
ACCELERATING OBJECT DETECTION AND

TRACKING PIPELINES FOR EFFICIENT

EDGE VIDEO ANALYTICS

ACCELERATING OBJECT DETECTION AND TRACKING

PIPELINES FOR EFFICIENT EDGE VIDEO ANALYTICS

By RENJIE XU, M.E.

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

McMaster University © Copyright by Renjie Xu, September 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

DOCTOR OF PHILOSOPHY (2025)

Hamilton, Ontario, Canada (Department of Computing and Software)

TITLE: Accelerating Object Detection and Tracking Pipelines for

Efficient Edge Video Analytics

AUTHOR: Renjie Xu

M.E. (Circuits and Systems),

Nanjing Forestry University, Nanjing, China

SUPERVISOR: Dr. Rong Zheng

CO-SUPERVISOR: Dr. Saiedeh Razavi

NUMBER OF PAGES: xx, 154

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Lay Abstract

Video analytics is a technique that can extract insightful information from videos,

driving real-world applications such as traffic monitoring, where rapid and accu-

rate responses are critical for safety. However, existing video analytics pipelines are

compute-intensive, making them difficult to run efficiently on resource-constrained

edge devices. This thesis proposes three novel approaches that significantly accelerate

video analytics without compromising accuracy. These approaches intelligently adjust

how videos are analyzed by selecting appropriate resolutions and processing models,

and by focusing only on the most informative parts of each frame, greatly reducing

unnecessary computation and communication. Extensive experiments demonstrate

that the proposed approaches enhance the trade-off between accuracy and efficiency,

providing a strong foundation for efficient and reliable edge video analytics.

iii

Abstract

Edge computing enables rapid video analytics by processing data closer to the source,

thereby reducing end-to-end latency. This gives rise to the paradigm of edge video

analytics (EVA). Object detection and object tracking are key building blocks of

video analytics pipelines (VAPs), as their outputs directly impact the performance

of downstream tasks. In real-world applications like traffic monitoring, timely and

accurate responses are critical—delayed or inaccurate results can compromise safety.

However, achieving such an accuracy-efficiency balance at the edge is particularly

challenging due to two main factors: the compute-intensive nature of modern Convo-

lutional Neural Network (CNN)- or Vision Transformer (ViT)-based models, and the

limited computational and communication resources on edge devices.

This thesis aims to improve the efficiency of object detection and tracking pipelines

without sacrificing accuracy, enabling efficient and reliable EVA. Conventional pipelines

often adopt fixed configurations (e.g., frame resolution and backbone model) or pro-

cess entire frames uniformly, overlooking the dynamic and spatially diverse nature of

video content, resulting in considerable resource waste. To address these limitations,

we propose three novel approaches: FastTuner, a model-agnostic framework that

dynamically selects the optimal frame resolution and backbone model at runtime to

accelerate multi-object tracking (MOT) pipelines; BlockHybrid, which leverages

iv

a policy network to classify each frame into “hard” and “easy” blocks, and pro-

cesses them with either a block-wise detector or a lightweight tracker accordingly;

and SEED, an end-to-end framework that couples block selection with block exe-

cution, enabling unified and efficient selection and execution of informative blocks

in ViT-based object detectors. Extensive evaluations across multiple datasets and

deployment scenarios demonstrate the effectiveness and generality of the proposed

methods. Together, these contributions pave the way for more adaptive and scalable

video analytics in real-world edge environments.

v

To my family,

friends, and mentors.

vi

Acknowledgements

First and foremost, I would like to express my deepest thanks to my supervisor,

Dr. Rong Zheng and co-supervisor Dr. Saiedeh Razavi for their continuous support,

insightful guidance, and encouragement throughout my Ph.D. studies. Their exper-

tise, patience, and high standards have greatly shaped both my research and personal

growth. I feel truly fortunate to have the opportunity to work under their supervision.

I am also very grateful to my committee members: Dr. Wenbo He, Dr. Douglas

Down, for their valuable feedback and thoughtful suggestions, which helped improve

the quality of my work. Their support throughout the various stages of this thesis

has been instrumental.

Special thanks go to my master’s supervisors, Dr. Yunfei Liu and Dr. Haifeng

Lin, who inspired my interest in research and provided me with a solid foundation

during my early academic journey. Their guidance has played a vital role in preparing

me for doctoral studies, and I will always appreciate the mentorship they provided.

I would like to thank all members of the WiSeR group for creating such a friendly

and collaborative research environment. I am especially grateful to Dr. Keivan Nalaie,

my best friend here. Our regular discussions related to both academic and everyday

life have not only helped me improve my research but also made my time here more

enjoyable.

vii

I also want to express my sincere appreciation to my close friend, Mr. Xuli Cai,

for always being there to talk and listen. His companionship and support have helped

me get through stressful times and kept me balanced along the way.

Last but not least, I owe my deepest gratitude to my parents for their uncon-

ditional love, understanding, and constant support. Their belief in me has been my

greatest source of strength, and this work would not have been possible without them.

I am equally thankful to my home country, China, and the China Scholarship Coun-

cil for providing the financial support that enabled me to pursue my doctoral studies

abroad.

viii

Table of Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

List of Abbreviations xvii

Declaration of Academic Achievement xxi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 7

1.3 Organization . 9

2 Background 11

2.1 Preliminaries of Video Analytics Pipeline 12

2.2 Related Work . 17

2.3 Datasets . 24

2.4 Performance Metrics . 25

ix

2.5 Hardware . 27

3 FastTuner: Fast Resolution and Model Tuning for Multi-Object

Tracking in Edge Video Analytics 31

3.1 Introduction . 32

3.2 Motivation . 35

3.3 Methodology . 40

3.4 Workload Placement on End and Edge Devices 48

3.5 Performance Evaluation . 50

3.6 Conclusion . 64

4 BlockHybrid: Accelerating Object Detection Pipelines with Hybrid

Block-Wise Execution 66

4.1 Introduction . 67

4.2 Motivation . 71

4.3 BlockHybrid Design . 75

4.4 Evaluation . 85

4.5 Conclusion . 93

5 SEED: An End-to-End Selective Execution Framework for Transformer-

Based Object Detection in Edge Video Analytics 96

5.1 Introduction . 97

5.2 Motivation . 100

5.3 SEED Design . 104

5.4 Evaluation . 112

5.5 Conclusion . 120

x

6 Conclusion 122

6.1 Summary . 123

6.2 Limitations . 123

6.3 Future Work . 125

xi

List of Figures

1.1 Overview of the contributions. 8

2.1 Components of a video analytics pipeline. 13

2.2 MOT17 dataset. 26

2.3 Wildtrack dataset. 26

2.4 Snapshot of the hardware platform used in this thesis. 29

3.1 Detection rate using FairMOT with different input resolutions and

backbone models on two video sequences of MOT17 dataset. 38

3.2 Pipeline of FastTuner, with a detectability branch and a tracking branch

sharing a common backbone model. 42

3.3 Two workload placement schemes, partitioning the workload between

a smart camera and an edge server. 49

3.4 Comparison between FastTuner (DLA-34) and the baselines: Fair-

MOT+{Full, Half, Quarter}-DLA-34 on MOT17 across two devices. . 57

3.5 Comparison between FastTuner (YOLO) and the baselines: FairMOT+{Full,

Half, Quarter}-YOLO on MOT17 across two devices. 57

3.6 Comparison between FastTuner (DLA-34) and three SOTA approaches:

VideoStorm, Chameleon and SmartAdapt on MOT17 across two devices. 57

xii

3.7 Percentages of the configurations selected by FastTuner (DLA-34) un-

der different threshold settings: T1–T7. 58

3.8 Percentages of the configurations selected by FastTuner (YOLO) under

different threshold settings: T1–T8. 58

3.9 Comparisons between different schemes on the testbed (Tesla P100)

across three different networks. 64

3.10 Comparisons between different schemes on the testbed (GTX 1060)

across three different networks. 64

4.1 Comparison between conventional pipeline and the proposed pipeline 68

4.2 (a) Workload scheduling between CPU and GPU and (b) relationship

between number of hard blocks and execution latency. 74

4.3 Example of block artifacts. 74

4.4 System overview of BlockHybrid. 76

4.5 Workload scheduling between camera and server. Data migration time

(e.g., from CPU to GPU) is omitted considering its negligible overhead. 77

4.6 Brief process of block-wise detection. 78

4.7 The influence of different key frame intervals on the trade-off between

accuracy and the number of hard blocks. 91

4.8 (a) Normalized network traffic and (b) accuracy of different methods

on two datasets. 94

4.9 Average end-to-end latency of different methods on two datasets. End-

to-end latency includes camera time, transmission time and server time. 94

4.10 Average end-to-end latency of different methods with pipelining on two

datasets. 94

xiii

4.11 Visualization of BlockHybrid across three scenes. 95

5.1 Comparison between conventional pipeline and the proposed pipeline 99

5.2 Relationship between number of executed blocks and encoder latency.

Input size: 1024× 2048, patch size: 16× 16. 103

5.3 Overview of SEED. 105

5.4 Architecture of DecisionNet. 106

5.5 Architectures of BlockDet-TR and BlockDet-EE. 107

5.6 (a) Normalized network traffic and (b) accuracy of different methods

in the token reuse setting on two datasets. 118

5.7 Average end-to-end latency of different methods in the token reuse

setting on two datasets. 118

5.8 (a) Normalized network traffic and (b) accuracy of different methods

in the early exit setting on two datasets. 119

5.9 Average end-to-end latency of different methods in the early exit set-

ting on two datasets. 119

5.10 Visualization of SEED-TR and SEED-EE across multiple scenes. . . . 121

xiv

List of Tables

2.1 Details of the datasets . 30

2.2 Specifications of the devices . 30

3.1 MOTA and FPS of FairMOT+Full-DLA-34 with different input reso-

lutions . 37

3.2 MOTA and FPS of FairMOT with different backbone models at full

resolution . 37

3.3 Qualitative comparison of SOAT and SAT on computation and network

loads . 50

3.4 Threshold settings in FastTuner (DLA-34) and corresponding results 59

3.5 Threshold settings in FastTuner (YOLO) and corresponding results . 59

3.6 Impact of interval K on FastTuner (DLA-34) 60

3.7 Impact of interval K on FastTuner (YOLO) 60

3.8 Metrics of the networks . 62

4.1 Redundancy of MOT17 and WildTrack datasets. 72

4.2 Benchmark evaluation on two datasets using CSP + ResNet-50. . . . 90

4.3 Benchmark evaluation on two datasets using CSP + MobileNet. . . . 90

4.4 Benchmark evaluation on two datasets using Faster-RCNN + ViT-Small. 90

5.1 Redundancy of MOT17 and WildTrack datasets. 101

xv

5.2 High-level comparison of SEED and other methods. 104

5.3 Benchmark evaluation on two datasets for token reuse. 116

5.4 Benchmark evaluation on two datasets for early exit. 117

xvi

List of Abbreviations

VA Video Analytics

EVA Edge Video Analytics

DL Deep Learning

RL Reinforcement Learning

CV Computer Vision

AI Artificial Intelligence

IoT Internet of Things

WAN Wide Area Network

BS Base Station

QoE Quality of Experience

VAP Video Analytics Pipeline

ViT Vision Transformer

CNN Convolutional Neural Network

xvii

MOT Multi-Object Tracking

HoC Histogram of Color

HOG Histogram of Oriented Gradients

DNN Deep Neural Network

MLP Feed-Forward Network or Multilayer Perceptron

MOTA Multi-Object Tracking Accuracy

mAP mean Average Precision

FP False Postive

FN False Negative

IDSW Identity Switch

GT Ground Truth

bbox bounding box

IoU Intersection over Union

re-ID re-identification

FCN Fully Convolution Network

SOTA State of the Art

DLA Deep Layer Aggregation

MAC Multiply-Accumulate Operation

xviii

FR Full-Resolution

ITS Intelligent Transportation System

RSU Roadside Unit

V2X Vehicle-to-Everything

IB Informative Block

non-IB non-Iormative Block

HB Hard Block

IG Information Gain

TE Task Error

RTT Round-Trip Time

TCP Transmission Control Protocol

FPS Frames Per Second

FD Full-Frame Detector

MSA Multi-Head Self-Attention

LN Layer Normalization

HFR Hybrid Feature Reconstruction

FPN Feature Pyramid Network

QP Quantization Parameter

xix

RTMP Real-Time Messaging Protocol

RTSP Real-Time Streaming Protocol

WebRTC Web Real-Time Communication

ML Machine Learning

SIFT Scale-Invariant Feature Transform

SVM Support Vector Machine

k-NN k-Nearest Neighbor

RoI Region of Interest

RCNN Region-Based Convolutional Neural Network

RPN Region Proposal Network

xx

Declaration of Academic

Achievement

The research presented in this thesis was conducted by the author over the period

2021–2025. The author was the primary contributor, responsible for formulating the

research problem, designing and implementing the proposed methods, performing

experiments, and drafting the manuscripts.

xxi

Chapter 1

Introduction

1

Ph.D. Thesis – R. Xu McMaster University – Computer Science

1.1 Motivation

Cameras are in every corner of our cities in this information-centric era. According

to [1], one surveillance camera is installed for every eight people on the planet nowa-

days, with mature markets (e.g., China and the United States) having one camera

for every four people. Such explosive video data is beyond human capacity to make

sense of what is happening manually. Video analytics (VA) aims to automatically

and efficiently recognize objects and identify interesting events in unstructured video

data. It can drive a large number of applications with wide-ranging impacts on our

society. Examples of such applications include security surveillance in public and

private venues, assisted and autonomous driving and consumer applications such as

digital assistants for real-time decision-making [2].

Early-stage video analytics is based on conventional image processing techniques,

which mainly rely on human expertise and empirical knowledge, and thus are not

robust to changes in lighting conditions, viewing angles, weather conditions, etc. [2].

Deep learning (DL) has made striking breakthroughs in many fields, especially in com-

puter vision (CV). Advanced CV technologies, e.g., object classification, detection,

and tracking, enable extracting more accurate information and insights from video

feeds. The resulting insights can help people make smarter and faster decisions.

However, many DL-driven applications are compute-intensive, thus not friendly to

resource-constrained Internet-of-Things (IoT) devices. The conventional wisdom is to

offload all workloads from devices to a cloud via wide area networks (WANs), where

powerful data centers are located. This computing paradigm, known as cloud comput-

ing, suffers from high service delays due to long geographical distances and potential

network congestion. According to [3], worldwide data will reach 175 zettabytes (ZB)

2

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

by 2025, 51% of which will be created by IoT devices. Digesting such massive data in

the cloud incurs excessive delays, making such solution inadequate for mission-critical

applications, e.g., security surveillance [4] and autonomous driving [5], where delayed

responses can compromise safety.

Edge computing, an emerging computing paradigm, has recently been recognized

as a viable alternative to cloud computing. It is a distributed architecture that reduces

latency by hosting applications and computing resources at locations geographically

closer to the data source. Simply put, edge computing alleviates data transfer latency

by processing data on local edge nodes rather than in a remote cloud. An edge node

can vary in size and capability, ranging from tiny processing units co-located with

IoT devices, to IT infrastructures in close proximity to base stations (BSs). These

nodes, distributed at the network edge, can significantly alleviate the workloads and

traffic congestions of the cloud, thereby reducing the service delay and improving the

quality of experience (QoE) of users.

Edge computing is an extension of cloud computing by pushing centralized work-

loads to the network edge. Instead of entirely relying on the cloud, edge computing,

a flexible computing paradigm leveraging both edge and cloud capabilities effectively,

is gaining traction in building VA systems [6]. Therefore, we are now witnessing

the convergence of video analytics and edge computing, namely, edge video analytics

(EVA). Many techniques have been proposed to improve the efficiency of EVA.

Configuration Optimization. A typical video analytics pipeline (VAP) con-

sists of multiple processing components, among which core modules such as object

detectors often expose several tunable parameters, referred to as knobs. A knob, such

as model choice or input resolution, offers trade-offs between computational cost and

3

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

accuracy. A configuration represents a particular combination of these knobs. Im-

portantly, no single configuration consistently delivers the best performance across

all deployment scenarios [7]. Therefore, the selection of an appropriate configuration

plays a crucial role in determining the accuracy-latency trade-off of a VAP [8, 7, 9, 10].

For example, using high-resolution input or a deeper neural network may improve de-

tection accuracy but also increase latency and resource consumption. A configuration

is considered Pareto-optimal if it is impossible to improve one metric (e.g., accuracy)

without degrading another (e.g., latency). Selecting the best configuration is non-

trivial as optimal choices can vary over time due to changes in video content, re-

source availability, or application requirements. Existing approaches rely on separate

modules, such as offline or online profiling, to select the best configuration [10, 7, 9].

While offline profiling is efficient, it cannot adapt to dynamic video content. Online

profiling offers adaptability but adds computational overhead. In both cases, config-

uration selection is decoupled from the core task (e.g., detection, tracking), limiting

overall efficiency.

Conditional Execution. Conditional execution, also known as dynamic or se-

lective execution, aims to reduce redundant computation by adapting the processing

strategy based on the input content. Early methods focused on coarse-grained, frame-

level decisions, such as frame skipping [11, 12], resolution scaling [13–15], or early

exit [16–18], where entire frames could be dropped, downsampled, or terminated early

in the processing pipeline depending on their perceived importance. These strategies

helped avoid unnecessary computation on static or uninformative frames. Recent

research has extended this concept to finer-grained, block-wise execution [19, 20]. In-

stead of treating a frame as a whole, these approaches selectively process only the

4

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

spatial regions within a frame that are likely to be informative, such as blocks contain-

ing target objects. By dynamically adjusting the computation granularity within a

frame, these methods further enhance efficiency while preserving task accuracy. Such

techniques are particularly valuable in edge environments, where computational and

communication resources are limited. However, developing an effective block-wise

conditional execution solution remains challenging. It requires accurate identifica-

tion of informative regions under diverse scene conditions, as well as efficient support

for selective execution at the block level. Furthermore, processing frames in a non-

uniform manner can lead to block artifacts, where inconsistencies between features

from processed and unprocessed (or lightly processed) blocks degrade overall task

performance. Another major challenge is that if block selection and block execution

are done independently, performance degradation may occur, as the selection is made

without awareness of how the selected blocks will ultimately impact the execution

results.

