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Abstract

In the era of smart systems and wearable technologies, computational efficiency and

interpretability are paramount in developing suitable statistical methodologies for

real-world applications. This thesis, titled Computationally Efficient Statistical Meth-

ods in IoT and Human Gait Analysis, presents a trilogy of studies addressing these

needs through developments in outlier detection and human gait assessment.

The first part of this thesis focuses on enhancing anomaly detection in Internet of

Things (IoT)-based systems, where outliers such as faults or intrusions can compro-

mise data reliability and Quality of Service. We improve upon the widely used Recur-

sive Principal Component Analysis (R-PCA) method by introducing a data-driven

Satterthwaite-based approximation to model the distribution of squared prediction

error (SPE) scores more accurately. This refinement corrects the theoretical ambigu-

ities of the Gaussian assumptions in traditional R-PCA and provides a reproducible,

real-time outlier detection algorithm with superior performance validated through

simulations and graphical plots.

The second part of the thesis explores the use of beta regression models to under-

stand how demographic and gait-specific parameters influence the human Gait Index

(GI). By analyzing data from healthy individuals, this study identifies key factors

such as walking speed, stride length, knee angle, and stance-to-swing phase ratio as
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significant contributors to gait variability. Importantly, it also reveals notable inter-

action effects, including those between age and gait features, which underscore the

complexity of gait dynamics. We also develop an unified multivariate Beta regression

model by using the Gait Index to improve gait stability assessment and for a better

understanding of the variability in gait stability. This methodological advancement

provides valuable insights for clinical applications, enabling personalized rehabilita-

tion strategies and more accurate evaluations of gait health.

The third study applies an interpretable machine learning framework using Bayesian

Additive Regression Trees (BART) to classify gait patterns into healthy, neurological,

and orthopedic categories based on data from over 40,000 footsteps across 230 sub-

jects. The developed approach not only demonstrates high predictive performance (in

terms of improved AUC and F1 scores), but also identifies physiologically meaning-

ful features—such as loading phase, walking speed, stride length, and asymmetry in

single support time—as key discriminators. Through SHAP and permutation-based

analyses, we further establish the interpretability and clinical relevance of the model,

offering insight into the underlying mechanics of gait abnormalities.

Together, these studies provide a cohesive body of work that advances the sta-

tistical and machine learning methodologies for outlier detection and human gait

analysis—balancing computational efficiency with interpretability and real-world ap-

plicability in both engineering and biomedical domains.
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Chapter 1

Introduction

1.1 Outlier Detection in IoT: Part A

In the context of Internet of Things, outliers can be thought of as data values that

are considerably different from the rest of the data points, do not correspond to

the predicted normal behaviour, or conform well to a defined abnormal behaviour.

Depending on their position, outlying observations may or may not have a large effect

on the results of the analysis. Sometimes, outliers are extremes of the original data

points, which lead to erroneous results. In the IoT literature, these anomalies/outliers

can be thought of as noise and error (dealing with fault detection), events (event

detection), or malicious attacks (intrusion detection). All of these anomalies distort

the statistical analysis of the data points. In wireless sensor networks (WSNs), outliers

can be defined as measurements that vary considerably from the typical pattern of

the sensed data. These networks consist of sensors or sensor nodes that transfer

the data to a base station. These sensors collect data on different measurements of

different physical characteristics. The presence of anomalies in these data streams
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greatly affects the decision-making of the system, leading to service degradation and

poor quality of service (QoS).

IoT-based systems deal with high-dimensional data that include many attributes

or features. Each sensor collects strings of data measurements on different physi-

cal characteristics. A more complex system would consist of more of these sensors,

resulting in a data matrix with a large number of features. The analysis is thus com-

plex and would require a reduction of dimension. The Principal Component Analysis

(PCA) transforms the data space onto a lower-dimensional subspace (a low-rank in-

trinsic approximation of the data matrix) that captures most of the variability of

the data space. It keeps the most essential features of the original data. The newly

transformed axes, i.e., the principal components, are uncorrelated among themselves,

which also deals with possible multicollinearity among the features.

Data outliers can dramatically influence the residual values (also known as recon-

struction errors, and Squared Prediction Errors (SPE) scores) after extracting the

desired PCs. An anomaly is detected by the significant change in the SPE scores.

Hence, the calculation of SPE scores necessitates a test statistic, accompanied by an

assumption about the distribution of scores and the implementation of a threshold-

based scheme. The difficulty of identifying outliers, particularly multivariate outliers,

arises from the diverse array of types they can exhibit, which hampers efforts to dis-

cern their underlying patterns or causes. However, there are good reasons for looking

at the directions defined by either the first few or the last few PCs in order to detect

outliers [30].

Some of the most popular anomaly detection schemes, used in the IoT indus-

try, suffer from a theoretical ambiguity when implementing these methods in their

2
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domain. The improvisations might be helpful in terms of computational cost and

real-time applications, but they may affect the accuracy of the measure. One such

popular method is Recursive Principal Component Analysis (R-PCA) based outlier

detection and data aggregation scheme [22]. The R-PCA algorithm is based on k-

means clustering for outlier detection in IoT systems. The algorithm clusters the

data and transmits it to the cluster heads. R-PCA is then used to analyze the data,

taking into account the spatial correlation and dynamic changes in the IoT data.

The parameters of R-PCA are recursively updated to accommodate these changes.

Compared to PCA, this algorithm offers superior performance in terms of both low

false alarm rate (FAR) and low power consumption. Ref. [22] used the idea of [13]

for defining the SPE score thresholds. R-PCA was an improvement of the work of

Chan et al. [6], which proposed a robust recursive fault detection technique. Ref.

[6] focused mainly on the sensitivity to monitor system changes and robustness to

dramatic data faults. As mentioned in [22], the work of [6] focused on only one single

node and was too complex for real-time implementation. R-PCA [22] was able to

address this issue.

The work reported in [22] is seminal in terms of real-time outlier detection schemes.

It detects and diagnoses anomalies in different sensor nodes and aggregates the data

coming from individual sensors. However, the concern remains on the distributional

assumptions of the SPE scores, which is the foundational building block for the algo-

rithm. But, R-PCA [22] assumes Gaussianity for the dataset, and in this regard, SPE

scores could never be Gaussian as it is a quadratic form. The authors simplified the

threshold based on [13], where the SPE scores were transformed into Gaussian dis-

tributed scores [13]. In [13], the authors did a type of Box-Cox transformation of the

3
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non-Gaussian SPE scores and made it Gaussian. Also, the authors in [22] used two

databases, NDBC-TAO and Intel Laboratory, for applying the algorithm. Missing

values were assumed to be anomalies or outliers in [22], and they were generated ran-

domly in the database for testing the algorithm. They also considered continuously

missing data (occasionally failed communications) in the NDBC-TAO database as

outliers. However, outliers might not be missing values. Sometimes, one might con-

sider both outliers and missing values as abnormality in the system. However, missing

values can be imputed and considered as an usual observation in the database. Missing

value handling is an important problem that data-based practitioners are interested

in. One can find a vast literature on missing data handling in statistics and related

domains. EM-algorithm [4] and different missing-value-imputation methodologies are

some of the most fundamental tools for such an analysis.

In order to address the challenges mentioned above, we have proposed a general

outlier model for simulation purposes. The general outlier model enables the practi-

tioner to gather more information on such values that are significantly different from

the rest of the data points. The contributions of this Chapter 2 can be summarized

as follows:

1. We have identified a major theoretical ambiguity in the distributional assump-

tion of the SPE scores in the R-PCA-based method [22]. Through simulation-

based Q-Q plots, we have illustrated why a Gaussian approximation, as pro-

posed in [22], may not be theoretically reasonable. We have used different

test statistics for calculating the SPE scores that are very popular in anomaly

detection in the IoT industry;
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2. In our work, we present an improved approach to approximating the distribu-

tional assumptions of SPE scores across various test statistics. We have incor-

porated two additional techniques, building upon the framework established in

[22]. One involves employing Rao’s [19] test statistics, while the other is based

on Hawkins’ [9] test statistics, for computing the SPE scores. These implemen-

tations are distinct approaches based on the Gaussianity outlined in [22], which

serves as our benchmark for comparison. The proposed approximation-based

algorithm maintains the same computational complexity as the R-PCA-based

approach [22] while achieving superior accuracy compared to both techniques;

3. We conduct a comprehensive Monte Carlo simulation study with various sam-

ple sizes and dimensions to compare the relative performance of the proposed

method with the original R-PCA-based method [22]. We have provided a statis-

tically sound framework for generating outlier-contaminated data in simulation-

based environments. Each Monte Carlo run emulates the dynamic nature of the

R-PCA framework (Recursiveness) by generating different data subspaces. In

all cases, our proposed method demonstrates superiority in performance, as ev-

idenced by average F1 and MCC scores calculated over all Monte Carlo runs,

compared to the method described in [22].

Additionally, we have conducted a brief systematic literature review of existing

statistical methodologies widely utilized in the IoT industry for anomaly detection in

sensor data. As mentioned earlier, two of the most prominent techniques identified

in the literature were employed in our simulation studies to compare the proposed

scheme with the original R-PCA-based method [22].
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The rest of Chapter 2 is organized as follows. In Section 2.1, we briefly dis-

cuss existing literature on PCA-based outlier detection from both statistical and IoT

practitioner perspectives. Section 2.2 discusses the preliminaries of PCA and differ-

ent techniques for calculating the SPE scores. In Section 2.3, we briefly discuss the

RPCA-based outlier detection scheme and the corresponding algorithms. In Section

2.4, we propose a Satterthwaite-based approximation of the SPE scores and propose

an implementation concerning the RPCA-based framework. In Sections 2.5 and 2.6,

we discuss different outlier models for simulation purposes and the selected model

for our implementation. We also demonstrate the non-Gaussianity of the SPE scores

using Q-Q plots and compare the simulation-based results and performance evalu-

ations based on two assumptions and the two most popular test statistics. Section

2.6 also discusses the complexity analysis and potential limitations of the proposed

scheme. Finally, in Section 2.7, we discuss all the contributions of this Chapter and

some possibilities for future work.

1.2 Human Gait Analysis: Part B

Human gait, the unique way we move, is like a symphony of coordinated movements

that serves as a profound physiological marker reflecting an individual’s health, mo-

bility, and functional strength [32], [33], [34]. The significance of gait analysis in

understanding and addressing various health conditions has gained prominence, tran-

scending from a biomechanical curiosity to a pivotal aspect of clinical evaluation [35],

[36], [37], [38], [39], [40]. Gait analysis holds a unique position as a non-invasive,

dynamic assessment tool that offers valuable insights into musculoskeletal function,

cardiovascular health, neurological integrity, and overall mobility [41], [42], [43], [44],
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[45], [46], [47], [48]. In this paradigm, the Gait Index (GI) emerges as a transforma-

tive milestone, taking us a step further in simplifying the complexities of gait into a

succinct, quantifiable metric.

This thesis advances statistical and machine learning methodologies for under-

standing and classifying human gait patterns, with a focus on interpretability and

clinical relevance. The inferential part investigates the influence of demographic

and gait-specific parameters on the Human Gait Index (GI) through beta regres-

sion models. Using data from healthy individuals, it identifies key predictors such

as walking speed, stride length, knee angle, and the stance to swing ratio, and high-

lights important interaction effects, particularly between age and gait features, un-

derscoring the complexity of gait dynamics. An unified beta regression framework is

proposed using the Gait Index to enhance the assessment of gait stability and vari-

ability. The predictive modeling study introduces an interpretable machine learning

approach using Bayesian Additive Regression Trees (BART) to classify gait patterns

into healthy, neurological, and orthopedic categories, based on over 40,000 footsteps

from 230 subjects. The model demonstrates strong predictive performance while

identifying physiologically meaningful features such as the loading phase, asymmetry

in single support time, and stride-related variables as key discriminators. SHAP and

permutation-based analyses further validate the model’s interpretability and clinical

utility. Collectively, the work contributes a robust and interpretable toolkit for gait

analysis with applications spanning personalized rehabilitation, biomedical research,

and wearable sensor technologies.

Here, we introduce the fundamentals of wearable device–based gait analysis, out-

line current practices and study protocols, describe the datasets used in our studies,
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and explain the data pre-processing techniques.

1.2.1 Wearable Devices for Gait Analysis

Wearable devices have emerged as transformative tools in gait analysis, offering non-

invasive and real-time monitoring of human mobility. These devices are particularly

advantageous for tracking joint movements and physiological parameters during daily

activities, making them indispensable in fields like rehabilitation, sports medicine, and

elderly care. Among wearable technologies, inertial measurement units (IMUs) stand

out due to their compact design, precision, and versatility.

1.2.2 Inertial Measurement Units (IMUs) in Gait Analysis

IMUs are widely used in wearable systems for gait analysis as they provide de-

tailed mechanical data about joint motion and orientation. These sensors measure

three-dimensional linear acceleration (via accelerometers), angular velocity (via gy-

roscopes), and magnetic field vectors (via magnetometers). By combining data from

these components, IMUs can calculate joint angles, orientation, and other critical

gait parameters such as stride length, gait speed, cadence (steps per minute), and

minimum foot clearance (MFC) [79] [84].

A typical IMU-based setup involves placing two calibrated IMUs above and below

the knee joint to capture precise movement data. The compact size of IMUs and their

ability to wirelessly transmit data make them ideal for long-term monitoring without

restricting users to laboratory environments. Additionally, a multi-sensor wearable

system can be adapted which combines IMUs with additional sensors to provide a

comprehensive analysis of knee joint health and mobility. The device integrates:
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• IMU Sensors: For measuring acceleration, angular velocity, and orientation;

• Temperature Sensors: To monitor skin temperature around the knee;

• Pressure Sensors: To assess muscle pressure during movement;

• Galvanic Skin Response (GSR) Sensors: To measure sweat gland activity

related to stress or exertion.

These sensors work together to collect diverse data points that reflect both me-

chanical and physiological aspects of knee health. The system uses wireless connec-

tivity to transmit data to a smartphone app for storage and processing [84].

1.2.3 Study Protocol for Gait Analysis

Each participant completed a physician-prepared questionnaire designed to gather

key physical information, including sex, age, weight, height, leg length, and knee cir-

cumference. Participants then performed specific tasks while wearing a multi-sensor

system to comprehensively capture knee joint movements. Two IMUs were strategi-

cally positioned: one above and one below the knee joint. Additional sensors mea-

suring temperature, pressure, and galvanic skin response (GSR) were placed around

the knee area to record physiological parameters such as skin temperature, muscle

pressure, and sweat rate.

Participants walked approximately 200 meters on a well-lit, obstacle-free walkway

at their preferred walking speed while wearing a knee brace. The IMUs were oriented

such that the x, y, and z axes corresponded to the upright (longitudinal), outward

(mediolateral), and forward (anteroposterior) directions, respectively. To ensure mea-

surement consistency across all subjects, the knee brace was always positioned in the

9
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same location and orientation, with the knee centered and the IMUs placed 14 cm

above and below the joint.

Data collection was facilitated through an Android application capable of syn-

chronously retrieving data from multiple CPro modules via Bluetooth. All sensor

data were securely stored in an anonymized format (.csv) on a computer for post-

processing and further analysis. It is important to note that our analysis primarily

focused on spatio-temporal gait mechanical parameters. Physiological parameters

were not considered in this study.

1.2.4 Gait Index: Due to Abu Ilius Faisal et al. [49]

For calculating the systemic Gait Index, an initial systematic literature review iden-

tified key gait parameters. Six spatiotemporal parameters were identified: walking

speed (WS), stride length (SL), gait cycle (GC), cadence (Cad), stance phase (StPh),

and swing phase (SwPh)—described in either time or percentage. Additionally, three

angular parameters were considered: maximum knee flexion angle (KAmax), hip an-

gle (HAmax), and ankle angle (AAmax). A dataset comprising 120 healthy subjects

was then analyzed to compute these parameters ([84], [116]) as well as their demo-

graphic factors such as age, gender, and BMI. Statistical analyses were conducted

to identify the most statistically significant gait parameters: walking speed – WS,

maximum knee flexion angle – KAmax, height normalized stride length – SLnorm(h),

and stance-to-swing phase ratio – StPh/SwPh, forming the basis for the GI as

GI =
WS ×KAmax × SLnorm(h)

StPh/SwPh
(1.2.11)

While analyzing the final four gait features to formulate the GI, it was observed
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that stride lengths (SLs) were affected by the heights of the subjects. Therefore, it

was necessary to normalize the SL by the height of the subject to minimize the effect

of height h, as

SLnorm(h) =
SL

h
. (1.2.12)

We also converted the unit of KAmax from degrees (°) to radians (rad) to bring

the values of all the parameters into a similar range. In the above mentioned formula,

walking speed (WS), maximum knee flexion angle (KAmax), and normalized stride

length (SLnorm(h)) are placed in the numerator since they are positively correlated

with gait health—higher values indicate better gait performance. Conversely, the

stance-to-swing phase ratio (StPh/SwPh) is positioned in the denominator due to

its inverse relationship with gait health. As all four parameters contribute equally to

explaining variability in the gait dataset—demonstrated by their similar influence on

the first two principal components-each variable is assigned equal weight in the equa-

tion. This formulation provides a comprehensive index for quantifying an individual’s

overall gait quality.

In this study, we present a comprehensive inferential modeling framework cen-

tered on the Gait Index (GI), designed to quantify gait stability and understand its

underlying determinants. Our contributions are three-fold. First, we construct a

model that captures the main effects and interactions of gait and demographic fac-

tors on the GI, providing a detailed assessment of their influence on gait stability.

Second, we incorporate a dispersion sub-model to explain variability in the GI across

individuals, offering insight into within-cohort differences in gait profiles. Third, we

conduct extensive model diagnostics and interpretation, highlighting key parameters
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driving both the mean and variability of the GI. Together, these components yield a

unified, model-based approach for gait assessment that advances beyond descriptive

techniques and holds potential for improving clinical evaluation and personalized care

strategies.

1.2.5 Patient Level Gait Prediction: The Study of Human

Locomotion with Inertial Measurements Units [142]

The study involved 230 subjects (141 males, 89 females) categorized into three groups:

healthy individuals (52 subjects), orthopedic patients (53 subjects), and neurological

patients (125 subjects). Participants were recruited from various medical departments

in Paris, France, between April 2014 and October 2015. The study was approved by

an ethics committee, and informed consent was obtained from all participants. Ad-

ditionally, more than 40,000 footsteps have been annotated with precise timestamps.

This dataset supports clinical research on gait abnormalities and the development of

algorithms for quantitative gait analysis.

Study Protocol

Participants performed a fixed sequence of activities:

1. Standing still for 6 seconds;

2. Walking 10 meters at a comfortable pace on a level surface;

3. Turning around without specific instructions on direction;

4. Walking back to the starting point;
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5. Standing still for 2 seconds.

Two inertial measurement units (IMUs) were attached to the dorsal face of each

foot to record accelerations and angular velocities at a sampling rate of 100 Hz. The

IMUs used were XSens™ and Technoconcept® devices.

Data Pre-Processing

In the signal acquisition phase, each IMU captured multivariate time series data

comprising accelerations and angular velocities along four axes: X, Y, Z, and V

(vertical axis). This resulted in 16-dimensional signals per trial (8 dimensions per

foot). The dataset includes over 8.5 hours of gait signals distributed across 1020

trials.

The metadata is enriched with extensive metadata, including: participant demo-

graphics (age, gender, height, weight), trial-specific annotations such as timestamps

for each footstep event (heel-strike, toe-strike, heel-off, toe-off) and pathological con-

ditions categorized into orthopedic or neurological disorders. Footstep annotations

were manually provided by medical experts. These annotations include timestamps

marking the start and end of gait cycles, stance phases, and swing phases.

Extracted parameters

A gait cycle is defined as the period between two consecutive heel-strikes of the same

foot. It is further divided into:

• Stance Phase: Foot in contact with the ground; includes events such as heel-

strike (HS), toe-strike (TS), heel-off (HO), and toe-off (TO);

• Swing Phase: Foot not in contact with the ground.
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Additionally, features such as acceleration magnitudes, angular velocities, and

temporal boundaries of gait events are extracted from the raw time-series data. These

features are crucial for analyzing walking patterns and identifying abnormalities as-

sociated with specific pathologies.

In Table 1.1, we have presented the extracted gait parameters and demographic

parameters used in our study. We handled the missing values where necessary and

estimated all the gait phases and calculated the mean, Standard Deviation (SD)

and Coefficient of Variation (CV) value, and Asymmetry for the total 82 Features.

We have outlined the pre-processing techniques for identifying gait phases and key

spatiotemporal gait parameters from IMU-based sensor data, as shown in Fig. 1.1.

Pre-processing techniques for identifying gait phases and key gait parameters from

IMU-based sensor data: (a) Gait Phases Definition: The gait cycle is divided

into stance and swing phases. The stance phase consists of Load, Foot-Flat, and

Push subphases, while the swing phase follows after Toe-Off (TO); (b) Gait Events

Definition: Key gait events, including Heel-Strike (HS), Toe-Strike (TS), Heel-Off

(HO), and Toe-Off (TO), are illustrated along the gait cycle timeline. These events are

used for identifying critical transition points in walking patterns; (c) Key gait event

detection using rotational velocity around the y-axis: Rotational velocity

profiles from the IMU gyroscope data are shown with different colors representing

individual gait cycles. Key gait events are marked using different symbols: Heel-Off

(HO) (blue diamond), Toe-Off (TO) (red downward triangle), Heel-Strike (HS) (pink

circle), Toe-Strike (TS) (green square), and Mid-Swing (gray asterisk). Manually

annotated events (HO and TS) and algorithmically detected events (TO and HS)

are indicated. The periodic pattern of detected events corresponds to distinct gait

14

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

cycles, demonstrating the effectiveness of the peak detection approach in identifying

key gait transitions. The background shading highlights alternating gait cycles for

better visualization.

In this part of the thesis, we present our contributions to predictive modeling

using wearable sensor-based gait data. We employed the IOPL dataset, mentioned

earlier, which includes over 1,000 time series collected from 230 participants per-

forming structured movement tasks. After manual annotation of more than 40,000

individual footsteps, we extracted temporal, spatial, and spatiotemporal gait features

(as given in Table 1.1) and transformed the raw signals into a structured tabular

format. To enable clinical interpretation, we categorized participants into healthy

and pathological cohorts, and further separated the pathological group into orthope-

dic and neurological subgroups. This dichotomization allowed us to characterize gait

differences across health conditions and set the stage for predictive modeling. We

evaluated the predictive performance of Bayesian Additive Regression Trees (BART)

in distinguishing between these groups. Various performance metrics and model diag-

nostics were employed to ensure generalizability and convergence. We benchmarked

BART against several traditional machine learning models, including support vec-

tor machines, decision tree ensembles, and logistic regression. A key contribution of

this work is the interpretability of BART’s predictions. We generated cohort-specific

feature importance estimates and examined individual predictor effects using Accu-

mulated Local Effects plots. These analyses provided insight into how gait features

influence predictions. To strengthen confidence in feature importance, we also con-

ducted a SHAP-based interpretation across competing models. Our findings reveal

that BART not only offers competitive predictive performance but also aligns with
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known biomechanical principles reported in prior studies. Although feature impor-

tance alone does not imply causality, the interpretability framework developed here

provides clinicians with an enhanced understanding of gait signatures that distinguish

patient groups, thereby supporting more informed diagnostic decisions.
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Category Features

Gait Features

• Walking speed

• Swing and Stance phase (left and right)

• Stride time and length

• Step time and length (left and right)

• Load phase

• Push phase

• Flat foot phase

• Asymmetry:

Asymmetry = 100×
∣∣∣∣ln( Xleft

Xright

)∣∣∣∣
where Xleft and Xright are the values of a specific
gait parameter for the left and right sides, respec-
tively.

Demographic Features

• Age

• Gender

• BMI (Height, Weight)

• Laterality

• Pathology group: Neurological, Orthopedic, and
Healthy

Table 1.1: Gait and demographic features
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(a)

(b)

Figure 1.1: Pre-Processing techniques for identifying gait phases and key gait
parameters from IMU-based sensor data.
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Chapter 2

An R-simulation-based

Improvement of the R-PCA-based

Outlier Detection Method

2.1 Introduction

Most of the PCA-based outlier detection schemes depend heavily on SPE scores

(residuals or also known as reconstruction errors) calculations and distributional as-

sumption on them. Rao [19] defined the test statistic for calculating the SPE scores

based on the last few Principal Components (PCs), which was discussed further by

Gnanadesikan and Kettenring [7], as the sum of squares of the values of the last few

PCs. Hawkins [9] proposed a revision of this statistic for providing equal weights to

the last few PCs which have decreasing order of variance to the end. Gnanadesikan

and Kettenring [7] suggested another statistic that focuses on the observations that

have an influence over the first few PCs. They target those outliers which inflate
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the variance of one or more of the original variables. Here, multivariate normal-

ity of the selected data is assumed, and the mean and the covariance matrix of the

data are known. The distributions of the three statistics mentioned above follow a

Gamma distribution. In general, SPE scores are not Gaussian distributed. Jackson

and Mudholkar [13] proposed a mapping of SPE that approximately follows a normal

distribution. The transformed random variable follows a standard normal distribu-

tion (with zero mean and unit variance). There are some other forms of test statistics

that have been considered as further improvements of [7], [9] and [19], such as those

proposed by Hawkins and Fati [10], and Mertens et al. [17].

All of these test statistics are extensively used in the IoT industry. SPE scores of

the form [7], [9] and [19] have been used in [3], [14], [16], and [21], for example. Most of

these works have been proposed since 2000. Several works based on the data-subspace

reduction using PCA utilize the ideas of [7], [9], and [19] for detecting different kinds

of outliers [5], [11], and [15]. Different forms of distributional assumptions have

been taken for all such test statistics. Shyu [21] and Lakhina [15] were the first

to successfully implement PCA for anomaly detection in IoT. In [21], the use of

the F -distribution for D2
i is suggested. In [8], the authors have given a framework

that combines PCA, Hotelling’s T 2, and Q statistics in the context of IoT. In [18],

the authors have discussed using the Chi-square and Mixture-Gaussian model in the

context of a PCA-based anomaly detection scheme, while in [1], the authors have

discussed the method proposed by Jackson and Mudholkar [13] along with other

statistical techniques, for detecting anomalies in data. Recently, [31] has employed

complex formulations from [13] to calculate the SPE scores and the cut-off value

for detecting online fault monitoring in the R-PCA setup. We have observed that
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some of the most popular anomaly detection schemes, used in the IoT industry, suffer

from a theoretical ambiguity when implementing these methods in their domain.

The improvisations might be helpful in terms of computational cost and real-time

applications, but they may affect the accuracy of the measure.

2.2 PCA Preliminaries

Let X be the p×n original data matrix. This data matrix consists of p features and n

samples. X̂l is a lower rank approximated form of the original data matrix X, which

is of order l×n, where l < p. Y is the projection of X in the subspace termed as the

score matrix. If P , a p × p orthogonal matrix, is the transformation basis, then the

principal components would be

Y[p×n] = P[p×p]X[p×n]. (2.2.1)

Now, X should be mean-centered before performing the PCA. Sometimes, the mean-

centered data is denoted by X̄. The aim of PCA is to derive a transformation basis

P that can make the projection of X, i.e., Y = PX, linearly uncorrelated and less-

dimensional. We choose only the first few, say l, principal components that capture

around 80− 90% of the variability of the data-space. Then, Eq. (2.2.1) becomes

Y[l×n] = P[l×p]X[p×n], (2.2.2)

where P[l×p] (also known as projection matrix, is set to the transposition of the re-

ordered and reduced eigenvector matrix) consisting of the first l eigenvectors of the

sample covariance matrix Σp×p, as its columns. After selecting the first l Principal
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Components (PCs) that explain most of the variability in the original data, we get

X̂l. Thus, the error of approximation (also, known as re-construction error) would be

ε = (X − X̂l), (2.2.3)

and the squared prediction error (SPE) score would then be

SPE(l) = ‖X − X̂l‖2
2. (2.2.4)

This represents the sum of squares of the deviation of X̂l from X.

Let us now describe each of the three test statistics that we have mentioned in

Section 2.1. Rao [19] defined the test statistic SPE1i based on the last few PCs as

the sum of squares of the values of the last few PCs, that is,

SPE(l)1i =

p∑
k=p−l+1

z2
ik, (2.2.5)

where zik is the value of the kth PC for the ith observation. The test statistics

SPE(l)1i, i = 1, 2, ..., n, should be approximately independent observations from a

gamma distribution if there are no outliers, so that a gamma probability plot with a

suitably estimated shape parameter may expose outliers [7].

