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Abstract

In the property and casualty (P&C) insurance industry, reserves comprise most of

a company’s liabilities. These reserves are the best estimates made by actuaries for

future unpaid claims. The actuarial industry has developed both parametric and

non-parametric methods for loss reserving. However, the use of machine learn-

ing tools to capture dependence between loss reserves from multiple LOBs and

calculate the aggregated risk capital remains uncharted. This thesis introduces

the use of the Deep Triangle (DT), a recurrent neural network, for multivariate

loss reserving, incorporating an asymmetric loss function to combine incremental

paid losses of multiple LOBs. Further, we extend generative adversarial networks

(GANs) by transforming the two loss triangles into a tabular format and generat-

ing synthetic loss triangles to obtain the predictive distribution for reserves. We

refer to the integration of DT for multivariate loss reserving and GAN for risk

capital analysis as the extended Deep Triangle (EDT). As the second contribution

of this thesis, we propose SUR copula mixed models to enhance SUR copula re-

gression with multiple companies’ data for loss prediction and risk capital analysis.

Due to the heterogeneous history of losses between companies and different LOBs,

we model this heterogeneity using random effects and select varying distributions

for losses from each LOB. We model the development and accident year effects as

fixed effects and apply shrinkage to make it more robust to the decreasing number

of observations over accident year and development year. To illustrate EDT and

SUR copula mixed models, we apply and calibrate these methods using data from
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multiple companies from the National Association of Insurance Commissioners

database. For validation, we compare the EDT and SUR copula mixed model to

the SUR copula regression models and find that the EDT and SUR copula mixed

model outperform the SUR copula regression models in predicting total loss re-

serve. Furthermore, with the obtained predictive distribution for reserves, we show

that risk capital calculated from the EDT and SUR copula mixed model is smaller

than that of the SUR copula regression models, suggesting a more considerable

diversification benefit. We also confirmed these findings in simulation studies. Fi-

nally, we introduce a chapter on a hybrid semi-parametric approach, which bridges

the interpretability of dependence structures with the flexibility to capture com-

plex effects, including interactions; its deeper application and simulation studies

are left for future work.
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Chapter 1

Introduction

1.1 Background

Insurance firms are tasked with the crucial responsibility of establishing reserve

funds to guarantee the future compensation of policyholders who have made claims.

To meet their commitments, insurers maintain claim reserves, ensuring sufficient

funds are available for all future payouts. These reserves are largely based on

historical claim data, which helps in estimating future claims through various

reserving methods. Loss reserving generally follows two approaches: a micro-level

approach focusing on individual claims, or a macro-level approach dealing with

claims in aggregate.

The macro-level approach aggregates individual claims, organizing them into

loss triangles according to accident and development years. For loss reserving,

the chain ladder method (Mack, 1993) has been widely used in practice with the

assumption that claims will continue to develop similarly in the future. However,

a notable limitation of this method is its exclusion of uncertainty in its calcula-

tions. Mack (1993) present a method to compute the distribution-free standard

error of the reserve based on the chain ladder method to address this gap. For

further insight into stochastic loss reserving methods, specifically for a single line

1
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of business (LOB) and at the macro-level, the works of England and Verrall (2002)

and Wüthrich and Merz (2008) provide comprehensive reviews.

Insurance companies typically assess risk measures across all their LOBs. These

measures are calculated based on the predictive distribution of the total reserve,

which includes reserves allocated for each LOB. Insurers must estimate this pre-

dictive distribution accurately, as it offers valuable insights for them, especially in

risk management. When dealing with multiple LOBs, a common assumption is the

independence of claims across different LOBs. In such scenarios, the portfolio’s

total reserve and risk measure is the sum of each LOB. This approach, known as

the “silo” method (Ajne, 1994), does not account for any diversification benefits.

However, insurance companies often operate across multiple LOBs, where claims

can be related. For example, claims across different LOBs can be related due

to a common factor like inflation, which impacts the cost of claims in different

LOBs. When a claim involves different coverages from different lines of business,

losses can also become correlated. Therefore, it becomes imperative for insurers

to account for the dependencies between claims in different LOBs. Acknowledg-

ing these dependencies is essential for accurately estimating total reserves and

effectively leveraging diversification benefits in calculating risk capital.

1.2 Reserve and Risk Capital

Let Xij denote the incremental paid losses of all claims in accident year i (1 ≤

i ≤ I) and development year j (1 ≤ j ≤ I). The accident year refers to the year

the insured event happened. The first accident year is denoted with 1, and the

most recent accident year is denoted with I. The development year indicates the

time the payment is made. The incremental paid loss refers to all payments in

development year j for the claims in year i. For one company and one business

line, the observed data Xij for i = 1, 2, ..., I and j = 1, 2, ..., I − i + 1 is shown in

2
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the upper triangle of Table 1.1.

Table 1.1: The Loss Triangle

Development year j
Accident year i 1 2 ... I-1 I

1 X11 X12 ... X1,I−1 X1,I

2 X21 X22 ... X2,I−1

... ... ... ...
I-1 XI−1,1 XI−1,2

I XI,1

Note: The upper triangle is the loss triangle. The rows
are accident year, and the columns are development year.
Xij denotes the incremental paid loss in accident year i and
development year j.

The incremental paid loss Xij is adjusted for each LOB’s exposure to ensure

comparability across accident years. The exposure variable, such as premiums or

the number of policies, provides a scaling factor. The standardized incremental

paid loss is then defined as Yij = Xij/ωi, where ωi represents the exposure for the

ith accident year. In the case of multiple LOBs from one company, the standardized

incremental paid loss for the ℓth LOB is denoted by Y
(l)
i,j , with its predicted value

represented as Ŷ
(ℓ)
ij .

To estimate the lower triangle values X
(ℓ)
ij , we multiply Ŷ

(ℓ)
ij by the correspond-

ing exposure ω
(ℓ)
i . This yields a point estimate of the outstanding claims for each

LOB, given by R(ℓ) =
∑I

i=2

∑I
j=I−i+2 ω

(ℓ)
i Ŷ

(ℓ)
ij . Finally, the total reserve for the

entire insurance portfolio is R =
∑2

ℓ=1R
(ℓ).

In actuarial practice, reserve estimation extends beyond point estimates to in-

clude measures of reserve variability. Given the predictive distribution of reserves,

denoted by FR, we compute commonly used actuarial risk measures, such as value

at risk (VaR) and tail value at risk (TVaR). Risk measures evaluate potential loss

and are crucial for determining the amount of capital to hold to cover severe losses.

The VaRk is the 100∗k percentile of R, i.e., VaRk(R) = F−1
R (k) while TVaRk is

the expected loss conditional on exceeding the VaRk, i.e., TVaRk(R) = E[R|R ≥

3
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VaRk(R)].

Tail Value-at-Risk (TVaR) is more informative than Value-at-Risk (VaR) in

risk assessment. TVaR, a coherent risk measure captures the expected shortfall

and adherence to the sub-additive property (Acerbi and Tasche, 2002). This means

that for any two reserves R1 and R2, corresponding to two LOBs, the combined risk

measure ρ of their sum is less than or equal to the sum of their individual risk mea-

sures. That is, ρ(R1+R2) ≤ ρ(R1)+ρ(R2). This ensures that the total risk measure

does not exceed the sum of the individual risk measures, reflecting diversification

benefits in risk assessment. Contrarily, VaR lacks this sub-additivity, especially in

skewed distributions, making TVaR a more reliable indicator in risk management.

From the insurance perspective, risk measures lacking the sub-additivity can be

misleading because they can increase the company’s liability, resulting in a larger

tax deduction.

From the TVaR, we calculate the risk capital, which is the difference between

the risk measure and the liability value. (see, e.g., Dhaene et al. (2006)). Risk

capital is also set aside as a buffer against potential losses from extreme events. In

practice, the risk measure is set at a high-risk tolerance k, and the liability value is

set at a lower risk tolerance between 60% and 80%, according to the risk appetite.

We set the risk tolerance at 60% for the reserve in our risk capital analysis.

We define risk capital associated with total reserve R as in (1.1).

Risk capital (R) = TVaRk(R)− TVaR60%(R). (1.1)

Moreover, exploring the diversification benefits between two LOBs is essential

in risk management. The “silo” approach computes risk measures for each LOB

independently and aggregates them, disregarding potential diversification benefits.

In contrast, our study compares the risk capital estimates obtained using the

proposed method with those from the “silo” approach, as defined in (1.2). This

4
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comparison highlights the impact of recognizing interdependencies between LOBs

in risk capital (RC) estimation. Further details on this approach can be found in

Abdallah and Wang (2023).

Gain =
(
RCSilo(R)− RCCopula(R)

)
/RCSilo(R). (1.2)

1.3 Copula Model for Loss Reserving

1.3.1 Copulas

According to Sklar’s theorem (Nelsen, 2006), any cumulative distribution function

(cdf) F (x1, x2) of a two-dimensional random vector (X1, X2) can be expressed as

F (x1, x2) = C (F1 (x1) , F2 (x2)) , (1.3)

where F1(·) and F2(·) are the marginal cdfs of X1 and X2, and C is a bivariate

function, called a copula. If X1 and X2 are independent, then C is the product

copula.

The most common measure of dependence between two random variables is

Pearson’s correlation coefficient, which only measures linear dependence. To mea-

sure nonlinear dependence, rank correlation coefficients such as Kendall’s τ and

Spearman’s ρ are more suitable. They can be expressed in terms of the copula as

τ (X1, X2) = 4

∫∫
[0,1]2

C (u1, u2) dC (u1, u2)− 1 = 4E [C (u1, u2)]− 1, (1.4)

ρ (X1, X2) = 12

∫∫
[0,1]2

C (u1, u2) dC (u1, u2)− 3 = 12E [C (u1, u2)]− 3, (1.5)

where (u1, u2) is a two-dimensional random vector on [0, 1]2 and C (u1, u2) is

the corresponding cdf.

5
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Next, we give examples of copulas and briefly summarize the main properties

used in this study.

Gaussian copula

The Gaussian copula allows for positive and negative dependence. The Gaussian

copula is defined as

C (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√
1− r2

exp

[
−x2

1 + x2
2 − 2rx1x2

2 (1− r2)

]
dx1 dx2,

(1.6)

where −1 < r < 1 is Pearson’s correlation coefficient between x1 and x2 and

Φ is the cdf of the standard normal random variable. Parameter r is related to

Kendall’s τ and Spearman’s ρ coefficients by the relations τ = (2/π) sin−1(r) and

ρ = (6/π) sin−1(r/2).

Student’s t copula

The Student’s t copula allows for positive and negative dependence. Student’s t

copula takes the form

C (u1, u2) =

∫ T−1
ν (u1)

−∞
dx1

∫ T−1
ν (u2)

−∞
dx2

[
1 +

x2
1 − 2rx1x2 + x2

2

ν (1− r2)

]− ν+2
2

, (1.7)

where r is the correlation coefficient between x1 and x2 and Tν is the cdf of a

Student distribution with ν degrees of freedom. When ν goes to infinity, the T

copula converges to the Gaussian copula.

6
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Frank copula

The Frank copula allows for positive and negative dependence. The corresponding

copula function is given by

C (u1, u2) = −1

θ
ln

(
1 +

(exp (−θu1)− 1) (exp (−θu2)− 1)

exp(−θ)− 1

)
, (1.8)

where θ ∈ (−∞,+∞)\{0}. Positive values of θ indicate positive dependence,

whereas negative values indicate negative dependence. The independence copula is

obtained when θ → 0. The relationship between rank and the Pearson correlation

coefficient and θ is

τ = 1− 4

θ
+ 4

D1(θ)

θ
,

and

ρ = 1− 12

θ
[D1(θ)−D2(θ)] ,

where Dk(θ) is defined as

Dk(θ) =
k

θk

∫ θ

0

tk

exp(t)− 1
dt, k = 1, 2.

1.3.2 Copula Regression

Now we detail the background of the copula regression. Consider the cumulative

distribution of Y
(ℓ)
ij ,

F
(ℓ)
ij = Prob(Y

(ℓ)
ij ≤ y

(ℓ)
ij ) = F (y

(ℓ)
ij ; η

(ℓ)
ij , γ

(ℓ)), (1.9)

where ℓ denote ℓth LOB, η
(ℓ)
ij denotes the systematic component, which determines

the location and γ(ℓ) determines the shape.

We assume γ(ℓ) is the same for all the cells (i, j) for each loss triangle. Now

we model the systematic component η
(ℓ)
ij using α

(ℓ)
i (i ∈ 1, 2, ..., 10) and β

(ℓ)
j (j ∈

7



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

1, 2, ..., 10) as predictors that characterize the effect of the accident year and the

development year corresponding to Y
(ℓ)
ij as in (1.10).

η
(ℓ)
ij = ξ(ℓ) + α

(ℓ)
i + β

(ℓ)
j , (1.10)

where ξ(ℓ) is the intercept and constraints are α
(ℓ)
1 = 0 and β

(ℓ)
1 = 0 for parameter

identification. We use the goodness-of-fit test to choose the distribution for Y
(ℓ)
i,j .

In addition to the specified marginal densities, we assume that Y
(ℓ)
ij and Y

(ℓ′)
ij

from different LOBs with the same accident and development year are dependent.

This is called pair-wise dependence. Moreover, we consider the copulas to model

the dependence structure between the two lines of business (Shi and Frees, 2011).

Next, we write the joint distribution of
(
Y

(ℓ)
ij , Y

(ℓ′)
ij

)
using copulas based on

Sklar’s theorem (Nelsen, 2006) as follows

Fij

(
y
(ℓ)
ij , y

(ℓ′)
ij

)
= Prob

(
Y

(ℓ)
ij ≤ y

(ℓ)
ij , Y

(ℓ′)
ij ≤ y

(ℓ′)
ij

)
= C

(
F

(ℓ)
ij (y

(ℓ)
ij ), F

(ℓ′)
ij (y

(ℓ′)
ij ); θ

)
,

(1.11)

where F
(ℓ)
ij and F

(ℓ′)
ij are the marginal distributions for Y

(ℓ)
ij and Y

(ℓ′)
ij , respectively,

and C(·, θ) is the copula function such that C(·, θ) : [0, 1]2 7→ [0, 1] with parameter

θ.

By getting derivative of (1.11) with respect to Y
(ℓ)
ij and Y

(ℓ′)
ij , we get the join

PDF for
(
Y

(ℓ)
ij , Y

(ℓ′)
ij

)
in (1.12).

fij(y
(ℓ)
ij , y

(ℓ′)
ij ) = c

(
F

(ℓ)
ij , F

(ℓ′)
ij ; θ

) 2∏
ℓ=1

f
(ℓ)
ij , (1.12)

where c(·) denotes the PDF corresponding to copula C(·) and f
(ℓ)
ij denotes the

PDF associated with the marginal distribution F
(ℓ)
ij .

Next, we use the maximum likelihood method to estimate the parameters in the

regression model in (1.10) using the copula density in (1.12). We denote estimators

as µ̂
(ℓ)
ij , σ̂

(ℓ) and ϕ̂(ℓ).

8
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The log-likelihood for all joint
(
Y

(ℓ)
ij , Y

(ℓ′)
ij

)
is given by

L(η
(ℓ)
ij , γ

(ℓ), η
(ℓ′)
ij , γ(ℓ′), θ) =

I∑
i=1

I+1−i∑
j=1

log
(
c
(
F

(ℓ)
ij , F

(ℓ′)
ij ; θ

))
+

I∑
i=1

I+1−i∑
j=1

2∑
ℓ=1

log
(
f
(ℓ)
ij

)
,

(1.13)

where γ(ℓ) = σ, γ(ℓ′) = ϕ, η
(ℓ)
ij = µ

(ℓ)
ij , η

(ℓ′)
ij = log

(
µ
(ℓ′)
ij ϕ

)
, and η

(ℓ)
ij is a function of

α
(ℓ)
i and β

(ℓ)
j as in regression model (1.10).

1.4 Predictive Distribution of the Total Reserve

In practice, insurance companies are interested in understanding the uncertainty

of reserves. The bootstrapping technique can provide this information and allows

for the determination of the entire predictive distribution. The two most popular

approaches to generating the predictive distribution of the reserve based on the

copulas are simulation and parametric bootstrapping.

Simulation is based on the estimated copula regression model, in which we use

the Monte Carlo simulation to generate the predictive distribution of the reserve.

The simulation is summarized as the following procedure (Shi and Frees, 2011):

(1) Simulate
(
u
(1)
ij , u

(2)
ij

)
(i+ j − 1 > I) from estimated copula function C(·; θ̂).

(2) Transform u
(ℓ)
ij to predictions of the lower triangles by inverse function y

∗(ℓ)
ij =

F (ℓ)(−1)(u
(ℓ)
ij ; η̂

(ℓ)
ij , γ̂

(ℓ)), where η̂
(ℓ)
ij = ξ̂(ℓ) + α̂

(ℓ)
i + β̂

(ℓ)
j .

(3) Obtain a prediction of the total reserve by

2∑
ℓ=1

I∑
i=2

I∑
j=I−i+2

ω
(ℓ)
i y

∗(ℓ)
ij .

9
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Repeat Steps (1) - (3) many times to obtain the bootstrap replicates of R.

However, the limitation of Monte Carlo simulation is the inability to incorpo-

rate estimated parameter uncertainty. To address this constraint, we consider the

parametric bootstrapping.

In the parametric bootstrapping, we generate a new upper triangle for each

simulation with estimated parameters and fit the corresponding copula regression

model to this new upper triangle (Taylor and McGuire, 2007; Shi and Frees, 2011).

The detailed algorithm is as follows:

(1) Simulate
(
u
(1)
ij , u

(2)
ij

)
(i + j − 1 ≤ I) from estimated copula cdf function

C(·; θ̂).

(2) Transform u
(ℓ)
ij to estimate the upper triangles by inverse transform y

∗(ℓ)
ij =

F (ℓ)(−1)(u
(ℓ)
ij ; η̂

(ℓ)
ij , γ̂

(ℓ)), where η̂
(ℓ)
ij = ξ̂(ℓ) + α̂

(ℓ)
i + β̂

(ℓ)
j .

(3) Generate an estimate of the total reserve using y
∗(ℓ)
ij from step (2).

– Estimate the parameters η̂
∗(ℓ)
ij ,γ̂∗(ℓ) and θ̂∗ by performing MLE for the

copula regression model for y
∗(ℓ)
ij .

– Use η̂
∗(ℓ)
ij ,γ̂∗(ℓ) and θ̂∗ to simulate the lower triangle, y

∗∗(ℓ)
ij using the

simulation Steps (1) and (2).

– Obtain a prediction of the total reserve by

2∑
ℓ=1

I∑
i=2

I∑
j=I−i+2

ω
(ℓ)
i y

∗∗(ℓ)
ij .

Repeat Steps (1)-(3) many times to obtain bootstrap replicates of R.

1.5 Thesis Objectives

The motivation and objectives of the thesis are as follows:

10
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� Develop machine learning tools for multivariate loss reserving that capture

dependence between two lines of business (LOBs). Traditional copula regres-

sion is limited in flexibility for modeling the tail of the marginal distribu-

tions and does not account for time dependence in incremental paid losses.

While machine learning techniques are increasingly used in loss reserving,

few models capture dependence between LOBs using recurrent neural net-

works (RNNs). In this thesis, we develop a Deep Triangle (DT), a gated

recurrent neural network framework for multivariate loss reserving.

� Develop machine learning methods to generate aggregated risk capital from

the predictive distribution, capturing pairwise dependence between the two

LOBs and leveraging diversification benefits. We use generative adversarial

networks (GANs) to generate synthetic loss triangles and forecast the predic-

tive distribution of reserves for the DT. The combination of DT and GAN,

called extended Deep Triangle (EDT), provides a framework for multivariate

loss reserving and risk capital analysis.

� Develop seemingly unrelated regression (SUR) copula mixed models to model

dependence between LOBs and to address the heterogeneous history of losses

across companies and LOBs. The SUR copula regression incorporates de-

pendence between two LOBs through a copula using loss triangles from one

company, but tends to produce a relatively large bias. We enhance this ap-

proach by developing SUR copula mixed models that incorporate multiple

companies’ data for improved loss prediction and risk capital analysis.

� Develop a sparse SUR copula mixed model to improve the robustness of

the SUR copula mixed model. In the most recent accident and development

years, the number of observed incremental paid losses decreases substantially.

To address this, we combine the SUR copula mixed model with LASSO to

shrink coefficients toward zero, thereby reducing variability.

11
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� Develop a hybrid model combining the EDT and SUR copula mixed model to

interpret the dependence between the two LOBs in the EDT. While the EDT

is effective in prediction, it is limited in interpreting the sign and strength of

dependence. In this thesis, we estimate dependence using the SUR copula

mixed model applied to the residuals from the EDT. Due to heterogeneity

in residuals across companies and LOBs, we incorporate random effects into

the model.

1.6 Scope of the thesis

The work is organized as follows: In Chapter 2, we comprehensively describe

the extended Deep Triangle (EDT) employed in this study for loss reserving and

predictive distribution of reserves. We apply and calibrate the EDT and copula

models using a dataset focused on personal and commercial automobile LOBs from

30 companies. Additionally, we conduct a comparative analysis of the computed

risk capitals against other models, revealing that the EDT model yields smaller

risk capital estimates. We also introduce a simulation study to illustrate that

the EDT framework consistently generates smaller risk capital than the copula

regression models. The copula regression incorporates the dependence between

two LOBs through a copula and multiple company fixed effects and produces a

relatively larger percentage of error compared to the EDT.

In Chapter 3, we propose Seemingly Unrelated Regression (SUR) copula mixed

models to enhance SUR copula regression with multiple companies’ data for loss

prediction and risk capital analysis. Due to the heterogeneous history of losses be-

tween companies and different LOBs, we model this heterogeneity using random

effects and select varying distributions for losses from each LOB. To overcome

the computational complexity of the SUR copula mixed model, we develop a two-

stage estimation approach to estimate the parameters for the proposed model .

12
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This approach is illustrated with multiple pairs of loss triangles from the National

Association of Insurance Commissioners database. We find that the SUR cop-

ula mixed model produces a smaller bias between predicted and actual reserves

than the SUR copula regression model. Moreover, we generate the predictive dis-

tribution of the reserves using a modified bootstrap method and show that the

SUR copula mixed models provide a larger risk capital gain than the SUR copula

regression, indicating a greater diversification benefit.

Moving on to Chapter 4, we combine the SUR copula mixed model with the

least absolute shrinkage and selection operator (LASSO) for loss reserving to re-

duce bias due to too many covariates. We first provide an overview of the LASSO

for generalized linear models. Then we discuss the methodologies for loss reserving

and predictive distribution estimation, with an emphasis on the sparse SUR cop-

ula mixed model approach. We apply and calibrate the sparse SUR copula mixed

model using a dataset that includes personal and commercial automobile LOBs

from multiple companies.

In Chapter 5, we combine the SUR copula mixed model with the EDT model to

capture the dependence between the two LOBs. We first generate predicted losses

from EDT for each LOB. Then we obtain the residuals of the predicted loss from

EDT. We model the residual heterogeneity between companies and different LOBs

using random effects. We estimate the dependence between the LOB through a

copula.

Finally, Chapter 6 presents a summary of the thesis and discusses potential

directions for future work.