Accelerating ViT-based VAPs. Vision Transformers (ViTs) have recently

demonstrated superior performance over Convolutional Neural Networks (CNNs) in

a wide range of computer vision tasks, including object detection, semantic segmen-

tation, and video understanding [21]. Their ability to model long-range dependencies

and global context makes them attractive for complex video analytics. As a result,

ViT-based architectures have been increasingly adopted in VAPs. However, the high

computational complexity and memory footprint of ViTs pose significant challenges

for deployment on edge devices with limited resources. Unlike CNNs, which bene-

fit from local receptive fields and weight sharing, ViTs rely heavily on self-attention

mechanisms with quadratic complexity in sequence length, making them less efficient

5

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

in processing high-resolution video inputs. To address these challenges, recent re-

search has explored techniques such as layer pruning [22], network quantization [23],

and efficient attention mechanisms [24, 25] to reduce the inference cost of ViTs. While

these techniques improve efficiency, they are typically context-agnostic, applying uni-

form optimization strategies regardless of input content. This limits their ability to

adapt to spatial and semantic variations in real-world videos. In contrast, block-wise

conditional execution enables fine-grained, context-aware processing by selectively ac-

tivating computation only on informative blocks, making it a promising direction for

efficient ViT-based video analytics.

Distributed Processing. Conventional VAPs often adopt a simple design, where

entire frames are captured by a camera and transmitted one by one to a server for

processing [26]. This approach ignores the structural characteristics of the pipeline

and leads to unnecessary communication and computation overhead, especially when

large portions of the video contain uninformative content. Distributed processing in

video analytics refers to splitting the workload across multiple devices, such as cam-

eras, edge nodes, and cloud servers, to meet real-time and resource constraints. This

approach enables early filtering or lightweight analysis on resource-constrained devices

(e.g., smart cameras), while offloading heavier computation (e.g., object detection or

tracking) to more powerful nodes [27–31]. Effective partitioning and scheduling of

tasks in a distributed VAP are critical for minimizing end-to-end latency and pre-

serving bandwidth. However, fully exploiting the benefits of distributed processing

requires pipeline-aware optimizations. In the context of block-wise conditional exe-

cution, for instance, block selection can be performed on the camera side, and only

the selected blocks are transmitted for further processing. This fine-grained data flow

6

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

not only reduces transmission cost but also preserves task accuracy.

1.2 Contributions

This thesis, as summarized in Figure 1.1, contributes to the acceleration of VAPs on

resource-constrained edge platforms. It centers around two key directions: configu-

ration optimization and block-wise conditional execution.

Configuration Optimization – In Chapter 3, we present FastTuner, a frame-

work designed to optimize the configuration of multi-object tracking (MOT) pipelines

at runtime. At runtime, FastTuner periodically selects the best resolution and back-

bone model based on the input frame, and applies the selected configuration to per-

form object tracking. The key novelty of FastTuner includes:

• An efficient estimator that predicts the performance of different resolution and

model choices at one shot.

• A model-agnostic framework that unifies configuration selection and object

tracking within a shared model, eliminating the need for costly online profiling.

• Two distributed processing schemes that leverage FastTuner’s adaptability to

reduce both computation and communication overhead, enabling efficient de-

ployment on heterogeneous end-edge architectures.

Block-Wise Conditional Execution – The second thread of the thesis focuses

on reducing local spatial redundancy by selectively executing only the informative

blocks within each frame. We have developed two different approaches toward this

goal:

7

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Accelerating Object

Detection and

Tracking Pipelines

Configuration

Optimization

(FastTuner)

Block-Wise

Conditional Execution

RL-Based

(BlockHybrid)

End-to-End

(SEED)

A policy network for block selection

A framework for hybrid block-wise execution

A block-wise finetuning strategy for mitigating

block artifacts

A decision network for block selection

A unified framework consisting of a decision

network and a task network

A joint training strategy for optimal

coordination between both networks

An efficient configuration performance

estimator

A model-agnostic framework for configuration

optimization and object tracking

Different workload placement schemes

Figure 1.1: Overview of the contributions.

1) BlockHybrid (Chapter 4) is a framework that accelerates object detection

pipelines by hybrid block-wise executions. Its design decouples block selection from

execution, enabling a modular and flexible design compatible with both CNN- and

ViT-based detectors. The main contributions of BlockHybrid are as follows:

• A policy network trained via reinforcement learning (RL) that classifies image

blocks as “easy” or “hard” in each frame.

• A block-wise conditional execution framework that handles both types of blocks:

hard blocks are processed by a customized block-wise detector, while easy blocks

are handled by a lightweight tracker that propagates historical object informa-

tion across frames, effectively reducing redundant computation.

• A block-wise fine-tuning strategy that adapts the detector to non-uniform block-

wise inputs, mitigating accuracy degradation caused by block artifacts.

2) SEED (Chapter 5) proposes a fully end-to-end ViT-based selective execution

8

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

framework that tightly couples block selection with execution. Unlike BlockHybrid,

which trains the decision module and detector separately, SEED unifies them within

a single training and inference pipeline. The key contributions of SEED include:

• A lightweight decision network that identifies semantically informative blocks

based on the input.

• An end-to-end framework that unifies a decision network and a block-wise de-

tector, with its generalizability demonstrated through two variants employing

different selective execution strategies: SEED-TR (token reuse) and SEED-EE

(early exit), each offering a distinct trade-off between accuracy and efficiency.

• A multi-stage training strategy that jointly optimizes both networks to ensure

tight coordination between block selection and execution, improving overall

efficiency while mitigating block artifacts.

1.3 Organization

The main technical content of this sandwich thesis comprises two published journal

papers and one paper currently under review. The remainder of the thesis is organized

as follows:

• Chapter 2 provides an overview of VAP preliminaries, related work in accel-

erating VAPs, performance metrics, commonly used datasets and hardware.

• Chapter 3 presents FastTuner, a configuration optimization framework that

adaptively selects the best resolution and model variant at runtime to accelerate

MOT under dynamic video content.

9

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

• Chapter 4 describes BlockHybrid, a RL-based block-wise conditional execu-

tion framework that accelerates CNN- and ViT-based object detection pipelines

through decoupled block selection and execution.

• Chapter 5 introduces SEED, an end-to-end selective execution framework

that speeds up ViT-based object detection pipelines through unified block se-

lection and execution.

• Chapter 6 concludes the thesis by summarizing key insights, highlighting cur-

rent limitations, and discussing potential directions for future work.

10

http://www.mcmaster.ca/

Chapter 2

Background

© 2025 IEEE. This chapter is partially based on the manuscript: Renjie Xu, Saiedeh Razavi,
and Rong Zheng. “Edge Video Analytics: A Survey on Applications, Systems and Enabling Tech-
niques”, IEEE Communications Surveys and Tutorials, vol. 25, no. 4, pp. 2951–2982, 2023. DOI:
10.1109/COMST.2023.3323091.

11

https://doi.org/10.1109/COMST.2023.3323091

Ph.D. Thesis – R. Xu McMaster University – Computer Science

2.1 Preliminaries of Video Analytics Pipeline

Video analytics, also known as video content analysis, refers to the process of automat-

ically extracting valuable information and insights from video data using techniques

such as CV and DL. It involves recognizing patterns, detecting objects and tracking

movements in order to analyze, interpret, and understand video content and make

data-driven decisions. A VAP refers to a series of sequential steps or stages through

which the data passes to be transformed, analyzed, and processed in a VA application.

The pipeline represents the overall flow and organization of the various operations

and algorithms applied to the data, from the initial input to the final output. Each

stage in the pipeline typically focuses on a specific task or function, and the output

from one stage becomes the input for the next stage, allowing for a modular and

structured approach to processing the data.

Typically, a VAP is composed of multiple video processing modules, which can

vary across applications, as shown in Figure 2.1,

Frame Encoding and Decoding: Frame encoding reduces communication over-

head by compressing video frames before transmission [32]. In existing VAPs, encod-

ing is typically applied either on a per-frame basis or over multiple consecutive frames

grouped into a segment, depending on the application’s latency requirements [26]. For

latency-sensitive applications such as intelligent transportation systems (ITS) [33],

encoding and transmitting frames individually ensures minimal delay. In contrast,

applications with more relaxed latency constraints may batch frames into segments for

higher compression efficiency. Encoded data is often transmitted via live streaming

protocols such as real-time messaging protocol (RTMP), real-time streaming protocol

(RTSP), and web real-time communication (WebRTC). At the edge or cloud, frame

12

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Encoding Decoding
Pre-

Processing

★ Core Vision

Task

Downstream

Task

Post-

Processing

Object

Classification

Object Detection

Object Tracking

Image

Segmentation

End Edge

Network

Figure 2.1: Components of a video analytics pipeline.

decoding is performed to reconstruct the original content for downstream processing

in VAPs.

Pre-processing: After decoding, frames are pre-processed before being subject

to further analytics. The pre-processing operations include image resizing [34], crop-

ping [35], super-resolution [36], denoising [37, 36, 38], deblurring [38], dehazing [39],

and deraining [38]. In general, these operations aim to improve the view quality

and can therefore benefit the subsequent procedures. In real-world applications, a

video may contain multiple sources of noise. For instance, traffic videos captured at

night may suffer from poor illumination and motion blur. OpenCV [40], a well-known

library in image and video processing, implements a wide range of pre-processing al-

gorithms for image denoising, resizing, rotating, padding, normalization, color space

conversions, morphological operations, background subtraction for video motion de-

tection, etc.

Core Vision Task: In VAPs, the core vision task is the most important compo-

nent, as its output directly feeds into subsequent stages. Consequently, the perfor-

mance of the core task has a significant impact on the quality of downstream tasks

13

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

and the overall application. Recent research has primarily focused on optimizing the

accuracy-efficiency trade-off of the core task [2]. Common core tasks include object

classification, detection, tracking, and segmentation, all of which are classical vision

tasks in CV. In this thesis, we mainly focus on object detection and tracking tasks.

• Object Classification: Object classification, also known as object recognition or

object identification, maps an object into one of a finite set of classes. Early

object classification is primarily based on handcrafted features and shallow ma-

chine learning (ML) models. Methods such as Scale-Invariant Feature Trans-

form (SIFT) and Histogram of Oriented Gradients (HOG) are used to extract

features from images, which are then fed into classifiers like Support Vector Ma-

chines (SVM) or k-Nearest Neighbors (k-NN) [41, 42]. These methods, while

effective for certain scenarios, often struggle with variations in lighting, pose,

and scale. With the advent of DL, the paradigm shifted towards end-to-end

learning. CNN-based classifiers, such as ResNet [43] and MobileNet [44], have

become dominating approaches, leveraging large labeled datasets to predict the

class of target objects with remarkable accuracy, surpassing traditional ML-

based approaches.

• Object Detection: Object detection involves locating and recognizing objects in

frames. Traditional object detection methods first identify regions of interest

(RoIs), using image processing methods like background subtraction [45], frame

differencing [46], and optical flow [47, 48]. Once these regions are detected, they

are classified using an object classifier. Nowadays, object detection algorithms

typically leverage Deep Neural Networks (DNNs) to achieve high accuracy and

can be classified into two categories: two-stage and one-stage [49]. A two-stage

14

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

object detector first extracts RoIs, and then makes a separate prediction for each

of these regions. Faster region-based convolutional neural network (RCNN) [50]

represents a classical two-stage detector. It employs a region proposal network

(RPN) to generate region proposals and performs classification on these regions

separately. A one-stage object detector, in contrast, simply applies a single

DNN model for both object localization and recognition. The two tasks are cast

as a unified regression problem. The most widely-known one-stage detectors

include the YOLO family [51–53] and the SSD family [54]. In general, one-

stage detectors are much faster but less accurate than two-stage ones.

• Object Tracking : Object tracking is the process of locating objects and estimat-

ing their trajectories from a video sequence. Conventional methods follow the

tracking-by-detection paradigm [55], performing tracking sequentially using two

separate models [56, 57]. A detector first detects bounding boxes (bboxes) of ob-

jects in each frame, after which a re-identification (re-ID) model extracts visual

features from each bounding box and links the objects based on these features

and motion cues. Such two-stage methods, while effective, are computationally

intensive, especially when the scene is crowded. Recent advancements in multi-

task learning have led to joint models where detection and re-ID tasks share

a common backbone, significantly reducing inference time. These integrated

models are often termed one-shot trackers [58–61].

• Image Segmentation: Image segmentation involves partitioning an image into

multiple segments, each representing a distinct object or region. It simpli-

fies and changes the image representation into something more meaningful and

easier to analyze. Among the various types of image segmentation, semantic

15

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

segmentation assigns each pixel to a specific class, while instance segmentation

classifies each pixel and differentiates between distinct instances of the same

object class [62]. Panoptic segmentation, on the other hand, unifies the tasks of

semantic and instance segmentation, producing coherent labelling of all pixels,

considering both regions and objects [62]. These techniques can be integrated

with other CV tasks, such as object detection and tracking, to achieve a more

comprehensive understanding of scenes.

Downstream Task: Downstream tasks in a VAP build upon the structured

outputs generated by the core task to enable more application-specific analysis and

decision-making [2]. These tasks vary depending on the context, and may include

behavior analysis, trajectory forecasting, event detection, anomaly detection, or scene

understanding. For example, in traffic monitoring, downstream modules may use

object trajectories (generated by a tracking module) to predict vehicle intent or detect

potential collisions. In retail analytics, person detection and tracking results may feed

into customer flow modeling or dwell time estimation. Since downstream tasks rely

heavily on the correctness and timeliness of core task outputs, any degradation in core

task performance can lead to cascading errors and reduced system utility. Therefore,

efficient and accurate execution of the core task is critical to the robustness of the

entire pipeline.

Post-Processing: Post-processing at the final stage of a VAP refines and in-

tegrates the outputs of preceding tasks, ensuring that the pipeline delivers coherent

and reliable application-level decisions [2]. In some cases, post-processing also involves

fusing outputs from multiple downstream tasks to generate a unified interpretation of

the scene [63]. For example, in traffic monitoring, outputs from object tracking and

16

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

event detection may be combined to identify high-risk scenarios such as illegal lane

changes or near collisions. As such, effective post-processing is essential for delivering

accurate, stable, and actionable insights to end users.

2.2 Related Work

This section reviews prior research that closely relates to the core contributions of this

thesis. We focus on three key areas: configuration optimization in VAPs, block-wise

conditional execution for efficient inference, and the acceleration of ViTs.

2.2.1 Configuration Optimization in VAPs

In VAPs, configurations involve various tunable knobs: video quality (e.g., resolu-

tion, frame rate, bitrate) [64–71], DNNs [64, 66, 14, 72, 73], resource allocations (e.g.,

CPU cores, network bandwidth) [64, 66, 14, 74], camera parameters (e.g., brightness,

contrast, colorfulness, orientations) [75, 76], etc. Different configurations can yield

distinctive accuracy-latency trade-offs. Choosing a good configuration that maxi-

mizes execution efficiency while maintaining analytics quality can be accomplished

by first gathering information regarding execution characteristics, also known as pro-

files [77]. To acquire an accurate profile, one can conduct a one-time but exhaustive,

offline profiling. This process involves a profiler executing the pipeline under various

configurations and inputs, and outputting accuracy and latency measurements. The

inputs (i.e., frames) used in the profiling need to be representative of target applica-

tion scenarios. Profiling costs can be prohibitive since the configuration space tends

17

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

to grow exponentially with the number of knobs and their respective values. For in-

stance, VideoEdge [7] considers a configuration space of 1800 combinations stemming

from five knobs. VideoStorm [9], on the other hand, needs to profile 414 configura-

tions, requiring 20 CPU-days using a 10-minute video. Even though parallelism has

been exploited to accelerate profiling [9, 78], the high resource demand for exhaus-

tive profiling remains a challenge. To alleviate this problem, VideoEdge [7] merges

common components among multiple configurations and caches intermediate results

to avoid redundant executions. Another way to reduce profiling costs is to prune the

configuration space. ApproxDet [79] only profiles 20% of the configurations, at the

cost of generating a less accurate profile [78].

However, the static nature of offline profiling can lead to less relevant decisions

when scene changes are not reflected in profiled inputs. Moreover, video content can

vary greatly over time, which means that a configuration that is currently optimal may

lose its effectiveness in the future. To address these limitations, online profiling con-

ducts continuous profiling in a live environment, adapting to the temporal variability

of video content. Different from offline profiling, which is done once or infrequently

(e.g., once a day [10]), online profiling updates the profile periodically (e.g., every few

seconds or minutes [10]) during video streaming [2]. The main challenge of online

profiling lies in minimizing the overhead of periodic profiling, which, as stated ear-

lier, is substantial even when done once. To mitigate this challenge, Chameleon [10]

takes a two-step approach to perform online profiling. Initially, it conducts an ex-

haustive online profiling to profile all configurations, resulting in several candidate

configurations. Then, it exploits cross-camera correlation and video content consis-

tency to distribute and propagate these candidates, both spatially and temporally,

18

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

to amortize the cost of full profiling. It further reduces the configuration space by

exploiting independence among some knobs [10]. AWStream [78] combines offline and

online profiling. The initial offline profile is gradually refined via online profiling. For

efficiency, AWStream profiles only a subset of configurations, specifically those that

are Pareto-optimal (i.e., those on the Pareto frontier). A full profiling to update the

current profile is triggered only when additional resources become available.

Another line of work [75, 80, 15] utilizes specific feature extractors to map an image

to its feature representations. For example, LiteReconfig [80] and SmartAdapt [15]

use object average size, histograms of color (HoC), HOG, and feature embeddings

from a DNN feature extractor to characterize image content. These features are then

used to train a separate DNN that predicts the accuracy of a given configuration.

While the prediction process is efficient due to the lightweight nature of the accuracy

predictor, the feature extraction step can incur substantial overhead, as it involves

running multiple algorithms.

In this thesis, we focus on two knobs: resolution and backbone model, since these

are applicable across nearly all VAPs. Additionally, these two knobs have a significant

impact on the accuracy-latency trade-off. While other knobs (e.g., frame rate [65,

67, 81, 82, 32, 12]) are also important, they are orthogonal to our approach and

therefore excluded from the configuration space considered in FastTuner. Within this

context, FastTuner has several advantages compared to the aforementioned works.

