

The performance of the copula regression model can be attributed to its lim-
ited flexibility in capturing both the sequence dependence and the pairwise depen-
dence. In particular, the model underestimates the shape parameter of the gamma
marginal distribution for the commercial LOB, which plays a crucial role in con-
trolling the dispersion and tail behavior of the distribution. This underestimation
leads to significant errors in the predicted reserve, especially for the more volatile

commercial LOB.

Table 2.10: Performance comparison using the mean absolute percentage error.

LOB DT Product Copula Gaussian Copula  Frank Copula
Personal Auto 0.63% 5.28% 5.11% 5.07%
Commercial Auto 18.67% 27.28% 31.85% 31.59%

Note: The best metric for each LOB is in bold. The actual reserves for the personal and
commercial LOBs are 6423246 and 495 925, respectively.

For each simulated loss triangle pair, we use the DT model’s predicted full
triangle as input to the GAN models. We then apply CTGAN and CopulaGAN to
generate 1,000 synthetic loss triangles per pair and use the DT model to predict
reserves for each synthetic triangle.

For each of the 50 simulated loss triangle pairs, we construct the predictive
distribution of reserves using 1,000 predicted reserves from the corresponding syn-
thetic loss triangles. Based on the EDT models, the corresponding 95% confidence

intervals for the total reserve are presented in Figure 2.7, where the horizontal line
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represents the true reserve of the simulated loss triangles. Notably, we observe
that the true reserve falls within all 95% confidence intervals for all models. Thus,
the coverage exceeds the nominal value of 95%. This over-coverage may be due to
the EDT relying on the predicted lower triangle from the DT as input for the GAN
models, which could lead to conservative uncertainty estimates, or an insufficient
number of synthetic loss triangles, limiting the variability captured in the pre-
dictive distribution. Among all the EDT models, DT-CopulaGAN produces the
narrowest confidence interval. We also expect the coverage of the interval of the
GAN to become close to the nominal value when the GAN is modified to accept

missing values in the lower triangle.
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Figure 2.7: 95% confidence interval for total reserves for different EDT models.
Note: The horizontal line indicates the true reserve. The true reserve is within all the
95% confidence intervals. The average length of confidence intervals are 1413034 and
1498 851, respectively.

For copula regressions, we generate the predictive distribution of the total re-
serve for each of the 50 simulated loss triangles. For each copula regression model,
we conduct 1000 bootstrap simulations to generate the predictive distribution of
the total reserve. We present in Figure 2.8 the 95% confidence interval for the

total reserve. We observe that, for all models, the true reserve falls within most of
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the 95% confidence intervals. Among them, the product copula regression model
provides the highest coverage, approaching the nominal 95%, but at the cost of the
widest confidence intervals, indicating greater uncertainty. In contrast, the Gaus-
sian copula regression model yields the narrowest confidence intervals, but with a

lower coverage rate of 90%, suggesting it may underestimate reserve variability.
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Figure 2.8: 95% confidence interval for the total reserves for different copula mod-
els.

Note: The horizontal line indicates the true reserve. The coverage for product copula,
Gaussian copula, and Frank copula are 94%, 90%, and 88%, respectively. The average
length of confidence intervals are 1457826, 1291627, and 1329 655.

Next, we compute the risk measure for all 50 simulated loss triangle pairs based
on their predictive reserve distributions. Figure 2.9 illustrates the box plot of the
TVaR measure at the 99% confidence level for each pair. The boxplots provide
a comprehensive comparison across different models: Silo-GLM, Product copula,
Gaussian copula, Frank copula, Silo-DT, DT-CTGAN, and DT-CopulaGAN.

We observe that the median risk measures from all copula regression models
are smaller than those from Silo-GLM, while the median risk measures from all the
EDT models are smaller than those from Silo-DT. This trend can be attributed

to the negative association between the two LOBs. Specifically, the copula-based
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models (Product copula, Gaussian copula, and Frank copula) demonstrate mod-
erate medians and variability, whereas the DT-based models (DT-CTGAN and
DT-CopulaGAN) show the smallest spread, indicating more consistent and lower
risk measures.

Furthermore, the spread of the data and the presence of outliers vary across
models. Silo-GLM and Silo-DT exhibit larger variability in their risk measures.
In contrast, the DT-CTGAN and DT-CopulaGAN models have fewer and lower
extreme values, contributing to their overall consistency in risk assessment.

Overall, the choice of model significantly influences the assessment of risk mea-
sures, with the copula and the EDT models providing more conservative and con-
sistent estimates compared to the silo approaches. Between the EDT and copula
models, the EDT models generally exhibit lower variability and fewer extreme
values, suggesting that the EDT models might offer a more robust and reliable

assessment of risk in this context.

1.2e+07 1.4e+07

1.0e+07
®

|
|
|
|
|

T T T T T T T
Silo-GLM Product copula Gaussian copula  Frank copula  Student's t copula Silo-DT DT-CTGAN DT-copulaGAN DT-bootstrap

Figure 2.9: The risk measures at 99% for different models. The horizontal line
indicates the true risk measure.

Additionally, we present the risk capital using the average of the risk measures
derived from the 50 simulated loss triangle pairs in Table 2.11. Similar to the
real data application, we calculate the risk measures for Silo-GLM and Silo-DT,
respectively. Once again, we observe that the risk capital for Silo-DT is smaller
than that for Silo-GLM. Furthermore, DT-CopulaGAN consistently generates the

smallest risk capital among all the EDT models, aligning with the real data ap-
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Table 2.11: Average risk capital from 50 simulated loss triangles.

Risk capital TVaR (30%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

Silo-DT 198 839 272 500 372 127 531 067 863 805
DT-CTGAN 141 922 192 690 258 984 363 501 576 167
DT-CopulaGAN 140 300 190 851 257 575 361 720 569 043
Silo-GLM 256 262 354 572 486 496 702 533 1 180 878
Product copula 179 938 246 664 335 529 477 132 758 015
Gaussian copula 158 158 217 078 295 256 422 683 700 221
Frank copula 165 128 227 321 311 099 449 677 751 712
True risk capital 106 371 146 047 199 655 282 214 467 289

plication findings. It’s important to note that we do not calculate the risk capital
gain in this context because the risk capitals for the silo method vary across the 50
simulated loss triangles. We show the risk capital percentage errors for different
models in Table 2.12. We find that DT-CTGAN and DT-CopulaGAN generate
risk capitals that are closest to the true risk capital, particularly in the tail, when
compared to all other models.

Table 2.12: Risk capital percentage error for different methods.

Risk capital TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

Silo-DT 86.93% 86.58% 86.38% 88.18% 84.85%
DT-CTGAN 33.42% 31.94% 29.72% 28.80% 23.30%
DT-CopulaGAN 31.90% 30.68% 29.01% 28.17% 21.78%
Silo-GLM 140.91% 142.78% 143.67% 148.94% 152.71%
Product copula 69.16% 68.89% 68.05% 69.07% 62.22%
Gaussian copula 48.68% 48.64% 47.88% 49.77% 49.85%
Frank copula 55.24% 55.65% 55.82% 59.34% 60.87%

Note: The smallest risk capital percentage error for each risk level is in bold.

2.5 Summary and Discussion

When applied to multiple LOBs, the DT model leverages the dependence between
loss triangles from different LOBs. Specifically, we use the incremental paid losses
from different LOBs as training inputs, with the model designed to minimize asym-

metric prediction errors.

The DT model estimates reserves for different LOBs, while DT-CTGAN and
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DT-CopulaGAN generate predictive distributions for the total reserve. We demon-
strate that DT requires sequence-based input, whereas GAN-based models operate
on tabular data, ensuring both approaches effectively capture dependencies and
improve reserve estimation.

A crucial aspect of this chapter is assessing the diversification benefits of the
EDT in multivariate loss reserving and risk capital analysis. This is achieved by
comparing risk measures and risk capital derived from the “silo” method against
those obtained from the EDT or copula regression approaches. This comparison
highlights the potential advantages of employing the EDT, a more interconnected
and sophisticated modeling technique, in managing insurance portfolio risks.

To evaluate the practical effectiveness of the EDT, we apply it to loss triangles
from 30 companies in the NAIC database. For comparison, we also include copula
regression in our study. The EDT outperforms alternative models by yielding
the smallest bias between predicted and true reserves for both LOBs. Moreover,
both DT-CTGAN and DT-CopulaGAN consistently produce lower risk capital
estimates than industry standards. These results highlight the potential benefits
of integrating advanced modeling techniques for more accurate reserve estimation
and enhanced risk management in the insurance industry.

Through the real data applications and simulations study, we discerned cer-
tain limitations of copula regression. One reason for the relatively large bias in
copula regression is using a single pair of loss triangles. Modeling loss triangles
from multiple companies using fixed effects in copula regression still generates a
larger bias. Future extensions may involve seemingly unrelated regressions and
mixed models to address the heterogeneity in data from multiple companies (Zell-
ner, 1962). Another notable constraint is that complex dependencies may not be
captured in copula regression attributed to the Fréchet-Hoeffding bounds on the
dependence parameter (Schweizer and Sklar, 2011). Additionally, the potential

over-parameterization of the copula regression model, particularly given the lim-
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ited pairs of observations available in the LOBs, poses a challenge. To mitigate
this, regularization techniques such as the least absolute shrinkage and selection
operator (LASSO) can be applied. By imposing an L; norm constraint on the
parameters within the loss function, LASSO facilitates parameter shrinkage, ef-
fectively reducing overfitting (Tibshirani, 1996). These regularization methods,
akin to those used in generalized linear models (Taylor, 2019), play a crucial role
in improving the robustness of copula regression models, especially when working
with limited data.

In summary, the EDT framework shows strength and potential in multivari-
ate loss reserving and risk capital analysis by providing a smaller bias in reserve
prediction and larger diversification benefits. This flexible framework allows its
application in various settings in actuarial science, such as rate-making and rein-
surance. This adaptability showcases the EDT versatility across diverse insurance

scenarios by complementing the DT model.
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Chapter 3

Seemingly Unrelated Regression

(SUR) Copula Mixed Models

3.1 Introduction

Dependence modeling of loss ratios between multiple loss triangles is critical in
predicting loss reserves and risk capital analysis, which depends on the predictive
distribution of the reserve. Incorporating dependency into reserve leverages the
risk diversification benefit between incremental paid losses of different lines of
business (LOBs) for the insurer. For example, Cai et al. (2025) show that capturing
the pairwise and sequence dependence in multiple loss triangles reduces risk capital.
On the other hand, Abdallah et al. (2015) demonstrate that a parametric approach
that models some of these relationships can accurately determine reserve ranges
and the amount of risk capital needed.

Neural networks-based method utilizes GAN techniques to generate the pre-
dictive distribution, and parametric models utilize model-based and rank-based
bootstrapping to generate the predictive distribution. In the presence of depen-
dence, copula GAN leads to the largest risk capital gain (Cai et al., 2025). Among

parametric approaches, the rank-based bootstrapping yields the largest risk capital
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gain and highest risk diversification benefit (Abdallah and Wang, 2023).

Both neural network-based and parametric approaches have notable limita-
tions. Neural methods, while flexible and capable of quantifying predictive uncer-
tainty as demonstrated in the Extended Deep Triangle (EDT) model, often lack
interpretability, particularly in how they represent dependence structures (Cai
et al., 2025). This hinders their usefulness for decision-making in actuarial con-
texts where understanding pairwise dependence is essential. Parametric models,
on the other hand, are more interpretable but may suffer from model misspecifi-
cation and fail to fully leverage multiple company data, leading to biased reserve
and capital estimates (Shi and Frees, 2011; Abdallah et al., 2015).

Kuo (2019) introduced the Deep Triangle (DT), a recurrent neural network
framework that leverages loss triangles from multiple companies to enhance the
predictive accuracy of traditional stochastic reserving methods. Building on this,
the Extended Deep Triangle (EDT) incorporates dependence between two LOBs
by modeling pairwise and sequential relationships in loss ratios. To address het-
erogeneity across companies, the EDT encodes company identifiers such that com-
panies with similar incremental paid loss patterns are represented with similar
codes. Additionally, dropout is applied within the RNN to induce sparsity and
improve prediction. Trained on data from multiple companies, the EDT generates
reserve estimates that closely align with actual reserves. Moreover, by learning
development year patterns and latent dependence structures directly from data,
EDT yields lower risk capital than copula regression models, which rely on fixed
effects to represent development year behavior and company heterogeneity.

While SUR-based models provide a flexible regression framework to capture
dependencies, they have typically been limited to single-company settings or often
model company and development year effects as fixed. For example, Zhang (2010)
extend the classical chain ladder to a multivariate SUR framework, while Shi and

Frees (2011) and Abdallah et al. (2015) use SUR copula regression to account
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for dependence between two LOBs. However, these models do not fully leverage
multiple company data and may suffer from biased estimates due to heterogeneity
in company data.

We propose a SUR copula mixed model that extends SUR copula regression to
accommodate hierarchical data from multiple companies to address this gap. The
model includes fixed effects to capture accident and development year patterns,
and random effects to represent heterogeneity across companies. Moreover, we
propose to estimate the model parameters using a two-stage iterative maximum
likelihood approach.

The chapter is organized as follows: Section 2 provides an overview of the
preliminaries on SUR and mixed models. Section 3 discusses the methodologies for
loss reserving and predictive distribution estimation, with an emphasis on the SUR
copula mixed model approach. Section 4 applies and calibrates the SUR copula
mixed model using a dataset that includes personal and commercial automobile
LOBs from multiple companies. Section 5 presents a simulation study that further
demonstrates the superior performance of the SUR copula mixed model. Finally,

Section 6 summarizes our findings.

3.2 Methods: Preliminaries

3.2.1 Seemingly Unrelated Regression

Suppose we have a set of M regression equations

Yk = ZpiBm + Emks (3.1)

where m = 1,..., M is the eugation number and k£ = 1,..., N is the individual
observation. The vector x,,, denotes the regressor, 3,, represents the coefficients

vector, and &,,, is the error term.