13



Chapter 2

Recurrent Neural Networks for

Multivariate Loss Reserving and

Risk Capital Analysis

This chapter is adapted from a paper published by the North American Actuarial

Journal (Cai et al., 2025). https://doi.org/10.1080/10920277.2025.2517149

2.1 Introduction

The non-parametric and the parametric approaches are the two primary approaches

to modeling the dependence between two LOBs. In the non-parametric approach,

the multivariate Mack model (Pröhl and Schmidt, 2005) extends the traditional

Mack model to capture dependence across multiple LOBs. The multivariate ad-

ditive model (Ludwig and Schmidt, 2010) uses flexible, data-driven methods to

estimate dependence structures without assuming a specific functional form. In

the parametric approach, Shi and Frees (2011) proposes a copula regression model

for two LOBs, which links the claims with the same accident and development year

with copulas. This model assumes that claims from different triangles with the

14
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same accident year and development year are dependent, called pair-wise depen-

dence. Moreover, studies have incorporated dependence between LOBs through

Gaussian or Hierarchical Archimedean copulas and derived the predictive distribu-

tion of the reserve, the reserve ranges, and risk capital (Abdallah et al., 2015; Shi

et al., 2012; De Jong, 2012). However, copula regression is limited in its flexibility

in modeling the marginal distribution and does not account for time dependence

in the incremental paid losses.

Various machine learning techniques have recently been developed in micro-

level loss reserving for a single LOB. These methods are either tree-based learning

methods or neural networks. The tree-based method is based on recursively split-

ting the claims into more homogeneous groups to predict the number of payments

(Wüthrich, 2018a). It can include numerical and categorical attributes of the

claimant, such as type of injury and payment history, as predictors. Moreover,

Duval and Pigeon (2019) uses a gradient boosting algorithm with a regression tree

as the base learner for loss reserving. Gabrielli et al. (2018) proposes separate

over-dispersed Poisson models for claim counts and claim sizes embedded in neu-

ral network architecture. Neural networks are used as a boosting mechanism to

learn the model structure.

In the context of neural networks, Mulquiney (2006) explored their use for

predicting claim sizes, finding better performance compared to generalized linear

models. Wüthrich (2018b) extended Mack’s Chain-Ladder method using neural

networks for individual claim reserving, modeling development year ratios with

claim features but without prediction uncertainty. Taylor (2019) noted that neu-

ral networks can capture interactions between covariates with minimal feature

selection, though at the cost of interpretability and prediction accuracy.

Machine learning techniques are increasingly used in loss reserving; however,

few models have been developed to capture dependence across LOBs using recur-

rent neural networks (RNN), as noted by Cossette and Pigeon (2021). Kuo (2019)
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introduced the Deep Triangle (DT) multitask learning framework for a single LOB,

leveraging gated recurrent units (GRU) to model incremental paid losses and out-

standing claims. DT is under-explored for reserve prediction for multiple LOBs.

Moreover, the predictive distribution of the reserve and risk capital analysis for

the DT is not straightforward and understudied in the current literature. In this

chapter, we utilize the multi-task DT model for multivariate loss reserving and

introduce an asymmetric loss function to reflect the volatility in the paid losses

in different LOBs. Further, we propose to use GAN to generate the predictive

distribution of reserves, which allows us to conduct risk capital analysis. Thus,

the summary of our contributions is as follows

1. We propose an asymmetric loss function for DT, an unequal weighting scheme

that uses the inverse of the standard deviation of the incremental paid losses

in the sequence from each LOB to weight the prediction task, reflecting the

volatility in the paid losses of that LOB.

2. We introduce a GAN-based technique to generate the predictive distribu-

tion for loss reserves. Specifically, we utilize conditional tabular GAN (CT-

GAN) and CopulaGAN to create synthetic loss triangles (Goodfellow et al.,

2014; Patki et al., 2016; Xu et al., 2019; Cote et al., 2020). By integrating

these approaches with DT, we propose two models: DT-CTGAN and DT-

CopulaGAN, collectively referred to as the Extended Deep Triangle (EDT).

3. We investigate the optimal input sequence length for DT. Since accident

years have varying lengths of development years, we examine the effect of

different input sequence lengths and find that longer sequences generally

yield improved performance.

4. We implement pre-trained model weight initialization to train DT on the

GAN-generated samples (thousands of samples), thereby reducing the com-

putational time in generating the predictive distribution of loss reserves.
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Next, we describe the Deep Triangle model, which uses GRU to capture the

complex dependence between two LOBs.

2.2 Methods

2.2.1 Deep Triangle Architecture for Multivariate Sequence

Prediction

The DT framework of Kuo (2019) utilizes a multi-task framework to stabilize

training. While it can be trivially extended to accept multivariate inputs, the

differing volatilities of paid losses in the multiple-LOB setting necessitates a more

nuanced approach. Hence, we propose moving away from the multi-task frame-

work as a stabilizing mechanism, instead replacing it with a loss function which is

asymmetric across the various LOBs.

Figure 2.1 illustrates the architecture of the DT model. We employ a vector

sequence-to-sequence architecture to model the time series of incremental paid

losses, effectively capturing both the pairwise dependence between two LOBs

and the temporal dependence of incremental paid losses within each accident

year (Sutskever et al., 2014; Srivastava et al., 2015). To our knowledge, this

approach has not been previously explored in multivariate loss reserving analy-

sis. As depicted in Figure 2.1, consider the ith accident year and jth develop-

ment year. The input sequence is the pair of vectors:
(
Y

(1)
i,1 , Y

(1)
i,2 , . . . , Y

(1)
i,j−1

)
and(

Y
(2)
i,1 , Y

(2)
i,2 , . . . , Y

(2)
i,j−1

)
. The corresponding output sequence is the pair of vectors:(

Y
(1)
i,j , Y

(1)
i,j+1, . . . , Y

(1)
i,I

)
and

(
Y

(2)
i,j , Y

(2)
i,j+1, . . . , Y

(2)
i,I

)
. We predict I−j+1 time steps

into the future for the jth development year, resulting in an output sequence length

of I − 1. Note that we assume the standardized incremental paid loss is indepen-

dent across accident years. Since there is only one value for the last accident year,

we do not use that incremental paid loss for training.
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Figure 2.1: The DT architecture for multivariate sequence prediction.

DT uses GRU to handle the time series of incremental paid losses for each

accident year i over development year j. GRUs are preferred over Long Short-

Term Memory (LSTM) networks due to their fewer training parameters and faster

execution (Goodfellow et al., 2016). The GRU processes each element in the input

sequence vector and includes mechanisms to determine when a hidden state should

be updated or reset at each time step. For each input sequence and for the current

time step ν; ν = 1, . . . , j − 1, the input to the GRU is qν = (Y
(1)
iν , Y

(2)
iν ) along with

the previous time step’s hidden state hν−1 = (h
(1)
ν−1, h

(2)
ν−1). The GRU outputs reset

and update gates, rν and zν respectively, which take values between 0 and 1.

The reset gate rν and update gate zν for time step ν are computed as follows:

rν = σ(Wre[hν−1, qν ] + bre), (2.1)

and

zν = σ(Wz[hν−1, qν ] + bz), (2.2)

whereWre andWz are weight parameters, bre and bz are biases and hν is the hidden

state value at ν. The weights and bias parameters are learned during training. In

(2.1) and (2.2), the sigmoid function σ (.) is used to transform input values to the

interval (0, 1). The candidate’s hidden state at ν is of the form
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h̃ν = tanh(Whi[rνhν−1, qν ] + bhi). (2.3)

The update gate zν determines the extent to which the new state hν is just

the old state hν−1 and how much of the new candidate state h̃ν is used. The final

update equation for the GRU is as follows:

hν = zν h̃ν + (1− zν)hν−1. (2.4)

When the update gate zν is close to 0, the information from qν is ignored,

skipping time step ν in the dependency chain. However, when zν is close to 1, the

new state hν approaches the candidate state h̃ν . These designs help better capture

sequence dependencies for
(
Y

(1)
i,1 , Y

(1)
i,2 , . . . , Y

(1)
i,j−1

)
and

(
Y

(2)
i,1 , Y

(2)
i,2 , . . . , Y

(2)
i,j−1

)
. The

outputs of the decoder GRU are then passed to two sub-networks of fully connected

layers, which correspond to LOB 1 and LOB 2. Each consists of a hidden layer of

64 units, followed by an output layer of 1 unit representing the incremental paid

loss at a time step ν. The final output sequences are denoted by (Ŷ
(1)
i,j , Ŷ

(1)
i,j+1, . . . ,

Ŷ
(1)
i,I ) and (Ŷ

(2)
i,j , Ŷ

(2)
i,j+1, . . . , Ŷ

(2)
i,I ).

To enhance the robustness and generalizability of our model, we utilize data

from multiple companies to train the DT model. We use cij to denote the company

code associated with Y
(ℓ)
ij , which is processed through an embedding layer. This

layer converts each company code into a fixed-length vector, where the length is

a predetermined hyperparameter. In our implementation, we set the length as

C− 1, the number of companies minus one. This embedding process is an integral

component of the neural network and is trained with the network itself rather

than as a separate pre-processing step. Consequently, companies with similar

characteristics are mapped to vectors that exhibit proximity regarding Euclidean

distance.
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2.2.2 Learning/Validation

Training/Testing Setup

The input for the training sample associated with accident year i (1 ≤ i ≤ I − 1)

and development year j (2 ≤ j ≤ I+1−i) are the sequences (mask,. . . , mask, Y
(1)
i,1 ,

Y
(1)
i,2 , . . . , Y

(1)
i,j−1) and (mask,. . . , mask, Y

(2)
i,1 , Y

(2)
i,2 , . . . , Y

(2)
i,j−1). The assumption is

that Y
(1)
i,j and Y

(2)
i,j are predicted using the past I − 1 time steps. While RNNs

can handle variable-length sequences, in practice, we use masks to fix sequence

lengths for efficient batch processing. Note that there is no historical data before

development year 1. Thus, we use a mask value where j < 1 and j > I. Masking

selectively ignores certain parts of the sequences during training. If the value at

a timestep is equal to the mask value, that timestep is skipped in subsequent

calculations, including the computation of the loss for backpropagation.

The output for the training sample associated with accident year i (1 ≤ i ≤

I − 1) and development year j (2 ≤ j ≤ I + 1− i) are the sequences (Y
(1)
i,j , Y

(1)
i,j+1,

. . . , Y
(1)
i,I+1−i, mask, . . . , mask) and (Y

(2)
i,j , Y

(2)
i,j+1, . . . , Y

(2)
i,I+1−i, mask, . . . , mask).

Note that the output sequences also consist of I − 1 time steps. We use a mask

value because we do not have the lower part of the triangle.

The training data is randomly split into training and validation sets using an

80-20 split. When splitting, the training data corresponding to the same accident

year and development year from different companies stay in the same training or

validation sets. We train the DT model for a maximum of 1000 epochs, employing

an early stopping scheme. If the loss on the validation set does not improve over

a 100-epoch window, we stop training and keep the weights on the epoch with the

lowest validation loss. In the DT, we initialize the neural networks with random

weights using the He initialization technique (He et al., 2015), recommended for

ReLU activation function (Murphy, 2022).

Next, we predict future incremental paid loss with the trained and validated
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DT and obtain a point estimate of the reserve. The input for the testing sample

associated with accident year i (2 ≤ i ≤ I) and development year j (j = I +2− i)

are the sequences (mask, . . . , mask,Y
(1)
i,1 , Y

(1)
i,2 , . . . , Y

(1)
i,I+1−i) and (mask, . . . , mask,

Y
(2)
i,1 , Y

(2)
i,2 , . . . , Y

(2)
i,I+1−i). There are I − 1 testing samples whose accident year and

development year satisfy i+ j = I+2 (2 ≤ i ≤ I). For accident year 1, we have all

the data from development year 1 to development year I. The input sequences for

testing also consist of I−1 time steps. At each accident year and development year

for which we have data, we predict future incremental paid loss (Ŷ
(1)
i,I+2−i, Ŷ

(1)
i,I+3−i,

. . . , Ŷ
(1)
i,I ) and (Ŷ

(2)
i,I+2−i, Ŷ

(2)
i,I+3−i, . . . , Ŷ

(2)
i,I ). Next, we obtain a point estimate of

the outstanding claims for each LOB by R(ℓ) =
∑I

i=2

∑I
j=I+2−i ω

(ℓ)
i Ŷ

(ℓ)
ij .

Weighted Loss Function

For the DT model, the loss function is the average over the predicted time steps

of the mean squared error of predictions. For each output sequence (Ŷ
(1)
i,j , Ŷ

(1)
i,j+1,

. . . , Ŷ
(1)
i,I+1−i, mask, . . . , mask) and (Ŷ

(2)
i,j , Ŷ

(2)
i,j+1, . . . , Ŷ

(2)
i,I+1−i, mask, . . . , mask),

the symmetric loss is defined as

1

I − i+ 1− (j − 1)

I+1−i∑
ν=j

(Ŷ
(1)
i,ν − Y

(1)
i,ν )2 + (Ŷ

(2)
i,ν − Y

(2)
i,ν )2

2
. (2.5)

We define an asymmetric loss function as

1

I − i+ 1− (j − 1)

I+1−i∑
ν=j

1

2(σ
(1)
i,j )

2 (Ŷ
(1)
i,ν − Y

(1)
i,ν )2 +

1

2(σ
(2)
i,j )

2 (Ŷ
(2)
i,ν − Y

(2)
i,ν )2, (2.6)

where (σ
(1)
i,j )

2
and (σ

(2)
i,j )

2
are variances for sequences (Y

(1)
i,j , Y

(1)
i,j+1, . . . , Y

(1)
i,I+1−i,

mask, . . . , mask) and (Y
(2)
i,j , Y

(2)
i,j+1, . . . , Y

(2)
i,I+1−i, mask, . . . , mask), respectively.

The volatilities in the paid losses are different between the two LOBs, and we use

uncertainty-based weighting to balance the two prediction tasks. When calculating
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the variances (σ
(1)
i,j )

2
and (σ

(2)
i,j )

2
, we exclude the mask value from the sequences.

To optimize the parameters for the DT model, we employ the AMSGRAD

method (Reddi et al., 2018), which is a variant of the Adaptive Moment Esti-

mation (ADAM) algorithm. AMSGRAD is chosen specifically due to its ability

to manage the high variability in gradients that arise from the small size of the

training sample, a common issue in stochastic gradient descent (SGD) methods.

AMSGRAD addresses this by incorporating the gradients’ moment into the pa-

rameter update process, thus offering a more stable and effective optimization in

scenarios with limited data.

Once total loss reserves are estimated using the DT model, our approach in-

cludes generating the predictive distribution of total loss reserves.

2.2.3 Predictive Distribution of the Total Reserve

We adapt Generative Adversarial Nets (GANs), as introduced by Goodfellow et al.

(2014), to generate synthetic loss triangles and to generate the predictive distribu-

tion of the total reserve. This approach provides a novel way of applying advanced

machine learning methods to the traditional actuarial problem of reserve estima-

tion. GAN generates new data based on learned distributions from the original

data. Bootstrap resamples the data with replacement to create multiple simulated

data. Bootstrap may not sufficiently capture the underlying data distribution,

especially in complex scenarios.

GAN simultaneously trains two models: a generative model, G, which cap-

tures the data distribution and generates new data, and a discriminative model,

D, which outputs the probability of how likely the generated data belongs to the

training data. Figure 2.2 shows the relationship between the generator G and the

discriminator D. The generator G generates realistic samples while the discrimi-

nator D distinguishes between genuine and counterfeit samples. The generator G
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takes some noise z as input and outputs a synthetic sample.

Figure 2.2: The architecture of GANs.

Generating New Samples

The traditional GAN model utilizes the latent variable z sampled from a standard

multivariate normal distribution. However, for our purposes, we require a GAN

approach that can capture the pairwise dependence between two LOBs and the

sequential structure inherent in the standardized incremental paid losses. To ad-

dress this, we utilize the GAN method for tabular data generation, considering the

pairwise dependency and the sequential structure.

To generate synthetic data from loss triangles, we employ conditional tabular

GAN (CTGAN), a GAN variant (Xu et al., 2019), which is adept at modeling

dependencies in data. For CTGAN, numerical inputs Y
(ℓ)
ij are normalized to fit

within the (-1, 1) range using mode-specific normalization. Each Y
(ℓ)
ij is represented

as a one-hot vector β
(ℓ)
ij , indicating the mode, and a scalar α

(ℓ)
ij , indicating the value

within the mode. The company code categorical variable cij is represented as a

one-hot vector dij.

CTGAN generates data conditioned on additional information by combining

random noise z sampled from a standard normal vector with a condition (such

as company code cij). This is done by concatenating the noise z and the con-
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dition and then passing the combined input through the generator network G,

which learns to generate synthetic data that satisfies the given condition. Addi-

tionally, to maintain the sequential integrity of the data, we generate synthetic

data for each development year separately. This approach ensures that the se-

quential properties of standardized incremental paid losses are preserved, allowing

for more accurate and realistic simulation of loss triangles across multiple LOBs.

Generating a synthetic loss triangle involves a three-stage process:

(1) Combination of Data: For each development year j (1 ≤ j ≤ I), we combine

Y
(1)
ij and Y

(2)
ij of all accident years i (1 ≤ i ≤ I) from all companies into one

table. The first column of the table is Y
(1)
ij of all accident years from the

personal auto line. The predicted loss from the DT model is used if the Y
(1)
ij

is not available. Similarly, the data from the commercial auto line is used

for the second column. The third column of the table is the company code.

(2) GAN Model Training: We train a GAN model for each development year j

using the combined data from (1). The representation rij of a row in the

combined table is the concatenation of the three columns: rij = α
(1)
ij ⊕β

(1)
ij ⊕

α
(2)
ij ⊕β

(2)
ij ⊕dij. This training enables the GAN model to learn the underlying

distribution of the combined data in (1).

(3) Sampling and Loss Triangle Formation: After training, we use the GAN to

sample I new rows for each development year j for each company. These

sampled data are then sequentially arranged according to their development

years. We remove the lower triangle to form a new loss triangle, ensuring

the structure aligns with the loss triangle format.

Note that the loss triangles from the two LOBs are on different scales, presenting a

challenge for effective modeling. To address this, we employ a CopulaGAN (Patki

et al., 2016), which leverages the scale-invariant property of copulas to define the

covariance of z. In addition to the marginal distributions, CopulaGAN uses a

24



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

Gaussian copula. CopulaGAN is a variation of the CTGAN model that leverages

the CDF-based transformation applied by the Gaussian Copula, making it easier

for the underlying CTGAN model to fit the data. For computing, we use the

SDV (Patki et al., 2016) library to build GAN models by constructing the input

as follows.

(1) Let the marginal CDFs of columns Y
(1)
ij and Y

(2)
ij be F1 and F2, respectively.

(2) Go through the table row-by-row. Each row is denoted as y =
(
Y

(1)
ij , Y

(2)
ij

)
.

(3) Transform each row using the inverse probability transform:

z =
[
Φ−1

(
F1

(
Y

(1)
ij

))
,Φ−1

(
F2

(
Y

(2)
ij

))]

where Φ−1 (·) is the inverse CDF of the Gaussian distribution.

(4) After all the rows are transformed, estimate the covariance matrix Σ of the

transformed values.

The parameters for each column distribution and the covariance matrix Σ are

used in the generative model for that table. The CDF transformed data F1(Y
(1)
ij )

and F2(Y
(2)
ij ) are then fed into the CTGAN architecture. After generating synthetic

data in the transformed space, CopulaGAN uses the inverse CDF to bring the

data back to the original space. For the new table generated using CopulaGAN,

we consider only the upper loss triangle as a new sample.

Initializing Weights for the DT

Next, we introduce a new weight initialization mechanism to speed up the train-

ing of DT for the newly generated samples. In order to generate the predictive

distribution of the reserve, we apply the DT model to the loss triangles generated

as in Subsection 2.3.1. For each set of newly generated loss triangles, we obtain a
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point estimate of the reserves. We repeat this procedure many times to construct

a predictive distribution for the reserve. Given the high computational cost aris-

ing from the need to train DTs for each generated sample, we implement a more

efficient approach. We propose to leverage a pre-trained DT model from the real

data to fine-tune weights for new samples, instead of training DTs using random

weight initialization for every generated sample.

Subsequently, the risk capital gain is calculated using the methodology out-

lined in (1.2). The proposed EDT method, which includes DT-CTGAN or DT-

CopulaGAN, integrates the predictive capabilities of the DT model with the dis-

tributional insights provided by GAN, offering a comprehensive view of the reserve

estimation and its associated risks.

2.3 Applications

2.3.1 Data Description

In this section, we demonstrate the proposed EDT approach on a real dataset.

We use 30 companies’ loss triangles from Schedule P of the National Association

of Insurance Commissioners (NAIC) database (Meyers and Shi, 2011) to illustrate

and compare the EDT. Each pair comprises two loss triangles from the personal

and commercial auto LOBs and is associated with a company code. Each triangle

contains incremental paid losses for accident years 1988-1997 and ten development

years. Here, we demonstrate prediction and risk capital analysis for a major US

property-casualty insurer. Table 2.1 and Table 2.2 show the incremental paid

losses for this company’s personal and commercial auto LOBs.
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Table 2.1: Incremental paid losses (X
(1)
ij ) for personal auto LOB.

year premium 1 2 3 4 5 6 7 8 9 10

1988 4 711 333 1 376 384 1 211 168 535 883 313 790 168 142 79 972 39 235 15 030 10 865 4 086
1989 5 335 525 1 576 278 1 437 150 652 445 342 694 188 799 76 956 35 042 17 089 12 507
1990 5 947 504 1 763 277 1 540 231 678 959 364 199 177 108 78 169 47 391 25 288
1991 6 354 197 1 779 698 1 498 531 661 401 321 434 162 578 84 581 53 449
1992 6 738 172 1 843 224 1 573 604 613 095 299 473 176 842 106 296
1993 7 079 444 1 962 385 1 520 298 581 932 347 434 238 375
1994 7 254 832 2 033 371 1 430 541 633 500 432 257
1995 7 739 379 2 072 061 1 458 541 727 098
1996 8 154 065 2 210 754 1 517 501
1997 8 435 918 2 206 886

Table 2.2: Incremental paid losses (X
(2)
ij ) for commercial auto LOB.

year premium 1 2 3 4 5 6 7 8 9 10

1988 267 666 33 810 45 318 46 549 35 206 23 360 12 502 6 602 3 373 2 373 778
1989 274 526 37 663 51 771 40 998 29 496 12 669 11 204 5 785 4 220 1 910
1990 268 161 40 630 56 318 56 182 32 473 15 828 8 409 7 120 1 125
1991 276 821 40 475 49 697 39 313 24 044 13 156 12 595 2 908
1992 270 214 37 127 50 983 34 154 25 455 19 421 5 728
1993 280 568 41 125 53 302 40 289 39 912 6 650
1994 344 915 57 515 67 881 86 734 18 109
1995 371 139 61 553 132 208 20 923
1996 323 753 112 103 33 250
1997 221 448 37 554

2.3.2 Prediction of Total Reserve

First, we apply the DT model to the losses in the two LOBs from 30 companies.

In the pairwise training sample, the first component is the incremental paid loss

from the personal LOB, and the second component corresponds to the incremental

paid loss from the commercial LOB.

To train the DT, we consider the incremental paid losses up to 1997, which is the

current calendar year for this dataset. We use the lower part of the loss triangle

to evaluate the EDT’s predictive performance. In particular, we compare the

percentage errors of actual and predicted loss reserves to evaluate the performance

of different models. We predict the reserve using DT with both the symmetric

loss function as in (2.5) and the asymmetric loss function as in (2.6). Table 2.4

displays the predicted reserves from DT alongside the actual reserves. In terms of

the percentage error from the actual reserve, DT with the asymmetric loss function

generates a more accurate estimation of the reserve, which is shown in Table 2.5.
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As demonstrated in Table 2.5, introducing the asymmetric loss function leads to

a substantial reduction in bias for the reserve of the commercial LOB, a sector

characterized by more volatile incremental paid losses.

Next, we apply the copula regression model to the two loss triangles from the

major US property-casualty insurer. For the marginal distribution, we use the

log-normal and the gamma distributions for personal and commercial LOBs (Shi

and Frees, 2011), respectively. We consider the systematic component ηij = µij

for the log-normal distribution with location parameter µij and shape parameter

σ. For the gamma distribution with location parameter µij and shape parameter

ϕ, we use ηij = log(µijϕ).