Hawkins’ [9] test statistic is denoted by SPE(l)2i. The adjusted zik is zik/λ
1/2
k ,

where λ
1/2
k is the standard deviation of the kth sample PC. Thus, the new statistic is

SPE(l)2i =

p∑
k=p−l+1

z2
ik/λk. (2.2.6)

Note: When l = p, SPE2i(l) simply becomes the Mahalanobis distance D2
i between
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the ith observation and the sample mean, defined as D2
i = (xi− x̄)′S−1(xi− x̄), where

S is the sample variance-covariance matrix.

Gnanadesikan and Kettenring [7] suggested another statistic of the form

SPE(l)3i =
l∑

k=1

z2
ikλk. (2.2.7)

The distributions of the three statistics (Eqs. (2.2.5)-(2.2.7)) follow a gamma distri-

bution. Thus, the plots of SPE(l)1i, SPE(l)2i, and SPE(l)3i can be used to identify

potential outliers. However, in most practical scenarios, the data do not come from

a multivariate normal distribution with known mean µ and covariance matrix Σ.

Therefore, these distributional results become only approximations.

Jackson and Mudholkar [13] proposed the following mapping of SPE that approx-

imately follows a normal distribution:

z = f(SPE) = θ1

[(SPE
θ1

)h0 − θ2h0(h0−1)

θ21
− 1]√

2θ2h2
0

, (2.2.8)

where

θ1 =
p∑

i=k+1

li,

θ2 =
p∑

i=k+1

l2i ,

θ3 =
p∑

i=k+1

l3i , and

h0 = 1− 2θ1θ3
3θ22

,

so that z has a standard normal distribution (with zero mean and unit variance). They

[13] also proposed a cutoff value for z, denoted by zα, with a pre-fixed significance
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level α, which has a complicated form. Sometimes, the threshold is also denoted by

δ2
α [1]. We have employed both SPE(l)1i and SPE(l)2i to compare our proposed

method with the approach outlined in [22].

2.3 Recursive PCA-based Outlier Detection

The proposed Recursive Principal Component Analysis (R-PCA) algorithm in-

volves two phases: aggregating the data points from the sensor nodes to the cluster

heads (which use spatial correlations among the adjacent sensor nodes) and then de-

tecting the outliers based on the aggregated data matrix at the cluster heads. Then,

the IoT data center records those outliers along with the aggregated data. Our inter-

est here lies specifically in the outlier detection phase. The outlier detection algorithm

has two phases: (1) Initialization Phase and (2) Recursion Phase. In this section, we

review the method proposed in [22].

The method in [22] assumes Gaussianity of the data-points. Data matrices are

considered real-time, for a particular time instant, say, t. The work-flow consists of

two algorithms. Algorithm 1 detects the outlier in the raw sensor data matrix X =(
XT

1 , XT
2 , · · · , XT

k

)T
, where k is the number of nodes. Then, X is normalized

to a zero mean and unit variance matrix X̄ through

x̄i(j) =
xi(j)− µi

σi
, j = 1, 2, ..., k, (2.3.1)

where µi and σi are the mean and standard deviation of xi. So, basically, X and X̄

are two n× k matrices. Based on X̄, the sample covariance matrix ΣX is calculated

(see the expression in Step 2 of Algorithm 1).
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In the next phase, the algorithm calculates the eigenvector E and eigenvalue (di-

agonal) matrix Λ from ΣX. Then, it calculates the SPE scores based on the reduced

eigenvector space, i.e., based on the number of principal components chosen. Specif-

ically, the SPE scores, for j = 1, 2, ...., n, are calculated as

SPE(j) = ‖x̄(j)− ẼlẼT
l x̄(j)‖2

2, j = 1, 2, ..., n, (2.3.2)

where X̄(j) =

(
X̄1(j), X̄2(j), · · · , X̄k(j)

)T
and Ẽl is the reduced eigenvector

matrix that corresponds to the first l eigenvalues. Then, in the Recursion phase,

the new data points X̄(t) =

(
X̄1(t), X̄2(t), · · · , X̄k(t)

)T
are collected at a time

t. After normalizing the data, Algorithm 1 recursively updates the means and

standard deviations of each nodes as

µi(t) = (1− β)µi(t) + βxi(t), (2.3.3)

σ2
i (t) = (1− β)σ2

i (t− 1) + β(xi(t)− µi(t))2, (2.3.4)

where β = (1/t) is the forgetting factor. Finally, it detects outliers based on the

Gaussian distribution assumption on the SPE scores. From Eq. (2.3.2), the mean

µSPE and standard deviation σSPE of the SPE scores are calculated. A 3σ limit

on the SPE(t) scores is introduced, i.e., those SPE scores which fall in the interval

[µSPE − 3.σSPE, µSPE + 3.σSPE] are considered as inliers while those falling outside

this interval are considered as outliers.

After Algorithm 1 determines the outliers, then Algorithm 2 is used to diag-

nose the outliers. Algorithm 2 calculates the SPE scores for each sensor node of
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Algorithm 1 R-PCA based Outlier Detection Algorithm: [22]

Step 1: Initialization
Step 2: normalize X =⇒ X̄ ↪→ N (0, 1)

Step 3: calculate E and Λ of X̄X̄T

n−1

Step 4: initialize µSPE and σSPE
Step 5: Recursions
Step 6: update µ, σ and normalize x(t)
Step 7: rank Λ, E and calculate the number of PCs, l
Step 8: reduce Ẽ to Ẽl and Λ̃ to Λ̃l

Step 9: calculate SPE(t)
Step 10: if |SPE(t)− µSPE| > ξασSPE then
Step 11: outlier detected
Step 12: call Algorithm2
Step 13: else
Step 14: update E and Λ
Step 15: update µSPE and σSPE
Step 16: end if

X̄(t) =

(
X̄1(t), X̄2(t), · · · , X̄k(t)

)T
at time t as

SPEi(t) = ‖x̄i(t)− Ẽl,iẼT
l,ix̄i(t)‖2

2, i = 1, 2, ..., k, (2.3.5)

where k is the number of sensor nodes and Ẽl,i is the eigenvector space for node i.

Then, Algorithm 2 calculates the following ratio:

ηi = SPEi(t)/SPE(t) i = 1, 2, ..., k. (2.3.6)

Finally, it compares the value of ηi to a prefixed quantity as mentioned in Step 3

of Algorithm 2. Based on this comparison, the algorithm finds the outlier and

records the time t along with sensor node i. Note that R-PCA [22] uses first-order

perturbation theory to calculate the updated E(t) and Λ(t).
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Algorithm 2 Outlier Diagnosis Algorithm: [22]

Step 1: for i = 1 : k do
Step 2: calculate SPEi(t) and ηi

Step 3: if ηi > ξ
k∑
j=1

ηj then

Step 4: outlier detected
Step 5: record outlier with time t and label i
Step 6: end if
Step 7: end for

2.4 Proposed Improvement of the Existing RPCA

Algorithm

In the Section 2.1, we have detailed the different forms of test statistics that

calculate the SPE score. The one proposed by Rao [19] is the first test statistic that

we can directly derive from Eq. (2.2.4) of SPE scores. Eq. (2.2.4) is similar to Eq.

(2.3.2). The X̂l is the reconstructed data using the principal components as indicated

by ẼlẼ
T
l x̄(j) in Eq. (10), where x̄(j) is simply the original data X (with mean

subtracted). Based on Eq. (2.2.5) (due to Rao [19]), we calculate the SPE scores,

SPE(l)1i. Both Rao [19] and Gnanadesikan Kettenring [9] have stated that the SPE

scores follow approximately a gamma distribution if the Gaussian assumptions of the

data hold true. We are proposing here a data-driven approximation of the SPE scores,

i.e., we are approximating SPE(l)1i by c(l)χ2
ν(l), where c(l) is a constant and χ2

ν(l)

represents a chi-square distribution with ν(l) degrees of freedom, which is known to be

related to a gamma distribution. In the literature on IoT [15][21], SPE(l)1i, SPE(l)2i

and SPE(l)3i have been approximated by a χ2
df distribution, where df is the degrees

of freedom, taken to be simply (p − l). We are using Satterthwaite approximation

[20] to estimate the constant c(l) and the degrees of freedom ν(l) based on the SPE
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scores which are directly linked to the given data points.

In many practical problems, the most efficient estimate of variance available is

a linear function of two or more independent mean squares. The exact distribution

of such estimates is quite complicated and often intractable. Satterthwaite approxi-

mation [20] addresses this issue by approximating the exact distribution by a scaled

chi-square distribution with the scaling factor and the degrees of freedom estimated by

equating the mean and variance of the SPE scores with those of the scaled chi-square

distribution.

After calculating the SPE scores (i.e., SPE(l)1i, where i = 1, 2, ..., n), we will

simply equate the means and variances of SPE(l)1i with the theoretical mean and

variance of c(l)χ2
ν(l):

SPE(l)1 =

n∑
i=1

SPE(l)1i

n
= c(l)ν(l), (2.4.1)

S2
SPE(l)1

=

n∑
i=1

(SPE(l)1i − SPE(l)1)2

n− 1
= 2c(l)2ν(l). (2.4.2)

Upon solving these two equations for c(l) and ν(l), we get the estimates of c(l)

and ν(l) as follows:

ĉ(l) =
S2
SPE(l)1

2SPE(l)1

, (2.4.3)

ν̂(l) =
(SPE(l)1)2

2S2
SPE(l)1

. (2.4.4)

Then, we can just set an upper control limit α = 0.05 or α = 0.01 for c(l)χ2
ν(l)(α).
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The points that fall beyond this cut-off value should be considered as potential out-

liers. In the simulation section, we have shown this both pictorially and numerically.

The upper control limit determines the trade-off between Type I and Type II errors in

hypothesis testing. Lower values of α result in a lower rate of false positives (Type I

errors) but may lead to more false negatives (Type II errors), and vice versa. Instead

of relying solely on TPR (True Positive Rate) or FPR (False Positive Rate), we have

considered using evaluation metrics like the F1 and MCC scores. These metrics pro-

vide a more comprehensive evaluation of the algorithm’s performance across different

α values. We have chosen the upper control limit α or the significance level that leads

to higher F1 and MCC scores while classifying between outliers and inliers. We have

used the two most general significance levels: α = 0.05 and α = 0.01 and reran the

algorithm for the desired Monte Carlo runs for different contamination rates. The

choice of α = 0.05 yielded to the highest average F1 and MCC scores.

The computational cost of our approach is lower than that of Jackson and Mud-

holkar [13]. The authors of [22] have attempted to optimize the computational cost

without using the transformation of [13] (i.e., Eq. (2.2.8)). In the R-PCA paper [22],

the authors discussed the computational complexity of using statistics [22] over their

oversimplified Gaussian approximation in their paper (see Section V: Performance

Evaluation, 4) Threshold: subsection) [22]. The whole point of R-PCA was to use

a simplified, less complex threshold-based scheme for the SPE scores that helps to

detect outliers more efficiently. The proposed threshold-based scheme takes away the

theoretical ambiguity due to the oversimplified Gaussian approximation and keeps

the computational complexity the same as that of R-PCA. Our approximation and

threshold-based scheme also results in better performance of the algorithm than that
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of a Gaussian approximated R-PCA [22]. One could implement this onto any of their

PCA-based outlier detection methods. We provide a sketch of the revised version of

Algorithm 1 (Algorithm 3) with the proposed approximation of the SPE scores.

Algorithm 2 would remain exactly the same as before.

The basic outlier detection framework is simple and can be implemented into any

real-time based approach. The work-flow is as follows:

• First, initialize the data matrix X[p×n] that consists of n observations and p

features;

• Next, perform PCA on the data: Y[p×n] = P[p×p]X[p×n], where Y[p×n] is the

principal component matrix;

• Carefully choose the number of PCs, say l, to capture 80−90% of the variability

of the data-space, and so we get Y[l×n] = P[l×p]X[p×n];

• Based on the reduced Y[l×n], reconstruct the data matrix X̂l, which is a lower

rank intrinsic approximation of X[p×n];

• Then, calculate the reconstruction errors: ε = (X − X̂l);

• Finally, obtain the SPE scores as SPE(l) = ‖X − X̂l‖2
2.

Based on the so-calculated SPE scores, i.e., SPE(l), we perform the Satterthwaite

approximation [20] for its distribution. Also, the parameter updates of ĉ(l)SPE and

ν̂(l)SPE in Algorithm 3 would directly follow from the updated forms of µSPE and

σSPE, as indicated in [22].

Additionally, we compared our scheme with two classical PCA-based benchmark

approaches that have been used by practitioners in recent times. These approaches
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use Hotelling’s T 2 and Mahalanobis distances, i.e., D2
i , and the corresponding thresh-

olds for detecting outliers in the projected subspace [8], [21]. The former classical

approach uses Hawkins’ [9] test statistics as defined in Eq. (2.2.6) for calculating

the SPE scores. Then the distribution of the test statistics is approximated by an

F -distribution. Whereas, the latter one uses the Mahalanobis Distances (D2
i ) on the

projected space for calculating the SPE scores. In [21], the use of the F -distribution

for D2
i is suggested. The distribution is approximated by a Chi-Square distribution

with the degrees of freedom the same as that of the dimension of the data subspace

for large sample sizes. Here, the degrees of freedom depend only on the dimension of

the dataspace and do not include any scaling for each real-time feeding of the data.

Thus, it does not depend on the dynamic nature of the dataspace. An alternative ap-

proximation of D2
i is proposed in [21], suggesting that the degrees of freedom should

be taken as the number of selected principal components. The connection between

Hotelling’s T 2 and Mahalanobis distance is explained in Section 2.2. In Section 2.6,

we have compared these two classical methods as our benchmarks along with ours to

see the performance of our proposed schemes.

2.5 Simulation Models and Performance Evalua-

tion Measures

We want to identify those outliers that influence the correlation structure of the

data set. These outliers are more difficult to identify and handle, especially if we

have large streams of data-points. We have simulated these outliers from a joint

multivariate Gaussian outlier model.
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Algorithm 3 Satterthwaite based R-PCA based Outlier Detection Algorithm

Step 1: Initialization
Step 2: normalize X =⇒ X̄ ↪→ N (0, 1)

Step 3: calculate E and Λ of X̄X̄T

n−1

Step 4: initialize µSPE and σSPE
Step 5: initialize ˆc(l)SPE and ˆν(l)SPE.
Step 6: Recursions
Step 7: update µ, σ and normalize x(t)
Step 8: rank Λ, E and calculate the number of PCs, l
Step 9: reduce Ẽ to Ẽl and Λ̃ to Λ̃l

Step 10: calculate SPE(t)
Step 11: if SPE(t) > c(l)χ2

ν(l)(α) then
Step 12: outlier detected
Step 13: call Algorithm2
Step 14: else
Step 15: update E and Λ
Step 16: update µSPE and σSPE
Step 17: end if

For our simulation studies, we define the outlier model as follows:

• We sample a core set of (n − q) observations from N(µp,Σp×p) distribution

corresponding to regular observations (inliers);

• Then, we add q observations from N(µ′p,Σ
′
p×p) as outliers, thus generating a

total of n observations with p features;

• Thus, δ = q/n is the proportion of contamination or outliers, present in the

simulated dataset.

There are potentially three kinds of outlier models one could define. First, one could

obtain a variance outlier model by setting the covariance matrix Σ′p×p = αΣp×p,

where α > 1 is a constant and the location parameter µ′p = µp. Here, the amount of

variance in the outlier observations is abnormally large. Second, one could construct
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a multivariate marginal outlier model by simply changing the location parameter,

i.e. µ′p = µp + Σ
1/2
p×pa and the same covariance matrix Σ′p×p = Σp×p. This model

simulates outliers as sets of points having potentially high values towards the location

parameter. This type of outlier is very easy to detect and requires less complex

algorithms. Third, we could obtain a multivariate joint outlier model by setting

µ′p = µp + Σ
1/2
p×pa and Σ′p×p = Σp×p + αaaT , where a is generally a p× 1 vector of

constant value and α > 0 is a constant. This model simulates outliers as sets of

points having potentially high values in some random directions. This type of outlier

is common in practical scenarios. Most of the outlier detection schemes are developed

for detecting this third kind of outliers (Eq. (2.2.5) and Eq. (2.2.6).

For simulations, we generate data sets of three sample sizes, namely, n = 1000,

2000 and 10000. For each of these sample sizes, we contaminate the data sets with

outliers at the proportions of δ = 5% and δ = 10%. For the first set of simulations,

we generate the data from a p = 9 and p = 12 variate Gaussian distribution. The

choices for the location parameters were taken as µp = 0 and µ′p = 8 for the inlier

and outlier models, respectively.

We want to verify our claim that the Satterthwaite approximated scores are essen-

tially an approximated chi-square distribution by creating Q-Q plots based on both

chi-square and Gaussian approximations. For the first, we created a Q-Q plot based

on the observed SPE sample quantiles and the theoretical chi-square quantiles, and

then compared it with the theoretical Gaussian quantiles. In this way, we can observe

that the Gaussian assumption on the SPE scores is not reasonable.

Fig 2.1 and Fig 2.2 are based on n = 1000 and 2000 samples respectively, generated

from Gaussian data, i.e., with µp = 0p×1 and Σp×p. Then, we generated two Q-Q plots,
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Figure 2.1: Q-Q plot based on n = 1000 samples without considering any outliers.
One can clearly see the departure from the normality in the right.
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one based on chi-square distribution and another based on Gaussian. In each set of

chi-square-based Q-Q plots, we can see that the sample points mostly lie on a straight

line, thereby corroborating our claim. In the Q-Q plots based on Gaussian assumption

(on SPE scores), one can observe a clear deviation from the assumption of Gaussianity

as the points do not fall on a straight line. One could also observe that at the end

of each chi-square-based Q-Q plot, a few points are irregularly scattered and do not

coincide with the straight line. The R software uses incomplete gamma functions

for approximating the quantiles of chi-square distribution. Hence, these irregularities

occur due to approximation errors. This irregularity is more visible when the sample

size is large (see Fig 2.2) which is due to the approximation error. Since Chi-Square

distribution has heavier tails, it leads to more variability in the observations residing

in the tail region which contributes to the tail irregularities that we observe in the

chi-square Q-Q plots.

Next, we generated Fig 2.3 and Fig 2.4 based on n = 1000 and 2000, from the

aforementioned contaminated Gaussian data. Then, we generated two Q-Q plots,

one based on chi-square distribution and another based on Gaussian. In each set of

chi-square-based Q-Q plots, we can see that the sample points mostly lie on a straight

line thereby corroborating our claim. Also, the Satterthwaite approximated chi-square

Q-Q plots nicely capture the outliers and shift those values away from the straight

lines. On the other hand, in the Q-Q plots based on the Gaussian assumption (on

SPE scores), one can observe a clear deviation from the assumption of Gaussianity

as fewer points fall on the straight lines. As a result, outliers detected using the

Gaussian assumption generate more false positives than the method proposed here.

The non-linear structure is visible in the Gaussian Q-Q plot. Approximation errors
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Figure 2.2: Q-Q plot based on n = 2000 samples without considering any outliers.
One can clearly see the departure from the normality in the right.

and heavy-tailed characteristics still contribute to the irregularities mentioned above.

Our proposed algorithm works as a binary classifier that distinguishes outliers

from inliers. However, by selecting specific proportions, we contaminate the data,

leading to a class imbalance problem. In IoT, most of the outlier detection literature

(e.g. [15], [22]) uses True Positive Rates (TPR) and False Positive Rates (FPR) as

measures of accuracy. However, in cases of class-imbalanced data, we already know

that one class is more likely to occur than the other. In these situations, accuracy or

TPR/FPR cannot be regarded as reliable measures as they overestimate the classi-

fier’s performance ability towards the majority class (inliers). In such cases, TPR and

FPR can be misleading because a model can achieve a high TPR by marking many
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inliers as outliers (increasing the FPR). In this regard, F1 and Mathews’ Correlation

Coefficient (MCC) consider both precision and recall, and take into account the class

imbalance and facilitate a more accurate assessment of the method’s performance.

F1 score and Mathews’ Correlation Coefficient (MCC) are two evaluation schemes

that have gained a considerable amount of attention among the machine learning

community. There are many outlier detection works in IoT that use F1 scores for

performance evaluation. Additionally, MCC scores are somewhat new for the afore-

mentioned purposes. These measures are as follows:

F1 = 2 ∗ Precision×Recall
Precision +Recall

=
2TP

2TP + FP + FN
, (2.5.1)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (2.5.2)

where TP is true positives, FN is false negatives, FP is false positives, and TN is true

negatives. The total number of outliers is TP + FN and normal events is TN + FP . So,

the F1 score is essentially the harmonic mean of Precision and Recall, where

Precision =
TP

TP + FP
, (2.5.3)

Recall =
TP

TP + FN
. (2.5.4)

The ranges of F1 score and MCC are [0, 1] and [−1, 1], respectively. For the F1 score,

the minimum is reached for TP = 0, that is, when all the positive samples are misclassified

and the maximum is achieved for FN = FP = 0, i.e., for perfect classification. For MCC,

we can interpret it the same way when either of the extremes is achieved. For example,
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MCC = 0 indicates that the prediction is randomly guessed according to the actual class.

F1 and MCC scores were chosen as evaluation metrics for our outlier detection algorithm

due to their suitability in assessing its overall performance. F1 is a metric that strikes a

balance between precision and recall, providing a valuable measure for the trade-off between

detecting outliers and minimizing false alarms. MCC, on the other hand, takes into account

true positives, true negatives, false positives, and false negatives, offering a comprehensive

summary of the method’s performance. In the context of simulated data, where noise and

uncertainty are prevalent, F1 and MCC are robust metrics. They consider both true and

false classifications, making them less susceptible to fluctuations caused by noise, unlike

TPR and FPR. False positives can be particularly costly in simulation-based scenarios,

and F1 andMCC are well-suited for evaluating the method’s ability to reduce false positives

while effectively identifying outliers. This balance is essential for maintaining the integrity

of simulation results. MCC stands out as a binary-classifier performance evaluation score

that rewards models predicting both positive and negative data instances correctly. It

condenses the information in the confusion matrix into a single value, facilitating easy

performance assessment [24]. Moreover, when comparing different statistics-based outlier

detection methods across various samples and contamination levels, using TPR or FPR

can be confusing. MCC, being threshold-independent, is a valuable choice in this regard

as it is not influenced by the specific decision threshold used to classify instances as outliers

or inliers, making it ideal for comparing methods when the optimal threshold is unknown

[23].

However, we have compared the FPR when comparing the proposed method with the

benchmarks, as mentioned in Section 2.4. The benchmark approaches are well-established

outlier detection schemes that perform well in detecting outliers. It’s typically expected to

have high TPR for such classical benchmarks. However, we are interested in seeing how

the FPRs are affected by their non-dynamic nature. So, we have kept the significance level
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at the same while comparing these methods.

Figure 2.3: Q-Q plot based on outlier model with n = 1000 samples. Here, one can
clearly see the departure from the normality in the right as well.

We have written a function in R in which the user can plug in the inlier/outlier sample

sizes, choices of µp = 012×1, µ′p = 812×1 (or it could be µp = 09×1, µ′p = 89×1, depending on

the p itself), and the covariance structures for the two Gaussian set-ups. Based on this, we

can easily generate samples of desired sizes, such as n = 1000, 2000, and 10000. Next, we

run the function 250 Monte Carlo times. For each run, the function generates a p-variate

Gaussian data matrix with the desired sample size, say n = 1000, from the outlier model,

performs PCA on it, and calculates the Squared Prediction Errors (SPE) corresponding to

each observation. Finally, it classifies the outliers away from the inliers.

The function also calculates the F1 and the MCC scores for each Monte Carlo run.
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Figure 2.4: Q-Q plot based on outlier model with n = 2000 samples. Here, one can
clearly see the departure from the normality in the right as well.
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Then, it calculates the average F1 scores, MCC scores, and their corresponding standard

errors (se) based on these 250 Monte Carlo runs. In this manner, each Monte Carlo run

mimics the dynamic environment of the R-PCA scheme by varying the data subspace. In

addition, the function also calculates the average TPR and FPR based on the desired

number of Monte Carlo runs. We have modified the function in two ways: one uses the

usual Rao’s statistic for calculating the SPE scores, and the other one uses Hawkins’ statistic

for the same. In each of these cases, the function approximates the SPE scores based on the

Satterthwaite and the Gaussian approaches for detecting outliers. One can easily update

the run as per their choices and update the function with new streams of data points with

the help of enhanced computational system architecture.

2.6 Performance Evaluation

Table 2.1 and Table 2.2 present simulation-based results from 250 Monte Carlo runs when

p = 9. We generated samples of sizes n = 1000, 2000 and 10000 from the previously

described outlier model at contamination rates of δ = 5% and 10%. Here, we used both

Rao’s and Hawkins’ test statistics for calculating the SPE scores. Then, we applied both

the proposed Satterthwaite and Gaussian approximations used in [22] on these SPE scores

to detect outliers. We now compare the performance based on these two approximations.

Let us first discuss the results at δ = 5% contamination rate. For Rao’s test statistic,

the average F1 and MCC scores for the proposed Satterthwaite-approximated SPE scores

ranged between 0.981 and 0.982, indicating excellent performance by the classifier. Both F1

and MCC scores showed similar values. In contrast, the F1 and MCC scores based on the

Gaussian approximation used in [22] SPE scores ranged between 0.833 and 0.839, implying

a decline in classifier performance. The standard error for all 250 runs was also higher

for the Gaussian approximation-based scheme of [22]. This decline was more prominent
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when evaluating the model at δ = 10% contamination rate, with F1 and MCC scores

based on Gaussian-approximated SPE scores ranging between 0.521 and 0.595, while the

proposed Satterthwaite-approximated SPE scores ranged between 0.793 and 0.863, still

indicating superior performance for binary classification. We observed that the Gaussian

approximation of [22] consistently yielded lower average F1 and MCC scores compared to

the proposed Satterthwaite-approximated SPE scores, with values significantly decreasing

as the contamination rate rose from δ = 5% to δ = 10%.

Table 2.1: Average F1 and MCC scores for p = 9 based on Rao’s and Hawkins’ test
statistics at δ = 5% contamination rate.

Samples Eval Proposed R-PCA framework R-PCA framework of [22]
Scheme Rao-Satter Hawkins-Satter Rao-Gaussian Hawkins-Gaussian

1000 F1 0.982 [se:0.013] 0.957 [se:0.023] 0.834 [se:0.034] 0.686 [se:0.053]
MCC 0.981 [se:0.013] 0.944 [se:0.023] 0.839 [se:0.034] 0.719 [se:0.053]

2000 F1 0.981 [se:0.009] 0.964 [se:0.017] 0.833 [se:0.021] 0.732 [se:0.029]
MCC 0.980 [se:0.009] 0.931 [se:0.017] 0.840 [se:0.022] 0.749 [se:0.029]

10000 F1 0.982 [se:0.004] 0.891 [se:0.009] 0.833 [se:0.010] 0.689 [se:0.016]
MCC 0.981 [se:0.004] 0.891 [se:0.009] 0.839 [se:0.010] 0.689 [se:0.016]

Table 2.2: Average F1 and MCC scores for p = 9 based on Rao’s and Hawkins’ test
statistics at δ = 10% contamination rate.

Samples Eval Proposed R-PCA framework R-PCA framework of [22]
Scheme Rao-Satter Hawkins-Satter Rao-Gaussian Hawkins-Gaussian

1000 F1 0.793 [se:0.025] 0.592 [se:0.041] 0.521 [se:0.027] 0.284 [se:0.037]
MCC 0.797 [se:0.024] 0.558 [se:0.041] 0.571 [se:0.026] 0.371 [se:0.038]

2000 F1 0.793 [se:0.017] 0.594 [se:0.026] 0.518 [se:0.018] 0.316 [se:0.023]
MCC 0.796 [se:0.017] 0.592 [se:0.026] 0.568 [se:0.018] 0.409 [se:0.023]

10000 F1 0.868 [se:0.007] 0.567 [se:0.012] 0.550 [se:0.008] 0.334 [se:0.011]
MCC 0.863 [se:0.007] 0.595 [se:0.012] 0.590 [se:0.008] 0.428 [se:0.011]

Next, we consider the case of Hawkins’ test statistic. We simulated n = 1000, 2000

and 10000 samples from the outlier model mentioned earlier at δ = 5% and 10% rates of

contamination. For δ = 5%, average F1 and MCC scores for the proposed Satterthwaite-

approximated SPE scores ranged between 0.891 and 0.957, implying an excellent perfor-

mance by the classifier. The lowest score was achieved when we used n = 10000 sample
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sizes. In contrast, F1 and MCC scores based on the Gaussian-approximated SPE scores of

[22] ranged between 0.659 and 0.749. This implies a significant decline in the performance

of the classifiers. We note that the decline in performance is quite visible even for δ = 5%.

We observe that the Gaussian approximation used in [22] always yields less average F1 and

MCC scores compared to the proposed Satterthwaite-approximated SPE scores. The scores

significantly decrease when the contamination rate increases from δ = 5% to δ = 10%.