47



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

If we stack all the observations for the m'" equation into vectors and matrices,

then the model can be written as

Y = XinB + Em. (3.2)

Next, we stack the M vector equations on top of each other and obtain the

following form

Y 0 Xy ... 0 B €
1= | e T =xBre (3.3)
_yM_ L O 0 “ .. X.M— _/BM_ _eM_

The model assumes that ¢,,; are independent within equations but may have
cross-equation correlations. Thus, we have Ele remp|X] = 0(k # k') whereas
Elemiemi|X] = 0. For the k™ observation, the covariance matrix of the error
terms (e1x, €2k, - - -, Emk) 18 denoted as 3 = [0;;]. The covariance matrix of the

stacked error terms e equals to
Q=E[ee"X] =201y, (3.4)

where Iy is the identity matrix of dimension N and ® denotes the matrix Kro-
necker product.
For the SUR model, the generalized least squares (GLS) estimator takes the

form

Bars = {(XT'(Z7! @ IyX}'XT(Z! @ Iy)y. (3.5)

In most situations, the covariance 3 needed in GLS is unknown. Feasible
generalized least squares (FGLS) estimate the elements of ¥ by 6, = éjrék /N,

where €; is the residual vector of the j th equation obtained from ordinary least
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squares and then replace 3 in GLS by the resulting estimator 3.

Alternatively, maximum likelihood estimators (MLE) can be considered, as-
suming the errors are multivariate normal (Srivastava and Giles, 1987; Peremans
and Van Aelst, 2018). Under the assumption that the errors are normally dis-

tributed, the log-likelihood of the SUR model is given by

Ly XB)" (= oLy) (y-XB). (3.6)

U8, XX, y) = —@m(%)—%m(\zy)_ﬁ

Maximizing this log-likelihood with respect to (3,X) yields the estimators

(Byrg, Savwe), which are the solutions of the equations

. .1 B L1
Bure = {X" (Zye @ In) X} ' X (B16 © In)y, (3.7)

Svre = (Y — XBye) (Y — XBywe)/N, (3.8)

where Y = (y,, Yo, .. ., yps)s X = (X1, Xy, ..., Xy) and By is the block diago-

nal form of BMLE.

3.2.2 Linear Mixed Model

In general, a linear mixed-effects model satisfies

;

Yy, = XiB +Z;b; + €,
b, ~ N(0,D),
(3.9)
E; N(O, El),
b,...,by,eq,..., ey independent,

\
where y; is the n; -dimensional response vector for subject i (1 <i < N) and N is
the number of subjects. B3 is a p -dimensional fixed effects vector and b; is the ¢
-dimensional random effects vector. X; and Z; are (n; X p) and (n; X ¢) dimensional

design matrices for the fixed effects and random effects, respectively. e; is an n;
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-dimensional vector of errors.

D is the covariance matrix for the ¢-dimensional random effects vector. 3; is
the covariance matrix for the error vector. The set of unknown parameters in 3;
will not depend upon <.

Conditional on the random effect b;, y, is normally distributed with mean
vector X, + Z;b; and covariance matrix 3;. The marginal density of y, can be
shown to be the density of an n;-dimensional normal distribution with mean vector
X;B and covariance matrix V; = Z;DZ + ¥,.

Let a denote the vector of all variance and covariance parameters found in
V, =172,DZ; + 3,. We can estimate the parameters 8 and o by maximizing the

marginal likelihood function

N

1Bl = TT{ @0 Vil x exp (5 (0. X8)" Vi) (v - X)) |

2

i=1

(3.10)
We first assume o is known. The maximum likelihood estimator (MLE) of 3,
obtained from maximizing (3.10), conditional on e is then given by (Verbeke and

Molenberghs, 2009)

B= (Z X?Vf(a)Xi) (ZX? V;1<a)yi) : (3.11)

i=1 i=1

The maximum likelihood estimation (MLE) of « is obtained by maximizing
(3.10) with respect to a, after 8 is replaced by (3.11). This approach arises
naturally when we consider maximizing the joint likelihood (3.10) to obtain the
estimation of 3 and a simultaneously. The MLE involves a precision matrix
V. }(a), so we will work with a precision matrix instead of a covariance matrix in

the optimization.
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3.3 SUR Mixed Model for Loss Reserving

Let Y;j. denote the standardized incremental claims for accident year i (1 <1i < 1),
development year j (1 < j < I), and company ¢ (1 < ¢ < (). In the case of
two LOBs, we use Y;gc and Y;JC to denote the standardized incremental claim
from ¢ and ¢*" LOB. Now we model log(Y;g»?) using @@ = (!?,al?, ...,ay))
and A¥) = ()\ )\2 s Af “ ) as predictors that characterize the accident and the
development year effects, and the company effect b') = (bgé),bg), ...,bg)) as in

(3.12) and (3.13). Working on the logarithm scale of y;;., we ensure the predicted

incremental claims are positive.

log(yr) = €0 + {7l + mg.‘)w +20p© 4 O

ijc?

(3.12)

log(ysr)) = € + &l + &l IAO 4 2Op) 4 L), (3.13)

(0

© () represent the observed accident year for the two LOBs. «;

e x,’ and x,

(&)

and x; * represent the observed development year for the two LOBs.

o £ and £“) are the intercepts for the two LOBs. We set g = 0 and A\; = 0

for parameter identification.

e We assume the following for the company effects. b~ N (0,7) and bgl) ~
N(0,73). The company effects are random, and they are independent and
normally distributed with means of zero and standard deviations 7, and 75.

The company effects are identical within each LOB.

In Table 3.1, we give an example for the regressor azgl)

1)
and x; . Similarly, an
example for the regressor z. is in table 3.2.

If we stack observations corresponding to the 1st and 2nd equations into vectors

and matrices, we write the model in vector form as
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T T T T T T
57552) %(3) %(4) $§‘2) 1‘§-3) 955'4)
yw2lo 0o 0o .0 0 0
yDlo 0o 0o .1 0 0
ylo 0o 0o .0 1 0
gyt 0 0 .. 0 0 0
ymlo 1 0 .0 1
yalo 10 .0 0 1
Table 3.1: An example for the regressor :1351) and a:§1)
Zgl) Z£2)
yin |10
1
yg%)l 1 0
y§3)1 1 0
yor |10
e
Ak
Y3go | O

Table 3.2: An example for the regressor z,.

Jg(u(?) = XOBO + ZOBO + &0 1
log(y((f/)) = X((fl)ﬁw) + Z((f/)b(el) + €g/). (3.15)

Next, we stack the two vector equations on top of each other and transform

(3.14) and (3.15) into the following form

og(y) | X 0 | |89 |zE o | |p9] e
’ = / / + / 7 + 4 (3 16)
log(y!") 0o XY "W 0o z [p® el)
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Suppose y, denote the I(I+ 1) x 1 vector of incremental paid losses for the ¢

company. The linear mixed model can be written as

log(y,) = X.B+Zb+e, c=1,...,C (3.17)

where 3 represents all fixed-effects parameters and b represents the random effect
for all companies. The company random effects b and errors €, are independent.
In the next section, we will detail parametric models for the error terms. We

consider the multivariate normal distribution to model the errors.

3.3.1 SUR Multivariate Normal Mixed model

We assume the errors are independent within each equation but correlated between
(1)
Eije

(2)

ijc

equations. One model for the pairs of errors, , is bivariate normal. That

€
is,
(1)
1jC

2)

jc

~ N(0,%). (3.18)

2
07 PO102

The covariance matrix X is defined by X = . The covariance of

2
pPO102 0y

the pair of errors are the same regardless of the accident and development years.
The stacked error terms €. follow a multivariate normal with covariance ¥, =

3 @ Ir(141)/2-
€c~ N(0,2 @ I41)/2), (3.19)

where Ij(;41y/2 is the identity matrix of dimension I(/ 4+ 1)/2 (total number of
observations in the upper triangle) and ® denotes the Kronecker product.
Next, we derive the log-likelihood function with the above multivariate normal

assumption on errors. Consider y. conditional on b..
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log(y,) | be ~ N (X8 + Zcb, ),

b.~ N (0,D).
7
The covariance matrix D is defined by D = , and the design matrix Z.
is given by
1rr41)2 .
Z.= , where 17(741)/2 is a vector of all ones.

Lr(41))2
Then, log(y,.) has a multivariate normal distribution with mean X.3 and co-

variance matrix V.

log(y,) ~ N (X.3,V),

where the covariance matrix V is given by

V:V1+V27

V is defined by
Vi =X ®I1141)2
oLy poroaliriny
po1oaliiye 03Lis)2
and Vj is defined by
7'1211(I+1)/21/1(1+1)/2
V, = Z,DZ. =
31112 140y

Combining V; and V1, we obtain V as

o4



Ph.D. Thesis - Pengfei Cai

McMaster - Mathematics and Statistics

2 2
o] + Ty

2
T

PoO102

oLy + T 2y o

P010211(I+1)/2
2
T
2 2
o]+ T4
2
T
PO102

po102Xr(141)2

o3ivyse + 75 L2140y

T12 pPO102 ]
PO102
?
O'% + 712 pPO109
a% + 7'22 722 TS
7'22 05 + 7'22
o102 T2 TS 03473

The corresponding multivariate normal probability density function for com-

pany ¢ is: f(log(yc)7 187 T1,72,01,02, p) is:

f(log(yc); /87 T1,72,01,02, p) = (27T)7I(I+1)/2‘V<T17 72,01,02, :0)‘71/2'

exp(—0.5 x (log(y,) — XB8)'V (11, 2, 01, 09, p)(log(y.) — X.08)). (3.20)

From (3.20), the likelihood function for company c is:

LC(B? T1,7T2,01,02,p | log(yc)) = (QW)_I(I+1)/2|V(T17 T2,01,02, p)|_1/2'

exp(—0.5 x (log(y,) — X.B)'V (11, 7, 01,09, p)(log(y,) — X.3)). (3.21)

We write the likelihood function, L(3, 11, T2, 01, 02, p | log(y,), log(ys,), . . ., log(y)),

for all the companies as the product of the C independent contributions from the

companies (c=1,..., C) :
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L(,B7 T1,72,01,02,p | 1Og(y1), log(y,), .- ,log(yo))
- HLc(ﬂ77—177—2a0—1)O—27p | log(yc))

—I(I+1)

1( 1
= H(27T) : |V(7'177'2,<717027,0)“‘1’

x exp(—5 (10(u.) — XoB)'V ! (71,73, 00,00, ) log(y,) — XeB). (3:22)

The corresponding log-likelihood function, ¢(83, 71, 72, 01, 02, p | log(y,), - - ., log(y))

is defined as

1
(B, 71,72, 01,00, p | log(y,),log(y,), ..., log(yc)) = —5[1(1 +1) - C - log(2m)—

C
ClOg|V(T1,T2,O'1,O'2, | + Z log yc C/B)IV_I(Th7—270-170-27p)(10g(yc) _XCﬂ)]

c=1

(3.23)

Next, we summarize the steps to estimate the parameters in (3.23) as follows:

(1) Give initial values 79,79, 0%, 09, p°, and set k=0.

(2) Maximize equation (3.23) with respect to ,8 and obtain

/6 - <Zc— X/ <717T270-]f70-27 ) 1X> (Zc— X/ (TlaTQJO-faO-Zv ) 110g(y0)>

(3) Given B*, Maximize (3.23) to obtain 7™ 781 oF 1 oo+t pk+1 - update

k=k+1.

(4) Repeat steps (2) and (3) until it meets the stopping criterion, where the ab-
solute difference of the fixed effects parameters in two consecutive iterations
is negligible.

After we obtain the estimated fixed effects B, we estimate the random effects
by b. = DZ.V—(log(y,) — X.8), an average of the estimated effect.

Next, we detail an alternative way to model pairs of errors using copulas.
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3.3.2 SUR Copula Mixed Model

In this section, we use copulas to model the dependence between the different

LOBs. For each LOB, ¢, we assume that the loss ratios, VA

i » are independent and

follow a distribution belonging to the exponential family. Let ,uz(fl be the expected

value of YZ]C), and it can be expressed as ,ugf)c =g (7)1(12) where 77@)

ijc 1s the linear
predictor and g(-) is the link function.
Following Liang and Zeger (1986), we model 771(2 using @, A9, and b as in

(3.24).

Mg = &0 +aal® + 20N + 2060, (3.24)

Let ,B(Z) denote the intercept and all fixed-effects parameters and b") be the

random effect for companies. Then,

e =z BY + 206, (3.25)

Let 3¢ be the I (I +1) x 1 vector of incremental paid losses for the ™

company from (" LOB. Then, the joint probability density function (PDF) of

0 (¢ 0) .
yg)ayé)v"'vy(c) 18

l l J4 4 4 ) 4 (¢ 4
f(yg)ay;)77y(0)’ ® O-f77—f):/[ }Cf(yg)fyé),,yc |bg ,b )7 “7b(C’)7 (e),O'g)-

FO 00,08 m)db P by . db),
(3.26)

where C' is the number of companies, o, is the shape parameter of the marginal

distribution, and 7, is the standard deviation of the company random effect b
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Assuming yc ) from each company is independent, we can rewrite (3.26) as

C o

l l Y4
Fau? )y o) =] / FaO 100,89, 00) f (0 7)db
c=1

—00

C o I I+1—i

:H/ H H f(ygabg)aﬁ(@,Ue)f(b,(f);Tg)dbg),
c=1

—X =1 j=1

(3.27)

where f (y”():|bc .89, 5,) denotes the conditional density of ch given b and
f (bg); 77) denotes the marginal density of the company effect b
From (3.27), a general formula for the log-likelihood for each LOB, ¢, from all

companies C'

o I I+1—i
l
L(Z)(B() UfaTﬁayg)ayé)a"'v Zlog/ H H f yz]c )7/3(6)7O-€>f(b((f);Tﬂ)dbg)'
=1 j=1

(3.28)
©

Suppose Y9 follows log-normal distribution with location fi;,

ijc

and the shape

o¢, (3.28) becomes

OOII+1z

log( (f)) (0)
1 _ < 'L]:Z 1]c>
L(f)(/@(ﬁ) Ty, Ty "!41),'!/; a"'ayC § log/ 0 —n — €

- =1 j= 1 yz]c 27TO—E

o=

RO

2
L (%) b
V21T
(3.29)

follows gamma distribution with the scale fyz(jc

Suppose A

ijc

and the shape oy,
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(3.28) becomes

o0 1 ”1 — (g ONT A 1
L(e)(ﬁ() 0¢, Ty ’ yl 7yg 7'--7yC Zlog/ <%> (g)

i=1 j=1 ije I (00) yije 21Ty
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e*%( W) db®

(3.30)

Based on Sklar’s theorem (Nelsen, 2006), the joint density function of a pair
(Y(f) y U ')) is

ijc o Tije

FSLulh)y = FUED Fy D e(Fysh), Fys)):6.), (3.31)

where ¢(-) denotes the copula conditional density corresponding to conditional
copula C(-).
Note that the joint PDF of all pairs of (Y(Z) vl )) from all companies is then

ijc ) T ije

given by

/ 4 /
f((yg )ayg ))7 . (y(C’)7y(C )))IB(E)aaﬁaTéa/B(g)?OE’aTZ’)

l Y 4 ? V4
= (0L 811)s (Wion 019D s (s i) B9 o, 70, B¢

!’