We use the Gaussian and Frank copulas to model the dependence between

the two LOBs. These copula functions are specified using the R package copula

(Hofert et al., 2020). The gjrm function from the R package GJRM estimates the

copula regression model (Marra and Radice, 2023). The log-likelihood, Akaike

information criterion (AIC), and Bayesian information criterion (BIC) for all cop-

ula models are provided in Table 2.3. According to Table 2.4, independence and

copula models generate comparable point estimates for the total reserve, about 7

million dollars.

Table 2.3: Summary statistics for fitted copula regression models with product
copula, Gaussian copula, and Frank copula.

Copula
Product Gaussian Frank

Dependence Parameter (θ) . -0.3656 -2.7977
Log-Likelihood 346.6 350.4 350.3
AIC -613.2 -618.9 -618.5
BIC -505.2 -508.2 -507.8

In addition to DT, Table 3 shows the percentage error of prediction to the actual

reserve for the copula regression model. Interestingly, the DT model provides a

more accurate point estimation of the reserve for personal and commercial auto

LOBs. This improved performance can be attributed to the neural network’s
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Table 2.4: Point estimates of the reserves from DT and copula regression models.

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

DT (symmetric) 7 756 417 327 517 8 083 934
DT (asymmetric) 7 781 299 324 024 8 105 323
Product Copula 6 464 083 490 653 6 954 736
Gaussian Copula 6 423 246 495 925 6 919 171
Frank Copula 6 511 360 487 893 6 999 253
Actual Reserve 8 086 094 318 380 8 404 474

ability to learn complex non-linear relationships of incremental paid losses between

LOBs and within accident years (Murphy, 2022).

Table 2.5: Performance comparison using percentage error of actual and estimated loss reserve.

LOB DT (symmetric) DT (asymmetric) Product Copula Gaussian Copula Frank Copula
Personal Auto -4.1% -3.8% -20.1% -20.6% -19.5%
Commercial Auto 2.9% 1.8% 54.1% 55.8% 53.2%
Total -3.8% -3.6% -17.3% -17.7% -16.7%

Note: The best metric for each LOB is in bold.

For a fair comparison between copula regression and DT, we also utilize 30

companies’ data for copula regression. The results in Appendix A.2 show similar

results to those with one company. However, the company heterogeneity should

be modeled as a random effect, and to our knowledge, there is no software imple-

mentation of such a model to be used in this analysis.

2.3.3 Predictive Distribution of Total Reserve

First, we obtain the marginal predictive distribution of reserves to evaluate diver-

sification benefits. Assuming log-normal and gamma marginal distributions for

personal and commercial LOBs, respectively, we use parametric bootstrapping to

generate predictive reserve distributions separately for each LOB. Figure 2.3 illus-

trates that the personal LOB exhibits heavier tails compared to the commercial

LOB. To capture the benefits of risk diversification for this data, we generate the

predictive distributions of the total reserves.

To obtain the predictive distribution of the reserve for the DT model, we first
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Figure 2.3: Marginal predictive distributions of the reserves from parametric boot-
strapping.
Note: The vertical dotted lines indicate the maximum likelihood estimates of the reserve

from the observed data.

utilize the CTGAN model. We train the CTGAN model with data from 30 com-

panies for each development year. New incremental paid losses are generated for

each of the ten development years. The newly generated data for each develop-

ment year are then stacked in the order of development years to form new upper

loss triangles. The DT model estimates reserves for these newly created loss tri-

angles. This process is repeated multiple times to construct a predictive reserve

distribution. In addition to CTGAN, CopulaGAN is employed to create new up-

per triangles to generate the predictive distribution of the reserve. Moreover, we

use block bootstrapping to generate the predictive distribution of the reserve, with

full details provided in Appendix A.3.

To reduce the computational expense associated with the EDT, stemming from

training numerous DTs for GAN samples, we leverage the trained model on the

observed data to fine-tune weights for new samples. For each newly generated sam-

ple, DT takes two minutes to run when trained from a random weight initialization,

and about one minute when trained from a saved model that was previously fitted
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on real data. It takes about 4 hours to obtain the predictive distribution using

parallel computing with 32 CPUs.

For copula regression models, we used the parametric bootstrap to generate

the predictive distributions of the reserves. Table 3.5 shows the estimated reserve,

bias, and standard errors for the different models. The percentage bias is computed

as the percentage error between the bootstrap mean reserves and estimated loss

reserves. It has been observed that the standard deviations from the DT-GAN are

smaller than those from the copula regression models, and the biases are slightly

higher, likely due to heterogeneity across companies and between LOBs. This

is also corroborated in Table 2.5, which shows positive and negative bias for the

commercial and personal LOB, respectively. CTGAN uses Gaussian mixtures to

model distributions when generating synthetic loss triangles (Xu et al., 2019).

These modeling assumptions in GANs introduce a certain bias compared to the

bootstrapping method. However, the DT-GAN models, by capturing the inter-

LOB dependence, generate a smaller risk capital than the copula regression models,

as discussed in the next subsection. The coefficient of variation (CV) can be used

to measure the risks when the insurance company has more than one LOB. Based

on the CV in Table 3.5, all the copula regression models and the EDT have CVs

smaller than one, which complies with the insurance standards. However, the EDT

stands out because its CVs are consistently smaller than the copula regression

models.

Table 2.6: Bias, Standard deviation, Coefficient of variation (CV)

Reserve Bootstrap mean reserve Bias Std. dev. CV
DT-CTGAN 8 105 323 8 261 718 1.93% 197 465 0.024
DT-CopulaGAN 8 105 323 8 255 638 1.85% 196 791 0.023
Product Copula 6 954 736 6 972 792 0.26% 399 758 0.057
Gaussian Copula 6 919 171 6 941 806 0.33% 368 555 0.053
Frank Copula 6 999 253 7 043 309 0.63% 388 357 0.056

We compare the predictive distributions of the reserves for the EDT and the
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Figure 2.4: Predictive distributions of total reserves from the EDT and copula
regression.
Note: The vertical dotted lines indicate the estimated reserves for each model.

copula regression in Figure 2.4, which shows that the bootstrap mean reserves

of these models are pretty similar. In summary, for this insurer, the dependence

between triangles only results in small changes in the point estimates of reserves.

Though the point estimates are similar, the dependencies between LOBs affect the

reserve’s predictive distribution, which helps diversify risk within the portfolio.

Using the predictive distributions we generated, Table 2.7 and Figure 2.5 show-

case the 95% confidence interval of the total reserve, where the lower bound is the

2.5th percentile of the predictive distribution and the upper bound is the 97.5th

percentile of the predictive distribution. We observe that the EDT models generate

the narrowest confidence intervals.

Table 2.7: 95% confidence intervals for the total reserve using the predictive dis-
tribution.

DT-CTGAN
DT-CopulaGAN
Product Copula
Gaussian Copula
Frank Copula

Lower bound Upper bound
7 900 272 8 683 653
7 875 828 8 653 414
6 241 016 7 756 950
6 280 339 7 715 924
6 315 438 7 807 835
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Figure 2.5: 95% confidence interval for the total reserves for different models.

2.3.4 Risk Capital Calculation

In actuarial practice, a common method to calculate the risk measure for the entire

portfolio, which here includes both personal auto and commercial auto LOBs, is

the “silo” method, as in the Methods section. We denote “Silo-GLM” and “Silo-

DT” as the aggregate of risk measures derived from copula regression models and

EDT model, respectively.

We compared these silo methods with the risk measures calculated from both

the EDT and copula regression models to evaluate the benefits of diversification.

Table 3.6 indicates that the risk measures from both the EDT and copula regression

models are lower than their respective silo totals. This might be due to the fact

that there is a negative association between the incremental paid losses of the

two LOBs. Table 2.3 and Appendix A.1 show negative dependence through the

copula parameter estimates of the copula regression and Kendall’s tau for the

dependence, respectively. The dependence estimated by the Student’s t copula

regression is not significant because its confidence interval includes zero. All these

results suggest that incorporating the interdependencies between LOBs into the

risk measurement process can yield lower risk estimates, highlighting the potential

value of these more integrated approaches in risk management.

Next, we calculate risk capital as defined in (1.1) from the predictive distribu-
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Table 2.8: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-DT 8 105 434 8 217 523 8 258 835 8 317 629 8 399 375 8 558 981

DT-CTGAN 8 452 870 8 549 295 8 582 802 8 627 247 8 699 935 8 846 865
DT-CopulaGAN 8 443 684 8 532 939 8 564 483 8 606 020 8 666 096 8 789 649

Silo-GLM 7 442 692 7 671 633 7 756 992 7 872 138 8 060 489 8 460 435
Product copula 7 367 695 7 553 768 7 621 203 7 710 435 7 847 773 8 126 433
Gaussian copula 7 313 951 7 490 387 7 556 029 7 644 886 7 782 646 8 054 737
Frank copula 7 424 807 7 616 405 7 685 514 7 776 754 7 921 574 8 202 695

Risk capital
Silo-DT 112 089 153 401 212 195 293 941 453 547

DT-CTGAN 96 425 129 932 174 377 247 065 393 995
DT-CopulaGAN 89 255 120 799 162 336 222 412 345 965

Silo-GLM 228 941 314 300 429 446 617 797 1 017 743
Product copula 186 073 253 508 342 740 480 078 758 738
Gaussian copula 176 436 242 078 330 935 468 695 740 786
Frank copula 191 598 260 707 351 947 496 767 777 888

tion of the reserves to set up a buffer from extreme losses. Table 3.6 shows that

the risk capital required under the Silo-DT method is less than that of Silo-GLM,

suggesting that the EDT is instrumental in reducing the insurer’s risk capital. It is

noteworthy that while the silo method tends to yield a more conservative estimate

of risk capital, both the EDT and copula models lean towards a more aggressive

estimation.

Furthermore, when comparing the risk capital from different models, those de-

rived from the EDT are consistently smaller than those from the copula regression

models. This is attributable to the EDT’s ability to capture pairwise dependen-

cies between the two LOBs and the time dependencies of incremental paid losses.

Notably, among all models evaluated, DT-CopulaGAN produces the smallest risk

capital. This could be due to its use of flexible marginals, such as truncated Gaus-

sians with varying parameters and a Gaussian copula for capturing dependencies

between these marginals. Thus, insurers can leverage the EDT as an effective tool

for risk management, particularly in reducing the required risk capital.

Next, we compute the risk capital gain defined in (1.2). Note that the risk

capital gains for both the EDT and copula regression models are computed using

silo-GLM, which is the industry standard, as the base. Table 3.7 shows that
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risk capital gain is large when we capture the association between the two LOBs.

Further, the larger risk capital gains are obtained for the EDT models compared to

the copula regression models. We can associate these gains with the diversification

effect in the insurance portfolio. For example, to better take advantage of the

diversification effect, the insurer can increase the volume of the commercial LOB,

which is smaller than the personal LOB.

Table 2.9: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
DT-CTGAN vs Silo-GLM 58.36% 58.89% 59.64% 61.06% 61.67%

DT-CopulaGAN vs Silo-GLM 61.45% 61.78% 62.42% 64.94% 66.34%
Product copula vs Silo-GLM 18.72% 19.34% 20.19% 22.29% 25.45%
Gaussian copula vs Silo-GLM 22.93% 22.98% 22.97% 24.13% 27.21%
Frank copula vs Silo-GLM 16.31% 17.05% 18.05% 19.59% 23.57%

Note: The largest risk capital gain for each risk level is in bold.

2.4 Simulation Case Study

In this section, we further validate our conclusions that the EDT produces reduced

risk capital through simulation studies. We simulate pairs of loss triangles of

personal and commercial auto LOBs with ten accident and development years for

each simulation run. The details of the simulation setup are provided below.

We begin with the estimated copula regression model for the real data in Sec-

tion 3.4. In this model, we use log-normal and gamma densities for the marginal

distributions of standardized incremental paid losses from the personal and com-

mercial LOBs, respectively. To simulate these losses in the loss triangles
(
Y

(1)
ij , Y

(2)
ij

)
,

we first calculate the systematic component η
(ℓ)
ij (ℓ = 1, 2) from the accident year

effect α
(ℓ)
i (Table A.3) and development year effect β

(ℓ)
i (Table A.4). Next, we

simulate u
(ℓ)
ij (ℓ = 1, 2) (i+ j − 1 ≤ I) from Gaussian copula model c(·; θ) with de-

pendence parameter θ = −0.36. Then, we transform u
(ℓ)
ij to the upper triangles by

inverse function y
(ℓ)
ij = F (ℓ)(−1)(u

(ℓ)
ij ; η

(ℓ)
ij , γ

(ℓ)), where η
(ℓ)
ij = ξ(ℓ)+α

(ℓ)
i +β

(ℓ)
j (ℓ = 1, 2).

Here, we set the shape parameter γ(1) = 0.089, as estimated in the copula regres-
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sion model, and larger γ(2) = 2 to account for higher volatility in the commercial

LOB. Moreover, η
(ℓ)
ij are derived from the marginal distribution parameters as fol-

lows. ηij = µij for a log-normal distribution with location parameter µij and shape

parameter γ(1) = σ. For a gamma distribution with location parameter µij and

shape parameter γ(2) = ϕ, we use the form ηij = log(µijϕ). Finally, the incre-

mental paid losses,
(
X

(1)
ij , X

(2)
ij

)
are obtained by multiplying the simulated y

(ℓ)
ij

by the premium for the i-th accident year. Note that in Table A.4, most of the

development year effects are negative, which indicates that the incremental paid

losses are decreasing with development years.

Using the above procedure, we simulate the upper and lower parts of each loss

triangle. The sum of the lower triangle represents the actual reserve for each loss

triangle. We retain only the upper part of all simulated loss triangles to apply

the proposed EDT and compare its results with copula regression models. To

reflect the multiple companies of real data, we simulate 50 pairs of loss triangles

per simulation run.

For each simulation run, we train the DT model using 50 pairs of loss triangles.

We use the symmetric loss function for DT in the simulation study because the

simulated data was generated using a Gaussian copula, which assumes symmet-

ric dependencies between loss triangles. Since the data does not exhibit inherent

asymmetry, applying an asymmetric loss function in this setting would not provide

meaningful improvements and could introduce unnecessary distortions. However,

in the real-data analysis of the previous section, we implemented the asymmetric

loss function to capture better potential skewness and tail risks observed in empir-

ical loss triangles. The trained model is then used to predict the reserve for each

pair. Additionally, we generate predictive distributions of the total reserve using

CTGAN and CopulaGAN for each pair of simulated loss triangles.

Through the simulation study, we examined the impact of input and output

sequence lengths on the DT model performance. We generated input and output
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sequences of varying lengths for each accident year. As shown in Figure 2.6, the

cross-validation error was evaluated across different sequence lengths, with a length

of nine identified as optimal for the DT model.

Figure 2.6: Cross-validation errors for different input sequence lengths in the DT.

Next, we apply the copula regression model separately to each pair of 50 sim-

ulated loss triangles. We assume log-normal and gamma distributions for the

marginals and evaluate different copula structures, including the product copula,

Gaussian copula, and Frank copula.

In Table 2.10, we evaluate the performance of all copula regression and DT

models in estimating the total reserve. To compute the true reserve R(1) and R(2),

we sum up the expected values of the lower triangle exp
(
µ
(1)
ij + 1

2
(σ)2

)
and µ

(2)
ij ϕ,

respectively.

Here, we compare the predicted reserves with the actual reserves for each pair

across all models, including copula regression and DT. In each simulation run,

we evaluate 50 pairs of predicted and actual reserves. To quantify the prediction

error for each LOB ℓ we compute the mean absolute percentage error (MAPE) as

defined in (2.7).

MAPEℓ =
1

50

50∑
b=1

|R̂
(ℓ)
b −R(ℓ)

R(ℓ)
|, (2.7)

where R̂
(ℓ)
b is the predicted reserves for bth loss triangle from ℓth LOB and R(ℓ) is

37



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

the true reserve for the ℓth LOB. Table 2.10 shows that the DT model outperforms

the copula regression models for both LOBs and is particularly effective for the

more volatile commercial auto LOB. The MAPE is almost negligible in personal

LOB because the DT has increased flexibility than the copula regression models

and captures the time dependence in the sequence input. The MAPE is relatively

large for the commercial LOB, which is set to be more volatile than the personal

LOB in the simulation setting.

The performance of the copula regression model can be attributed to its lim-

ited flexibility in capturing both the sequence dependence and the pairwise depen-

dence. In particular, the model underestimates the shape parameter of the gamma

marginal distribution for the commercial LOB, which plays a crucial role in con-

trolling the dispersion and tail behavior of the distribution. This underestimation

leads to significant errors in the predicted reserve, especially for the more volatile

commercial LOB.

Table 2.10: Performance comparison using the mean absolute percentage error.

LOB DT Product Copula Gaussian Copula Frank Copula
Personal Auto 0.63% 5.28% 5.11% 5.07%
Commercial Auto 18.67% 27.28% 31.85% 31.59%

Note: The best metric for each LOB is in bold. The actual reserves for the personal and
commercial LOBs are 6 423 246 and 495 925, respectively.

For each simulated loss triangle pair, we use the DT model’s predicted full

triangle as input to the GAN models. We then apply CTGAN and CopulaGAN to

generate 1,000 synthetic loss triangles per pair and use the DT model to predict

reserves for each synthetic triangle.

For each of the 50 simulated loss triangle pairs, we construct the predictive

distribution of reserves using 1,000 predicted reserves from the corresponding syn-

thetic loss triangles. Based on the EDT models, the corresponding 95% confidence

intervals for the total reserve are presented in Figure 2.7, where the horizontal line
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represents the true reserve of the simulated loss triangles. Notably, we observe

that the true reserve falls within all 95% confidence intervals for all models. Thus,

the coverage exceeds the nominal value of 95%. This over-coverage may be due to

the EDT relying on the predicted lower triangle from the DT as input for the GAN

models, which could lead to conservative uncertainty estimates, or an insufficient

number of synthetic loss triangles, limiting the variability captured in the pre-

dictive distribution. Among all the EDT models, DT-CopulaGAN produces the

narrowest confidence interval. We also expect the coverage of the interval of the

GAN to become close to the nominal value when the GAN is modified to accept

missing values in the lower triangle.

Figure 2.7: 95% confidence interval for total reserves for different EDT models.
Note: The horizontal line indicates the true reserve. The true reserve is within all the

95% confidence intervals. The average length of confidence intervals are 1 413 034 and

1 498 851, respectively.

For copula regressions, we generate the predictive distribution of the total re-

serve for each of the 50 simulated loss triangles. For each copula regression model,

we conduct 1000 bootstrap simulations to generate the predictive distribution of

the total reserve. We present in Figure 2.8 the 95% confidence interval for the

total reserve. We observe that, for all models, the true reserve falls within most of
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the 95% confidence intervals. Among them, the product copula regression model

provides the highest coverage, approaching the nominal 95%, but at the cost of the

widest confidence intervals, indicating greater uncertainty. In contrast, the Gaus-

sian copula regression model yields the narrowest confidence intervals, but with a

lower coverage rate of 90%, suggesting it may underestimate reserve variability.

Figure 2.8: 95% confidence interval for the total reserves for different copula mod-
els.
Note: The horizontal line indicates the true reserve. The coverage for product copula,

Gaussian copula, and Frank copula are 94%, 90%, and 88%, respectively. The average

length of confidence intervals are 1 457 826, 1 291 627, and 1 329 655.

Next, we compute the risk measure for all 50 simulated loss triangle pairs based

on their predictive reserve distributions. Figure 2.9 illustrates the box plot of the

TVaR measure at the 99% confidence level for each pair. The boxplots provide

a comprehensive comparison across different models: Silo-GLM, Product copula,

Gaussian copula, Frank copula, Silo-DT, DT-CTGAN, and DT-CopulaGAN.

We observe that the median risk measures from all copula regression models

are smaller than those from Silo-GLM, while the median risk measures from all the

EDT models are smaller than those from Silo-DT. This trend can be attributed

to the negative association between the two LOBs. Specifically, the copula-based
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models (Product copula, Gaussian copula, and Frank copula) demonstrate mod-

erate medians and variability, whereas the DT-based models (DT-CTGAN and

DT-CopulaGAN) show the smallest spread, indicating more consistent and lower

risk measures.

Furthermore, the spread of the data and the presence of outliers vary across

models. Silo-GLM and Silo-DT exhibit larger variability in their risk measures.

In contrast, the DT-CTGAN and DT-CopulaGAN models have fewer and lower

extreme values, contributing to their overall consistency in risk assessment.

Overall, the choice of model significantly influences the assessment of risk mea-

sures, with the copula and the EDT models providing more conservative and con-

sistent estimates compared to the silo approaches. Between the EDT and copula

models, the EDT models generally exhibit lower variability and fewer extreme

values, suggesting that the EDT models might offer a more robust and reliable

assessment of risk in this context.

Figure 2.9: The risk measures at 99% for different models. The horizontal line
indicates the true risk measure.

Additionally, we present the risk capital using the average of the risk measures

derived from the 50 simulated loss triangle pairs in Table 2.11. Similar to the

real data application, we calculate the risk measures for Silo-GLM and Silo-DT,

respectively. Once again, we observe that the risk capital for Silo-DT is smaller

than that for Silo-GLM. Furthermore, DT-CopulaGAN consistently generates the

smallest risk capital among all the EDT models, aligning with the real data ap-
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Table 2.11: Average risk capital from 50 simulated loss triangles.

Risk capital
Silo-DT

DT-CTGAN
DT-CopulaGAN

Silo-GLM
Product copula
Gaussian copula
Frank copula

True risk capital

TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
198 839 272 500 372 127 531 067 863 805
141 922 192 690 258 984 363 501 576 167
140 300 190 851 257 575 361 720 569 043
256 262 354 572 486 496 702 533 1 180 878
179 938 246 664 335 529 477 132 758 015
158 158 217 078 295 256 422 683 700 221
165 128 227 321 311 099 449 677 751 712
106 371 146 047 199 655 282 214 467 289

plication findings. It’s important to note that we do not calculate the risk capital

gain in this context because the risk capitals for the silo method vary across the 50

simulated loss triangles. We show the risk capital percentage errors for different

models in Table 2.12. We find that DT-CTGAN and DT-CopulaGAN generate

risk capitals that are closest to the true risk capital, particularly in the tail, when

compared to all other models.

Table 2.12: Risk capital percentage error for different methods.

Risk capital TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-DT 86.93% 86.58% 86.38% 88.18% 84.85%

DT-CTGAN 33.42% 31.94% 29.72% 28.80% 23.30%
DT-CopulaGAN 31.90% 30.68% 29.01% 28.17% 21.78%

Silo-GLM 140.91% 142.78% 143.67% 148.94% 152.71%
Product copula 69.16% 68.89% 68.05% 69.07% 62.22%
Gaussian copula 48.68% 48.64% 47.88% 49.77% 49.85%
Frank copula 55.24% 55.65% 55.82% 59.34% 60.87%

Note: The smallest risk capital percentage error for each risk level is in bold.

2.5 Summary and Discussion

When applied to multiple LOBs, the DT model leverages the dependence between

loss triangles from different LOBs. Specifically, we use the incremental paid losses

from different LOBs as training inputs, with the model designed to minimize asym-

metric prediction errors.

The DT model estimates reserves for different LOBs, while DT-CTGAN and
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DT-CopulaGAN generate predictive distributions for the total reserve. We demon-

strate that DT requires sequence-based input, whereas GAN-based models operate

on tabular data, ensuring both approaches effectively capture dependencies and

improve reserve estimation.

A crucial aspect of this chapter is assessing the diversification benefits of the

EDT in multivariate loss reserving and risk capital analysis. This is achieved by

comparing risk measures and risk capital derived from the “silo” method against

those obtained from the EDT or copula regression approaches. This comparison

highlights the potential advantages of employing the EDT, a more interconnected

and sophisticated modeling technique, in managing insurance portfolio risks.