In addition, we observed that the proposed Satterthwaite-approximated SPE scores

always yield better F1 and MCC (average) scores compared to Gaussian SPE scores of

[22] in all 250 Monte Carlo runs. The decline at δ = 10% contamination level is due to

the non-robust nature of both chi-square and Gaussian distributions. But, the decline in

performance is severe for Gaussian SPE scores.

Table 2.3 and Table 2.4 present simulation-based results from 250 Monte Carlo runs

when p = 12. We generated samples of sizes n = 1000, 2000 and 10000 from the previously

described outlier model at contamination rates of δ = 5% and 10%. Here, we used both

Rao’s and Hawkins’ test statistics for calculating the SPE scores. First, we discuss the

results at δ = 5% contamination rate. For Rao’s test statistic, the average F1 and MCC

scores for the proposed Satterthwaite-approximated SPE scores ranged between 0.7712 and

0.809, and 0.682 and 0.704, respectively, indicating quite good performance by the classi-

fier. F1 scores suggest better performance by the classifier compared to MCC scores. In

contrast, the F1 and MCC scores based on the Gaussian-approximated SPE scores ranged

between 0.593 and 0.601, and 0.607 and 0.613, implying a decline in classifier performance.

The standard error for all 250 Monte Carlo runs was also higher for the Gaussian approxi-

mation.

This decline was more prominent when evaluating the model at δ = 10%, with F1 and

MCC scores based on the Gaussian-approximated SPE scores of [22] ranging between 0.406

and 0.417 and 0.474 and 0.682, respectively, while the proposed Satterthwaite-approximated
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Table 2.3: Average F1 and MCC scores for p = 12 based on Rao’s and Hawkins’
test statistics at δ = 5% contamination rate.

Samples Eval Proposed R-PCA framework R-PCA framework of [22]
Scheme Rao-Satter Hawkins-Satter Rao-Gaussian Hawkins-Gaussian

1000 F1 0.809 [se:0.049] 0.800 [se:0.052] 0.601 [se:0.050] 0.550 [se:0.050]
MCC 0.704 [se:0.049] 0.809 [se:0.052] 0.613 [se:0.050] 0.604 [se:0.050]

2000 F1 0.766 [se:0.036] 0.798 [se:0.035] 0.590 [se:0.035] 0.540 [se:0.037]
MCC 0.684 [se:0.036] 0.803 [se:0.035] 0.604 [se:0.035] 0.601 [se:0.037]

10000 F1 0.771 [sd:0.017] 0.796 [se:0.014] 0.593 [sd:0.016] 0.542 [se:0.017]
MCC 0.682 [se:0.017] 0.802 [se:0.014] 0.607 [se:0.016] 0.598 [sd:0.017]

SPE scores, respectively, ranged between 0.624 and 0.640 and 0.617 and 0.632, still indi-

cating superior performance for binary classification. We noted a consistent trend where

the Gaussian approximation used in [22] consistently produced lower average F1 and MCC

scores when compared to the proposed Satterthwaite-approximated SPE scores. These val-

ues exhibited a significant decrease as the contamination rate increased from δ = 5% to

10%.

Table 2.4: Average F1 and MCC scores for p = 12 based on Rao’s and Hawkins’
test statistics at δ = 10% contamination rate.

Samples Eval Proposed R-PCA framework R-PCA framework of [22]
Scheme Rao-Satter Hawkins-Satter Rao-Gaussian Hawkins-Gaussian

1000 F1 0.624 [se:0.036] 0.541 [se:0.038] 0.406 [se:0.030] 0.313 [se:0.0302]
MCC 0.617 [se:0.036] 0.576 [se:0.038] 0.474 [se:0.030] 0.412 [se:0.030]

2000 F 1 0.657 [se:0.024] 0.535 [se:0.027] 0.407 [se:0.023] 0.313 [se:0.022]
MCC 0.636 [se:0.024] 0.574 [se:0.027] 0.473 [se:0.023] 0.415 [se:0.022]

10000 F1 0.640 [se:0.010] 0.538 [se:0.011] 0.417 [se:0.009] 0.314 [se:0.010]
MC 0.632 [se:0.010] 0.570 [se:0.011] 0.483 [se:0.009] 0.412 [se:0.010]

Now, we discuss the results based on Hawkins’ test statistic. We present simulation-

based results from 250 Monte Carlo runs. As before, we generated samples of sizes n =

1000, 2000 and 10000 from the previously described outlier model at contamination rates of

δ = 5% and 10%, for p = 12. For δ = 5%, the average F1 and MCC scores for the proposed

Satterthwaite-approximated SPE scores ranged between 0.796 and 0.800, and 0.802 and

0.809, respectively, indicating quite good performance by the classifier. F1 scores suggest
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better performance by the classifier compared to MCC scores. In contrast, the F1 and

MCC scores based on the Gaussian-approximated SPE scores of [22] ranged between 0.542

and 0.550, and 0.542 and 0.604, implying a decline in classifier performance. The standard

error for all 250 Monte Carlo runs was also higher for the Gaussian approximation used in

[22]. This decline was more prominent when evaluating the model for δ = 10%, with F1

and MCC scores based on Gaussian-approximated SPE scores of [22] ranging between 0.313

and 0.314 and 0.411 and 0.412, respectively, while the proposed Satterthwaite-approximated

SPE scores ranged between 0.538 and 0.541 and 0.570 and 0.576, respectively, still indicating

better performance for binary classification.

We also ran the simulation at δ = 15% contamination rate for p = 9 and 12. For p = 9, F1

and MCC scores based on the Gaussian-approximated SPE scores of [22] ranged between

0.33 and 0.419, indicating poor classifier performance. However, F1 and MCC scores for

the proposed Satterthwaite-approximated SPE scores still ranged between 0.646 and 0.656,

indicating better binary classifier performance. Similarly, for p = 12, F1 and MCC ranged

between 0.205 and 0.206 and 0.312 and 0.313, indicating poor classifier performance. How-

ever, F1 and MCC scores for the proposed Satterthwaite-approximated SPE scores still

ranged between 0.409 and 0.416, and 0.444 and 0.448, indicating better binary classifier per-

formance. It was consistently observed that the Gaussian approximation used in [22] yielded

lower average F1 and MCC scores compared to the proposed Satterthwaite-approximated

SPE scores. These scores demonstrated a significant decrease as the contamination rate

increased from δ = 5% to δ = 15%. However, the proposed Satterthwaite-approximated

SPE scores always yielded better F1 and MCC (average) scores compared to the Gaussian

SPE scores of [22] for all 250 Monte Carlo Runs. The decline at δ = 15% contamination

level is due to the non-robust nature of both chi-square and Gaussian distributions. But,

the decline in performance is more severe for the Gaussian SPE scores.

We also observed that the performance of the algorithm decreases as we increase the
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Figure 2.5: Comparisons on detection accuracy between the proposed method and
the method from [22] across various sample sizes, dimensions, and contamination

rates. The triangles and circles are Rao’s and Hawkins’ test statistics, respectively.
Red triangles and red circles refer to the Satterthwaite-based improvement, and

black triangles and black circles refer to the Gaussian method [22].
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sample sizes of the data. We have used panel plots in Fig 2.5 for visually summarizing the

results. Each panel of Fig 2.5 provides a visual representation of the performance based on

the selected performance evaluation score. Fig 2.5 illustrates a decline in performance for

both methods as the sample size and dimension increase, as evident from the trend observed

in both F1 andMCC scores. This is because of the non-robustness of the distribution. If the

contamination rate significantly increases, then the F1 scores might fall below the 0.45−0.5

range. Also, higher F1 scores indicate a higher number of True positives i.e., higher True

Positive Rate (TPR) and lower False Positive Rate (FPR). So, a decline in average F1

score reflects the non-robustness of the algorithm for both cases. This is due to the higher

number of False Positives that the scheme is incorrectly classifying as outliers. High MCC

scores also correspond to the fact that the classifier is able to detect the majority of the

positive and negative classes correctly. That leads to the same conclusions as those based on

a high F1 score. Additionally, Fig 2.5 illustrates the superior performance of Rao’s statistic-

based approximation compared to implementations based on the Hawkins’ framework. So,

a robustification based on Rao’s test statistic should yield better performance.

Table 2.5: Comparison of the Average MCC and FPR scores among the proposed
method and the benchmarks at δ = 5% contamination rate for various sample sizes.

Samples Eval Proposed Satter Hotelling’s T-Square Mahalanobis Distance
1000 MCC 0.981 0.918 0.909

FPR 0.00054 0.0075 0.0089
2000 MCC 0.980 0.823 0.912

FPR 0.00066 0.0230 0.0093
10000 MCC 0.981 0.908 0.909

FPR 0.00046 0.009 0.0087

Additionally, we compared the proposed method with some classical benchmarks in

Table 2.5 to better understand the performance. We have considered three sample sizes of

n = 1000, 2000 and 10000 and δ = 5% contamination rate for our Monte Carlo simulation.

We can observe that the proposed method is performing well with the Benchmark methods.
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All of the methods yield high MCC scores which correspond to the fact that the classifier

is able to detect the majority of the positive and negative classes correctly. Mahanalobis

distance-based approaches, i.e., those using D2
i , are more robust and thus perform better

than the Hotelling’s T-squared approach. However, the proposed method is also performing

well compared to the mentioned benchmark. Additionally, we have compared the False

Positive Rate (FPR) of the proposed method with that of the benchmark for understanding

the differences in MCC scores. The proposed method has generated fewer false positives

compared to the benchmarks for all sample sizes, supporting the assertion in Section 2.4.

2.6.1 Complexity Analysis

In this section, we provide a summary of the computational complexity analysis for the

three outlier detection algorithms applied to IoT-based systems using a data matrix X[p×n].

The algorithms under consideration are the original R-PCA-based Outlier Detection Algo-

rithm (Algorithm 1), the Outlier Diagnosis Algorithm (Algorithm 2), and the proposed

Satterthwaite-based R-PCA Outlier Detection Algorithm (Algorithm 3).

The original R-PCA algorithm (Algorithm 1) exhibits a computational complexity of

approximately O(p2t), where t represents the number of cases and p denotes the number of

features (columns) in the data matrix X[p×n]. The complexity arises from matrix operations,

including eigenvalue decomposition. The algorithm’s performance is directly influenced by

the number of cases, making it more computationally demanding as t increases.

The Outlier Diagnosis Algorithm (Algorithm 2), designed for IoT-based systems,

demonstrates a lower computational complexity compared to the original R-PCA algo-

rithm. Its complexity is mainly O(pt), involving iterations through cases and calculating

anomalies for each case. This algorithm focuses on the number of cases as a primary driver

of computational load.
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The proposed Satterthwaite-based R-PCA algorithm (Algorithm 3) has a computa-

tional complexity of approximately O(p2t), similar to the original R-PCA algorithm.

2.6.2 Potential Limitations of the Satterthwaite-based R-PCA

While the points mentioned above highlight the advantages and benefits of the proposed

method, it is also essential to point out some potential issues. The proposed method exhibits

sensitivity to model assumptions. Its performance can be limited when the underlying data

distribution significantly deviates from the algorithm’s assumptions, particularly in the case

of complex, non-Gaussian distributions. Additionally, the computational complexity of the

algorithm increases with the dimensionality of the data. High-dimensional data can render

the algorithm computationally expensive and potentially less accurate [25]. To alleviate

this issue, one might look into outlier-robust [2] [12] tensor principal component analysis

(OR-TPCA) method for simultaneous low-rank tensor recovery and outlier detection [26].

Moreover, the algorithm may require parameter tuning, such as setting the significance

level (α) and the degrees of freedom. Choosing appropriate values for these parameters

can be a challenging task and may influence the algorithm’s ability to detect outliers. This

method, based on the Satterthwaite approach, is more suitable for detecting univariate or

multivariate outliers and may not perform as effectively in identifying contextual anomalies

or more complex patterns often encountered in the IoT data, making outlier-type a potential

concern.

Furthermore, IoT-based systems often handle data streams that evolve over time [28].

The algorithm might struggle to adapt to changes in data distribution and could necessitate

continuous monitoring and re-calibration, leading to a limitation in its adaptability [27]

[29]. These considerations underscore the need for a thorough assessment of the method’s

suitability for specific applications.
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Chapter 3

Inferential Model for

Understanding the Effects of

Demographic and Gait Factors and

Their Interactions on the Human

Gait Index

3.1 Introduction

The Gait Index, developed through a systematic process outlined in [49], stands as an unique

contribution to the field of gait analysis. Unlike all other gait indices developed in the last

three decades [50], [51], [52], [53], [54], [55], [56], which either rely on complex statistical

model, focus on specific pathology conditions or subject groups, or incorporate numerous pa-

rameters that add complexity, this index offers a simple yet comprehensive approach without

50



Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

Figure 3.1: The overall flow diagram of the development of our inferential model to
assess the effects of demographic and gait factors and their interactions on the

human gait index.

compromising clinical relevance. The four key parameters—knee angle (KA), stride length

(SL), walking speed (WS), and stance-to-swing phase ratio (StPh/SwPh)—were carefully

selected based on a comprehensive literature review to ensure their clinical significance, ease

of measurement, and ability to provide meaningful insights into gait dynamics [57], [58],

[59], [60], [61], [62], [63], [64]. Many previous indices not only lack generalizability due to

their complexity, but also face challenges in accurately estimating multiple parameters using

wearable systems, making them less practical for routine and long-term use. In contrast,

the GI was specifically developed for the preliminary assessment of gait health, ensuring

applicability across diverse populations by normalizing parameters, such as stride length

(SL) for height, to account for demographic variations and offering an intuitive framework

for interpreting gait quality. The index’s development involved rigorous validation using

machine learning techniques, demonstrating its reliability and effectiveness. By requiring

only a few essential and easily measurable parameters, this innovative GI is highly accessible

for routine use in both clinical and research settings. It serves as a universal indicator of

gait health, effectively addressing the practical challenges of previously developed indices,

51

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

while bridging the intricate nature of gait with the practical needs of clinicians to provide

a streamlined approach to gait assessment.

To comprehensively explore the GI as a marker of gait stability and its determinants,

and to address its bounded nature and inherent variability within the study cohort from

a modeling perspective, we evaluated various inferential models and ultimately employed

Beta distribution-based regression models. Unlike the common approach in gait analysis,

which involves using multiple regression models based on various spatio-temporal gait pa-

rameters [65], [66], [67], our study focused on developing a single model to infer overall

gait stability while capturing the intricate relationships between key spatio-temporal gait

markers included in the GI and demographic factors. The GI, serving as a comprehensive

measure of both gait stability and overall gait health, provided a novel framework for this

analysis, enabling a singular model-based investigation of the determinants of gait health.

This approach not only enhances the understanding of gait dynamics, but also offers poten-

tial clinical applications by identifying key predictors that can be targeted for interventions

aimed at improving mobility outcomes, even in clinical populations with gait abnormalities.

In this chapter, we have developed an inferential model to provide an in-depth exam-

ination of the GI and its key influencing factors (Fig 3.1). In the methodologies section,

we outline the model frameworks, parameter estimation methods, and the rationale behind

model selection. This framework analyzes the effects of gait and demographic parameters,

their interactions on gait stability via the Gait Index, and identifies parameters driving

variability in the Gait Index through the dispersion sub-model, reflecting gait stability vari-

ability within the cohort. The results section presents these findings, along with model

diagnostics, emphasizing the insights gained into the diverse determinants of gait profiles.

By integrating the GI as a central component, our study advances beyond traditional ap-

proaches, offering a singular model-based perspective on gait assessment. The discussion

section synthesizes these results, underscoring their practical implications for clinicians and
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researchers. Finally, a succinct conclusion is presented summarizing the key contributions

of our study and their potential to enhance clinical practice and patient care.

3.2 Literature Review

Nowadays, many models designed to comprehend gait patterns fall under the category of

machine learning (ML) [68], [69], [70]. These models prioritize prediction by employing

versatile learning algorithms such as Neural Networks (NN), Random Forest (RF), and

Support Vector Machines (SVM) to uncover gait patterns within complex and extensive

datasets [71]. Prediction serves the purpose of identifying optimal courses of action without

necessitating an in-depth understanding of the underlying mechanisms. Consequently, ML

models operate with minimal assumptions about the systems generating the data [67], [72].

However, despite yielding compelling prediction results, the absence of an explicit model can

render ML solutions challenging to correlate directly with established biological knowledge.

On the contrary, statistical inferential models such as linear regression, generalized linear

models (GLM), and mixed models have traditionally emphasized inference [73], [74]. This

is accomplished by developing and fitting a probability model specific to the project, which

can be either Gaussian or non-Gaussian [75], [76]. These models enable us to quantify the

confidence level that a detected relationship represents a “significant” effect unlikely to be

due to random variation. Additionally, with sufficient data, we can explicitly test assump-

tions (such as equal variance) and adjust the model as necessary. With this motivation,

our interest lies in developing an inferential model capable of understanding the intricate

relationships among gait parameters and demographic factors to comprehend gait patterns.

Our exploration of modeling the gait index (GI) delves deeper as we examine demographic

effects and their influence on the GI. Various demographic factors significantly influence

gait patterns [36], [38], [77], [78], [79]. For instance, aging contributes to changes in muscle
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mass, bone density, and motor control, impacting walking ability [38], [80], [81], [82], [83].

Male and female anatomical variations in the pelvis and thigh, as well as gender-specific

muscle activity during walking, lead to distinct gait characteristics [84], [85]. Additionally,

BMI significantly influences gait mechanics [86]. Abnormal BMI (underweight, overweight,

or obese) can impact gait due to joint stress [87].

Beyond demographic effects, our inquiry extends to the intricate connections between

certain aspects of how we walk such as specific gait features and demographic factors includ-

ing age, gender, or BMI. Our focus is not only on evaluating these factors independently,

but also on investigating their collective impact, and how they converge to shape the GI and

its variations. Understanding these relationships is essential for unraveling the complexity

of gait patterns and their underlying determinants. By recognizing the multifaceted nature

of gait and its variation, clinicians can tailor personalized interventions to address specific

contributing factors, optimizing gait outcomes in diverse patient populations. The current

trend involves using multiple linear regression models and regression-based normalization

methods in gait research. For instance, multiple linear regression models are applied to

various gait parameters in [65], while 32 linear regression models are utilized without con-

sidering interaction effects in [66]. In our study, however, the challenge inherent in modeling

the GI lies in its bounded scores, constrained within the [0, 1] range. This constraint poses

a significant statistical challenge, urging us to adopt approaches that can effectively navi-

gate the complexities within this confined space. While standard linear regression models

are appreciated for their simplicity, interpretability, and ease of use, they fall short when

dealing with bounded outcomes like the GI, often predicting values beyond the permissible

range [88], [89]. In response to this challenge, recent advancements in statistical modeling

have introduced specialized techniques designed for bounded outcomes [90], [91], [92], [93].

Among these, the logit transformation of the bounded response [90], [91] has become a com-

mon practice, also known as additive log-ratio transformation [94]. However, this method
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has its constraints, particularly in handling heteroscedasticity [95]. Barclay et al. [92] ap-

plied censored normal or Tobit models to handle proportional data, addressing some of the

limitations associated with the logit transformation. Despite these efforts, the critique of

using Tobit models for proportional data [96] indicates that not all aspects of the problem

have been adequately addressed. In this landscape, the Beta regression model emerges as

a methodologically robust solution. Its inherent flexibility and capacity to handle bounded

scores make it well-suited for modeling the GI and capturing the intricate dynamics of gait

[93], [97], [98], [99], [100], [101], [102], [103]. Johnson et al. (1995) [93] have described

over a dozen examples from various physical sciences, showcasing the beta distribution as

a better fitting model for proportional data as compared to alternative models. Hviid and

Villadsen [97] extended this applicability to economics, while Mittelhammer [98] illustrated

the beta distribution’s efficacy using the proportion of heating oil in a tank measured at

different times. Beta regression is closely linked to an expanded framework of generalized

linear models (GLMs) outlined in Chapter 10 of [99], encompassing the joint modeling

of means and dispersions. The initial instances of beta regression originated from studies

within organizational economics and public management [97], [100]. Brehm and Gates [100]

examined police compliance with supervision, employing the standard parameterization of

the beta distribution with two shape parameters. However, this standard parameterization

introduced complexities in formulating regression models and posed challenges in interpreta-

tion. Paolino [101] adopted the mean-dispersion parameterization, offering a more straight-

forward interpretation. Buckley [102] developed a Bayesian approach based on Paolino’s

model, employing Markov-chain Monte-Carlo (MCMC) techniques for estimation, while

Ferrari and Cribari-Neto [103] derived an independent framework for beta regression model

using Fisher scoring, which garnered significant popularity in this literature. However, they

did not explicitly tackle model dispersion, but treated it as a nuisance parameter.
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The issue of modeling variances has received significant attention in statistical liter-

ature, particularly within the field of econometrics [104]. As demonstrated by Cook and

Weisberg [105] and Atkinson [91], traditional methodologies predominantly relied on graph-

ical techniques to discern heteroscedasticity under normal errors. In the context of gait

research, studies such as [65] acknowledged the presence of dispersion in the data, but did

not integrate it into their modeling frameworks. Similarly, in [66], researchers identified

heteroscedasticity in residuals for cadence in children, recognizing the failure to account for

it as a limitation of their models. While their proposed regression framework aimed to ad-

dress variations in spatiotemporal gait variables, these models lacked parameters to evaluate

the effects of dispersion or to establish causal relationships between independent variables

and the observed variability. This omission highlights a critical gap in capturing the com-

plexities of heteroscedasticity within gait data analysis. Smyth [106] introduced a method

for modeling the dispersion parameter within certain generalized linear models, expand-

ing beyond normality. To address heteroscedasticity, Cysneiros et al. [107] explored linear

models with symmetric errors, delving into diagnostic considerations within this framework.

A notable contribution by Smithson and Verkuilen [108] introduced a flexible maximum-

likelihood-based regression model, considering both location and dispersion using distinct

sets of predictors. In this innovative approach, logit serves as the link function for the

location sub-model, similar to logistic regression, while the dispersion sub-model follows a

log-linear approach. Originally designed for capturing heteroscedasticity within psycholog-

ical data, this method proved versatility in diverse applications. In addition, Simas et al.

[109] proposed a general class of predictors that captured both linearity and non-linearity

within the data. Employing linear predictors for both parameters, this approach offers a

streamlined solution, simplifying computational complexities when applied in practical ap-

plications. Hence, in our study, we leveraged advanced Beta regression models to proficiently

model and interpret the GI within its constrained range as well as perform a comparative
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analysis of their results to determine the best fit for our gait analysis.

3.3 Methodologies

The development of GI using clinically relevant parameters aims to simplify human gait as-

sessment [49]. In this study, we employ a Beta regression model to explore the relationship

between demographic and gait-related predictors and GI, offering valuable insights for clini-

cians. The methodologies detail the application of Beta distribution and re-parametrization

techniques, the construction of regression models, choices of link functions, likelihood es-

timation methods, and model discrimination techniques using criteria such as Akaike’s In-

formation Criterion (AIC) [110] and Bayesian Information Criterion (BIC). This approach

provides a comprehensive framework for GI-based gait assessment efficiently and accurately.

3.3.1 Beta Distribution and Re-Parametrization

The Beta distribution is renowned for its versatility in modeling data confined within spe-

cific intervals on the real line [93] [111]. Its application is particularly intriguing when

dealing with data within the standard unit interval (0, 1), where it can represent rates or

proportions.

A random variable Y follows a Beta distribution with parameters p and q, both greater

than 0, and is denoted by B(p, q). This distribution is characterized by its probability

density function, with respect to the Lebesgue measure, given as follows:

f(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1, (3.3.1)

where Γ(·) is the complete gamma function. The mean and variance of Y are, respectively,
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given by:

E(Y ) =
p

p+ q
, (3.3.2)

Var(Y ) =
pq

(p+ q)2(p+ q + 1)
. (3.3.3)

To obtain a regression structure for the mean of the response and the precision (or

dispersion) parameter [112], Ferrari and Cribari-Neto proposed a new parameterization

[103]. Under this parameterization, the expectation and variance of the response can be

written as

E(Y ) = µ, (3.3.4)

Var(Y ) =
Var(µ)

1 + φ
, (3.3.5)

where µ = p
p+q , φ = p+q, p = µφ, and q = φ(1−µ). In this case, Var(µ) = µ(1−µ) denotes

a “variance function”. Under this parameterization, we can rewrite the distribution of Y

as B(µ, φ). Here, µ is the mean of the response variable, while φ can be interpreted as a

precision parameter, indicating that for a fixed µ, higher values of φ correspond to smaller

variances of Y . The density of Y then can be rewritten as

f(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ(φ(1− µ))
yµφ−1(1− y)φ(1−µ)−1, 0 < y < 1 (3.3.6)

where 0 < µ < 1 and φ > 0, since p, q > 0. The log-density of the newly parameterized Y

58

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

is given by:

log f(y;µ, φ) = log Γ(φ)−log Γ(µφ)−log Γ(φ(1−µ))+(µφ−1) log y+(φ(1−µ)−1) log(1−y).

(3.3.7)

3.3.2 Construction of the Regression Model

Considering a random sample, y = (y1, . . . , yn)T , where yi ∼ B(µi, φi) for i = 1, . . . , n, we

can define the following functional relations for the mean and precision parameters of the

response variable yi

g1(µi) = η1i = f1(xT ,β) and g2(φi) = η2i = f2(zT ,θ) (3.3.8)

g1(µi) = η1i = xTi β and g2(φi) = η2i = zTi θ (3.3.9)

where β = (β1, . . . , βk)
T and θ = (θ1, . . . , θh)T are vectors of unknown regression parameters

that are assumed to be functionally independent (β ∈ Rk and θ ∈ Rh, k + h < n) and η1i

and η2i are the predictors. Simas et al. [109] proposed a general class of predictors capturing

both linearity and non-linearity in the data [109]. We adopted linear predictors for both

parameters, to avoid computational complexity when implementing them in our application.

Also, when φi = φ, the fixed-precision-based beta regression model proposed by Ferrari

and Cribari-Neto [103] can be retrieved. The observations xi1, . . . , xiq1 and zi1, . . . , ziq2

correspond to q1 and q2 known predictors, which need not be exclusive.
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3.3.3 Choices of Link Functions

The choice of link functions is critical in beta regression modeling. These functions,

g1 : (0, 1) → R and g2 : (0,∞) → R, are strictly monotonic and twice differentiable.

Monotonicity ensures that as the linear predictor (linear combination of predictor vari-

ables) increases, the mean of the response variable also increases (or decreases, depending

on the relationship direction). This property is essential for maintaining the interpretabil-

ity of the model. Twice differentiability ensures the smoothness and stability of the link

function, facilitating model fitting and enhancing the reliability of statistical inference.

Various link functions are available [99], including the logit link, g1(µ) = log
(

µ
1−µ

)
,

and the probit link, g1(µ) = Φ−1(µ), where Φ(·) denotes the standard normal distribution

function. Similarly, for g2(φ), the logarithmic link function, g2(φ) = log(φ), the square root

link function, g2(φ) =
√
φ, and the identity link function, g2(φ) = φ, are well-known, among

some others.

3.3.4 Likelihood and Method of Estimation

As defined in Eq.(3.3.8), µi = g−1
1 (η1i) and φi = g−1

2 (η2i) are functions of β and θ, re-

spectively. This beta regression family adheres to all regularity conditions outlined by Cox

and Hinkley [113], ensuring its statistical robustness. Furthermore, one can demonstrate

the uniqueness of the maximum likelihood estimators (MLE) within this framework. The

components of the score vector, derived from differentiating the log-likelihood function with

respect to the parameters, are presented in Appendix (Eqs. (A.0.1)–(A.0.10)). The maxi-

mum likelihood estimates (MLEs) of β and θ are derived by solving the nonlinear system

U(ζ) = 0. In practical applications, these MLEs are typically obtained through numerical

maximization of the log-likelihood function using a nonlinear optimization algorithm, such

as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [114].
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We choose linear models for our analysis to simplify computational complexity. Linear

models are simpler to interpret, provide clear insights into variable relationships, yield useful

statistics for assessing performance, and are easier to implement with better reproducibility.

Their reduced complexity and lower optimization costs make them an efficient and practical

choice.