),0'(/,7'(/). (332)

In the case of two LOBs, let £ = 1 and ¢/ = 2, we derive the log-likelihood

function from (3.31) and (3.32) as
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L(/B(l)uﬂ(Q) 0-170-277—177—2700 | (’!/(11)7?!5 ))7 """ 7(y(C'1)7yg)>>
2 C 0o I T+1—i c I I+1—i
Y4
:ZZ Og/ IT IT £ 169,89, 00) f;7)db? +> 5" > loge(FS), FL:0.)
(=1 c=1 =1 j=1 c=1 i=1 j=1
2 C I I+1—1
0 4 1 2
= LB o [yl ) DD Y loge(FL) B0, (3.33)
=1 e=1 i=1 j=1

where LO(B8Y oy 1 | 417, . .. ,y((ff)) is defined in (3.28).

We adopt an iterative two-stage approach, in which marginal models, including
systematic effects and company random effects, are estimated in one step, and cop-
ula parameters are estimated from rank-transformed residuals in the next. Then,
the copula parameters are plugged into the complete likelihood to optimize it with
respect to the marginal distribution parameters. This process is repeated until the
convergence of marginal distribution parameter estimates.

We first estimate 8, oy, and 7, for each LOB by maximizing (3.33). As
a starting value, we compute these estimates for each LOB using the restricted
maximum likelihood (REML) implemented in the R package 1me4 (Bates et al.,
2015) for a generalized linear mixed model.

In the second step, we maximize the second term of (3.33) with respect to the
copula parameter 6 given the marginal parameter estimates from the first step.

The copula likelihood term is given by

I+1—i

c I
:ZZ 10gC ZjC’ 1j20)79)

c=1 i=1 j=1

We replace the marginal cumulative distribution functions with pseudo-observations
derived from the ranks of the residuals. We use the AIC statistic to choose
the marginal distribution for Y9 For example, we define rank-based pseudo-

ijc

observations for log-normal and gamma marginals as follows:
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Suppose ngc follows log-normal, we compute the pseudo-residuals given the

parameter estimates in step 1 (Davison and Hinkley, 1997, pp. 331-340).

IR ()
= —g Piae — Pige (3.34)
01

-0

ije and 07 are estimates.

where ji,

Similarly if Ym) follows gamma distribution, we compute the pseudo-residuals

* ) (0
0 A
I Yije = Hije
= i W (3.85)
(luzjc * ’Yljc)
where /L;i and ’Ayz(fz are estimates from step 1.

Next, we use the empirical cumulative distribution function (CDF) to get the

ranks of pseudo-residuals. The rank R . of the residual e . is given by

I .
1
RO _ >3 (0, <)
1)cC [([+1)/2+1 E’L]C—gljc )

where 1 is the indicator function.

Now, we approximate the copula term C(F(yl(fz), F(yl(jc );:6.) by c(le, Rffc), 6.)
and then maximize the second term in (3.33) to obtain copula parameter 6.

We iterate step 1 and step 2 until the convergence on ,8(5) is reached. Note that
we choose the marginal distribution for each LOB using the Akaike Information

Criterion (AIC) or Bayesian Information Criterion (BIC).

We summarize the steps to estimate the parameters in (3.33) as follows:

(1) Given initial values B Jéo), and TK(O), which are from generalized linear

mixed model. log-likelihood function (3.33) is a function of copula parameter

0: Ly(0) =3 31 ZIH "log c(F(yg():),F(yi(f;));Gc). Set iteration k = 0.

aximize pseudo log-likelihoo 3 with respect to ¢ and obtain 6*. Here
(2) Maximize pseudo log-likelihood L3(#) with resp 6 and obtain 6*. H

Ly(0) = S0 S0 S og (R, R 60).
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(3) Given 6% maximize (3.33) with respect to BY. oy, and 7. update k=k-+1.

(4) Repeat steps (2) and (3) until it meets the stopping criterion: |[|lw**! —

wk ||y <€, where we group all parameters ,B(f), oy, Te, 6 under vector w.

3.3.3 Predictive Distribution of the Total Reserve

In practice, actuaries are interested in understanding the uncertainty of reserves.
The bootstrapping technique provides this information and allows for the deter-
mination of the entire predictive distribution. In the bootstrap procedure, we use
the pseudo residuals as defined in (3.35). Following the resampling approach out-
lined in Davison and Hinkley (1997), we summarize the steps of our bootstrap as

follows:

(1) Fit the SUR copula mixed model to the observed incremental paid losses

yl-(fz, generating the residuals for the incremental paid losses using:

0 _ ~©O

) = Sue” Hye (3.36)
T (gAY |

~ (¢ ~ (¢
where %(fz = exp(:vgf)ﬁ( : + zg)b( ))/04 is the estimated scale parameter.

(2) Begin the iterative loop, to be repeated N times (e.g., N = 1000):

— Simulate (uSﬁ,uﬁi) (t+j—1 < I) from estimated copula function
C(-10).

(¢

— Transform u,; ) to the residuals by transform e = QY (u ZJC) where

QWY is the empirical quantile function of the residuals.

— Generate a set of pseudo incremental paid losses y Whlch is given by

*(0 *(0 4 ~
yis = e (g, = A Y2 + i),

ijc zyc

*(0)

~ x(l ~
— Estimate the parameters 3 ( ), g¢*, and 7" and 0" for y,;.’ using the

SUR copula mixed model.
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— Obtain a prediction of the total reserve for company c by

2 I I
D20 D wide(i),

(=1 i=2 j=I—i+2

k(0) £ %(£)

~x (0
where 7),;. = mg),ﬂ © +29% )

and wl(f is the premium for accident

year ¢ and company c in LOB /.

3.4 Applicaton

To illustrate the SUR mixed model in loss reserving, we analyze a dataset of 30
pairs of loss triangles from Schedule P of the National Association of Insurance
Commissioners (NAIC) database (Meyers and Shi, 2011). Each pair of loss trian-
gles is from the same company and consists of personal auto LOB and commercial
auto LOB. Each triangle includes incremental claims data for accident years 1988
to 1997 and spans ten development years. We consider the reserve prediction and
risk capital analysis for a major US property-casualty insurer. We use the upper
part of the loss triangles to train the SUR mixed model and evaluate the predictive
performance of the model on the lower part of the loss triangles.

We model the accident year and development year effects as fixed and we
assume a specific effect of each level of these categorical variables (accident year
and development year). With fixed effects, the estimated parameters for each
accident year and development year have a direct interpretation. For the company
level heterogeneity, we model it with random effects and assume to follow a normal
distribution. Random effects are more parsimonious than fixed effects, leading to
a more robust model.

For the SUR normal mixed model, we work with the logarithm of the loss ratios
for both LOBs. Since the dataset is historical, the actual reserve is known and

can be compared with predictions obtained from the SUR normal mixed model.
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We first apply the SUR normal mixed model to the 30 pairs of loss triangles. By
maximizing the log-likelihood function in 3.23, we obtain the estimated standard
deviations: o; = 0.85 and o, = 1.12. The estimated standard deviations for the
company random effects are 7y = 0.28 and 75 = 0.41. The variation induced
by the company is larger in the commercial LOB than in the personal LOB. For
the SUR normal mixed model, the estimated correlation coefficient is 0.23, which
indicates a positive association between the two LOBs. The predicted reserves for

the personal LOB and commercial LOB are 10891437 and 562 111, respectively.

Table 3.3: Point estimates of the reserves.

Reserves
Model LoB 1, Ry LoB2 Ry, Total, R
SUR Gaussian copula 6 823 325 378 386 7 364 511
SUR normal mixed 10 891 437 562 111 11 453 548
SUR copula mixed 7 166 266 378 217 7 544 483

Table 3.4: Performance comparison using percentage error of actual and estimated
loss reserve.

LOB SUR copula SUR normal mixed SUR copula mixed
Personal Auto -15.6% 34.7% -11.4%
Commercial Auto 19.0% 76.5% 18.8%
Total -12.4% 36.3% -10.2%

For the SUR copula mixed model, we use a gamma distribution as the marginal
for both LOBs based on the AIC statistic from 30 pairs of loss triangles. We use a
Gaussian copula to capture the dependence between the two LOBs. The estimated
shape parameters for the two LOBs are o; = 2.01 and 05 = 1.10, respectively. The
estimated standard deviations for the company random effects in the two LOBs
are 71 = 0.33 and 7 = 0.40, respectively. The estimated dependence parameter
between the two LOBs for the major US property-casaulty company is around -
0.20. As shown in Table 3.3, the estimated reserve for the personal LOB is 7246 135

while the reserve for the commercial LOB is 377 324.
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Table 3.4 presents a comparison of various models based on the percentage
error between the actual and the estimated reserves. Note that we use a gamma
distribution as the marginal for both LOBs and model the company effects using
fixed effects in the SUR copula model. The SUR copula mixed model produces
a smaller bias between the predicted reserve and the true reserve than the SUR
copula for both LOBs. This shows the effectiveness of SUR copula mixed models in
handling heterogeneity in data from multiple companies. The subtle improvement
in the predicted reserve in the commercial LOB may be due to the limited flexibility

of the marginal distribution for the commercial LOB.

Table 3.5: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping.

Reserve  Bootstrap reserve  Bias  Std. dev. CV
SUR copula 7 364 511 7 118 647 3.32% 1865284 0.262
SUR copula mixed 7 544 483 7 464 656 1.13% 599 454  0.080

Insurance companies are concerned with the expected unpaid loss or reserve, its
standard deviation, and other risk measures. These measures are defined based on
the reserve’s predictive distribution, such as the Tail Value-at-Risk (TVaR). This
measure is more informative than the value at risk (VaR), and the subadditivity
of VaR is not generally guaranteed.

We employ the bootstrap method to obtain the predictive distribution of the
reserve. Table 3.5 shows the estimated reserve, bias, and standard errors for
different models. It has been observed that the standard deviation from the SUR
copula mixed model is smaller than that from the SUR copula regression models,
showing the effectiveness of the SUR copula mixed model in handling heterogeneity
across companies and between LOBs.

The predictive distribution is particularly useful for assessing the risk capital of
an insurance portfolio. The risk capital is the difference between the risk measure

and the expected unpaid losses of the portfolio. We show in Table 3.6 the calcu-
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lated risk capitals for SUR copula mixed models with dependence captured by the
Gaussian copula, the SUR copula, and the silo method, which is widely used in
industry. Using the 30 pairs of loss triangles, we model the company effects using
fixed effects in the SUR copula method. For the silo method, we use the simple
sum of the risk measures from each subportfolio (i.e., the personal auto line and
the commercial auto line) as the risk measure for the entire portfolio. The silo

method does not account for any diversification effect in the portfolio.

Table 3.6: Risk capital estimation for different methods.

Risk measure  TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

Silo-GLM 9 632 534 10 799 117 11 248 347 11 863 905 12 950 137 15 168 393
SUR copula 8992 101 9 975 813 10 325 124 10 793 817 11 526 223 13 179 997
SUR copula mixed 8 110 263 8 436 316 8 555 644 8 723 725 9 009 793 9 597 029

Risk capital

Silo-GLM 1166 583 1615 813 2231 371 3 317 603 5535 859
SUR copula 983 712 1333 023 1 801 716 2534 122 4 187 896
SUR copula mixed 326 053 445 381 613 462 899 530 1 486 766

Table 3.7: Risk capital gain for different methods.

Risk capital gain TVaR (30%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR copula vs Silo-GLM 15.68% 17.50% 19.26% 23.62% 24.35%
SUR copula mixed vs Silo-GLM 70.73% 72.00% 72.32% 72.86% 73.24%

We show in Table 3.7 the gain in terms of risk capital for SUR copula mixed
models compared to the silo method. The SUR copula mixed model captures the
dependence between the two LOBs with one or multiple dependence parameters,
as well as the heterogeneity across companies and between LOBs, resulting in the

greatest gain in risk capital.

3.5 Simulation Study

We begin with the estimated SUR Gaussian copula mixed model for the real data
in Section 3.4. In the model, the conditional distributions of the marginals given
the random effects are gamma. Figure 3.1 and Figure 3.2 illustrate the box plot

of the loss ratios for each LOB from 30 companies. Based on the box plots, the
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commercial LOB exhibits a larger number of outliers than the personal LOB,

suggesting higher variability across companies.
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Figure 3.1: The loss ratios for different companies in personal LOB.

We also perform a heterogeneity analysis to capture variability in loss ratios
across companies, using the heterogeneity measure I? to quantify variation both
across companies and between LOBs. Table 3.8 shows the calculated I? for the
loss ratios in each development year. We observe large I? values, indicating the
presence of heterogeneity across companies in both LOBs for all development years.

Table 3.8: The heterogenecous measure 12 for the loss ratios across companies.

Devl Dev2 Dev3d Devd Devb Dev6 Dev7 Dev8 Dev9
Personal auto 0.9815 0.9308 0.9052 0.9674 0.9675 0.9599 0.9679 0.9580 0.9986
Commercial auto 0.9769 0.7891 0.8265 0.8674 0.9514 0.9579 0.9856 0.9967 0.9998

For each company, we also calculate I* between LOBs for the loss ratios in
Table 3.9. We find that some companies exhibit low heterogeneity between LOBs,
whereas others show higher levels of heterogeneity. For insurers, low heterogeneity
may indicate stronger correlations between LOBs, potentially limiting diversifica-

tion benefits, while high heterogeneity could offer greater opportunities to reduce
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overall risk capital through diversification.

