
Knowledge Representation and Reasoning with
Domain Information System (DIS)

KNOWLEDGE REPRESENTATION AND REASONING WITH
DOMAIN INFORMATION SYSTEM (DIS)

BY
ALICIA MARINACHE1, M.A.Sc. (Software Engineering)

McMaster University, Hamilton, ON, Canada

a thesis
submitted to the department of computing and software

and the school of graduate studies
of mcmaster university

in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy in Engineering

© Copyright by Alicia Marinache2, August 2025
All Rights Reserved

Doctor of Philosophy in Engineering(2025) McMaster University
(Computing and Software) Hamilton, Ontario, Canada

TITLE: Knowledge Representation and Reasoning with Domain
Information System (DIS)

AUTHOR: Alicia Marinache3

M.A.Sc. (Software Engineering)
McMaster University, Hamilton, ON, Canada

CO-SUPERVISORS: Dr. Ridha Khedri, McMaster Univeristy
Dr. Wendy MacCaull, St Francis Xavier University

NUMBER OF PAGES: xi, 258

ii

To Florin, for his continuous support
To William, for keeping me on my toes and letting me see the world through his eyes

To my family and friends, for keeping me sane

Abstract

Ontology engineering lacks a systematic, data-driven methodology, often requiring
manual, ad hoc processes that struggle to integrate structured datasets with con-
ceptual domain knowledge. Traditional approaches, particularly those based on De-
scription Logic (DL), prioritise top-down taxonomic modelling, making it difficult to
align with structured data sources that follow different relational paradigms. This
disconnect leads to complex mapping efforts and possible semantic inconsistencies.
To address these challenges, we propose a data-driven methodology grounded in the
Domain Information System (DIS) formalism, and designed to align domain concep-
tualisation with existing structured datasets from the outset.

iv

Acknowledgements

I am deeply grateful to my co-supervisors, Dr. Ridha Khedri and Dr. Wendy Mac-
Caul, whose unwavering support, guidance, and patience throughout my graduate
studies have been instrumental in the completion of this work. Their belief in me,
even during the most difficult phases, made this journey possible.

I extend my sincere thanks to Dr. Andrew LeClair for the many thoughtful conver-
sations, critical insights, and encouragement. His ability to challenge my thinking
while offering steadfast support provided both clarity and momentum when I needed
them most.

To my family, thank you. To my husband, for embracing the significance of my return
to academia and walking beside me with constant encouragement; to my son, whose
humour and sharp perspective brought joy and balance to this experience; and to my
extended family and friends, who never failed to lift me up with kindness, laughter,
and support.

This would not have been possible without you - thank you for being there every step
of the way.

v

Contents

Abstract iv

Acknowledgements v

Contents ix

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 4
1.3 Objectives and Methodology . 4
1.4 Contributions . 5
1.5 Related Publications . 9
1.6 Thesis Outline . 11

2 Literature Review 12
2.1 Knowledge Representation Formalisms 12
2.2 Design Perspectives on Knowledge Management 18
2.3 Knowledge Generation . 23
2.4 Existing Higher Order Logic Theorem Provers 25
2.5 Conclusion . 28

3 Mathematical Background 32
3.1 Mathematical Structures . 33
3.2 Mathematical Background . 34
3.3 Domain Information System . 40
3.4 Algebraic Specifications . 45
3.5 Conclusion . 47

vi

4 Semantics of Domain Information System 48
4.1 Domain Information System: Syntax 49
4.2 Domain Information System: A Running Example 50
4.3 DIS Model: Domain Data View Component 52
4.4 DIS Model: Domain Ontology Component 65
4.5 DIS Model: Mapping Operator Component 69
4.6 Datascape Concepts . 71
4.7 Discussion . 74

5 DIS Specification 77
5.1 Isabelle/HOL Overview and Architecture 77
5.2 DIS Specification in Isabelle . 83
5.3 DIS Example: Wine Ontology . 85
5.4 Conclusion . 90

6 DIS Automation 91
6.1 Foundational Elements . 91
6.2 Templates Overview . 93
6.3 Universe Template . 95
6.4 Domain Data View Template . 97
6.5 Domain Ontology Template . 99
6.6 Domain Information System Template 102
6.7 Conclusion . 104

7 Elements of Reasoning 106
7.1 Reasoning in DIS . 106
7.2 Wine Ontology, Extended Example 107
7.3 Consistency Checking . 108
7.4 Concept Satisfiability . 110
7.5 Classification and Subsumption . 112
7.6 Inference Checking . 113
7.7 Conclusion . 114

8 Conclusion and Future Work 116
8.1 Future Work . 117
8.2 Closing Remarks . 118

A DIS Model Proofs 119
A.1 Operators on Data Properties . 119
A.2 Domain Data View Model . 137
A.3 Domain Ontology Model . 140

vii

A.4 Mapping operator . 140

B DIS Specification in Isabelle/HOL 149
B.1 Set Comprehension Results . 149
B.2 Inductive Finite Sets . 150
B.3 Diagonal-free Cylindric algebra . 151
B.4 Domain Data View Types . 152
B.5 Domain Data View Universe . 153
B.6 Domain Data View Boolean Algebra 161
B.7 Domain Data View Base . 168
B.8 Domain Data View . 177
B.9 Concept . 186
B.10 Concept Monoid . 188
B.11 Concept Lattice . 190
B.12 Concept Rooted Graph . 195
B.13 Domain Ontology . 197
B.14 Domain Information System . 198
B.15 Wine Universe . 204
B.16 Wine Domain Data View . 206
B.17 Wine Domain Ontology . 207
B.18 Wine Domain Information System . 211

C DIS Templates for Isabelle/HOL 216
C.1 BNF Production Rules: Meta . 216
C.2 Universe Template: Backus–Naur form (BNF) Production Rules . . . 217
C.3 Domain Data View Template: BNF Production Rules 218
C.4 Domain Ontology Template: BNF Production Rules 219
C.5 Domain Information System Template: BNF Production Rules 221

D Additional Material on Mathematical Background 223
D.1 Domain Information System (DIS) 223
D.2 Cylindric Algebra . 224

E Isabelle Overview 228
E.1 Types, Terms, Formulae, and Variables 228
E.2 Theories and Locales . 230
E.3 Concrete Syntax . 233
E.4 Proofs in Isabelle . 235
E.5 Commonly used proof patterns . 242

Bibliography 244

viii

Glossary 255

ix

List of Tables

4.1 IMDb Titles dataset: Partial View 52
5.1 General syntactic rules of Isabelle . 79
5.2 Automated Proof Tactics in Isabelle 80
5.3 Natural deduction rules in Isabelle 81
5.4 Isar proof abbreviations in Isabelle 82
5.5 Wine dataset . 85
7.1 Producer dataset . 107
7.2 Estate dataset . 108
E.1 Parsing the term a` b ˚ c in Isabelle 234

x

List of Figures

3.1 Poset . 37
3.2 Boolean lattice for Ppta, b, cuq . 38
4.1 Integrating Multiple DISs . 53
4.2 Film & TV Domain Ontology dataset example 54
4.3 Media DIS Boolean Lattice (a partial view) 67
4.4 Media Rooted Graph for Rrecognition relation 69
5.1 Isabelle system architecture (Brucker et al., 2018) 78
5.2 DIS Specification in Isabelle: Design Overview 84
5.3 Wine DIS Specification: Design Overview 86
5.4 Wine Domain Ontology . 88
6.1 Generic DIS Template overview . 93
6.2 Universe Template overview . 96
6.3 Domain Data View Template overview 98
6.4 Domain Ontology Template overview 100
6.5 Domain Information System Template overview 103
7.1 Wine Domain: Wine, Producer, and Estate Domain Ontology 109
D.1 Cylindric algebra: geometrical representation Tarski et al. (1971) . . . 225
D.2 Cylindric algebra: geometrical representation of axiom (C4). Tarski

et al. (1971) . 226

xi

Chapter 1

Introduction

The process of extracting meaningful information from the available data and then
generating new knowledge from it is known as Knowledge Representation and Rea-
soning (KRR) (Kendall and McGuinness, 2019). For most organisations, the KRR
process is a necessary, albeit time-consuming operation. Currently, there are large
volumes of data stored in various sources, formats, and with varying degrees of consis-
tency. The speed with which data is flowing is becoming a challenge in various fields
such as astronomy (AstroML, 2021; Zhang and Zhao, 2015; Nativi et al., 2015) and
marine research (Baumann et al., 2016; Leadbetter et al., 2016; Nativi et al., 2015),
where a large volume of sensor data is constantly being recorded. Thus, the KRR
process should be automated and timely, and should enable a clear and systematic
methodology to build knowledge systems, i.e., the datasets, each of their application
domains, and the relationships between them (Kendall and McGuinness, 2019).

Ontologies, described by Guarino et al. (2009) as “explicit specifications of a con-
ceptualisation of a domain”, have been used as a means to represent the domain of
application of knowledge systems. The conceptualisation refers to the process of ab-
stracting the domain, by identifying its relevant concepts, along with the relations
between them (Kendall and McGuinness, 2019). The explicit refers to the process
of ensuring that the concepts identified are clearly defined. In general, we subscribe
to Gruber’s intuitive understanding of an ontology, therefore, in our work, the terms
ontology, knowledge system, and knowledge representation (of a domain) are inter-
changeable.

Ontology engineering facilitates the discovery of implicit knowledge that is not ex-
plicitly represented, and is rather embedded within the conceptual domain. Ontol-
ogy engineering plays a crucial role in KRR, providing structured, machine-readable
models of domain knowledge. This process is crucial because it allows for a deeper

1

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

understanding of the domain. Thus, it becomes paramount that the ontology is well
designed and easily understood by its users and that it offers support for effective
reasoning engines. The field of ontology engineering has only recently seen the de-
velopment of methodological frameworks for ontology engineering (Tudorache, 2020).
Among the most prominent formal approaches in this space is DL, which has emerged
as the primary formalism for representing domain knowledge (Le Clair et al., 2022).
A typical DL ontology consists of three components: a Terminological Box (T-Box),
which defines concepts and their hierarchical relations, an Assertional Box (A-Box),
which contains assertions about individual instances, and a Rule Box (R-Box), which
describes relations between individuals and concepts, as well as properties of these
relations. Over the years, a rich ecosystem of DL fragments and optimised reasoning
engines has emerged, each tailored to specific reasoning needs, ranging from efficient
T-Box reasoning for large conceptual hierarchies (Baader et al., 2022), to scalability
in A-Box reasoning for ontologies with numerous individual instances (Tahrat et al.,
2020), and handling complex R-Box relations and rules (Jackermeier et al., 2023).

1.1 Motivation
While DL provides a well-defined and logically robust foundation for ontology repre-
sentation, certain practical limitations emerge in data-centric settings. In our work,
we focus on two issues that arise in the current landscape of ontology engineering:
the lack of systematic, semi-automated methodology for ontology engineering, and
the disconnect between ontologies and structured data sources (Kotis et al., 2020;
De Giacomo et al., 2018).

Building knowledge systems remains largely ad hoc, following no clear process (Kotis
et al., 2020). Recently, we have seen the development of methodological frameworks
for ontology engineering, which we discuss in more detail in Section 2.2.2. Existing
ontology engineering methodologies are manual, often employing a top-down concep-
tual modelling strategy. This approach requires domain experts to define conceptual
structures first and map data to them later, often resulting in misalignment (De Gi-
acomo et al., 2018).

DL-based and other traditional ontology engineering approaches focus on abstracting
domain knowledge through T-Box conceptualisation. In this approach, the founda-
tional relation isA is used to define the hierarchical subsumption (e.g., “a sparrow isA

a bird”). This taxonomic approach emphasises classification and specialisation, i.e.,
grouping entities under broader categories based on shared properties. In contrast,
relational datasets are governed by the partOf relation, used to define component
relations (e.g., “a wing is partOf a bird”). This mereological approach emphasises

2

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

the compositional structure. Mapping structured datasets to taxonomic ontologies
requires reconciling fundamentally different relational paradigms, often through in-
termediate representations or transformations (De Giacomo et al., 2018).

Without an integrated approach that incorporates structured data from the outset,
ontologies risk being detached from real-world datasets and becoming difficult to
maintain and scale. These observations do not detract from the strengths of DL, in-
stead motivating the need for complementary approaches that place structured data
at the core of the modelling process.

In our work, we focus on structured, organised data, represented as a set of tuples.
We believe that this approach is sufficient, since organisations are in the process of
converting their unstructured data into a more structured format (de Haan et al.,
2024; Hong, 2016; Najafabadi et al., 2015). While unstructured data currently ac-
counts for up to 90% of enterprise information, it is often underutilised, with only a
fraction of organisations able to analyse it effectively. As a result, considerable effort
is directed toward extracting structured features from unstructured sources, such as
metadata, summaries, and sentiment scores, to make them suitable for downstream
analysis de Haan et al. (2024). This transformation process reflects an industry-wide
shift toward structuring unstructured data, reinforcing our decision to build our re-
search around structured data as a practical and tractable modelling choice.

These limitations in data-driven integration and formalisation motivate the need for
a new formalism, one that places structured data at the core of the modelling process,
while remaining amenable to rigorous reasoning. This motivates the central question
of this thesis.

It is our belief that the right approach is to provide a clear (semi-)automated process
for ontology engineering. The specification of domain-knowledge representation needs
to employ a modular and adaptable structure. To address the challenges of mapping
data to existing ontologies, reduce the complexity of integration, and maintain con-
sistency between domain knowledge and data, ontology engineering must follow a
systematic process that integrates directly with structured datasets. This research
builds on DIS (Marinache, 2016), a previously introduced formal specification for
knowledge systems, by formalising its syntax and semantics, developing a method-
ology for the construction of a DIS guided by existing data, and enabling reasoning
through its implementation in a higher order logic setting.

3

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

1.2 Problem Statement
This thesis aims to advance the field of ontology engineering by developing a clear,
formal methodology for constructing knowledge systems that are tightly aligned with
structured data. Specifically, it formalises the DIS, a framework that embodies the-
ories of data, information, and domain knowledge through mathematical structures.
The goal is not only to define a repeatable and partially automated process for on-
tology construction, but also to provide a foundation that supports reasoning tasks,
such as classification and consistency checking.

In particular, this thesis aims to make formal ontology engineering more accessible by
abstracting away the underlying mathematical complexity of DIS. Through the use of
formal semantics and automated reasoning, DIS hides these foundational structures
from the ontology designer, while preserving the rigour needed for verifiable reasoning.
By allowing for seamless alignment of existing domain data with domain-level con-
ceptual views, DIS facilitates the systematic generation, evolution, and verification
of knowledge in a variety of application domains.

1.3 Objectives and Methodology
This section defines the three main objectives and outlines the methodology used to
address them. The objectives of the thesis reflect the need to formalise this framework,
evaluate its theoretical foundations, and demonstrate its practical capabilities through
implementation and reasoning tasks. The work progresses through three phases:
engineering process design, formal specification, and reasoning.

Objective 1: Develop a systematic ontology engineering methodology

The first objective focuses on designing a process that enables the construction of on-
tologies from structured datasets and expert domain knowledge. This process draws
on principles of modularity, separation of concerns, and formal specification. Ex-
isting ontology engineering methods are reviewed to identify limitations and extract
reusable design principles. These principles are then applied to the development of
a representative case study that illustrates the construction of a DIS instance from
real-world data.

To improve accessibility and reproducibility, the process incorporates partial automa-
tion. A set of generic templates is introduced to formalise recurring structures in DIS
specifications. This approach reduces the effort of manual specification while preserv-
ing semantic correctness. Together, these elements define a structured approach to

4

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

engineering ontologies from data-rich sources.

Objective 2: Define the semantics and formal specification of the DIS
theory

The second objective establishes the formal foundations of DIS by defining its syn-
tax, semantics, and implementation. DIS integrates two types of formal knowledge: a
data theory grounded in cylindric algebra, and a conceptual theory based on Boolean
lattices and graph structures. These components are linked through a mapping mech-
anism that aligns structured data with abstract concepts. The resulting system pro-
vides a unified view of information at both the syntactic and semantic levels.

This theoretical foundation is formalised in a higher-order logic proof assistant that
supports modular specification and machine-checked verification, making it suitable
for encoding and validating the algebraic and relational components of DIS. The for-
mal specification serves as a foundation for correctness, modularity, and extensibility
across domains.

Objective 3: Explore reasoning capabilities within the DIS framework

The third objective investigates whether standard reasoning tasks, such as classifica-
tion, satisfiability, and subsumption, can be carried out within the DIS framework.
These tasks are defined over the formal structures established in the previous ob-
jective and implemented in generic Higher-Order Logic proof assistant Isabelle (Is-
abelle/HOL). Reasoning is performed at both the data and conceptual levels, demon-
strating the framework’s support for semantically coherent inference.

This objective evaluates the expressivity and tractability of DIS in a formal reason-
ing setting. By applying reasoning tasks to DIS specifications and verifying their
correctness through interactive theorem proving, the framework is shown to support
practical and formally sound knowledge inference over structured data.

1.4 Contributions
This section shows that the objectives outlined in Section 1.3 are achieved, leading
to the following contributions:

5

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

1.4.1 Formalised the syntax and semantics of the DIS frame-
work as a unified system with algebraic and relational
foundations (Chapter 4)

This thesis formalises the previously proposed DIS by defining its core syntax and
semantics as two unified and interrelated algebraic theories: a data theory for struc-
tured datasets and a domain representation theory for conceptual abstractions. The
data theory, referred to as the Domain Data View (DDV) is built over structured
datasets and formalised using the language of cylindric algebra. It supports data
sorts, the universe of discourse, and operators that support data-level abstraction
and manipulation. The domain representation theory, referred to as the Domain
Ontology (DOnt), captures the minimal conceptual structure needed to interpret a
dataset. It is modelled as a Boolean lattice built over atomic concepts derived from
data attributes, and it is enriched with a monoid of concepts and a family of rooted
graphs, allowing for modular and structured conceptual modelling.

These two theories are formally integrated through a mapping operator that aligns
data and ontological structure, ensuring that all reasoning is grounded in the relevant
data context. The definition of datascape concepts provides a formal mechanism to
describe the conceptual footprint of the data. Together, these components form a
unified formalism with algebraic and relational foundations that links domain knowl-
edge with its associated domain data in a semantically transparent and context-aware
manner.

Unlike traditional knowledge systems, which often assume a fixed ontology and require
complex mappings to align with data (Xiao et al., 2018), DIS offers a fully integrated
structure where the domain layer is based on the data layer, and the development
of both layers is guided by the existing structured data, using compatible formal
theories. This enables users to define knowledge systems that are both modular and
data-grounded from the start, with a guaranteed conceptual alignment that eliminates
mismatches between the domain data and domain knowledge theories, making the
system immediately usable and adaptable without deep logical expertise.

1.4.2 Proposed a methodology to generate the theory neces-
sary to reason on a given data set and its domain knowl-
edge (Section 4.2)

This research introduces a methodology for constructing a DIS instance from struc-
tured datasets, enabling the systematic generation of the data theory, the domain
representation theory, and their formal integration. The process demonstrates the

6

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

ability of the DIS to support and integrate multiple domains of application, and to
adapt to evolving information.

The methodology is guided by formal design principles derived from the well-formed
underlying theory, ensuring that the resulting specifications represent both the data
and its conceptual context in a structured, modular, and semantically aligned manner.

Unlike most existing frameworks, where ontologies are constructed manually and
semantic constraints are validated afterward, each DIS instance is a model of the
formally defined DIS theory, inheriting correctness, modularity, and semantic align-
ment by design. While DL-based reasoning tools validate logical entailments within
a fixed ontology, they do not ensure that the ontology itself conforms to a higher-
order semantic specification (Baader et al., 2003), as such constraints are typically
defined separately from the data and not structurally enforced during construction.
In contrast, the DIS framework guarantees that every instance is both semantically
coherent and data-aligned from the outset. For users, this enables the generation of
tailored ontologies that reflect their datasets directly, without requiring further map-
ping or reconciliation. Furthermore, because rooted graphs in DIS are constructed
over data-derived concepts, the domain knowledge includes only those concepts that
are grounded in actual data, ensuring conceptual relevance and eliminating specula-
tive modelling.

1.4.3 Encoded DIS theory within Isabelle/HOL (Chapter 5)

The DIS framework is fully formalised in the Isabelle/HOL proof assistant. Each
component is implemented using Isabelle’s locale system, and leveraging its rich type-
theoretic and algebraic foundation. This approach enables the modular construction
of DIS instances, higher-order abstraction, and machine-checked reasoning of both
structural and semantic properties. Proofs are developed interactively, combining
user-guided proof strategies with the automated tactics in Isabelle to balance rigour
and tractability.

While many KRR frameworks provide automated reasoning capabilities, they are
typically specified in First Order Logic (FOL) and often rely on specialised fragments
and custom reasoners with fixed inference strategies (Baader et al., 2003). DIS is
embedded directly in a formal proof assistant, giving users the ability to define and
verify system behaviour down to the logical level. This integration ensures that
correctness properties are not assumed but proven, allowing users to build domain-
specific knowledge systems with full traceability and confidence, especially in domains
where verification is essential.

7

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

1.4.4 Proposed templates that ease and automate the process
of building a DIS instance (Chapter 6)

The methodology is extended through the implementation of generic templates and
a parsing mechanism that automate the generation of DIS instances from structured
datasets. These templates significantly reduce the manual specification effort and
improve usability for domain experts. The approach supports the automated con-
struction of the core theories for both the data and knowledge representation layers as
Isabelle/HOL specifications. Manual input is limited to two tasks: defining the map-
ping between the data sorts and atomic concepts, and specifying the rooted graphs
for the domain ontology. With this minimal involvement of experts, DIS bridges the
gap between formal methods and practical application, enabling the development of
a scalable and maintainable knowledge system.

In most existing frameworks, ontology construction is a bespoke process, dependent
on domain experts, and difficult to scale. DIS changes this by introducing a template-
driven mechanism that allows domain experts to generate entire DIS instances from
existing data sets. For users, this effectively lowers the entry threshold, enabling them
to rapidly construct formal knowledge systems utilising intuitive, declarative tem-
plates without requiring comprehension of the underlying logic or proof constructs.

1.4.5 Proposed a reasoning framework in HOL for validating
domain-specific conjectures (Chapter 7)

This research explores how standard reasoning tasks, such as satisfiability, classifi-
cation, and subsumption, can be defined and executed within the DIS formalisation
in Isabelle/HOL. It shows that, despite the theoretical undecidability of higher-order
logic, these tasks remain tractable and useful in practice for validating structured,
domain-specific knowledge.

Reasoning in DL frameworks is grounded in carefully designed fragments of FOL that
ensure decidability and tractable inference, particularly over concept hierarchies and
instance checking tasks. While this makes DL highly effective for ontology-centric
reasoning, it also imposes structural and semantic restrictions that limit expressivity,
particularly in contexts requiring alignment with structured data, complex mappings,
or domain-specific algebraic semantics.

In contrast, DIS is formalised within a higher order logic framework, not to replace
decidable reasoning tasks, but to support a broader class of reasoning scenarios that
integrate both data-level and concept-level inference within a unified structure. While

8

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

Higher Order Logic (HOL) is undecidable in general, many reasoning tasks within
the DIS remain tractable in practice. By leveraging Isabelle/HOL, DIS supports
reasoning that is semantically precise, structurally modular, and not limited by the
syntactic boundaries of FOL fragments. This enables not only the verification of
traditional ontological properties, such as consistency or classification, but also the
construction and formal validation of DIS instances. For users, this means they can
express complex domain inferences, without needing to refactor their models to fit
narrow fragment profiles, and with the assurance that correctness can be verified
interactively and incrementally.

1.5 Related Publications
• Marinache, A., Khedri, R., LeClair, A., and MacCaull, W. (2021). DIS: A data-

centred knowledge representation formalism. In 2021 Reconciling Data Ana-
lytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS),
pages 1–8. IEEE

This paper presents a detailed case study to highlight the features of DIS. Several
datasets and their respective domain knowledge conceptualisations are integrated to
illustrate reasoning tasks requiring data-grounded and domain-related answers to user
queries. The case study highlights the ability of DIS to handle information evolution.
The paper addresses two open issues in ontologies: the lack of clear and explicit
guidelines for ontology construction and the prohibitive cost of adapting and reusing
existing ontologies.

• Marinache, A., Khedri, R., and MacCaull, W. (2025a). Bridging data and
knowledge: A roadmap from Domain Information Systems (DIS) Theory to
Practical Reasoning. To be Submitted for publication

This paper presents the Isabelle/HOL implementation of the theory of DIS, together
with a case study. The main purpose is not to provide an exhaustive reasoning
analysis, rather to showcase the reasoning capabilities of a DIS. Reasoning tasks
are explored from the perspective of the DIS theory and are accompanied by their
Isabelle/HOL implementation. In addition, we briefly describe the (partially) auto-
mated process of engineering a DIS, using the DISEL tool (Wang et al., 2022).

• Marinache, A., Khedri, R., and MacCaull, W. (2019). A Data-Centered Frame-
work for Domain Knowledge Representation. Technical report, McMaster Uni-
versity

9

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

This technical report introduces the DIS, the formal framework for designing on-
tologies from structured data on which our work is based. DIS integrates a domain
representation and a data view, connected through a mapping operator that aligns
individual data elements with corresponding concepts. The approach uses Boolean
lattices and rooted graphs for modelling conceptual knowledge, and cylindric algebra
for modelling the domain data view. The report also compares DIS with existing
approaches to data and ontology evolution, demonstrating its robustness under infor-
mation change.

• Marinache, A., Khedri, R., and MacCaull, W. (2025b). Domain Information
System (DIS): From theory to semantics. Technical Report CAS-25-02-RK,
McMaster University

This companion technical report formalises the semantics of the DIS framework by
constructing a mathematical interpretation of its core components and proving it sat-
isfies the axioms of the DIS theory. The report rigorously defines the two foundational
layers: data (DDV) and conceptual (DOnt), with the mapping operator linking them.
This semantic foundation ensures internal coherence and supports formally verified
reasoning across data and conceptual layers.

• Marinache, A., Khedri, R., and MacCaull, W. (2025c). Domain Information
System (DIS): Specification and automation. Technical Report CAS-25-01-RK,
McMaster University

This technical report presents the formal specification and partial automation of the
DIS. The report formalises the DIS architecture in Isabelle/HOL, where the data and
conceptual layers are specified as distinct theories, linked via the mapping operator.
It also introduces a template-driven mechanism for generating DIS instances and
demonstrates its applicability through the Wine DIS case study. This work establishes
a semi-automated, formally grounded process for building verifiable, data-aligned
ontologies.

• Le Clair, A., Marinache, A., El Ghalayini, H., MacCaull, W., and Khedri, R.
(2022). A review on ontology modularization techniques: a multi dimensional
perspective. IEEE Transactions on Knowledge and Data Engineering

This survey examines various techniques for modularising ontologies, regardless of the
formalism used in their construction. It includes a discussion on emerging research
areas, particularly the development of modularisation techniques that integrate both
logical and graphical approaches. The findings of this paper serve as the foundation
for the literature review conducted in this thesis.

10

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

• LeClair, A., Khedri, R., and Marinache, A. (2019). Toward Measuring Knowl-
edge Loss due to Ontology Modularization. In Proceedings of the 11th In-
ternational Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management - Volume 2: KEOD, pages 172–184. INSTICC,
SciTePress

In this paper, the theory of DIS is used to formalise the view traversal, a graphical
modularisation technique, based on the relational structure of its Domain Ontology
(DOnt) component. The Boolean lattice underlying the DOnt allows for the formali-
sation of knowledge loss due to view traversal modularisation. This DIS modularisa-
tion technique addresses the challenges associated with a dynamic domain, which is
enriched with data and multiple independent agents.

• LeClair, A., Khedri, R., and Marinache, A. (2020). Formalizing graphical mod-
ularization approaches for ontologies and the knowledge loss. In International
Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowl-
edge Management, pages 388–412. Springer

In this paper, the view traversal modularisation technique is extended with an al-
gebraic approach. Using the fact that a Boolean lattice is isomorphic to a Boolean
algebra, this paper introduces the definition of a module in DIS as a principal ideal
subalegbra module, showing the similarity between the graphical approach and the
algebraic approach in DIS.

1.6 Thesis Outline
The remainder of this thesis is organised as follows.
Chapter 2 surveys existing mathematical approaches to KRR and identifies their
limitations.
Chapter 3 introduces the required mathematical background, along with the details
of the DIS theory.
Chapter 4 discusses the semantics of the new DIS theory and introduces a detailed
case study that highlights the characteristics of DIS.
Chapter 5 presents the DIS specified as a theory in the higher-order logic generic
proof assistant Isabelle/HOL.
Chapter 6 introduces automation elements for building a DIS.
Chapter 7 explores standard reasoning tasks and exemplifies how they can be applied
on a DIS.
Chapter 8 presents the conclusions of the research and outlines directions for future
work based on the results of this work.

11

Chapter 2

Literature Review

In this chapter, we review the literature for existing approaches on the formalisa-
tion of knowledge representation, and on generating knowledge from existing data.
In Section 2.1, we explore existing formalisms for knowledge representation. In Sec-
tion 2.2, we identify design criteria for building better ontologies. In Section 2.3,
we present existing approaches to knowledge generation and a summary of existing
reasoning support in ontologies. In Section 2.4, we look at the existing higher order
logic provers.

2.1 Knowledge Representation Formalisms
Due to the rapid increase in the size and diversity of the generated data, knowl-
edge representation has become increasingly important in a variety of fields, such
as data analysis, natural language processing, machine learning, and more (Kendall
and McGuinness, 2019). Knowledge can be classified in multiple ways, such as ex-
plicit (i.e., knowledge that can be expressed, documented, and shared), implicit (i.e.,
knowledge that exists within, and can be inferred from the explicit knowledge), tacit
(i.e., knowledge that cannot be easily expressed, as it is related to personal experi-
ence and beliefs), situational (i.e., knowledge about situations in a given context or
domain), procedural (i.e., knowledge about actions or procedures that are valid in
a domain or independent of a domain), conceptual (i.e., knowledge about the facts
and relations in a domain), or contextual (i.e., knowledge pertinent or valid in a con-
text or domain) (De Jong and Ferguson-Hessler, 1996). In this work, we focus on
the explicit representation of conceptual knowledge, referred to as domain knowl-
edge, within a given application context. While the literature offers a variety of
classification schemes for knowledge representation formalisms (Grimm, 2009; Patel
and Jain, 2018), we organise our discussion around three principal categories: rela-
tional structures (Section 2.1.1), algebraic structures (Section 2.1.2), and logic-based
formalisms (Section2.1.3). These categories were selected because they reflect the

12

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

dominant paradigms used in formalising, manipulating, and reasoning about concep-
tual knowledge in structured systems, and they form the theoretical foundation of
the DIS. For each of the structures in these categories, we aim to understand how
they capture information and what kind of information they are able to capture (their
expressivity), as well as if they can assume an open-world approach. In an open-world
approach, what is not known to be true about the domain is simply assumed to be
not known. In contrast, in a closed-world approach, what is not known to be true
about the domain is assumed to be false (and it is called negative information).

2.1.1 Relational Structures

Relational structures are mathematical constructs consisting of a set and a collection
of relations defined over that set. When representing knowledge through relational
structures, the world is described as a set of concepts and individuals, with relations
between them. The relational structures are usually graph-based, with concepts and
individuals represented as vertices of the graph, and the relations as its edges. The
main advantages of relational structures are their intuitiveness and simplicity. How-
ever, in general, graph-based structures capture only binary relations. In addition,
reasoning is usually done through procedures that manipulate the structures. Al-
though structural manipulation is easy to understand, it is more limited than logical
approaches (as discussed in Section 2.3). In the remainder of this section, we explore
three relational structures: formal concept analysis, semantic networks, and concep-
tual graphs.

Formal Concept Analysis (FCA) (Ganter et al., 2019) is rooted in lattice theory and
abstracts conceptual hierarchies from sets of individuals, describing their attributes.
A formal concept is an ordered pair of the form (extent, intent). Within the context of
FCA, the extent consists of a set of individuals that share the attributes of the intent.
The intent consists of a set of attributes that are common to all individuals of the
corresponding extent. FCA provides support for creating ontologies from datasets,
using the relationships between attributes and individuals in a given dataset, to create
abstract concepts that describe the domain. At the same time, it enables a mathe-
matical characterisation of the hierarchy of concepts, called the concept lattice. The
FCA theory has a clear link to relational data structures, in that each dataset may
be represented by a concept lattice. However, FCA strictly models the isA relation,
limiting expressivity to the subsumption reation, and embeds data directly into the
lattice structure, which results in a closed-world assumption (CWA) (Ganter et al.,
2019).

Semantic Networks (Sowa, 2014) are another example of relational structures. They

13

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

represent knowledge in a given domain as directed graphs, where concepts are repre-
sented as nodes, and relations as edges. In contrast to FCA, in which only the isA rela-
tion can be modeled, semantic networks can represent any binary relations. In seman-
tic networks, a main drawback is the lack of a clear definition of generic nodes. Generic
nodes represent either abstract concepts, linked to individuals through the typeOf

relation, or sets of abstract concepts, linked to individuals through the memberOf re-
lation. Despite their name, semantic networks lack formal semantics (Lenzerini et al.,
2004). There is no distinction made between different kinds of edge in the graph,
edges can represent either properties of individuals and concepts, or relation between
concepts (as classes of individuals) and individuals. The need to be more expressive,
while using semantic networks-like formalisms, led to the development of DL, which
we describe in Section 2.1.3.

Conceptual Graphs (CG) (Van Harmelen et al., 2008) are graph representations of
natural language semantics, based on the semantic networks. They contain two types
of nodes: concepts and conceptual relations. The directed edge links connect a con-
ceptual relation to its input and output concept. In contrast to FCA and semantic
networks, conceptual graphs can represent n-ary relations. In conceptual graphs there
are no edges that can connect concepts directly to concepts (or relations to relations).
The formalism has the same expressive power as FOL, meaning that some reason-
ing tasks, including validity and subsumption, are undecidable (Van Harmelen et al.,
2008).

2.1.2 Algebraic Structures

Algebraic structures are mathematical structures consisting of a set and a collection
of operators defined on it. One of the advantages of using algebraic structures to
represent knowledge is the fact that most of the structures are theoretically mature,
i.e., they have existed for a long time, and there is strong support for their usage.
Capturing the domain knowledge through structures that are well established enables
the use (or allows for the extension) of automated theorem provers for reasoning on
these structures. In this section, we look in more detail at some algebraic structures
that capture and represent domain knowledge, such as algebras of relations, and in-
formation algebra.

The development of algebras of relations as formal systems for manipulating relations
came as a natural extension of relational structures. In the algebras of relations, the
elements of the carrier set are represented as relations. In addition to the advantage
described above, these algebras offer a high-level description of the data and enable
the development of rules for rewriting, querying, and optimising low-level access. We

14

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

review two types of algebra of relations (Hirsch, 2007; Sayed Ahmed, 2022): Relational
Algebra (RA)s and Cylindric Algebra (CA). RA underlies the semantics of relational
databases and supports operations such as selection, projection, and join over n-ary
relations. In contrast, CAs were introduced by Tarski et al. (1971) to capture the
semantics of first-order logic, and model relations along with indexed variables and
quantification, enabling reasoning about logical structure. While both frameworks
operate over n-ary relations, CAs are more expressive, and are more suitable for rep-
resenting higher-order relational systems.

RAs represent uniform data, assuming a closed-world. CAs, through the cylindrifi-
cation operator, offer support for nonuniform structured data, and assume an open-
world. Both kinds of algebra offer support for representing object-attribute relations
(i.e., the structured data in the domain of knowledge). At the same time, neither
structure offers support to represent other relations, such as the abstract notion of
concepts (defined as classes of objects) or the non-structural relations between con-
cepts. By non-structural relations, we understand relations not given by the struc-
tured data (as defined in Section 3.3.2), such as complex definitions of concepts. For
example, the statements “concept Person hasA attributes Name and Age” and “in-
dividual John isA (concept) Person” describe structural relations. In contrast, the
statement “A (concept) Toddler is a Person whose age is in between 2 and 4” is a
non-structural relation.

Information Algebra (IA) (Kohlas and Schmid, 2014) proposes a theoretical foun-
dation for information processing. It is a mathematical structure built on well-
established theories: a lattice of frames, which provides the structure and context
of organising information, and a semigroup of information, which represents the in-
dividual data associated with specific questions within those frames. Each frame
contains a set of specific questions that are related to a particular piece of informa-
tion within the domain. The questions are organised in a partial order, based on their
level of detail, called granularity. This hierarchical structure helps with combining
the information pieces or projecting them to different levels of granularity. IAs are
not concerned with the internal structure of a frame, but only with its granularity.
While IAs can be viewed as a generalisation of RAs, by extending them to support
more abstract operations such as combination and projection over general information
domains, they introduce certain limitations. In particular, IAs represent relations pri-
marily through a partial ordering that reflects the granularity of information frames,
and do not capture richer relational structures within the domain. Furthermore,
IAs operate under a CWA, which can limit their flexibility when modelling open or
evolving data contexts.

15

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

2.1.3 Logic-Based Formalisms

Logic-based formalisms are mathematical frameworks consisting of a formal language,
a set of axioms, and inference rules. They are designed to represent information by
capturing the structure and semantics of a given domain in a precise and clear man-
ner, typically through the use of symbolic logic. In doing so, logic-based formalisms
offer support for automated reasoning in information systems. In addition, as dis-
cussed in Sections 2.1.1 and 2.1.2, most of the relational and algebraic structures
lack the ability to represent non-structural relations within the domain of applica-
tion. This shortcoming is addressed by the use of logic-based languages. To illustrate
key approaches to logic-based knowledge representation, we focus on formalisms that
exemplify complementary design goals, such as object-oriented structuring, interop-
erability across systems, and ontology-centred modelling. Specifically, we examine
Frame Logic (F-Logic), Knowledge Interchange Format (KIF), and DL. These three
formalisms have been influential in both foundational and applied settings, and to-
gether they span a diverse range of perspectives on how knowledge can be formally
specified, exchanged, and reasoned over.

F-Logic (Angele et al., 2009) is a logic-based formalism that introduces object-oriented
features such as objects, inheritance, and meta-level properties. This approach pro-
vides a flexible and expressive framework for modelling knowledge. In F-Logic, con-
cepts, relations, and individuals are modelled as terms. Frames, which are funda-
mental data structures in F-Logic, encapsulate generic situations within a specific
domain of application. Frames organise knowledge hierarchically, facilitating efficient
reasoning and taxonomy management. Frame-based formalisms, of which F-Logic
is a member, use these constructs to organise frames systematically, enabling effec-
tive knowledge representation and reasoning (Bhatia et al., 2019). F-Logic provides
a concise and straightforward syntax coupled with well-defined semantics, enabling
intuitive reasoning about objects and their properties (Bhatia et al., 2019). In addi-
tion to specifying the relations between concepts and/or individuals, F-Logic offers
support to define general rules. Such rules may be used to represent the declarative
knowledge from the facts captured in the knowledge system (Ekaputra et al., 2017).
Thus, most ontological constructs can be directly mapped to F-Logic. This makes
the underlying language of F-Logic more expressive than some World Wide Web Con-
sortium (W3C) (W3C, 2025) standard-based ontology languages, such as Resource
Description Framework (RDF), Resource Description Framework Schema (RDFS),
Web Ontology Language (OWL), or SPARQL Protocol and RDF Query Language
(SPARQL) (Ekaputra et al., 2017).

KIF (Genesereth et al., 1992) is a FOL-based formalism that provides a standardised
syntax for representing knowledge, thus enabling the sharing of knowledge between

16

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

different systems and tools. The knowledge engineers can specify the ontology in
the system that is most appropriate for their needs, along with a translator to and
from KIF. This approach allows the knowledge engineers to share knowledge across
systems. In addition, KIF can be used for directly representing the domain knowl-
edge. KIF describes the domain using four types of constants: object, function,
relation, and logical constants. Syntactically, there is no difference between these
types of constants, and they can be used anywhere the language syntax allows the
use of constants. Thus, in contrast to other FOL-based languages, the underlying
KIF language allows meta-statements, by using formulae as terms in other formulae,
a process known as reification. However, this flexibility can lead to ambiguities in
interpretation. Different implementations might handle the same KIF expression in
slightly different ways, which can result in inconsistencies when sharing knowledge
between systems. Based on FOL, KIF inherits most of the expressive power of FOL.
Thus, due to the undecidability of FOL, KIF offers limited support for fully auto-
mated reasoning (Schneider and Šimkus, 2020).

DL (Baader et al., 2003) is a family of knowledge representation formalisms based on
FOL, providing a formal framework for knowledge engineering and reasoning about a
domain of application. While FOL is undecidable, DL fragments are predicate-based
decidable FOL fragments in which concepts are represented as unary predicates, re-
lations as binary predicates, and individuals as terms. In DL, concepts denote sets
of individuals. While binary operators (such as join \) are used to construct com-
plex concepts, the concepts constructed in such a manner are not considered binary
predicates (Krötzsch et al., 2012). An ontology built using DL is generally comprised
of two components: the T-Box, which defines the concepts and roles (relations be-
tween concepts) within the domain, and the A-Box, which contains assertions about
individuals, including their membership in concepts and their participation in role
relations. The information in an A-Box is usually viewed as being incomplete, thus
DL reasoners use the open-world assumption.

In the past decade, DL is regarded as the standard in knowledge representation,
mainly due to its formal foundation and the balance it strikes between expressivity
and decidability. This has led to the development of numerous DL fragments (Le Clair
et al., 2022). The main disadvantage of knowledge systems based on DL is their mono-
lithic structure: the data is captured inside the A-Box, giving it a static aspect in
a dynamic world. Traditional DL reasoning algorithms might encounter efficiency
issues when handling large volumes of instance data in the A-Box, which can impact
the scalability and performance of the reasoning process (Westhofen et al., 2022).
As A-Boxs grow larger and more complex, reasoning tasks, such as classification or
instance retrieval, can become become increasingly computationally expensive and

17

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

time-consuming. While research continues to address these challenges, it often fo-
cuses on defining new DL fragments tailored to specific reasoning scenarios, rather
than providing general-purpose solutions (Zombori, 2008; Lukácsy and Szeredi, 2009).
Another common drawback of logic-based formalisms is the inherent trade-off between
how richly a language can express a domain and how computationally difficult it is
to reason over representations built with that language (Van Harmelen et al., 2008;
Matentzoglu et al., 2015). This has led to the current state of the DL-based lan-
guage family, where various applications and situations prompt the creation of new
languages tailored to specific parameters and optimised reasoning engines. This sit-
uation has the advantage of tailoring the reasoning for more expressive and scalable
fragments, an approach that provides flexibility and customised solutions. From a us-
ability perspective, however, handling multiple DL fragments may result in increased
complexity in system design and usage, challenges with interoperability, and higher
maintenance overhead. This requires careful consideration of the balance between
expressiveness, scalability, and usability. While glsdl offers a clean semantic founda-
tion, it often lacks support for modular development. Once an ontology is constructed,
modifications to the concept structure or data schema tend to be global, requiring
significant effort to preserve consistency. This presents a challenge for systems that
require frequent updates or flexible reuse of components.

Formal representational power alone is insufficient. Knowledge representation for-
malisms provide the theoretical backbone for representing both data and conceptual
structures, and their effective application requires systematic design methodologies.
The next section surveys design criteria and engineering perspectives in ontology
development.

2.2 Design Perspectives on Knowledge Management
The challenges mentioned in Section 2.1 point to a broader design need: knowl-
edge systems must support modularity not only at the conceptual level but also in
their underlying representations and reasoning infrastructure. The field of knowledge
engineering has evolved to meet the demand for more effective and efficient informa-
tion systems, with a significant focus on improving their underlying Knowledge Base
(KB) (Mizoguchi, 2019). Part of the research in this field is focused on establishing
methodologies and frameworks to support knowledge management, with its various
operations on ontologies, such as building, sharing, maintaining, and extending in-
formation systems. Although some researchers and domain experts have looked at
these tasks from an immediate, short-term perspective, others have approached the
engineering aspect of ontologies in a more formal manner. However, the field remains
as fragmented as the diverse array of DLs it employs. Researchers often develop

18

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

specific methodologies tailored to particular projects, leading to a lack of consensus
on standardised foundational practices for ontology design and development (Tu-
dorache, 2020). Furthermore, despite the increasing importance of collaboration in
many domains, ontology engineering methodologies have predominantly emphasised
non-collaborative approaches. This focus seems counterintuitive in an era where
collaborative efforts are crucial to integrating diverse sources of expertise and knowl-
edge (Sattar et al., 2020).

In our work, we adopt an engineering perspective, treating the development of knowl-
edge systems as a systematic, repeatable process that can be (partially) automated.
This section is dedicated to identifying the methods and principles that enable the de-
velopment of information systems to become an engineering activity. In Section 2.2.1,
we review the existing literature in order to identify design criteria used in ontology
engineering. In Section 2.2.2, we explore existing methodologies for ontology devel-
opment.

2.2.1 Design Criteria for Ontology Engineering

In a seminal work by Gruber (Gruber, 1995), we find the first mention of design cri-
teria for ontologies, such as clarity, coherence, extendibility, minimal encoding bias,
and minimal ontological commitment. Clarity refers to the ability of the ontology
to effectively communicate the meaning of its terms, by providing objective, correct,
and complete definitions for the ontological terms. The property of coherence is de-
fined in terms of consistency, i.e., the axioms of the ontology are logically consistent.
This requires that the inferences or logical conclusions derived from the ontology are
consistent with the ontological definitions. Extendibility refers to the ability to add
new definitions and axioms to the ontology without having to change existing ones.
Minimal encoding bias speaks about specifying the conceptualisation independently
of any particular notation, language, or implementation. Finally, minimal ontological
commitment refers to making as few ontological commitments (definitions, axioms,
etc.) as possible about the modelled world.

Madni et al. (2001) build an ontology based on the following four design principles:
neutrality, extensibility, complementarity, and interoperability. Neutrality is defined
as notation- and implementation-independent, corresponding to Gruber’s minimal
encoding bias criteria. Extensibility refers to the ability to easily extend the ontology
to various application domains, as well as its compatibility with other relevant ontolo-
gies in the same domain. Extensibility and Gruber’s extendibility are related, as both
refer to the ability of the ontology to be extended. Complementarity refers to the
the observation that multiple perspectives are needed to model various aspects of the

19

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

world, and the ontology should allow for this variety of perspectives. Interoperability
is taken in the general engineering sense, as the ability to easily integrate with other
domain ontologies. These last two design principles have no direct correspondence in
Gruber’s list of design criteria.

By the early 2000s, the field has developed a wealth of ontology examples, yet (Sto-
janovic, 2004), highlights the inefficiencies and potential errors in constructing on-
tologies from scratch. To address these challenges, the concept of modularisation
emerges, advocating that ontologies are built from smaller, well-defined modules that
can be managed independently. The criteria considered for the modularisation process
are borrowed from the software engineering field, and include cohesion and coupling.
Cohesion refers to the (usually semantic) similarities between the concepts in one
module, and coupling refers to the degree of interdependence between different mod-
ules or components within an ontology. Just as in software engineering, ontology
modularisation aims to provide high cohesion (i.e., stronger similarity between the
concepts of a module) and low coupling (i.e., fewer relations connecting concepts be-
tween modules).

Mizoguchi (2003) remark that an ontology is similar to the notion of class hierarchy
from the Object-Oriented (OO) paradigm. From that, it is immediate that the process
of designing ontologies should employ software engineering design principles, such as
separation of concerns, and low coupling. In addition, they mention representation-
independence as a key property for ontologies, along with semantic interoperability,
or the ability to interpret and translate the metadata used in the semantic web. Thus,
an ontology is regarded as “a theory of content”, enabling the domain experts to share
knowledge across application domains.

According to (Burton-Jones et al., 2005), an ontology can be evaluated with respect to
four qualities: syntactic, semantic, pragmatic, and social. Syntactic quality measures
the formal style an ontology is written in. Semantic quality refers to the correctness
of an ontology, or the absence of contradictory statements. The pragmatic quality
refers to the usefulness of the ontology. The social quality refers to the strength of
its connections to other ontologies and domains, such as the number of links made to
it, and the number of times it is accessed. The first two ontology evaluation criteria
correspond to two of the criteria defined by Gruber in (Gruber, 1995), clarity and
coherence.

Smith (2006) presents a number of principles that should guide the design of a “good
ontology.” These principles are based on the ISO Standard 15926 - Integration of life-
cycle data for process plants including oil and gas production facilities (ISO 15926).

20

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

Some of the more important principles are: the principle of intelligibility, which can
be directly linked to Gruber’s clarity quality; and the principle of reusing available
resources, which can be linked to the modularisation property. In addition, the prin-
ciple of terminological coherence states that, in a “good ontology”, a concept cannot
have two semantically different definitions. Finally, the principle of non-circularity
states that, in a “good ontology”, there should be made a distinction between defined
and primitive terms, and that a “good ontology” should not allow circular definitions.

Finally, Sattar et al. (2020) provide a list of sixteen criteria that an ontology engi-
neering method is evaluated upon. Some of these criteria have roots in engineering
processes, such as reusability, maintainability, extensibility, documentation support,
and merging and modularisation. Others are strictly related to the process of knowl-
edge engineering and ontology building, such as conceptualisation and instantiation.

2.2.2 Methodologies for Ontology Engineering

Some of the early methodologies, such as METHONTOLOGY (Fernández-López
et al., 1997) or On-To-Knowledge Methodology (OTKM) (Sure et al., 2004) focused
mostly on developing a process for building (and reusing) ontologies (Gómez-Pérez
et al., 2006). METHONTOLOGY adapted the software development life-cycle for
the ontology development process, while OTKM uses two orthogonal processes, with
feedback loops. The first one is the usual process for knowledge use and evalua-
tion, and the second is a knowledge meta process for introducing the ontology into
an enterprise, as well as for maintaining it. Thus, the life-cycle model proposed by
METHONTOLOGY is slightly more rigid than the one defined in OTKM. Neither
of these methodologies mention any design criteria to be observed while developing
ontologies.

De Nicola et al. (2009) propose a new methodology for building ontologies to check
the quality of the resulting ontologies. The methodology is using four of the criteria
discussed in Section 2.2.1, namely the syntactic, semantic, pragmatic, and social cri-
teria. By using a formalism such as DL or OWL to specify ontologies, the authors
argue that syntactic quality is automatically achieved. The semantic quality is ver-
ified by checking the consistency of the ontology, using a reasoner. The pragmatic
quality is separated into three more characteristics: fidelity, relevance, and complete-
ness. In our work, through the use of the rooted graphs, we consider the pragmatic
quality of relevance. This quality is discussed in more details in Section 3.3.3. The
other pragmatic qualities, along with the social qualities can be verified only in strict
reference to the ontology requirements, by verifying their sources, their correct im-
plementation, and their coverage. As such, they are not considered in our work.

21

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

In recent years, as the number of ontologies has increased, the field of knowledge
engineering methodologies has re-focused on more agile, lightweight approaches. The
NeOn methodology (Suárez-Figueroa et al., 2012) is focused on identifying scenarios
for building, sharing, reusing, and re-engineering knowledge resources. In a way, the
NeOn methodology adapts the idea of design patterns in software engineering to the
field of knowledge engineering. The scenarios are effectively used as ontology engi-
neering design patterns. The NeOn methodology offers two life-cycle models: the
rigid, sequential waterfall model, along with an iterative, incremental cyclic model.

The Unified Process for ONtology building (UPON Lite) methodology (De Nicola and
Missikoff, 2016) introduces a more agile ontology engineering approach. UPON Lite
seeks to ensure the reusability of existing ontology resources and the adaptability of
its methodology across various industries and applications. In addition, the method-
ology places a high value on its ability to be used collaboratively. The collaboration is
done almost exclusively by domain experts, without the need to involve the ontology
engineers until the very last step of the process, which is the formalisation of the
ontology into a standard language. This methodology also offers support to produce
meaningful supporting documentation.

Jaskolka et al. (2015) propose an architectural design framework for ontology engi-
neering. By applying the proposed design architecture, the resulting ontology exhibits
several qualities, with separation of concerns as the most notable. The separation of
concerns refers to dividing a system into distinct, manageable parts that handle spe-
cific aspects of functionality. By adhering to this quality, one obtains modular, flexible
systems, thus more maintainable ontologies. Additionally, the authors highlight the
importance of tools that automatically generate documentation for post-building ac-
tivities, including the reuse, extension, and maintenance of ontologies.

Complementing this architectural perspective, the SEmi-Automatic Design Of On-
tologies (SEADOO) (Grüninger et al., 2023) methodology further demonstrates how
semi-automated support tools can enhance ontology engineering. SEADOO inte-
grates formal mathematical theories, such as those from the COLORE repository,
with user-guided specification via positive and negative examples to generate logi-
cally sound axioms. Its model transformation and semantic alignment features pro-
mote modularity and reuse, aligning with the separation of concerns principle. By
combining formal axiom generation with practical tool support, SEADOO highlights
the methodological value of bridging formal rigor and user-driven design, particularly
for developing ontologies that are maintainable, extensible, and grounded in reusable
formal patterns.

22

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

2.3 Knowledge Generation
In this section, we explore knowledge generation in existing knowledge systems. We
are interested mainly in what knowledge generation is and what are some of its
standard reasoning tasks. Given the breadth of the reasoning and knowledge gen-
eration field, our discussion focuses specifically on DL-based reasoning tasks, which
are grounded in FOL but designed to support decidable and tractable inference in
knowledge systems. The notation used is also that pertaining to DL. We assume the
reader has basic knowledge of it (Baader et al., 2003).

As discussed in Chapter 1, in knowledge systems, the process of manipulating explicit
knowledge to discover new (implicit) knowledge is commonly understood as reasoning.
Antoniou et al. (2018) and Schneider and Šimkus (2020) discuss standard reasoning
tasks that a knowledge system should be able to perform, such as KB-satisfiability,
consistency checking, concept satisfiability, subsumption, instance checking, and classi-
fication, along with more advanced reasoning tasks such as query answering, module
extraction, and forgetting. Some of the reasoning tasks are T-Box-related, such as
KB-satisfiability, subsumption, and classification, while others are data-related tasks
(involving both the T-Box and the A-Box), such as consistency checking, instance
checking, and query answering.

Given a KB Σ, two concepts C and D, and an individual a, the standard tasks cor-
respond to the following questions. KB-satisfiability answers the question “does the
KB admit a model?”, while consistency checking answers the question “is the instance
data (the A-Box) consistent with the schema implied by the T-Box and within itself?”
Concept satisfiability answers the question “does there exist at least one model of the
KB in which C admits a non-empty extension?” Subsumption answers the question
“is C more general than D?” Instance checking answers the question “is a an instance
of C in every model of the KB?”, while classification answers the question “based
on the characteristics of an individual a, what concepts is a an instance of?” Query
answering refers to the process of retrieving relevant information or offering solutions
derived from the structure and content of the ontology, in response to user-generated
questions. Module extraction refers to the process of identifying and extracting a
module from an ontology. The module retains relevant, specific information required
for a particular task or query. Finally, forgetting refers to the deliberate elimination
of certain knowledge from an ontology. This is typically done in order to manage the
size, relevance, or confidentiality of the ontology.

As described in Section 2.1, in a sense DL has become a standard for knowledge
representation through ontologies. What makes DL so desirable for reasoning is that

23

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

its numerous fragments are decidable fragments of FOL. This allows for the creation
of automated tools that can perform reasoning tasks and provide definite answers in
finite time. The quality of these answers is contingent upon the correctness, com-
prehensiveness, and accuracy of the ontology itself. Automated proof systems can
be evaluated using a number of metrics, including decidability and complexity (in
space, time, or both). In the remainder of this section, we review the main reasoning
approaches in DL and their metrics regarding the reasoning tasks above.

One category of reasoning approaches are syntax-based algorithms that solve the
subsumption task by comparing the structure of concept expressions. The structural
algorithms are studied for their computational properties (Brachman and Levesque,
2004), and are implemented in a number of KB systems, such as BACK (Quantz and
Kindermann, 1990), LOOM (MacGregor, 1994), or CLASSIC (Borgida and Patel-
Schneider, 1993). The underlying approach of these tools is to rewrite concepts in
normal form, then compare their structure. If certain constructors are allowed in the
language, the structural algorithms are incomplete w.r.t. the FOL semantics (Donini
et al., 1996). The most obvious example is a concept defined as C \ ␣C. Semanti-
cally it is equivalent to J, and subsumes every concept, i.e., for any concept D in the
KB system, D Ď J. However, if neither D Ď C nor D Ď ␣C are satisfied, then by
structural comparison (i.e., by checking if subsumption is satisfied on either branch
C or ␣C) it cannot be discovered that D Ď C \ ␣C. Due to their incompleteness,
syntax-based reasoning approaches are not useful, and their field was abandoned in
the late 90s.

After the syntax-based approaches, another category emerged in the field: semantic-
based (or logic-based) approaches. Baader et al. (2003) show that three of the stan-
dard reasoning tasks, namely concept satisfiability, subsumption, and instance check-
ing, can be reduced to KB-satisfiability in linear time. Currently, common methods for
solving standard reasoning tasks are tableaux (Horrocks, 1998), hypertableaux (Motik
et al., 2009), and resolution (Motik, 2009). The tableaux calculus is proved to be a
sound and complete way to to solve the satisfiability problem. Due to the close re-
lationship between DL and both propositional logic and propositional dynamic logic,
domains where tableaux algorithms have proven effective (Baader et al., 2003), DL
reasoning often employs tableaux-like algorithms. This approach was applied to var-
ious fragments of DL, such as ALC, ALCN , and ALCQ (Baader et al., 2003). The
main advantage of tableaux algorithms is that they are complete and are (often) of
optimal complexity.