Linear Beta Regression Model with Fixed Precision

In our approach, we adopt a linear regression framework to simplify computational com-

plexity. For the fixed precision beta regression (FPBR) model, we use the logit mean for

location modeling, where we only consider the fixed log link for the precision parameter:

log

(
µ

1− µ

)
= β0 + β1Age + β2BMI + β3Gender + β4KA + β5SL + β6WS

+ β7
StPh

SwPh
+ β8KA× SL + β9BMI×WS

+ β10Age×KA + β11Age×WS (3.3.10)

Linear Beta Regression Model with Variable Dispersion

In this class of beta regression models, we employ a linear sub-model for the dispersion

(or precision). For the variable dispersion beta regression (VDBR) model, we consider the

following structure for the location and dispersion sub-models:
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log

(
µ

1− µ

)
= β0 + β1Age + β2BMI + β3Gender + β4KA + β5SL + β6WS

+ β7
StPh

SwPh
+ β8KA× SL + β9BMI×WS

+ β10Age×KA + β11Age×WS, (3.3.11)

ln(φ) = θ0 + θ1Age + θ2BMI + θ3Gender + θ4KA + θ5SL + θ6WS + θ7
StPh

SwPh
. (3.3.12)

This entails using the same expressions as described in Eq. (3.3.9): g1(µi) = η1i = xTi β,

g2(φi) = η2i = zTi θ, where β ∈ Rk and θ ∈ Rh.

3.3.5 Model Discrimination

As noted earlier, since the estimation is conducted through maximum likelihood, the stan-

dard inferential tools including Wald statistics, likelihood ratio tests, and Lagrange mul-

tiplier (score) tests become readily accessible. Model comparison is accomplished using

the likelihood ratio test, which involves comparing twice the difference between the log-

likelihoods of a full model and a restricted model where the covariates are a subset of the

full model. Additionally, information criteria such as AIC [110] is employed for model evalu-

ation. In model selection, metrics such as the AIC [110] and the BIC [115] are instrumental

in assessing the goodness of fit of statistical models. Both metrics are represented as penal-

ized chi-square values, with the penalties defined by the number of model parameters (k),

and in the case of the BIC, the number of observations (N). The AIC is commonly defined

as

AIC = −2 lnLfitt + 2k. (3.3.13)
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while the BIC is defined as

BIC = −2 lnLfitt + 2k lnN. (3.3.14)

A recognized limitation of AIC is its susceptibility to small sample size, often leading

to a tendency to favor more complex models, particularly with larger datasets. Hence,

many researchers lean towards using BIC, which is derived from a Bayesian perspective

and imposes stricter penalties on model complexity compared to AIC. Both AIC and BIC

provide quantitative measures for model comparison, where lower values signify better fit

while accounting for the number of parameters involved. To evaluate the overall goodness

of fit of the model, an equivalent measure to the multiple R2 in normal-theory ordinary

least squares (OLS) regression would be beneficial. Ferrari and Cribari-Neto investigated

the correlation between observed and predicted values as a potential measure of goodness of

fit [103]. However, this approach overlooked the influence of dispersion covariates, thereby

restricting its applicability [108]. So, we restrict our model comparisons to the AIC and BIC

criteria, supported by various diagnostic plots. Among these tools, we use a half-normal plot

with simulated envelopes, which also serves as a goodness-of-fit assessment for the model.

Additional justification for selecting the model is provided in the ‘Model Diagnostic’ section,

where we present further diagnostic plots.

3.4 Results

The development of GI using clinically relevant parameters is an effort to streamline human

gait assessment [49]. Initially, a systematic literature review identified key gait parameters.

A dataset comprising 120 healthy subjects was then analyzed to compute these parameters

([84], [116]) as well as their demographic factors such as age, gender, and BMI. Statistical

analyses were conducted to identify the most significant gait parameters: walking speed –
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WS, maximum knee flexion angle – KAmax, height normalized stride length – SLnorm(h),

and stance-to-swing phase ratio – StPh/SwPh, forming the basis for the GI as

GI =
WS ×KAmax × SLnorm(h)

StPh/SwPh
. (3.3.15)

This composite GI would provide insights into an individual’s gait pattern, enabling

the detection of subtle abnormalities and facilitating continuous monitoring of changes over

time. In order to make it robust, our aim in this study is to explore the influence of gait

parameters, demographic factors, and gait-demographic interactions on GI.

We employ two beta regressions (fixed precision and variable dispersion) to model the

GI, incorporating three demographic parameters (age, gender, and BMI) and the four gait

parameters that are used in the GI formula as predictors. After exploring various combina-

tions based on insights from previous studies [57], [58], [59], [60], [61], [62], [63], [64], [80],

[81], [84], [85], [86], we carefully consider specific gait-gait and gait-demographic interaction

terms for examination. For instance, we investigate the potential interaction effect between

KAmax and SLnorm(h) on the GI, as suggested by literature findings [62], [117]. Additionally,

considering the literature’s indications, we examine the interaction between BMI and WS to

evaluate their combined impact on the GI [118], [119]. Moreover, we explore the influence

of interaction effects between age and KAmax, as well as age and WS [118], [119], on the GI

of the selected participants.

Table 3.1: Model discrimination

Measure for model discrimination FPBR VDBR
ln(L) 338.1000 407.2000
AIC -650.2007 -774.3000
BIC -613.9633 -718.5000

We consider different link functions for the dispersion sub-model and select the log

link based on model discrimination criteria (Table 3.2). The final model selection is based
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Table 3.2: Comparison of the link functions for the Dispersion Sub-Model (VDBR)

Link functions for the precision parameter (φ) AIC BIC
log(φ) -774.3199 -718.5701
φ -741.9465 -686.1967√
φ -755.5501 -699.8002

on the criteria outlined in the “Model Discrimination” section. Initially, we applied a

logit-transformed linear regression model, utilizing the additive logistic normal distribution

approach [90], [91], [92], as a potential alternative to simple linear regression, which is

unsuitable for bounded outcomes. However, the AIC and BIC scores for this model (-252.55

and -216.31, respectively – Appendix, Table A.1) are significantly higher compared to the

VDBR and FPBR models, indicating its relative inferiority. Subsequently, we compare the

VDBR and FPBR models based on AIC and BIC values (Table 3.1), where both metrics

for the VDBR model are lower, demonstrating a better balance between model fit and

complexity. Further justification for selecting the VDBR model is elaborated in the “Model

Diagnostic” section, supported by diagnostic plots and an assessment of various precision

parameter link functions (Table 3.2). Among these, the log(φ)-based model within the

VDBR framework exhibits the lowest AIC/BIC values, confirming its optimal fit.

3.4.1 Interpretations of the Fixed Main Effects

In this section, we present the interpretations of the model within the context of the gait

data, as indicated in Table 3.3.

1. Age: In our study, we did not find age to be a statistically significant predictor of

the GI. However, it is common knowledge that as we grow older, our walking tends

to become less steady. The trend was captured by the positive slope of the regression

coefficient in our study’s findings. However, this change in GI due to the Age was

negligible when interpreting quantitatively. For each passing year, the average GI

65

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

score decreased by roughly 0.0093 units on a standardized scale. In simpler terms,

as we age, the likelihood of having a GI score above the average decreases slightly

each year. For instance, if the coefficient for age was around 1.009 (e0.0093) when

exponentiated, it suggests that with every additional year, the odds of having a

higher-than-average GI score decreased by 0.9% (1.009 – 1 = 0.009), provided all

other factors remain constant;

2. BMI: Here, BMI was not a statistically significant predictor of GI at any given level

of significance. This implied that changes in BMI might not have a significant impact

on GI within the data we examined. However, the observed trend showed that as

BMI increases, there was a slight decrease in the likelihood of having a GI score above

the average. Specifically, for every increase in BMI, the odds of having a higher-than-

average GI score decreased by 0.4% (1.004 – 1 = 0.004), provided all other factors

remained constant;

3. Gender: Gender differences in gait are often explored. In our study, although there

was a difference in the estimated mean GI between genders, it was not statistically

significant at any listed significance level (Table 3.3) within our sample;

4. Knee Angle (KAmax): An intriguing relationship regarding KAmax’s impact on

the GI was observed in our analysis. The predictor was statistically significant for all

the given levels of significance. As the KAmax increased by one unit (radians), the

odds of the GI surpassing the grand mean increased by 28% (e0.2437 – 1 = 1.28 – 1 =

0.28), when all other factors remained constant;

5. Walking Speed (WS): The influence of WS on the GI was statistically significant

for all the given levels of significance in our study. With every one-unit increase in

WS (in ms−1), the odds of the GI surpassing the grand mean spiked by 23% (e0.2037

– 1 = 1.23 – 1 = 0.23), when all other factors remained constant;
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6. Stride Length (SLnorm(h)): Another noteworthy finding involved the influence of

SLnorm(h) on the GI. In our study design, the effect of SLnorm(h) was statistically

significant at the 0.1% significance level (thus, for all other levels of significance).

SLnorm(h) increased by one unit, the odds of the GI being above the grand mean

increased significantly by 22% (e0.1958 – 1 = 1.22 – 1 = 0.22), hinting at the importance

of longer strides for a higher GI;

7. Stance-to-Swing Phase Ratio (StPh/SwPh): The StPh/SwPh also emerged

as a significant predictor at a 0.1% significance level (thus, for all other levels of

significance). For every one-unit increase in this ratio, the odds of the GI exceeding

the grand mean decreased by 16% (e0.1498 – 1 = 1.16 – 1 = 0.16), highlighting the

role of this metric in understanding gait patterns.

3.4.2 Marginal Effects of Joint Interaction Factors on Gait

Index (GI)

In this section, we carefully analyzed the interaction terms to understand their implications

in the context of the location sub-model. These terms illuminated how the log odds of GI

change due to the combined influences of specific predictor variables within the location

sub-model framework. Our aim was to provide a clearer insight into the interplay between

various gait and demographic factors (gait-gait and gait-demographic). Fig. 3.2 illustrates

these marginal interaction effects in a 2×2 grid. Prior to model fitting, the data underwent

mean-centering, ensuring each term’s mean was set at 0. This normalization was crucial

given the varying units of the parameters. We examined the marginal effects on the response

while holding other factors constant at their respective reference levels.

1. Knee Angle (KAmax) and Stride Length (SLnorm(h)): The interaction effect

between KAmax and SLnorm(h) was statistically significant at all levels of significance.
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Figure 3.2: Marginal effects of joint interaction factors on the predicted Gait Index
(GI): (a) KAmax*SLnorm(h), (b) BMI*WS, (c) Age*KAmax, and (d) Age*WS. The
effects are shown for mean + 2SD (dashed line, green), mean (dotted line, blue),

and mean – 2SD (solid line, red).
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Table 3.3: Regression coefficients and summary statistics for Fixed Precision Beta
Regression Model (FPBR) and Variable Dispersion Beta Regression Model (VDBR)

FPBR VDBR
Parameters Coefficients SE p-values Parameters Coefficients SE p-values
Location Sub-model Location Sub-model
β0 0.3785 0.0121 < 2e− 16 *** β0 0.3607 0.0064 < 2e− 16 ***
β1 (Age) -0.0008 0.0098 0.9306 β1 (Age) -0.0093 0.0048 0.0526 ·
β2 (BMI) 0.0073 0.0069 0.2855 β2 (BMI) -0.0048 0.0025 0.0596 ·
β3 (Gender) -0.0292 0.0138 0.0348 * β3 (Gender) 0.0009 0.0063 0.8843
β4 (KA) 0.2590 0.0073 < 2e− 16 *** β4 (KA) 0.2437 0.0043 < 2e− 16 ***
β5 (SL) 0.1970 0.0082 < 2e− 16 *** β5 (SL) 0.1958 0.0041 < 2e− 16 ***
β6 (WS) 0.2123 0.0077 < 2e− 16 *** β6 (WS) 0.2037 0.0039 < 2e− 16 ***
β7 (StPh/SwPh) -0.1695 0.0071 < 2e− 16 *** β7 (StPh/SwPh) -0.1498 0.0028 < 2e− 16 ***
β8 (KA*SL) 0.0470 0.0081 7.73e− 09 *** β8 (KA*SL) 0.0315 0.0036 < 2e− 16 ***
β9 (BMI*WS) -0.0263 0.0077 0.0006 *** β9 (BMI*WS) -0.0052 0.0037 0.1667
β10 (Age*KA) -0.0063 0.0068 0.3533 β10 (Age*KA) -0.0072 0.0027 0.0093 **
β11 (Age*WS) -0.0204 0.0073 0.0056 ** β11 (Age*WS) -0.0213 0.0032 3.09e− 11 ***
Precision parameter (φ) Dispersion sub-model
Statistical significance levels (p-values): *** 0.001, ** 0.01, * 0.05, · 0.1 log(φ) 6.973 0.129 < 2e− 16 ***

θ0 7.6736 0.2371 < 2e− 16 ***
θ1 (Age) 0.0816 0.1730 0.6369
θ2 (BMI) 0.6092 0.1513 5.70e− 05 ***

θ3 (Gender)(Male) 0.6580 0.2949 0.0257 *
θ4 (KA) -0.8841 0.1517 5.67e− 09 ***
θ5 (SL) -0.4710 0.1565 0.0026 **
θ6 (WS) -0.2536 0.1658 0.1262

θ7 (StPh/SwPh) -0.4481 0.1634 0.00612 **

We plotted the marginal effects of KAmax on the predicted GI across three groups

of SLnorm(h), based on two standard deviations (SDs) above or below the mean, as

shown in Fig. 3.2.(a). For individuals with SLnorm(h) two SDs above the mean, an

increase in KAmax corresponded to an increase in GI. Similar positive relationships

were observed for those with average SLnorm(h) and 2 SDs below the mean. This indi-

cates that with each simultaneous increase in KAmax and SLnorm(h), the odds of the

GI exceeding the grand mean rose significantly. This interaction term is statistically

significant at all levels of significance;

2. BMI and Walking Speed (WS): The interaction effect between BMI and WS was

not statistically significant at any level. However, we observed the marginal effects

of BMI on GI for individuals with WS two SDs above the mean, average WS, and 2

SDs below the mean (Fig. 3.2.(b)). While the pattern was not entirely conclusive,

it appears that people with higher-than-average WS experienced a decrease in GI as

BMI increased, suggesting a potential negative relationship;

3. Age and Knee Angle (KAmax): The interaction effect between age and KAmax

on GI was statistically significant at 1% level. The marginal effects of age on GI were
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plotted for individuals with KAmax change 2 SDs above the mean, average KAmax

change, and 2 SDs below the mean in Fig. 3.2.(c). The results indicate that higher

KAmax changes are associated with a decrease in GI as age increased, indicating a

negative relationship;

4. Age and Walking Speed (WS): The interaction effect between age and WS on

GI was statistically significant at all levels in our study. We examined the marginal

effects of age on GI for individuals with WS two SDs above the mean, average WS,

and two SDs below the mean (Fig. 3.2.(d)). While individuals with average or higher

than average WS show a decrease in GI as age increased, those lower-than-average

WS exhibit the opposite patterns, suggesting a nuanced relationship between age,

WS, and GI.

3.4.3 Uncertainty Analysis of Fixed Effects (FPBR vs VDBR)

Understanding the uncertainty inherent in estimating fixed effects is crucial for assessing

the reliability of our findings. In this section, we analyze uncertainty surrounding the

estimation of fixed effects on the GI and present the estimates for the location sub-model

along with 95% confidence intervals (CI). Fig. 3.3 presents the uncertainty surrounding the

estimation of each fixed effect on the GI, accompanied by a 95% CI. These estimates offer

a range within which we can reasonably expect the true population parameter to lie. The

estimates, presented in odds ratio scales, involve exponentiating the log-odds estimates of

the predictors while preserving their original signs.

Combined coefficient plots of FPBR and VDBR explain how incorporating a dispersion

sub-model in VDBR mitigates the higher uncertainty observed in FPBR’s coefficient esti-

mates (Fig. 3.3). This variable dispersion model helpa to handle the data heteroscedasticity,

resulting in more precise estimates. The width of CIs reflects the uncertainty associated
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Figure 3.3: Coefficient plot comparing the estimates of VDBR and FPBR models
for the location sub-model, shown in the odds-ratio scale, with 95% confidence
intervals (CIs). Blue indicates VDBR effects, while red denotes FPBR effects of

predictors on the response variable.
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with each coefficient estimate, with wider intervals indicating greater uncertainty and nar-

rower intervals suggesting more precise estimates. For instance, the gender coefficient in the

FPBR model is statistically significant at a 5% level of significance for our study. However,

the coefficient plot in Fig. 3.3 reveals that it has the widest CI, indicating high uncertainty

in estimation. This is attributed to a relatively large standard error (SE: 0.0138) of the

estimates, as shown in Table 3.3. Consequently, Gender cannot be interpreted as a predictor

of GI in our study due to the variability of the GI within the male and female populations.

VDBR addresses these issues by handling data heteroscedasticity through a dispersion sub-

model, providing more stable CIs for the estimates. The indication of variability in the

GI for male and female population is studied in more detail in the precision sub-model in

sub-section 3.3.4.

In Fig. 3.3, coefficients with negative slopes are positioned left of the dashed reference

line, indicating a negative relationship, while those with positive slopes are on the right,

indicating a positive relationship between the predictor and the response variable. The

color scheme distinguished between VDBR (blue) and FPBR (red) estimates and their

corresponding CIs.

3.4.4 Interpretations of the Precision Sub-Model

In this section, we examine the precision sub-model’s estimates (precision parameter (φ)),

which assesses the dispersion of the beta distribution around its mean, providing crucial

insights into the variability of the GI (Table 3.3). The intercept in the precision sub-model

signifies the baseline precision of the GI when all predictors are at their reference levels

(zero), which is approximately 7.67 (log estimate). Positive coefficients for the predictors

indicate increased variability in the GI, while negative coefficients suggest reduced variabil-

ity. As well, positive coefficients contribute to over-dispersion, while negative coefficients

contribute to under-dispersion. Below, we interpret each predictor and its impact on the
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variability in the GI:

1. Age: The positive coefficient indicates that older age is associated with increased

variability in the GI, although this effect is not statistically significant in the preci-

sion sub-model of VDBR, and its magnitude is relatively lower compared to other

predictors;

2. BMI: Higher BMI (positive coefficient) is associated with increased variability in the

GI. This coefficient is strongly significant in the dispersion sub-model (at all the given

levels of significance);

3. Gender: Being male (as indicated by the gender coefficient) is associated with higher

variability in the GI compared to females, a significant finding in the precision sub-

model. This effect on the variability in the GI is statistically significant at a 5% level

of significance for the dispersion sub-model;

4. Stride Length (SLnorm(h)): This predictor is statistically significant at a 1% level

of significance in our dispersion sub-model. An increase in SLnorm(h) is associated

with a decrease in the variability of the GI. This indicates that individuals with

higher SLnorm(h)s exhibit less variability in their GI. This effect is significant as well;

5. Walking Speed (WS): An increase in WS was associated with a decrease in the

variability of the GI, which implied a reduction in variability.

6. Knee Angle (KAmax): This predictor is statistically significant for all the levels

of significance given in our dispersion sub-model. Like SLnorm(h), greater KAmax

values indicated lower variability in the GI. This effect is statistically significant,

suggesting that KAmax plays a significant role in determining the consistency of GI

measurements;
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7. Stance-to-Swing Phase Ratio (StPh/SwPh): Finally, for StPh/SwPh, higher

values of this ratio suggests lower variability in the GI. This effect is statistically

significant (p = 0.00263) at a 1% level of significance, highlighting the importance of

this ratio in gait index variability.

In summary, certain predictors like SLnorm(h), StPh/SwPh, WS, and KAmax had nega-

tive coefficients, suggesting that an increase in these predictors leads to a decrease in the

dispersion parameter, potentially resulting in under-dispersion. In contrast, predictors such

as age, BMI, and male gender had positive coefficients, indicating that an increase in these

predictors is associated with an increase in the dispersion parameter, possibly contributing

to over-dispersion. To understand the overall impact of predictors on dispersion, we need to

consider the collective effect of all predictors in the model. This involves comparing the ef-

fects of predictors associated with under-dispersion to those associated with over-dispersion.

If predictors linked to under-dispersion outweigh those associated with over-dispersion, the

data are more likely to exhibit under-dispersion overall or vice-versa. Understanding these

effects will help to comprehend the factors influencing variability in the GI and provide

insights into the data’s heterogeneity.

3.4.5 Model Diagnosis

In this section, we generate different diagnostic plots for two beta regression models: the

VDBR model and the FPBR model. These plots enable us to assess model reliability by

evaluating how well the model fits the data, identifying and alleviating the effects of outliers,

and checking model assumptions. We focus on two key diagnostic measures: residuals versus

fitted values and Cook’s distance, along with half-normal plots with simulated envelopes as

diagnostic tools for assessing the goodness of fit and the reliability of the model.

In diagnostics, it is crucial to measure influence and assess residuals. Initially, Ferrari
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(a) Residuals vs linear predictor

(b) Histogram of residuals in intervals.

Figure 3.4: Model diagnosis for VDBR and FPBR.

and Cribari-Neto [103] derived deviance residuals based on log-likelihood contributions.

However, their model lacked dispersion covariates, creating uncertainty when interpreting

deviance residuals in the presence of dispersion covariates. This issue was later addressed in

their ‘betareg’ package, which we use in our analysis to extract residuals [120]. To compare

and evaluate the effectiveness of the VDBR and FPBR models in capturing the underlying

data characteristics, we overlay the residuals versus linear predictor plots for both models.

This comparison guided our model selection process. Additionally, we generated histograms

of residuals in 0.5 intervals to compare the concentration of residuals around zero for both

models and assess the impact of extreme observations.

The residuals versus fitted values plot is used to assess model performance, identify

patterns, and detect influential outliers. Residuals represent the difference between observed

and predicted values, while fitted values are model predictions. This plot is essential for
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detecting systematic deviations from model assumptions. In residual analysis, the raw

response residuals (yi−µ̂i) are often avoided due to the inherent heteroscedasticity. Instead,

Pearson residuals, also known as standardized ordinary residuals, are used as a more reliable

alternative (Equation 3.4.1) [103]:

rP,i =
yi − µ̂i√
V̂ar(yi)

, (3.4.1)

where

V̂ar(yi) =
µ̂i(1− µ̂i)

1 + φ̂i
, µ̂i = g−1

1 (xTi β̂), φ̂i = g−1
2 (xTi θ̂). (3.4.2)

This calculation incorporates the varying dispersion parameters into the residuals for

further analysis. Additionally, Espinheira, Ferrari, and Cribari-Neto [121] introduced ad-

ditional residuals including one with enhanced properties termed standardized weighted

residual 2:

rSW2,i =
y∗i − µ∗i√
υ̂i(1− hii)

, (3.4.3)

where y∗i = log
(

yi
1−yi

)
, υi = ψ(µiφi) − ψ((1 − µi)φi) and ψ(·) is the digamma function.

Standardization is then performed by µ∗i = ψ′(µiφi) − ψ′((1 − µi)φi) and hii refers to the

i-th diagonal element of the hat matrix. Here, hats denote the evaluation at the maximum

likelihood (ML) estimates.

In the FPBR model (constant dispersion), the residuals versus fitted values plot reveals

heteroscedasticity and systematic trends, indicating violations of the constant dispersion

assumption. Fig. 3.4.(a) shows a clustering of nearly 65% of residuals around the cen-

tral region, with notable influences at the plot’s extremes. The histogram in Fig. 3.4.(b)

confirms this concentration near zero, reflecting standardized residuals but also showing
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the influence of extreme observations. In contrast, the VDBR model demonstrates resid-

uals consistently spread across fitted values, effectively capturing data variability. In Fig.

3.4.(a), the VDBR residuals scatter randomly around zero, indicating robust relationships

between predictors and responses.

(a) Half-normal plots of absolute
residuals with simulated envelopes

for VDBR model.

(b) Half-normal plots of absolute
residuals with simulated envelopes

for FPBR model.

Figure 3.5: Model diagnosis for VDBR and FPBR.

To further evaluate goodness-of-fit, we utilize half-normal plots of model diagnostics,

including residuals, Cook’s distance, and leverage. These plots are constructed by plotting

the ordered absolute values of diagnostics against the expected order statistics of a half-

normal distribution. Simulated envelopes, as proposed by Atkinson [91], are added to assess

model consistency, with observed points expected to fall within the envelopes for a correctly

specified model. The steps for creating Half-normal plots with a simulated envelope can be

summarized as follows:

1. Fit the model and generate a simulated sample of n independent observations using

the fitted model as if it were the true model;
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2. Fit the model to the generated sample, and compute the ordered absolute values of

the residuals;

3. Repeat Steps (1) ad (2) k times;

4. Consider the n sets of the k order statistics; for each set compute its average, minimum

and maximum values;

5. Plot these values and the ordered residuals of the original sample against the half-

normal scores:

Φ−1

(
i+ n− 1

8

2n+ 1
2

)

The minimum and maximum values of the k order statistics yield the envelope. In this

study, we use n = 100 simulations to compute percentiles at each expected order statistic.

Following Atkinson [91], we set k = 19, resulting in an approximate probability of 0.05 for

an absolute residual to fall outside the envelope. Fig. 3.5.(b) (FPBR model) reveals that a

significant proportion of points fall outside the simulated envelope, indicating poor model

fit and inconsistency in residuals. Conversely, Fig. 3.5.(a) (VDBR model) shows more

residuals within the simulated envelope, demonstrating consistency between the observed

residuals and the fitted VDBR model. Also, Cook’s distance is used to evaluate the influ-

ence of individual observations on model coefficients. High Cook’s distance values indicate

observations that could unduly affect model outcomes [122]. The ‘betareg’ package incor-

porates Cook’s distance for variable dispersion models, extending the original formulation

by Ferrari and Cribari-Neto to account for a variable precision parameter:

Ci =
hiir

2
SW2,i

1− hii
. (3.4.4)

By comparing diagnostic plots, we assess the ability of the VDBR and FPBR models to

capture underlying data characteristics. Fig. 3.6.(b) (FPBR model) shows abrupt spikes in
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(a) Cook’s distance for VDBR. (b) Cook’s distance for FPBR.

Figure 3.6: Model diagnosis for VDBR and FPBR.

Cook’s distance, reflecting susceptibility to influential points and a lack of robustness. In

contrast, Fig. 3.6.(a) (VDBR model) reveals better handling of data heteroscedasticity.

In conclusion, the comparison of diagnostic plots between the VDBR and FPBR mod-

els provides evidence of the VDBR model’s superior ability to capture the underlying het-

eroscedasticity inherent in the dataset. Overall, the VDBR model demonstrates a better fit

by effectively accounting for data variability and reducing the impact of extreme observa-

tions, providing more reliable and accurate results.

3.5 Discussions

In this study, we have employed Beta regression models to investigate the relationship

between various demographic and gait-related predictors and GI. This provides insights

for clinicians to understand and assess gait patterns from an inferential perspective. Our

findings shed light on the main effects of age, BMI, gender, KAmax, SLnorm(h), WS, and

StPh/SwPh on GI variability and the interaction effects among these predictors.

Interestingly, none of the demographic factors were statistically significant predictors
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of GI in our analysis, though trends were observed. Although age did not show a statis-

tically significant (not at 5%, but was significant at 10%) effect on the gait index (GI)

in our study, there was a trend indicating a potential decline in GI with increasing age.

This observation aligns with existing literature ([49], [71], [80]) suggesting that age-related

changes in gait, such as reduced gait speed, altered stride length, and decreased joint mo-

bility, can contribute to increased gait variability. BMI and gender also lacked statistical

significance, indicating minimal direct influence on GI individually. However, a difference in

the estimated mean GI between males and females hinted at a complex gender-related role.

While FPBR analysis suggested an association between gender and GI, wide confidence

intervals introduced uncertainty, whereas the VDBR model revealed a significant gender-

related influence on GI variability. Hence, further research is needed to better understand

these complex relationships. Among gait-related predictors, increases in KAmax, SLnorm(h),

and WS were associated with higher odds of GI being above the grand mean, while higher

StPh/SwPh was linked to decreased odds. Overall, all the selected gait-related predictors

demonstrated a significant effect on GI.

Additionally, we identified significant interaction effects between KAmax and SLnorm(h),

age and KAmax, and age and WS. These interaction effects underscored the complex inter-

play between demographic and gait-related factors in shaping gait patterns. In our analysis,

we observed a significant interaction effect between KAmax and SLnorm(h), exhibiting a pos-

itive slope. This indicated the importance of evaluating the individual impacts of KAmax

and SLnorm(h) and their combined effect for a comprehensive gait assessment. Examining

interactions between age and KAmax, as well as age and WS, suggested that aging influenced

KAmax and WS, with their combined effect subtly impacting gait patterns, particularly in

older individuals. This may explain the near significance of age’s effect on GI, as WS and

KAmax partially masked their individual impact. These findings underscored the impor-

tance of interaction effects in age-related gait changes and the need for further research.
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Moreover, our analysis identified variability in gait performance (GI) associated with

various predictors. Higher BMI was linked to increased variability in gait patterns (GI),

while being male was associated with higher variability than females. On the other hand,

shorter SLnorm(h)s, slower WSs, lower KAmaxs, and higher StPh/SwPhs were all associated

with increased variability in gait performance. Understanding these sources of variability

is crucial for clinicians in accurately assessing gait patterns and for developing targeted

interventions to improve mobility and function in patients with unstable gait patterns (lower

GI value).

