ACCELERATING OBJECT DETECTION AND
TRACKING PIPELINES FOR EFFICIENT
EDGE VIDEO ANALYTICS

ACCELERATING OBJECT DETECTION AND TRACKING
PIPELINES FOR EFFICIENT EDGE VIDEO ANALYTICS

By RENJIE XU, M.E.

A Thesis Submitted to the School of Graduate Studies in Partial
Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

McMaster University (C) Copyright by Renjie Xu, September 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

DOCTOR OF PHILOSOPHY (2025)

Hamilton, Ontario, Canada (Department of Computing and Software)

TITLE:

AUTHOR:

SUPERVISOR:

CO-SUPERVISOR:

NUMBER OF PAGES:

Accelerating Object Detection and Tracking Pipelines for
Efficient Edge Video Analytics

Renjie Xu
M.E. (Circuits and Systems),

Nanjing Forestry University, Nanjing, China

Dr. Rong Zheng

Dr. Saiedeh Razavi

xx, 154

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Lay Abstract

Video analytics is a technique that can extract insightful information from videos,
driving real-world applications such as traffic monitoring, where rapid and accu-
rate responses are critical for safety. However, existing video analytics pipelines are
compute-intensive, making them difficult to run efficiently on resource-constrained
edge devices. This thesis proposes three novel approaches that significantly accelerate
video analytics without compromising accuracy. These approaches intelligently adjust
how videos are analyzed by selecting appropriate resolutions and processing models,
and by focusing only on the most informative parts of each frame, greatly reducing
unnecessary computation and communication. Extensive experiments demonstrate
that the proposed approaches enhance the trade-off between accuracy and efficiency,

providing a strong foundation for efficient and reliable edge video analytics.

11

Abstract

Edge computing enables rapid video analytics by processing data closer to the source,
thereby reducing end-to-end latency. This gives rise to the paradigm of edge video
analytics (EVA). Object detection and object tracking are key building blocks of
video analytics pipelines (VAPs), as their outputs directly impact the performance
of downstream tasks. In real-world applications like traffic monitoring, timely and
accurate responses are critical—delayed or inaccurate results can compromise safety.
However, achieving such an accuracy-efficiency balance at the edge is particularly
challenging due to two main factors: the compute-intensive nature of modern Convo-
lutional Neural Network (CNN)- or Vision Transformer (ViT)-based models, and the
limited computational and communication resources on edge devices.

This thesis aims to improve the efficiency of object detection and tracking pipelines
without sacrificing accuracy, enabling efficient and reliable EVA. Conventional pipelines
often adopt fixed configurations (e.g., frame resolution and backbone model) or pro-
cess entire frames uniformly, overlooking the dynamic and spatially diverse nature of
video content, resulting in considerable resource waste. To address these limitations,
we propose three novel approaches: FastTuner, a model-agnostic framework that
dynamically selects the optimal frame resolution and backbone model at runtime to

accelerate multi-object tracking (MOT) pipelines; BlockHybrid, which leverages

v

a policy network to classify each frame into “hard” and “easy” blocks, and pro-
cesses them with either a block-wise detector or a lightweight tracker accordingly;
and SEED, an end-to-end framework that couples block selection with block exe-
cution, enabling unified and efficient selection and execution of informative blocks
in ViT-based object detectors. Extensive evaluations across multiple datasets and
deployment scenarios demonstrate the effectiveness and generality of the proposed
methods. Together, these contributions pave the way for more adaptive and scalable

video analytics in real-world edge environments.

To my family,

friends, and mentors.

vi

Acknowledgements

First and foremost, I would like to express my deepest thanks to my supervisor,
Dr. Rong Zheng and co-supervisor Dr. Saiedeh Razavi for their continuous support,
insightful guidance, and encouragement throughout my Ph.D. studies. Their exper-
tise, patience, and high standards have greatly shaped both my research and personal
growth. I feel truly fortunate to have the opportunity to work under their supervision.

I am also very grateful to my committee members: Dr. Wenbo He, Dr. Douglas
Down, for their valuable feedback and thoughtful suggestions, which helped improve
the quality of my work. Their support throughout the various stages of this thesis
has been instrumental.

Special thanks go to my master’s supervisors, Dr. Yunfei Liu and Dr. Haifeng
Lin, who inspired my interest in research and provided me with a solid foundation
during my early academic journey. Their guidance has played a vital role in preparing
me for doctoral studies, and I will always appreciate the mentorship they provided.

I would like to thank all members of the WiSeR group for creating such a friendly
and collaborative research environment. I am especially grateful to Dr. Keivan Nalaie,
my best friend here. Our regular discussions related to both academic and everyday
life have not only helped me improve my research but also made my time here more

enjoyable.

Vil

I also want to express my sincere appreciation to my close friend, Mr. Xuli Cai,
for always being there to talk and listen. His companionship and support have helped
me get through stressful times and kept me balanced along the way.

Last but not least, I owe my deepest gratitude to my parents for their uncon-
ditional love, understanding, and constant support. Their belief in me has been my
greatest source of strength, and this work would not have been possible without them.
I am equally thankful to my home country, China, and the China Scholarship Coun-
cil for providing the financial support that enabled me to pursue my doctoral studies

abroad.

Viil

Table of Contents

Lay Abstract iii
Abstract iv
Acknowledgements vii
List of Abbreviations xvii
Declaration of Academic Achievement xxi
1 Introduction 1
1.1 Motivation 2
1.2 Contributions 7
1.3 Organization 9
2 Background 11
2.1 Preliminaries of Video Analytics Pipeline 12
2.2 Related Work 17
2.3 Datasets 24
2.4 Performance Metrics 25

1X

2.5 Hardware 27

FastTuner: Fast Resolution and Model Tuning for Multi-Object

Tracking in Edge Video Analytics 31
3.1 Imtroduction 32
3.2 Motivation 35
3.3 Methodology 40
3.4 Workload Placement on End and Edge Devices 48
3.5 Performance Evaluation 50
3.6 Conclusion 64

BlockHybrid: Accelerating Object Detection Pipelines with Hybrid

Block-Wise Execution 66
4.1 Introduction 67
4.2 Motivationo 71
4.3 BlockHybrid Design oo 75
4.4 Evaluationo 85
4.5 Conclusion 93

SEED: An End-to-End Selective Execution Framework for Transformer-

Based Object Detection in Edge Video Analytics 96
5.1 Introduction 97
5.2 Motivationo 100
5.3 SEED Design 104
54 Ewvaluation 112
5,5 Conclusion 120

6 Conclusion 122

6.1 Summary 123
6.2 Limitations 123
6.3 Future Work 125

x1

List of Figures

1.1

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

Overview of the contributions. 8
Components of a video analytics pipeline. 13
MOTI17 dataset. 26
Wildtrack dataset.o oL 26
Snapshot of the hardware platform used in this thesis.. 29
Detection rate using FairMOT with different input resolutions and

backbone models on two video sequences of MOT17 dataset. 38
Pipeline of Fast Tuner, with a detectability branch and a tracking branch
sharing a common backbone model. 42
Two workload placement schemes, partitioning the workload between
a smart camera and an edge server. 49
Comparison between FastTuner (DLA-34) and the baselines: Fair-
MOT+{Full, Half, Quarter}-DLA-34 on MOT17 across two devices. . 57
Comparison between FastTuner (YOLO) and the baselines: FairMOT+{Full,
Half, Quarter}-YOLO on MOT17 across two devices. 57
Comparison between FastTuner (DLA-34) and three SOTA approaches:

VideoStorm, Chameleon and SmartAdapt on MOT17 across two devices. 57

xii

3.7

3.8

3.9

3.10

4.1
4.2

4.3

4.4

4.5

4.6
4.7

4.8

4.9

4.10

Percentages of the configurations selected by FastTuner (DLA-34) un-
der different threshold settings: T1-T7. 58
Percentages of the configurations selected by FastTuner (YOLO) under
different threshold settings: T1-T8. 58
Comparisons between different schemes on the testbed (Tesla P100)
across three different networks.o 64
Comparisons between different schemes on the testbed (GTX 1060)
across three different networks. oL 64

Comparison between conventional pipeline and the proposed pipeline 68

(a) Workload scheduling between CPU and GPU and (b) relationship

between number of hard blocks and execution latency. 74
Example of block artifacts. 74
System overview of BlockHybrid. 76

Workload scheduling between camera and server. Data migration time
(e.g., from CPU to GPU) is omitted considering its negligible overhead. 77
Brief process of block-wise detection. 78
The influence of different key frame intervals on the trade-off between
accuracy and the number of hard blocks. 91
(a) Normalized network traffic and (b) accuracy of different methods
on two datasets. 94
Average end-to-end latency of different methods on two datasets. End-
to-end latency includes camera time, transmission time and server time. 94
Average end-to-end latency of different methods with pipelining on two

datasets. 94

Xlil

4.11 Visualization of BlockHybrid across three scenes.

5.1
5.2

5.3

5.4

5.9

5.6

5.7

5.8

5.9

Comparison between conventional pipeline and the proposed pipeline
Relationship between number of executed blocks and encoder latency.
Input size: 1024 x 2048, patch size: 16 x 16.
Overview of SEED.
Architecture of DecisionNet.
Architectures of BlockDet-TR and BlockDet-EE.
(a) Normalized network traffic and (b) accuracy of different methods
in the token reuse setting on two datasets.
Average end-to-end latency of different methods in the token reuse
setting on two datasets. L.
(a) Normalized network traffic and (b) accuracy of different methods
in the early exit setting on two datasets.
Average end-to-end latency of different methods in the early exit set-

ting on two datasets.

5.10 Visualization of SEED-TR and SEED-EE across multiple scenes. . . .

Xiv

103

119
121

List of Tables

2.1 Details of the datasets 30
2.2 Specifications of the devices 0oL 30
3.1 MOTA and FPS of FairMOT+Full-DLA-34 with different input reso-
lutions L 37
3.2 MOTA and FPS of FairMOT with different backbone models at full
resolution 37

3.3 Qualitative comparison of SOAT and SAT on computation and network

3.4 Threshold settings in FastTuner (DLA-34) and corresponding results 59

3.5 Threshold settings in FastTuner (YOLO) and corresponding results . 59

3.6 Impact of interval K on FastTuner (DLA-34). 60
3.7 Impact of interval K on FastTuner (YOLO) 60
3.8 Metrics of the networks oo 62
4.1 Redundancy of MOT17 and WildTrack datasets. 72
4.2 Benchmark evaluation on two datasets using CSP + ResNet-50. . . . 90
4.3 Benchmark evaluation on two datasets using CSP + MobileNet. . . . 90

4.4 Benchmark evaluation on two datasets using Faster-RCNN + ViT-Small. 90

5.1 Redundancy of MOT17 and WildTrack datasets. 101

XV

5.2 High-level comparison of SEED and other methods. .
5.3 Benchmark evaluation on two datasets for token reuse.

5.4 Benchmark evaluation on two datasets for early exit.

Xvi

List of Abbreviations

VA

EVA

DL

RL

Ccv

Al

IoT

WAN

BS

VAP

ViT

CNN

Video Analytics

Edge Video Analytics

Deep Learning

Reinforcement Learning

Computer Vision

Artificial Intelligence

Internet of Things

Wide Area Network

Base Station

Quality of Experience

Video Analytics Pipeline

Vision Transformer

Convolutional Neural Network

XVvil

MOT Multi-Object Tracking

HoC Histogram of Color

HOG Histogram of Oriented Gradients
DNN Deep Neural Network

MLP Feed-Forward Network or Multilayer Perceptron
MOTA Multi-Object Tracking Accuracy
mAP mean Average Precision

FP False Postive

FN False Negative

IDSW Identity Switch

GT Ground Truth

bbox bounding box

IoU Intersection over Union

re-1D re-identification

FCN Fully Convolution Network
SOTA State of the Art

DLA Deep Layer Aggregation

MAC Multiply-Accumulate Operation

xviil

FR Full-Resolution

ITS Intelligent Transportation System
RSU Roadside Unit

V22X Vehicle-to-Everything

1B Informative Block

non-1B non-lormative Block

HB Hard Block

1G Information Gain

TE Task Error

RTT Round-Trip Time

TCP Transmission Control Protocol
FPS Frames Per Second

FD Full-Frame Detector

MSA Multi-Head Self-Attention

LN Layer Normalization

HFR Hybrid Feature Reconstruction
FPN Feature Pyramid Network

QP Quantization Parameter

Xix

RTMP

RTSP

WebRTC

ML

SIFT

SVM

k-NN

Rol

RCNN

RPN

Real-Time Messaging Protocol

Real-Time Streaming Protocol

Web Real-Time Communication

Machine Learning

Scale-Invariant Feature Transform

Support Vector Machine

k-Nearest Neighbor

Region of Interest

Region-Based Convolutional Neural Network

Region Proposal Network

XX

Declaration of Academic

Achievement

The research presented in this thesis was conducted by the author over the period
2021-2025. The author was the primary contributor, responsible for formulating the
research problem, designing and implementing the proposed methods, performing

experiments, and drafting the manuscripts.

poel

Chapter 1

Introduction

Ph.D. Thesis — R. Xu McMaster University — Computer Science

1.1 Motivation

Cameras are in every corner of our cities in this information-centric era. According
to [1], one surveillance camera is installed for every eight people on the planet nowa-
days, with mature markets (e.g., China and the United States) having one camera
for every four people. Such explosive video data is beyond human capacity to make
sense of what is happening manually. Video analytics (VA) aims to automatically
and efficiently recognize objects and identify interesting events in unstructured video
data. It can drive a large number of applications with wide-ranging impacts on our
society. Examples of such applications include security surveillance in public and
private venues, assisted and autonomous driving and consumer applications such as
digital assistants for real-time decision-making [2].

Early-stage video analytics is based on conventional image processing techniques,
which mainly rely on human expertise and empirical knowledge, and thus are not
robust to changes in lighting conditions, viewing angles, weather conditions, etc. [2].
Deep learning (DL) has made striking breakthroughs in many fields, especially in com-
puter vision (CV). Advanced CV technologies, e.g., object classification, detection,
and tracking, enable extracting more accurate information and insights from video
feeds. The resulting insights can help people make smarter and faster decisions.

However, many DL-driven applications are compute-intensive, thus not friendly to
resource-constrained Internet-of-Things (IoT) devices. The conventional wisdom is to
offload all workloads from devices to a cloud via wide area networks (WANSs), where
powerful data centers are located. This computing paradigm, known as cloud comput-
ing, suffers from high service delays due to long geographical distances and potential

network congestion. According to [3], worldwide data will reach 175 zettabytes (ZB)

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

by 2025, 51% of which will be created by IoT devices. Digesting such massive data in
the cloud incurs excessive delays, making such solution inadequate for mission-critical
applications, e.g., security surveillance [4] and autonomous driving [5], where delayed
responses can compromise safety.

Edge computing, an emerging computing paradigm, has recently been recognized
as a viable alternative to cloud computing. It is a distributed architecture that reduces
latency by hosting applications and computing resources at locations geographically
closer to the data source. Simply put, edge computing alleviates data transfer latency
by processing data on local edge nodes rather than in a remote cloud. An edge node
can vary in size and capability, ranging from tiny processing units co-located with
[oT devices, to IT infrastructures in close proximity to base stations (BSs). These
nodes, distributed at the network edge, can significantly alleviate the workloads and
traffic congestions of the cloud, thereby reducing the service delay and improving the
quality of experience (QoE) of users.

Edge computing is an extension of cloud computing by pushing centralized work-
loads to the network edge. Instead of entirely relying on the cloud, edge computing,
a flexible computing paradigm leveraging both edge and cloud capabilities effectively,
is gaining traction in building VA systems [6]. Therefore, we are now witnessing
the convergence of video analytics and edge computing, namely, edge video analytics
(EVA). Many techniques have been proposed to improve the efficiency of EVA.

Configuration Optimization. A typical video analytics pipeline (VAP) con-
sists of multiple processing components, among which core modules such as object
detectors often expose several tunable parameters, referred to as knobs. A knob, such

as model choice or input resolution, offers trade-offs between computational cost and

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

accuracy. A configuration represents a particular combination of these knobs. Im-
portantly, no single configuration consistently delivers the best performance across
all deployment scenarios [7]. Therefore, the selection of an appropriate configuration
plays a crucial role in determining the accuracy-latency trade-off of a VAP [8, 7,9, 10].
For example, using high-resolution input or a deeper neural network may improve de-
tection accuracy but also increase latency and resource consumption. A configuration
is considered Pareto-optimal if it is impossible to improve one metric (e.g., accuracy)
without degrading another (e.g., latency). Selecting the best configuration is non-
trivial as optimal choices can vary over time due to changes in video content, re-
source availability, or application requirements. Existing approaches rely on separate
modules, such as offline or online profiling, to select the best configuration [10, 7, 9].
While offline profiling is efficient, it cannot adapt to dynamic video content. Online
profiling offers adaptability but adds computational overhead. In both cases, config-
uration selection is decoupled from the core task (e.g., detection, tracking), limiting
overall efficiency.

Conditional Execution. Conditional execution, also known as dynamic or se-
lective execution, aims to reduce redundant computation by adapting the processing
strategy based on the input content. Early methods focused on coarse-grained, frame-
level decisions, such as frame skipping [11, 12], resolution scaling [13-15], or early
exit [16-18], where entire frames could be dropped, downsampled, or terminated early
in the processing pipeline depending on their perceived importance. These strategies
helped avoid unnecessary computation on static or uninformative frames. Recent
research has extended this concept to finer-grained, block-wise execution [19, 20]. In-

stead of treating a frame as a whole, these approaches selectively process only the

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

spatial regions within a frame that are likely to be informative, such as blocks contain-
ing target objects. By dynamically adjusting the computation granularity within a
frame, these methods further enhance efficiency while preserving task accuracy. Such
techniques are particularly valuable in edge environments, where computational and
communication resources are limited. However, developing an effective block-wise
conditional execution solution remains challenging. It requires accurate identifica-
tion of informative regions under diverse scene conditions, as well as efficient support
for selective execution at the block level. Furthermore, processing frames in a non-
uniform manner can lead to block artifacts, where inconsistencies between features
from processed and unprocessed (or lightly processed) blocks degrade overall task
performance. Another major challenge is that if block selection and block execution
are done independently, performance degradation may occur, as the selection is made
without awareness of how the selected blocks will ultimately impact the execution
results.

Accelerating ViT-based VAPs. Vision Transformers (ViTs) have recently
demonstrated superior performance over Convolutional Neural Networks (CNNs) in
a wide range of computer vision tasks, including object detection, semantic segmen-
tation, and video understanding [21]. Their ability to model long-range dependencies
and global context makes them attractive for complex video analytics. As a result,
ViT-based architectures have been increasingly adopted in VAPs. However, the high
computational complexity and memory footprint of ViTs pose significant challenges
for deployment on edge devices with limited resources. Unlike CNNs, which bene-
fit from local receptive fields and weight sharing, ViTs rely heavily on self-attention

mechanisms with quadratic complexity in sequence length, making them less efficient

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

in processing high-resolution video inputs. To address these challenges, recent re-
search has explored techniques such as layer pruning [22], network quantization [23],
and efficient attention mechanisms [24, 25] to reduce the inference cost of ViTs. While
these techniques improve efficiency, they are typically context-agnostic, applying uni-
form optimization strategies regardless of input content. This limits their ability to
adapt to spatial and semantic variations in real-world videos. In contrast, block-wise
conditional execution enables fine-grained, context-aware processing by selectively ac-
tivating computation only on informative blocks, making it a promising direction for
efficient ViT-based video analytics.

Distributed Processing. Conventional VAPs often adopt a simple design, where
entire frames are captured by a camera and transmitted one by one to a server for
processing [26]. This approach ignores the structural characteristics of the pipeline
and leads to unnecessary communication and computation overhead, especially when
large portions of the video contain uninformative content. Distributed processing in
video analytics refers to splitting the workload across multiple devices, such as cam-
eras, edge nodes, and cloud servers, to meet real-time and resource constraints. This
approach enables early filtering or lightweight analysis on resource-constrained devices
(e.g., smart cameras), while offloading heavier computation (e.g., object detection or
tracking) to more powerful nodes [27-31]. Effective partitioning and scheduling of
tasks in a distributed VAP are critical for minimizing end-to-end latency and pre-
serving bandwidth. However, fully exploiting the benefits of distributed processing
requires pipeline-aware optimizations. In the context of block-wise conditional exe-
cution, for instance, block selection can be performed on the camera side, and only

the selected blocks are transmitted for further processing. This fine-grained data flow

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

not only reduces transmission cost but also preserves task accuracy.

1.2 Contributions

This thesis, as summarized in Figure 1.1, contributes to the acceleration of VAPs on
resource-constrained edge platforms. It centers around two key directions: configu-
ration optimization and block-wise conditional execution.

Configuration Optimization — In Chapter 3, we present FastTuner, a frame-
work designed to optimize the configuration of multi-object tracking (MOT) pipelines
at runtime. At runtime, FastTuner periodically selects the best resolution and back-
bone model based on the input frame, and applies the selected configuration to per-

form object tracking. The key novelty of FastTuner includes:

e An efficient estimator that predicts the performance of different resolution and

model choices at one shot.

e A model-agnostic framework that unifies configuration selection and object

tracking within a shared model, eliminating the need for costly online profiling.

e Two distributed processing schemes that leverage FastTuner’s adaptability to
reduce both computation and communication overhead, enabling efficient de-

ployment on heterogeneous end-edge architectures.

Block-Wise Conditional Execution — The second thread of the thesis focuses
on reducing local spatial redundancy by selectively executing only the informative
blocks within each frame. We have developed two different approaches toward this

goal:

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

An efficient configuration performance
F estimator
Con_flg_u rat_|on A model-agnostic framework for configuration
] Optimization optimization and object trackin
(FastTuner) L p J 9
Different workload placement schemes

Accelerating Object
Detection and —
Tracking Pipelines RL-Based

(BlockHybrid)

— A policy network for block selection

A framework for hybrid block-wise execution

A block-wise finetuning strategy for mitigating
block artifacts

L

Block-Wise
Conditional Execution

— A decision network for block selection

End-to-End A unified framework consisting of a decision
(SEED) network and a task network

A joint training strategy for optimal
coordination between both networks

Figure 1.1: Overview of the contributions.

1) BlockHybrid (Chapter 4) is a framework that accelerates object detection
pipelines by hybrid block-wise executions. Its design decouples block selection from
execution, enabling a modular and flexible design compatible with both CNN- and

ViT-based detectors. The main contributions of BlockHybrid are as follows:

e A policy network trained via reinforcement learning (RL) that classifies image

)

blocks as “easy” or “hard” in each frame.

e A block-wise conditional execution framework that handles both types of blocks:
hard blocks are processed by a customized block-wise detector, while easy blocks
are handled by a lightweight tracker that propagates historical object informa-

tion across frames, effectively reducing redundant computation.

e A block-wise fine-tuning strategy that adapts the detector to non-uniform block-

wise inputs, mitigating accuracy degradation caused by block artifacts.

2) SEED (Chapter 5) proposes a fully end-to-end ViT-based selective execution

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

framework that tightly couples block selection with execution. Unlike BlockHybrid,
which trains the decision module and detector separately, SEED unifies them within

a single training and inference pipeline. The key contributions of SEED include:

e A lightweight decision network that identifies semantically informative blocks

based on the input.

e An end-to-end framework that unifies a decision network and a block-wise de-
tector, with its generalizability demonstrated through two variants employing
different selective execution strategies: SEED-TR (token reuse) and SEED-EE

(early exit), each offering a distinct trade-off between accuracy and efficiency.

e A multi-stage training strategy that jointly optimizes both networks to ensure
tight coordination between block selection and execution, improving overall

efficiency while mitigating block artifacts.

1.3 Organization

The main technical content of this sandwich thesis comprises two published journal
papers and one paper currently under review. The remainder of the thesis is organized

as follows:

e Chapter 2 provides an overview of VAP preliminaries, related work in accel-

erating VAPs, performance metrics, commonly used datasets and hardware.

e Chapter 3 presents FastTuner, a configuration optimization framework that
adaptively selects the best resolution and model variant at runtime to accelerate

MOT under dynamic video content.

http://www.mcmaster.ca/

Ph.D.

Thesis — R. Xu McMaster University — Computer Science

Chapter 4 describes BlockHybrid, a RL-based block-wise conditional execu-
tion framework that accelerates CNN- and ViT-based object detection pipelines

through decoupled block selection and execution.

Chapter 5 introduces SEED, an end-to-end selective execution framework
that speeds up ViT-based object detection pipelines through unified block se-

lection and execution.

Chapter 6 concludes the thesis by summarizing key insights, highlighting cur-

rent limitations, and discussing potential directions for future work.

10

http://www.mcmaster.ca/

Chapter 2

Background

(©) 2025 IEEE. This chapter is partially based on the manuscript: Renjie Xu, Saiedeh Razavi,
and Rong Zheng. “Edge Video Analytics: A Survey on Applications, Systems and Enabling Tech-
niques”, IEEE Communications Surveys and Tutorials, vol. 25, no. 4, pp. 2951-2982, 2023. DOI:
10.1109/COMST.2023.3323091.

11

https://doi.org/10.1109/COMST.2023.3323091

Ph.D. Thesis — R. Xu McMaster University — Computer Science

2.1 Preliminaries of Video Analytics Pipeline

Video analytics, also known as video content analysis, refers to the process of automat-
ically extracting valuable information and insights from video data using techniques
such as CV and DL. It involves recognizing patterns, detecting objects and tracking
movements in order to analyze, interpret, and understand video content and make
data-driven decisions. A VAP refers to a series of sequential steps or stages through
which the data passes to be transformed, analyzed, and processed in a VA application.
The pipeline represents the overall flow and organization of the various operations
and algorithms applied to the data, from the initial input to the final output. Each
stage in the pipeline typically focuses on a specific task or function, and the output
from one stage becomes the input for the next stage, allowing for a modular and
structured approach to processing the data.

Typically, a VAP is composed of multiple video processing modules, which can
vary across applications, as shown in Figure 2.1,

Frame Encoding and Decoding: Frame encoding reduces communication over-
head by compressing video frames before transmission [32]. In existing VAPs, encod-
ing is typically applied either on a per-frame basis or over multiple consecutive frames
grouped into a segment, depending on the application’s latency requirements [26]. For
latency-sensitive applications such as intelligent transportation systems (ITS) [33],
encoding and transmitting frames individually ensures minimal delay. In contrast,
applications with more relaxed latency constraints may batch frames into segments for
higher compression efficiency. Encoded data is often transmitted via live streaming
protocols such as real-time messaging protocol (RTMP), real-time streaming protocol

(RTSP), and web real-time communication (WebRTC). At the edge or cloud, frame

12

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

End . Edge
Encodin __i_’ Decoding 1 Pre- | | % Core Vision | | Downstream | | Post-
9 | 9 Processing Task Task Processing
: I
Network Object

Classification

Object Detection
I

Object Tracking
I

Image
Segmentation

Figure 2.1: Components of a video analytics pipeline.

decoding is performed to reconstruct the original content for downstream processing
in VAPs.

Pre-processing: After decoding, frames are pre-processed before being subject
to further analytics. The pre-processing operations include image resizing [34], crop-
ping [35], super-resolution [36], denoising [37, 36, 38|, deblurring [38], dehazing [39],
and deraining [38]. In general, these operations aim to improve the view quality
and can therefore benefit the subsequent procedures. In real-world applications, a
video may contain multiple sources of noise. For instance, traffic videos captured at
night may suffer from poor illumination and motion blur. OpenCV [40], a well-known
library in image and video processing, implements a wide range of pre-processing al-
gorithms for image denoising, resizing, rotating, padding, normalization, color space
conversions, morphological operations, background subtraction for video motion de-
tection, etc.