To evaluate the practical effectiveness of the EDT, we apply it to loss triangles

from 30 companies in the NAIC database. For comparison, we also include copula

regression in our study. The EDT outperforms alternative models by yielding

the smallest bias between predicted and true reserves for both LOBs. Moreover,

both DT-CTGAN and DT-CopulaGAN consistently produce lower risk capital

estimates than industry standards. These results highlight the potential benefits

of integrating advanced modeling techniques for more accurate reserve estimation

and enhanced risk management in the insurance industry.

Through the real data applications and simulations study, we discerned cer-

tain limitations of copula regression. One reason for the relatively large bias in

copula regression is using a single pair of loss triangles. Modeling loss triangles

from multiple companies using fixed effects in copula regression still generates a

larger bias. Future extensions may involve seemingly unrelated regressions and

mixed models to address the heterogeneity in data from multiple companies (Zell-

ner, 1962). Another notable constraint is that complex dependencies may not be

captured in copula regression attributed to the Fréchet-Hoeffding bounds on the

dependence parameter (Schweizer and Sklar, 2011). Additionally, the potential

over-parameterization of the copula regression model, particularly given the lim-
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ited pairs of observations available in the LOBs, poses a challenge. To mitigate

this, regularization techniques such as the least absolute shrinkage and selection

operator (LASSO) can be applied. By imposing an L1 norm constraint on the

parameters within the loss function, LASSO facilitates parameter shrinkage, ef-

fectively reducing overfitting (Tibshirani, 1996). These regularization methods,

akin to those used in generalized linear models (Taylor, 2019), play a crucial role

in improving the robustness of copula regression models, especially when working

with limited data.

In summary, the EDT framework shows strength and potential in multivari-

ate loss reserving and risk capital analysis by providing a smaller bias in reserve

prediction and larger diversification benefits. This flexible framework allows its

application in various settings in actuarial science, such as rate-making and rein-

surance. This adaptability showcases the EDT versatility across diverse insurance

scenarios by complementing the DT model.
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Chapter 3

Seemingly Unrelated Regression

(SUR) Copula Mixed Models

3.1 Introduction

Dependence modeling of loss ratios between multiple loss triangles is critical in

predicting loss reserves and risk capital analysis, which depends on the predictive

distribution of the reserve. Incorporating dependency into reserve leverages the

risk diversification benefit between incremental paid losses of different lines of

business (LOBs) for the insurer. For example, Cai et al. (2025) show that capturing

the pairwise and sequence dependence in multiple loss triangles reduces risk capital.

On the other hand, Abdallah et al. (2015) demonstrate that a parametric approach

that models some of these relationships can accurately determine reserve ranges

and the amount of risk capital needed.

Neural networks-based method utilizes GAN techniques to generate the pre-

dictive distribution, and parametric models utilize model-based and rank-based

bootstrapping to generate the predictive distribution. In the presence of depen-

dence, copula GAN leads to the largest risk capital gain (Cai et al., 2025). Among

parametric approaches, the rank-based bootstrapping yields the largest risk capital
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gain and highest risk diversification benefit (Abdallah and Wang, 2023).

Both neural network-based and parametric approaches have notable limita-

tions. Neural methods, while flexible and capable of quantifying predictive uncer-

tainty as demonstrated in the Extended Deep Triangle (EDT) model, often lack

interpretability, particularly in how they represent dependence structures (Cai

et al., 2025). This hinders their usefulness for decision-making in actuarial con-

texts where understanding pairwise dependence is essential. Parametric models,

on the other hand, are more interpretable but may suffer from model misspecifi-

cation and fail to fully leverage multiple company data, leading to biased reserve

and capital estimates (Shi and Frees, 2011; Abdallah et al., 2015).

Kuo (2019) introduced the Deep Triangle (DT), a recurrent neural network

framework that leverages loss triangles from multiple companies to enhance the

predictive accuracy of traditional stochastic reserving methods. Building on this,

the Extended Deep Triangle (EDT) incorporates dependence between two LOBs

by modeling pairwise and sequential relationships in loss ratios. To address het-

erogeneity across companies, the EDT encodes company identifiers such that com-

panies with similar incremental paid loss patterns are represented with similar

codes. Additionally, dropout is applied within the RNN to induce sparsity and

improve prediction. Trained on data from multiple companies, the EDT generates

reserve estimates that closely align with actual reserves. Moreover, by learning

development year patterns and latent dependence structures directly from data,

EDT yields lower risk capital than copula regression models, which rely on fixed

effects to represent development year behavior and company heterogeneity.

While SUR-based models provide a flexible regression framework to capture

dependencies, they have typically been limited to single-company settings or often

model company and development year effects as fixed. For example, Zhang (2010)

extend the classical chain ladder to a multivariate SUR framework, while Shi and

Frees (2011) and Abdallah et al. (2015) use SUR copula regression to account
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for dependence between two LOBs. However, these models do not fully leverage

multiple company data and may suffer from biased estimates due to heterogeneity

in company data.

We propose a SUR copula mixed model that extends SUR copula regression to

accommodate hierarchical data from multiple companies to address this gap. The

model includes fixed effects to capture accident and development year patterns,

and random effects to represent heterogeneity across companies. Moreover, we

propose to estimate the model parameters using a two-stage iterative maximum

likelihood approach.

The chapter is organized as follows: Section 2 provides an overview of the

preliminaries on SUR and mixed models. Section 3 discusses the methodologies for

loss reserving and predictive distribution estimation, with an emphasis on the SUR

copula mixed model approach. Section 4 applies and calibrates the SUR copula

mixed model using a dataset that includes personal and commercial automobile

LOBs from multiple companies. Section 5 presents a simulation study that further

demonstrates the superior performance of the SUR copula mixed model. Finally,

Section 6 summarizes our findings.

3.2 Methods: Preliminaries

3.2.1 Seemingly Unrelated Regression

Suppose we have a set of M regression equations

ymk = xT
mkβm + εmk, (3.1)

where m = 1, . . . ,M is the euqation number and k = 1, . . . , N is the individual

observation. The vector xmk denotes the regressor, βm represents the coefficients

vector, and εmk is the error term.

47



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

If we stack all the observations for the mth equation into vectors and matrices,

then the model can be written as

ym = Xmβm + εm. (3.2)

Next, we stack the M vector equations on top of each other and obtain the

following form



y1

y2

...

yM


=



X1 0 . . . 0

0 X2 . . . 0

...
...

. . .
...

0 0 . . . XM





β1

β2

...

βM


+



ε1

ε2
...

εM


= Xβ + ε. (3.3)

The model assumes that εmk are independent within equations but may have

cross-equation correlations. Thus, we have E[εmkεmk′ |X] = 0(k ̸= k′) whereas

E[εmkεm′k|X] = σmm′ . For the kth observation, the covariance matrix of the error

terms (ε1k, ε2k, . . . , εMk) is denoted as Σ = [σij]. The covariance matrix of the

stacked error terms ε equals to

Ω ≡ E
[
εεT |X

]
= Σ⊗ IN , (3.4)

where IN is the identity matrix of dimension N and ⊗ denotes the matrix Kro-

necker product.

For the SUR model, the generalized least squares (GLS) estimator takes the

form

β̂GLS = {XT (Σ−1 ⊗ IN)X}−1XT (Σ−1 ⊗ IN)y. (3.5)

In most situations, the covariance Σ needed in GLS is unknown. Feasible

generalized least squares (FGLS) estimate the elements of Σ by σ̂jk = ε̂Tj ε̂k/N ,

where ε̂j is the residual vector of the j th equation obtained from ordinary least
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squares and then replace Σ in GLS by the resulting estimator Σ̂.

Alternatively, maximum likelihood estimators (MLE) can be considered, as-

suming the errors are multivariate normal (Srivastava and Giles, 1987; Peremans

and Van Aelst, 2018). Under the assumption that the errors are normally dis-

tributed, the log-likelihood of the SUR model is given by

ℓ(β, Σ|X,y) = −MN

2
ln(2π)−N

2
ln(|Σ|)−1

2
(y−Xβ)T (Σ−1⊗IN)(y−Xβ). (3.6)

Maximizing this log-likelihood with respect to (β,Σ) yields the estimators

(β̂MLE, Σ̂MLE), which are the solutions of the equations

β̂MLE = {XT (Σ̂
−1

MLE ⊗ IN)X}−1XT (Σ̂
−1

MLE ⊗ IN)y, (3.7)

Σ̂MLE = (Y − X̃B̂MLE)
T (Y − X̃B̂MLE)/N, (3.8)

where Y = (y1,y2, . . . ,yM), X̃ = (X1,X2, . . . ,XM) and B̂MLE is the block diago-

nal form of β̂MLE.

3.2.2 Linear Mixed Model

In general, a linear mixed-effects model satisfies



yi = Xiβ + Zibi + εi,

bi ∼ N(0,D),

εi ∼ N(0,Σi),

b1, . . . , bN , ε1, . . . , εN independent,

(3.9)

where yi is the ni -dimensional response vector for subject i (1 ≤ i ≤ N) and N is

the number of subjects. β is a p -dimensional fixed effects vector and bi is the q

-dimensional random effects vector. Xi and Zi are (ni×p) and (ni×q) dimensional

design matrices for the fixed effects and random effects, respectively. εi is an ni
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-dimensional vector of errors.

D is the covariance matrix for the q-dimensional random effects vector. Σi is

the covariance matrix for the error vector. The set of unknown parameters in Σi

will not depend upon i.

Conditional on the random effect bi, yi is normally distributed with mean

vector Xiβ + Zibi and covariance matrix Σi. The marginal density of yi can be

shown to be the density of an ni-dimensional normal distribution with mean vector

Xiβ and covariance matrix Vi = ZiDZ′
i +Σi.

Let α denote the vector of all variance and covariance parameters found in

Vi = ZiDZ′
i +Σi. We can estimate the parameters β and α by maximizing the

marginal likelihood function

L(β,α|Xi,yi) =
N∏
i=1

{
(2π)−ni/2 |Vi(α)|−

1
2 × exp

(
−1

2
(yi −Xiβ)

T V−1
i (α) (yi −Xiβ)

)}
.

(3.10)

We first assume α is known. The maximum likelihood estimator (MLE) of β,

obtained from maximizing (3.10), conditional on α is then given by (Verbeke and

Molenberghs, 2009)

β̂ =

(
N∑
i=1

XT
i V

−1
i (α)Xi

)−1( N∑
i=1

XT
i V

−1
i (α)yi

)
. (3.11)

The maximum likelihood estimation (MLE) of α is obtained by maximizing

(3.10) with respect to α, after β is replaced by (3.11). This approach arises

naturally when we consider maximizing the joint likelihood (3.10) to obtain the

estimation of β and α simultaneously. The MLE involves a precision matrix

V−1
i (α), so we will work with a precision matrix instead of a covariance matrix in

the optimization.
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3.3 SUR Mixed Model for Loss Reserving

Let Yijc denote the standardized incremental claims for accident year i (1 ≤ i ≤ I),

development year j (1 ≤ j ≤ I), and company c (1 ≤ c ≤ C). In the case of

two LOBs, we use Y
(ℓ)
ijc and Y

(ℓ′)
ijc to denote the standardized incremental claim

from ℓth and ℓ
′th LOB. Now we model log(Y

(ℓ)
ijc ) using α(ℓ) = (α

(ℓ)
1 , α

(ℓ)
2 , ..., α

(ℓ)
I )

and λ(ℓ) = (λ
(ℓ)
1 , λ

(ℓ)
2 , ..., λ

(ℓ)
I ) as predictors that characterize the accident and the

development year effects, and the company effect b(ℓ) = (b
(ℓ)
1 , b

(ℓ)
2 , ..., b

(ℓ)
C ) as in

(3.12) and (3.13). Working on the logarithm scale of yijc, we ensure the predicted

incremental claims are positive.

log(y
(ℓ)
ijc) = ξ(ℓ) + x

(ℓ)
i α(ℓ) + x

(ℓ)
j λ(ℓ) + z(ℓ)

c b(ℓ) + ε
(ℓ)
ijc, (3.12)

log(y
(ℓ′)
ijc ) = ξ(ℓ

′) + x
(ℓ′)
i α(ℓ′) + x

(ℓ′)
j λ(ℓ′) + z(ℓ′)

c b(ℓ
′) + ε

(ℓ′)
ijc . (3.13)

� x
(ℓ)
i and x

(ℓ′)
i represent the observed accident year for the two LOBs. x

(ℓ)
j

and x
(ℓ′)
j represent the observed development year for the two LOBs.

� ξ(ℓ) and ξ(ℓ
′) are the intercepts for the two LOBs. We set α1 = 0 and λ1 = 0

for parameter identification.

� We assume the following for the company effects. b
(ℓ)
c ∼ N(0, τ1) and b

(ℓ′)
c ∼

N(0, τ2). The company effects are random, and they are independent and

normally distributed with means of zero and standard deviations τ1 and τ2.

The company effects are identical within each LOB.

In Table 3.1, we give an example for the regressor x
(1)
i and x

(1)
j . Similarly, an

example for the regressor zc is in table 3.2.

If we stack observations corresponding to the 1st and 2nd equations into vectors

and matrices, we write the model in vector form as
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x
(1)
i2 x

(1)
i3 x

(1)
i4 ... x

(1)
j2 x

(1)
j3 x

(1)
j4 ...

y
(1)
111 0 0 0 ... 0 0 0 ...

y
(1)
121 0 0 0 ... 1 0 0 ...

y
(1)
131 0 0 0 ... 0 1 0 ...
...

...
...

...
...

...
...

...
...

y
(1)
211 1 0 0 ... 0 0 0 ...
...

...
...

...
...

...
...

...
...

y
(1)
331 0 1 0 ... 0 1 0 ...

y
(1)
341 0 1 0 ... 0 0 1 ...
...

...
...

...
...

...
...

...
...

Table 3.1: An example for the regressor x
(1)
i and x

(1)
j

z
(1)
c z

(2)
c

y
(1)
111 1 0

y
(1)
121 1 0

y
(1)
131 1 0
...

...
...

y
(1)
214 1 0
...

...
...

y
(2)
338 0 1

y
(2)
349 0 1
...

...
...

Table 3.2: An example for the regressor zc

log(y(ℓ)
c ) = X(ℓ)

c β(ℓ) + Z(ℓ)
c b(ℓ) + ε(ℓ)c , (3.14)

log(y(ℓ′)
c ) = X(ℓ′)

c β(ℓ′) + Z(ℓ′)
c b(ℓ

′) + ε(ℓ
′)

c . (3.15)

Next, we stack the two vector equations on top of each other and transform

(3.14) and (3.15) into the following form

 log(y(ℓ)
c )

log(y
(ℓ′)
c )

 =

X(ℓ)
c 0

0 X
(ℓ′)
c


β(ℓ)

β(ℓ′)

+

Z(ℓ)
c 0

0 Z
(ℓ′)
c


b(ℓ)
b(ℓ

′)

+

ε(ℓ)c

ε
(ℓ′)
c

 . (3.16)

52



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

Suppose yc denote the I(I +1)× 1 vector of incremental paid losses for the cth

company. The linear mixed model can be written as

log(yc) = Xcβ + Zcb+ εc, c = 1, . . . , C. (3.17)

where β represents all fixed-effects parameters and b represents the random effect

for all companies. The company random effects b and errors εc are independent.

In the next section, we will detail parametric models for the error terms. We

consider the multivariate normal distribution to model the errors.

3.3.1 SUR Multivariate Normal Mixed model

We assume the errors are independent within each equation but correlated between

equations. One model for the pairs of errors,

 ε
(1)
ijc

ε
(2)
ijc

, is bivariate normal. That

is,  ε
(1)
ijc

ε
(2)
ijc

 ∼ N(0,Σ). (3.18)

The covariance matrix Σ is defined by Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. The covariance of

the pair of errors are the same regardless of the accident and development years.

The stacked error terms εc follow a multivariate normal with covariance Σc =

Σ⊗ II(I+1)/2.

εc ∼ N(0,Σ⊗ II(I+1)/2), (3.19)

where II(I+1)/2 is the identity matrix of dimension I(I + 1)/2 (total number of

observations in the upper triangle) and ⊗ denotes the Kronecker product.

Next, we derive the log-likelihood function with the above multivariate normal

assumption on errors. Consider yc conditional on bc.
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log(yc) | bc ∼ N (Xcβ + Zcbc,Σc) ,

bc ∼ N (0,D) .

The covariance matrix D is defined by D =

τ 21
τ 22

, and the design matrix Zc

is given by

Zc =

1I(I+1)/2

1I(I+1)/2

 , where 1I(I+1)/2 is a vector of all ones.

Then, log(yc) has a multivariate normal distribution with mean Xcβ and co-

variance matrix V.

log(yc) ∼ N (Xcβ,V) ,

where the covariance matrix V is given by

V = V1 +V2,

V1 is defined by

V1 = Σ⊗ II(I+1)/2

=

 σ2
1II(I+1)/2 ρσ1σ2II(I+1)/2

ρσ1σ2II(I+1)/2 σ2
2II(I+1)/2

 ,

and V2 is defined by

V2 = ZcDZ′
c =

τ 211I(I+1)/21
′
I(I+1)/2

τ 221I(I+1)/21
′
I(I+1)/2

 .

Combining V1 and V1, we obtain V as
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V =

σ2
1II(I+1)/2 + τ 211I(I+1)/21

′
I(I+1)/2 ρσ1σ2II(I+1)/2

ρσ1σ2II(I+1)/2 σ2
2II(I+1)/2 + τ 221I(I+1)/21

′
I(I+1)/2



=



σ2
1 + τ 21 τ 21 . . . τ 21 ρσ1σ2

τ 21 σ2
1 + τ 21 . . .

... ρσ1σ2

. . . . . . . . . τ 21 . . .

τ 21 . . . τ 21 σ2
1 + τ 21 ρσ1σ2

ρσ1σ2 σ2
2 + τ 22 τ 22 . . . τ 22

ρσ1σ2 τ 22 σ2
2 + τ 22 . . .

...

. . . . . . . . . . . . τ 22

ρσ1σ2 τ 22 . . . τ 22 σ2
2 + τ 22



.

The corresponding multivariate normal probability density function for com-

pany c is: f(log(yc);β, τ1, τ2, σ1, σ2, ρ) is:

f(log(yc);β, τ1, τ2, σ1, σ2, ρ) = (2π)−I(I+1)/2|V(τ1, τ2, σ1, σ2, ρ)|−1/2·

exp(−0.5× (log(yc)−Xcβ)
′V−1(τ1, τ2, σ1, σ2, ρ)(log(yc)−Xcβ)). (3.20)

From (3.20), the likelihood function for company c is:

Lc(β, τ1, τ2, σ1, σ2, ρ | log(yc)) = (2π)−I(I+1)/2|V(τ1, τ2, σ1, σ2, ρ)|−1/2·

exp(−0.5× (log(yc)−Xcβ)
′V−1(τ1, τ2, σ1, σ2, ρ)(log(yc)−Xcβ)). (3.21)

We write the likelihood function, L(β, τ1, τ2, σ1, σ2, ρ | log(y1), log(y2), . . . , log(yC)),

for all the companies as the product of the C independent contributions from the

companies (c=1,..., C) :
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L(β, τ1, τ2, σ1, σ2, ρ | log(y1), log(y2), . . . , log(yC))

=
∏
c

Lc(β, τ1, τ2, σ1, σ2, ρ | log(yc))

=
∏
c

(2π)
−I(I+1)

2 |V(τ1, τ2, σ1, σ2, ρ)|
1
2

× exp(−1

2
(log(yc)−Xcβ)

′V−1(τ1, τ2, σ1, σ2, ρ)(log(yc)−Xcβ)). (3.22)

The corresponding log-likelihood function, ℓ(β, τ1, τ2, σ1, σ2, ρ | log(y1), . . . , log(yC))

is defined as

ℓ(β, τ1, τ2, σ1, σ2, ρ | log(y1), log(y2), . . . , log(yC)) = −1

2
[I(I + 1) · C · log(2π)−

C log |V(τ1, τ2, σ1, σ2, ρ)|+
C∑
c=1

(log(yc)−Xcβ)
′V−1(τ1, τ2, σ1, σ2, ρ)(log(yc)−Xcβ)].

(3.23)

Next, we summarize the steps to estimate the parameters in (3.23) as follows:

(1) Give initial values τ 01 , τ
0
2 , σ

0
1, σ

0
2, ρ

0, and set k=0.

(2) Maximize equation (3.23) with respect to β and obtain

βk =
(∑C

c=1X
′
cV(τ k1 , τ

k
2 , σ

k
1 , σ

k
2 , ρ

k)−1Xc

)−1 (∑C
c=1 X

′
cV(τ k1 , τ

k
2 , σ

k
1 , σ

k
2 , ρ

k)−1 log(yc)
)
.

(3) Given βk, Maximize (3.23) to obtain τ k+1
1 , τ k+1

2 , σk+1
1 , σk+1

2 ρk+1. update

k=k+1.

(4) Repeat steps (2) and (3) until it meets the stopping criterion, where the ab-

solute difference of the fixed effects parameters in two consecutive iterations

is negligible.

After we obtain the estimated fixed effects β̂, we estimate the random effects

by b̂c = DZ′
cV

−1(log(yc)−Xcβ̂), an average of the estimated effect.

Next, we detail an alternative way to model pairs of errors using copulas.
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3.3.2 SUR Copula Mixed Model

In this section, we use copulas to model the dependence between the different

LOBs. For each LOB, ℓ, we assume that the loss ratios, Y
(ℓ)
ijc , are independent and

follow a distribution belonging to the exponential family. Let µ
(ℓ)
ijc be the expected

value of Y
(ℓ)
ijc , and it can be expressed as µ

(ℓ)
ijc = g−1(η

(ℓ)
ijc), where η

(ℓ)
ijc is the linear

predictor and g(·) is the link function.

Following Liang and Zeger (1986), we model η
(ℓ)
ijc using α(ℓ), λ(ℓ), and b(ℓ) as in

(3.24).

η
(ℓ)
ijc = ξ(ℓ) + x

(ℓ)
i α(ℓ) + x

(ℓ)
j λ(ℓ) + z(ℓ)

c b(ℓ). (3.24)

Let β(ℓ) denote the intercept and all fixed-effects parameters and b(ℓ) be the

random effect for companies. Then,

η
(ℓ)
ijc = x

(ℓ)
ij β

(ℓ) + z(ℓ)
c b(ℓ). (3.25)

Let y
(ℓ)
c be the I(I + 1) × 1 vector of incremental paid losses for the cth

company from ℓth LOB. Then, the joint probability density function (PDF) of

y
(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C is

f(y
(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C ;β(ℓ), σℓ, τℓ) =

∫
[−∞,∞]C

f(y
(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C | b(ℓ)1 , b

(ℓ)
2 , . . . , b

(ℓ)
C ,β(ℓ), σℓ)·

f(b
(ℓ)
1 , b

(ℓ)
2 , . . . , b

(ℓ)
C ; τℓ)db

(ℓ)
1 db

(ℓ)
2 . . . db

(ℓ)
C ,

(3.26)

where C is the number of companies, σℓ is the shape parameter of the marginal

distribution, and τℓ is the standard deviation of the company random effect b
(ℓ)
c .
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Assuming y
(ℓ)
c from each company is independent, we can rewrite (3.26) as

f(y
(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C ;β(ℓ), σℓ, τℓ) =

C∏
c=1

∫ ∞

−∞
f(y(ℓ)

c | b(ℓ)c ,β(ℓ), σℓ)f(b
(ℓ)
c ; τℓ)db

(ℓ)
c

=
C∏
c=1

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(y
(ℓ)
ijc|b(ℓ)c ,β(ℓ), σℓ)f(b

(ℓ)
c ; τℓ)db

(ℓ)
c ,

(3.27)

where f(y
(ℓ)
ijc|b

(ℓ)
c ,β(ℓ), σℓ) denotes the conditional density of Y

(ℓ)
ijc given b

(ℓ)
c and

f(b
(ℓ)
c ; τℓ) denotes the marginal density of the company effect b

(ℓ)
c .