In addition to these findings, the VDBR model outperformed the FPBR model in cap-

turing data heteroscedasticity by effectively identifying covariates, such as gender and BMI,

that contribute to variability. Unlike traditional approaches that emphasize gender differ-

ences solely through means ([82], [85]), the VDBR model highlighted gender as a significant

marker of gait variability, providing a more nuanced perspective—a similar observation ap-

plies to BMI. Although we did not find a strong association, BMI’s impact on gait stability

may be influenced by factors like joint pain, muscle weakness, and mobility limitations.

Our previous work confirmed GI deterioration with abnormal BMI [49], [71]. In this study,

individuals with higher WS showed a decline in GI as BMI increased, and BMI significantly

contributed to data heteroscedasticity, further emphasizing its complex role in explaining

gait stability. By incorporating a dispersion sub-model, the VDBR model delivered more

stable CIs and effectively addressed outliers, as confirmed by Cook’s distance analysis.

Furthermore, half-normal plots demonstrated a better fit, highlighting the VDBR model’s

superiority in capturing GI score variability and its suitability for gait analysis.

Unlike prior studies that typically employed multiple regression models for analyzing

individual variations in gait parameters [65], [66], [67], our work took a different approach

by using the GI as a unified representation of gait stability. This model-based framework

allowed us to explore how key gait and demographic parameters, and their interactions,
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influence gait stability more holistically. Furthermore, the dispersion sub-model was instru-

mental in identifying the specific gait and demographic parameters responsible for variability

in GI, providing a clearer understanding of the factors contributing to fluctuations in gait

stability within this cohort. Overall, our findings will provide clinicians with valuable in-

sights into how both demographic and gait-related factors contribute to GI variability. By

addressing specific factors contributing to variability and considering their interactions, clin-

icians can tailor interventions to optimize gait outcomes, ultimately improving the quality

of life for individuals with unstable gait patterns (lower GI).
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Chapter 4

Understanding Patient-level Gait

Predictions using an Interpretable

Machine Learning (ML) Model: A

BART Framework

4.1 Introduction

The significance of gait analysis in understanding and addressing various health conditions

has gained prominence, transcending from a biomechanical curiosity to a pivotal aspect

of clinical evaluation [125], [126], [127], [128], [129], [130]. Gait analysis holds a unique

position as a non-invasive, dynamic assessment tool that offers insights into musculoskele-

tal function, cardiovascular health, neurological integrity, and overall mobility [131], [132],

[133], [134], [135], [136], [137], [138], [139]. Wearable sensor-based data collection is easy

to implement in routine clinical practice, enabling researchers to gather data from large
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populations. Despite the high volume of published studies, only a small portion of this data

is freely accessible and well-documented for reuse. Open and curated gait datasets aim to

address this gap by serving two main purposes: first, they allow clinicians to test and com-

pare clinical hypotheses—such as the ability of walking patterns to distinguish fallers from

non-fallers [140], [141]; second, they enable bioengineers to design and evaluate the accuracy

of algorithmic methods [142]. The current trend of patient-level gait analysis focuses on

developing prediction models based on wearable devices. A wearable inertial measurement

unit (IMU) attached to the lower limb region was found to be the most common approach.

Wearable sensors’ most extracted quantitative gait features were temporal, spatial, and spa-

tiotemporal characteristics [143]. Based on such extracted parameters, different prediction

models have been built to understand patient-level nuances in their gait characteristics be-

tween pathological groups and healthy cohorts. Early identification of disorder-specific gait

deficits, coupled with monitoring disease progression, allows for implementing targeted,

preventive, and personalized treatments for patients based on their pathology. Previous

studies have investigated patient-level gait characteristics in various neurological disorder

groups, such as Parkinson’s disease (PD)[144] and its subtypes, as well as orthopedic disor-

der groups, including osteoarthritis [145] and its subtypes. Neurodegenerative diseases, such

as PD have a significant effect on motor functions, especially movement impairments [146],

[147], [148]. Multiple simple threshold-based analytic approaches have been used for Freez-

ing of gait (FOG) detection in PD patients using wearable sensors [149], [150]. Traditional

machine-learning (ML) models, such as support vector machines (SVM) [151], [152], and

decision-tree-based models like random forests (RF) [153], [154], [155], have been used along

with deep-learning models, including convolutional neural networks (CNN) [154], [156] and,

recurrent neural networks (RNN) [157] for FOG detection using wearable sensors. More

cutting-edge black box deep-learning tools such as transformers, autoencoders and Long

Short Term Memory (LSTM) network have been employed for quantitative gait analysis
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[158], [159], [160]. These studies focused on prediction or enhancing prediction accuracy

rather than on the interpretability of the results. Furthermore, while advanced machine

learning approaches offer high prediction accuracy, their practical use in clinical settings

remains limited because their predictions are often difficult to interpret and, therefore, not

actionable. Interpretable methods clarify why a specific prediction was made for a pa-

tient by identifying the patient-level gait characteristics that contributed to the result. To

date, this lack of interpretability has constrained the adoption of powerful techniques like

deep learning and ensemble models in medical decision support. Previous review studies

[143] have highlighted similar challenges when summarizing the contributions of machine

learning algorithms in wearable sensor gait analysis. Only a few studies, such as the one

in [161], have considered deep learning approaches for estimating spatiotemporal gait fea-

tures. However, these models still lack local interpretability, such as defining the decision

path, ensuring model convergence, explaining uncertainty in predictions, or attributing im-

portance to features used in predictions. To the best of our knowledge, this is the first

study on wearable sensor gait analysis to propose a Bayesian Additive Regression Tree

(BART)-based [162] framework that not only predicts patient-level classifications between

healthy and pathological cohorts but also explains the predictions by offering a comprehen-

sive Bayesian inference for the decision path, model diagnostics, and feature importance.

Understanding what drives a prediction is important for determining targeted interventions

in a clinical setting. For this reason, machine-learning methods employed in clinical gait

analysis applications avoid using complex yet more accurate models and retreat to simpler

interpretable (for example, linear) models at the expense of accuracy. Studies like [163] of-

ten use correlation analysis-based approaches or linear models to achieve interpretability at

the expense of the prediction accuracy. These approaches cannot account for non-linearity

and higher-order interactions within the data. Additionally, simple linear models are highly
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Figure 4.1: Preprocessing of the datasets and development of the interpretable
BART-based framework.

sensitive to correlated feature spaces, which can lead to biased results—such as inaccu-

rate p-values and inflated confidence intervals—if left unaddressed. In our study, we have

demonstrated how to retain interpretability with complex models, such as non-parametric

Bayesian methods, by developing a framework that provides theoretically justified expla-

nations of model predictions, model diagnostics, and feature importance. This framework

aligns with recent advances in model-agnostic prediction explanation methods [164], [165],

[166].

The Bayesian Additive Regression Tree (BART) is a “sum-of-trees” model in which

each tree is constrained by a regularization before acting as a weak learner. Fitting and

inference are performed using an iterative Bayesian back-fitting MCMC algorithm that gen-

erates samples from the posterior distribution [162]. BART can accommodate collinearity,

non-linearity present in the data subspace and higher-order interactions, along with esti-

mating random effects present in the model [167]. BART has gained significant attention
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in various applications like ecology [168], modelling uncertainty in the economy [169], and

hourly streamflow forecasting [170]. BART is highly interpretable due to its built-in feature

importance criteria. Moreover, it facilitates permutation-based tests that provide a statis-

tical justification for the significance of each feature [171]. BART’s performance has been

evaluated in both lower-dimensional cases and in high-dimensional, settings with sparsity

considerations. The sparsity-induced prior-based modifications result in reasonable feature

importance and improved performance compared to other decision-tree ensemble methods

[172]. Furthermore, recent theoretical studies indicate that these models achieve a near-

minimax posterior concentration rate across a wide range of prediction functions, supporting

the empirical success of BART and its variants from a theoretical standpoint [173].

In this research, we utilize the IOPL dataset [142], which comprises 1,020 time series,

each accompanied by various contextual metadata. The dataset captured approximately 8.5

hours of gait signals from 230 subjects performing a sequence of simple movements, including

standing, walking, and turning, in a fixed order. More than 40,000 footsteps were manually

annotated with specified start and end timestamps. We preprocessed the data (see sub-

section on Preprocessing) and converted it into a standard tabular format with extracted

temporal, spatial, and spatiotemporal gait features. A correlation analysis of the predictor

space indicated a high correlation among the predictors. We performed binarization based

on healthy versus pathological cohorts and further differentiated between two pathological

groups: orthopedic and neurological. This binarization enabled us to better understand the

patient-level gait characteristics of the disorder groups in comparison to the healthy cohort,

which served as the reference level.

We evaluated BART’s out-of-sample performance across cohorts using various perfor-

mance metrics. Model diagnostics were also assessed to verify convergence and ensure
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prediction reliability for each cohort. We benchmarked BART’s performance against tra-

ditional machine-learning models, including support vector machines (SVM), decision-tree-

based models, and logistic regression. Each cohort was evaluated, and a comparison of

model performance was conducted. Unlike previous studies [151], [152], [153], [154], [155],

[156], BART provides an explanation of the importance of each feature for each cohort. Indi-

vidual effect plots, such as Accumulated Local Effects [174], which are more robust towards

collinearity, were evaluated for selected features to better understand their relationship

with the model’s predictions. In our study, BART produced biologically meaningful results

aligned with previous studies [175], [176], [177], [178], [179], [180], [181], [182], [183], [184],

[185], [186], [187], [188], [189], [190], [191], [192]. To further assess the consistency of impor-

tant features indicated by BART, we conducted a SHAP analysis [193] with benchmarked

machine learning (ML) algorithms across each cohort. Feature importance does not estab-

lish causation and so does not offer a complete diagnosis of a patient’s disorder. However,

they provide clinicians with insights into the gait characteristics and procedural factors that

influenced the model’s predicted pathology, supporting more informed diagnostic decisions.

4.2 Methods

We deployed BART on this transformed dataset and evaluated the performance. To illus-

trate the value of the BART-explained predictions and provide insight into factors influ-

encing the classification between healthy and pathological groups, we present the following

details.

4.2.1 Procedures

Preprocessing: This study focuses on analyzing IMU-based gait data collected from 230

participants across three distinct pathology groups: Healthy, Orthopedic, and Neurological
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[142]. Time-series data from IMU sensors was processed to extract critical gait features,

which were essential for distinguishing walking patterns across the groups. IMU sensors

were placed on each participant’s feet, capturing accelerometer and gyroscope data at 100

Hz. These sensors captured three-dimensional data, including accelerometer readings for

acceleration and gyroscope readings for angular velocity along the X, Y, and Z axes. Key

gait events, such as Heel-Off (HO) and Toe-Strike (TS), were manually annotated in the

dataset by specialists using a software tool that displayed the relevant sensor signals, allow-

ing precise marking of these events. In addition to utilizing the manually annotated events,

Toe-Off (TO) and Heel-Strike (HS) events were estimated by us using a peak detection

method applied to the accelerometer and gyroscope signals.

After detecting key gait events, we extracted 35 features capturing temporal, spatial,

and phase-specific characteristics for each trial (see Table 4.1). Temporal features included

stride time (time between successive heel strikes of the same foot), swing time (duration the

foot is off the ground), and stance time (duration the foot is in contact with the ground),

along with single and double support times. Spatial features included walking speed (from

stride length and cadence), stride length (distance between successive heel strikes of the

same foot), and step length (distance between consecutive heel strikes of alternating feet).

Phase-specific characteristics captured load (heel-strike to flat foot), push (heel-off to toe-

off), and flat foot phases. To assess gait variability, standard deviation (SD) and coefficient

of variation (CV = σ/µ) were calculated for key parameters, and asymmetry between left

and right feet was computed for several parameters. Asymmetry between the left and right

feet was also computed for multiple parameters using the following equation:

Asymmetry = 100×
∣∣∣∣ln( Xleft

Xright

)∣∣∣∣ , (4.2.1)

where Xleft and Xright represent the values of a specific gait parameter for the left and
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right feet.

Finally, several demographic features, including age, gender, BMI (calculated from

height and weight), dominant foot (laterality), and pathology group (Healthy, Orthope-

dic, or Neurological), were included as part of the feature set. These features collectively

enabled a detailed examination of gait mechanics and the identification of patterns unique

to each pathology group.

4.2.2 Model Architecture

Bayesian Additive Regression Tree or BART is a Bayesian approach to non-parametric func-

tion estimation by growing multiple decision trees. Suppose we have a continuous response

variable Y and p covariates X for n subjects. The objective is to develop a model capable of

capturing intricate relationships between X and Y , with a focus on predictive performance.

BART aims to estimate f(X) using models of the form: Y = f(X) + εi, where εi ∼

N(0, σ2), i = 1, . . . , n. To approximate f(X), a summation of regression trees is formu-

lated as

f(X) =

m∑
j=1

g(X;Tj ,Mj). (4.2.2)

Predictions are based on the sum-of-these-tree models, where each tree is composed

of leaves and terminal nodes. So, predictions are taken from each tree and added to-

gether to get the total estimates. In Eq. (4.2.2), Tj is the jth binary tree structure and

Mj = {µ1j , . . . , µbjj} is the vector of terminal node parameters associated with Tj . For

each binary regression tree Tj and its associated set of terminal node parameters Mj , the

function g(x;Tj ,Mj) assigns a value µkj ∈Mj to x. Under this formulation, the conditional

expectation E(Y | X) is given by the sum of all terminal node parameters µkj assigned

by the functions g(x;Tj ,Mj). Here, µkj is the mean parameter of the kth node for the jth
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regression tree. Additionally, each µkj represents a main effect when g(x;Tj ,Mj) depends

on a single component of x (i.e., a single variable), whereas it represents an interaction

effect when g(x;Tj ,Mj) depends on multiple components of x (i.e., multiple variables).

Thus, the defined tree-based ensemble model is capable of capturing both main effects

and interaction effects. Moreover, since the trees in this formulation can vary in size, the

interaction effects can be of different orders. In the special case where every terminal node

assignment depends only on a single component of x, the sum-of-trees model simplifies to

an additive function (a sum-of-step functions) based on the individual components of x.

However, there are some computational challenges on detecting higher order (more than 2)

interaction terms [162]. There are many descriptions and derivations of the architecture of

BART models [162] [167]. In this work, we follow the original formulation by Chipman et

al. [162] and the general BART framework outlined in [167].

Priors of BART

Now that we have a conceptual understanding of how the BART algorithm operates, we

proceed with a more rigorous explanation. We begin by specifying the prior distributions

for BART.

The prior distribution for Eq. (4.2.2) is given by P (T1,M1, . . . , Tm,Mm, σ). A com-

mon prior specification assumes that {(T1,M1), . . . , (Tm,Mm)} and σ are independent, and

that each pair (Tj ,Mj) is independent of the others. This allows us to simplify the prior

specification problem to the specification of forms expressed as

P ((T1,M1), . . . , (Tm,Mm), σ) = P ((T1,M1), . . . , (Tm,Mm))P (σ)

=

 m∏
j=1

P (Tj ,Mj)

P (σ)
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=

 m∏
j=1

P (Mj |Tj)P (Tj)

P (σ)

=
m∏
j=1

bj∏
k=1

P (µkj |Tj)P (Tj)P (σ). (4.2.3)

From the third to the fourth line in Eq. (4.2.3), recall that Mj = {µ1j , . . . , µbjj} repre-

sents the vector of terminal node parameters associated with Tj , and each node parameter

µkj is typically assumed to be independent.

Thus, Eq. (4.2.3) indicates that we need to specify prior distributions only for µkj |Tj ,

σ, and Tj .

Regularization prior or P (Tj)

A prior on Tj governs the depth of each tree using a negative power distribution, which can

be specified by three aspects:

1. The probability that a node at depth d = 0, 1, . . . will split is given by α
(1+d)β

.

where the parameter α ∈ (0, 1) determines the likelihood of a node splitting—higher

values of α increase the probability of a split. The parameter β > 0 controls the

number of terminal nodes, with larger values of β leading to fewer terminal nodes.

This property plays a crucial role in BART as it acts as a regularization mechanism,

preventing overfitting and ensuring the convergence of BART to the target function

f(X) (Rokčová and Saha, 2018)[194]. As discussed in the previous subsection, this

feature also allows many shallow (weak) regression trees to be fit and eventually

summed together to obtain a stronger model;

2. The distribution used to determine which covariate an internal node splits on is

typically chosen as the uniform distribution. However, if we have correlated predictors
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or high-dimensional predictor spaces, the assumption of a uniform distribution could

lead to biased results in variable selection. Recent studies [194][172] have suggested

that a uniform distribution does not inherently encourage variable selection;

3. The distribution used to determine the cutoff point within an internal node, after

selecting the covariate, is typically chosen as the uniform distribution by default.

Prior on µkj|TJ

Here, we use conjugate normal distribution N(µµ, σ
2
µ) as the prior for P (µkj |TJ). For the

hyperparameters µµ and σµ, they are chosen so that the conditional expectation E[Y |X]

follows a normal distribution, N(mµµ,mσ
2
µ), which is essentially the sum of mµkj ’s under

the sum-of-trees model. Further, µkjs are considered apriori and are independently and

identically distributed. Here, it is highly probable that E[Y |X] is between the interval

(min(Y ),max(Y )). This is ensured by setting v such that min(Y ) = mµµ − v
√
mσµ, and

max(Y ) = mµµ+v
√
mσµ. To facilitate posterior distribution calculations, Y is transformed

as follows: Ỹ = Y−min(Y )+max(Y )
2 . This transformation results in Ỹ ∈ (−0.5, 0.5), where

min(Y ) = −0.5 and max(Y ) = 0.5. This transformation allows the hyperparameter µµ to

be set as 0 and σµ to be determined as σµ = 0.5, where v is chosen accordingly.

For v = 2, the normal distribution N(mµµ,mσ
2
µ) assigns 95% prior probability to the

interval (min(Y ),max(Y )), which is the default setting. Finally, for ν and λ, the default

value of ν is set to 3, while λ is chosen such that P (σ2 < s2; ν, λ) = 0.9, where s2 represents

the estimated residual variance from a multiple linear regression model with Y as the

response and X as the set of covariates.

Prior on σ

The prior for σ or P (σ) is taken as σ2 ∼ IG(ν/2, νλ/2), where IG(α, β) represents the

inverse gamma distribution with shape parameter α and rate parameter β.
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Additionally, three priors are used to control how a decision tree evolves in BART. One

prior governs the depth of each tree using a negative power distribution, which has three

associated hyperparameters. The other prior distribution controls the selection of covariates

for splitting at an internal node. By default, this is set to a uniform distribution, meaning

that each covariate has an equal probability of being selected for a split at an internal node.

The first hyperparameter controls the likelihood of a node splitting, where larger values

increase the chance of a split. The second regulates the number of terminal nodes (the

endpoints of each tree where predictions were made), preventing BART from overfitting.

The third hyperparameter manages the tree depth. Together, these priors allowed for fitting

many shallow trees, or “weak learners,” which are ultimately summed to form a stronger

model.

If we have correlated predictors or high-dimensional predictor spaces, the assumption

of a uniform distribution could lead to biased results in variable selection. To address this,

we employ a more general distribution like the Dirichlet distribution as a sparsity-inducing

prior, which helps guide covariate selection in the tree more effectively [172]. This is an

important aspect in understanding the feature importance for our model. Finally, after the

covariate is selected, another prior distribution was used to select the cut-off point in an

internal node. The default suggested distribution was the uniform distribution [162]. All the

hyperparameters are tuned using a 5-fold cross-validation. In this way, a fully explainable

decision path could be provided to fit the model to the given prediction problem.

Posterior inference for BART

BART utilizes a full Bayesian approach for decision-making purposes. Sampling from the

posterior distribution is obtained via Gibbs sampling, in combination with a Metropolis-

Hastings step. This whole sampling mechanism utilizes the idea of Bayesian back-fitting

procedure [162] which is a general procedure for posterior sampling from additive and
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generalized additive models.

The general form of the posterior distribution can be described as follows:

Step 1: The joint posterior distribution can be written as follows:

P [(T1,M1), . . . , (Tm,Mm), σ | Y ] ∝ P (Y | (T1,M1), . . . , (Tm,Mm), σ)P ((T1,M1), . . . , (Tm,Mm), σ)

(4.2.4)

which can be decomposed into two primary posterior distributions using Gibbs sam-

pling. First, we successively draw

P
[
(Tj ,Mj) | T(−j),M(−j), Y, σ

]
(4.2.5)

for j = 1, . . . ,m, where T(−j) and M(−j) represent all tree structures and terminal

nodes excluding the jth tree structure and its corresponding terminal nodes.

Step 2: Next, we sample

P [σ | (T1,M1), . . . , (Tm,Mm), Y ] (4.2.6)

from the inverse gamma distribution: σ2 ∼ IG
(
ν+n

2 ,
νλ+

∑n
i=1(Yi−

∑m
j=1 g(Xi,Tj ,Mj))

2

2

)
.

To generate a draw from Eq. (4.2.5), note that this distribution depends on (T(−j),M(−j), Y, σ)

through the residuals:

Rj = Y −
∑
w 6=j

g(X,Tw,Mw), (4.2.7)

which represent the residuals obtained after removing the contribution of the jth tree

from the sum-of-trees model. Consequently, Eq. (4.2.5) is equivalent to obtaining a

posterior draw from a single regression tree: Rij = g(Xi, Tj ,Mj) + εi,
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or more formally,

P [(Tj ,Mj) | Rj , σ]. (4.2.8)

Step 3: To sample from Eq. (4.2.8), we first integrate out Mj to obtain P (Tj | Rj , σ), which is

feasible due to the conjugate normal prior on µkj . We then use a Metropolis-Hastings

(MH) algorithm to sample from P (Tj | Rj , σ), where we propose a candidate tree T ∗j

using a probability distribution q(Tj , T
∗
j ). The proposed tree T ∗j is accepted with

probability

α(Tj , T
∗
j ) = min

(
1,
q(T ∗j , Tj)P (Rj | X,T ∗j ,Mj)P (T ∗j )

q(Tj , T ∗j )P (Rj | X,Tj ,Mj)P (Tj)

)
. (4.2.9)

Here, q(T ∗j , Tj) represents the probability of transitioning from the new tree back to

the previous tree, while q(Tj , T
∗
j ) is the probability of moving from the previous tree

to the new tree. The term P (Rj | X,T ∗j ,Mj)/P (Rj | X,Tj ,Mj) is the likelihood ratio

comparing the new and previous trees, and P (T ∗j )/P (Tj) represents the prior ratio

of the new and previous trees.

Additionally, a new tree T ∗j can be proposed from the previous tree Tj using the following

four localized steps:

1. Grow: A terminal node is split into two new child nodes;

2. Prune: Two terminal child nodes under the same non-terminal node are merged,

turning their parent non-terminal node into a terminal node;

3. Swap: The splitting criteria of two non-terminal nodes are exchanged;

4. Change: The splitting criterion of a single non-terminal node is modified.
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Once a draw from P (Tj | Rj , σ) is obtained, we subsequently draw

P (µkj | Tj , Rj , σ) ∼ N

(
σ2
µ

∑
k Rkj + σ2µµ

nkσ2
µ + σ2

,
σ2σ2

µ

nkσ2
µ + σ2

)
,

where Rkj represents the subset of residuals Rj allocated to the terminal node parameter

µkj , and nk is the number of elements in R̄kj assigned to µkj . Next, we will provide the

derivations of the posteriors in the following sections.

Posterior distributions for µkj

Let Rkj = (Rkj1, . . . , Rkjnk)T be a subset of residuals Rj , where nk is the number of residuals

Rkjh assigned to the terminal node associated with the parameter µkj . The index h denotes

individual subjects allocated to this terminal node.

We assume that

Rkjh | g(Xkjh, Tj ,Mj), σ ∼ N(µkj , σ
2)

and

µkj | Tj ∼ N(µµ, σ
2
µ).

Then, the posterior distribution of µkj is given by

P (µkj | Tj , σ, Rj) ∝ P (Rkj | Tj , µkj , σ)P (µkj | Tj).

Expanding the likelihood and prior terms, we have

∝ exp

[
−
∑

h(Rkjh − µkj)2

2σ2

]
exp

[
−

(µkj − µµ)2

2σ2
µ

]
.
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Rearranging the exponent terms, we obtain

∝ exp

[
−

(nkσ
2
µ + σ2)µ2

kj − 2(σ2
µ

∑
hRkjh + σ2µµ)µkj

2σ2σ2
µ

]
.

Thus, completing the square, the posterior distribution of µkj follows as

µkj | Tj , σ, Rj ∼ N

(
σ2
µ

∑
hRkjh + σ2µµ

nkσ2
µ + σ2

,
σ2σ2

µ

nkσ2
µ + σ2

)
.

Here,
∑

h(Rkjh − µkj)
2 represents the sum of squared differences between µkj and the

residuals Rkjh allocated to the corresponding terminal node.

Posterior distributions for σ2 or P [σ | (T1,M1), . . . , (Tm,Mm), Y ]

Let Y = (Y1, . . . , Yn)T , where the index i represents subjects i = 1, . . . , n. Given that

σ2 ∼ IG(ν/2, νλ/2), the posterior draw of σ2 is obtained as follows:

P
(
σ2 | (T1,M1), . . . , (Tm,Mm), Y

)
∝ P (Y | (T1,M1), . . . , (Tm,Mm), σ)P (σ2).

Since

P (Y | g(X,Tj ,Mj), σ)P (σ2) =
m∏
j=1

P (Y | Xg(X,Tj ,Mj), σ)P (σ2),

we expand the likelihood and prior as

P (Y | g(X,Tj ,Mj), σ) ∝ (σ2)−
n
2 exp

[
−
∑n

i=1(Yi −
∑m

j=1 g(Xi, Tj ,Mj))
2

2σ2

]

P (σ2) ∝ (σ2)−( ν2 +1) exp

(
− νλ

2σ2

)
.
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Thus, combining terms, we obtain

P (σ2 | (T1,M1), . . . , (Tm,Mm), Y ) ∝ (σ2)−( ν+n2 +1) exp

[
−
νλ+

∑n
i=1(Yi −

∑m
j=1 g(Xi, Tj ,Mj))

2

2σ2

]
.

Since the resulting posterior follows an inverse gamma distribution, we conclude that

σ2 | (T1,M1), . . . , (Tm,Mm), Y ∼ IG

(
ν + n

2
,
νλ+

∑n
i=1(Yi −

∑m
j=1 g(Xi, Tj ,Mj))

2

2

)
.

Here,
∑m

j=1 g(Xi, Tj ,Mj) represents the predicted value from BART assigned to the

observed outcome Yi.

Metropolis-Hasting ratio for the grow and prune step

This section is adapted from Appendix A of Kapelner and Bleich [195]. The acceptance

probability for the Metropolis-Hastings step is given by

α(Tj , T
∗
j ) = min

{
1,
q(T ∗j , Tj)P (Rj | X,T ∗j ,Mj)P (T ∗j )

q(Tj , T ∗j )P (Rj | X,Tj ,Mj)P (Tj)

}
.

Here, the terms in the acceptance ratio are defined as follows:
q(T ∗j ,Tj)

q(Tj ,T ∗j ) represents the

transition probability ratio, and
P (Rj |X,T ∗j ,Mj)

P (Rj |X,Tj ,Mj)
denotes the likelihood ratio,

P (T ∗j )

P (Tj)
is the prior

probability ratio of tree structures.

We now derive explicit formulas for each of these ratios under the grow and prune

proposal.

Grow proposal

Grow proposal steps can be summarized into the following steps.
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Transition ratio

The probability of transitioning from Tj to T ∗j , denoted by q(T ∗j , Tj), represents the proba-

bility of selecting a terminal node in Tj and growing two child nodes. This can be expressed

as

P (T ∗j | Tj) = P (grow)× P (selecting a terminal node to grow from)

× P (selecting a covariate to split on)× P (selecting a value to split on).

Substituting the individual probabilities, we obtain:

P (T ∗j | Tj) = P (grow)× 1

bj
× 1

p
× 1

η
.

Here, P (grow) is a user-defined probability of choosing a grow step, typically set to

0.25, bj is the number of available terminal nodes that can be split in Tj , p is the number

of variables available for splitting, and η is the number of unique values left in the chosen

variable after accounting for parent node splits.

On the other hand, the probability of transitioning from T ∗j back to Tj , denoted by

q(Tj , T
∗
j ), corresponds to a pruning move, which involves selecting an internal node with

exactly two terminal children and collapsing them into a single terminal node. This proba-

bility is given by

P (Tj | T ∗j ) = P (prune)× P (selecting the correct internal node to prune).

Substituting the relevant probabilities, we obtain

P (Tj | T ∗j ) = P (prune)× 1

w∗2
,
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where w∗2 represents the number of internal nodes with exactly two terminal children.