Firstly, it eliminates the need of a separate online profiling step, which usually requires

significant time to perform exhaustively or partially at runtime. Instead, FastTuner

employs DNNs to learn the heatmap representations of different configurations offline

and then uses such knowledge to guide the decision making online. The performance of

19

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

different configurations can be obtained in one shot. Secondly, FastTuner integrates

the core task (i.e., the MOT task) with the sub-task (i.e., configuration decision

making) by sharing the backbone model rather than introducing a separate model

like [79, 16, 80, 15], further improving the end-to-end latency. Finally, FastTuner

exposes parameters for users to control desired accuracy-latency trade-offs for specific

application scenarios.

2.2.2 Block-Wise Conditional Execution

The key idea of conditional execution is to dynamically adjust the processing strat-

egy based on the input. This technique is initially applied at frame level. Frame

sampling [11, 12, 83–88] processes only a subset of frames, skipping irrelevant or less

informative ones. Adaptive resolution [13–15] dynamically adjusts frame resolution

based on scene complexity, reducing resolution for simpler frames while maintaining

high resolution for more challenging frames. Early-exit methods [16–18, 89–91] incor-

porate multiple exit points within a neural network, enabling simpler inputs to exit at

shallow layers while routing more complex ones through deeper layers for thorough

processing. While these approaches reduce resource consumption, they operate at

frame granularity and fail to adapt to the fine-grained variations within individual

frames.

Block-wise conditional execution adopts this principle by dividing frames into

smaller blocks, classifying them based on their complexity or importance, performing

distinct computations on each block type, and finally merging the results into a co-

hesive output [92–95]. The works along this line can be divided into two categories

based on whether the block size is 1) non-uniform or 2) uniform. FDDIA [94] and

20

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

EHCI [95] are two representative works in the first category. They identify the infor-

mative blocks by expanding the regions around the detection results from the previous

frame. The selected blocks are cropped from the input frame and sent to the server.

Since these blocks are non-uniform in size, a rectangle-packing algorithm is applied to

merge them into a compact frame, on which frame-wise detection is performed. The

detection results are finally mapped back to the original frame. As the SOTA work in

the second category, BlockCopy [19] employs a policy network to determine informa-

tive blocks based on the motion information between two consecutive frames. Due to

their uniform sizes, the blocks are batch-processed by a specialized detector designed

to handle blocks as inputs and produce corresponding features [20]. For uninforma-

tive blocks, their features are directly copied from the previous execution. Finally, the

features from all blocks are merged into complete feature maps to generate bboxes.

All the feature-level operations are enabled by customized CUDA operators. These

operators can be directly applied to standard CNN-based detectors, enabling them to

perform block-wise detection tasks without additional modifications. ViTs naturally

support block-wise execution, as they are designed to handle variable-length patch

sequences. Arena [96] partitions frames into uniform patches and performs full-frame

processing at regular intervals. The tokens of these patches are cached for reuse. In

the intermediate frames, informative patches are sampled from the expanded regions

of detection results from the previous frame. Only the selected patches pass through

a ViT encoder for self-attention computation. The resulting tokens are then merged

with the cached tokens to reconstruct the complete token sequence via a single-layer

decoder. Finally, the reconstructed token sequence is fed into a detection head to

generate bboxes.

21

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

BlockCopy and Arena both fail to further distinguish between hard and easy

blocks. Instead, they process all informative blocks with the same detector. As a re-

sult, significant computational resources are wasted by running heavy models on easy

blocks, thereby missing the opportunity to further accelerate the pipeline. In Block-

Hybrid, we propose a novel approach, called block-hybrid conditional execution, which

goes beyond the conventional definition of informative blocks by further differentiat-

ing blocks into hard and easy categories. Hard blocks are processed by a detector,

while easy blocks are handled by a lightweight tracker. In this way, BlockHybrid

dynamically allocates computation resources based on block difficulty, reducing un-

necessary overhead while maintaining accuracy. Another limitation of prior works

is the decoupling of block selection and execution. BlockCopy relies on a policy

network that is not jointly optimized with the detector, which may result in block

artifacts and compromise accuracy. EHCI, FDDIA, and Arena, on the other hand,

determine informative blocks by enlarging regions around past bboxes to ensure cov-

erage. While this strategy helps retain target objects, it often results in redundant

computation, particularly in cluttered scenes. Moreover, although block-wise fine-

tuning [96] improves the detector’s robustness to block artifacts, their block selection

remains simplistic and decoupled from the detector, leading to a suboptimal trade-

off between accuracy and efficiency. To address this challenge, we propose SEED, a

lightweight, context-aware, and end-to-end trainable framework that can judiciously

select blocks within each frame while minimizing redundant computation. SEED

jointly optimizes block selection and selective execution, offering improved efficiency

without sacrificing accuracy.

22

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

2.2.3 Vision Transformer Acceleration

Many techniques have been proposed to accelerate ViTs, motivated by their high

computational cost. One line of work improves the efficiency of self-attention. Stan-

dard self-attention suffers from quadratic complexity with respect to the token count,

making it a computational bottleneck in ViTs, especially for long-sequence inputs.

To alleviate this, several methods [97–99] approximate the attention module to re-

duce its complexity to linear time, significantly improving efficiency while maintaining

competitive performance.

Another line of work focuses on reducing the number of tokens processed during

inference. Token pruning aims to discard less informative tokens to reduce compu-

tation. DynamicViT [100] introduces a learnable module that dynamically prunes

tokens based on their importance, primarily for classification tasks. SViT [101] ex-

tended this idea to dense tasks such as object detection and segmentation. It preserves

pruned tokens in the feature maps and optionally reactivates them later, which proves

essential for maintaining performance. It also adopts input-adaptive pruning rates

and shows that lightweight selectors, such as a 2-layer feed-forward network (FFN

or MLP), suffice for effective token selection. Token merging takes a different ap-

proach by retaining all information and merging similar tokens instead of discarding

them. ToMe [102] progressively merges redundant tokens based on feature similarity

in a lightweight manner. Token summarization further improves upon merging by

selecting a few representative tokens that summarize global context. Instead of rely-

ing on similarity or attention patterns, GTP [103] learns task-specific summarization

strategies and performs better than pure pruning or merging in scenarios requiring

long-range contextual reasoning.

23

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

These techniques are orthogonal to SEED and can be incorporated to further

boost efficiency. While SEED reduces spatial redundancy by selective block execution,

token reduction and attention optimization operate at the feature and attention levels,

making these techniques complementary to each other.

2.3 Datasets

The vision tasks addressed in this thesis primarily include multi-object tracking and

object detection. Accordingly, we adopt the most widely used benchmark datasets

in these domains to evaluate the proposed methods, as shown in Table 2.1. These

datasets offer diverse scenes and realistic motion patterns, making them well-suited

for assessing the accuracy and robustness of the approaches.

• MOT17 [104]: The MOT17 dataset is a popular benchmark for evaluating

MOT methods. It consists of 14 video sequences taken from various real-world

scenarios, including pedestrians in a busy city environment. The dataset in-

cludes static and moving cameras, capturing both indoor and outdoor envi-

ronments with diverse viewpoints (low, medium and high), lighting conditions

(from daylight to nighttime), and weather conditions (sunny, cloudy, etc.). It

also contains various occlusion levels, where pedestrians are partially or fully

obscured by objects or other individuals, providing a comprehensive evaluation

environment for tracking algorithms. MOT17 can also be adapted for evaluating

object detection methods, as it provides bbox annotations for each frame.

• WildTrack [105]: WildTrack is a multi-camera pedestrian detection bench-

mark designed for evaluating advanced computer vision algorithms in real-world

24

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

scenarios. It consists of synchronized video footage captured from 7 calibrated

cameras covering a public square. Since the official bounding box annotation is

provided at only 5 FPS, we manually decode the raw videos and use YoloV8 [106]

to generate annotations at 30 FPS. For each camera, we use the first 2000

frames.

• ImageNet [107]: ImageNet is a large-scale image classification dataset con-

taining over 1 million labeled images across 1,000 categories. It is widely used

for pretraining backbone networks in computer vision. In this thesis, we use

ImageNet-pretrained weights to initialize the backbone of our detection models

to accelerate convergence and improve downstream performance.

• Microsoft COCO [108]: The Microsoft COCO dataset is a large-scale bench-

mark for object detection, segmentation, and captioning. It contains over

150,000 labeled images across 80 object categories with rich contextual diver-

sity. In this thesis, COCO is used to pretrain the entire model to provide a

strong initialization before fine-tuning on downstream datasets such as MOT17

and WildTrack.

2.4 Performance Metrics

The performance of the proposed methods is evaluated from two key perspectives:

accuracy and efficiency. For accuracy, we adopt Multiple Object Tracking Accuracy

(MOTA) and mean Average Precision (mAP), which are standard metrics for eval-

uating multi-object tracking and object detection, respectively [2, 109, 110, 96]. For

25

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

MOT17-02 MOT17-04 MOT17-05 MOT17-09

MOT17-10 MOT17-11 MOT17-13

Figure 2.2: MOT17 dataset.

WildTrack-Cam1 WildTrack-Cam2 WildTrack-Cam3 WildTrack-Cam4

WildTrack-Cam5 WildTrack-Cam6 WildTrack-Cam7

Figure 2.3: Wildtrack dataset.

efficiency, we measure network traffic and end-to-end latency, capturing the commu-

nication and runtime overhead critical to edge deployment.

• Multiple Object Tracking Accuracy: MOTA is defined as:

MOTA = 1−
∑

t FPt + FNt + IDSWt∑
t GTt

, (2.4.1)

where t is the frame index, FPt, FNt and IDSWt stand for false positives (FPs),

false negatives (FNs), and identity switches (IDSWs) and GT is the number

26

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

of ground truth objects. MOTA ranges from −∞ to 1, where a higher score

signifies better tracking performance.

• Mean Average Precision: mAP@0.5 refers to mean Average Precision at

an Intersection over Union (IoU) threshold of 0.5. A detection is considered

correct if its IoU with a ground-truth bbox exceeds 0.5. This metric assesses

the model’s ability to correctly localize and identify objects.

• Network Traffic: While communication may not always be the primary bot-

tleneck, minimizing data transmission overhead remains essential in edge de-

ployments, where bandwidth is often constrained. We measure network traffic

as the average data size per transmission. To ensure consistency across datasets

with different average data sizes, all reported values are normalized by the av-

erage full-frame size of the corresponding dataset.

• End-to-End Latency: This metric is critical for time-sensitive applications

that require rapid response. It measures the total time elapsed from the acqui-

sition of a video frame on the camera to the completion of its processing on the

server. This process may include data compression and decompression, data

transmission, model inference, and post-processing.

2.5 Hardware

Edge video analytics often runs on resource-constrained hardware platforms that

must balance computation and communication overheads. NVIDIA Jetson platforms

are among the most widely used hardware solutions for such applications, offering

integrated CPUs and GPUs optimized for edge artificial intelligence (AI) workloads.

27

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

In this thesis, we adopt a hardware platform consisting of an NVIDIA Jetson

TX2, a Dell XPS 8950 desktop and a high-performance server (called Turing server).

The Jetson TX2 runs JetPack 4.6.1 and represents a low-end device commonly used

in edge computing [111–113]. The desktop is equipped with an Intel i7-12700 CPU,

16GB RAM, and an NVIDIA GTX 3060 GPU, running Ubuntu 20.04, PyTorch 1.9,

and CUDA 11.1. The server is equipped with an Intel Xeon E5-2620 v4 CPU, 64GB

RAM, and four NVIDIA Tesla P100 GPUs (one utilized), operating on Red Hat En-

terprise Linux Server (RHEL) 7.9 with PyTorch 1.7 and CUDA 11.4. All devices are

connected via a 2.4GHz Wi-Fi network, provided either by a D-Link AX4800 router

or the campus wireless infrastructure, emulating a realistic end-edge deployment. A

snapshot of the hardware platform is shown in Figure 2.4. The specifications of these

devices are reported in Table 2.2.

• Benchmark Evaluation: All computations are executed locally on the desk-

top to measure computational efficiency under controlled conditions. This set-

ting allows us to compare the raw performance of different methods without

interference from network or system heterogeneity.

• Testbed Evaluation: This setting reflects a practical edge deployment sce-

nario, where the VAP is distributed between the Jetson TX2 (serving as the

smart camera), and either the desktop or the server (serving as the edge server).

The camera is responsible for early-stage processing such as frame acquisition,

resizing, and lightweight inference, while the edge server handles more compute-

intensive tasks. This setup enables an end-to-end evaluation of the pipeline in

a realistic edge environment.

28

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

D-Link AX4800

Edge Server with a

NVIDIA 3060 GPU

NVIDIA Jetson TX2

Figure 2.4: Snapshot of the hardware platform used in this thesis.

29

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

T
ab

le
2.

1:
D

et
ai

ls
of

th
e

d
at

as
et

s

D
at

as
et

R
es

ol
u

ti
on

F
P

S
S

eq
u

en
ce

s
B

ox
es

F
ra

m
es

C
am

er
a

C
o
n

d
it

io
n

M
O

T
17

19
20
×

10
80

,
64

0
×

48
0

30
,2

5,
14

1
4

30
0,

37
3

11
,2

35
st

a
ti

c,
m

ov
in

g
in

d
o
o
r,

o
u

td
o
or

W
il

d
T

ra
ck

19
20
×

10
80

60
7

44
0,

80
0

14
,0

00
st

a
ti

c
o
u

td
o
o
r

Im
a
ge

N
et

va
ri

ab
le

–
–

–
1
,4

31
,1

67
–

in
d

o
o
r,

o
u

td
o
or

C
O

C
O

va
ri

ab
le

–
–

88
6,

28
4

1
63

,9
57

–
in

d
o
o
r,

o
u

td
o
or

T
ab

le
2.

2:
S
p

ec
ifi

ca
ti

on
s

of
th

e
d
ev

ic
es

C
o
m

p
on

en
t

D
ev

ic
e

C
P

U
G

P
U

R
A

M
O

S
S

o
ft

w
a
re

T
F

L
O

P
S

C
am

er
a

N
V

ID
IA

J
et

so
n

T
X

2
N

V
ID

IA
D

en
ve

r
2

+
A

R
M

C
or

te
x
-A

5
7

N
V

ID
IA

P
a
sc

al
2
56

co
re

8
G

B
U

b
u

n
tu

18
.0

4
J
et

P
a
ck

4
.6

.1
1.

3

E
d

ge
S

er
ve

r
D

el
l

X
P

S
89

50
In

te
l

i7
-1

2
7
0
0

N
V

ID
IA

G
T

X
30

6
0

16
G

B
U

b
u

n
tu

20
.0

4
P

y
T

o
rc

h
1
.9

C
U

D
A

1
1.

1
12

.7

E
d

ge
S

er
ve

r
T

u
ri

n
g

S
er

ve
r

In
te

l
X

eo
n

E
5
-2

6
2
0

v
4

N
V

ID
IA

T
es

la
P

1
0
0

64
G

B
R

H
E

L
7
.9

P
y
T

o
rc

h
1
.7

C
U

D
A

1
1.

4
21

.2

30

http://www.mcmaster.ca/

Chapter 3

FastTuner: Fast Resolution and

Model Tuning for Multi-Object

Tracking in Edge Video Analytics

© 2025 IEEE. This chapter is based on the manuscript: Renjie Xu, Keivan Nalaie, and Rong
Zheng. “FastTuner: Fast Resolution and Model Tuning for Multi-Object Tracking in Edge Video
Analytics”, IEEE Transactions on Mobile Computing, vol. 24, no. 6, pp. 4747–4761, 2025. DOI:
10.1109/TMC.2025.3526573.

31

https://doi.org/10.1109/TMC.2025.3526573

Ph.D. Thesis – R. Xu McMaster University – Computer Science

3.1 Introduction

Cameras are ubiquitous in our cities nowadays. Vision-based multi-object tracking, a

task that aims to estimate trajectories for objects of interest in video feeds, is a pillar

of VAPs. It can drive a wide spectrum of downstream applications, such as security

surveillance, sports analysis and traffic control.

Conventional MOT methods follow the tracking-by-detection paradigm, where ob-

ject detection and association tasks are performed by separate models [56, 57]. A

detection model firstly detects objects (represented as bboxes) in each frame, after

which a re-ID model extracts object features (also known as re-ID features) from each

bounding box and links the objects based on these features and motion cues. While

effective, these two-stage methods have high computation complexity. The separate

processing of each bounding box with distinct re-ID models impedes real-time per-

formance when the number of objects is large. With the development of multi-task

learning, a recent trend is to combine both tasks in a joint model, where a re-ID

branch and a detection branch share the same backbone model [58–61]. By reusing

features for both tasks, the inference time is significantly reduced.

However, achieving real-time performance in EVA systems remains a challenge for

current MOT methods due to the resource limitations on edge devices and substantial

communication overheads in geographically distributed settings. In this study, we

aim to accelerate MOT pipelines by tuning configurations. A configuration refers to

a particular combination of knobs. A MOT pipeline can have several knobs, such as

frame resolution and backbone model (hereinafter referred to as “model”). The choice

of configuration can impact both accuracy and latency. For instance, using a high

frame resolution (e.g., 1080p) and a high-complexity model allows accurate detection

32

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

of objects but also incurs substantial processing time. The optimal configuration

can be defined as the one with the lowest latency whose accuracy is over a desired

threshold. The threshold is usually application-dependent and specified by users.

Due to the dynamic nature of video content, the optimal configuration varies over

time, often at a timescale of minutes or even seconds [10]. For example, we may

use a low frame resolution (e.g., 360p instead of 1080p) when objects are close-by

and stationary (e.g., at a traffic stop), without impacting the tracking accuracy. In

contrast, for distant objects, a higher resolution is needed to maintain accuracy.

Therefore, to achieve a good trade-off between accuracy and latency, one needs to

consider the intrinsic dynamics of video feeds and adapt the pipeline configurations

accordingly. The key challenge is how to efficiently identify the optimal configuration

at runtime. The timeliness of such decisions is critical, as any delay may cause them to

become outdated, thereby compromising the efficiency of the system. Some existing

works [10, 78] employ online profiling to identify the optimal configuration. However,

the profiling cost could be prohibitively expensive as the configuration space grows

exponentially with the number of knobs and their corresponding values. Despite

efforts to accelerate this process by pruning the configuration space, the profiling cost

remains significant, hindering efficient configuration selection.