From (3.27), a general formula for the log-likelihood for each LOB, ℓ, from all

companies C

L(ℓ)(β(ℓ), σℓ, τℓ;y
(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C ) =

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(y
(ℓ)
ijc|b(ℓ)c ,β(ℓ), σℓ)f(b

(ℓ)
c ; τℓ)db

(ℓ)
c .

(3.28)

Suppose Y
(ℓ)
ijc follows log-normal distribution with location µ

(ℓ)
ijc and the shape

σℓ, (3.28) becomes

L(ℓ)(β(ℓ), σℓ, τℓ | y(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C ) =

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

1

y
(ℓ)
ijc

√
2πσℓ

e
− 1

2

(
log(y(ℓ)ijc)−µ

(ℓ)
ijc

σℓ

)2

1√
2πτℓ

e
− 1

2

(
b
(ℓ)
c
τℓ

)2

db(ℓ)c .

(3.29)

Suppose Y
(ℓ)
ijc follows gamma distribution with the scale γ

(ℓ)
ijc and the shape σℓ,
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(3.28) becomes

L(ℓ)(β(ℓ), σℓ, τℓ | y(ℓ)
1 ,y

(ℓ)
2 , . . . ,y

(ℓ)
C ) =

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

(
y
(ℓ)
ijc

γ
(ℓ)
ijc

)σℓ

e
−

y
(ℓ)
ijc

γ
(ℓ)
ijc

Γ (σℓ) y
(ℓ)
ijc

1√
2πτℓ

e
− 1

2

(
b
(ℓ)
c
τℓ

)2

db(ℓ)c .

(3.30)

Based on Sklar’s theorem (Nelsen, 2006), the joint density function of a pair

(Y
(ℓ)
ijc , Y

(ℓ′)
ijc ) is

f(y
(ℓ)
ijc, y

(ℓ′)
ijc ) = f(y

(ℓ)
ijc)f(y

(ℓ′)
ijc )c(F (y

(ℓ)
ijc), F (y

(ℓ′)
ijc ); θc), (3.31)

where c(·) denotes the copula conditional density corresponding to conditional

copula C(·).

Note that the joint PDF of all pairs of (Y
(ℓ)
ijc , Y

(ℓ′)
ijc ) from all companies is then

given by

f((y
(ℓ)
1 ,y

(ℓ′)
1 ), . . . , (y

(ℓ)
C ,y

(ℓ′)
C );β(ℓ), σℓ, τℓ,β

(ℓ′), σℓ′ , τℓ′)

= f((y
(ℓ)
111, y

(ℓ′)
111), (y

(ℓ)
121, y

(ℓ′)
121), . . . , (y

(ℓ)
1IC , y

(ℓ′)
1IC);β

(ℓ), σℓ, τℓ,β
(ℓ′), σℓ′ , τℓ′). (3.32)

In the case of two LOBs, let ℓ = 1 and ℓ′ = 2, we derive the log-likelihood

function from (3.31) and (3.32) as
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L(β(1),β(2), σ1, σ2, τ1, τ2, θc | (y(1)
1 ,y

(2)
1 ), . . . . . . , (y

(1)
C ,y

(2)
C ))

=
2∑

ℓ=1

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(y
(ℓ)
ijc | b(ℓ)c ,β(ℓ), σℓ)f(b

(ℓ)
c ; τℓ)db

(ℓ)
c +

C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(F
(1)
ijc , F

(2)
ijc ; θc)

=
2∑

ℓ=1

L(ℓ)(β(ℓ), σℓ, τℓ | y(ℓ)
1 , . . . ,y

(ℓ)
C ) +

C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(F
(1)
ijc , F

(2)
ijc ; θc), (3.33)

where L(ℓ)(β(ℓ), σℓ, τℓ | y(ℓ)
1 , . . . ,y

(ℓ)
C ) is defined in (3.28).

We adopt an iterative two-stage approach, in which marginal models, including

systematic effects and company random effects, are estimated in one step, and cop-

ula parameters are estimated from rank-transformed residuals in the next. Then,

the copula parameters are plugged into the complete likelihood to optimize it with

respect to the marginal distribution parameters. This process is repeated until the

convergence of marginal distribution parameter estimates.

We first estimate β(ℓ), σℓ, and τℓ for each LOB by maximizing (3.33). As

a starting value, we compute these estimates for each LOB using the restricted

maximum likelihood (REML) implemented in the R package lme4 (Bates et al.,

2015) for a generalized linear mixed model.

In the second step, we maximize the second term of (3.33) with respect to the

copula parameter θ given the marginal parameter estimates from the first step.

The copula likelihood term is given by

L2(θ) =
C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(F
(1)
ijc , F

(2)
ijc ; θc).

We replace the marginal cumulative distribution functions with pseudo-observations

derived from the ranks of the residuals. We use the AIC statistic to choose

the marginal distribution for Y
(ℓ)
ijc . For example, we define rank-based pseudo-

observations for log-normal and gamma marginals as follows:
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Suppose Y
(ℓ)
ijc follows log-normal, we compute the pseudo-residuals given the

parameter estimates in step 1 (Davison and Hinkley, 1997, pp. 331-340).

ϵ
(ℓ)
ijc =

log y
(ℓ)
ijc − µ̂

(ℓ)
ijc

σ̂1

, (3.34)

where µ̂
(ℓ)
ijc and σ̂1 are estimates.

Similarly if Y
(ℓ)
ijc follows gamma distribution, we compute the pseudo-residuals

as

ϵ
(ℓ)
ijc =

y
(ℓ)
ijc − µ̂

(ℓ)
ijc

(µ̂
(ℓ)
ijc ∗ γ̂

(ℓ)
ijc)

1/2
, (3.35)

where µ̂
(ℓ)
ijc and γ̂

(ℓ)
ijc are estimates from step 1.

Next, we use the empirical cumulative distribution function (CDF) to get the

ranks of pseudo-residuals. The rank R
(ℓ)
ijc of the residual ϵ

(ℓ)
ijc is given by

R
(ℓ)
ijc =

1

I(I + 1)/2 + 1

I∑
i∗=1

I+1−i∗∑
j∗=1

1
(
ε
(ℓ)
i∗j∗c ≤ ε

(ℓ)
ijc

)
,

where 1 is the indicator function.

Now, we approximate the copula term c(F (y
(ℓ)
ijc), F (y

(ℓ′)
ijc ); θc) by c(R

(ℓ)
ijc, R

(ℓ′)
ijc ; θc)

and then maximize the second term in (3.33) to obtain copula parameter θ.

We iterate step 1 and step 2 until the convergence on β(ℓ) is reached. Note that

we choose the marginal distribution for each LOB using the Akaike Information

Criterion (AIC) or Bayesian Information Criterion (BIC).

We summarize the steps to estimate the parameters in (3.33) as follows:

(1) Given initial values β(ℓ)(0), σ
(0)
ℓ , and τ

(0)
ℓ , which are from generalized linear

mixed model. log-likelihood function (3.33) is a function of copula parameter

θ: L2(θ) =
∑C

c=1

∑I
i=1

∑I+1−i
j=1 log c(F (y

(ℓ)
ijc), F (y

(ℓ′)
ijc ); θc). Set iteration k = 0.

(2) Maximize pseudo log-likelihood L3(θ) with respect to θ and obtain θk. Here

L3(θ) =
∑C

c=1

∑I
i=1

∑I+1−i
j=1 log c(R

(ℓ)
ijc, R

(ℓ′)
ijc ; θc).
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(3) Given θk, maximize (3.33) with respect to β(ℓ), σℓ, and τℓ. update k=k+1.

(4) Repeat steps (2) and (3) until it meets the stopping criterion: ||wk+1 −

wk||2 ≤ ϵ, where we group all parameters β(ℓ), σℓ, τℓ, θ under vector w.

3.3.3 Predictive Distribution of the Total Reserve

In practice, actuaries are interested in understanding the uncertainty of reserves.

The bootstrapping technique provides this information and allows for the deter-

mination of the entire predictive distribution. In the bootstrap procedure, we use

the pseudo residuals as defined in (3.35). Following the resampling approach out-

lined in Davison and Hinkley (1997), we summarize the steps of our bootstrap as

follows:

(1) Fit the SUR copula mixed model to the observed incremental paid losses

y
(ℓ)
ijc, generating the residuals for the incremental paid losses using:

ϵ
(ℓ)
ijc =

y
(ℓ)
ijc − µ̂

(ℓ)
ijc

(µ̂
(ℓ)
ijc ∗ γ̂

(ℓ)
ijc)

1/2
, (3.36)

where γ̂
(ℓ)
ijc = exp(x

(ℓ)
ij β̂

(ℓ)
+ z

(ℓ)
c b̂

(ℓ)
)/σℓ is the estimated scale parameter.

(2) Begin the iterative loop, to be repeated N times (e.g., N = 1000):

– Simulate
(
u
(1)
ijc, u

(2)
ijc

)
(i + j − 1 ≤ I) from estimated copula function

C(·; θ̂).

– Transform u
(ℓ)
ijc to the residuals by transform ϵ

∗(ℓ)
ijc = Q(ℓ)(u

(ℓ)
ijc), where

Q(ℓ) is the empirical quantile function of the residuals.

– Generate a set of pseudo incremental paid losses y
∗(ℓ)
ijc , which is given by

y
∗(ℓ)
ijc = ϵ

∗(ℓ)
ijc ∗ (µ̂(ℓ)

ijc ∗ γ̂
(ℓ)
ijc)

1/2 + µ̂
(ℓ)
ijc.

– Estimate the parameters β̂
∗(ℓ)

, σ̂ℓ
∗, and τ̂ℓ

∗ and θ̂∗ for y
∗(ℓ)
ijc using the

SUR copula mixed model.
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– Obtain a prediction of the total reserve for company c by

2∑
ℓ=1

I∑
i=2

I∑
j=I−i+2

ω
(ℓ)
ic · exp(η̂∗(ℓ)ijc ),

where η̂
∗(ℓ)
ijc = x

(ℓ)
ij β̂

∗(ℓ)
+ z

(ℓ)
c b̂

∗(ℓ)
and ω

(ℓ)
ic is the premium for accident

year i and company c in LOB ℓ.

3.4 Applicaton

To illustrate the SUR mixed model in loss reserving, we analyze a dataset of 30

pairs of loss triangles from Schedule P of the National Association of Insurance

Commissioners (NAIC) database (Meyers and Shi, 2011). Each pair of loss trian-

gles is from the same company and consists of personal auto LOB and commercial

auto LOB. Each triangle includes incremental claims data for accident years 1988

to 1997 and spans ten development years. We consider the reserve prediction and

risk capital analysis for a major US property-casualty insurer. We use the upper

part of the loss triangles to train the SUR mixed model and evaluate the predictive

performance of the model on the lower part of the loss triangles.

We model the accident year and development year effects as fixed and we

assume a specific effect of each level of these categorical variables (accident year

and development year). With fixed effects, the estimated parameters for each

accident year and development year have a direct interpretation. For the company

level heterogeneity, we model it with random effects and assume to follow a normal

distribution. Random effects are more parsimonious than fixed effects, leading to

a more robust model.

For the SUR normal mixed model, we work with the logarithm of the loss ratios

for both LOBs. Since the dataset is historical, the actual reserve is known and

can be compared with predictions obtained from the SUR normal mixed model.
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We first apply the SUR normal mixed model to the 30 pairs of loss triangles. By

maximizing the log-likelihood function in 3.23, we obtain the estimated standard

deviations: σ1 = 0.85 and σ2 = 1.12. The estimated standard deviations for the

company random effects are τ1 = 0.28 and τ2 = 0.41. The variation induced

by the company is larger in the commercial LOB than in the personal LOB. For

the SUR normal mixed model, the estimated correlation coefficient is 0.23, which

indicates a positive association between the two LOBs. The predicted reserves for

the personal LOB and commercial LOB are 10 891 437 and 562 111, respectively.

Table 3.3: Point estimates of the reserves.

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

SUR Gaussian copula 6 823 325 378 386 7 364 511
SUR normal mixed 10 891 437 562 111 11 453 548
SUR copula mixed 7 166 266 378 217 7 544 483

Table 3.4: Performance comparison using percentage error of actual and estimated
loss reserve.

LOB
Personal Auto
Commercial Auto
Total

SUR copula SUR normal mixed SUR copula mixed
-15.6% 34.7% -11.4%
19.0% 76.5% 18.8%
-12.4% 36.3% -10.2%

For the SUR copula mixed model, we use a gamma distribution as the marginal

for both LOBs based on the AIC statistic from 30 pairs of loss triangles. We use a

Gaussian copula to capture the dependence between the two LOBs. The estimated

shape parameters for the two LOBs are σ1 = 2.01 and σ2 = 1.10, respectively. The

estimated standard deviations for the company random effects in the two LOBs

are τ1 = 0.33 and τ2 = 0.40, respectively. The estimated dependence parameter

between the two LOBs for the major US property-casaulty company is around -

0.20. As shown in Table 3.3, the estimated reserve for the personal LOB is 7 246 135

while the reserve for the commercial LOB is 377 324.
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Table 3.4 presents a comparison of various models based on the percentage

error between the actual and the estimated reserves. Note that we use a gamma

distribution as the marginal for both LOBs and model the company effects using

fixed effects in the SUR copula model. The SUR copula mixed model produces

a smaller bias between the predicted reserve and the true reserve than the SUR

copula for both LOBs. This shows the effectiveness of SUR copula mixed models in

handling heterogeneity in data from multiple companies. The subtle improvement

in the predicted reserve in the commercial LOB may be due to the limited flexibility

of the marginal distribution for the commercial LOB.

Table 3.5: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping.

Reserve Bootstrap reserve Bias Std. dev. CV
SUR copula 7 364 511 7 118 647 3.32% 1 865 284 0.262
SUR copula mixed 7 544 483 7 464 656 1.13% 599 454 0.080

Insurance companies are concerned with the expected unpaid loss or reserve, its

standard deviation, and other risk measures. These measures are defined based on

the reserve’s predictive distribution, such as the Tail Value-at-Risk (TVaR). This

measure is more informative than the value at risk (VaR), and the subadditivity

of VaR is not generally guaranteed.

We employ the bootstrap method to obtain the predictive distribution of the

reserve. Table 3.5 shows the estimated reserve, bias, and standard errors for

different models. It has been observed that the standard deviation from the SUR

copula mixed model is smaller than that from the SUR copula regression models,

showing the effectiveness of the SUR copula mixed model in handling heterogeneity

across companies and between LOBs.

The predictive distribution is particularly useful for assessing the risk capital of

an insurance portfolio. The risk capital is the difference between the risk measure

and the expected unpaid losses of the portfolio. We show in Table 3.6 the calcu-
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lated risk capitals for SUR copula mixed models with dependence captured by the

Gaussian copula, the SUR copula, and the silo method, which is widely used in

industry. Using the 30 pairs of loss triangles, we model the company effects using

fixed effects in the SUR copula method. For the silo method, we use the simple

sum of the risk measures from each subportfolio (i.e., the personal auto line and

the commercial auto line) as the risk measure for the entire portfolio. The silo

method does not account for any diversification effect in the portfolio.

Table 3.6: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 9 632 534 10 799 117 11 248 347 11 863 905 12 950 137 15 168 393
SUR copula 8 992 101 9 975 813 10 325 124 10 793 817 11 526 223 13 179 997

SUR copula mixed 8 110 263 8 436 316 8 555 644 8 723 725 9 009 793 9 597 029

Risk capital
Silo-GLM 1 166 583 1 615 813 2 231 371 3 317 603 5 535 859
SUR copula 983 712 1 333 023 1 801 716 2 534 122 4 187 896

SUR copula mixed 326 053 445 381 613 462 899 530 1 486 766

Table 3.7: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR copula vs Silo-GLM 15.68% 17.50% 19.26% 23.62% 24.35%

SUR copula mixed vs Silo-GLM 70.73% 72.00% 72.32% 72.86% 73.24%

We show in Table 3.7 the gain in terms of risk capital for SUR copula mixed

models compared to the silo method. The SUR copula mixed model captures the

dependence between the two LOBs with one or multiple dependence parameters,

as well as the heterogeneity across companies and between LOBs, resulting in the

greatest gain in risk capital.

3.5 Simulation Study

We begin with the estimated SUR Gaussian copula mixed model for the real data

in Section 3.4. In the model, the conditional distributions of the marginals given

the random effects are gamma. Figure 3.1 and Figure 3.2 illustrate the box plot

of the loss ratios for each LOB from 30 companies. Based on the box plots, the
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commercial LOB exhibits a larger number of outliers than the personal LOB,

suggesting higher variability across companies.

Figure 3.1: The loss ratios for different companies in personal LOB.

We also perform a heterogeneity analysis to capture variability in loss ratios

across companies, using the heterogeneity measure I2 to quantify variation both

across companies and between LOBs. Table 3.8 shows the calculated I2 for the

loss ratios in each development year. We observe large I2 values, indicating the

presence of heterogeneity across companies in both LOBs for all development years.

Table 3.8: The heterogeneous measure I2 for the loss ratios across companies.

Dev 1 Dev 2 Dev 3 Dev 4 Dev 5 Dev 6 Dev 7 Dev 8 Dev 9
Personal auto 0.9815 0.9308 0.9052 0.9674 0.9675 0.9599 0.9679 0.9580 0.9986
Commercial auto 0.9769 0.7891 0.8265 0.8674 0.9514 0.9579 0.9856 0.9967 0.9998

For each company, we also calculate I2 between LOBs for the loss ratios in

Table 3.9. We find that some companies exhibit low heterogeneity between LOBs,

whereas others show higher levels of heterogeneity. For insurers, low heterogeneity

may indicate stronger correlations between LOBs, potentially limiting diversifica-

tion benefits, while high heterogeneity could offer greater opportunities to reduce
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overall risk capital through diversification.

Table 3.9: The heterogeneous measure I2 for the loss ratios between LOBs.

Company code 1 353 388 620 1066 1090 1538 1767 3240 4839
I2 0.000000 0.005894 0.341242 0.656587 0.000000 0.676405 0.000000 0.588694 0.760000 0.214274

Company code 5185 6947 7080 8427 10022 13420 13439 13641 13889 14044
I2 0.000000 0.795116 0.899615 0.000000 0.904714 0.200141 0.000000 0.159789 0.949554 0.000000

Company code 14176 14257 15199 18163 25275 27022 27065 29440 31550 34606
I2 0.844223 0.000000 0.000000 0.000000 0.876128 0.410227 0.000000 0.000000 0.478415 0.904328

To account for the above results, we consider two different scenarios for the

company random effects: (1) lower heterogeneity and (2) higher heterogeneity,

subsequently referred to as Simulation 1 and Simulation 2. The simulation settings,

such as the accident year and development year effects, are included in Appendix

B.2.

Figure 3.2: The loss ratios for different companies in commercial LOB.

In each scenario, we simulate 30 pairs of loss triangles to reflect multiple

companies’ data. For each company c, we simulate the company effects from

b
(1)
c ∼ N(0, τ1) and b

(2)
c ∼ N(0, τ2) with τ1 = 0.2 and τ2 = 0.3. To simulate the

losses in the loss triangles
(
Y

(1)
ijc , Y

(2)
ijc

)
, we first calculate the systematic compo-

nent η
(ℓ)
ijc(ℓ = 1, 2) from the accident year and development year effect β(ℓ) and
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company random effect b(ℓ).

Next, we simulate u
(ℓ)
ij (ℓ = 1, 2) (i + j − 1 ≤ I) from Gaussian copula model

c(·; θ) with dependence parameter θ = −0.3. Then, we transform u
(ℓ)
ij to the upper

triangles by inverse function y
(ℓ)
ijc = F (ℓ)(−1)(u

(ℓ)
ij ; η

(ℓ)
ijc, γ

(ℓ)), where η
(ℓ)
ijc = x

(ℓ)
ij β

(ℓ) +

z
(ℓ)
c b(ℓ).

Table 3.10: Point estimates of the reserves for Simulation 1 (lower heterogeneity).

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

SUR Gaussian copula 7 575 901 1 058 039 8 633 940
SUR copula mixed 7 522 203 1 033 518 8 555 721

Table 3.11: Point estimates of the reserves for Simulation 2 (higher heterogeneity).

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

SUR Gaussian copula 64 495 139 129 203 624
SUR copula mixed 65 881 132 708 198 589

We apply the SUR copula mixed model to the simulated loss triangles and

compare the estimated reserves with those from the SUR Gaussian copula model in

Table 3.10 and Table 3.11. We also evaluated the percentage error of the estimated

reserves and actual reserves in Table 3.12 and Table 3.13. The SUR copula mixed

model outperforms the SUR Gaussian copula models for both LOBs.

Table 3.12: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation 1 (lower heterogeneity).

LOB
Personal Auto
Commercial Auto
Total

SUR Gaussian Copula SUR copula Mixed
6.5% 5.7%
5.1% 2.7%
6.3% 5.3%

For both the SUR copula mixed model and the SUR Gaussian copula model,

we conduct bootstrap simulations to generate the predictive distribution of the

total reserve. We then computed the risk measures and risk capitals in Table 3.16

and Table 3.17.
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Table 3.13: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation 2 (higher heterogeneity).

LOB
Personal Auto
Commercial Auto
Total

SUR Gaussian Copula SUR copula Mixed
-3.5% -1.5%
11.9% 6.8%
6.5% 3.9%

Table 3.14: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping for Simulation 1 (lower het-
erogeneity).

Reserve Bootstrap reserve Bias Std. dev. CV
SUR Gaussian copula 8 633 940 8 679 885 0.53% 896 505 0.10
SUR copula mixed 8 555 721 8 579 244 0.27% 392 197 0.05

Table 3.15: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping for Simulation 2 (higher het-
erogeneity).

Reserve Bootstrap reserve Bias Std. dev. CV
SUR Gaussian copula 203 624 204 317 0.34% 31 888 0.16
SUR copula mixed 198 589 199 008 0.21% 13 894 0.07

Table 3.16: Risk capital estimation for different methods for Simulation 1 (lower
heterogeneity).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 9 759 583 10 269 193 10 470 030 10 756 851 11 209 133 12 182 469

SUR Gaussian copula 9 552 057 9 978 909 10 135 782 10 356 717 10 715 211 11 332 526
SUR copula mixed 8 957 174 9 138 074 9 202 294 9 287 100 9 422 704 9 697 197

Risk capital
Silo-GLM 509 610 710 447 997 268 1 449 550 2 422 886

SUR Gaussian copula 426 852 583 725 804 660 1 163 154 1 780 469
SUR copula mixed 180 900 245 120 329 926 465 530 740 023

Table 3.17: Risk capital estimation for different methods for Simulation 2 (higher
heterogeneity).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 249 075 272 437 281 655 294 005 314 755 355 305

SUR Gaussian copula 235 253 252 084 258 278 266 523 277 778 297 145
SUR copula mixed 212 687 219 275 221 677 224 699 228 961 235 865

Risk capital
Silo-GLM 23 362 32 580 44 930 65 680 106 230

SUR Gaussian copula 16 831 23 025 31 270 42 525 61 892
SUR copula mixed 6 588 8 990 12 012 16 274 23 178

Compared to the SUR Gaussian copula model, the SUR copula mixed model

achieves a smaller bias and a notably lower standard deviation for both cases, re-
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Table 3.18: Risk capital gain for different methods for Simulation 1 (lower hetero-
geneity).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 15.68% 17.50% 19.26% 23.62% 24.35%
SUR copula mixed vs Silo-GLM 72.05% 72.44% 72.51% 72.89% 73.14%

Table 3.19: Risk capital gain for different methods for Simulation 2 (higher het-
erogeneity).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 27.96% 29.33% 30.40% 35.25% 41.74%
SUR copula mixed vs Silo-GLM 71.80% 72.41% 73.27% 75.22% 78.18%

sulting in a reduced CV. These results indicate that the SUR copula mixed model

produces more accurate reserve predictions, effectively capturing both heterogene-

ity across companies and LOBs. Consistently, the SUR copula mixed model pro-

duces a larger risk capital gain than the SUR Gaussian copula, as shown in Table

3.18 and Table 3.19. The SUR copula mixed model leverages the heterogeneity

across companies and obtains a larger risk diversification benefit.