Core Vision Task: In VAPs, the core vision task is the most important compo-
nent, as its output directly feeds into subsequent stages. Consequently, the perfor-

mance of the core task has a significant impact on the quality of downstream tasks

13

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

and the overall application. Recent research has primarily focused on optimizing the
accuracy-efficiency trade-off of the core task [2]. Common core tasks include object
classification, detection, tracking, and segmentation, all of which are classical vision

tasks in CV. In this thesis, we mainly focus on object detection and tracking tasks.

e Object Classification: Object classification, also known as object recognition or
object identification, maps an object into one of a finite set of classes. Early
object classification is primarily based on handcrafted features and shallow ma-
chine learning (ML) models. Methods such as Scale-Invariant Feature Trans-
form (SIFT) and Histogram of Oriented Gradients (HOG) are used to extract
features from images, which are then fed into classifiers like Support Vector Ma-
chines (SVM) or k-Nearest Neighbors (k-NN) [41, 42]. These methods, while
effective for certain scenarios, often struggle with variations in lighting, pose,
and scale. With the advent of DL, the paradigm shifted towards end-to-end
learning. CNN-based classifiers, such as ResNet [43] and MobileNet [44], have
become dominating approaches, leveraging large labeled datasets to predict the
class of target objects with remarkable accuracy, surpassing traditional ML-

based approaches.

e Object Detection: Object detection involves locating and recognizing objects in
frames. Traditional object detection methods first identify regions of interest
(Rols), using image processing methods like background subtraction [45], frame
differencing [46], and optical flow [47, 48]. Once these regions are detected, they
are classified using an object classifier. Nowadays, object detection algorithms
typically leverage Deep Neural Networks (DNNs) to achieve high accuracy and

can be classified into two categories: two-stage and one-stage [49]. A two-stage

14

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

object detector first extracts Rols, and then makes a separate prediction for each
of these regions. Faster region-based convolutional neural network (RCNN) [50]
represents a classical two-stage detector. It employs a region proposal network
(RPN) to generate region proposals and performs classification on these regions
separately. A one-stage object detector, in contrast, simply applies a single
DNN model for both object localization and recognition. The two tasks are cast
as a unified regression problem. The most widely-known one-stage detectors
include the YOLO family [51-53] and the SSD family [54]. In general, one-

stage detectors are much faster but less accurate than two-stage ones.

e Object Tracking: Object tracking is the process of locating objects and estimat-
ing their trajectories from a video sequence. Conventional methods follow the
tracking-by-detection paradigm [55], performing tracking sequentially using two
separate models [56, 57]. A detector first detects bounding boxes (bboxes) of ob-
jects in each frame, after which a re-identification (re-ID) model extracts visual
features from each bounding box and links the objects based on these features
and motion cues. Such two-stage methods, while effective, are computationally
intensive, especially when the scene is crowded. Recent advancements in multi-
task learning have led to joint models where detection and re-ID tasks share
a common backbone, significantly reducing inference time. These integrated

models are often termed one-shot trackers [58-61].

e Image Segmentation: Image segmentation involves partitioning an image into
multiple segments, each representing a distinct object or region. It simpli-
fies and changes the image representation into something more meaningful and

easier to analyze. Among the various types of image segmentation, semantic

15

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

segmentation assigns each pixel to a specific class, while instance segmentation
classifies each pixel and differentiates between distinct instances of the same
object class [62]. Panoptic segmentation, on the other hand, unifies the tasks of
semantic and instance segmentation, producing coherent labelling of all pixels,
considering both regions and objects [62]. These techniques can be integrated
with other CV tasks, such as object detection and tracking, to achieve a more

comprehensive understanding of scenes.

Downstream Task: Downstream tasks in a VAP build upon the structured
outputs generated by the core task to enable more application-specific analysis and
decision-making [2]. These tasks vary depending on the context, and may include
behavior analysis, trajectory forecasting, event detection, anomaly detection, or scene
understanding. For example, in traffic monitoring, downstream modules may use
object trajectories (generated by a tracking module) to predict vehicle intent or detect
potential collisions. In retail analytics, person detection and tracking results may feed
into customer flow modeling or dwell time estimation. Since downstream tasks rely
heavily on the correctness and timeliness of core task outputs, any degradation in core
task performance can lead to cascading errors and reduced system utility. Therefore,
efficient and accurate execution of the core task is critical to the robustness of the
entire pipeline.

Post-Processing: Post-processing at the final stage of a VAP refines and in-
tegrates the outputs of preceding tasks, ensuring that the pipeline delivers coherent
and reliable application-level decisions [2]. In some cases, post-processing also involves
fusing outputs from multiple downstream tasks to generate a unified interpretation of

the scene [63]. For example, in traffic monitoring, outputs from object tracking and

16

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

event detection may be combined to identify high-risk scenarios such as illegal lane
changes or near collisions. As such, effective post-processing is essential for delivering

accurate, stable, and actionable insights to end users.

2.2 Related Work

This section reviews prior research that closely relates to the core contributions of this
thesis. We focus on three key areas: configuration optimization in VAPs, block-wise

conditional execution for efficient inference, and the acceleration of ViTs.

2.2.1 Configuration Optimization in VAPs

In VAPs, configurations involve various tunable knobs: video quality (e.g., resolu-
tion, frame rate, bitrate) [64-71], DNNs [64, 66, 14, 72, 73], resource allocations (e.g.,
CPU cores, network bandwidth) [64, 66, 14, 74], camera parameters (e.g., brightness,
contrast, colorfulness, orientations) [75, 76], etc. Different configurations can yield
distinctive accuracy-latency trade-offs. Choosing a good configuration that maxi-
mizes execution efficiency while maintaining analytics quality can be accomplished
by first gathering information regarding execution characteristics, also known as pro-
files [77]. To acquire an accurate profile, one can conduct a one-time but exhaustive,
offline profiling. This process involves a profiler executing the pipeline under various
configurations and inputs, and outputting accuracy and latency measurements. The
inputs (i.e., frames) used in the profiling need to be representative of target applica-

tion scenarios. Profiling costs can be prohibitive since the configuration space tends

17

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

to grow exponentially with the number of knobs and their respective values. For in-
stance, VideoEdge [7] considers a configuration space of 1800 combinations stemming
from five knobs. VideoStorm [9], on the other hand, needs to profile 414 configura-
tions, requiring 20 CPU-days using a 10-minute video. Even though parallelism has
been exploited to accelerate profiling [9, 78], the high resource demand for exhaus-
tive profiling remains a challenge. To alleviate this problem, VideoEdge [7] merges
common components among multiple configurations and caches intermediate results
to avoid redundant executions. Another way to reduce profiling costs is to prune the
configuration space. ApproxDet [79] only profiles 20% of the configurations, at the
cost of generating a less accurate profile [78].

However, the static nature of offline profiling can lead to less relevant decisions
when scene changes are not reflected in profiled inputs. Moreover, video content can
vary greatly over time, which means that a configuration that is currently optimal may
lose its effectiveness in the future. To address these limitations, online profiling con-
ducts continuous profiling in a live environment, adapting to the temporal variability
of video content. Different from offline profiling, which is done once or infrequently
(e.g., once a day [10]), online profiling updates the profile periodically (e.g., every few
seconds or minutes [10]) during video streaming [2]. The main challenge of online
profiling lies in minimizing the overhead of periodic profiling, which, as stated ear-
lier, is substantial even when done once. To mitigate this challenge, Chameleon [10]
takes a two-step approach to perform online profiling. Initially, it conducts an ex-
haustive online profiling to profile all configurations, resulting in several candidate
configurations. Then, it exploits cross-camera correlation and video content consis-

tency to distribute and propagate these candidates, both spatially and temporally,

18

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

to amortize the cost of full profiling. It further reduces the configuration space by
exploiting independence among some knobs [10]. AWStream [78] combines offline and
online profiling. The initial offline profile is gradually refined via online profiling. For
efficiency, AWStream profiles only a subset of configurations, specifically those that
are Pareto-optimal (i.e., those on the Pareto frontier). A full profiling to update the
current profile is triggered only when additional resources become available.

Another line of work [75, 80, 15] utilizes specific feature extractors to map an image
to its feature representations. For example, LiteReconfig [80] and SmartAdapt [15]
use object average size, histograms of color (HoC), HOG, and feature embeddings
from a DNN feature extractor to characterize image content. These features are then
used to train a separate DNN that predicts the accuracy of a given configuration.
While the prediction process is efficient due to the lightweight nature of the accuracy
predictor, the feature extraction step can incur substantial overhead, as it involves
running multiple algorithms.

In this thesis, we focus on two knobs: resolution and backbone model, since these
are applicable across nearly all VAPs. Additionally, these two knobs have a significant
impact on the accuracy-latency trade-off. While other knobs (e.g., frame rate [65,
67, 81, 82, 32, 12]) are also important, they are orthogonal to our approach and
therefore excluded from the configuration space considered in FastTuner. Within this
context, FastTuner has several advantages compared to the aforementioned works.
Firstly, it eliminates the need of a separate online profiling step, which usually requires
significant time to perform exhaustively or partially at runtime. Instead, FastTuner
employs DNNs to learn the heatmap representations of different configurations offline

and then uses such knowledge to guide the decision making online. The performance of

19

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

different configurations can be obtained in one shot. Secondly, FastTuner integrates
the core task (i.e., the MOT task) with the sub-task (i.e., configuration decision
making) by sharing the backbone model rather than introducing a separate model
like [79, 16, 80, 15|, further improving the end-to-end latency. Finally, FastTuner
exposes parameters for users to control desired accuracy-latency trade-offs for specific

application scenarios.

2.2.2 Block-Wise Conditional Execution

The key idea of conditional execution is to dynamically adjust the processing strat-
egy based on the input. This technique is initially applied at frame level. Frame
sampling [11, 12, 83-88] processes only a subset of frames, skipping irrelevant or less
informative ones. Adaptive resolution [13-15] dynamically adjusts frame resolution
based on scene complexity, reducing resolution for simpler frames while maintaining
high resolution for more challenging frames. Early-exit methods [16-18, 89-91] incor-
porate multiple exit points within a neural network, enabling simpler inputs to exit at
shallow layers while routing more complex ones through deeper layers for thorough
processing. While these approaches reduce resource consumption, they operate at
frame granularity and fail to adapt to the fine-grained variations within individual
frames.

Block-wise conditional execution adopts this principle by dividing frames into
smaller blocks, classifying them based on their complexity or importance, performing
distinct computations on each block type, and finally merging the results into a co-
hesive output [92-95]. The works along this line can be divided into two categories

based on whether the block size is 1) non-uniform or 2) uniform. FDDIA [94] and

20

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

EHCI [95] are two representative works in the first category. They identify the infor-
mative blocks by expanding the regions around the detection results from the previous
frame. The selected blocks are cropped from the input frame and sent to the server.
Since these blocks are non-uniform in size, a rectangle-packing algorithm is applied to
merge them into a compact frame, on which frame-wise detection is performed. The
detection results are finally mapped back to the original frame. As the SOTA work in
the second category, BlockCopy [19] employs a policy network to determine informa-
tive blocks based on the motion information between two consecutive frames. Due to
their uniform sizes, the blocks are batch-processed by a specialized detector designed
to handle blocks as inputs and produce corresponding features [20]. For uninforma-
tive blocks, their features are directly copied from the previous execution. Finally, the
features from all blocks are merged into complete feature maps to generate bboxes.
All the feature-level operations are enabled by customized CUDA operators. These
operators can be directly applied to standard CNN-based detectors, enabling them to
perform block-wise detection tasks without additional modifications. ViTs naturally
support block-wise execution, as they are designed to handle variable-length patch
sequences. Arena [96] partitions frames into uniform patches and performs full-frame
processing at regular intervals. The tokens of these patches are cached for reuse. In
the intermediate frames, informative patches are sampled from the expanded regions
of detection results from the previous frame. Only the selected patches pass through
a ViT encoder for self-attention computation. The resulting tokens are then merged
with the cached tokens to reconstruct the complete token sequence via a single-layer
decoder. Finally, the reconstructed token sequence is fed into a detection head to

generate bboxes.

21

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

BlockCopy and Arena both fail to further distinguish between hard and easy
blocks. Instead, they process all informative blocks with the same detector. As a re-
sult, significant computational resources are wasted by running heavy models on easy
blocks, thereby missing the opportunity to further accelerate the pipeline. In Block-
Hybrid, we propose a novel approach, called block-hybrid conditional execution, which
goes beyond the conventional definition of informative blocks by further differentiat-
ing blocks into hard and easy categories. Hard blocks are processed by a detector,
while easy blocks are handled by a lightweight tracker. In this way, BlockHybrid
dynamically allocates computation resources based on block difficulty, reducing un-
necessary overhead while maintaining accuracy. Another limitation of prior works
is the decoupling of block selection and execution. BlockCopy relies on a policy
network that is not jointly optimized with the detector, which may result in block
artifacts and compromise accuracy. EHCI, FDDIA, and Arena, on the other hand,
determine informative blocks by enlarging regions around past bboxes to ensure cov-
erage. While this strategy helps retain target objects, it often results in redundant
computation, particularly in cluttered scenes. Moreover, although block-wise fine-
tuning [96] improves the detector’s robustness to block artifacts, their block selection
remains simplistic and decoupled from the detector, leading to a suboptimal trade-
off between accuracy and efficiency. To address this challenge, we propose SEED, a
lightweight, context-aware, and end-to-end trainable framework that can judiciously
select blocks within each frame while minimizing redundant computation. SEED
jointly optimizes block selection and selective execution, offering improved efficiency

without sacrificing accuracy.

22

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

2.2.3 Vision Transformer Acceleration

Many techniques have been proposed to accelerate ViTs, motivated by their high
computational cost. One line of work improves the efficiency of self-attention. Stan-
dard self-attention suffers from quadratic complexity with respect to the token count,
making it a computational bottleneck in ViTs, especially for long-sequence inputs.
To alleviate this, several methods [97-99] approximate the attention module to re-
duce its complexity to linear time, significantly improving efficiency while maintaining
competitive performance.

Another line of work focuses on reducing the number of tokens processed during
inference. Token pruning aims to discard less informative tokens to reduce compu-
tation. DynamicViT [100] introduces a learnable module that dynamically prunes
tokens based on their importance, primarily for classification tasks. SViT [101] ex-
tended this idea to dense tasks such as object detection and segmentation. It preserves
pruned tokens in the feature maps and optionally reactivates them later, which proves
essential for maintaining performance. It also adopts input-adaptive pruning rates
and shows that lightweight selectors, such as a 2-layer feed-forward network (FFN
or MLP), suffice for effective token selection. Token merging takes a different ap-
proach by retaining all information and merging similar tokens instead of discarding
them. ToMe [102] progressively merges redundant tokens based on feature similarity
in a lightweight manner. Token summarization further improves upon merging by
selecting a few representative tokens that summarize global context. Instead of rely-
ing on similarity or attention patterns, GTP [103] learns task-specific summarization
strategies and performs better than pure pruning or merging in scenarios requiring

long-range contextual reasoning.

23

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

These techniques are orthogonal to SEED and can be incorporated to further
boost efficiency. While SEED reduces spatial redundancy by selective block execution,
token reduction and attention optimization operate at the feature and attention levels,

making these techniques complementary to each other.

2.3 Datasets

The vision tasks addressed in this thesis primarily include multi-object tracking and
object detection. Accordingly, we adopt the most widely used benchmark datasets
in these domains to evaluate the proposed methods, as shown in Table 2.1. These
datasets offer diverse scenes and realistic motion patterns, making them well-suited

for assessing the accuracy and robustness of the approaches.

e MOT17 [104]: The MOT17 dataset is a popular benchmark for evaluating
MOT methods. It consists of 14 video sequences taken from various real-world
scenarios, including pedestrians in a busy city environment. The dataset in-
cludes static and moving cameras, capturing both indoor and outdoor envi-
ronments with diverse viewpoints (low, medium and high), lighting conditions
(from daylight to nighttime), and weather conditions (sunny, cloudy, etc.). It
also contains various occlusion levels, where pedestrians are partially or fully
obscured by objects or other individuals, providing a comprehensive evaluation
environment for tracking algorithms. MOT17 can also be adapted for evaluating

object detection methods, as it provides bbox annotations for each frame.

e WildTrack [105]: WildTrack is a multi-camera pedestrian detection bench-

mark designed for evaluating advanced computer vision algorithms in real-world

24

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

scenarios. It consists of synchronized video footage captured from 7 calibrated
cameras covering a public square. Since the official bounding box annotation is
provided at only 5 FPS, we manually decode the raw videos and use YoloV8 [106]
to generate annotations at 30 FPS. For each camera, we use the first 2000

frames.

e ImageNet [107]: ImageNet is a large-scale image classification dataset con-
taining over 1 million labeled images across 1,000 categories. It is widely used
for pretraining backbone networks in computer vision. In this thesis, we use
ImageNet-pretrained weights to initialize the backbone of our detection models

to accelerate convergence and improve downstream performance.

e Microsoft COCO [108]: The Microsoft COCO dataset is a large-scale bench-
mark for object detection, segmentation, and captioning. It contains over
150,000 labeled images across 80 object categories with rich contextual diver-
sity. In this thesis, COCO is used to pretrain the entire model to provide a
strong initialization before fine-tuning on downstream datasets such as MOT17

and WildTrack.

2.4 Performance Metrics

The performance of the proposed methods is evaluated from two key perspectives:
accuracy and efficiency. For accuracy, we adopt Multiple Object Tracking Accuracy
(MOTA) and mean Average Precision (mAP), which are standard metrics for eval-

uating multi-object tracking and object detection, respectively [2, 109, 110, 96]. For

25

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

MOT17-02 MOT17-04 MOT17-05 MOT17-09

R—
> 8

WildTrack-Cam1 WildTrack-Cam2 WildTrack-Cam3 WildTrack-Cam4

1)

ok v
9

Bl

WildTrack-Cam5 WildTrack-Cam6 WildTrack-Cam7

Figure 2.3: Wildtrack dataset.

efficiency, we measure network traffic and end-to-end latency, capturing the commu-

nication and runtime overhead critical to edge deployment.

e Multiple Object Tracking Accuracy: MOTA is defined as:

,FP, + FN, + IDSW,
Zt GT, ’

where t is the frame index, FP;, FN, and IDSW; stand for false positives (FPs),

MOTAzl—Z

(2.4.1)

false negatives (FNs), and identity switches (IDSWs) and GT is the number

26

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

of ground truth objects. MOTA ranges from —oc to 1, where a higher score

signifies better tracking performance.

e Mean Average Precision: mAP@(.5 refers to mean Average Precision at
an Intersection over Union (IoU) threshold of 0.5. A detection is considered
correct if its IoU with a ground-truth bbox exceeds 0.5. This metric assesses

the model’s ability to correctly localize and identify objects.

e Network Traffic: While communication may not always be the primary bot-
tleneck, minimizing data transmission overhead remains essential in edge de-
ployments, where bandwidth is often constrained. We measure network traffic
as the average data size per transmission. To ensure consistency across datasets
with different average data sizes, all reported values are normalized by the av-

erage full-frame size of the corresponding dataset.

e End-to-End Latency: This metric is critical for time-sensitive applications
that require rapid response. It measures the total time elapsed from the acqui-
sition of a video frame on the camera to the completion of its processing on the
server. This process may include data compression and decompression, data

transmission, model inference, and post-processing.

2.5 Hardware

Edge video analytics often runs on resource-constrained hardware platforms that
must balance computation and communication overheads. NVIDIA Jetson platforms
are among the most widely used hardware solutions for such applications, offering

integrated CPUs and GPUs optimized for edge artificial intelligence (AI) workloads.

27

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

In this thesis, we adopt a hardware platform consisting of an NVIDIA Jetson
TX2, a Dell XPS 8950 desktop and a high-performance server (called Turing server).
The Jetson TX2 runs JetPack 4.6.1 and represents a low-end device commonly used
in edge computing [111-113]. The desktop is equipped with an Intel i7-12700 CPU,
16GB RAM, and an NVIDIA GTX 3060 GPU, running Ubuntu 20.04, PyTorch 1.9,
and CUDA 11.1. The server is equipped with an Intel Xeon E5-2620 v4 CPU, 64GB
RAM, and four NVIDIA Tesla P100 GPUs (one utilized), operating on Red Hat En-
terprise Linux Server (RHEL) 7.9 with PyTorch 1.7 and CUDA 11.4. All devices are
connected via a 2.4GHz Wi-Fi network, provided either by a D-Link AX4800 router
or the campus wireless infrastructure, emulating a realistic end-edge deployment. A
snapshot of the hardware platform is shown in Figure 2.4. The specifications of these

devices are reported in Table 2.2.

e Benchmark Evaluation: All computations are executed locally on the desk-
top to measure computational efficiency under controlled conditions. This set-
ting allows us to compare the raw performance of different methods without

interference from network or system heterogeneity.

e Testbed Evaluation: This setting reflects a practical edge deployment sce-
nario, where the VAP is distributed between the Jetson TX2 (serving as the
smart camera), and either the desktop or the server (serving as the edge server).
The camera is responsible for early-stage processing such as frame acquisition,
resizing, and lightweight inference, while the edge server handles more compute-
intensive tasks. This setup enables an end-to-end evaluation of the pipeline in

a realistic edge environment.

28

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Edge Sr with a
NVIDIA 3060 GPU

"VW ———
'

Figure 2.4: Snapshot of the hardware platform used in this thesis.

29

http://www.mcmaster.ca/

McMaster University — Computer Science

Ph.D. Thesis — R. Xu

: 71T Vand : 00Td ®IsoL A 09261 ToALoG SULL LoALOG 03
(e 11 prophg | 64 THHY | DT VICIAN - § Sunmy, S °8pd
: 11 vand -7 T 090¢ X.LD 1 T 5 ToAIOQ 08
Lel 1 a0 Ay | 70°0T MUNAN | €D 91 VIWAN 00LGT-L1 1o3U] 0968 SAX 11°d S °8pd
: o : 9100 947 LGV -X0310D) WUV 0810 S—
€1 TV PRI | PORT M0 | D8 | e 1 VIAIAN | + g 0atoq VIAIAN | OXL "OSPL VIAIAN @
SdOTAL 2IemOS SO NVYd ndo ndo OTAS(T Jusuoduroy)
S9OIAQD 91} JO suoryeoynadg :z7°7 91qe],
I00pno‘I00pul - LG6'€9T | ¥8C'988 - - o[qeLea 000D
IOOPINO‘ I00pPUL — JOT TS T - — - o[qeLIeA JoNOSRW]
100pINo oryels 00071 | 008°0V¥ L 09 080T X0Z6T | MPRILPILM
08 <079
Toopjno‘roopul | Suraowrdnels | GegIT | €LE°00€ il v1°'65'0¢ LTLOIN
P P 5 ‘0801%0261
UoIIpu0)) vIoWIR) sowreI soxog seouanbog Sdd uoIINJoSAY 1eseIe(J

syosejep oy} JO S[re1d(] 1°C O[qRL

30

http://www.mcmaster.ca/

Chapter 3

FastTuner: Fast Resolution and
Model Tuning for Multi-Object

Tracking in Edge Video Analytics

(© 2025 IEEE. This chapter is based on the manuscript: Renjie Xu, Keivan Nalaie, and Rong
Zheng. “FastTuner: Fast Resolution and Model Tuning for Multi-Object Tracking in Edge Video
Analytics”, IEEE Transactions on Mobile Computing, vol. 24, no. 6, pp. 4747-4761, 2025. DOI:
10.1109/TMC.2025.3526573.

31

https://doi.org/10.1109/TMC.2025.3526573

Ph.D. Thesis — R. Xu McMaster University — Computer Science

3.1 Introduction

Cameras are ubiquitous in our cities nowadays. Vision-based multi-object tracking, a
task that aims to estimate trajectories for objects of interest in video feeds, is a pillar
of VAPs. It can drive a wide spectrum of downstream applications, such as security
surveillance, sports analysis and traffic control.

Conventional MOT methods follow the tracking-by-detection paradigm, where ob-
ject detection and association tasks are performed by separate models [56, 57]. A
detection model firstly detects objects (represented as bboxes) in each frame, after
which a re-ID model extracts object features (also known as re-ID features) from each
bounding box and links the objects based on these features and motion cues. While
effective, these two-stage methods have high computation complexity. The separate
processing of each bounding box with distinct re-ID models impedes real-time per-
formance when the number of objects is large. With the development of multi-task
learning, a recent trend is to combine both tasks in a joint model, where a re-1D
branch and a detection branch share the same backbone model [58-61]. By reusing
features for both tasks, the inference time is significantly reduced.

However, achieving real-time performance in EVA systems remains a challenge for
current MOT methods due to the resource limitations on edge devices and substantial
communication overheads in geographically distributed settings. In this study, we
aim to accelerate MOT pipelines by tuning configurations. A configuration refers to
a particular combination of knobs. A MOT pipeline can have several knobs, such as
frame resolution and backbone model (hereinafter referred to as “model”). The choice
of configuration can impact both accuracy and latency. For instance, using a high

frame resolution (e.g., 1080p) and a high-complexity model allows accurate detection

32

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

of objects but also incurs substantial processing time. The optimal configuration
can be defined as the one with the lowest latency whose accuracy is over a desired
threshold. The threshold is usually application-dependent and specified by users.
Due to the dynamic nature of video content, the optimal configuration varies over
time, often at a timescale of minutes or even seconds [10]. For example, we may
use a low frame resolution (e.g., 360p instead of 1080p) when objects are close-by
and stationary (e.g., at a traffic stop), without impacting the tracking accuracy. In
contrast, for distant objects, a higher resolution is needed to maintain accuracy.

Therefore, to achieve a good trade-off between accuracy and latency, one needs to
consider the intrinsic dynamics of video feeds and adapt the pipeline configurations
accordingly. The key challenge is how to efficiently identify the optimal configuration
at runtime. The timeliness of such decisions is critical, as any delay may cause them to
become outdated, thereby compromising the efficiency of the system. Some existing
works [10, 78] employ online profiling to identify the optimal configuration. However,
the profiling cost could be prohibitively expensive as the configuration space grows
exponentially with the number of knobs and their corresponding values. Despite
efforts to accelerate this process by pruning the configuration space, the profiling cost
remains significant, hindering efficient configuration selection.

To bridge the gaps, we propose FastTuner, a model-agnostic framework to ac-
celerate MOT pipelines by adapting resolutions and backbone models based on the
characteristics of video content. Notably, it differs from the prior works [10, 78] in two
aspects. First, FastTuner predicts the performance of different configurations in one
shot instead of profiling them one by one. Second, rather than performing the MOT

task and the configuration selection task separately, FastTuner unifies the two tasks

33

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

by sharing a common backbone model between them. Reusing backbone features for
both tasks further improves computation efficiency. This design makes FastTuner
model-agnostic, meaning that it can seamlessly work with any fully convolutional
network (FCN)-based one-shot tracker (e.g., JDE [59], CenterTrack [60] and Fair-
MOT [61]). In the inference stage, FastTuner runs the most expensive configuration,
also known as the golden configuration [10] every K frames to determine the optimal
configuration based on the heatmaps produced by the detectability branch. Object
detection and association are then done by the tracking branch using the selected
configuration in the next K — 1 frames.

In real-world deployments, to facilitate application-specific trade-offs between ac-
curacy and latency, FastTuner affords users tunable parameters, which result in dif-
ferent combinations of resolutions and models. In addition, we design two workload
placement schemes between a smart camera and an edge server, that is, Edge Server
Only with Adaptive Transmission (SOAT) and Edge Server-Assisted Tracking (SAT).
Both schemes take advantage of the reduced frame size and model size offered by Fast-
Tuner to decrease the amount of data transmitted over the network and the workloads
on the camera.