To bridge the gaps, we propose FastTuner, a model-agnostic framework to ac-

celerate MOT pipelines by adapting resolutions and backbone models based on the

characteristics of video content. Notably, it differs from the prior works [10, 78] in two

aspects. First, FastTuner predicts the performance of different configurations in one

shot instead of profiling them one by one. Second, rather than performing the MOT

task and the configuration selection task separately, FastTuner unifies the two tasks

33

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

by sharing a common backbone model between them. Reusing backbone features for

both tasks further improves computation efficiency. This design makes FastTuner

model-agnostic, meaning that it can seamlessly work with any fully convolutional

network (FCN)-based one-shot tracker (e.g., JDE [59], CenterTrack [60] and Fair-

MOT [61]). In the inference stage, FastTuner runs the most expensive configuration,

also known as the golden configuration [10] every K frames to determine the optimal

configuration based on the heatmaps produced by the detectability branch. Object

detection and association are then done by the tracking branch using the selected

configuration in the next K − 1 frames.

In real-world deployments, to facilitate application-specific trade-offs between ac-

curacy and latency, FastTuner affords users tunable parameters, which result in dif-

ferent combinations of resolutions and models. In addition, we design two workload

placement schemes between a smart camera and an edge server, that is, Edge Server

Only with Adaptive Transmission (SOAT) and Edge Server-Assisted Tracking (SAT).

Both schemes take advantage of the reduced frame size and model size offered by Fast-

Tuner to decrease the amount of data transmitted over the network and the workloads

on the camera.

To evaluate the performance of FastTuner, we conduct experiments on a public

MOT dataset and a small-scale testbed consisting of an NVIDIA Jetson TX2 board

and a server with Tesla P100 GPUs. FastTuner can achieve a better trade-off be-

tween tracking accuracy and latency. In comparison to the state-of-the-art (SOTA)

approaches, FastTuner is able to accelerate the computation up to 2.5%–25.5% with

a 1.1%–9.2% improvement in MOTA.

In summary, our key contributions are as follows:

34

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

• We conduct a quantitative study on the impact of frame resolutions and back-

bone models on tracking accuracy and latency.

• We propose a model-agnostic framework FastTuner, which aims to accelerate

MOT pipelines by adapting frame resolutions and backbone models at runtime.

• We design two workload placement schemes for MOT applications, to accelerate

end-to-end processing by taking full advantage of FastTuner’s adaptability to

reduce the network traffic load and computational load.

• We implement and deploy a prototype of FastTuner on commodity devices for

performance evaluation.

3.2 Motivation

In this section, to motivate the design of FastTuner, we study the trade-off between

tracking accuracy and latency of MOT pipelines for different frame resolutions and

backbone models. Additionally, we investigate how changes in visual content can

affect such trade-offs, and discuss the limitations of prior approaches.

3.2.1 Effects of Frame Size and Model Size

In MOT, the selection of input resolution and backbone model can significantly impact

the trade-off between tracking accuracy and latency. To understand this, we conduct

experiments using a SOTA tracker, FairMOT on a Tesla P100 GPU server using

the MOT17 dataset [104]. FairMOT employs DLA-34 [114] as its backbone model,

35

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

which is a combination of ResNet-34 and deep layer aggregation (DLA) for multi-

scale feature fusion. It also includes two branches for object detection and re-ID.

The detection branch, built on CenterNet [115], uses three parallel heads to estimate

heatmaps, object center offsets, and bounding box sizes. The re-ID branch estimates

re-ID features for each pixel to characterize the object centered at the pixel. The

features at the predicted object centers from both branches are used for tracking. By

manipulating the number of channels within each layer of DLA-34, we can generate

variants of different sizes. Full-DLA-34 represents the original model, while Half- and

Quarter-DLA-34 scale this number down by half and a quarter, respectively. Such

scaling is widely adopted to generate backbone models of different sizes [43, 116, 117].

Table 3.1 and Table 3.2 show the tracking accuracy (i.e., MOTA) and speed (i.e.,

Frames Per Second, FPS) of FairMOT with different input resolutions and backbone

models. Note that the FPS measurements include data transferring time between

CPU and GPU, model inference time, and post-processing time for object association.

It is evident that higher resolutions and larger models can produce higher tracking

accuracy but require more processing time (and thus lower FPS). However, FPS is

not inversely proportional to the frame size and the number of model parameters.

Several key factors contribute to this. First, the time to transfer data from CPU to

GPU grows non-linearly with data volume, depending on the specific hardware and its

optimization. Second, the actual number of multiply-accumulate operations (MACs),

represented as FLOPs, is not proportional to the number of parameters in DNNs due

to convolution layers. GPU optimization also plays a role. Large volumes of data can

exploit the inherent parallel computing capabilities of GPUs, which results in a sub-

linear increase in processing time as input data expands. Finally, the post-processing

36

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 3.1: MOTA and FPS of FairMOT+Full-DLA-34 with different input
resolutions

Resolution (px) FLOPs MOTA FPS
1088× 608 72.9B 70.7 16.5
864× 480 45.7B 68.8 22.0
704× 384 29.8B 65.0 28.1
640× 352 24.8B 62.9 28.9
576× 320 20.3B 58.9 30.8

Table 3.2: MOTA and FPS of FairMOT with different backbone models at full
resolution

Backbone # Params FLOPs MOTA FPS
Full-DLA-34 20.4M 72.9B 70.7 16.5
Half-DLA-34 5.3M 27.4B 65.5 24.8

Quarter-DLA-34 1.5M 12.0B 60.2 27.9

time is input-dependent and can vary based on the number of detected objects in

MOT.

3.2.2 Dynamics of Visual Content

To gain insights on the impact of different configurations on MOT performance over

time, we run FairMOT [61] on two video sequences in the MOT17 dataset. To

quantify the detection quality, we define detection rate as the number of detected

objects normalized by the number of ground truth objects. Figure 3.1 illustrates the

detection rate of FairMOT with different input resolutions and backbone models. As

expected, in both trials, a lower resolution (e.g., 576 × 320 px) or a smaller model

(e.g., Quarter-DLA-34) negatively impacts the detection rate in general. However,

for some frames, such as frame 135 and frame 240 in MOT17-09, the detection rates

are close for all resolutions and models. This can be explained by the dominance of

37

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Frame 250 Frame 350Frame 145

Frame 240Frame 135Frame 35

M
O

T
1

7
-0

9
M

O
T

1
7

-1
3

Figure 3.1: Detection rate using FairMOT with different input resolutions and
backbone models on two video sequences of MOT17 dataset.

close and bigger objects in those frames. Consequently, lower resolutions and smaller

models can be used without compromising accuracy. In contrast, for frame 35 in

MOT17-09, since the objects are dense and overlap with each other in the camera

view, the detection rates across different configurations vary a lot and only the highest

resolution and the largest model can produce good results. Similar observations can

be made in MOT17-13. For frame 145, all the configurations can maintain good

detection rates, since the objects are sparse and closer. However, for frame 250

and 350 where the objects are far away and small in size, only the most expensive

38

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

configuration can yield good results.

In conclusion, these observations reveal that the dynamics in video content offer

opportunities for configuration adaptation. It is feasible to accelerate computation

by adopting less resource-intensive configurations such as lower resolutions or smaller

models, without degrading analytics quality for some scenes.

3.2.3 Efficient and Effective Configuration Decision

Conventional methods [10, 78] rely on separate online profiling to identify the optimal

configuration, which is time consuming on resource-limited edge devices. The profiling

overhead can grow exponentially with the configuration space. With m knobs and n

values per knob, an exhaustive profiling would involve O(nm) configurations. Various

techniques have been proposed to reduce this overhead, such as reducing the search

space from O(nm) to O(mn) by assuming independence among the knobs [10], or

further to O(k) by eliminating inferior configurations, where k is much smaller than

nm [15]. However, despite these optimizations, the overhead remains substantial

for edge devices, since profiling requires executing the inference pipeline for each

candidate configuration. SmartAdapt [15] addresses this challenge by first extracting

various features from the image and then training a lightweight DNN to predict the

performance of a given configuration. However, this approach has its limitations.

The selection of features requires domain expertise, and an unsuitable choice may

fail to accurately characterize the image content. Additionally, feature extraction for

performance prediction for each configuration incurs extra computation time (around

100 ms per run on NVIDIA Jetson TX2, as reported in [15]). Using a dedicated DNN

to directly map the image to certain representations that can be used to predict

39

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

performance of multiple configurations at the same time can still incur significant

overhead. Motivated by the need to drastically reduce online profiling overhead, we

propose a novel design that integrates configuration selection and object tracking into

a shared model, combining these tasks to achieve both efficiency and accuracy.

Another limitation of most existing works in this line is that they target object

detection tasks, where configurations can be switched on a frame-by-frame basis with

minimal impact on detection performance. However, this approach is no longer true

for MOT tasks, which require consistent object features over time for feature-based

object association [59–61]. Frequent and arbitrary changes in resolution or model at

the frame level break the consistency of object features across frames, leading to a

decline in tracking accuracy. How to effectively perform configuration optimization

in MOT tasks remains unexplored.

3.3 Methodology

FastTuner aims to efficiently adapt frame resolutions and backbone models based

on video content. Switching between models with different architectures (e.g., from

ResNet to VGG) [10] poses challenges in MOT tasks, since different model archi-

tectures can result in inconsistent re-ID feature distributions, negatively impacting

object association [118]. Moreover, the optimal setting for re-ID feature dimension

varies across architectures [61], making inter-architecture switching non-trivial as it

necessitates feature space alignment [118]. To mitigate these issues, we focus on

switching models of different sizes within the same architecture (called model vari-

ants), such as switching from a full model to a half model. In real-world applications,

it is often more practical to create model variants with different accuracy-latency

40

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

trade-offs by pruning the channel dimensions or the number of layers, rather than

preparing entirely different models, since the trade-offs of variants tend to be more

predictable, whereas entirely different models may produce significantly different and

less predictable trade-offs [119].

In contrast to existing works [10, 78] that rely on multiple executions of the

pipeline with various configurations, FastTuner reduces the complexity of online pro-

filing through two key ideas. First, we use a single DNN to learn the heatmap

representations of different configurations. By integrating the DNN into a tracker,

the framework can perform configuration selection and MOT with minimal extra

overhead. Second, we use detection rate as a surrogate to estimate the tracking per-

formance of different configurations. Tracking performance is intrinsically tied to

detection quality—configurations with accurate detection results are likely to yield

robust tracking performance [120]. Compared to tracking accuracy, which can only

be assessed over multiple frames and with the knowledge of ground truth label, we

show in this section that the detection rate of a configuration can be predicted over

a single frame using the heatmap associated with the configuration and the golden

one.

3.3.1 Algorithm Overview

Figure 3.2 illustrates the FastTuner pipeline. It consists of multiple branches: a

detectability branch, a re-ID branch and a detection branch, all sharing a common

backbone model. The detection branch contains three heads outputting heatmaps

Ĥ ∈ [0, 1]E×H
′×W ′ , box sizes Ŝ ∈ R2×H×W and center offsets Ô ∈ R2×H×W , where

E is the number of object classes (E = 1 in this study), H ′ = H
4

, W ′ = W
4

and H,

41

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Re-ID

Detection

Detectability

Association

Configuration
Selection

Re-ID Embeddings

Extract Features
…

Re-ID Features

Heatmap Tensor

…

Heatmaps of Different Configurations

Extract

Controller

Backbone

Triggered Every K Frames

Optimal Input Resolution and Backbone Model

Switch Input Resolution Switch Backbone Model

Heatmap

Box Size

Center Offset

Figure 3.2: Pipeline of FastTuner, with a detectability branch and a tracking branch
sharing a common backbone model.

W are the height and width of the input image. A heatmap is a two-dimensional

array, where each pixel value in the range of [0, 1] represents the likelihood of an

object’s center being located at that pixel. The re-ID branch generates re-ID feature

embeddings Ê ∈ RD×H×W , where D denotes the feature dimension. The re-ID feature

Êx,y ∈ RD of an object centered at (x, y) can be extracted from the embeddings. The

object association is done based on the results from the two branches, following [61].

For simplicity, we use tracking branch to refer to the combination of the re-ID and

detection branches.

The head in the detectability branch produces the heatmap tensor T̂ ∈ [0, 1]P×H
′×W ′ ,

where P denotes the number of configurations. The i-th channel of the tensor is the

heatmap T̂i ∈ [0, 1]H
′×W ′ of the configuration Ci, where i = 1, 2, . . . , P . Based on

42

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

these heatmaps, the configuration selection module identifies the optimal configura-

tion that can preserve the detectability of the golden configuration (i.e., the most

accurate yet computationally expensive configuration) while producing the minimum

execution latency.

In the inference stage, to capture the dynamics of video content, the detectability

branch is triggered every K frames to identify the optimal configuration, given a

full-resolution (FR) input. A controller then switches the input resolution and the

backbone model of the pipeline. The subsequent K − 1 frames are handled by the

tracking branch with selected configuration. Notably, any FCN-based one-shot tracker

could be adopted in the tracking branch, which makes FastTuner model-agnostic. To

demonstrate the feasibility of the idea, we build this branch on top of FairMOT [61], a

SOTA tracker. Note that the detectability branch, configuration selection module and

controller in Figure 3.2 are the core components of FastTuner, while the remaining

are derived from FairMOT.

3.3.2 Multi-Task Learning

As discussed previously, the detectability branch of FastTuner generates heatmap

representations of various configurations. This involves learning a transformation

R3×H×W 7→ [0, 1]P×H
′×W ′ , which maps an RGB image to a heatmap tensor. This

transformation is learned through several steps. Firstly, a training set comprising

images of different resolutions is prepared by resizing the original full-resolution RGB

images. Next, a base tracker (e.g., FairMOT) is run on this multi-resolution train-

ing set using different backbone models. This generates the centers and corners of

the bounding boxes for detected objects in each frame. These coordinates are then

43

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

upscaled to match those in a full-resolution frame. Lastly, following the approach

of CornerNet [121], a 2D Gaussian filter is applied over each object center. Pixels

outside the bounding boxes are penalized according to their distance to the cen-

ters of those bounding boxes. Specifically, consider a frame and a detected object

within that frame with center coordinates (ai, bi) from configuration Ci. Its loca-

tion on the feature map is obtained by dividing the stride (a′i, b
′
i) = (bai

4
c, b bi

4
c).

Then the corresponding heatmap response at the location (xi, yi) is computed as

Yi,x,y = exp(− (xi−a′i)2+(yi−b′i)2
2σ2
i

), where a Gaussian kernel is applied and σi represents

the standard deviation. These heatmaps, constructed offline using the detection re-

sults from different configurations, act as ground truth labels to train the detectability

branch of FastTuner. In this way, given a full-resolution image, FastTuner can effi-

ciently estimate the heatmap representations of all the configurations in the online

stage.

We define the total detectability loss using pixel-wise logistic regression with focal

loss [122] as:

Ldetectability = − 1

N

∑
i,x,y


f(Ŷi,x,y) Yi,x,y = 1;

g(Yi,x,y, Ŷi,x,y) otherwise,

(3.3.1)

where

f(Ŷi,x,y) = (1− Ŷi,x,y)α log (Ŷi,x,y),

g(Yi,x,y, Ŷi,x,y) = (1− Yi,x,y)β(Ŷi,x,y)
α log (1− Ŷi,x,y),

(3.3.2)

Ŷi,x,y is the predicted heatmap of configuration Ci, α and β are pre-set parameters

in focal loss (following the setting in [121]), and N is the number of objects in the

frame.

44

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Finally, in order to perform configuration selection and object tracking in a shared

model, we employ multi-task learning to jointly train the tracking and detectability

branches using the following loss function:

Ltotal = Ltracking + λLdetectability, (3.3.3)

where λ is a pre-determined parameter to balance the two tasks, and Ltracking is the

loss function of the tracking branch defined as:

Ltracking =

1

2

(
1

eω1
(Lheatmap + Lbox) +

1

eω2
Lidentity + ω1 + ω2

)
,

(3.3.4)

which consists of learnable parameters ω1 and ω2, heatmap loss, box-size loss, and

re-ID loss defined in [61]. This loss function dynamically balances the tasks based

on learned uncertainties [123], represented by ω1 and ω2. The exponential function

ensures these weights remain positive, while the addition of ω1 and ω2 acts as regu-

larization, preventing them from increasing too much.

3.3.3 From Heatmaps to Tracking with Adaptive Configura-

tions

In the inference stage, every K frames, the head in the detectability branch predicts

heatmaps Ŷi, i = 1, 2, . . . , P . These heatmaps are then converted to their binarized

versions B̂i ∈ {0, 1}H
′×W ′ , with pixels over the threshold τ set to 1, otherwise 0.

These binarized heatmaps are finally used by the configuration selection module for

decision-making.

45

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

The problem of selecting the optimal configuration is formulated as:

C′ =

{
i ∈ {1, 2, . . . , P} |

∑H′,W ′

x,y B̂i,x,y · B̂max,x,y∑H′,W ′

x,y B̂max,x,y

≥ γi

}
,

i∗ = argmini∈C′ Li,

(3.3.5)

where Li is the latency of executing configuration Ci, B̂max is the binarized heatmap of

the golden configuration, and γi ∈ [0, 1] is a user-specified threshold for configuration

Ci. γi reflects user tolerance of degradation in detectability. If the estimated detec-

tion rate of Ci exceeds the corresponding threshold, this configuration is a candidate

configuration. The configuration with the minimum latency in the candidate set C′

will be selected as the optimal configuration Ci∗ and applied to the next K−1 frames.

The latency of each configuration is obtained by offline profiling [10, 9, 7, 78, 16, 79].

Once the optimal configuration is decided, the tracking branch proceeds to extract de-

tections (i.e., bounding boxes) and re-ID features from the heads and perform object

association accordingly. For the remaining K − 1 frames, only the tracking branch

is executed to perform object tracking based on the selected configuration. In Sec-

tion 3.5.2 we will discuss how to set thresholds to achieve different accuracy-latency

trade-offs.