3.6 Summary and Discussion

We have proposed SUR copula mixed models to extend SUR copula regression by

incorporating data from multiple companies for improved loss prediction and risk

capital analysis, and developed a two-stage approach to estimate the parameters

for SUR copula mixed models. In the SUR copula mixed model framework, the

model contains the fixed effects and random effect, which characterize the variation

induced in the response by different companies. In addition to the point estimate

of the reserves, we generate the predictive distribution of the reserves by residual

bootstrapping.

To determine whether to include the company random effect, we can use a

likelihood ratio test. We fit two models: a null model without the random effect

(with only fixed effects) and an alternative model with the random effects (a

mixed-effects model). We calculate a test statistic based on the difference in the
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log-likelihoods between the two models. The test statistic approximately follows

a chi-squared distribution. This test allows to calculate a p-value to determine if

the random effect is a significant addition to the model.

Our analysis of real data and simulation studies revealed some limitations of

SUR copula mixed models. For the most recent accident and development years,

we have progressively fewer observed incremental paid losses. To address this, reg-

ularization techniques such as the least absolute shrinkage and selection operator

(LASSO) in Tibshirani (1996) can be applied to handle the shrinkage of model

parameters. Next, we combine the SUR copula mixed model with LASSO to miti-

gate the impact of reduced observed paid losses in later accident and development

years.
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Chapter 4

Sparse SUR (SSUR) Copula

Mixed Models

4.1 Introduction

Regularized regression has recently gained traction in the loss reserving litera-

ture to handle high-dimensional predictors and improve model interpretability.

Williams et al. (2015) applied the elastic net penalty, a convex combination of L1

and L2 penalties, to a dataset with over 350 initial covariates, enhancing predictive

performance in insurance claims modeling. McGuire et al. (2018) introduced a loss

reserving LASSO framework (Tibshirani, 1996), modeling individual claim data

with complex features and applying L1 regularization to stabilize the estimation

of loss development factors. Regularization is particularly beneficial in loss reserv-

ing, where collinearity and sparse observations can compromise the robustness of

the model. Notably, it is straightforward to incorporate LASSO regularization into

the SUR framework, enabling effective variable selection while preserving model

interpretability.

We propose a sparse SUR copula mixed model to increase the robustness of

the SUR copula mixed model. Sparsity is introduced through regularization on
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the fixed effects, which promotes variable selection and improves interpretability.

Parametric bootstrapping has been a widely used approach for resampling in-

cremental paid losses, followed by generating the predictive distribution of the loss

reserve. Davison and Hinkley (1997) provides a comprehensive framework for boot-

strap methodologies in the context of generalized linear models using the pseudo

residuals. Kirschner et al. (2008) employs a synchronized parametric bootstrap

to model dependencies between correlated lines of business, capturing correlations

that existed in the loss triangles when producing the pseudo loss triangles. Taylor

and McGuire (2007) further develops this approach in the context of generalized

linear models. Most recently, Abdallah et al. (2015) applies the parametric boot-

strapping to generate the predictive distribution of the reserve while modeling

dependencies between loss triangles using copulas.

While parametric bootstrap remains a natural choice for simulating future

reserves, it requires adaptation for sparse models. In the sparse SUR copula mixed

model, standard bootstrap methods may fail when some of the components of

fixed effects coefficients are zero, leading to instability in the resampling process.

To address this, we adopt a modified residual bootstrap based on the method of

Chatterjee and Lahiri (2011) to construct a more robust resampling procedure that

accommodates sparsity. This approach preserves that similar coefficients are set to

zero in all resampling, enabling the stable estimation of the predictive distribution

of reserves in the presence of regularized effects.

4.2 Background

4.2.1 The Lasso for Linear Models

First, we summarize the LASSO for linear models. We denote the predictor used

in linear regression by X. The parameter vector β of the linear regression can be
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obtained using the least squares method. Let y denote the M-dimensional response

vector; then the lasso can be written as follows using the Lagrangian form

min
β

{
1

2
∥y −Xβ∥22 + λ∥β∥1

}
, (4.1)

where λ > 0. Now, let L(β) = 1
2
∥y −Xβ∥22 + λ∥β∥1. That is,

L(β) = f(β) + λ∥β∥1

=
1

2

M∑
i=1

[
y(i) −

n∑
j=1

βjx
(i)
j

]2
+ λ

n∑
j=1

|βj| .
(4.2)

4.2.2 The Coordinate Descent Method

As in Hastie et al. (2015), we apply the coordinate descent procedure to perform

the numerical computation of the solution for the lasso problem. Now we take the

derivative of f(β) with respect to β, and we have

∂

∂βj

f(β) = −
M∑
i=1

x
(i)
j

[
y(i) −

n∑
j=1

βjx
(i)
j

]

= −
M∑
i=1

x
(i)
j

[
y(i) −

n∑
k ̸=j

βkx
(i)
k − βjx

(i)
j

]

= −
M∑
i=1

x
(i)
j

[
y(i) −

n∑
k ̸=j

βkx
(i)
k

]
+ βj

M∑
i=1

(
x
(i)
j

)2
≜ −ρj + βjzj.

(4.3)

To perform coordinate descent, we must also isolate βj for the L1 term.

λ
n∑

j=0

|βj| = λ |βj|+ λ
n∑

k ̸=j

|βk| . (4.4)

Optimizing this equation as a function of βj reduces it to a univariate opti-

mization problem.
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∂βj
λ

n∑
j=0

|βj| = ∂βj
λ |βj| =


{−λ} if βj < 0

[−λ, λ] if βj = 0

{λ} if βj > 0

. (4.5)

Next, we compute the derivative of the Lasso cost function and equate it to

zero to find the minimum:

∂βj
f(β) = ∂βj

f(β) + ∂βj
λ∥β∥1

0 = −ρj + βjzj + ∂βj
λ ∥βj∥

0 =


−ρj + βjzj − λ if βj < 0

[−ρj − λ,−ρj + λ] if βj = 0

−ρj + βjzj + λ if βj > 0.

(4.6)

For the second case, we must ensure the closed interval contains zero

0 ∈ [−ρj − λ,−ρj + λ]

−ρj − λ ≤ 0

−ρj + λ ≥ 0

−λ ≤ ρj ≤ λ.

Solving for βj for all three cases, we have


βj =

ρj+λ

zj
for ρj < −λ

βj = 0 for − λ ≤ ρj ≤ λ

βj =
ρj−λ

zj
for ρj > λ

. (4.7)

Lasso is an effective tool to eliminate noisy covariates from a large set of can-

didates since its loss function can force many components βk to zero. The term
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λ||β||1 serves as a penalty for the parameters included in the model. The penalty

increases with increasing λ. When λ is close to zero, there is no elimination of

covariates. When λ goes to infinity, we eliminate all covariates.

For lasso regression, we have a sequence of models corresponding to different

choices of λ. It is important to choose λ since it controls the bias-variance trade-

off. A suitable λ can improve the prediction accuracy and interpretability. If the

regularization is too strong, many important covariates may be omitted, which

decrease prediction accuracy. The optimal λ is the one that minimizes the mean

squared error in the validation set.

We can use cross-validation to evaluate the prediction accuracy of the model

produced by lasso. It consists of the following steps:

1 Randomly select one n-th of the data set as a validation sample;

2 Train the model on the remainder of the data set;

3 Use the trained model to generate fitted values on the test data;

4 Compute the mean squared error between the fitted values and actual values

for the validation set;

5 Repeat steps [1] to [4] many times. The cross-validation error is the average

of the mean squared errors.

4.2.3 The Lasso for Generalized Linear Models

We can fit GLM by maximizing the likelihood, or equivalently, minimizing the

negative log-likelihood along with an ℓ1 penalty

min
β

{
− 1

M
L (β;y,X) + λ∥β∥1

}
, (4.8)
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where y is the M -vector of outcomes and X is the M×p matrix of predictors. The

specific form of the log-likelihood L depends on the GLM used. Some examples

are the following.

If the responses follow a Gaussian distribution, we have L (β;y,X) = 1
2σ2 ∥y −Xβ∥22.

Then the optimization problem in (4.8) corresponds to the ordinary linear least-

squares lasso.

If the response is binary, we estimate the probability P (y = 1). Then, the

negative log likelihood with ℓ1 penalty takes the form

− 1

M

M∑
i=1

{yi log P (Y = 1 | xi) + (1− yi) log P (Y = 0 | xi)}+ λ∥β∥1

= − 1

M

M∑
i=1

{
yi
(
β0 + xT

i β
)
− log

(
1 + eβ0+xT

i β
)}

+ λ∥β∥1

= −ℓ(β0,β) + λ∥β∥1. (4.9)

We can use iteratively reweighted least squares (Holland and Welsch, 1977)

to maximize the log-likelihood ℓ(β0,β). Given the current estimates of the pa-

rameters (β̃0, β̃), we form a quadratic approximation (Hastie et al., 2015) to the

log-likelihood

ℓQ (β0,β) = − 1

2M

N∑
i=1

wi

(
zi − β0 − xT

i β
)2

+ C
(
β̃0, β̃

)2
, (4.10)

where

zi = β̃0 + xT
i β̃ +

yi − p̃ (xi)

p̃ (xi) (1− p̃ (xi))
, (4.11)

wi = p̃ (xi) (1− p̃ (xi)) , (4.12)
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where p̃ (xi) is evaluated at the current parameters (β̃0, β̃) and the term C
(
β̃0, β̃

)2
is constant.

For each value of λ, we compute the quadratic approximation ℓQ at the current

parameters (β0,β). We use coordinate descent to solve the penalized weighted

least-squares problem

−min
β

{ℓQ(β0,β) + λ∥β∥1} . (4.13)

This requires a sequence of three nested loops:

� outer loop: Decrement λ.

� middle loop: Form the quadratic function ℓQ(β0,β) at the current parameters

(β̃0, β̃)

� inner loop: Solve the penalized weighted least squares problem using the

coordinate descent algorithm.

As an example, if a response variable is non-negative integer, we often use the

Poisson distribution. To ensure the positivity of the mean, we usually choose the

log link. Thus, the GLM is

log µ = β0 + xTβ. (4.14)

Then the negative log likelihood with ℓ1 penalty takes the form

− 1

M

M∑
i=1

{
yi
(
β0 + βTxi

)
− eβ0+βT xi

}
+ λ∥β∥1. (4.15)

4.3 Proposed Sparse SUR Model

For the most recent accident and development years, the number of observed

incremental paid losses progressively decreases. To improve the robustness of the
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SUR copula mixed model under this sparse history of incremental paid losses, we

propose applying shrinkage techniques to the fixed effects parameters. Specifically,

we incorporate the least absolute shrinkage and selection operator (LASSO) into

the SUR copula mixed model to shrink the fixed effects coefficients toward zero

and reduce their variability.

We construct the loss function as the negative log-likelihood of equation (3.33)

combined with an L1 penalty on β(1) and β(2). The Lagrangian form of the pe-

nalized loss function includes tuning parameters λ1 and λ2 corresponding to the

penalties on β(1) and β(2), respectively.

Jλ1,λ2(β
(1),β(2), σ1, σ2, τ1, τ2, θ | y(1)

1 ,y
(1)
2 , . . . ,y

(1)
C ,y

(2)
1 ,y

(2)
2 , . . . ,y

(2)
C )

= −
2∑

ℓ=1

L(ℓ)(β(ℓ), σℓ, τℓ | y(ℓ)
1 , . . . ,y

(ℓ)
C )−

C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(R
(1)
ijc , R

(2)
ijc ; θc)

+ λ1||β(1)||1 + λ2||β(2)||1

= −
2∑

ℓ=1

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(y
(ℓ)
ijc|b(ℓ)c ,β(ℓ), σℓ)f(b

(ℓ)
c ; τℓ)db

(ℓ)
c + λ1||β(1)||1 + λ2||β(2)||1

−
C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(R
(1)
ijc , R

(2)
ijc ; θc). (4.16)

We aim to estimate the parameters β(ℓ), σℓ, τℓ and θ by minimizing the pe-

nalized loss function in (4.16). The estimation procedure follows the two-stage

iterative procedure as detailed in section 3.3.2, but with a modification to step 1.

As an initialization, we obtain estimates of β(ℓ), σℓ, and τℓ by fitting a generalized

linear mixed model to the chosen distribution of Y
(ℓ)
ijc .

In step 1, the penalized loss function in (4.16) depends on the regularization

parameters λ1 and λ2, which control the degree of shrinkage for β(1) and β(2),

respectively. We select these parameters using the Akaike Information Criterion
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(AIC), defined as

AIC = −2 logL(β̂
(1)
, β̂

(2)
, σ̂1, σ̂2, τ̂1, τ̂2, θ̂) + 2 · d̂fλ1,λ2

, (4.17)

where, d̂fλ1,λ2
= |{1 ≤ k ≤ I : β̂

(ℓ)
k ̸= 0}| + 5, accounting for the number of

nonzero fixed-effect coefficients, the two variance parameters, the two dispersion

parameters, and the dependence parameter.

For each pair of λ1 and λ2, we maximize (4.16) with respect to β(ℓ) and select

the pair that minimizes AIC in (4.17). Given the optimal β(ℓ), we then itertavely

update remianing parameters σℓ, and τℓ in step 1 and θ in step 2.

We summarize the steps to estimate the parameters in (4.16) as follows:

(1) Given initial values β(ℓ)(0), σ
(0)
ℓ , and τ

(0)
ℓ , which are from generalized linear

mixed model, log-likelihood function (4.16) is a function of copula parameter

θ: L2(θ) =
∑C

c=1

∑I
i=1

∑I+1−i
j=1 log c(F (y

(ℓ)
ijc), F (y

(ℓ′)
ijc ); θc). Set iteration k = 0.

(2) Maximize pseudo log-likelihood L3(θ) with respect to θ and obtain θ(k). Here

L3(θ) =
∑C

c=1

∑I
i=1

∑I+1−i
j=1 log c(R

(ℓ)
ijc, R

(ℓ′)
ijc ; θc).

(3) Given θ(k), for different λ1 and λ2, maximize (4.16) with respect to β(ℓ). λ1

and λ2 are selected using AIC/BIC.

(4) Given θ(k) and β(ℓ)(k), maximize (4.16) with respect to σℓ and τℓ. update

k=k+1.

(5) Repeat steps (2) and (4) until it meets the stopping criterion: ||wk+1 −

wk||2 ≤ ϵ, where we group parameters θ, λ1, λ2 under vector w.

The AIC criterion selects the model that minimizes

AIC(λ) = −2Lλ + 2 · dfλ, (4.18)
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where Lλ is the maximum log-likelihood for the λth model and dfλ is the sum

of the number of nonzero fixed-effect coefficients and the number of covariance

parameters.

The BIC has a similar form as the AIC, with the exception that the log-

likelihood is penalized by log n instead of 2, where n is the number of samples.

The BIC criterion selects the model that minimizes:

BIC(λ) = −2Lλ + log(n) · dfλ. (4.19)

Based on a modified version of the bootstrap lasso estimator by Chatterjee

and Lahiri (2011), we implement the following bootstrapping steps to generate the

reserve’s predictive distribution.

(1) Fit the sparse SUR copula mixed model to the observed incremental paid

losses y
(ℓ)
ijc and choose the optimal penalization parameter λ̂1 and λ̂2.

(2) Calculate the thresholded coefficients β̃, where we force components of β̂ to

be exactly zero whenever they are close to zero.

(3) Generate the residuals for the incremental paid losses using:

ϵ
(ℓ)
ijc =

y
(ℓ)
ijc − µ̃

(ℓ)
ijc

(µ̃
(ℓ)
ijc ∗ γ̂

(ℓ)
ijc)

1/2
, (4.20)

where µ̃
(ℓ)
ijc = exp(x

(ℓ)
ij β̃

(ℓ)
+ z

(ℓ)
c b̂

(ℓ)
).

(4) Begin the iterative loop, to be repeated N times (e.g., N = 1000):

– Simulate
(
u
(1)
ijc, u

(2)
ijc

)
(i + j − 1 ≤ I) from estimated copula function

C(·; θ̂).

– Transform u
(ℓ)
ijc to the residuals by transform ϵ

∗(ℓ)
ijc = Q(ℓ)(u

(ℓ)
ijc), where

Q(ℓ) is the empirical quantile function of the residuals.
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– Generate a set of pseudo incremental paid losses y
∗(ℓ)
ijc , which is given by

y
∗(ℓ)
ijc = ϵ

∗(ℓ)
ijc ∗ (µ̂(ℓ)

ijc ∗ γ̂
(ℓ)
ijc)

1/2 + µ̂
(ℓ)
ijc.

– Estimate the parameters β̂
∗(ℓ)

, σ̂ℓ
∗, and τ̂ℓ

∗ and θ̂∗ for y
∗(ℓ)
ijc using the

sparse SUR copula mixed model with the optimal penalization param-

eter λ̂1 and λ̂2.

– Obtain a prediction of the total reserve for company c by

2∑
ℓ=1

I∑
i=2

I∑
j=I−i+2

ω
(ℓ)
ic · exp(η̂∗(ℓ)ijc ),

where η̂
∗(ℓ)
ijc = x

(ℓ)
ij β̂

∗(ℓ)
+ z

(ℓ)
c b̂

∗(ℓ)
and ω

(ℓ)
ic is the premium for accident

year i and company c in LOB ℓ.

4.4 Application

We apply the sparse SUR copula mixed model to a dataset of 30 pairs of loss

triangles from Schedule P of the National Association of Insurance Commissioners

(NAIC) database (Meyers and Shi, 2011). We demonstrate the reserve prediction

and risk capital analysis for a major US property-casualty insurer. We model

the loss ratios in both LOBs with a gamma distribution. By minimizing the loss

function in (4.16), we obtain the estimated shape parameters for the two LOBs:

σ1 = 2.01 and σ2 = 1.10. The estimated standard deviations for the company

random effects are τ1 = 0.30 and τ2 = 0.36, respectively. These indicate that

the volatility in the commercial LOB is higher, and the variation induced by the

company is larger in the commercial LOB than in the personal LOB. We use a

Gaussian copula to model the dependence between the two LOBs. For the sparse

SUR copula mixed model, the estimated dependence parameter is -0.27, which

indicates a negative association between the two LOBs. As shown in Table 4.1,

the estimated reserve for the personal LOB is 7 289 760 while the reserve for the
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commercial LOB is 372 992.

Table 4.1: Point estimates of the reserves.

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

Sparse SUR copula mixed 7 295 694 372 761 7 668 455
SUR Gaussian copula 6 823 325 378 386 7 364 511

Actual reserve 8 086 094 318 380 8 404 474

Table 4.2: Performance comparison using percentage error of actual and estimated
loss reserve.

Personal Auto Commercial Auto Total
Sparse SUR copula mixed -9.8% 17.1% -8.8%
SUR copula mixed -10.3% 18.5% -9.3%
SUR Gaussian copula -15.6% 19.0% -12.4%

Table 4.2 compares the models by showing the percentage error between their

estimated reserves and the actual reserves. The sparse SUR copula mixed model

consistently demonstrates a smaller error than the SUR copula mixed model when

predicting reserves for both LOBs. This indicates that the sparse SUR copula

mixed model effectively handles heterogeneity in data from multiple companies

and the shrinkage of model parameters.

Table 4.3: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping.

Reserve Bootstrap reserve Bias Std. dev. CV
SUR copula mixed 7 623 460 7 530 255 1.22% 612 947 0.082
Sparse SUR copula mixed 7 668 319 7 576 596 1.19% 514 371 0.068

Table 4.3 compares the bias, standard deviation, and coefficient of variation

(CV) of the predictive distribution for different models. The sparse SUR copula

mixed model achieves similar bias but lowers the standard deviation, indicating

greater stability in predictions. With the predictive distribution we generated,

Table 4.4 show the 95% confidence interval of the total reserve, where the lower

bound and upper bound are the 2.5th and 97.5th percentiles of the predictive
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distribution, respectively. We observe that the actual reserve (8 404 474) is within

the 95% confidence interval of the reserve for both models.

Table 4.4: 95% confidence intervals for the total reserve using the predictive dis-
tribution.

SUR copula mixed
Sparse SUR copula mixed

Lower bound Upper bound
6 548 624 8 892 605
6 748 291 8 608 556

We compared the predictive distribution of the reserve from sparse SUR copula

mixed model with that from the SUR copula mixed model. Though Figure 4.1

doesn’t clearly depict the differences in the predictive distribution, Figure 4.2

shows that the sparse SUR copula mixed model generates a shorter tail than SUR

copula mixed model.

Figure 4.1: Boxplot of the predictive
distribution of reserves for different
models.

Figure 4.2: QQ plot of the predictive
distribution of reserves for different
models.

Table 4.5: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 9 632 534 10 799 117 11 248 347 11 863 905 12 950 137 15 168 393

SUR Gaussian copula 8 992 101 9 975 813 10 325 124 10 793 817 11 526 223 13 179 997
Sparse SUR copula mixed 8 035 364 8 300 898 8 400 387 8 525 030 8 742 768 9 224 643

Risk capital
Silo-GLM 1 166 583 1 615 813 2 231 371 3 317 603 5 535 859

SUR Gaussian copula 983 712 1 333 023 1 801 716 2 534 122 4 187 896
Sparse SUR copula mixed 265 534 365 023 489 666 707 404 1 189 279

Table 4.6: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 15.68% 17.50% 19.26% 23.62% 24.35%

Sparse SUR copula mixed vs Silo-GLM 76.16% 77.05% 77.91% 78.03% 78.59%
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We show in Table 4.6 the gain in terms of risk capital for sparse SUR copula

mixed models compared to the silo method. The sparse SUR copula mixed models

captures the dependence between the two LOBs with one or multiple dependence

parameters and generates larger risk capital gain compared to the SUR copula

model. The sparse SUR copula mixed model effectively reduces the effect of model

parameter shrinkage, resulting in the largest gain in risk capital. We found that

the sparse SUR copula mixed model provides the greatest diversification benefits

and the most efficient use of capital.

4.5 Simulation Study

In this simulation study, we simulate 30 pairs of loss triangles to represent data

from multiple companies. Each pair consists of one loss triangle for the personal

LOB and one for the commercial LOB. For each company c, we simulate the

company random effects using b
(1)
c ∼ N(0, τ1) and b

(2)
c ∼ N(0, τ2) with τ1 = 0.2 and

τ2 = 0.3. To simulate the losses in the loss triangles
(
Y

(1)
ijc , Y

(2)
ijc

)
, we first calculate

the systematic component η
(ℓ)
ijc(ℓ = 1, 2) from the accident year and development

year effect β(ℓ) and company random effect b(ℓ). One of the accident year effect

parameters is set to 0 to reflect the sparsity in the simulated data; this scenario

is referred to as Simulation Setting 1. In another scenario, we set one of the

development year parameters to 0, which we refer to as Simulation Setting 2.

In Simulation Setting 3, we set an accident year effect parameter to 0 and a

development year parameter to 0.

We use Gaussian copula model c(·; θ) with dependence parameter θ = −0.3

to simulate u
(ℓ)
ij (ℓ = 1, 2) (i + j − 1 ≤ I). Then we obtain the upper triangles

by inverse function y
(ℓ)
ijc = F (ℓ)(−1)(u

(ℓ)
ij ; η

(ℓ)
ijc, γ

(ℓ)), where η
(ℓ)
ijc = x

(ℓ)
ij β

(ℓ) + z
(ℓ)
c b(ℓ).