Table 3.9: The heterogenecous measure I for the loss ratios between LOBs.

Company code 1 353 388 620 1066 1090 1538 1767 3240 4839

12 0.000000 0.005894 0.341242 0.656587 0.000000 0.676405 0.000000 0.588694 0.760000 0.214274
Company code 5185 6947 7080 8427 10022 13420 13439 13641 13889 14044

2 0.000000 0.795116 0.899615 0.000000 0.904714 0.200141 0.000000 0.159789 0.949554 0.000000
Company code 14176 14257 15199 18163 25275 27022 27065 29440 31550 34606

12 0.844223 0.000000 0.000000 0.000000 0.876128 0.410227 0.000000 0.000000 0.478415 0.904328

To account for the above results, we consider two different scenarios for the
company random effects: (1) lower heterogeneity and (2) higher heterogeneity,
subsequently referred to as Simulation 1 and Simulation 2. The simulation settings,

such as the accident year and development year effects, are included in Appendix
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Figure 3.2: The loss ratios for different companies in commercial LOB.

In each scenario, we simulate 30 pairs of loss triangles to reflect multiple
companies’ data. For each company ¢, we simulate the company effects from
bV ~ N(0,7) and b ~ N(0,7) with 7 = 0.2 and 75 = 0.3. To simulate the
losses in the loss triangles (ngi), Y;ﬁ)

()

nent 77i]c(€ = 1,2) from the accident year and development year effect BY and

), we first calculate the systematic compo-
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company random effect b,

Next, we simulate ug) (¢ =1,2) (i+j—1<1I) from Gaussian copula model

(¢
]

¢(+;0) with dependence parameter § = —0.3. Then, we transform ) to the upper

triangles by inverse function yz-(f) = F(Z)(_l)(u@‘ (Z();a 7)), where n(Q = cc(f)ﬁ(f) +

c i ) g i %
z((f)b(z).

Table 3.10: Point estimates of the reserves for Simulation 1 (lower heterogeneity).

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
SUR Gaussian copula 7 575901 1058 039 8 633 940
SUR copula mixed 7522203 1033518 8555721

Table 3.11: Point estimates of the reserves for Simulation 2 (higher heterogeneity).

Reserves
Model LoB 1, Ry LoB 2, Ry Total, R
SUR Gaussian copula 64 495 139 129 203 624
SUR copula mixed 65 881 132 708 198 589

We apply the SUR copula mixed model to the simulated loss triangles and
compare the estimated reserves with those from the SUR Gaussian copula model in
Table 3.10 and Table 3.11. We also evaluated the percentage error of the estimated
reserves and actual reserves in Table 3.12 and Table 3.13. The SUR copula mixed
model outperforms the SUR Gaussian copula models for both LOBs.

Table 3.12: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation 1 (lower heterogeneity).

LOB SUR Gaussian Copula SUR copula Mixed
Personal Auto 6.5% 5.7%
Commercial Auto 5.1% 2.7%
Total 6.3% 5.3%

For both the SUR copula mixed model and the SUR Gaussian copula model,
we conduct bootstrap simulations to generate the predictive distribution of the

total reserve. We then computed the risk measures and risk capitals in Table 3.16

and Table 3.17.
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Table 3.13: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation 2 (higher heterogeneity).

LOB SUR Gaussian Copula SUR copula Mixed
Personal Auto -3.5% -1.5%
Commercial Auto 11.9% 6.8%
Total 6.5% 3.9%

Table 3.14: Bias, Standard deviation, Coefficient of variation (CV) from the pre-

dictive distribution using parametric bootstrapping for Simulation 1 (lower het-
erogeneity).

Reserve  Bootstrap reserve  Bias  Std. dev. CV
SUR Gaussian copula 8 633 940 8 679 885 0.53% 896 505 0.10
SUR copula mixed 8 555 721 8 579 244 0.27% 392197 0.05

Table 3.15: Bias, Standard deviation, Coefficient of variation (CV) from the pre-

dictive distribution using parametric bootstrapping for Simulation 2 (higher het-
erogeneity).

Reserve Bootstrap reserve Bias  Std. dev. CV
SUR Gaussian copula 203 624 204 317 0.34% 31888 0.16
SUR copula mixed 198 589 199 008 0.21% 13894  0.07

Table 3.16: Risk capital estimation for different methods for Simulation 1 (lower
heterogeneity).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 9 759 583 10 269 193 10 470 030 10 756 851 11 209 133 12 182 469
SUR Gaussian copula 9 552 057 9 978 909 10 135 782 10 356 717 10 715 211 11 332 526
SUR copula mixed 8 957 174 9 138 074 9 202 294 9 287 100 9 422 704 9 697 197
Risk capital

Silo-GLM 509 610 710 447 997 268 1 449 550 2 422 886
SUR Gaussian copula 426 852 583 725 804 660 1163 154 1 780 469
SUR copula mixed 180 900 245 120 329 926 465 530 740 023

Table 3.17: Risk capital estimation for different methods for Simulation 2 (higher
heterogeneity).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

Silo-GLM 249 075 272 437 281 655 294 005 314 755 355 305

SUR Gaussian copula 235 253 252 084 258 278 266 523 277 778 297 145

SUR copula mixed 212 687 219 275 221 677 224 699 228 961 235 865
Risk capital

Silo-GLM 23 362 32 580 44 930 65 680 106 230

SUR Gaussian copula 16 831 23 025 31 270 42 525 61 892

SUR copula mixed 6 588 8 990 12 012 16 274 23 178

Compared to the SUR Gaussian copula model, the SUR copula mixed model

achieves a smaller bias and a notably lower standard deviation for both cases, re-
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Table 3.18: Risk capital gain for different methods for Simulation 1 (lower hetero-
geneity).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 15.68% 17.50% 19.26% 23.62% 24.35%
SUR copula mixed vs Silo-GLM 72.05% 72.44% 72.51% 72.89% 73.14%

Table 3.19: Risk capital gain for different methods for Simulation 2 (higher het-
erogeneity).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 27.96% 29.33% 30.40% 35.25% 41.74%
SUR copula mixed vs Silo-GLM 71.80% 72.41% 73.27% 75.22% 78.18%

sulting in a reduced CV. These results indicate that the SUR copula mixed model
produces more accurate reserve predictions, effectively capturing both heterogene-
ity across companies and LOBs. Consistently, the SUR copula mixed model pro-
duces a larger risk capital gain than the SUR Gaussian copula, as shown in Table
3.18 and Table 3.19. The SUR copula mixed model leverages the heterogeneity

across companies and obtains a larger risk diversification benefit.

3.6 Summary and Discussion

We have proposed SUR copula mixed models to extend SUR copula regression by
incorporating data from multiple companies for improved loss prediction and risk
capital analysis, and developed a two-stage approach to estimate the parameters
for SUR copula mixed models. In the SUR copula mixed model framework, the
model contains the fixed effects and random effect, which characterize the variation
induced in the response by different companies. In addition to the point estimate
of the reserves, we generate the predictive distribution of the reserves by residual
bootstrapping.

To determine whether to include the company random effect, we can use a
likelihood ratio test. We fit two models: a null model without the random effect
(with only fixed effects) and an alternative model with the random effects (a

mixed-effects model). We calculate a test statistic based on the difference in the
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log-likelihoods between the two models. The test statistic approximately follows
a chi-squared distribution. This test allows to calculate a p-value to determine if
the random effect is a significant addition to the model.

Our analysis of real data and simulation studies revealed some limitations of
SUR copula mixed models. For the most recent accident and development years,
we have progressively fewer observed incremental paid losses. To address this, reg-
ularization techniques such as the least absolute shrinkage and selection operator
(LASSO) in Tibshirani (1996) can be applied to handle the shrinkage of model
parameters. Next, we combine the SUR copula mixed model with LASSO to miti-
gate the impact of reduced observed paid losses in later accident and development

years.
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Chapter 4

Sparse SUR (SSUR) Copula
Mixed Models

4.1 Introduction

Regularized regression has recently gained traction in the loss reserving litera-
ture to handle high-dimensional predictors and improve model interpretability.
Williams et al. (2015) applied the elastic net penalty, a convex combination of L1
and L2 penalties, to a dataset with over 350 initial covariates, enhancing predictive
performance in insurance claims modeling. McGuire et al. (2018) introduced a loss
reserving LASSO framework (Tibshirani, 1996), modeling individual claim data
with complex features and applying L1 regularization to stabilize the estimation
of loss development factors. Regularization is particularly beneficial in loss reserv-
ing, where collinearity and sparse observations can compromise the robustness of
the model. Notably, it is straightforward to incorporate LASSO regularization into
the SUR framework, enabling effective variable selection while preserving model
interpretability.

We propose a sparse SUR copula mixed model to increase the robustness of

the SUR copula mixed model. Sparsity is introduced through regularization on
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the fixed effects, which promotes variable selection and improves interpretability.

Parametric bootstrapping has been a widely used approach for resampling in-
cremental paid losses, followed by generating the predictive distribution of the loss
reserve. Davison and Hinkley (1997) provides a comprehensive framework for boot-
strap methodologies in the context of generalized linear models using the pseudo
residuals. Kirschner et al. (2008) employs a synchronized parametric bootstrap
to model dependencies between correlated lines of business, capturing correlations
that existed in the loss triangles when producing the pseudo loss triangles. Taylor
and McGuire (2007) further develops this approach in the context of generalized
linear models. Most recently, Abdallah et al. (2015) applies the parametric boot-
strapping to generate the predictive distribution of the reserve while modeling
dependencies between loss triangles using copulas.

While parametric bootstrap remains a natural choice for simulating future
reserves, it requires adaptation for sparse models. In the sparse SUR copula mixed
model, standard bootstrap methods may fail when some of the components of
fixed effects coefficients are zero, leading to instability in the resampling process.
To address this, we adopt a modified residual bootstrap based on the method of
Chatterjee and Lahiri (2011) to construct a more robust resampling procedure that
accommodates sparsity. This approach preserves that similar coefficients are set to
zero in all resampling, enabling the stable estimation of the predictive distribution

of reserves in the presence of regularized effects.

4.2 Background

4.2.1 The Lasso for Linear Models

First, we summarize the LASSO for linear models. We denote the predictor used

in linear regression by X. The parameter vector 3 of the linear regression can be
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obtained using the least squares method. Let y denote the M-dimensional response

vector; then the lasso can be written as follows using the Lagrangian form

1
min { Sy = X813+ Algl | (4.1

where A > 0. Now, let L(8) = 3|y — X833 + Al|B]:. That is,

L(B) = f(B) + AlIBllx

1 M 4 n '
=52 [y =) gl
i=1 j=1

2, (4.2)
+A) 1Bl
j=1

4.2.2 The Coordinate Descent Method

As in Hastie et al. (2015), we apply the coordinate descent procedure to perform
the numerical computation of the solution for the lasso problem. Now we take the

derivative of f(3) with respect to 3, and we have

P M . B i n .
5 B == v =3 gl
53 i=1 L j=1

M i n
S 3 0= 3 )
=1

L k£ (4.3)
Mo n A M N2
=3 =3l 53 (o)
i=1 L k] i=1
= —Pj + Bij.
To perform coordinate descent, we must also isolate 3; for the L; term.
MY B =B +AD 18- (4.4)
=0 kAj

Optimizing this equation as a function of ; reduces it to a univariate opti-

mization problem.
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{—)\} if ﬁj <0

Ds A Y _1Bi1 = Op M Bil = S [=A A i B =0 (4.5)
=0

\
Next, we compute the derivative of the Lasso cost function and equate it to

zero to find the minimum:

9p,/(B) = 05,1 (B) + 95, Al1Bllx

0= —p; + Bz; + 95, | 3]

/

—pj + Bizi — A if 8; <0 (4.6)
O0=9T-pi=A—pi+A ifp=0
—pj + szj + A if ﬁj > 0.
\

For the second case, we must ensure the closed interval contains zero

0€[=pj = A —pj+ Al
—pj +A>0

Solving for f3; for all three cases, we have

/

ﬁ]:w fOI'pj<—)\

Zj

B =0 for —A<p; < A- (4.7)

ﬁjzﬂ fOI'pj>)\

Zj

\

Lasso is an effective tool to eliminate noisy covariates from a large set of can-

didates since its loss function can force many components S to zero. The term
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Al|B]|1 serves as a penalty for the parameters included in the model. The penalty
increases with increasing \. When X\ is close to zero, there is no elimination of
covariates. When A\ goes to infinity, we eliminate all covariates.

For lasso regression, we have a sequence of models corresponding to different
choices of A. It is important to choose A since it controls the bias-variance trade-
off. A suitable A can improve the prediction accuracy and interpretability. If the
regularization is too strong, many important covariates may be omitted, which
decrease prediction accuracy. The optimal A is the one that minimizes the mean
squared error in the validation set.

We can use cross-validation to evaluate the prediction accuracy of the model

produced by lasso. It consists of the following steps:

1 Randomly select one n-th of the data set as a validation sample;
2 Train the model on the remainder of the data set;
3 Use the trained model to generate fitted values on the test data;

4 Compute the mean squared error between the fitted values and actual values

for the validation set;

5 Repeat steps [1] to [4] many times. The cross-validation error is the average

of the mean squared errors.

4.2.3 The Lasso for Generalized Linear Models

We can fit GLM by maximizing the likelihood, or equivalently, minimizing the

negative log-likelihood along with an ¢, penalty

wjn {728, %)+ AlBlL | (1)
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where y is the M-vector of outcomes and X is the M x p matrix of predictors. The
specific form of the log-likelihood L depends on the GLM used. Some examples
are the following.

If the responses follow a Gaussian distribution, we have L (3;y, X) = # ly — X5||§.
Then the optimization problem in (4.8) corresponds to the ordinary linear least-
squares lasso.