To evaluate the performance of FastTuner, we conduct experiments on a public
MOT dataset and a small-scale testbed consisting of an NVIDIA Jetson TX2 board
and a server with Tesla P100 GPUs. FastTuner can achieve a better trade-off be-
tween tracking accuracy and latency. In comparison to the state-of-the-art (SOTA)
approaches, FastTuner is able to accelerate the computation up to 2.5%25.5% with
a 1.1%-9.2% improvement in MOTA.

In summary, our key contributions are as follows:

34

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

e We conduct a quantitative study on the impact of frame resolutions and back-

bone models on tracking accuracy and latency.

e We propose a model-agnostic framework FastTuner, which aims to accelerate

MOT pipelines by adapting frame resolutions and backbone models at runtime.

e We design two workload placement schemes for MOT applications, to accelerate
end-to-end processing by taking full advantage of FastTuner’s adaptability to

reduce the network traffic load and computational load.

e We implement and deploy a prototype of FastTuner on commodity devices for

performance evaluation.

3.2 Motivation

In this section, to motivate the design of FastTuner, we study the trade-off between
tracking accuracy and latency of MOT pipelines for different frame resolutions and
backbone models. Additionally, we investigate how changes in visual content can

affect such trade-offs, and discuss the limitations of prior approaches.

3.2.1 Effects of Frame Size and Model Size

In MOT, the selection of input resolution and backbone model can significantly impact
the trade-off between tracking accuracy and latency. To understand this, we conduct
experiments using a SOTA tracker, FairMOT on a Tesla P100 GPU server using
the MOT17 dataset [104]. FairMOT employs DLA-34 [114] as its backbone model,

35

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

which is a combination of ResNet-34 and deep layer aggregation (DLA) for multi-
scale feature fusion. It also includes two branches for object detection and re-ID.
The detection branch, built on CenterNet [115], uses three parallel heads to estimate
heatmaps, object center offsets, and bounding box sizes. The re-ID branch estimates
re-ID features for each pixel to characterize the object centered at the pixel. The
features at the predicted object centers from both branches are used for tracking. By
manipulating the number of channels within each layer of DLA-34, we can generate
variants of different sizes. Full-DLA-34 represents the original model, while Half- and
Quarter-DLA-34 scale this number down by half and a quarter, respectively. Such
scaling is widely adopted to generate backbone models of different sizes [43, 116, 117].

Table 3.1 and Table 3.2 show the tracking accuracy (i.e., MOTA) and speed (i.e.,
Frames Per Second, FPS) of FairMOT with different input resolutions and backbone
models. Note that the FPS measurements include data transferring time between
CPU and GPU, model inference time, and post-processing time for object association.
It is evident that higher resolutions and larger models can produce higher tracking
accuracy but require more processing time (and thus lower FPS). However, FPS is
not inversely proportional to the frame size and the number of model parameters.
Several key factors contribute to this. First, the time to transfer data from CPU to
GPU grows non-linearly with data volume, depending on the specific hardware and its
optimization. Second, the actual number of multiply-accumulate operations (MACs),
represented as FLOPs, is not proportional to the number of parameters in DNNs due
to convolution layers. GPU optimization also plays a role. Large volumes of data can
exploit the inherent parallel computing capabilities of GPUs, which results in a sub-

linear increase in processing time as input data expands. Finally, the post-processing

36

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 3.1: MOTA and FPS of FairMOT+Full-DLA-34 with different input
resolutions

Resolution (px) | FLOPs | MOTA | FPS
1088 x 608 72.9B 70.7 16.5
864 x 480 45.7B 68.8 22.0
704 x 384 29.8B 65.0 28.1
640 x 352 24.8B 62.9 28.9
576 x 320 20.3B 589 | 30.8

Table 3.2: MOTA and FPS of FairMOT with different backbone models at full
resolution

Backbone # Params | FLOPs | MOTA | FPS
Full-DLA-34 20.4M 72.9B 70.7 16.5
Half-DLA-34 5.3M 27.4B 65.5 | 24.8

Quarter-DLA-34 1.5M 12.0B 60.2 | 279

time is input-dependent and can vary based on the number of detected objects in

MOT.

3.2.2 Dynamics of Visual Content

To gain insights on the impact of different configurations on MOT performance over
time, we run FairMOT [61] on two video sequences in the MOT17 dataset. To
quantify the detection quality, we define detection rate as the number of detected
objects normalized by the number of ground truth objects. Figure 3.1 illustrates the
detection rate of FairMOT with different input resolutions and backbone models. As
expected, in both trials, a lower resolution (e.g., 576 x 320 px) or a smaller model
(e.g., Quarter-DLA-34) negatively impacts the detection rate in general. However,
for some frames, such as frame 135 and frame 240 in MOT17-09, the detection rates

are close for all resolutions and models. This can be explained by the dominance of

37

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Frame 35 ™ T~ o E Frame 240 m
S - ?

4

[Full-DLA-34
|—— Half-DLA-34
|—— Quarter-DLA-34)

MOT 17-09

Detection Rate
Detection Rate

e
@

(2]
—
N
-
i
o
=

Detection Rate
Detection Rate

=
@

o
>

[——Full-DLA-34
|—— Half-DLA-34
|— 576320 |—— Quarter-DLA-34|
L L L 04 L L L

0 100 200 300 0 100 200 300

Frame Frame

Figure 3.1: Detection rate using FairMOT with different input resolutions and
backbone models on two video sequences of MOT17 dataset.

close and bigger objects in those frames. Consequently, lower resolutions and smaller
models can be used without compromising accuracy. In contrast, for frame 35 in
MOT17-09, since the objects are dense and overlap with each other in the camera
view, the detection rates across different configurations vary a lot and only the highest
resolution and the largest model can produce good results. Similar observations can
be made in MOT17-13. For frame 145, all the configurations can maintain good
detection rates, since the objects are sparse and closer. However, for frame 250

and 350 where the objects are far away and small in size, only the most expensive

38

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

configuration can yield good results.

In conclusion, these observations reveal that the dynamics in video content offer
opportunities for configuration adaptation. It is feasible to accelerate computation
by adopting less resource-intensive configurations such as lower resolutions or smaller

models, without degrading analytics quality for some scenes.

3.2.3 Efficient and Effective Configuration Decision

Conventional methods [10, 78] rely on separate online profiling to identify the optimal
configuration, which is time consuming on resource-limited edge devices. The profiling
overhead can grow exponentially with the configuration space. With m knobs and n
values per knob, an exhaustive profiling would involve O(n™) configurations. Various
techniques have been proposed to reduce this overhead, such as reducing the search
space from O(n™) to O(mn) by assuming independence among the knobs [10], or
further to O(k) by eliminating inferior configurations, where k is much smaller than
n™ [15]. However, despite these optimizations, the overhead remains substantial
for edge devices, since profiling requires executing the inference pipeline for each
candidate configuration. SmartAdapt [15] addresses this challenge by first extracting
various features from the image and then training a lightweight DNN to predict the
performance of a given configuration. However, this approach has its limitations.
The selection of features requires domain expertise, and an unsuitable choice may
fail to accurately characterize the image content. Additionally, feature extraction for
performance prediction for each configuration incurs extra computation time (around
100 ms per run on NVIDIA Jetson TX2, as reported in [15]). Using a dedicated DNN

to directly map the image to certain representations that can be used to predict

39

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

performance of multiple configurations at the same time can still incur significant
overhead. Motivated by the need to drastically reduce online profiling overhead, we
propose a novel design that integrates configuration selection and object tracking into
a shared model, combining these tasks to achieve both efficiency and accuracy.
Another limitation of most existing works in this line is that they target object
detection tasks, where configurations can be switched on a frame-by-frame basis with
minimal impact on detection performance. However, this approach is no longer true
for MOT tasks, which require consistent object features over time for feature-based
object association [59-61]. Frequent and arbitrary changes in resolution or model at
the frame level break the consistency of object features across frames, leading to a
decline in tracking accuracy. How to effectively perform configuration optimization

in MOT tasks remains unexplored.

3.3 Methodology

FastTuner aims to efficiently adapt frame resolutions and backbone models based
on video content. Switching between models with different architectures (e.g., from
ResNet to VGG) [10] poses challenges in MOT tasks, since different model archi-
tectures can result in inconsistent re-ID feature distributions, negatively impacting
object association [118]. Moreover, the optimal setting for re-ID feature dimension
varies across architectures [61], making inter-architecture switching non-trivial as it
necessitates feature space alignment [118]. To mitigate these issues, we focus on
switching models of different sizes within the same architecture (called model vari-
ants), such as switching from a full model to a half model. In real-world applications,

it is often more practical to create model variants with different accuracy-latency

40

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

trade-offs by pruning the channel dimensions or the number of layers, rather than
preparing entirely different models, since the trade-offs of variants tend to be more
predictable, whereas entirely different models may produce significantly different and
less predictable trade-offs [119].

In contrast to existing works [10, 78] that rely on multiple executions of the
pipeline with various configurations, FastTuner reduces the complexity of online pro-
filing through two key ideas. First, we use a single DNN to learn the heatmap
representations of different configurations. By integrating the DNN into a tracker,
the framework can perform configuration selection and MOT with minimal extra
overhead. Second, we use detection rate as a surrogate to estimate the tracking per-
formance of different configurations. Tracking performance is intrinsically tied to
detection quality—configurations with accurate detection results are likely to yield
robust tracking performance [120]. Compared to tracking accuracy, which can only
be assessed over multiple frames and with the knowledge of ground truth label, we
show in this section that the detection rate of a configuration can be predicted over
a single frame using the heatmap associated with the configuration and the golden

one.

3.3.1 Algorithm Overview

Figure 3.2 illustrates the FastTuner pipeline. It consists of multiple branches: a
detectability branch, a re-ID branch and a detection branch, all sharing a common

backbone model. The detection branch contains three heads outputting heatmaps

H e [0, 1]5<H>W box sizes S € R*¥*W and center offsets O € R2ZH*W where

E is the number of object classes (F = 1 in this study), H = %, W' = % and H,

41

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Optimal Input Resolution and Backbone Model

Controller

Triggered Every K Frames

Switch Backbone Model

l é—J Detectability Cosnefllgstriztr:on

N

Switch Input Resolution

Re-ID
Association
—
Backbone Detection

—

,‘_i‘l‘I e ———————————————— A AN e
Heatmaps of Different Configurations i Heatmap

i Heatmap Tensor i
H N
| Extract 5
E — oo :
: ; Box Size
i TR mmm—— i
BB
; Re-ID Embeddings Re-ID Features i s Center Offset
: Extract Features W % i
P . |
| | F—

__

Figure 3.2: Pipeline of FastTuner, with a detectability branch and a tracking branch
sharing a common backbone model.

W are the height and width of the input image. A heatmap is a two-dimensional
array, where each pixel value in the range of [0, 1] represents the likelihood of an
object’s center being located at that pixel. The re-ID branch generates re-ID feature
embeddings £ € RP*H*W where D denotes the feature dimension. The re-ID feature
EW € RP of an object centered at (z,y) can be extracted from the embeddings. The
object association is done based on the results from the two branches, following [61].
For simplicity, we use tracking branch to refer to the combination of the re-ID and
detection branches.
The head in the detectability branch produces the heatmap tensor 7" € [0, 1]7*H>*W’

where P denotes the number of configurations. The i-th channel of the tensor is the

heatmap 1} € [0, 1]7W" of the configuration C;, where i = 1,2,...,P. Based on

42

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

these heatmaps, the configuration selection module identifies the optimal configura-
tion that can preserve the detectability of the golden configuration (i.e., the most
accurate yet computationally expensive configuration) while producing the minimum
execution latency.

In the inference stage, to capture the dynamics of video content, the detectability
branch is triggered every K frames to identify the optimal configuration, given a
full-resolution (FR) input. A controller then switches the input resolution and the
backbone model of the pipeline. The subsequent K — 1 frames are handled by the
tracking branch with selected configuration. Notably, any FCN-based one-shot tracker
could be adopted in the tracking branch, which makes FastTuner model-agnostic. To
demonstrate the feasibility of the idea, we build this branch on top of FairMOT [61], a
SOTA tracker. Note that the detectability branch, configuration selection module and
controller in Figure 3.2 are the core components of FastTuner, while the remaining

are derived from FairMOT.

3.3.2 Multi-Task Learning

As discussed previously, the detectability branch of FastTuner generates heatmap
representations of various configurations. This involves learning a transformation
R3HXW s 10, 1)P*HXW' - which maps an RGB image to a heatmap tensor. This
transformation is learned through several steps. Firstly, a training set comprising
images of different resolutions is prepared by resizing the original full-resolution RGB
images. Next, a base tracker (e.g., FairMOT) is run on this multi-resolution train-

ing set using different backbone models. This generates the centers and corners of

the bounding boxes for detected objects in each frame. These coordinates are then

43

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

upscaled to match those in a full-resolution frame. Lastly, following the approach
of CornerNet [121], a 2D Gaussian filter is applied over each object center. Pixels
outside the bounding boxes are penalized according to their distance to the cen-
ters of those bounding boxes. Specifically, consider a frame and a detected object
within that frame with center coordinates (a;,b;) from configuration C;. Its loca-
tion on the feature map is obtained by dividing the stride (a},b}) = ([%], [%]).

Then the corresponding heatmap response at the location (x;,y;) is computed as

(zi—a})®+(yi—b})?

52), where a Gaussian kernel is applied and o; represents
i

Yiay = exp(—
the standard deviation. These heatmaps, constructed offline using the detection re-
sults from different configurations, act as ground truth labels to train the detectability
branch of FastTuner. In this way, given a full-resolution image, FastTuner can effi-
ciently estimate the heatmap representations of all the configurations in the online

stage.

We define the total detectability loss using pixel-wise logistic regression with focal

loss [122] as:
1 f(i/i,x,y) Y;,:c,y = 1;
£detectability = _N Z R . (331>
029 | g(Yiay Yiey) otherwise,
where
f(in,ac,y) - (1 - E,x,y)a 1Og (Y;,ac,y)a
(3.3.2)

~ ~ ~

g(}/;,$,y7 Yi,ﬂ?,y) = (1 - E,x,y)ﬂ(y;,x,yyl log (1 - Y;,$,y>7

~

Yi ., is the predicted heatmap of configuration C;, o and (3 are pre-set parameters
in focal loss (following the setting in [121]), and N is the number of objects in the

frame.

44

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Finally, in order to perform configuration selection and object tracking in a shared
model, we employ multi-task learning to jointly train the tracking and detectability

branches using the following loss function:

Ltotal = ‘Ctracking + A‘Cdetectabilitya (333>

where) is a pre-determined parameter to balance the two tasks, and Liacking is the

loss function of the tracking branch defined as:

Etracking =
(3.3.4)

1 1 1
5 (eTl(ﬁheatmap + Ebox) + e72‘Cide>r1tity + w1 + w2) ;

which consists of learnable parameters w; and w», heatmap loss, box-size loss, and
re-ID loss defined in [61]. This loss function dynamically balances the tasks based
on learned uncertainties [123], represented by w; and w,. The exponential function
ensures these weights remain positive, while the addition of w; and ws acts as regu-

larization, preventing them from increasing too much.

3.3.3 From Heatmaps to Tracking with Adaptive Configura-

tions

In the inference stage, every K frames, the head in the detectability branch predicts
heatmaps Yi, 1 =1,2,..., P. These heatmaps are then converted to their binarized
versions B; € {0, 1}"W' with pixels over the threshold 7 set to 1, otherwise 0.
These binarized heatmaps are finally used by the configuration selection module for

decision-making.

45

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

The problem of selecting the optimal configuration is formulated as:

H' W' A >
X Bzx 'Bmaxx
C/:{ie{Lz,...,PHZW o ”yzm},

H W' 7
2wy Bmazay

I?y

(3.3.5)

" = argmin; o Lj,

where L; is the latency of executing configuration C;, Emax is the binarized heatmap of
the golden configuration, and 7; € [0, 1] is a user-specified threshold for configuration
C;. ~; reflects user tolerance of degradation in detectability. If the estimated detec-
tion rate of C; exceeds the corresponding threshold, this configuration is a candidate
configuration. The configuration with the minimum latency in the candidate set C’
will be selected as the optimal configuration C;« and applied to the next K —1 frames.
The latency of each configuration is obtained by offline profiling [10, 9, 7, 78, 16, 79].
Once the optimal configuration is decided, the tracking branch proceeds to extract de-
tections (i.e., bounding boxes) and re-ID features from the heads and perform object
association accordingly. For the remaining K — 1 frames, only the tracking branch
is executed to perform object tracking based on the selected configuration. In Sec-
tion 3.5.2 we will discuss how to set thresholds to achieve different accuracy-latency

trade-offs.

3.3.4 Multi-Resolution Training

We apply multi-resolution training on all the backbone models considered in Fast-
Tuner, as it brings several advantages. First, it improves the model’s detectability for
objects of different sizes caused by either distance or frame sizes. This gain thereby

benefits the accuracy of configuration decision making and detection. Second, it can

46

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

mitigate the domain gap between different resolutions. Since object tracking consists
of object detection and association, tracking performance is affected not only by the
detection accuracy, but also informativeness of re-ID features. Changing input resolu-
tions may introduce inconsistencies in re-ID features, which could lead to mismatches
in object association and thereby degrade tracking accuracy. However, achieving a
balance for all resolutions is challenging, as gains in one resolution can inadvertently
compromise the performance of others. To address this challenge, we propose two

multi-resolution training schemes:

e Weighted: In each epoch, the model is trained on a dataset augmented with
all resolutions. Different weights w, are applied to the loss £, prior to model
parameter updating 0’ = 0 — a x VL.(0), where £, = w, x L, and r denotes
resolution. Empirically, we set higher weights for higher resolutions. In this
way, we guide the model to maintain its proficiency for high resolution inputs,
and also pay attention to inputs where it underperforms, typically at lower

resolutions.

e Fine-tune+Weighted: The model is first trained on the original dataset of
the highest resolution, and then fine-tuned on the same dataset but at different
resolutions. This fine-tuning process serves to further enhance the model’s abil-
ity to capture intricate patterns and features during the high-resolution training,
and then adapt these learned features to lower resolutions. The combination of

weighted loss update ensures that the model’s learning is balanced.

47

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

3.4 Workload Placement on End and Edge Devices

The FastTuner pipeline can be flexibly partitioned between end and edge devices.
Compared to conventional computation partition, it introduces a different dimension
to balance local computation and network-based processing through configuration
adaptation. In this section, two workload partition schemes between a smart camera

and an edge server are discussed for edge MOT, as illustrated in Figure 3.3:

e Edge Server-Only with Adaptive Resolution Transmission (SOAT):
Every K frames, an FR frame is sent to the server. The server, upon the
reception of the frame, performs configuration selection and informs the camera
of the appropriate resolution for the subsequent K —1 frames to be transmitted.
All computations are done on the server, with FastTuner utilized to reduce
the transmission time and computational overhead. This setup is beneficial in
situations where the camera has sufficient bandwidth, as it requires continuous

transmission to the server, ensuring consistent data delivery and processing.

e Edge Server-Assisted Tracking (SAT): An FR frame is sent to the server
every K frames. The server processes the frame by computing bounding boxes
and re-ID features, and determines the proper resolution for the subsequent
frames. These results are then transmitted back to the camera. Upon receiving
this information, the camera performs object association. In addition, the cam-
era is responsible for object detection and association for the remaining K — 1
frames. In this hybrid setup, FastTuner operates partially on the camera and
partially on the server, balancing between computational load and bandwidth

utilization. This setup is advantageous under limited bandwidth conditions, as

48

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

ettt B ittt N
.' I |
i Every K frames: FR frame \ ==) i
' Remaining: scaled frames ! FR frame (= =] !
H — 1 (== =] i
! an - . Every K frames i
1 | 1
1 1 1
i e X Every K frames !
I | 1
i 1 Optimal configuration, |
: . . !
! Optimal resolution | detections, re-1D features !
| ! |
' |SOAT : SAT !
i I |
: Smart Camera Edge Server 1 Smart Camera Edge Server i
1 1 1
i I !
! Send FR | Send FR |
| N~ 1 M~o . . !
i Frames \\‘ Configuration I Frames ~~,| Configuration !
: Selection X Selection i
: . 7 :
1 | 1
: Y 1 1
| . 1 _--| ODandRe-ID :
i 0D and Re-ID — Object Lo~ —
| S Association S !
! 3 1 3 1
! o v ™ !
: v 1 :
! Object \ OD and Re-ID :
H -1 Az v 1 v !
! Association i
! Send Scaled ,f/ et : iy !
i Frames 1 Object :
i : Association '
| ' |
\ 1

__

Figure 3.3: Two workload placement schemes, partitioning the workload between a
smart camera and an edge server.

it involves the exchange of minimal data in each communication cycle.

Evidently, the two workload placement schemes incur different computation loads
on the smart camera and the edge server, and differ in the volume of data transferred
over the network. A qualitative summary of these trade-offs is shown in Table 3.3,
while a quantitative analysis of experimental results on a real-world testbed is pro-
vided in Section 3.5.4.

It is worth noting that in addition to the aforementioned workload placement

schemes and control parameter tuning (e.g., threshold and K), further trade-offs

49

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 3.3: Qualitative comparison of SOAT and SAT on computation and network

loads
Computation Network Traffic
Deployments
Camera | Server | C—S | S—C
SOAT No High | Medium | Low
SAT High Low Low Low

between accuracy and latency can be made by employing different types of back-
bone models (e.g., ResNet [43], VGG [116]) thanks to the model-agnostic nature of
FastTuner. In Section 3.5.2, we additionally evaluate FastTuner using YOLO as its

backbone to demonstrate the flexibility.

3.5 Performance Evaluation

In this section, we evaluate the performance of FastTuner on a public MOT dataset

and a small-scale real-world testbed.

3.5.1 Implementation

FastTuner is a model-agnostic framework and can easily incorporate any FCN-based
object tracking model. In the implementation, we build FastTuner on top of Fair-
MOT [61], by adding a detectability branch consisting of a new head and a config-
uration selection module. In the inference stage, the tracking branch runs on every
frame to perform object detection and tracking while the detectability branch only
runs on every K-th frame to select the optimal configuration. The frame resolution
and backbone model of FastTuner are configurable. We have five options for reso-

lution: {1088x608, 864x480, 704x384, 640x352, 576x320} px. For the backbone

20

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

model, we consider three sizes: {full, half, quarter}. The half and quarter models are
generated by pruning the full model, reducing its number of channels in each layer by
factors of two and four, respectively. In short, the configuration space of FastTuner
comprises 5 X 3 = 15 different combinations. To further demonstrate FastTuner’s
compatibility with different types of backbone models, we also test FastTuner on
YOLO, and consider three model sizes as well. Unless otherwise stated, K = 40,
7 = 0.4, and the results presented in this section are obtained on an NVIDIA Tesla
P100 GPU.

Dataset: The MOT17 dataset is used to evaluate the tracking performance. Since
the ground truth of test sequences is not public, we follow [60, 109, 118] to split each
training sequence into two halves. The first half is used for training while the second
half is for validation.

Training: The training of FastTuner is done in two stages. In the first stage, we
employ the multi-resolution training methods in Section 3.3.4 to train all the backbone
models. Specifically, we employ the weighted scheme for training Full-DLA-34 and
use the fine-tune+weighted scheme for the others. The rationale is that models like
Half-DLA-34 and Full-YOLO are less powerful and require good initial weights. In
both training schemes, weights of [1.0, 0.8, 0.6, 0.4, 0.2] are applied to the loss function,
corresponding to resolutions in descending order, i.e., the highest resolution receives
the largest weight, and the lowest receives the least. Then, we follow the steps
in Section 3.3.2 to prepare the training data for the detectability branch. In the
second stage, we start from the weights in the backbone and the tracking branch of
the full model and independently train the detectability branch, while freezing all

other parameters. In this way, FastTuner can learn configuration-specific heatmap

o1

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

representations, without compromising the performance of the tracking branch. We
set a, 8 in Eq. (3.3.2) to 2 and 4, respectively, and set A in Eq. (3.3.3) to 1.
Metrics: We use MOTA to measure the tracking accuracy of MOT methods,
and FPS to measure their runtime speed, indicating the number of frames processed
per second. There is often a trade-off between MOTA (accuracy) and FPS (speed)—
increasing one may decrease the other. A better tracker should produce a better

trade-off.

3.5.2 Comparison with Baselines

Baselines: For comparison, we implement FairMOT, equipped with different back-
bone architectures (DLA-34 and YOLO) of different model sizes (full, half, quarter).
They are called FairMOT+{Full, Half, Quarter}-DLA-34 and FairMOT+{Full, Half,
Quarter }-YOLO.

Adaptive vs. Fixed Configuration: In Figure 3.4, we show the tracking
performance (MOTA) and speed (FPS) of FastTuner and the baselines on the MOT17
dataset, with results obtained on both an NVIDIA Tesla P100 (a) and a GTX 1060
(b). The baselines, i.e., FairMOT with Full-, Half- and Quarter-DLA-34 are presented
as distinct curves using quadratic fitting. The data points on these curves depict the
MOTA-FPS pairs achieved at different resolution levels, ordered from high to low as:
1088 x 608, 864 x 480, 704 x 384, 640 x 352, 576 x 320. Each baseline encompasses
a range of trade-offs between MOTA and FPS. Notably, on both devices, FastTuner
consistently outperforms the baselines, with its curve positioned to the upper right
of all others, indicating a superior trade-off between MOTA and FPS. For a given
FPS, FastTuner achieves a higher MOTA, while for a specified MOTA, it delivers

92

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

a higher FPS. The points in FastTuner are obtained by different threshold settings
in Table 3.4, where the “-” symbol means that the corresponding configuration is
excluded for selection. Restricting candidate configurations helps avoid ones that
overly degrade tracking performance and reduce frequent switching, which may result
in many inconsistent ID features.

The comparisons clearly demonstrate the advantage of configuration adaptation
using FastTuner. For instance, in Figure 3.4a, FastTuner+T1, while maintaining a
similar MOTA as FairMOT+1088 x 608 px+Full-DLA-34, is 10.3% faster. Further-
more, FastTuner+T4 sees a 3.8% increase in MOTA and a 5.9% increase in FPS by
adapting both resolutions and models, compared to FairMOT+640 x 352 px-+Full-
DLA-34. Overall, FastTuner achieves 1.0%-4.2% improvements in MOTA and 0.7%—
10.3% in FPS, compared to the baselines. Similar improvements, i.e., 1.0%-7.0% in
MOTA and 1.6%-14.5% in FPS, can be observed in Figure 3.4b. The choice of the
threshold setting should be based on application requirements. For example, if a
higher tracking accuracy is prioritized over latency, FastTuner+T1 could be the best
option. On the contrary, if speed is more important, FastTuner+T7 would be more
suitable.

To understand how gains in MOTA or FPS or sometimes both are achieved, we
further provide a breakdown of the percentage of the configurations selected by Fast-
Tuner under different threshold settings in Figure 3.7. For example, FastTuner+T1
processes 23.5% of frames at the lower resolution of 864 x 480 px, a noticeable con-
trast to the baseline that processes all frames at 1088 x 608 px. Similarly, around one
quarter of the total frames are processed by ligher configurations in FastTuner+T4,

such as 864 x 480 px-+Half-DLA-34 and 576 x 320 px+Full-DLA-34. This trend is

23

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

consistent across the other threshold settings.