Most ontology reasoners are built around DL fragments and rely on tableaux or res-
olution calculus. Matentzoglu et al. (2015) give an overview of current DL-based

24

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

(specifically OWL-based) reasoners. The survey presents more than thirty reasoners,
each reasoner covering a specific DL fragment (or set of fragments), supporting dif-
ferent levels of language expressivity and a variety of reasoning tasks. In terms of
the reasoning tasks covered, most of the reasoners presented in (Matentzoglu et al.,
2015) support the standard T-Box-related satisfiability reasoning tasks and only a
few support data-related tasks.

In terms of the underlying calculi used, reasoners reviewed in (Matentzoglu et al.,
2015) are classified under three main categories: consequence-, model construction-,
and rewriting-based. Reasoners in the first category focus on adding new consequences
to a given KB, and they mostly use resolution algorithms. The consequence-based
reasoners are mainly dealing with tractable DL fragments, such as EL fragments,
which provide high efficiency of reasoning over simple and large KBs (large number
of concepts, small number of relations). The model construction-based reasoners fo-
cus on building models based on a given KB, and/or checking the KB consistency,
and they mostly use tableaux and hypertableaux algorithms. They are generally used
with highly expressive fragments, such as extensions of ALC fragments. Rewriting-
based reasoners are used to expand a given KB to be used for other reasoning tasks
such as answering queries. This category of reasoners is focused more on the data
aspect of the KB and is commonly used for query rewriting. Many of the surveyed
reasoners make use of a hybrid approach, in which they combine algorithms from
multiple categories.

In terms of effectiveness, tableaux algorithms can handle more expressive DL frag-
ments, while resolution algorithms are limited to less expressive fragments (Baader
et al., 2003). However, tableaux algorithms are limited to ontologies whose concepts
are not cyclic, while resolution is effective on highly cyclic ontologies. By cyclic on-
tologies we understand ontologies that contain one or more cyclic relations, or cyclic
concept definitions. In terms of complexity, tableaux algorithms use more memory
space and time than resolution procedures (Song et al., 2011). It is no surprise that
most current reasoners focus on algorithms supporting tractable fragments DL, which
ensures that the algorithms are both sound and complete (Matentzoglu et al., 2015).

2.4 Existing Higher Order Logic Theorem Provers
To support this need for expressive yet tractable reasoning frameworks, we turn to
theorem provers, which offer the foundational infrastructure required for formalising
complex knowledge systems. The formalisation of the DIS, discussed in more de-
tail in Chapter 4, requires a proof assistant capable of expressing and reasoning over
both algebraically rich structures and semantically aligned mappings between data

25

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

and conceptual representations. Given the complexity of DIS, which encompasses
structured data views (based on cylindric algebra), ontological structures (based on
Boolean lattices and graphs), and an integration layer via a mapping operator, a
HOL-based Interactive Theorem Prover (ITP) is required to support its formal spec-
ification and reasoning capabilities.

In this section, we review existing higher-order theorem provers to determine their
suitability for our purposes. Nawaz et al. (2019) evaluate several theorem provers
currently in use, based on different criteria. We leverage this survey to identify a
suitable reasoning engine for our work, focusing on well-documented, widely recog-
nised higher-order proving engines still in use. We focus our review on three widely
used interactive theorem provers: HOL, Rocq (formerly known as the Coq Proof As-
sistant), and Isabelle, selected for their foundational significance, logical diversity, and
widespread use in formal verification and proof engineering. These systems represent
three major foundations in interactive theorem proving: simple type theory (HOL),
constructive dependent type theory (Rocq), and a hybrid declarative framework with
strong automation (Isabelle). Together, they provide a representative and mature
landscape for formalising structured knowledge systems like DIS.

A theorem prover can be categorised as an Automated Theorem Prover (ATP) or an
ITP (also called proof assistant). Although both are reasoning tools used to verify
proofs and establish the correctness of statements, the ATPs are fully automated.
In contrast, the ITPs collaborate with users, allowing users to guide the proof con-
struction process within a formal framework, and to write, check, and verify proofs
interactively. Given the practical constraints of full automation, ITPs are more suit-
able for formalising complex theorems (and theories) in mathematics (Nawaz et al.,
2019; Harrison et al., 2014). The theorem provers we consider are all ITPs.

The three ITPs we review are rooted in Logic of Computable Functions (LCF) (Gor-
don et al., 1979), a theorem prover for Scott’s Logic of Computable Functions (Scott,
1993), and rely on two key ideas (Harrison, 2009). First, any proof is performed by a
sequence of inferences on a small set of axioms (primitives). Thus, provided the orig-
inal set of axioms is correct, any results based on it should be correct as well. This is
achieved by making the theorems a special abstract type, and using the constructors
of this type as the inference rules of the system. Second, the entire reasoning engine is
embedded within a powerful functional (strongly typed and high-level) programming
language, Meta Language (ML), used to program new inference rules. The program-
ming environment of ITPs uses the abstract type theorem to ensure that new rules
can be reduced to primitives (original axioms). This basic approach is applicable to

26

Ph.D. Thesis - Alicia Marinache15 McMaster - Software Engineering

any logic, therefore many of the higher order logic ITPs discussed below are descen-
dants of LCF.

The ITPs we reviewed satisfy the de Bruijn criterion (Barendregt and Wiedijk, 2005),
which requires that the proof assistant generates proof objects that can be verified by
a small proof-checking kernel. In addition, all three proof assistants have implemented
hammers, which are general reasoners over (large) formal proof libraries. Hammers
leverage data from previous proof attempts and maintain a small, trusted base of
proofs used by proof assistants. They typically resolve proof goals through brute-
force methods (Ringer et al., 2019).

2.4.1 HOL

HOL (2012) is a LCF-style ITP for higher-order logic. Highly automated, the proof
assistant offers an environment in which proof techniques and strategies can be imple-
mented, verified, and refined (Kunčar and Popescu, 2015). It also provides an oracle
mechanism that accesses external (and efficient) Boolean Satisfiability (SAT) solvers,
such as Satisfiability Modulo Theory (SMT) and Binary Decision Diagram (BDD)
solvers. HOL is built using the meta-language ML awhich gives it a high degree of
programmability. It is used for implementing a variety of tasks, such as combinations
of deductions and property checking. Since it is LCF-based, the proof objects of HOL
are (usually) ephemeral, i.e., they are built and checked step by step (Ringer et al.,
2019). This allows for a lower memory print. In addition, the time to generate and
check proof objects is directly proportional to the proof object size.

2.4.2 Rocq

ROCQ (2025) is an LCF-style formal proof management system. Based on an ex-
pressive language that integrates higher-order logic with functional programming
language, Rocq offers interactive proof methods, decision procedures, and extensi-
bility for user-defined proof strategies. It is commonly used for certifying proper-
ties of programming languages and formalising mathematical theories, making them
machine-readable. Rocq allows the user to translate certified programs into func-
tional programming languages such as Objective Caml (OCaml), Haskell, or Scheme.
In contrast to HOL, in Rocq proof objects are produced in full, which may create a
higher memory print. Additionally, the time required to check proofs in Rocq may
not be directly proportional to the size of the proof object (Ringer et al., 2019).

27

Ph.D. Thesis - Alicia Marinache16 McMaster - Software Engineering

2.4.3 Isabelle

Isabelle (2025) is an LCF-style generic proof assistant, with a declarative proof style
that allows for a natural proof text, easily understood by both humans and computers.
Isabelle is the answer to a common problem in computer science, that of a need for
proof support for many particular logics in a common, reusable, generic manner (Har-
rison et al., 2014). Its primary use is the formal development of mathematical proofs,
including formal verification of hardware or certification of programming languages
and protocols. Compared to other ITPs, Isabelle offers extensive built-in support
through a comprehensive theory library that includes foundations for number theory,
algebra, and set theory. Isabelle’s logical architecture is compatible with a variety of
formal calculi, enabling flexible and rapid prototyping of deductive systems. Users
can extend it with their own proof procedures and theory packages, using ML. Sim-
ilar to HOL, Isabelle does not produce full proofs, it rather builds a proof piece by
piece. Similar to Rocq, Isabelle allows the extraction of executable specifications into
functional languages code (OCaml, Haskell, Scheme).

2.4.4 Other Higher Order Logic Provers

Prototype Verification System (PVS) (PVS, 2023) is a formal specification and ver-
ification automated system. Its theorem prover is designed for applications with an
expressive classical type theory and powerful automation. It was one of the first
automated prover that showed one does not need to choose between expressivity of
logic and power of the reasoning engine (Harrison et al., 2014). PhoX (PhoX, 2024)
is an extensible higher order logic proof assistant. It is highly user-interactive (not
fully automated) tool, the user giving an initial goal and guiding the proof through
subgoals. NuPRL (NuPRL, 2014) is another LCF-style ITP, developed originally
to create programs in a rigorous, mathematical manner, by interactive refinement.
Ωmega (Benzmüller et al., 1997) introduces a unified technique of combining several
proof tools, including proof planning.

2.5 Conclusion
Over the past decade, the field of knowledge representation has seen a proliferation
of formalisms, particularly in the areas of graph-based and logic-based approaches.
Graph-based formalisms, such as semantic networks and conceptual graphs, empha-
sise structural expressiveness, while logic-based formalisms, such as DL and F-Logic,
offer well-defined semantics for reasoning. DL has emerged as the standard for ontol-
ogy specification and reasoning due to its decidable fragments, while F-Logic remains

28

Ph.D. Thesis - Alicia Marinache17 McMaster - Software Engineering

valued for its object-oriented modelling capabilities and integration with Semantic
Web Services. However, limitations remain: F-Logic is generally undecidable and
assumes a closed-world view, while DL formalisms, although more tractable, often
require rigid and static ontological structures that complicate data evolution and inte-
gration. These limitations highlight the need for more flexible, semantically grounded
approaches to knowledge representation, particularly those capable of accommodating
structural changes and supporting data-ontology alignment. As modern knowledge
systems increasingly interact with evolving and heterogeneous datasets, knowledge
representation formalisms must evolve to balance expressivity, modularity, and adapt-
ability.

To support these evolving needs, algebraic structures offer a foundation for represent-
ing and reasoning over both data and conceptual knowledge. RAs have historically
provided the formal basis for manipulating data in relational databases, offering a
well-understood framework for manipulating n-ary relations. However, RAs lack fea-
tures such as variable abstraction, quantification, and equality, which are essential for
modelling logic-based systems. CAs, originally developed to formalise FOL, extend
RAs by introducing operations such as cylindrification, which addresses existential
quantification, and diagonal elements, which addresses equality. These features make
CA strictly more expressive than RA and better suited for modelling structured data
in logic-based environments. Complementing this data-oriented expressiveness, alge-
braic structures such as Boolean lattices, concept monoids, and rooted graphs serve as
effective tools for modelling conceptual knowledge. These structures enable modular
composition and abstraction at the knowledge level, supporting the design of com-
plex ontologies. Together, these algebraic foundations provide a rich formal toolkit
for building knowledge systems that are both logically expressive and structurally
modular, properties increasingly essential in modern, dynamic knowledge engineering
environments.

Beyond formal expressiveness, a strong engineering foundation is equally critical. The
literature highlights essential properties of well-designed ontologies, such as coherence,
clarity, extensibility, modularity, and reusability. From an engineering standpoint,
achieving modularity requires knowledge systems to maintain low coupling and a
clear separation of concerns. This principle also applies to the integration of data:
embedding data directly into ontologies is not practical. Instead, a modern engi-
neering perspective advocates for decoupling data from its domain knowledge, while
ensuring the two remain semantically aligned. Despite the existence of various ontol-
ogy engineering methodologies, the field remains underdeveloped in terms of formal
process and collaborative tooling. The interdisciplinary nature of ontology devel-
opment calls for greater methodological support for collaboration, especially among

29

Ph.D. Thesis - Alicia Marinache18 McMaster - Software Engineering

domain experts. As knowledge representation increasingly intersects with dynamic
and cross-domain systems, the need for collaborative, modular engineering approaches
becomes even more critical.

The ability to generate new knowledge through reasoning remains central to the util-
ity of formal systems. A wide range of reasoning tasks, such as consistency checking,
satisfiability, classification, and query answering, form the backbone of logical infer-
ence in DL-based systems. The evolution of reasoning approaches, from syntax-based
methods to more robust semantic-based algorithms, highlights the ongoing quest to
enhance the efficiency and versatility of reasoning engines. However, DL reasoning
is typically tied to specific fragments, each with its own tailored algorithmic sup-
port. This fragmentation limits the adaptability and maintainability of reasoning
systems. A more general and unified approach to reasoning could reduce the need for
specialised tools and make reasoning frameworks more scalable, maintainable, and
accessible across domains. This direction calls for logical frameworks that are expres-
sive, semantically transparent, and modular enough to support practical reasoning.

In this context, ITPs play a crucial role. Unlike automated provers that prioritise
speed over expressivity, ITPs allow for the formalisation of complex mathematical
structures and domain theories through user-guided proof development. In modern
knowledge engineering, where formal rigour must coexist with usability and extensi-
bility, ITPs offer a practical and scalable path toward trustworthy knowledge system
design. DIS includes reasoning about sets of sets, which require the expressive founda-
tion of HOL. This becomes especially important when specifying mapping operators
between the data sorts and concept atoms and proving their properties. This form of
reasoning is inherently higher-order, as it deals not just with objects in the domain
but also with properties and operations over them. In addition, the modularity of the
DIS architecture, where components like the DDV, the DOnt, and their integration
are developed as independent yet composable theories, benefits from the structured
theory development capabilities found in HOL-based ITPs.
Among the most mature ITPs are HOL, Rocq, and Isabelle, each grounded in the
LCF architecture that ensures soundness through a small trusted kernel. Isabelle, in
particular, stands out for its support for modular theory development, its integration
of multiple mathematical foundations, and its readable, declarative proof language.
Its locale system and natural deduction environment are particularly well-suited for
formalising multi-layered knowledge systems that combine algebraic and graph-based
reasoning, and enables the clean separation of assumptions, contexts, and reusable
theory fragments. Isabelle’s interactive interface and human-readable proofs facil-
itate collaboration with domain experts, bridging the gap between formal methods
and applied knowledge engineering. These features make it well-suited for formalising

30

Ph.D. Thesis - Alicia Marinache19 McMaster - Software Engineering

structured, algebraically grounded knowledge systems and for supporting collabora-
tion with domain experts.

This chapter reviewed foundational formalisms, engineering methodologies, reasoning
approaches, and tool support relevant to the development of structured knowledge
systems. The limitations of current approaches, particularly in terms of modularity,
data integration, and reasoning scalability, motivate the need for a unified formalism.
The next chapter introduces the mathematical structures and concepts used in this
work, including DIS, a framework that addresses these gaps by combining algebraic
semantics, engineering principles, and formal reasoning in a cohesive model.

31

Chapter 3

Mathematical Background

In this chapter, we provide the mathematical background needed to make this thesis
self-contained. In Section 3.1, we present the foundational elements of mathemat-
ical structures. In Section 3.2, we introduce the mathematical background that is
essential for understanding Domain Information System (DIS), which is a relatively
new formalism. In Section 3.3, we present DIS, a novel data-centered knowledge rep-
resentation formalism that is the focus of this research. In Section3.4, we present
algebraic specifications, to support the semantics of DIS, as well as its specification
in Isabelle/HOL.

Throughout the thesis, we adopt the uniform linear notation employed in Isabelle, for
quantified terms and set comprehension expressions. The general structure of a quan-
tified term is written as p‹Rx. P xq, where ‹ denotes the quantifier, x is the bound (or
quantified) variable, Rx specifies the range or domain restriction, and P x represents
the body of the quantified statement. The expression DRx. P x is understood as
Dx. pRx ^ P xq, while the expression @Rx. P x is understood as @x. pRx ùñ P xq.
When it is clear what the range is, we use the simplified version p‹x. P xq. Note that
throughout this work, the symbols ^,_,␣ stand for logical AND, OR, and NOT,
respectively. In addition, the symbol !D is understood as exists a unique.

The general form for set comprehension is tE x | x . P xu, where x is the dummy
variable, E x is the expression that describes the elements of the set (in terms of the
given variable), and P x is the predicate representing the restriction placed on the
variable. In some cases, within the set comprehension predicate P x we may need to
use other dummy variables that are not used inside the E x expression. Such a set
comprehension may look like tE x | x y z . P x y zu and it translates to “the values
of E x s.t. @x. Dy z. P x y z”.

32

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

3.1 Mathematical Structures
In (Marker, 2000), a homogeneous (or single sorted) mathematical structure is de-
scribed with the use of a signature, which includes function, relation, and constant
symbols, each associated with a fixed arity. This framework is a specialisation of het-
erogeneous (or many-sorted) structures, where multiple distinct sorts are considered
simultaneously.
A many-sorted signature Σ specifies:

• a finite set of sort symbols S “ tS1, S2, . . . , Sku

• a set of function symbols, each with a designated list of input sorts and one
output sort, e.g., f : Si1 ˆ Si2 ˆ ¨ ¨ ¨ ˆ Sin Ñ Sj, called a function of arity n or
an n-ary function

• a set of relation symbols over tuples of sorts, e.g., R Ď Si1 ˆ Si2 ˆ ¨ ¨ ¨ ˆ Sin ,
called a relation of arity n or an n-ary relation

• a set of constant symbols associated with specific sorts, e.g., c : Si, called a
function of arity 0 or a nullary function

In the homogeneous case, the set of sorts contains exactly one sort, S, called the
underlying set. Then a function symbol is specified as f : Snf , with nf the arity of f ,
and a relation symbol is specified as R Ď SnR , with nR the arity of R. For clarity and
ease of presentation, the remainder of this section focusses on formal definitions in the
homogeneous case, which can be straightforwardly generalised to the heterogeneous
setting.

Definition 3.1.1. (Marker (2000)) Let F be a set of function symbols f with positive
integers nf the arity of each f P F , R a set of relation symbols R with positive integers
nR the arity for each R P R, and C a set of constant symbols. Then Σ “

`

F , R, C
˘

is called a signature. l

For example, the signature of monoids is defined as Σm “
`

tp`, 2qu, H, t0u
˘

, and the
signature of boolean algebras is defined as Σb “

`

tp`, 2q, p´, 2q, p¨, 2qu, H, t0, 1u
˘

. In
general, the signatures omit the arity, thus, the two signatures above are simplified
to Σm “

`

t`u, H, t0u
˘

and Σb “
`

t`,´, ¨u, H, t0, 1u
˘

, where `,´, ¨ are binary
function symbols and 0, 1 are constants.

Definition 3.1.2 (Marker (2000)). Let Σ be a signature and let M be a non-empty
set, called the universe or domain. The interpretation for each f P F is a function

33

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

fM :Mnf ÑM , the interpretation for for each each R P R is a relation RM ĂMnR ,
and the interpretation for each c P C is a constant cM PM .
Then M “

`

M, tfMufPF , tR
MuRPR, tc

MucPC
˘

is called a Σ-structure. l

For example, the structure Mm “
`

N , t`u,H, t0u
˘

is called the monoid of natural
numbers under addition and the structure M1

m “
`

N , t¨u,H, t1u
˘

is the monoid of
natural numbers under multiplication. In the former, the binary operator ` is inter-
preted as `Mm ” ` (i.e., the addition over the natural numbers), and the constant
0 as 0Mm ” 0 (i.e., the natural number 0). In the latter, `M1

m ” ¨ and 0M
1
m ” 1.

In a mathematical structure, any of the sets F , R, C may be empty. A mathematical
structure is called a relational structure if F “ H. A mathematical structure is called
an algebraic structure if R “ H. Then, the Σ-structure M “

`

M, tfMufPF , tc
MucPC

˘

is called a Σ-Algebra.

For example, the monoid of natural numbers under addition is an algebraic structure
and its notation is simplified to Mm “

`

N ,`, 0
˘

. In Sections 3.2.2 and 3.2.4 we give
other examples of relational and algebraic structures, respectively.

3.2 Mathematical Background
In this section, we present foundational mathematical elements, such as graphs (Sec-
tion 3.2.1), homogeneous relations and their representations (Section 3.2.2), lattices
and their algebraic properties (Section 3.2.3), algebraic structures (Section 3.2.4), and
Tarsky’s cylindric algebra (Section 3.2.5).

3.2.1 Graphs

The following definitions are borrowed from (Gross et al., 2018). A graph G “
`

V,E
˘

is a mathematical structure consisting of two sets V and E. The elements
of V are called vertices, and the elements of E are called edges. Each edge has
a set of one or two vertices associated to it, which are called its endpoints. A
path from vertex v0 to vertex vn is an alternating sequence of vertices and edges
P “ xv0, e1, v1, e2, . . . , vn´1, en, vny, where v0, . . . , vn P V and e1, . . . , en P E, s.t. the
endpoints of ei are vi´1, vi and there are no repeated edges or vertices (except possibly
the initial and final vertices).

A directed edge is an edge on which one of its endpoints is designated as the tail, and
the other endpoint is designated as the head. The direction of the edge is given by
the ordered pair ptail, headq. A graph with directed edges is called a directed graph

34

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

or digraph. A rooted directed graph is a digraph with a distinguished node r, such
that there is a directed path from r to any node other than r. A self-loop is an edge
that joins a single endpoint to itself. A path starting and ending at the same vertex
is a cycle (except for self-loops). An acyclic graph has no cycles and no self-loops.

3.2.2 Homogeneous Relations

The definitions and results that follow are adapted from (Davey and Priestly, 1990).
A relation captures the manner in which elements are connected or associated. When
all related elements belong to the same set, the relation is said to be homogenous.
This work focusses exclusively on homogeneous binary relations.

Let C be a set. A (binary homogenous) relation R on C is defined as a subset of
CˆC, written as R Ď CˆC. Relations are sets of tuples, where a tuple is understood
to be an ordered pair. Thus all set operations are available for use. On C, there are
defines a number of distinguished relations, such as the empty relation, denoted by
O “ H (or OC when it is not clear what the underlying set is); the universal relation,
denoted by U “ C ˆ C (or UC for clarity); and the identity relation, denoted by
I “ tpx, xq | x P Cu (or IC for clarity).

Let C be a set and R Ď C ˆ C an associated homogeneous relation. R can be rep-
resented as a directed graph G “

`

C,R
˘

, where the vertices of the graphs are the
elements of the underlying set C, and the edges of the graph are represented by the
tuples of R. Let R, S Ď C ˆ C be relations. Their product R ;S Ď C ˆ C is defined
as R ;S “ tpx, zq | x y z . y P C ^ px, yq P R ^ py, zq P Su, and it is called
the composition of relations. When it is clear from the context, the composition is
also denoted by RS. The powers of R are written as R2, R3, etc. The composition of
relations is associative, and its identity element is I .

Let R be a binary relation on C. We say that R is reflexive iff I Ă R. This is equivalent
to R “ R Y I or @x. px, xq P R. We say that R is symmetric iff @x y. px, yq P
R ùñ py, xq P R. R is antisymmetric iff @x y. px, yq P R ^ py, xq P R ùñ

x “ y. Finally, we say that R is transitive iff R2 Ď R, which is equivalent to
@x y z. px, yq P R ^ py, zq P R ùñ px, zq P R. We define the transitive closure
of R (denoted by R`) as the minimal relation that contains R and is transitive, i.e.,
R`

def
“

Ş

tH | R Ď H ^ H is transitiveu.

35

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

3.2.3 Lattices

The following definitions and results are taken from (Davey and Priestly, 1990). Let
P be a set. A partial order on P is a binary relation on P that is reflexive, antisym-
metric, and transitive. A set P equipped with a partial order ď is called a partially
ordered set (or a poset), written as

`

P,ď
˘

. When it is clear from the context, we say
simply that “P is a poset”. Two posets are order-isomorphic if they have the same
size and there is an order-preserving mapping between them (Ciesielski, 1997). Let
P be a poset and let x, y P P . We say x is covered by y (or y covers x), and write
x ă y or y ą x, if x ă y ^ @z P P. x ď z ă y ùñ z “ x.

Given a poset P , a new ordered set P d (the dual of P, given by
`

P,ě
˘

) can be created
by defining x ď y to hold in poset P d iff y ď x holds in poset P . Given a statement
Φ about ordered sets that is true in all ordered sets, then the dual statement Φd is
true in all ordered sets, and it is obtained by replacing all original occurrences of ď
by ě and all original occurrences of ě by ď. P is said to have a bottom element if
there exists K P P s.t. K ď x, for all x P P . Dually, P is said to have a top element if
there exists J P P s.t. x ď J for any x P P . For example, if P is the power set of a
set X, with the subset relation Ď denoting ordering relation, then JpPpXqq “ X and
KpPpXqq “ H. When they exist, it is easy to show that the top and bottom elements
are unique. Let P be a poset and let S Ď P . We call a P S a minimal element of S iff
@x P S. x ď a ùñ a “ x (dual: maximal element). We call a P S the least element
of S iff @x P S. a ď x (dual: the greatest element). An element x P P is an upper
bound of S if @s P S. s ď x (dual: lower bound). The set of all upper bounds for S
is denoted by Su (read "S upper") and it is written as Su “ tx P P | @s P S. s ď xu
(dual: "S lower", Sl).

If Su has a least element, x, then x is called the least upper bound or supremum of S,
suppS q (dual: greatest lower bound, infimum, inf pS q). When S “ P , if J of P exists,
P u “ tJu and suppPq = J. Dually, if K of P exists, P l “ tKu and inf pPq = K.
When S “ H, Hu “ P and, if K of P exists, suppHq = K. Dually, if J of P exists,
inf pHq = J. If suptx, yu exists, we write it as x\ y or x join y. Dually, if inf tx, yu
exists, we write it as x [y or x meet y. Similarly, we write

Ů

S (the join of S) for
suppS q and

Ű

S (the meet of S) for inf pS q, respectively.

In a poset P , the least upper bound, x \ y of any two elements, tx, yu may fail to
exist because x and y have no common upper bound or they have no least upper
bound. For example, let P “ tH, tau, tbu, tcu, ta, buu, with Ď the ordering relation.
The partial order is represented in Figure 3.1. We observe that tau [tbu “ H, and
similarly, tau [tcu “ H, tbu [tcu “ H, ta, bu [tau “ tau, ta, bu [tbu “ tbu, and
ta, bu [tcu “ H. Thus, any pair of elements in P has a meet. We observe that the

36

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

ta, bu pair has a join in P , tau \ tbu “ ta, bu P P . However, the join of the tau, tcu
pair is not an element of P , tau\tcu “ ta, cu R P . Thus, not all pairs in P have a join.

ta, bu

tau tbu tcu

H

Ď

Figure 3.1: Poset

Let P be a non-empty poset. P is called a lattice if for all x, y P P both px[yq and
px\ yq exist. P is called a complete lattice if for all S Ď P both

Ů

S and
Ű

S exist.
The poset P depicted in Figure 3.1 is not a lattice, the meet and join do not exist for
all pairs of elements of P .

Let L be a lattice. L is said to be distributive if it satisfies the distributive law, as
follows: @a, b, c P L. a[pb\ cq “ pa[bq \ pa[cq. Let L be a lattice with a top J
and a bottom K. For every a P L, we say b P L is a complement of a if a[b “K and
a\ b “ J. If a has a unique complement, we denote this complement by a1.

Definition 3.2.1 (Davey and Priestly (1990)). Let L be a lattice. L is called a
Boolean lattice if L is distributive, L has a top and a bottom, and @a P L. !Da1 P
L. a1 is complement of a. l

Definition 3.2.2 (Davey and Priestly (1990)). Let L be a lattice with bottom element
K. Then a P L is called an atom if it covers the bottom element, i.e., Kă a. The set
of all atoms in L is denoted by ApLq. l

Corollary 3.2.1 (Davey and Priestly (1990)). Let L be a finite lattice. Then the
following statements are easilyy shown to be equivalent:

(i) L is a Boolean lattice

(ii) L is order-isomorphic to the powerset of its atoms

(iii) @a P L. !Da1 P L. a1 is complement of a l

37

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

In Figure 3.2.3, we show an example of the Boolean lattice that is order-isomorphic
to the poset

`

Ppta, b, cuq,Ď
˘

.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

H

Ď

Figure 3.2: Boolean lattice for Ppta, b, cuq

3.2.4 Algebraic Structures

The following definitions and results are borrowed from (Birkhoff and MacLane, 1941).
Let B be a set of elements, and let there be a binary operation ˛ on B. The opera-
tion ˛ is said to be idempotent iff @x P B. x ˛ x “ x. The operation ˛ is said to be
commutative iff @x, y P B. x ˛ y “ y ˛ x. The operation ˛ is said to be associative iff
@x, y, z P B. x ˛ py ˛ zq “ px ˛ yq ˛ z.

Two binary operations ˛ and ‹ on B are said to satisfy the absorption law iff @x, y P
B. x ˛ px ‹ yq “ x ‹ px ˛ yq “ x. Operator ˛ is said to distribute over operator ‹ iff
@x, y, z P B. x ˛ py ‹ zq “ px ˛ yq ‹ px ˛ zq. ˛ and ‹ are said to be mutually distributive
iff they distribute over each other. On a set B equipped with a binary operation ˛, a
distinguished element e P B is called identity element if @x P B. x ˛ e “ e ˛ x “ x.

A semigroup is an algebraic structure,
`

B, ˛
˘

, where B is a set of elements and ˛ is
an associative binary operation. The semigroup is called commutative if the operator
˛ is commutative. A monoid is an algebraic structure

`

B, ˛, e
˘

, where
`

B, ˛
˘

is a
semigroup and e is the identity element for ˛. The monoid is called commutative if ˛
is commutative.

Definition 3.2.3 (Birkhoff and MacLane (1941)). Let B be a set equipped with
binary operators ` and ¨, unary operator ´ (called complement), and distinguished

38

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

elements 0 and 1 . The algebraic structure B “
`

B,`, ¨,´, 0, 1
˘

is called aBoolean
algebra if the following axioms are satisfied:

(B1)
`

B,`, 0
˘

is a commutative monoid

(B2)
`

B, ¨, 1
˘

is a commutative monoid

(B3) ` and ¨ are mutually distributive;

(B4) @x P B. x`´x “ 1 ^ x ¨ ´x “ 0 l

Let B be a Boolean algebra. Its distinguished elements 0 and 1 are called annihilators
for ` and ¨, respectively, i.e., @x P B. x ¨0 “ 0 and @x P B. x`1 “ 1. Let x, y P B be
any two elements of B. Then a non-strict ordering relation, denoted by ď, is defined
in the natural way, as follows:

x ď y ” x` y “ y (3.1)

With this understanding, the `, ¨ operators of the Boolean algebra B are the equiv-
alent of the join and meet operators on the lattice pB,ďq, respectively. Therefore,
the lattice pB,ďq is a Boolean lattice, and it is isomorphic to the Boolean algebra
B (Sankappanavar and Burris, 1981). In the remainder of this thesis we use the terms
Boolean algebra and Boolean lattice interchangeably.

3.2.5 Cylindric Algebras

Cylindric algebra was introduced by Alfred Tarski in (Tarski et al., 1971) as an ex-
tension of Boolean algebra, which provides the algebraic basis for propositional logic.
To capture the additional expressive power required for first-order logic with equality,
Tarski enriched the Boolean framework by incorporating a cylindrification operator to
model quantification, and diagonal elements to represent equality. This construction
resulted in an algebraic system capable of representing first-order logic in a purely
mathematical form, making it accessible to those without a background in formal
logic.

In our work we are interested only in the cylindrification operator, hence the focus
of this mathematical background is on diagonal-free cylindric algebras. Throughout
the remainder of this work, when we say cylindric algebra, we refer to a diagonal-free
cylindric algebra.

39

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

Definition 3.2.4 (Tarski et al. (1971)). Let
`

B,`, ¨,´, 0, 1
˘

be a Boolean algebra and
κ, α P N. The algebraic structure B “

`

B,`, ¨,´, 0, 1, tcκuκăα
˘

is called a diagonal-
free cylindric algebra of dimension α if the following axioms are satisfied for any
x, y P B, and any κ, λ P N with κ, λ ă α:

(C1) cκ0 “ 0

(C2) x ď cκx

(C3) cκpx ¨ cκyq “ cκx ¨ cκy

(C4) cκcλx “ cλcκx l

Axiom (C1) expresses the normality of the cκ operators, where the normality of an op-
erator indicates its adherence to standard properties or behaviours within a particular
mathematical framework. Axiom (C2) expresses the generalisation property of the
cκ operators, stating that any element is included in its cylindrification. Axiom (C3)
closely parallels the modular law, which, in lattice theory, describes a relationship
between the join and meet operations of a lattice. Axiom (C4) expresses the com-
mutativity of the cκ operators. For additional information on cylindric algebras, we
refer the reader to Appendix D, Section D.2.

Cylindric algebras provide a natural framework for modelling information systems,
where elements of the Boolean algebra B represent individual pieces of information,
the operator ¨ corresponds to information combination, and the 0 element denotes
the absence of information. Within this interpretation, Axiom (C1) guarantees that
applying cylindrification to the absence of information results in no information. Ax-
iom (C2) reflects the expansive nature of cylindrification: applying it to any piece of
information yields a result that includes, rather than restricts, the original content.

3.3 Domain Information System
The DIS is a novel data-centered framework for knowledge representation. It consists
of a domain knowledge representation, called the domain ontology O, a domain data
representation, called the domain data view A, and an operator τ that maps A to
O. The domain ontology is further refined (i.e., structured) into three components: a
monoid of concepts, a Boolean lattice of concepts, and a family of rooted graphs. The
data view is modeled through the use of cylindric algebra (Tarski et al., 1971). The
two components of a DIS, the DOnt and the DDV, loosely correspond to the T-Box
and A-Box of a DL ontology. In Section 3.3.1, we outline the clear separation of the

40

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

data and domain knowledge within a DIS. In Section 3.3.2, we present a overview of
the intuitive understanding a DIS construction. In Section 3.3.3, we describe the DIS
formalism as an algebraic theory.

3.3.1 Domain Information System: Data vs Domain Knowl-
edge

We demonstrate the clear separation of the data and the domain knowledge in a DIS,
based on a classic Kantian approach of the world. In the “Critique of Pure Rea-
son” (Kant, 1908), the central idea is to challenge the notion that our understanding
of phenomena and objects comes solely from pure reasoning. Instead, it proposes that
our understanding occurs through the use of categories, described in the Analytic of
Concepts section as “fundamental concepts of an object in general”. The categories
are pure (or fundamental) principles of understanding. They are not derived from ex-
perience, they are a priori structures of thought that shape and organise perceptions.
We read in (Kant, 1908, Page 227):

But the elements for all a priori cognitions, even for arbitrary and absurd
fantasies, cannot indeed be borrowed from experience (for then they would
not be a priori cognitions), but must always contain the pure a priori
conditions of a possible experience and of an object of it, for otherwise
not only would nothing at all be thought through them, but also without
data they would not even be able to arise in thinking at all.

In Kantian terms, data is that what is observable, quantifiable, and experiential in
the world around us. In this context, a dataset represents structured, organised infor-
mation that is accessible for analysis through cognitive abilities. Kant distinguishes
between two such abilities: the ability to receive sensations from external objects,
shaping our experiences through empirical intuition, and the capacity to actively
process and relate this intuitive data using concepts, known as understanding. This
process involves forming judgments about the information gathered. Thus, once ex-
perienced, the world around us is represented and analysed through a more abstract,
objective lens, using categories.

In a DIS, these two approaches are separated into the two main components of the
information system. The DOnt component offers a view of the domain concerned with
how the objects behave, in the sense of what their structure is and what relationships
exist between them. Thus, the objects of the world are grouped into categories,
which we call objective concepts or, on short, concepts. The DDV component offers a
view of the domain that is concerned only with data: its structure and the means to
combine pieces of data. We slice the data schema into individual attributes, and refine

41

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

the notion of sort to denote these slices. At the DIS level, the objective concepts, as
defined within the DOnt, assume a new perspective as data-driven concepts, which we
call datascape concepts. We borrow the datascape term from the field of architecture.
In the architectural field, the term datascape refers to a dynamic, multidimensional
data-driven map that assists and guides the urban designer in new developments or the
creation of public policies (Amoroso, 2010). In the field of knowledge representation,
this term refers to a landscape or visualisation of data, and it emphasises the process
of converting data into conceptual representations that make it easier to understand
complex information.

3.3.2 Intuitive Understanding

In developing the new DIS formalism, our focus is on representing structured and
semi-structured data in a unified way. The data elements may have uniform struc-
ture, as in the records in a dataset that share the same schema, or variable structure,
as in entries of log files that may differ in length or content. To accommodate both
cases, we interpret the data elements within a Cartesian space, which is the set of all
possible ordered pairs formed from the elements of two or more sets (Ben-Ari, 2012).
Specifically, the Cartesian space can be seen as a collection of ordered tuples, each
representing a combination of data elements from different sets, facilitating structured
representation and manipulation of data.

In a DIS, the concepts in the domain ontology originate from two sources: (i) the
data, and (ii) the domain of application. The concepts in the domain ontology can
be composed to form new concepts. We understand the composition as the Carte-
sian product of concepts. Similar to how the information in a dataset record is not
dependant on the order of attributes in a dataset, we require the composition oper-
ator to be commutative (up to an isomorphism), associative, and idempotent. The
commutativity and associativy properties ensure that the order in which concepts are
composed is not relevant. The idempotency property ensures that by composing a
concept with itself the system does not create a new concept, or new knowledge from
the existing knowledge in the system.

As discussed in Section 2.1, in current approaches to connect an ontology to existing
data, mapping the two components to each other is a time consuming task, as it
needs to bridge the conceptual gap between the two layers (Xiao et al., 2018). To
avoid this issue, the core component of the domain ontology O of DIS is built using
the Cartesian partOf relation. This relation defines how individual elements or sub-
tuples (parts) within a tuple relate to the whole tuple. Essentially, for a given tuple,
the Cartesian partOf relation identifies which elements or combinations of elements

42

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

are considered parts of the whole structure. A concept with no sub-parts is called
an atomic concept or an atom. The construction of a DIS starts from an existing
dataset that guides the design of both the Cylindric algebra of the DDV and the
Boolean lattice of the DOnt. In the DDV, the attributes of the dataset schema are
used to build the Boolean algebra that is the foundation of the Cylndric algebra.
These attributes correspond one-to-one to a subset of atomic concepts in the DOnt.
The Boolean lattice of the DOnt is freely generated from this subset of atoms, using
the partOf relation. This makes the Boolean algebra of the DDV isomorphic to
the Boolean lattice of the DOnt, and the task of mapping the data (i.e., the DDV
component of the DIS) to the ontology (i.e., the DOnt component of the DIS) becomes
trivial.

3.3.3 DIS Formalisation

Before giving the formal definitions of the components of a DIS, we define a rooted
graph in the context of DIS. On a set of concepts C, Let Ci Ď C, Ri Ď Ci ˆ Ci, and
ti P Ci. A rooted graph at ti, defined as Gti “

`

Ci, Ri, ti
˘

, is a connected directed
graph of concepts in Ci with a unique root at ti. Note that in graph theory, the
root serves as the origin vertex of a directed graph. We abuse the notion of root by
reversing the direction of the paths. Then, in DIS, a root is the vertex where all paths
of the graph end. Formally, for a rooted graph Gti “

`

Ci, Ri, ti
˘

, its root is given by
ti P Ci s.t. @k P Ci. k “ ti _ pk, tiq P Ri

`, where Ri
` is the transitive closure of Ri.

Definition 3.3.1 (Domain Ontology). Let C “
`

C,‘, e
C

˘

be a commutative idem-
potent monoid. Let Ď

C
be the natural order on C, defined as @c, d P C. c Ď

C
d ðñ

c‘ d “ d. Let L “
`

L,Ď
C

˘

be a free Boolean lattice, generated from a set of atoms
in C. Let I be a finite set of indices, and G “ tGtiutiPL,iPI a set of graphs rooted in
L. A domain ontology is the structure O def

“
`

C,L,G
˘

. l

Datasets with records of different lengths can be modeled by diagonal-free cylindric
algebras, thus, the DIS domain data view component is formalised using a diagonal-
free cylindric algebra. In the domain data view component, the dimensions of the
cylindric algebra are given by the attributes of the considered dataset. Thus, the
cylindrification operators cκ are indexed by the elements of a set U isomorphic to the
atoms of L, where L is the carrier set of the Boolean lattice L of the domain ontology,
as described in Definition 3.3.1.

Definition 3.3.2 (Domain Data View associated with an ontology). Let O “
`

C,L,G
˘

be a domain ontology. A domain data view associated with O is a diagonal-free

43

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

cylindric algebra A “
`

A,`, ‹,´, 0A, 1A, tcκuκPU
˘

, where U represents the finite set
of attributes of the considered dataset. l

For the properties of a cylindric algebra, we refer the reader to (Tarski et al., 1971).
The elements of A are understood as n-dimensional objects (i.e., a set of n-dimensional
points), and the Boolean operators of A (i.e., `, ‹,´) create new solids on A (Tarski
et al., 1971). The cylindrification operator on the i-th dimension can be understood
as a projection of the solid on the remaining pk´ 1q-dimensional space, which is then
extended to the whole “cylinder” along the removed dimension. For a graphic repre-
sentation of cylindrification in a two-dimensional space, please refer to Figure D.1,
in Appendix D. In a three-dimensional space, let a “ tpvx, vy, vzqu Ď X ˆ Y ˆ Z be
an element of A. The cylindrification of a with respect to the third dimension Z is
denoted by cZpaq and represents the generalisation of a over the Z-dimension. For-
mally, this results in the set cZpaq “ tpvz, vy, zq | z P Zu. cZpaq corresponds to the
cylinder over the base point pvx, vyq, extending freely along the Z-axis. This operation
captures the idea that we abstract away (or “forget”) the specific Z-value of a, gen-
eralising the tuple by allowing any possible value in the Z domain for that coordinate.

Definition 3.3.3 (Domain Information System). Let O be a domain ontology, A its
associated domain data view, and τ : AÑ L a mapping that relates the elements of
A to the elements of the Boolean lattice in O. A Domain Information System (DIS)
is the structure I “ pO,A, τq for which the following axioms hold, for any a, b P A:

• τp0Aq “ e
C

• τp1Aq “ JL

• τpa` bq “ τpaq ‘ τpbq l

For a complete list of the DIS axioms, we refer the reader to Appendix D, Section D.1.
The components of DIS are analogous to those proposed in (Calvanese and Franconi,
2018); the domain data view corresponds to the Data Box (D-Box), the Boolean
lattice L to the A-Box, and the family of rooted graphs G (plus the domain expert-
defined axioms) corresponds to the T-Box. Using the τ operator, the domain data
view is mapped to the Boolean lattice. Through the use of the rooted graphs, the
domain expert captures concepts related to the data view. In addition, multiple DISs,
each built from a specific data view, may be required to integrate knowledge from
several application domains.

44

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

3.4 Algebraic Specifications
In this section, we outline the formal framework necessary for defining the DIS lan-
guage, specifying an ontology, and detailing the elements of knowledge generation
within it. In order to define a language, we need to describe both its syntax and the
rules that show how the language functions. This algebraic specifications framework
is based on the notions of signature Σ and Σ-structure, discussed in Section 3.1. The
following definitions and results are borrowed from (Hatcher and Hebert, 1993; Ehrig
and Mahr, 1985).

Definition 3.4.1 (Hatcher and Hebert (1993)). Let Σ “
`

F , R, C
˘

tnfufPFtnRuRPR
be a signature and let X be a set of variables. TXpΣq denotes the set of X-terms of
type Σ, defined inductively as follows:

• X Y C Ď TXpΣq (basic terms)

• @t1, t2, . . . , tn P TXpΣq, f P F . fpt1, t2, . . . , tnf q P TXpΣq (composite terms)

• There are no other terms in TXpΣq.

ΦpΣq denotes the set of formulas of type Σ, defined inductively as follows:

• @t1, t2, . . . , tnR P TXpΣq, R P R. Rpt1, t2, . . . , tnRq P ΦpΣq (atomic formulas)

• Let l P t^,_,Ñ,Øu be a logical operator and Q P t@, Du a quantifier.

@ϕ, ψ P ΦpΣq, x P X. ␣ϕ P ΦpΣq ^ ϕ l ψ P ΦpΣq ^ Qx. ϕpxq P ΦpΣq

• There are no other formulas in ΦpΣq. l

Given a signature Σ and a set of variables X, FV ptq denotes the set free variables in
a term t P TXpΣq, defined inductively by:

• @x P X. FV pxq “ txu

• @c P C. FV pxq “ H

• @t1, . . . , tnf P TXpΣq, f P F . FV pfpt1, . . . , tnf qq “
ď

iPt1,...,nf u

FV ptiq

A term t with no free variables, i.e., FV ptq “ H, is called a closed term.

45

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

In a formula, the variables that occur in the scope of a quantifier are called bound
variables. In a given formula ϕ any occurrence of a variable not bound by a quan-
tifier is a free variable in ϕ. In a formula, a variable may have both free and bound
occurrences. E.g., in the formula ϕÑ ψ, where ϕ ” @x. P x y, and ψ ” Qx, variable
x is bound in ϕ, while it is free in ψ, and variable y is free in ϕ. A formula with no
free variables is called closed formula.

Definition 3.4.2 (Ehrig and Mahr (1985)). Let Σ be a signature, X a set of variables,
and L,R X-terms of type Σ, L,R P TXpΣq. The triple e “ pX,L,Rq is called an
equation w.r.t. Σ. l

For example, given a signature Σ with a binary function f , and x, y P X, we express
that f is commutative through the equation f x y “ f y x.

Definition 3.4.3 (Algebraic Specifications (Ehrig and Mahr, 1985)). Let Σ be a sig-
nature and E a set of equations w.r.t. Σ. The tuple S “ pΣ, Eq is called an algebraic
specification. A Σ-algebra that satisfies all equations in E is called an S-algebra. l

Extending this definition, a specification is the tuple SPEC “
`

Σ, E,Φ
˘

, where E
is a set of equations and Φ a set of formulas w.r.t. signature Σ. A Σ-structure M
of specification SPEC must satisfy all equations in E and all formulas in Φ. We in-
troduce the notion of parameterised specification, which is an algebraic specification
with a distinguished formal parameter part. The use of formal parameters allows the
creation of modular and reusable specifications.

Definition 3.4.4 ((Ehrig and Mahr, 1985)). Let S0 “ pΣ0, E0q,S1 “ pΣ1, E1q be
two algebraic specifications. We say that S0 is a subspecification of S1 (and Σ0 is a
subsignature of Σ1) if the following hold:

• Σ0 Ď Σ1, i.e., all symbols in Σ0 appear in Σ1

• F0 Ď F1, i.e., all function symbols in Σ0 appear in Σ1

• E0 Ď E1, i.e., all equations in S0 appear in S1.

A parametrised specification is a pair of specifications PS “ pSp,Stq, such that Sp is a
subspecification of St. The specification Sp “ pΣp, Epq is called the formal parameter
and St “ pΣt, Etq is called the target specification or the body of PS. l

46

Ph.D. Thesis - Alicia Marinache15 McMaster - Software Engineering

3.5 Conclusion
This chapter presents the mathematical foundations underpinning the DIS theory.
We review key structures such as Boolean lattices, cylindric algebras, and rooted
graphs, which together support both the data and conceptual components of DIS.
These structures enable a formal representation of domain knowledge and its associ-
ated data, with particular attention to modularity, abstraction, and formal reasoning.

We then introduce the DIS itself, a novel, data-centered knowledge representation for-
malism that separates structured data (captured in the Domain Data View (DDV))
from domain knowledge (captured in the Domain Ontology (DOnt)). The DDV is
formalised using diagonal-free cylindric algebra, which provides a powerful abstrac-
tion for reasoning over data. The DOnt, in turn, is formalised using Boolean lattices
and concept monoids, enabling compositional reasoning about domain knowledge. By
treating these components independently and linking them through a formal map-
ping operator, DIS supports modular, semantically coherent integration of data and
knowledge. These components are connected algebraically, forming a coherent and
expressive system in which both data and knowledge can be specified, reasoned about,
and evolved in tandem. The mapping operator enables automated alignment between
datasets and domain concepts, alleviating the manual burden of traditional ontology
engineering approaches.

Finally, we introduce the algebraic specification language, which will be used to de-
fine and reason about DIS in Isabelle/HOL, in Chapter 5. This foundation prepares
us for the next steps, in which we define the DIS syntax, specify its semantics , and
implement reasoning tasks in a machine-verifiable and modular way, in Chapters 4, 5.
The use of parameterised and compositional specifications ensures that DIS can scale
across multiple application domains, each grounded in their own data schema and
conceptual structures.

47

Chapter 4

Semantics of Domain Information
System

In this chapter, we explore the DIS framework in more depth, detailing the construc-
tion and integration of multiple DISs.

Model theory (Hodges et al., 1993) studies the interpretation of formal and informal
languages, by associating them with set-theoretic structures. Within these structures,
the elements of the universe of discourse are grouped into classes, commonly referred
to as sorts. A sort specifies a category of objects, and the expression t : S denotes that
an object t belongs to sort S. The interpretation of this relationship is set-theoretic:
given an interpretation tI , SI , the expression t : S holds if and only if tI P SI . This
set-based interpretation of sorts is widely used in algebraic specification and abstract
data type theory (Ehrig et al., 1982), where sorts represent data domains, independent
of any operational behaviour. Sorts are thus purely classificatory, they group objects
according to abstract criteria, without implying how the objects behave or interact.
In contrast, a type is concerned not just with membership but with the behaviour
and operations applicable to the objects (Harper, 2016). Types define what can be
done with values of a certain kind, and how they interact under defined functions or
constraints. For example, the sort Integer represents all whole numbers, while the
type GroupElement includes integers equipped with addition and inverses satisfying
group axioms.

In the context of this work, it is also useful to distinguish sorts from concepts. While
a sort classifies objects at the data level (i.e., in the domain data view), a concept
refers to a more abstract categorisation relevant at the domain knowledge level. For
instance, a value may be of sort Integer and also belong to the concept Age, where

48

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

the latter captures contextual or semantic information beyond the structural clas-
sification, such as representing a temporal property of an entity (e.g., a person or
wine), being measured in years, possibly being bounded (e.g., non-negative), and
participating in domain-specific constraints (e.g., legal drinking age, wine maturity
classifications).

In Section 3.3.1, we have detailed how the DDV is used to represent organised, data-
driven information depicting the phenomena reality within a specific domain. Con-
sidering the domain of application from this perspective, the attributes of the data
are grouped in sorts, as we are not concerned with the behaviour of objects within
the domain of application, only with their structure. The DDV includes components
such as the universe (i.e., a set of sorts), s-values, s-datums, and s-datas. These com-
ponents are defined and discussed in more detail in Section 4.3.1. In contrast, the
objective perspective of the world is captured through the DOnt, which consists of
concepts and the relationships between them. We designate the DDV as the “data-
driven” or “evidence-based” reality, while the DOnt signifies the “objective” reality.
The DIS encompasses both these realities.

In Section 4.1, we present the DIS language and its syntax. In Section 4.2, we
introduce the example used to illustrate the construction of a DIS. In Sections 4.3,
4.4, and 4.5, we detail and illustrate the model for each DIS component: its domain
data view, domain ontology, and mapping operator, respectively. Using the DIS
syntax and semantics, in Section 4.6, we detail a way to capture refined knowledge
within a DIS. Finally, in Section 4.7, we discuss the main advantages of using DIS to
formalise domain knowledge, as well as its limitations.

4.1 Domain Information System: Syntax
The DIS is a heterogeneous theory, and its alphabet is based on the set S “ tC,L,A,Uu
of domains, where C is the domain associated with the concepts contained in the DOnt
component, L the domain associated with the concepts contained in the Boolean lat-
tice, A the domain associated with the elements of the DDV component of the DIS,
and U the domain associated with the set of sorts of the DDV. The concepts in L have
a direct link to the data in the corresponding DDV (through the mapping operator τ),
while the other concepts in C are linked to their datasets through external DISs. For
this reason, we consider L and C to be different domains, despite the fact that L Ď C.

Definition 4.1.1 (DIS Signature). Let I “
`

O,A, τ
˘

be a Domain Information
System. The signature ΣDIS is given by the tuple ΣDIS “ pF ,Rq, where

49

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

F “ t‘,b,a, e
C
,JL,`, ‹,´,0,1, τ, cylu is the set of function symbols and

R “ tĎ
C
,ďu Y tRiuiPI is the set of relation symbols, with I is a set of indeces. The

arity mappings rF , rR are defined as follows:

rFp‘q “ pC.C,Cq rFpbq “ pL.L, Lq rFpτq “ pA,Lq

rFp`q “ rFp‹q “ pA.A,Aq rFpcylq “ pA.U , Aq rRpĎC
q “ pL,Lq

rFpeC q “ rFpJLq “ pe, Lq rFpaq “ pL,Lq rRpRiq “ pC,Cq

rFp0q “ rFp1q “ pe, Aq rFp´q “ pA,Aq rRpďq “ pA,Aq

l

For ease of reading, we denote cylpκ, aq by cκa. In addition, we define three countable
sets of variables: (i) XC , the set of variables of C that we denote by k, k1, k2, etc.;
(ii) X L, the set of variables of L or U that we denote by κ, λ, κ1, κ2, etc.; and (iii)
XA, the set of variables of A that we denote by a, b, a1, a2, etc. Let X “ tX susPS be
the S-indexed set. The non-logical symbols of the DIS-based language are provided
by the functions f P F , relations R P R, and variables in X . In addition to the S-
indexed alphabet ΣDIS, the language contains the following symbols: (i) parenthesis
and brackets; (ii) a relational symbol ; that denotes the composition of relations; and
(iii) logical symbols ^,_,␣, ùñ , @, D, T rue, and False.

The DIS-based expressions (terms and formulae) are built inductively over this lan-
guage, as described in Section 3.4. The theory of a DIS is the S-indexed alphabet
ΣDIS described above, together with the axioms obtained from Definition 3.3.3.

In Section 3.3.3, we have shown that by using a DIS, a domain expert is able to cap-
ture the structural information about the domain of application. Additional domain
knowledge concepts can be introduced into the DIS, by defining composite concepts
or by defining new datascape concepts, as described in Sections 4.4, and 4.6, respec-
tively. These concepts are defined as algebraic terms constructed over the language
of the ΣDIS. During the reasoning process, the concept definitions will be treated as
axioms, thus they will be called axioms throughout this work.

4.2 Domain Information System: A Running Exam-
ple

As discussed in Section 3.3.3, the DIS is a bottom-up data-centred formalism for
knowledge representation. The construction of a DIS model (called simply a DIS
when it is clear from the context) is guided by an existing dataset. The dataset is

50

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

used to model both the DDV component and the core component of the DOnt (i.e.,
its Boolean lattice). Using the mapping operator τ , the Boolean algebra component
of the DDV is mapped to the Boolean lattice component of the DOnt. This part of
a DIS construction can be automated. To enrich the DOnt component, the domain
expert adds other concepts related to the concepts of the Boolean lattice, thus related
to the data through relations from the domain of application. They are captured in
the rooted graphs of the DOnt. This part of construction can be semi-automated, by
using templates, as discussed and illustrated in Chapter 6.

Both Boolean constructions are of manageable size. This is because in practice, in a
normalised database, the number of attributes in a dataset schema is kept low, rarely
exceeding ten (Vassiliadis et al., 2015). Thus, the number of atoms in the Boolean
algebra at the DDV level, as well as the number of atoms in the Boolean lattice at
the DOnt level rarely exceeds ten, putting the number of elements in the Boolean
construction below 1,024, for most cases.

Throughout this chapter, interspersed with the DIS model, we illustrate the construc-
tion and integration of a number of DISs for the Film and TV domain of application.
We use public data available on the IMDb website (IMDb, 2020) and the Rotten
Tomatoes website (accessed through the Open Movie Database (OMDb) (OMDbAPI,
2019)), and offer three perspectives (or views) on the application domain. The first
perspective VM , is the Media view, guided by the IMDb Titles dataset (‘Titles.basic’ in
the IMDb database). The IMDb Titles dataset contains general data about movies
and TV shows, such as title, genre, year, and more. The second perspective, VP ,
is the People view, guided by the IMDb Names dataset and the IMDb Principals
dataset (‘Names.basic’, ‘Titles.Principals’, respectively in the IMDb database). The
first dataset contains details about people who work in the Film and TV industry,
such as name and birth date. The second dataset relates people to titles through the
main credits. Finally, the third perspective, VR, is the Reviews view, guided by the
OMDb dataset, which contains both critics’ and fans’ reviews on titles.

A partial view of the IMDb Titles dataset is presented in Table 4.1. It contains
attributes for the unique identifier of a record (tconst), the title of the movie or series
(title), and more. An entry ‘zN’ indicates an empty value.

4.2.1 The Competency Questions

A domain expert would build a Film and TV domain DIS with the goal of finding
information (that is not provided explicitly through the data) about movies (using
in the VM view), their credits (VP view), or their ratings (VR view). In order to

51

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

tconst titleType title originalTitle startYear endYear runtime genre
tt0944947 tvSeries Game of Thrones Game of Thrones 2011 2019 57 Fantasy
tt0377092 movie Mean Girls Mean Girls 2004 zN zN Comedy
tt0087800 movie A Nightmare on Elm Street A Nightmare on Elm Street 1984 zN 91 Horror
tt0076759 movie Star Wars IV: A New Hope Star Wars 1977 zN 121 Adventure

...
...

...
...

...
...

...
...

Table 4.1: IMDb Titles dataset: Partial View

limit its scope, the construction of the DIS is guided by a number of Competency
Questions (CQ)s, listed below. We show the view(s) associated with each CQ within
parentheses:

CQ1 (VM) What movies are slashers?

CQ2 (VM , VP) What slashers are a critically acclaimed?

CQ3 (VP) Are there any infamous fresh media?

CQ4 (VM , VR) Who are the actors credited in the “Ghostbusters 2016” movie?