If the response is binary, we estimate the probability P(y = 1). Then, the

negative log likelihood with ¢; penalty takes the form

M
— 5 o P (Y = 1] ) + (1- ) log P (¥ = 0 | 2)} + A8
=1
M
— —% Z {yi (ﬂo + xlTB) — log <1 + 6,80+xf5>} + 8|
i=1
— ({60, 8) + N8 (4.9

We can use iteratively reweighted least squares (Holland and Welsch, 1977)
to maximize the log-likelihood ¢(fy,3). Given the current estimates of the pa-
rameters (g, 3), we form a quadratic approximation (Hastie et al., 2015) to the

log-likelihood

N

lo (B0, B) = =577 > wi (zi—ﬁo—x?ﬁ)2+c<50,6)2, (4.10)

i=1

where

S o yi — P (i)
zi=Po+x; B+ ) (=) (4.11)
wi = p(x:) (1= p (i), (4.12)
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where p (x;) is evaluated at the current parameters (5’0, ﬁ) and the term C' (Bo, B) i
is constant.

For each value of A, we compute the quadratic approximation ¢ at the current
parameters ([, 3). We use coordinate descent to solve the penalized weighted

least-squares problem

~min {g(fa. B) + MBI} (4.13)

This requires a sequence of three nested loops:
e outer loop: Decrement \.

e middle loop: Form the quadratic function ¢g (5o, 3) at the current parameters
(BU) B)
e inner loop: Solve the penalized weighted least squares problem using the

coordinate descent algorithm.

As an example, if a response variable is non-negative integer, we often use the
Poisson distribution. To ensure the positivity of the mean, we usually choose the

log link. Thus, the GLM is

log = By + 2" B. (4.14)

Then the negative log likelihood with ¢; penalty takes the form

1

—MZ{% (Bo + B"x;) —eﬁﬁﬂ%} + 18] (4.15)

=1

4.3 Proposed Sparse SUR Model

For the most recent accident and development years, the number of observed

incremental paid losses progressively decreases. To improve the robustness of the
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SUR copula mixed model under this sparse history of incremental paid losses, we
propose applying shrinkage techniques to the fixed effects parameters. Specifically,
we incorporate the least absolute shrinkage and selection operator (LASSO) into
the SUR copula mixed model to shrink the fixed effects coefficients toward zero
and reduce their variability.

We construct the loss function as the negative log-likelihood of equation (3.33)
combined with an £; penalty on BY and B8®. The Lagrangian form of the pe-
nalized loss function includes tuning parameters A\; and Ay corresponding to the
penalties on ﬁ(l) and ,8(2), respectively.

1 1 1 2 2 2
J/\l,)\g(ﬁ(l)MB(Q)a0-170-277—177—276) | yg )Jyg )7 s 7y(C)7yg )7yé )7 cee 7y(C))

2 C I I+1—i
J4 4 1 2
== LB o0, [y, yd) =D DY loge(RY), R 0.)
/=1

c=1 i=1 j=1

+ M8V + 221821

2 C oo I I+1—i
- Zzlog/ H H f(yffilbﬁg),ﬁ(@,Uz)f(bff);Tg)dbg@ + )\1||ﬁ(1)||1 + )‘2||B(2)||1
=1 c=1 0 =1 j=1

C I I+1—3

=22 D logelRy) R 0c). (4.16)

e=1 i=1 j=1

We aim to estimate the parameters B(Z), oy, 7o and 6 by minimizing the pe-
nalized loss function in (4.16). The estimation procedure follows the two-stage
iterative procedure as detailed in section 3.3.2, but with a modification to step 1.
As an initialization, we obtain estimates of 3, oy, and 7, by fitting a generalized
linear mixed model to the chosen distribution of Ylg?

In step 1, the penalized loss function in (4.16) depends on the regularization

parameters A\; and Ao, which control the degree of shrinkage for 6(1) and 5(2),

respectively. We select these parameters using the Akaike Information Criterion
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(AIC), defined as

~(2)

AIC = —ZIOgL(B(l)alB 76-175-27%177:27é> +2'dAf)\1,)\27 (4]‘7)

where, olAf/\h)\2 — {1 <k <1T:p" + 0} +5, accounting for the number of
nonzero fixed-effect coefficients, the two variance parameters, the two dispersion
parameters, and the dependence parameter.

For each pair of A\; and Ay, we maximize (4.16) with respect to B(e) and select
the pair that minimizes AIC in (4.17). Given the optimal BY. we then itertavely
update remianing parameters oy, and 7, in step 1 and # in step 2.

We summarize the steps to estimate the parameters in (4.16) as follows:

(1) Given initial values B0 aéo), and TE(O), which are from generalized linear

mixed model, log-likelihood function (4.16) is a function of copula parameter
0: Ly(0) = 25:1 S Z;Zi_l log C(F(yffg), F(yi(f;)); 6.). Set iteration k = 0.

(2) Maximize pseudo log-likelihood Ls(6) with respect to 6 and obtain §%). Here
Ly(0) = Xy Xiy Sk1 " loge( R, RE500).

(3) Given A%, for different \; and )y, maximize (4.16) with respect to 3. A,

and A are selected using AIC/BIC.

(4) Given ® and BY®  maximize (4.16) with respect to o, and 7,. update

k=k+1.

(5) Repeat steps (2) and (4) until it meets the stopping criterion: |[|lw** —

wk||y < €, where we group parameters 6, A, Ao under vector w.

The AIC criterion selects the model that minimizes

AIC(\) = —2Ly + 2 - dfy, (4.18)
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where L) is the maximum log-likelihood for the Ath model and dfy is the sum
of the number of nonzero fixed-effect coefficients and the number of covariance
parameters.

The BIC has a similar form as the AIC, with the exception that the log-
likelihood is penalized by logn instead of 2, where n is the number of samples.

The BIC criterion selects the model that minimizes:

BIC(X) = —2Ly + log(n) - df. (4.19)

Based on a modified version of the bootstrap lasso estimator by Chatterjee
and Lahiri (2011), we implement the following bootstrapping steps to generate the

reserve’s predictive distribution.

(1) Fit the sparse SUR copula mixed model to the observed incremental paid

¢ . .. - .
sz and choose the optimal penalization parameter A\; and As.

losses y
(2) Calculate the thresholded coefficients 3, where we force components of [‘3 to

be exactly zero whenever they are close to zero.

(3) Generate the residuals for the incremental paid losses using:

O _ ~©

(O Yige ™ Mije
1jc ~(£ ~ (£ ?
(A

(4.20)

. At
where /l(@c = exp(zcgf)ﬁ(@ + zg)b( )).

ij

(4) Begin the iterative loop, to be repeated N times (e.g., N = 1000):

— Simulate <u£]12,u£?2) (t4+7—1 < I) from estimated copula function
C(+0).

0

()
ijc u

— Transform w, ;. to the residuals by transform e:j(f) = QU( e

), where

QWY is the empirical quantile function of the residuals.
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*(€)

— Generate a set of pseudo incremental paid losses yzjf , which is given by

* (¢ (¢ (e 54 e
yij(c) = Eij(c) * (,UEJZ * /yi(jg)l/z T 'U/Z(]Z

~x(L A * .
— Estimate the parameters 3 ( ), /", and 7,° and 6* for yij(g) using the
sparse SUR copula mixed model with the optimal penalization param-

eter 5\1 and 5\2.

— Obtain a prediction of the total reserve for company c by

2 I I
SN Wl expliy),

+(0)

« ~x (4 . . :
where ﬁij(f) = mg)ﬁ v + 28" and wl(f) is the premium for accident

year ¢ and company ¢ in LOB /.

4.4 Application

We apply the sparse SUR copula mixed model to a dataset of 30 pairs of loss
triangles from Schedule P of the National Association of Insurance Commissioners
(NAIC) database (Meyers and Shi, 2011). We demonstrate the reserve prediction
and risk capital analysis for a major US property-casualty insurer. We model
the loss ratios in both LOBs with a gamma distribution. By minimizing the loss
function in (4.16), we obtain the estimated shape parameters for the two LOBs:
o1 = 2.01 and o9 = 1.10. The estimated standard deviations for the company
random effects are = 0.30 and 7 = 0.36, respectively. These indicate that
the volatility in the commercial LOB is higher, and the variation induced by the
company is larger in the commercial LOB than in the personal LOB. We use a
Gaussian copula to model the dependence between the two LOBs. For the sparse
SUR copula mixed model, the estimated dependence parameter is -0.27, which
indicates a negative association between the two LOBs. As shown in Table 4.1,

the estimated reserve for the personal LOB is 7289 760 while the reserve for the
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commercial LOB is 372992.

Table 4.1: Point estimates of the reserves.

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
Sparse SUR copula mixed 7 295 694 372 761 7 668 455
SUR Gaussian copula 6 823 325 378 386 7 364 511
Actual reserve 8 086 094 318 380 8 404 474

Table 4.2: Performance comparison using percentage error of actual and estimated
loss reserve.

Personal Auto Commercial Auto  Total

Sparse SUR copula mixed -9.8% 17.1% -8.8%
SUR copula mixed -10.3% 18.5% -9.3%
SUR Gaussian copula -15.6% 19.0% -12.4%

Table 4.2 compares the models by showing the percentage error between their
estimated reserves and the actual reserves. The sparse SUR copula mixed model
consistently demonstrates a smaller error than the SUR copula mixed model when
predicting reserves for both LOBs. This indicates that the sparse SUR copula
mixed model effectively handles heterogeneity in data from multiple companies
and the shrinkage of model parameters.

Table 4.3: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping.

Reserve  Bootstrap reserve  Bias  Std. dev. CV
SUR copula mixed 7 623 460 7 530 255 1.22% 612 947  0.082
Sparse SUR copula mixed 7 668 319 7 576 596 1.19% 514 371  0.068

Table 4.3 compares the bias, standard deviation, and coefficient of variation
(CV) of the predictive distribution for different models. The sparse SUR copula
mixed model achieves similar bias but lowers the standard deviation, indicating
greater stability in predictions. With the predictive distribution we generated,
Table 4.4 show the 95% confidence interval of the total reserve, where the lower

bound and upper bound are the 2.5th and 97.5th percentiles of the predictive
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distribution, respectively. We observe that the actual reserve (8404 474) is within
the 95% confidence interval of the reserve for both models.

Table 4.4: 95% confidence intervals for the total reserve using the predictive dis-
tribution.

Lower bound Upper bound
SUR copula mixed 6 548 624 8 892 605
Sparse SUR copula mixed 6 748 291 8 608 556

We compared the predictive distribution of the reserve from sparse SUR copula
mixed model with that from the SUR copula mixed model. Though Figure 4.1
doesn’t clearly depict the differences in the predictive distribution, Figure 4.2
shows that the sparse SUR copula mixed model generates a shorter tail than SUR

copula mixed model.

1
o
[

\ | |

Sparse SUR copula mixed
6500000 7500000 8500000 9500000

oY~
T T T T T
- - 6000000 7000000 8000000 9000000 10000000
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SUR copula mixed Sparse SUR copula mixed SUR copula mixed
Figure 4.1: Boxplot of the predictive Figure 4.2: QQ plot of the predictive
distribution of reserves for different distribution of reserves for different
models. models.

Table 4.5: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 9632534 10799 117 11248347 11863905 12 950 137 15 168 393

SUR Gaussian copula 8992101 9975813 10325124 10793 817 11526223 13 179 997
Sparse SUR copula mixed 8 035364 8300898 8400387 8525030 8742768 9224 643

Risk capital

Silo-GLM 1 166 583 1615 813 2231 371 3 317 603 5 535 859
SUR Gaussian copula 983 712 1333 023 1 801 716 2 534 122 4 187 896
Sparse SUR copula mixed 265 534 365 023 489 666 707 404 1189 279

Table 4.6: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 15.68% 17.50% 19.26% 23.62% 24.35%
Sparse SUR copula mixed vs Silo-GLM 76.16% 77.05% 77.91% 78.03% 78.59%
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We show in Table 4.6 the gain in terms of risk capital for sparse SUR copula
mixed models compared to the silo method. The sparse SUR copula mixed models
captures the dependence between the two LOBs with one or multiple dependence
parameters and generates larger risk capital gain compared to the SUR copula
model. The sparse SUR copula mixed model effectively reduces the effect of model
parameter shrinkage, resulting in the largest gain in risk capital. We found that
the sparse SUR copula mixed model provides the greatest diversification benefits

and the most efficient use of capital.

4.5 Simulation Study

In this simulation study, we simulate 30 pairs of loss triangles to represent data
from multiple companies. Each pair consists of one loss triangle for the personal
LOB and one for the commercial LOB. For each company ¢, we simulate the
company random effects using b ~ N(0,7) and b ~ N(0,72) with 7 = 0.2 and
7o = 0.3. To simulate the losses in the loss triangles (Y;glc), ng?) , we first calculate
the systematic component ni(f():(ﬁ = 1,2) from the accident year and development
year effect B8 and company random effect b“. One of the accident year effect
parameters is set to 0 to reflect the sparsity in the simulated data; this scenario
is referred to as Simulation Setting 1. In another scenario, we set one of the
development year parameters to 0, which we refer to as Simulation Setting 2.
In Simulation Setting 3, we set an accident year effect parameter to 0 and a
development year parameter to 0.

We use Gaussian copula model ¢(+;#) with dependence parameter § = —0.3
to simulate ug) (¢ =1,2) (i+j5—1 < 1I). Then we obtain the upper triangles

0. )

by inverse function yz(fi = FOED (w50, 7)), where 771(2 = mg),@(z) T

Finally, the incremental paid losses, (X W x -(2)) are obtained by multiplying the

ijcr “rije

simulated yz(fi by the premium for the i-th accident year.
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Table 4.7: Point estimates of the reserves for Simulation Setting 1 (sparsity in
accident years).

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
Sparse SUR copula mixed 7 387 615 994 914 8 382 530
SUR copula mixed 7465 672 1017 500 8483 172

SUR Gaussian copula 8 597 787 762 678 9 360 465

Table 4.8: Point estimates of the reserves for Simulation Setting 2 (sparsity in
development years).

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
Sparse SUR copula mixed 7 230 840 1 100 206 8 331 046
SUR copula mixed 7253686 1110404 8 364 090

SUR Gaussian copula 5884 783 1220056 7 104 839

Table 4.9: Point estimates of the reserves for Simulation Setting 3 (sparsity in
accident and development years).