Thus, the transition ratio is

q(T ∗j , Tj) =
P (T ∗j | Tj)
P (Tj | T ∗j )

=
P (prune) · bj · p · η
P (grow) · w∗2

.

If no variables have two or more unique values left, this transition ratio is set to 0.

Likelihood ratio

Since the overall tree structure remains unchanged between T ∗j and Tj , except for the

terminal node where the two child nodes are introduced, we only need to focus on this

specific terminal node.

Let l denote the selected terminal node in Tj , which is split into two child nodes: lL

(left child) and lR (right child) in the grow step. Then, the likelihood ratio is given by

P (Rj | X,T ∗j ,Mj)

P (Rj | X,Tj ,Mj)
=
P (Rl(L,1),j , . . . , Rl(L,nL),j | σ2) · P (Rl(R,1),j , . . . , Rl(R,nR),j | σ2)

P (R1,j , . . . , Rn,j | σ2)
.

Expanding the probability terms, we obtain

P (Rj | X,T ∗j ,Mj)

P (Rj | X,Tj ,Mj)
=

σ−2(σ2 + nLσ
2
µ)−

1
2 (σ2 + nRσ

2
µ)−

1
2 exp

[
− 1

2σ2

(∑nL
k=1R

2
l(L,k),j −

(
∑nL
k=1Rl(L,k),j)

2

σ2+nLσ2
µ

)]
σ−2(σ2 + nσ2

µ)−
1
2 exp

[
− 1

2σ2

(∑n
k=1R

2
k,j −

(
∑n
k=1Rk,j)

2

σ2+nσ2
µ

)] ,

where

• nL and nR represent the number of observations assigned to the left and right child

nodes, respectively;

• Rl(L,k),j and Rl(R,k),j are the observed values assigned to the left and right child nodes;
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• σ2 is the variance parameter;

• σ2
µ is the variance of the prior distribution of terminal node parameters.

This formulation accounts for the changes due to the grow step, focusing only on the

modified terminal node.

Tree structure ratio

Since Tj can be characterized by three aspects, we define

PSPLIT(θ) as the probability that a selected node θ will split, and PRULE(θ) as the

probability of selecting a particular variable and value for the split.

Given that P (θ) ∝ α(1 + dθ)
−β and that Tj and T ∗j differ only at the child nodes, we

express the ratio as

P (T ∗j )

P (Tj)
=

∏
θ∈H∗terminals

(1− PSPLIT(θ))
∏
θ∈H∗internals

PSPLIT(θ)
∏
θ∈H∗internals

PRULE(θ)∏
θ∈Hterminals

(1− PSPLIT(θ))
∏
θ∈Hinternals

PSPLIT(θ)
∏
θ∈Hinternals

PRULE(θ)
.

Since T ∗j introduces two new terminal nodes θL and θR, while modifying θ, the expression

simplifies to

P (T ∗j )

P (Tj)
=

[1− PSPLIT(θL)][1− PSPLIT(θR)]PSPLIT(θ)PRULE(θ)

1− PSPLIT(θ)
.

Substituting PSPLIT(θ) ∝ α(1 + dθ)
−β, we obtain

P (T ∗j )

P (Tj)
=

(1− α
(1+dθL )β

)(1− α
(1+dθR )β

)α(1 + dθ)
−β 1

p
1
η

1− α
(1+dθ)β

.

Since dθL = dθR = dθ + 1, we finally obtain

P (T ∗j )

P (Tj)
=

α(1− α
(2+dθ)β

)2

[(1 + dθ)β − α]pη
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Prune proposal

A prune proposal serves as the reverse operation of a grow proposal. In this step, an internal

node with two terminal children is selected, and both children are removed. Consequently,

the corresponding ratios will be approximately the reciprocals of those derived for the grow

proposal in the previous sub-section. Additionally, prune steps are not applicable to trees

that contain only a single root node [195].

BART for binary prediction problem

The BART model defined in Eq. (4.2.2) can be easily extended to a classification problem.

For classification problems, a Probit model is used over the sum-of-tree-based predictions.

In this set-up, the sum-of-trees model serves as an estimate of the conditional Probit of the

features which can be easily transformed into the conditional probability estimate of the

target class.

For binary outcomes, BART can be extended using a probit model. Specifically, the

probability of an outcome Yi = 1, given the predictors and tree structures, is given by

P (Yi = 1 | Xi, (T1,M1), . . . , (Tm,Mm)) = Φ

 m∑
j=1

g(Xi;Tj ,Mj)

 , (4.2.10)

where Φ(·) is the cumulative distribution function of a standard normal distribution, and

i indexes the subjects (i = 1, . . . , n). To estimate the posterior distribution, data augmen-

tation (Albert and Chib, 1993) can be implemented. Specifically, we first draw a latent

variable Z = {Z1, . . . , Zn} as follows:

Zi ∼ N(−∞, 0]

 m∑
j=1

g(Xi;Tj ,Mj), 1

 if Yi = 0,
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Zi ∼ N(0,∞]

 m∑
j=1

g(Xi;Tj ,Mj), 1

 if Yi = 1,

where N(a, b)[µ, σ2] denotes a normal distribution with mean µ and variance σ2, truncated

to the interval (a, b).

Next, we treat Z as a continuous outcome in a BART model:

Z =
m∑
j=1

g(X;Tj ,Mj) + ε,

where ε ∼ N(0, 1) due to the probit link function. Given this setup, posterior estimation

for a continuous-outcome BART model with σ ≡ 1 can be employed for a single MCMC

iteration. The updated function
∑m

j=1 g(X;Tj ,Mj) is then used to draw a new Z, and this

updated Z is subsequently used to sample another iteration of
∑m

j=1 g(X;Tj ,Mj). This

process is repeated until convergence.

Choices of priors for Probit-based BART

In this setup, only priors for (T1,M1), . . . , (Tm,Mm) are required. The same decomposition

as in Eq. (4.2.3) can be used without σ, and similar prior specifications for µkj | Tj and Tj

can be applied, i.e.,

P ((T1,M1), . . . , (Tm,Mm)) = P ((T1,M1), . . . , (Tm,Mm))

=

 m∏
j=1

P (Tj ,Mj)



=

 m∏
j=1

P (Mj |Tj)P (Tj)


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=

m∏
j=1

bj∏
k=1

P (µkj |Tj)P (Tj). (4.2.11)

The choice for P (Tj) is the same as that of the continuous outcome model in (4.2.2).

Here, the hyperparameters α and β remain the same as in the continuous-outcome BART

model. However, he hyperparameter settings for P (µkj | Tj) differ slightly from those used

for continuous outcomes model in (4.2.2). The hyperparameters µµ and σµ are specified

differently.

To define these hyperparameters, we set

µµ = 0, σµ =
3

v
√
m
,

where choosing v = 2 ensures that, with approximately 95% probability, the sum
∑m

j=1 g(X;Tj ,Mj)

falls within the range (−3, 3). Since this range aligns with the probit model’s natural scale,

no transformation of the latent variable Z is required. Additionally, Chipman et al. [162]

also recomended to use v = 2 as a default choice for getting better shrinkage to the µkj ’s.

Alternatively, the value of v may be chosen by cross-validation.

4.2.3 Feature importance using BART and consistency check

Feature importance is another important aspect of the local interpretability of tree-based

machine learning (ML) models, which can be seen as building blocks for global insights

[196] [197]. Global feature importance values are computed across an entire dataset (i.e.,

for all samples) using three primary methods [197] as follows.

Gain: Introduced by Breiman et al. in 1984 [198], gain is a traditional measure of

feature importance. It quantifies the total reduction in loss or impurity resulting from all

splits involving a given feature. Although its foundation is largely heuristic, gain remains

widely used as the basis for various feature selection methods [199], [200];
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Split Count: This method determines feature importance by counting the number of

times a feature is used for splitting. Since splits are selected based on their informativeness,

a higher split count indicates a more influential feature;

Permutation: This approach evaluates feature importance by randomly permuting a

feature’s values in the test set and measuring the resulting change in model error. If a

feature is crucial, its permutation should significantly increase the model’s error. Different

variations of this method exist, depending on how the feature values are permuted [201],

[202], [203].

BART can be easily used for assessing feature importance across the entire dataset using

the last two approaches mentioned above, i.e., split count and permutation-based tests. To

select features or variables, BART uses variable inclusion proportions (VIP): the proportion

of times each predictor is chosen as a splitting rule divided by the total number of splitting

rules appearing in the model.

Permutation-based tests due to Bleich et al. [171]

Bleich et al. [171] developed a permutation-based framework for feature importance using

the previously defined VIP scores. To determine how large a variable inclusion frequency pk

or VIP score is required for selecting a predictor variable xk, they established appropriate se-

lection thresholds. This was achieved through a permutation-based approach, which is used

to generate a null distribution for the variable inclusion proportions p = (p1, p2, . . . , pK).

In this method, we generate P permuted versions of the response vector: y∗1, y
∗
2, . . . , y

∗
P .

For each permuted response vector y∗p, we fit the BART model using y∗p as the response

while keeping the original predictor variables x1, . . . , xK unchanged. This permutation

approach preserves potential dependencies among the predictor variables while eliminating

any association between the predictors and the response variable.

From each BART run with a permuted response y∗p, we retain the estimated variable
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inclusion proportions. Let p∗k,p denote the variable inclusion proportion for predictor xk

obtained from the pth permuted response. We further define p∗p as the vector of all vari-

able inclusion proportions from the pth permutation. The collection of variable inclusion

proportions across all P permutations, p∗1, p
∗
2, . . . , p

∗
P , serves as the null distribution for the

variable inclusion proportions derived from the actual (unpermuted) response y.

The remaining challenge is to establish an appropriate selection threshold for each pre-

dictor xk based on the permutation-based null distribution p∗1, p
∗
2, . . . , p

∗
P . To address this,

three different thresholding strategies were employed by [171], each varying in the strictness

of the resulting variable selection procedure. Let us now explore the three thresholding

schemes for determining important features:

1. Local threshold: To determine a selection threshold for each variable inclusion

proportion pk corresponding to predictor xk, the calculation relies solely on the

permutation-based null distribution of pk. Specifically, the (1 − α) quantile of the

distribution p∗k,1, p
∗
k,2, . . . , p

∗
k,P is computed, and a predictor xk is selected only if pk

exceeds this quantile;

2. Global max threshold: To establish a selection threshold for the variable inclusion

proportion pk of predictor xk, the calculation is performed based on the maximum

across the permutation distributions of the variable inclusion proportions for all pre-

dictor variables. For each permutation p, the maximum variable inclusion proportion

across all predictor variables is first calculated as p∗max,p = max{p∗1,p, p∗2,p, . . . , p∗K,p}.

Next, the (1− α) quantile of the distribution p∗max,1, p
∗
max,2, . . . , p

∗
max,P is determined

and select predictor xk only if pk exceeds this (1− α) quantile;

3. Global SE threshold: A predictor xk is selected if its VIP score pk exceeds a

threshold based on the mean and standard deviation of its null distribution, using a

global multiplier shared by all predictors. Let mk and sk be the mean and standard
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deviation of variables inclusion proportion p∗k for predictor xk across all permutations.

Then, the following is calculated:

C∗ = inf
C∈R+

∀k :
1

P

P∑
p=1

1{p∗k,p ≤ mk + C · sk} > 1− α

 (4.2.12)

The value C∗ is the smallest global multiplier that ensures simultaneous 1−α coverage

across the permutation distributions of pk for all predictor variables. The predictor

xk is selected only if pk > mk +C∗ · sk. This third strategy represents a compromise

between the local permutation distribution for variable k, which incorporates the

mean mk and standard deviation sk, and the global permutation distributions of the

other predictor variables, through C∗.

Dealing with the correlated predictor space: Sparsity-induced prior-based

scheme

One critique of these methods is that the optimal procedure depends on the underlying

sparsity of the problem, which is often unknown. We also incorporate a sparsity-induced

prior-based scheme to BART to assess feature importance. Given that the human gait

data consists of highly correlated predictors, there is a significant risk of the Markov chain

becoming trapped in a posterior mode [172]. We adopt the sparsity-inducing Dirichlet

hyperprior on the splitting proportions as framed by Linearo et al. [172].

This approach had already been introduced in the existing BART literature to mitigate

the effects of highly correlated nuisance predictors.

Sparsity-inducing Dirichlet prior and Variable selection [172]

As mentioned, the probability that a node at depth d = 0, 1, ... will split is α
(1+d)β

. Here, to

each internal node, a splitting rule of the form [Xi < C] is assigned. Each X associated with
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this internal node is then directed to one of its children depending on whether it satisfies

the splitting rule. The predictor used for constructing a splitting rule is selected according

to the probability vector s = (s1, . . . , sp). There are multiple possible distributions for C

given that predictor i is chosen for the splitting rule. Most BART implementations adopt

a data-dependent prior as proposed by Chipman, George, and McCulloch [162]. A splitting

rule is considered trivial if it contradicts a higher-level splitting rule in the tree.

Assumption 1. Given that predictor i is selected, the value C is drawn uniformly from

the set of observed values X1i, . . . , Xni that result in nontrivial splitting rules. If no such

rule exists, a new predictor is selected based on s, and the process is repeated. The node is

designated as terminal if constructing a nontrivial splitting rule is not feasible.

This is a standard and traditional assumption used for variable splitting and subsequent

variable selection in BART. Additionally, this mechanism, like Shapley values, allocates

credit uniformly among all features, thereby avoiding inconsistency problems. Linero et

al. [172] slightly modified this assumption to greatly simplify the analytic properties of the

prior for P (Tj);

Assumption 2. Given that predictor i is selected, the value C is drawn uniformly from

the set of observed values X1i, . . . , Xni that result in nontrivial splitting rules. If no such

rule exists, construct a split on predictor i by drawing C uniformly from X1i, . . . , Xni.

These two assumptions differ only in how they handle situations where no further split-

ting is possible on a selected predictor. Since trees constructed under α
(1+d)β

with typical

values of (α, β) tend to be shallow, the distinction between these assumptions becomes

significant primarily when certain predictors have only a limited number of unique sample

values.

Now, let the variable selection probabilities be denoted by sj for j = 1, . . . , P . Instead

of using a uniform variable selection prior in BART, a Dirichlet prior is introduced. A beta

prior is placed on the parameter θ, as follows:
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[s1, . . . , sP ] | θ ∼ Dirichlet

(
θ

P
, . . . ,

θ

P

)
,

θ

θ + ρ
∼ Beta(a, b). (4.2.13)

This allows for the data to determine an appropriate degree of sparsity. When a = b = 1,

this corresponds to the prior density ρ
(θ+ρ)2

for θ, which exhibits Cauchy-like tails with a

median of ρ. The heavy tails in this distribution allow for large values of θ, enabling the

prior to revert to the standard BART prior when f0(x) is not sparse. The values considered

are b = 1 and a ∈ {0.5, 1}, where a = 0.5 provides additional preference for sparsity in the

prior. In our analysis, we have considered the default chosen values: a = 0.5, b = 1, and

ρ = P . If additional sparsity is required, the argument ρ can be set to a value smaller than

P . This may be more appropriate when there is strong prior knowledge suggesting that f0

is sparse.

Another approach involves treating θ as a tuning parameter and selecting its value

through cross-validation. This method is effective and circumvents the complexities of prior

specification. However, its primary drawback is the increased computational cost associated

with executing cross-validation [172].

We have employed the Dirichlet prior-based BART for getting stable variable inclusion

proportions (VIP) for each classification cohorts. Additionally, a Monte Carlo study is

conducted to examine the uncertainties in the VIP scores of the selected predictors (see

Figure 4.8, 4.9, and 4.10). The Monte Carlo study reveals a visual summary of the predictors

consistently showing higher VIP scores across multiple iterations. This allows us to compare

the two approaches’ feature importance based on their VIP scores.
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4.2.4 Prediction explainability of BART through the indi-

vidual effect plots

One of the most important aspects of interpretable machine learning (ML) models is to

understand and visualize the individual effects of the predictors on the prediction function.

Partial Dependence Plots (PDPs) [204] are the most common approach for visualizing the

individual predictor’s impact on the prediction function (i.e., on the predicted classes).

However, PDPs are often impacted by collinearity among predictors, which can lead to

biased interpretations [174]. Here, Accumulated Local Effects (ALE) plots [174] are used to

understand the individual effects of the predictors on the predicted classes due to BART.

We focus on the variables identified as important (as mentioned in the previous section)

and examine their biological interpretations with the predicted classes, as inferred from the

ALE plots.

Friedman’s Partial Dependence Plots (PDPs) [204]

Viewing higher-dimensional functions presents a greater challenge. Therefore, it is bene-

ficial to examine the partial dependence of the approximation of the prediction function

on selected small subsets of input variables. To be more specific, consider a scenario

where a supervised learning model has been trained to approximate the conditional ex-

pectation E[Y | X = x] ≈ f(x). Here, Y represents a scalar response variable, while

X = (X1, X2, . . . , Xd) is a vector consisting of d predictor variables. The function f(·)

denotes the fitted model, which is used to predict Y or, in the case of classification,

the probability that Y belongs to a particular class as a function of X. The training

data used to fit the model consists of n observations, each comprising (d + 1) variables:

{(yi, xi) | xi = (xi,1, xi,2, . . . , xi,d), i = 1, 2, . . . , n}.. Here, yi represents the response

variable, while xi is a vector of d predictor variables corresponding to the ith observation.
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As noted earlier, our goal is to visualize and interpret the “individual” or “main effects”

of the prediction function f(x) = f(x1, x2, . . . , xd) for each predictor, along with the lower-

order “interaction” effects between specific pairs of predictors. To study the influence of

a single predictor or a small subset of predictors, say XS (with at most two predictors

considered in XS), on the predicted response, the PD function is defined as:

f̂S,PD(xS) ≡ E[f(xS , XC)] =

∫
pXC (xC)f(xS , xC) dxC , (4.2.14)

where pXC (·) represents the marginal distribution of XC . Here, XC are the other features

used in the machine learning model f(.). The feature(s) in S are those for which we want

to know the effect on the prediction. The feature vectors XS and XC combined make up

the total feature space X.

A pointwise estimate of Eq. (4.2.14), computed for different values of XS , is given by

f̂S,PD(xS) ≡ 1

n

n∑
i=1

f(xS , xi,C). (4.2.15)

Partial dependence functions provide valuable insights for interpreting models produced

by black-box prediction methods such as neural networks, support vector machines, nearest

neighbors, and radial basis functions. When the number of predictor variables is large,

these functions offer an effective means to analyze and understand model behavior.

Remark 1: The closer the dependence of f(x) on the predictors in XS is to being

additive or multiplicative, the more completely the partial dependence function f̂S,PD(xS)

(Eq. 4.2.14) captures the nature of the influence of the variables in XS on the derived

approximation f̂(x).

Remark 2: For regression trees that utilize single-variable splits, the partial dependence

of f(x) on a specified target variable subset XS can be directly evaluated using only the

tree structure, without requiring reference to the original training data. Given a specific
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set of values for the variables XS , the evaluation proceeds through a weighted traversal of

the tree. At the root node, an initial weight of 1 is assigned. For each non-terminal node

encountered during traversal:

• If the split variable belongs to the target subset XS , the traversal continues to the

appropriate left or right daughter node without modifying the weight;

• If the split variable is part of the complement subset XC , both daughter nodes are

visited, and the current weight is multiplied by the fraction of training observations

that proceeded left or right at that node.

Each terminal node visited during this process retains the current weight. Once the tree

traversal is complete, the partial dependence function f̂S,PD(xS) is obtained as the weighted

average of the f̂(x) values across the terminal nodes that were visited. For classification

tasks where the machine learning model produces probability outputs, the partial depen-

dence plot illustrates the probability of a specific class as a function of different values of

the feature(s) in S. For an ensemble of M regression trees, such as those generated through

boosting, the final partial dependence estimate is obtained by averaging the results from

individual trees. Same idea will be used while interpreting the individual effects of the

predictors on the objective function, in BART.

Remark 3: The assumption of independence is the biggest issue for the PD plots.

It is assumed that the feature(s) used to compute partial dependence are not correlated

with other features. In the integral of Eq. (4.2.14), the weighted average of f(xS , XC)

as XC varies over its marginal distribution. So, this requires severe extrapolation beyond

the training data. If a simple parametric model of the correct form were fitted, then the

extrapolation might be reliable. However, due to its inherent flexibility, a non-parametric

supervised learning model, such as a regression tree, cannot be expected to extrapolate

reliably. [174] demonstrated that this renders PD plot an unreliable indicator of the effect
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of variable of interest.

Accumulated Local Effect (ALE) Plots: An improvement over the PDPs

[174]

To estimate local effects, we divide the feature into many intervals and compute the dif-

ferences in the predictions. Accumulated Local Effect (ALE) plots are more reliable than

PDPs for explaining the individual effects of features on model predictions, especially in

a highly correlated feature space. Instead of looking at the whole picture (like the usual

PDPs), ALE breaks it down step by step. In this way, ALEs isolate the effect of the feature

of interest and block the effect of correlated features. ALE plots also enable us to look

at the interaction effects second order) of two predictors on the predicted classes without

accounting for the highly correlated nature of the predictors.

Accumulated Local Effects (ALE) plots average the changes in predictions and accumu-

late them over a grid. The ALE function for a subset of features S is defined as

f̂S,ALE(xS) =

∫ xS

z0,S

EXC |XS=zS

[
∂f̂S(XS , XC)

∂XS

∣∣∣XS = zS

]
dzS − constant. (4.2.16)

which can be rewritten as

f̂S,ALE(xS) =

∫ xS

z0,S

(∫
XC

∂f̂S(zS , XC)

∂XS
dP (XC |XS = zS)

)
dzS − constant. (4.2.17)

Here, z0,j is an approximate lower bound of XS . The ‘constant’ is chosen such that

fS,ALE(XS) has a mean of zero with respect to the marginal distribution of XS . An Ac-

cumulated Local Effects (ALE) plot of the main effect of xS is a plot of an estimate of

fS,ALE(xS) versus xS . Visually, the main effect depends on f(·) as a function of xS .

114

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

As discussed earlier, ALE examines small changes in a feature and how they affect the

prediction. Then, it pieces all these small effects together to get the overall impact of that

feature. Thus, the estimate of the ALE main effect is obtained by replacing the integral in

Eq. (4.2.16) with a summation and the derivative with a finite difference, i.e.,

f̂S,ALE(xS) =
∑
kS(x)

1

nS(k)

∑
i:x

(i)
S ∈Nj(k)

[
f̂(zk,S , x

(i)
−S)− f̂(zk−1,S , x

(i)
−S)
]
− ˆcontsant. (4.2.18)

The ˆconstant is chosen so that 1
n

∑n
i=1 f̂S,ALE(x

(i)
S ) = 0.

4.3 Results

4.3.1 Demographic characteristics and cohort description

The IOPL dataset [142] contains three pathology groups: Healthy, Orthopedic, and Neu-

rological. Fifty-two subjects are classified as the Healthy cohort, who underwent 242 pre-

described gait trials. The average age is 36.4 (SD, 20.6), with 67.3% identified as male.

This group’s average BMI is 23.6 (SD, 3.9). 96.2% of the cohort has right laterality, while

the remaining participants have left laterality. Healthy subjects have no known medical

impairment.

53 subjects were allocated to the Orthopedic cohort, with an average age of 60.1 (SD,

19.3). These subjects underwent a total of 243 pre-defined gait trials. 49% of the population

are identified as male. The average BMI is noted at 27.1 (SD, 5.6). Right laterality is

observed in 94.3% of the cohort, with the remaining participants exhibiting left laterality.

The orthopedic group is also composed of two cohorts of distinct pathologies: lower limb

osteoarthrosis and cruciate ligament injury. None of the quantitative analysis is provided
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for these cohorts in the dataset.

Finally, the dataset include a cohort of 125 subjects with neurological disorders. The

average age for this pathology group is reported as 61.5 (SD, 13.2), with 64% of the popu-

lation identified as male. The average BMI is reported at 25 (SD, 4.4). Right laterality is

present in 85.6% of the cohort, left laterality in 3.2%, ambidexterity in 0.8%, and 10.4% is

not reported. This group is composed of 4 cohorts: hemispheric stroke, Parkinson’s disease,

toxic peripheral neuropathy, and radiation-induced leukoencephalopathy. No demographic

characteristics are available for these smaller cohorts in the dataset. Differences in demo-

graphic variables among the Healthy, Orthopedic and Neurological groups were compared

using the analysis of variance (ANOVA) or Kruskal-Wallis test for parametric and non-

parametric tests, respectively. All hypotheses were non-directional, and a p-value of < 0.05

indicated a statistically significant difference. The difference analysis reveals statistically

significant differences in demographic characteristics (age, height, and BMI) between the

healthy and pathology groups (See Table 4.2).

4.3.2 Model Diagnostics

We have primarily used ’bartMachine’ package in R for all the BART-related computations.

The package uses Java and is integrated into R via ’rJava. It supports multi-threading,

which speeds up the computation. During model creation, parallelization was implemented

by generating one independent Gibbs chain per core. With the default setting of 250 burn-in

samples and 1,000 post-burn-in samples, utilizing four cores results in each core sampling

500 times—250 for burn-in and 250 for post-burn-in. The final model aggregates the four

post-burn-in chains from all cores, yielding a total of 1,000 post-burn-in samples. While

this approach effectively runs the burn-in phase sequentially, making it susceptible to Am-

dahl’s Law, it also reduces the autocorrelation of the sum-of-trees samples in the posterior

distribution, potentially enhancing predictive performance due to the independence of the
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chains [195].

We monitored the convergence diagnostic plots for our three models, providing insights

into model stability across the MCMC iterations. For each model (for the three classification

cohorts), the convergence diagnostic plots consist of three panels: (a) Percent Acceptance

by MCMC Iteration (Top-Left): This plot shows the percent acceptance of Metropolis-

Hastings (MH) proposals across the trees where each point plots one MCMC iteration.

The black line represents the average acceptance rate, which stabilizes around 0.6 after the

burn-in period (indicated by the shaded region). A stable acceptance rate after burn-in

suggests that the sampler is moving consistently through the parameter space, indicating

convergence. Each computing core is coloured differently; (b) Tree Number of Nodes and

Leaves by MCMC After Burn-in (Top-Right): This panel shows the number of nodes and

leaves for each tree across the MCMC iterations after burn-in. The blue line represents the

mean number of nodes and leaves for all trees, while the black lines display the spread across

iterations. The relatively stable blue line indicates that the average tree complexity remains

consistent, suggesting that the model has reached equilibrium in terms of tree structure,

which is an indicator of convergence. Computing cores are separated by vertical gray lines;

(c) Tree Depth by MCMC Iteration after burn-in (Bottom): This panel tracks the depth of

the trees across MCMC iterations after burn-in. The blue line again represents the average

tree depth, while the black lines capture the variation in tree depths across iterations. The

consistency in mean tree depth after the burn-in period implies that the tree growth process

is stable, further supporting convergence. We can observe the stability of our models across

all the classification cohorts, and computing cores are separated by vertical gray lines.
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Figure 4.2: Diagnostic check for the cross-validated BART model deployed for the
classification cohort based on the Healthy vs. Neurological comparison.
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Figure 4.3: Diagnostic check for the cross-validated BART model deployed for the
classification cohort based on the Healthy vs. Orthopedic comparison.
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Figure 4.4: Diagnostic check for the cross-validated BART model deployed for the
classification cohort based on the Orthopedic vs. Neurological comparison.
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4.3.3 Explainability of BART

The current trend in gait analysis is mostly limited to the predictive performance of the

model. However, the explanation of the model predictions is particularly important in

medical applications, where the patterns a model uncovers can be more important than

the model’s predictive performance. We investigate BART’s in-built feature importance

based on permutation tests and sparsity-induced priors. Variable importance is investigated

based on the variable inclusion proportions (VIP), i.e., how many times a particular feature

is used in the splitting process (i.e., the split counts and permutation-based methods).

Apart from investigating only the global interpretations of BART, we also investigate the

local interpretations of the model by looking at the effects of important input features on

individual prediction cohorts.

We investigate the permutation-based test based on three thresholds as mentioned in

Subsection 4.2.3. The sparsity-induced prior-based method is also applied to get stable

variable inclusion proportions as mentioned in Subsection 4.2.3. A Monte Carlo simulation is

performed to examine the uncertainty of variable inclusion proportions for sparsity-induced

BART. We examine multiple methods to evaluate the consistency and impact of individual

features on the prediction function, along with their biological interpretation. In this way, we

can understand the individual effects of the features responsible for distinguishing healthy

subjects from pathological groups. To understand and validate the consistency among

these in-built feature-importance procedures, a traditional SHAP analysis [193] is performed

based on the bench-marked classes of ML algorithms in Chapter 5.