Some of the notions used in the CQs above (such as slasher , infamous , fresh) cannot
be found in the given data schema and cannot be made from a simple combination
of data attributes. These notions are defined by the domain expert, as datascape
concepts. The process of defining new datascape concepts is described in more detail
in Section 4.6. Thus, the CQs using them, i.e., CQ1, CQ2, and CQ3, cannot be
answered through a simple database query.

In addition, some of the CQs (such as CQ2 and CQ4) use more than one view. The
framework enables the integration of multiple DISs, to capture and use knowledge
from multiple application domains (or views). In Figure 4.1, we illustrate the DIS
integration, with DIS IM “

`

OM ,AM , τM
˘

depicted in red, and DIS IR “
`

OR,AR, τR
˘

depicted in blue. The overlap shows concepts common to both IM and IR (i.e.,
Fresh), or defined by the domain expert to be equivalent (i.e., tconst ” imdbID and
KLM ” KLR).

4.3 DIS Model: Domain Data View Component
Since the construction of a DIS is a bottom-up process, we give the model of the DIS
theory in the same manner, starting from the DDV, and working up to the DOnt
structure, and the mapping operator.

52

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

KLM ” KLR

tconst
”

imdbID
titleTypestartYear. . .

Media = titleType
‘ startYear ‘ genres

JLM

imdbRating RottenTomatoes Metacritic

imdbID
‘ RottenTomatoes

JLR
Fresh

Rrecognition
isA

startYear titleType . . . tconst
2011 tvSeries . . . tt0944947
2004 movie . . . tt0377092
1984 movie . . . tt0087800

...
...

...
...

imdbID imdbRating RottenTomatoes Metacritic
tt0944947
tt0377092 . . . 84 . . .
tt0087800 . . . 94 . . .

...
...

...
...

OM

OR

Dataset to model AM

Dataset to model AR

LM

LR

τMptconstq

τRpimdbIDq

Figure 4.1: Integrating Multiple DISs

In this Section, we detail the proposed model for the domain data view. In Sec-
tion 4.3.1, we present the foundational elements of the model, along the interpreta-
tion of the DDV carrier set. In Section 4.3.2, we follow with an illustration of these
elements using the example provided in Section 4.2. In Section 4.3.3, we discuss a
set of helper data operators and present their properties. In Section 4.3.4, we present
the interpretation of the DDV operators, and we illustrate the application of the
cylindrification operator(s) using the example. Finally, we show that the proposed
structure is a model for a diagonal-free cylindric algebra, thus it is a model for the
DDV component of a DIS.

4.3.1 Foundational Elements

We start the interpretation of the DDV from a finite set of sorts. These sorts do not
represent the abstract sort symbols of the formal signature ΣDIS defined in Section 4.1.
The sorts each correspond to an attribute of the dataset, with each sort interpreted
as a finite set of elements associated with that attribute. Note that while two sorts
may have an equivalent interpretation (e.g., the sorts corresponding to StartYear and
EndYear have the same elements), they are semantically considered two different
sorts and they are interpreted, in Section 4.4, as types with specific meaning, rules,

53

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

title genre

Mean Girls Comedy

A New Hope Adventure

Game of Thrones

Sorts

sv1

sv2

dt1

dt2

dt3

a “ tdt1u

b “ tdt3u

c “ tdt2, dt3u

Figure 4.2: Film & TV Domain Ontology dataset example

and operations. The set of sorts in a DDV is called the universe, and is denoted by
U “ tS1, S2, . . . , Snu, with each Si P U corresponds to exactly one attribute of the
dataset, s.t. Si “ tvu, where the elements v represent the values of the corresponding
attribute. For the remainder of this work, unless otherwise specified, we refer to this
interpretation of the DIS components, and when we use s for a sort in U , we under-
stand its interpretation (i.e., a set of values). The building blocks of the cylindric
algebra are ordered pairs consisting of a sort and a value of that sort. We call such a
pair a sorted value, in short, s-value. Note that two s-values with the same value and
different sorts, e.g., pStartYear , 2000 q and pEndYear , 2000 q, are not equivalent and
represent two semantically different values. We take a nonempty set of s-values such
that there is at most one s-value representing each sort and we call it a sorted datum
or, in short, s-datum. We call a set of s-datums a sorted data, in short, s-data. We
refer to the set of sorts that appear in an s-data as its structure. The elements of the
carrier set of the cylindric algebra A are interpreted as s-datas, i.e., each element of A
is a set of s-datums. We denote sort variables by s, s1, etc., and elements of sorts (or
values) by v, v1, etc. Unless otherwise mentioned, we denote the sort corresponding
to the attribute ‘attr’of the datatset by Sattr . We denote s-values by sv, sv1, sva, etc.,
s-datums by dt, dt1, dta, etc., and s-datas by a, b, x, y, a1, x1, etc.

For the cylindric algebra A, we offer two models that differ only in the origin of the
elements of the sorts. The first approach is grounded in the existing data, and we call
it the evidence-based approach. The second approach is grounded in the information
provided by the domain expert, and we call it the expert-based approach. When using
the evidence-based approach, the elements of the sorts are provided exclusively by the
current evidence (i.e., existing data). The data is considered clean, and the sorts are
generated from the values found in the data. When using the expert-based approach,
the elements of the sorts are captured by the domain expert, from the domain knowl-
edge. In this approach, the data may not be clean, in the sense that values found

54

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

in the data may not be found in the expert-provided sorts. Thus, the sorts may be
used to eliminate (or correct) the s-datas containing such s-values. While, in our
work, we focus on the evidence-based approach, in this section we also present ex-
amples of evaluations of various elements of the DIS using the expert-based approach.

Take the partial dataset example of the Film and TV Domain Ontology, pictured in
Figure 4.2. The universe is defined by U “ tSt, Sgu, where the sorts St, Sg correspond
to the attributes title and genre, respectively, i.e., St “ tMeanGirls ,ANewHope,
Gameof Thronesu and Sg “ tComedy ,Adventureu. Some s-values are
sv1 “ pSt ,MeanGirlsq and sv2 “ pSg ,Adventureq. Some s-datums are
dt1 “ tpSt ,MeanGirlsq, pSg ,Comedyqu, dt2 “ tpSt ,ANewHopeq, pSg ,Adventurequ,
dt3 “ tpSt ,Gameof Thronesqu. Some s-datas are a “ tdt1u, b “ tdt3u, and c “
tdt2, dt3u. Based on the evidence provided, the genre of a movie can only be Comedy
or Adventure. However, a domain expert may be aware of movies that have a different
genre, such as Fantasy. The information provided in s-data b is incomplete, as it does
not contain an s-value for the Sg category. The two approaches open up the world in
a different manner. In the evidence-based approach, the title GameofThrones can be
classified either as a Comedy or an Adventure movie, as there is no evidence for the
existence of another genre. In the expert-based approach, the domain expert can pro-
vide the sort Sg “ tComedy,Adventure, Fantasyu. Thus, the title GameofThrones
could, in addition, be classified as a Fantasy movie, even if there is no evidence for
such a genre in the existing dataset. On the other hand, any s-data that contains
the s-value sv “ pGameof Thrones ,EpicFantasyq is not part of the set of possible
s-datums and it may be cleaned. This can be done either by simply removing all
such s-datas from the dataset, or by correcting the Sg s-value in it to match the sort
values, based on the domain expert knowledge. Using the latter approach, the s-value
may be corrected to sv “ pGameof Thrones ,Fantasyq.

The Domain Data View model(s) are specified by the mathematical structure
MA “

`

AD, U ,`, ‹,´,0,1, tcκuκPU
˘

. The carrier set of the cylindric algebra (AD, U)
is freely generated by all the operators over a set of elements, called the generating
set. The elements of the generating set are called generators. The generating set is,
in turn, generated from the universe U . The set of s-datums D, which represents
the existing dataset, may be used to create the universe U and we detail the process
below. When it is clear from the context what we refer to, we denote the carrier set
by A. For a given universe U , let SV be the set of all possible s-values, and SD the
set of all possible s-datums or the generating set. We show next how these sets are
generated.

55

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

The set of s-values is defined as

SV
def
“

ď

sPU
tps , vq | v . v P su

For ease of readability, we define a helper operator, ’ . The operator ’ denotes a
special product (similar to the Cartesian product) on a subset of sorts, ’ : PpUq Ñ
PpSV q. When it is clear from the context, we write ’T instead of ’ pT q . The ’

operator is defined by induction, as follows, for any s P U , T Ď U , s R T :

’tu “ tu

’pT Y tsuq “’T Y
␣

dtY tps , vqu | dt, v . dt P’T ^ v P s
((4.1)

The set of s-datums is defined as SD def
“ ’ U and it is the generating set of the

cylindric algebra. Finally, the carrier set of the cylindric algebra is defined as AD, U “

PpSDq. Note that in this model, due to the definition of A and the powerset axiom
(x P PpSq ðñ x Ď S), it is immediate that

a P A ðñ a Ď’U (4.2)
s R T ùñ ’ptsuq Ę’T . (4.3)

With both the evidence-based and expert-based approaches, the sets above are gen-
erated the same way. First all s-values are generated from the sorts in U to form
SV , next all the possible s-datum combinations are generated from the s-values in
SV to form SD, and then all the possible s-datas are generated from the s-datums in
SD to form AD, U . The main difference between the two approaches is the origin of
the elements of the sorts. In the evidence-based approach, the sorts are built from
the existing set of s-datums, D. In contrast, in the expert-based approach, the el-
ements of the sorts are specified by the expert domain through the universe U and
independently of D. Note that in the evidence-based approach, D Ď AE , while in the
expert-based approach, D may not be a subset of A. While the names of the sorts
of D always coincide with the sorts of the universe U , the content of the sorts may
differ.

4.3.2 Illustration

Taking the example of Figure 4.2, we show how to build the generating set. We
annotate with E and X the sets in the evidence-based approach and expert-based ap-
proach, respectively. In the evidence-based approach, the sorts are defined by the set
of values found in the data, i.e., St

E
“ tMeanGirls ,ANewHope,Gameof Thronesu

and Sg
E
“ tComedy ,Adventureu. Then SV E

“ tpSt ,MeanGirlsq,

56

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

pSt ,ANewHopeq, pSt ,Gameof Thronesq, pSg ,Comedyq, pSg ,Adventurequ,
SDE

“
␣

tu, tpSt ,MeanGirlsqu, tpSt ,ANewHopequ, tpSt ,Gameof Thronesqu,
tpSg ,Comedyqu, tpSg ,Adventurequ, tpSt ,MeanGirlsq, pSg ,Comedyqu,
tpSt ,MeanGirlsq, pSg ,Adventurequ, tpSt ,ANewHopeq, pSg ,Comedyqu,
tpSt ,ANewHopeq, pSg ,Adventurequ, tpSt ,Gameof Thronesq, pSg ,Comedyqu,
tpSt ,Gameof Thronesq, pSg ,Adventurequ

(

, and AE “ PpSDE
q.

With the expert-based approach, while the process to construct the three sets is
identical, what may differ is the content of the sorts. With this approach, the domain
expert infuses their knowledge of the domain into the content of the sorts. Possible
evaluations for this approach are St

X
“ St

E
YtANightmareonElmStreetu and Sg

X
“

Sg
E
YtFantasyu. Thus, SV X

“ SV E
YtpSt ,ANightmareonElmStreetq, pSg ,Fantasyqu,

SDX
“ SDE

Y
␣

tpSt ,ANightmareonElmStreetqu, tpSg ,Fantasyqu,
tpSt ,ANightmareonElmStreetq, pSg ,Comedyqu,
tpSt ,ANightmareonElmStreetq, pSg ,Adventurequ,
tpSt ,ANightmareonElmStreetq, pSg ,Fantasyqu,
tpSt ,MeanGirlsq, pSg ,Fantasyqu, tpSt ,ANewHopeq, pSg ,Fantasyqu,
tpSt ,Gameof Thronesq, pSg ,Fantasyqu

(

, and AX “ PpSDX
q.

4.3.3 Operators on Data and their Properties

To support data manipulation and reasoning within a structured domain, we define a
series of helper operators that act on sorted data elements (i.e.,s-datums and s-datas).
The first such operator is used to detect whether a given sort is present in an s-datum,
that is, whether an s-value of a particular sort appears within a given s-datum. This is
a fundamental check, as many subsequent operations rely on knowing whether a sort
is active within a given s-datum. Throughout this work, we adopt infix notation for
all helper operators to improve readability and maintain consistency in expressions.
Formally, for a given sort κ P U and an s-datum dt P SD, we say that “κ is part of
dt” if there exists a value v P κ s.t.κ s-value in dt. We denote this by κ

—
P dt. By

construction of s-datums, the following property holds for any dt P SD, κ P U , and
v P κ:

κ
—
P dt ðñ Dv P κ. dt “

`

dt
§

đ

κ
Y tpκ, vqu

˘

(4.4)

The next two operators remove specific s-values from a given s-datum or s-data. The
first such operator is called s-datum-reduction-by-sort and maps an s-datum and a
sort to a new s-datum in which the s-value corresponding to the given sort is removed
(if present). Its application to a specific s-datum dt P SD and sort κ P U is called
the κ-reduction of dt, and the resulting s-datum is referred to as κ-reduced dt. The
s-datum-reduction-by-sort operator is denoted by

§

đ : SD ˆ U Ñ SD, and is defined

57

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

for any dt P SD, κ P U as follows:

dt
§

đ

κ

def
“ tps , vq | s, v . ps , vq P dt ^ s ‰ κu (4.5)

Similarly, the second operator is called s-data-reduction-by-sort and maps an s-data
and a sort to a new s-data in which all s-values corresponding to the given sort are
removed from all s-datums in the s-data. Its application to a specific s-data a P A
and sort κ P U is called the κ-reduction of a, and the resulting s-data is referred to
as κ-reduced a. The s-data-reduction-by-sort operator is denoted by

ŕ

ő : Aˆ U Ñ A
and is defined for any a P A, κ P U as follows:

a
ŕ

ő

κ

def
“ tdt

§

đ

κ
| dt . dt P au (4.6)

The final two operators extend a given s-datum or s-data with all the s-values specific
to a given sort, only if the sort is present in the given s-datum or in any s-datum
of the given s-data. The first such operator is called s-datum-extension-by-sort, its
application to a specific s-datum dt P SD and sort κ P U is called the κ-extension of
dt, and the resulting s-data is referred to as κ-extended dt. The s-datum-extension-
by-sort operator is denoted by

İ

§: SD ˆ U Ñ A, and is defined for any dt P SD. κ P U
as follows:

dt
İ

§

κ
“

#

␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| v . v P κ
(

if κ
—
P dt

tdtu otherwise
(4.7)

Similarly, the second extension operator is called s-data-extension-by-sort, its appli-
cation to a specific s-data a P A and sort κ P U is called the κ-extension of a, and the
resulting s-data is referred to as κ-extended a. The s-data-extension-by-sort operator
is denoted by

ŋ

ŕ: Aˆ U Ñ A, and is defined for any a P A, κ P U as follows:

a
ŋ

ŕ

κ def
“

ď

dtPa

dt
İ

§

κ (4.8)

Note the use of κ-reduced s-datum dt
§

đ

κ
in the definition (4.7) of the s-datum-extension-

by-sort operator. This ensures that all resulting s-datums are well formed, which
means that each s-datum contains exactly one κ s-value. There exists already a
κ s-value pκ, vq in the original s-datum dt, and if the κ sort contains more than one
value, say v1 P κ, v ‰ v1, then naively extending dt with all κ s-values would lead
to malformed s-datum. Specifically, the resulting s-datums would contains multiple
s-values for the sort κ, such as pκ, vq and pκ, v 1q. To prevent this, we first apply the

58

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

κ-reduction on dt to remove any existing κ s-values. The extension is then safely
applied to the reduced s-datum, guaranteeing that each extended s-datum includes
exactly one κ s-value and remains well formed.

We take the example of Figure 4.2, with dt1
§

đ

Sg
“ tpSt ,MeanGirlsqu,

dt2
§

đ

Sg
“ tpSt ,ANewHopequ, dt3

§

đ

Sg
“ tpSt ,Gameof Thronesqu “ dt3, a “ tdt1u,

b “ tdt3u, and c “ tdt2, dt3u. Reducing dt1 and dt2 on Sg has the effect of removing
their respective Sg s-value. At the same time, reducing dt3 on Sg has no effect, since
the s-datum dt3 has no Sg s-value. Similarly, a

ŕ

ő

Sg
“
␣

dt1
§

đ

Sg

(

“
␣

tpSt ,MeanGirlsqu
(

,
b
ŕ

ő

Sg
“
␣

tpSt ,Gameof Thronesqu
(

“ b, and
c
ŕ

ő

Sg
“

␣

tpSt ,ANewHopequ, tpSt ,Gameof Thronesqu
(

. Reducing a and c on Sg has
the effect of removing the Sg s-values from all the contained s-datums. However, re-
ducing b on Sg has no effect, as the s-datum contained in b had no Sg s-value to start
with. In general, an s-datum (or s-data) that has been reduced on a certain dimension
may have its structure changed from the original s-datum (or s-data). In the example
above, the dt1, dt2, a, and c reduced on Sg all have their structure modified. dt3 and
b remain unchanged in structure (and content).

In contrast, extending an s-datum or s-data on a given sort may only modify the
content of the original elements, and not its structure. In the evidence-based ap-
proach, extending the s-datums and s-datas on the Sg dimension produces the follow-
ing s-datas:

dt1
İ

§

Sg
“
␣

tpSt ,MeanGirlsq, pSg ,Comedyqu, tpSt ,MeanGirlsq, pSg ,Adventurequ
(

dt2
İ

§

Sg
“
␣

tpSt ,ANewHopeq, pSg ,Comedyqu, tpSt ,ANewHopeq, pSg ,Adventurequ
(

dt3
İ

§

Sg
“
␣

tpSt ,Gameof Thronesqu
(

a
ŋ

ŕ

Sg
“ dt1

İ

§

Sg

b
ŋ

ŕ

Sg
“ dt3

İ

§

Sg

c
ŋ

ŕ

Sg
“
␣

tpSt ,ANewHopeq, pSg ,Comedyqu, tpSt ,ANewHopeq, pSg ,Adventurequ,

tpSt ,Gameof Thronesqu
(

The structure of the s-datas a and c includes the Sg sort. Thus, by extending a and c
on Sg we obtain s-datas with the same structure as the original s-data, and extended
content. The two s-datas now contain s-datums for which the original Sg s-value has
been replaced with all the possible s-values of the Sg sort. In contrast, the structure
of the s-data b does not include the Sg sort. Thus, extending b on Sg has no effect (in
either structure or content) to the original s-data.

59

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

We present below properties that the operators ’ ,
§

đ,
ŕ

ő and
ŋ

ŕ exhibit. The operator
İ

§

behaves exactly like
ŋ

ŕ, as the extension of an s-datum dt can be seen as the extension
of the singleton s-data containing only dt. Thus, any properties of

ŋ

ŕ hold for
İ

§. The
detailed proofs for all these properties are provided in Appendix A, Section A.1.

Proposition 4.3.1. Let U be a DIS universe. For any s P U , T Ď U :

1. s R T ùñ ’tsu X ’T “ tu

2. @v P s, dt P SD. s R T ùñ
`

dtY tps , vqu
˘

R’T l

Proposition 4.3.2. Let U be a DIS universe and ’ the special product operator
defined in 4.1. The ’ operator is montone, i.e., for any T, T 1 Ď U the following
statement is true: T 1 Ď T ùñ ’T 1 Ď’T

Proposition 4.3.3. Let U be a DIS universe and ’ the special product operator
defined in 4.1. For any s P U , T Ď U , s P T ùñ ’tsu X ’T “’tsu . l

Proposition 4.3.4. Let U be a DIS universe and ’ the special product operator
defined in 4.1. The ’ operator distributes over intersection, i.e., for any T1, T2 Ď U ,
’T1 X ’T2 “’pT1 X T2q . l

Proposition 4.3.5. Let U be a DIS universe. For any κ, λ P U and v P κ

tpκ, vqu
§

đ

λ
“

#

tpκ, vqu if κ ‰ λ

tu otherwise

l

Intuitively, for a given s-data a P A and κ P U , if κ is part of all the s-datums in a, then
all the s-datums in the κ-extended a contain (exactly) one κ s-value. For any a P A,
none of the s-datums in the κ-reduced a contain a κ s-value, thus the κ-reduction and
κ-extension of a are disjoint. This property is formalised in Proposition 4.3.6.

Proposition 4.3.6. Let A be a DDV, with U its universe and A its carrier set. For
any κ P U and a P A the following holds: p@dt P a. κ

—
P dtq ùñ a

ŕ

ő

κ
X a

ŋ

ŕ

κ
“ tu. l

The operator
§

đ distributes over both union and intersection. The operators
ŕ

ő and
ŋ

ŕ distribute over union; however, they do not distribute over intersection. These
properties are formalised in Proposition 4.3.7.

Proposition 4.3.7. Let A be a DDV, with U its universe, SD its set of s-datums, and
A its carrier set. For any κ P U , dt1, dt2 P SD, and a, b P A, the following properties
hold:

60

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

1. pdt1 Y dt2q
§

đ

κ
“ dt1

§

đ

κ
Y dt2

§

đ

κ

2. pdt1 X dt2q
§

đ

κ
“ dt1

§

đ

κ
X dt2

§

đ

κ

3. paY bq
ŕ

ő

κ
“ a

ŕ

ő

κ
Y b

ŕ

ő

κ

4. paX bq
ŕ

ő

κ
Ď a

ŕ

ő

κ
X b

ŕ

ő

κ

5. paY bq
ŋ

ŕ

κ
“ a

ŋ

ŕ

κ
Y b

ŋ

ŕ

κ

6. paX bq
ŋ

ŕ

κ
Ď a

ŋ

ŕ

κ
X b

ŋ

ŕ

κ
l

Intuitively, for a fixed sort κ P U , repeatedly applying the reduction or extension
operator with respect to κ on any s-datum (or any s-data) yields the same result as
applying it once. In this sense, both operators are idempotent with respect to κ:
once all κ s-values have been removed (in the case of reduction) or added (in the case
of extension), further applications of the same operator w.r.t. the same sort have no
additional effect. This property is formalised in Proposition 4.3.8.

Proposition 4.3.8. Let A be a DDV, with U its universe, SD its set of s-datums,
and A its carrier set. For any κ P U , dt P SD, and a P A, the data operators are
idempotent w.r.t. to κ, i.e.,:

1. pdt
§

đ

κ
q
§

đ

κ
“ dt

§

đ

κ

2. pdt
İ

§

κ
q
ŋ

ŕ

κ
“ dt

İ

§

κ

3. pa
ŕ

ő

κ
q
ŕ

ő

κ
“ a

ŕ

ő

κ

4. pa
ŋ

ŕ

κ
q
ŋ

ŕ

κ
“ a

ŋ

ŕ

κ
l

Similarly, the reduction and extension operators are commutative with respect to
sorts: for any two sorts κ, λ P U , applying κ-reduction (or extension), followed by
λ-reduction (or extension) yields the same result as applying them in the opposite
order. This reflects the fact that removing or adding values of different sorts does not
interfere with one another, so the order of operations is irrelevant. These properties
are formalised in Proposition 4.3.8.

Proposition 4.3.9. Let A be a DDV, with U its universe, SD its set of s-datums,
and A its carrier set. For any κ, λ P U , dt P SD, and a P A, the following equations
hold:

1. pdt
§

đ

κ
q
§

đ

λ
“ pdt

§

đ

λ
q
§

đ

κ

2. pa
ŕ

ő

κ
q
ŕ

ő

λ
“ pa

ŕ

ő

λ
q
ŕ

ő

κ

61

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

3. pa
ŋ

ŕ

κ
q
ŋ

ŕ

λ
“ pa

ŋ

ŕ

λ
q
ŋ

ŕ

κ
l

With these notations, we observe that, for a given κ P U , any s-data a P A has two
disjoint components. The first component contains s-datums that do not include any
κ s-values, and it is called κ-floored a. The second component contains s-datums that
include a κ s-value, and it is called κ-raised a. We denote these two components as
follows, for any κ P U and a P A:

tauκ “ tdt | dt P a ^ ␣Dv P κ. pκ, vq P dtu (4.9)
rasκ “ tdt | dt P a ^ Dv P κ. pκ, vq P dtu (4.10)

Together, these subsets define a partition of a w.r.t. κ, as stated in the following
proposition:

Proposition 4.3.10. Let A be a DDV, with U its universe and A its carrier set. For
any κ P U and a P A, the following properties hold:

1. tauκ Y rasκ “ a (completeness: each s-datum in a is either κ-floored or κ-raised)

2. rasκ X tauκ “ tu (disjointness: no s-datum in a belongs to both components)) l

For any sort κ P U and s-data a P A, the κ-reduced a and κ-floored a s-datas consist
of s-datums that do not contain κ s-values. In other words, any dt P a

ŕ

ő

κ
or dt P tauκ,

satisfies the condition ­ κ
—
P dt. In contrast, the κ-assigned component of a includes

only those s-datums that contain one κ s-value, i.e., for any dt P rasκ, κ
—
P dt. The

κ-extended of a s-data differs in that it may include a mix of s-datums: some that con-
tain a κ s-value, and others that contain no κ s-value. Proposition 4.3.11 formalises
the interaction between the κ-floored and κ-raised components of an s-data a and the
results of applying the κ-extension and κ-reduction operators to a. Together, these
properties show how the raised and floored components behave under κ-based mod-
ifications and how they relate to the overall structure of a. Specifically, Equations 1
and 2 show that both the κ-floored and κ-raised components are preserved under in-
tersection with the κ-extended a. Equation 3 reflects that κ-extension is idempotent
w.r.t. membership, i.e., intersecting a with its κ-extension yields the original s-data.
Equation 4 highlights the disjointness of the κ-raised and κ-reduced s-datas, i.e., no
s-datum can be simultaneously in κ-raised a and κ-reduced a. Equations 5 and 6
illustrate that a κ-reduced s-data contains exactly the κ-floored component of the
original s-data, showing a structural equivalence between the effect of κ-reduction
and the notion of κ-flooring. Together, these properties establish that κ-flooring
and κ-raising are not just syntactic components of an s-data but are deeply aligned
with the algebraic behaviour of the reduction and extension operators. They form
a partitioning structure that is stable under κ-modification, which will later support
reasoning about data transformations.

62

Ph.D. Thesis - Alicia Marinache15 McMaster - Software Engineering

Proposition 4.3.11. Let A be a DDV, with U its universe and A its carrier set. For
any κ P U and a P A, the following equations hold:

1. tauκ X a
ŋ

ŕ

κ
“ tauκ

2. rasκ X a
ŋ

ŕ

κ
“ rasκ

3. aX a
ŋ

ŕ

κ
“ a

4. rasκ X a
ŕ

ő

κ
“ tu

5. tauκ X a
ŕ

ő

κ
“ tauκ

6. aX a
ŕ

ő

κ
“ tauκ l

The disjointness properties established previously for a single s-data extend naturally
to any pair of s-datas, a, b P A. Intuitively, the κ-raised component of a is disjoint
from both the κ-floored b and κ-reduced b, for any κ P U . This reflects the structural
separation enforced by κ-based decomposition: if an s-datum belongs to the κ-raised
component of one s-data, it cannot simultaneously belong to the κ-flooring or κ-
reduction of another. However, the interaction between the κ-floored components
of one s-data the κ-extension of another is more nuanced. These properties are
formalised in Proposition 4.3.12.

Proposition 4.3.12. Let A be a DDV, with U its universe and A its carrier set. For
any κ P U and a, b P A, the following equations hold:

1. rasκ X tbuκ “ tu

2. rasκ X b
ŕ

ő

κ
“ tu

3. tauκ X b
ŋ

ŕ

κ
“ tauκ X tbuκ l

4.3.4 Operators Interpretation

The operators of the structure MA are defined using set operators. The cylindrifica-
tion operator on an s-data is defined as the extension of the s-data. For any κ P U

63

Ph.D. Thesis - Alicia Marinache16 McMaster - Software Engineering

and a, b P A:

a` b
def
“ aY b (4.11)

a ‹ b
def
“ aX b (4.12)

0 def
“ tu (4.13)

1 def
“ ’U (4.14)

´a
def
“ 1za (4.15)

cκa
def
“ a

ŋ

ŕ

κ (4.16)

The cylindrification operator on an s-data over the sort κ extends the s-value cor-
responding to the sort κ with all the values in the sort. Thus, application of the
cylindrification operator is evaluated differently in the two approaches. Taking the
s-datas a, b, from the example in Figure 4.2, we show the result of applying the cylin-
drification operator on them over the sort Sg. In the evidence-based approach,

cESg
a “

␣

tpSt ,MeanGirlsq, pSg ,Comedyqu, tpSt ,MeanGirlsq, pSg ,Adventurequ
(

cESg
b “

␣

tpSt ,Gameof Thronesqu
(

In contrast, using the expert-based approach, the application of the cylindrification
operator on a and b evaluates to cXSg

a “ cESg
aY

␣

tpSt ,MeanGirlsq, pSg ,Fantasyqu
(

and
cXSg
b “ cESg

b, respectively.

In either approach, since a contains Sg s-value(s), its cylindrification on Sg extends
the s-data only in content, by adding s-datum(s) with the same structure (as defined
in Section 4.3.1) as that of a. In the evidence-based approach, a is extended with
the tpSt ,MeanGirlsq, pSg ,Adventurequ s-datum, and in the expert-based approach, a
is further extended with the tpSt ,MeanGirlsq, pSg ,Fantasyqu s-datum. In contrast,
in either approach as b contains no Sg s-value(s), its cylindrification does not change
its content or structure. Throughout the remainder of this work, all the examples
use the evidence-based approach, as the difference between the evidence-based and
expert-based approaches is the way the content of the sorts are provided. For sim-
plicity, we assume that the data (the DIS is based on) is clean and that the content
of the sorts originates from the data (i.e., the values of each attribute in the dataset).

Within this interpretation of a DDV, we can show a few properties of the cylindrifi-
cation operator, as follows:

Proposition 4.3.13. Let A be a DDV, with U its universe and A its carrier set. The

64

Ph.D. Thesis - Alicia Marinache17 McMaster - Software Engineering

cylindrification operator distributes over the operator, i.e., for any a, b P A and any
κ P U , cκpa` bq “ cκa` cκb. l

Proposition 4.3.14. Let A be a DDV, with U its universe and A its carrier set. The
cylindrification operator is idempotent w.r.t. to κ, i.e., for any a P A and any κ P U ,
cκpcκaq “ cκa. l

In Appendix A, Section A.2, we prove that the MA structure satisfies the axioms of
a diagonal-free cylindric algebra, by verifying each condition from Definition 3.2.4.
Specifically, we show that the two binary operators (` and ‹) are commutative,
associative, and distribute over each other. We show that the axioms for identity
and annihilation w.r.t. 0 and 1, as well as the complement axioms are satisfied, thus
establishing that MA is a Boolean algebra (i.e., the first condition of a cylindric
algebra). In addition, we prove that the four axioms for a diagonal-free cylindric
algebra axioms are satisfied. Therefore, the structure MA qualifies as a model of
diagonal-free cylindric algebra.

4.4 DIS Model: Domain Ontology Component
As discussed in Section 3.3.1, at the DOnt level, we are not interested in the objects of
the domain (i.e., the data), we are only interested in grouping them into categories.
A basic category is called atom and a set of atoms is called concept. A singleton
concept (containing exactly one atom) is called an atomic concept. If it is clear from
the context, an atomic concept may be called atom as well. We denote atoms by
at, at1, etc. With this understanding, the operators of the monoid of concepts and the
Boolean lattice are interpreted using the set operators.

In general, given a set of concepts C and a concept k P C, where k “ tat1, at2, . . . , atnu,
concept k represents objects that share the same atomic structure . Here, the atomic
structure of a concept refers to the set of atomic attributes (atoms) that characterise
it. Each atom corresponds to a minimal, indivisible property or attribute within
the domain of discourse. The composition operator ‘ allows the formation of new
concepts by composing existing concepts, i.e., by combining the atomic structures of
concepts. When we write k def

“ k1 ‘ k2 we mean that “Concept k is defined as the
Cartesian construction of the atomic structures of concepts k1 and k2 ” (i.e., the set
of atoms in k is the union of the atoms in k1 and k2). Consequently, a concept k1 is
considered a partOf another concept k , denoted by k1 Ď

C
k, if the atomic structure

of k1 is a Cartesian projection of that of k (i.e., if the set of atoms defining k1 is a
subset of the atoms defining concept k). The empty concept e

C
is understood as a

concept with no atoms.

65

Ph.D. Thesis - Alicia Marinache18 McMaster - Software Engineering

We define the composition operator ‘ and the empty concept e
C

as follows, for any
k1, k2 P C:

k1 ‘ k2
def
“ k1 Y k2 (4.17)

e
C

def
“ tu (4.18)

The partOf relation is defined in the classic way, using the composition operator, for
any k1, k2 P C:

k1 Ď
C
k2

def
“ k1 ‘ k2 “ k2 (4.19)

Take the example in Figure 4.3, discussed in more details below. In it, concept Listing
is defined as the composition of atomic concepts titleType and genre. This means that
from a structural point of view, an individual of the concept Listing contains infor-
mation for both titleType and genre. It is immediate that titleType is partOf Listing ,
i.e., titleType Ď

C
Listing.

The set of concepts CAtC is freely generated by these two operators (composition and
empty concept), over a finite set of atoms AtC, and it can be shown that CAtC “ PpAtCq.
By definition, the composition operator is commutative, associative, and idempotent,
and the empty concept is its neutral element. Thus, MC “

`

CAtC ,‘, eC
˘

is a commu-
tative idempotent monoid.

For the next component of the DOnt, the Boolean lattice, we start from a finite
set of atoms AtL, s.t. there is a one-to-one correspondence between the sorts of the
universe in the DDV model and the atoms of AtL. We ensure that AtL Ď AtC. As dis-
cussed in Section 3.2.4, a Boolean lattice is isomorphic to a Boolean algebra (Sankap-
panavar and Burris, 1981), thus we use the algebraic definition of the lattice L. Let
ML “

`

LAtL ,‘,b,a, eC ,JL
˘

.

For ease of readability, we use the following naming convention: the atoms in AtL
are denoted by κat, and there is a corresponding atomic concept κ P L, κ “ tκatu.
The carrier set of the Boolean lattice is defined by LAtL

def
“ PpAtLq, and is referred

as simply by L when it is clear from the context what we refer to. By construction,
the carrier set L contains the empty concept e

C
. The composition operator of the

Boolean lattice is a restriction of the composition operator of the monoid of concepts,
‘ : Lˆ L Ñ L, from Definition 4.17. The other three Boolean lattice operators are

66

Ph.D. Thesis - Alicia Marinache19 McMaster - Software Engineering

e
C

isAdultoriginalTitletitletitleTypetconst startYear endYear runtimeMinutes genre

tconst ‘ titleType . . . Listing=titleType ‘ genre Lifespan=startYear ‘ endYear runtime ‘ genre

tconst ‘ titleType ‘ genre . . . RatedListing=titleType ‘ genre ‘ isAdult endYear ‘ runtime ‘ genre

. . . Media=titleType ‘ title ‘ startYear ‘ genre.

JL

Figure 4.3: Media DIS Boolean Lattice (a partial view)

defined using set operators, for any κ, κ1, κ2 P L:

κ1 b κ2
def
“ κ1 X κ2 (4.20)

JL
def
“ AtL (4.21)

aκ
def
“ JLzκ (4.22)

In Figure 4.3 we present a partial view of the Media DIS Boolean lattice. The atoms
of the lattice correspond one-to-one to the sorts of the domain data view. Thus, in our
example, the atoms of the lattice are specified by the set AtLM “ ttconstat, titleTypeat,
titleat, originalT itleat, isAdultat, startY earat, endY earat, runtimeMinutesat, genreatuu.
The carrier set of the Boolean lattice is described by L “ Ppttconst, titleType, title,
originalT itle, isAdult, startY ear, endY ear, runtimeMinutes, genreuq.

In Appendix A, Section A.3, we prove that the ML structure satisfies the axioms
of a Boolean algebra. Specifically, we show that the two binary operators (‘ and
b) are commutative, associative, and distribute over each other. We show that the
the axioms for identity and annihilation w.r.t. e

C
and JL are satisfied, as well as the

complement axiom hold. Therefpre, the structure ML qualifies as a model of Boolean
algebra.

For a better understanding of the domain of application, the domain ontology must
be enriched with more than the concepts of its Boolean lattice. To add concepts
to the DOnt, the domain expert may (i) name composite concepts in the Boolean
lattice or (ii) define other concepts related to the Boolean lattice concepts, i.e., the
non-Boolean lattice concepts of the rooted graphs. We further discuss both methods
below. In additon, the domain expert may add datascape concepts to the DIS, a

67

Ph.D. Thesis - Alicia Marinache20 McMaster - Software Engineering

process detailed in Section 4.6.

Using the first method, the domain expert can define composite lattice concepts that
are significant for the domain of application. These concepts are explicitly related to
the data in the DDV. For instance, in Figure 4.3, there are new named concepts that
are defined by composing other lattice concepts, such as:

Listing “ titleType‘ genre

Media “ titleType‘ title‘ startY ear ‘ genre

The remaining composite concepts in the Boolean lattice, such as tconst‘ titleType,
exist and may be used by the reasoning process. They are not described here with a
specific identifier.

Using the second method, the domain expert can capture domain concepts that may
not be explicitly described in the DDV (i.e., in the existing data). The domain expert
captures these concepts through the process of building rooted graphs, which further
integrates other DISs to access additional domain data views and their datascapes.
In this section, we refer to datascape as abstract representations that link s-datas to
conceptual views defined in the domain ontology. A detailed formalisation of datas-
capes is provided later in Section 4.6. With this informal understanding in place, we
can now examine an example that illustrates how concepts from two domains inter-
act, and how datascape concepts support the alignment between structured data and
domain knowledge.

In Figure 4.4, the concepts outside the VM Boolean lattice cannot be defined using
the elements of the DDV, as their data resides in the VR domain. Thus, within the
VM domain, they are captured as atomic concepts. If needed, during the reasoning
process, these concepts are instantiated through their respective datascape concepts
within the VR domain.

The graph pictured in Figure 4.4 is formed over the Rrecognition relation, depicted with
a double line. The vertices of this graph (except for the root) are concepts in the VR
domain, and they describe the recognition level of the Media, such as Acclaimed or
Infamous . Within the VR domain, these concepts can be further refined, by defining
their corresponding datascape concepts. This method shows similarities to how isA

relations are captured in current taxonomic ontologies (Di Pinto et al., 2019). Within
the VM domain, the relation between the concept Media and its datascape concepts
Acclaimed and Infamous is described in the classic way, as a taxonomic graph. This
taxonomic relation isArecognition is depicted with a double dotted line. The relation

68

Ph.D. Thesis - Alicia Marinache21 McMaster - Software Engineering

Media
Lattice in
Figure 4.3

Acclaimed
Infamous

Fan-favorite Critic-favorite

Fresh (RottenTomatoes) Received Awards

Cult-classic Raspberry

Rrecognition

isArecognition

Figure 4.4: Media Rooted Graph for Rrecognition relation

of the rooted graph is understood as R1recognition “ Rrecognition;isArecognition. Note
that while this method is depicted as the taxonomic isA relation within the VM DIS,
there is no need for such a rooted graph within the VR DIS. This is because the isA

relation is defined through the use of datascape concepts.

Let MG “ tGtiutiPL,iPI be the interpretation of the family of rooted graphs, where
Gti “

`

Ci, Ri, ti
˘

, Ci Ď C,Ri Ď Ci ˆ Ci, ti P L. By construction, MG qualifies as
a model for a family of rooted graphs. Thus, the structure MO “

`

MC,ML,MG
˘

qualifies as a model for the domain ontology O.

4.5 DIS Model: Mapping Operator Component
The link between the DDV and the DOnt is specified through the mapping operator
τ , which maps an s-data in the DDV to a concept in the Boolean lattice of the DOnt.
The sorts of the universe U correspond to atoms of the Boolean lattice. We say that
the structure, or more precisely, the conceptual type, of an s-data refers to the set of
domain atomic concepts corresponding to the sorts present in its s-values. We remind
the reader that, as described in Sections 4.3 and 4.4, given an attribute ‘attr’ of the
dataset, we denote by Sattr , attrat , and attr its corresponding sort, atom, and atomic
concept, respectively.

Given an s-data a P A, we denote by Sa the set of sorts corresponding to all the
s-values in a. Then, τpaq is defined by the composition of the atomic concepts corre-
sponding to the elements of Sa. In the following, we detail the mapping process, the
formal definition of the mapping operator τ , as well as its properties.

69

Ph.D. Thesis - Alicia Marinache22 McMaster - Software Engineering

To support the formal definition of the mapping operator, we define a series of helper
operators. On s-values, we define two postfix operators, .sort : SV Ñ U , with
sv.sort “ s, and .val : SV Ñ U , with sv.val “ v, for any sv P SV, sv “ ps , vq.
We define a helper mapping operator η : U Ñ L, ηpSattrq “ attr, which does a one-to-
one mapping from the sorts of the DDV to the atomic concepts of the Boolean lattice
in the DOnt. Finally, the mapping operator τ : A Ñ L is defined, for any a P A, as
follows:

τpaq “ tηpsv.sortq | sv, dt . sv P dt ^ dt P au (4.23)

Taking the example in Figure 4.3, with a P A to be the s-data
a “

!

␣

pStitleType , ‘movie’q, pStitle , ‘MeanGirls ’q, pSstartYear , 2004 q, pSgenre , ‘Comedy ’q
(

)

, then
τpaq “ titleType‘ title‘ startY ear‘ genre or τpaq “Media. For any s-data a P A
and κ P L s.t. τpaq “ κ, we say that “a is of type κ”.

In the remainder of this section, we present properties of the mapping operator. The
detailed proofs for these properties are provided in Appendix A, Section A.4. Two
such properties of the mapping operator are related to the s-datum-extension-by-
sort and s-datum-reduction-by-sort data operators,

ŋ

ŕ, and
ŕ

ő, respectively, and are
formalised in Proposition 4.5.1.

Proposition 4.5.1. Let I be a DIS, with U the universe and A the carrier set of
its DDV, and η, τ its mapping operators. For any κ P U and a P A, the following
properties hold:

1. Ddt P a. κ
—
P dt ùñ ηpκq Ď

C
τpa

ŋ

ŕ

κ
q

2. ηpκq ­Ď
C
τpa

ŕ

ő

κ
q l

The DDV and the DOnt both are built on top of the same core mathematical structure
(a Boolean algebra), thus the mapping operator τ acts as a morphism between the two
Boolean algebras. While, from a mathematical perspective, it would be convenient
that the mapping operator is a homomorphism between the Boolean algebra of the
DDV and the one of the DOnt, not all properties hold. Intuitively, when we add
a new s-value (of some sort) to an s-data, its structure may be extended, thus the
concept corresponding to the added s-value must be added to the structure (or type)
of the s-data. Thus, given a DIS I, its τ operator preserves the composition, zero,
and one, for any a, b P A, reflected in the mapping operator axioms of the DIS:

pA15q τp0q “ e
C

pA16q τp1q “ JL
pA17q τpa` bq “ τpaq ‘ τpbq

70

Ph.D. Thesis - Alicia Marinache23 McMaster - Software Engineering

In contrast, the mapping operator does not preserve the complement and the ‹ oper-
ators. In the world of data (i.e., at the DDV level), the complement of an s-data a is
obtained by “hiding” (i.e., removing them from the 1, Definition 4.14) the s-datums
of a. This means that the s-datums in the complement ´a may contain s-values of
the same sort as the ones in a. Thus the sorts found in the complement of a may
still be a part of the complement. On the other hand, in the world of concepts (i.e.,
at the DOnt level), the complement of a concept k is obtained by “hiding” (i.e., re-
moving them from the JL) of all the atomic concepts of k. The complement concept
ak contains only atomic concepts that are found in k. If τpaq “ k, this may not
translate into τp´aq “ ak. The level of granularity is different at the two levels,
and the mapping operator does not preserve the complement operator ´. Since in a
Boolean algebra the ‹ is defined in terms of ` and ´, the mapping operator does not
preserve the ‹ operator either. The properties of the mapping operator are formalised
in Proposition 4.5.2.

Proposition 4.5.2. Let I be a DIS, with U the universe and A the carrier set of its
DDV, and τ its mapping operator. For any a, b P A, and T Ď U :

1. pa “ 0 _ a “ 1q ùñ τp´aq “ aτpaq

2. τpaq b τpbq “ e
C
ùñ τpa ‹ bq “ e

C

3. τpa ‹ bq Ď τpaq b τpbq

4. a “’Ta ùñ
`

τpaq “
Ť

tηpsq | s . s P Tau
˘

5.
`

a “’Ta ^ b “’Tb
˘

ùñ
`

τpa ‹ bq “ τpaq b τpbq
˘

l

For a counterexample of the complement and ‹ operators non-preservation, we refer
the reader to Figure 4.2, with τpaq “ title‘ genre and τpbq “ title. Then ´a “ 1za,
and includes s-values such as pSt ,ANewHopeq or pSg ,Adventureq. Then τp´aq Ď
title ‘ genre. Since aτpaq “ e

C
, it is immediate that τp´aq ‰ aτpaq. Similarly,

a‹ b “ tu, thus τpa‹ bq “ e
C
. However, τpaqb τpbq “ title, thus τpa‹ bq ‰ τpaqb τpbq.

4.6 Datascape Concepts
In Section 4.4, an informal reference was made to datascape concepts as abstractions
that bridge structured data and domain knowledge. In this section, we formally de-
fine datascape concepts, and describe their role within the DIS. This formalisation
provides the necessary foundation for reasoning tasks that involve the dynamic in-
stantiation of concepts based on data-level information.

71

Ph.D. Thesis - Alicia Marinache24 McMaster - Software Engineering

The domain expert has so far built the DDV from a given dataset, created the DOnt
on top of it, and linked the two through the mapping operator. To further refine the
domain of application, the domain expert may constrain the Boolean lattice concepts
with s-values from the DDV. We call these datascape concepts, and we denote them
by conceptD. Within the Boolean lattice, we look at a concept κ P L as representing a
set of s-datas of the type κ. Its datascape conceptis defined by κD “ ta | τpaq “ κu,
where τ is the mapping operator described in Section 4.5. In DL, a concept has two
aspects: its intension (i.e., its formal description), and its intension (i.e., the set of
individuals that satisfy this description in a given interpretation). In this context,
in DIS, a concept or datascape concepts represent the logical definition (i.e., the in-
tension), and the evaluation of a datascape concept w.r.t. an associated DDV its
extension.

For example, in the Media DIS, the Media concept may have multiple refinements,
such as the ComedyD or SlasherD datascape concepts. The former represents a
Media concept which has “Comedy” as its genre, and the latter represents a movie
that is either horror or thriller, and was released between the years 1970 and 1990.
We provide the definitions of these datascape concepts as follows:

ComedyD
“ ta | a, dt . τpaq “Media ^ dt P a ^ dt.genre “ “Comedy2u (4.24)

SlasherD “ ta | a, dt . τpaq “Media ^ dt P a ^ dt.titleType “ “movie2

^
`

dt.genre “ “Horror2 _ dt.genre “ “Thriller2
˘

^ 1970 ă dt.startY ear ă 1990u

(4.25)

In Equations (4.24) and(4.25), the variable a is free, allowing for the datascape
concepts ComedyD and SlasherD to be bound to different data views. In Sec-
tion 4.6.1, we show how a can be bound to the s-datums of a specific domain data
view. For ease of readability, by dt.κ we denote the value of the κ s-value of dt, i.e.,
dt.κ “ tv | ps , vq P dt . s “ κu.

In other knowledge systems, such as DL, the main relation is the taxonomical isA.
In a DIS, the main relation between concepts is the mereological partOf, described
by the Boolean lattice of the DOnt. Other relations are defined through the family
of rooted graphs. The isA relations are defined implicitly using datascape concepts.
Thus, for any two datascape concepts, k1D and k2D, we say that k1D isA k2

D if and only
if k1D Ď k2

D. E.g.,, from their definition, it is immediate that ComedyD isA MediaD

and SlasherD isA MediaD.

When two (or more) DISs are integrated, they may share concepts. Capturing the
shared concepts is done in two ways. The first way is by explicitly designating two

72

Ph.D. Thesis - Alicia Marinache25 McMaster - Software Engineering

concepts to be equivalent. For example, in Figure 4.1, the concepts tconst P LM
and imdbID P LR are equivalent. We chose to depict them as the same concept. In
practice, they are depicted as two different concepts, and the domain expert adds the
definition of their equivalence, as follows

tconst “ imdbID

The second way is through the use of rooted graphs in the first DIS, by capturing
concepts from a second DIS. For the shared Fresh concept, we illustrate this method
using Figure 4.1. In the IM DIS, Fresh is a vertex of the rooted graph formed by the
Rrecognition relation and root Media. In the IR DIS, Fresh is a refined Boolean lattice
concept, described by the following datascape concept:

FreshD
“ ta | a, dt . τRpaq “ imdbID‘ RottenTomatoes

^ dt P a ^ dt.RottenTomatoes ě 70u

4.6.1 Instantiating Concepts

The concepts that are part of the lattice or are defined (axiomatically) as a speciali-
sation of a lattice concept have been specified in an abstract manner, independent of
their links to the data in the DDV. This approach suffices for parts of the reasoning
process. For example, assume the domain expert has specified an axiom that states
that “A Horror movie or TV show must have at least a PG13 rating”. This axiom,
along with the (abstract) Definition (4.25) for the SlasherD concept contain enough
information to infer that “A Slasher must have at least a PG13 rating”.

However, to answer any Competency Questions (CQ) that requires data, the concept
involved must be instantiated using the DDV. For example, for the CQ1 query, the
domain expert must instantiate concept SlasherD within a given dataview AM . This
can be done using two sets of s-datas. In general, a datascape concept is instantiated,
as detailed below, using the carrier set A of the dataview:

SlasherDpAq “ ta | a, dt . a P A ^ τpaq “Media ^ dt P a

^ dt.titleType “ “movie2

^
`

dt.genre “ “Horror2 _ dt.genre “ “Thriller2
˘

^ 1970 ă dt.startY ear ă 1990u

(4.26)

This method of instantiation, by linking to the carrier set of the dataview, offers the
flexibility to answer the ‘What could possibly be a Slasher , given this data?’. In some
cases, the domain expert may need more precision, thus asking ‘What are the existing
Slashers , given this data?’. For the latter, the datascape concept is instantiated by

73

Ph.D. Thesis - Alicia Marinache26 McMaster - Software Engineering

linking it to the original dataset D, and the answer is provided by SlasherDpDq. The
datascape concept SlasherDpDq is defined using Equation (4.26), where D replaces A.

This approach enables the domain expert to consider an abstract schema of the data
view. By plugging in different data views, the DIS framework offers various instan-
tiations of the domain ontology. To replace one data view with another one, the
only constraint is that they must have the same set of attributes (i.e., their schema
corresponds to identical Boolean lattices).

4.7 Discussion
The Domain Information System (DIS) formalism is well suited for structured, or-
ganised datasets, and is less ideal for mapping natural language text data. This
limitation stems from the design of the Domain Data View (DDV), which is based
on the schema of existing structured datasets organised as sets of tuples. Natural
language data, in contrast, lacks such explicit structure and would require significant
preprocessing before alignment with DIS components.

In the DIS framework, the data is separated from the domain conceptualisation
through the two core components: the DDV and the Domain Ontology (DOnt).
Structured data is captured at the level of sorts, s-values, s-datums, and s-datas in
the DDV, while the conceptual view of the domain is represented through concepts
constructed from atomic elements in the DOnt. Although the integration of data and
knowledge is central to DIS, it is important to note that the conceptual view can be
used independently: the DOnt component, when taken alone, constitutes a pure on-
tology grounded in a Boolean lattice structure. In scenarios where data is unavailable
or undesirable, the DOnt allows reasoning and conceptual modelling without reliance
on structured data.

The link between the DDV and the DOnt is established through a surjective helper
operator that maps each sort to an atomic concept. The structure of an s-data, de-
fined as the set of its associated sorts, is interpreted semantically through the mapping
operator τ . Specifically, τ maps an s-data to a concept in the DOnt by collecting the
atomic concepts corresponding to the sorts associated to an s-data, as determined
by the surjective mapping. This process reflects the structure of an s-data, and also
incorporates the conceptual relations captured within the DOnt, thus yielding a rich
conceptual characterisation for reasoning purposes.

In this chapter, a clear and systematic process for building a DIS is presented. The

74

Ph.D. Thesis - Alicia Marinache27 McMaster - Software Engineering

process not only enables the representation of data and knowledge, but also may as-
sists domain experts in addressing semantic confusion between concepts with similar
names (Chantrapornchai and Choksuchat, 2016). By constructing a distinct Boolean
lattice for each domain of application, DIS ensures that concepts are semantically
distinct unless explicitly linked via equivalence declarations, a process described in
Section 4.4.

DIS shares some foundational goals with approaches such as DL, Ontology-based
Data Access (OBDA), and DOGMA. While DL distinguishes between the A-Box and
T-Box at the logical level, DIS offers a structural separation between the data and the
its domain knowledge, supporting modular construction, partial automation, and sys-
tematic evolution. In traditional systems, query translation is costly both in terms of
computational complexity, due to potentially exponential query rewritings, and in ex-
ecution efficiency, as relational databases are not optimised for ontology-driven query
structures (Xiao et al., 2018). In contrast, in DIS the construction of the ontology
is guided directly by the structured data, minimising the mismatch between the two
views and avoiding this limitation.

By using the partOf relation to build the Boolean lattice, DIS establishes a direct and
automatable correspondence between dataset attributes and atomic concepts. The
mapping operator captures this link, enabling the derivation of conceptual interpreta-
tions and avoiding the need for retrospective alignment between the structured data
and the ontology. In addition, both the DDV and DOnt are specified in compatible
algebraic languages, which facilitates their alignment.

When addressing ontology evolution, DIS provides a more localised and systematic
approach than traditional monolithic ontologies (Zablith et al., 2015; Xiao et al.,
2018). Changes to the data content require only updates to the DDV and mappings,
leaving the domain ontology unchanged. This task can be fully automated, which
makes it efficient. Changes to the data schema require local modifications to the do-
main ontology structure. The Boolean lattice can be rebuilt automatically, and the
graphs and datascape concepts affected by change can be identified automatically.
Changes to the domain of application affect only the rooted graphs and datascape
concepts, without altering the underlying Boolean lattice. This layered separation
ensures that evolution is localised and manageable.

In addition, DIS supports modularisation and selective information hiding, an impor-
tant feature for a knowledge system (Borgo and Hitzler, 2018). Through operations
such as view traversal, modules can be extracted systematically, and knowledge loss
can be quantified algebraically via the kernel of the module(LeClair et al., 2019). This

75

Ph.D. Thesis - Alicia Marinache28 McMaster - Software Engineering

capability supports scalable reasoning and controlled evolution of knowledge systems,
addressing both efficiency and maintainability.

76

Chapter 5

DIS Specification

"Don’t write a theorem prover. Try to use someone else’s."

- L. C. Paulson, Handbook of Logic in Computer Science

In this chapter, we present the specification of the generic DIS theory in ITP Is-
abelle/HOL. In Section 5.1 we present an overview for Isabelle/HOL, to familiarise
the reader with the proof assistant. In Section 5.2 we describe details of the specifi-
cation of the DIS theory. In Section 5.3, we demonstrate how the DIS specification
can be used to engineer concrete ontologies (i.e., instantiations of the DIS theory).

5.1 Isabelle/HOL Overview and Architecture
As discussed in Section 2.4.3, we have chosen Isabelle (Isabelle, 2025) to specify the
theory of DIS. When we say Isabelle is generic, we mean that it is not tied or spe-
cialised to a particular logic. Isabelle provides a framework where different logical
systems are implemented, such as HOL, FOL, Zermelo-Fraenkel set theory (ZF),
and more. The most widespread logic currently used in Isabelle is HOL, with the
Isabelle/HOL instance offering a version of classical higher-order logic theorem prov-
ing, ready for medium and large applications (Isabelle, 2025). Isabelle is interactive
in the sense that proofs are developed incrementally, with each proof step evolving
under user supervision and validation until the overall proof is completed. This is
done by invoking various proof rules, a process detailed in Appendix E.4. As a proof
assistant, Isabelle helps its user to find and maintain proofs. Its library of formal
theories and proofs is under active development and constantly growing.

In recent years, Isabelle has advanced from an interactive theorem prover to an in-
tegrated programming environment, with a variety of tools that go beyond theorem

77

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

Figure 5.1: Isabelle system architecture (Brucker et al., 2018)

proving. Some of the tools present in Isabelle today give its user the ability to use
LCF-style generic theorem prover kernel as programming interfaces, to hierarchically
organise theory documents, to incrementally process documents for interactive proof
development, to process and prepare high quality documents or generate code directly
from the theory modules, etc. (Wenzel and Wolff, 2007; Brucker et al., 2018).

The system architecture of Isabelle is multi-layerd, built on top of the implementation
language of Isabelle (i.e., Standard ML). At the top, we find the Prover IDE (PIDE),
a rich user interface that offers auto-completion and error-messages while the user is
editing theory documents. The system architecture of Isabelle is shown on the left-
hand side of Figure 5.1, while the communication between the Isabelle framework and
its PIDE is shown on the right-hand side (Brucker et al., 2018). The user can access
all the layers of Isabelle.
Isabelle’s meta-logic M is an extension of a fragment of HOL (Nipkow and Roßkopf,
2021). It comes with a propositions type and offers three basic operators (or logical
connectors): universal quantifier,

Ź

, implication, ùñ, and equality, ”. The universal
quantifier enables the notion of a fixed, but arbitrary value, not to be confused with
the FOL universal quantifier. The implication operator expresses inference rules, and
it binds to the right. For example, when we write A ùñ B ùñ C (which is also
expressed as rrA;Bss ùñ C), it is equivalent to A ùñ pB ùñ Cq, and it means "if
A and B hold, then C holds". The equality operator expresses that two terms are
definition-equivalent and can be substituted for each other. It comes with a number
of axioms, such as reflexivity (x ” x), symmetry (x ” y ùñ y ” x), and transitivity
(x ” y ùñ y ” z ùñ x ” z). In addition, meta-logic uses lambda abstractions λ

78

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

Rule Term Interpretation NOT

f t u pf tq u f pt uq

The prefix form of a function
binds more strongly than anything

f x` y pf xq ` y fpx` yq

Iff is expressed using equality, but
equality has a higher priority

␣␣P “ P ␣␣pP “ P q p␣␣P q “ P

Constructs with opening delim-
iter and no closing one bind very
weakly. E.g., if, let, case, λ, @, D.