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
Sparse SUR copula mixed 6 703 487 1013406 7 716 893
SUR copula mixed 6 688 865 1017 392 7 716 257

SUR Gaussian copula 6 019 797 1267 551 7 287 349

We apply the sparse SUR copula mixed model to the simulated loss triangles
and compare the estimated reserves with those from the SUR copula model in
Table 4.7, Table 4.8, and Table 4.9. The estimated dependence parameter from
the sparse SUR copula mixed model is -0.29, which is close to the true dependence
parameter of -0.3.

Table 4.10: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation Setting 1 (sparsity in accident years).

LOB Sparse SUR copula Mixed SUR copula Mixed SUR Gaussian Copula
Personal Auto 4.2% 4.9% 20.8%
Commercial Auto 1.8% 3.3% -22.6%
Total 3.9% 4.7% 15.6%

Next, we compute the percentage error between the estimated reserves and

the actual reserves in Table 4.10, Table 4.11, and Table 4.12. The sparse SUR
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Table 4.11: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation Setting 2 (sparsity in development years).

LOB Sparse SUR copula Mixed SUR copula Mixed SUR Gaussian Copula
Personal Auto 1.6% 1.9% 17.3%
Commercial Auto 10.7% 11.8% 22.9%
Total 2.7% 3.2% 12.3%

Table 4.12: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation Setting 3 (sparsity in accident and development
years).

LOB Sparse SUR copula Mixed SUR copula Mixed SUR Gaussian Copula
Personal Auto -5.7% -6.0% -15.4%
Commercial Auto 4.2% 4.7% 30.4%
Total -4.5% -4.6% -9.9%

copula mixed model produces smaller percentage errors in both LOBs than the
SUR copula model. Comparing the percentage errors in Table 4.10 and Table
4.11, we find that the sparse SUR copula mixed model effectively accounts for
the reduced number of incremental paid losses history in recent development and
accident years.

Table 4.13: Bias, Standard deviation, Coefficient of variation (CV) from the predic-
tive distribution using parametric bootstrapping for Simulation Setting 1 (sparsity
in accident years).

Reserve  Bootstrap reserve  Bias  Std. dev. CV

SUR Gaussian copula 9 360 465 9473 081 1.21% 1430188 0.15
Sparse SUR copula mixed 8 418 298 8 362 206 0.67% 834910 0.10

Table 4.14: Bias, Standard deviation, Coefficient of variation (CV) from the predic-
tive distribution using parametric bootstrapping for Simulation Setting 2 (sparsity
in development years).

Reserve  Bootstrap reserve  Bias  Std. dev. CV

SUR Gaussian copula 7 104 839 7 159 126 0.76% 1133194 0.16
Sparse SUR copula mixed 8 331 046 8 442 766 1.34% 849 607 0.11

To generate the predictive distribution of the reserves, we perform the proposed

modified bootstrap as outlined in section 4.3 for both the SUR copula model
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Table 4.15: Bias, Standard deviation, Coefficient of variation (CV) from the predic-
tive distribution using parametric bootstrapping for Simulation Setting 3 (sparsity
in accident and development years).

Reserve  Bootstrap reserve  Bias  Std. dev. CV
SUR Gaussian copula 7 287 349 7 351 670 0.88% 1047 167 0.14
Sparse SUR copula mixed 7 716 893 7751 918 0.45% 743 528  0.09

Table 4.16: Risk capital estimation for different methods for Simulation Setting 1
(sparsity in accident years).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 10 885 418 11 723 992 12 057 173 12 527 821 13 269 161 15 100 527

SUR Gaussian copula 10 858 436 11 608 310 11 899 370 12 259 013 12 884 829 14 109 723
Sparse SUR copula mixed 9 155 447 9 564 475 9 696 652 9 879 661 10 166 494 10 828 871

Risk capital

Silo-GLM 838 574 1171 755 1642 403 2 383 743 4 215 109

SUR Gaussian copula 749 874 1040 934 1400 577 2 026 393 3 251 287
Sparse SUR copula mixed 409 028 541 205 724 214 1011 047 1673 424
True risk capital 363 090 491 570 649 916 883 450 1 339 463

Table 4.17: Risk capital estimation for different methods for Simulation Setting 2
(sparsity in development years).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 8 430 836 9113 243 9 381 361 9 749 298 10 351 488 11 742 042

SUR Gaussian copula 8 267 915 8 876 446 9108 225 9 398 868 9 895 646 11 031 386
Sparse SUR copula mixed 9 266 126 9 682 246 9 840 694 10 053 377 10 392 631 11 170 969

Risk capital

Silo-GLM 682 407 950 525 1 318 462 1920 652 3 311 206

SUR Gaussian copula 608 531 840 310 1130 953 1627 731 2763 471
Sparse SUR copula mixed 416 120 574 568 787 251 1126 505 1904 843
True risk capital 327 789 450 061 613 978 884 873 1 408 852

Table 4.18: Risk capital estimation for different methods for Simulation Setting 3
(sparsity in accident and development years).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 8 753 481 9 520 564 9 820 696 10 232 329 10 900 412 12 165 368

SUR Gaussian copula 8 369 106 8935 070 9 143 298 9 426 176 9 895 287 10 743 208
Sparse SUR copula mixed 8 466 662 8 841 829 8 985 442 9175 143 9 454 174 10 008 244

Risk capital

Silo-GLM 767 083 1067 215 1478 848 2 146 931 3 411 887

SUR Gaussian copula 565 964 774 192 1 057 070 1526 181 2 374 102
Sparse SUR copula mixed 375 167 518 780 708 481 987 512 1 541 582
True risk capital 313 950 429 705 582 822 827 869 1 360 640

Table 4.19: Risk capital gain for different methods for Simulation Setting 1 (spar-
sity in accident years).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 10.58% 11.16% 14.72% 14.99% 22.87%
Sparse SUR copula mixed vs Silo-GLM 51.22% 53.81% 55.91% 57.59% 60.30%
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Table 4.20: Risk capital gain for different methods for Simulation Setting 2 (spar-
sity in development years).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 10.83% 11.60% 14.22% 15.25% 16.54%
Sparse SUR copula mixed vs Silo-GLM 39.02% 39.55% 40.29% 41.35% 42.47%

Table 4.21: Risk capital gain for different methods for Simulation Setting 3 (spar-
sity in accident and development years).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 26.22% 27.46% 28.52% 28.91% 30.42%
Sparse SUR copula mixed vs Silo-GLM 51.09% 51.39% 52.09% 54.00% 54.82%

Table 4.22: Risk capital percentage error for different methods for Simulation
Setting 1 (sparsity in accident years).

Risk capital TVaR (80%) TVaR (35%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 130.95% 138.37% 152.71% 169.82% 214.69%
SUR Gaussian copula 106.53% 111.76% 115.50% 129.37% 142.73%
Sparse SUR copula mixed 12.65% 10.10% 11.43% 14.44% 24.93%

Table 4.23: Risk capital percentage error for different methods for Simulation
Setting 2 (sparsity in development years).

Risk capital TVaR (30%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 108.18% 111.20% 114.74% 117.05% 135.03%
SUR Gaussian copula 85.65% 86.71% 84.20% 83.95% 96.15%
Sparse SUR copula mixed 26.95% 27.66% 28.22% 27.31% 35.21%

Table 4.24: Risk capital percentage error for different methods for Simulation
Setting 3 (sparsity in accident and development years).

Risk capital TVaR (30%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 144.33% 148.36% 153.74% 159.33% 150.76%
SUR Gaussian copula 80.27% 80.17% 81.37% 84.35% 74.48%
Sparse SUR copula mixed 19.50% 20.73% 21.56% 19.28% 13.30%

and the sparse SUR copula mixed model. Table 4.13, Table 4.14, and Table
4.15 show the bias and standard deviations of the total loss reserve from the
predictive distribution. The sparse SUR copula mixed model effectively handles
both variations in reduced number of histories in loss ratios across different LOBs.,
leading to smaller standard deviations compared to the SUR copula model.

For both the sparse SUR copula mixed model and the SUR Gaussian copula
model, we compute the risk measures and risk capitals for different risk levels

in Table 4.16, Table 4.17, and Table 4.18. Similar to real data application, the
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sparse SUR copula mixed model produces a larger risk capital gain than the SUR
Gaussian copula, as shown in Table 4.19, Table 4.20, and Table 4.21.

We also compared the calculated risk capital with the true risk capital for each
simulation setting. As shown in Table 4.22, Table 4.23, and Table 4.24, the sparse

SUR copula mixed model generates risk capital closest to the true risk capital.

4.6 Summary and Discussion

We have proposed the sparse SUR copula mixed model to incorporate data from
multiple companies and handle the shrinkage of model parameters, thereby improv-
ing predictions of reserves and risk capital. The model consists of three compo-
nents: fixed accident year and development year effects, company random effects,
and a copula to model dependence between LOBs. We estimate the parameters for
the model using a two-stage iterative approach that alternates between estimating
fixed and random effects and estimating the dependence parameter. We apply co-
efficient thresholding in the bootstrapping to generate the predictive distribution
of the reserves.

We demonstrate the method using both real data from NAIC database and
simulation studies. Empirical and simulation results show that the sparse SUR
copula mixed model generates smaller prediction errors, reduced variability, and
larger risk capital gains than the SUR copula mixed model without sparsity and
the SUR Gaussian copula model. This is due to its ability to capture dependence
between LOBs, and account for variability across companies, and remain robust
under sparsity.

Both Gaussian and Frank copulas can model a wide range of dependence, from
positive to negative. Both copulas primarily captures the dependence structure
in the center of the distribution. However, they are limited in modeling extreme

events: they exhibit no tail dependence. Another limitation of the current formu-
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lation is that we assume the errors within equations are independent. Errors may
exhibit autocorrelation within the equation due to the development year effect over
time. A natural next step is to develop a hybrid model of the recurrent neural
networks (EDT) (Cai et al., 2025) and the SUR copula mixed model, where we
can interpret the dependence using the copula and estimate other components of

the model using EDT.
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Chapter 5

Hybrid Modeling of RNN and
SUR Copula Mixed Models

5.1 Introduction

This chapter presents preliminary results from our ongoing work. We will revise
our methods so that fized effects are captured by DT, while the dependence structure
15 captured using the SUR copula mixed model.

Traditionally, property and casualty (P&C) insurance companies have used
generalized linear models (GLMs) for loss reserving. Insurers operate across mul-
tiple lines of business (LOBs) where claims can be related. Copula regression
accounts for the dependence between incremental paid losses in different LOBs,
leading to large risk capital reduction. However, copula regression has certain
limitations, such as its limited flexibility in modeling marginal distributions. The
incremental paid losses are assumed to be independent and follow a distribution
belonging to the exponential family. Schelldorfer and Wuthrich (2019) discusses
the strategy of using the capabilities of neural networks to improve the GLM,
which is referred to as a hybrid model.

Wiithrich and Merz (2019) demonstrates the importance of embedding classical
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actuarial models like GLM into a neural net, known as the Combined Actuarial
Neural Net (CANN) approach. According to Schelldorfer and Wuthrich (2019),
GLMs can be seen as a starting point of neural network models for both regression
and classification tasks. The benefit of this is that we receive better run times
in model calibration, and we can explicitly identify deficiencies in GLMs. Wilson
et al. (2024) shows that combined models work more effectively than single models
and suggests that combining GLM and neural network performs better as it aids
in maximizing the advantages of both techniques. Saad et al. (2024) combine a
deep neural network architecture with hierarchical Bayesian modeling for complex
spatiotemporal fields, reducing the prediction error across several benchmarks.
We propose a hybrid model of Recurrent Neural Networks (RNN) and SUR
copula mixed model to improve the interpretability of the dependence between
LOBs while modeling the complex fixed effects including interactions. We train the
DT model for each LOB and obtain the corresponding residuals, and then model
these residuals using the SUR copula mixed model. We let the SUR copula mixed
model compute the dependence between the two LOBs, which is not available in
the EDT predicted results. The SUR copula mixed model takes into account the

heterogeneity across companies in the residuals.

5.2 Method

Let Y;g-? denote the standardized incremental paid loss for accident year i (1 <i <
I) and development year j (1 < j < I) in company c¢. We train the DT model using
ng? from all companies for the fth LOB. DT captures the fixed effects through
neurons, company effects through embeddings, and pair-wise dependencies through
paired sequence input.

For all the Y.\, we calculate the residual as €/ = Y — V9 where Y is

ijc ijc ijc ijc ijc

the predicted incremental paid loss from the DT.
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We model the residuals e(J)c with the SUR copula mixed model. Let ,ugfl

o}

be the expected value of ;.. We model uijc using the company effect b =

(bge),bgz), ...,bg)) as in (5.1).

i) = 20p0. (5.1)

C

The probability density for all the data is

l Y4 l Y4 @ ¢
f(eg)veg)a--'ae(o);Tbo-Z):/[ ]cf(€§),€g),..., C |b1 s ), ..,b(c);O'g)-

s 680 b ryanPavy) . anl?,
(5.2)

where € is the I (I +1) x 1 vector of residuals for the ¢*® company from ¢** LOB.
Assuming the residuals from each company are independent, we can write the

probability density as

¢ roo
f(fge)aeg); e 7€(c€);Ue7Tz) = H/ f(eg) | bg)sae)f(bg)ﬁe)dbg)

0o I I+1—i

_H/_ IT IT e s myavd,  (5.3)

=1 j=1

where f(e m\bc ; 0¢) denotes the conditional density of Ez]c given b and f (bg); Tr)
denotes the density of the company effect b 7¢ is the standard deviation of the
company effect bt

For each LOB, we have the following log-likelihood function

o I I+1—i
LO(rp,00 | €€, .. Zlog / IT T Feesine; o0g v )b

P a=1 j=1
(5.4)
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The joint PDF for all ( elt) ) from all companies is then given by

7,]07 z]c

ey (o) ¢ ¢
f( 1117 1117 1217€§2%7'"’Egl)C’?EgI)CanvO-KvTK’ o)
C o I I+1—i
Z/
SIT/ [T 105t 105
c=1 =1 g=1

C( ( mc | b(ﬂ ) ( zjc ’ b(e’ ) )f(bge)) Tf)f(b((f/); Tfl)db((f)db((f/) (55)

Here ¢(-) denotes the PDF corresponding to copula C(-).
)

We then write the copula part in terms of the ranks of pseudo-residuals for €;;,

)

and e”c, conditional on the random effect b and bt respectively.
Suppose %c | b follows normal distribution. We define the pseudo-residuals
. © ©)
0 At
(0 _ Cije ~ Hije 56
ijc 5_( . ( : )

Next, we use the empirical cumulative distribution function (CDF) to get ranks

O ()

of pseudo-residuals. The rank R;;, of the residual s;;. is given by

+1—4*

I
0 ) (0
Mo = T+ 1) Z:: Z::l (s < 52)

where 1 is the indicator function.