Feature importance and individual effects on the prediction function for

the Healthy vs. Neurological disorder cohort

For the Healthy vs Neurological cohort, permutation-based procedures listed six features,

among which the “Average mean load” received the highest ranking regarding its VIP
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score and came out as important for all three thresholds. “Right foot CV load,” “Average

stride length,” “Average walking speed,” “Average step length,” and “Right foot CV stride

length” came as important based on the “local” procedure. “Right foot CV load,” “Average

stride length,” and “Right foot CV stride length” came as important features based on the

“Global SE” threshold.

Sparsity-induced prior-based BART also ranks the “Average mean load Phase” as the

most important feature among the six. “Average mean load,” “Left foot CV stance,” and

“Left foot CV stride time” came as the important features. “Average mean load” ranked

much higher in terms of its variation inclusion proportion score (VIP) when compared with

the other features. The uncertainty analysis of the VIP values based on a 1000 Monte Carlo

runs is given in the Fig 4.8.

After evaluating the individual average effects of the Average mean load Phase on the

prediction function (with the healthy group taken as the target class), a non-linear rela-

tionship is observed, as shown in Fig 4.11 (a). Also, it is observed that there is a high

positive effect for predicting the Healthy group (targeted class) for a smaller average mean

load and a high negative impact for the larger average mean load. Subjects with higher

loads in their gait cycle are more likely to be classified within the Neurological disorder co-

hort. Additionally, regarding biological importance, Average Walking Speed and Average

Stride length are two important variables captured by the permutation-based procedure.

Fig 4.11 (b) reveals that subjects with slower walking speed have a relatively high negative

impact as the predictor of the healthy group. These subjects are more likely to be classified

within the Neurological disorder cohort. Conversely, a strong positive effect is observed in

subjects with higher walking speeds when predicting the healthy group. This indicates that

BART assigns a higher probability to the Healthy class for subjects with higher average

walking speeds. The same trend is observed for Average walking speed and the feature

Average stride length. Some of the previous studies have biologically validated these trends

122

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

in prediction (please see Discussion section).

Figure 4.5: Visualization of permutation-based variable importance using three
thresholds for the classification cohort based on the Healthy vs Neurological

comparison. The top plot shows the “Local” procedure, where green lines mark
threshold levels from permutation distributions. Solid dots indicate variables

included (observed value exceeds the threshold), while open dots show variables not
included. The bottom plot displays “Global SE” and “Global Max” thresholds: red

lines mark the “Global Max” cut-off (solid dots for included variables), and blue
lines represent the ”Global SE” threshold (asterisks for variables that exceed only

this threshold). Open dots exceed neither threshold.
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Figure 4.6: Visualization of permutation-based variable importance using three
thresholds for the classification cohort based on the Healthy vs Orthopedic

comparison. The top plot shows the “Local” procedure, where green lines mark
threshold levels from permutation distributions. Solid dots indicate variables

included (observed value exceeds the threshold), while open dots show variables not
included. The bottom plot displays “Global SE” and “Global Max” thresholds: red

lines mark the “Global Max” cut-off (solid dots for included variables), and blue
lines represent the “Global SE” threshold (asterisks for variables that exceed only

this threshold). Open dots exceed neither threshold.
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Figure 4.7: Visualization of permutation-based variable importance using three
thresholds for the classification cohort based on the Orthopedic vs. Neurological
comparison. The top plot shows the “Local” procedure, where green lines mark

threshold levels from permutation distributions. Solid dots indicate variables
included (observed value exceeds the threshold), while open dots show variables not
included. The bottom plot displays “Global SE” and “Global Max” thresholds: red

lines mark the “Global Max” cut-off (solid dots for included variables), and blue
lines represent the ”Global SE” threshold (asterisks for variables that exceed only

this threshold). Open dots exceed neither threshold.
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Figure 4.8: Visualization of uncertainty from an MCMC study on average variable
inclusion proportions (VIP) for various gait parameters, using a sparsity-induced

prior-based BART model for the classification cohort based on the Healthy vs
Neurological comparison. We investigated each gait parameter’s variable inclusion

proportions (VIP) using a sparsity-induced prior-based BART model to understand
feature importance across the three cohorts. We carried out an MCMC simulation
study with 1000 samples to understand the uncertainty in the VIP scores for each

run. This approach allowed us to assess the stability of feature importance resulting
from the prior-modified BART model. The uncertainty in the bounds reflects
variation from the Markov chains used in each iteration. We highlighted the

important features due to the sparsity-induced prior-based BART for each cohort.
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Figure 4.9: Visualization of uncertainty from an MCMC study on average variable
inclusion proportions (VIP) for various gait parameters, using a sparsity-induced

prior-based BART model for the classification cohort based on the Healthy vs
Orthopedic comparison. We investigated each gait parameter’s variable inclusion

proportions (VIP) using a sparsity-induced prior-based BART model to understand
feature importance across the three cohorts. We carried out an MCMC simulation
study with 1000 samples to understand the uncertainty in the VIP scores for each

run. This approach allowed us to assess the stability of feature importance resulting
from the prior-modified BART model. The uncertainty in the bounds reflects
variation from the Markov chains used in each iteration. We highlighted the

important features due to the sparsity-induced prior-based BART for each cohort.
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Figure 4.10: Visualization of uncertainty from an MCMC study on average variable
inclusion proportions (VIP) for various gait parameters, using a sparsity-induced
prior-based BART model for the classification cohort based on the Orthopedic vs.
Neurological comparison. We investigated each gait parameter’s variable inclusion

proportions (VIP) using a sparsity-induced prior-based BART model to understand
feature importance across the three cohorts. We carried out an MCMC simulation
study with 1000 samples to understand the uncertainty in the VIP scores for each

run. This approach allowed us to assess the stability of feature importance resulting
from the prior-modified BART model. The uncertainty in the bounds reflects
variation from the Markov chains used in each iteration. We highlighted the

important features due to the sparsity-induced prior-based BART for each cohort.
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Feature importance and individual effects on the prediction function for

the Healthy vs. Orthopedic disorder cohort

For the Healthy vs Orthopedic cohort, the permutation-based procedure flags five features.

“Average step length,” “Right foot CV stride length,” “Mean asymmetry single support,”

“Average walking speed,” “Right foot CV step length,” and “Average stance” came as

important based on the ‘local’ threshold. “Average step length” and “Mean asymmetry

single support” came out as important features based on the ”Global SE” threshold. So,

”Average mean step length” and ”Mean asymmetry single support” appeared twice as

important features based on two threshold-based schemes. The software-generated plot

from the permutation test is given in Fig. 4.6.

Sparsity-induced prior-based BART ranks ”Average Walking Speed” as the most im-

portant feature concerning the VIP scores. Additionally, “Left foot CV foot flat,” “Right

foot CV step length,” “Right CV foot flat,” and “Average push” came out as important

features. Here, “Average walking speed” received the highest rank in terms of its VIP

scores. A Monte Carlo study is performed to assess the uncertainty in VIP scores (see Fig.

4.9).

Fig. 4.12 (a) reveals a non-linear relationship between the Average mean step length

and the model’s prediction for the healthy class. As the average step length increases,

the model’s prediction for a person being classified as Healthy initially decreases (negative

effects), then sharply increases (positive effects) before plateauing. This suggests that very

short step lengths might not be a significant differentiating factor in predicting the Healthy

class. Subjects with short step lengths in their gait cycle are more likely to be classified

within the Orthopedic disorder cohort. A similar effect is observed for the Average Walking

Speed on the model’s prediction. Here, BART also assigns a higher probability to the

healthy class for subjects with higher average walking speeds.

After evaluating the individual average effects of the Average mean asymmetry single
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support, we notice an interesting non-linear relationship with the model’s prediction. The

curve shows a sharp downward trend followed by a flattening at lower effect levels. Fig.

4.12 (c) shows that at lower levels of asymmetry, the likelihood of being classified as healthy

increases, indicating that low asymmetry in single support is a key indicator of healthy

individuals. However, as asymmetry increases, the model predicts a sharp decline in the

probability of a healthy classification, suggesting that greater asymmetry is more indicative

of orthopedic-related issues. Beyond a certain threshold (around 10), further increases in

asymmetry provide little new information, and the model likely attributes those instances

to Orthopedic individuals.

Feature importance and individual effects on the prediction function for

the Orthopedic vs. Neurological disorder cohort

Finally, we evaluate the feature-importance of the Orthopedic vs Neurological cohort. The

permutation-based procedure flags two features. “Average mean load” became an important

feature based on all three thresholds for the permutation-based approach. Additionally, it

ranks higher than all the features based on its VIP score. “Right foot CV load” comes out

as an important feature based on the “local” and “Global SE” thresholds.

Sparsity-induced prior-based BART captures four features as important in terms of the

VIP scores. “Average mean load,” “Left foot CV stance,” “Left foot CV stride time,” and

“Left foot CV foot flat” all come as the important features. Here, “Average mean load”

ranks much higher in terms of its variation inclusion proportion score (VIP) when compared

with the other features.

Thus, the ”average mean load phase” emerges as the most important feature based on

its VIP score for both methods. The software-generated plot from the permutation test,

along with the uncertainty analysis in VIP scores due to the sparsity-induced BART model,

is shown in Fig. 4.7 and Fig. 4.10.
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Fig. 4.13 reveals a non-linear relationship between the individual effects of the Average

mean load Phase and the model’s prediction for the healthy class. Subjects with higher

average loads in their gait cycle are more likely to be classified within the Neurological

disorder cohort. This trend for the ”Average mean load Phase” feature is consistent with

the Healthy vs. Neurological cohorts’ classification.

Additionally, Sparsity-induced prior-based BART framework also indicates that alter-

ation in gait parameters associated with the loading phase (i.e. the ”Average mean load

Phase” feature) can be considered as some of the important features for understanding

patient-level classification among the two disorder groups. Let us evaluate these gait fea-

tures from the ALE plots shown in Fig. 4.14 in the following manner: (a) left CV flat foot:

The accumulated local effect (ALE) plot indicates that the model assigns higher probabil-

ities to orthopedic patients with less variability in left foot flatness. In contrast, patients

with greater variation in left foot flatness are more likely to be classified in the neurological

cohort. (b) left foot CV stride time: Higher variation in left foot stride time is again asso-

ciated with the neurological cohort when compared with the orthopedic group. (c) left foot

CV stance: Stance phase is a parameter associated with the loading phase. The ALE plot

reveals that higher variation in left foot stance is more prevalent in the neurological disor-

der group than in the orthopedic group; (d) right foot CV stride time: Stride time is also

an important gait feature which gets affected by the loading phase. In the ALE plot, the

model predictions show that higher variation in right foot stride time negatively impacts

the orthopedic group. Consequently, patients with greater variation in right foot stride

time are more likely to be classified in the neurological disorder cohort. A more detailed

discussion of their biological interpretations is provided in the Concluding Chapter.
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These key features underscore the effectiveness of our BART-based gait classification

model in delivering both robust gait predictions and detailed insights into how specific

gait-related characteristics influence the likelihood of classifying individuals as healthy or

pathological. The model effectively captures the non-linear impact of gait-related features

on classification outcomes, providing a clearer understanding of how variations in these

features contribute to changes in the risk of pathology.

We further performed a benchmark comparison with the standard ML (kernel-based/tree-

based) classification models. They include SVM (Support vector Machine), KNN (K-

Nearest Neighbours), Decision Trees, Logistic Regression, NN (Neural Nets), Näıve Bayes,

Ensemble-Bagged Trees and Discriminant. All classification tasks were carried out for each

cohort. Prediction performance was evaluated using the same metrics as those applied to

BART. The same split ratio and cross-validation folds (as mentioned in the Preprocessing

section) were used for model training and to assess out-of-sample performance on the test

set. A SHAP (SHapley Additive exPlanations) [193] analysis was conducted for all models

across the classification cohorts to examine the consistency of feature importance between

the bench-marked models and BART (see next chapter).
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Extracted Gait Parameters

Gait Parame-
ters

Description

Spatiotemporal

• Walking speed (ms−1)

• Swing and stance phase (%) – left and right

• Single and double support time (s) – left and right

• Stride time (s) and length (m)

• Step time (s) and length (m) – left and right

• Load, push, and flat foot phase (%)

Statistical

• Mean (µ)

• Standard Deviation (SD - σ)

• Coefficient of Variations (CV = σ/µ)

Asymmetry Asymmetry = 100×
∣∣∣ln( Xleft

Xright

)∣∣∣, where Xleft and Xright

are the values of a specific gait parameter for the left
and right sides, respectively.

Table 4.1: Extracted Gait parameters
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Table 4.2: Participants’ characteristics of three separate participant cohorts.

Healthy Orthopedic Neurological Total p-value

Number of subjects 52 53 125 230
Number of trials 242 243 535 1020
Gender (%)
Males 35 (67.3%) 26 (49.1%) 80 (64.0%) 141 (61.3%)
Females 17 (32.7%) 27 (50.9%) 45 (36.0%) 89 (38.7%)
Age (years ± SD) 36.4 ± 20.8 60.1 ± 19.4 61.6 ± 13.2 55.5 ± 19.6 < 0.01 ∗ ∗
Height (cm ± SD) 173.4 ± 10.8 169.2 ± 10.2 169.8 ± 8.7 170.5 ± 9.7 < 0.05∗
Weight (kg ± SD) 70.7 ± 12.4 77.7 ± 17.0 72.7 ± 15.7 73.4 ± 15.4 0.053
BMI
BMI ± SD 23.6 ± 3.9 27.1 ± 5.6 25.0 ± 4.4 25.2 ± 4.7 < 0.01 ∗ ∗
BMI Group (%)
UW 5.8% 0.0% 5.6% 4.3%
HW 63.5% 41.5% 42.4% 47.0%
OW 23.1% 28.3% 39.2% 33.0%
Ob 7.7% 28.3% 9.6% 13.5%
NR - 1.9% 3.2% 2.2%
Laterality (%)
R 96.2% 94.3% 85.6% 90.0%
L 3.8% 5.7% 3.2% 3.9%
A - - 0.8% 0.4%
NR - - 10.4% 5.7%

p-values for continuous variables are calculated via ANOVA, and for binary variables via the χ2

test.
Statistical significance levels: ** p < 0.01, * p < 0.05.

M = Male, F = Female, UW = Underweight, HW = Healthy weight, OW = Overweight, Ob =
Obese,

R = Right, L = Left, A = Ambidextrous, NR = Not reported.
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(a)

(b)

(c)

Figure 4.11: Effect of varying individual spatio temporal gait feature values on the
model’s prediction for the Healthy vs Neurological cohort. These accumulated local
effect (ALE) (centered at 0) plots show the change in relative probability for each
class based on a feature’s value compared to its average effect. An increase in the

likelihood for one class means a corresponding decrease in another class’s
probability.
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(a)

(b)

(c)

Figure 4.12: Effect of varying individual spatio-temporal gait feature values on the
model’s prediction for the Healthy vs Orthopedic cohort. These accumulated local
effect (ALE) (centered at 0) plots show the change in relative probability for each
class based on a feature’s value compared to its average effect. An increase in the

likelihood for one class means a corresponding decrease in another class’s
probability.
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Figure 4.13: Effect of varying individual spatio temporal gait feature values on the
model’s prediction for the Orthopedic vs Neurological cohort. These accumulated
local effect (ALE) (centered at 0) plots show the change in relative probability for
each class based on a feature’s value compared to its average effect. An increase in

the likelihood for one class means a corresponding decrease in another class’s
probability.
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(a) (b)

(c) (d)

Figure 4.14: Effect of varying individual spatiotemporal gait feature values on the
model’s prediction for the Orthopedic vs Neurological cohort. Our study revealed

that average loading phase is a key differentiator between the orthopedic and
neurological disorder cohort. The sparsity-induced prior-based BART framework

also indicated that alterations in gait parameters associated with the loading phase
can be considered important features for understanding patient-level classification

among the two disorder groups.
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Chapter 5

Comparison of BART’s Predictive

Performance Against Traditional

Machine Learning Algorithms

5.1 Introduction

Bayesian Additive Regression Trees (BART) is a powerful non-parametric machine learning

model that offers advantages in predictive performance and feature importance analysis. In

this chapter, we compare BART’s performance with several traditional machine learning

(ML) algorithms, including the following:

• Support Vector Machine (SVM): Support Vector Machines (SVM) [205] aim to

optimally separate classes by maximizing the margin between them while minimizing

classification errors. In most real-life problems, the data are not linearly separable,

necessitating the use of a nonlinear kernel in the SVM process [205].

The nonlinear radial basis function (RBF) kernel is selected to map the data into
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a higher-dimensional space, where a k-dimensional hyperplane separates the classes.

Here, k represents the number of features used in the model. The kernel parameters

are optimized to balance maximizing the margin between classes while minimizing

misclassification costs.

A RBF kernel-based, cost-sensitive SVM classification model is developed for the

binary classification task across the three cohorts by solving the following optimization

problem:

min
w,b,ξ

1

2
||w||2 + CPC

nPC∑
i=1

ξi + CHC

nHC∑
j=1

ξj , (5.1.1)

subject to

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, (5.1.2)

where w, b, and ξ are optimization parameters, and CPC and CHC represent the

misclassification costs for Pathological cohort (PC) and healthy cohorts, respectively.

The label vector y ∈ {−1, 1} assigns 1 to PD subjects and -1 to control subjects. Here,

x denotes the feature values of data points to be classified. Classification is determined

based on the sign of wTx+ b, which indicates on which side of the hyperplane a given

data point falls. Thus, classification gets done as follows:

Class =


PC, if wTxi + b ≥ 1− ξi, yi = 1

HC, if wTxi + b ≤ −1 + ξi, yi = −1

(5.1.3)

When misclassification costs are equal, i.e., CHC = 1, the model treats both classes

symmetrically. However, in predicting PC, the consequences of misclassification may
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differ. A cost-sensitive learning approach is implemented to account for these differ-

ences. In a conservative classification strategy, a subject is more likely to be classified

as healthy rather than PC when uncertainty exists. This is achieved by assigning a

higher misclassification cost for incorrectly classifying a healthy subject as PC than

for misclassifying a PC subject as healthy, resulting in CPC < CHealthy.

• Naive Bayes: For a feature vector F = {F1, . . . , Fn} extracted from sensor data, a

Näıve Bayes classifier [206] is employed to infer the probability of a patient belonging

to one of two possible states, given F. The classifier is implemented using a Näıve

Bayes model [206], which relies on the conditional probability p(C|F), where C is a

binary class variable representing the patient’s state, i.e., Healthy vs Pathology. F is

the feature vector.

Applying Bayes’ theorem and assuming the Näıve Bayes independence assumption—i.e.,

given the class label C, each feature Fi is conditionally independent of every other

feature Fj (j 6= i)—the likelihood can be factorized as

p(F|C) =

n∏
i=1

p(Fi|C), p(F) =

n∏
i=1

p(Fi). (5.1.4)

Thus, the posterior probability of the class variable can be expressed as

p(C|F) =
p(C)

∏n
i=1 p(Fi|C)∏n

i=1 p(Fi)
. (5.1.5)

This formulation enables efficient inference of the patient’s state based on the ex-

tracted sensor features. The simplicity of Eq. (5.1.5) makes Näıve Bayes classifiers

highly suitable for resource-constrained applications, as the model parameters can be

estimated efficiently.

• K-Nearest Neighbors (KNN):
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K-Nearest Neighbors (KNN) is a non-parametric, supervised machine learning al-

gorithm [207] used for classification tasks. The core principle of KNN is based on

computing the Euclidean distance between an unknown data point (test sample) and

the training data samples.

Let x ∈ Rn×d = (x1, . . . , xn) be the feature matrix, where n represents the number

of training samples, and d denotes the number of features. Given an arbitrary test

sample xo, the Euclidean distance in the feature space Rp, with p = 2, is defined as

di = ‖xr − xo‖p =

(
n∑
i=1

|xi − xo|p
) 1

p

. (5.1.6)

To classify a set of features into M distinct classes, the classified entities can be

represented as

Ω = {Ω1, . . . ,Ωm}, 1 ≤ m ≤ d. (5.1.7)

By selecting the k training samples closest to the unknown data point xo, the KNN

algorithm determines the number of nearest neighbors assigned to each class label

l ∈ R1×d = (l1, . . . , ld) in the training set:

Sr = {(x1, l1), . . . , (xn, ld)}, (5.1.8)

where xr ∈ Rn×1 = (x1, . . . , xn) represents the training examples associated with Sr.

Each entry in Sr corresponds to a class label in Ω. The classification process involves

estimating the conditional probability of each class as an empirical fraction:

Pr = P (m(l) ∈ l | x = xo) =
1

k

∑
i∈N(l,Sr)

I(xr ∈ l), (5.1.9)
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where N(l, Sr) represents the indices of the k nearest neighbors to class l in the

training set Sr. The indicator function I(.) is defined as:

I(w) =


1, if w is True

0, otherwise.

(5.1.10)

All gait-related features were analyzed using the implemented KNN algorithm for the

three cohorts. Here, we considered M = 2, i.e; Ω = {Ω1,Ω2}. for the three cohorts.

The k parameter was tuned by doing a 5-fold cross validation.

• Neural Networks (NN): A deep learning approach that models complex relation-

ships between features and target variables. A single-layer neural network model with

weight w, bias b, and activation function f is given by

y = f

(
n∑
i=1

wixi + b

)
. (5.1.11)

A three-layer Multi-Layer Perceptron (MLP) has an input layer, a hidden layer, and

an output layer. Successive layers are fully connected by weights. An MLP updates

the weights iteratively to map a set of input vectors (x1,x2, . . . ,xp) to a set of corre-

sponding output vectors (y1,y2, . . . ,yp). An input xi is presented to the input layer

and multiplied by the weights. All the weighted inputs to each unit in the upper layer

are then summed up and produce an output hi as given by the following equations:

hi = f(Whxi + θh), (5.1.12)

yi = f(Wohi + θo), (5.1.13)
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where Wh and Wo are the hidden and output layer weight matrices, hi is the vector

denoting the response of the hidden layer to input xi, θo and θh are the output and

hidden layer bias vectors, respectively, and f(·) is the sigmoid activation function.

The cost function to be minimized is the sum of squared error E, defined as

E =
1

2

∑
i

(ti − yi)
>(ti − yi), (5.1.14)

where ti is the target output vector for pattern i. The standard backpropagation

training algorithm [208] uses gradient descent techniques to minimize E, but suffers

from slow convergence and frequently stuck in local minima. There are a number of

variations to backpropagation algorithm to achieve faster convergence and to avoid

local minima. However, generalization ability of neural network is the most important

factor. A desired neural network model should produce small error not only on sam-

ple data but also on out of sample data. A potential problem is the unsmoothening

of the trained weights which may contribute to a network’s poor performance in gen-

eralization. To produce a network with better generalization ability, [209] proposed a

method to constrain the size of network parameters by regularization. Regularization

technique forces the network to settle to a set of weights and biases having smaller

values. This causes the network response to be smoother and less likely to overfit

[210] and capture noise. In regularization technique, the cost function F is defined as

F = γE + (1− γ)Ew (5.1.15)

where E is the same as defined in Eq. (5.1.14), Ew = ‖w‖2/2 is the sum of squares

of the network parameters, and γ (< 1.0) is the performance ratio parameter, the

magnitude of which dictates the emphasis of the training on regularization. A large
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γ will drive the error E to small value whereas a small γ will emphasize param-

eter size reduction at the expense of error and yield smoother network response.

One approach of determining optimum regularization parameter automatically is the

Bayesian framework. It considers a probability distribution over the weight space,

representing the relative degrees of belief in different values for the weights. Using

Gaussian probability distribution and Bayesian rule, the optimum value of γ at the

minimum point of F can be determined. A detailed description of the method is

available in [209].

• Ensemble - Bagged Trees: Bagging, short for bootstrap aggregating [211], is an

ensemble learning technique that involves two key components: bootstrap sampling

of the training data and aggregation of base learners. For classification problems, pre-

dictions are combined via majority voting, whereas for regression problems, outputs

are averaged.

This method significantly enhances generalization performance by combining multiple

unstable base learners (e.g., decision trees). In contrast, stable learners such as k-

nearest neighbors, radial basis function (RBF) networks, or support vector machines,

tend to be insensitive to variations introduced by bootstrap sampling [211].

Given a dataset of N observations (gait patterns), the bootstrap sampling procedure

generates new training datasets {f bdn }, each of size N , for training the individual

base learners. This is achieved by randomly sampling (with replacement) from the

original dataset {fn} [213]. Each data point is selected with equal probability 1/N ,

independent of whether it has been selected before or not. As a result, some instances

may be repeated in the bootstrap sample, while others may be omitted.

During inference, Bagging aggregates the predictions from all trained learners. For

classification, the final prediction corresponds to the class receiving the majority of
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votes [212]. Breiman [211] demonstrated that Bagging can substantially reduce gen-

eralization error compared to using a single base learner. The detailed computational

steps are outlined below.

Computation Process of the Bagging Algorithm:

Input:

– Gait dataset: {fn, tn}Nn=1, where N is the number of subjects for each classifica-

tion cohort and tn ∈ {1, 2} is the class label;

– Weak learner model (decision tree): h(fn);

– Number of weak learners: I.

Procedure:

1. For i = 1, 2, . . . , I:

(a) Generate a bootstrap sample {f bdn } from the original training data;

(b) Train the i-th weak learner hi(f
bd
n ) on this bootstrap sample;

(c) Use the trained model hi(fn; f bdn ) to predict class labels for input patterns;

2. End loop.

Output:

HBagging(fn) = arg max
t∈{1,2}

I∑
i=1

[
hi(fn; f bdn ) = t

]
(5.1.16)

The final ensemble prediction HBagging assigns to each input fn the class t that receives

the highest number of votes across the ensemble of I learners.

• Logistic Regression: Logistic Regression (LR) is a statistical modeling approach

used to estimate the probability of a binary outcome based on one or more explanatory
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variables [214]. For a given set of predictors, the probability of observing the event

(e.g., class label 1) is modeled as

P (x) =
1

1 + e−(β0+
∑p
i=1 βi PCi)

, (5.1.17)

where β0 is the intercept term, βi represents the coefficient associated with the i-th

explanatory variable, and p is the total number of predictors.

The parameters {βi} are estimated using the method of maximum likelihood, which

seeks the set of coefficients that maximize the likelihood of observing the given out-

comes in the data.

The model estimates the log-odds (i.e., the natural logarithm of the odds ratio) that

an instance belongs to one of the two classes — with class 1 representing control

subjects and class 0 indicating disorder group subjects. For the last cohort, class

1 was used to indicate the orthopedic group and class 0 indicating the neurological

disorder group.

A decision threshold of 0.5 was applied: if P (x) ≥ 0.5, the instance is classified as a

control; otherwise, it is classified as a PD subject.

• Discriminant Analysis: A classification technique that separates data based on lin-

ear combinations of predictor variables. Linear Discriminant Analysis (LDA) assumes

normal distribution of classes and maximizes class separability. In binary classifica-

tion problems, where data resides in an n-dimensional space, Linear Discriminant

Analysis (LDA) seeks to project the data onto a one-dimensional subspace defined

by a projection vector w. The goal is to find a direction that optimally separates the

two classes by maximizing the ratio of between-class variance to within-class variance

[215].
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Let Iy = {i : yi = y}, with y ∈ {−1,+1}, denote the set of indices corresponding to

training samples in class y. The class separation in the direction w ∈ Rn is quantified

by the following objective function:

F (w) =
w>Sbw

w>Sww
, (5.1.18)

where Sb represents the between-class scatter matrix, defined as

Sb = (µ−1 − µ+1)(µ−1 − µ+1)>, (5.1.19)

and µy is the mean vector of the samples in class y, given by

µy =
1

|Iy|
∑
i∈Iy

xi. (5.1.20)

The within-class scatter matrix Sw is computed as the sum of the individual class

scatter matrices:

Sw = S−1 + S+1, (5.1.21)

with each class scatter matrix defined by

Sy =
∑
i∈Iy

(xi − µy)(xi − µy)>. (5.1.22)

The optimal projection vector w that maximizes the class separability criterion F (w)

is obtained as

w = (S−1 + S+1)−1(µ−1 − µ+1). (5.1.23)
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5.2 Performance Metrics

To obtain a robust estimation of overall classification performance, all selected mod-

els were trained and tested using a 5-fold cross-validation approach. Accuracy, F1

score, and AUC were used as performance metrics to evaluate the models. The as-

sessment were made based on out-of-sample performance. Each metric was calculated

separately for each classification cohort.

Provided below are the confusion matrix-based definition for each of those metrics.