λx. x “ f λx. px “ fq pλx. xq “ f

Table 5.1: General syntactic rules of Isabelle

to represent functions and apply them to arguments within the logical framework of
Isabelle. Note that the meta-level logical connectors handle the structure of proofs
and statements about logical deductions, while the object-level ones are part of the
logical statements reasoned about in a theory.

For ease of reference, we summarise below basic elements of Isabelle. In Table 5.1
we present basic syntactic rules for Isabelle. In general, the HOL syntax tries to
follow the conventions of functional programming and mathematics. In Table 5.2, we
outline a list of method proofs commonly used in Isabelle. In Table 5.3, we present
the rules of natural deduction commonly used in Isabelle. They are the deduction
rules for the logical connectives FOL, together with two basic natural deduction rules
for modus ponens and contradiction. Logical connective rules are either introduction
or elimination rules. Introduction rules describe how to prove that a particular logical
connective or statement is true, e.g., to prove P ^ Q, one has to prove separately
P and Q. In contrast, the elimination rules describe how to deduce new facts from
already established facts, e.g., knowing P ^Q, one can separately conclude P or Q, by
eliminating the conjunction. In Table 5.4, we list the abbreviations most frequently
used in Isabelle proofs. For more details on the syntax, natural deduction rules, and
proof style of Isabelle, we refer the reader to Appendix E. For the remainder of this
chapter, we assume the reader is familiar with Isabelle.

79

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

Method Description and Usage

auto Combines classical reasoning with simplification, and intended
for proving theorems that have a lot of trivial subgoals. It proves
easy subgoals and leaves the ones it cannot prove.

best Legacy Isabelle method, uses best-first search, guided by a
heuristic function

blast A generic tableau prover, used for FOL

fast Legacy Isabelle methods, uses depth-first search

force Intended to completely prove the first goal. Performs an ex-
haustive search, thus proof attempts may take longer or diverge
easily.

rule A backward reasoning method that unifies the conclusion of the
rule with the current subgoal

simp Simplification, also known as term rewriting ; invokes the Sim-
plifier on the first subgoal,

slow Similar to fast; using a broader search

bestsimp
fastforce
slowsimp

Similar to best, fast, slow, respectively; using the Simplifier
as additional wrapper

meson Implements Loveland’s model elimination procedure (Loveland,
2016)

metis A resolution prover

Table 5.2: Automated Proof Tactics in Isabelle

80

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

Rule Name Safe Isabelle Representation
P Q
P ^Q

conjI Y rr?P; ?Qss ùñ ?P^ ?Q

P ^Q rrP; QssùñR

R
conjE Y rr?P^ ?Q; rr?P; ?Qss ùñ Rss ùñ ?R

P
P _Q

Q
P _Q

disjI1/2 N rr?Pss ùñ ?P_ ?Q rr?Qss ùñ ?P_ ?Q

P _Q PùñR QùñR
R

disjE Y rr?P_ ?Q; ?P ùñ?R; ?Q ùñ?Rss ùñ ?R

PùñQ
P ÝÑQ

impI Y rr?P ùñ?Qss ùñ ?P ÝÑ ?Q

P ÝÑQ P QùñR
R

impE N rr?P ÝÑ ?Q; ?P; ?Q ùñ?Rss ùñ ?R

PùñFalse
␣P

notI Y rr?P ùñ Falsess ùñ ␣?P

␣P P
Q

notE N rr␣?P; ?Pss ùñ ?Q

P a
@x. P x

allI Y rr
Ź

a. ?P ass ùñ @x. ?P x

@x. P x P rt{xsùñR
R

allE N rr@x. ?P x; ?P ?x ùñ?Rss ùñ ?R

P a
Dx. P x

exI N ?P ?a ùñ Dx. ?P x

rP s
...

Dx. P x Q
Q

exE Y rrDx. ?P x;
Ź

x. ?P x ùñ?Qss ùñ ?Q

PùñQ QùñP
P“Q

iffI Y rr?P ùñ?Q; ?Q ùñ?Pss ùñ ?P “?Q

P“Q rrP ÝÑ Q; Q ÝÑ PssùñR

R
iffE Y rr?P “?Q; rr?P ÝÑ ?Q; ?Q ÝÑ ?Pss ùñ Rss ùñ R

P ÝÑQ P
Q

mp Y rr?P ÝÑ ?Q; ?Pss ùñ ?Q

␣PùñFalse
P

ccontr Y rr␣?P ùñ Falsess ùñ ?P

Table 5.3: Natural deduction rules in Isabelle

81

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

Abbreviation Stands for

proof proof prule elim´rules intro´rulesq

proof - Suppress all rule matching

this Previous proposition

then from this

thus then show

from this show

hence then have

with facts from facts this

. by assumption

.. by prule elim´rules intro´rulesq

. . . Schematic term variable, refers to right
hand side of last expression

have P1 . . . have p1 : P1 . . .

moreover have P2 . . . have p2 : P2 . . .
...

...
moreover have Pn . . . have pn : Pn . . .

ultimately show. . . from p1 . . . pn show. . .

?thesis Current goal (the enclosing show or have
statement)

Table 5.4: Isar proof abbreviations in Isabelle

82

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

5.2 DIS Specification in Isabelle
In this section, we give a quick overview of the DIS specification in Isabelle/HOL.
An overview of the overall design is presented in Figure 5.2. For the remainder of
this Section, we use truetype font to describe the names of Isabelle elements, such
as locales, locale parameters, and theory modules.

As discussed in Chapter 4, a DIS has three components: the DDV, the DOnt, and
the mapping operator τ , connecting the two. The DIS theory is defined within
the dis locale, inside the DomainInfSys theory module. It instantiates its two
components, the domain_ontology and domain_data_view locales.

The domain_data_view locale is defined within the DomainDtVw theory module. It
contains the cylindrification operator definition, and the proofs that it is a model
of the diagonal-free cylindric algebra (which is found in the DFCylindricAlgebra

module). To keep the implementation modular, and following the separation of
concerns engineering principle, the domain_data_view extends the ddv_ba locale,
which contains the foundational Boolean algebra elements. The ddv_ba locale is
a model of the Isabelle/HOL core theory abstract_boolean_algebra, which is
defined within the HOL.Boolean_Algebra module. The ddv_ba locale extends the
ddv_base locale, in which the data operators used to specify the cylindrification
operator are defined. In order to do that, the ddv_base locale extends the universe

locale, which is defined within the DDVUniverse module. The helper operator for
the data operators are defined within the universe locale. Finally, the foundational
elements of the DDV (i.e., s-value, s-datum, s-data, and sort) are all defined within
the DDVTypes module, which is used by the DDVUniverse module. Note that
within the Isabelle specification, the s-value, s-datum, s-data, and sort are defined
as abstract types, and are denoted by svalue, sdatum, sdata, and sort, respectively.

The domain_ontology locale is defined within the DomainOnt theory module. It
instantiates the three core components: the monoid of concepts concept_monoid (of
the ConceptMonoid theory module), the lattice of concepts concept_lattice
(of the ConceptLattice theory module), and the family of rooted graphs
family_root_graphs (of the ConceptRootGraph theory module). All three
modules use the abstract type concept, declared within the Concept module. The
concept_monoid is a model for HOL.Group.comm_monoid. The concept_lattice
is a dual model for HOL.Group.comm_monoid, once over the ‘ operator, and
once over the b operator, as well as a model for abstract_boolean_algebra. The
family_root_graphs is defined as a set of concept_root_graph. Both locales reside
within the ConceptRootGraph theory module. The concept_root_graph extends

83

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

Figure 5.2: DIS Specification in Isabelle: Design Overview

84

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

the theory of acyclic directed graphs, defined in Digraph.loopfree_digraph, which
is part of the extensive library of mathematical theories defined in Isabelle/HOL.

In this way, the DIS specification is built on top of existing classic mathematical
structures, such as monoid, Boolean algebra, graph. This enables the end user to
employ well-known proven results while reasoning on a concrete DIS. The specification
of the DIS theory is given in Appendix B.

5.3 DIS Example: Wine Ontology
In this section we take an example from the wine domain of application to illustrate
how the domain expert may specify a concrete DIS that is an instantiation of the
dis theory. For a full illustration of the Wine DIS example, we direct the reader to
Chapter 7, Section 7.2.

In Figure 5.3, we present the design overview of the Wine DIS specification. At
the top, we illustrate the DIS components that are immutable. The domain expert
only modifies the four components illustrated at the bottom. Within the Wine
Universe component, the domain expert defines the sort, svalue, sdatum, sdata,
and concept types. With this information, the universe U is then defined. Within
the Wine DDV component, the domain expert defines the generator set, used to
freely generate the carrier set of the Cylindric algebra. Within the Wine DOnt
component, the domain expert defines the atoms of the lattice of concepts and the
monoid of concepts, along with the elements of the rooted graphs (i.e., their vertices
and edges).

Name Colour Sugar Body
Merlot Red Dry Full

Chardonnay White Dry Medium
Vidal Rose Sweet Fruity

Magliocco Red Dry Full
.

Table 5.5: Wine dataset

The construction of the DIS is guided by the sample dataset in Table 5.5. Excerpts
of the Isabelle code for the definition of sorts, universe, and the instantiation of the
Wine Universe are presented below. In addition, the domain expert may create helper
methods to be used for ease of reading. In the Wine DIS example, we decided to define

85

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

Figure 5.3: Wine DIS Specification: Design Overview

86

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

constants for some of the s-values in Wine DIS. During the construction of the other
DIS modules and throughout the reasoning process, they may be used as syntactic
sugar. An excerpt of these definitions is inserted in Listing 5.1.

definition SW :: sort where
"SW = {Str ’’Merlot’’, Str ’’Chardonay’’, Str ’’Vidal Blanc’’, Str ’’

Magliocco’’}"
. . .

definition U :: "sort set" where
"U = {SW, SC, SS, SB}"
. . .

locale wine_univ =
wine_univ: universe where U = U and sort2name = ws2n and name2sort =

wn2s
for U :: "sort set"
and ws2n :: "sort ñ string"
and wn2s :: "string ñ sort" +
assumes univ_def: "U = WineUniv.U"

and s2n_def: "ws2n s = s2n s"
and n2s_def: "wn2s n = n2s n"

begin
definition merlot :: svalue where "merlot = xxSW, Str ’’Merlot’’yy"
. . .

definition red :: svalue where "red = xxSC, Str ’’Red’’yy"
. . .

end

Listing 5.1: Wine Universe Specification, excerpts

The code for the DDV module can be fully automated, and is presented in Ap-
pendix B. The specification of the DOnt module is based on the domain concep-
tualisation, illustrated in Figure 5.4. While the atomic concepts are guided by the
existing dataset, the domain expert needs to provide the names of the concepts (and
later their mapping to the sorts of the universe), as well as the rooted graphs details.
We present excerpts of the specification in Listing 5.2

. . .

datatype wine = nameat | sugarat | colourat | bodyat | producerat |
regionat

definition name :: "wine concept" where "name = {nameat}"
. . .

87

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

eC

colour sugarname body

taste

mouthfeel style

wine
Ď

C

person

estate

Rproduce

producer region

Rcontains RpossiblyProduce

Figure 5.4: Wine Domain Ontology

definition wine :: "wine concept" where
"wine = name ‘ sugar ‘ body ‘ colour"

. . .

definition AL :: "wine concept set" where
AL = {name, sugar, body, colour}"

. . .

definition Vr :: "wine concept set" where "Vr = {producer, region}"
definition Rr :: "wine edge set" where

"Rr = {(region, producer), (producer, name)}"
definition Gr :: "wine rgraph" where

"Vr = p|vertices = Vr, edges = Vr, root = name |q"
definition G :: "wine rgraph set" where "G = {Gr}"

locale wine_dont =
dont: domain_ontology where AC = AC and AL = AL and G = G
for AC :: "wine concept set"
and AL :: "wine concept set"
and G :: "wine rgraph set" +
assumes

atom_l_def: "AL = WineDOnt.AL"
and atom_c_def: "AC = WineDOnt.AC"

88

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

and graphs_def: "G = WineDOnt.G"
begin
end (* locale wine_dont *)

Listing 5.2: Wine DOnt Specification, excerpts

Now the domain expert may reason on the wine DOnt structure, as illustrated in
Listing 5.3

lemma (in wine_dont) "producer R AL"
by (simp add: AL_def atom_l_def producer_def name_def sugar_def

body_def colour_def)

Listing 5.3: Wine DOnt Specification, reasoning example

Finally, the domain expert creates the wine DIS. Their main job is to define the
sort2atom mapping that is the foundation of the mapping operator τ . In addition,
the domain expert may define datascape concepts, such as whiteWine, and use them
in reasoning on the Wine DIS. We explore elements of reasoning in Chapter 7. The
Wine DIS specification is illustrated in Listing 5.4.

theory WineDIS
imports
DomainInfSys
WineDDV
WineDOnt

begin

locale wine_dis = wine_ddv + wine_dont +
fixes sort2atom :: "sort ñ wine concept"
assumes s2a_def: "sort2atom s = (if s = SW then name else

(if s = SC then colour else
(if s = SB then body else
(if s = SS then sugar else eC))))"

begin
interpretation dis AC AL G U sort2name name2sort D sort2atom

apply unfold_locales
done

definition wine_type :: "sdata ñ wine set" ("τW _" [99] 100) where
"τW a = τ a"

. . .

definition whiteWine :: "sdata set ñ dataconcept" where

89

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

"whiteWine X = {a | a. a P X ^ τW a = wine}"
. . .

end
end

Listing 5.4: Wine DIS Specification, excerpts

A large part of a concrete specification can be semi-automated in two ways. First,
the atoms of the two Boolean algebras, as well as mapping operator can be lifted
directly from the dataset, as described in more detail in Chapter 6. Second, rooted
graphs (and implicitly the monoid of concepts) can be specified using templates, as
discussed in Chapter 6. The input of the domain expert is needed for both stages,
mainly during the definition of the mapping operator, and the rooted graphs.

5.4 Conclusion
This chapter presented the formal specification of the DIS within the Isabelle/HOL
proof assistant. The generic DIS theory was modularly defined across its components:
the Universe, the DDV, and the DOnt, with the DIS specification encompassing them.
Each component was specified using Isabelle locales, inheriting from foundational
mathematical structures such as cylindric algebras, Boolean algebras, commutative
monoids, and acyclic directed graphs. This formalisation enables any instance of
the DIS theory to be directly verified and reasoned about within a machine-checked
environment.

To illustrate the practical application of the DIS specification, a concrete instance,
the Wine DIS, was implemented using real-world dataset structures. The chapter
demonstrated how key specification elements (e.g., types, sorts, concepts, and map-
pings) are defined, and highlighted how the modular design enables partial automa-
tion. The automation process is further details in Chapter 6. Because of its layered
construction, a DIS instance can represent domain concepts at multiple levels of ab-
straction, enabling reasoning across both general and fine-grained conceptual views.
This multi-resolution capability, grounded in a formally verified specification, provides
the foundation for the reasoning tasks explored in Chapter 7.

90

Chapter 6

DIS Automation

In order to support the end-user, we offer a set of templates for a DIS implemen-
tation. These templates can be completed manually, by the domain expert or in a
semi-automated way, by creating an input file that is supplied to a transformation
tool. As the construction of the DIS is guided by the data, the generation of this
input file may be partially automated. There are elements of the DIS that can be
extracted from the dataset, such as the entire DDV (the sorts, the universe and its
mapping operators, along with the original set of s-datas), the core of the DOnt
(the atomic concepts of its Boolean lattice), and the mapping operator of the DIS.
The domain expert would need to create the input for other DOnt elements, such
as composite concepts, other atomic concepts (not captured in the Boolean lattice),
and the rooted graphs.

In this chapter, we present these DIS templates. In Section 6.1, we detail the extended
BNF used to write the DIS templates. In Section 6.2, we offer a quick overview of
the templates used to implement a DIS. In Sections 6.3, 6.4, 6.5, and 6.6, we outline
the production rules of the templates for the DDVUniverse, DomainDtVw, DomainOnt,
and DomainInfSys modules, respectively.

6.1 Foundational Elements
In this section, we present the syntax of the DIS template, in an extended BNF
described below. When describing the actual content of a template, the content is
specified as a set of production rules. The production rules define how nonterminal
symbols can be expanded into sequences of terminal symbols (i.e., actual content)
or other nonterminal symbols. Nonterminal symbols are enclosed between a pair of
angle brackets x. . . y. Optional terms are enclosed between pairs of square brackets
r. . . s. Terms that may appear zero or more times are superscripted with a star

91

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

˚, and terms that may appear one or more times are superscripted with a plus
character `. In addition to Isabelle keywords, the DIS templates may contain
tokens and code delimiters. A token is enclosed between a pair of # characters.
At the time of parsing, a token is replaced with specific values. In contrast, code
delimiters are removed during parsing, and they can determine either the beginning
and end of a list (called list delimiters), or a condition to be tested (called condition
delimiters). Code delimiters are enclosed between a pair of t! and !u symbols.
List delimiters start with !foreach #token#! and end with !eforeach!. Similarly,
condition delimiters start with !if condition! and end with !eif!. Any symbols
or keywords not explicitly described above are part of the standard Isabelle syntax.
Isabelle-specific elements, such as commands and keywords, are shown in a truetype

font for consistency. Throughout the text, the colours used in the original code
listings are omitted for clarity.

To simplify the BNF expressions throughout this section, we define a helper, called
!listgen! that takes three arguments: a mandatory #token#, an optional separator
sep“sepchar, and an optional list item lstitem“item. The default separator is
“,”, and the default list item is the token itself (the first argument). The expression
!listgen #token# sep“sepchar lstitem“item! stands for the following template
structure:

!foreach #token#!
!if ’position neq first! sepchar !eif! item

!eforeach!

In an Isabelle theory file, the main body, which consists of formal specification and
proof commands, may be augmented with informal text, such as document comments
or markup commands. A document comment is enclosed between the Isabelle pair of
symbols p˚ . . . ˚q. After generating a document from the theory file, comments do not
appear in the final PDF. The markup commands provide a structured way to insert
text into the document that may be generated (by Isabelle) from a set of theory files.
Each markup command takes a single argument, enclosed between special markup
symbols (a pair of double angle brackets ăă ¨ ¨ ¨ ąą). The arguments of the markup
commands appear in the generated PDF document.

After creating a template, the theory file may be used to generate a user-friendly PDF
file. As such, after generating the template, it is recommended for the ontology expert
to add sections, subsections, and comments as needed, throughout the theory file.
This may be done using Isabelle markup commands such as section, subsection,
and text. In the generated PDF, the argument of the section or subsection markup
command becomes the title of the section or subsection, respectively. The argument

92

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

Figure 6.1: Generic DIS Template overview

of the text markup command becomes a detailed description in the generated PDF.
Note that any time the template is regenerated, the manually added elements are
removed by the template generation process.

6.2 Templates Overview
For any given DIS implementation, the ontology engineer can generate a template
for each main DIS component, namely: #TheoryName#Univ, #TheoryName#DDV,
#TheoryName#DOnt, and #TheoryName#DIS. All four templates follow a similar
format, shown in Figure 6.1. Each nonterminal symbol of the template is a mix of
Isabelle code (i.e., terminal symbols, not pictured) and a (possibly optional) set of
other nonterminal symbols. The nonterminal symbols shown in blue contain other
nonterminal symbols, and the nonterminal symbols shown in black contain only
terminal symbols. In Isabelle, a theory can contain multiple locales. Isabelle allows
the same name for both a theory and a locale, as they are objects of different kinds
for the ML. To clearly differentiate between the two objects, we name a theory
#TheoryName#COMP and a locale #TheoryName#_comp, following Isabelle notation
standards. The COMP token corresponds to a DIS component, such as Univ, DDV,
DOnt, or DIS, and the comp to its lower case version.

93

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

In general, a DIS template main production rule has two main nonterminal sym-
bols, the xpreamble_compy and the xtheory_compy. The production rule for the
xpreamble_compy nonterminal contains the meta information of the document mod-
ule, which is almost identical for each template, and describes the module and its
content. The production rule for the xtheory_compy nonterminal contains two non-
terminal symbols, xtheory_imports_compy and xtheory_content_compy. The pro-
duction rule for the xtheory_imports_compy nonterminal lists the theories required
for the current module to run correctly and it is specific to each DIS component. The
production rule for the xtheory_content_compy nonterminal contains three nonter-
minals: xdeclarations_compy, xlocale_compy, and xcontext_compy. The production
rule for the xdeclarations_compy nonterminal lists basic elements of the theory, such
as the sorts, generator set, or atomic concepts, etc., and composite elements, such
as named concepts or rooted graphs. The production rule for the xlocale_compy
nonterminal contains the definition of the main locale. It details the instantia-
tion of the specific DIS component it represents, using elements defined within the
xdeclarations_compy. Finally, the production rule for the xcontext_compy nontermi-
nal defines a place where the domain expert may add any other relevant information
about the theory, including any specific reasoning elements. The xpreamble_compy,
xtheory_compy, and xcontext_compy nonterminals are similar to each other, regard-
less of the DIS component to which they belong. In Appendix C.1 we provide the
production meta-rules for these nonterminals.

6.2.1 Generic Template: Preamble

The preamble section of each template follows the same generic structure. The pro-
duction rule of the xpreamble_compy nonterminal symbol includes meta data about
the COMP theory file (provided as a document comment) and descriptions of the the-
ory file content (provided as the markup commands section and text). The values
of the tokens used in the xpreamble_compy production rule must be defined by the
domain expert, i.e., they cannot be automatically generated from the dataset.
The document comment (enclosed between the p˚ and ˚q symbols) includes the name
of the theory, its author(s), and the date the file has been last updated. As per
Isabelle requirements, the resulting theory file must be saved under the exact name
#TheoryName#COMP.thy. For the arguments of the two markup commands it is always
a good idea to provide as much detail as possible. The production rule of the preamble
nonterminal symbol is defined as follows:

xpreamble_compy ::=
(* Title: #TheoryName#COMP.thy

Author(s): #authorList#
Date: #date#

94

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

*)
section <<#TheoryName#COMP Theory>>
text <<#TheoryNameDDVDescription#>>

6.2.2 Generic Template: Theory

The xtheory_compy nonterminal symbol describes the current COMP theory. As re-
quired by the syntax of Isabelle theories, the production rule starts with the theory
Isabelle keyword, followed by the name of the theory. The production rules for the
xtheory_compy and xtheory_content_compy nonterminals are defined as follows:

xtheory_compy ::= theory #TheoryName#COMP
xtheory_imports_compy

begin
xtheory_content_compy

end
xtheory_content_compy ::= xdeclarations_compy

xlocale_compy

xcontext_compy

In the next sections, we detail the production rules that are specific to each template,
i.e., the xtheory_imports_compy, xdeclarations_compy, and xlocale_compy. For
each nonterminal symbol, we point out the elements that can be fully automated and
the ones that require input from the domain expert. The Isabelle implementation of
all four templates are provided in Appendix C.

6.3 Universe Template
The universe template module, named #TheoryName#Univ.thy, contains details
about the DDV universe. It implements the universe of the DIS, by listings the
sorts of the DIS, the definition of the two helper operators, and the instance of the
universe theory, as described in Section 5.2. The overview of the universe module
is shown in Figure 6.2 and it follows the structure described in Section 6.2. The
production rules for all nonterminals are defined in Appendix C.2.

6.3.1 Universe Template: Theory Imports

The xtheory_imports_univy nonterminal lists the theories required by the Universe
theory to run correctly. As the Universe is the building block of the other DIS
components, the only theory module it needs to import is the abstract DDVUniverse.
Thus the production rule is as follows:

95

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

Figure 6.2: Universe Template overview

xtheory_imports_univy ::= imports DDVUniverse

6.3.2 Universe Template: Declarations

The xdeclarations_univy nonterminal list lists elements specific to the universe, such
as the list of sorts, including the definition of the universe itself and the definition
of two helper operators, mapping a sort object to its name, and vice versa. The list
of sorts can be automatically lifted from the set of attributes of the dataset. The
production rules of the nonterminals are defined as follows:

xdeclarations_univy ::= xsorts_listy xuniverse_sety xuniverse_mappingsy

xsorts_listy ::=
!foreach #sort#!
definition #sort# :: sort where

"#sort# = #sort_type# {!listgen #value#!}
!eforeach!
xuniverse_sety ::=
definition U :: "sort set" where

"U = {!listgen #sort#!}

96

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

xuniverse_mappingsy ::=
definition #thname#_sort2name :: "sort ñ string" ("s2n _") where
"(s2n s) = !foreach #sort#!

(if s=#sort# then ’’#sort#’’ else
!if ’position eq last’! ’’’’ !eif!

!eforeach!
!foreach sort#!) !eforeach!"

definition #thname#_name2sort :: "string ñ sort" ("n2s _") where
"(n2s n) = !foreach #sort#!

(if n=’’#sort#’’ then #sort# else
!if ’position eq last’! {} !eif!

!eforeach!
!foreach sort#!) !eforeach!"

6.3.3 Universe Template: Locale

Finally, in the xlocale_univy, all elements come together, as the definition of the
universe locale instantiation. The production rules for this nonterminal is defined
as follows:

xlocale_univy ::=
locale #TheoryName#_univ =
#TheoryName#_univ: universe where U = U and

sort2name = sort2name and name2sort = name2sort
for U :: "sort set"
and sort2name :: "sort ñ string"
and name2sort :: "string ñ sort" +

assumes univ_def: "U = #TheoryName#Univ. U"
and s2n_def: "sort2name s = (s2n s)"
and n2s_def: "name2sort n = (n2s n)"

begin
end

6.4 Domain Data View Template
The DDV component is implemented within the DDV template module, named
#TheoryName#DDV.thy. The universe locale, defined in Section 6.3.3, is extended
with the original dataset (i.e., the generator set), and it may be augmented with

97

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

Figure 6.3: Domain Data View Template overview

reasoning tasks that do not involve the DOnt. The general overview of this tem-
plate is shown in Figure 6.3. The template follows closely the structure described in
Section 6.2. The production rules for all nonterminals are defined in Appendix C.3.

6.4.1 DDV Template: Theory Imports

The DDV module requires two modules to be imported. One is the previously defined
universe module, in which the universe of the DIS has been introduced. The second
one is the DomainDtView module, needed for its definition of the DDV locale, which
is instantiated in module. Thus, the production rule for the imports nonterminal is
defined as follows:

xtheory_imports_ddvy ::= imports
#TheoryName#Univ
DomainDtView

98

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

6.4.2 DDV Template: Declarations

Within the DDV template, there is no need for any other declarations than the
generator set, or the original dataset, expressed as a set of s-datas. The generator
set is passed as an argument to the instantiation of the DDV locale, described in
Section 6.4.3. The production rule for the declarations nonterminal is defined as
follows:

xdeclarations_ddvy :: =
context #TheoryName#_univ
begin
definition #TheoryName#_generator :: "sdata set"

where "#TheoryName#_generator = {!listgen #sdata#!}"
end

6.4.3 DDV Template: Locale

Finally, the bulk of the theory is defined by the xlocale_ddvy nonterminal. Its pro-
duction rule defines the concrete #TheoryName#_ddv locale as an extension of the
universe locale (i.e., #TheoryName#_univ) and an instantiation of the generic ddv

locale, as follows:

xlocale_ddvy ::=
locale #TheoryName#_ddv = #TheoryName#_univ +

#TheoryName#ddv: ddv where D = D
for D :: "sdata set" +

assumes "D = #TheoryName#_generator"
begin
end

6.5 Domain Ontology Template
The DOnt component of the DIS is implemented within the DOnt template mod-
ule #TheoryName#DOnt.thy. Its main locale extends the generic domain_ontology
locale, described in Section 5.2. The general overview of this template is shown in
Figure 6.4. The production rules for all nonterminals are defined in Appendix C.4.

6.5.1 DOnt Template: Theory Imports

The locale for the DOnt an instantiation of the domain_ontology locale, which is
defined inside the DomainOnt module. Thus, this is the only module required as an

99

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

Figure 6.4: Domain Ontology Template overview

import for the DOnt module. The production rule for the imports nonterminal is
defined as follows:

xtheory_imports_donty ::= imports DomainOnt

6.5.2 DOnt Template: Declarations

The declarations nonterminal of the #TheoryName#DOnt module contains three non-
terminals. The nonterminal xatomic_conceptsy lists the set of atomic concepts used
to create both the monoid of concepts and the lattice of concepts. The optional
nonterminal xnamed_conceptsy and nonterminal xrooted_graphsy outline complex
elements of DIS, as described below. The production rule for the declarations non-
terminal is defined as follows:

xdeclarations_donty ::= xatomic_conceptsy
“

xnamed_conceptsy
‰

xrooted_graphsy

The production rule for the xatomic_conceptsy nonterminal lists the atomic concepts
of the DOnt, as well as the set of atomic concepts used to generate the lattice of

100

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

concepts. Note that the } below stands for the character | in Isabelle/HOL, to differ-
entiate it from the BNF meta-character |. The input for the lattice of concepts atoms
can be extracted (automatised) from the attributes of the dataset, and the domain
expert may be involved in renaming them. The input for the other atoms used in the
monoid of concepts must be provided by the domain expert. The production rule for
the atomic concepts nonterminal is defined as follows:

xatomic_conceptsy ::=
datatype #thname# = !listgen #atom# sep=} lstitem=#atom#at!
!foreach #atom#!
definition #atom# :: "#thname# concept"

where "#atom# = {#atom#at}"
!eforeach!
definition AL :: "#thname# concept set"

where "AL = {!listgen #lattice_atom#!}"

The xnamed_conceptsy nonterminal is defined by explicitly specifying the composi-
tion of existing concepts, whether atomic or other named concepts. The input for
the xnamed_conceptsy nonterminal is provided by the domain expert and cannot be
automated from the existing dataset. The production rule for the xnamed_conceptsy
nonterminal is defined as follows:

xnamed_conceptsy ::=
!foreach #named_concept#!
definition #named_concept# :: "#thname# concept"

where #named_concept# = !listgen #concept# sep=‘!
!eforeach!

Finally, the xrooted_graphsy nonterminal consists of a list of rooted graphs. Each
rooted graph, in turn, is defined using three terminal symbols: one for the set of
vertices in the graph #V#, one for the set of edges (or the relations) of the graph #R#,
and one for the graph itself #G#. The set of vertices consists of a list of concepts, and
the set of edges consists of a list of pair of concepts. All concepts used in the rooted
graphs must be defined prior to their use within the graphs definitions. They may be
atomic concepts, named concepts, or unnamed composition of concepts (i.e., inline
composition of concepts). The production rule for the xrooted_graphsy nonterminal
is defined as follows:

xrooted_graphsy ::=
!foreach #rooted_graph#!
definition #V# :: "#thname# concept set"

where "#V# = {!listgen (#vertice#)!}"
definition #R# :: "#thname# edge set"

101

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

where "#R# = {!listgen #edge# lstitem=(#tail#, #head#)!}"
definition #G# :: "#thname# rgraph"

where "#G# = p|vertices = V, edges = R, root = #root#|q"
!eforeach!

6.5.3 DOnt Template: Locale

Finally, the xlocale_donty nonterminal instantiates the domain_ontology locale. Its
production rule is defined as follows:

xlocale_donty ::=
locale #TheoryName#_dont =

dont: domain_ontology where AC = AC and AL = AL and G = G
for AC :: "#thname# concept set"

and AL :: "#thname# concept set"
and G :: "#thname# rgraph set" +

assumes atom_l_def: "AL = #TheoryName#DOnt.AL"
and atom_c_def: "AC = AL Y {!listgen #other_concept#!}"
and graphs_def: "G = {!listgen #rg#}"

begin
end

6.6 Domain Information System Template
The DIS template connects the DDV and the DOnt components and offers the user
a space to declare the datascape concepts and to perform any reasoning tasks that
may include elements of DDV and the DOnt, along with datascape concepts. The
general overview of this template is shown in Figure 6.5. The production rules for all
nonterminals are defined in Appendix C.5.

6.6.1 DIS Template: Imports

The imports nonterminal lists both DDV and DOnt modules, along with the
DomainInfSys module, in which the theory of the domain information system re-
sides. Its production rule is as follows:

xtheory_imports_disy ::= imports
DomainInfSys
#TheoryName#DDV
#TheoryName#DOnt

102

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

Figure 6.5: Domain Information System Template overview

6.6.2 DIS Template: Declarations

In the DIS template, the declarations nonterminal is empty.

6.6.3 DIS Template: Locale

The locale nonterminal instantiates the dis locale as an extension of the current
#TheoryName#_ddv and #TheoryName#_dont locales. In addition, it specifies the
η operator and the mapping operator, defined in Section 4.5. Finally, the locale
nonterminal lists the datascape concepts. None of the elements of the locale_dis
can be automatically lifted from the original dataset, they are all manually entered
by the domain expert. The production rule for this nonterminal is defined as follows:

xlocale_disy ::= xlocale_core_disy
rxdatascape_concept_definitionys`

xlocale_core_disy ::=
locale #TheoryName#_dis = #TheoryName#_ddv + #TheoryName#_dont +
fixes sort2atom :: "sort ñ #thname# concept"
assumes s2a_def: "sort2atom s = !foreach #sort#!

(if s=#sort# then ’’#atom#’’ else

103

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

!if ’position eq last’! ’’’’ !eif!
!eforeach!
!foreach sort#!) !eforeach!"

begin
interpretation dis AC AL G U sort2name name2sort D sort2atom

apply unfold_locales
done

definition #thname#_type :: "sdata ñ #thname# set"
("τ#thnamei# _" [99] 100) where

"τ#thnamei# a = τ a"
end

xdatascape_concept_definitiony ::=
definition #name# :: "sdata set ñ dataconcept" where

"#name# X = {a | a. a P X ^ xconditiony

^ τ#thnamei# a = xconcepty}"
xconcepty ::= #atom# | #named_concept# | xconcepty ‘ xconcepty

In the last definition above, the xconditiony term may be replaced by any logical
condition on the concrete s-data. An example of a concrete implementation, including
a datascape concept definition is provided in Section 5.3.

6.7 Conclusion
In this chapter, we focus on the automation of a DIS, and we provide a comprehensive
framework for supporting domain experts and ontology engineers in implementing
a domain-specific DIS. We introduce a set of templates that can be either edited
manually or generated automatically by using specialised tools that transform the
dataset files. The use of templates streamline the process of generating core DIS
elements, such as the DDV and the Boolean lattice of the DOnt. By automating
parts of the DIS engineering process, we reduce the effort and complexity of manual
data-handling. This, in turn, facilitates efficient implementation of a DIS.

The DIS approach is aligned in spirit with recent efforts toward semi-automatic
ontology design, such as the SEADOO project by Grüninger et al. 2023, which
proposes techniques for generating ontologies from data models and natural language,
leveraging repository-driven ontology matching. While SEADOO focuses on learning
first-order axioms from structured and unstructured inputs using model transfor-
mation and user feedback, DIS offers a formalised structure in which such learned
knowledge can be directly embedded and verified. Notably, SEADOO relies on

104

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

mathematical theories to construct ontologies from examples and counterexamples,
paralleling the DIS model-theoretic grounding and compositional design. The key
distinction is that DIS builds in this alignment from the outset, treating the data
and conceptual layers as co-definable components of a structured theory rather than
deriving one from the other after the fact.

The structure of the DIS theory and its use in ontology engineering creates a balance
between data-driven automation and domain expert guidance. The use of templates
enable partial automation of the engineering process, by extracting the core elements
directly from existing datasets. At the same time, it acknowledges the role of the do-
main expert in specifying the objective level concepts, such as the composite concepts
and the rooted graphs of the DIS. This approach ensures a practical and adaptable
methodology, making the automation process both accessible and customisable. This
emphasis on dual (automated and manual) strategies lays the foundation for scalable
and user-friendly DIS solutions.

105

Chapter 7

Elements of Reasoning

As discussed in Section 2.3, various reasoning tasks are within the capabilities of a
knowledge system. These tasks include consistency checking, concept satisfiability,
classification, subsumption, and other forms of inference (Antoniou et al., 2018;
Schneider and Šimkus, 2020). In this chapter, we illustrate the reasoning tasks on
the newly built Wine DIS. We look at these tasks through the lens of DIS and
provide the Isabelle/HOL implementation of each task in the Wine Ontology. The
scope of this section is not to be exhaustive, but rather to illustrate the capabilities
of DIS in terms of reasoning.

In Section 7.1, we present a general overview of performing reasoning in a DIS. To
create the foundation for performing reasoning tasks, in Section 7.2, we extend the
illustrative example started in Chapter 5, Section 5.3. Then, in Sections 7.3, 7.4, 7.5,
and 7.6, we present examples of consistency checking, concept satisfiability, classifica-
tion and subsumption, and inference, respectively. The reasoning task samples have
been checked on the Isabelle/HOL implementation of the Wine Ontology. Finally, in
Section 7.7, we reflect on the current state and limitations of DIS and propose future
research directions.

7.1 Reasoning in DIS
The DIS supports reasoning by formalising the relationship between structured
data and domain concepts through algebraic and relational constructs. Reasoning
tasks traditionally associated with DL, such as consistency checking, satisfiability,
classification, and inference, are naturally framed in DIS through its modular
structure: the cylindric algebra view of the structured data, the Boolean lattice of
concepts, the mapping between sorts and atoms, and the relational graphs among
concepts. Core algebraic properties, such as subset relations, composition, and

106

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

concept intersection, are used to model reasoning tasks internally, while exposing a
simplified conceptual view to the user.

Thus, DIS enables formal reasoning over knowledge systems while hiding the underly-
ing complexity of algebraic manipulation. In the following sections, we describe how
classical reasoning tasks are adapted and interpreted within the DIS framework.

7.2 Wine Ontology, Extended Example
In Chapter 5, Section 5.3 we constructed the Wine DIS, as a part of a more complex
Wine domain of application. For our reasoning example, we build two more DISs,
the Producer DIS, based on the dataset presented in Table 7.1, and the Estate DIS,
based on the dataset presented in Table 7.2. Taken together, we refer to the three
DISs as a “Wine Domain”.

Producer Estate Grape Wine Name
Ferrocinto Magliocco Magliocco
Librandi Rosaneti Magliocco Meganio
Inniskillin Niagara Vidal Vidal Icewine
Inniskillin Niagara Chardonnay Chardonnay
Inniskillin Montague Chardonnay Chardonnay
Inniskillin Montague Merlot Merlot

Pelee Island Pelee Island Chardonnay Lola
Pelee Island Pelee Island Vidal Vidal

.

Table 7.1: Producer dataset

The universe of Producer DIS contains four sorts, corresponding to the attributes of
the dataset schema: producer SP, estate SE, grape SG, and wine name SW. If the data
is clean, the ontology engineer may create one sort for SW, and refer to it in both
the Wine and the Producer DISs. If, instead, the domain expert wishes to use the
two DISs to clean the data or they are unsure if the data is clean, each SW must be
defined (as different sorts) in their respective DIS,.

The universe of the Estate DIS contains only three sorts, the producer SP, estate SE,
and the region SR. The three DISs, Wine, Producer, and Estate are linked through

107

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

Producer Estate Region
Ferrocinto Calabria
Librandi Rosaneti Calabria
Librandi Ponta Calabria
Inniskillin Niagara Niagara
Inniskillin Montague Okanagan

Pelee Island Pelee Island Niagara
Pelee Island Kingsville Southern Ontario

Table 7.2: Estate dataset

the rooted graphs.

A more detailed version of the Wine Ontology is shown in Figure 7.1. Concepts
originating from the Wine DOnt are based on the data in Table 5.5 and depicted in
black, those originating from the Producer DOnt are based on the data in Table 7.1
and depicted in red, and concepts originating from the Estate DIS are based on the
data in Table 7.2 and depicted in blue. In this example, we assume that the data
is clean, i.e., the data of the common attributes coincide on the three DISs). The
concepts estate.name and producer.name are shown as shared concepts between the
Estate and Producer DOnts. For clarity of presentation, the concept wine.name is
depicted separately within the Wine and Producer DOnts, although it represents a
unique, common concept across the two. The relations given “horizontally”, by the
tuples of the Producer DDV, become rooted graphs of the Wine DOnt. Thus, the link
between producer and estate translates into “producer Rcontains estate”. Similarly,
the Estate DDV relation between region and estate translates into “region Rcontains
estate”, and the Estate DDV relation between wine and estate translates into
“estate Rproduces wine”. The reasoning examples given in the remainder of this chapter
are based on this understanding of the Wine domain of application. We now illustrate
how classical reasoning tasks are instantiated over this extended domain.

7.3 Consistency Checking
In DL, consistency checking ensures that the KB admits a model, by answering
the question “is the A-Box consistent to the schema implied by T-Box?” In DIS,
consistency checking ensures that the DDV and DOnt are coherently aligned through
the surjective mapping from sorts to atomic concepts and the mapping operator. At
the conceptual level, consistency requires that each s-data maps to a well-formed

108

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

eC

colour sugarname body

taste

mouthfeel style

wine
Ď

C

estate.name

producer.name grape wine.nameregion

producer

estate

Rproduce

Rcontains

RpossiblyProduce

Figure 7.1: Wine Domain: Wine, Producer, and Estate Domain Ontology

109

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

concept in the ontology. This is ensured structurally: the mapping from sorts to
atoms is total and surjective, and the mapping operator τ computes a unique concept
for each s-data, based on its sorts.

At the system level, consistency concerns arise when aligning or integrating multiple
DIS instances. The question becomes whether the sorts (and thus their corresponding
atoms) are coherent across the system. Two DISs are consistent with each other if
overlapping sorts are semantically and structurally equivalent, that is, they reference
the same underlying concept and contain the same values. Formally, given two DISs
I1 and I2, we say that two sorts S1 P U1 and S2 P U2 are consistent with each other
if S1 “ S2. In the Wine domain of application, this may translate into the query:
“Are the sorts in the Wine DIS consistent with the ones in the Producer one?” E.g.,
a value for Wine sort may be listed in one DIS and not in the other.

Attribute consistency refers to the ability to check if the DDV is consistent w.r.t. the
specific rules of the DIS. For example, in the Wine Ontology, the domain expert may
capture the rule “A wine cannot be red and white at the same time”, and express it
through the use of two datascape concepts, as whiteWineD X redWineD “ tu. The
consistency check is performed by the Isabelle/HOL by proving the statement is true
within the given Wine DIS. The Isabelle code is presented in Listing 7.1.

context wine_dis
begin
text xAttribute consistency: same wine cannot be different colors in the

generator sety
lemma (in wine_dis) reds_whites_int: "reds X whites = {}"
using D_def wine_generator_def reds_def whites_def
WineDDV.wine_ddv.axioms local.univ_def
wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast

end

Listing 7.1: Elements of Reasoning: Consistency Checking

7.4 Concept Satisfiability
In DL, assessing the satisfiability of a concept C is equivalent to finding an
interpretation I, s.t. CI ‰ H. In DIS, concept satisfiability verifies whether a
given concept admits at least one instance within the structured data. Formally, a
concept is satisfiable its corresponding datascape is non-empty. In DIS, satisfiability
can be applied both to objective concepts, which are defined at the ontology level

110

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

(as described in Section 3.3.1), and to datascape concepts, which are constructed
dynamically via constraints (as described in Section 4.6. The underlying Boolean
lattice structure and relational graphs reduce satisfiability checking to set-theoretic
operations. In the following we discuss in more detail the concept satisfiability of
both kinds.

7.4.1 Objective Concept Satisfiability

In DIS, objective concepts are satisfiable if they admit at least one corresponding
s-data in the associated DDV. This reduces to verifying whether the extension of
the concept (i.e., its associated datascape concept) is non-empty. Concepts built
from atoms using lattice operators are always satisfiable by construction, as their
atomic constituents are built from the DDV, and there is always at least one s-data
connected to the Boolean lattice concepts. Thus, for objective concepts, satisfiability
checking becomes a structural validation within the Boolean lattice. Ensuring the
feasibility of the concepts outside the lattice is a similar straightforward process,
involving verification that they align with a Boolean lattice concept present in
another DIS. Named concepts are composition of the first two types, therefore their
feasibility is a straightforward process.

Within the Wine DIS example, a possible reasoning task for rooted graph concepts is
answering the question “Is the Estate concept feasible?” As all the named concepts
within the Wine DIS are defined as composition of atomic concepts only, they are
inherently feasible, just as their parts (i.e., the atomic concepts) are.

7.4.2 Datascape Concept Satisfiability

Datascape concepts are instantiated over data, either the carrier set of the DDV or
its subsets, such as the generator set. When instantiated over the DDV carrier set,
the datascape concepts are inherently satisfiable, due to the construction of the DIS.
This is because the carrier set is built to contain all possible Cartesian combinations
of the s-values of the DDV universe. In contrast, for datascape concepts instantiated
over restricted datasets their satisfiability must be checked explicitly. The process is
lightweight: the mapping operator τ derives the concept type, and the instantiating
set is used to evaluate whether any such mappings yield a match. This evaluation is
internal to the system.

In the Wine domain, an example of datascape concept satisfiability translates into
checking there exist at least one s-data corresponding to the redWineD. The Isabelle

111

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

code is presented in Listing 7.2.

context wine_dis
begin
text xDatascape concept satisfiability: The red wines xredsy contains at

lest one s-data instance.y
lemma (in wine_dis) reds_satisfiable: "reds ‰ {}"
using merlot_in_reds by auto

end

Listing 7.2: Elements of Reasoning: Concept Satifiability

Another example of concept satisfiability is checking the logical consistency of datas-
cape concepts. For example, in the Wine Ontology, there is a rule stating that a wine
can only have one colour. The domain expert defines a concept, RedWhiteWineD “
redWineDXwhiteWineD. It is immediate that the WineDIS can satisfy either the rule
or the concept, and not both. Thus, within a DIS with this rule, the RedWhiteWineD

concept is not satisfiable.

7.5 Classification and Subsumption
Both the classification and subsumption reasoning tasks refer to the process of
inferring concept hierarchies based on domain knowledge (Antoniou et al., 2018).
This hierarchy involves either relations between concepts (for subsumption) or
relations between individuals and concepts (for classification). In DL, given two
concepts C and D, assessing if D is subsumed by C is equivalent to checking if C is
more general than D. Classification translates into checking which concepts a given
individual a is an instance of.

In DIS, classification and subsumption tasks rely on the partial order structure of
the Boolean lattice. Classification determines whether a given s-data belongs to the
extension of a particular concept, following the mappings defined by the mapping
operator. Subsumption checks whether one concept is included within another, based
on subset relations among their atomic components. The partial order embedded
in the concept lattice allows subsumption queries to be evaluated through algebraic
comparison, while classification queries reduce to verifying membership within the
mapped datascape concept.

In the Wine domain an example of subsumption is determining that “Red Wines
are Wines”. Addressing this query involves a two-step process: (i) defining the “Red

112

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

Wines” datascape (i.e., redWineD) and (ii) verifying that redWineD Ď wineD. De-
termining whether “s-data a belongs to the concept redWineD” essentially becomes a
matter of membership: is a P redWineD? The Isabelle code is presented in Listing 7.3.

context wine_dis
begin

text xClassification: The merlot wine is classifed as a red wine.y
lemma (in wine_dis) merlot_in_reds: "{merlot, red, dry, full} P reds"
using D_def wine_generator_def reds_def by auto

end

Listing 7.3: Elements of Reasoning: Classification

7.6 Inference Checking
Inference checking involves evaluating the logical consequences that can be drawn
from the explicit knowledge represented in an ontology. Although all previous
reasoning tasks qualify as inference checking, there are other queries, hypotheses,
and logical consequences that do not belong clearly to these tasks. In DIS, inference
checking uses the rooted graphs, concept operators, and relational operators (such as
composition and transitive closure) to infer new relations. These inference processes
are embedded naturally into the DIS structure. Users interact at the level of concepts
and properties, while the system internally manages the logical derivations through
its algebraic and relational semantics.

In wine DIS, the inference check may include wine and grape inference, wine colour
inference, regional similarities, etc. For wine and grape inference, given that a wine
is produced by various producers (and their estates), and that the estate belongs
to a certain region, the system may infer that a certain wine belongs to a certain
region. Moreover, given the relation between grape and wine, it can be inferred that
the grape of a certain wine belongs to the region of the wine. If the data is not clean,
another wine and grape inference may constitute the answer to the question “What
kind of wine attributes may the Meganio wine have?”. Although that information is
not present in the Wine DDV, based on the grape from which both the Magliocco

and Meganio wines are made, similar properties can be inferred for the two wines.

Another example, illustrated in Figure 7.1, shows a region-colour inference. As estates
are related to colour (through the Rcontains relation), and region to estate (through
the Rcontains relation), it can be inferred that at the conceptual level the region and
colour concepts are related. The Isabelle code is presented in Listing 7.4. This

113

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

inference can be further refined by involving the data. If wines from a particular region
predominantly exhibit a certain colour, based on historical data or observations, the
system might infer the likely colour of a new wine from the same region.

context wine_dis
begin
text xInference: Region relates to Estate (through Rcontains),

Estate relates to Colour (through Rproduce),
thus Region relates to Coloury

lemma (in wine_dis) region_colour_relation:
"(region, colour) P RpossiblyProduce"
using Rcontains_def Rproduce_def RpossiblyProduce_def relcomp_def
by (metis insertCI relcomp.simps)

end

Listing 7.4: Elements of Reasoning: Inference

7.7 Conclusion
This chapter demonstrated how classical reasoning tasks, such as consistency check-
ing, satisfiability, classification, subsumption, and inference, can be adapted and
executed within DIS framework. The underlying algebraic and relational structures
of DIS, namely the Boolean lattice, rooted graphs, and mapping operator, support
these tasks while abstracting much of the underlying complexity from the user.

The Wine DIS was implemented in Isabelle/HOL to validate the practical feasibility
of these reasoning tasks. Although Isabelle is based on higher-order logic, which
is undecidable in the general case, the reasoning queries within structured and
domain-specific formalisms like DIS remain tractable in practice. The implementa-
tion also posed practical challenges. The initial manual construction of the DDV
was laborious, underscoring the need for template-driven automation. In addition,
some reasoning tasks, particularly classification, revealed performance constraints
due to the way Isabelle/HOL handles set operations and evaluation. Addressing
these challenges points toward future work to improve tool support for DIS-based
knowledge systems, especially in terms of automation and reasoning scalability.

Despite these limitations, the findings confirm that DIS, as formalised and reasoned
about within Isabelle, provides a scalable and semantically precise foundation for
structured knowledge systems. It supports the specification, maintenance, and ex-
tension of ontologies grounded in real-world datasets, while exposing a clean reasoning

114

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

interface that abstracts away the complexity of its internal logic.

115

Chapter 8

Conclusion and Future Work

Modern knowledge systems must align real-world data sources with formal domain
representations in a scalable and maintainable way. This thesis addressed this
challenge by adopting Domain Information System (DIS), a previously introduced
formalism that clearly separates data-level structures from domain-level conceptual
models. Through this lens, the research presented here did not introduce DIS,
instead offered its formalisation and an engineering process that reveals the power of
DIS as a flexible, verifiable, and scalable foundation for knowledge systems.

A core contribution of this work is the semantic formalisation of DIS through
the definition of two linked theoretical layers: a data theory, which captures the
structure and abstraction of organised datasets, modelled as sets of tuples in Domain
Data View (DDV), and a domain knowledge theory, which represents conceptual
hierarchies and relations in Domain Ontology (DOnt). Their integration via the
mapping operator yields a coherent framework, in which the domain knowledge is
grounded in the structure of the data itself. This alignment eliminates structural
mismatches and ensures that every DIS instance is a model of the core theory,
thereby inheriting semantic coherence, modularity, and formal guarantees by design.

Building on this foundation, the thesis developed a formal engineering process to
guide the construction of DIS instances from structured datasets. Grounded in a set
of formal design principles, the methodology defines how to construct the compo-
nents of a DIS, and their integration in a way that is repeatable, and adaptable to
domain-specific needs. While existing approaches often rely on post-design semantic
validation, DIS allows semantic constraints to be integrated from the outset. This
reduces the technical overhead for users, who benefit from automatically aligned
ontologies that reflect actual data structure without manual reconciliation.

116

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

The framework was implemented in the Isabelle/HOL Interactive Theorem Prover
(ITP), providing a machine-verifiable specification that enables precise reasoning
about system behaviour. By implementing DIS as a structured, higher-order logic
theory, this work offers a foundation for building formally grounded knowledge sys-
tems that are aligned directly with underlying datasets. Despite the undecidability
of higher-order logic in general, the DIS-based reasoning tasks were shown to be
tractable in practice due to the modularity and formal structure of the framework.

In parallel, the DIS engineering process was extended through a template-based
automation mechanism for generating DIS instances. These templates support
declarative specification of sorts, concepts, and mappings, reducing the effort
required to develop formalised knowledge systems. This design allows users to
generate aligned ontologies directly from their data and reduces the potential error
involved in manually constructing the DIS components, laying the groundwork for
wider applicability in data-intensive settings.

Finally, the reasoning capabilities of the DIS were demonstrated by expressing and
verifying core inference tasks, such as consistency, classification, and subsumption,
within Isabelle. These tasks were shown to be supported by the internal structure
of the framework itself: the lattice-based ontology model, rooted graph semantics,
and the mapping operator together enable reasoning on data and concepts without
exposing users to the underlying algebraic complexity. For users, this means that
a single reasoning engine can capture both domain-specific logic and data-grounded
inference in a coherent, modular way.

8.1 Future Work
Several promising directions for future research arise from this work. First, the
manual construction of the DDV remains a bottleneck. The template mechanism
introduced in Chapter 6 can be extended into a more robust toolchain that supports
fully automatic DDV generation from structured data sets. The DIS framework could
benefit from more automatic support for data evolution and schema change detection.

Second, this thesis focused primarily on the structural and logical aspects of
knowledge representation. This foundation can be extended to a formal definition
for data, information, and knowledge, in the context of the DIS theory. We have
already started to work on it, with preliminary results on knowledge classification
and a formal definition of knowledge generated in a DIS as the fixed point of
total knowledge. Future work could explore semantic compression and knowledge
refinement, enabling DIS to scale to high-volume knowledge spaces by identifying

117

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

semantic patterns and discarding redundant data.

Third, the separation of the data layer from the contextual one in a DIS enables
the support for giving different contexts to the same of data. This multi-resolution
knowledge space would enable the conjecture of different kinds of knowledge from
a single set of organised data, and eventually the integration of new fragments of
knoweldge into a more complete view of the world.

Lastly, DIS offers strong support for modularisation techniques (LeClair et al., 2020),
which is one approach to handling the current complexity of data and domain concep-
tualisation. In (Matentzoglu et al., 2015), the authors recognise the lack of reasoning
methods that take into account both data and domain, as well as reasoners that make
use of modularisation techniques. Traditional methods of processing and analysing
data must evolve. Thus, research in the field of modularisation can be extended to
the use of DIS theory.

8.2 Closing Remarks
This thesis presented the DIS as a unified formalism for integrating structured data
and conceptual knowledge. Through the formal definition of its components, DDV,
DOnt, and their connecting mappings, the DIS provides a solid foundation for spec-
ifying and reasoning over knowledge systems. Its implementation in Isabelle/HOL
demonstrates that formally grounded ontologies can be built directly from data, and
validated through machine-checked inference.

By combining a modular, algebraic and relational structure with support for auto-
mated reasoning, DIS bridges the gap between practical data-driven modelling and
the rigour of formal logic. The contributions of this work, ranging from formal theory
development to automated tooling and verified reasoning, highlight the potential of
DIS to serve as both a conceptual and operational framework for structured knowl-
edge engineering. The use of templates and semi-automated processes to generate DIS
implementation lays the foundation for the continued convergence of formal methods
and real-world data systems.

118

Appendix A

DIS Model Proofs

In this appendix, we provide proofs for the DIS model, described in Chapter 4.

A.1 Operators on Data Properties
In this section, we present the proofs for the properties described in Section 4.3.3.
We remind the reader that the set comprehension is given as

␣

E | x . R
(

, where E,
x, and R are the expression, (set of) variable(s), and range, respectively. In addition,
all statements of the form A Ď B are proved by showing that the equivalent equation
AXB “ A holds.