Impact of Interval K: Recall that the detectability branch of FastTuner is
triggered every K frames, and the selected configuration is applied to the next K —1
frames. Next, we investigate how different values of K can affect the tracking accuracy
and speed of FastTuner. The impact of K on the MOTA and FPS of FastTuner under
different threshold settings is shown in Table 3.6. It is evident that FPS decreases
when K decreases as the golden configuration (i.e., 1088 x 608 px+Full-DLA-34) is
executed more frequently. Somewhat counter-intuitively, performing configuration
selection more frequently (i.e., when K is smaller) is not guaranteed to improve
MOTA. For instance, in FastTuner+T6, when K decreases from 40 to 10, the MOTA
slightly decreases from 55.1% to 54.7%. This could be explained by the inconsistencies
of re-ID features caused by frequent configuration changes. Therefore, one should be
careful in setting K, since an optimal K depends on many factors, such as threshold
settings, video content characteristics, application requirements, etc.

Compatibility with Different Backbone Networks: In Figure 3.5, we utilize
YOLO as the backbone model in FastTuner. As shown, the resulting trends are quite
similar to those observed previously with DLA-34 in Figure 3.4. However, as YOLO
is much more efficient yet less powerful than DLA-34, there is a distinct shift in the
MOTA-FPS range, with notably higher FPS but lower MOTA. Overall, FastTuner
(YOLO) achieves 1.0%-7.0% improvements in MOTA and 0.2%-3.6% in FPS on Tesla
P100, and 1.5%-6.5% higher FPS on GTX 1060, compared to the baselines. The
pre-defined configuration settings for this architecture are summarized in Table 3.5.
The percentage of different configurations in FastTuner (YOLO) are presented in

Figure 3.8. It is worth noting that in certain settings, such as TH and T6, the

o4

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

slices are quite narrow. This is primarily because we prioritize tracking accuracy by
tightening the threshold settings. One can relax the settings to achieve a higher FPS,
but at the cost of tracking accuracy. Lastly, the impact of K is examined in Table 3.7,

and the observations align with those from Table 3.6.

3.5.3 Comparison with SOTA approaches

In this section, we compare FastTuner with three SOTA approaches. To ensure a
fair comparison, we adapt these methods, originally designed for detection tasks, into
trackers. The tracking components and configuration space are made consistent with

FastTuner, but configuration decisions are based on the original design.

e VideoStorm [9]: VideoStorm exhaustively profiles all configurations on the
first K frames of a video, selects the cheapest configuration that meets the
accuracy requirement (i.e., accuracy > «), and uses this configuration for the
remaining video. The accuracy requirement o can be tuned to achieve different

accuracy-latency trade-offs. In our implementation, we set K = 40.

e Chameleon [10]: Chameleon conducts exhaustive online profiling every T'
frames to identify top-k best configurations (i.e., the k cheapest configurations
with accuracy > «). Then, for every K frames, it selects the optimal configu-
ration from this subset through profiling (called partial profiling). The results
from the golden configuration are used as ground truth to measure accuracy.
Additionally, Chameleon assumes that knobs contribute independently to the
accuracy in order to significantly reduce the exploration space. In our experi-

ments, we use T' = 120, K =40, k = 3.

95

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

e SmartAdapt [15]: SmartAdapt utilizes a content feature extractor to establish
a mapping f(-) from a frame X to its feature representation f(X). It then
applies a content-aware accuracy prediction model to build a mapping a(-) from
the feature representation f(X) to the accuracy of a given configuration c,
expressed as a(c, f(X)). The cheapest configuration that meets the accuracy
requirement will be selected. The data used to train the accuracy predictor is
obtained through offline profiling. The optimal configuration is decided every
K frames, where K = 40. For f(-), we use lightweight features (average object
width, height and number), feature embeddings extracted from HoC, HOG
algorithms, the backbone (i.e., DLA-34), and a separate feature extractor (i.e.,

YOLOV8n).

Figure 3.6 shows the MOTA and FPS of FastTuner and the SOTA methods on the
MOT17 dataset, with results obtained on both a Tesla P100 (a) and a GTX 1060 (b).
a1 to a represent different accuracy requirement settings, with values of 0.9, 0.8, 0.7,
0.6, and 0.5, respectively. Larger o’s prioritize accuracy while smaller ones sacrifice
accuracy for speed. Among these methods, FastTuner achieves the best MOTA-FPS
trade-offs. Due to the non-adaptive strategy of VideoStorm, it fails to capture the
dynamics in the scenes as the optimal configuration can vary over time. The best
configuration selected in the beginning may become ineffective in later frames. In-
terestingly, Chameleon performs worse than VideoStorm, despite its adaptive mecha-
nism. This could be attributed to three factors. First, the profiling cost is significant,
as it requires periodic online profiling. Exhaustive profiling involves executing the

pipeline 15 times, while partial profiling requires 3 executions. Second, the selection

o6

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

T T
o ¥ \ petter” T2 wer
70 Fiogs o X12 = better 70 Hogs S~ 13 etter
864 7o T4 8o L
65 NS R 65 A 64;
g m‘:&\s 9 NA 5
60 B ~ L_*
|<£ 108 | @ |<£ 60 10-?8\§ Z
o 864 \T6 o 864 N 6
=55 04 = 55 704 >x
l\Z NT7 \ N7
* FastTuner 640 N 640 * FastTuner 640 &
50| ® FairMOT+Full-DLA-34 o ® FairMOT+Full-DLA-34 I N840
A FairMOT+Half-DLA-34 = S0 a FairMOT+Half-DLA-34
® FairMOT+Quarter-DLA-34 576 B FairMOT+Quarter-DLA-34| 5761
45 1 1 I I I
15 20 25 30 35 10 15 20 25
FPS FPS
(a) Tesla P100 (b) GTX 1060

Figure 3.4: Comparison between FastTuner (DLA-34) and the baselines:
FairMOT+{Full, Half, Quarter}-DLA-34 on MOT17 across two devices.

% o T3
1088 86 I3 1088 T4
60 « Mez& ° 60 R 640 \J°
A
<o Loss 64 57& <o ! m.\\x
5
§55 ® Lo \I6 g\i55 37 4 \I6
* *
s 50 1088 704 = 50 noss Wi 6ad
o) 640 \Lt\r7 e} &7
= | 2 e
45 — 45 & 704 ¥
* FastTuner 576 l640 * FastTuner 576 8510
® FairMOT+Full-YOLO ® FairMOT+Full-YOLO
40~ A FairMOT+Half-YOLO 876 40 Ao FairMOT+Half-YOLO
B FairMOT+Quarter-YOLO)| n ® FairMOT+Quarter-YOLO| 53 5
35 I I 35 1 1
38 40 42 44 46 28 32 36 40
FPS FPS
(a) Tesla P100 (b) GTX 1060

Figure 3.5: Comparison between FastTuner (YOLO) and the baselines:
FairMOT+{Full, Half, Quarter}-YOLO on MOT17 across two devices.

T1 [T1
70 %2 ‘ better / 70 L X= T2 better /
“ \:j\n\ M T3
*
a T4 \'\ T4
.65) N _.65 ~ %
S “ S a v
< o N 5 P “‘l\az‘u“ N
= Y31 = 0 *
o 60 = v o) 60 \.\
s \u'z\ s NN
55|.[* FastTuner (DLA-34) kN \T6 55| [* FastTuner (DLA-34) \ N6
® VideoStorm (Modified)| | ° ’\T7 ® VideoStorm (Modified) %\. "\;7
A Chameleon (Modified) a, ¥u, A Chameleon (Modified) u&.”
v SmartAdapt (Modified) Ne v SmartAdapt (Modified) o
50 L - 9s 50 I T 5
20 25 30 35 10 15 20 25
FPS FPS
(a) Tesla P100 (b) GTX 1060

Figure 3.6: Comparison between FastTuner (DLA-34) and three SOTA approaches:
VideoStorm, Chameleon and SmartAdapt on MOT17 across two devices.

57

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu

McMaster University — Computer Science

1088*608, Full-DLA-34

5
5555
LRI
BREE
RRRRKKKS
REIRRIRKY
e Soterssesateroress!
RS
B
RSB
S .:.f.m\\‘

Figure 3.7: Percentages of the configurations selected by FastTuner (DLA-34) under

70.7%

78.1%

74.4%

, Full-| -1
1088608, Full-DLA-34
B9 864+480, Full-DLA-34
B 704*384, Full-DLA-34
[E=] 640*352, Full-DLA-34
(11 576*320, Full-DLA-34

[1088+608, Half-DLA-34
B2 864+480, Half-DLA-34
] 704*384, Half-DLA-34
B 640*352, Half-DLA-34
[E=1576*320, Half-DLA-34
[1088+608, Quarter-DLA-34
[864+480, Quarter-DLA-34
223 704*384, Quarter-DLA-34
KX 640352, Quarter-DLA-34
B 576*320, Quarter-DLA-34

different threshold settings: T1-T7.

1088*608, Full-YOLO

T4
17.1%

1.5%\ ,2.7%

78.8%

90%

Figure 3.8: Percentages of the configurations selected by FastTuner (YOLO) under

T3

25.3%\é

5.9% 2 7%

864*480, Quarter-YOLO

94.4%

[1088608, Full-YOLO
B 864*480, Full-YOLO
B 704*384, Full-YOLO
E=] 640*352, Full-YOLO
(10 576*320, Full-YOLO

[1088608, Half-YOLO
B2 864+480, Half-YOLO
= 704*384, Half-YOLO
B 640352, Half-YOLO
[E=J576*320, Half-YOLO
1088+608, Quarter-YOLO
[864+480, Quarter-YOLO
[704*384, Quarter-YOLO
640*352, Quarter-YOLO
BXJ 576*320, Quarter-YOLO

different threshold settings: T1-T8.

http://www.mcmaster.ca/

McMaster University — Computer Science

Ph.D. Thesis — R. Xu

€9y | oSy | 0 | 0 - - - - - - - - - - - - - 8L
U9V | ¥Lp | 990 | 990 | © - - - - - - - - - - - - LL
LYy | 1es - 2o |20 O - - - - - - - - - - - 9L
0vy | 8.9 - - - | e80 | - - | 80 | - - - 0 - - - - SL
VeV | 869 - - - - - - | 60 | - - - | @80 | O - - - 7L
ey | L09 - - - - - - - - - - | 960|980 | O - - €L
gTy | 0€9 - - - - - - - - - - - | 660 | 960 | O - L
00V | L€9 - - - - - - - - - - - - - | 660 | - LL
9.8 | OV9 | ¥OL | ¥98 | 880T | 9LG | OF9 | ¥OL | ¥98 | 880T | 95 | OF9 | ¥OL | ¥98 | 880T
Sdd | VION OTOX-3rend) OTOAJI®H OTOA-MA PO L
sjmsa1 Surpuodsar1od pue (O)TOA) IOUNTISe] Ul SSUI}1as PlOYSAIY], :G'¢ SR,
99¢ | 1€ | 90 | O - - - - - - - - - - - - - LL
9'ge | 1'99 - 90| 0 - - - - - - - - - - - - 9L
LTe | 809 - - | 60|80 | - - | 60| 80| - - 0 - - - - oL
9'0¢ | €99 - - | 60| 60 | - - - | 60 | 60 - @0 | 0 - - - VL
€8T | LL9 - - - - - - - - |0 | - | 960|980]| O - - &L
9€C | 969 - - - - - - - - - | 660 | - |660]|S0]| O - oL
T8 | LOL - - - - - - - - - - - - - | 660 | - L
9.8 | OV9 | ¥0OL | %98 | 880T | 949 | OF9 | ¥OL | ¥98 | 880T | 9.5 | OF9 | ¥OL | %98 | 8801
Sdd | VIOW VE-VI-103EnY vE-VIA3eH PE-VIA-Ind PIOALL

sj[nsor1 Surpuodsor1od pue (Fe-y(]) IOUn)se ul ssuryes ploysaly], ¢ o[qr],

59

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 3.6: Impact of interval K on FastTuner (DLA-34)

Threshold K=40 K=20 K=10 K=2

MOTA FPS | MOTA FPS | MOTA FPS | MOTA FPS
T1 70.7 182| 708 178 | 709 176 | 70.9 17.0
T2 69.5 236 | 695 233 | 69.6 228 | 708 19.2
T3 677 283 | 672 281 | 673 272 | 695 @ 20.7
T4 65.3 306 | 651 30.0| 651 285 | 683 21.0
Tb5 60.8 327 | 602 314| 60.0 30.0| 67.0 21.3
T6 55.1 356 | 549 339 | 547 321 | 615 214
T7 53.1 36.6 | 53.0 345 | 530 327| 60.6 21.5

Table 3.7: Impact of interval K on FastTuner (YOLO)

Threshold K=40 K=20 K=10 K=2

MOTA FPS | MOTA FPS | MOTA FPS | MOTA FPS
T1 63.7 400 | 63.7 396 | 63.6 393 | 635 38.7
T2 63.0 425 | 632 419 | 632 415 | 63.7 404
T3 60.7 43.1 60.7 42.6 | 60.7 422 | 62.1 409
T4 59.8 434 | 599 432 | 59.8 429 | 61.7 41.2
TS 57.8 44.0 | 577 435 | H8.0 432 | 60.3 415
T6 52.1 447 | 519 443 | 51T 441 55.9 41.7
T7 474 46.1 | 473 457 | 472 450 | 53.0 419
T8 45.0 463 | 446 46.0 | 446 458 | 518 421

60

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

of top-k configurations could be outdated, or inaccurate (especially when the indepen-
dence assumption does not hold), leading to inferior configurations. Third, frequent
changes in the top-k configurations result in varying selections, which can disrupt
the consistency of object features during object association. SmartAdapt removes
inferior configurations identified through offline profiling from online selection. Doing
so allows it to achieve better MOTA compared to Chameleon. However, it still suffers
from substantial overhead due to feature extraction, as it involves running HoC, HOG
algorithms, and a DNN feature extractor. In contrast, FastTuner incurs only a min-
imal overhead from running the detectability branch, which is much more efficient.
In summary, FastTuner outperforms SmartAdapt on both devices, with 1.1%-9.2%
higher MOTA and 2.5%25.5% higher FPS on Tesla P100, and 1.3%-7.1% higher
MOTA and 1.9%-38.4% higher FPS on GTX 1060.

3.5.4 Testbed Evaluation

Setup: Our testbed consists of the NVIDIA Jetson TX2, the Turing server, and
the Dell desktop, as introduced in Section 2.5. The Jetson TX2 serves as the smart
camera, while the server or desktop serves as the edge server. We evaluate the system
performance under different network conditions by enabling camera-server communi-
cation via Ethernet, unrestricted Wi-Fi (Wi-Fi-H), and Wi-Fi with a 5 Mbps limit
(Wi-Fi-L) to emulate different connectivities [124, 28, 125, 126]. The average upload
and download bandwidths and round-trip time (RTT) of the networks are given in
Table 3.8.

Implementation: Due to the resource constraints of the NVIDIA Jetson TX2,

we only consider FastTuner (YOLO) on the testbed. For simplicity, for all the network

61

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 3.8: Metrics of the networks

Upload (Mbps) | Download (Mbps) RTT
Network

(camera—server) | (server—camera) (ms)
Ethernet 769.0 938.0 1.1
Wi-Fi-H 214 41.5 15.8
Wi-Fi-LT 4.5 4.6 10.6

T The bandwidths are constrained to a maximum of 5 Mbps.

settings, we evaluate FastTuner under three threshold settings: T1, T4 and T8. The
communication between the camera and the server uses Transmission Control Proto-
col (TCP). To reduce the network traffic load, tools from the OpenCV library [40] are
used to compress the frames before sending them over the network. Upon reception
of the frames, the server decompresses them before further processing.

Baselines: We consider two baselines for comparison: Baseline-Camera (B-C)
with all computations done locally on the camera, and Baseline-Server (B-S) with
each frame transmitted to the server for computation. Note that both baselines do
not incorporate FastTuner. We also consider an additional scheme called Camera-
Only (CO), which incorporates FastTuner but places all workloads on the camera.
To ensure a fair comparison with FastTuner+T1, T4 and T8, the baselines employ
the configurations of FairMOT+Full-YOLO+1088 x 608 px (C1), FairMOT+Full-
YOLO+640 x 352 px (C2), and FairMOT+Quarter-YOLO+640 x 352 px (C3), re-
spectively.

Comparisons among workload placement schemes: Figure 3.9 provides a
breakdown of the time spent on each part (i.e., server, camera and transmission)
across the five schemes on the testbed. The camera time and server time repre-

sent the computational time spent on the camera and the server, respectively. The

62

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

transmission time includes the upload time (camera—server) and download time
(server—camera). In all experiments, K is set to 40.

Under high bandwidth conditions (i.e., Ethernet and Wi-Fi-H), as indicated in
Figure 3.9a and Figure 3.9b, CO surpasses B-C by taking advantage of the config-
uration selection in FastTuner to reduce computational time on the camera. SAT
enhances this advantage since the server handles the most time-consuming task,
namely object detection [109]. Given sufficient network bandwidths, B-S is much
faster than camera-centric deployments (i.e., B-C, CO, and SAT) by transmitting
compressed full-resolution frames with minimal overhead. With FastTuner, SOAT
further accelerates the overall processing by transmitting lower-resolution frames and
utilizing smaller models for inference. Consequently, SOAT is the optimal scheme un-
der Ethernet, delivering an FPS in the range of 21.2 to 33.4 and marking a 1.7%8.7%
acceleration in comparison with B-S. The gap widens to 4.1%-22.5% under Wi-Fi-H,
as the transmission time savings brought by FastTuner are more significant.

In contrast, when the available bandwidth is limited (i.e., using Wi-Fi-L), as de-
picted in Figure 3.9¢c, server-centric schemes (i.e., B-S and SOAT) experience signifi-
cant slowdowns since network communication becomes a bottleneck. SAT, however,
is less affected and still manages to outperform B-C and CO since only lightweight in-
formation, such as bounding box coordinates (i.e., detections) and vectors (i.e., re-ID
features) is communicated. Therefore, SAT proves to be the best scheme, achieving
2.6-9.6 FPS and 3.7%8.3% speed-up over B-C.

Additionally, the observations derived from GTX 1060, as shown in Figure 3.10,
are consistent with those in Figure 3.9. In short, when the network bandwidth is

sufficient, i.e., using Ethernet and Wi-Fi-H, SOAT has the best performance, with

63

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu

McMaster University — Computer Science

T —ior]
600 P2 camera H
B server

Time Per Frame (ms)

B-C co SAT B-S SOAT

(a) Ethernet

R Transmission
6001 W7z camera |

@ B server

£ 500

o

£

[

Iy

o

a

o

£

=

(b) Wi-Fi-H

600

Time Per Frame (ms)

100+

Figure 3.9: Comparisons between different schemes on the

RN T ission
600 fbetter P camera H

B server

Time Per Frame (ms)

B-C co SAT B-S SOAT

(a) Ethernet

across three different networks.

R Transmission
bett W22 camera H
B server

Time Per Frame (ms)

Cc1

78 Tl
AT

B-C S,

co

(b) Wi-Fi-H

700

600 +

Time Per Frame (ms)

100+

Y Transmission| 1,

Camera

B server

testbed (Tesla P100)

etie R Transmission| 11

Camera N

B server

Figure 3.10: Comparisons between different schemes on the testbed (GTX 1060)

across three different networks.

an improvement of 5.3%-22.1% in speed. However, when the bandwidth is limited,

i.e., using Wi-Fi-L, SAT emerges as the best scheme, accelerating the pipeline by

3.7%-8.3%. These two experiments demonstrate that FastTuner can accelerate end-

to-end processing across networks with varying bandwidths and devices with different

computing power.

3.6 Conclusion

In this chapter, we proposed FastTuner, a model-agnostic framework to accelerate

MOT pipelines in EVA systems. By learning heatmap representations of different

64

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

configurations offline, FastTuner can intelligently select the optimal frame resolution
and backbone model at runtime, improving the trade-off between tracking accuracy
and speed. The integration of multi-task learning allows configuration selection and
object tracking to be performed in a shared model, further reducing the computational
overhead. FastTuner offers users opportunities to control the trade-off based on the
application requirements by tuning its threshold settings. For real-world deployments,
we designed two workload placement schemes between a smart camera and an edge
server. Extensive experiments demonstrate that 1) FastTuner can work with different
backbone models; 2) it can improve the MOTA-FPS trade-off of MOT pipelines in

real-world EVA systems.

65

http://www.mcmaster.ca/

Chapter 4

BlockHybrid: Accelerating Object
Detection Pipelines with Hybrid

Block-Wise Execution

(© 2025 IEEE. This chapter is based on the manuscript: Renjie Xu, Keivan Nalaie, and
Rong Zheng. “BlockHybrid: Accelerating Object Detection Pipelines With Hybrid Block-Wise
Execution”, TEEE Internet of Things Journal, vol. 12, no. 13, pp. 24148-24158, 2025. DOI:
10.1109/J10T.2025.3554167.

66

https://doi.org/10.1109/JIOT.2025.3554167

Ph.D. Thesis — R. Xu McMaster University — Computer Science

4.1 Introduction

The proliferation of IoT cameras is changing our lives. According to [3], nearly 42
billion IoT devices will generate 79.4 ZB of data by 2025, 80% of which will be
video or video-like. While such vast data unlock valuable insights for video analyt-
ics applications, they also pose significant challenges, especially in latency-sensitive
scenarios. For instance, in ITS [33], roadside units (RSUs) play a critical role in
monitoring pedestrians and vehicles, providing real-time warnings to connected vehi-
cles via vehicle-to-everything (V2X) communication [33]. To prevent accidents and
ensure smooth traffic flow, RSUs must process high-FPS videos streamed from traf-
fic cameras with low latency—even slight delays in detecting jaywalkers or sudden
lane changes can be dangerous, while slow congestion updates may impair traffic effi-
ciency. These scenarios highlight the need for efficient, real-time edge video analytics
to enhance road safety and traffic management.

Object detection serves as the foundation of many VAPs, with its outputs directly
driving downstream tasks such as object tracking and event analysis. This critical role
has made its optimization, particularly for edge deployment, an active research topic.
A conventional object detection pipeline is illustrated in Figure 4.1a. A camera of-
floads every captured frame to an edge server hosting a frame-wise object detector for
processing. This pipeline is well-suited for latency-sensitive applications such as ITS,
where rapid response is critical. By leveraging frame-wise streaming, it enables real-
time capturing, encoding, transmission, and processing of each frame, ensuring timely
detection of pedestrians, vehicles, and obstacles for instant alerts and traffic control.
Many methods have been proposed to optimize this pipeline, including model com-

pression [127, 128] and specialization [129, 130] to reduce computational complexity,

67

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

() Full Frame ()
Camera : = Edge Server
=3
| Frame-Wise | | Post- | |
Detector Processing
Input Frames
(a) Conventional pipeline
N (N\
Camera Hard Blocks = Edge Server
Hard Blocks e
Identification
‘ |,| Block-Wise | | Post-
2 il T L Detector Processing
Input Frame @ 'I‘
Easy Blocks -] :
1
Tracker imim === = =i———m— = = e e m e e e e e e e oo smo oo g
- Tracking Results
& J & J

(b) Proposed pipeline

Figure 4.1: Comparison between conventional pipeline and the proposed pipeline

model partitioning [131-135, 63, 136-144] to distribute inference workloads between
the camera and the edge server, and model cascade techniques [145-150, 4, 151, 118§]
that progressively refine predictions through multiple stages to balance accuracy and
efficiency.

However, the aforementioned methods are not input-aware. Videos often con-
tain substantial redundancy, and not every pixel is worth transmitting and process-
ing. Imagine a traffic monitoring application deployed at a busy intersection: non-
informative regions, such as empty roads, offer little useful information and require
minimal computation, whereas regions of interest, with vehicles or pedestrians, de-
mand accurate processing. This contrast highlights the need for selective processing
strategies, where communication and computation resources are allocated accord-
ing to the significance of different frame regions—a technique known as conditional

execution. When the execution decisions are made on a block-by-block basis, this

68

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

technique is called block-wise conditional execution. Relevant approaches [19, 152]
divide input frames into blocks of equal size, identify the informative ones (i.e., those
containing objects of interest), and process them using a customized block-wise detec-
tor, where the features of informative blocks are computed, and uninformative blocks
reuse features from the previous execution before merging to generate the final results.
However, a key limitation is that they treat all informative blocks equally, ignoring
differences within the blocks. For example, a block containing only a slow-moving
pedestrian could be efficiently handled by a simpler algorithm, rather than a heavy
detector. This one-size-fits-all strategy leads to unnecessary resource consumption,
leaving room for further optimization. Another challenge of block-wise detection is
the potential for block artifacts [20], which arise when features from new and cached
blocks are merged during inference. The inconsistencies at block boundaries can re-
sult in inaccurate or redundant detections, particularly in regions where objects cross
block boundaries.

To address these challenges, we propose BlockHybrid, a novel framework for ac-
celerating object detection pipelines using hybrid block-wise conditional execution.
In this framework, blocks are further categorized into hard and easy blocks based on
their content and processing strategy. Easy blocks include informative blocks with
easy objects (e.g., a slow-moving pedestrian) or entirely non-informative blocks (e.g.,
empty roads) that can be accurately processed using lightweight algorithms. In con-
trast, hard blocks are a subset of informative blocks containing challenging objects
that require heavy computation. A brief pipeline of BlockHybrid is depicted in Fig-
ure 4.1b. BlockHybrid begins by dividing each frame into multiple uniform blocks and

labels them as hard or easy blocks with a policy network. Hard blocks are transmitted

69

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

to the server and processed by a block-wise detector, while easy blocks are handled
locally on the camera using a lightweight tracker. By selectively transmitting and
processing only hard blocks, redundant computation and communication are signif-
icantly reduced. We define this hybrid block-wise execution strategy as block-hybrid
conditional execution. To further mitigate block artifacts, we introduce block-wise
fine-tuning, an additional training stage applied to the detector. This stage simulates
scenarios with object boundaries across blocks and improves the model’s ability to
handle feature inconsistencies.

To evaluate the performance of BlockHybrid, we conduct experiments on two
public object detection benchmarks. We also implement and deploy a prototype on
a real-world testbed that uses an NVIDIA Jetson TX2 as a camera and an Ubuntu
desktop as an edge server running object detection tasks. Our results show that
BlockHybrid achieves a better trade-off between detection accuracy and end-to-end
latency. Compared to SOTA approaches, BlockHybrid improves execution speed by
8.8%-31.5% while maintaining comparable accuracy.

In summary, our key contributions are as follows:

e We conduct a quantitative analysis of video redundancy and explore the rela-

tionship between the number of hard blocks and execution latency.

e We propose a novel framework, BlockHybrid, which accelerates object detection

pipelines through block-hybrid conditional execution.

e We design a policy network, trained offline based on reinforcement learning, to

make online block decisions.

70

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

e We introduce block-wise fine-tuning to address block artifacts and improve de-

tection accuracy during block-wise execution.

e We implement and deploy a working prototype of BlockHybrid on a real-world

testbed, demonstrating its performance and effectiveness.

4.2 Motivation

In this section, we conduct two experiments to show the redundancy in videos and

the possible improvements made by block-hybrid execution.

4.2.1 Redundancy in Videos

Videos often contain significant redundancy. Hard blocks that require full-fledge
detectors only occupy a small proportion of the frame, with the rest dominated by
easy blocks (e.g., background, sparse objects, etc.). We measure the redundancy,
quantified as the number of informative blocks (IBs) and hard blocks (HBs), of two
datasets: MOT17 [104] and WildTrack [105] in Table 4.1. Each frame is resized to
1024 x 2048 and divided into 8 x 16 uniform blocks (i.e., 128 x 128). In every T = 10
frames, we mark the first frame as the key frame and the following 7" — 1 frames as
regular frames. We use ground truth labels to obtain the bboxes in each frame, and
those in key frames are referred to as references. We then use a tracker (e.g., Median
Flow [153]) to track the references in the subsequent frames. The tracking results are
compared with the ground truth using loU. The bboxes with an IoU below a specified
threshold (e.g., 80%) are considered hard objects, since they are hard to be tracked

accurately. The corresponding blocks are defined as hard blocks. A block is identified

71

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 4.1: Redundancy of MOT17 and WildTrack datasets.