3.3.4 Multi-Resolution Training

We apply multi-resolution training on all the backbone models considered in Fast-

Tuner, as it brings several advantages. First, it improves the model’s detectability for

objects of different sizes caused by either distance or frame sizes. This gain thereby

benefits the accuracy of configuration decision making and detection. Second, it can

46

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

mitigate the domain gap between different resolutions. Since object tracking consists

of object detection and association, tracking performance is affected not only by the

detection accuracy, but also informativeness of re-ID features. Changing input resolu-

tions may introduce inconsistencies in re-ID features, which could lead to mismatches

in object association and thereby degrade tracking accuracy. However, achieving a

balance for all resolutions is challenging, as gains in one resolution can inadvertently

compromise the performance of others. To address this challenge, we propose two

multi-resolution training schemes:

• Weighted: In each epoch, the model is trained on a dataset augmented with

all resolutions. Different weights wr are applied to the loss Lr prior to model

parameter updating θ′ = θ − α × ∇L′r(θ), where L′r = wr × Lr and r denotes

resolution. Empirically, we set higher weights for higher resolutions. In this

way, we guide the model to maintain its proficiency for high resolution inputs,

and also pay attention to inputs where it underperforms, typically at lower

resolutions.

• Fine-tune+Weighted: The model is first trained on the original dataset of

the highest resolution, and then fine-tuned on the same dataset but at different

resolutions. This fine-tuning process serves to further enhance the model’s abil-

ity to capture intricate patterns and features during the high-resolution training,

and then adapt these learned features to lower resolutions. The combination of

weighted loss update ensures that the model’s learning is balanced.

.

47

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

3.4 Workload Placement on End and Edge Devices

The FastTuner pipeline can be flexibly partitioned between end and edge devices.

Compared to conventional computation partition, it introduces a different dimension

to balance local computation and network-based processing through configuration

adaptation. In this section, two workload partition schemes between a smart camera

and an edge server are discussed for edge MOT, as illustrated in Figure 3.3:

• Edge Server-Only with Adaptive Resolution Transmission (SOAT):

Every K frames, an FR frame is sent to the server. The server, upon the

reception of the frame, performs configuration selection and informs the camera

of the appropriate resolution for the subsequent K−1 frames to be transmitted.

All computations are done on the server, with FastTuner utilized to reduce

the transmission time and computational overhead. This setup is beneficial in

situations where the camera has sufficient bandwidth, as it requires continuous

transmission to the server, ensuring consistent data delivery and processing.

• Edge Server-Assisted Tracking (SAT): An FR frame is sent to the server

every K frames. The server processes the frame by computing bounding boxes

and re-ID features, and determines the proper resolution for the subsequent

frames. These results are then transmitted back to the camera. Upon receiving

this information, the camera performs object association. In addition, the cam-

era is responsible for object detection and association for the remaining K − 1

frames. In this hybrid setup, FastTuner operates partially on the camera and

partially on the server, balancing between computational load and bandwidth

utilization. This setup is advantageous under limited bandwidth conditions, as

48

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Send FR
Frames

Smart Camera Edge Server

Tim
e

Configuration
Selection

OD and Re-ID

Object
Association

Send Scaled
Frames

SOAT

Every K frames: FR frame
Remaining: scaled frames

Optimal resolution

Every K frames

Send FR
Frames

Object
Association

OD and Re-ID

Smart Camera Edge Server

Tim
e

Object
Association

Configuration
Selection

OD and Re-ID

SAT

Optimal configuration,
detections, re-ID features

Every K frames

Every K frames

FR frame

Figure 3.3: Two workload placement schemes, partitioning the workload between a
smart camera and an edge server.

it involves the exchange of minimal data in each communication cycle.

Evidently, the two workload placement schemes incur different computation loads

on the smart camera and the edge server, and differ in the volume of data transferred

over the network. A qualitative summary of these trade-offs is shown in Table 3.3,

while a quantitative analysis of experimental results on a real-world testbed is pro-

vided in Section 3.5.4.

It is worth noting that in addition to the aforementioned workload placement

schemes and control parameter tuning (e.g., threshold and K), further trade-offs

49

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 3.3: Qualitative comparison of SOAT and SAT on computation and network
loads

Deployments
Computation Network Traffic

Camera Server C→S S→C

SOAT No High Medium Low

SAT High Low Low Low

between accuracy and latency can be made by employing different types of back-

bone models (e.g., ResNet [43], VGG [116]) thanks to the model-agnostic nature of

FastTuner. In Section 3.5.2, we additionally evaluate FastTuner using YOLO as its

backbone to demonstrate the flexibility.

3.5 Performance Evaluation

In this section, we evaluate the performance of FastTuner on a public MOT dataset

and a small-scale real-world testbed.

3.5.1 Implementation

FastTuner is a model-agnostic framework and can easily incorporate any FCN-based

object tracking model. In the implementation, we build FastTuner on top of Fair-

MOT [61], by adding a detectability branch consisting of a new head and a config-

uration selection module. In the inference stage, the tracking branch runs on every

frame to perform object detection and tracking while the detectability branch only

runs on every K-th frame to select the optimal configuration. The frame resolution

and backbone model of FastTuner are configurable. We have five options for reso-

lution: {1088×608, 864×480, 704×384, 640×352, 576×320} px. For the backbone

50

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

model, we consider three sizes: {full, half, quarter}. The half and quarter models are

generated by pruning the full model, reducing its number of channels in each layer by

factors of two and four, respectively. In short, the configuration space of FastTuner

comprises 5 × 3 = 15 different combinations. To further demonstrate FastTuner’s

compatibility with different types of backbone models, we also test FastTuner on

YOLO, and consider three model sizes as well. Unless otherwise stated, K = 40,

τ = 0.4, and the results presented in this section are obtained on an NVIDIA Tesla

P100 GPU.

Dataset: The MOT17 dataset is used to evaluate the tracking performance. Since

the ground truth of test sequences is not public, we follow [60, 109, 118] to split each

training sequence into two halves. The first half is used for training while the second

half is for validation.

Training: The training of FastTuner is done in two stages. In the first stage, we

employ the multi-resolution training methods in Section 3.3.4 to train all the backbone

models. Specifically, we employ the weighted scheme for training Full-DLA-34 and

use the fine-tune+weighted scheme for the others. The rationale is that models like

Half-DLA-34 and Full-YOLO are less powerful and require good initial weights. In

both training schemes, weights of [1.0, 0.8, 0.6, 0.4, 0.2] are applied to the loss function,

corresponding to resolutions in descending order, i.e., the highest resolution receives

the largest weight, and the lowest receives the least. Then, we follow the steps

in Section 3.3.2 to prepare the training data for the detectability branch. In the

second stage, we start from the weights in the backbone and the tracking branch of

the full model and independently train the detectability branch, while freezing all

other parameters. In this way, FastTuner can learn configuration-specific heatmap

51

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

representations, without compromising the performance of the tracking branch. We

set α, β in Eq. (3.3.2) to 2 and 4, respectively, and set λ in Eq. (3.3.3) to 1.

Metrics: We use MOTA to measure the tracking accuracy of MOT methods,

and FPS to measure their runtime speed, indicating the number of frames processed

per second. There is often a trade-off between MOTA (accuracy) and FPS (speed)—

increasing one may decrease the other. A better tracker should produce a better

trade-off.

3.5.2 Comparison with Baselines

Baselines: For comparison, we implement FairMOT, equipped with different back-

bone architectures (DLA-34 and YOLO) of different model sizes (full, half, quarter).

They are called FairMOT+{Full, Half, Quarter}-DLA-34 and FairMOT+{Full, Half,

Quarter}-YOLO.

Adaptive vs. Fixed Configuration: In Figure 3.4, we show the tracking

performance (MOTA) and speed (FPS) of FastTuner and the baselines on the MOT17

dataset, with results obtained on both an NVIDIA Tesla P100 (a) and a GTX 1060

(b). The baselines, i.e., FairMOT with Full-, Half- and Quarter-DLA-34 are presented

as distinct curves using quadratic fitting. The data points on these curves depict the

MOTA-FPS pairs achieved at different resolution levels, ordered from high to low as:

1088× 608, 864× 480, 704× 384, 640× 352, 576× 320. Each baseline encompasses

a range of trade-offs between MOTA and FPS. Notably, on both devices, FastTuner

consistently outperforms the baselines, with its curve positioned to the upper right

of all others, indicating a superior trade-off between MOTA and FPS. For a given

FPS, FastTuner achieves a higher MOTA, while for a specified MOTA, it delivers

52

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

a higher FPS. The points in FastTuner are obtained by different threshold settings

in Table 3.4, where the “-” symbol means that the corresponding configuration is

excluded for selection. Restricting candidate configurations helps avoid ones that

overly degrade tracking performance and reduce frequent switching, which may result

in many inconsistent ID features.

The comparisons clearly demonstrate the advantage of configuration adaptation

using FastTuner. For instance, in Figure 3.4a, FastTuner+T1, while maintaining a

similar MOTA as FairMOT+1088 × 608 px+Full-DLA-34, is 10.3% faster. Further-

more, FastTuner+T4 sees a 3.8% increase in MOTA and a 5.9% increase in FPS by

adapting both resolutions and models, compared to FairMOT+640 × 352 px+Full-

DLA-34. Overall, FastTuner achieves 1.0%–4.2% improvements in MOTA and 0.7%–

10.3% in FPS, compared to the baselines. Similar improvements, i.e., 1.0%–7.0% in

MOTA and 1.6%–14.5% in FPS, can be observed in Figure 3.4b. The choice of the

threshold setting should be based on application requirements. For example, if a

higher tracking accuracy is prioritized over latency, FastTuner+T1 could be the best

option. On the contrary, if speed is more important, FastTuner+T7 would be more

suitable.

To understand how gains in MOTA or FPS or sometimes both are achieved, we

further provide a breakdown of the percentage of the configurations selected by Fast-

Tuner under different threshold settings in Figure 3.7. For example, FastTuner+T1

processes 23.5% of frames at the lower resolution of 864 × 480 px, a noticeable con-

trast to the baseline that processes all frames at 1088×608 px. Similarly, around one

quarter of the total frames are processed by ligher configurations in FastTuner+T4,

such as 864 × 480 px+Half-DLA-34 and 576 × 320 px+Full-DLA-34. This trend is

53

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

consistent across the other threshold settings.

Impact of Interval K: Recall that the detectability branch of FastTuner is

triggered every K frames, and the selected configuration is applied to the next K− 1

frames. Next, we investigate how different values of K can affect the tracking accuracy

and speed of FastTuner. The impact of K on the MOTA and FPS of FastTuner under

different threshold settings is shown in Table 3.6. It is evident that FPS decreases

when K decreases as the golden configuration (i.e., 1088 × 608 px+Full-DLA-34) is

executed more frequently. Somewhat counter-intuitively, performing configuration

selection more frequently (i.e., when K is smaller) is not guaranteed to improve

MOTA. For instance, in FastTuner+T6, when K decreases from 40 to 10, the MOTA

slightly decreases from 55.1% to 54.7%. This could be explained by the inconsistencies

of re-ID features caused by frequent configuration changes. Therefore, one should be

careful in setting K, since an optimal K depends on many factors, such as threshold

settings, video content characteristics, application requirements, etc.

Compatibility with Different Backbone Networks: In Figure 3.5, we utilize

YOLO as the backbone model in FastTuner. As shown, the resulting trends are quite

similar to those observed previously with DLA-34 in Figure 3.4. However, as YOLO

is much more efficient yet less powerful than DLA-34, there is a distinct shift in the

MOTA–FPS range, with notably higher FPS but lower MOTA. Overall, FastTuner

(YOLO) achieves 1.0%–7.0% improvements in MOTA and 0.2%–3.6% in FPS on Tesla

P100, and 1.5%–6.5% higher FPS on GTX 1060, compared to the baselines. The

pre-defined configuration settings for this architecture are summarized in Table 3.5.

The percentage of different configurations in FastTuner (YOLO) are presented in

Figure 3.8. It is worth noting that in certain settings, such as T5 and T6, the

54

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

slices are quite narrow. This is primarily because we prioritize tracking accuracy by

tightening the threshold settings. One can relax the settings to achieve a higher FPS,

but at the cost of tracking accuracy. Lastly, the impact of K is examined in Table 3.7,

and the observations align with those from Table 3.6.

3.5.3 Comparison with SOTA approaches

In this section, we compare FastTuner with three SOTA approaches. To ensure a

fair comparison, we adapt these methods, originally designed for detection tasks, into

trackers. The tracking components and configuration space are made consistent with

FastTuner, but configuration decisions are based on the original design.

• VideoStorm [9]: VideoStorm exhaustively profiles all configurations on the

first K frames of a video, selects the cheapest configuration that meets the

accuracy requirement (i.e., accuracy ≥ α), and uses this configuration for the

remaining video. The accuracy requirement α can be tuned to achieve different

accuracy-latency trade-offs. In our implementation, we set K = 40.

• Chameleon [10]: Chameleon conducts exhaustive online profiling every T

frames to identify top-k best configurations (i.e., the k cheapest configurations

with accuracy ≥ α). Then, for every K frames, it selects the optimal configu-

ration from this subset through profiling (called partial profiling). The results

from the golden configuration are used as ground truth to measure accuracy.

Additionally, Chameleon assumes that knobs contribute independently to the

accuracy in order to significantly reduce the exploration space. In our experi-

ments, we use T = 120, K = 40, k = 3.

55

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

• SmartAdapt [15]: SmartAdapt utilizes a content feature extractor to establish

a mapping f(·) from a frame X to its feature representation f(X). It then

applies a content-aware accuracy prediction model to build a mapping a(·) from

the feature representation f(X) to the accuracy of a given configuration c,

expressed as a(c, f(X)). The cheapest configuration that meets the accuracy

requirement will be selected. The data used to train the accuracy predictor is

obtained through offline profiling. The optimal configuration is decided every

K frames, where K = 40. For f(·), we use lightweight features (average object

width, height and number), feature embeddings extracted from HoC, HOG

algorithms, the backbone (i.e., DLA-34), and a separate feature extractor (i.e.,

YOLOv8n).

Figure 3.6 shows the MOTA and FPS of FastTuner and the SOTA methods on the

MOT17 dataset, with results obtained on both a Tesla P100 (a) and a GTX 1060 (b).

α1 to α5 represent different accuracy requirement settings, with values of 0.9, 0.8, 0.7,

0.6, and 0.5, respectively. Larger α’s prioritize accuracy while smaller ones sacrifice

accuracy for speed. Among these methods, FastTuner achieves the best MOTA-FPS

trade-offs. Due to the non-adaptive strategy of VideoStorm, it fails to capture the

dynamics in the scenes as the optimal configuration can vary over time. The best

configuration selected in the beginning may become ineffective in later frames. In-

terestingly, Chameleon performs worse than VideoStorm, despite its adaptive mecha-

nism. This could be attributed to three factors. First, the profiling cost is significant,

as it requires periodic online profiling. Exhaustive profiling involves executing the

pipeline 15 times, while partial profiling requires 3 executions. Second, the selection

56

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

1 5 2 0 2 5 3 0 3 54 5

5 0

5 5

6 0

6 5

7 0

 F a s t T u n e r
 F a i r M O T + F u l l - D L A - 3 4
 F a i r M O T + H a l f - D L A - 3 4
 F a i r M O T + Q u a r t e r - D L A - 3 4

MO
TA

 (%
)

F P S

b e t t e r1 0 8 8
8 6 4 7 0 4

6 4 0

5 7 6

1 0 8 8
8 6 4

7 0 4
6 4 0

5 7 6

1 0 8 8
8 6 4

7 0 4
6 4 0

5 7 6

T 1
T 2 T 3

T 4

T 5

T 6
T 7

(a) Tesla P100

1 0 1 5 2 0 2 5

5 0

5 5

6 0

6 5

7 0

 F a s t T u n e r
 F a i r M O T + F u l l - D L A - 3 4
 F a i r M O T + H a l f - D L A - 3 4
 F a i r M O T + Q u a r t e r - D L A - 3 4

MO
TA

 (%
)

F P S

b e t t e r1 0 8 8
8 6 4

7 0 4
6 4 0

5 7 6

1 0 8 8
8 6 4

7 0 4
6 4 0

8 6 4
7 0 4

6 4 0

5 7 6

T 1 T 2
T 3

T 4

T 5

T 6
T 7

5 7 6

1 0 8 8

(b) GTX 1060

Figure 3.4: Comparison between FastTuner (DLA-34) and the baselines:
FairMOT+{Full, Half, Quarter}-DLA-34 on MOT17 across two devices.

3 8 4 0 4 2 4 4 4 63 5
4 0
4 5
5 0
5 5
6 0
6 5

 F a s t T u n e r
 F a i r M O T + F u l l - Y O L O
 F a i r M O T + H a l f - Y O L O
 F a i r M O T + Q u a r t e r - Y O L O

MO
TA

 (%
)

F P S

b e t t e r

1 0 8 8

1 0 8 8

1 0 8 8

T 1 T 2
T 3 T 4

T 5

T 6

T 7
T 8

8 6 4 7 0 4
6 4 0

5 7 68 6 4

7 0 4 6 4 0

5 7 6

8 6 4

7 0 4

6 4 0
5 7 6

(a) Tesla P100

2 8 3 2 3 6 4 03 5
4 0
4 5
5 0
5 5
6 0
6 5

 F a s t T u n e r
 F a i r M O T + F u l l - Y O L O
 F a i r M O T + H a l f - Y O L O
 F a i r M O T + Q u a r t e r - Y O L O

MO
TA

 (%
)

F P S

b e t t e r
1 0 8 8

1 0 8 8

T 1 T 2
T 3 T 4

T 6

T 7
T 8

8 6 4 7 0 4
6 4 0

8 6 4
7 0 4

6 4 0

5 7 6

8 6 4

7 0 4
6 4 0

5 7 6

1 0 8 8 5 7 6

T 5

(b) GTX 1060

Figure 3.5: Comparison between FastTuner (YOLO) and the baselines:
FairMOT+{Full, Half, Quarter}-YOLO on MOT17 across two devices.