For some of the proofs below, we use the following fact: for any s P U , T1, T2 Ď U :

s R T2 ùñ
`␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X ’T2
˘

“ tu (A.1)

Equation A.1 is due to the fact that ’pT2q can contain no tps , vqu s-values, as s R T2.
Proof for Equation A.1 is done by induction on T2:
Step 1: T2 “ tu. The proof is trivial, using the definition of ’ , ’T2 “ tu, and the
annihilator for X axiom.
Step 2: IH: s R T2 ùñ

`␣

dt Y tps , vqu | dt, v . dt P ’T1 ^ v P s
(

X ’T2
˘

“ tu.
Show that for any s1 P U , s R pT2 Y ts1uq ùñ

`␣

dt Y tps , vqu | dt, v . dt P ’T1 ^
v P s

(

X ’pT2 Y ts
1uq

˘

“ tu.
Case 1: s1 P T2 is trivial, as it reduces to the IH.
Case2: s1 R T2

␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X ’pT2 Y ts
1uq

== x Definition of ’ (4.1) y
␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X
`

’T2 Y
␣

dt1 Y tps 1, v 1qu | dt1, v1 . dt1 P’T2 ^ v1 P s1
(˘

119

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

== x Distributivity of X over Y y
`␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X ’T2
˘

Y
`␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X
␣

dt1 Y tps 1, v 1qu | dt1, v1 . dt1 P’T2 ^ v1 P s1
(˘

== x IH y

tu Y
`␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X
␣

dt1 Y tps 1, v 1qu | dt1, v1 . dt1 P’T2 ^ v1 P s1
(˘

== x Annihilator for Y y
␣

dtY tps , vqu | dt, v . dt P’T1 ^ v P s
(

X
␣

dt1 Y tps 1, v 1qu | dt1, v1 . dt1 P’T2 ^ v1 P s1
(

== x y

== x y

tu

Proof for Proposition (4.3.2) is done by induction on T 1, with assumption T 1 Ď T :
Step 1: T 1 “ tu

’T 1 X ’T
== x Assumption T 1 “ and Definition of ’ (4.1) y
tuX ’T

== x Annihilator of X y
tu

== x Assumption T 1 “ and Definition of ’ (4.1) y
’T 1

Step 2: Induction hypothesis (IH): T 1 Ď T ùñ ’T 1 X ’T “’T 1 . For any s P U ,
we show that pT 1 Y tsuq Ď T ùñ ’pT 1 Y tsuq Ď’T .
Case 1: s P T 1 is trivial, as it reduces to the IH.
Case 2: s R T 1 and it is immediate that s P T , due to assumption pT 1 Y tsuq Ď T .
The proof will use the additional fact:

`␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X
␣

dtY tps , vqu | dt, v . dt P’pT ztsuq ^ v P s
(˘

“
␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

(A.2)

Equation A.2 is based on the assumptions s R T 1 and T 1 Ď T , thus T 1 Ď pT ztsuq,
and, due to IH, ’T 1 Ď’pT ztsuq .

120

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

’pT 1 Y tsuq X ’T
== x Definition of ’ (4.1) y
p’T 1 Y

␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

qX ’T
== x Distributivty of X over Y y
p’T 1 X ’T q Y p

␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X ’T q
== x IH y

’T 1 Y p
␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X ’T q
== x Assumption s P T y

’T 1 Y p
␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X ’ppT ztsuq Y tsuq q
== x Definition of ’ (4.1) y

’T 1 Y
`␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X p’pT ztsuq Y
␣

dtY tps , vqu | dt, v . dt P’pT ztsuq ^ v P s
(

q
˘

== x Distributivty of X over Y y
’T 1 Y

`␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X ’pT ztsuq
˘

Y
`␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

X
␣

dtY tps , vqu | dt, v . dt P’pT ztsuq ^ v P s
(˘

== x Equations (A.1), (A.2) y
’T 1 Y tu Y

␣

dtY tps , vqu | dt, v . dt P’T 1 ^ v P s
(

== x Annihilator for Y and Definition of ’ (4.1) y
’pT 1 Y tsuq

Proof for Proposition (4.3.3), for any s P U , T Ď U , with assumption s P T , is
immediate from s P T ðñ tsu Ď T and Proposition 4.3.2.

Proof for Proposition (4.3.4) is done by induction on the first argument, T1 Ď U and
any T2 Ď U .
Step 1: T1 “ tu

’pT1 X T2q
== x Assumption T1 “ tu y

’ptu X T2q
== x Annihilator of X y

’tu

== x Definition of ’ (4.1) y
tu

== x Annihilator of X y
tu X ’T2

== x Definition of ’ (4.1) y
’tu X ’T2

== x Assumption T1 “ tu y

121

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

’T1 X ’T2
== x Definition of ’ (4.1) y

’T1 X ’T2

Step 2: Induction hypothesis (IH): T1, T2 Ď, ’ pT1 X T2q “’T1 X ’T2 . We show
that for any s P U , ’

`

pT1 Y tsuq X T2
˘

“’pT1 Y tsuq X ’T2 .
Case 1: s P T1 is trivial, as it reduces to the IH.
Case 2: s R T1 ^ s R T2

LH: ’
`

pT1 Y tsuq X T2
˘

== x Distributivity of X over Y y
’
`

pT1 X T2q Y ptsu Y T2q
˘

== x Assumption s R T2 and a R A ðñ tau X A “ tu y
’
`

pT1 X T2q Y tu
˘

== x Annihilator for Y y
’pT1 X T2q

== x IH y

’T1 X ’T2

RH: ’pT1 Y tsuq X ’T2
== x Definition of ’ (4.1) y
`

’T1 Y
␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(˘

X ’T2
== x Distributivity of X over Y y
p’T1 X ’T2 q Y

`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X ’T2
˘

== x Equation (A.1) y
p’T1 X ’T2 q Y tu

== x Annihilator for Y y
’T1 X ’T2

Case 3: s R T1 ^ s P T2 With these assumption, it is immediate that

T1X pT2ztsuq “ T1 X T2 (A.3)
’T1 X ’pT2ztsuq “’T1 X ’T2 (A.4)

LH: ’
`

pT1 Y tsuq X T2
˘

== x Distributivity of X over Y y
’
`

pT1 X T2q Y ptsu Y T2q
˘

== x Assumption s P T2 y
’
`

pT1 X T2q Y tsu
˘

== x Definition of ’ p4.1q y

122

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

’pT1 X T2q Y
␣

pdtY tps , vquq | dt, v . dt P’pT1 X T2q ^ v P s
(

RH: ’pT1 Y tsuq X ’T2
== x Assumption s P T2 y

’pT1 Y tsuq X ’
`

pT2ztsuq Y tsu
˘

== x Definition of ’ (4.1) y
`

’T1 Y
␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(˘

X
`

’pT2ztsuq Y
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

== x Distributivity of X over Y y
`

’T1 X ’pT2ztsuq
˘

Y
`

’T1 X
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X ’pT2ztsuq
˘

Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

== x Equation (A.4) y
`

’T1 X ’T2
˘

Y
`

’T1 X
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X ’pT2ztsuq
˘

Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

== x Assumption s R T1 and Equation (A.1) y
`

’T1 X ’T2
˘

Y tu Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X ’pT2ztsuq
˘

Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

== x s R pT2ztsu and Equation (A.1) y
`

’T1 X ’T2
˘

Y tu Y tu Y
`␣

pdtY tps , vquq | dt, v . dt P’T1 ^ v P s
(

X
␣

pdtY tps , vquq | dt, v . dt P’pT2ztsuq ^ v P s
(˘

== x Distributivity of X over set comprehension y
`

’T1X ’T2
˘

YtuYtuY
␣

pdtYtps , vquq | dt, v . dt P p’T1X ’pT2ztsuqq ^ v P s
(

== x Annihilator for Y y
`

’T1 X ’T2
˘

Y
␣

pdtY tps , vquq | dt, v . dt P p’T1 X ’pT2ztsuq q ^ v P s
(

== x Equation (A.4) y
`

’T1 X ’T2
˘

Y
␣

pdtY tps , vquq | dt, v . dt P p’T1 X ’T2 q ^ v P s
(

== x IH y

’pT1 X T2q Y
␣

pdtY tps , vquq | dt, v . dt P’pT1 X T2q ^ v P s
(

Thus, LH = RH for all cases of the induction hypothesis step.

Proof for Proposition (4.3.5), for any κ, λ P and v P κ. Case 1: κ ‰ λ:

123

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

tpκ, vqu
§

đ

λ

““ x Definition of
ŕ

ő (4.5) y
tps , vq | s . ps , vq P tpκ, vqu ^ s ‰ λu

== x x P tyu ðñ x “ y, Variable replacing, s “ κ y
tpκ, vq | κ ‰ λu

== x Assumption κ ‰ λ y
tpκ, vqu

Proof for Proposition (4.3.5), for any any κ, λ P and v P κ. Case 2: κ “ λ:

tpκ, vqu
§

đ

λ

““ x Definition of
ŕ

ő (4.5) y
tps , vq | s . ps , vq P tpκ, vqu ^ s ‰ λu

== x x P tyu ðñ x “ y, Variable replacing, s “ κ y
tpκ, vq | κ ‰ λu

== x Assumption κ “ λ, Contradiction, P ^ ␣P “ False y
tpκ, vq | Falseu

== x tx | Falseu “ tu y
tu

Proof for Proposition (4.3.6), for any κ P U , a P A, and @dt P a. κ
—
P dt:

a
ŕ

ő

κ
X a

ŋ

ŕ

κ

== x Definition of
ŕ

ő (4.6) y
tdt

§

đ

κ
| dt . dt P au X a

ŋ

ŕ

κ

== x Definition of
ŋ

ŕ (4.8), with κ P U , a P A, and @dt P a. κ
—
P dt y

tdt
§

đ

κ
| dt . dt P au X

␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| dt, v . dt P a ^ v P κ
(

== x Variable renaming, both sets y
tx | x, dt . x “ dt

§

đ

κ
^ dt P au X

tx | x, dt, v . x “
`

dt
§

đ

κ
Y tpκ, vqu

˘

^ dt P a ^ v P κu
== x tE | R1 ^ R2u ðñ tE | R1u X tE | R2u y

tx | x, dt, v . x “ dt
§

đ

κ
^ x “

`

dt
§

đ

κ
Y tpκ, vqu

˘

^ dt P a ^ v P κu
== x Contradiction, by Definition (4.5), x “ dt

§

đ

κ
contains no κ s-values y

tx | Falseu
== x Set Comprehension y
tu

Proof for Proposition (4.3.7), Equation (1), for any κ P U and any dt1, dt2 P SDM:

124

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

pdt1 Y dt2q
§

đ

κ

““ x Definition of
§

đ (4.5) y
tps , vq | s, v . ps , vq P pdt1 Y dt2q ^ s ‰ κu

““ x Axiom, Union, x P X1 YX2 ðñ x P X1 _ x P X2 y

tps , vq | s, v .
`

ps , vq P dt1 _ ps , vq P dt2
˘

^ s ‰ κu
““ x Distributivity of ^ over _ y
tps , vq | s, v .

`

ps , vq P dt1 ^ s ‰ κ
˘

_
`

ps , vq P dt2 ^ s ‰ κ
˘

u

““ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y

tps , vq | s, v . ps , vq P dt1 ^ s ‰ κu Y tps , vq | s, v . ps , vq P dt2 ^ s ‰ κu
““ x Definition of

§

đ (4.5), twice y
dt1

§

đ

κ
Y dt2

§

đ

κ

Proof for Proposition (4.3.7), Equation (2), for any κ P U and any dt1, dt2 P SDM:

pdt1 X dt2q
§

đ

κ

““ x Definition of
§

đ (4.5) y
tps , vq | s, v . ps , vq P pdt1 X dt2q ^ s ‰ κu

““ x Axiom, Intersection, x P X1 XX2 ðñ x P X1 ^ x P X2 y

tps , vq | s, v .
`

ps , vq P dt1 ^ ps , vq P dt2
˘

^ s ‰ κu
““ x Commutativity and Idempotency of ^ (for s ‰ κ) y
tps , vq | s, v .

`

ps , vq P dt1 ^ s ‰ κ
˘

^
`

ps , vq P dt2 ^ s ‰ κ
˘

u

““ x tE | R1 ^ R2u ðñ tE | R1u X tE | R2u y

tps , vq | s, v . ps , vq P dt1 ^ s ‰ κu X ts, v | ps , vq . ps , vq P dt2 ^ s ‰ κu
““ x Definition of

§

đ (4.5), twice y
dt1

§

đ

κ
X dt2

§

đ

κ

Proof for Proposition (4.3.7), Equation (3), for any κ P U and any a, b P A:

paY bq
ŕ

ő

κ

““ x Definition of
ŕ

ő (4.6) y
tdt

§

đ

κ
| dt . dt P paY bqu

““ x Axiom, Union, x P X1 _ x P X2 ðñ x P X1 YX2 y

tdt
§

đ

κ
| dt . dt P a _ dt P bqu

““ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y

tdt
§

đ

κ
| dt . dt P au Y tdt

§

đ

κ
| dt . dt P bu

““ x Definition of
ŕ

ő (4.6), twice y
a
ŕ

ő

κ
Y b

ŕ

ő

κ

125

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

Proof for Proposition (4.3.7), Equation (4), for any κ P U and any a, b P A is done by
showing that paX bq

ŕ

ő

κ
X pa

ŕ

ő

κ
X b

ŕ

ő

κ
q “ paX bq

ŕ

ő

κ

paX bq
ŕ

ő

κ
X pa

ŕ

ő

κ
X b

ŕ

ő

κ
q

== x A “ AY pAXBq y
paX bq

ŕ

ő

κ
X
`

paY paX bqq
ŕ

ő

κ
X pbY paX bqqq

ŕ

ő

κ

˘

== x Associativity of X y

paX bq
ŕ

ő

κ
X paY paX bqq

ŕ

ő

κ
X pbY paX bqqq

ŕ

ő

κ

== x Proposition (4.3.7), Equation (3) y
paX bq

ŕ

ő

κ
X pa

ŕ

ő

κ
Y paX bq

ŕ

ő

κ
q X pb

ŕ

ő

κ
Y paX bq

ŕ

ő

κ
q

== x AX pAYBq “ A, twice y
paX bq

ŕ

ő

κ

Thus, paX bq
ŕ

ő

κ
Ď pa

ŕ

ő

κ
X b

ŕ

ő

κ
q.

Proof for Proposition (4.3.7), Equation (5), for any κ P U and any a, b P A:

paY bq
ŋ

ŕ

κ

““ x Definition of
ŋ

ŕ (4.8) y
Ť

tdt
İ

§

κ
| dt . dt P paY bqu

““ x Axiom, Union, x P X1 _ x P X2 ðñ x P X1 YX2 y
Ť

tdt
İ

§

κ
| dt . dt P a _ dt P bu

““ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y
Ť
`

tdt
İ

§

κ
| dt . dt P au Y tdt

İ

§

κ
| dt . dt P bu

˘

== x Union composition y
Ť

tdt
İ

§

κ
| dt . dt P au Y

Ť

tdt
İ

§

κ
| dt . dt P bu

““ x Definition of
ŋ

ŕ (4.8), twice y
a
ŋ

ŕ

κ
Y b

ŋ

ŕ

κ

Proof for Proposition (4.3.7), Equation (6), for any κ P U and any a, b P A is done by
showing that paX bq

ŋ

ŕ

κ
X pa

ŋ

ŕ

κ
X b

ŋ

ŕ

κ
q “ paX bq

ŋ

ŕ

κ

paX bq
ŋ

ŕ

κ
X pa

ŋ

ŕ

κ
X b

ŋ

ŕ

κ
q

== x A “ AY pAXBq y
paX bq

ŋ

ŕ

κ
X ppaY paX bqq

ŋ

ŕ

κ
X pbY paX bqq

ŋ

ŕ

κ
q

== x Associativity of X y
paX bq

ŋ

ŕ

κ
X ppaY paX bqq

ŋ

ŕ

κ
q X ppbY paX bqq

ŋ

ŕ

κ
q

== x Proposition(4.3.7), Equation (5) y
paX bq

ŋ

ŕ

κ
X pa

ŋ

ŕ

κ
Y paX bq

ŋ

ŕ

κ
q X pb

ŋ

ŕ

κ
Y paX bq

ŋ

ŕ

κ
q

== x AX pAYBq “ A, twice y
paX bq

ŋ

ŕ

κ

126

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

Thus, paX bq
ŋ

ŕ

κ
Ď a

ŋ

ŕ

κ
X b

ŋ

ŕ

κ.

Proof for Proposition (4.3.8), Equation (1), for any κ P U and any dt P SDM:

pdt
§

đ

κ
q
§

đ

κ

““ x Definition of
§

đ (4.5) y
tps , vq | s, v . ps , vq P dt

§

đ

κ
^ s ‰ κ ^ v P su

““ x Definition of
§

đ (4.5) y
tps , vq | s, v .

“

ps , vq P tps 1, v 1q | s1, v1 . ps 1, v 1q P dt ^ s1 ‰ κ ^ v1 P s1u ^
s ‰ κ ^ v P s

‰

u

== x x P tx | x . Ru ðñ R y
tps , vq | s, v . ps , vq P dt ^ s ‰ κ ^ s ‰ κu

““ x Idempotency of ^ y
tps , vq | s, v . ps , vq P dt ^ s ‰ κu

““ x Definition of
§

đ (4.5) y
dt
§

đ

κ

Proof for Proposition (4.3.8), Equation (2), for any κ P U and dt P SD
Case 1: κ ­

—
P dt

pdt
İ

§

κ
q
ŋ

ŕ

κ

== x Definition of
ŋ

ŕ (4.8) y
Ť

tdt1
İ

§

κ
| dt1 . dt1 P dt

İ

§

κ
u

== x Definition of
İ

§ (4.7) y
Ť

tdt1
İ

§

κ
| dt1 . dt1 P tdtuu

== x Set comprehension tEx | x . x P tyuu “ tEyu y
Ť

tdt
İ

§

κ
u

== x Union axiom
Ť

tAu “ A y
dt
İ

§

κ

Case 2: κ
—
P dt

pdt
İ

§

κ
q
ŋ

ŕ

κ

== x Definition of
ŋ

ŕ (4.8) y
Ť

tdt1
İ

§

κ
| dt1 . dt1 P dt

İ

§

κ
u

== x Definition of
İ

§ (4.7) y
Ť
␣

dt1
İ

§

κ
| dt1 . dt1 P

␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| v . v P κ
((

== x Variable replacing: x P tyu ðñ x “ y y
Ť
␣`

dt
§

đ

κ
Y tpκ, vqu

İ̆

§

κ
| v . v P κ

(

127

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

== x Definition of
İ

§ (4.7) y
Ť
␣

tpdt
§

đ

κ
Y tpκ, vquq

§

đ

κ
Y tpκ, v 1qu | v1 . v1 P κu | v . v P κ

(

== x Definition of
§

đ (4.5) y
Ť
␣

tpdt
§

đ

κ
q
§

đ

κ
Y tpκ, v 1qu | v1 . v1 P κu | v . v P κ

(

== x Set comprehension, unbound variable v P κ and κ P U ùñ κ ‰ tu y
Ť
␣

tpdt
§

đ

κ
q
§

đ

κ
Y tpκ, v 1qu | v1 . v1 P κu

(

== x Proposition (4.3.8), Equation (1) y
Ť
␣

tdt
§

đ

κ
Y tpκ, v 1qu | v1 . v1 P κu

(

== x Definition of
İ

§ (4.7) y
Ť

tdt
İ

§

κ
u

== x Union axiom
Ť

tAu “ A y
dt
İ

§

κ

Proof for Proposition (4.3.8), Equation (3), for any κ P U and any a P A:

pa
ŕ

ő

κ
q
ŕ

ő

κ

== x Definition of
ŕ

ő (4.6) y
tdt

§

đ

κ
| dt . dt P a

ŕ

ő

κ
u

== x Definition of
ŕ

ő (4.6) y
tdt

§

đ

κ
| dt . dt P tdt1

§

đ

κ
| dt1 . dt1 P auu

== x x P tx | x . Ru ðñ R y
tdt

§

đ

κ
| dt . dt “ dt1

§

đ

κ
^ dt1 P au

== x Variable replacing, dt “ dt1
§

đ

κ
y

tpdt1
§

đ

κ
q
§

đ

κ
| dt1 . dt1 P au

== x Idempotency of
§

đ (4.3.9), (1) y
tdt1

§

đ

κ
| dt1 . dt1 P au

== x Definition of
ŕ

ő (4.6) y
a
ŕ

ő

κ

Proof for Proposition (4.3.8), Equation (4), for any κ P U and any a P A:

pa
ŋ

ŕ

κ
q
ŋ

ŕ

κ

== x Definition of
ŋ

ŕ (4.8) y
`
Ť

tdt
İ

§

κ
| dt . dt P au

˘
ŋ

ŕ

κ

== x Proposition (4.3.7), Equation (5) y
Ť
`

tdt
İ

§

κ
| dt . dt P au

ŋ̆

ŕ

κ

== x Applying a function on a set y
Ť

tpdt
İ

§

κ
q
ŋ

ŕ

κ
| dt . dt P au

== x Proposition (4.3.8), Equation (2) y

128

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

Ť

tdt
İ

§

κ
| dt . dt P au

== x Definition of
ŋ

ŕ (4.8) y
a
ŋ

ŕ

κ

Proof for Proposition (4.3.9), Equation (1), for any κ, λ P U and dt P SDM:

pdt
§

đ

κ
q
§

đ

λ

== x Definition of
§

đ (4.5), applied to λ y
tps , vq | s, v . ps , vq P dt

§

đ

κ
^ s ‰ λu

== x Definition of
§

đ (4.5), applied to κ y
tps , vq | s, v . ps , vq P tps 1, v 1q | s1, v1 . ps 1, v 1q P dt ^ s1 ‰ κu ^ s ‰ λu

== x x P tx | x . Ru ðñ R y
tps , vq | s, v . ps , vq P dt ^ s ‰ κ ^ s ‰ λu

== x Commutativity of ^ y
tps , vq | s, v . ps , vq P dt ^ s ‰ λ ^ s ‰ κu

== x x P tx | x . Ru ðñ R y
tps , vq | s, v . ps , vq P tps 1, v 1q | s1, v1 . ps 1, v 1q P dt ^ s1 ‰ λu ^ s ‰ κu

== x Definition of
§

đ (4.5), applied to λ y
tps , vq | s, v . ps , vq P dt

§

đ

λ
^ s ‰ κu

== x Definition of
§

đ (4.5), applied to κ y
pdt

§

đ

λ
q
§

đ

κ

Proof for Proposition (4.3.9), Equation (2), for any κ, λ P U and a P A:

pa
ŕ

ő

κ
q
ŕ

ő

λ

““ x Definition of
ŕ

ő (4.6), applied to λ y
␣

dt
§

đ

λ
| dt . dt P a

ŕ

ő

κ

(

““ x Definition of
ŕ

ő (4.6), applied to κ y
␣

dt
§

đ

λ
| dt . dt P

␣

dt1
§

đ

κ
| dt1 . dt1 P a

((

== x x P tx | x . Ru ðñ R, replace variable dt with dt1
§

đ

κ
y

␣

pdt1
§

đ

κ
q
§

đ

λ
| dt1 . dt1 P a

(

““ x Associativity of
§

đ (4.3.9), (1) y
␣

pdt1
§

đ

λ
q
§

đ

κ
| dt1 . dt1 P a

(

== x Variable renaming, dt1
§

đ

λ
“ dt y

␣

dt
§

đ

κ
| dt . dt “ dt1

§

đ

λ
^ dt1 P a

(

““ x x P tx | x . Ru ðñ R y
␣

dt
§

đ

κ
| dt . dt P tdt1

§

đ

λ
| dt1 . dt1 P au

(

““ x Definition of
ŕ

ő (4.6), applied to λ y
␣

dt
§

đ

κ
| dt . dt P a

ŕ

ő

λ

(

129

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

““ x Definition of
ŕ

ő (4.6), applied to κ y
pa
ŕ

ő

λ
q
ŕ

ő

κ

130

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

Proof for Proposition (4.3.9), Equation (3), for κ, λ P U , κ ‰ λ and a P A.
Case 1: κ ‰ λ:

pa
ŋ

ŕ

κ
q
ŋ

ŕ

λ

““ x Definition of
ŋ

ŕ (4.8), applied to λ y
␣`

dt
§

đ

λ
Y tpλ, vqu

˘

| dt, v . dt P a
ŋ

ŕ

κ
^ v P λ

(

““ x Definition of
ŋ

ŕ (4.8), applied to κ y
␣`

dt
§

đ

λ
Y tpλ, vqu

˘

| dt, v . dt P
␣`

dt1
§

đ

κ
Y tpκ, v 1qu

˘

| dt1, v1 . dt1 P a ^ v1 P κ
(

^

v P λ
(

== x x P tx | x . Ru ðñ R y
␣`

dt
§

đ

λ
Y tpλ, vqu

˘

| dt, v, dt1, v1 . dt “
`

dt1
§

đ

κ
Y tpκ, v 1qu

˘

^ dt1 P a ^ v1 P κ ^ v P

λ
(

““ x Variable replacing, dt “
`

dt1
§

đ

κ
Y tpκ, v 1qu

˘

y
␣``

dt1
§

đ

κ
Y tpκ, v 1qu

˘
§

đ

λ
Y tpλ, vqu

˘

| v, dt1, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x
§

đ preserves Y (4.3.7), (1) y
␣“

pdt1
§

đ

κ
q
§

đ

λ
Y tpκ, v 1qu

§

đ

λ
Y tpλ, vqu

‰

| dt1, v, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x Assumption κ ‰ λ, Proposition (4.3.5) y
␣“

pdt1
§

đ

κ
q
§

đ

λ
Y tpκ, v 1qu Y tpλ, vqu

‰

| dt1, v, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x Associativity of
§

đ (4.3.9), 1 y
␣“

pdt1
§

đ

λ
q
§

đ

κ
Y tpκ, v 1qu Y tpλ, vqu

‰

| dt1, v, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x Commutativity of Y y
␣“

pdt1
§

đ

λ
q
§

đ

κ
Y tpλ, vqu Y tpκ, v 1qu

‰

| dt1, v, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x Assumption κ ‰ λ, Proposition (4.3.5) y
␣“

pdt1
§

đ

λ
q
§

đ

κ
Y tpλ, vqu

§

đ

κ
Y tpκ, v 1qu

‰

| dt1, v, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x
§

đ preserves Y (4.3.7), (1) y
␣“`

dt1
§

đ

λ
Y tpλ, vqu

˘
§

đ

κ
Y tpκ, v 1qu

‰

| dt1, v, v1 . dt1 P a ^ v1 P κ ^ v P λ
(

““ x Variable replacing, dt “
`

dt1
§

đ

λ
Y tpλ, vqu

˘

y
␣`

dt
§

đ

κ
Y tpκ, v 1qu

˘

| dt, dt1, v, v1 . dt “
`

dt1
§

đ

λ
Y tpλ, vqu

˘

^ dt1 P a ^ v1 P κ ^ v P

λ
(

== x Commutativity of ^ y
␣`

dt
§

đ

κ
Y tpκ, v 1qu

˘

| dt, dt1, v, v1 . dt “
`

dt1
§

đ

λ
Y tpλ, vqu

˘

^ dt1 P a ^ v P λ ^ v1 P

κ
(

== x x P tx | x . Ru ðñ R y
␣`

dt
§

đ

κ
Y tpκ, v 1qu

˘

| dt, v1 . dt P
␣`

dt1
§

đ

λ
Y tpλ, vqu

˘

| dt1, v . dt1 P a ^ v P λ
(

^

v1 P κ
(

““ x Definition of
ŋ

ŕ (4.8), applied to λ y
␣`

dt
§

đ

κ
Y tpκ, v 1qu

˘

| dt, v1 . dt P a
ŋ

ŕ

λ
^ v1 P κ

(

““ x Definition of
ŋ

ŕ (4.8), applied to κ y
pa
ŋ

ŕ

λ
q
ŋ

ŕ

κ

131

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

Proof for Proposition (4.3.9), Equation (3). Case 2, for κ “ λ is immediate, as both
sides of the equation reduce to a

ŋ

ŕ

κ, due to associativity of
ŋ

ŕ operator.

132

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

Proof for Proposition (4.3.10), Equation (1) , for any κ P U and a P A:

tauκ Y rasκ

““ x Definitions for tu and rs operators (4.9), (4.10) y
tdt | dt P a ^ ␣Dv P κ. pκ, vq P dtu Y tdt | dt P a ^ Dv P κ. pκ, vq P dtu

““ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y

tdt | dt P a ^ ␣Dv P κ. pκ, vq P dt _ dt P a ^ Dv P κ. pκ, vq P dtu
““ x Distributivity of X over Y y
tdt | dt P a ^ p␣Dv P κ. pκ, vq P dt _ Dv P κ. pκ, vq P dtqu

““ x Law of excluded middle, P _ ␣P ðñ True y
tdt | dt P a _ Trueu

““ x P _ True ðñ P y
tdt | dt P au

““ x Extensionality of sets y
a

Proof for Proposition (4.3.10), Equation (2), for any κ P U and a P A:

tauκ X rasκ

““ x Definitions for tu and rs operators (4.9), (4.10) y
tdt | dt P a ^ ␣Dv P κ. pκ, vq P dtu X tdt | dt P a ^ Dv P κ. pκ, vq P dtu

““ x tE | R1 ^ R2u ðñ tE | R1u X tE | R2u y

tdt | dt P a ^ ␣Dv P κ. pκ, vq P dt ^ dt P a ^ Dv P κ. pκ, vq P dtu
““ x Contradiction, P ^ ␣P ðñ False y
tdt | dt P a ^ Falseu

““ x Zero of ^ y
tdt | Falseu

““ x tx | Falseu “ tu y
tu

Proof for Proposition (4.3.11), we use a few helper equations. Based on Definitions
(4.8) and (4.7), we have
a
ŋ

ŕ

κ
“ tdt | dt P a ^ ␣pκ

—
P dtqu Y

␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| dt, v . dt P a ^ κ
—
P dt ^ v P κ

(

It is immediate that we can re-write the following:
␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| dt, v . dt P a ^ κ
—
P dt ^ v P κ

(

“ rasκ YX, where
X “

␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| dt, v . dt P a ^ κ
—
P dt ^ v P κ ^

`

dt
§

đ

κ
Y tpκ, vqu

˘

R a
(

.

133

Ph.D. Thesis - Alicia Marinache15 McMaster - Software Engineering

Thus, we have the following helper equations:

a
ŋ

ŕ

κ
“ tauκ Y rasκ YX (A.5)

X X tauκ “ tu (A.6)
X X rasκ “ tu (A.7)

Proof for Proposition (4.3.11), Equation (1), for any any κ P U and a P A:

tauκ X a
ŋ

ŕ

κ

““ x Equation (A.5) y
tauκ X ptauκ Y rasκ YXq

““ x Distributivity of X over Y y
ptauκ X tauκq Y ptauκ X rasκq Y ptauκ XXq

““ x Idempotency of X, Proposition (4.3.10)(2), Equation (A.6) y
tauκ

Proof for Proposition (4.3.11), Equation (2), for any any κ P U and a P A:

rasκ X a
ŋ

ŕ

κ

““ x Equation (A.5) y
rasκ X ptauκ Y rasκ YXq

““ x Distributivity of X over Y y
prasκ X tauκq Y pras

κ X rasκq Y prasκ XXq
““ x Idempotency of X, Proposition (4.3.10)(2), Equation (A.7) y

rasκ

Proof for Proposition (4.3.11), Equation (3), for any any κ P U and a P A:

aX a
ŋ

ŕ

κ

== x Proposition (4.3.10)(1) y
ptauκ Y rasκq X a

ŋ

ŕ

κ

== x Distributivity of X over Y y
ptauκ X a

ŋ

ŕ

κ
q Y prasκ X a

ŋ

ŕ

κ
q

== x Proposition (4.3.11), Equations (1), (2) y
tu Y rasκ

== x tu neutral element for Y y
rasκ

The proofs for Proposition (4.3.11), Equations (4), (5), and (6) are similar, as they
are the duals of the above equations, and they have been omitted.
Proof for Proposition (4.3.12), Equation (1) for κ P U and a, b P A:

134

Ph.D. Thesis - Alicia Marinache16 McMaster - Software Engineering

rasκ X tbuκ
““ x Definition of tu (4.9) y

rasκ X tdt | dt P b ^ ␣Dv P κ. pκ, vq P dtu
== x Definition of rs (4.10) y
tdt | dt P a ^ Dv P κ. pκ, vq P dtu X tdt | dt P b ^ ␣Dv P κ. pκ, vq P dtu

““ x tE | R1 ^ R2u ðñ tE | R1u X tE | R2u y

tdt | dt P a ^ Dv P κ. pκ, vq P dt ^ dt P b ^ ␣Dv P κ. pκ, vq P dtu
== x Contradiction R ^ ␣R “ False y
tdt | dt P a ^ dt P b ^ Falseu

== x Zero of ^ y
tdt | Falseu

== x tx | Falseu “ tu y
tu

135

Ph.D. Thesis - Alicia Marinache17 McMaster - Software Engineering

Proof for Proposition (4.3.12), Equation (2) for κ P U and a, b P A:

rasκ X b
ŕ

ő

κ

== x Definition of rs (4.10) y
tdt | dt . dt P a ^ Dv P κ. pκ, vq P dtu X b

ŕ

ő

κ

== x Definition of
ŕ

ő (4.6) y
tdt | dt . dt P a ^ Dv P κ. pκ, vq P dtu X tdt

§

đ

κ
| dt . dt P bu

== x Variable renaming, dt “ dt1
§

đ

κ
y

tdt | dt . dt P a ^ Dv P κ. pκ, vq P dtu X tdt | dt, dt1 . dt “ dt1
§

đ

κ
^ dt1 P au

== x Definition of
§

đ (4.5) y
tdt | dt . dt P a ^ Dv P κ. pκ, vq P dtu X
tdt | dt, dt1 . dt “ tps , vq | s, v . ps , vq P dt1 ^ s ‰ κu ^ dt1 P au

““ x tE | R1 ^ R2u ðñ tE | R1u X tE | R2u y

tdt | dt, dt1 . dt P a ^ Dv P κ. pκ, vq P dt ^
dt “ tps , vq | s, v . ps , vq P dt1 ^ s ‰ κu ^ dt1 P au

== x Contradiction dt “ tps , vq | s, v . ps , vq P dt1 ^ s ‰ κu and
Dv P κ. pκ, vq P dt y

tdt | dt, dt1 . dt1 P a ^ dt P a ^ Falseu
== x Zero of ^ y
tdt | Falseu

== x tx | Falseu “ tu y
tu

136

Ph.D. Thesis - Alicia Marinache18 McMaster - Software Engineering

A.2 Domain Data View Model
In this Section, we show that MA “

`

A,`, ‹,´,0,1, tcκuκPU
˘

is a diagonal-free cylin-
dric algebra. For that, we need to prove the following axioms withing MA:

(C1)
`

A,`, ‹,´,0,1
˘

is a Boolean algebra

(C2) cκ0 “ 0

(C3) a ď cκa

(C4) cκpa ‹ cκbq “ cκa ‹ cκb

(C5) cκcλa “ cλcκa

For Axiom (C1), we need to show the following axioms hold in our model:

(C1.1) The binary operators `, ‹ are associative, commutative, and distribute over
each other

(C1.2) Identity axiom for 0: a` 0 “ a

(C1.3) Annihilator axiom for 0: a ‹ 0 “ 0

(C1.4) Identity axiom for 1: a ‹ 1 “ a

(C1.5) Annihilator axiom for 1: a` 1 “ 1

(C1.6) 1st Complement axiom: a` p´aq “ 1

(C1.7) 2nd Complement axiom: a ‹ p´aq “ 0

Due to the definitions of ` (4.11) and ‹ (4.12), it is immediate that Axiom (C1.1)
holds in this model. Both Y and X are associative and commutative, and distribute
over each other. Similarly, showing the Axioms (C1.2) and (C1.3) hold is trivial.
This is done using the definitions for 0 (4.13), ` (4.11), ‹ (4.12), and the facts that
tu is the neutral element for Y and annihilator for X.

Axiom (C1.4) holds, for any a P A:

a ‹ 1
““ x Definition of ‹ (4.12) y
aX 1

““ x Definition of 1 (4.14) y
aX ’U

““ x A Ď B iff AXB “ A, Equation (4.2) y
a

137

Ph.D. Thesis - Alicia Marinache19 McMaster - Software Engineering

Axiom (C1.5) holds, for any a P A:

a` 1
““ x Definition of ` (4.11) y
aY 1

““ x Definition of 1 (4.14) y
aY ’U

““ x A Ď B iff AYB “ B, Equation (4.2) y
’U

““ x Definition of 1 (4.14) y
1

Using the definitions of ` (4.11) and ´ (4.15); and of ‹ (4.12) and ´ (4.15), the
complement Axioms (C1.6) and (C1.7) are trivial to show they hold for a P A. Thus,
Axiom (C1) holds.

Axiom (C2) holds, for any κ P U :

cκ0
““ x (Definition of cκ 4.16) y

0Y tdt
ŋ

ŕ

κ
| dt . dt P 0u

““ x Definition of 0 (4.13) y
0Y tdt

ŋ

ŕ

κ
| dt . dt P tuu

““ x x P tu ðñ False y
0Y tdt

ŋ

ŕ

κ
| Falseu

““ x tx | Falseu “ tu y
0Y tu

““ x Identity of Y) y
0

For Axiom (C3), we use the classic definition of ď, and to show that a ď cκa holds,
we need to show that a` cκa “ cκa for a P A:

a` cκa
ðñ x Definition of ` (4.11) y
aY cκa

ðñ x Definition of cκ (4.16) y
aY aY tdt

ŋ

ŕ

κ
| dt . dt P au

ðñ x Idempotency of Y y
aY tdt

ŋ

ŕ

κ
| dt . dt P au

138

Ph.D. Thesis - Alicia Marinache20 McMaster - Software Engineering

ðñ x Definition of cκ (4.16) y
cκa

Axiom (C4) holds for any a, b P A and κ P U :

cκpa ‹ cκbq
““ x Definition of cκ (4.16) y
pa ‹ cκbq Y pa ‹ cκbq

ŋ

ŕ

κ

““ x Definition of ‹ (4.12) y
paX cκbq Y paX cκbq

ŋ

ŕ

κ

== x Distributivity of
ŋ

ŕ over X (4.3.7), (5) y

paX cκbq Y pa
ŋ

ŕ

κ
X pcκbq

ŋ

ŕ

κ
q

““ x Definition of cκ (4.16) y
paX pbY b

ŋ

ŕ

κ
qq Y pa

ŋ

ŕ

κ
X pbY b

ŋ

ŕ

κ
q
ŋ

ŕ

κ
q

== x Distributivity of
ŋ

ŕ over X (4.3.7), (5) y

paX pbY b
ŋ

ŕ

κ
qq Y pa

ŋ

ŕ

κ
X pb

ŋ

ŕ

κ
Y pb

ŋ

ŕ

κ
q
ŋ

ŕ

κ
qq

== x Idempotency of
ŋ

ŕ (4.3.8), (4) y
paX pbY b

ŋ

ŕ

κ
qq Y pa

ŋ

ŕ

κ
X pb

ŋ

ŕ

κ
Y b

ŋ

ŕ

κ
qq

== x Idempotency of Y y
paX pbY b

ŋ

ŕ

κ
qq Y pa

ŋ

ŕ

κ
X b

ŋ

ŕ

κ
q

== x b
ŋ

ŕ

κ
“ bY b

ŋ

ŕ

κ, from Axiom (C3) y
paX pbY b

ŋ

ŕ

κ
qq Y pa

ŋ

ŕ

κ
X pbY b

ŋ

ŕ

κ
qq

== x Distributivity of X over Y y
paY a

ŋ

ŕ

κ
q X pbY b

ŋ

ŕ

κ
q

““ x Definition of cκ (4.16) y
cκaX cκb

““ x Definition of ‹ (4.12) y
cκa ‹ cκb

Axiom (C5) holds, for any κ, λ P U and a P A

cκcλa
““ x Definition of cκ (4.16), applied to κ y
cλaY pcλaq

ŋ

ŕ

κ

““ x Definition of cκ (4.16), applied to λ y
paY a

ŋ

ŕ

λ
q Y paY a

ŋ

ŕ

λ
q
ŋ

ŕ

κ

== x Distributivity of
ŋ

ŕ over Y (4.3.7),(5) y
aY a

ŋ

ŕ

λ
Y a

ŋ

ŕ

κ
Y pa

ŋ

ŕ

λ
q
ŋ

ŕ

κ

== x Associativity of
ŋ

ŕ (3), Commutativity of Y y

139

Ph.D. Thesis - Alicia Marinache21 McMaster - Software Engineering

aY a
ŋ

ŕ

κ
Y a

ŋ

ŕ

λ
Y pa

ŋ

ŕ

κ
q
ŋ

ŕ

λ

== x Distributivity of
ŋ

ŕ over Y (4.3.7),(5) y
paY a

ŋ

ŕ

κ
q Y paY a

ŋ

ŕ

κ
q
ŋ

ŕ

λ

““ x Definition of cκ (4.16), applied to κ y
cκaY pcκaq

ŋ

ŕ

κ

““ x Definition of cκ (4.16), applied to λ y
cλcκa

Thus, the structure MA “
`

A,`, ‹,´,0,1, tcκuκPU
˘

is a model for the DDV.

A.3 Domain Ontology Model
We remind the reader that the model for the DOnt component of a DIS consists of
three mathematical structures: MC “

`

CAtC ,‘, eC
˘

, ML “
`

LAtL ,‘,b,a, eC ,JL
˘

,
and MG “ tGtiutiPL,iPI , with the model for DOnt given by MO “

`

MC,ML,MG
˘

.
In this section, we show that MC is a commutative idempotent monoid, and ML is a
Boolean algebra.

To show that MC is a commutative idempotent monoid, we need to show that ‘ is
commutative and idempotent. This is immediate, from the definition of ‘ (4.17),
with Y a commutative, idempotent operator. In addition, the e

C
is the neutral

element for ‘, due to the definition of e
C

(4.18) and the fact that tu is the neutral
element for Y. Thus, MC is a commutative idempotent monoid.

Similar to the proofs for the DDV model, showing that ML is a Boolean algebra is
immediate. In addition, by construction, the graphs in MG are rooted in concepts of
the Boolean algebra, thus they are rooted graphs. Therefore, the structure MO is a
model for the DOnt component of the DIS theory.

A.4 Mapping operator
In this section, we show the properties of the type operator τ hold in the chosen
model. For that, we show that the type operator preserves the zero and one between
the two Boolean algebras of the DDV and DOnt (Axioms ((A15)), ((A16))), as well
as the plus operators (Axiom ((A17))). In addition, we provide the proofs for the
type operator results in Proposition (4.5.2).

Axiom (A15) holds for any a P A:

140

Ph.D. Thesis - Alicia Marinache22 McMaster - Software Engineering

τp0q
““ x Definition of τ (4.23) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P 0u

““ x Definition of 0 (4.13) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P tuu

““ x x P tu ðñ False y
tηpsv.sortq | Falseu

““ x tx | Falseu “ tu y
tu

““ x Definition of e
C

(4.18) y
e
C

Axiom (A16) holds for any a P A:

τp1q
““ x Definition of τ (4.23) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P 1u

““ x Definition of 1 (4.14) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P ’U u

““ x
::
Here I am lost completely on how to approach it y

tηpsv.sortq | sv . sv.sort P Uu
““ x By construction of A y
JL

Axiom (A17) holds for any a, b P A:

τpa` bq
““ x Definition of τ (4.23) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P pa` bqu

““ x Definition of ` (4.11) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P paY bqu

““ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y

tηpsv.sortq | sv, dt . sv P dt ^ pdt P a _ dt P bqu
== x Distributivity of ^ over _ y
tηpsv.sortq | sv, dt . psv P dt ^ dt P aq _ pps , vq P dt ^ dt P bqu

““ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y

tηpsv.sortq | sv, dt . sv P dt ^ dt P au Y tηpsv.sortq | sv, dt . sv P dt ^ dt P bu
““ x Definition of τ (4.23) y
τpaq Y τpbq

== x Definition of ‘ (4.17) y

141

Ph.D. Thesis - Alicia Marinache23 McMaster - Software Engineering

τpaq ‘ τpbq

Proof for Proposition (4.5.1), Equation (1), for κ P U and a P A:

ηpκq P τpa
ŋ

ŕ

κ
q

ðñ x Definition of
ŋ

ŕ (4.8) y
ηpκq P τp

␣`

dt
§

đ

κ
Y tpκ, vqu

˘

| dt, v . dt P a ^ v P κ
(

q

ðñ x Set comprehension y
ηpκq P τ

´

ď

dtPa

ď

vPκ

`

dt
§

đ

κ
Y tpκ, vqu

˘

¯

ðñ x Distrbutivity of τ over Y y
ηpκq P

ď

dtPa

ď

vPκ

τ
´

`

dt
§

đ

κ
Y tpκ, vqu

˘

¯

ðñ x Distrbutivity of τ over Y y
ηpκq P

ď

dtPa

ď

vPκ

rτpdt
§

đ

κ
q Y τptpκ, vquqs

ðñ x Definition of τ (4.23) y
ηpκq P

ď

dtPa

ď

vPκ

rτpdt
§

đ

κ
q Y tηpκqus

ðñ x Set membership y
True

142

Ph.D. Thesis - Alicia Marinache24 McMaster - Software Engineering

Proof for Proposition (4.5.1), Equation (2), for κ P U and a P A:

τpa
ŕ

ő

κ
q

== x Definition of τ (4.23) y
tηpsv.sortq | sv, dt . sv P dt ^ dt P a

ŕ

ő

κ
u

== x Definition of
ŕ

ő (4.6) y
tηpsv.sortq | sv, dt . sv P dt

§

đ

κ
^ dt P au

== x Definition of
§

đp4.5q y
tηpsv.sortq | sv, dt . sv P dt

§

đ

κ
^ dt P a ^ sv.sort ‰ κu

Thus, ηpκq cannot be a part of τpa
ŕ

ő

κ
q.

143

Ph.D. Thesis - Alicia Marinache25 McMaster - Software Engineering

For Proposition (4.5.2), we make the following notations, for any a, b P A

aazb “ tdt | dt P a ^ dt R bu (A.8)
aab “ tdt | dt P a ^ dt P bu (A.9)

It is immediate that

a “ aazb Y aab (A.10)
aazb X aab “ tu (A.11)
aazb X bbza “ tu (A.12)

aab “ bba (A.13)

We show that, for any a, b P A, the following equation holds:

a ‹ b “ aab (A.14)

a ‹ b
== x Definition of b (4.20) y
aX b

== x Notation (A.10), applied twice y
paazb Y aabq X pbbza Y bbaq

== x Distributivity of X, Y over each other y
paazb X bbzaq Y paazb X bbaq Y paab X bbzaq Y paab X bbaq

== x Equation (A.13), three times y
paazb X bbzaq Y paazb X aabq Y pbba X bbzaq Y paab X aabq

== x Equations (A.12), (A.11) y
tu Y tu Y tu Y paab X aabq

== x Zero of Y y
aab X aab

== x Idempotency of X y
aab

We show the following equation holds, for any a, b P A:

τpaqbτpbq “
`

τpaazbqXτpbbzaq
˘

Y
`

τpaazbqXτpaabq
˘

Y
`

τpaabqXτpbbzaq
˘

Yτpaabq (A.15)

τpaq b τpbq
““ x Equation (A.10) y
τpaazb Y aabq b τpbbza Y bbaq

““ x Definition of ` (4.11) y

144

Ph.D. Thesis - Alicia Marinache26 McMaster - Software Engineering

τpaazb ` aabq b τpbbza ` bbaq
““ x τ preserves ` ppA17qq y
`

τpaazbq ‘ τpaabq
˘

b
`

τpbbzaq ‘ τpbbaq
˘

““ x ‘, b distribute over each other y
`

τpaazbq b τpbbzaq
˘

‘
`

τpaazbq b τpbbaq
˘

‘
`

τpaabq b τpbbzaq
˘

‘
`

τpaabq b τpbbaq
˘

““ x Equation (A.13) y
`

τpaazbq b τpbbzaq
˘

‘
`

τpaazbq b τpbbaq
˘

‘
`

τpaabq b τpbbzaq
˘

‘
`

τpaabq b τpbbaq
˘

““ x Definitions of ‘ (4.17), X (4.20) y
`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X τpbbaq
˘

Y
`

τpaabq X τpbbzaq
˘

Y
`

τpaabq X τpbbaq
˘

““ x Equation (A.13) y
`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X τpbbaq
˘

Y
`

τpaabq X τpbbzaq
˘

Y
`

τpaabq X τpbbaq
˘

““ x Idempotency of X y
`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X τpaabq
˘

Y
`

τpaabq X τpbbzaq
˘

Y τpaabq

Proof for Proposition (4.5.2), Equation (2), for any a, b P A:

τpaq b τpbq “ e
C

ðñ x Equation (A.15) y
`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X τpaabq
˘

Y
`

τpaabq X τpbbzaq
˘

Y τpaabq “ e
C

ðñ x Definition of e
C

(4.18) y
`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X τpaabq
˘

Y
`

τpaabq X τpbbzaq
˘

Y τpaabq “ tu
ùñ x S Y T “ tu ùñ S “ tu, with S “ τpaabq y
τpaabq={}

ðñ x Equation (A.14) y
τpab bq={}

ðñ x Definition of e
C

(4.18) y
τpab bq “ e

C

145

Ph.D. Thesis - Alicia Marinache27 McMaster - Software Engineering

Proof for Proposition (4.5.2), Equation (3), for any a, b P A, using S Ď T ðñ

S X T “ S, for S “ τpa ‹ bq and T “ τpaq b τpbq:

τpa ‹ bq X
`

τpaq b τpbq
˘

== x Equation (A.14) y
τpaabq X

`

τpaq b τpbq
˘

““ x Equation (A.15) y
τpaabq X

“`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X τpaabq
˘

Y
`

τpaabq X τpbbzaq
˘

Y τpaabq
‰

== x S X pS Y T q “ S, with S “ τpaabq, T “
`

τpaazbq X τpbbzaq
˘

Y
`

τpaazbq X
τpaabq

˘

Y
`

τpaabq X τpbbzaq
˘

y

τpaabq
== x Equation (A.14) y
τpa ‹ bq

Proof for Proposition (4.5.2), Equation (4) is done by induction on T Ď U , for a P A.
Step 1: T “ tu

a “’T
ðñ x Assumption T “ tu y
a “’ptuq

ðñ x Definition of ’ (4.1) y
a “ tu

ùñ x Application of operator τ y
τpaq “ τptuq

ðñ x Equation ((A15)) y
τpaq “ tu

ðñ x Set comprehension y
τpaq “ tηpsq | s . s P tuu

ðñ x Assumption T “ tu y
τpaq “ tηpsq | s . s P T u

Step 2: T “ tsu, with s P U ,

a “’T
ðñ x Assumption T “ tsu y
a “’tsu

ðñ x Definition of ’ (4.1) y
a “

␣

tps , vqu | v . v P s
(

ùñ x Application of operator τ y
τpaq “ τp

␣

tps , vqu | v . v P s
(

q

146

Ph.D. Thesis - Alicia Marinache28 McMaster - Software Engineering

ðñ x Definition of τ (4.23) y
τpaq “ tηpsq | s . s P T u

Step 3: Induction hypothesis a “’T ùñ τpaq “ tηpsq | s P T u, T Ď U , a P A. We
show that for any s1 P U , s1 R T, a “’pT Y ts1uq ùñ τpaq “ tηpsq | s P pT Yts1uqu.

a “’pT Y ts1uq
ðñ x Definition of ’ (4.1) y
a “’T Y

␣

dtY tps 1, vqu | dt, v . dt P’T ^ v P s1
(

ùñ x Application of operator τ y
τpaq “ τ

´

’T Y
␣

dtY tps 1, vqu | dt, v . dt P’T ^ v P s1
(

¯

ðñ x Definition of ‘ (4.17), τ operator preserves ‘ ((A17)) y
τpaq “ τp’T q Y τp

␣

dtY tps 1, vqu | dt, v . dt P’T ^ v P s1
(

q

ðñ x Inductive hypothesis y
τpaq “ tηpsq | s . s P T u Y τp

␣

dtY tps 1, vqu | dt, v . dt P’T ^ v P s1
(

q

ðñ x Definition of τ (4.23) y
τpaq “ tηpsq | s . s P T u Y

tηpsq | s, v . ps , vq P
`

dtY tps 1, vqu
˘

^ v P s ^ dt P’T ^ v P s1u
ðñ x x P X1 YX2 ðñ x P X1 _ x P X2 y

τpaq “ tηpsq | s . s P T u Y
tηpsq | s, v .

`

ps , vq P dt _ ps , vq P tps 1, vqu
˘

^ v P s ^ dt P’T ^ v P s1u
ðñ x Distributivity of ^, _ over each other y
τpaq “ tηpsq | s . s P T u Y

tηpsq | s .
`

ps , vq P dt ^ v P s ^ dt P’T ^ v P s1
˘

_
`

ps , vq P tps 1, vqu ^ v P s ^ dt P’T ^ v P s1
˘

u

ùñ x ps , vq P dt ^ dt P’T ùñ s P T y
τpaq “ tηpsq | s . s P T u Y

tηpsq | s .
`

s P T _
`

ps , vq P tps 1, vqu ^ v P s
˘

u

ùñ x ps , vq P tps 1, vqu ùñ s P ts1u y
τpaq “ tηpsq | s . s P T u Y tηpsq | s . s P T _ s P ts1uu

ðñ x tE | R1 _ R2u ðñ tE | R1u Y tE | R2u y

τpaq “ tηpsq | s . s P T _ s P T _ s P ts1uu
ðñ x x P X1 YX2 ðñ x P X1 _ x P X2 y

τpaq “ tηpsq | s . s P pT Y T Y s P ts1uu
ðñ x Idempotency of Y y
τpaq “

␣

ηpsq | s . s P pT Y s P ts1uq
(

Proof for Proof for Proposition (4.5.2), Equation (5), for any a, b P A, and Ta, Tb Ď U ,
with a “’Ta ^ b “’Tb .

147

Ph.D. Thesis - Alicia Marinache29 McMaster - Software Engineering

τpa ‹ bq
““ x Definition of ‹ (4.12) y
τpaX bq

““ x Assumptions a “’Ta ^ b “’Tb y
τp’Ta X ’Tb q

== x Proposition (4.3.4) y
τp’pTa X Tbq q

== x Proposition (4.5.2), (4) y
tηpsq | s . s P Ta X Tbu

== x Set comprehension y
tηpsq | s . s P Tau X tηpsq | s . s P Tbu

== x Assumptions, and Proposition (4.5.2), (4) y
τpaq X τpbq

== x Definition of b (4.20) y
τpaq b τpbq

148

Appendix B

DIS Specification in Isabelle/HOL

This Appendix has been automatically generated by Isabelle/HOL, by applying the
document generator tool on the specifications written in Isabelle.