Finally, the incremental paid losses,
(
X

(1)
ijc , X

(2)
ijc

)
are obtained by multiplying the

simulated y
(ℓ)
ijc by the premium for the i-th accident year.
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Table 4.7: Point estimates of the reserves for Simulation Setting 1 (sparsity in
accident years).

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

Sparse SUR copula mixed 7 387 615 994 914 8 382 530
SUR copula mixed 7 465 672 1 017 500 8 483 172

SUR Gaussian copula 8 597 787 762 678 9 360 465

Table 4.8: Point estimates of the reserves for Simulation Setting 2 (sparsity in
development years).

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

Sparse SUR copula mixed 7 230 840 1 100 206 8 331 046
SUR copula mixed 7 253 686 1 110 404 8 364 090

SUR Gaussian copula 5 884 783 1 220 056 7 104 839

Table 4.9: Point estimates of the reserves for Simulation Setting 3 (sparsity in
accident and development years).

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

Sparse SUR copula mixed 6 703 487 1 013 406 7 716 893
SUR copula mixed 6 688 865 1 017 392 7 716 257

SUR Gaussian copula 6 019 797 1 267 551 7 287 349

We apply the sparse SUR copula mixed model to the simulated loss triangles

and compare the estimated reserves with those from the SUR copula model in

Table 4.7, Table 4.8, and Table 4.9. The estimated dependence parameter from

the sparse SUR copula mixed model is -0.29, which is close to the true dependence

parameter of -0.3.

Table 4.10: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation Setting 1 (sparsity in accident years).

LOB
Personal Auto
Commercial Auto
Total

Sparse SUR copula Mixed SUR copula Mixed SUR Gaussian Copula
4.2% 4.9% 20.8%
1.8% 3.3% -22.6%
3.9% 4.7% 15.6%

Next, we compute the percentage error between the estimated reserves and

the actual reserves in Table 4.10, Table 4.11, and Table 4.12. The sparse SUR
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Table 4.11: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation Setting 2 (sparsity in development years).

LOB
Personal Auto
Commercial Auto
Total

Sparse SUR copula Mixed SUR copula Mixed SUR Gaussian Copula
1.6% 1.9% 17.3%
10.7% 11.8% 22.9%
2.7% 3.2% 12.3%

Table 4.12: Performance comparison using percentage error of actual and esti-
mated loss reserve for Simulation Setting 3 (sparsity in accident and development
years).

LOB
Personal Auto
Commercial Auto
Total

Sparse SUR copula Mixed SUR copula Mixed SUR Gaussian Copula
-5.7% -6.0% -15.4%
4.2% 4.7% 30.4%
-4.5% -4.6% -9.9%

copula mixed model produces smaller percentage errors in both LOBs than the

SUR copula model. Comparing the percentage errors in Table 4.10 and Table

4.11, we find that the sparse SUR copula mixed model effectively accounts for

the reduced number of incremental paid losses history in recent development and

accident years.

Table 4.13: Bias, Standard deviation, Coefficient of variation (CV) from the predic-
tive distribution using parametric bootstrapping for Simulation Setting 1 (sparsity
in accident years).

Reserve Bootstrap reserve Bias Std. dev. CV
SUR Gaussian copula 9 360 465 9 473 081 1.21% 1 430 188 0.15
Sparse SUR copula mixed 8 418 298 8 362 206 0.67% 834 910 0.10

Table 4.14: Bias, Standard deviation, Coefficient of variation (CV) from the predic-
tive distribution using parametric bootstrapping for Simulation Setting 2 (sparsity
in development years).

Reserve Bootstrap reserve Bias Std. dev. CV
SUR Gaussian copula 7 104 839 7 159 126 0.76% 1 133 194 0.16
Sparse SUR copula mixed 8 331 046 8 442 766 1.34% 849 607 0.11

To generate the predictive distribution of the reserves, we perform the proposed

modified bootstrap as outlined in section 4.3 for both the SUR copula model

88



Ph.D. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

Table 4.15: Bias, Standard deviation, Coefficient of variation (CV) from the predic-
tive distribution using parametric bootstrapping for Simulation Setting 3 (sparsity
in accident and development years).

Reserve Bootstrap reserve Bias Std. dev. CV
SUR Gaussian copula 7 287 349 7 351 670 0.88% 1 047 167 0.14
Sparse SUR copula mixed 7 716 893 7 751 918 0.45% 743 528 0.09

Table 4.16: Risk capital estimation for different methods for Simulation Setting 1
(sparsity in accident years).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 10 885 418 11 723 992 12 057 173 12 527 821 13 269 161 15 100 527

SUR Gaussian copula 10 858 436 11 608 310 11 899 370 12 259 013 12 884 829 14 109 723
Sparse SUR copula mixed 9 155 447 9 564 475 9 696 652 9 879 661 10 166 494 10 828 871

Risk capital
Silo-GLM 838 574 1 171 755 1 642 403 2 383 743 4 215 109

SUR Gaussian copula 749 874 1 040 934 1 400 577 2 026 393 3 251 287
Sparse SUR copula mixed 409 028 541 205 724 214 1 011 047 1 673 424

True risk capital 363 090 491 570 649 916 883 450 1 339 463

Table 4.17: Risk capital estimation for different methods for Simulation Setting 2
(sparsity in development years).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 8 430 836 9 113 243 9 381 361 9 749 298 10 351 488 11 742 042

SUR Gaussian copula 8 267 915 8 876 446 9 108 225 9 398 868 9 895 646 11 031 386
Sparse SUR copula mixed 9 266 126 9 682 246 9 840 694 10 053 377 10 392 631 11 170 969

Risk capital
Silo-GLM 682 407 950 525 1 318 462 1 920 652 3 311 206

SUR Gaussian copula 608 531 840 310 1 130 953 1 627 731 2 763 471
Sparse SUR copula mixed 416 120 574 568 787 251 1 126 505 1 904 843

True risk capital 327 789 450 061 613 978 884 873 1 408 852

Table 4.18: Risk capital estimation for different methods for Simulation Setting 3
(sparsity in accident and development years).

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 8 753 481 9 520 564 9 820 696 10 232 329 10 900 412 12 165 368

SUR Gaussian copula 8 369 106 8 935 070 9 143 298 9 426 176 9 895 287 10 743 208
Sparse SUR copula mixed 8 466 662 8 841 829 8 985 442 9 175 143 9 454 174 10 008 244

Risk capital
Silo-GLM 767 083 1 067 215 1 478 848 2 146 931 3 411 887

SUR Gaussian copula 565 964 774 192 1 057 070 1 526 181 2 374 102
Sparse SUR copula mixed 375 167 518 780 708 481 987 512 1 541 582

True risk capital 313 950 429 705 582 822 827 869 1 360 640

Table 4.19: Risk capital gain for different methods for Simulation Setting 1 (spar-
sity in accident years).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 10.58% 11.16% 14.72% 14.99% 22.87%

Sparse SUR copula mixed vs Silo-GLM 51.22% 53.81% 55.91% 57.59% 60.30%
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Table 4.20: Risk capital gain for different methods for Simulation Setting 2 (spar-
sity in development years).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 10.83% 11.60% 14.22% 15.25% 16.54%

Sparse SUR copula mixed vs Silo-GLM 39.02% 39.55% 40.29% 41.35% 42.47%

Table 4.21: Risk capital gain for different methods for Simulation Setting 3 (spar-
sity in accident and development years).

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR Gaussian copula vs Silo-GLM 26.22% 27.46% 28.52% 28.91% 30.42%

Sparse SUR copula mixed vs Silo-GLM 51.09% 51.39% 52.09% 54.00% 54.82%

Table 4.22: Risk capital percentage error for different methods for Simulation
Setting 1 (sparsity in accident years).

Risk capital TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 130.95% 138.37% 152.71% 169.82% 214.69%

SUR Gaussian copula 106.53% 111.76% 115.50% 129.37% 142.73%
Sparse SUR copula mixed 12.65% 10.10% 11.43% 14.44% 24.93%

Table 4.23: Risk capital percentage error for different methods for Simulation
Setting 2 (sparsity in development years).

Risk capital TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 108.18% 111.20% 114.74% 117.05% 135.03%

SUR Gaussian copula 85.65% 86.71% 84.20% 83.95% 96.15%
Sparse SUR copula mixed 26.95% 27.66% 28.22% 27.31% 35.21%

Table 4.24: Risk capital percentage error for different methods for Simulation
Setting 3 (sparsity in accident and development years).

Risk capital TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo-GLM 144.33% 148.36% 153.74% 159.33% 150.76%

SUR Gaussian copula 80.27% 80.17% 81.37% 84.35% 74.48%
Sparse SUR copula mixed 19.50% 20.73% 21.56% 19.28% 13.30%

and the sparse SUR copula mixed model. Table 4.13, Table 4.14, and Table

4.15 show the bias and standard deviations of the total loss reserve from the

predictive distribution. The sparse SUR copula mixed model effectively handles

both variations in reduced number of histories in loss ratios across different LOBs.,

leading to smaller standard deviations compared to the SUR copula model.

For both the sparse SUR copula mixed model and the SUR Gaussian copula

model, we compute the risk measures and risk capitals for different risk levels

in Table 4.16, Table 4.17, and Table 4.18. Similar to real data application, the
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sparse SUR copula mixed model produces a larger risk capital gain than the SUR

Gaussian copula, as shown in Table 4.19, Table 4.20, and Table 4.21.

We also compared the calculated risk capital with the true risk capital for each

simulation setting. As shown in Table 4.22, Table 4.23, and Table 4.24, the sparse

SUR copula mixed model generates risk capital closest to the true risk capital.

4.6 Summary and Discussion

We have proposed the sparse SUR copula mixed model to incorporate data from

multiple companies and handle the shrinkage of model parameters, thereby improv-

ing predictions of reserves and risk capital. The model consists of three compo-

nents: fixed accident year and development year effects, company random effects,

and a copula to model dependence between LOBs. We estimate the parameters for

the model using a two-stage iterative approach that alternates between estimating

fixed and random effects and estimating the dependence parameter. We apply co-

efficient thresholding in the bootstrapping to generate the predictive distribution

of the reserves.

We demonstrate the method using both real data from NAIC database and

simulation studies. Empirical and simulation results show that the sparse SUR

copula mixed model generates smaller prediction errors, reduced variability, and

larger risk capital gains than the SUR copula mixed model without sparsity and

the SUR Gaussian copula model. This is due to its ability to capture dependence

between LOBs, and account for variability across companies, and remain robust

under sparsity.

Both Gaussian and Frank copulas can model a wide range of dependence, from

positive to negative. Both copulas primarily captures the dependence structure

in the center of the distribution. However, they are limited in modeling extreme

events: they exhibit no tail dependence. Another limitation of the current formu-
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lation is that we assume the errors within equations are independent. Errors may

exhibit autocorrelation within the equation due to the development year effect over

time. A natural next step is to develop a hybrid model of the recurrent neural

networks (EDT) (Cai et al., 2025) and the SUR copula mixed model, where we

can interpret the dependence using the copula and estimate other components of

the model using EDT.
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Chapter 5

Hybrid Modeling of RNN and

SUR Copula Mixed Models

5.1 Introduction

This chapter presents preliminary results from our ongoing work. We will revise

our methods so that fixed effects are captured by DT, while the dependence structure

is captured using the SUR copula mixed model.

Traditionally, property and casualty (P&C) insurance companies have used

generalized linear models (GLMs) for loss reserving. Insurers operate across mul-

tiple lines of business (LOBs) where claims can be related. Copula regression

accounts for the dependence between incremental paid losses in different LOBs,

leading to large risk capital reduction. However, copula regression has certain

limitations, such as its limited flexibility in modeling marginal distributions. The

incremental paid losses are assumed to be independent and follow a distribution

belonging to the exponential family. Schelldorfer and Wuthrich (2019) discusses

the strategy of using the capabilities of neural networks to improve the GLM,

which is referred to as a hybrid model.

Wüthrich and Merz (2019) demonstrates the importance of embedding classical
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actuarial models like GLM into a neural net, known as the Combined Actuarial

Neural Net (CANN) approach. According to Schelldorfer and Wuthrich (2019),

GLMs can be seen as a starting point of neural network models for both regression

and classification tasks. The benefit of this is that we receive better run times

in model calibration, and we can explicitly identify deficiencies in GLMs. Wilson

et al. (2024) shows that combined models work more effectively than single models

and suggests that combining GLM and neural network performs better as it aids

in maximizing the advantages of both techniques. Saad et al. (2024) combine a

deep neural network architecture with hierarchical Bayesian modeling for complex

spatiotemporal fields, reducing the prediction error across several benchmarks.

We propose a hybrid model of Recurrent Neural Networks (RNN) and SUR

copula mixed model to improve the interpretability of the dependence between

LOBs while modeling the complex fixed effects including interactions. We train the

DT model for each LOB and obtain the corresponding residuals, and then model

these residuals using the SUR copula mixed model. We let the SUR copula mixed

model compute the dependence between the two LOBs, which is not available in

the EDT predicted results. The SUR copula mixed model takes into account the

heterogeneity across companies in the residuals.

5.2 Method

Let Y
(ℓ)
ijc denote the standardized incremental paid loss for accident year i (1 ≤ i ≤

I) and development year j (1 ≤ j ≤ I) in company c. We train the DT model using

Y
(ℓ)
ijc from all companies for the ℓth LOB. DT captures the fixed effects through

neurons, company effects through embeddings, and pair-wise dependencies through

paired sequence input.

For all the Y
(ℓ)
ijc , we calculate the residual as ϵ

(ℓ)
ijc = Y

(ℓ)
ijc − Ŷ

(ℓ)
ijc , where Ŷ

(ℓ)
ijc is

the predicted incremental paid loss from the DT.
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We model the residuals ϵ
(ℓ)
ijc with the SUR copula mixed model. Let µ

(ℓ)
ijc

be the expected value of ϵ
(ℓ)
ijc. We model µ

(ℓ)
ijc using the company effect b(ℓ) =

(b
(ℓ)
1 , b

(ℓ)
2 , ..., b

(ℓ)
C ) as in (5.1).

µ
(ℓ)
ijc = z(ℓ)

c b(ℓ). (5.1)

The probability density for all the data is

f(ϵ
(ℓ)
1 , ϵ

(ℓ)
2 , . . . , ϵ

(ℓ)
C ; τℓ, σℓ) =

∫
[−∞,∞]C

f(ϵ
(ℓ)
1 , ϵ

(ℓ)
2 , . . . , ϵ

(ℓ)
C | b(ℓ)1 , b

(ℓ)
2 , . . . , b

(ℓ)
C ;σℓ)·

f(b
(ℓ)
1 , b

(ℓ)
2 , . . . , b

(ℓ)
C ; τℓ)db

(ℓ)
1 db

(ℓ)
2 . . . db

(ℓ)
C ,

(5.2)

where ϵ
(ℓ)
c is the I(I+1)× 1 vector of residuals for the cth company from ℓth LOB.

Assuming the residuals from each company are independent, we can write the

probability density as

f(ϵ
(ℓ)
1 , ϵ

(ℓ)
2 , . . . , ϵ

(ℓ)
C ;σℓ, τℓ) =

C∏
c=1

∫ ∞

−∞
f(ϵ(ℓ)c | b(ℓ)c ;σℓ)f(b

(ℓ)
c ; τℓ)db

(ℓ)
c

=
C∏
c=1

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(ϵ
(ℓ)
ijc|b(ℓ)c )f(b(ℓ)c ; τℓ)db

(ℓ)
c , (5.3)

where f(ϵ
(ℓ)
ijc|b

(ℓ)
c ;σℓ) denotes the conditional density of ϵ

(ℓ)
ijc given b

(ℓ)
c and f(b

(ℓ)
c ; τℓ)

denotes the density of the company effect b
(ℓ)
c . τℓ is the standard deviation of the

company effect b
(ℓ)
c .

For each LOB, we have the following log-likelihood function

L(ℓ)(τℓ, σℓ | ϵ(ℓ)1 , ϵ
(ℓ)
2 , . . . , ϵ

(ℓ)
C ) =

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(ϵ
(ℓ)
ijc|b(ℓ)c ;σℓ)g(b

(ℓ)
c ; τℓ)db

(ℓ)
c .

(5.4)
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The joint PDF for all (ϵ
(ℓ)
ijc, ϵ

(ℓ′)
ijc ) from all companies is then given by

f(ϵ
(ℓ)
111, ϵ

(ℓ′)
111, ϵ

(ℓ)
121, ϵ

(ℓ′)
121, . . . , ϵ

(ℓ)
1IC , ϵ

(ℓ′)
1IC ; τℓ, σℓ, τℓ′ , σℓ′)

=
C∏
c=1

∫ ∞

−∞

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(ϵ
(ℓ)
ijc | b(ℓ)c ;σℓ)f(ϵ

(ℓ′)
ijc | b(ℓ′)c ;σℓ′)

c(F (ϵ
(ℓ)
ijc | b(ℓ)c ), F (ϵ

(ℓ′)
ijc | b(ℓ′)c ); θ)f(b(ℓ)c ; τℓ)f(b

(ℓ′)
c ; τℓ′)db

(ℓ)
c db(ℓ

′)
c (5.5)

Here c(·) denotes the PDF corresponding to copula C(·).

We then write the copula part in terms of the ranks of pseudo-residuals for ϵ
(ℓ)
ijc

and ϵ
(ℓ′)
ijc , conditional on the random effect b

(ℓ)
c and b

(ℓ′)
c , respectively.

Suppose ϵ
(ℓ)
ijc | b

(ℓ)
c follows normal distribution. We define the pseudo-residuals

as

s
(ℓ)
ijc =

ϵ
(ℓ)
ijc − µ̂

(ℓ)
ijc

σ̂ℓ

. (5.6)

Next, we use the empirical cumulative distribution function (CDF) to get ranks

of pseudo-residuals. The rank R
(ℓ)
ijc of the residual s

(ℓ)
ijc is given by

R
(ℓ)
ijc =

1

I(I + 1)/2 + 1

I∑
i∗=1

I+1−i∗∑
j∗=1

1
(
s
(ℓ)
i∗j∗c ≤ s

(ℓ)
ijc

)
,

where 1 is the indicator function.

We approximate F (ϵ
(ℓ)
ijc | b(ℓ)c ) and F (ϵ

(ℓ′)
ijc | b(ℓ

′)
c ) in (5.5) with R

(ℓ)
ijc and R

(ℓ′)
ijc ,

respectively. The copula term c(F (ϵ
(ℓ)
ijc | b

(ℓ)
c ), F (ϵ

(ℓ′)
ijc | b

(ℓ′)
c ); θ) are replaced by

c(R
(ℓ)
ijc, R

(ℓ′)
ijc ; θ).

In the case of two LOBs, let ℓ = 1 and ℓ′ = 2, we obtain the following log-

likelihood function
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L(σ1, σ2, τ1, τ2, θ | ϵ(1)1 , ϵ
(1)
2 , . . . , ϵ

(1)
C , ϵ

(2)
1 , ϵ

(2)
2 , . . . , ϵ

(2)
C )

=
2∑

ℓ=1

L(ℓ)(σℓ, τℓ | ϵ(ℓ)1 , ϵ
(ℓ)
2 , . . . , ϵ

(ℓ)
C ) +

C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(R
(ℓ)
ijc, R

(ℓ′)
ijc ; θ)

=
2∑

ℓ=1

C∑
c=1

log

∫ ∞

−∞

I∏
i=1

I+1−i∏
j=1

f(ϵ
(ℓ)
ijc|b(ℓ)c )f(b(ℓ)c ; τℓ)db

(ℓ)
c

+
C∑
c=1

I∑
i=1

I+1−i∑
j=1

log c(R
(ℓ)
ijc, R

(ℓ′)
ijc ; θ). (5.7)

We apply the iterative two-stage estimation approach developed in Chapter

3 to estimate the parameters by maximizing (5.7). After fitting the SUR copula

mixed model to the residuals ϵ
(ℓ)
ijc, we obtain the fitted residuals, which are denoted

as ϵ̂
(ℓ)
ijc.

In the hybrid model, we define the loss for each sample in the DT as

(Ŷ
(1)
ijc + ϵ̂

(1)
ijc − Y

(1)
ijc )

2 + (Ŷ
(2)
ijc + ϵ̂

(2)
ijc − Y

(2)
ijc )

2

2
, (5.8)

where Ŷ
(1)
ijc and Ŷ

(2)
ijc are the predicted incremental paid losses from the DT. The

ϵ̂
(ℓ)
ijc represent the structure captured by the SUR copula mixed model. Finally, we

utilize the AMSGRAD method (Reddi et al., 2018) to optimize the parameters in

the DT and then obtain the estimated loss reserve.

5.3 Application

To illustrate the hybrid model, we consider the same data as used in Cai et al.

(2025), which are from the Schedule P of the NAIC database. We use multiple

pairs of loss triangles of paid losses in Schedule P for the year 1997. Each pair

consists of personal auto and commercial auto lines of business.

We train the DT model using the incremental paid losses y
(ℓ)
ijc (1 ≤ i ≤ 10,
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1 ≤ j ≤ 10, 1 ≤ c ≤ 30 ) from 30 companies for the ℓth (ℓ = 1, 2) LOB. During

training, we obtain the predicted losses for the upper triangles. Then we calculate

the residuals ϵ
(ℓ)
ijc by ϵ

(ℓ)
ijc = y

(ℓ)
ijc − ŷ

(ℓ)
ijc, where ŷ

(ℓ)
ijc is the predicted loss for the upper

triangle in the ℓth LOB from the DT model.

As shown in (5.1), we model the residuals ϵ
(ℓ)
ijc with the SUR copula mixed model

and capture the dependence between the two LOBs through a Gaussian copula.

The estimated standard deviations for the company random effects in the two

LOBs are τ1 = 0.010 and τ2 = 0.013, respectively. We show the estimated reserves

and dependence parameter for the major US property and casualty insurer. The

estimated reserves from a single run of the hybrid model for the two LOBs are

7 747 946 and 333 877, respectively. We compare the estimated reserve with those

from other models in Table 5.1. The estimated reserves from the hybrid model are

close to that from the Deep Triangle, which shows that the hybrid model can also

be used to improve the reserve prediction while also improve the interpretability

of the dependence structure between the two LOBs.

Table 5.1: Point estimates of the reserves.

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

Hybrid model 7 747 946 333 877 8 081 823
Deep Triangle 7 781 299 324 024 8 105 323

Sparse SUR copula mixed 7 295 694 372 761 7 668 455
SUR copula mixed 7 246 135 377 324 7 623 460

SUR copula 6 823 325 378 386 7 364 511
Actual reserve 8 086 094 318 380 8 404 474

Table 5.2: Performance comparison using percentage error of actual and estimated
loss reserve.

Personal Auto Commercial Auto Total
Hybrid model -4.2% 4.8% -3.9%
Deep Triangle -4.1% 2.9% -3.8%
Sparse SUR copula mixed -9.7% 16.8% -8.7%
SUR copula mixed -10.3% 18.5% -9.3%
SUR copula -15.6% 19.0% -12.4%
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Table 5.3: Dependence comparison between models. SUR copula mixed model and
sparse SUR copula mixed model are abbreviated to SURCMM and sSURCMM,
respectively.

Hybrid EDT sSURCMM SURCMM SUR copula
dependence parameter -0.24 na -0.19 -0.20 -0.36

Next, we compute the percentage errors between the estimated reserve and

the true reserve in Table 5.2. We find that the hybrid model and Deep Triangle

generate the smallest percentage errors among all the models. The SUR copula

mixed models generates smaller percentage errors than the SUR copula model.

The estimated dependence parameter between the two LOBs is around -0.24,

which indicates a negative association between the two LOBs. As shown in Table

5.3, the negative association is also consistent with the result from SUR copula

and SUR copula mixed models. This dependence structure information is valuable

for the insurer to make strategic business decisions.