2 0 2 5 3 0 3 55 0

5 5

6 0

6 5

7 0

 F a s t T u n e r (D L A - 3 4)
 V i d e o S t o r m (M o d i f i e d)
 C h a m e l e o n (M o d i f i e d)
 S m a r t A d a p t (M o d i f i e d)

MO
TA

 (%
)

F P S

b e t t e r

α1

T 1

α1

α1
T 2 T 3

T 4

T 5

T 6
T 7

α2

α3

α4

α5

α2

α3

α4

α5

α2

α5

α3α4

(a) Tesla P100

1 0 1 5 2 0 2 55 0

5 5

6 0

6 5

7 0

 F a s t T u n e r (D L A - 3 4)
 V i d e o S t o r m (M o d i f i e d)
 C h a m e l e o n (M o d i f i e d)
 S m a r t A d a p t (M o d i f i e d)

MO
TA

 (%
)

F P S

b e t t e r

α1

T 1

α1

α1

T 2
T 3

T 4

T 5

T 6
T 7

α2

α3

α4

α5

α2

α3
α4

α5

α2

α5

α3α4

(b) GTX 1060

Figure 3.6: Comparison between FastTuner (DLA-34) and three SOTA approaches:
VideoStorm, Chameleon and SmartAdapt on MOT17 across two devices.

57

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

 1 0 8 8 * 6 0 8 , F u l l - D L A - 3 4
 8 6 4 * 4 8 0 , F u l l - D L A - 3 4
 7 0 4 * 3 8 4 , F u l l - D L A - 3 4
 6 4 0 * 3 5 2 , F u l l - D L A - 3 4
 5 7 6 * 3 2 0 , F u l l - D L A - 3 4
 1 0 8 8 * 6 0 8 , H a l f - D L A - 3 4
 8 6 4 * 4 8 0 , H a l f - D L A - 3 4
 7 0 4 * 3 8 4 , H a l f - D L A - 3 4
 6 4 0 * 3 5 2 , H a l f - D L A - 3 4
 5 7 6 * 3 2 0 , H a l f - D L A - 3 4
 1 0 8 8 * 6 0 8 , Q u a r t e r - D L A - 3 4
 8 6 4 * 4 8 0 , Q u a r t e r - D L A - 3 4
 7 0 4 * 3 8 4 , Q u a r t e r - D L A - 3 4
 6 4 0 * 3 5 2 , Q u a r t e r - D L A - 3 4
 5 7 6 * 3 2 0 , Q u a r t e r - D L A - 3 4

2 3 . 5 %

7 6 . 5 %

T 1

1 0 8 8 * 6 0 8 , F u l l - D L A - 3 4 8 6 4 * 4 8 0 , F u l l - D L A - 3 4 7 0 4 * 3 8 4 , F u l l - D L A - 3 4

5 7 6 * 3 2 0 ,
F u l l - D L A - 3 4 7 0 4 * 3 8 4 , Q u a r t e r - D L A - 3 4

6 4 0 * 3 5 2 , Q u a r t e r - D L A - 3 4

8 . 2 %
5 . 9 %

5 . 9 %

7 7 . 4 %

2 . 7 %T 2

6 4 0 * 3 5 2 , F u l l - D L A - 3 4

8 . 8 %
1 . 5 %
9 %

7 8 . 1 %

2 . 7 %T 3

2 . 9 %1 . 5 %1 0 . 9 %
5 . 9 %

7 6 . 1 %

2 . 7 %T 4 2 . 9 %
2 0 . 3 %

1 6 . 1 % 5 8 %

2 . 7 %T 5
2 3 %

7 4 . 4 %

2 . 7 %T 6

2 6 . 6 %

7 0 . 7 %

2 . 7 %T 7

Figure 3.7: Percentages of the configurations selected by FastTuner (DLA-34) under
different threshold settings: T1–T7.

 1 0 8 8 * 6 0 8 , F u l l - Y O L O
 8 6 4 * 4 8 0 , F u l l - Y O L O
 7 0 4 * 3 8 4 , F u l l - Y O L O
 6 4 0 * 3 5 2 , F u l l - Y O L O
 5 7 6 * 3 2 0 , F u l l - Y O L O
 1 0 8 8 * 6 0 8 , H a l f - Y O L O
 8 6 4 * 4 8 0 , H a l f - Y O L O
 7 0 4 * 3 8 4 , H a l f - Y O L O
 6 4 0 * 3 5 2 , H a l f - Y O L O
 5 7 6 * 3 2 0 , H a l f - Y O L O
 1 0 8 8 * 6 0 8 , Q u a r t e r - Y O L O
 8 6 4 * 4 8 0 , Q u a r t e r - Y O L O
 7 0 4 * 3 8 4 , Q u a r t e r - Y O L O
 6 4 0 * 3 5 2 , Q u a r t e r - Y O L O
 5 7 6 * 3 2 0 , Q u a r t e r - Y O L O

2 3 . 3 %

7 6 . 7 %

T 1

1 0 8 8 * 6 0 8 , F u l l - Y O L O 8 6 4 * 4 8 0 , F u l l - Y O L O
7 0 4 * 3 8 4 , F u l l - Y O L O

6 4 0 * 3 5 2 , F u l l - Y O L O 5 7 6 * 3 2 0 , F u l l - Y O L O 8 6 4 * 4 8 0 , Q u a r t e r - Y O L O

7 0 4 * 3 8 4 , Q u a r t e r - Y O L O 6 4 0 * 3 5 2 , Q u a r t e r - Y O L O

1 2 . 9 %
4 . 9 %

7 9 . 5 %

2 . 7 %T 2 5 . 9 %

2 5 . 3 %

6 6 . 2 %

2 . 7 %T 3

1 . 5 %
1 7 . 1 %

7 8 . 8 %

2 . 7 %T 4 1 . 5 %1 . 5 %

9 4 . 4 %

2 . 7 %T 5 1 . 5 %1 . 5 %

9 4 . 4 %

2 . 7 %T 6

4 . 4 %2 . 9 %

9 0 %

2 . 7 %T 7 1 0 . 3 %

8 7 . 1 %

2 . 7 %T 8

Figure 3.8: Percentages of the configurations selected by FastTuner (YOLO) under
different threshold settings: T1–T8.

58

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

T
ab

le
3.

4:
T

h
re

sh
ol

d
se

tt
in

gs
in

F
as

tT
u
n
er

(D
L

A
-3

4)
an

d
co

rr
es

p
on

d
in

g
re

su
lt

s

T
h
re
sh

o
ld

F
u
ll
-D

L
A
-3
4

H
a
lf
-D

L
A
-3
4

Q
u
a
rt
er
-D

L
A
-3
4

M
O
T
A

F
P
S

1
0
8
8

8
6
4

7
0
4

6
4
0

5
7
6

1
0
8
8

8
6
4

7
0
4

6
4
0

5
7
6

1
0
8
8

8
6
4

7
0
4

6
4
0

5
7
6

T
1

-
0
.9
9

-
-

-
-

-
-

-
-

-
-

-
-

-
7
0
.7

1
8
.2

T
2

-
0

0
.9
5

0
.9
9

-
0
.9
9

-
-

-
-

-
-

-
-

-
6
9
.5

2
3
.6

T
3

-
-

0
0
.8
5

0
.9
5

-
0
.9
5

-
-

-
-

-
-

-
-

6
7
.7

2
8
.3

T
4

-
-

-
0

0
.8
5

-
0
.9

0
.9

-
-

-
0
.9

0
.9

-
-

6
5
.3

3
0
.6

T
5

-
-

-
-

0
-

-
0
.8

0
.9

-
-

0
.8

0
.9

-
-

6
0
.8

3
2
.7

T
6

-
-

-
-

-
-

-
-

-
-

-
-

0
0
.6
5

-
5
5
.1

3
5
.6

T
7

-
-

-
-

-
-

-
-

-
-

-
-

-
0

0
.6

5
3
.1

3
6
.6

T
ab

le
3.

5:
T

h
re

sh
ol

d
se

tt
in

gs
in

F
as

tT
u
n
er

(Y
O

L
O

)
an

d
co

rr
es

p
on

d
in

g
re

su
lt

s

T
h
re
sh

o
ld

F
u
ll
-Y

O
L
O

H
a
lf
-Y

O
L
O

Q
u
a
rt
er
-Y

O
L
O

M
O
T
A

F
P
S

1
0
8
8

8
6
4

7
0
4

6
4
0

5
7
6

1
0
8
8

8
6
4

7
0
4

6
4
0

5
7
6

1
0
8
8

8
6
4

7
0
4

6
4
0

5
7
6

T
1

-
0
.9
9

-
-

-
-

-
-

-
-

-
-

-
-

-
6
3
.7

4
0
.0

T
2

-
0

0
.9
5

0
.9
9

-
-

-
-

-
-

-
-

-
-

-
6
3
.0

4
2
.5

T
3

-
-

0
0
.8
5

0
.9
5

-
-

-
-

-
-

-
-

-
-

6
0
.7

4
3
.1

T
4

-
-

-
0

0
.8
5

-
-

-
0
.9

-
-

-
-

-
-

5
9
.8

4
3
.4

T
5

-
-

-
-

0
-

-
-

0
.8
5

-
-

0
.8
5

-
-

-
5
7
.8

4
4
.0

T
6

-
-

-
-

-
-

-
-

-
-

-
0

0
.7

0
.7

-
5
2
.1

4
4
.7

T
7

-
-

-
-

-
-

-
-

-
-

-
-

0
0
.6
5

0
.6
5

4
7
.4

4
6
.1

T
8

-
-

-
-

-
-

-
-

-
-

-
-

-
0

0
.5

4
5
.0

4
6
.3

59

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 3.6: Impact of interval K on FastTuner (DLA-34)

Threshold
K=40 K=20 K=10 K=2

MOTA FPS MOTA FPS MOTA FPS MOTA FPS

T1 70.7 18.2 70.8 17.8 70.9 17.6 70.9 17.0

T2 69.5 23.6 69.5 23.3 69.6 22.8 70.8 19.2

T3 67.7 28.3 67.2 28.1 67.3 27.2 69.5 20.7

T4 65.3 30.6 65.1 30.0 65.1 28.5 68.3 21.0

T5 60.8 32.7 60.2 31.4 60.0 30.0 67.0 21.3

T6 55.1 35.6 54.9 33.9 54.7 32.1 61.5 21.4

T7 53.1 36.6 53.0 34.5 53.0 32.7 60.6 21.5

Table 3.7: Impact of interval K on FastTuner (YOLO)

Threshold
K=40 K=20 K=10 K=2

MOTA FPS MOTA FPS MOTA FPS MOTA FPS

T1 63.7 40.0 63.7 39.6 63.6 39.3 63.5 38.7

T2 63.0 42.5 63.2 41.9 63.2 41.5 63.7 40.4

T3 60.7 43.1 60.7 42.6 60.7 42.2 62.1 40.9

T4 59.8 43.4 59.9 43.2 59.8 42.9 61.7 41.2

T5 57.8 44.0 57.7 43.5 58.0 43.2 60.3 41.5

T6 52.1 44.7 51.9 44.3 51.7 44.1 55.9 41.7

T7 47.4 46.1 47.3 45.7 47.2 45.0 53.0 41.9

T8 45.0 46.3 44.6 46.0 44.6 45.8 51.8 42.1

60

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

of top-k configurations could be outdated, or inaccurate (especially when the indepen-

dence assumption does not hold), leading to inferior configurations. Third, frequent

changes in the top-k configurations result in varying selections, which can disrupt

the consistency of object features during object association. SmartAdapt removes

inferior configurations identified through offline profiling from online selection. Doing

so allows it to achieve better MOTA compared to Chameleon. However, it still suffers

from substantial overhead due to feature extraction, as it involves running HoC, HOG

algorithms, and a DNN feature extractor. In contrast, FastTuner incurs only a min-

imal overhead from running the detectability branch, which is much more efficient.

In summary, FastTuner outperforms SmartAdapt on both devices, with 1.1%–9.2%

higher MOTA and 2.5%–25.5% higher FPS on Tesla P100, and 1.3%–7.1% higher

MOTA and 1.9%–38.4% higher FPS on GTX 1060.

3.5.4 Testbed Evaluation

Setup: Our testbed consists of the NVIDIA Jetson TX2, the Turing server, and

the Dell desktop, as introduced in Section 2.5. The Jetson TX2 serves as the smart

camera, while the server or desktop serves as the edge server. We evaluate the system

performance under different network conditions by enabling camera-server communi-

cation via Ethernet, unrestricted Wi-Fi (Wi-Fi-H), and Wi-Fi with a 5 Mbps limit

(Wi-Fi-L) to emulate different connectivities [124, 28, 125, 126]. The average upload

and download bandwidths and round-trip time (RTT) of the networks are given in

Table 3.8.

Implementation: Due to the resource constraints of the NVIDIA Jetson TX2,

we only consider FastTuner (YOLO) on the testbed. For simplicity, for all the network

61

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 3.8: Metrics of the networks

Network
Upload (Mbps)

(camera→server)

Download (Mbps)

(server→camera)

RTT

(ms)

Ethernet 769.0 938.0 1.1

Wi-Fi-H 21.4 41.5 15.8

Wi-Fi-L† 4.5 4.6 10.6
† The bandwidths are constrained to a maximum of 5 Mbps.

settings, we evaluate FastTuner under three threshold settings: T1, T4 and T8. The

communication between the camera and the server uses Transmission Control Proto-

col (TCP). To reduce the network traffic load, tools from the OpenCV library [40] are

used to compress the frames before sending them over the network. Upon reception

of the frames, the server decompresses them before further processing.

Baselines: We consider two baselines for comparison: Baseline-Camera (B-C)

with all computations done locally on the camera, and Baseline-Server (B-S) with

each frame transmitted to the server for computation. Note that both baselines do

not incorporate FastTuner. We also consider an additional scheme called Camera-

Only (CO), which incorporates FastTuner but places all workloads on the camera.

To ensure a fair comparison with FastTuner+T1, T4 and T8, the baselines employ

the configurations of FairMOT+Full-YOLO+1088 × 608 px (C1), FairMOT+Full-

YOLO+640 × 352 px (C2), and FairMOT+Quarter-YOLO+640 × 352 px (C3), re-

spectively.

Comparisons among workload placement schemes: Figure 3.9 provides a

breakdown of the time spent on each part (i.e., server, camera and transmission)

across the five schemes on the testbed. The camera time and server time repre-

sent the computational time spent on the camera and the server, respectively. The

62

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

transmission time includes the upload time (camera→server) and download time

(server→camera). In all experiments, K is set to 40.

Under high bandwidth conditions (i.e., Ethernet and Wi-Fi-H), as indicated in

Figure 3.9a and Figure 3.9b, CO surpasses B-C by taking advantage of the config-

uration selection in FastTuner to reduce computational time on the camera. SAT

enhances this advantage since the server handles the most time-consuming task,

namely object detection [109]. Given sufficient network bandwidths, B-S is much

faster than camera-centric deployments (i.e., B-C, CO, and SAT) by transmitting

compressed full-resolution frames with minimal overhead. With FastTuner, SOAT

further accelerates the overall processing by transmitting lower-resolution frames and

utilizing smaller models for inference. Consequently, SOAT is the optimal scheme un-

der Ethernet, delivering an FPS in the range of 21.2 to 33.4 and marking a 1.7%–8.7%

acceleration in comparison with B-S. The gap widens to 4.1%–22.5% under Wi-Fi-H,

as the transmission time savings brought by FastTuner are more significant.

In contrast, when the available bandwidth is limited (i.e., using Wi-Fi-L), as de-

picted in Figure 3.9c, server-centric schemes (i.e., B-S and SOAT) experience signifi-

cant slowdowns since network communication becomes a bottleneck. SAT, however,

is less affected and still manages to outperform B-C and CO since only lightweight in-

formation, such as bounding box coordinates (i.e., detections) and vectors (i.e., re-ID

features) is communicated. Therefore, SAT proves to be the best scheme, achieving

2.6–9.6 FPS and 3.7%–8.3% speed-up over B-C.

Additionally, the observations derived from GTX 1060, as shown in Figure 3.10,

are consistent with those in Figure 3.9. In short, when the network bandwidth is

sufficient, i.e., using Ethernet and Wi-Fi-H, SOAT has the best performance, with

63

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

B - C C O S A T B - S S O A T
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0
Tim

e P
er

Fra
me

 (m
s)

 T r a n s m i s s i o n
 C a m e r a
 S e r v e r

b e t t e r

T 1

T 4
T 8

T 1 T 4 T 8 T 1 T 4 T 8

C 1

C 2
C 3 C 3

C 2

C 1

(a) Ethernet

B - C C O S A T B - S S O A T
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Tim
e P

er
Fra

me
 (m

s)

 T r a n s m i s s i o n
 C a m e r a
 S e r v e r

b e t t e r

T 1

T 4
T 8 T 1

T 4 T 8
T 1

T 4 T 8

C 1

C 2
C 3 C 3

C 2

C 1

(b) Wi-Fi-H

B - C C O S A T B - S S O A T
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Tim
e P

er
Fra

me
 (m

s)

 T r a n s m i s s i o n
 C a m e r a
 S e r v e r

b e t t e r

T 1

T 4
T 8

T 1

T 4

T 8

T 1

T 4

T 8

C 1

C 2
C 3 C 3

C 2

C 1

(c) Wi-Fi-L

Figure 3.9: Comparisons between different schemes on the testbed (Tesla P100)
across three different networks.

B - C C O S A T B - S S O A T
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Tim
e P

er
Fra

me
 (m

s)

 T r a n s m i s s i o n
 C a m e r a
 S e r v e r

b e t t e r

T 1

T 4
T 8

T 1 T 4 T 8 T 1 T 4 T 8

C 1

C 2
C 3 C 3

C 2

C 1

(a) Ethernet

B - C C O S A T B - S S O A T
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Tim
e P

er
Fra

me
 (m

s)

 T r a n s m i s s i o n
 C a m e r a
 S e r v e r

b e t t e r

T 1

T 4
T 8 T 1

T 4 T 8
T 1

T 4 T 8

C 1

C 2
C 3 C 3

C 2

C 1

(b) Wi-Fi-H

B - C C O S A T B - S S O A T
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Tim
e P

er
Fra

me
 (m

s)

 T r a n s m i s s i o n
 C a m e r a
 S e r v e r

b e t t e r

T 1

T 4
T 8

T 1

T 4

T 8

T 1

T 4

T 8

C 1

C 2
C 3 C 3

C 2

C 1

(c) Wi-Fi-L

Figure 3.10: Comparisons between different schemes on the testbed (GTX 1060)
across three different networks.

an improvement of 5.3%–22.1% in speed. However, when the bandwidth is limited,

i.e., using Wi-Fi-L, SAT emerges as the best scheme, accelerating the pipeline by

3.7%–8.3%. These two experiments demonstrate that FastTuner can accelerate end-

to-end processing across networks with varying bandwidths and devices with different

computing power.