B.1 Set Comprehension Results
Domain Information System proofs use well-known set comprehension laws, that are
not found in the core of Isabelle/HOL and are proved in this section.

theory SetComprehension
imports

Main
begin

lemma setcomp_union: "{x. x P A Y B} = {x. x P A} Y {x. x P B}" by auto
lemma setcomp_int: "{x. x P A X B} = {x. x P A} X {x. x P B}" by auto
lemma setcomp_and: "{x| x. x P {y| y. y P A ^ P y} ^ Q x} =

{x| x. x P A ^ P x ^ Q x}"
by auto

lemma setcomp_congr0:
"{E x | x. (D y z. x = F y z) ^ Q x} = {E x | x y z. x = F y z ^ Q x}" by

simp
lemma setcomp_congr1:

assumes "
Ź

x y z. E x y z = F x y z"
shows "{E x y z | x y z. P x y z} = {F x y z| x y z. P x y z}"

using assms by auto
lemma setcomp_distr0:

"{x| x. (x P X ^ P x) _ (x P X ^ Q x)} =
{x| x. x P X ^ (P x _ Q x)}"

by auto

149

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

lemma setcomp_distr1:
"{x| x. (x P X ^ P x) _ (x P X ^ ␣(P x))} = {x| x. x P X}"

by auto
lemma setcomp_distr2:

"{x| x. (x P X ^ P x) ^ (x P X ^ ␣(P x))} = {}"
by auto

lemma set_image_union:
shows "{f x | x. x P A Y B} = {f x| x. x P A} Y {f x| x. x P B}"

proof -
have "{f x| x. x P A} = f‘A"

by (simp add: Setcompr_eq_image)
then show ?thesis

using Set.image_Un by auto
qed

lemma m: "X ­“{} ùñ Y ­“{} ùñ {{x| x. x P X} | v. v P Y} = {{x| x. x P

X}}"
by blast

lemma "
Ť

{A} = A"
by simp

lemma "{E x| x. x P {y}} = {E y}"
by simp

end

B.2 Inductive Finite Sets
Throughout the Universe and DDV theories, we use the fact that sorts and, ulti-
mately, both sdatas and sdatums are finite sets. In this section, we give the theory
of inductively defined finite sets, to support Universe and DDV proofs in using the
inductive rule.
theory FinIndSet

imports
Main

begin

inductive_set Fin where

150

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

emptyI: "{} P Fin" |
insertI: "A P Fin ùñ insert a A P Fin"

declare Fin.intros [intro]

lemma Fin_is_finite: "x P Fin ÐÑ finite x"
proof

show "x P Fin ùñ finite x"
using Fin.inducts by auto

then show "finite x ùñ x P Fin"
by (metis Fin.simps Finp_Fin_eq finite_ne_induct)

qed

end

B.3 Diagonal-free Cylindric algebra
theory DFCylindricAlgebra

imports
Main
"HOL.Boolean_Algebras"

begin

A diagonal-free algebra is a Boolean algebra with a cylindrification operator

locale dfcyl_algebra =
balg: abstract_boolean_algebra "mult" "plus" "compl" "zero" "one"
for mult :: "’a ñ ’a ñ ’a" (infixr "*" 70)
and plus :: "’a ñ ’a ñ ’a" (infixr "+" 65)
and compl :: "’a ñ ’a" ("~_" [81] 80)
and zero :: "’a" ("0")
and one :: "’a" ("1") +

fixes cyl :: "’b ñ ’a ñ ’a" ("c_ _" [91] 90)
and carrier :: "’a set"

assumes
ck_norm: "(ck 0) = 0"

and ck_mod: "x P carrier ùñ y P carrier ùñ (ck (x * (ck y))) = (ck
x) * (ck y)"

and ck_comm: "x P carrier ùñ (ck (cl x)) = (cl (ck x))"
begin
lemma (in dfcyl_algebra) ck_zero: "x + (ck 0) = x"

151

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

by (simp add: ck_norm)
end

end

B.4 Domain Data View Types
The Domain Data View is built using a Cylindric Algebra whose carrier set elements
are records of data. Usually, a record is represented as a tuple of values, each value
corresponding to an attribute in the dataset. Tuples are ordered structures, and the
cylindric algebra is based on a Boolean algebra. Thus, to achieve the commutativity of
the Boolean algebra operators, the records must be unordered. In our interpretation,
a record is a set of sdatum.

theory DDVTypes
imports

Main

begin

B.4.1 Polimorphic Type: Definitions
In Isabelle, sets are monomorphic, therefore we create a datatype dtype to simulate
polimorphic types. This is not a perfect solution, because datatypes are not extend-
able.

datatype dtype = Nat nat | Int int | Bool bool | Str string

To help construction of the generic dtype from concrete types, we provide translation
functions.

definition nat2dtype :: "nat set ñ dtype set"
where "nat2dtype s = {Nat n | n. n P s}"

definition int2dtype :: "int set ñ dtype set"
where "int2dtype s = {dtype.Int i | i. i P s}"

definition bool2dtype :: "bool set ñ dtype set"
where "bool2dtype s = {Bool b | b. b P s}"

definition str2dtype :: "string set ñ dtype set"
where "str2dtype s = {Str x | x. x P s}"

type_synonym sort = "dtype set"

152

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

B.4.2 Sorted-values, -datums, and -datas: Definitions
The svalue record is a pair (sort-name, sort-value). It is the foundation of transform-
ing a data record tuple (ordered structure) into a set of pairs (unordered structure).
In doing so, the usual operators on sets (union, intersection) ensure the commutativity
of operators required by the Boolean algebra.

type_synonym svalue = "string ˆ dtype"

definition make_svalue :: "string ñ dtype ñ svalue" ("x_, _y") where
"xs, vy = (s, v)"

definition sname :: "svalue ñ string" where "sname x = fst x"
definition sval :: "svalue ñ dtype" where "sval x = snd x"

The following type synonyms are syntactic sugar, to simplify notation and under-
standing of the Domain Data View (DDV) structures. A set of svalues is abbreviated
as an sdatum, and a set of sdatums is abbreviated as an sdata. The carrier set of the
cylidric algebra consists of sdatas.

type_synonym sdatum = "svalue set"
type_synonym sdata = "sdatum set"

definition is_sdwf :: "sdatum ñ bool"
where "is_sdwf dt ” True"

B.4.3 Sorted-values: Properties
lemma svalue_eq [iff]: "x = y ÐÑ (sname x = sname y ^ sval x = sval y)"

by (metis prod_eqI sname_def sval_def)

lemma svalue_neq_fst: "sname x ­“ sname y ùñ x ­“ y"
by auto

lemma svalue_neq_snd: "sval x ­“ sval y ùñ x ­“ y"
by auto

end

B.5 Domain Data View Universe
The foundational element of the Domain Data View is a finite set of sorts, called the
universe. The sorts are given by the attributes of the dataset and each sort consists

153

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

of a finite set of values.

theory DDVUniverse
imports DDVTypes

FinIndSet
"HOL-Library.FuncSet"

begin

locale universe =
fixes U :: "sort set"

and sort2name :: "sort ñ string"
and name2sort :: "string ñ sort"

assumes U_notempty: "U ­“ {}"
and U_fin: "finite U"
and U_sorts_fin: "s P U ùñ finite s"
and U_sorts_notempty: "s P U ùñ s ­“ {}"
and sort2name_inj: "

Ź

x y. x P U ùñ y P U ùñ sort2name x =
sort2name y ùñ x = y"

and sort2name_fun: "
Ź

x y. x P U ùñ y P U ùñ x ­“ y ùñ sort2name
x ­“ sort2name y"

and sort2name2sort: "sort2name (name2sort n) = n"
and name2sort2name: "

Ź

s. s P U ùñ name2sort (sort2name s) = s"
begin

Syntactic sugar for svalue construction

definition svalue_constr :: "sort ñ dtype ñ svalue" ("xx_, _yy") where
"xxs, vyy = xsort2name s, vy"

definition sort_eq :: "svalue ñ sort ñ bool" (infix "=S" 55) where
"sv =S k ” sname sv = sort2name k"

definition sort_neq :: "svalue ñ sort ñ bool" (infix " ­“S" 55) where
"sv ­“S k ” sname sv ­“ sort2name k"

lemma sort_svalue: "sname xxs, vyy = sort2name s"
by (simp add: make_svalue_def svalue_constr_def sname_def)

B.5.1 Universe operators: Definitions
Extension operator ext is used to construct SV, the set of all possible svalues in the
Universe.

definition ext :: "sort ñ svalue set" where
"ext s = {xxs, vyy | v. v P s}"

154

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

definition SV :: "svalue set" where
"SV =

Ť

{ext s | s. s P U}"

SD, the set of all possible sdatas in the Universe, is defined using the ’ operator,
which in turn is defined through a special Carthesian product operator, pcart.

definition pcart :: "svalue set set ñ svalue set set" where
"pcart A = {X. D f. f P X Ñ A ^ inj_on f X ^ (@ xPX. x P f x)}"

definition bow :: "sort set ñ svalue set set" ("’") where
"’U = pcart (ext ‘ U)"

definition SD :: "sdatum set" where
"SD = ’U"

end

B.5.2 Universe operators: Properties
Properties of Carthesian product operator

context universe
begin
lemma (in universe) pcartI:

assumes "f P X Ñ A" "inj_on f X" "
Ź

x. x P X ùñ x P f x"
shows "X P pcart A"
using assms by (auto simp: pcart_def)

lemma (in universe) pcartE:
assumes "X P pcart A"
obtains f where "f P X Ñ A" "inj_on f X" "

Ź

x. x P X ùñ x P f x"
using assms by (auto simp: pcart_def)

lemma (in universe) pcart_mono:
assumes "A Ď B"
shows "pcart A Ď pcart B"
using assms unfolding pcart_def by fast

lemma (in universe) pcart_zero: "pcart {} = {{}}"
using pcart_def by blast

lemma (in universe) pcart_insert:
assumes "a R A"

155

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

shows "pcart (insert a A) = pcart A Y {insert x y |x y. x P a ^ y P

pcart A}"
proof (intro equalityI subsetI)

fix X assume "X P pcart (insert a A)"
then obtain f where f: "f P X Ñ insert a A" "inj_on f X" "

Ź

x. x P X
ùñ x P f x"

using pcartE by blast
show "X P pcart A Y {insert x y |x y. x P a ^ y P pcart A}"
proof (cases "a P f ‘ X")

case False
have "X P pcart A"
proof (rule pcartI)

show "f P X Ñ A"
using f False by (auto simp: Pi_def)

qed (use f in auto)
thus ?thesis

by blast
next

case True
obtain xa where xa: "xa P X" "a = f xa"

using True by blast
have fa: "f P X-{xa} Ñ A" "inj_on f X" "

Ź

x. x P X-{xa} ùñ x P f x"
proof -

show "
Ź

x. x P X-{xa} ùñ x P f x"
using xa f(3) by auto

show "inj_on f X"
using f(2) by auto

then have f01: "
Ź

x. x P X-{xa} ùñ f x ­“ a"
using f(2) xa by (auto simp: inj_on_contraD)

then have f02: "
Ź

x. x P X ùñ f x P insert a A"
using f(1) by auto

then have "
Ź

x. x P X-{xa} ùñ f x P A"
using f01 f02 by auto

then show "f P X-{xa} Ñ A"
using xa f(1) by auto

qed
have X_xa: "X - {xa} P pcart A"

using pcartI xa fa by (meson inj_on_diff)
have "{xa} P {insert x y |x y. x P a ^ y P pcart A}"

using f pcart_def xa
proof -

have "{} P {P. D f. f P P Ñ A ^ inj_on f P ^ (@ p. p P P ÝÑ p P f
p)}"

156

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

by simp
then have "D p P. {xa} = insert p P ^ p P a ^ P P pcart A"

by (metis (lifting) f(3) pcart_def xa(1) xa(2))
then show ?thesis

by fastforce
qed
then show ?thesis

using X_xa
by (smt (verit, del_insts) UnI2 f insert_Diff mem_Collect_eq xa)

qed
next

fix X assume "X P pcart A Y {insert x y |x y. x P a ^ y P pcart A}"
thus "X P pcart (insert a A)"
proof

assume "X P pcart A"
thus "X P pcart (insert a A)"

using pcart_mono by blast
next

assume "X P {insert x y |x y. x P a ^ y P pcart A}"
then obtain x X’ where *: "X = insert x X’" "x P a" "X’ P pcart A"

by blast
then obtain f’ where f’: "f’ P X’ Ñ A" "inj_on f’ X’" "

Ź

x’. x’ P
X’ùñ x’ P f’ x’"

using pcartE by blast
show "X P pcart (insert a A)"
proof (cases "x P X’")

case True
then show ?thesis using f’ *

by (metis insert_absorb pcart_mono subsetD subset_insertI)
next

case False
obtain f where f: "f ” (λw. if w = x then a else f’ w)"

by auto
show ?thesis
proof (rule pcartI)

show "f P X Ñ insert a A"
using f f’ assms * Pi_I Pi_mem
by (smt (verit) insert_iff)

show "inj_on f X"
using f f’ assms *
by (smt (verit) Pi_iff inj_on_def insert_iff)

show "
Ź

x. x P X ùñ x P f x"
using f f’ assms *

157

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

by (metis insertE)
qed

qed
qed

qed
end

Properties of sort extension operator

context universe
begin

lemma (in universe) extI:
assumes "v P s"
shows "xxs, vyy P ext s"
using assms by (auto simp: ext_def)

lemma (in universe) extE:
assumes "xxs, vyy P ext s"
obtains v where "v P s"
using assms by (auto simp: ext_def)

lemma (in universe) ext_zero:
"ext {} = {}"
using ext_def by auto

lemma (in universe) ext_nzero:
assumes "s ­“ {}"
shows "ext s ­“ {}"

proof -
obtain v where v: "v = (SOME x. x P s)"

using assms by auto
then have "xxs, vyy P ext s"

using v ext_def assms some_in_eq by auto
thus ?thesis by auto

qed

lemma (in universe) svconstr_neq_v:
assumes "v1 ­“ v2 "
shows "xxs, v1yy ­“ xxs, v2yy"
using svalue_constr_def make_svalue_def assms svalue_neq_snd
by (metis old.prod.inject)

158

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

lemma (in universe) ext_v_nin_s:
assumes "v R s"
shows "xxs, vyy R ext s"
by (smt (verit, ccfv_threshold) assms ext_def mem_Collect_eq

svconstr_neq_v)

lemma (in universe) ext_neq_s:
assumes "s1 P U" "s2 P U" "s1 ­“ s2"
shows "ext s1 ­“ ext s2"

proof (cases "s1 ­“{} ^ s2 ­“{}")
case False
then show ?thesis using ext_zero ext_nzero False

by (metis assms(3))
next

case True
obtain v1 where v1: "v1 = (SOME x. x P s1)" using True by auto
obtain v2 where v2: "v2 = (SOME x. x P s2)" using True by auto
have ev1: "xxs1, v1yy P ext s1"

by (simp add: True extI some_in_eq v1)
have ev2: "xxs2, v2yy P ext s2"

by (simp add: True extI some_in_eq v2)
have "xxs1, v1yy ­“ xxs2, v2yy"

using assms sort2name_fun svalue_neq_fst
by (metis sort_svalue)

then show ?thesis
using True ev1 ev2
by (smt (verit) assms ext_def mem_Collect_eq name2sort2name sort_svalue)

qed

lemma (in universe) ext_eq:
assumes "s1 P U" "s2 P U" "ext s1 = ext s2"
shows "s1 = s2"
using assms ext_neq_s by auto

lemma (in universe) ext_inserta0:
assumes "a P U" "A Ď U" "ext a P ext ‘ A"
shows "a P A"

proof -
obtain x where x: "x P A" "ext a = ext x"

using assms by auto
then have "a = x"

using ext_eq x(2) assms(1) assms(2) by auto
thus ?thesis using x(1) by auto

159

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

qed

lemma (in universe) ext_inserta:
assumes "a P U" "A Ď U" "a R A"
shows "(ext a) R (ext ‘ A)"
using ext_inserta0 assms by auto

end

Properties of bow operator

context universe
begin

lemma (in universe) bow_mono:
assumes "A Ď B"
shows "’ A Ď ’ B"
using assms pcart_mono bow_def
by (simp add: image_mono)

Definition 4.1 (induction base)

lemma (in universe) bow_zero: "’{} = {{}}"
using bow_def pcart_zero by auto

Definition 4.1 (induction hypothesis)

lemma bow_insert:
assumes "a P U" "A Ď U" "a R A"
shows "’ (insert a A) = ’ A Y {insert x y |x y. x P ext a ^ y P ’ A}"

proof -
have "’ (insert a A) = pcart (insert (ext a) (ext ‘ A))"

using Set.image_insert bow_def by auto
then have "pcart (insert (ext a) (ext ‘ A)) = pcart (ext ‘ A) Y

{insert x y |x y. x P ext a ^ y P pcart (ext ‘ A)}"
using pcart_insert ext_inserta assms by auto

thus ?thesis using bow_def by auto
qed

lemma (in universe) bow_sg:
assumes "s P U"
shows "’{s} = {{}} Y {{x}| x. x P ext s}"

using bow_insert bow_zero assms by auto

lemma (in universe) bow_zero_mono:
assumes "T Ď U"

160

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

shows "{} P ’T"
using bow_insert bow_zero bow_mono assms
by force

end

context universe
begin

Proposition 4.3.2

lemma (in universe) sdprod_s_in_T:
assumes "T Ď U" "s P T"
shows "’{s} X ’T = ’{s}"

proof-
from assms obtain T’ where T’: "T’ = T - {s}" by auto
then show ?thesis
proof (cases "T’={}")

case True
then show ?thesis using True assms

by (metis Int_absorb T’ insert_Diff)
next

case False
then show ?thesis

using assms(2) bot.extremum bow_mono inf.orderE insert_subsetI by
blast

qed
qed

end

end

B.6 Domain Data View Boolean Algebra
The DomainDataView theory is built on top of a cylindric algebra, which, in turn,
is built on top of a Boolean Algebra. In this section, we define the DDV Boolean
Algebra theory DDV_BA and describe its properties.

theory DDV_BA
imports

DDVUniverse
"HOL.Boolean_Algebras"

161

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

"HOL-Algebra.Group"
begin
locale ddv_ba = universe +

assumes a_in_SD: "
Ź

a::sdata. a Ď SD"
begin

B.6.1 Boolean Algebra Operators: Definitions
DDV Boolean algebra operators: plus, star, zero, one, and complements

definition plus :: "sdata ñ sdata ñ sdata" (infixl "+" 80) where
"a + b = a Y b"

definition star :: "sdata ñ sdata ñ sdata" (infixl "*" 70) where
"a * b = a X b"

definition zero :: "sdata" ("0") where
"0 = {}"

definition one :: "sdata" ("1") where
"1 = SD"

definition compl :: "sdata ñ sdata" ("-") where
"-a = 1 - a"

definition carrier_set :: "sdata set" ("AA") where
"AA ” Pow SD"

lemma (in ddv_ba) dt_in_SD: "dt P SD ùñ {dt} P AA"
using carrier_set_def by auto

end

B.6.2 Boolean Algebra Operators: Properties
Properties of closure on carrier set

context ddv_ba
begin
lemma (in ddv_ba) one_closed: "1 P AA"

by (simp add: carrier_set_def local.one_def)

lemma (in ddv_ba) a_in_one:
assumes "a P AA"

shows "a Ď 1"
using assms one_def carrier_set_def by auto

lemma (in ddv_ba) a_in_one0: "a Ď 1"

162

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

using a_in_SD a_in_one one_def by auto

lemma (in ddv_ba) compl_closed:
assumes "a P AA"
shows "-a P AA"
using assms carrier_set_def compl_def one_def by auto

lemma (in ddv_ba) plus_closed:
assumes "a P AA" "b P AA"
shows "a + b P AA"
using assms a_in_one carrier_set_def one_def plus_def by auto

lemma (in ddv_ba) zero_closed: "0 P AA"
using zero_def carrier_set_def by auto

lemma (in ddv_ba) star_closed:
assumes "a P AA" "b P AA"
shows "a * b P AA"
using assms a_in_one carrier_set_def one_def star_def by auto

end

Properties of plus operator

context ddv_ba
begin
lemma (in ddv_ba) plus_comm: "a + b = b + a"

by (simp add: Un_commute plus_def)

lemma (in ddv_ba) plus_assoc: "a + (b + c) = (a + b) + c"
by (simp add: Un_assoc plus_def)

lemma (in ddv_ba) plus_zero_r: "a + 0 = a"
by (simp add: plus_def zero_def)

lemma (in ddv_ba) plus_zero_l: "0 + a = a"
by (simp add: plus_def zero_def)

lemma (in ddv_ba) plus_one_r:
assumes "a P AA"
shows "a + 1 = 1"
using assms one_def carrier_set_def plus_def by auto

end

163

Ph.D. Thesis - Alicia Marinache15 McMaster - Software Engineering

Properties of star operator

context ddv_ba
begin
lemma (in ddv_ba) star_comm: "a * b = b * a"

by (simp add: Int_commute star_def)

lemma (in ddv_ba) star_assoc: "a * (b * c) = (a * b) * c"
by (simp add: Int_assoc star_def)

lemma (in ddv_ba) star_one_r:
assumes "a P AA"
shows "a * 1 = a"
using assms one_def star_def carrier_set_def by auto

lemma (in ddv_ba) star_one_l:
assumes "a P AA"
shows "1 * a = a"
using assms star_one_r star_comm by auto

lemma (in ddv_ba) star_zero_r: "a * 0 = 0"
by (simp add: star_def zero_def)

end

Properties of distributivity of plus/star operators over each other

context ddv_ba
begin

lemma (in ddv_ba) plus_distr_star: "c * (a + b) = (c * a) + (c * b)"
by (simp add: Int_Un_distrib plus_def star_def)

lemma (in ddv_ba) plus_distr_star2: "(a + b) * c = (a * c) + (b * c)"
by (simp add: Int_Un_distrib2 plus_def star_def)

lemma (in ddv_ba) star_distr_plus: "c + (a * b) = (c + a) * (c + b)"
by (simp add: Un_Int_distrib plus_def star_def)

lemma (in ddv_ba) star_distr_plus2: "(a * b) + c = (a + c) * (b + c)"
by (simp add: Un_Int_distrib2 plus_def star_def)

end

164

Ph.D. Thesis - Alicia Marinache16 McMaster - Software Engineering

Properties of complement operator

context ddv_ba
begin
lemma (in ddv_ba) complement_star: "a * -a = 0"

using star_def compl_def zero_def by simp

lemma (in ddv_ba) complement_plus:
assumes "a P AA"
shows "a + -a = 1"
using assms plus_def compl_def one_def a_in_one plus_one_r by auto

lemma (in ddv_ba) complement_plus0: "a + -a = 1"
using complement_plus a_in_SD carrier_set_def one_def by auto

end

B.6.3 DDV Boolean Algebra: Properties
Two monoids within the DDV

context ddv_ba
begin
interpretation plus_monoid: comm_monoid "p|carrier = AA, mult = (+), one =
0|q"

apply unfold_locales
— Carrier set is closed over Plus
apply (simp add: plus_closed)
— Plus is associative
apply (simp add: plus_assoc)
— Zero is in the carrier set
apply (simp add: zero_closed)
— Zero is neutral element for plus
apply (simp add: plus_zero_l)
apply (simp add: plus_zero_r)
— Plus is commutative
apply (simp add: plus_comm)
done

interpretation star_monoid: comm_monoid "p|carrier = AA, mult = (*), one =
1|q"

apply unfold_locales
— Carrier set is closed over Star
apply (simp add: star_closed)

165

Ph.D. Thesis - Alicia Marinache17 McMaster - Software Engineering

— Star is associative
apply (simp add: star_assoc)
— One is in the carrier set
apply (simp add: one_closed)
— One is neutral elements for Star
apply (simp add: star_one_l)
apply (simp add: star_one_r)
— Star is commutative
apply (simp add: star_comm)
done

end

The DDV as a model for a Boolean algebra

context ddv_ba
begin

The Isabelle/HOL Boolean algebra is using a few extra operators (substract and
ordering). In this section, we define them using the classic set definitions, and we
show some of their properties, to be used by Boolean algebra interpretation proof)

definition minus :: "sdata ñ sdata ñ sdata" (infixl "zA" 80) where
"a zA b = a - b"

definition lesseq :: "sdata ñ sdata ñ bool" (infixl "ďA" 85) where
"a ďA b = (a Ď b)"

definition less :: "sdata ñ sdata ñ bool" (infixl "<A" 85) where
"a <A b = (a Ă b)"

lemma (in ddv_ba) leI: "a <A b = (a ďA b ^ ␣ b ďA a)"
using less_def lesseq_def
by (simp add: dual_order.strict_iff_not)

lemma (in ddv_ba) le_refl: "a ďA a"
using lesseq_def by simp

lemma (in ddv_ba) le_trans:
assumes "a ďA b" "b ďA c"
shows "a ďA c"
using assms lesseq_def by simp

lemma (in ddv_ba) le_eq:
assumes "a ďA b" "b ďA a"
shows "a = b"
using assms lesseq_def by simp

lemma (in ddv_ba) le_star: "(a * b) ďA a"
using lesseq_def star_def by simp

166

Ph.D. Thesis - Alicia Marinache18 McMaster - Software Engineering

lemma (in ddv_ba) le_star_trans:
assumes "a ďA b" "a ďA c"
shows "a ďA (b * c)"
using assms lesseq_def star_def by auto

lemma (in ddv_ba) complement_minus:
assumes "a P AA" "b P AA"
shows "a zA b = a * -b"
using assms minus_def star_def compl_def a_in_one by force

lemma (in ddv_ba) complement_minus0:
shows "a zA b = a * -b"
using complement_minus a_in_SD carrier_set_def by auto

interpretation boolean_algebra "(zA)" "(-)" "(*)" "(ďA)" "(<A)" "(+)" "0"
"1"

apply unfold_locales
apply (simp add: leI)

apply (simp add: lesseq_def)
apply (simp add: lesseq_def)

apply (simp add: lesseq_def)
apply (simp add: lesseq_def star_def)

apply (simp add: lesseq_def star_def)
apply (simp add: lesseq_def star_def)

apply (simp add: lesseq_def plus_def)
apply (simp add: lesseq_def plus_def)

apply (simp add: lesseq_def plus_def)
apply (simp add: lesseq_def zero_def)

apply (simp add: lesseq_def a_in_one0)
apply (simp add: star_distr_plus)

apply (simp add: complement_star)
apply (simp add: complement_plus0)

apply (simp add: complement_minus0)
done

interpretation abstract_boolean_algebra "(*)" "(+)" "(-)" "0" "1"
by (simp add: local.boolean_algebra.abstract_boolean_algebra_axioms)

end

end

167

Ph.D. Thesis - Alicia Marinache19 McMaster - Software Engineering

B.7 Domain Data View Base
The DDV base theory is built on top of the DDV Boolean Algebra theory and it
describes the data operators and their properies.

theory DDV_Base
imports

DDV_BA
SetComprehension

begin

The DDV base is a DDV Boolean algebra with finite and well formed sdatums and
sdatas

locale ddv_base = ddv_ba +
assumes a_fin: "a P AA ùñ finite a"

and dt_fin: "
Ź

dt. dt P SD ùñ finite dt"
and dt_one_k: "

Ź

dt. dt P SD ùñ xxs, vyy P dt ùñ ␣(D v’. v’­“v ^ xxs,
v’yy P dt)"

and dt_v_in_k: "
Ź

dt. dt P SD ùñ xxs, vyy P dt ùñ v P s"
and dt_not_empty: "

Ź

a dt. a P AA ùñ dt P a ùñ dt ­“ {}"
begin

B.7.1 Data Operators: Definitions
Definition of reduce/extend data operators

Definition 4.4

definition reduce_sd :: "sdatum ñ sort ñ sdatum" ("_Ó_") where
"(dtÓk) = {sv| sv. sv P dt ^ sv ­“S k}"

Definition 4.6

definition reduce :: "sdata ñ sort ñ sdata" ("_ó_") where
"(aók) = {dtÓk| dt. dt P a}"

definition k_in_dt :: "sort ñ sdatum ñ bool" (infixl "P" 120) where
"k P dt = (D vP k. xxk, vyy P dt)"

definition k_nin_dt :: "sort ñ sdatum ñ bool" (infixl "R" 120) where
"k R dt = (␣(k P dt))"

definition k_in_a :: "sort ñ sdata ñ bool" (infixl "Pa" 101)
where "k Pa a = (D dt P a. k P dt)"

Definition 4.7

definition extend_sd :: "sdatum ñ sort ñ sdata" ("_Ò_") where

168

Ph.D. Thesis - Alicia Marinache20 McMaster - Software Engineering

"(dtÒk) = (if k R dt then {dt} else {(dtÓk) Y {xxk, vyy}| v. v P k})"

Definition 4.8

definition extend :: "sdata ñ sort ñ sdata" ("_ò_") where
"(aòk) =

Ť

{dtÒk| dt. dt P a}"

Definition of floored/raised data operators

Definition 4.11

definition floored :: "sdata ñ sort ñ sdata" (" t_u_") where
"(ta uk) = {dt. dt P a ^ k P dt}"

Definition 4.12

definition raised :: "sdata ñ sort ñ sdata" (" r_s_") where
"(ra sk) = {dt. dt P a ^ k R dt}"

end

B.7.2 Data Operators: Properties
Properties of data operators: helpers

context ddv_base
begin

lemma (in ddv_base) dt_in_SD:
shows "dt P SD"
using a_in_SD by auto

lemma (in ddv_base) dt_in_extenda:
assumes "dt P a"
shows "(dtÒk) Ď (aòk)"

using extend_def assms
by auto

lemma (in ddv_base) kv_nin_reduce:
assumes "dt P SD" "k P U" "v P k"
shows "xxk, vyy R (dtÓk)"
using assms dt_in_SD dt_v_in_k by auto

lemma (in ddv_base) k_nin_reduce:
assumes "dt P SD" "k P U"
shows "k R (dtÓk)"

169

Ph.D. Thesis - Alicia Marinache21 McMaster - Software Engineering

using assms kv_nin_reduce k_nin_dt_def k_in_dt_def by auto

lemma (in ddv_base) kv_nin_dt:
assumes "a P AA" "dt P a" "k R dt"
shows "␣(D v. xxk, vyy P dt)"
using assms dt_one_k k_nin_dt_def k_in_dt_def dt_v_in_k dt_in_SD by metis

lemma (in ddv_base) dt_has_kv:
assumes "a P AA" "dt P a"
shows "D k v. xxk, vyy P dt"
using assms a_fin dt_not_empty
using a_in_one0 one_closed by blast

lemma (in ddv_base) dt_and_reduce:
assumes "a P AA" "dt P a"
shows "dt = (dtÓk) Y {xxk, vyy}"
using assms dt_has_kv
using dt_in_SD local.one_def one_closed by auto

end

Properties of extend data operator w.r.t zero and one

context ddv_base
begin

lemma (in ddv_base) zero_ext: "((0)òk) = 0"
using zero_def extend_def
by simp

lemma (in ddv_base) one_ext: "((1)òk) = 1"
using one_def extend_def dt_in_SD dt_not_empty one_closed by fastforce

end

Properties of data operators ’, Ó, Ò, ó, ò

Proposition 4.3.5

context ddv_base
begin
lemma (in ddv_base) reduce_sd_kappa_on_kappa:

assumes "k P U"
shows "({xxk, vyy}Ók) = {}"

170

Ph.D. Thesis - Alicia Marinache22 McMaster - Software Engineering

proof -
have "({xxk, vyy}Ók) = {sv| sv. sv = xxk, vyy ^ sv ­“Sk}"

using reduce_sd_def assms by auto
then have "({xxk, vyy}Ók) = {sv| sv. False}"

using a_in_one0 dt_not_empty one_closed by blast
then show ?thesis by auto

qed

lemma (in ddv_base) reduce_sd_lambda_on_kappa:
assumes "k P U" "l P U" "k ­“ l"
shows "({xxk, vyy}Ól) = {xxk, vyy}"
using dt_in_SD dt_not_empty local.one_def one_closed by auto

end

Proposition 4.3.6

context ddv_base
begin
lemma (in ddv_base) disjoint_reduced_extended:

assumes "a P AA" "k Pa a"
shows "(aók) X (aòk) = {}"

proof -
have f: "a P Fin"

using assms a_fin Fin_is_finite by auto
then show ?thesis
proof (induct a)

case emptyI
then show ?case

using zero_def zero_ext by auto
next

case (insertI a dt)
then show ?case

by (meson all_not_in_conv dt_in_SD dt_v_in_k insertI1)
qed

qed
end

Proposition 4.3.7

context ddv_base
begin

Proposition 4.3.7, Eq.1

171

Ph.D. Thesis - Alicia Marinache23 McMaster - Software Engineering

lemma (in ddv_base) reducesd_distr_union: "((dt1 Y dt2)Ók) = (dt1Ók) Y
(dt2Ók)"

using reduce_sd_def setcomp_union by auto

Proposition 4.3.7, Eq.2

lemma (in ddv_base) reducesd_distr_int: "((dt1 X dt2)Ók) = (dt1Ók) X
(dt2Ók)"
proof -

have f1: "((dt1 X dt2)Ók) = {sv| sv. sv P dt1 X dt2 ^ sv ­“S k}"
using reduce_sd_def by auto

have f2: "{sv| sv. sv P dt1 X dt2 ^ sv ­“S k} =
{sv| sv. (sv P dt1 ^ sv ­“S k) ^ (sv P dt2 ^ sv ­“S k)}"

by auto
have "{sv| sv. (sv P dt1 ^ sv ­“S k) ^ (sv P dt2 ^ sv ­“S k)} =

{sv| sv. sv P dt1 ^ sv ­“S k} X {sv| sv. sv P dt2 ^ sv ­“S k}"
by blast

then show ?thesis
using f1 f2 reduce_sd_def by auto

qed

Proposition 4.3.7, Eq.3

lemma (in ddv_base) reduce_distr_union: "((a Y b)ók) = (aók) Y (bók)"
using reduce_def reduce_sd_def setcomp_union by auto

Proposition 4.3.7, Eq.4

lemma (in ddv_base) reduce_distr_int: "((a X b)ók) Ď (aók) X (bók)"
proof -

have f1: "((b Y (a X b))ók) = ((bók) Y ((a X b)ók))"
by (metis reduce_distr_union)

have "((a Y (a X b))ók) = ((aók) Y ((a X b)ók))"
by (metis reduce_distr_union)

then show ?thesis
using f1 by (simp add: sup.absorb_iff1 sup_inf_distrib2)

qed

Proposition 4.3.7, Eq.5

lemma (in ddv_base) extend_distr_union: "((a Y b)òk) = (aòk) Y (bòk)"
using extend_def setcomp_union by auto

Proposition 4.3.7, Eq.6

lemma (in ddv_base) extend_distr_int0: "((a X b)òk) Ď (aòk) X (bòk)"
proof -

have f1: "((b Y (a X b))òk) = ((bòk) Y ((a X b)òk))"

172

Ph.D. Thesis - Alicia Marinache24 McMaster - Software Engineering

by (metis extend_distr_union)
have "((a Y (a X b))òk) = ((aòk) Y ((a X b)òk))"

by (metis extend_distr_union)
then show ?thesis

using f1 by (simp add: sup.absorb_iff1 sup_inf_distrib2)
qed
end

Proposition 4.3.8

context ddv_base
begin

Proposition 4.4.6, Eq.1

lemma (in ddv_base) reducesd_idemp: "((dtÓk)Ók) = (dtÓk)"
proof -

have "((dtÓk)Ók) = {sv| sv. sv P (dtÓk) ^ sv ­“S k}"
using reduce_sd_def by auto

have "{sv| sv. sv P (dtÓk) ^ sv ­“S k} =
{sv| sv. sv P {sv’| sv’. sv’ P dt ^ sv’ ­“S k} ^ sv ­“S k}"

using reduce_sd_def by auto
have "{sv| sv. sv P {sv’| sv’. sv’ P dt ^ sv’ ­“S k} ^ sv ­“S k} =

{sv| sv. sv P dt ^ sv ­“S k}"
by blast

then show ?thesis using reduce_sd_def by auto
qed

Proposition 4.3.8, Eq.2

lemma (in ddv_base) extsd_idemp: "((dtÒk)òk) = (dtÒk)"
using dt_in_SD dt_not_empty local.one_def one_closed by auto

Proposition 4.3.8, Eq.3

lemma (in ddv_base) extend_idemp: "((aòk)òk) = (aòk)"
using dt_in_SD dt_not_empty local.one_def one_closed by auto

Proposition 4.3.8, Eq.4

lemma (in ddv_base) reduce_idemp: "((aók)ók) = (aók)"
proof -

have f1: "((aók)ók) = {dtÓk| dt. dt P (aók)}"
using reduce_def by auto

have f2: "{dtÓk| dt. dt P (aók)} =
{dtÓk| dt. dt P {dt’Ók| dt’. dt’ P a}}"

using reduce_def by auto
have f3: "{dtÓk| dt. dt P {dt’Ók| dt’. dt’ P a}} =

173

Ph.D. Thesis - Alicia Marinache25 McMaster - Software Engineering

{(dtÓk)Ók| dt. dt P a}" by auto
have f4: "{(dtÓk)Ók| dt. dt P a} = {dtÓk| dt. dt P a}"

using reducesd_idemp by auto
then show ?thesis using reduce_def f1 f2 f3 by auto

qed

end

Proposition 4.3.9

context ddv_base
begin

Proposition 4.3.9, Eq.1 - helper
lemma (in ddv_base) reduce_sd_assoc0: "((dtÓk)Ól) = {sv| sv. sv P dt ^

sv ­“Sk ^ sv ­“Sl}"
proof -

have f1: "((dtÓk)Ól) = {sv| sv. sv P (dtÓk) ^ sv ­“S l}"
using reduce_sd_def by auto

have f2: "{sv| sv. sv P (dtÓk) ^ sv ­“S l} =
{sv| sv. sv P {sv’| sv’. sv’ P dt ^ sv’ ­“Sk} ^ sv ­“Sl}"

using reduce_sd_def by auto
have f3: "{sv| sv. sv P {sv’| sv’. sv’ P dt ^ sv’ ­“Sk} ^ sv ­“Sl} =

{sv| sv. sv P dt ^ sv ­“Sk ^ sv ­“Sl}"
using setcomp_and by blast

then show ?thesis using f1 f2 by auto
qed

Proposition 4.3.9, Eq.1
lemma (in ddv_base) reducesd_assoc: "((dtÓk)Ól) = ((dtÓl)Ók)"

using reduce_sd_assoc0 by auto

Proposition 4.3.9, Eq.2 - helper
lemma (in ddv_base) reduce_assoc0: "((aók)ól) = {(dtÓk)Ól| dt. dt P a}"
proof -

have f1: "((aók)ól) = {dtÓl| dt. dt P (aók)}"
using reduce_def by auto

have f2: "{dtÓl| dt. dt P (aók)} = {dtÓl| dt. dt P {dt’Ók| dt’. dt’Pa}}"
using reduce_def by auto

have f3: "{dtÓl| dt. dt P {dt’Ók| dt’. dt’Pa}} =
{(dtÓk)Ól| dt. dt P a}"

by auto
then show ?thesis using f1 f2 by auto

qed

174

Ph.D. Thesis - Alicia Marinache26 McMaster - Software Engineering

Proposition 4.3.9, Eq.2

lemma (in ddv_base) reduce_assoc: "((aók)ól) = ((aól)ók)"
using reduce_def reducesd_assoc reduce_assoc0 by auto

Proposition 4.3.9, Eq.3 - helper

lemma (in ddv_base) extend_assoc_sg: "(({dt}òk)òl) = (({dt}òl)òk)"
proof -

consider (kl_in_dt) "k P dt ^ l P dt" |
(kl_nin_dt) "k R dt ^ l R dt" |
(k_in_dt) "k P dt ^ l R dt" |
(l_in_dt) "k R dt ^ l P dt"

using k_nin_dt_def by auto
then show ?thesis
proof cases

case kl_in_dt
then show ?thesis

using dt_in_SD dt_v_in_k by blast
next

case kl_nin_dt
then show ?thesis

using dt_in_SD dt_v_in_k by blast
next

case k_in_dt
then show ?thesis

using dt_in_SD dt_v_in_k by blast
next

case l_in_dt
then show ?thesis

using dt_in_SD dt_v_in_k by blast
qed

qed

Proposition 4.3.9, Eq.3

lemma (in ddv_base) extend_assoc:
assumes "a P AA"
shows "((aòk)òl) = ((aòl)òk)"

proof -
have "a P Fin"

using assms a_in_SD a_fin Fin_is_finite by auto
then show ?thesis
proof (induct a)

case emptyI
then show ?case

175

Ph.D. Thesis - Alicia Marinache27 McMaster - Software Engineering

using zero_def zero_ext by auto
next

case (insertI a dt)
show ?case
proof (cases "k=l")

case True
then show ?thesis by simp

next
case False
then show ?thesis

using extend_assoc_sg extend_distr_union
by (metis insertI.hyps(2) insert_is_Un)

qed
qed

qed

end

Proposition 4.3.10

context ddv_base
begin

Proposition 4.3.10, Eq.1

lemma (in ddv_base) floor_raise_union: "(ta uk) Y (ra sk) = a"
proof -

have f1: "(ta uk) Y (ra sk) = {dt. dt P a ^ k P dt } Y
{dt. dt P a ^ k R dt }"

using floored_def raised_def by auto
have f2: "{dt. dt P a ^ k P dt } Y

{dt. dt P a ^ k R dt } =
{dt. (dt P a ^ k P dt) _ (dt P a ^ k R dt) }"

by (simp add: Collect_disj_eq)
have "{dt. (dt P a ^ k P dt) _

(dt P a ^ k R dt) } =
{dt. dt P a}"

using k_nin_dt_def by auto
then show ?thesis using f1 f2 by auto

qed

Proposition 4.3.10, Eq.2

lemma (in ddv_base) floor_raise_disjoint: "(ta uk) X (ra sk) = {}"
proof -

176

Ph.D. Thesis - Alicia Marinache28 McMaster - Software Engineering

have f1: "(ta uk) X (ra sk) = {dt. dt P a ^ k P dt } X
{dt. dt P a ^ k R dt }"

using floored_def raised_def by auto
also have f2: "{dt. dt P a ^ k P dt } X

{dt. dt P a ^ k R dt } =
{dt. (dt P a ^ k P dt) ^ (dt P a ^ k R dt) }"

using Collect_conj_eq by auto
finally have "{dt. (dt P a ^ k P dt) ^ (dt P a ^ k R dt) } = {}"

using k_nin_dt_def by auto
thus ?thesis using f1 f2 by auto

qed

end

lemma (in ddv_base) absorb_extend: "((a X b)òk) Ď (aòk)"
proof -

have "(a = (a Y (a X b)))"
by blast

then show ?thesis
by (metis (no_types) extend_distr_union sup.absorb_iff1)

qed

end

B.8 Domain Data View
The Domain Data View is extending the base with the original dataset D, that may
be used for reasoning.

theory DomainDtVw
imports

DFCylindricAlgebra
DDV_Base

begin

type_synonym dataconcept = "sdata set"

locale domain_data_view = ddv_base +
fixes D :: "sdatum set"

begin

177

Ph.D. Thesis - Alicia Marinache29 McMaster - Software Engineering

B.8.1 Cylindrification Operator: Definition
definition cyl :: "sort ñ sdata ñ sdata" ("c_ _" 120) where

"(ck a) ”
Ť

{dtÒk| dt. dt P a}"

end

B.8.2 Cylindrification Operator: Properties
Axiom A.11

Axiom A.11 of DIS: ck 0 = 0

context domain_data_view
begin
lemma (in domain_data_view) cyl_zero: "(ck 0) = 0"

using cyl_def zero_def zero_ext
by simp

end

Proposition 4.4.11

Cylindrification distributes over plus: @ a b P AA. ck (a + b) = ck a + ck b

context domain_data_view
begin
lemma (in domain_data_view) cyl_plus_sg:

assumes "a P AA" and "dt P SD" and "dt R a"
shows "(ck ({dt} Y a)) = (ck {dt}) Y (ck a)"

proof -
have "a P Fin"

using assms a_in_SD a_fin Fin_is_finite by auto
then show ?thesis
proof (induct a)

case emptyI
then show ?case

using cyl_zero zero_def by auto
next

case (insertI a dt’)
then show ?case

using dt_in_SD dt_v_in_k by blast
qed

qed

lemma (in domain_data_view) cyl_plus:

178

Ph.D. Thesis - Alicia Marinache30 McMaster - Software Engineering

assumes "a P AA" "b P AA"
shows "(ck (a + b)) = (ck a) + (ck b)"

proof -
have f: "a P Fin"

using ‹a P AA› a_in_SD a_fin Fin_is_finite by auto
then show ?thesis
proof (induct a arbitrary: b)

case emptyI
then show ?case

using cyl_zero zero_def plus_def by auto
next

case (insertI a dt)
then show ?case
proof (cases "dt R a")

case True
then show ?thesis

by (meson Set.set_insert a_in_SD dt_v_in_k insert_subset
subset_insertI)

next
case False
then show ?thesis

by (simp add: insertI.hyps(2) insertI.prems insert_absorb)
qed

qed
qed
end

Axiom A.12

Axiom A.12 of DIS: @ a P AA. a < ck a

context domain_data_view
begin
lemma (in domain_data_view) cyl_le_sg:

assumes "k P U" "a P AA" "a = {dt}"
shows "a + (ck a) = (ck a)"

proof -
have f: "(ck a) = (dtÒk)"

using cyl_def assms by auto
then show ?thesis
proof (cases "k P dt")

case True
have "(dtÒk) = {(dtÓk) Y {xxk, vyy}| v. v P k}"

using extend_sd_def True k_nin_dt_def by auto

179

Ph.D. Thesis - Alicia Marinache31 McMaster - Software Engineering

obtain v::dtype where v: "(xxk, vyy P dt)"
using True k_in_dt_def by auto

have "dt = (dtÓk) Y {xxk, vyy}"
using assms dt_and_reduce v dt_in_SD dt_in_SD by blast

have "{dt} Y (dtÒk) = (dtÒk)"
using dt_in_SD dt_not_empty local.one_def one_closed by auto

then show ?thesis
using assms f plus_def by auto

next
case False
have "(ck a) = a"
proof -

have "(dtÒk) = {dt}"
using extend_sd_def False kv_nin_reduce k_nin_dt_def by auto

then show ?thesis using assms f by auto
qed
then show ?thesis

using plus_def assms by auto
qed

qed

lemma (in domain_data_view) cyl_le:
assumes "a P AA" "k P U"
shows "a + (ck a) = (ck a)"

proof -
have "a P Fin"

using assms a_fin a_in_SD Fin_is_finite by auto
then show ?thesis
proof (induct a)

case emptyI
then show ?case

using plus_zero_l zero_def by auto
next

case (insertI a dt)
then show ?case
proof (cases "dt P a")

case True
then show ?thesis

by (simp add: insertI.hyps(2) insert_absorb)
next

case False
have "(ck (a Y {dt})) = (ck a) Y (ck {dt})"

using cyl_plus plus_def dt_in_SD

180

Ph.D. Thesis - Alicia Marinache32 McMaster - Software Engineering

by (metis Diff_iff dt_v_in_k insertI1)
then have f: "(ck (insert dt a)) = (ck {dt}) Y (ck a)"

by (simp add: Un_commute)
have f3: "{dt} Y (ck {dt}) = (ck {dt})"

using assms cyl_le_sg cyl_plus_sg assms
using ddv_ba.dt_in_SD ddv_ba_axioms dt_in_SD plus_def by auto

then show ?thesis
using f insertI.hyps(2) plus_def by auto

qed
qed

qed
end

Proposition 4.4.12

Idempotency of cylindrification operator: @ a P SD. @ k P U. ck(ck a) = ck a

context domain_data_view
begin

lemma (in domain_data_view) cyl_assoc_sg:
assumes "dt P SD"
shows "(ck(ck {dt})) = (ck {dt})"

proof -
have f: "(ck {dt}) = (dtÒk)"

using cyl_def by auto
then show ?thesis
proof (cases "k P dt")

case False
have "(dtÒk) = {dt}"

using extend_sd_def False kv_nin_reduce k_nin_dt_def by auto
then show ?thesis using f by auto

next
case True

have f1: "(ck (ck {dt})) = (ck (dtÒk))"
using cyl_def by auto

have f2: "(ck(dtÒk)) =
Ť

{xÒk| x. x P (dtÒk)}"
using cyl_def by auto

have f3: "
Ť

{xÒk| x. x P (dtÒk)} =
Ť

{xÒk| x. x P {(dtÓk) Y {xxk, vyy}|
v. v P k}}"

using extend_sd_def True k_nin_dt_def by auto
have f4: "v P k ùñ k P ((dtÓk) Y {xxk, vyy})"

using k_in_dt_def by auto

181

Ph.D. Thesis - Alicia Marinache33 McMaster - Software Engineering

have f5: "
Ť

{xÒk| x. x P {(dtÓk) Y {xxk, vyy}| v. v P k}} =
Ť

{((dtÓk) Y {xxk, vyy})Òk | v. v P k}"
by auto

have f6: "{((dtÓk) Y {xxk, vyy})Òk | v. v P k} =
{{(((dtÓk) Y {xxk, vyy})Ók) Y {xxk, v’yy}| v’. v’ P k }| v. v P

k}"
using extend_sd_def f4 k_in_dt_def k_nin_dt_def extend_def
by (meson Set.set_insert dt_in_SD dt_v_in_k insertI1)

have f7: "(((dtÓk) Y {xxk, vyy})Ók) = (dtÓk)"
using kv_nin_reduce reducesd_distr_union reducesd_idemp

reduce_sd_lambda_on_kappa assms
dt_and_reduce local.one_def one_closed by presburger

have f8: "{{(((dtÓk) Y {xxk, vyy})Ók) Y {xxk, v’yy}| v’. v’ P k }| v. v P

k} =
{{(dtÓk) Y {xxk, v’yy}| v’. v’ P k }}"

by (meson Set.set_insert dt_in_SD dt_v_in_k insertI1)
have "{(dtÓk) Y {xxk, v’yy}| v’. v’ P k } = (dtÒk)"

using extend_sd_def True k_nin_dt_def by auto
then have "

Ť

{{(dtÓk) Y {xxk, v’yy}| v’. v’ P k }} = (ck {dt})"
using cyl_def by auto

then show ?thesis
using f1 f2 f3 f5 f6 f8 by presburger

qed
qed

lemma (in domain_data_view) cyl_assoc:
assumes "a P AA" "k P U"
shows "(ck(ck a)) = (ck a)"

proof -
have f: "a P Fin"

using assms a_fin a_in_SD Fin_is_finite by auto
then show ?thesis
proof (induct a)

case emptyI
then show ?case using cyl_zero zero_def by auto

next
case (insertI a dt)
then show ?case
proof (cases "dt P a")

case True
then show ?thesis

by (simp add: insertI.hyps(2) insert_absorb)
next

182

Ph.D. Thesis - Alicia Marinache34 McMaster - Software Engineering

case False
have "(ck (a Y {dt})) = (ck a) Y (ck {dt})"

using cyl_plus plus_def dt_in_SD
by (metis PowI a_in_SD carrier_set_def)

then have f2: "(ck (insert dt a)) = (ck {dt}) Y (ck a)"
by auto

have f3: "(ck(ck (insert dt a))) = (ck((ck {dt}) Y (ck a)))"
using f2 cyl_plus plus_def
by simp

have f4: "(ck((ck {dt}) Y (ck a))) = (ck(ck {dt})) Y (ck(ck a))"
using cyl_plus plus_def
by (meson Set.set_insert a_in_SD dt_v_in_k insertI1 insert_subset)

then show ?thesis
by (simp add: dt_in_SD cyl_assoc_sg f2 f4 insertI.hyps(2))

qed
qed

qed
end

Axiom A.13

Axiom A.13 of DIS: @ a b P AA. @ k P U. ck (a * ck b) = ck a * ck b

context domain_data_view
begin

lemma (in domain_data_view) cyl_mod:
assumes "a P AA" "b P AA"
shows "(ck (a * (ck b))) = (ck a) * (ck b)"

proof -
have f: "a P Fin"

using assms a_fin a_in_SD Fin_is_finite by auto
then show ?thesis
proof (induct a arbitrary: b)

case emptyI
then show ?case

using cyl_zero star_def zero_def by auto
next

case (insertI a dt)
then show ?case

by (meson Set.set_insert a_in_SD dt_v_in_k insert_subset
subset_insertI)

qed
qed

183

Ph.D. Thesis - Alicia Marinache35 McMaster - Software Engineering

end

Axiom A.13

Axiom A.14 of DIS: @ a P AA. @ k l P U. ck (cl a) = cl (ck a)

context domain_data_view
begin
lemma (in domain_data_view) cyl_comm:

assumes "a P AA"
shows "(ck (cl a)) = (cl (ck a))"

proof -
have f: "a P Fin"

using assms a_fin a_in_SD Fin_is_finite by auto
then show ?thesis
proof (induct a)

case emptyI
then show ?case

using cyl_zero zero_def by auto
next

case (insertI a dt)
then show ?case

using dt_in_SD dt_not_empty local.one_def one_closed by auto
qed

qed
end

B.8.3 Domain Data View: Properties
DDV as model for a diagonal-free cylindric algebra

context domain_data_view
begin
interpretation dfcyl_algebra "(*)" "(+)" "(-)" "0" "1" "cyl" "AA"
apply unfold_locales

apply (simp add: star_assoc)

apply (simp add: star_comm)

apply (simp add: plus_assoc)

apply (simp add: plus_comm)

184

Ph.D. Thesis - Alicia Marinache36 McMaster - Software Engineering

apply (simp add: plus_distr_star)

apply (simp add: star_distr_plus)

apply (simp add: a_in_one0 star_def subset_antisym)

apply (simp add: plus_zero_r)

apply (simp add: complement_star)

apply (simp add: complement_plus0)

apply (simp add: cyl_zero)

apply (simp add: cyl_mod)

apply (simp add: cyl_comm)
done

end

context domain_data_view
begin
end

end
The DIS is a novel data-centered framework for knowledge representation. It consists
of a domain knowledge representation, called the domain ontology O, a domain data
representation, called the domain data view A, and an operator τ that maps A to O.
To define the domain ontology, we use a monoid of concepts C, a Boolean lattice of
concepts L, and a family of rooted graphs G.

In a DIS, the concepts in the domain ontology originate from two sources: (i) the
data, and (ii) the domain of application. The concepts in the domain ontology can
be composed to form new concepts. We understand the composition as the Cartesian
construction of concepts. Similar to how the information in a dataset record is not
dependant on the order of attributes in a dataset, we require the composition oper-
ator to be commutative (up to an isomorphism), associative, and idempotent. The
commutativity and associativy properties ensure that the order in which concepts are
composed is not relevant. The idempotency property ensures that by composing a
concept with itself the system does not create a new concept, or new knowledge from
the existing knowledge in the system.

185

Ph.D. Thesis - Alicia Marinache37 McMaster - Software Engineering

In current approaches to connect an ontology to existing data, mapping the two com-
ponents to each other is a time consuming task, as it needs to bridge the conceptual
gap between the two layers. To close this conceptual gap between the domain repre-
sentation and the data view, in DIS, the core component of the domain ontology O
is built using the Cartesian partOf relation. This is similar to the relation between
elements of the data view. A concept with no sub-parts is called an atomic concept
or an atom.

B.9 Concept
theory Concept

imports
Main

begin

The concept datatype is a set of atoms. The atoms are defined as a datatype on the
concrete DIS implementation.

type_synonym ’a concept = "’a set"

B.9.1 Concept Operators: Definitions
With concepts as sets, the empty concept eC is simply a notation for the empty set,
the composition operator ‘C a renaming of the set union operator, and the partial
order ĎC (or partOf a renaming of the set inclusion relation.

Definition 4.19

definition oplus :: "’a concept ñ ’a concept ñ ’a concept" (infixl "‘C" 75)
where "c1 ‘C c2 = (c1 Y c2)"

Definition 4.20

definition zero :: "’a concept" ("eC")
where "zero = {}"

Definition 4.21

definition partOf :: "’a concept ñ ’a concept ñ bool" (infixl "ĎC" 66)
where "c1 ĎC c2 = (c1 Ď c2)"

Within a given set A of concepts, atomicity is defined using the partOf relationship

definition isAtom :: "’a concept ñ ’a concept set ñ bool"
where "isAtom a A ” ((a P A) ^ ␣(D x. x P A ^ x ­“ a ^ x ĎC a))"

definition atomSet :: "’a concept set ñ bool"

186

Ph.D. Thesis - Alicia Marinache38 McMaster - Software Engineering

where "atomSet A = (@ x P A. isAtom x A)"

We give the definition of the closure of the ‘C operator over a given set of concepts
A, as an inductive set.

inductive_set
oplus_closure :: "’a concept set ñ ’a concept set"
for A :: "’a concept set"
where

a_in_A: "a P A ùñ a P oplus_closure A"
| ab_in_closure: "a P oplus_closure A ùñ b P oplus_closure A ùñ a ‘C

b P oplus_closure A"

B.9.2 Concept Operators: Properties
Properties of composition operator

context
begin

We can prove some basic properties of the composition ‘C operator, such as commu-
tativity, associativity, and idempotency.

lemma oplus_comm: "c1 ‘C c2 = c2 ‘C c1"
by (simp add: oplus_def sup_commute)

lemma oplus_assoc: "(c1 ‘C c2) ‘C c3 = c1 ‘C (c2 ‘C c3)"
by (simp add: oplus_def sup_assoc)

lemma oplus_idempotent: "c ‘C c = c"
by (simp add: oplus_def)

end

Properties of empty concept

context
begin

We can prove that the empty concept eC is a neutral element for the composition ‘C

operator, both to the right and the left.

lemma zero_r0: "
Ź

x. x ‘C eC = x"
by (simp add: zero_def oplus_def)

lemma zero_l0: "
Ź

x. eC ‘C x = x"
by (simp add: zero_def oplus_def)

end

187

Ph.D. Thesis - Alicia Marinache39 McMaster - Software Engineering

end

B.10 Concept Monoid
To achieve the transformation from data to information and further to knowledge,
we need to give meaning to the data, specifically to its sorts (or attributes). Thus
we take the sorts of the dataset and consider them in a specific context. We call this
context the domain of application for the data, and within it we capture the relevant
concepts.

The ConceptMonoid theory describes the DIS monoid of concepts.

theory ConceptMonoid
imports

Concept
"HOL-Algebra.Group"

begin

A set of concepts C, with ‘C and eC are syntactically equivalent to the monoid struc-
ture defined in HOL-Algebra.Group. The term "C C" is an abbreviation for the
monoid structure.

abbreviation plus_monoid :: "’a concept set ñ ’a concept monoid" ("C")
where "plus_monoid C ” p|carrier = C, mult = (‘C), one = eC |q"

A set of atomic concepts (or atoms), together with the composition operator and the
empty concept, form a monoid of concepts, described below with the concept_monoid
locale. The set of atoms correspond to attributes of dataset(s) or to notions found in
the domain of application, therefore it is assumed to be finite and non-empty. The
carrier set C of the monoid is built as the ‘C closure over the set of atoms At, which
is the parameter of the concept_monoid locale. In addition, the empty concept eC is
assumed to be part of the carrier set.

locale concept_monoid =
fixes At :: "’a concept set"
assumes atoms_not_empty: "At ­“ {}"
assumes atoms_finite: "finite At"

begin

188

Ph.D. Thesis - Alicia Marinache40 McMaster - Software Engineering

B.10.1 Concept Monoid Operators: Definitions
The carrier set of the monoid of concepts is the closure of oplus operator over the set
of atoms.

definition C :: "’a concept set"
where "C ” oplus_closure At Y {eC}"

end

B.10.2 Concept Monoid Operators: Properties
Properties of the composition operator

context concept_monoid
begin

We prove two basic properties of the monoid of concepts, that eC is its neutral
element, both to the left and right.

lemma (in concept_monoid) zero_l: "
Ź

x. x P C ùñ eC ‘C x = x"
by (simp add: zero_def oplus_def)

lemma (in concept_monoid) zero_r: "
Ź

x. x P C ùñ x ‘C eC = x"
by (simp add: zero_r0)

Within the concept_monoid, ‘C is closed over the carrier set C.

lemma (in concept_monoid) oplus_closed: "
Ź

x y. x P C ùñ y P C ùñ x ‘C

y P C"
by (metis C_def UnE UnI1 oplus_closure.intros(2) oplus_comm singletonD

zero_r)
end

B.10.3 Concept Monoid: Properties
Concept Monoid as a commutative monoid

context concept_monoid
begin

We show that the structure "C C" is a model of the comm_monoid structure, as described
in HOL-Algebra.Group. Thus, all the theorems proved in the HOL commutative
monoid theory are satisfied for the monoid of concepts of the DIS.

interpretation comm_monoid "C C"
apply unfold_locales
— Composition is closed over the carrier set

189

Ph.D. Thesis - Alicia Marinache41 McMaster - Software Engineering

apply (simp add: oplus_closed)
— Composition is associative
apply (simp add: oplus_assoc)
— Empty concept is in the carrier set
apply (simp add: C_def)
— Empty concept is neutral over the composition
apply (simp add: zero_l)
apply (simp add: zero_r)
— Composition is commutative
apply (simp add: oplus_comm)
done

end

end

B.11 Concept Lattice
The ConceptLattice theory describes the DIS Boolean lattice of concepts. We begin
the construction of a new DIS from an existing dataset, which guides the design of
the core component of the domain ontology (its Boolean lattice of concepts). The
attributes in the dataset schema correspond one-to-one to the atoms of the Boolean
lattice. We take a subset of these atoms and use the partOf relation to generate a
free Boolean lattice over it. By the construction of the lattice, the task of mapping
the data to the ontology becomes trivial, as the attributes of the data view schema
have a one-to-one correspondence to the atoms of the Boolean lattice.

theory ConceptLattice
imports
Concept
"HOL.Boolean_Algebras"
"HOL-Algebra.Group"

begin

A lattice can be represented as a relational structure (a carrier set and a partial order
with certain properties) or as an algebraic structure (a carrier set, two binary opera-
tors, meet and join, one unary operator, complement, and two constants, the neutral
elements for the two binary operators, respectively). The two representations are
equivalent, and in our work we use the terms Boolean lattice and Boolean algebra
interchangeably.