Sequence | # Frame | Density’ | IBs? | HBs?

MOT17-02 600 30.97 28.37% | 13.39%
MOT17-04 1050 45.29 50.96% | 8.28%
MOT17-05 837 8.26 78.31% | 31.82%
MOT17-09 525 10.14 36.90% | 18.65%
MOT17-10 654 19.63 26.93% | 14.29%
MOT17-11 900 10.48 50.95% | 12.74%
MOT17-13 750 15.52 13.85% | 7.64%
WildTrack-Cam1 2000 35.76 37.42% | 17.40%
WildTrack-Cam?2 2000 24.89 50.63% | 19.02%
WildTrack-Cam3 2000 38.27 62.38% | 33.61%
WildTrack-Cam4 2000 29.30 34.47% | 15.02%
WildTrack-Camb 2000 27.04 41.38% | 16.56%
WildTrack-Cam6 2000 34.19 35.91% | 14.63%
WildTrack-Cam?7 2000 30.85 40.63% | 13.26%

! Density denotes the average number of objects per frame.
2 IB and HB refer to informative block and hard block, respectively.

as an informative block if it contains any bbox.

In Table 4.1, it is evident that informative blocks typically constitute no more
than 50% of video frames, and in some sequences, e.g., MOT17-05, their proportion
drops below 10%. However, hard blocks account for an even smaller percentage,
generally less than 20%, highlighting the substantial redundancy present in videos.
By focusing only on transmitting and processing hard blocks, communication and
computation overhead can be significantly reduced. This observation motivates us
to design an efficient method to judiciously identify and handle hard blocks while

maintaining accuracy.

72

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

4.2.2 Potential Acceleration with Hybrid Block-Wise Execu-
tion

Does reducing the number of detection blocks proportionally translate to computa-
tional savings? To answer this question, we follow [19] to perform block-wise de-
tection, with CSP [154] as the detector and ResNet-50 as its backbone. Median
Flow [153] is used as the tracker to handle objects within easy blocks. Considering
the efficiency of Median Flow on CPUs, we carefully schedule these two workloads
as depicted in Figure 4.2a. The hard blocks are first migrated from the CPU to the
GPU. Once the GPU begins processing the hard blocks, the CPU simultaneously runs
the tracker. This parallel execution results in only negligible additional overhead.

We measure the latency from the start of data migration to the completion of
tracking and detection for each frame, represented as t; + max(t,,t3) in Figure 4.2.
Clearly, the latency is almost proportional to the number of hard blocks. In particular,
executing 20% of the blocks leads to a reduction of 205 ms in latency, only 30% of
the original latency. This observation shows the potential for accelerating object
detection pipelines by only executing a small subset of blocks.

However, achieving effective block-hybrid execution is non-trivial. First, differenti-
ating between hard and easy blocks using a policy network is challenging and requires
a carefully designed reward function. Second, the decision process must remain ef-
ficient; otherwise, its overhead could negate the benefits of reducing the number of
executed blocks. Finally, performing accurate block-wise detection is difficult due to
block artifacts, which can degrade the overall detection performance. An example of
block artifacts is shown in Figure 4.3. Hard blocks are highlighted in red, while the

rest are easy blocks. This convention is followed throughout the chapter. The key

73

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

300
Time @401
B 240
>
2180
ts 5
©
GPU |] . 3 120]
Time
I:] Data Migration I:] Tracking Detection 20% 40% 60% 80% 100%
(CPU to GPU) (CPU) (GPU) Executed Blocks
(a) Workload schedule on CPU and GPU (b) # Hard blocks v.s. latency

Figure 4.2: (a) Workload scheduling between CPU and GPU and (b) relationship
between number of hard blocks and execution latency.

>

~

N
i | _pe
MOT17-11 # 847 MOT17-11 # 848 MOT17-11 # 849

MOT17-11 # 850
(Key Frame)

Figure 4.3: Example of block artifacts.

frame is fully processed and all block features are cached. For the following frames,
hard blocks are processed to generate new block features, which are then combined
with the cached easy block features to produce the bboxes. Clearly, even though the
differences between these frames are tiny, the feature merging still introduces incon-

sistency at the boundaries between hard and easy blocks, resulting in inaccurate and

noisy bboxes.

74

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

4.3 BlockHybrid Design

In this section, we present the design of BlockHybrid, including the system overview,
block decision-making with the policy network, post-processing to remove redundant

bboxes, and block-wise fine-tuning to mitigate block artifacts.

4.3.1 Overview

BlockHybrid is an edge video analytics framework designed for object detection tasks.
It employs hybrid block-wise conditional execution to reduce computation and com-
munication overhead. The core of BlockHybrid is its policy network, which outputs
suitable actions for each block. Unlike supervised learning, where labels for hard and
easy blocks are fixed and cannot adapt to varying trade-offs, a reinforcement learning
approach can balance performance and efficiency based on the specific requirements
of the task using judiciously designed reward functions.

BlockHybrid comprises a camera and an edge server. The camera performs three
tasks: 1) capturing video frames and communicating with the server, 2) running
the tracker, and 3) executing the policy network. The edge server hosts a detector to
process frames or blocks from the camera. We adopt the CUDA operators from [19] to
perform block-wise detection tasks efficiently. As explained in Section 2.2, a standard
detector can process frames in blocks and generate object bboxes, facilitated by these
operators.

Figure 4.4 depicts the workflow of BlockHybrid. The first frame of every 7" frames
is marked as a key frame and the rest are marked as regular frames @. BlockHybrid
operates in two distinct phases: full execution (F) and partial execution (P), applied

to key frames and regular frames, respectively. The workload scheduling between the

I6)

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

. (Y Y Y Y)
Video PR
Frames
@ & N N N AN J
|
[|
(N\ (Y Y Y)
F I P I P |[eee| P F P P |eee| P F
. J AN A A J
| l | :
References @ Full-Frame
| Detector
Tracker p-f------------ i
1
1 Tracker
1BBoxes

@

Block L
P i Post-

Sampling | | N
: @ Processing
1
'l Hard
1 Detector]
:BIOCkS BBoxes
1
| | Block-Wise

Detector

®

Block Decision

[Camera] [Server]

Figure 4.4: System overview of BlockHybrid.

camera and server in both phases is illustrated in Figure 4.5. In the full execution
phase, a key frame is sent to the edge server, where a detector will process the full
frame, generate references and cache the block features @, as illustrated in Figure 4.6.
The references are then sent back to the camera. In the partial execution phase, the
policy network @ takes the current frame, previous frame and key frame as inputs, and
determines hard and easy blocks. Based on the decision, block sampling @ extracts
hard blocks from the current frame. The hard blocks are then transmitted to the

server and processed by the detector ®. Only the hard blocks are executed, while the

76

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Full Execution Partial Execution
t1 1 t5
CPU i
Camera : ot Time
GPU ! i |
" . Time
P b ' Lty toby
Network H | |
: Time
|£3 : IEO t13
CPU i
Server ; Time
1 ty i 1 tiy !
GPU | ! —|
: Time

Frame / Block Frame / Block Frame / Block . .
) - . Detection Tracking
Compression Transmission Decompression

I:I Polic Block Decision Tracking Results Post-
4 Transmission Transmission Processing

Figure 4.5: Workload scheduling between camera and server. Data migration time
(e.g., from CPU to GPU) is omitted considering its negligible overhead.

features of other blocks (i.e., easy blocks) are retrieved from the local cache, which
is updated every key frame. The features of both hard and easy blocks are merged
into complete maps—a processing step called block merge, which is performed at each
convolutional layer in the detector. Due to this mechanism, the hard blocks, being
freshly executed, produce accurate bboxes, while those generated from easy blocks
might be outdated as they rely on cached features from key frame executions. During
the process of @, @ and ®, the tracker ® tracks all references within key frames
to generate tracking results. The location and size of each object are tracked, and
if they change significantly (e.g., exceeding a defined threshold), the tracking result
is deemed unreliable, and a Kalman filter is used to make estimations instead. As
shown in Figure 4.5, the detector and the tracker run in parallel. The execution of
the tracker will not incur additional overhead as long as t5 < tg + t7 + tg + t19 + t12.

Lastly, the detection and tracking bboxes go through the post-processing stage @,

7

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Block-Wise Detector

Key Frame K, Feature Map F,,

o ‘L : by | by | by I
| i Detections,
| bo | bo | bo i (References)
. [bo|bo|bo|
i 1 i
i Cache |
' Block|Merge
b, | b, | b, —'—* Detections;
— b, | by | by | !
b, | by | by —'—* Detections,

Feature Map F,

Figure 4.6: Brief process of block-wise detection.

where redundant bboxes are eliminated. Note that the full-frame detector and the
block-wise detector are essentially the same detector. The detection mode can be

switched based on the input type. We separate them here for better clarity.

4.3.2 Policy Network

The policy network f,,, with parameters 0, is a trainable convolutional neural network
that can make binary block decisions (i.e., whether is a block is hard or easy) for the

current frame at timestamp ¢, based on the state:

S ={7,,7,.1, K"}, (4.3.1)

78

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

where Z;, Z,_; and K7 are the current frame, previous frame, and key frame (updated

every T frames), respectively. The network outputs a probabilities mask:

Py = fpn (St7 9) ’ (432)

containing probabilities p;, for each block b:

Pr=1Ip1,--pvs--->08] €[0,1]7, (4.3.3)

where B is the total number of blocks. The soft probabilities are sampled based on

Bernoulli distribution to binary actions:

A = [al, ey Qpy .. ,CLB] € {0, 1}3, (434)

where a, ~ Bernoulli(py). When a, = 1, block b is processed by the block-wise
detector; otherwise, it is handled by the light tracker.

Training: The policy network is trained offline with ground truth bboxes. The
policy 7 predicts actions A (omitting ¢ for simplicity) with the goal of maximizing

the reward per frame. The objective can be represented as:

max J (0) = maxE 4., [R (A)], (4.3.5)

where the total reward R(A) is defined as the sum of all the block rewards in the

frame:

R(A) =D [R(aw)]. (4.3.6)

b=1

79

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Therefore, Eq. (4.3.5) can be written as:

max J () = max » (Eq,em,, [Rs (a)]) - (4.3.7)

b=1

The policy network’s parameters 6 can be updated using gradient ascent with learning

rate o

0 0+aVylT(9). (4.3.8)

Based on [19], maximizing the objective function in Eq. (4.3.7) is equivalent to min-

imizing the following loss function:

L=— (Rb (ab) log Tb,0 (ab ’ St)) . (439)

B
b=1

Reward: The purpose of the policy network is to identify the hard blocks for
detector processing. To prevent the policy from converging to a suboptimal state
where it always chooses to process all blocks as hard blocks, the reward takes both

accuracy and computation cost into account:

Ry (ap) = Rre (as) + YReost (as) (4.3.10)

where Rrg (ap) is the accuracy reward based on task error, R o (ap) is the reward
for computation cost, and v is a hyperparameter for balancing both rewards.

Task error: To determine the hardness of a block, we define task error (TE) as
a measure of the error resulting from processing that block either using the detector
or tracker, compared to the ground truth. Simply put, task error reflects how much a

predicted bbox deviates from the ground truth, which represents the actual position

30

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

of an object. Algorithm 1 is used to compute the task error. It requires the pipeline
execution results B (including bboxes from both the detector and the tracker), the
ground truth bboxes G, and the detection results D, which are derived from executing
full frames with the detector. The task error is first initialized as a zero-filled matrix
with the same size as the input frame. Next, undetectable ground truth bboxes are
removed. These bboxes cannot be detected by the detector and, consequently, by
BlockHybrid. Therefore, they are excluded from the calculation of TE. The rationale
is that if BlockHybrid cannot predict these bboxes, processing the corresponding
blocks is unnecessary. Then, for each bbox in B, we use greedy matching to find the
best matched bbox in the updated ground truth G’, and measure the task error based
on IoU. Large overlap indicates low task error, and potentially low block hardness.
Finally, for unmatched ground truth bboxes, i.e., false negatives, we set the task error
to the maximum value (i.e., 1.0). The returned matrix TE is pixel-wise; we convert

it to block-wise representation using max-pooling:

TE, =maxTE, Vpeb. (4.3.11)

The block-wise accuracy reward Rrg(ap) is finally calculated as:

TEb if ay = 1,
Rre(ay) = (4.3.12)

—TEb if ap = 0.

Hard blocks, where a;, = 1, have a positive reward for positive task error. In contrast,
easy blocks (i.e., a, = 0) receive a negative reward, and high task error increases the

likelihood of being decided as hard blocks.

81

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Computation cost: As mentioned in Section 4.3.1, the detector and tracker are
executed in parallel. Since the detector is more computationally expensive, the overall
processing time is dominated by the detector. Therefore, the computation cost of a

frame is measured by the number of detector-processed blocks (i.e., a, = 1):

B
C = ZzBl @i c [07 1] (4313)

Then, we define the cost reward as:

T—C if a, =1,
Reost(ap) = (4.3.14)

—(T—C) ifab:(),

where 7 is an execution target, defining the desired average cost. The reward mini-
mizes the difference between C and the desired percentage 7. If the cost C is below the
target 7, the policy receives a positive reward, encouraging it to process more hard
blocks. Otherwise, it is penalized with a negative reward, promoting the processing
of more easy blocks. Since the policy network is trained offline with ground truth,
we follow the approach introduced in Section 4.2.1 to estimate the number of hard
blocks in each training sample beforehand. Finally, the target 7 is calculated as the

average number of hard blocks among T frames:
T
- H;
= iz Hi € [0,1], (4.3.15)

T

where H is the estimated number of hard blocks.

82

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Algorithm 1 Task Error for Object Detection

Require: execution results B, ground truth G, detection results D, IoU threshold
// Initialize task error as a zero matrix of size H x W

1: TE < 01V
// remove undetectable ground truth bboxes

2. G @

3: for gt € G do

4: ToUpest < 0

5. for det € D do

6: if IoU (gt, det) > IoUpes; then
7: ToUpes; < 10U (gt, det)
8: end if

9: end for

10: if ToUpess > 0 then

11: G «— G Ugt

12: end if

13: end for

// measure pixel-wise task error
14: for bbox € B do
15: ToUpes < 0
16: gty < NULL
17. for gt' € G’ do

18: if ToU (gt’, bbox) > I0Upes; then
19: ToUyes; < ToU (gt’, bbox)

20: Glhest < gt

21: end if

22: end for
23: if gt,,, # NULL then
24: G G\ {9thest

25: for all pixels p € gt} ., do

26: TE, + max (TE,, 1 — I0Uye)
27: end for

28: end if

29: end for

// deal with unmatched ground truth bboxes
30: for gt' € G’ do
31: for all pixels p € gt’ do

32: TEp ~— 1.0
33: end for
34: end for

35. return TFE

33

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

4.3.3 Post-Processing

As introduced in Section 4.3.1, detection bboxes are generated from both hard and
easy blocks. Meanwhile, the tracker tracks all references from key frames, producing
tracking bboxes that also span hard and easy blocks. The purpose of post-processing
is to refine these results by removing detection bboxes in easy blocks (i.e., stale
detections) and tracking bboxes in hard blocks (i.e., less accurate ones). However, this
refinement process is challenging since some bboxes may span across block boundaries,
making it difficult to determine their associated blocks. To address this issue, we
propose a two-stage filtering algorithm. In the first stage, the algorithm evaluates
each bbox’s area within different block types. Detection bboxes are retained if more
than 50% of their area overlaps with hard blocks, while tracking bboxes are kept if
more than half of their area falls within easy blocks. The rest are simply discarded.
This stage ensures that bboxes are appropriately assigned to their respective block
types. In the second stage, a non-maximum suppression (NMS) algorithm is applied

to further eliminate overlapping bboxes.

4.3.4 Block-wise Fine-tuning

The combination of new and old block features during block merge potentially leads to
feature inconsistencies at block boundaries. This issue, known as block artifacts, can
result in inaccurate or redundant detections. To mitigate this problem, we propose
block-wise fine-tuning, which is an additional training stage applied to pre-trained
weights of the detector. During fine-tuning, for each training iteration, the model is
given a pair of adjacent frames {Z;, Z; 1, } to simulate our key frame and regular frame

inference procedure. For Z;, the detector processes the entire frame and caches all

84

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

block features. For Z;.;, ground truth bboxes are used to identify activated blocks
(i.e., blocks to be executed), among which n = 30% of the blocks are turned into inac-
tive blocks, to simulate scenarios where objects are located at block boundaries. The
execution results are compared with the ground truth to calculate the loss, which is

then used to update the model weights, improving its ability to handle block artifacts.

4.4 Evaluation

In this section, we conduct experiments to evaluate the performance of BlockHybrid.
We start with the experimental setup and then compare BlockHybrid to baselines on

two benchmark datasets and a real-world testbed.

4.4.1 Experimental Setup

The hardware platform consists of the NVIDIA Jetson TX2 and the Dell desktop
mentioned in Section 2.5. In benchmark evaluation, all workloads are executed locally
on the desktop. In testbed evaluation, the Jetson TX2 serves as a smart camera,
while the desktop acts as an edge server, with workloads distributed between them,
as shown in Figure 4.5. The edge server and camera are connected with the D-
Link AX4800 router through a 2.4GHz WiFi network. The bandwidth is 40.5 Mbps,
measured by iperf. TCP is used to enable the communication between the camera
and the server. Frames and blocks are compressed in JPEG format using the OpenCV
library [40, 95] before transmission, and decompressed by the server upon reception

for further processing.

85

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

4.4.2 Datasets and Metrics

BlockHybrid is evaluated using the MOT17 and WildTrack datasets described in
Section 2.3. Each video sequence is divided into 50% for detector training, 25% for
policy network training, and 25% for testing. All frames are resized to 1024 x 2048.
We adopt mAP@0.5 to evaluate accuracy, and use end-to-end latency and network

traffic to evaluate efficiency, as introduced in Section 2.4.

4.4.3 BlockHybrid Configuration

To demonstrate the versatility of BlockHybrid, we apply it to two types of block-
wise object detectors: 1) CNN-based and 2) transformer-based. For simplicity, we
refer to them as BlockHybrid (CNN) and BlockHybrid (Transformer). For Block-
Hybrid (CNN), we adopt CSP [154] as the detector framework, with ResNet-50 [43]
or MobileNet [155] as backbone (denoted as CSP + ResNet-50/MobileNet). For
BlockHybrid (Transformer), we use Faster-RCNN + ViT-small. The network config-
uration follows that of [96]. Specifically, encoder depth L = 12, embedding dimension
D = 384, patch size = 16 x 16. The pre-trained weights of ResNet-50 and ViT-
Small are from [156] and [157], respectively, while those of MobileNet are from official
Pytorch repository. For detector training, we follow [156] for CSP and [158] for Faster-
RCNN, using the same training hyperparameters as in their respective frameworks.
The hyperparameters for block-wise fine-tuning are consistent with those used for
detector training. The policy network employs ResNet-8 as its backbone and three
64-channel convolutional layers as its head. The block size is set to 128x128. To
ensure seamless integration with transformer-based detectors, where the patch size is

16 x 16, we define one block as equivalent to 8 x 8 patches. The policy network is

36

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

trained offline using an RMS optimizer with learning rate = le=* and weight decay

= le=3. The key frame interval T' = 10, and the balancing hyperparameter v = 5.

4.4.4 Baselines

BlockHybrid is compared with the following baselines. As discussed in Section 2.2,
EHCI [95] and BlockCopy [19] represent the SOTA methods in two different cat-
egories of block-wise conditional execution, both employing CNN-based detectors.
Arena [96] serves as the SOTA method for transformer-based block-wise conditional
execution. For fairness, we compare BlockHybrid (CNN) with BlockCopy and EHCI,
and BlockHybrid (Transformer) with Arena. In each comparison, all baselines use
the same detector and backbone, while block selection follows their respective original

designs.

e Full-frame detector (FD): The camera always transmits full frames to the
edge server, where a base detector performs inference without employing any
additional techniques. FD uses CSP when compared with BlockHybrid (CNN),

and Faster-RCNN when compared with BlockHybrid (Transformer).

e BlockCopy [19]: A policy network is used to determine informative blocks
on the camera, which are then sent to the server and batch-processed by the
detector. The features of non-informative blocks are cached and updated in the

server. We set the execution target 7 to 30%.

e EHCI [95]: Informative blocks are identified on the camera based on detection
results from the previous frame. These non-uniform blocks are sent to the

server, where they are arranged into a compact frame using a rectangle packing

87

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

algorithm (e.g., Next-Fit [95]) before performing frame-wise object detection.
The detection results are subsequently mapped back to their original locations

in the full frame.

e Arena [96]: Every T frames, a full frame is sent to the server for processing
and the resulting tokens are cached. For the remaining 7' — 1 frames, detection
results from the previous frame are used to decide informative patches, which
are then transmitted to the server for processing. The encoder processes only
these informative patches, while the decoder reconstructs the complete token

sequence by reusing cached tokens from prior executions.

4.4.5 Benchmark Evaluation

In benchmark evaluation, all methods are executed locally on the edge server. Ta-
bles 4.2 and 4.3 present results using CSP + ResNet-50 and MobileNet. As shown
in Table 4.2, BlockHybrid (CNN) achieves the highest FPS among all the baselines,
with the least number of blocks being executed by the detector. Meanwhile, its accu-
racy remains comparable to the full-frame detector, with only a small drop of ~1%.
In contrast, BlockHybrid*, without block-wise fine-tuning, struggles to predict accu-
rate bboxes across block boundaries, leading to a significant accuracy drop of ~5%.
Compared to BlockHybrid, BlockCopy shows a lower FPS since it tends to process
the number of blocks defined by the execution target 7 = 30%. However, processing
only ~30% of the blocks sometimes misses some informative regions, resulting in a
noticeable accuracy decrease of ~2%. EHCI, on the other hand, attempts to process
all informative blocks, which significantly reduces its FPS. As its block size is non-

uniform, the number of blocks is calculated by dividing the area of the merged smaller

38

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

frame by 128 x 128, the block size used in BlockHybrid and BlockCopy. Table 4.3
shows similar trends to Table 4.2. Notably, BlockHybrid with MobileNet achieves
near real-time processing (i.e., ~30 FPS), representing a significant improvement
over FD, which achieves only ~16 FPS.

Table 4.4 presents results using Faster-RCNN + ViT-Small. The overall trends
remain the same: BlockHybrid (Transformer) significantly reduces the number of
processed blocks, improving FPS while maintaining accuracy close to FD. However,
compared to CNN-based methods, all ViT-based methods run at a lower FPS due to
the increased computation overhead of self-attention operations. Arena, despite being
optimized for transformer-based block-wise execution, still suffers from reduced effi-
ciency since it processes a relatively large portion of the frame. In contrast, BlockHy-
brid effectively balances computation efficiency and detection performance, achieving
up to ~4.7 FPS with a small accuracy drop (<2%) compared to FD.

We also study the impact of different key frame intervals T" on the trade-off be-
tween accuracy and the number of executed hard blocks, as shown in Figure 4.7. In
this experiment, BlockHybrid (CNN) adopts CSP + ResNet-50. When 7" = 5, Block-
Hybrid achieves the highest accuracy, with around 30% of the blocks being executed
as hard blocks for MOT17 and WildTrack. When 7' = 10, BlockHybrid reduces the
number of hard blocks by 19.5% with only a 0.4% accuracy loss for MOT17, and by
14.0% at the expense of a 0.5% accuracy drop for WildTrack. As T increases further
from 15 to 30, the number of hard blocks stabilizes or slightly increases. This is be-
cause the references gradually become outdated, leading to more inaccurate tracking

results, which in turn activates more hard blocks by the policy network. Meanwhile,

39

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu

McMaster University — Computer Science

Table 4.2: Benchmark evaluation on two datasets using CSP + ResNet-50.

Dataset Method Backbone | Accuracy | Blocks | FPS
BlockHybrid | ResNet-50 78.0% 23.1% | 9.5
BlockHybrid* | ResNet-50 73.1% 25.6% | 9.1
MOT17 FD ResNet-50 79.0% 100.0% | 34
BlockCopy ResNet-50 77.2% 39.2% | 8.0
EHCI ResNet-50 77.8% 45.6% 6.8
BlockHybrid | ResNet-50 72.5% 25.1% | 9.2
BlockHybrid* | ResNet-50 67.2% 28.1% 8.8
WildTrack FD ResNet-50 73.4% 100.0% | 3.4
BlockCopy | ResNet-50 71.6% 39.2% | 8.0
EHCI ResNet-50 72.1% 49.8% 6.3

I BlockHybrid* denotes without block-wise fine-tuning.

Table 4.3: Benchmark evaluation on two datasets using CSP + MobileNet.

Dataset Method Backbone | Accuracy | Blocks | FPS
BlockHybrid | MobileNet 72.2% 23.8% | 27.2
BlockHybrid* | MobileNet 67.0% 26.9% | 26.0

MOT17 FD MobileNet 72.7% 100.0% | 15.9

BlockCopy | MobileNet 71.0% 39.7% | 244

EHCI MobileNet 71.9% 44.7% | 21.3

BlockHybrid | MobileNet 65.8% 25.9% | 26.2
BlockHybrid* | MobileNet 60.1% 29.5% | 25.1

WildTrack FD MobileNet 66.5% 100.0% | 15.8
BlockCopy | MobileNet 64.6% 40.2% | 23.9

EHCI MobileNet 65.4% 48.5% | 20.6

I BlockHybrid* denotes without block-wise fine-tuning.

Table 4.4: Benchmark evaluation on two datasets using Faster-RCNN + ViT-Small.

Dataset Method Backbone | Accuracy | Blocks | FPS
BlockHybrid | ViT-Small 80.1% 23.4% | 4.7
MOT17 BlockHybrid* | ViT-Small 78.3% 251% | 4.5
FD ViT-Small 81.5% 100.0% | 1.5
Arena ViT-Small 80.6% 43.9% | 3.5
BlockHybrid | ViT-Small 74.5% 24.5% | 4.6
. BlockHybrid* | ViT-Small 72.1% 26.6% | 4.4
WildTrack FD ViT-Small | 76.3% | 100.0% | 1.5
Arena ViT-Small 75.0% 47.3% | 3.3

I BlockHybrid* denotes without block-wise fine-tuning.

90

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

80% 1 . .MOT17. . — 30% 75% 1 . V\(lIdTraqk . — 30%
‘\ —A— Accuracy) — —A— Accuracy
\ —M— Hard Blocks \ —M— Hard Blocks
A) %)
2 75%1 \ S 2 70%1 \ S
S A 2 S " 3
S | 250 @ S -/ m
Q n o Q ke]
éf) % S 2 65% u @
70%- — - §< £ 61 — \ £
A — A [25%
65% T T T T —-20% 60% - T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Key Frame Interval Key Frame Interval
(a) MOT17 (b) WildTrack

Figure 4.7: The influence of different key frame intervals on the trade-off between
accuracy and the number of hard blocks.

accuracy shows a noticeable decline as the cached block features become stale, exacer-
bating block artifacts and degrading performance. To summarize, T' = 10 achieves the
best balance between accuracy and the number of hard blocks across both datasets.
In practice, it is non-trivial to identify the optimal 7', since the ground truth is un-
available during the online stage. However, this problem can be solved by offline or

online profiling [10], which we leave for future endeavors.