3.6 Conclusion

In this chapter, we proposed FastTuner, a model-agnostic framework to accelerate

MOT pipelines in EVA systems. By learning heatmap representations of different

64

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

configurations offline, FastTuner can intelligently select the optimal frame resolution

and backbone model at runtime, improving the trade-off between tracking accuracy

and speed. The integration of multi-task learning allows configuration selection and

object tracking to be performed in a shared model, further reducing the computational

overhead. FastTuner offers users opportunities to control the trade-off based on the

application requirements by tuning its threshold settings. For real-world deployments,

we designed two workload placement schemes between a smart camera and an edge

server. Extensive experiments demonstrate that 1) FastTuner can work with different

backbone models; 2) it can improve the MOTA-FPS trade-off of MOT pipelines in

real-world EVA systems.

65

http://www.mcmaster.ca/

Chapter 4

BlockHybrid: Accelerating Object

Detection Pipelines with Hybrid

Block-Wise Execution

© 2025 IEEE. This chapter is based on the manuscript: Renjie Xu, Keivan Nalaie, and
Rong Zheng. “BlockHybrid: Accelerating Object Detection Pipelines With Hybrid Block-Wise
Execution”, IEEE Internet of Things Journal, vol. 12, no. 13, pp. 24148–24158, 2025. DOI:
10.1109/JIOT.2025.3554167.

66

https://doi.org/10.1109/JIOT.2025.3554167

Ph.D. Thesis – R. Xu McMaster University – Computer Science

4.1 Introduction

The proliferation of IoT cameras is changing our lives. According to [3], nearly 42

billion IoT devices will generate 79.4 ZB of data by 2025, 80% of which will be

video or video-like. While such vast data unlock valuable insights for video analyt-

ics applications, they also pose significant challenges, especially in latency-sensitive

scenarios. For instance, in ITS [33], roadside units (RSUs) play a critical role in

monitoring pedestrians and vehicles, providing real-time warnings to connected vehi-

cles via vehicle-to-everything (V2X) communication [33]. To prevent accidents and

ensure smooth traffic flow, RSUs must process high-FPS videos streamed from traf-

fic cameras with low latency—even slight delays in detecting jaywalkers or sudden

lane changes can be dangerous, while slow congestion updates may impair traffic effi-

ciency. These scenarios highlight the need for efficient, real-time edge video analytics

to enhance road safety and traffic management.

Object detection serves as the foundation of many VAPs, with its outputs directly

driving downstream tasks such as object tracking and event analysis. This critical role

has made its optimization, particularly for edge deployment, an active research topic.

A conventional object detection pipeline is illustrated in Figure 4.1a. A camera of-

floads every captured frame to an edge server hosting a frame-wise object detector for

processing. This pipeline is well-suited for latency-sensitive applications such as ITS,

where rapid response is critical. By leveraging frame-wise streaming, it enables real-

time capturing, encoding, transmission, and processing of each frame, ensuring timely

detection of pedestrians, vehicles, and obstacles for instant alerts and traffic control.

Many methods have been proposed to optimize this pipeline, including model com-

pression [127, 128] and specialization [129, 130] to reduce computational complexity,

67

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Camera

Hard Blocks

Identification

Edge Server

Block-Wise

Detector

Post-

Processing

Tracker

Hard Blocks

Easy Blocks

Input Frame

Camera Edge Server

Frame-Wise

Detector

Post-

Processing

Full Frame

Input Frames

Tracking Results

(a) Conventional pipeline

Camera

Hard Blocks

Identification

Edge Server

Block-Wise

Detector

Post-

Processing

Tracker

Hard Blocks

Easy Blocks

Input Frame

Camera Edge Server

Frame-Wise

Detector

Post-

Processing

Full Frame

Input Frames

Tracking Results

(b) Proposed pipeline

Figure 4.1: Comparison between conventional pipeline and the proposed pipeline

.

model partitioning [131–135, 63, 136–144] to distribute inference workloads between

the camera and the edge server, and model cascade techniques [145–150, 4, 151, 118]

that progressively refine predictions through multiple stages to balance accuracy and

efficiency.

However, the aforementioned methods are not input-aware. Videos often con-

tain substantial redundancy, and not every pixel is worth transmitting and process-

ing. Imagine a traffic monitoring application deployed at a busy intersection: non-

informative regions, such as empty roads, offer little useful information and require

minimal computation, whereas regions of interest, with vehicles or pedestrians, de-

mand accurate processing. This contrast highlights the need for selective processing

strategies, where communication and computation resources are allocated accord-

ing to the significance of different frame regions—a technique known as conditional

execution. When the execution decisions are made on a block-by-block basis, this

68

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

technique is called block-wise conditional execution. Relevant approaches [19, 152]

divide input frames into blocks of equal size, identify the informative ones (i.e., those

containing objects of interest), and process them using a customized block-wise detec-

tor, where the features of informative blocks are computed, and uninformative blocks

reuse features from the previous execution before merging to generate the final results.

However, a key limitation is that they treat all informative blocks equally, ignoring

differences within the blocks. For example, a block containing only a slow-moving

pedestrian could be efficiently handled by a simpler algorithm, rather than a heavy

detector. This one-size-fits-all strategy leads to unnecessary resource consumption,

leaving room for further optimization. Another challenge of block-wise detection is

the potential for block artifacts [20], which arise when features from new and cached

blocks are merged during inference. The inconsistencies at block boundaries can re-

sult in inaccurate or redundant detections, particularly in regions where objects cross

block boundaries.

To address these challenges, we propose BlockHybrid, a novel framework for ac-

celerating object detection pipelines using hybrid block-wise conditional execution.

In this framework, blocks are further categorized into hard and easy blocks based on

their content and processing strategy. Easy blocks include informative blocks with

easy objects (e.g., a slow-moving pedestrian) or entirely non-informative blocks (e.g.,

empty roads) that can be accurately processed using lightweight algorithms. In con-

trast, hard blocks are a subset of informative blocks containing challenging objects

that require heavy computation. A brief pipeline of BlockHybrid is depicted in Fig-

ure 4.1b. BlockHybrid begins by dividing each frame into multiple uniform blocks and

labels them as hard or easy blocks with a policy network. Hard blocks are transmitted

69

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

to the server and processed by a block-wise detector, while easy blocks are handled

locally on the camera using a lightweight tracker. By selectively transmitting and

processing only hard blocks, redundant computation and communication are signif-

icantly reduced. We define this hybrid block-wise execution strategy as block-hybrid

conditional execution. To further mitigate block artifacts, we introduce block-wise

fine-tuning, an additional training stage applied to the detector. This stage simulates

scenarios with object boundaries across blocks and improves the model’s ability to

handle feature inconsistencies.

To evaluate the performance of BlockHybrid, we conduct experiments on two

public object detection benchmarks. We also implement and deploy a prototype on

a real-world testbed that uses an NVIDIA Jetson TX2 as a camera and an Ubuntu

desktop as an edge server running object detection tasks. Our results show that

BlockHybrid achieves a better trade-off between detection accuracy and end-to-end

latency. Compared to SOTA approaches, BlockHybrid improves execution speed by

8.8%–31.5% while maintaining comparable accuracy.

In summary, our key contributions are as follows:

• We conduct a quantitative analysis of video redundancy and explore the rela-

tionship between the number of hard blocks and execution latency.

• We propose a novel framework, BlockHybrid, which accelerates object detection

pipelines through block-hybrid conditional execution.

• We design a policy network, trained offline based on reinforcement learning, to

make online block decisions.

70

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

• We introduce block-wise fine-tuning to address block artifacts and improve de-

tection accuracy during block-wise execution.

• We implement and deploy a working prototype of BlockHybrid on a real-world

testbed, demonstrating its performance and effectiveness.

4.2 Motivation

In this section, we conduct two experiments to show the redundancy in videos and

the possible improvements made by block-hybrid execution.

4.2.1 Redundancy in Videos

Videos often contain significant redundancy. Hard blocks that require full-fledge

detectors only occupy a small proportion of the frame, with the rest dominated by

easy blocks (e.g., background, sparse objects, etc.). We measure the redundancy,

quantified as the number of informative blocks (IBs) and hard blocks (HBs), of two

datasets: MOT17 [104] and WildTrack [105] in Table 4.1. Each frame is resized to

1024× 2048 and divided into 8× 16 uniform blocks (i.e., 128× 128). In every T = 10

frames, we mark the first frame as the key frame and the following T − 1 frames as

regular frames. We use ground truth labels to obtain the bboxes in each frame, and

those in key frames are referred to as references. We then use a tracker (e.g., Median

Flow [153]) to track the references in the subsequent frames. The tracking results are

compared with the ground truth using IoU. The bboxes with an IoU below a specified

threshold (e.g., 80%) are considered hard objects, since they are hard to be tracked

accurately. The corresponding blocks are defined as hard blocks. A block is identified

71

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 4.1: Redundancy of MOT17 and WildTrack datasets.

Sequence # Frame Density1 IBs2 HBs2

MOT17-02 600 30.97 28.37% 13.39%
MOT17-04 1050 45.29 50.96% 8.28%
MOT17-05 837 8.26 78.31% 31.82%
MOT17-09 525 10.14 36.90% 18.65%
MOT17-10 654 19.63 26.93% 14.29%
MOT17-11 900 10.48 50.95% 12.74%
MOT17-13 750 15.52 13.85% 7.64%

WildTrack-Cam1 2000 35.76 37.42% 17.40%
WildTrack-Cam2 2000 24.89 50.63% 19.02%
WildTrack-Cam3 2000 38.27 62.38% 33.61%
WildTrack-Cam4 2000 29.30 34.47% 15.02%
WildTrack-Cam5 2000 27.04 41.38% 16.56%
WildTrack-Cam6 2000 34.19 35.91% 14.63%
WildTrack-Cam7 2000 30.85 40.63% 13.26%
1 Density denotes the average number of objects per frame.
2 IB and HB refer to informative block and hard block, respectively.

as an informative block if it contains any bbox.

In Table 4.1, it is evident that informative blocks typically constitute no more

than 50% of video frames, and in some sequences, e.g., MOT17-05, their proportion

drops below 10%. However, hard blocks account for an even smaller percentage,

generally less than 20%, highlighting the substantial redundancy present in videos.

By focusing only on transmitting and processing hard blocks, communication and

computation overhead can be significantly reduced. This observation motivates us

to design an efficient method to judiciously identify and handle hard blocks while

maintaining accuracy.

72

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

4.2.2 Potential Acceleration with Hybrid Block-Wise Execu-

tion

Does reducing the number of detection blocks proportionally translate to computa-

tional savings? To answer this question, we follow [19] to perform block-wise de-

tection, with CSP [154] as the detector and ResNet-50 as its backbone. Median

Flow [153] is used as the tracker to handle objects within easy blocks. Considering

the efficiency of Median Flow on CPUs, we carefully schedule these two workloads

as depicted in Figure 4.2a. The hard blocks are first migrated from the CPU to the

GPU. Once the GPU begins processing the hard blocks, the CPU simultaneously runs

the tracker. This parallel execution results in only negligible additional overhead.

We measure the latency from the start of data migration to the completion of

tracking and detection for each frame, represented as t1 + max(t2, t3) in Figure 4.2.

Clearly, the latency is almost proportional to the number of hard blocks. In particular,

executing 20% of the blocks leads to a reduction of 205 ms in latency, only 30% of

the original latency. This observation shows the potential for accelerating object

detection pipelines by only executing a small subset of blocks.

However, achieving effective block-hybrid execution is non-trivial. First, differenti-

ating between hard and easy blocks using a policy network is challenging and requires

a carefully designed reward function. Second, the decision process must remain ef-

ficient; otherwise, its overhead could negate the benefits of reducing the number of

executed blocks. Finally, performing accurate block-wise detection is difficult due to

block artifacts, which can degrade the overall detection performance. An example of

block artifacts is shown in Figure 4.3. Hard blocks are highlighted in red, while the

rest are easy blocks. This convention is followed throughout the chapter. The key

73

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

CPU

GPU

Time

t1 t2

t3

Time

Data Migration
(CPU to GPU)

Tracking
(CPU)

Detection
(GPU)

(a) Workload schedule on CPU and GPU

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

1 2 0

1 8 0

2 4 0

3 0 0

La
ten

cy
(m

s)

E x e c u t e d B l o c k s
(b) # Hard blocks v.s. latency

Figure 4.2: (a) Workload scheduling between CPU and GPU and (b) relationship
between number of hard blocks and execution latency.

MOT17-11 # 847

(Key Frame)

MOT17-11 # 848 MOT17-11 # 849 MOT17-11 # 850

Figure 4.3: Example of block artifacts.

frame is fully processed and all block features are cached. For the following frames,

hard blocks are processed to generate new block features, which are then combined

with the cached easy block features to produce the bboxes. Clearly, even though the

differences between these frames are tiny, the feature merging still introduces incon-

sistency at the boundaries between hard and easy blocks, resulting in inaccurate and

noisy bboxes.

74

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

4.3 BlockHybrid Design

In this section, we present the design of BlockHybrid, including the system overview,

block decision-making with the policy network, post-processing to remove redundant

bboxes, and block-wise fine-tuning to mitigate block artifacts.

4.3.1 Overview

BlockHybrid is an edge video analytics framework designed for object detection tasks.

It employs hybrid block-wise conditional execution to reduce computation and com-

munication overhead. The core of BlockHybrid is its policy network, which outputs

suitable actions for each block. Unlike supervised learning, where labels for hard and

easy blocks are fixed and cannot adapt to varying trade-offs, a reinforcement learning

approach can balance performance and efficiency based on the specific requirements

of the task using judiciously designed reward functions.

BlockHybrid comprises a camera and an edge server. The camera performs three

tasks: 1) capturing video frames and communicating with the server, 2) running

the tracker, and 3) executing the policy network. The edge server hosts a detector to

process frames or blocks from the camera. We adopt the CUDA operators from [19] to

perform block-wise detection tasks efficiently. As explained in Section 2.2, a standard

detector can process frames in blocks and generate object bboxes, facilitated by these

operators.

Figure 4.4 depicts the workflow of BlockHybrid. The first frame of every T frames

is marked as a key frame and the rest are marked as regular frames ¬. BlockHybrid

operates in two distinct phases: full execution (F) and partial execution (P), applied

to key frames and regular frames, respectively. The workload scheduling between the

75

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

F P P P F P P P F

Policy

Block Decision

Tracker

Previous Frame
Block

Sampling

Key Frame Block-Wise

Detector

Hard

Blocks

Camera Server

Current Frame

1

3

5

6

74

2
Full-Frame

Detector

Post-

Processing

References

Video

Frames

Tracker

BBoxes

Detector

BBoxes

Figure 4.4: System overview of BlockHybrid.

camera and server in both phases is illustrated in Figure 4.5. In the full execution

phase, a key frame is sent to the edge server, where a detector will process the full

frame, generate references and cache the block features ­, as illustrated in Figure 4.6.

The references are then sent back to the camera. In the partial execution phase, the

policy network ® takes the current frame, previous frame and key frame as inputs, and

determines hard and easy blocks. Based on the decision, block sampling ¯ extracts

hard blocks from the current frame. The hard blocks are then transmitted to the

server and processed by the detector °. Only the hard blocks are executed, while the

76

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Camera

Server

Time

t6

t1

t9

Time

Policy

Tracking Detection

Time

CPU

GPU

t13

t8

Post-

Processing

GPU

Time

CPU

t12

Time

Network

Frame / Block

Transmission

Tracking Results

Transmission

Full Execution Partial Execution

Frame / Block

Compression

Frame / Block

Decompression

t11

Block Decision

Transmission

t2

t3

t4

t5

t7

t10

Figure 4.5: Workload scheduling between camera and server. Data migration time
(e.g., from CPU to GPU) is omitted considering its negligible overhead.

features of other blocks (i.e., easy blocks) are retrieved from the local cache, which

is updated every key frame. The features of both hard and easy blocks are merged

into complete maps—a processing step called block merge, which is performed at each

convolutional layer in the detector. Due to this mechanism, the hard blocks, being

freshly executed, produce accurate bboxes, while those generated from easy blocks

might be outdated as they rely on cached features from key frame executions. During

the process of ®, ¯ and °, the tracker ± tracks all references within key frames

to generate tracking results. The location and size of each object are tracked, and

if they change significantly (e.g., exceeding a defined threshold), the tracking result

is deemed unreliable, and a Kalman filter is used to make estimations instead. As

shown in Figure 4.5, the detector and the tracker run in parallel. The execution of

the tracker will not incur additional overhead as long as t5 ≤ t6 + t7 + t8 + t10 + t12.

Lastly, the detection and tracking bboxes go through the post-processing stage ²,

77

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

𝑏0

𝑏0

𝑏0

𝑏0

𝑏0

𝑏0

𝑏0

𝑏0

𝑏0

Key Frame 𝐾0

Regular Frame 𝐼1

Cache

Detections0
(References)

𝑏1

𝑏0

𝑏0

𝑏0

𝑏0

𝑏0

𝑏1

𝑏0

𝑏0

Detections1

Detections0

Block Merge

Feature Map 𝐹0

Feature Map 𝐹1

Block-Wise Detector

Figure 4.6: Brief process of block-wise detection.

where redundant bboxes are eliminated. Note that the full-frame detector and the

block-wise detector are essentially the same detector. The detection mode can be

switched based on the input type. We separate them here for better clarity.

4.3.2 Policy Network

The policy network fpn with parameters θ, is a trainable convolutional neural network

that can make binary block decisions (i.e., whether is a block is hard or easy) for the

current frame at timestamp t, based on the state:

St =
{
It, It−1,KT

}
, (4.3.1)

78

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

where It, It−1 and KT are the current frame, previous frame, and key frame (updated

every T frames), respectively. The network outputs a probabilities mask:

Pt = fpn (St; θ) , (4.3.2)

containing probabilities pb for each block b:

Pt = [p1, . . . , pb, . . . , pB] ∈ [0, 1]B , (4.3.3)

where B is the total number of blocks. The soft probabilities are sampled based on

Bernoulli distribution to binary actions:

At = [a1, . . . , ab, . . . , aB] ∈ {0, 1}B , (4.3.4)

where ab ∼ Bernoulli(pb). When ab = 1, block b is processed by the block-wise

detector; otherwise, it is handled by the light tracker.