5.4 Simulation Study

To further validate our result on the hybrid model for computing the dependence

structure between two LOBs. We simulate 30 pairs of loss triangles using the fixed

effects β(ℓ) estimated from one of the 30 pairs of loss triangles in Chapter 4. We

assume the company’s random effects follow b
(1)
c ∼ N(0, τ1) and b

(2)
c ∼ N(0, τ2)

with τ1 = 0.2 and τ2 = 0.3.

We then simulate u
(ℓ)
ij (ℓ = 1, 2) (i + j − 1 ≤ I) from a Gaussian copula model

c(·; θ) with dependence parameter θ = −0.3. The upper triangles are obtained by

inverse function y
(ℓ)
ijc = F (ℓ)(−1)(u

(ℓ)
ij ; η

(ℓ)
ijc, γ

(ℓ)), where η
(ℓ)
ijc = x

(ℓ)
ij β

(ℓ) + z
(ℓ)
c b(ℓ).

Following the procedure in the application section, we train the DT on the

simulated loss triangles for each LOB. During training, we generated the predicted

loss for the upper triangles, enabling us to obtain the residuals for each LOB. We

apply the SUR copula mixed model to the residuals for the simulated loss triangles.
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The estimated dependence parameter, -0.25, has a consistent sign with the actual

dependence parameter, -0.3.

5.5 Summary and Discussion

We integrate the SUR copula mixed model with the extended Deep Triangle to

interpret the dependence between LOBs. Specifically, we model the heterogeneous

residuals from the DT using a SUR copula mixed model. The heterogeneity across

companies and between LOBs is handled by the random effect, and the dependence

is captured by a Gaussian copula.

To evaluate the proposed integration method, we apply it to multiple loss tri-

angles from the NAIC database. The hybrid modeling of the DT and SUR copula

mixed model reveals a negative association between the personal and commercial

LOBs, consistent with the findings from the SUR copula mixed model. A simula-

tion study further highlights the benefits of integrating the DT and SUR copula

mixed model in interpreting the dependency between LOBs. We will generate syn-

thetic loss triangles by resampling the errors from the SUR copula mixed model

and adding the fixed effects from the DT. This approach will allow us to generate

the predictive distribution of the reserve and perform risk capital analysis.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Discussion

Estimating unpaid claims is crucial for an insurer’s operations in property and

casualty (P&C) insurance. Insurance companies often engage in multiple inter-

related lines of business (LOBs), and accounting for dependence between LOBs

is essential in accurately determining an insurance company’s reserve ranges and

the amount of risk capital needed. Incorporating dependency into reserve calcu-

lations helps the insurer determine the appropriate amount of risk capital and

leverage diversification benefits. The actuarial industry has developed parametric

and non-parametric methods for loss reserving. However, few methods effectively

capture the dependency between loss reserves while balancing interpretability and

predictive accuracy. In particular, there is a lack of hybrid approaches that inte-

grate neural networks with copula-based models to leverage the strengths of both

methods. The SUR copula regression incorporates the dependence between two

LOBs through a copula using loss triangles from one company, producing a rela-

tively large bias, due to modeling single-company effects as fixed effects, restrictive

marginal assumptions, and the omission of sequential dependence in development

year effects. In this thesis, we introduce the use of the Deep Triangle (DT), a
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recurrent neural network, for multivariate loss reserving. We also propose SUR

copula mixed models that extend SUR copula regression to incorporate multiple

companies’ data, improving both loss prediction and risk capital analysis. Fur-

thermore, we introduce a hybrid approach that combines neural networks with

copula-based models to balance interpretability and predictive accuracy; however,

a comprehensive simulation study and in-depth application of this method are left

for future work.

In Chapter 2, we introduce the Extended Deep Triangle (EDT) framework,

which tailors the Deep Triangle (DT), a gated recurrent neural network, for mul-

tivariate loss reserving with bivariate loss triangles of incremental paid losses. We

also introduce an asymmetric loss function to account for the varying volatility

across different lines of business (LOBs). By investigating the impact of input

sequence length, we find that longer sequences generally improve predictive per-

formance. Furthermore, we propose GAN-based techniques to generate predictive

distributions of reserves, yielding larger risk capital gains. To generate these pre-

dictive distributions, we integrate DT with a copula-based generative adversarial

network (copula GAN) that produces synthetic pairs of loss triangles. In addition,

we reduce the computational cost of generating predictive distributions by initial-

izing training with pre-trained model weights on GAN simulated samples. We

validate EDT through simulation studies and an empirical application using real

data from the National Association of Insurance Commissioners (NAIC) database.

Results demonstrate that EDT consistently outperforms copula regression in pre-

dicting loss reserves and produces larger risk capital gains.

While neural network based approaches such as EDT achieve strong predic-

tive performance, their interpretability is limited. Since the ultimate goal of this

thesis is to develop models that balance predictive accuracy with interpretabil-

ity, in Chapter 3, we turn to parametric methods. To integrate the SUR copula

mixed model within a hierarchical structure, we focus on random effects to cap-
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ture heterogeneity across companies and lines of business (LOBs). Importantly,

the dependence structure between LOBs is interpretable through the sign of the

estimated dependence parameters, providing insurers with insight into how dif-

ferent lines are related. We develop a two-stage iterative approach to estimate

the parameters of the SUR copula mixed model and illustrate the method using

multiple pairs of loss triangles from the NAIC database. Our results show that

the SUR copula mixed model produces smaller bias between predicted and actual

reserves compared to the SUR copula regression model. In addition, by generat-

ing the predictive distribution of reserves, we demonstrate that the SUR copula

mixed model provides larger risk capital gains than SUR copula regression, reflect-

ing a greater diversification benefit. Finally, we validate these findings through a

simulation study.

Continuing from the model in Chapter 3, in Chapter 4, we investigate the

shrinkage of model parameters in the SUR copula mixed model and develop the

sparse SUR copula mixed method. In this work, we incorporate the least absolute

shrinkage and selection operator (LASSO) regularization for the fixed effects to

mitigate the impact of limited data in the tail of the loss triangles. We also adapt

the bootstrap approach to account for sparsity by applying coefficient thresholding

during the resampling step, ensuring that the predictive distribution of reserves

reflects the penalized estimates. We demonstrate the estimation method and boot-

strapping procedures using both a real data application and a simulation study.

Compared to the SUR copula mixed model, the sparse SUR copula mixed model

produces reserve estimates closer to the true values and generates larger risk cap-

ital gains. One limitation of using the Gaussian copula is its inability to capture

tail dependence. We may consider Student’s t copula for modeling extreme de-

pendence.

In Chapter 5, we explore a hybrid modeling framework that integrates the

Deep Triangle (DT), a gated recurrent neural network, with the SUR copula mixed
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model for loss reserving. We first compute residuals from the DT, and then feed

these residuals into the SUR copula mixed model, using only its random effect

and copula components to capture dependence across lines of business (LOBs).

The estimated loss ratio is obtained by summing the DT output with the SUR

copula mixed model output, and the loss function is calculated by subtracting

the predicted values from the observed values. We demonstrate the proposed hy-

brid approach using real data, which reveals a negative association between the

two LOBs. This framework bridges interpretability and flexibility, allowing us to

capture complex accident year and development year effects with DT while simul-

taneously modeling interpretable dependence structures through the SUR copula

mixed model. This chapter presents preliminary results and remains incomplete,

with a comprehensive simulation study and further evaluation left for future work.

6.2 Future work

We assume the errors within equations are independent in the current formulation

of the SUR copula mixed model. In practice, errors may exhibit autocorrela-

tion within the equation due to the development year effect over time. Although

AR(1) or higher order dependence structures could be incorporated into the SUR

copula mixed model, doing so would substantially increase the complexity of the

estimation procedure.

The copula component is currently capturing the cell-level residual dependence

between LOBs, while we are not capturing the company-level dependence in the

reserves due to the independence assumption of the random effects. Another ex-

tension would be to relax the independence assumption of the company random

effects and introduce a bivariate random effect, allowing for correlation between

the random effects of different LOBs.

Future extensions may further develop the hybrid model, retaining the copula
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component for dependence interpretation while estimating the other elements of

the model using flexible architectures such as our recent work with recurrent neu-

ral networks (EDT). The hybrid model could provide a valuable framework for

analyzing the dependence structures between different LOBs and simultaneously

modeling fixed effects for accident year and development year, company random

effects, and their interactions. Moreover, within the hybrid framework, resampling

the residuals to generate synthetic loss triangles could be used to construct the

predictive distribution of reserves. Finally, the hybrid model can be enhanced to

capture cross-LOB dependence primarily through the SUR copula mixed model

by introducing a penalty term in the loss function that discourages the neural

network from absorbing this dependence, ensuring that the interpretability of the

dependence structure is preserved.

To enhance the prediction for the reserve, we can use weighted averaging from

all the models’ predictions. One approach would be to set weights proportional to

the model’s performance on a validation set.The better the model’s performance,

the higher its weight. For example, we can use the inverse of the mean squared

error (MSE) on the validation set to assign weight to each model’s prediction.

In addition to the accident year, development year, and company effects, we

could also consider other macroeconomic conditions, such as inflation and interest

rates, in the models. For the EDT model, the macroeconomic conditions could

also be formatted as another input sequence to the GRU module. As for the SUR

copula mixed model, we may add the macroeconomic conditions to the systematic

component of the marginal distribution. For example, the mean of the marginal

distribution can be expressed as a function of the macroeconomic factors. By in-

corporating more information, these models can capture a broader range of factors

that influence incremental paid losses, potentially leading to more accurate reserve

predictions.
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Appendix A

A.1 Dependence Analysis

We compute Kendall’s tau on the residuals of the marginal fits, where the marginals

are the log-normal and gamma regression models. Note that the analysis is per-

formed on the residuals because we want to remove the accident year and develop-

ment year effects. For the log-normal, the residual is ϵ̂
(1)
ij = (lny

(1)
ij − µ̂

(1)
ij )/σ̂, and

for gamma ϵ̂
(2)
ij = y

(2)
ij /µ̂

(2)
ij . The computed Kendall’s tau is -0.1562, suggesting a

negative association between personal and commercial LOBs.

A.2 Copula Regression Using Loss Triangles from

30 Companies

Here we consider modeling the systematic component ηijc using accident year effect

αi(i ∈ 1, 2, ..., 10), development year effect βj(j ∈ 1, 2, ..., 10), and company effect

bc(c ∈ 1, 2, .., 30) as in (A.1).

ηijc = ξ + αi + βj + bc, (A.1)

where bc is an additional predictor that characterizes the company effect.

We identify that Y
(1)
i,j and Y

(2)
i,j follow log-normal and gamma distributions,
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respectively. Let’s consider the probability density function (PDF) of the log-

normal distribution for Y
(1)
ij

f
(1)
ij

(
y
(1)
ij

)
=

1

y
(1)
ij σ

√
2π

e
− 1

2

(
log(y(1)ij )−µ

(1)
ij

σ

)2

, y
(1)
ij > 0, (A.2)

where µ
(1)
ij is the location and σ > 0 is the shape. Thus, the systematic component

is η
(1)
ij = µ

(1)
ij .

Next, the gamma PDF for Y
(2)
ij is given by

f
(2)
ij

(
y
(2)
ij

)
=

(
y
(2)
ij

µ
(2)
ij

)ϕ

e
−

y
(2)
ij

µ
(2)
ij

Γ (ϕ) y
(2)
ij

, y
(2)
ij > 0, (A.3)

where ϕ > 0 is the shape and µ
(2)
ij > 0 is the location. Thus, the systematic

component is η
(2)
ij = log

(
µ
(2)
ij ϕ
)
(Abdallah et al., 2015), ensuring µ

(2)
ij is positive.

For the log-normal distribution, the Y
(1)
ij is estimated by Ŷ

(1)
ij = exp

(
µ̂
(1)
ij + 1

2
(σ̂)2

)
and for the gamma distribution, Ŷ

(2)
ij = µ̂

(2)
ij ϕ̂.

We use Gaussian copula to capture the dependence between the two LOBs,

and the estimated reserves are 6 823 325 and 370 386, respectively. The percentage

errors of actual and estimated reserves for the two LOBs are −15.62% and 16.33%,

respectively.

A.3 Block Bootstrapping for Predictive Distri-

bution of the Reserve

We consider block bootstrap as another way to generate samples to compute the

predictive distributions of the reserve based on DT. The block bootstrap resamples

consecutive blocks of observations, treating these blocks as exchangeable. As a

result, the original dependence structure of the data is preserved within each block

(Lahiri and Lahiri, 2003). Nevertheless, the data generated by block bootstrapping
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input sequence vectors might not capture the same sampling uncertainty as seen

in methods like the copula regression parametric bootstrap or GAN-based schemes

unless the appropriate block size is obtained based on the bias-variance tradeoff

in approximating the predictive distribution.

To select a suitable block size, we evaluated the validation error of DT across

different sequence lengths and found that the longest sequence (I) minimized the

validation error (Figure 2.6). We adopt this length, assuming it best captures the

within-block temporal dependence, thereby justifying the approximate exchange-

ability of blocks. Specifically, we resample the training data of sequencing length

I using the bootstrapping of blocks, leveraging this exchangeability to construct

the predictive reserve distribution, referred to as DT-bootstrap.

In particular, first, we randomly split the training data into training and val-

idation sets using an 80-20 split described in Section 2.2.2. Suppose I = 10. For

each company, we have 36 training sequences and 9 validation sequences. Let Xn

(1 ≤ n ≤ 36) denote the training input sequences (mask,..., mask, Y
(1)
i,1 , Y

(1)
i,2 , ...,

Y
(1)
i,j−1) and (mask ,..., mask, Y

(2)
i,1 , Y

(2)
i,2 , ..., Y

(2)
i,j−1) from one company. We also let

Y n (1 ≤ n ≤ 36) denote the training output sequences (Y
(1)
i,j , Y

(1)
i,j+1, ..., Y

(1)
i,11−i,

mask, ... , mask) and (Y
(2)
i,j , Y

(2)
i,j+1, ..., Y

(2)
i,11−i, mask, ... , mask). Our original

training data are (X1,Y 1) , ... , (X36,Y 36). We draw bootstrap training data

(X∗
1,Y

∗
1) , ... , (X∗

36,Y
∗
36) randomly with replacement from the original training

set. The training data with the same accident year and development year of differ-

ent companies stay together during bootstrapping. We apply the same procedure

to the validation data.

Table A.1 shows that the standard deviation from the DT-bootstrap is smaller

than that from the copula regression models. DT-bootstrap also has a CV that

is smaller than one, which also complies with the insurance standards. In addi-

tion, Table A.2 depicts that the DT-bootstrap generates a smaller risk capital by

capturing the inter-LOB dependence than the copula regression models.
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Table A.1: Bias, Standard deviation, Coefficient of variation (CV) of the loss
reserve when we use DT-bootstrap and copula regression models.

Reserve Bootstrap mean reserve Bias Std. dev. CV
DT-bootstrap 8 105 323 8 137 107 0.39% 235 304 0.029
Product Copula 6 954 736 6 972 792 0.26% 399 758 0.057
Gaussian Copula 6 919 171 6 941 806 0.33% 368 555 0.053
Frank Copula 6 999 253 7 043 309 0.63% 388 357 0.056

Table A.2: Risk capital estimation comparisons for DT-bootstrap and copula re-
gression models.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
DT-Bootstrap 8 370 792 8 480 870 8 519 400 8 565 251 8 632 670 8 743 527
Silo-GLM 7 442 692 7 671 633 7 756 992 7 872 138 8 060 489 8 460 435

Product copula 7 367 695 7 553 768 7 621 203 7 710 435 7 847 773 8 126 433
Gaussian copula 7 313 951 7 490 387 7 556 029 7 644 886 7 782 646 8 054 737
Frank copula 7 424 807 7 616 405 7 685 514 7 776 754 7 921 574 8 202 695

Risk capital
DT-Bootstrap 110 078 148 608 194 459 261 878 372 735
Silo-GLM 228 941 314 300 429 446 617 797 1 017 743

Product copula 186 073 253 508 342 740 480 078 758 738
Gaussian copula 176 436 242 078 330 935 468 695 740 786
Frank copula 191 598 260 707 351 947 496 767 777 888

We further validate our conclusion that DT-bootstrap reduces risk capital

through simulation studies, as with the setup detailed in Section 4. Figure A.1

indicates that using the largest block size yields interval properties similar to those

of DT-GAN, with the exception of coverage. We anticipate that reducing the block

size may improve coverage, bringing it closer to the nominal level.
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Figure A.1: 95% confidence interval for total reserves for EDT.
Note: The horizontal line indicates the true reserve. The true reserve is within all the

95% confidence intervals.

A.4 Simulation Setting

We present the true values of the parameters used in the simulation study in

Chapter 2.

Table A.3: Accident year effect αi

personal auto commercial auto
year 2 -0.03 -0.14
year 3 -0.03 -0.15
year 4 -0.13 -0.30
year 5 -0.17 -0.29
year 6 -0.18 -0.27
year 7 -0.18 -0.14
year 8 -0.24 -0.10
year 9 -0.27 0.17
year 10 -0.21 -0.12
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Table A.4: Development year effect βj

personal auto commercial auto
dev 2 -0.23 0.20
dev 3 -1.05 -0.02
dev 4 -1.65 -0.41
dev 5 -2.26 -1.06
dev 6 -3.02 -1.47
dev 7 -3.68 -2.10
dev 8 -4.50 -2.81
dev 9 -4.91 -3.12
dev 10 -5.92 -4.18

Table A.5: Premium ωi

personal auto commercial auto
year 1 4 711 333 267 666
year 2 5 335 525 274 526
year 3 5 947 504 268 161
year 4 6 354 197 276 821
year 5 6 738 172 270 214
year 6 7 079 444 280 568
year 7 7 254 832 344 915
year 8 7 739 379 371 139
year 9 8 154 065 323 753
year 10 8 435 918 221 448

A.5 Fréchet-Hoeffding bounds

According to Fréchet-Hoeffding theorem (Schweizer and Sklar, 2011), for any bi-

variate copula C : [0, 1]2 → [0, 1], the following bounds hold:

W (u1, u2) ≤ C (u1, u2) ≤ M (u1, u2)

The function W is called the lower Fréchet-Hoeffding bound and is defined as

W (u1, u2) = max {u1 + u2 − 1, 0} .
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The function M is called the upper Fréchet-Hoeffding bound and is defined as

M (u1, u2) = min {u1, u2} .

The upper bound is reached for comonotone random variables, which are per-

fectly positive dependent. The lower bound corresponds to countermonotonic ran-

dom variables, which are perfectly negative dependent.
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Appendix B

B.1 Estimated Reserves from SUR Copula Mixed

Model

This section provides supplementary results on the estimated reserves and risk

capital analysis from the SUR copula mixed model and sparse SUR copula mixed

model using a single dependence parameter.

Table B.1: Point estimates of the reserves.

Reserves
Model LoB 1, R1 LoB 2, R2 Total, R

SUR copula mixed 7 246 135 377 324 7 623 460
Sparse SUR copula mixed 7 296 308 371 920 7 668 227

Table B.2: Bias, Standard deviation, Coefficient of variation (CV) from the pre-
dictive distribution using parametric bootstrapping.

Reserve Bootstrap reserve Bias Std. dev. CV
SUR copula mixed 7 623 460 7 530 255 1.22% 612 947 0.082
Sparse SUR copula mixed 7 662 748 7 571 496 1.19% 514 371 0.068

Table B.3: Risk capital estimation for different methods.

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR copula mixed 8 123 673 8 442 581 8 562 167 8 736 343 9 030 721 9 621 658

Sparse SUR copula mixed 8 078 775 8 344 914 8 451 227 8 593 281 8 829 193 9 285 882

Risk capital
SUR copula mixed 318 908 438 494 612 670 907 048 1 497 985

Sparse SUR copula mixed 266 139 372 452 514 506 750 418 1 207 107
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Table B.4: Risk capital gain for different methods.

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
SUR copula mixed vs Silo-GLM 71.37% 72.43% 72.36% 72.83% 73.03%

Sparse SUR copula mixed vs Silo-GLM 76.11% 76.59% 76.69% 76.79% 78.27%

B.2 Parameters for Simulation Settings

We present the true values of the parameters used in Simulation Setting 1.

Table B.5: Accident year effect αi

personal auto commercial auto
year 2 -0.03 -0.14
year 3 -0.03 -0.15
year 4 -0.13 -0.30
year 5 -0.17 -0.29
year 6 -0.18 -0.27
year 7 -0.18 -0.14
year 8 -0.24 -0.10
year 9 -0.27 0.17
year 10 -0.21 -0.12

Table B.6: Development year effect βj

personal auto commercial auto
dev 2 -0.23 0.20
dev 3 -1.05 -0.02
dev 4 -1.65 -0.41
dev 5 -2.26 -1.06
dev 6 -3.02 -1.47
dev 7 -3.68 -2.10
dev 8 -4.50 -2.81
dev 9 -4.91 -3.12
dev 10 -5.92 -4.18

We present the true values of the parameters used in Simulation Setting 2.

B.3 Accident Year and Development Year Ef-

fects
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Table B.7: Premium ωi

personal auto commercial auto
year 1 4 711 333 267 666
year 2 5 335 525 274 526
year 3 5 947 504 268 161
year 4 6 354 197 276 821
year 5 6 738 172 270 214
year 6 7 079 444 280 568
year 7 7 254 832 344 915
year 8 7 739 379 371 139
year 9 8 154 065 323 753
year 10 8 435 918 221 448

Table B.8: Accident year effect αi

personal auto commercial auto
Year 2 -0.31 -0.18
Year 3 -0.21 -0.79
Year 4 -0.25 -1.28
Year 5 -0.40 -2.28
Year 6 -0.33 -2.84
Year 7 -0.32 -4.19
Year 8 -0.30 -4.46
Year 9 -0.26 -5.68
Year 10 -0.29 -6.46

Table B.9: Development year effect βj

personal auto commercial auto
dev 2 -0.19 -0.01
dev 3 -0.46 -0.19
dev 4 -0.24 -0.38
dev 5 -0.30 -1.26
dev 6 -0.40 -2.19
dev 7 -0.25 -2.81
dev 8 -0.10 -4.38
dev 9 -0.17 -5.61
dev 10 -0.07 -8.81
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Table B.10: Premium ωi

personal auto commercial auto
year 1 48 731 30 224
year 2 49 951 35 778
year 3 52 434 42 257
year 4 58 191 47 171
year 5 61 873 53 546
year 6 63 614 58 004
year 7 63 807 64 119
year 8 61 157 68 613
year 9 62 146 74 552
year 10 68 003 78 855

Table B.11: Estimates for SUR Gaussian copula (model 1) and SUR copula mixed
(model 2).

LOB 1 LOB 2
model 1 model 2 model 1 model 2

(Intercept) -1.12353 -0.98298 -1.35199 -1.56252
year2 -0.01881 0.01879 0.12451 0.18451
year3 -0.09658 -0.09476 0.15081 0.14636
year4 -0.14320 -0.16042 -0.01204 0.00775
year5 -0.15018 -0.14025 0.04106 0.06353
year6 -0.14554 -0.14294 -0.01037 0.02795
year7 -0.15722 -0.14295 0.05926 0.08909
year8 -0.17019 -0.15376 0.02306 0.05249
year9 -0.15105 -0.12807 -0.00835 0.04677
year10 -0.13720 -0.11038 -0.01279 0.07024
dev2 -0.31421 -0.32753 -0.24138 -0.24398
dev3 -1.02508 -1.04632 -0.65307 -0.64914
dev4 -1.62031 -1.67526 -1.05445 -1.09029
dev5 -2.17539 -2.24411 -1.69377 -1.69201
dev6 -3.01263 -3.09300 -2.17012 -2.25405
dev7 -3.91055 -3.96892 -2.88883 -2.97663
dev8 -4.42991 -4.48746 -3.82081 -3.98401
dev9 -5.74510 -5.83263 -3.70529 -3.87516
dev10 -5.93063 -5.94626 -4.35880 -4.46641
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