4.4.6 Testbed Evaluation

In testbed evaluation, we use CSP + MobileNet for all methods. Figure 4.8 shows
the normalized network traffic and accuracy of different methods across two datasets.
Figure 4.9 provides the end-to-end latency for each method, broken down into camera
time, transmission time, and server time. Due to minor information loss during frame
compression, the accuracy of all approaches experiences a slight drop of < 2%, while
their relationship remains consistent with the results in Table 4.3. Since BlockHybrid
utilizes parallel computation, as shown in Figure 4.5, the camera processing time

overlaps with the communication time, and the latter partially overlaps with the

91

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

server time. The camera time dominates the end-to-end latency of BlockHybrid,
since it includes the overhead of running the policy network and the tracker on a
resource-poor device. However, the reduction in the number of processed blocks
leads to significantly lower communication and server computation costs, enabling
BlockHybrid to achieve the lowest end-to-end latency among all the approaches. FD,
which always transmits the full frame to the server, generates the most network traffic
and thus incurs the longest end-to-end latency, with the transmission time being the
dominating factor. As shown in Table 4.3, BlockCopy and EHCI transmit and process
more blocks than BlockHybrid, leading to higher transmission time and server time.
Overall, BlockHybrid achieves the best accuracy-latency trade-off, accelerating the
end-to-end processing by 31.5%-39.1%, with only a minimal accuracy drop of 0.7%—
1.3%, compared to FD.

To further enhance system efficiency, we apply inter-frame pipelining, which al-
lows different processing stages: camera processing (L¢), transmission (Lr), and
server-side processing (Lg) of different frames, to overlap in time. The average per-
frame latency can be approximated as Lay, ~ max(Lc, Ly, Lg), meaning that the
overall pipeline is bottlenecked by the slowest stage [159]. As shown in Figure 4.9
and Figure 4.10, the bottleneck varies depending on the method. For BlockHybrid
and BlockCopy, the policy network runs on a resource-constrained embedded device,
making camera-side computation the bottleneck. In contrast, FD suffers from trans-
mission bottlenecks, as it sends full frames to the server, leading to significantly higher
communication overhead. Meanwhile, EHCI processes more blocks than BlockCopy,
shifting the bottleneck to server-side computation. Overall, with pipelining, BlockHy-

brid still achieves the lowest per-frame latency among all methods, demonstrating its

92

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

effectiveness in latency-sensitive edge video analytics applications. This experiment
also highlights the importance of carefully balancing the computation and communi-

cation costs across different pipeline stages to maximize system throughput.

4.4.7 Visualization

To further demonstrate the performance of BlockHybrid, we provide visualizations
of three scenes in Figure 4.11, with the number of hard blocks indicated below each
image. It is evident that the policy network effectively differentiates between hard
and easy blocks. The easy blocks are mainly found in sparse regions with few ob-
jects, whereas the hard blocks concentrate in crowded regions, regions with occluded

objects, and regions with incoming objects, aligning well with expectations.

4.5 Conclusion

In this chapter, we introduced BlockHybrid, a novel framework for efficient object
detection that leverages fine-grained block-wise conditional execution to mitigate the
inefficiencies of traditional pipelines. By classifying blocks as hard or easy using a
policy network and applying different processing strategies accordingly, BlockHybrid
significantly reduces redundant computation and communication. Extensive evalua-
tions on public benchmarks and a real-world testbed demonstrate that BlockHybrid
achieves a superior trade-off between accuracy and efficiency, outperforming SOTA

methods.

93

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

75%

© 100% JMT 100.0% [BlockHybrid FD
£ N\ S
S vl |21 BlockHybrid [] FD 71002 0.6 []BlockCopy [[T]JEHCI
= 5 §: BlockCopy [1] EHCI 2700 _\59,9 :
g] § 50.5% g —
N\ 0, 0% N
2 0% 1,890 12.29 8 N\ 65.7%
" — N 65%-| N
E 25.69 — 27.6% S L% N Lo E39%
0% - | \ | E—
g 20%] § \
— § N\
0% S 60% — f
MOT17 WildTrack MOT17 WildTrack

(a) Normalized network traffic

—~

b) Accuracy

Figure 4.8: (a) Normalized network traffic and (b) accuracy of different methods on
two datasets.

MOT17 WildTrack
160" % Server 155.5 160 X server
g Transmission| [0 g Transmission 1\4_37
= Camera : E Camera K
=120+ K 1149 112.2 =120+ Soee
% s % 98.5
o 80 : = 80
| — N \
2 40 N 2 40
< <
AN\ 0 N\
BlockHybrid FD BlockCopy EHCI BlockHybrid FD BlockCopy EHCI
Method Method
(a) MOT17 (b) WildTrack

Figure 4.9: Average end-to-end latency of different methods on two datasets.
End-to-end latency includes camera time, transmission time and server time.

70

0 = BlockHybrid [X3] FD by
1 [BlockCopy [II]EHCI

Avg. Latency (ms)
a
3

MOT17 WildTrack

Figure 4.10: Average end-to-end latency of different methods with pipelining on two
datasets.

94

http://www.mcmaster.ca/

McMaster University — Computer Science

Ph.D. Thesis — R. Xu

%9°0% 1LG9| # swelq

%6°1¢ ‘0€G | # sweld

"SOTAOS 991} SSOIDe PLIGATISDO[E] JO UOIYRZIeNSIA :TT'F oInSI]

%€ LE 19991 # sweld %9'9¢ ‘G991 # sweld %€ LE WG9 # swelq

%6°LC ‘65| # dweld %6°LC ‘8¢S # dweld %881 LS| # dweliq

%L°LL T6L # oweld
"

%L1'6C ‘€991 # dweld

%1Vl 192G # sweld

%8°L 11 6L # dweld

LWeD-¥oelL Pl LWED-XOeILP|IM

$0-LLLOW

95

http://www.mcmaster.ca/

Chapter 5

SEED: An End-to-End Selective
Execution Framework for
Transformer-Based Object

Detection in Edge Video Analytics

This chapter is based on the manuscript: Renjie Xu and Rong Zheng, “SEED: An End-to-End
Selective Execution Framework for Transformer-Based Object Detection in Edge Video Analytics”,
which is currently under submission. The work has not been published, and copyright remains with
the author at the time of thesis submission.

96

Ph.D. Thesis — R. Xu McMaster University — Computer Science

5.1 Introduction

Cameras have become deeply embedded in the urban environments, driven by the
rapid development of IoT and visual sensing technologies. They are now ubiquitous
in streets, buildings, factories, and homes, supporting a broad range of smart ap-
plications. As a result, video analytics has become a central focus in both research
and industry, enabling capabilities such as traffic monitoring, anomaly detection,
and behavior analysis [2]. Many of these applications demand low-latency or even
real-time processing. For example, in ITS [33], promptly detecting abnormal driving
or pedestrian behavior is critical for issuing early warnings to drivers via vehicu-
lar communication networks, helping to prevent potential traffic accidents. In such
latency-sensitive scenarios, it is crucial to design an efficient execution framework
that enables rapid and accurate video analytics.

Recently, ViTs [160] have gained popularity for their strong representation capa-
bility, outperforming CNNs in many video analytics tasks [21, 161]. However, their
self-attention mechanism incurs high computational cost due to its quadratic com-
plexity with respect to token count [160]. For instance, a 1024 x 2048 frame with
16 x 16 patch size produces over 8000 tokens, posing significant challenges for de-
ployment in edge video analytics systems [96]. To mitigate this, prior work explores
network pruning [22], parameter quantization [23], layer splitting [162], and efficient
attention [24, 25, aiming to reduce overhead while preserving accuracy.

However, most existing methods are content-agnostic and treat all regions in video
frames equally. In practice, it is often unnecessary to process entire frames uniformly.
For example, traffic monitoring primarily concerns dynamic entities like vehicles and

pedestrians, instead of background regions [33]. This motivates selective execution,

97

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

which allocates computation to semantically important regions while reducing or skip-
ping others. Final predictions are generated by merging features from heterogeneous
regions. Selective execution is widely adopted in edge video analytics systems [2],
where a smart camera selects informative regions at runtime and transmits them to
an edge server for further processing. Prior works [95, 94, 96] estimate informative
regions by expanding past detections using motion heuristics, often leading to over-
selection beyond necessary scope. Others [19, 152] use policy networks that are not
jointly optimized with the detector. As a result, the detector is not adapted to the
selected blocks, which may lead to feature inconsistencies at region boundaries and
compromise accuracy. Token pruning methods [101, 100] adopts gating modules em-
bedded within the detector to select informative tokens. This coupling limits their
use in edge deployments where block selection must be performed upfront to filter
out non-IBs before transmission.

To mitigate these weaknesses, we propose SEED, an end-to-end selective execution
framework for accelerating ViT-based object detection pipelines. SEED consists of a
lightweight decision network (DecisionNet) and a block-wise ViT detector (BlockDet).
Each frame is divided into uniform-sized blocks; DecisionNet identifies informative
blocks (IBs) using semantic cues. IBs are fully processed by BlockDet, while non-
IBs are lightly processed. To demonstrate the flexibility of SEED, we design two
variants with distinct selective execution strategies: SEED-TR (token reuse), which
reuses historical features for non-IBs, and SEED-EE (early exit), which terminates
inference early for non-IBs. The DecisionNet and BlockDet are jointly trained in an
end-to-end manner, optimizing selection strategies directly for detection performance.

However, this is non-trivial due to unstable block decisions and poor detection quality

98

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

e N s N

ﬂ% Camera Full Frame Edge Server

- Detector H e i—»
Processing
)

J \ J

Captured Frames

(a) Conventional pipeline

N s N

ﬂ% Camera == Edge Server
IBs [= o]

Tt "{ Shasdan H ProF::(;zts-ing]_'
)

J - J

(b) Proposed pipeline

Figure 5.1: Comparison between conventional pipeline and the proposed pipeline

at early stages. To address this, we propose a three-stage training strategy involving
BlockDet pre-training, DecisionNet warm-up, and joint optimization. In the last two
stages, pseudo-labels derived from ground-truth annotations are used to supervise
DecisionNet, making the approach detector-agnostic. Moreover, the DecisionNet is
designed to be lightweight and can run efficiently on resource-constrained IoT devices
(e.g., smart cameras). This enables a distributed deployment, where the DecisionNet
runs on the camera side to select IBs that are then sent to the BlockDet deployed on
an edge server for processing. As illustrated in Figure 5.1b, only the selected IBs are
transmitted to the server, significantly reducing communication and computational
overhead compared to naively transmitting full frames, as shown in Figure 5.1a.

To evaluate the performance of SEED, we compare it against state-of-the-art
approaches on two public datasets and a real-world edge video analytics testbed,

using an NVIDIA Jetson TX2 as the camera and an Ubuntu desktop as the edge

99

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

server. Experimental results demonstrate that SEED significantly accelerates end-to-
end processing while maintaining competitive accuracy.

In summary, our key contributions are as follows:

e We propose SEED, an end-to-end selective execution framework that prioritizes

computation on IBs to accelerate ViT-based detection.
e We design a lightweight and decoupled DecisionNet for real-time block selection.

e We implement two SEED variants: SEED-TR (token reuse) and SEED-EE

(early exit) to demonstrate flexible execution strategies.

e We present a three-stage training strategy with pseudo-label supervision, en-

abling stable and joint optimization of DecisionNet and BlockDet.

e We deploy a prototype of SEED on a real-world testbed, validating its perfor-

mance in edge video analytics.

5.2 Motivation

In this section, we demonstrate the spatial redundancy in video frames and the po-

tential efficiency gains enabled by selective execution.

5.2.1 Redundancy of Videos

Videos often contain significant spatial redundancy, leading to additional overhead
when all regions are processed uniformly. To quantify this redundancy, we analyze two
representative datasets: MOT17 [104] and WildTrack [105], each comprising multiple

video sequences. Fach frame is resized to 1024 x 2048 and divided into 16 x 32

100

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 5.1: Redundancy of MOT17 and WildTrack datasets.

Sequence | # Frame | Density' | IBs?

MOT17-02 600 31.0 22.5%
MOT17-04 1050 45.3 35.6%
MOT17-05 837 8.3 72.2%
MOT17-09 525 10.1 29.8%
MOT17-10 654 19.6 19.6%
MOT17-11 900 10.5 42.7%
MOT17-13 750 15.5 8.0%
WildTrack-Cam1 2000 35.8 27.2%
WildTrack-Cam?2 2000 24.9 42.9%
WildTrack-Cam3 2000 38.3 47.6%
WildTrack-Cam4 2000 29.3 22.9%
WildTrack-Camb 2000 27.0 31.0%
WildTrack-Cam6 2000 34.2 27.8%
WildTrack-Cam?7 2000 30.9 30.5%

! Density denotes the average number of objects per frame.

2 IB refers to informative block.

blocks of size 64 x 64. These sequences span a wide range of crowd densities, with
object counts per frame ranging from 8.3 to 45.3 in MOT17 and from 24.9 to 38.3
in WildTrack. Despite such variations in scene complexity, the proportion of IBs,
defined as the blocks containing target objects, remains relatively low across most
sequences.

As shown in Table 5.1, several sequences in MOT17, such as MOT17-02 and
MOT17-13, exhibit extremely sparse distributions of IBs, covering only 22.5% and
8.0% of the spatial grid, respectively. Even in denser scenarios like MOT17-04, IBs
still only account for 35.6%. Similar trends are observed in WildTrack, where the 1B
ratio stays below 50% in most camera views, reaching as low as 27.2% in Cam1. These

statistics highlight the substantial irrelevant or redundant spatial content present in

101

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

real-world videos.

5.2.2 Benefits of Selective Execution in ViTs

For a single ViT encoder with N input tokens and token dimension D, the per-layer
complexity is O(12ND? +2N?D) [160]. Stacking L layers leads to a total complexity
of O(L(12ND? 4+ 2N2D)). N grows quadratically with frame size and often exceeds
D by a large margin, dominating the complexity.

Selective execution saves computation by directly reducing N. In the token reuse
setting, only the NV’ selected tokens are processed through all L encoder layers, while
the remaining N — N’ tokens are directly reused. The total backbone complexity
is O(L(12N'D? 4+ 2N"D)). This leads to significant savings when N’ < N, as no
computations is performed on unselected tokens. In the early exit setting, all NV
tokens are processed by the first L' < L layers, after which only the selected N’
tokens are further processed by the remaining L — L’ layers. The overall complexity
becomes O(L'(12ND?+2N?D))+O((L— L')(12N'D*+2N"D)), which also benefits
from small N’, though the initial L’ layers still incur a fixed cost over all tokens.

To validate the computational benefits of selective execution, we measure the
actual encoder latency across different block execution ratios, as shown in Figure 5.2.
Both strategies exhibit a clear nonlinear latency trend: latency decreases sharply
as fewer blocks are executed, with diminishing returns at lower execution ratios.
Specifically, when only 10% of the blocks are processed, latency decreases from 574.2
ms to 17.8 ms with token reuse, and from 574.6 ms to 155.5 ms with early exit.

These empirical results are consistent with the complexity analysis: both strategies

achieve significant speedups at low execution ratios, confirming the effectiveness of

102

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

600+ 600

500 500
o m
£ 400 £
g “Z 400
3300)
@)
= 200 £ 300
- -

100 2001

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Executed Blocks Executed Blocks
(a) Token reuse (b) Early exit

Figure 5.2: Relationship between number of executed blocks and encoder latency.
Input size: 1024 x 2048, patch size: 16 x 16.

selective execution in reducing computational cost.

5.2.3 Decoupled Inference and Joint Training

Prior works [94-96] identify informative regions using heuristics, typically by expand-
ing regions around previously detected bounding boxes (bboxes) to account for object
motion. For example, Arena [96] expands a fixed number of patches in all directions,
while EHCI [95] and FDDIA [94] scale the width and height by fixed factors. Such
heuristics often result in redundant selections and thus unnecessary processing over-
head. Other methods [19, 152] employ separate policy networks trained on detection
results from consecutive frames, where blocks with large motion are more likely to be
selected. Without joint optimization with the policy, the detector is not adapted to
diverse block-wise inputs, suffering from block artifacts that can degrade accuracy.
SViT [101] integrates gating modules into the ViT blocks of the detector to identify
informative tokens layer by layer. While effective, it requires full-frame token pro-
cessing before selection, making it unsuitable for distributed end-edge deployments

where lightweight, upfront decision-making is needed to reduce the transmission of

103

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 5.2: High-level comparison of SEED and other methods.

Decoupled Joint

Method Learnable Inference Training
SEED (ours) v v v
SViT [101] Ve X v
Arena [96] X v X
BlockCopy [19] v v X

non-IBs. In contrast, SEED introduces a lightweight and learnable DecisionNet that
is decoupled from, but jointly trained with, the detector. This design enables ac-
curate and early selection of IBs on resource-constrained end devices. A high-level

comparison of SEED and the most relevant methods is shown in Table 5.2.

5.3 SEED Design

In this section, we present the design of SEED, covering the overall framework, the

decision network, the block-wise detector, and the three-stage training strategy.

5.3.1 Overview

The overview of SEED is illustrated in Fig. 5.3. The input is first ® down-sampled and
passed to the DecisionNet. The @ DecisionNet (Section 5.3.2) generates a decision
grid, based on which the ® BlockDet (Section 5.3.3) performs selective execution. The
detection results are then @ post-processed (e.g., filtering low-confidence bboxes) to
produce the final output.

SEED supports two variants, SEED-TR and SEED-EE, each realized by adap-

tively executing selected blocks within the BlockDet. In SEED-TR, only IBs are

104

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

®r ® -
> BlockDet Post-
Processing

Token Early
@ Reuse Exit

s (BT DecisionNet
sample Output

Figure 5.3: Overview of SEED.

@

fully processed, while non-IBs are skipped by reusing their tokens from previous ex-
ecutions. In SEED-EE, all blocks are processed, but non-IBs exit early after fewer
encoder layers. Both DecisionNet and BlockDet are jointly trained to optimize detec-
tion performance (Section 5.3.4). For clarity, we refer to the modules in SEED-TR
and SEED-EE as DecisionNet-TR/EE and BlockDet-TR/EE, respectively.

5.3.2 Decision Network

The architecture of the DecisionNet is depicted in Figure 5.4. Given the input Z* €
R XWXO, where k£ > 1 denotes the index of the frame in a video sequence, the
DecisionNet outputs a decision grid G¥ that guides the subsequent selective execution
process.

The input varies across SEED variants. In SEED-TR, which involves token reuse
across frames, historical context is critical for guiding block decisions. Accordingly,
DecisionNet-TR takes four inputs: 1) the down-sampled current frame %*, 2) the
down-sampled previous frame £*~!, 3) the previous detection results D*~1 and 4)
the previous block decision grid G¥~!. In SEED-EE, DecisionNet-EE does not rely

k

on temporal information and only uses X" as input.

The network architecture is identical for both variants. The input Z* passes

105

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

N x 64

Input Conv 16x16, 64 MLP 1 MLP 2 Gumbel Output
(Hx W xC) Stride 16 64 - 16 16 - 2 Softmax (Nx1)
Nx2

N x 16

Figure 5.4: Architecture of DecisionNet.

through one Conv layer and two MLP layers to output the logits P*:
P* = MLP, 5(Conv(Z*)) € RV*2, (5.3.1)
A Gumbel-Softmax layer is then applied to P* to produce the decision grid:

G" = GumbelSoftmax(P*) € {0, 1}NX1. (5.3.2)

5.3.3 Block-Wise Detector

The ViT detector from [96] is adopted as BlockDet. In SEED-TR, it follows the
original design (BlockDet-TR), while in SEED-EE, it is extended with an early-
exit mechanism (BlockDet-EE). These two variants showcase SEED’s extensibility to
different selective execution strategies within a unified framework. The architectures
of BlockDet-TR and BlockDet-EE are shown in Figure 5.5.

BlockDet-TR: SEED-TR has two phases: full inference and selective inference.
For the first frame x* (k = 1), BlockDet-TR performs full inference. The frame
x! € RT*WxC ig first divided into N non-overlapping patches of size P x P:

1

2
X, = [X,1; X;VQ; cee X;N], XIIM- e R°C, (5.3.3)

106

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu

McMaster University — Computer Science

BlockDet-TR

Detection
Head

Hybrid Feature Reconstruction

Linear Projection of Flattened Patches

Wﬁlwﬂﬁﬂﬁw

DecisionNet-TR
t Selective

BlockDet-EE

Hybrid Feature Reconstruction

Detection

0000
Q00 l
Transformer Encoder
T L.;;;Ep};;;t];é;f;[a}t;n;;’p;(;;e;m

EJEJEJEJCJC]EJE]EJ

DemsnonNet EE

DIB

Non-1B

Encoder

Embedded
Patches

Figure 5.5: Architectures of BlockDet-TR and BlockDet-EE.

Next, the initial tokens z} are obtained after applying the linear projection E €

RPQCXD:

Co < 7y = [x}ME; x},QE; ceas x;’NE], (5.3.4)

where 7] is cached in C,. Position embeddings E s € RV*? are then added to the

initial tokens to preserve positional information as:

7 = Zp + Epos. (5.3.5)

The resulting tokens z} are processed through L transformer encoder layers [160] to

produce the final output z}, which is cached in Cy:

z, = Encoder(z;_,), (5.3.6)

Cy < zJ. (5.3.7)

Each encoder layer consists of a multi-head self-attention (MSA) and a feed-forward

107

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

network (MLP), both with residual connections and layer normalization (LN) [160].

z; = MSA(LN(z;_,)) + zj_,, (=1,...,L, (5.3.8)

z; = MLP(LN(z,)) + 2, (=1,...,L (5.3.9)

Notably, the caches C, and C, are updated in every inference and re-initialized at
the next full inference phase. The tokens z} output from the encoder are then fed
to the hybrid feature reconstruction (HFR) layer, which is a single-layer transformer
decoder [96, 163] to construct the complete token sequence. To enhance detection
performance, a feature pyramid network (FPN) is adopted to extract multi-scale

features { f1, fo, f3, fa} from different depths:

f1 = DeConv, (Zy), f2 = DeConvy(zg), (5.3.10)

f3 = HFR(z}), f1 = Conv(f3). (5.3.11)

These features are combined and then passed to a detection head [50, 96] to generate
detection results (e.g., bboxes, classes, etc.).

For the remaining frames x* (k > 1), BlockDet-TR performs selective inference.
DecisionNet-TR takes as input ZF = {&* &F~1 Dk-1 G*~11 and outputs a block de-
cision grid G*, which determines the IB indices B*. Here, |B*| = N’, where N’ < N.
The corresponding tokens Z’S’Bk are then extracted for further processing, with posi-

tion embeddings added based on their original locations in x*:

ZIS,Bk = ZO,Bk + E/pos,Bka E/pos,Bk’ € RN/XD- (5312)

108

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

The resulting tokens Zg,Bk are processed by the encoder to obtain z’zﬁk, following

k

LBk retrieved

Eq. 5.3.6. The newly computed tokens z’szk and the reused tokens z
from the cache Cp, are then jointly fed into the HFR layer. Here, B¥ denotes the
complement of B, corresponding to the non-IB indices. The HFR layer recovers
the full token sequence and reconstructs spatial and semantic relationships between

new and reused tokens, producing a coherent global representation for downstream

prediction. Similarly, the input token sequence zf is formed by merging zf .. with

k

Z¥ ., where the latter is retrieved from the cache C,. After obtaining zf{ and z}, the

caches are updated accordingly for future use:
Co < 78, Cyp+2zh. (5.3.13)

Finally, the multi-scale feature pyramid { fi, fa, f3, f1} is computed, following Eq. 5.3.10
and Eq. 5.3.11. The remaining steps are the same as those in the full inference phase.
BlockDet-EE: For each frame, SEED-EE performs selective inference via early
exiting. DecisionNet-EE processes X" and outputs a decision grid G* that indicates
whether each block should undergo full or shallow processing by BlockDet-EE.
The input patches X]; are first transformed into tokens zf € RYM*P following

Eq. 5.3.3— 5.3.5. These tokens are then processed by the first L’ layers of the encoder:

zi = Encoder(z}), ¢=1,...,L" (5.3.14)

At this point, the early exit mechanism is triggered. For non-IBs B*, inference halts

and their intermediate features z’Z, s are directly retained. For IBs B*, computation

109

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

continues through the remaining layers:

Z?,Bk = Encoder(z’g_lﬁk), (=L+1,...,L. (5.3.15)

The final token sequence z% is reconstructed within the HFR layer, which first merges

the early-exited tokens z’z,’B,g and the fully-processed tokens z’zﬁk, and then refines
the combined sequence to recover cross-token relationships. Subsequent processing,
including multi-scale feature fusion and detection head inference, follows the same
procedure as BlockDet-TR.

Note that the early exit point L’ in BlockDet-EE is tunable and can be adjusted
according to application-specific requirements and the target accuracy-latency trade-
off. For simplicity and to showcase the feasibility of BlockDet-EE, we set L' = L/4

throughout this study.

5.3.4 Joint Training

Naively training the DecisionNet and BlockDet jointly from scratch using only task
loss is problematic. At the early stage of training, the DecisionNet produces unsta-
ble block decisions, failing to provide meaningful spatial guidance for the BlockDet.
Meanwhile, the BlockDet itself lacks basic object detection capability due to random
initialization. These two issues reinforce each other negatively: inaccurate block se-
lections weaken the training signals for the BlockDet, while the inadequately trained
BlockDet provides ineffective feedback for improving the DecisionNet. This mutual
dependence creates a cold-start problem that hinders convergence and degrades over-
all detection performance.

To address this issue, we propose a three-stage training strategy:

110

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

BlockDet Pre-training: The BlockDet is first initialized with a backbone pre-
trained on a large-scale dataset [157]. To adapt it to the selective execution setting,
we further fine-tune it using partially masked inputs by randomly dropping 50% of
the blocks during training to simulate sparse spatial patterns. This strategy improves
the robustness of the BlockDet to partial inputs and prepares it for the subsequent
block-wise selective inference.

DecisionNet Warm-Up: We then train the DecisionNet independently using
supervision from a pseudo-label decision grid G. This grid can be derived from ground-
truth annotations. The training objective is to make the predicted grid G approximate
G, providing a more informative initialization. The grid loss is defined in Eq. 5.3.16:

Joint Optimization: Once both networks are warmed up, we jointly train the

DecisionNet and BlockDet in an end-to-end manner:

Loria = £BCE(§; Gg), (5.3.16)
1 X

'Ccomplexity = 'CMSE(Ta =~ Z gz); (5317)
N =1

'Ctotal - £task + - 'Cgrid + B . Ecomplexity- (5318)

Here, Ly, refers to the standard detection loss from BlockDet (e.g., classification and
bbox regression) [50], while L4 encourages block selection to stay close to meaningful
spatial regions [164]. Additionally, Leompiexity constrains the overall execution cost to
align with a target block selection ratio 7 [100, 101]. The balancing weights « and
[control the contribution of each auxiliary loss term. This staged strategy enables
stable convergence and allows the DecisionNet to learn a selection policy that is both

effective and computationally efficient.

111

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Pseudo-Label Grid: To supervise the training of the DecisionNet, we construct
a pseudo-label grid G that serves as an approximate ground truth for block impor-
tance. For SEED-TR, G is generated by projecting ground-truth bboxes onto the
block grid, where each block is marked as 1 if it overlaps with any object, and 0 oth-
erwise. This provides a coarse but effective approximation of the blocks that require
full processing. For SEED-EE, the construction of G additionally considers whether
a block can be handled by shallow inference. We first mark all blocks overlapping
with ground-truth objects as 1. Then, a shallow detector (with depth L') is used to
perform inference on the training set. If a ground-truth object is successfully detected
by the shallow detector, the corresponding block is re-labeled as 0. The rationale is
that blocks correctly processed by early layers do not need deeper computation, and

can therefore be processed with early exit.