We approximate F(e!" €ije V1Y) and F( €ijc | b ) in (5.5) with ch and ch’

respectively. The copula term c(F ( | b(z) F(e €ijc \ b ) 6) are replaced by

Z]C

(R}, R\ 6).

In the case of two LOBs, let £ = 1 and ¢/ = 2, we obtain the following log-

likelihood function
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L(o1,09,71, 72,0 | egl),e(zl), .. .,eg),e§2),e§2), . ,eg))
C I I+1—i
—ZL“ T, Te \el ,eél),... +ZZ Z log ¢( UC,RZ(JZIC),Q)
c=1 i=1 j=1
oo I I+1-i
3 e | TLTT semnso0sma
(=1 c=1 =1 j=1
C I I+1-i

+> 00 > loge(RY) R 6). (5.7)

c=1 i=1 j=1

We apply the iterative two-stage estimation approach developed in Chapter

3 to estimate the parameters by maximizing (5.7). After fitting the SUR copula
(0

mixed model to the residuals €;,,

~(0)
as Eijc.

we obtain the fitted residuals, which are denoted

In the hybrid model, we define the loss for each sample in the DT as

(T 4 e _y W)z (§) | 0y

ijc ijc ijc ijc ijc ijc

2 ?

(5.8)

where ch and ngc are the predicted incremental paid losses from the DT. The
2®

zyc

utilize the AMSGRAD method (Reddi et al., 2018) to optimize the parameters in

represent the structure captured by the SUR copula mixed model. Finally, we

the DT and then obtain the estimated loss reserve.

5.3 Application

To illustrate the hybrid model, we consider the same data as used in Cai et al.
(2025), which are from the Schedule P of the NAIC database. We use multiple
pairs of loss triangles of paid losses in Schedule P for the year 1997. Each pair
consists of personal auto and commercial auto lines of business.

We train the DT model using the incremental paid losses y@ (1 < <10,

ijc
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1<3j<10,1<¢<30) from 30 companies for the /" (¢ = 1,2) LOB. During

training, we obtain the predicted losses for the upper triangles. Then we calculate

J4 0 ¢ (¢ )
Ejl z(]l = yz(ji - yfji, where y

triangle in the /** LOB from the DT model.

© is the predicted loss for the upper

the residuals €;... by € e

As shown in (5.1), we model the residuals egi with the SUR copula mixed model
and capture the dependence between the two LOBs through a Gaussian copula.
The estimated standard deviations for the company random effects in the two
LOBs are 71 = 0.010 and 75 = 0.013, respectively. We show the estimated reserves
and dependence parameter for the major US property and casualty insurer. The
estimated reserves from a single run of the hybrid model for the two LOBs are
7747946 and 333 877, respectively. We compare the estimated reserve with those
from other models in Table 5.1. The estimated reserves from the hybrid model are
close to that from the Deep Triangle, which shows that the hybrid model can also
be used to improve the reserve prediction while also improve the interpretability

of the dependence structure between the two LOBs.

Table 5.1: Point estimates of the reserves.

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
Hybrid model 7 T7AT 946 333 877 8 081 823
Deep Triangle 7 781 299 324 024 8105 323
Sparse SUR copula mixed 7 295 694 372 761 7 668 455
SUR copula mixed 7 246 135 377 324 7623 460
SUR copula 6 823 325 378 386 7 364 511
Actual reserve 8 086 094 318 380 8404 474

Table 5.2: Performance comparison using percentage error of actual and estimated
loss reserve.

Personal Auto Commercial Auto Total

Hybrid model -4.2% 4.8% -3.9%
Deep Triangle -4.1% 2.9% -3.8%
Sparse SUR copula mixed -9.7% 16.8% -8.7%
SUR copula mixed -10.3% 18.5% -9.3%
SUR copula -15.6% 19.0% -12.4%
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Table 5.3: Dependence comparison between models. SUR copula mixed model and
sparse SUR copula mixed model are abbreviated to SURCMM and sSURCMM,
respectively.

Hybrid EDT sSURCMM SURCMM SUR copula

dependence parameter  -0.24 na -0.19 -0.20 -0.36

Next, we compute the percentage errors between the estimated reserve and
the true reserve in Table 5.2. We find that the hybrid model and Deep Triangle
generate the smallest percentage errors among all the models. The SUR copula
mixed models generates smaller percentage errors than the SUR copula model.

The estimated dependence parameter between the two LOBs is around -0.24,
which indicates a negative association between the two LOBs. As shown in Table
5.3, the negative association is also consistent with the result from SUR copula
and SUR copula mixed models. This dependence structure information is valuable

for the insurer to make strategic business decisions.

5.4 Simulation Study

To further validate our result on the hybrid model for computing the dependence
structure between two LOBs. We simulate 30 pairs of loss triangles using the fixed
effects B estimated from one of the 30 pairs of loss triangles in Chapter 4. We
assume the company’s random effects follow b ~ N (0,7) and b ~ N (0, 72)
with 71 = 0.2 and 7 = 0.3.

We then simulate uff) (0l =1,2) (i1 4+j—1<1) from a Gaussian copula model
¢(+;0) with dependence parameter § = —0.3. The upper triangles are obtained by
0. 10 1) where 5© = 2080 4 20p®.

inverse function yg) = F“)(_l)(uzj S Mijes ije — Lij

Following the procedure in the application section, we train the DT on the
simulated loss triangles for each LOB. During training, we generated the predicted

loss for the upper triangles, enabling us to obtain the residuals for each LOB. We

apply the SUR copula mixed model to the residuals for the simulated loss triangles.
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The estimated dependence parameter, -0.25, has a consistent sign with the actual

dependence parameter, -0.3.

5.5 Summary and Discussion

We integrate the SUR copula mixed model with the extended Deep Triangle to
interpret the dependence between LOBs. Specifically, we model the heterogeneous
residuals from the DT using a SUR copula mixed model. The heterogeneity across
companies and between LOBs is handled by the random effect, and the dependence
is captured by a Gaussian copula.

To evaluate the proposed integration method, we apply it to multiple loss tri-
angles from the NAIC database. The hybrid modeling of the DT and SUR copula
mixed model reveals a negative association between the personal and commercial
LOBs, consistent with the findings from the SUR copula mixed model. A simula-
tion study further highlights the benefits of integrating the DT and SUR copula
mixed model in interpreting the dependency between LOBs. We will generate syn-
thetic loss triangles by resampling the errors from the SUR copula mixed model
and adding the fixed effects from the DT. This approach will allow us to generate

the predictive distribution of the reserve and perform risk capital analysis.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Discussion

Estimating unpaid claims is crucial for an insurer’s operations in property and
casualty (P&C) insurance. Insurance companies often engage in multiple inter-
related lines of business (LOBs), and accounting for dependence between LOBs
is essential in accurately determining an insurance company’s reserve ranges and
the amount of risk capital needed. Incorporating dependency into reserve calcu-
lations helps the insurer determine the appropriate amount of risk capital and
leverage diversification benefits. The actuarial industry has developed parametric
and non-parametric methods for loss reserving. However, few methods effectively
capture the dependency between loss reserves while balancing interpretability and
predictive accuracy. In particular, there is a lack of hybrid approaches that inte-
grate neural networks with copula-based models to leverage the strengths of both
methods. The SUR copula regression incorporates the dependence between two
LOBs through a copula using loss triangles from one company, producing a rela-
tively large bias, due to modeling single-company effects as fixed effects, restrictive
marginal assumptions, and the omission of sequential dependence in development

year effects. In this thesis, we introduce the use of the Deep Triangle (DT), a
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recurrent neural network, for multivariate loss reserving. We also propose SUR
copula mixed models that extend SUR copula regression to incorporate multiple
companies’ data, improving both loss prediction and risk capital analysis. Fur-
thermore, we introduce a hybrid approach that combines neural networks with
copula-based models to balance interpretability and predictive accuracy; however,
a comprehensive simulation study and in-depth application of this method are left
for future work.

In Chapter 2, we introduce the Extended Deep Triangle (EDT) framework,
which tailors the Deep Triangle (DT), a gated recurrent neural network, for mul-
tivariate loss reserving with bivariate loss triangles of incremental paid losses. We
also introduce an asymmetric loss function to account for the varying volatility
across different lines of business (LOBs). By investigating the impact of input
sequence length, we find that longer sequences generally improve predictive per-
formance. Furthermore, we propose GAN-based techniques to generate predictive
distributions of reserves, yielding larger risk capital gains. To generate these pre-
dictive distributions, we integrate DT with a copula-based generative adversarial
network (copula GAN) that produces synthetic pairs of loss triangles. In addition,
we reduce the computational cost of generating predictive distributions by initial-
izing training with pre-trained model weights on GAN simulated samples. We
validate EDT through simulation studies and an empirical application using real
data from the National Association of Insurance Commissioners (NAIC) database.
Results demonstrate that EDT consistently outperforms copula regression in pre-
dicting loss reserves and produces larger risk capital gains.

While neural network based approaches such as EDT achieve strong predic-
tive performance, their interpretability is limited. Since the ultimate goal of this
thesis is to develop models that balance predictive accuracy with interpretabil-
ity, in Chapter 3, we turn to parametric methods. To integrate the SUR copula

mixed model within a hierarchical structure, we focus on random effects to cap-
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ture heterogeneity across companies and lines of business (LOBs). Importantly,
the dependence structure between LOBs is interpretable through the sign of the
estimated dependence parameters, providing insurers with insight into how dif-
ferent lines are related. We develop a two-stage iterative approach to estimate
the parameters of the SUR copula mixed model and illustrate the method using
multiple pairs of loss triangles from the NAIC database. Our results show that
the SUR copula mixed model produces smaller bias between predicted and actual
reserves compared to the SUR copula regression model. In addition, by generat-
ing the predictive distribution of reserves, we demonstrate that the SUR copula
mixed model provides larger risk capital gains than SUR copula regression, reflect-
ing a greater diversification benefit. Finally, we validate these findings through a
simulation study.

Continuing from the model in Chapter 3, in Chapter 4, we investigate the
shrinkage of model parameters in the SUR copula mixed model and develop the
sparse SUR copula mixed method. In this work, we incorporate the least absolute
shrinkage and selection operator (LASSO) regularization for the fixed effects to
mitigate the impact of limited data in the tail of the loss triangles. We also adapt
the bootstrap approach to account for sparsity by applying coefficient thresholding
during the resampling step, ensuring that the predictive distribution of reserves
reflects the penalized estimates. We demonstrate the estimation method and boot-
strapping procedures using both a real data application and a simulation study.
Compared to the SUR copula mixed model, the sparse SUR copula mixed model
produces reserve estimates closer to the true values and generates larger risk cap-
ital gains. One limitation of using the Gaussian copula is its inability to capture
tail dependence. We may consider Student’s t copula for modeling extreme de-
pendence.

In Chapter 5, we explore a hybrid modeling framework that integrates the

Deep Triangle (DT), a gated recurrent neural network, with the SUR copula mixed
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model for loss reserving. We first compute residuals from the DT, and then feed
these residuals into the SUR copula mixed model, using only its random effect
and copula components to capture dependence across lines of business (LOBs).
The estimated loss ratio is obtained by summing the DT output with the SUR
copula mixed model output, and the loss function is calculated by subtracting
the predicted values from the observed values. We demonstrate the proposed hy-
brid approach using real data, which reveals a negative association between the
two LOBs. This framework bridges interpretability and flexibility, allowing us to
capture complex accident year and development year effects with DT while simul-
taneously modeling interpretable dependence structures through the SUR copula
mixed model. This chapter presents preliminary results and remains incomplete,

with a comprehensive simulation study and further evaluation left for future work.

6.2 Future work

We assume the errors within equations are independent in the current formulation
of the SUR copula mixed model. In practice, errors may exhibit autocorrela-
tion within the equation due to the development year effect over time. Although
AR(1) or higher order dependence structures could be incorporated into the SUR
copula mixed model, doing so would substantially increase the complexity of the
estimation procedure.

The copula component is currently capturing the cell-level residual dependence
between LOBs, while we are not capturing the company-level dependence in the
reserves due to the independence assumption of the random effects. Another ex-
tension would be to relax the independence assumption of the company random
effects and introduce a bivariate random effect, allowing for correlation between
the random effects of different LOBs.

Future extensions may further develop the hybrid model, retaining the copula
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component for dependence interpretation while estimating the other elements of
the model using flexible architectures such as our recent work with recurrent neu-
ral networks (EDT). The hybrid model could provide a valuable framework for
analyzing the dependence structures between different LOBs and simultaneously
modeling fixed effects for accident year and development year, company random
effects, and their interactions. Moreover, within the hybrid framework, resampling
the residuals to generate synthetic loss triangles could be used to construct the
predictive distribution of reserves. Finally, the hybrid model can be enhanced to
capture cross-LOB dependence primarily through the SUR copula mixed model
by introducing a penalty term in the loss function that discourages the neural
network from absorbing this dependence, ensuring that the interpretability of the
dependence structure is preserved.

To enhance the prediction for the reserve, we can use weighted averaging from
all the models’ predictions. One approach would be to set weights proportional to
the model’s performance on a validation set.The better the model’s performance,
the higher its weight. For example, we can use the inverse of the mean squared
error (MSE) on the validation set to assign weight to each model’s prediction.