F1 Score

F1 is a metric that strikes a balance between precision and recall, making it suitable

for imbalanced datasets. The score is essentially the harmonic mean of Precision

and Recall:

F1 = 2× Precision× Recall

Precision + Recall
, (5.2.1)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
, (5.2.2)

Recall =
TP

TP + FN
. (5.2.3)

Let us look at the confusion matrix-based representation of F1 score for a better

understanding of the metric:

F1 =
2TP

2TP + FP + FN
, (5.2.4)
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where TP is true positives, FN is false negatives, FP is false positives, and TN is

true negatives. The range of F1 score is constrained in the interval [0, 1]. For the

F1 score, the minimum is reached for TP = 0, that is, when all the positive samples

are misclassified and the maximum is achieved for FN = FP = 0, i.e., for perfect

classification (F1 = 1).

Accuracy

Accuracy measures the proportion of correctly classified instances out of the total

instances. Accuracy is one of the most commonly used evaluation metrics for binary

classification problems. It measures the proportion of correct predictions—both true

positives (TP ) and true negatives (TN)—out of the total number of instances. While

accuracy provides a quick snapshot of overall performance, it can be misleading in

imbalanced datasets where one class dominates; a model predicting only the majority

class could still yield high accuracy despite poor detection of the minority class. This

is where the F1 score becomes particularly valuable. The F1 score balances precision

(the proportion of true positives among predicted positives) and recall (the proportion

of true positives (TP ) among actual positives (TP +FN)), offering a harmonic mean

that emphasizes the model’s ability to correctly identify the positive class. Let us

look at the expression of accuracy in terms of confusion matrix-based components:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.2.5)

AUC Score

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a widely

used performance metric for binary classification problems. It evaluates a model’s
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ability to distinguish between the two classes across all possible classification thresh-

olds. The ROC curve is a plot of the True Positive Rate (TPR) against the False

Positive Rate (FPR) at various threshold settings. These are mathematically defined

as:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
,

where TP is true positives, FN is false negatives, FP is false positives, and TN is

true negatives.

The AUC score represents the area under the ROC curve and can be interpreted

as the probability that a randomly chosen positive instance is ranked higher than a

randomly chosen negative instance by the classifier.

In this study, the pROC package in R was used to compute the AUC. The roc()

function in pROC ranks the predicted probabilities and calculates TPR and FPR at

each unique threshold. The AUC is then approximated using the trapezoidal rule:

AUC ≈
n−1∑
i=1

(FPRi+1 − FPRi) ·
(

TPRi + TPRi+1

2

)
.

The AUC value ranges from 0.5 (no discrimination, equivalent to random guessing) to

1.0 (perfect classification). A higher AUC indicates better discriminatory performance

of the model.
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5.3 Comparative Results

5.3.1 BART’s Performance

We consider three binarization based on the previously mentioned cohorts. BART

got deployed in each of the cases. First, we assess the predictive performance of cross-

validated BART on Healthy vs Neurological binarization. The assessment is made

based on the out-of-sample performance. The accuracy and the F1 score for this

cohort are 0.97 and 0.98, respectively. The Receiver Operating Characteristic (ROC)

curve measures the model’s predictive ability for the two groups, with an area under

the curve (AUC) of 0.99. The optimal threshold is calculated at 0.40 with a sensitiv-

ity of 1.0 and a specificity of 0.92. Next, we examine the performance of BART in

the Healthy vs. Orthopedic cohort. The out-of-sample area-under-the-curve (AUC)

for this cohort is 0.94. The accuracy and F1 scores are calculated to be 0.86 and 0.82.

The optimal threshold is calculated at 0.58 with a sensitivity of 0.88 and a specificity

of 0.83. Finally, we investigate the performance of BART in the Orthopedic vs. Neu-

rological cohort. This cohort’s 5-fold cross-validated area-under-the-curve (AUC) is

0.98. The accuracy and F1 scores are calculated to be 0.94 and 0.95, respectively.

The optimal threshold is calculated at 0.38, and the corresponding sensitivity and

specificity are 0.91 and 1, respectively. Next, we benchmark BART’s performance

against traditional machine learning (ML) models across the three cohorts. We use

identical proportions (as that of BART’s) of training and testing datasets, along with

the same cross-validation procedures, to evaluate the out-of-sample predictive perfor-

mance of these models on the selected dataset. The obtained results are provided in

Table 5.1.
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Figure 5.1: The receiver operating characteristics (ROC) curves comparing the
patient-level out-of-sample predictive performance of BART for the Healthy and

Neurological comparison.
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Figure 5.2: The receiver operating characteristics (ROC) curves comparing the
patient-level out-of-sample predictive performance of BART for the Healthy and

Orthopedic comparison.

154

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

Figure 5.3: The receiver operating characteristics (ROC) curves comparing the
patient-level out-of-sample predictive performance of BART for the Orthopedic and

Neurological comparison.
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We performed a benchmark comparison with the standard ML (kernel-based/tree-

based) classification models. They include SVM (Support vector Machine), KNN (K-

Nearest Neighbours), Decision Trees, Logistic Regression, NN (Neural Nets), Näıve

Bayes, Ensemble-Bagged Trees and Discriminant. All classification tasks were car-

ried out for each cohort. We assessed the classification performance for all three

cohorts based on the following metrics: accuracy, F1 score, sensitivity, specificity,

and area-under-the-curve (AUC) scores. Receiver operating curves (ROCs) and con-

fusion matrices evaluated the patient-level model performance in each classification

cohort. For the AUC scores, 95 % confidence intervals (CI) were calculated for each

ROC-analysis. All experiments were seeded to ensure reproducibility. Our models

were consistently trained and tested on the same datasets. The same split ratio and

cross-validation folds were used as well for model training and to assess out-of-sample

performance on the test set.

Table 5.1 presents a comparison of the model’s performance with benchmark tradi-

tional machine learning (ML) algorithms across the three classification cohorts. The

prediction performance is notably strong for both Healthy vs. Neurological and Or-

thopedic vs. Neurological groups. We benchmarked the model performance with

traditional machine-learning models (ML) such as SVM, decision-tree-based models,

logistic regressions, etc. BART’s performance was either the same or better than

the other traditional models. The performance declined for Healthy vs. Orthopedic

cohort. However, BART outperformed all traditional machine learning (ML) algo-

rithms for this cohort (see Table 5.1). This decline in performance may be due to

factors such as higher collinearity among predictors, more noise than signal, or fewer

distinguishing biological characteristics among the features.

BART consistently outperformed traditional ML models, achieving the highest accu-

racy, F1 score, and AUC across all three classification cohorts.
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Table 5.1: Performance comparison of BART vs. Traditional ML models

Models Healthy vs. Neurological Healthy vs. Orthopedic Orthopedic vs. Neurological

Accuracy F1 Score AUC Accuracy F1 Score AUC Accuracy F1 Score AUC

SVM-Linear 93.8 0.92 0.98 79.8 0.81 0.84 92.7 0.88 0.97
Naive Bayes 87.6 0.80 0.92 77.4 0.80 0.83 92.7 0.88 0.93
KNN 93.2 0.88 0.94 75.0 0.75 0.82 90.4 0.80 0.87
Neural Network 92.7 0.88 0.96 75.0 0.73 0.83 94.9 0.82 0.97
Ensemble - Bagged Trees 96.0 0.93 0.97 78.0 0.79 0.85 94.9 0.94 0.98
Logistic Regression 87.6 0.80 0.89 72.6 0.74 0.81 93.8 0.89 0.94
Discriminant Analysis 93.2 0.88 0.96 72.6 0.73 0.77 93.8 0.90 0.97
BART 97.0 0.98 0.99 86.0 0.82 0.94 94.0 0.95 0.98

5.4 SHAP Analysis

To further validate our results, we performed SHapley Additive exPlanations (SHAP)

[193] analysis to assess feature importance. The findings confirmed that BART’s

feature importance rankings align well with traditional ML models, reinforcing its

reliability in predictive modeling.

The most commonly used interpretable machine learning (ML) techniques are post

hoc explanation methods, which are highly flexible and generally model-agnostic since

they are applied after a predictive model has been designed and trained. In biomedi-

cal engineering applications, ‘feature importance’ methods are widely utilized. These

approaches quantify the contribution of each input variable to the model’s predic-

tions by assigning an importance score. A higher absolute feature importance score

indicates a more significant influence on the model’s output. As discussed in Sub-

section 4.2.3, feature importance can be computed using various methods, including

gain, split counts, and permutation, among others. SHAP analysis, introduced by

Lundberg et al. [193], aims to unify the concept of feature importance, providing

a comprehensive framework for interpreting ML model predictions. The novelty of

SHAP analysis lies in: 1) The identification of a new class of additive feature impor-

tance measures, and 2) Theoretical results demonstrating the existence of a unique

157

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

solution within this class that satisfies a set of desirable properties. Although these

properties are well-known in classical Shapley value estimation methods, they were

previously unrecognized in other additive feature attribution approaches. The first

desirable property is local accuracy. This property asserts that when approximat-

ing the original model for a given input, local accuracy ensures that the explanation

model must, at a minimum, replicate the output of the original model for the corre-

sponding simplified input. The second property is the missingness. The missingness

property states that if simplified inputs indicate feature presence, then any features

absent in the original input should have no influence on the model’s prediction. And,

the third property is consistency. The consistency property asserts that if a model is

modified such that the contribution of a specific simplified input increases or remains

unchanged, regardless of other inputs, the attribution assigned to that input should

not decrease. The SHAP analysis introduced an enhanced unified framework that

ensures other feature importance methods, such as LIME, DeepLIFT, Layer-Wise

Relevance Propagation, and Classic Shapley Value Estimation, do not violate the

three properties mentioned above.

In our analysis, we have considered SHAP analysis as a benchmarking tool for feature

importance based on the selected traditional ML models. This enables us to investi-

gate the faithfulness and consistency of feature importance due to BART across the

three classification cohorts.

From the SHAP feature importance plots (Fig. 5.4 - Fig. 5.10), we can observe the

following:

(a) Healthy vs. Neurological Disorder: All ML algorithms, except discriminant

analysis, identified Average mean load Phase as the most important feature for dis-

tinguishing this group from the healthy cohort. This finding aligns with BART’s

permutation-based and sparsity-induced prior approach for identifying key features.
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(b) Healthy vs. Orthopedic Disorder: We observed variation in feature impor-

tance among the selected ML models. Bagged trees (which outperformed the other

ML models) and discriminant analysis assigned the highest feature importance to

average walking speed. Additionally, traditional ML models performed poorly com-

pared to BART for this cohort. This may be due to the high correlation among

features in this group, which poses challenges for standard SHAP analysis;

(c) Orthopedic vs. Neurological Disorder: All ML algorithms, except discrim-

inant analysis (where Average mean load Phase was ranked as the second most im-

portant variable), identified Average mean load Phase as the most important feature

for distinguishing these two groups. Again, this finding is consistent with BART’s

permutation-based and sparsity-induced prior approach for feature selection.
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(a) (b)

(c)

Figure 5.4: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.
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(a) (b)

(c)

Figure 5.5: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.

161

http://www.mcmaster.ca/


Ph.D. Thesis – M. Mukherjee; McMaster University – Mathematics and statistics

(a) (b)

(c)

Figure 5.6: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.
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(a) (b)

(c)

Figure 5.7: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.
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(a) (b)

(c)

Figure 5.8: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.
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(a) (b)

(c)

Figure 5.9: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.
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(a) (b)

(c)

Figure 5.10: Visualization of SHAP-based model explainability for benchmark
machine learning (ML) models across the three cohorts. We performed a SHAP

analysis based on our benchmarking ML models for investigating the consistency in
feature importance among BART and the traditional ML models.
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Chapter 6

Concluding Remarks

This thesis presents a unified framework that advances the intersection of statistical

modeling and interpretable machine learning in the context of outlier detection and

human gait analysis. Across three core chapters, we addressed challenges ranging

from algorithmic robustness in industrial Internet-of-Things (IoT) applications to

modeling and predicting gait variability in clinical and healthy populations. We shall

now go chapter-by-chapter and discuss the concluding remarks that expands on our

contributions, and also points out limitations and future directions for the addressed

problems.

In Chapter 2, we acknowledged that significant efforts have been made to develop

outlier detection algorithms in the IoT industry. However, most existing algorithms

face a trade-off between accuracy and computational complexity. The widely used

the R-PCA (Recursive Principal Component Analysis) algorithm provides a real-time

and computationally efficient solution, but suffers from theoretical ambiguity, leading

to reduced classification accuracy. In this study, we propose an improved outlier de-

tection algorithm that encompasses accuracy, real-time detectability, reproducibility,
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and computational efficiency. Our proposed improvement focuses on the distribu-

tional assumption of the squared prediction error (SPE) scores in R-PCA. While

R-PCA assumes Gaussianity for computational efficiency, it compromises accuracy in

outlier detection. Through extensive simulations, we demonstrate the non-Gaussian

nature of SPE scores and propose a new data-driven scheme that yields superior re-

sults compared to R-PCA. The reproducibility of the proposed scheme is emphasized,

and we provide an improved version of R-PCA algorithm. Additionally, we discuss

how this framework can be adapted to other PCA-based outlier algorithms that uti-

lize either Rao’s or Hawkins’ test statistics for calculating the SPE scores. However,

there are further issues worth considering. It should be noted that some PCA-based

outlier detection schemes assuming Gaussianity, including the proposed method, are

sensitive to the proportion of outliers. As a future direction, we aim to develop a more

robust and cost-effective PCA-based outlier detection scheme capable of capturing a

wider range of outliers or anomalies, even in higher-dimensional settings. This ad-

vancement would enhance the overall efficacy and applicability of outlier detection in

the IoT-based systems.

In Chapter 3, our study utilizing Beta regression models has provided valuable in-

sights into the complex relationship between demographic factors, gait parameters,

and gait variability, contributing to a better understanding of the human gait index.

By examining the main and interaction effects of various predictors on the GI, we

have explained how age, gender, BMI, KAmax, SLnorm(h), WS, and StPh/SwPh influ-

ence gait patterns. The applications of our findings extend to clinical practice, where

clinicians can have informed decision-making processes, particularly in designing per-

sonalized rehabilitation programs to optimize gait outcomes. By tailoring interven-

tions based on identified predictors of gait variability, clinicians can enhance mobility

and functional outcomes for patients with gait abnormalities. Additionally, our study
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offers insights into monitoring and evaluating the effectiveness of interventions over

time, thereby facilitating continuous improvement in patient care.

However, our study has some limitations. First, the study population comprised clin-

ically healthy individuals, restricting the generalizability of findings to those with

gait disorders or underlying medical conditions. Additionally, potential confounding

factors such as comorbidities, medication use, walking conditions, surface character-

istics, ethnicities, psychological factors, and cognitive function were not accounted

for. Future research should address these limitations by including diverse popula-

tions and broader confounders to enhance generalizability. While our study provided

valuable insights, relying solely on Beta regression models may limit capturing the full

complexity of gait patterns. Alternative methods, such as quantile regression models

or generalized additive models for location, scale, and shape (GAMLSS), could offer

improved flexibility in handling bounded outcomes and heteroscedasticity. However,

these methods face practical challenges, including increased computational complexity

and interpretability issues [123], [224]. Future studies should evaluate these models’

feasibility and computational efficiency while leveraging data from wearable sensors

and long-term monitoring to enrich our understanding of gait dynamics.

In closing, our study advances the field of gait assessment by uncovering the intricate

relationship between demographic factors, gait parameters, and gait variability us-

ing a single-model-based approach. By addressing specific factors contributing to GI

variability and considering interaction effects among predictors, clinicians can develop

targeted interventions to optimize gait outcomes and improve patient outcomes. Con-

sequently, continued research in this area will further refine our understanding of gait

patterns and enhance the effectiveness of interventions aimed at improving mobility

and function in the general population, as well as patients with gait abnormalities.

Finally, in Chapter 4 and 5, our study provides an interpretable machine-learning
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framework that delivers patient-level predictions and offers explanations and insights

into the model’s diagnostics and associated predictions. Our BART-based framework

generates interpretable predictions with bench-marked performance based on wear-

able sensors (IMU). BART is a tree-ensemble-based model that puts regulations on

the tree depth in terms of a prior, which prevents overfitting and yields reliable re-

sults. This combination of accuracy and interpretability would enables physicians to

receive highly reliable predictions while also gaining insight into the factors driving

those predictions.

Another key focus of this work was to interpret the patient-level predictions by ex-

amining the individual contributions of each gait feature and providing biological

insights into their importance. The average mean load, identified as the most impor-

tant feature for distinguishing between the healthy and neurological cohorts in our

gait analysis, reflects the physical stress exerted by individuals during their stride

[216], [217]. Additionally, one observation from comparing the ALEs of the three

variables is that the ranges of the ALE main effect function for the Average mean

load feature were wider, meaning higher probability masses were assigned compared

to the other features. So that concludes that the Average mean load Phase was the

most important predictor, at least in terms of its main effects. This is consistent

with the fact that the Average mean load Phase received the highest variable inclu-

sion proportions in the model (as indicated by both the permutation-based test and

the sparsity-induced prior-based model), as shown in the Figs. 4.5-4.10. An addi-

tional SHAP analysis conducted on the bench-marked ML models also confirms the

ranking of this feature. A lower mean load in healthy individuals indicates efficient

weight distribution and balance, which are critical for fluid, well-coordinated move-

ments [218]. This non-linear impact—where a higher load aligns with neurological

impairment—suggests that individuals with neurological disorders may experience
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altered gait mechanics due to weakened muscle function, poor motor coordination,

or increased joint stress [175]. The elevated load in the Neurological cohort could

be indicative of compensatory mechanisms, such as increased muscle force or joint

pressure, that individuals use to maintain stability, often due to underlying motor

deficits associated with neurological conditions [175]. Thus, the average mean load

could serve as a valuable marker for identifying gait abnormalities linked to neurolog-

ical disorders and tailoring interventions focused on improving load distribution and

overall gait efficiency.

The permutation-based procedure also captured the Average Walking Speed and

Average Stride length as important gait features for classifying healthy patients from

the neurological cohort. The neurological cohort of this data was composed of 4

cohorts: hemispheric stroke, Parkinson’s disease (PD), toxic peripheral neuropathy

and radiation-induced leukoencephalopathy. Although we lack further information

on the neurological subgroups, our results align with findings from previous leading

studies on these subgroups. Previous Meta-analysis and systematic reviews [176],

[177] revealed that walking speed, stride length, swing time and hip excursion were

reduced in people with PD compared with healthy control. Previous review-based

studies [179] showed that the average walking speed reported for subjects with stroke

was less than the able-bodies subjects. The same conclusions were drawn for the stride

length and cadence for such subjects based on 17 studies [219]. Various interventions,

such as walking training with cadence cueing, can improve the average walking speed

and stride length in stroke patients [179].

For the healthy vs orthopedic cohort, Average step length came out as one of the

important features based on the permutation-based procedure (see, Fig. 4.7). The

Average Step Length is a key indicator of lower limb function, often reflecting the

ability to achieve full stride due to muscle strength, joint mobility, and balance [175].
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In orthopedic patients, reduced step length is commonly observed and can signal lim-

itations due to pain, joint stiffness, or compensatory gait patterns developed to avoid

discomfort [180]. Clinically, a shorter step length might suggest weakened muscles

around the hip, knee, or ankle joints, as well as balance challenges [181], [182]. Iden-

tifying this pattern allows clinicians to focus on exercises or interventions targeting

flexibility and strength to restore a more natural gait pattern and improve stride effi-

ciency. Additionally, average walking speed, a robust measure of functional mobility,

endurance, and overall lower body strength [183], emerged as an important feature

in both permutation-based and sparsity-induced prior approaches (see, Fig. 4.7 and

Fig. 4.9). Reduced walking speed in orthopedic patients can indicate both physical

limitations and cautionary behavior to minimize joint impact or avoid falls [184]. In

practice, a higher walking speed is often linked to better balance and dynamic sta-

bility, enabling more efficient and safe ambulation [185]. Clinicians often use walking

speed as a primary metric to assess the impact of orthopedic interventions, as im-

provements here typically correlate with enhanced patient confidence, reduced pain,

and better musculoskeletal health [220]. Therefore, emphasizing walking speed in or-

thopedic patients’ treatment and rehabilitation programs can support improvements

in overall mobility and independence. Also, The Average Mean Asymmetry in Single

Support, identified as an important feature by the permutation-based approach, is

clinically significant as it reflects the body’s ability to distribute weight evenly dur-

ing the gait cycle, a key factor in stable and efficient movement [186], [187]. Lower

asymmetry levels in single support indicate balanced weight-bearing, which is typical

in healthy individuals with optimal joint function and muscle coordination [190]. In

contrast, increased asymmetry suggests possible orthopedic issues, such as joint pain,

muscle weakness, or postural imbalances, which often lead patients to favour one

leg over the other to minimize discomfort or reduce strain and this adaptation can
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worsen over time, potentially leading to further musculoskeletal imbalances [191]. As

a result, monitoring asymmetry levels can provide valuable insights into the severity

of orthopedic impairment and may guide targeted interventions aimed at restoring

symmetry, thereby enhancing balance, reducing strain on compensatory muscles, and

improving overall gait stability.

Finally, we investigated the feature importance for the orthopedic cohort against the

neurological disorder cohort and the Average mean load Phase come out to be as the

most important one. In this case, the average mean load is a key indicator of neu-

romuscular control and stability during movement. As observed in the Neurological

cohort, elevated mean load values likely reflect compensatory adjustments in response

to motor deficits, such as increased muscle force or joint pressure, used to maintain

balance. This trend differentiates neurological gait patterns from orthopedic ones,

where structural limitations affect step dynamics rather than load. Additionally, the

sparsity-induced prior-based BART framework also identified alteration in gait vari-

ability in certain gait parameters related to the loading phases. ALE plots revealed

prolonged variation in flat feet (left foot), stride time (both feet), and stance phase

(left) were associated with the neurological cohort (see Fig. 4.14). Flat foot is often

associated with pain and can significantly impact walking speed and balance, increas-

ing the risk of falls [188], [189]. This was consistent with observations in the healthy

vs. neurological cohort, where Fig. 4.11 indicated that the neurological cohort had a

slower average walking speed and a shorter average stride length. Additionally, the

risk of falls is higher in PD patients due to gait freezing, which is associated with

increased variability in foot flatness. However, the importance of these features was

largely overshadowed by the average loading phase, resulting in a much narrower

range for the individual (ALE) main effect function compared to that of the average

loading phase. Identifying such load discrepancies can guide interventions aimed at
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improving stability and reducing compensatory strain in neurological conditions. An-

other observation from comparing the individual effects (through the Accumulated

Local Effects (ALE) plots) of the variables is that the range of the individual (ALE)

main effect function for the Average mean load Phase feature was wider, indicating

higher probability masses assigned compared to the other features in both the healthy

vs neurological and orthopedic vs neurological cohorts. This suggests that the Aver-

age mean load Phase was the most important predictor, at least in terms of its main

effects. This finding is consistent with the fact that the Average mean load Phase

received the highest variable inclusion proportions in the model, as indicated by both

the permutation-based test and the sparsity-induced prior-based model, as shown in

the chapter 4, for both classification cohorts. Additionally, SHAP analysis based on

the selected ML model revealed that the Average mean load Phase ranked as the

most important feature (based on the mean absolute SHAP value) in determining

the model’s prediction (see Fig. 5.4-5.10) for these two cohorts.

We acknowledge that this study has limitations and that further investigation are

needed to enhance the understanding of wearable-sensor-based gait predictions for

both healthy and pathological cohorts. Firstly, the IOPL dataset [142] lacks informa-

tion on cohort sizes and demographic characteristics of the four sub-cohorts within the

neurological disorder group and the two sub-cohorts within the orthopedic disorder

group. Conducting a subgroup analysis would offer better insights into the nuances of

patient-level gait characteristics among these pathological sub-cohorts and the healthy

population. Secondly, difference analysis revealed statistically significant differences

in some demographic variables, such as age and BMI, across the three groups. Our

study did not account for age-specific or BMI-specific effects (fixed or random) in the

model, which may influence the predictions. Thirdly, we acknowledge limitations in
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BART’s performance for the healthy vs. orthopedic classification, which lagged be-

hind the performance of the other two classifications. This may be due to high noise

within this cohort’s data or substantial collinearity among predictors. Although the

identified feature importance was biologically plausible, it did not align as consistently

with the SHAP analysis as it did for the other two classifications. Additionally, our

work has not addressed the uncertainty in permutation-based feature importance for

BART in classification tasks, which could be an interesting area for future research.

Also, we did not consider a “causal” approach in our study to understand the gait

features and their effects in the classification of healthy and pathological groups us-

ing BART. Future research should focus on exploring the causality of various gait

disorders and their nuances compared to healthy gait patterns using wearable-sensor

data.

In conclusion, this study focuses on understanding gait predictions for healthy and

different pathological groups based on wearable sensors. Data-driven gait predictions

for patient outcomes are being developed and applied more frequently [153], [155],

[156], [157], [158]. However, black-box models that generate gait predictions without

proper explanations are difficult for physicians to trust, as they offer little direction

for informed patient care. These predictions serve the purpose of identifying optimal

courses of action without necessitating an in-depth understanding of the underlying

mechanisms. BART not only explains the decision paths for these predictions but also

assigns credit to each input feature (via VIP) contributing to the prediction, capturing

various aspects of local explanations. This enables us to understand the model’s global

behavior during prediction. Our work is an introspective study on using interpretable

ML models like BART, which go beyond linearity and mere prediction, to understand

patient-level gait characteristics that differentiate healthy subjects from those in a

disorder group.
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Appendix A

Chapter 3

The log-likelihood function for the class of beta regression can be written as follows:

li(β, θ) =
n∑
i=1

li(µi, φi), (A.0.1)

where

li(µi, φi) = log Γ(φi)− log Γ((1−µi)φi)+(µiφi−1) log(yi)+[(1−µi)φi−1] log(1−yi).

(A.0.2)

The components of the score vector derived from differentiating the log-likelihood

function for r = 1, . . . , k are as follows

Ur(β, θ) =
∂l(β, θ)

∂βr
=

n∑
i=1

φi(y
∗
i − µ∗i )

dµi
dη1i

dη1i

dβk
, (A.0.3)
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where

dµi
dη1i

=
1

g′1(µi)
, y∗i = log

yi
1− yi

, µ∗i = ψ(µiφi)− ψ((1− µi)φi), (A.0.4)

and ψ(·) is the digamma function. The other component of the score vector based on

the precision sub-model is:

UR(β, θ) =
∂l(β, θ)

∂θR
=

n∑
i=1

{µi(y∗i − µ∗i ) + ψ(φi)− ψ((1− µi)φi) + log(1− yi)}
dφi
dη2i

dη2i

dθR
,

(A.0.5)

where dφi
dη2i

= 1
g′2(φi)

, and R = 1, . . . , h. The vectors are defined as y∗ = (y∗1, . . . , y
∗
n)T ,

µ∗ = (µ∗1, . . . , µ
∗
n)T , and the matrices are given by

T1 = diag

(
dµi
dη1i

)
, T2 = diag

(
dφi
dη2i

)
, Φ = diag(φi),

with diag(µi) denoting the n× n diagonal matrix with elements µi, for i = 1, . . . , n.

Additionally,

υi = µi(y
∗
i − µ∗i ) + ψ(φi)− ψ((1− µi)φi) + log(1− yi).

Hence, we can write the (k + h)× 1 dimensional score vector U(ζ) as

U(ζ) =

Uβ(β, θ)T

Uθ(β, θ)
T

 ,
where

Uβ(β, θ) = X̃TΦT1(y∗ − µ∗), (A.0.6)
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Uθ(β, θ) = Z̃TT2υ. (A.0.7)

Linear Beta Regression Model with Fixed Precision: For a linear regression

model with fixed precision parameters, we define

g1(µi) = η1i = xTi β, g2(φi) = η2i = φi = φ,

where φ > 0 is a constant, leading to X̃ = X and Z̃ = 1. Here, X represents

the matrix of covariates with rows given by xTi , and the parameters β ∈ Rk and

φ ∈ (0,∞). Consequently, the score vector simplifies as

Uβ(β, θ) = φXTT (y∗ − µ∗), (A.0.8)

Uφ(β, θ) =
n∑
i=1

υi, (A.0.9)

where T = diag
(
dµi
dηi

)
, and y∗i , µ

∗
i and υi are as defined in the “Likelihood and Method

of Estimation” section.

Linear Beta Regression Model with Variable Dispersion: This entails using

the same expressions

g1(µi) = η1i = xTi β, g2(φi) = η2i = zTi θ,

where β ∈ Rk and θ ∈ Rh. In this model, the matrices X̃ and Z̃, are equivalent to

X and Z respectively, where X represents the matrix of covariates with rows given

by xTi , and Z represents the matrix of covariates with rows given by zTi . The score
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vector remains identical to the one described in Eqs. (A.0.6) and (A.0.7).

Table A.1: Model discrimination

Measure for model discrimination VDBR FPBR Logit-transformed Linear Regression

AIC -774.30 -650.20 -252.55
BIC -718.50 -613.96 -216.31
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