The other two elements of the Boolean lattice, its unary operator (complement) and
the bC neutral element (top), can only be defined w.r.t. the carrier set of the lattice.

190

Ph.D. Thesis - Alicia Marinache42 McMaster - Software Engineering

Thus, we need to separate the declaration of the concept_lattice into two locales.
within the concept_lattice0 we define the lattice operators and its carrier set, and
within the concept_lattice we show it is a Boolean lattice (algebra).

B.11.1 Concept Lattice: the base
From a given set of atoms we can form a lattice of concepts. In it, the ‘C and bC

correspond to the join and meet of a lattice, respectively. The empty concept eC is
its bottom, and its top will be defined as the composition of all the atoms. Similar to
the monoid structure, the carrier set L of the lattice is built as the ‘C closure over
the atomic set of concepts At, given as the parameter of the concept_lattice0 locale.
In addition, the empty concept eC is assumed to be part of the carrier set.

locale concept_lattice0 =
— concept_lattice0 parameters, the set of lattice atoms
fixes At :: "’a concept set"
assumes atoms_not_empty: "At ­“ {}"

begin

Concept Lattice Operators: Definitions

definition L :: "’a concept set"
where "L ” oplus_closure At Y {eC}"

With concepts as sets, the composition operator dual bC is the intersection of sets.

Definition 4.22

definition otimes :: "’a concept ñ ’a concept ñ ’a concept" (infixl "bC"
65)

where "c1 bC c2 = (c1 X c2)"

Definition 4.23

definition topL :: "’a concept" ("JL")
where "JL =

Ť

{c. cP At}"

Definition 4.24

definition complL :: "’a concept ñ ’a concept" ("aL _" [81] 80)
where "aL c =

Ť

{u. u P At ÝÑ ␣(u ĎC c)}"

end

Concept Lattice Operators: Properties

context concept_lattice0

191

Ph.D. Thesis - Alicia Marinache43 McMaster - Software Engineering

begin

Basic properties of bC : commutative, associative

lemma (in concept_lattice0) otimes_comm: "c1 bC c2 = c2 bC c1"
by (simp add: otimes_def inf_commute)

lemma (in concept_lattice0) otimes_assoc: "(c1 bC c2) bC c3 = c1 bC (c2
bC c3)"

by (simp add: otimes_def inf_assoc)

The two binary operators distribute over each other

lemma (in concept_lattice0) oplus_distr_otimes: "c1 ‘C (c2 bC c3) = (c1
‘C c2) bC (c1 ‘C c3)"

by (simp add: oplus_def otimes_def sup_inf_distrib1)

lemma (in concept_lattice0) otimes_distr_oplus: "c1 bC (c2 ‘C c3) = (c1
bC c2) ‘C (c1 bC c3)"

by (simp add: otimes_def oplus_def inf_sup_distrib1)
end

B.11.2 Concept Lattice as a Boolean algebra
locale concept_lattice = concept_lattice0 +

assumes top_r: "
Ź

c. c bC JL = c"
and top_inL: "JL P L"
and otimes_closed_L: "

Ź

x y. x P L ùñ y P L ùñ x bC y P L"
and otimes_cancel_r: "

Ź

x. x bC aL x = eC"
and oplus_cancel_r: "

Ź

x. x ‘C aL x = JL"
begin
end

Concept Lattice Operators: Properties

context concept_lattice
begin

The basic properties of eC within the lattice of concepts: neutral to the left and right.

lemma (in concept_lattice) zero_inL: "eC P L"
by (simp add: L_def)

lemma (in concept_lattice) zero_l: " rrc P L ss ùñ eC ‘C c = c"
by (simp add: zero_def oplus_def)

Within the concept_lattice, ‘C is closed over the carrier set L.

192

Ph.D. Thesis - Alicia Marinache44 McMaster - Software Engineering

lemma (in concept_lattice) oplus_closed_L: "
Ź

x y. x P L ùñ y P L ùñ x
‘C y P L"

by (metis L_def UnE UnI1 concept_lattice.zero_l concept_lattice_axioms
oplus_closure.intros(2) singleton_iff zero_r0)

Proprties of the partOf relationship in the context of concept_lattice.

lemma (in concept_lattice) partOf_trans:
"
Ź

x y z. x P L ùñ y P L ùñ z P L ùñ x ĎC y ùñ y ĎC z ùñ x ĎC

z"
by (simp add: partOf_def)

lemma (in concept_lattice) partOf_oplus: "
Ź

x y. x P L ùñ y P L ùñ x ĎC

(x ‘C y)"
unfolding partOf_def oplus_def
by auto

lemma (in concept_lattice) partOf_times: "
Ź

x y. x P L ùñ y P L ùñ (x
bC y) ĎC x"

unfolding partOf_def otimes_def
by auto

The basic property of JL within the lattice of concepts: neutral to the left.

lemma (in concept_lattice) top_l: " rrc P L ss ùñ JL bC c = c"
by (simp add: top_r otimes_comm)

end

Concept Lattice as a dual abelian mondoid

context concept_lattice
begin

The lattice is a dual abelian monoid: one over composition and empty concept, and
one over their dual operators, bC and JL.

interpretation plus_monoidL: comm_monoid "p|carrier = L, mult = (‘C), one =
eC |q"

apply unfold_locales
— Composition is closed over the carrier set
apply (simp add: oplus_closed_L)
— Composition is associative
apply (simp add: oplus_assoc)
— Empty concept is in the carrier set
apply (simp add: zero_inL)

193

Ph.D. Thesis - Alicia Marinache45 McMaster - Software Engineering

— Empty concept is neutral over the composition
apply (simp add: zero_l)
apply (simp add: zero_r0)
— Composition is commutative
apply (simp add: oplus_comm)
done

interpretation mult_monoidL: comm_monoid "p|carrier = L, mult = (bC), one =
JL|q"

apply unfold_locales
— Composition is closed over the carrier set
apply (simp add: otimes_closed_L)
— Composition is associative
apply (simp add: otimes_assoc)
— Empty concept is in the carrier set
apply (simp add: top_inL)
— Empty concept is neutral over the composition
apply (simp add: top_l)
apply (simp add: top_r)
— Composition is commutative
apply (simp add: otimes_comm)
done

end

Concept Lattice as a Boolean algebra

context concept_lattice
begin

In addition, L together with its two binary operators, the unary operator,
and the two neutral elements is a Boolean algebra, or it is a model for the
abstract_boolean_algebra, as described in HOL.Boolean_Algebras.

interpretation abstract_boolean_algebra "(bC)" "(‘C)" complL eC "JL"
apply unfold_locales
— bC and ‘C properties: associative and commutative
apply (simp add: otimes_assoc)
apply (simp add: otimes_comm)
apply (simp add: oplus_assoc)
apply (simp add: oplus_comm)
— bC and ‘C distribute over each other
apply (simp add: otimes_distr_oplus)
apply (simp add: oplus_distr_otimes)

194

Ph.D. Thesis - Alicia Marinache46 McMaster - Software Engineering

— Top and bottom (zero) are neutral elements
apply (simp add: top_r)
apply (simp add: zero_r0)
— Complement cancels over bC and ‘C

apply (simp add: otimes_cancel_r)
apply (simp add: oplus_cancel_r)
done

end

end

B.12 Concept Rooted Graph
Recall that in a DIS, we start by considering the sorts of the dataset to be a subset
of the concepts of the domain.We then ask domain experts to capture other concepts
that are deemed significant to the domain of application and that are not part of the
Boolean lattice. These concepts are captured from the domain of knowledge or from
an existing ontology as rooted graphs. A rooted graph is an acyclick directed graph,
with a distinguished element, the root. The root is a unique concept (vertice) of the
graph which is reachable from any other vertice.

Theory ConceptRootGraph describes such a rooted graph, using the directed graph
theory Digraph authored by Noschinski and Neumann.

theory ConceptRootGraph
imports
Concept
Digraph
"HOL.Transitive_Closure"

begin

B.12.1 Concept Rooted Graph: Definitions
In DIS, we need to declare a family of rooted graphs. As such, the rooted graphs
are defined with the use of an Isabelle/HOL record. A record is a complex datatype,
defined as an extensible n-tuple. The record’s fields (components) have names by
which they can be accessed. Records and their fields make expressions easier to read
and reduce the risk of confusing one field for another. As a complex datatype, one
can declare a set of records (unlike a "set of locales").

The record rgraph has three components: the vertices V, a set of concepts, the edges
R, a set of pairs of concepts, and the root t, a concept. All three components are

195

Ph.D. Thesis - Alicia Marinache47 McMaster - Software Engineering

indexable, and marked as such with the ı symbol. This will allow one to declare two
graphs, G and H, and use the terms VG, VH to refer to the vertices components on the
graph G, respectively H. With this understanding, we define two operators, tail and
head, to mimic the pre_digraph record components. The operator tail gives access
to the tail of a given edge (or the first element of the edge pair), while the operator
head gives access to the head of it (or the 2nd element of the edge pair).

type_synonym ’a edge = "’a concept ˆ ’a concept"

record ’a rgraph =
vertices :: "’a concept set" ("Vı")
edges :: "’a edge set" ("Rı")
root :: "’a concept" ("tı")

definition tail :: "’a edge ñ ’a concept"
where "tail e = fst e"

definition head :: "’a edge ñ ’a concept"
where "head e = snd e"

— Pre-defined relation (edge) properties: transitivity, reflexitivity, and reflexive-transitivity.
More properties can be defined in extensions of the ConceptRootGraph.
definition is_trans :: "’a edge set ñ bool"

where "is_trans E ” trancl E = E"

definition is_refl :: "’a edge set ñ bool"
where "is_refl E ” reflcl E = E"

definition is_refltr :: "’a edge set ñ bool"
where "is_refltr E ” rtrancl E = E"

The vertices and edges component of the record rgraph along with the two operators
tail and head are syntactically equivalent to the pre_digraph record. The term "Gr

G" is an abbreviation for the pre_digraph record.

abbreviation digraph :: "’a rgraph ñ (’a concept,’a edge) pre_digraph"
("Gr")

where "digraph G ” p|verts = VG, arcs = RG, tail = tail, head = head |q"

B.12.2 Concept Rooted Graph
A rooted graph is an acyclic directed graph that has a unique element (the root),
reachable from every vertice in the graph. It is defined using the pre-existing
loopfree_digraph locale. It has only one parameter, the rgraph G r structure.

196

Ph.D. Thesis - Alicia Marinache48 McMaster - Software Engineering

locale concept_root_graph =
dag: loopfree_digraph where G = "Gr G r"

for G r :: "’a rgraph" (structure) +
assumes

G_def: "G = Gr G r"
and lf_graph: "loopfree_digraph G"
and R_def: "R Ď (C ˆ C)"
and root_in_C: "t P C"
and root_reachable: "

Ź

c. c P C ÝÑ c Ñ˚
G t"

and root_unique: "
Ź

c. c Ñ˚
G t’ ÝÑ t = t’"

begin
print_locale! concept_root_graph
end

Concept Rooted Graphs: Properties

The concept rooted graph is acyclic

lemma (in concept_root_graph) loop_free: "(c1, c2) P R ùñ c1 ­“ c2"
using G_def by auto

B.12.3 Family of Concept Rooted Graphs
The family of rooted graphs is simply a set of rgraph records, where each such a
record is a concept_rooted_graph structure.

locale family_root_graphs =
fixes G :: "’a rgraph set"
assumes G_def: "

Ź

g. g P G ÝÑ concept_root_graph g"

end

B.13 Domain Ontology
Recall that the Domain Ontology component of a DIS is formed of a monoid of
concepts, a Boolean lattice (in which the atoms correspond to the attributes of the
dataset under consideration), and a family of graphs all rooted in the Boolean lattice.
The DomainOnt theory encompasses this mathematical structure.

theory DomainOnt
imports

ConceptMonoid
ConceptLattice
ConceptRootGraph

197

Ph.D. Thesis - Alicia Marinache49 McMaster - Software Engineering

begin

The domain_ontology instantiates three parameters: (i) the concepts monoid given
by its set of atoms AC , (ii) the concepts Boolean lattice concept_lattice, given by
its sets of atoms AL, and (iii) the family (set) of rooted graphs. We impose the DIS
Domain Ontology axioms: the set of lattice atoms is a subset of the monoid atoms,
the roots of each graph are in the lattice, and the vertices of each graph are a subset
of the monoid carrier set.
locale domain_ontology =

cmonoid: concept_monoid where At = AC +
clattice: concept_lattice where At = AL +
cgraphs: family_root_graphs where G = G

for AC :: "’a concept set"
and AL :: "’a concept set"
and G :: "’a rgraph set" +

assumes
atomsL_in_C: "AL Ď AC"

and graph_roots_in_L: "
Ź

g. g P G ÝÑ t g P clattice.L"
and graph_carriers_in_C: "

Ź

g. g P G ÝÑ V g Ď cmonoid.C"
begin
print_locale! domain_ontology
end

end

B.14 Domain Information System
In this section, the Domain Information System (DIS) is put together using the Do-
mainOnt and DomainDtVw components
theory DomainInfSys

imports
DomainDtVw
DomainOnt

begin

locale dis =
ddv: domain_data_view where U = U and sort2name = sort2name and

name2sort = name2sort and D = D +
dont: domain_ontology where AC = AC and AL = AL and G = G

for AC :: "’a concept set"

198

Ph.D. Thesis - Alicia Marinache50 McMaster - Software Engineering

and AL :: "’a concept set"
and G :: "’a rgraph set"
and U :: "sort set"
and sort2name :: "sort ñ string"
and name2sort :: "string ñ sort"
and D :: "sdatum set" +

fixes sort2atom :: "sort ñ ’a" ("η_" [55])
assumes sort2atom_inj: "η x = η y ùñ x = y"

begin

end

B.14.1 Mapping Operator: Definitions
context dis
begin

definition (in dis) sval_sort :: "svalue ñ sort" ("τv_" [80]) where
"τv sv ” name2sort (sname sv)"

Definition 4.25
definition (in dis) type :: "sdata ñ ’a concept" ("τ_" [80]) where

"τ a = {η (τv sv) | sv . sv P
Ť

{dt. dt P a}}"

definition (in dis) dtc_type :: "dataconcept ñ ’a concept" ("τdc_" [80])
where

"τdc c =
Ť

{τ a| a. a P c}"

Syntactic sugar: notation for the top of the Boolean lattice
definition (in dis) top_lattice :: "’a concept"

where "top_lattice = dont.clattice.topL"
notation top_lattice ("JL")

end

B.14.2 Mapping Operator: Preserving Properties
context dis
begin

Axiom 4.26

Axiom 4.26: Preserving the composition operator

199

Ph.D. Thesis - Alicia Marinache51 McMaster - Software Engineering

lemma (in dis) type_plus: "τ (a+b) = τ a ‘C τ b"
proof -

have "τ (a+b) = {η (τv sv) | sv . sv P
Ť

{dt. dt P (a+b)}}"
by (simp add: type_def)

moreover have "{η (τv sv) | sv . sv P
Ť

{dt. dt P (a+b)}} =
{η (τv sv) | sv . sv P

Ť

{dt. dt P (aYb)}}"
by (simp add: ddv.plus_def)

moreover have "{η (τv sv) | sv . sv P
Ť

{dt. dt P (aYb)}} =
{η (τv sv) | sv . sv P

Ť

{dt. dt P a} Y
Ť

{dt. dt P b}}"
by auto

moreover have "{η (τv sv) | sv . sv P
Ť

{dt. dt P a} Y
Ť

{dt. dt P b}} =

{η (τv sv) | sv . sv P
Ť

{dt. dt P a}} Y
{η (τv sv) | sv . sv P

Ť

{dt. dt P b}}"
using set_image_union by (metis Union_Un_distrib)

moreover have "{η (τv sv) | sv . sv P
Ť

{dt. dt P a}} Y
{η (τv sv) | sv . sv P

Ť

{dt. dt P b}} = (τ a) Y (τ b)"
by (simp add: type_def)

moreover have "(τ a) Y (τ b) = τ a ‘C τ b"
by (simp add: oplus_def)

ultimately show ?thesis
by auto

qed

Axiom 4.27

Axiom 4.27: Preserving the zero

lemma (in dis) type_zero: "τ 0 = eC"
by (simp add: type_def ddv.zero_def Concept.zero_def)

Axiom 4.28

Axiom 4.28: Preserving the one

lemma (in dis) type_one: "τ 1 = JL"
proof -

have f1: "τ 1 = {η (τv sv) |sv. sv P
Ť

{dt. dt P 1}}"
by (simp add: type_def)

have f2: "{η (τv sv) |sv. sv P
Ť

{dt. dt P 1}} =
{η (τv sv) |sv. sv P

Ť

{dt. dt P ’U}}"
by (simp add: ddv.one_def ddv.SD_def)

then show ?thesis
using dont.clattice.topL_def top_lattice_def ddv.one_def type_def

200

Ph.D. Thesis - Alicia Marinache52 McMaster - Software Engineering

by (meson Set.set_insert ddv.dt_in_SD ddv.dt_v_in_k insertI1)
qed

end

B.14.3 Mapping Operator: Properties
Properties of mapping operator: helpers

context dis
begin

lemma (in dis) type_mono:
assumes "a Ď b"
shows "τ a Ď τ b"

proof -
have f1: "a Y b = b"

using assms by auto
have f2: "τ (a Y b) = τ a Y τ b"

using type_plus ddv.plus_def oplus_def
by metis

then show ?thesis
using assms f1 by auto

qed

lemma (in dis) k_in_a_in_type:
assumes "k Pa a" "a P AA"

shows "η k P τ a"
proof -

have "a P Fin"
using assms ddv.a_in_SD ddv.a_fin Fin_is_finite by auto

then show ?thesis
proof -

obtain dt::sdatum where exDt: "dt P a ^ k P dt"
using assms ddv.k_in_a_def ddv.k_in_dt_def
by auto

obtain v::dtype where exVDt: "xxk, vyy P dt"
using exDt ddv.k_in_dt_def by auto

obtain sv::svalue where exSv: "sv = xxk, vyy"
by auto

have f1: "η k = η (τv sv)"
using ddv.SD_def ddv.bow_zero_mono ddv.dt_not_empty ddv.one_closed

ddv.one_def by auto

201

Ph.D. Thesis - Alicia Marinache53 McMaster - Software Engineering

have f2: "η (τv sv) P {η (τv sv)| sv. sv P
Ť

{dt| dt. dt P a}}"
using exDt exSv exVDt by blast

then show ?thesis
using f1 f2 type_def by auto

qed
qed
end

Proposition 4.6.1

context dis
begin

Proposition 4.6.1 Equation 1
lemma (in dis) k_in_akextension:

assumes "a P AA" "k P U" "D dtPa. k P dt"
shows "{(η k)} ĎC τ (aòk)"

proof -
obtain dt::sdatum where exDt: "dt P a ^ k P dt"

using assms ddv.k_in_dt_def
by auto

obtain v::dtype where exVDt: "xxk, vyy P dt"
using exDt ddv.k_in_dt_def by auto

have f0: "dt P a"
using exDt by auto

have f1: "(dtÒk) Ď (aòk)"
using f0 ddv.dt_in_extenda by auto

have f2: "τ (dtÒk) = {η (τv sv) | sv . sv P
Ť

{dt’. dt’ P (dtÒk)}}"
using type_def by auto

have f3: "xxk, vyy P
Ť

{dt’. dt’ P (dtÒk)}"
using exVDt ddv.a_in_SD ddv.dt_not_empty ddv.one_closed ddv.one_def by

blast
have f4: "(η k) = η (τv xxk, vyy)"

using assms ddv.dt_in_SD ddv.dt_v_in_k by blast
have f5: "(η k) P τ (dtÒk)"

using f2 f3 f4 by blast
have f6: "τ (dtÒk) Ď τ (aòk)"

using f1 type_def type_mono by auto
then show ?thesis

using f1 f5 f6 partOf_def by fastforce
qed

Proposition 4.6.1 Equation 2
lemma (in dis) k_notin_kreduction:

202

Ph.D. Thesis - Alicia Marinache54 McMaster - Software Engineering

assumes "k P U" "a P AA"
shows "(η k) R τ (aók)"

proof -
have f: "τ (aók) = {η (τv sv)| sv. sv P

Ť

{dtÓk| dt. dt P a}}"
using type_def ddv.reduce_def by auto

have "␣(D v. xxk, vyy P
Ť

{dtÓk| dt. dt P a})"
using assms ddv.kv_nin_reduce ddv.k_in_dt_def ddv.k_nin_dt_def

ddv.dt_in_SD ddv.dt_not_empty ddv.one_closed ddv.one_def
by metis

then have "k R {(τv sv)| sv. sv P
Ť

{dtÓk| dt. dt P a}}"
using sval_sort_def ddv.sort2name2sort ddv.sort_neq_def

ddv.reduce_sd_def by force
then have "(η k) R {η (τv sv)| sv. sv P

Ť

{dtÓk| dt. dt P a}}"
using assms sort2atom_inj by blast

then show ?thesis
using f by auto

qed
end

Proposition 4.6.2

context dis
begin

Proposition 4.6.2 Equation 1

lemma (in dis) type_prod_zero:
assumes "a P AA" "b P AA" "τ a bC τ b = eC"
shows "τ (a * b) = eC"

proof -
have "a * b = 0"
proof (rule ccontr)

assume ab_zero: "a * b ­“ 0"
obtain dt::sdatum where exDt: "dt = (SOME dt. dt P a * b)"

using ab_zero mult_def ddv.zero_def ddv.dt_not_empty by auto
have f1: "dt ­“ {}"

using exDt ddv.dt_not_empty ddv.star_closed ddv.a_in_SD
ddv.carrier_set_def by auto

obtain sv::svalue where exSv: "sv = (SOME sv. sv P dt)"
using f1 by auto

obtain k::sort where letK: "k = τv sv"
using exSv by auto

have f2: "k Pa a ^ k Pa b"
using assms exSv ddv.k_in_a_def ddv.k_in_dt_def ddv.dt_in_SD

203

Ph.D. Thesis - Alicia Marinache55 McMaster - Software Engineering

ddv.dt_not_empty
by (metis ddv.one_closed ddv.one_def)

have f3: "η k P τ a ^ η k P τ b"
using f2 k_in_a_in_type assms by auto

have f4: "η k P τ a bC τ b"
using f3 dont.clattice.otimes_def by fastforce

have f5: "τ a bC τ b ­“ eC"
using f4 zero_def by auto

with ‹τ a bC τ b = eC› show False by auto
qed
then show ?thesis

by (simp add: assms type_zero)
qed

Proposition 4.6.2 Equation 2

lemma (in dis) type_prod_weak:
assumes "a P AA" "b P AA"

shows "τ (a * b) ĎC (τ a bC τ b)"
by (simp add: ddv.star_def dont.clattice.otimes_def partOf_def type_mono)

Proposition 4.6.2 Equation 3

lemma (in dis) type_on_bow:
assumes "a P AA" "T Ď U" "a = ’T"
shows "τ a = {η s | s. s P T}"
using assms ddv.bow_zero_mono ddv.dt_not_empty by blast

Proposition 4.6.2 Equation 4

lemma (in dis) type_preserve_prod:
assumes "a P AA" "b P AA" "Ta Ď U" "T b Ď U" "a = ’Ta" "b = ’T b"

shows " τ(a * b) = τ a bC τ b"
using assms ddv.bow_zero_mono ddv.dt_not_empty by blast

end

end

B.15 Wine Universe
A model of the Universe theory,the Wine Universe is implemented as an instantiation
of the universe locale. Foundational elements, such as the sorts and their mappings
are defined in this section.

theory WineUniv

204

Ph.D. Thesis - Alicia Marinache56 McMaster - Software Engineering

imports DDVUniverse

begin

The sorts of the universe, given as finite sets. They can be imported using the
templates.

definition SW :: sort where
"SW = {Str ’’Merlot’’, Str ’’Chardonay’’, Str ’’Vidal Blanc’’, Str

’’Magliocco’’}"

definition SC :: sort where
"SC = {Str ’’Red’’, Str ’’White’’, Str ’’Rose’’}"

definition SS :: sort where
"SS = {Str ’’Dry’’, Str ’’Sweet’’}"

definition SB :: sort where
"SB = {Str ’’Full’’, Str ’’Medium’’, Str ’’Fruity’’}"

definition U :: "sort set" where
"U = {SW, SC, SS, SB}"

The mappings (helper operators), bijections between sorts and their names.

definition wine_sort_to_name :: "sort ñ string" ("s2n _" [99] 100) where
"(s2n s) = (if s = SW then ’’wine’’ else

(if s = SC then ’’col’’ else
(if s = SS then ’’sugar’’ else
(if s = SB then ’’body’’ else undefined))))"

definition wine_name_to_sort :: "string ñ sort" ("n2s _" [99] 100) where
"(n2s n) = (if n = ’’wine’’ then SW else

(if n = ’’col’’ then SC else
(if n = ’’sugar’’ then SS else
(if n = ’’body’’ then SB else undefined))))"

The instantiation of the universe locale with the given universe and its mappings

locale wine_univ =
wine_univ: universe where U = U and sort2name = sort2name and

name2sort = name2sort
for U :: "sort set"
and sort2name :: "sort ñ string"
and name2sort :: "string ñ sort" +

assumes univ_def: "U = WineUniv.U"

205

Ph.D. Thesis - Alicia Marinache57 McMaster - Software Engineering

and s2n_def: "sort2name s = s2n s"
and n2s_def: "name2sort n = n2s n"

begin
end

context wine_univ
begin

Optional, a list of svalues that will be used later in reasoning. Syntactic sugar, for
ease of use only.

definition merlot :: svalue where "merlot = xxSW, Str ’’Merlot’’yy"
definition chard :: svalue where "chard = xxSW, Str ’’Chardonay’’yy"
definition vidal :: svalue where "vidal = xxSW, Str ’’Vidal Blanc’’yy"
definition magliocco :: svalue where "magliocco = xxSW, Str

’’Magliocco’’yy"

definition red :: svalue where "red = xxSC, Str ’’Red’’yy"
definition white :: svalue where "white = xxSC, Str ’’White’’yy"
definition rose :: svalue where "rose = xxSC, Str ’’Rose’’yy"

definition dry :: svalue where "dry = xxSS, Str ’’Dry’’yy"
definition sweet :: svalue where "sweet = xxSS, Str ’’Sweet’’yy"

definition medium :: svalue where "medium = xxSB, Str ’’Medium’’yy"
definition full :: svalue where "full = xxSB, Str ’’Full’’yy"
definition fruity :: svalue where "fruity = xxSB, Str ’’Fruity’’yy"

end

end

B.16 Wine Domain Data View
A model of the Domain Data View theory,the WineDDV is implemented as an in-
stantiation of the domain_data_view locale.
theory WineDDV

imports
WineUniv
DomainDtVw

begin

The dataset that guides the construction of the entire DIS is part of the declarations,
given as the definition of the generator set.

206

Ph.D. Thesis - Alicia Marinache58 McMaster - Software Engineering

context wine_univ
begin

definition wine_generator :: "sdatum set" where
"wine_generator = {{merlot, red, dry, full},

{chard, white, dry, medium},
{vidal, rose, sweet, fruity},
{magliocco, red, dry, full}}"

end

locale wine_ddv = wine_univ +
wine_ddv: domain_data_view where D = D
for D :: "sdatum set" +

assumes D_def: "D = wine_generator"
begin
end

context wine_ddv
begin

lemma (in wine_ddv) "{merlot, red, dry, full} P D"
using D_def wine_generator_def by simp

lemma (in wine_ddv) "{merlot, red, dry, full} P Set.filter (λx. merlot P x)
D"

using D_def wine_generator_def by simp

end

end

B.17 Wine Domain Ontology
In the Wine Domain Ontology section, we implement the Domain Ontology theory.
We start from the dataset defined in the Domain Data View section, with the at-
tributes grape, sugar, body, and colour. In addition, other (atomic) concepts from
the domain of application, such as producer and region are captured by the do-
main experts. The process of capturing the dataset attributes can be automated.
The other concepts in the domain of application are to be defined manually by the
ontology engineer(s), with assistance from the domain experts.

theory WineDOnt

207

Ph.D. Thesis - Alicia Marinache59 McMaster - Software Engineering

imports DomainOnt
begin

— The abstract datatype for the Wine Ontology is wineat, a collection of all atoms of the
ontology.

datatype wine = grapeat | sugarat | bodyat | colourat | producerat | regionat

| estateat

— The atoms of the concept_lattice :

definition grape :: "wine concept"
where "grape = {grapeat}"

definition sugar :: "wine concept"
where "sugar = {sugarat}"

definition body :: "wine concept"
where "body = {bodyat}"

definition colour :: "wine concept"
where "colour = {colourat}"

definition wine :: "wine concept"
where "wine = grape ‘C sugar ‘C body ‘C colour"

— The other concepts in the domain of application, atoms of the concept_monoid

definition producer :: "wine concept"
where "producer = {producerat}"

definition region :: "wine concept"
where "region = {regionat}"

definition estate :: "wine concept"
where "estate = {estateat}"

definition AL :: "wine concept set" where
"AL = {grape, sugar, body, colour}"

definition non_lattice_atoms :: "wine concept set"
where "non_lattice_atoms = {producer, region, estate}"

208

Ph.D. Thesis - Alicia Marinache60 McMaster - Software Engineering

definition AC :: "wine concept set"
where "AC = AL Y non_lattice_atoms"

The Wine Ontology wine_dont instantiates the domain_ontology structure, taking two
parameters: AC and AL, the sets of atoms over which the concept_monoid, respectively
concept_lattice are built. In addition, it instantiates the concept_rooted_graph
structure as a graph rooted at grape.

definition V r :: "wine concept set"
where "V r = {producer, region, estate}"

definition R r :: "wine edge set"
where "R r = {(region, producer), (producer, estate), (estate, grape)}"

definition G r :: "wine rgraph"
where "G r = p|vertices = V r, edges = R r, root = grape |q"

definition G :: "wine rgraph set"
where "G = {G r}"

locale wine_dont =
dont: domain_ontology where AC = AC and AL = AL and G = G
for AC :: "wine concept set"
and AL :: "wine concept set"
and G :: "wine rgraph set" +

assumes
atom_l_def: "AL = WineDOnt.AL"

and atom_c_def: "AC = WineDOnt.AC"
and graphs_def: "G = WineDOnt.G"
and r_trans: "is_trans R r"

begin
print_locale! wine_dont
end

Simple results: to show an element is not part of the set of concepts AL, we show it
is distinct from all the elements in that set

context wine_dont
begin
lemma (in wine_dont) gc: "grape P AC"

using AL_def dont.atomsL_in_C atom_l_def by auto
lemma (in wine_dont) producer_in_ac: "producer P AC"

by (simp add: V r_def AC_def atom_c_def non_lattice_atoms_def)
lemma (in wine_dont) producer_neq_name: "producer ­“ grape"

by (simp add: producer_def grape_def)

209

Ph.D. Thesis - Alicia Marinache61 McMaster - Software Engineering

lemma (in wine_dont) producer_neq_sugar: "producer ­“ sugar"
by (simp add: producer_def sugar_def)

lemma (in wine_dont) el: "producer R AL"
by (simp add: AL_def atom_l_def producer_def grape_def sugar_def body_def

colour_def)
end

context wine_dont
begin

Composition of grape and sugar is not an element of the set of atoms.
lemma (in wine_dont) l0: "sugarat P (grape ‘C sugar)"

by (simp add: oplus_def sugar_def)

lemma (in wine_dont) l1: "(grape ‘C sugar) R AL"
proof -

have f1: "grape ­“ (grape ‘C sugar)"
by (simp add: oplus_def sugar_def grape_def)

have f2: "sugar ­“ (grape ‘C sugar)"
by (simp add: oplus_def sugar_def grape_def)

have f3: "body ­“ (grape ‘C sugar)"
using l0 body_def by blast

then have "colour ­“ (grape ‘C sugar)"
using l0 colour_def by blast

then show ?thesis
using AL_def atom_l_def grape_def oplus_def sugar_def body_def

colour_def
f1 f2 f3 by blast

qed

lemma (in wine_dont) l2: "(grape ‘C sugar) R AC"
proof -

have f1: "sugarat R producer"
by (simp add: producer_def)

have f2: "sugarat R region"
by (simp add: region_def)

have f: "sugarat R estate"
by (simp add: estate_def)

then show ?thesis
using V r_def l0 f1 f2 l1 AC_def atom_l_def atom_c_def

non_lattice_atoms_def insertE by auto
qed

Composition of grape and sugar is an element of the monoid carrier set.

210

Ph.D. Thesis - Alicia Marinache62 McMaster - Software Engineering

lemma (in wine_dont) l3: "(grape ‘C sugar) P dont.cmonoid.C"
using dont.graph_carriers_in_C G_def graphs_def by blast

lemma (in wine_dont) l4: "(grape ‘C sugar) P dont.clattice.L"
by (simp add: dont.graph_roots_in_L G_def graphs_def)

There are elements in the monoid carrier set that are not elements of the atoms set.

lemma (in wine_dont) l5: "D a. a P dont.cmonoid.C ^ a R AC"
using l2 l3 by auto

More results: concept grape and sugar are not partOf each other

lemma (in wine_dont) gr_notpart_sugar: "␣ (grape ĎC sugar)"
by (simp add: grape_def partOf_def sugar_def)

lemma (in wine_dont) gr_notpart_body: "␣ (grape ĎC body)"
by (simp add: grape_def partOf_def body_def)

lemma (in wine_dont) gr_notpart_colour: "␣ (grape ĎC colour)"
by (simp add: grape_def partOf_def colour_def)

lemma (in wine_dont) sugar_notpart_name: "␣ (sugar ĎC grape)"
by (simp add: grape_def partOf_def sugar_def)

lemma (in wine_dont) body_notpart_name: "␣ (body ĎC grape)"
by (simp add: grape_def partOf_def body_def)

lemma (in wine_dont) colour_notpart_name: "␣ (colour ĎC grape)"
by (simp add: grape_def partOf_def colour_def)

Concept grape is an atom of the lattice set of atoms AL.

lemma (in wine_dont) "isAtom grape AL"
using grape_def isAtom_def AL_def

sugar_notpart_name body_notpart_name colour_notpart_name
using atom_l_def empty_iff insert_iff by blast

However, the composite concept grape ‘C sugar is not an atom of the lattice atoms;
it is not even a member of that set, as demonstrated in lemma b2.

lemma (in wine_dont) "␣ (isAtom (grape ‘C sugar) AL)"
using l1 l2 isAtom_def by auto

end

end

B.18 Wine Domain Information System
The Wine DIS is where everything comes together, linking the Wine DDV to the
Wine DOnt.

211

Ph.D. Thesis - Alicia Marinache63 McMaster - Software Engineering

theory WineDIS
imports

DomainInfSys
WineDDV
WineDOnt
"HOL-Eisbach.Eisbach"

begin

locale wine_dis = wine_ddv + wine_dont +
fixes sort2atom :: "sort ñ wine"
assumes s2a_def: "sort2atom s = (if s = SW then grapeat else

(if s = SC then colourat else
(if s = SB then bodyat else
(if s = SS then sugarat else

undefined))))"
and s2a_inj: "sort2atom x = sort2atom y ùñ x = y"

begin

interpretation dis AC AL G U sort2name name2sort D sort2atom
apply unfold_locales
apply (simp add: s2a_inj)
done

The wine mapping operator is defined by overwriting the DIS mapping operator.

definition wine_type :: "sdata ñ wine set" ("τw _" [99] 100) where
"τw a = τ a"

Definitions for .

definition (in wine_dis) filter0 :: "svalue ñ sdatum set ñ sdata" where
"filter0 sv X = Set.filter (λx. sv P x) X"

definition (in wine_dis) reds :: "sdata" where "reds = filter0 red D"
definition (in wine_dis) whites :: sdata where "whites = filter0 white D"

definition (in wine_dis) red_grapes :: "sdatum" where
"red_grapes = Set.filter(λw. sname w = sort2name SW) (

Ť

{x. x P reds})"
definition (in wine_dis) white_grapes :: "sdatum" where

"white_grapes = Set.filter(λw. sname w = sort2name SW) (
Ť

{x. x P

whites})"

212

Ph.D. Thesis - Alicia Marinache64 McMaster - Software Engineering

definition (in wine_dis) whiteWine :: "sdatum set ñ dataconcept" where
"whiteWine X = {{dt} | dt. dt P X ^ τw {dt} = wine}"

end

B.18.1 Elements of Reasoning: Consistency Checking
context wine_dis
begin

Attribute consistency: same wine cannot be different colors in the generator set

lemma (in wine_dis) reds_whites_int: "reds X whites = {}"
using D_def wine_generator_def reds_def whites_def WineDDV.wine_ddv.axioms
using local.univ_def wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast

end

B.18.2 Elements of Reasoning: Classification and Subsump-
tion

context wine_dis
begin

Classification: The merlot wine is classifed as a red wine.

lemma (in wine_dis) merlot_in_reds: "{merlot, red, dry, full} P reds"
using D_def wine_generator_def reds_def
using wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by fastforce

Classification: The merlot is classifed as a red grape.

lemma (in wine_dis) merlot_red: "merlot P red_grapes"
using merlot_def red_grapes_def D_def reds_def wine_generator_def

wine_univ.sort_svalue
using local.univ_def wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast

Classification: The magliocco is classifed as a red grape.

lemma (in wine_dis) magliocco_red: "magliocco P red_grapes"
using magliocco_def red_grapes_def D_def reds_def wine_generator_def

wine_univ.sort_svalue
using local.univ_def wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast

Other classification and subsumption results

lemma (in wine_dis) rg_def: "red_grapes = {merlot, magliocco}"
proof

213

Ph.D. Thesis - Alicia Marinache65 McMaster - Software Engineering

show "red_grapes Ď {merlot, magliocco}"
using wine_ddv.a_in_one wine_ddv.dt_not_empty wine_ddv.one_closed

local.univ_def wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast
next

show "{merlot, magliocco} Ď red_grapes"
using merlot_red magliocco_red by auto

qed

lemma (in wine_dis) wg_def: "white_grapes = {chard}"
using ddv_base.dt_in_SD wine_ddv.ddv_base_axioms wine_ddv.dt_not_empty

wine_ddv.one_closed wine_ddv.one_def by blast

lemma (in wine_dis) chard_not_merlot: "chard ­“ merlot"
using chard_def merlot_def svalue_eq
using local.univ_def wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast

lemma (in wine_dis) chard_not_magliocco: "chard ­“ magliocco"
using chard_def magliocco_def svalue_eq
using local.univ_def wine_ddv.dt_in_SD wine_ddv.dt_v_in_k by blast

lemma (in wine_dis) chard_nred: "chard R red_grapes"
using chard_not_magliocco chard_not_merlot rg_def by auto

lemma (in wine_dis) chard_red: "chard P white_grapes"
using chard_not_magliocco chard_not_merlot wg_def by auto

lemma (in wine_dis) "red_grapes X white_grapes = {}"
using rg_def wg_def chard_not_merlot chard_not_magliocco by auto

end

B.18.3 Elements of Reasoning: Concept Satisfiability
context wine_dis
begin

Datascape concept satisfiability: The red wines reds contains at lest one s-data in-
stance.

lemma (in wine_dis) reds_satisfiable: "reds ­“ {}"
using merlot_in_reds by auto

end

214

Ph.D. Thesis - Alicia Marinache66 McMaster - Software Engineering

B.18.4 Elements of Reasoning: Inference
context wine_dis
begin

Inference: Region relates to Producer, Producer relates to Estate, Estate relate to
Grape (through (R r)), (R r) is transitive, thus Region relates to Grape.

lemma (in wine_dis) region_grape_relation: "(region, grape) P R r"
using R r_def r_trans is_trans_def
by (metis insertCI r_r_into_trancl)

end

end

215

Appendix C

DIS Templates for Isabelle/HOL

C.1 BNF Production Rules: Meta
As described in Section 6.2, the templates follow a similar format. Let the theory be
named #TheoryName# and the template component be COMP, where comp can take,
in turn, any of the following values: Univ, DDV, DOnt, and DIS. Note that comp

denotes the component name, all lower case. The generic BNF production rules for
the component follow this format:

xtemplate_compy ::= xpreamble_compy xtheory_compy

xpreamble_compy ::=
(* Title: #TheoryName#COMP.thy

Author(s): #authorList#
Date: #date#

*)
section <<#TheoryName#COMP Theory>>
text <<#TheoryNameDDVDescription#>>
xtheory_compy ::=
theory #TheoryName#COMP
xtheory_imports_compy

begin
xtheory_content_compy

end
xtheory_content_compy ::= xdeclarations_compy

xinstance_compy

xcontext_compy

xcontext_compy ::=
context #TheoryName#_comp

216

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

begin
end

The production rules for the xtheory_imports_compy, xdeclarations_compy, and
xinstance_compy nonterminals are specific to each DIS component. Thus, they are
detailed below in their respective sections.

C.2 Universe Template: BNF Production Rules

xtemplate_univy ::= xpreamble_univy xtheory_univy
xpreamble_univy ::=
(* Title: #TheoryName#Univ.thy

Author(s): #authorList#
Date: #date#

*)
section <<#TheoryName#Univ Theory>>
text <<#TheoryNameUnivDescription#>>
xtheory_univy ::=
theory #TheoryName#Univ
xtheory_imports_univy
begin
xtheory_content_univy

end
xtheory_imports_univy ::= imports DDVUniverse
xtheory_content_univy ::= xdeclarations_univy

xlocale_univy
xcontext_univy

xdeclarations_univy ::= xsorts_listy xuniverse_sety xuniverse_mappingsy

xsorts_listy ::=
!foreach #sort#!
definition #sort# :: sort where

"#sort# = #sort_type# {!listgen #value#!}
!eforeach!
xuniverse_sety ::=
definition U :: "sort set" where

"U = {!listgen #sort#!}
xuniverse_mappingsy ::=
definition #thname#_sort2name :: "sort ñ string" ("s2n _") where
"(s2n s) = !foreach #sort#!

217

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

(if s=#sort# then ’’#sort#’’ else
!if ’position eq last’! ’’’’ !eif!

!eforeach!
!foreach sort#!) !eforeach!"

definition #thname#_name2sort :: "string ñ sort" ("n2s _") where
"(n2s n) = !foreach #sort#!

(if n=’’#sort#’’ then #sort# else
!if ’position eq last’! {} !eif!

!eforeach!
!foreach sort#!) !eforeach!"

xlocale_univy ::=
locale #TheoryName#_univ =
#TheoryName#_univ: universe where U = U and

sort2name = sort2name and name2sort = name2sort
for U :: "sort set"
and sort2name :: "sort ñ string"
and name2sort :: "string ñ sort" +

assumes univ_def: "U = #TheoryName#Univ. U"
and s2n_def: "sort2name s = (s2n s)"
and n2s_def: "name2sort n = (n2s n)"

begin
end
xcontext_univy ::=
context #TheoryName#_univ
begin
end

C.3 Domain Data View Template: BNF Production
Rules

xtemplate_ddvy ::= xpreamble_ddvy xtheory_ddvy
xpreamble_ddvy ::=
(* Title: #TheoryName#DDV.thy

Author(s): #authorList#
Date: #date#

*)
section <<#TheoryName#DDV Theory>>

218

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

text <<#TheoryNameDDVDescription#>>
xtheory_ddvy ::=
theory #TheoryName#DDV
xtheory_imports_ddvy
begin
xtheory_content_ddvy

end
xtheory_imports_ddvy ::= imports

#TheoryName#Univ
DomainDtView

xtheory_content_ddvy ::= xdeclarations_ddvy xlocale_ddvy
xdeclarations_ddvy :: =
context #TheoryName#_univ
begin
definition #TheoryName#_generator :: "sdata set"

where "#TheoryName#_generator = {!listgen #sdata#!}"
end
xlocale_ddvy ::=
locale #TheoryName#_ddv = #TheoryName#_univ +

#TheoryName#ddv: ddv where D = D
for D :: "sdata set" +

assumes "D = #TheoryName#_generator"
begin
end
xcontext_ddvy ::=
context #TheoryName#_ddv
begin
end

C.4 Domain Ontology Template: BNF Production
Rules

xtemplate_donty ::= xpreamble_donty xtheory_donty
xpreamble_donty ::= (* Title: #TheoryName#DOnt.thy

Author(s): #authorList#
Date: #date#

*)

219

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

section <<#TheoryName#DOnt Theory>>
text <<#TheoryNameDOntDescription#>>

xtheory_donty ::= theory #TheoryName#DOnt
xtheory_imports_donty
begin
xtheory_content_donty

end
xtheory_imports_donty ::= imports DomainOnt
xtheory_content_donty ::= xdeclarations_donty xlocale_donty
xdeclarations_donty ::= xatomic_conceptsy

“

xnamed_conceptsy
‰

xrooted_graphsy
xatomic_conceptsy ::=
datatype #thname# = !listgen #atom# sep=} lstitem=#atom#at!
!foreach #atom#!
definition #atom# :: "#thname# concept"

where "#atom# = {#atom#at}"
!eforeach!
definition AL :: "#thname# concept set"

where "AL = {!listgen #lattice_atom#!}"
xnamed_conceptsy ::=
!foreach #named_concept#!
definition #named_concept# :: "#thname# concept"

where #named_concept# = !listgen #concept# sep=‘!
!eforeach!
xrooted_graphsy ::=
!foreach #rooted_graph#!
definition #V# :: "#thname# concept set"

where "#V# = {!listgen (#vertice#)!}"
definition #R# :: "#thname# edge set"

where "#R# = {!listgen #edge# lstitem=(#tail#, #head#)!}"
definition #G# :: "#thname# rgraph"

where "#G# = p|vertices = V, edges = R, root = #root#|q"
!eforeach!
xlocale_donty ::=
locale #TheoryName#_dont =

dont: domain_ontology where AC = AC and AL = AL and G = G
for AC :: "#thname# concept set"

and AL :: "#thname# concept set"

220

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

and G :: "#thname# rgraph set" +
assumes atom_l_def: "AL = #TheoryName#DOnt.AL"

and atom_c_def: "AC = AL Y {!listgen #other_concept#!}"
and graphs_def: "G = {!listgen #rg#}"

begin
end
xcontext_donty ::=
context #TheoryName#_dont
begin
end

C.5 Domain Information System Template: BNF
Production Rules

xtemplate_disy ::= xpreamble_disy xtheory_disy
xpreamble_disy ::= (* Title: #TheoryName#DIS.thy

Author(s): #authorList#
Date: #date#

*)
section <<#TheoryName#DIS Theory>>
text <<#TheoryDISDescription#>>

xtheory_disy ::=
theory #TheoryName#DIS
xtheory_imports_disy
begin

xtheory_core_disy
end
xtheory_imports_disy ::= imports

DomainInfSys
#TheoryName#DDV
#TheoryName#DOnt

xtheory_content_disy ::= xdeclarations_disy xlocale_disy xcontext_disy
xdeclarations_disy ::=
xlocale_disy ::= xlocale_core_disy

rxdatascape_concept_definitionys`

xlocale_core_disy ::=
locale #TheoryName#_dis = #TheoryName#_ddv + #TheoryName#_dont +

221

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

fixes sort2atom :: "sort ñ #thname# concept"
assumes s2a_def: "sort2atom s = !foreach #sort#!

(if s=#sort# then ’’#atom#’’ else
!if ’position eq last’! ’’’’ !eif!

!eforeach!
!foreach sort#!) !eforeach!"

begin
interpretation dis AC AL G U sort2name name2sort D sort2atom

apply unfold_locales
done

definition #thname#_type :: "sdata ñ #thname# set"
("τ#thnamei# _" [99] 100) where

"τ#thnamei# a = τ a"
end
xdatascape_concept_definitiony ::=
definition #name# :: "sdata set ñ dataconcept" where

"#name# X = {a | a. a P X ^ xconditiony

^ τ#thnamei# a = xconcepty}"
xconcepty ::= #atom# | #named_concept# | xconcepty ‘ xconcepty
xcontext_disy ::=
context #TheoryName#_dis
begin
end

222

Appendix D

Additional Material on Mathematical
Background

D.1 Domain Information System (DIS)
The following is a list of all axioms that hold in a DIS structure I “ pO,A, τq. Let
a, b P A, k, k1, k2 P C, κ, λ P U , i P N, Gti P G, with Gti “

`

Ci, Ri, ti
˘

(A1)
`

C,‘, e
C

˘

is a commutative idempotent monoid

(A2)
`

L,‘,b,a, e
C
,JL

˘

is a Boolean algebra

(A3) L Ď C

(A4) Ci Ď C

(A5) Ri Ď Ci ˆ Ci

(A6) pk1, k2q P Ri ùñ k1 ‰ k2

(A7) ti P L ^ @k P Ci. k “ ti _ pk, tiq P Ri
`

(A8) pk1, k2q P Ri ùñ k2 “ t _ pk2, tiq P R
`
i

(A9) k P C ùñ k P L _ DGti “
`

Ci, Ri, ti
˘

P G. k P Ci

(A10)
`

A,`, ‹,´, 0A, 1A
˘

is a Boolean algebra

(A11) cκp0q “ 0

(A12) a ď cκpaq

(A13) cκpa ‹ cκpbqq “ cκpaq ‹ cκpbq

223

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

(A14) cκpcλpaqq “ cλpcκpaqq

(A15) τp0Aq “ e
C

(A16) τp1Aq “ JL

(A17) τpa` bq “ τpaq ‘ τpbq

Axiom (A1) describes the monoid of concepts C. Axioms (A2)´(A3) describe the
Boolean lattice L. Axioms (A4)´(A9) describe the family of rooted graphs G, as well
as the boundary set on C. Axioms (A10)´(A14) describe the cylindric algebra A.
Axioms (A15)´(A17) describe the operator τ . With every monoid there is a natural
order. In the monoid C (of the DOnt component), this is expressed as the partial
order Ď

C
, defined as k1 Ď

C
k2

def
ðñ k1 ‘ k2 “ k2. In the cylindric algebra A (of the

DDV component), the natural order denoted by ď is defined as a ď b
def
ðñ a`b “ b.

Note that as discussed in Chapter 3, Section 3.2.4, the Boolean lattice L of the DIS
I is isomorphic to a Boolean algebra, and we give the axioms in algebraic terms.

D.2 Cylindric Algebra
To better understand cylindric algebras, we give its geometrical interpretation as a k-
dimensional cylindric algebra that represents the universe of all k-dimensional objects
(a set of k-dimensional points) on which the Boolean operators (intersection, union,
negation) create new solids (Tarski et al., 1971). The operation of cylindrification on
the i-th dimension can be understood as a projection of the solid on the k-1 space that
is being extended to the whole "cylinder" along the removed dimension. Figure D.1
shows the representation of a two-dimensional cylindric algebra. In Figure D.2 we
give the geometrical interpretation of axiom pC4q in a two-dimensional cylindric al-
gebra.

In (Imielinski and Lipski, 1984), the authors show there exists a natural embedding
of the RA described below and the diagonal-free cylindric set algebra. Since its in-
troduction in (Codd, 1970), Codd’s relational model of data has been accepted as a
clear and succinct model for relational databases.

Let U be a fixed set of attributes, A1, A2, ¨ ¨ ¨ , An. We call a set of attributes J Ď U
a type. With each attribute Ai P U there is associated a non-empty attribute domain,
DpAiq. A relation of type J is a set of tuples R Ď ΠAiPJDpAiq; an element t P R is
called a tuple (of type J). For a tuple t in R, we write τpRq “ τptq “ J , and we call

224

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

0

1

C0X

C1X

U

U

X

Figure D.1: Cylindric algebra: geometrical representation Tarski et al. (1971)

the τ operator the type of R (or t, respectively). We say that a tuple t of type J is a
mapping, associating a value tpAiq P DpAiq with each attribute Ai P J . A restriction
of the mapping to K Ď J is written as trKs.

In database theory, a relation of type J is generally assumed to be finite and it
is represented as a table with columns representing each attribute in J , and rows
corresponding to tuples. The following basic relational operators are defined:

• Projection ("vertical" decomposition): πKpRq “ ttrKs | t P Ru, where K Ď

τpRq

• Selection ("horizontal" decomposition): σEpRq “ tt P R | Eptqu, where E is
the selection condition, usually defined as a logical formula where the atomic
conditions are of the form pAi “ aq, a P DpAiq or pAi “ Ajq, Ai, Aj P U .

• Union (the usual set theory union): R YQ

• Join (natural join): R ’ Q “ tt | τptq “ J YK ^ trJs P R ^ trKs P Qu

The following results are borrowed from (Imielinski and Lipski, 1984).
Let R be any relation, let J “ τpRq, and let us define 1 “ ΠAiPJDpAiq (the universe
of tuples). The mapping

hpRq “ tt P 1 | trJs P Ru

225

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

0

1

XY

C0X

C0Y

C0X X C0Y “ C0pX X C0Y q

Figure D.2: Cylindric algebra: geometrical representation of axiom (C4). Tarski et al.
(1971)

is obtained by extending every tuple in R to the entire set of attributes in U (in all
possible ways). It is easy to observe that hpRq can be considered an element of a
diagonal-free cylindric set algebra of subsets of 1, with the cylindrification operator
corresponding to attributes in U .

On a cylindric algebra, we consider generalised cylindrification on a subset of multiple
dimensions. Let J “ tk1, k2, ¨ ¨ ¨ knu, such that @i P N, ki P J. i ď n ^ ki ă α.

cpJqx
def
“ ck1ck2 ¨ ¨ ¨ cknx

The mapping h defines a natural embedding of the RA into the diagonal-free cylindric
set algebra of subsets of 1.

Theorem D.2.1 (Imielinski and Lipski (1984)).

(i) hpπKpRqq “ cpU´KqhpRq

(ii) hpσEpRqq “ σEphpRqq “ hpRq X σEp1q

(iii) hpR YQq “ hpRq Y hpQqpτpRq “ τpQqq

(iv) hpR ’ Qq “ hpRq X hpQq l

226

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

The proof of the above results can be found in (Imielinski and Lipski, 1984).
Part (a) of the theorem shows that we perform a projection not by shrinking the
relation (through removal of one or more attributes), but by expanding it with ev-
ery possible value of the removed attributes. In (Goczyła et al., 2009), the authors
observe this method of projection bridges the gap between relational database and
ontologies. In traditional relational models, the absence of data is generally treated
as negative information, while in knowledge systems it is treated as absence of knowl-
edge. For example, in a database, two address rows (tuples) related to a person,
Jane, can be interpreted as ’Jane has exactly 2 homes’. In an ontology, the same
information is be interpreted as ’Jane has at least 2 homes’. Thus, ontologies make
no assumption about facts that have not been explicitly described; this open-world
behaviour is easily captured by the cylindrification operator, while the projection
would have inaccurately restrict the information. The removed attributes describe
the part of knowledge we do not explicitly possess, we may assume any value for those
attributes.

227

Appendix E

Isabelle Overview

In this appendix, we provide more details on the ITP Isabelle. The appendix is
structured as follows: in Section E.1, we describe the basic elements of Isabelle’s
syntax, and in Section E.2 we present two core components of Isabelle, its theories
and locales. In Section E.3 we detail the concrete syntax of Isabelle and describe
elements the user should be aware of. Finally, in Section E.4, we describe the Isabelle
proof engine, with its main elements, and the recommended usage. Throughout
this appendix, the generic Isabelle commands are described in standard BNF, briefly
described in Section 6.1. We remind the reader that throughout the text, we use
black truetype font for Isabelle keywords. Within the listings, we use colour to
highlight the keywords.

E.1 Types, Terms, Formulae, and Variables
In our work, we focus on Isabelle/HOL, a widely used instantiation of Isabelle, tailored
for reasoning in HOL. HOL is a typed logic, based on typed λ-calculus, and similar to
functional programming languages like ML or Haskell (Gerwin Klein, 2024; Nipkow,
2025). Its types are:

• base types such as bool, nat (N), int (Z)

• type constructors, written postfix, such as list or set. E.g., int set describes
the type of sets whose elements are integers

• function types, denoted by ñ . In Isabelle/HOL, functions are total. The
notation rτ1, . . . , τns ñ τ is understood as τ1 ñ . . . ñ τn ñ τ

• type variables, denoted by ‘a, ‘b etc.

228

Ph.D. Thesis - Alicia Marinache1 McMaster - Software Engineering

In Isabelle, terms and formulae must be well-typed. However, when possible Isabelle
uses type inference and automatically computes the type of each variable in a term,
giving an error when the type cannot be automatically inferred.

Terms are formed by applying functions to arguments. If f is a function of type
τ1 ñ τ2 and t is a term of type τ1 then f t is a term of type τ2. We write t :: τ and
mean that the term t is of type τ . In addition to the standard postfix, through syntax
annotations, Isabelle allows the declaration of infix and midfix notations, discussed
in Section E.3. Terms may also contain λ-abstractions, such as λx. x` 1. Nested λ-
abstractions can be abbreviated, e.g., the term λx y. t can be used instead of λx. λy. t.