In addition to the accident year, development year, and company effects, we
could also consider other macroeconomic conditions, such as inflation and interest
rates, in the models. For the EDT model, the macroeconomic conditions could
also be formatted as another input sequence to the GRU module. As for the SUR
copula mixed model, we may add the macroeconomic conditions to the systematic
component of the marginal distribution. For example, the mean of the marginal
distribution can be expressed as a function of the macroeconomic factors. By in-
corporating more information, these models can capture a broader range of factors
that influence incremental paid losses, potentially leading to more accurate reserve

predictions.
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Appendix A

A.1 Dependence Analysis

We compute Kendall’s tau on the residuals of the marginal fits, where the marginals
are the log-normal and gamma regression models. Note that the analysis is per-
formed on the residuals because we want to remove the accident year and develop-

ment year effects. For the log-normal, the residual is 68) = (lnyl-(; ) /28)) /&, and

for gamma él(-?) = .%(32 ) / ﬂg) The computed Kendall’s tau is -0.1562, suggesting a

negative association between personal and commercial LOBs.

A.2 Copula Regression Using Loss Triangles from
30 Companies

Here we consider modeling the systematic component 7;;. using accident year effect
a;(i € 1,2, ...,10), development year effect 5;(j € 1,2,...,10), and company effect
be(c €1,2,..,30) as in (A.1).

Mije = & + ai + Bj + b, (A1)

where b, is an additional predictor that characterizes the company effect.

We identify that YZ(Jl) and YZ(JZ) follow log-normal and gamma distributions,
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respectively. Let’s consider the probability density function (PDF) of the log-

normal distribution for Y;gl)

. 1<10g( <1>) uﬁj)>2
1y (yfal)) o A ouy >0, (A-2)

Yii' o 27r

where ,ufjl )

) = 0,

is the location and o > 0 is the shape. Thus, the systematic component

Next, the gamma PDF for Y is given by

(2)

12 (u2) - (yff)> X 42 50 (A3)
R w? ) T(e)yy Y

where ¢ > 0 is the shape and /UL(?) > () is the location. Thus, the systematic

component is n( ) = = log (“w ¢> (Abdallah et al., 2015), ensuring u@)

i 1s positive.

(1) | 1722
P +107)

For the log-normal distribution, the Y;g ) is estimated by Y( ) = exp <,u
and for the gamma distribution, Y = /lgj)gzﬁ.

We use Gaussian copula to capture the dependence between the two LOBs,
and the estimated reserves are 6 823 325 and 370 386, respectively. The percentage
errors of actual and estimated reserves for the two LOBs are —15.62% and 16.33%,

respectively.

A.3 Block Bootstrapping for Predictive Distri-
bution of the Reserve

We consider block bootstrap as another way to generate samples to compute the
predictive distributions of the reserve based on DT. The block bootstrap resamples
consecutive blocks of observations, treating these blocks as exchangeable. As a
result, the original dependence structure of the data is preserved within each block

(Lahiri and Lahiri, 2003). Nevertheless, the data generated by block bootstrapping
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input sequence vectors might not capture the same sampling uncertainty as seen
in methods like the copula regression parametric bootstrap or GAN-based schemes
unless the appropriate block size is obtained based on the bias-variance tradeoff
in approximating the predictive distribution.

To select a suitable block size, we evaluated the validation error of DT across
different sequence lengths and found that the longest sequence (I) minimized the
validation error (Figure 2.6). We adopt this length, assuming it best captures the
within-block temporal dependence, thereby justifying the approximate exchange-
ability of blocks. Specifically, we resample the training data of sequencing length
I using the bootstrapping of blocks, leveraging this exchangeability to construct
the predictive reserve distribution, referred to as DT-bootstrap.

In particular, first, we randomly split the training data into training and val-
idation sets using an 80-20 split described in Section 2.2.2. Suppose I = 10. For
each company, we have 36 training sequences and 9 validation sequences. Let X,
(1 < n < 36) denote the training input sequences (mask,..., mask, Y;fll), Y;g), s
E/Z(jlll) and (mask ,..., mask, Yif), Y;g), o }/l(]zil) from one company. We also let

Y, (1 < n < 36) denote the training output sequences (Y(l) Y;(jlil, - Y;(H_Z,

2,3

mask, ... , mask) and (Y;(JQ), Y;(j)ﬂ, o Yz(ﬂﬂ, mask, ... , mask). Our original
training data are (X1,Y1) , ... , (X36,Y36). We draw bootstrap training data
(X1.Y7), ..., (X3,Y5) randomly with replacement from the original training

set. The training data with the same accident year and development year of differ-
ent companies stay together during bootstrapping. We apply the same procedure
to the validation data.

Table A.1 shows that the standard deviation from the DT-bootstrap is smaller
than that from the copula regression models. DT-bootstrap also has a CV that
is smaller than one, which also complies with the insurance standards. In addi-
tion, Table A.2 depicts that the DT-bootstrap generates a smaller risk capital by

capturing the inter-LOB dependence than the copula regression models.
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Table A.1: Bias, Standard deviation, Coefficient of variation (CV) of the loss
reserve when we use DT-bootstrap and copula regression models.

Reserve  Bootstrap mean reserve  Bias  Std. dev. CV

DT-bootstrap 8 105 323 8 137 107 0.39% 235304 0.029
Product Copula 6 954 736 6 972 792 0.26% 399 758  0.057
Gaussian Copula 6 919 171 6 941 806 0.33% 368 555  0.053
Frank Copula 6 999 253 7 043 309 0.63% 388 357  0.056

Table A.2: Risk capital estimation comparisons for DT-bootstrap and copula re-
gression models.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

DT-Bootstrap 8 370 792 8 480 870 8 519 400 8 565 251 8 632 670 8 743 527
Silo-GLM 7 442 692 7671 633 7 756 992 7 872 138 8 060 489 8 460 435
Product copula 7 367 695 7 553 768 7 621 203 7710 435 7847 773 8 126 433
Gaussian copula 7 313 951 7 490 387 7 556 029 7 644 886 7 782 646 8 054 737
Frank copula 7 424 807 7 616 405 7 685 514 7776 754 7921 574 8 202 695

Risk capital

DT-Bootstrap 110 078 148 608 194 459 261 878 372 735
Silo-GLM 228 941 314 300 429 446 617 797 1017 743
Product copula 186 073 253 508 342 740 480 078 758 738
Gaussian copula 176 436 242 078 330 935 468 695 740 786
Frank copula 191 598 260 707 351 947 496 767 777 888

We further validate our conclusion that DT-bootstrap reduces risk capital
through simulation studies, as with the setup detailed in Section 4. Figure A.1
indicates that using the largest block size yields interval properties similar to those
of DT-GAN, with the exception of coverage. We anticipate that reducing the block

size may improve coverage, bringing it closer to the nominal level.
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Figure A.1: 95% confidence interval for total reserves for EDT.
Note: The horizontal line indicates the true reserve. The true reserve is within all the
95% confidence intervals.

A.4 Simulation Setting

We present the true values of the parameters used in the simulation study in

Chapter 2.

Table A.3: Accident year effect o

personal auto commercial auto

year 2 -0.03 -0.14
year 3 -0.03 -0.15
year 4 -0.13 -0.30
year b -0.17 -0.29
year 6 -0.18 -0.27
year 7 -0.18 -0.14
year 8 -0.24 -0.10
year 9 -0.27 0.17
year 10 -0.21 -0.12
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Table A.4: Development year effect 3;

personal auto commercial auto

dev 2 -0.23 0.20
dev 3 -1.05 -0.02
dev 4 -1.65 -0.41
dev 5 -2.26 -1.06
dev 6 -3.02 -1.47
dev 7 -3.68 -2.10
dev 8 -4.50 -2.81
dev 9 -4.91 -3.12
dev 10 -5.92 -4.18

Table A.5: Premium w;

personal auto commercial auto

year 1 4711 333 267 666
year 2 5 335 525 274 526
year 3 5 947 504 268 161
year 4 6 354 197 276 821
year 5 6 738 172 270 214
year 6 7079 444 280 568
year 7 7 254 832 344 915
year 8 7739 379 371 139
year 9 8 154 065 323 753
year 10 8 435 918 221 448

A.5 Fréchet-Hoeffding bounds

According to Fréchet-Hoeffding theorem (Schweizer and Sklar, 2011), for any bi-

variate copula C' : [0,1]> — [0, 1], the following bounds hold:

W (uy,u2) < C (ur,ug) < M (uqg,uz)

The function W is called the lower Fréchet-Hoeffding bound and is defined as

W (uy,ug) = max {u; +ug — 1,0} .
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The function M is called the upper Fréchet-Hoeffding bound and is defined as

M (uy,us) = min {uy, ug} .

The upper bound is reached for comonotone random variables, which are per-
fectly positive dependent. The lower bound corresponds to countermonotonic ran-

dom variables, which are perfectly negative dependent.
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Appendix B

B.1 Estimated Reserves from SUR Copula Mixed

Model

This section provides supplementary results on the estimated reserves and risk
capital analysis from the SUR copula mixed model and sparse SUR copula mixed
model using a single dependence parameter.

Table B.1: Point estimates of the reserves.

Reserves
Model LoB 1, Ry LoB 2, Ry, Total, R
SUR copula mixed 7 246 135 377 324 7623 460

Sparse SUR copula mixed 7 296 308 371 920 7 668 227

Table B.2: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping.

Reserve  Bootstrap reserve  Bias  Std. dev. CV

SUR copula mixed 7 623 460 7 530 255 1.22% 612947  0.082
Sparse SUR copula mixed 7 662 748 7 571 496 1.19% 514 371  0.068

Table B.3: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)

SUR copula mixed 8 123 673 8 442 581 8 562 167 8 736 343 9030 721 9 621 658
Sparse SUR copula mixed 8 078 775 8 344 914 8 451 227 8 593 281 8 829 193 9 285 882

Risk capital

SUR copula mixed 318 908 438 494 612 670 907 048 1 497 985
Sparse SUR copula mixed 266 139 372 452 514 506 750 418 1207 107
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Table B.4: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR copula mixed vs Silo-GLM 71.37% 72.43% 72.36% 72.83% 73.03%
Sparse SUR copula mixed vs Silo-GLM 76.11% 76.59% 76.69% 76.79% 78.27%

B.2 Parameters for Simulation Settings

We present the true values of the parameters used in Simulation Setting 1.

Table B.5: Accident year effect «;

personal auto commercial auto

year 2 -0.03 -0.14
year 3 -0.03 -0.15
year 4 -0.13 -0.30
year -0.17 -0.29
year 6 -0.18 -0.27
year 7 -0.18 -0.14
year 8 -0.24 -0.10
year 9 -0.27 0.17
year 10 -0.21 -0.12

Table B.6: Development year effect 3;

personal auto commercial auto

dev 2 -0.23 0.20
dev 3 -1.05 -0.02
dev 4 -1.65 -0.41
dev 5 -2.26 -1.06
dev 6 -3.02 -1.47
dev 7 -3.68 -2.10
dev 8 -4.50 -2.81
dev 9 -4.91 -3.12
dev 10 -5.92 -4.18

We present the true values of the parameters used in Simulation Setting 2.

B.3 Accident Year and Development Year Ef-

fects
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Table B.7: Premium w;

personal auto commercial auto

year 1 4711 333 267 666
year 2 5 335 525 274 526
year 3 5 947 504 268 161
year 4 6 354 197 276 821
year 5 6 738 172 270 214
year 6 7079 444 280 568
year 7 7 254 832 344 915
year 8 7739 379 371 139
year 9 8 154 065 323 753
year 10 8 435 918 221 448

Table B.8: Accident year effect «;

personal auto commercial auto

Year 2 -0.31 -0.18
Year 3 -0.21 -0.79
Year 4 -0.25 -1.28
Year 5 -0.40 -2.28
Year 6 -0.33 -2.84
Year 7 -0.32 -4.19
Year 8 -0.30 -4.46
Year 9 -0.26 -5.68
Year 10 -0.29 -6.46

Table B.9: Development year effect 3;

personal auto commercial auto

dev 2 -0.19 -0.01
dev 3 -0.46 -0.19
dev 4 -0.24 -0.38
dev 5 -0.30 -1.26
dev 6 -0.40 -2.19
dev 7 -0.25 -2.81
dev 8 -0.10 -4.38
dev 9 -0.17 -5.61
dev 10 -0.07 -8.81
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Table B.10: Premium w;

personal auto commercial auto

year 1 48 731 30 224
year 2 49 951 35 778
year 3 52 434 42 257
year 4 58 191 47 171
year 5 61 873 53 546
year 6 63 614 58 004
year 7 63 807 64 119
year 8 61 157 68 613
year 9 62 146 74 552
year 10 68 003 78 855

Table B.11: Estimates for SUR Gaussian copula (model 1) and SUR copula mixed
(model 2).

LOB 1 LOB 2

model 1 model 2 | model 1 model 2
(Intercept) -1.12353 -0.98298 | -1.35199 -1.56252
year2 -0.01881 0.01879 | 0.12451 0.18451
year3 -0.09658 -0.09476 | 0.15081 0.14636
yeard -0.14320 -0.16042 | -0.01204  0.00775
yearb -0.15018 -0.14025 | 0.04106 0.06353
year6 -0.14554  -0.14294 | -0.01037  0.02795
year7 -0.15722 -0.14295 | 0.05926  0.08909
year8 -0.17019 -0.15376 | 0.02306 0.05249
year9 -0.15105 -0.12807 | -0.00835  0.04677
year10 -0.13720 -0.11038 | -0.01279  0.07024
dev2 -0.31421 -0.32753 | -0.24138 -0.24398
dev3 -1.02508 -1.04632 | -0.65307 -0.64914
dev4 -1.62031 -1.67526 | -1.05445 -1.09029
devb -2.17539 -2.24411 | -1.69377 -1.69201
dev6 -3.01263  -3.09300 | -2.17012 -2.25405
dev7 -3.91055 -3.96892 | -2.88883 -2.97663
dev8 -4.42991 -4.48746 | -3.82081 -3.98401
dev9 -5.74510 -5.83263 | -3.70529 -3.87516
dev10 -5.93063 -5.94626 | -4.35880 -4.46641
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