5.4 Evaluation

In this section, we evaluate the performance of SEED through extensive experiments.
We begin with the experimental setup, followed by comparisons with several baselines

on two benchmark datasets and a real-world testbed.

5.4.1 Experimental Setup

The hardware platform consists of the NVIDIA Jetson TX2 and the Dell desktop
introduced in Section 2.5. The two devices are connected via a D-Link AX4800 router
over a 2.4GHz Wi-Fi network, with an average bandwidth of 20.1 Mbps measured

using iperf. Evaluation is conducted in two settings: the benchmark evaluation

112

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

(Section 5.4.5) runs all computation on the desktop for controlled comparison, while
the testbed evaluation (Section 5.4.6) distributes computation between the Jetson
TX2 (as a smart camera) and the desktop (as an edge server) to simulate a real-

world edge video analytics deployment.

5.4.2 Datasets and Metrics

We evaluate SEED on two representative pedestrian detection datasets mentioned
in Section 2.3: MOT17 and WildTrack. Each video sequence is split into 75% for
training the DecisionNet and BlockDet, and 25% for testing. All frames are resized
to 1024 x 2048 for consistency. For evaluation, we use mAP@0.5 to measure accuracy,
and report end-to-end latency and network traffic to measure efficiency, as introduced

in Section 2.4.

5.4.3 SEED Configuration

The DecisionNet has ~0.1M parameters, less than 0.3% of BlockDet’s 44.6M. The
BlockDet adopts Faster-RCNN [50], a two-stage detector with ViT-Small as the back-
bone. The network configuration follows [96], with encoder depth L = 12, embedding
dimension D = 384, and patch size = 16 x 16. One block in DecisionNet corresponds
to a 4 x 4 grid of patches. The pre-trained weights of ViT-Small are from [157]. The
target block selection ratio 7 = 20%, and the balancing hyperparameters o = 4, 5 = 5.
The BlockDet is first pre-trained for 60 epochs with an AdamW optimizer [165] (learn-
ing rate le-4, weight decay le-3). The DecisionNet is then warmed up for 30 epochs
with AdamW (learning rate le-3, weight decay le-4). The joint training is finally

conducted for 50 epochs using the same settings as in the BlockDet pre-training.

113

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

5.4.4 Baselines

SEED is compared against the following baselines. To ensure a fair comparison, all
methods use the same detector framework, while their training strategies and block

selection mechanisms follow their respective original designs.

e Full-Frame Detector (FD): This is a standard baseline where the detec-
tor (with L encoder layers) performs full-frame inference without any form of

selective execution.

e FD-Quarter: A lightweight variant of FD in which all frames are processed

by a shallower detector with L' = L/4 encoder layers.

e FD-Random: A naive baseline where 30% of the blocks are randomly selected
for processing, serving as a reference to assess the benefit of content-aware

selection.

e BlockCopy [19]: A separate policy network identifies IBs, which are then
processed by the detector. Features corresponding to non-IBs are cached and

reused across frames to reduce redundant computation.

e SVIiT [101]: Layer-wise token pruning is applied to each frame independently.
The gating module inside each ViT block selects informative tokens for fur-
ther processing, while unselected tokens reuse representations from the previous

layer.

e Arena-TR [96]: A full frame is processed periodically to obtain a complete
set of tokens, which are then cached. For subsequent frames, IBs are selected

based on previous detection results. Only tokens from the selected blocks are

114

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

updated, while those from non-IBs are reused to reconstruct a complete token

sequence for detection.

e Arena-EE: A variant of Arena adapted for early exit. All tokens pass through
the first L' = L/4 layers of the encoder. Only tokens corresponding to IBs
continue through the remaining layers, while others exit early without further

computation.

5.4.5 Benchmark Evaluation

We evaluate SEED against the selected baselines on MOT17 and WildTrack under
token reuse and early exit. For fair comparison, SEED-TR is compared with FD,
BlockCopy, SViT and Arena-TR, while SEED-EE is compared with FD, FD-Quarter,
FD-Random and Arena-EE. The results are reported in Table 5.3 and Table 5.4.

In the token reuse setting, SEED-TR gains 82.0% mAP on MOT17, with only a
1.6% drop from FD, while executing only 27.2% of the blocks and reducing latency
by 75.5%. In contrast, BlockCopy, lacking joint optimization, suffers from block
artifacts and shows a larger accuracy drop (4.6%) despite executing more blocks
(37.8%). SVIiT reaches the same accuracy as SEED-TR (82.0%) with slightly higher
block usage (30.1%) and latency. Arena-TR determines IBs using motion heuristics,
executing more blocks (41.6%) and reducing latency (66.5%) less than SEED-TR.
Similar trends are observed on WildTrack. SEED-TR reaches 76.1% mAP with only
28.5% of blocks executed and a 74.4% latency reduction. BlockCopy and Arena-TR

require significantly more computation (up to 45.4%) yet show lower accuracy. SViT

115

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 5.3: Benchmark evaluation on two datasets for token reuse.

Dataset Method Accuracy (%,%) Blocks (%) Latency (ms)

SEED-TR 82.0 (} 1.6) 27.2 168.6 (| 75.5%)
FD 83.6 100 689.1
MOT17 BlockCopy 79.0 (| 4.6) 37.8 218.7 (| 68.3%)
SViT 82.0 (| 1.6) 30.1 194.2 (| 71.8%)
Arena-TR 81.4 (] 2.2) 41.6 230.8 (| 66.5%)
SEED-TR 76.1 (} 1.7) 28.5 176.6 (| 74.4%)
FD 77.8 100 688.5
WildTrack BlockCopy — 72.9 (| 4.9) 38.9 222.8 (| 67.6%)
SViT 76.2 (1 1.6) 31.4 198.7 (| 71.1%)
Arena-TR 75.7 (} 2.1) 45.4 248.7 (| 63.9%)

remains competitive in accuracy (76.2%) but executes more blocks (31.4%) and is
overall less efficient than SEED-TR.

In the early exit setting, SEED-EE achieves 83.3% mAP on MOT17, closely
matching FD (83.6%) while executing only 22.6% of blocks and reducing latency
by 57.4%. FD-Quarter, although faster due to its shallow backbone, suffers from a
significant accuracy drop of 11.4%. FD-Random reaches similar latency as SEED-
EE but incurs an 8.4% drop in accuracy due to its naive block selection. Arena-EE
achieves 82.8% accuracy with 48.8% latency reduction, but still executes significantly
more blocks (43.4%) due to its reliance on past detection results. On WildTrack,
the trend remains consistent. SEED-EE continues to deliver better results, achieving
77.2% mAP with 23.7% of blocks executed and 56.9% latency reduction. In contrast,
FD-Random and FD-Quarter still show poor accuracy (10.1%-13.4% lower than FD),
while Arena-EE, although competitive in accuracy, consumes nearly twice the number

of blocks as SEED-EE.

116

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Table 5.4: Benchmark evaluation on two datasets for early exit.

Dataset Method Accuracy (%,%) Blocks (%) Latency (ms)

SEED-EE 83.3 (J 0.3) 22.6 293.2 (4 57.4%)
FD 83.6 100 688.3
MOT17 FD-Quarter 72.2 (4 11.4) 100 264.8 (] 61.5%)
FD-Random 75.2 ({ 8.4) 300 3117 (4 54.7%)
Arena-EE 82.8 (} 0.8) 43.4 352.4 (] 48.8%)
SEED-EE 77.2 (J 0.6) 23.7 296.1 ({ 56.9%)
FD 77.8 100 687.6
WildTrack FD-Quarter — 64.4 (] 13.4) 100 264.5 (| 61.5%)
FD-Random 67.7 (J 10.1) 300 3122 (4 54.6%)
Arena-EE 768 (| 1.0) 168 3654 (1 46.9%)

5.4.6 Testbed Evaluation

As described in Section 5.4.1, our testbed consists of a camera and an edge server. To
minimize communication overhead, we adopt different optimizations for token reuse
and early exit. In both settings, IBs are identified on the camera, merged into a com-
pact frame, compressed, and transmitted to the server. For early exit, a downsampled
copy of the original frame is also sent; the server then upsamples it to the original
size and replaces the corresponding blocks with the received IBs to reconstruct the
full frame for downstream processing. For fairness, these optimizations are applied
to all the baselines as well. Figures 5.6 and 5.8 show the normalized network traffic
and accuracy of different methods in both settings across two datasets. Figures 5.7
and 5.9 further break down the average end-to-end latency into camera time, trans-
mission time, and server time. Due to the slight information loss during compression,
the accuracy across all methods shows a minor decrease of less than 2%, with their
relative performance consistent with the benchmark evaluation in Tables 5.3-5.4.

As depicted in Figures 5.7 and 5.9, server-side inference dominates end-to-end

117

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

85

oo 1000 1000 1000 1000
8\1100 82.4
3%) /] SEED-TR 80.6 § \ 807 891] BlockCopy
@ 80- RNJFD < T O sviT
= [BlockCopy < 77.5 s =7 Arena-TR
~ [TT]sviT > — 763
o 60 Arena-TR § 75]
2 3 —]
Q 3]
Z. 20 397 435 40.9 < 704 1
E 29.0 1 30-6 — 1
o — P 1 o . [P o .
Z . —— 65 —— :
MOT17 WildTrack MOT17 WildTrack
(a) Normalized network traffic (b) Accuracy

Figure 5.6: (a) Normalized network traffic and (b) accuracy of different methods in
the token reuse setting on two datasets.

1000 1000
R 863.3 Server R 839.5 Server
g 800 ; Transmission g 800+ Transmission
= [TTT camera = [TT1 camera
3600 3600
c c
it i
© J 7. © d
— 40 318.3 8 309.7 — 40 3144 291 3216
S | 2242 % 4 7 S | 2279 A 7
& 200+ V j 4 & 200+ A
7. 2N 4 &
oL KN NN NN . N N

SEED-TR FD BlockCopy SVIiT Arena-TR SEED-TR FD BlockCopy SViT Arena-TR

(a) MOT17 (b) WildTrack

Figure 5.7: Average end-to-end latency of different methods in the token reuse
setting on two datasets.

latency across all methods due to the high computational cost of running the de-
tector. FD, which transmits and processes full frames without selective execution,
incurs the highest network traffic and latency. SEED-TR achieves the lowest latency,
demonstrating reductions of 74.0% and 72.9% on MOT17 and WildTrack, respec-
tively, compared to FD. SViT, with its gating module embedded within the detector,
requires transmitting full frames and thus offers limited communication savings. In
addition, BlockCopy and Arena-TR execute more blocks than SEED-TR, leading to
higher communication and computation overhead.

In the early exit scenario, SEED-EE achieves accuracy comparable to FD while

118

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

100.0100.

=]

gloo- v EEED’EE 10001000 o 2 iy
Ei%] FD-Quarter 801 i E S
G 80+ —— | 1] FD-Random — ;\3 o 76.3
= — Arena-EE (I 75 B 27
=] - o)]
O 60 — — ©
2 —] —] 37 [/ /] SEED-EE
%’ — — Q NNJFD
= 404 — 38.9 — < [FD-Quarter
= 35.1 S — 65 - [TT]FD-Random
o — — Arena-EE
Z 2 e = L e 60 , [N 077 ,
MOT17 WildTrack MOT17 WildTrack
(a) Normalized network traffic (b) Accuracy

Figure 5.8: (a) Normalized network traffic and (b) accuracy of different methods in
the early exit setting on two datasets.

1000 1000

= 862.1 Server . 848.5 Server
&) 800+ Transmission 0 800+ Transmission
£ [TT1 camera £ [TT] camera
3600 6004
53 457.9 i 4249 466.6
S 400- 4,9 386.1 7 S 400+ 5.1 380.6 7
5 200 % % g’ 200 %

4 ST~ <

0 ; : : . ol B : : , ;
SEED-EE FD FD-Quarter FD-Random Arena-EE SEED-EE FD FD-Quarter FD-Random Arena-EE
(a) MOT17 (b) WildTrack

Figure 5.9: Average end-to-end latency of different methods in the early exit setting
on two datasets.

reducing latency by 57.7% and 57.0% on MOT17 and WildTrack, respectively. No-
tably, despite being around 15% faster than SEED-EE in server-side processing, FD-
Quarter transmits full frames, which increases communication time and diminishes its
advantage, resulting in even longer end-to-end latency. FD-Random achieves similar
latency to SEED-EE but suffers significant accuracy degradation due to its random
selection strategy. Arena-EE, while offering slightly lower accuracy than SEED-EE,

processes a greater number of blocks, leading to higher transmission and server times.

119

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

5.4.7 Visualization

To further illustrate the effectiveness of SEED, Figure 5.10 presents a visualization
of multiple representative scenes for both SEED-TR and SEED-EE, along with the
proportion of selected IBs displayed below each frame. Selected IBs are highlighted in
red and detection results are marked as green bboxes. It shows that the DecisionNet
makes accurate and content-aware block decisions. In SEED-TR, IBs tend to cluster
in regions with high object density or severe occlusion, while non-IBs are mostly
associated with sparse areas or slowly moving objects. A similar pattern is observed
in SEED-EE, where IBs concentrate around challenging regions, i.e., those with dense
objects, and non-IBs are typically found in easier areas with few or isolated objects.

These patterns are consistent with the intended behavior of each variant.

5.5 Conclusion

In this chapter, we presented SEED, an end-to-end trainable framework for selective
execution in ViT-based object detection. SEED leverages a lightweight and content-
aware DecisionNet to identify informative blocks, enabling the downstream BlockDet
to reduce computation through either token reuse (SEED-TR) or early exit (SEED-
EE) strategies. Both networks are trained jointly to achieve optimal block selection
and execution. Extensive evaluations on public datasets and a real-world testbed
demonstrate that SEED accelerates edge video analytics by reducing computation

and communication costs, with only minimal accuracy loss.

120

http://www.mcmaster.ca/

McMaster University — Computer Science

Ph.D. Thesis — R. Xu

%9'6 ‘SOLL# dweld

%29 G6v# sweld

"souads ofdiynur sso1de H-(qHAHS Pue IS JO UOJRZI[ensIA :()T'C oINS

%¥°0L ‘¥0LL# dweld %86 ‘€0LL# dweld %06 ‘C0LL# dweld %070 :LOLL# dweld

%SG ‘v6v# sweld %19 ‘Cov# sweld %19 ‘c6v# sweld %19 1L 6v# sweld

%€"0C L1 8# dwel

JWed-oel]plIiM - 60-ZLLON pWED-3OBILPIIM
33-a33s

¥0-LLLOW
d1-a33s

33-a33s

d1-a33s

121

http://www.mcmaster.ca/

Chapter 6

Conclusion

122

Ph.D. Thesis — R. Xu McMaster University — Computer Science

6.1 Summary

This thesis addresses the challenge of accelerating VAPs on resource-constrained edge
platforms by exploring adaptive and content-aware strategies that reduce redundant
computation and communication. We propose three approaches: FastTuner, Block-
Hybrid, and SEED, that address different dimensions of the accuracy-efficiency trade-
off.

FastTuner introduces a runtime configuration optimization framework for MOT.
By learning heatmap representations offline and integrating configuration selection
with tracking in a shared model, it efficiently chooses the best resolution-backbone
pair for the pipeline, enabling low-overhead and adaptable execution.

BlockHybrid targets efficient object detection through fine-grained block-wise con-
ditional execution. It distinguishes between “hard” and “easy” blocks using a policy
network, assigning them to a heavy-weight detector or lightweight tracker, respec-
tively, to reduce redundant computation and communication.

SEED advances this direction by coupling block selection and execution in an end-
to-end trainable architecture tailored for ViT-based detection pipelines. A lightweight,
context-aware DecisionNet identifies informative regions, enabling the BlockDet to se-
lectively process them via token reuse (SEED-TR) or early exit (SEED-EE), achieving

efficient inference without compromising accuracy.

6.2 Limitations

While the proposed frameworks demonstrate superior performance, several limitations

remain.

123

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

In FastTuner, the optimal configuration is decided every K frames under the as-
sumption that video content remains relatively stable over short intervals. However,
this assumption may not hold in highly dynamic scenes. Future work can explore
adaptive strategies for determining K based on scene variation, enabling the frame-
work to respond more effectively to rapid changes. Moreover, the current design
considers only two control knobs: frame resolution and backbone model. Incorpo-
rating additional knobs such as frame rate and quantization parameter (QP) could
enhance adaptability and generality. As the configuration space expands, however,
the number of heatmaps and associated computation also increases. Efficient sam-
pling or approximation techniques should be investigated to mitigate this overhead
and preserve runtime efficiency.

A major limitation of BlockHybrid lies in its decoupled architecture. Block se-
lection and execution are performed separately, and the block-wise detector and
lightweight tracker operate independently. This prevents end-to-end training of the
full pipeline. While block-wise fine-tuning can partially alleviate block artifacts, a
mismatch often exists between offline and online stages. During offline fine-tuning,
reused features typically come from adjacent frames with minimal temporal drift,
whereas in online stages, cached features used for block merging may originate from
distant frames, introducing severe inconsistencies. These issues necessitate periodic
full-frame inference to refresh cached features and tracker references. As shown in
Table 4.7, increasing the update interval amplifies feature inconsistencies and leads
to a sharp drop in accuracy.

SEED addresses this limitation by coupling block selection and execution within

124

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

an end-to-end training and inference pipeline. This integration enables joint op-
timization of both components, effectively reducing block artifacts and improving
coordination between them. However, as the DecisionNet is trained offline, its perfor-
mance can degrade when camera viewpoints or scene conditions change significantly,
such as when cameras are repositioned or deployed in new environments. In such sce-
narios, re-training or fine-tuning may be required to ensure reliable block selection.
Moreover, although SEED is currently focused on object detection, the framework is
inherently general and can be extended to other vision tasks, such as segmentation,

with only minor architectural modifications and task-specific training strategies.

6.3 Future Work

Beyond addressing limitations of individual approaches, we have identified several
directions for future research that are critical to the development of real-time and
scalable EVA systems.

First, realizing fully adaptive pipelines remains an open challenge. Current frame-
works often rely on manually defined intervals or static policies (e.g., fixed K or fixed
thresholds) to control adaptation frequency, which may not generalize well across
diverse or unpredictable video streams. Future systems must jointly optimize tempo-
ral scheduling (e.g., adaptive K for configuration switching), spatial selection (e.g.,
identifying informative blocks), and model configuration (e.g., resolution, backbone,
depth) under strict latency and energy budgets. For instance, consider a traffic mon-
itoring system deployed at a busy urban intersection. During peak hours, rapid scene
changes (e.g., vehicles turning, pedestrians crossing) may require high spatial resolu-

tion and short adaptation intervals (i.e., small K'), with fine-grained block selection

125

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

to capture dynamic regions. At the same time, the system must choose a power-
ful model to maintain detection accuracy. However, this high-cost configuration is
unsustainable during low-bandwidth periods or when power is constrained. Instead
of adapting each dimension independently, a joint scheduler must reason about the
trade-offs, for example, using a lower-resolution input with a stronger model and
longer reuse interval, or increasing resolution but reducing the number of selected
blocks, to stay within the system’s budget while maximizing task performance. De-
signing such a unified controller that can coordinate these interacting dimensions in
response to both content dynamics and runtime constraints is a key direction for
future research.

Second, integrating the proposed frameworks into a complete system stack is es-
sential for deployment in real-world edge environments. While this thesis focuses
primarily on optimizing inference pipelines, practical deployments involve many addi-
tional system-level components, including input buffering, communication scheduling,
and multi-camera coordination. In distributed settings, unstable network conditions
such as jitter and packet loss, can affect system performance. Delayed or missing
frames may lead to outdated inputs for configuration selection, suboptimal block
decisions, or corrupted feature reuse, ultimately degrading accuracy and stability.
In multi-camera settings, naively applying existing methods by treating each video
stream independently leads to complexity that scales linearly with the number of
cameras. In practice, overlapping fields of view (FoVs) are common, particularly in
dense environments like traffic intersections, where multiple roadside cameras may
observe the same or adjacent regions. Therefore, to reduce redundant computation,

a system must go beyond isolated decisions and instead coordinate processing across

126

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

streams, jointly selecting the most informative viewpoints and regions.

Third, while this thesis focuses on per-frame inference, deeper integration of tem-
poral modeling and memory-aware mechanisms could significantly enhance system
efficiency. Human perception naturally accumulates information over time, allowing
us to ignore static or predictable regions. Similarly, future systems should leverage
long-term spatio-temporal context to suppress redundant processing. For example,
a block that has remained visually static across several frames could be skipped en-
tirely, or updated at a lower frequency, while attention is directed to regions with
motion or novel activity. This requires not only memory-aware tracking modules, but
also inference models that are capable of selectively updating representations based
on content novelty. Lightweight memory modules, causal temporal attention, and
event-triggered inference policies are promising techniques to explore in this space.

Finally, generalizing selective execution to a broader range of tasks beyond object
detection and tracking is an important avenue for future research. While this thesis
demonstrates results on object detection and tracking, many practical applications,
such as semantic segmentation, action recognition, multi-modal fusion, and scene-
level understanding, could also benefit from adaptive and context-aware execution.
For example, in retail analytics, selectively analyzing only store zones with customers
could reduce processing cost while preserving key behavioral insights. Designing task-
agnostic decision modules or training objectives that generalize across different vision
tasks would make such frameworks more widely applicable.

Overall, the proposed frameworks offer promising building blocks toward efficient
edge video analytics. To fully realize this vision, future research must focus on uni-

fied, cross-layer solutions that co-optimize models, decision modules, and runtime

127

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

infrastructure. Such efforts are essential to achieving truly responsive, intelligent,

and scalable video analytics in real-world edge deployments.

128

http://www.mcmaster.ca/

Bibliography

Elly Cosgrove. One billion surveillance cameras will be watching
around the world in 2021. https://www.cnbc.com/2019/12/06/
one-billion-surveillance-cameras-will-be-watching-globally-in-2021.

html, 2022. Accessed: September 9, 2025.

Renjie Xu, Saiedeh Razavi, and Rong Zheng. Edge video analytics: A survey on
applications, systems and enabling techniques. IEFEE Commun. Surv. Tutor.,

25(4):2951-2982, 2023.

Amita Potnis. Managing unstructured data growth requires a fresh
approach. https://www.quantum.com/globalassets/documents/

idc-vendor-spotlight.pdf, 2024. Accessed: September 9, 2025.

Shibo Wang, Shusen Yang, and Cong Zhao. SurveilEdge: Real-time video query
based on collaborative cloud-edge deep learning. In Proc. IEEE Conf. Comput.
Commun. (INFOCOM), pages 2519-2528, 2020.

Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guoliang Xing, Jianwei Niu,

129

https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html
https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html
https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html
https://www.quantum.com/globalassets/documents/idc-vendor-spotlight.pdf
https://www.quantum.com/globalassets/documents/idc-vendor-spotlight.pdf

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[10]

and Zhenchao Ouyang. VIPS: Real-time perception fusion for infrastructure-
assisted autonomous driving. In Proc. Annu. Int. Conf. Mobile Comput. Netw.

(MobiCom), pages 133146, 2022.

Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong. Edge video analytics
for public safety: A review. Proc. IEEE, 107(8):1675-1696, 2019.

Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. VideoEdge: Processing
camera streams using hierarchical clusters. In Proc. IEEE/ACM Symp. Edge
Compt. (SEC), pages 115-131, 2018.

Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic,
and Saurabh Bagchi. VideoChef: Efficient approximation for streaming video
processing pipelines. In Proc. USENIX Conf. Annu. Tech. Conf. (USENIX
ATC), page 43-55, 2018.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. Live video analytics at scale with ap-
proximation and delay-tolerance. In Proc. USENIX Symp. Netw. Syst. Design
Implement. (NSDI), page 377-392, 2017.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and
Ion Stoica. Chameleon: scalable adaptation of video analytics. In Proc. Conf.

ACM Special Interest Group Data Comm. (SIGCOMM), pages 253266, 2018.

Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li. InFi:

End-to-end learnable input filter for resource-efficient mobile-centric inference.

130

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[12]

[15]

[16]

[17]

In Proc. Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), page 228-241,
2022.

Yuangi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry
Xu, and Ravi Netravali. Reducto: On-camera filtering for resource-efficient
real-time video analytics. In Proc. Conf. ACM Special Interest Group Data
Comm. (SIGCOMM), pages 359-376, 2020.

Chengyi Qu, Rounak Singh, Alicia Esquivel-Morel, and Prasad Calyam.
Learning-based multi-drone network edge orchestration for video analytics. In

Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages 12191228, 2022.

Kongyange Zhao, Zhi Zhou, Xu Chen, Ruiting Zhou, Xiaoxi Zhang, Shuai Yu,
and Di Wu. EdgeAdaptor: Online configuration adaption, model selection and

resource provisioning for edge DNN inference serving at scale. [EEE Trans.

Mobile Comput., 22(10):5870-5886, 2022.

Ran Xu, Fangzhou Mu, Jayoung Lee, Preeti Mukherjee, Somali Chaterji,
Saurabh Bagchi, and Yin Li. SmartAdapt: Multi-branch object detection
framework for videos on mobiles. In Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), pages 2528-2538, 2022.

Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter Bai, Ganga Meghanath, So-
mali Chaterji, Subrata Mitra, and Saurabh Bagchi. ApproxNet: Content and
contention-aware video object classification system for embedded clients. ACM

Trans. Sens. Netw. (TOSN), 18(1):1-27, 2021.

Fang Dong, Huitian Wang, Dian Shen, Zhaowu Huang, Qiang He, Jinghui

131

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[18]

[20]

[21]

[22]

[23]

Zhang, Liangsheng Wen, and Tingting Zhang. Multi-exit DNN inference ac-
celeration based on multi-dimensional optimization for edge intelligence. IEEFE

Trans. Mobile Comput., 22(9):5389-5405, 2022.

Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and Mi Zhang. FlexDNN: Input-
adaptive on-device deep learning for efficient mobile vision. In Proc. IEEE/ACM
Symp. Edge Compt. (SEC), pages 84-95, 2020.

Thomas Verelst and Tinne Tuytelaars. BlockCopy: High-resolution video pro-
cessing with block-sparse feature propagation and online policies. In Proc. IEEE

Int. Conf. Comput. Vis. (ICCV), pages 5158-5167, 2021.

Thomas Verelst and Tinne Tuytelaars. SegBlocks: Block-based dynamic reso-
lution networks for real-time segmentation. IEEE Trans. Pattern Anal. Mach.

Intell., 45(2):2400-2411, 2022.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-
had Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey.
ACM Comput. Surv. (CSUR), 54(10s):1-41, 2022.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang,
Ji Liu, and Zhangyang Wang. Unified visual transformer compression. In Proc.

Int. Conf. Learn. Represent. (ICLR), 2022.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun.
Ptqdvit: Post-training quantization for vision transformers with twin uniform

quantization. In Proc. Eur. Conf. Comput. Vis. (ECCYV), pages 191-207, 2022.

132

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[24]

[25]

[27]

[28]

[29]

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile

vision transformers. arXiv preprint arXiv:2206.02680, 2022.

Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan,
Ming-Hsuan Yang, and Fahad Shahbaz Khan. SwiftFormer: Efficient additive

attention for transformer-based real-time mobile vision applications. In Proc.

IEEE Int. Conf. Comput. Vis. (ICCV), pages 17425-17436, 2023.

Renjie Xu, Keivan Nalaie, and Rong Zheng. BlockHybrid: Accelerating object
detection pipelines with hybrid block-wise execution. IEEFE Internet Things J.,
12(13):24148-24158, 2025.

Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen.
Bridging the edge-cloud barrier for real-time advanced vision analytics. In Proc.

USENIX Conf. Hot Topics Cloud Comput., page 18, 2019.

Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin, Junchen Jiang, and Kai
Chen. Enabling edge-cloud video analytics for robotics applications. IEFE
Trans. Cloud Comput., 11(2):1500-1513, 2022.

Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,
Henry Hoffmann, and Junchen Jiang. Server-driven video streaming for deep

learning inference. In Proc. Conf. ACM Special Interest Group Data Comm.
(SIGCOMM), pages 557570, 2020.

Huaizheng Zhang, Meng Shen, Yizheng Huang, Yonggang Wen, Yong Luo,

Guanyu Gao, and Kyle Guan. A serverless cloud-fog platform for DNN-based

133

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[31]

[32]

[33]

[34]

[35]

[36]

video analytics with incremental learning. arXiv preprint arXiv:2102.03012,

2021.

Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object de-
tection for mobile augmented reality. In Proc. Annu. Int. Conf. Mobile Comput.

Netw. (MobiCom), pages 1-16, 2019.

Bin Qian, Zhenyu Wen, Junqi Tang, Ye Yuan, Albert Y Zomaya, and Rajiv
Ranjan. OsmoticGate: Adaptive edge-based real-time video analytics for the

internet of things. IEEE Trans. Comput., 72(4):1178-1193, 2022.

Shanzhi Chen, Jinling Hu, Yan Shi, Li Zhao, and Wen Li. A vision of C-V2X:
Technologies, field testing, and challenges with chinese development. [FEFE
Internet Things J., 7(5):3872-3881, 2020.

Yuqi Dong, Guanyu Gao, Ran Wang, and Zhisheng Yan. Collaborative video
analytics on distributed edges with multiagent deep reinforcement learning.

arXiv preprint arXw:2211.03102, 2022.

Hongpeng Guo, Beitong Tian, Zhe Yang, Bo Chen, Qian Zhou, Shengzhong
Liu, Klara Nahrstedt, and Claudiu Danilov. DeepStream: Bandwidth effi-
cient multi-camera video streaming for deep learning analytics. arXiv preprint

arXiw:2306.15129, 2023.

Liming Ge, Wei Bao, Dong Yuan, and Bing B Zhou. Edge-assisted deep video
denoising and super-resolution for real-time surveillance at night. In Proc.

Annu. Int. Conf. Mobile Comput. Netw. (MobiCom,), pages 783785, 2022.

134

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[37]

[38]

Hui Sun, Qiyuan Li, Kewei Sha, and Ying Yu. ElasticEdge: An intelligent
elastic edge framework for live video analytics. [EEE Internet Things J.,

9(22):23031-23046, 2022.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shah-
baz Khan, Ming-Hsuan Yang, and Ling Shao. Multi-stage progressive im-
age restoration. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), pages 1482114831, 2021.

Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. FFA-Net:
Feature fusion attention network for single image dehazing. In Proc. AAAI

Conf. Artif. Intell. (AAAI), volume 34, pages 11908-11915, 2020.

Gary Bradski. The OpenCV library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer, 25(11):120-123, 2000.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
volume 1, pages 886-893, 2005.

David G Lowe. Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vis., 60:91-110, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proc. IEEE/CVF Conf. Comput. Vision and
Pattern Recognit. (CVPR), pages 770-778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:

135

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[46]

[47]

[48]

[49]

[50]

[51]

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiw:1704.04861, 2017.

Andrews Sobral and Antoine Vacavant. A comprehensive review of background
subtraction algorithms evaluated with synthetic and real videos. Comput. Vis.

Image Underst., 122:4-21, 2014.

Sandeep Singh Sengar and Susanta Mukhopadhyay. A novel method for moving
object detection based on block based frame differencing. In Proc. Int. Conf.

Recent Adv. Inf. Technol. (RAIT), pages 467472, 2016.

Anshuman Agarwal, Shivam Gupta, and Dushyant Kumar Singh. Review of
optical flow technique for moving object detection. In Proc. Int. Conf. Contemp.

Comput. Inform. (IC3I), pages 409-413, 2016.

Sepehr Aslani and Homayoun Mahdavi-Nasab. Optical flow based moving ob-
ject detection and tracking for traffic surveillance. Int. J. Electr. Comput. Eneryg.

FElectron. Commun. Eng., 7(9):1252-1256, 2013.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,
and Matti Pietikdinen. Deep learning for generic object detection: A survey.

Int. J. Comput. Vis., 128(2):261-318, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Proc. Int.

Conf. Neural Inf. Process. Syst. (NeurIPS), page 91-99, 2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

136

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[52]

[53]

[54]

[57]

[58]

once: Unified, real-time object detection. In Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), pages 779-788, 2016.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 7263-7271,
2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector.
In Proc. Eur. Conf. Comput. Vis. (ECCYV), pages 21-37, 2016.

Laura Leal-Taixé. Multiple object tracking with context awareness. arXiv

preprint arXiw:1411.7935, 2014.

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple
online and realtime tracking. In Proc. IEEE Int. Conf. Image Process. (ICIP),
pages 3464-3468, 2016.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime
tracking with a deep association metric. In Proc. IEEE Int. Conf. Image Pro-
cess. (ICIP), pages 3645-3649, 2017.

Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Bal-
achandar Gnana Sekar, Andreas Geiger, and Bastian Leibe. MOTS: Multi-
object tracking and segmentation. In Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), pages 7942-7951, 2019.

137

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang.
Towards real-time multi-object tracking. In Proc. Eur. Conf. Comput. Vis.

(ECCV), pages 107-122, 2020.

Xingyi Zhou, Vladlen Koltun, and Philipp Krahenbiihl. Tracking objects as
points. In Proc. Eur. Conf. Comput. Vis. (ECCYV), pages 474-490, 2020.

Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu.
FairMOT: On the fairness of detection and re-identification in multiple object

tracking. Int. J. Comput. Vis., 129:3069-3087, 2021.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtar-
navaz, and Demetri Terzopoulos. Image segmentation using deep learning: A

survey. IEEE Trans. Pattern Anal. Mach. Intell., 44(7):3523-3542, 2021.

Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun
Li. LAVEA: Latency-aware video analytics on edge computing platform. In
Proc. IEEE/ACM Symp. Edge Compt. (SEC), pages 1-13, 2017.

Haoxin Wang, BaekGyu Kim, Jiang Xie, and Zhu Han. LEAF+AIO: Edge-
assisted energy-aware object detection for mobile augmented reality. IEFE

Trans. Mobile Comput., 22(10):5933-5948, 2022.

Ruoyu Zhang, Yutao Zhou, Fangxin Wang, and Zhi Wang. Maxim: DRL-based
cross-camera streaming configuration for real-time video analytics. In Proc.

IEEE Int. Conf. Multimed. Ezpo (ICME), pages 01-06, 2022.

Rui Lu, Chuang Hu, Dan Wang, and Jin Zhang. Gemini: A real-time video

138

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[67]

[68]

[69]

[70]

[71]

[72]

[73]

analytics system with dual computing resource control. In Proc. IEEE/ACM
Symp. Edge Compt. (SEC), pages 162-174, 2022.

Miao Zhang, Fangxin Wang, and Jiangchuan Liu. CASVA: Configuration-
adaptive streaming for live video analytics. In Proc. IEEE Conf. Comput.
Commun. (INFOCOM), pages 2168-2177, 2022.

Lei Zhang, Yuqing Zhang, Ximing Wu, Fangxin Wang, Laizhong Cui, Zhi Wang,
and Jiangchuan Liu. Batch adaptative streaming for video analytics. In Proc.

IEEE Conf. Comput. Commun. (INFOCOM), pages 2158-2167, 2022.

Peng Yang, Feng Lyu, Wen Wu, Ning Zhang, Li Yu, and Xuemin Sherman
Shen. Edge coordinated query configuration for low-latency and accurate video

analytics. IEEE Trans. Ind. Inform., 16(7):4855-4864, 2019.

Miaomiao Liu, Xianzhong Ding, and Wan Du. Continuous, real-time object de-
tection on mobile devices without offloading. In Proc. IEEE Int. Conf. Distrib.

Comput. Syst. (ICDCS), pages 976-986, 2020.

Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. Deep-
Decision: A mobile deep learning framework for edge video analytics. In Proc.

IEEE Conf. Comput. Commun. (INFOCOM), pages 1421-1429, 2018.

Xiangyu Li, Yuanchun Li, Yuanzhe Li, Ting Cao, and Yunxin Liu. FlexNN:
Efficient and adaptive DNN inference on memory-constrained edge devices. In

Proc. Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pages 709-723, 2024.

Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding. Palleon:

139

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[74]

[76]

[78]

A runtime system for efficient video processing toward dynamic class skew. In

Proc. USENIX Conf. Annu. Tech. Conf. (USENIX ATC), pages 427-441, 2021.

Lin Sun, Weijun Wang, Tingting Yuan, Liang Mi, Haipeng Dai, Yunxin Liu,
and Xiaoming Fu. BiSwift: Bandwidth orchestrator for multi-stream video
analytics on edge. In Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages
1181-1190, 2024.

Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan Sankaradas, Oliver Po,
Y Charlie Hu, and Srimat Chakradhar. Enhancing video analytics accuracy via
real-time automated camera parameter tuning. In Proc. Conf. Embed. Netw.

Sens. Syst. (SenSys), pages 291-304, 2022.

Mike Wong, Murali Ramanujam, Guha Balakrishnan, and Ravi Netravali. Mad-
Eye: Boosting live video analytics accuracy with adaptive camera configura-
tions. In Proc. USENIX Symp. Netw. Syst. Des. Implement. (NSDI), pages
549-568, 2024.

Manjiri A Namjoshi and Prasad A Kulkarni. Novel online profiling for virtual
machines. In Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual Ezecution
Enuviron., pages 133-144, 2010.

Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A Lee.
AWStream: Adaptive wide-area streaming analytics. In Proc. Conf. ACM Spe-
cial Interest Group Data Comm. (SIGCOMM), pages 236-252, 2018.

140

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[79]

[80]

[81]

[82]

[83]

Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra, So-
mali Chaterji, Yin Li, and Saurabh Bagchi. ApproxDet: content and contention-
aware approximate object detection for mobiles. In Proc. Conf. Embed. Netw.

Sens. Syst. (SenSys), pages 449-462, 2020.

Ran Xu, Jayoung Lee, Pengcheng Wang, Saurabh Bagchi, Yin Li, and Somali
Chaterji. LiteReconfig: Cost and content aware reconfiguration of video ob-
ject detection systems for mobile GPUs. In Proc. Fur. Conf. Comput. Syst.
(EuroSys), pages 334-351, 2022.

Sheng Zhang, Can Wang, Yibo Jin, Jie Wu, Zhuzhong Qian, Mingjun Xiao,
and Sanglu Lu. Adaptive configuration selection and bandwidth allocation for

edge-based video analytics. IEEE/ACM Trans. Netw., 30(1):285-298, 2021.

Ning Chen, Siyi Quan, Sheng Zhang, Zhuzhong Qian, Yibo Jin, Jie Wu, Wen-
zhong Li, and Sanglu Lu. Cuttlefish: Neural configuration adaptation for
video analysis in live augmented reality. IFEE Trans. Parallel Distrib. Syst.,
32(4):830-841, 2020.

Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G Andersen, Michael Kaminsky, and Subramanya Dulloor. Scaling video

analytics on constrained edge nodes. Proc. Mach. Learn. Syst., 1:406-417, 2019.

Junjue Wang, Ziqgiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanab-
han Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. Bandwidth-efficient
live video analytics for drones via edge computing. In Proc. IEEE/ACM Symp.
Edge Compt. (SEC), pages 159-173, 2018.

141

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[85]

[30]

[88]

[90]

Vinod Nigade, Lin Wang, and Henri Bal. Clownfish: Edge and cloud symbiosis
for video stream analytics. In Proc. IEEE/ACM Symp. Edge Compt. (SEC),
pages 5569, 2020.

Ting Li, Jiyan Sun, Yinlong Liu, Xu Zhang, Dali Zhu, Zhaorui Guo, and Liru
Geng. ESMO: Joint frame scheduling and model caching for edge video analyt-
ics. IEEE Trans. Parallel Distrib. Syst., 34(8):2295-2310, 2023.

Jiansheng Dong, Jingling Yuan, Lin Li, Xian Zhong, and Weiru Liu. Optimizing
queries over video via lightweight keypoint-based object detection. In Proc. Int.

Conf. Multimedia Retrieval, pages 548-554, 2020.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and
Hari Balakrishnan. Glimpse: Continuous, real-time object recognition on mo-
bile devices. In Proc. ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages
155-168, 2015.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
BranchyNet: Fast inference via early exiting from deep neural networks. In

Proc. Int. Conf. Pattern Recognit. (ICPR), pages 2464-2469, 2016.

Santosh Kumar Nukavarapu, Mohammed Ayyat, and Tamer Nadeem. iBranchy:
An accelerated edge inference platform for IoT devices. In Proc. IEEE/ACM
Symp. Edge Compt. (SEC), pages 392-396, 2021.

Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-
efficiency trade-offs by selective execution. In Proc. AAAI Conf. Artif. Intell.

(AAAI), pages 3675-3682, 2018.

142

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[92]

[93]

[95]

[98]

Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. Flexible
high-resolution object detection on edge devices with tunable latency. In Proc.

Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pages 559-572, 2021.

Zheng Yang, Xu Wang, Jiahang Wu, Yi Zhao, Qiang Ma, Xin Miao, Li Zhang,
and Zimu Zhou. EdgeDuet: Tiling small object detection for edge assisted
autonomous mobile vision. IEEE/ACM Trans. Netw., 31(4):1765-1778, 2022.

Xianwei Lv, Qiangian Wang, Chen Yu, and Hai Jin. A feedback-driven DNN
inference acceleration system for edge-assisted video analytics. [EEE Trans.

Comput., 72(10):2902-2912, 2023.

Xingwang Wang, Muzi Shen, and Kun Yang. On-edge high-throughput col-
laborative inference for real-time video analytics. IEEE Internet Things J.,

11(20):33097-33109, 2024.

Haosong Peng, Wei Feng, Hao Li, Yufeng Zhan, Qihua Zhou, and Yuanqing Xia.
Arena: A patch-of-interest ViT inference acceleration system for edge-assisted

video analytics. arXww preprint arXiw:2404.09245, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret.
Transformers are RNNs: Fast autoregressive transformers with linear attention.

In Proc. Int. Conf. Mach. Learn. (ICML), pages 5156-5165, 2020.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Lin-
former: Self-attention with linear complexity. arXww preprint arXiv:2006.04768,
2020.

143

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[99]

[100]

[101]

[102]

103]

[104]

[105]

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. Rethinking attention with performers. In Proc. Int. Conf.

Learn. Represent. (ICLR), 2021.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui
Hsieh. DynamicViT: Efficient vision transformers with dynamic token sparsifi-

cation. Adv. Neural Inf. Process. Syst. (NeurIPS), 34:13937-13949, 2021.

Yifei Liu, Mathias Gehrig, Nico Messikommer, Marco Cannici, and Davide
Scaramuzza. Revisiting token pruning for object detection and instance seg-
mentation. In Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACYV),
pages 2658-2668, 2024.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Fe-
ichtenhofer, and Judy Hoffman. Token merging: Your ViT but faster. In Proc.
Int. Conf. Learn. Represent. (ICLR), 2023.

Xuwei Xu, Sen Wang, Yudong Chen, Yanping Zheng, Zhewei Wei, and Jiajun
Liu. GTP-VIiT: efficient vision transformers via graph-based token propagation.
In Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACYV), pages 86-95,
2024.

Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad
Schindler. MOT16: A benchmark for multi-object tracking. arXiv preprint
arXiw:1605.00851, 2016.

Tatjana Chavdarova, Pierre Baqué, Stéphane Bouquet, Andrii Maksai, Cijo

144

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[106]

107]

[108]

[109]

[110]

[111]

Jose, Timur Bagautdinov, Louis Lettry, Pascal Fua, Luc Van Gool, and Francois
Fleuret. WildTrack: A multi-camera hd dataset for dense unscripted pedestrian
detection. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
pages 5030-5039, 2018.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLOvVS. https://

github.com/ultralytics/ultralytics, 2024. Accessed: September 9, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), pages 248255, 2009.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. Microsoft COCO: Common
objects in context. In Proc. Eur. Conf. Comput. Vis. (ECCV), pages 740-755,
2014.

Keivan Nalaie, Renjie Xu, and Rong Zheng. DeepScale: Online frame size
adaptation for multi-object tracking on smart cameras and edge servers. In Proc.
IEEE/ACM Seventh Int. Conf. Internet-of-Things Design Implement. (IoTDI),
pages 6779, 2022.

Renjie Xu, Keivan Nalaie, and Rong Zheng. FastTuner: Fast resolution and
model tuning for multi-object tracking in edge video analytics. IEEFE Trans.

Mobile Comput., 24(6):4747-4761, 2025.

Peigen Ye, Wenfeng Wang, Bing Mi, and Kongyang Chen. EdgeStreaming:

145

http://www.mcmaster.ca/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[112]

113]

[114]

[115]

116

[117]

[118]

Secure computation intelligence in distributed edge networks for streaming an-

alytics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), 2024.

Mingjin Zhang, Jiannong Cao, Yuvraj Sahni, Qianyi Chen, Shan Jiang, and Lei
Yang. Blockchain-based collaborative edge intelligence for trustworthy and real-

time video surveillance. IEEE Trans. Ind. Informat., 19(2):1623-1633, 2022.

Yuxin Kong, Peng Yang, and Yan Cheng. Adaptive on-device model update
for responsive video analytics in adverse environments. [EFEE Trans. Circuits

Syst. Video Technol., 35(1):857-873, 2025.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer ag-
gregation. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
pages 24032412, 2018.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and
Qi Tian. CenterNet: Keypoint triplets for object detection. In Proc. IEFE

Int. Conf. Comput. Vis. (ICCV), pages 6569-6578, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXww preprint arXiv:1409.1556, 2014.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proc. IEEE/CVE Conf. Comput.

Vis. Pattern Recognit. (CVPR), pages 4700-4708, 2017.

Keivan Nalaie and Rong Zheng. AttTrack: Online deep attention transfer for
multi-object tracking. In Proc. IEEE/CVFE Winter Conf. Appl. Comput. Vis.
(WACYV), pages 1654-1663, 2023.

146

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. RT-mDL:
Supporting real-time mixed deep learning tasks on edge platforms. In Proc.

ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages 1-14, 2021.

Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi, and Junjie Yan.
POI: Multiple object tracking with high performance detection and appearance
feature. In ECCV 2016 Workshops, pages 36—42, 2016.

Hei Law and Jia Deng. CornerNet: Detecting objects as paired keypoints. In
Proc. Eur. Conf. Comput. Vis. (ECCV), pages 734-750, 2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal
loss for dense object detection. In Proc. IEEE Int. Conf. Comput. Vis. (ICCV),

pages 29802988, 2017.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics. In Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 7482-7491, 2018.

Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodik, Krishna Chintala-
pudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time
video analytics: The killer app for edge computing. Computer, 50(10):58-67,
2017.

Tianxiang Tan and Guohong Cao. Deep learning video analytics through edge
computing and neural processing units on mobile devices. IEEFE Trans. Mobile

Comput., 22(3):1433-1448, 2023.

147

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[126]

[127]

[128]

[129]

[130]

[131]

Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang. Better never than
late: Timely edge video analytics over the air. In Proc. ACM Conf. Embedded

Netw. Sensor Syst. (SenSys), pages 426-432, 2021.

Biyi Fang, Xiao Zeng, and Mi Zhang. NestDNN: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proc. Annu. Int. Conf.

Mobile Comput. Netw. (MobiCom), pages 115127, 2018.

Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, and
Nicholas D. Lane. MobiSR: Efficient on-device super-resolution through het-
erogeneous mobile processors. In Proc. Annu. Int. Conf. Mobile Comput. Netw.

(MobiCom), pages 1-16, 2019.

Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Sto-
ica. Ekya: Continuous learning of video analytics models on edge compute
servers. In Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), pages
119-135, 2022.

Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh, Junchen Jiang, Ravi
Netravali, Yuanchao Shu, Mohammad Alizadeh, and Victor Bahl. RECL: Re-
sponsive resource-efficient continuous learning for video analytics. In Proc.

USENIX Symp. Netw. Syst. Design Implement. (NSDI), pages 917-932, 2023.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. SplitPlace: Al aug-
mented splitting and placement of large-scale neural networks in mobile edge

environments. IEEE Trans. Mobile Comput., 22(9):5539-5554, 2022.

148

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Shusen Yang, Zhanhua Zhang, Cong Zhao, Xin Song, Siyan Guo, and Hailiang
Li. CNNPC: End-edge-cloud collaborative CNN inference with joint model
partition and compression. [EEE Trans. Parallel Distrib. Syst., 33(12):4039—

4056, 2022.

Yubin Duan and Jie Wu. Optimizing job offloading schedule for collaborative
DNN inference. IEEE Trans. Mobile Comput., 23(4):3436-3451, 2023.

Xiao Zeng, Biyi Fang, Haichen Shen, and Mi Zhang. Distream: scaling live
video analytics with workload-adaptive distributed edge intelligence. In Proc.

ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages 409-421, 2020.

Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, and Zhi Wang. To-
wards cloud-edge collaborative online video analytics with fine-grained server-
less pipelines. In Proc. ACM Multimedia Syst. Conf. (MMSys), pages 80-93,
2021.

Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. EdgeML: An automl
framework for real-time deep learning on the edge. In Proc. Int. Conf. Internet-

of-Things Design Implement. (loTDI), pages 133-144, 2021.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Ja-
son Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Comput. Archit. News, 45(1):615—
629, 2017.

Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. Dynamic adaptive DNN

149

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[139]

[140]

[141]

[142]

[143]

[144]

surgery for inference acceleration on the edge. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1423-1431, 2019.

Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay.
Edge-host partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms. In Proc. IEEE Int. Conf.

Adv. Video Signal Based Surveillance (AVSS), pages 1-6, 2018.

Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco.
Distributed inference acceleration with adaptive DNN partitioning and ofHoad-
ing. In Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages 854-863,
2020.

Weiyu Ju, Dong Yuan, Wei Bao, Liming Ge, and Bing Bing Zhou. DeepSave:
Saving DNN inference during handovers on the edge. In Proc. IEEE/ACM
Symp. Edge Compt. (SEC), pages 166-178, 2019.

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska. Couper: DNN model
slicing for visual analytics containers at the edge. In Proc. IEEE/ACM Symp.
Edge Compt. (SEC), pages 179-194, 2019.

Mengyuan Chao, Radu Stoleru, Liuyi Jin, Shuochao Yao, Maxwell Maurice,
and Roger Blalock. AMVP: Adaptive CNN-based multitask video processing on
mobile stream processing platforms. In Proc. IEEE/ACM Symp. Edge Compt.
(SEC), pages 96-109, 2020.

Jian He, Chenxi Yang, Zhaoyuan He, Ghufran Baig, and Lili Qiu. Scheduling
DNNs on edge servers. arXiv preprint arXiw:2304.09961, 2023.

150

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[145]

[146]

[147]

[148]

[149]

[150]

Kichang Yang, Juheon Yi, Kyungjin Lee, and Youngki Lee. FlexPatch: Fast
and accurate object detection for on-device high-resolution live video analytics.

In Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages 1898-1907, 2022.

Tianxiang Tan and Guohong Cao. Deep learning on mobile devices through
neural processing units and edge computing. In Proc. IEEE Conf. Comput.
Commun. (INFOCOM), pages 1209-1218, 2022.

Ayan Chakrabarti, Roch Guérin, Chenyang Lu, and Jiangnan Liu. Real-time
edge classification: Optimal offloading under token bucket constraints. In Proc.

IEEE/ACM Symp. Edge Compt. (SEC), pages 41-54, 2021.

Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz.
Marvel: Enabling mobile augmented reality with low energy and low latency.
In Proc. ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages 292-304,
2018.

Luyang Liu and Marco Gruteser. EdgeSharing: Edge assisted real-time lo-
calization and object sharing in urban streets. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1-10, 2021.

Ganesh Ananthanarayanan, Yuanchao Shu, Landon Cox, and Vic-
tor Bahl. Project Rocket platform—designed for easy, customizable
live video analytics—is open source. https://www.microsoft.com/
en-us/research/publication/project-rocket-platform-designed-/

for-easy-customizable-live-video-analytics-is-open-source/, 2022.

Accessed: September 9, 2025.

151

http://www.mcmaster.ca/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-/for-easy-customizable-live-video-analytics-is-open-source/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-/for-easy-customizable-live-video-analytics-is-open-source/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-/for-easy-customizable-live-video-analytics-is-open-source/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[151]

[152]

[153]

[154]

[155]

[156]

Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkat N
Padmanabhan. Streaming video analytics on the edge with asynchronous cloud

support. arXiv preprint arXiw:2210.01402, 2022.

Keivan Nalaie and Rong Zheng. MVSparse: Distributed cooperative multi-
camera multi-target tracking on the edge. In Proc. IEEE Int. Conf. Adv. Video
Signal Based Surveillance (AVSS), pages 1-7, 2024.

Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward error:
Automatic detection of tracking failures. In Proc. Int. Conf. Pattern Recognit.

(ICPR), pages 2756-2759, 2010.

Wei Liu, Shengcai Liao, Weigiang Ren, Weidong Hu, and Yinan Yu. High-level
semantic feature detection: A new perspective for pedestrian detection. In Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 5187-5196,
2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In Proc.
IEEE/CVF Conf. Comput. Vision and Pattern Recognit. (CVPR), pages 4510~
4520, 2018.

Irtiza Hasan, Shengcai Liao, Jinpeng Li, Saad Ullah Akram, and Ling Shao.
Generalizable pedestrian detection: The elephant in the room. In Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 11328-11337,

June 2021.

152

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. TinyMIM: An em-
pirical study of distilling mim pre-trained models. In Proc. IEEE/CVFE Conf.
Comput. Vis. Pattern Recognit. (CVPR), pages 3687-3697, 2023.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,
Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,
Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue
Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. MMDetection: Open MMLab detection toolbox and
benchmark. arXiwv preprint arXiv:1906.07155, 2019.

John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiw:2010.11929, 2020.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision
transformer. IEEE Trans. Pattern Anal. Mach. Intell., 45(1):87-110, 2022.

Linyi Jiang, Silvery D Fu, Yifei Zhu, and Bo Li. Janus: Collaborative vision
transformer under dynamic network environment. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1-10, 2025.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross

153

http://www.mcmaster.ca/

Ph.D. Thesis — R. Xu McMaster University — Computer Science

Girshick. Masked autoencoders are scalable vision learners. In Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 16000-16009, 2022.

[164] Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and Saehoon Kim. Sparse
DETR: Efficient end-to-end object detection with learnable sparsity. In Proc.
Int. Conf. Learn. Represent. (ICLR), 2022.

[165] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiw:1711.05101, 2017.

154

http://www.mcmaster.ca/

	Lay Abstract
	Abstract
	Acknowledgements
	List of Abbreviations
	Declaration of Academic Achievement
	Introduction
	Motivation
	Contributions
	Organization

	Background
	Preliminaries of Video Analytics Pipeline
	Related Work
	Datasets
	Performance Metrics
	Hardware

	FastTuner: Fast Resolution and Model Tuning for Multi-Object Tracking in Edge Video Analytics
	Introduction
	Motivation
	Methodology
	Workload Placement on End and Edge Devices
	Performance Evaluation
	Conclusion

	BlockHybrid: Accelerating Object Detection Pipelines with Hybrid Block-Wise Execution
	Introduction
	Motivation
	BlockHybrid Design
	Evaluation
	Conclusion

	SEED: An End-to-End Selective Execution Framework for Transformer-Based Object Detection in Edge Video Analytics
	Introduction
	Motivation
	SEED Design
	Evaluation
	Conclusion

	Conclusion
	Summary
	Limitations
	Future Work