In Isabelle/HOL, formulae are treated as propositions, i.e., formulae are terms of
type bool. The type bool contains the constants True and False, and it uses the
logical connectives ␣, ^ , _ , @, D, and ÝÑ . The binary connectives associate to the
right, i.e., A ÝÑ B ÝÑ C is equivalent to A ÝÑ pB ÝÑ Cq. Equality is available in
the form of the infix function “ of type ‘a ñ ‘a ñ bool. The equality connective
works for formulae as well, where it is interpreted as iff. Quantifier fomulae are
written @x. P and Dx. P. Similar to λ-abstractions, quantifiers may be nested, i.e.,
@x y z. P may be written instead of @x. @y. @z. P. For considerations of consistency,
clarity, and parsing efficiency, the HOL connectives may appear after the meta-logic
connectives, and not the other way around. Therefore, HOL implication ÝÑ binds
more tightly than the meta-logic implication ùñ. E.g., the term @x. P ÝÑ Q is
equivalent to @x. pP ÝÑ Qq, as the quantifier @x binds to P ÝÑ Q. In contrast, the
term @x. P ùñ Q is equivalent to p@x. Pq ùñ Q, as the quantifier binds to P.

Sometimes type inference fails and it is necessary to attach an explicit type annota-
tion to a variable or term. The explicit type annotation is weakly binding. E.g., the
term x` y :: nat is interpreted as px` yq :: nat. To avoid that, the type annotation
must be enclosed in parentheses. E.g., the term x` py :: natq is well formed and
expresses the intention to annotate the type of y.

In Isabelle, there are three types of variables: free, bound, and schematic. The
free and bound variables have the same meaning as in FOL. To avoid name-clashes
with free variables, bound variables are automatically renamed by the system. The
schematic variables have a ? as their first character. They are logically free variables
and, during the proof process, they may be arbitrarily intantiated by other terms. In
contrast, free and bound variables remain fixed. In Prolog, the schematic variables
are called logical variables.

In Table 5.1 we presented general syntactic rules for Isabelle. A good usage rule is

229

Ph.D. Thesis - Alicia Marinache2 McMaster - Software Engineering

to use parantheses and proper identifiers to ensure that what is written is what was
intended. Note that space symbols matter in the Isabelle editor. E.g., the term λx.P
is interpreted as λpx.Pq. This is most likely not at all what the user intended, which
is to express λx. P (note the space after the .).

E.2 Theories and Locales
In Isabelle, theories and locales serve as fundamental constructs in the structuring
and organisation of formal developments. Theories manage global definitions and
proofs, while locales offer adaptable, reusable contexts for assumptions and parame-
ters specific to proofs. A theory represents a collection of formal definitions, types,
functions, and proofs (i.e., lemmas). Theories are defined using the theory keyword
and serve as modules that can be built on or imported by other theories. Thus, a
theory is similar to a specification in a specification language. The general structure
of a theory T is provided in Listing E.1. The T1 . . . Tn are parent theories for T. All
definitions and proofs of the parent theories are inherited in theory T. Names can be
qualified to avoid clashes, e.g., T1.f or T.f. The theory T must be saved into a file
theory named exactly “T.thy”.

theory T
imports T1 . . . Tn
begin
definitions, theorems and proofs

end

Listing E.1: Theory: General Structure

Locales are designed as a system of modules that allow the user to represent the
complex dependencies between mathematical structures in abstract algebra. Locales
correspond to parametrised theories (Definition 3.4.4) (Ballarin, 2010). They offer a
method to further enhance the structure of a theory, by defining a context in which
assumptions and parameters are locally valid. The context includes assumptions, con-
stants, and parameters, and represents a reusable module that can be instantiated at
a later time, as needed. The context is a formula schema, as described in Listing E.2,
Eq.(1). The variables x1, . . . , xn are called parameters, and the premises A1, . . . , Am are
called assumptions. Within a given context, a formula C that is a conclusion (i.e., a
specific assertion or statement derived from the context) is called a theorem, as shown
in Listing E.2, Eq.(2).

(1)
Ź

x1 . . . xn. rrA1; A2; . . . ; Amss ùñ . . .

(2)
Ź

x1 . . . xn. rrA1; A2; . . . ; Amss ùñ C

Listing E.2: Locales: Context

230

Ph.D. Thesis - Alicia Marinache3 McMaster - Software Engineering

Note that the
Ź

x1 . . . xn. rrA1;A2;. . .; Amss ùñ C formula is interpreted in Isabelle as
Ź

x1 . . . xn. A1 ùñ pA2 ùñ . . . pAm ùñ Cq . . .), and it reads as “For all x1 . . . xn, from
A1 and A2 and . . . and Am we have C”.

A locale is defined using the keyword locale, and includes a sequence of param-
eters (denoted by the keyword fixes) and assumptions (denoted by the keyword
assumes). Parameters are declarations of operators (zero-nary or constants, unary,
binary etc.) or relations. Assumptions are axioms that describe specific properties of
the given locale parameters. In Listing E.3, we give the specification for a semigroup.
The parameter of locale semigroup is mult, a binary operator with infix syntax ˚.
The parameter syntax is available in the subsequent assumption, which defines the
operator as associative. The unbound names a, b, c are recognised as free variables,
and they are implicitly universally qualified (i.e., their type is any type 1a) in the
locale assumptions. Thus the formula of the assoc assumption is understood as
“
Ź

a b c. a ˚ b ˚ c “ a ˚ pb ˚ cq”.

locale semigroup =
fixes mult :: "’a ñ ’a ñ ’a" (infixl "*" 70)
assumes assoc: "a * b * c = a * (b * c)"

Listing E.3: Locales: Semigroup Specification

The locale contexts are recorded into Isabelle’s kernel. In addition, the locale
framework allows the user to declare and combine contexts and reuse the theorems
proved in these contexts. Isabelle provides several commands to inspect locales. The
command print_locales prints the names of all locales in the current theory. The
command print_locale loc lists the parameters and assumptions of locale loc.
The command print_locale! loc lists the theorems that have been stored in the
locale loc.

E.g., when the user inspects the locale semigroup with the command
print_locale!semigroup, Isabelle provides the output in Listing E.4. The output is
slightly different from the locale declaration, and it is what Isabelle has recorded in
its kernel for the semigroup locale.

locale semigroup
fixes mult :: "’a ñ ’a ñ ’a" (infixl x*y 70)
assumes "semigroup (*)"
notes "assoc" = (x?a * ?b * ?c = ?a * (?b * ?c)y)

Listing E.4: Semigroup Locale: Kernel Record

The parameter declaration remains the same. Isabelle introduces a new assumption
into the theory, the locale predicate ”semigroup p˚q”. Then, Isabelle transforms

231

Ph.D. Thesis - Alicia Marinache4 McMaster - Software Engineering

each assumption of the locale specification into a new conclusion, denoted by the
use of keyword notes. For each such conclusion, Isabelle introduces a corresponding
foundational theorem in the theory. A foundational theorem is composed of a context
(i.e., the list of parameters and assumptions) and a conclusion. A foundational
theorem can be invoked by its fully qualified name xlocaley.xassumptiony. E.g.,
in the semigroup locale, the original assumption (assoc) has been turned into a
conclusion and transformed into a foundational theorem. This theorem can be
accessed using its fully qualified name semigroup.assoc.

The specification of a locale (i.e., its parameters and assumptions) is fixed. The
list of the locale conclusions can be extended by using Isabelle commands that take
a target argument, such as the definition and lemma commands. When using
these commands, the target argument is indicated with the keyword in, as shown in
Listing E.5.

definition (in semigroup)
le :: "’a ñ ’a ñ bool" (infixl "Ď" 50)
where "(x Ď y) = (x * y = y)"

Listing E.5: Extending the Semigroup Locale

This declarations extends the semigroup locale, by adding a new foundational
constant named semigroup.le. Isabelle next adds the conclusion semigroup.le_def
to the locale. This new foundational constant can be accessed using its abbreviated
name le, which is printed and parsed as Ď.

Within locales, theorems are proved in the context of the given set of assumptions.
The theorems can then be used in other contexts where the assumptions themselves
are theorems. This form of theorem reuse is called interpretation and it is made
available through the command interpretation, as described in Listing E.6. The
parameters ”param1” . . . ”paramn” must be given in the order of declaration, i.e., the
order the print_locale command outputs them. Note that Isabelle abuses the term
interpretation, which is meant as model. Thus, once an interpretation command
is issued, Isabelle requires proof (i.e., xproofy) that the set of parameters form a model
for the interpreted locale.

interpretation xlabely : xlocy ”param1” . . . ”paramn” xproofy

Listing E.6: Locale Intepretation

In Listing E.7, we provide an example of an interpretation for the semigroup locale.
The parameter of the semigroup locale has been replaced by the binary operator p`q
that operates on naturals.

232

Ph.D. Thesis - Alicia Marinache5 McMaster - Software Engineering

interpretation nats: semigroup "p`q :: nat ñ nat ñ nat"
by unfold_locales auto

Listing E.7: Locale Intepretation: Naturals Semigroup

After the interpretation command is issued, instances of all conclusions of the
locale are available in the theory and are accessible by their name, prefixed by the
interpretation label. E.g., within the nats interpretation of the semigroup locale,
the theorem of associativity for naturals is named nats.assoc and is described by the
theorem in Listing E.8. The schematic variables ?x, ?y, ?z are of type nat (i.e., they
are all naturals).

?x * (?y * ?z) = ?x * ?y * ?z

Listing E.8: Naturals Semigroup Intepretation: Associativity

Note that in Isabelle, another method to modularise theories is the use of classes.
Classes correspond to interfaces in object-oriented languages and can be used to define
abstract structures, similar to the use of locales. Similarly to locales, classes can be
instantiated to concrete structures, s.t. the theorems of the abstract class are inherited
by the concrete structure. The main limitation is that in classes, type inference is
enforced automatically, meaning the type system ensures that all operations within
a class apply to a single type. This can lead to restrictions where only one type
variable is allowed per instance to maintain consistent typing. On the other hand,
in locales, there is no automatic type inference. As a result, variables in locales
can involve multiple types without the restrictions imposed by type classes, allowing
greater flexibility in defining assumptions and structures.

E.3 Concrete Syntax
The concrete syntax of the Isabelle framework uses mixfix annotations, in which op-
erators can have multiple notations, and can be either infix or postfix. The mixfix
operators use precedence and associativity to parse a term. E.g., consider the decla-
ration of a binary operator in Listing E.9 Eq.(1). The term plus a b is well formed,
however the term plus a plus b c throws a parser error. To parse it, the term must
be written as plus a pplus b cq. The postfix notation is not natural, and Isabelle
allows the user to annotate the declaration, as shown in Listing E.9 Eq.(2).

(1) plus :: "’a ñ ’a ñ ’a"
(2) plus :: "’a ñ ’a ñ ’a" (infixl "+" 50)

Listing E.9: Elements of Isabelle Syntax: Operator Annotation

233

Ph.D. Thesis - Alicia Marinache6 McMaster - Software Engineering

Precedence Associativity Result

` ă ˚ a` pb ˚ cq

` ą ˚ pa` bq ˚ c

` “ ˚ Both Right a` pb ˚ cq

` “ ˚ Both Left pa` bq ˚ c

Any Other Combination Parse Error!

Table E.1: Parsing the term a` b ˚ c in Isabelle

The infix can associate to the right (keyword infixr), to the left (keyword
infixl), or it may have no orientation (keyword infix). In Listing E.9 Eq.(2),
the symbol ` represents the literal token of the operator plus, and the number
(50) determines the precedence of the operator. An operator with a higher prece-
dence binds tighter than an operator with a lower precedence. In case of equal
precedence, the parser uses associativity of the operator to parse a term and
decide if it is well-formed or not. In Table E.1, we show the result of the parsing
of the term a` b ˚ c, according to the precedence and associativity of both operators.

Mixfix annotations are syntactic decorations, i.e., they replace a postfix application
of a certain function with its concrete syntax notation. E.g., the term plus a b is
replaced with the more readable term a` b. In contrast, an abbreviation introduces a
constant that stands in for a more complex term, effectively functioning as a syntactic
macro to simplify expressions. An abbreviation is used as a rewrite rule after parsing
and before printing. E.g., assume we want to represent the relation of similarity.
We introduce a relation Sim, defined as a set of pairs. We can then introduce an
abbreviation for the relational notation for the membership in Sim, replacing the
notation pa, bq P Sim with a more natural a „ b, as shown in Listing E.10. After
parsing, Isabelle replaces all occurrences of a „ b by pa, bq P Sim. Before printing, it
does the opposite, and replaces all occurrences of pa, bq P Sim by a „ b. The name
of the abbreviation (in our case sim) is not critical; it simply needs to be a unique
identifier.

const Sim :: "(’a, ’a) set"
abbreviation sim :: "’a ñ ’a ñ bool" (infix "„" 50)

234

Ph.D. Thesis - Alicia Marinache7 McMaster - Software Engineering

where "a „ b ” (a, b) P Sim"

Listing E.10: Elements of Isabelle Syntax: Abbreviations

E.4 Proofs in Isabelle
Proof commands perform transitions of the prover (i.e., the Isar machine configura-
tions) and only certain proof commands are allowed in each proof mode. There are
three such modes: prove, state, and chain. In the prove mode (annotated in blue
in Listing E.11), a new goal is now stated and its proof must follow. In the state
mode (annotated in red in Listing E.11), a proof block is now open and the context
may be extended with intermediate results, additional assumptions etc. In this mode,
a from statement, a goal statement, or a list of assumptions may follow. In the chain
mode (annotated in green in Listing E.11), a from statement just occurred, and a
goal statement must follow. The proof mode can be interactively checked during proof
writing, and it is a guide for the proof writer to understand what kind of commands
may be issued next. An example of each mode is illustrated in Listing E.11.

lemma "rrA; Bss ùñ A ^ B" [prove]
proof (rule conjI) [state]
assume a: "A" [state]
from a [chain] show "A" [prove] by assumption [state]

next [state]
assume b: "B" [state]
from b [chain] show "B" [prove] by assumption [state]

qed [state]

Listing E.11: Isabelle Proof Modes

There are two common kinds of proofs In Isabelle, procedural and structured. The
procedural proofs, also called apply-style proofs, are formed by sequential application
of proof methods until all subgoals are solved. Subgoal management is mainly
handled implicitly, and the tactics are applied to the entire proof state at once. In
contrast, the structured proofs, also called Isar proofs, are organised into modular,
explicit blocks, using the Isar proof language. Isar proofs explicitly manage subgoals,
allowing for fine-grained control over the proof state. Due to their readability and
modularity, Isar proofs are easier to understand and maintain. In this section, we
detail both kinds.

The general schema of a procedural proof is

lemma [name:] "xgoaly"

235

Ph.D. Thesis - Alicia Marinache8 McMaster - Software Engineering

apply xmethody

. . .

apply xmethody

done

The apply methods solve subgoals in the order provided by the proof state i.e.,
each method must solve the current subgoal. Isabelle uses both backward and
forward reasoning. A backward proof decomposes the conclusion of the goal (i.e., the
formula to the right of the ùñ), and a forward proof decomposes the assumptions
of the goal (i.e., the formula to the left of the ùñ). E.g., given the Isabelle goal
rrP; Qss ùñ P ^ Q, a forward proof states that “If P holds and Q holds, then P ^ Q

holds”, while a backward proof states that “To show P ^ Q, show that P holds and
Q holds”. A list of commonly used Isabelle method proofs is described in Table 5.2.
For more details, we refer the reader to the Isabelle manuals and tutorials (Ballarin,
2008; Nipkow et al., 2021; Wenzel et al., 2021).

Isabelle uses natural deduction rules, which captures human reasoning patterns.
Each logical connective has two kind of rules, introduction rules that infer the
connective and elimination rules that allow the consequences of the connective to be
deduced. A list of some common natural deduction rules for both the introduction
and elimination is described in Table 5.3. Note that in Isabelle rules can be safe
or unsafe. A safe rule can be applied using backward reasoning with no loss of
information, preserving the goal provability. Upon the application of an unsafe rule,
there is loss of information, which may transform the goal into an unprovable goal.
E.g., the disjI rule is unsafe, because it reduces P _ Q to P, which might turn to be
an unprovable goal. This distinction between safe and unsafe rules affects the proof
search: if a proof attempt fails, the prover will backtrack to the nearest application
of an unsafe rule, and make a different choice. A good practice is to always apply
safe rules before unsafe ones.

In Isabelle, some basic rules methods are rule (introduction), erule (elimination),
drule (destruction or direct), frule (forward). Assume we have the following rule,
named R:

rrP1; . . . ; Pnss ùñ Q

and a current subgoal, named G:

rrA1; . . . ; Amss ùñ C

When method prule Rq is applied to current subgoal G, it unifies Q with C, and it
replaces G with n new subgoals P1 . . . Pn. This method is appropriate for introduction

236

Ph.D. Thesis - Alicia Marinache9 McMaster - Software Engineering

rules, and it is backward reasoning.

The application of method perule Rq to the current subgoal G unifies Q with C and the
first assumption P1 with some subgoal assumption Ai. The current subgoal is then
replaced by n´ 1 new subgoals P2 . . . Pn, and the matching assumption is removed.
This method is appropriate for elimination rules. A similar result is obtained by
applying prule R, assumptionq, with the difference that the assumption is not
deleted.

By applying method pdrule Rq to the current subgoal, it unifies the first assumption
P1 with some assumption Ai, and deletes that assumption. The current subgoal is
replaced by n´ 1 new subgoals P2 . . . Pn, and an nth subgoal is added, similar with
the original subgoal, but with an additional assumption, an instance of Q. This
method is forward reasoning, and it is appropriate for destruction rules. Method
pfrule Rq is similar, but the matching assumption is not deleted.

For an example of backward proof and how Isabelle methods work, let us consider
the lemma in Listing E.12.

lemma some_thm: "rrA; Bss ùñ A ^ pB ^ Aq" (Step 0)
apply (rule conjI) (Step 1)
apply assumption (Step 2)
apply (rule conjI) (Step 3)
apply assumption (Step 4)
apply assumption (Step 5)
done (Step 6)

Listing E.12: Backward Proof: Example

Isabelle translates the goal of the theorem into the following output:

goal (1 subgoal):
1. A ùñ B ùñ A ^ B ^ A

Listing E.13: Backward Proof: Output (Step 0)

In Listing E.12 (Step 1), the prover applies the conjunction introduction rule conjI.
This unifies the conclusion of the first (and only) goal in Listing E.13 to the conclu-
sion of the rule, and replaces the conclusion by the subgoals of the rule. Thus, the
conclusion P ^ Q is replaced by its subgoals, P and Q, where P stands for A, and Q for
B ^ A. Thus, at (Step 1), the output shows two subgoals, as follows:

goal (2 subgoals):
1. A ùñ B ùñ A

237

Ph.D. Thesis - Alicia Marinache10 McMaster - Software Engineering

2. A ùñ B ùñ B ^ A

Listing E.14: Backward Proof: Output (Step 1)

In Listing E.12 (Step 2), the prover applies the assumption, which solves the first
subgoal. A is immediately inferred from the assumption rrA; Bss and the subgoal 2.
becomes the only subgoal. In a similar way, at (Step 3), the prover applies the
conjunction introduction rule and creates two new subgoals, as follows:

goal (2 subgoals):
1. A ùñ B ùñ B
2. A ùñ B ùñ A

Listing E.15: Backward Proof: Output (Step 3)

At (Step 4) and (Step 5), each application of the assumption automatically solves
each subgoal. The keyword done associates the proved lemma with its given name,
and Isabelle output is shown in Listing E.16. The output details that a new theorem,
called some_thm, has been added to the Isabelle kernel. In the new theorem, the
free variables A and B are replaced by the schematic variables ?A and ?B, respectively.
Unlike free variables, schematic variables can be instantiated, i.e., they can be replaced
by specific terms or expressions during the proof process. Any time from now on, when
the prover knows two facts, P and Q, it can use this theorem to infer that P ^ pQ ^ Pq.

theorem some_thm: ?A ùñ ?B ùñ ?A ^ ?B ^ ?A

Listing E.16: Backward Proof: Output (Step 6)

lemma "A _ B ùñ B _ A" goal (1 subgoal):
1. A _ B ùñ B _ A

apply (erule disjE) goal (2 subgoals):
1. A ùñ B _ A
2. B ùñ B _ A

apply (rule disjI2) goal (2 subgoals):
1. A ùñ A
2. B ùñ B _ A

apply assumption goal (1 subgoal):
1. B ùñ B _ A

apply (rule disI1) goal (1 subgoal):
1. B ùñ B

apply assumption goal:
No subgoals!

done theorem: "?A _ ?B ùñ ?B _ ?A"

Listing E.17: Mixed Proof: Example

238

Ph.D. Thesis - Alicia Marinache11 McMaster - Software Engineering

In Listing E.17, we show an example of mixed reasoning in Isabelle. On the left side,
we show the Isabelle proof, and on the right side, we present the prover output. The
application of the erule method is an example of forward reasoning, i.e., the assump-
tion of the current goal A _ B is unified with the first assumption of the disjE rule
P _ Q, and the rest of the assumptions of the rule become new subgoals. In the given
example, P stands for A, Q for B, and R for B _ A. Upon application of the method
perule disjEq, the original goal is replaced by two subgoals, one matching P ùñ R

and the other Q ùñ R. From this point on, the proof uses backward reasoning.
Note that the apply method always affects the first subgoal. Thus, the command
apply prule disjI2q applies to the first subgoal, i.e., A ùñ B _ A, and transforms it
into A ùñ A. The next apply assumption command solves this goal automatically,
therefore the only remaining goal is now B ùñ B _ A, which is solved in a similar way.

In large-scale applications that involve complex mathematical proofs with potentially
hundreds of steps, the sequential nature of apply scripts makes them hard to main-
tain, due to their lack of structure. To manage proofs in a more organised, maintain-
able and elegant way, we use Isar, which leverages Isabelle’s full range of provers in a
structured format (Ballarin, 2008; Nipkow, 2011; Wenzel et al., 2021). E.g., a typical
Isar proof for a generic goal A0 ùñ C is shown in Listing E.18. Provided that each
subseqent proof step succeeds, the proof is successful.

proof
assume A0"
have "F1" by . . .
...
have "Fn" by . . .

show "C" by . . .

qed

Listing E.18: Generic Isar Proof

The have statements are intermediate steps to the show statement that proves the
actual goal. In Listing E.19 we present the general syntax of Isar proofs, using BNF.
Recall that a symbol enclosed between xy denotes a non-terminal symbol. An Isar
proof can be atomic (described as the by . . . line) or it can contain a proof block
(described as the proof . . . qed line).

xproofy ::= proof
“

xmethody
‰

xstatementy˚ qed
“

xmethody
‰

| by xmethody
“

xmethody
‰

xmethody ::= (simp . . .) | (blast . . .) | (rule . . .) | . . .

239

Ph.D. Thesis - Alicia Marinache12 McMaster - Software Engineering

xstatementy ::= fix xvariabley`
`
Ź
˘

| assume xpropositiony
`

ùñ
˘

|
“

from xnamey`
‰

| (have | show) xpropostiony xproofy
| next (separates subgoals)

Listing E.19: Isar Proof Syntax

An atomic proof is self-contained and completes in a single step without breaking
down into sub-proofs. It directly establishes the validity of the statement by
concluding the proof immediately, through the use of the command by. In contrast,
a block proof is a sequence of logically connected proof steps. A proof block may
introduce local variables, assumptions, and intermediate goals (i.e., conclusions).
Local variables and assumptions are introduced with the keywords fix and assume,
respectively. Intermediate goals are introduced with two commands: the have

command that introduces intermediate results or lemmas, and the show command
that indicates the final conclusion of the current block. Additional examples of Isar
proofs are discussed in the remainder of this section.

When the proof command takes an argument of the form prule some´ruleq, the
prover applies the rule it states. The method rule can take a list of rules and applies
the first matching rule in the list. Note that elimination rules are tried first. To sim-
plify the proofs, the command proof automatically attempts to select a rule, based on
the current goal and the Isabelle predefined list of introduction and elimination rules,
which we introduced in Table 5.3. Thus, the proof command without arguments is
an abbreviation for the command proof prule elim´rules intro´rulesq.

In Listing E.20, we show a simple Isar proof. In it, the application of the command
proof prule conjIq replaces the conclusion of the current goal (i.e., A ^ B) with
the two subgoals of the conjI rule (i.e., A and B). Each subgoal is individually and
immediately proved by assumption. It is recommended that the Isar proofs are built
in such a way that the proof of each proposition builds on the previous proposition.
The previous proposition is referred to by the abbreviation this. When the proof is
immediate (i.e., using the command by assumption), the command can be replaced
by “ .”. In Listing E.21, we show the use of these two abbreviations, as a simplified
version of Listing E.20. For a list of the abbreviations most commonly used in
Isabelle proofs, we refer the reader to Table 5.4.

240

Ph.D. Thesis - Alicia Marinache13 McMaster - Software Engineering

lemma "rrA; Bss ùñ A ^ B"
proof (rule conjI)
assume a: "A"
from a show "A" by assumption

next
assume b: "B"
from b show "B" by assumption

qed

Listing E.20: Isar Example

lemma rrA; Bss ùñ A ^ B

proof
assume "A"
from this show "A" .

next
assume "B"
from this show "B" .

qed

Listing E.21: Isar Example

lemma
assumes ab: "A_ B"
shows "B_ A"

proof -
from ab show ?thesis
proof

assume A thus ?thesis ..
next

assume B thus ?thesis ..
qed

qed

Listing E.22: Rule Suppress

lemma
assumes ab: "A_ B"
shows "B_ A"

using ab
proof

assume A thus ?thesis ..
next

assume B thus ?thesis ..
qed

Listing E.23: Using Command

In some cases, it is necessary to suppress the implicit application of rules in the
proof command. Given the goal show ”A _ B”, an implicit proof command applies
the first _ -introduction rule and requires to prove A, which may not be provable.
To avoid this, the command proof´ allows the suppression of any predefined
Isabelle/Isar rules, as shown in Listing E.22.

The code can be even more simplified, with the using command, as shown in
Listing E.23. The using command can be placed ahead of the proof command,
allowing additional facts to be included alongside those already referenced in the
proof context. In Listing E.23, the using command feeds the fact ab directly
into the proof and triggers the application of the elimination rule. When using an
assumes-shows block to state a proposition in Isar, the system implicitly introduces
the keyword assms, which represents the list of assumptions introduced in that
block. The assumptions can be referred to individually by assmsp1q, assmsp2q, etc.,
without the need to name each individually. E.g., in Listing E.23, the command
using can take the argument assmsp1q, with the same effect as the name argument ab.

241

Ph.D. Thesis - Alicia Marinache14 McMaster - Software Engineering

Just as with unstructured proofs, in Isar proofs the method rule can apply forward
and backward reasoning, using elimination and introduction rules, respectively. For-
ward reasoning is presented in Listing E.24. In it, the proof command picks an elim-
ination rule, such that the first assumption of the rule unifies with the fact ab. Back-
ward reasoning is presented in Listing E.25. In it, the proof command picks an intro-
duction rule, and the conclusion of the rule must unify with the have goal (A ^ B).

assume ab: "A ^ B"
from ab have ". . ." proof

Listing E.24: Forward Reasoning

have "A ^ B" proof

Listing E.25: Backward Reasoning

E.5 Commonly used proof patterns
So far, we have demonstrated several proof patterns using examples. In this section,
we outline the most commonly used logic proof patterns, such as case analysis,
logical equivalence, contradiction, quantifiers, and set operations.

For proving a statement R, case analysis patterns come in two forms: (i) beginning
with a formula P, the reasoning considers P and ␣P and (ii) given a disjunctive fact
P _ Q, the reasoning considers each disjunct P, Q, separately. The first pattern is
described in Listing E.26 and the second in Listing E.27.

show "R"
proof cases
assume "P"
...
show "R" xproofy

next
assume "␣P"
...
show "R" xproofy

qed

Listing E.26: Case Analysis (i)

have "P _ Q xproofy

then show "R"
proof
assume "P"
...
show "R" xproofy

next
assume "Q"
...
show "R" xproofy

qed

Listing E.27: Case Analysis (ii)

A logical equivalence pattern proof consists of two steps: first we assume the left
side and we show that it implies the right side, then we swap the assumption and
conclusion. The pattern is presented in Listing E.28

242

Ph.D. Thesis - Alicia Marinache15 McMaster - Software Engineering

show "P ÐÑ Q"
proof
assume "P"
...
show "Q" xproofy

next
assume "Q"
...
show "P" xproofy

qed

Listing E.28: Logical Equivalence

Contradiction patterns come in two forms, described in Listings E.29 and E.30. If
we aim to prove ␣P, we assume P and derive a contradiction (i.e., show False).
Alternatively, if we aim to prove P, we apply the ccontr rule, we assume ␣P and
derive a contradiction.
show "␣P"
proof
assume "P"
...
show "False" xproofy

qed

Listing E.29: Contradiction (␣Pq

show "P"
proof (rule ccontr)
assume "␣ P"
...
show "False" xproofy

qed

Listing E.30: Contradiction (ccontr)

In Listings E.31 and E.32, we detail the quantified formula patterns for the universal
and existential quantifiers, respectively. In the universal quantifier pattern, the
fix x statement introduces a locally fixed variable into the proof. This statement
is equivalent to the well-known “arbitrary, but fixed value” used in mathematical
proofs. Note that this new variable is different from the bound variable x in the
quantifier formula. Internally, Isabelle renames it to ensure there is no confusion.

show "@x. P x"
proof
fix x
...
show "P x" xproofy

qed

Listing E.31: Universal Quantifier

show "Dx. P x"
proof
...
show "P witness" xproofy

qed

Listing E.32: Existential Quantifier

243

Ph.D. Thesis - Alicia Marinache16 McMaster - Software Engineering

In the existential quantifier pattern, the witness is an arbitrary term for which we
can prove that it satisfies P. If we need to reason forward from the Dx. P x formula,
we use the obtain command to introduce a witness for which P is satisfied. The
wittness variable is usually also denoted by a local variable x. Note that, again, this
new variable x is different from the bound variable of the existential quantifier and
can have any other name.

Finally, in Listings E.33 and E.34, we detail two more patterns for set operations,
for inclusion and equality, respectively.

show "A Ď B
proof
fix x
assume "x P A"
...
show "x P B" xproofy

qed

Listing E.33: Set Inclusion

show "A = B"
proof
show "A Ď B" xproofy

next
show "B Ď A" xproofy

qed

Listing E.34: Set Equality

For more details, we invite the reader to check the extensive Isabelle documentation
and tutorials (Nipkow, 2025; Wenzel et al., 2021; Nipkow et al., 2021).

244

Bibliography

Amoroso, N. (2010). The exposed city: mapping the urban invisibles. Routledge.

Angele, J., Kifer, M., and Lausen, G. (2009). Ontologies in f-logic. In Handbook on
ontologies, pages 45–70. Springer.

Antoniou, G., Batsakis, S., Mutharaju, R., Pan, J. Z., Qi, G., Tachmazidis, I., Urbani,
J., and Zhou, Z. (2018). A survey of large-scale reasoning on the web of data. The
Knowledge Engineering Review, 33.

AstroML (2021). AstroML: Machine learning and data mining for astronomy. http:
//www.astroml.org. Accessed: April. 10, 2025.

Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.
(2003). The description logic handbook: Theory, implementation and applications.
Cambridge university press.

Baader, F., Koopmann, P., Michel, F., Turhan, A.-Y., and Zarrieß, B. (2022). Efficient
TBox Reasoning with Value Restrictions using the wer Reasoner. Theory and
Practice of Logic Programming, 22(2), 162–192.

Ballarin, C. (2008). Introduction to the isabelle proof assistant. https://www21.in.
tum.de/~ballarin/belgrade08-tut/. Accessed: April. 10, 2025.

Ballarin, C. (2010). Tutorial to locales and locale interpretation. In Contribuciones
científicas en honor de Mirian Andrés Gómez, pages 123–140. Universidad de La
Rioja.

Barendregt, H. and Wiedijk, F. (2005). The challenge of computer mathematics.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 363(1835), 2351–2375.

Baumann, P., Mazzetti, P., Ungar, J., Barbera, R., Barboni, D., Beccati, A., Bigagli,
L., Boldrini, E., Bruno, R., Calanducci, A., et al. (2016). Big data analytics for
earth sciences: the earthserver approach. International Journal of Digital Earth,
9(1), 3–29.

245

http://www.astroml.org
http://www.astroml.org
https://www21.in.tum.de/~ballarin/belgrade08-tut/
https://www21.in.tum.de/~ballarin/belgrade08-tut/

Ph.D. Thesis - Alicia Marinache17 McMaster - Software Engineering

Ben-Ari, M. (2012). Mathematical logic for computer science. Springer Science &
Business Media.

Benzmüller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M.,
Kohlhase, M., Konrad, K., Meier, A., Melis, E., et al. (1997). Ω: Towards a math-
ematical assistant. In International Conference on Automated Deduction, pages
252–255. Springer.

Bhatia, J., Evans, M. C., and Breaux, T. D. (2019). Identifying incompleteness
in privacy policy goals using semantic frames. Requirements Engineering, 24(3),
291–313.

Birkhoff, G. and MacLane, S. (1941). A Survey of Modern Algebra. Macmillan, New
York.

Borgida, A. and Patel-Schneider, P. F. (1993). A semantics and complete algorithm
for subsumption in the CLASSIC description logic. Journal of Artificial Intelligence
Research, 1, 277–308.

Borgo, S. and Hitzler, P. (2018). Some Open Issues After Twenty Years of Formal
Ontology. In FOIS, pages 1–9.

Brachman, R. and Levesque, H. (2004). Knowledge Representation and Reasoning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Brucker, A. D., Ait-Sadoune, I., Crisafulli, P., and Wolff, B. (2018). Using the is-
abelle ontology framework. In International Conference on Intelligent Computer
Mathematics, pages 23–38. Springer.

Burton-Jones, A., Storey, V. C., Sugumaran, V., and Ahluwalia, P. (2005). A semiotic
metrics suite for assessing the quality of ontologies. Data & Knowledge Engineering,
55(1), 84–102.

Calvanese, D. and Franconi, E. (2018). First-order ontology mediated database
querying via query reformulation. In A Comprehensive Guide Through the Ital-
ian Database Research Over the Last 25 Years, pages 169–185. Springer.

Chantrapornchai, C. and Choksuchat, C. (2016). Ontology construction and appli-
cation in practice case study of health tourism in Thailand. SpringerPlus, 5(1),
2106.

Ciesielski, K. (1997). Set theory for the working mathematician. Cambridge University
Press.

246

Ph.D. Thesis - Alicia Marinache18 McMaster - Software Engineering

Codd, E. (1970). A relational model of data for large shared databanks. ACM, 13,
377–387.

Davey, B. and Priestly, H. (1990). Introduction to Lattices and Order. Cambridge
University Press.

De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., and Rosati, R. (2018). Using
Ontologies for Semantic Data Integration, pages 187–202. Springer International
Publishing, Cham.

de Haan, E., Padigar, M., El Kihal, S., Kübler, R., and Wieringa, J. E. (2024).
Unstructured data research in business: Toward a structured approach. Journal of
Business Research, 177, 114655.

De Jong, T. and Ferguson-Hessler, M. G. (1996). Types and qualities of knowledge.
Educational psychologist, 31(2), 105–113.

De Nicola, A. and Missikoff, M. (2016). A lightweight methodology for rapid ontology
engineering. Communications of the ACM, 59(3), 79–86.

De Nicola, A., Missikoff, M., and Navigli, R. (2009). A software engineering approach
to ontology building. Information systems, 34(2), 258–275.

Di Pinto, F., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2019).
Acquiring ontology axioms through mappings to data sources. Future Internet,
11(12), 260.

Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A. (1996). Reasoning in de-
scription logics. Principles of knowledge representation, 1, 191–236.

Ehrig, H. and Mahr, B. (1985). Fundamentals of Algebraic Specifications. Springer.

Ehrig, H., Kreowski, H.-J., Mahr, B., and Padawitz, P. (1982). Algebraic implemen-
tation of abstract data types. Theoretical Computer Science, 20(3), 209–263.

Ekaputra, F., Sabou, M., Serral Asensio, E., Kiesling, E., and Biffl, S. (2017).
Ontology-based data integration in multi-disciplinary engineering environments:
A review. Open Journal of Information Systems, 4(1), 1–26.

Fernández-López, M., Gómez-Pérez, A., and Juristo, N. (1997). Methontology: from
ontological art towards ontological engineering. In Proc. Symposium on Ontological
Engineering of AAAI.

247

Ph.D. Thesis - Alicia Marinache19 McMaster - Software Engineering

Ganter, B., Rudolph, S., and Stumme, G. (2019). Explaining data with formal con-
cept analysis. In Reasoning web. Explainable artificial intelligence, pages 153–195.
Springer.

Genesereth, M. R., Fikes, R. E., et al. (1992). Knowledge interchange format-version
3.0: reference manual. Citeseer.

Gerwin Klein, June Andronick, T. M. (2024). Type classes & locales. http://www.
cse.unsw.edu.au/~cs4161/11s2/week12A_4p.pdf.

Goczyła, K., Waloszek, A., and Waloszek, W. (2009). Algebra of ontology mod-
ules for semantic agents. In International Conference on Computational Collective
Intelligence, pages 492–503. Springer.

Gómez-Pérez, A., Fernández-López, M., and Corcho, O. (2006). Ontological Engi-
neering: with examples from the areas of Knowledge Management, e-Commerce
and the Semantic Web. Springer Science & Business Media.

Gordon, M. J., Milner, A. J., and Wadsworth, C. P. (1979). Edinburgh LCF: a
mechanised logic of computation. Springer.

Grimm, S. (2009). Knowledge representation and ontologies. In Scientific data mining
and knowledge discovery: principles and foundations, pages 111–137. Springer.

Gross, J. L., Yellen, J., and Anderson, M. (2018). Graph theory and its applications.
Chapman and Hall/CRC.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowl-
edge sharing? International journal of human-computer studies, 43(5-6), 907–928.

Grüninger, M., Chow, A., and Wong, J. (2023). Semiautomatic design of ontologies.
In IFIP Working Conference on The Practice of Enterprise Modeling, pages 143–
158. Springer.

Guarino, N., Oberle, D., and Staab, S. (2009). What is an ontology? In Handbook
on ontologies, pages 1–17. Springer.

Harper, R. (2016). Practical foundations for programming languages. Cambridge
University Press.

Harrison, J. (2009). HOL light: An overview. In International Conference on Theorem
Proving in Higher Order Logics, pages 60–66. Springer.

Harrison, J., Urban, J., and Wiedijk, F. (2014). History of Interactive Theorem
Proving. In Computational Logic, volume 9, pages 135–214.

248

http://www.cse.unsw.edu.au/~cs4161/11s2/week12A_4p.pdf
http://www.cse.unsw.edu.au/~cs4161/11s2/week12A_4p.pdf

Ph.D. Thesis - Alicia Marinache20 McMaster - Software Engineering

Hatcher, W. and Hebert, M. (1993). Model Theory.

Hirsch, R. (2007). Relation algebra reducts of cylindric algebras and complete repre-
sentations. The Journal of Symbolic Logic, 72(2), 673–703.

Hodges, W., Wilfrid, H., et al. (1993). Model theory. Cambridge university press.

HOL (2012). The HOL system - university of cambridge. http://www.cl.cam.ac.
uk/research/hvg/HOL/. Accessed: April. 10, 2025.

Hong, J. L. (2016). Automated data extraction with multiple ontologies. International
Journal of Grid and Distributed Computing, 9(6), 381–392.

Horrocks, I. (1998). Using an expressive description logic: FaCT or fiction? KR, 98,
636–645.

IMDb (2020). IMDb Datasets. http://www.imdb.com/interfaces/. Accessed:
April. 10, 2025.

Imielinski, T. and Lipski, W. (1984). The relational model of data and cylindric
algebras. Journal of Computer and System Sciences, 28, 80–102.

Isabelle (2025). Isabelle: A generic interactive proof assistant. http://isabelle.
in.tum.de/index.html. Accessed: April. 10, 2025.

Jackermeier, M., Chen, J., and Horrocks, I. (2023). Box2EL: Concept and role box
embeddings for the description logic el++. arXiv preprint arXiv:2301.11118.

Jaskolka, J., MacCaull, W., and Khedri, R. (2015). Towards an ontology design ar-
chitecture. In 2015 International Conference on Computational Science and Com-
putational Intelligence (CSCI), pages 132–135. IEEE.

Kant, I. (1908). Critique of pure reason. 1781. Modern Classical Philosophers, Cam-
bridge, MA: Houghton Mifflin, pages 370–456.

Kendall, E. F. and McGuinness, D. L. (2019). Ontology engineering. Synthesis
Lectures on The Semantic Web: Theory and Technology, 9(1), i–102.

Kohlas, J. and Schmid, J. (2014). An algebraic theory of information: An introduction
and survey. Information, 5(2), 219–254.

Kotis, K. I., Vouros, G. A., and Spiliotopoulos, D. (2020). Ontology engineering
methodologies for the evolution of living and reused ontologies: status, trends,
findings and recommendations. The Knowledge Engineering Review, 35.

249

http://www.cl.cam.ac.uk/research/hvg/HOL/
http://www.cl.cam.ac.uk/research/hvg/HOL/
http://www.imdb.com/interfaces/
http://isabelle.in.tum.de/index.html
http://isabelle.in.tum.de/index.html

Ph.D. Thesis - Alicia Marinache21 McMaster - Software Engineering

Krötzsch, M., Simancik, F., and Horrocks, I. (2012). A description logic primer. arXiv
preprint arXiv:1201.4089.

Kunčar, O. and Popescu, A. (2015). A consistent foundation for Isabelle/HOL. In
Interactive Theorem Proving: 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015, Proceedings 6, pages 234–252. Springer.

Le Clair, A., Marinache, A., El Ghalayini, H., MacCaull, W., and Khedri, R. (2022).
A review on ontology modularization techniques: a multi dimensional perspective.
IEEE Transactions on Knowledge and Data Engineering.

Leadbetter, A., Smyth, D., Fuller, R., O’Grady, E., and Shepherd, A. (2016). Where
big data meets linked data: Applying standard data models to environmental data
streams. In Big Data (Big Data), 2016 IEEE International Conference on, pages
2929–2937. IEEE.

LeClair, A., Khedri, R., and Marinache, A. (2019). Toward Measuring Knowledge
Loss due to Ontology Modularization. In Proceedings of the 11th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management - Volume 2: KEOD, pages 172–184. INSTICC, SciTePress.

LeClair, A., Khedri, R., and Marinache, A. (2020). Formalizing graphical modular-
ization approaches for ontologies and the knowledge loss. In International Joint
Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Man-
agement, pages 388–412. Springer.

Lenzerini, M., Milano, D., and Poggi, A. (2004). Ontology representation & rea-
soning. Universit di Roma La Sapienza, Roma, Italy, Tech. Rep. NoE InterOp
(IST-508011).

Loveland, D. W. (2016). Automated theorem proving: A logical basis. Elsevier.

Lukácsy, G. and Szeredi, P. (2009). Efficient description logic reasoning in Prolog:
the DLog system. Theory and Practice of Logic Programming, 9(3), 343–414.

MacGregor, R. M. (1994). A description classifier for the predicate calculus. In AAAI,
volume 94, pages 213–220.

Madni, A. M., Lin, W., and Madni, C. C. (2001). IDEON: An extensible ontology for
designing, integrating, and managing collaborative distributed enterprises. Systems
Engineering, 4(1), 35–48.

Marinache, A. (2016). On the Structural Link Between Ontologies and Organised
Data Sets. Master’s thesis, McMaster University, Hamilton, ON, Canada.

250

Ph.D. Thesis - Alicia Marinache22 McMaster - Software Engineering

Marinache, A., Khedri, R., and MacCaull, W. (2019). A Data-Centered Framework
for Domain Knowledge Representation. Technical report, McMaster University.

Marinache, A., Khedri, R., LeClair, A., and MacCaull, W. (2021). DIS: A data-
centred knowledge representation formalism. In 2021 Reconciling Data Analytics,
Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), pages 1–8.
IEEE.

Marinache, A., Khedri, R., and MacCaull, W. (2025a). Bridging data and knowl-
edge: A roadmap from Domain Information Systems (DIS) Theory to Practical
Reasoning. To be Submitted for publication.

Marinache, A., Khedri, R., and MacCaull, W. (2025b). Domain Information System
(DIS): From theory to semantics. Technical Report CAS-25-02-RK, McMaster
University.

Marinache, A., Khedri, R., and MacCaull, W. (2025c). Domain Information System
(DIS): Specification and automation. Technical Report CAS-25-01-RK, McMaster
University.

Marker, D. (2000). Model Theory: An Introduction. Springer.

Matentzoglu, N., Leo, J., Hudhra, V., Sattler, U., and Parsia, B. (2015). A survey of
current, stand-alone OWL reasoners. In ORE, pages 68–79.

Mizoguchi, R. (2003). Part 1: Introduction to ontological engineering. New generation
computing, 21(4), 365–384.

Mizoguchi, R. (2019). Knowledge engineering. In Ontology Makes Sense, pages 69–81.

Motik, B. (2009). Resolution-based reasoning for ontologies. In Handbook on Ontolo-
gies, pages 529–550. Springer.

Motik, B., Shearer, R., and Horrocks, I. (2009). Hypertableau reasoning for descrip-
tion logics. Journal of Artificial Intelligence Research, 36, 165–228.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and
Muharemagic, E. (2015). Deep learning applications and challenges in big data
analytics. Journal of Big Data, 2(1), 1.

Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M., and Ochiai, O. (2015).
Big data challenges in building the global earth observation system of systems.
Environmental Modelling & Software, 68, 1–26.

251

Ph.D. Thesis - Alicia Marinache23 McMaster - Software Engineering

Nawaz, M. S., Malik, M., Li, Y., Sun, M., and Lali, M. (2019). A survey on theorem
provers in formal methods. arXiv preprint arXiv:1912.03028.

Nipkow, T. (2011). A tutorial introduction to structured isar proofs.

Nipkow, T. (2025). Programming and proving in Isabelle/HOL. https://isabelle.
in.tum.de/doc/prog-prove.pdf. Accessed: April. 28, 2025.

Nipkow, T. and Roßkopf, S. (2021). Isabelle’s metalogic: Formalization and proof
checker. In CADE, pages 93–110.

Nipkow, T., Wenzel, M., and Paulson, L. C. (2021). Isabelle/HOL: a proof assistant
for higher-order logic. Springer. Accessed: April. 10, 2025.

NuPRL (2014). Proof/program refinement logic. https://nuprl-web.cs.cornell.
edu/. Accessed: April. 10, 2025.

OMDbAPI (2019). The Open Movie Database. http://www.omdbapi.com/. Ac-
cessed: April. 10, 2025.

Patel, A. and Jain, S. (2018). Formalisms of representing knowledge. Procedia Com-
puter Science, 125, 542–549.

PhoX (2024). The phox proof assistant. https://raffalli.eu/phox/index.html.
Accessed: April. 10, 2025.

PVS (2023). PVS specification and verification system. http://pvs.csl.sri.com.
Accessed: April. 10, 2025.

Quantz, J. and Kindermann, C. (1990). Implementation of the BACK-system version
4. Technische Universitaet Berlin.

Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z., et al. (2019). QED
at large: A survey of engineering of formally verified software. Foundations and
Trends® in Programming Languages, 5(2-3), 102–281.

ROCQ (2025). The rocq prover. https://rocq-prover.org/. Accessed: April. 10,
2025.

Sankappanavar, H. P. and Burris, S. (1981). A course in universal algebra. Graduate
Texts Math, 78, 56.

Sattar, A., Surin, E. S. M., Ahmad, M. N., Ahmad, M., and Mahmood, A. K. (2020).
Comparative analysis of methodologies for domain ontology development: A sys-
tematic review. International Journal of Advanced Computer Science and Applica-
tions, 11(5).

252

https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf
https://nuprl-web.cs.cornell.edu/
https://nuprl-web.cs.cornell.edu/
http://www.omdbapi.com/
https://raffalli.eu/phox/index.html
http://pvs.csl.sri.com
https://rocq-prover.org/

Ph.D. Thesis - Alicia Marinache24 McMaster - Software Engineering

Sayed Ahmed, T. (2022). Notions of representability for cylindric algebras: some
algebras are more representable than others. Periodica Mathematica Hungarica,
pages 1–35.

Schneider, T. and Šimkus, M. (2020). Ontologies and data management: a brief
survey. KI-Künstliche Intelligenz, 34(3), 329–353.

Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY. The-
oretical Computer Science, 121(1-2), 411–440.

Smith, B. (2006). Against idiosyncrasy in ontology development. Frontiers in Artifi-
cial Intelligence and Applications, 150, 15.

Song, W., Spencer, B., and Du, W. (2011). Hybrid reasoning for ontology classifica-
tion. In Canadian Conference on Artificial Intelligence, pages 372–376. Springer.

Sowa, J. F. (2014). Principles of semantic networks: Explorations in the representa-
tion of knowledge. Morgan Kaufmann.

Stojanovic, L. (2004). Methods and tools for ontology evolution. PhD thesis, University
of Karlsruhe.

Suárez-Figueroa, M. C., Gómez-Pérez, A., and Fernández-López, M. (2012). The
NeOn methodology for ontology engineering. In Ontology engineering in a net-
worked world, pages 9–34. Springer.

Sure, Y., Staab, S., and Studer, R. (2004). On-to-knowledge methodology (OTKM).
In Handbook on ontologies, pages 117–132. Springer.

Tahrat, S., Braun, G., Artale, A., Gario, M., and Ozaki, A. (2020). Automated
reasoning in temporal DL-Lite. arXiv preprint arXiv:2008.07463.

Tarski, A., Henkin, L., and Monk, J. (1971). Cylindric Algebras. North-Holland.

Tudorache, T. (2020). Ontology engineering: Current state, challenges, and future
directions. Semantic Web, 11(1), 125–138.

Van Harmelen, F., Lifschitz, V., and Porter, B. (2008). Handbook of knowledge rep-
resentation. Elsevier.

Vassiliadis, P., Zarras, A. V., and Skoulis, I. (2015). How is life for a table in an evolv-
ing relational schema? Birth, death and everything in between. In International
Conference on Conceptual Modeling, pages 453–466. Springer.

253

Ph.D. Thesis - Alicia Marinache25 McMaster - Software Engineering

W3C (2025). World wide web consortium (W3C). https://www.w3.org/. Accessed:
April. 10, 2025.

Wang, Y., Chen, Y., Alomair, D., and Khedri, R. (2022). DISEL: A Language for
Specifying DIS-Based Ontologies. In Knowledge Science, Engineering and Man-
agement (KSEM), volume 13369 of Lecture Notes in Artificial Intelligence, pages
155–171. Springer.

Wenzel, M. et al. (2021). The isabelle/isar reference manual. http://isabelle.in.
tum.de/dist/Isabelle2021-1/doc/isar-ref.pdf. Accessed: April. 10, 2025.

Wenzel, M. and Wolff, B. (2007). Building formal method tools in the isabelle/isar
framework. In International Conference on Theorem Proving in Higher Order Log-
ics, pages 352–367. Springer.

Westhofen, L., Neurohr, C., Butz, M., Scholtes, M., and Schuldes, M. (2022). Using
ontologies for the formalization and recognition of criticality for automated driving.
IEEE Open Journal of Intelligent Transportation Systems, 3, 519–538.

Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., and
Zakharyaschev, M. (2018). Ontology-based data access: a survey. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pages 5511–5519.
AAAI Press.

Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E., Plex-
ousakis, D., and Sabou, M. (2015). Ontology evolution: a process-centric survey.
The knowledge engineering review, 30(1), 45–75.

Zhang, Y. and Zhao, Y. (2015). Astronomy in the big data era. Data Science Journal,
14, 11–11.

Zombori, Z. (2008). Efficient two-phase data reasoning for description logics. In IFIP
International Conference on Artificial Intelligence in Theory and Practice, pages
393–402. Springer.

254

https://www.w3.org/
http://isabelle.in.tum.de/dist/Isabelle2021-1/doc/isar-ref.pdf
http://isabelle.in.tum.de/dist/Isabelle2021-1/doc/isar-ref.pdf

Glossary

A

A-Box Assertional Box. 2, 17, 23, 40, 44, 75, 108

ATP Automated Theorem Prover. 26

B

BDD Binary Decision Diagram. 27

BNF Backus–Naur form. viii, 91, 92, 101, 216–219, 221, 228, 239

C

CA Cylindric Algebra. 15, 29

CG Conceptual Graphs. 14

CQ Competency Questions. 52, 73

CWA closed-world assumption. 13, 15

D

D-Box Data Box. 44

DDV Domain Data View. 6, 10, 30, 40, 41, 43, 47, 49, 51–54, 60–66, 68–75, 83, 85,
87, 90, 91, 95, 97–99, 102, 104, 108, 110, 111, 113, 114, 116–118, 140, 224

DIS Domain Information System. iv, vii, xi, 3–11, 13, 25, 26, 30–32, 40–45, 47–55,
60, 64, 67–75, 77, 83–87, 89–95, 98–100, 102–108, 110–114, 116–119, 140, 217,
223, 224

DL Description Logic. iv, 2, 3, 7, 8, 14, 16–18, 21, 23–25, 28–30, 40, 72, 75, 106,
108, 110, 112

255

Ph.D. Thesis - Alicia Marinache26 McMaster - Software Engineering

DOnt Domain Ontology. 6, 10, 11, 30, 40–43, 47, 49, 51, 52, 65–67, 69–72, 74, 75,
83, 85, 87, 89–91, 98–100, 102, 104, 108, 116, 118, 140, 224

F

F-Logic Frame Logic. 16, 28, 29

FCA Formal Concept Analysis. 13, 14

FOL First Order Logic. 7–9, 14, 16, 17, 23, 24, 29, 77–80, 229

H

HOL Higher Order Logic. 9, 26, 30, 77, 228

I

IA Information Algebra. 15

Isabelle/HOL generic Higher-Order Logic proof assistant Isabelle. 5, 7–11, 32, 47,
83, 85, 90, 101, 106, 110, 114, 117, 118, 149, 228

ISO 15926 ISO Standard 15926 - Integration of life-cycle data for process plants
including oil and gas production facilities. 20

ITP Interactive Theorem Prover. 26–28, 30, 77, 117, 228

K

KB Knowledge Base. 18, 23–25, 108

KIF Knowledge Interchange Format. 16, 17

KRR Knowledge Representation and Reasoning. 1, 7, 11

L

LCF Logic of Computable Functions. 26–28, 30

M

ML Meta Language. 26–28, 93

O

256

Ph.D. Thesis - Alicia Marinache27 McMaster - Software Engineering

OBDA Ontology-based Data Access. 75

OCaml Objective Caml. 27, 28

OMDb Open Movie Database. 51

OO Object-Oriented. 20

OTKM On-To-Knowledge Methodology. 21

OWL Web Ontology Language. 16, 21, 25

P

PIDE Prover IDE. 78

PVS Prototype Verification System. 28

R

R-Box Rule Box. 2

RA Relational Algebra. 15, 29, 224, 226

RDF Resource Description Framework. 16

RDFS Resource Description Framework Schema. 16

S

SAT Boolean Satisfiability. 27

SEADOO SEmi-Automatic Design Of Ontologies. 22, 104

SMT Satisfiability Modulo Theory. 27

SPARQL SPARQL Protocol and RDF Query Language. 16

T

T-Box Terminological Box. 2, 17, 23, 25, 40, 44, 75, 108

U

UPON Lite Unified Process for ONtology building. 22

257

Ph.D. Thesis - Alicia Marinache28 McMaster - Software Engineering

W

W3C World Wide Web Consortium. 16

Z

ZF Zermelo-Fraenkel set theory. 77

258

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Objectives and Methodology
	Contributions
	Related Publications
	Thesis Outline

	Literature Review
	Knowledge Representation Formalisms
	Design Perspectives on Knowledge Management
	Knowledge Generation
	Existing Higher Order Logic Theorem Provers
	Conclusion

	Mathematical Background
	Mathematical Structures
	Mathematical Background
	Domain Information System
	Algebraic Specifications
	Conclusion

	Semantics of Domain Information System
	Domain Information System: Syntax
	Domain Information System: A Running Example
	DIS Model: Domain Data View Component
	DIS Model: Domain Ontology Component
	DIS Model: Mapping Operator Component
	Datascape Concepts
	Discussion

	DIS Specification
	Isabelle/HOL Overview and Architecture
	DIS Specification in Isabelle
	DIS Example: Wine Ontology
	Conclusion

	DIS Automation
	Foundational Elements
	Templates Overview
	Universe Template
	Domain Data View Template
	Domain Ontology Template
	Domain Information System Template
	Conclusion

	Elements of Reasoning
	Reasoning in dis
	Wine Ontology, Extended Example
	Consistency Checking
	Concept Satisfiability
	Classification and Subsumption
	Inference Checking
	Conclusion

	Conclusion and Future Work
	Future Work
	Closing Remarks

	DIS Model Proofs
	Operators on Data Properties
	Domain Data View Model
	Domain Ontology Model
	Mapping operator

	DIS Specification in Isabelle/HOL
	Set Comprehension Results
	Inductive Finite Sets
	Diagonal-free Cylindric algebra
	Domain Data View Types
	Domain Data View Universe
	Domain Data View Boolean Algebra
	Domain Data View Base
	Domain Data View
	Concept
	Concept Monoid
	Concept Lattice
	Concept Rooted Graph
	Domain Ontology
	Domain Information System
	Wine Universe
	Wine Domain Data View
	Wine Domain Ontology
	Wine Domain Information System

	DIS Templates for Isabelle/HOL
	BNF Production Rules: Meta
	Universe Template: bnf Production Rules
	Domain Data View Template: bnf Production Rules
	Domain Ontology Template: bnf Production Rules
	Domain Information System Template: bnf Production Rules

	Additional Material on Mathematical Background
	Domain Information System (DIS)
	Cylindric Algebra

	Isabelle Overview
	Types, Terms, Formulae, and Variables
	Theories and Locales
	Concrete Syntax
	Proofs in Isabelle
	Commonly used proof patterns

	Bibliography
	Glossary