Training: The policy network is trained offline with ground truth bboxes. The

policy π predicts actions A (omitting t for simplicity) with the goal of maximizing

the reward per frame. The objective can be represented as:

maxJ (θ) = maxEA∼πθ [R (A)] , (4.3.5)

where the total reward R(A) is defined as the sum of all the block rewards in the

frame:

R (A) =
B∑
b=1

[R (ab)] . (4.3.6)

79

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Therefore, Eq. (4.3.5) can be written as:

maxJ (θ) = max
B∑
b=1

(
Eab∼πb,θ [Rb (ab)]

)
. (4.3.7)

The policy network’s parameters θ can be updated using gradient ascent with learning

rate α:

θ ← θ + α∇θ [J (θ)] . (4.3.8)

Based on [19], maximizing the objective function in Eq. (4.3.7) is equivalent to min-

imizing the following loss function:

L = −
B∑
b=1

(Rb (ab) log πb,θ (ab | St)) . (4.3.9)

Reward: The purpose of the policy network is to identify the hard blocks for

detector processing. To prevent the policy from converging to a suboptimal state

where it always chooses to process all blocks as hard blocks, the reward takes both

accuracy and computation cost into account:

Rb (ab) = RTE (ab) + γRcost (ab) , (4.3.10)

where RTE (ab) is the accuracy reward based on task error, Rcost (ab) is the reward

for computation cost, and γ is a hyperparameter for balancing both rewards.

Task error: To determine the hardness of a block, we define task error (TE) as

a measure of the error resulting from processing that block either using the detector

or tracker, compared to the ground truth. Simply put, task error reflects how much a

predicted bbox deviates from the ground truth, which represents the actual position

80

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

of an object. Algorithm 1 is used to compute the task error. It requires the pipeline

execution results B (including bboxes from both the detector and the tracker), the

ground truth bboxes G, and the detection results D, which are derived from executing

full frames with the detector. The task error is first initialized as a zero-filled matrix

with the same size as the input frame. Next, undetectable ground truth bboxes are

removed. These bboxes cannot be detected by the detector and, consequently, by

BlockHybrid. Therefore, they are excluded from the calculation of TE. The rationale

is that if BlockHybrid cannot predict these bboxes, processing the corresponding

blocks is unnecessary. Then, for each bbox in B, we use greedy matching to find the

best matched bbox in the updated ground truth G ′, and measure the task error based

on IoU. Large overlap indicates low task error, and potentially low block hardness.

Finally, for unmatched ground truth bboxes, i.e., false negatives, we set the task error

to the maximum value (i.e., 1.0). The returned matrix TE is pixel-wise; we convert

it to block-wise representation using max-pooling:

TEb = maxTEp ∀p ∈ b. (4.3.11)

The block-wise accuracy reward RTE(ab) is finally calculated as:

RTE(ab) =


TEb if ab = 1,

−TEb if ab = 0.

(4.3.12)

Hard blocks, where ab = 1, have a positive reward for positive task error. In contrast,

easy blocks (i.e., ab = 0) receive a negative reward, and high task error increases the

likelihood of being decided as hard blocks.

81

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Computation cost: As mentioned in Section 4.3.1, the detector and tracker are

executed in parallel. Since the detector is more computationally expensive, the overall

processing time is dominated by the detector. Therefore, the computation cost of a

frame is measured by the number of detector-processed blocks (i.e., ab = 1):

C =

∑B
i=1 ai
B

∈ [0, 1]. (4.3.13)

Then, we define the cost reward as:

Rcost(ab) =


τ − C if ab = 1,

−(τ − C) if ab = 0,

(4.3.14)

where τ is an execution target, defining the desired average cost. The reward mini-

mizes the difference between C and the desired percentage τ . If the cost C is below the

target τ , the policy receives a positive reward, encouraging it to process more hard

blocks. Otherwise, it is penalized with a negative reward, promoting the processing

of more easy blocks. Since the policy network is trained offline with ground truth,

we follow the approach introduced in Section 4.2.1 to estimate the number of hard

blocks in each training sample beforehand. Finally, the target τ is calculated as the

average number of hard blocks among T frames:

τ =

∑T
i=1Hi

T
∈ [0, 1], (4.3.15)

where H is the estimated number of hard blocks.

82

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Algorithm 1 Task Error for Object Detection
Require: execution results B, ground truth G, detection results D, IoU threshold δ

// Initialize task error as a zero matrix of size H ×W
1: TE ← 0H×W

// remove undetectable ground truth bboxes
2: G ′ ← ∅
3: for gt ∈ G do
4: IoUbest ← 0
5: for det ∈ D do
6: if IoU (gt, det) > IoUbest then
7: IoUbest ← IoU (gt, det)
8: end if
9: end for

10: if IoUbest ≥ δ then
11: G ′ ← G ′ ∪ gt
12: end if
13: end for

// measure pixel-wise task error
14: for bbox ∈ B do
15: IoUbest ← 0
16: gt′best ← NULL
17: for gt′ ∈ G ′ do
18: if IoU (gt′, bbox) > IoUbest then
19: IoUbest ← IoU (gt′, bbox)
20: gt′best ← gt′

21: end if
22: end for
23: if gt′best 6= NULL then
24: G ′ ← G ′ \ {gt′best}
25: for all pixels p ∈ gt′best do
26: TEp ← max (TEp, 1− IoUbest)
27: end for
28: end if
29: end for

// deal with unmatched ground truth bboxes
30: for gt′ ∈ G ′ do
31: for all pixels p ∈ gt′ do
32: TEp ← 1.0
33: end for
34: end for
35: return TE

83

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

4.3.3 Post-Processing

As introduced in Section 4.3.1, detection bboxes are generated from both hard and

easy blocks. Meanwhile, the tracker tracks all references from key frames, producing

tracking bboxes that also span hard and easy blocks. The purpose of post-processing

is to refine these results by removing detection bboxes in easy blocks (i.e., stale

detections) and tracking bboxes in hard blocks (i.e., less accurate ones). However, this

refinement process is challenging since some bboxes may span across block boundaries,

making it difficult to determine their associated blocks. To address this issue, we

propose a two-stage filtering algorithm. In the first stage, the algorithm evaluates

each bbox’s area within different block types. Detection bboxes are retained if more

than 50% of their area overlaps with hard blocks, while tracking bboxes are kept if

more than half of their area falls within easy blocks. The rest are simply discarded.

This stage ensures that bboxes are appropriately assigned to their respective block

types. In the second stage, a non-maximum suppression (NMS) algorithm is applied

to further eliminate overlapping bboxes.

4.3.4 Block-wise Fine-tuning

The combination of new and old block features during block merge potentially leads to

feature inconsistencies at block boundaries. This issue, known as block artifacts, can

result in inaccurate or redundant detections. To mitigate this problem, we propose

block-wise fine-tuning, which is an additional training stage applied to pre-trained

weights of the detector. During fine-tuning, for each training iteration, the model is

given a pair of adjacent frames {It, It+1} to simulate our key frame and regular frame

inference procedure. For It, the detector processes the entire frame and caches all

84

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

block features. For It+1, ground truth bboxes are used to identify activated blocks

(i.e., blocks to be executed), among which η = 30% of the blocks are turned into inac-

tive blocks, to simulate scenarios where objects are located at block boundaries. The

execution results are compared with the ground truth to calculate the loss, which is

then used to update the model weights, improving its ability to handle block artifacts.

4.4 Evaluation

In this section, we conduct experiments to evaluate the performance of BlockHybrid.

We start with the experimental setup and then compare BlockHybrid to baselines on

two benchmark datasets and a real-world testbed.

4.4.1 Experimental Setup

The hardware platform consists of the NVIDIA Jetson TX2 and the Dell desktop

mentioned in Section 2.5. In benchmark evaluation, all workloads are executed locally

on the desktop. In testbed evaluation, the Jetson TX2 serves as a smart camera,

while the desktop acts as an edge server, with workloads distributed between them,

as shown in Figure 4.5. The edge server and camera are connected with the D-

Link AX4800 router through a 2.4GHz WiFi network. The bandwidth is 40.5 Mbps,

measured by iperf. TCP is used to enable the communication between the camera

and the server. Frames and blocks are compressed in JPEG format using the OpenCV

library [40, 95] before transmission, and decompressed by the server upon reception

for further processing.

85

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

4.4.2 Datasets and Metrics

BlockHybrid is evaluated using the MOT17 and WildTrack datasets described in

Section 2.3. Each video sequence is divided into 50% for detector training, 25% for

policy network training, and 25% for testing. All frames are resized to 1024× 2048.

We adopt mAP@0.5 to evaluate accuracy, and use end-to-end latency and network

traffic to evaluate efficiency, as introduced in Section 2.4.

4.4.3 BlockHybrid Configuration

To demonstrate the versatility of BlockHybrid, we apply it to two types of block-

wise object detectors: 1) CNN-based and 2) transformer-based. For simplicity, we

refer to them as BlockHybrid (CNN) and BlockHybrid (Transformer). For Block-

Hybrid (CNN), we adopt CSP [154] as the detector framework, with ResNet-50 [43]

or MobileNet [155] as backbone (denoted as CSP + ResNet-50/MobileNet). For

BlockHybrid (Transformer), we use Faster-RCNN + ViT-small. The network config-

uration follows that of [96]. Specifically, encoder depth L = 12, embedding dimension

D = 384, patch size = 16 × 16. The pre-trained weights of ResNet-50 and ViT-

Small are from [156] and [157], respectively, while those of MobileNet are from official

Pytorch repository. For detector training, we follow [156] for CSP and [158] for Faster-

RCNN, using the same training hyperparameters as in their respective frameworks.

The hyperparameters for block-wise fine-tuning are consistent with those used for

detector training. The policy network employs ResNet-8 as its backbone and three

64-channel convolutional layers as its head. The block size is set to 128×128. To

ensure seamless integration with transformer-based detectors, where the patch size is

16 × 16, we define one block as equivalent to 8 × 8 patches. The policy network is

86

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

trained offline using an RMS optimizer with learning rate = 1e−4 and weight decay

= 1e−3. The key frame interval T = 10, and the balancing hyperparameter γ = 5.

4.4.4 Baselines

BlockHybrid is compared with the following baselines. As discussed in Section 2.2,

EHCI [95] and BlockCopy [19] represent the SOTA methods in two different cat-

egories of block-wise conditional execution, both employing CNN-based detectors.

Arena [96] serves as the SOTA method for transformer-based block-wise conditional

execution. For fairness, we compare BlockHybrid (CNN) with BlockCopy and EHCI,

and BlockHybrid (Transformer) with Arena. In each comparison, all baselines use

the same detector and backbone, while block selection follows their respective original

designs.

• Full-frame detector (FD): The camera always transmits full frames to the

edge server, where a base detector performs inference without employing any

additional techniques. FD uses CSP when compared with BlockHybrid (CNN),

and Faster-RCNN when compared with BlockHybrid (Transformer).

• BlockCopy [19]: A policy network is used to determine informative blocks

on the camera, which are then sent to the server and batch-processed by the

detector. The features of non-informative blocks are cached and updated in the

server. We set the execution target τ to 30%.

• EHCI [95]: Informative blocks are identified on the camera based on detection

results from the previous frame. These non-uniform blocks are sent to the

server, where they are arranged into a compact frame using a rectangle packing

87

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

algorithm (e.g., Next-Fit [95]) before performing frame-wise object detection.

The detection results are subsequently mapped back to their original locations

in the full frame.

• Arena [96]: Every T frames, a full frame is sent to the server for processing

and the resulting tokens are cached. For the remaining T − 1 frames, detection

results from the previous frame are used to decide informative patches, which

are then transmitted to the server for processing. The encoder processes only

these informative patches, while the decoder reconstructs the complete token

sequence by reusing cached tokens from prior executions.

4.4.5 Benchmark Evaluation

In benchmark evaluation, all methods are executed locally on the edge server. Ta-

bles 4.2 and 4.3 present results using CSP + ResNet-50 and MobileNet. As shown

in Table 4.2, BlockHybrid (CNN) achieves the highest FPS among all the baselines,

with the least number of blocks being executed by the detector. Meanwhile, its accu-

racy remains comparable to the full-frame detector, with only a small drop of ∼1%.

In contrast, BlockHybrid*, without block-wise fine-tuning, struggles to predict accu-

rate bboxes across block boundaries, leading to a significant accuracy drop of ∼5%.

Compared to BlockHybrid, BlockCopy shows a lower FPS since it tends to process

the number of blocks defined by the execution target τ = 30%. However, processing

only ∼30% of the blocks sometimes misses some informative regions, resulting in a

noticeable accuracy decrease of ∼2%. EHCI, on the other hand, attempts to process

all informative blocks, which significantly reduces its FPS. As its block size is non-

uniform, the number of blocks is calculated by dividing the area of the merged smaller

88

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

frame by 128 × 128, the block size used in BlockHybrid and BlockCopy. Table 4.3

shows similar trends to Table 4.2. Notably, BlockHybrid with MobileNet achieves

near real-time processing (i.e., ∼30 FPS), representing a significant improvement

over FD, which achieves only ∼16 FPS.

Table 4.4 presents results using Faster-RCNN + ViT-Small. The overall trends

remain the same: BlockHybrid (Transformer) significantly reduces the number of

processed blocks, improving FPS while maintaining accuracy close to FD. However,

compared to CNN-based methods, all ViT-based methods run at a lower FPS due to

the increased computation overhead of self-attention operations. Arena, despite being

optimized for transformer-based block-wise execution, still suffers from reduced effi-

ciency since it processes a relatively large portion of the frame. In contrast, BlockHy-

brid effectively balances computation efficiency and detection performance, achieving

up to ∼4.7 FPS with a small accuracy drop (<2%) compared to FD.

We also study the impact of different key frame intervals T on the trade-off be-

tween accuracy and the number of executed hard blocks, as shown in Figure 4.7. In

this experiment, BlockHybrid (CNN) adopts CSP + ResNet-50. When T = 5, Block-

Hybrid achieves the highest accuracy, with around 30% of the blocks being executed

as hard blocks for MOT17 and WildTrack. When T = 10, BlockHybrid reduces the

number of hard blocks by 19.5% with only a 0.4% accuracy loss for MOT17, and by

14.0% at the expense of a 0.5% accuracy drop for WildTrack. As T increases further

from 15 to 30, the number of hard blocks stabilizes or slightly increases. This is be-

cause the references gradually become outdated, leading to more inaccurate tracking

results, which in turn activates more hard blocks by the policy network. Meanwhile,

89

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 4.2: Benchmark evaluation on two datasets using CSP + ResNet-50.

Dataset Method Backbone Accuracy Blocks FPS

MOT17

BlockHybrid ResNet-50 78.0% 23.1% 9.5
BlockHybrid* ResNet-50 73.1% 25.6% 9.1

FD ResNet-50 79.0% 100.0% 3.4
BlockCopy ResNet-50 77.2% 39.2% 8.0

EHCI ResNet-50 77.8% 45.6% 6.8

WildTrack

BlockHybrid ResNet-50 72.5% 25.1% 9.2
BlockHybrid* ResNet-50 67.2% 28.1% 8.8

FD ResNet-50 73.4% 100.0% 3.4
BlockCopy ResNet-50 71.6% 39.2% 8.0

EHCI ResNet-50 72.1% 49.8% 6.3
1 BlockHybrid* denotes without block-wise fine-tuning.

Table 4.3: Benchmark evaluation on two datasets using CSP + MobileNet.

Dataset Method Backbone Accuracy Blocks FPS

MOT17

BlockHybrid MobileNet 72.2% 23.8% 27.2
BlockHybrid* MobileNet 67.0% 26.9% 26.0

FD MobileNet 72.7% 100.0% 15.9
BlockCopy MobileNet 71.0% 39.7% 24.4

EHCI MobileNet 71.9% 44.7% 21.3

WildTrack

BlockHybrid MobileNet 65.8% 25.9% 26.2
BlockHybrid* MobileNet 60.1% 29.5% 25.1

FD MobileNet 66.5% 100.0% 15.8
BlockCopy MobileNet 64.6% 40.2% 23.9

EHCI MobileNet 65.4% 48.5% 20.6
1 BlockHybrid* denotes without block-wise fine-tuning.

Table 4.4: Benchmark evaluation on two datasets using Faster-RCNN + ViT-Small.

Dataset Method Backbone Accuracy Blocks FPS

MOT17

BlockHybrid ViT-Small 80.1% 23.4% 4.7
BlockHybrid* ViT-Small 78.3% 25.1% 4.5

FD ViT-Small 81.5% 100.0% 1.5
Arena ViT-Small 80.6% 43.9% 3.5

WildTrack

BlockHybrid ViT-Small 74.5% 24.5% 4.6
BlockHybrid* ViT-Small 72.1% 26.6% 4.4

FD ViT-Small 76.3% 100.0% 1.5
Arena ViT-Small 75.0% 47.3% 3.3

1 BlockHybrid* denotes without block-wise fine-tuning.

90

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

5 1 0 1 5 2 0 2 5 3 06 5 %

7 0 %

7 5 %

8 0 %
 A c c u r a c y
 H a r d B l o c k s

K e y F r a m e I n t e r v a l

Ac
cu

rac
y

2 0 %

2 5 %

3 0 %

 Ha
rd

Blo
cks

M O T 1 7

(a) MOT17

5 1 0 1 5 2 0 2 5 3 06 0 %

6 5 %

7 0 %

7 5 %
 A c c u r a c y
 H a r d B l o c k s

K e y F r a m e I n t e r v a l

Ac
cu

rac
y

2 5 %

3 0 %

 Ha
rd

Blo
cks

W i l d T r a c k

(b) WildTrack

Figure 4.7: The influence of different key frame intervals on the trade-off between
accuracy and the number of hard blocks.

accuracy shows a noticeable decline as the cached block features become stale, exacer-

bating block artifacts and degrading performance. To summarize, T = 10 achieves the

best balance between accuracy and the number of hard blocks across both datasets.

In practice, it is non-trivial to identify the optimal T , since the ground truth is un-

available during the online stage. However, this problem can be solved by offline or

online profiling [10], which we leave for future endeavors.

4.4.6 Testbed Evaluation

In testbed evaluation, we use CSP + MobileNet for all methods. Figure 4.8 shows

the normalized network traffic and accuracy of different methods across two datasets.

Figure 4.9 provides the end-to-end latency for each method, broken down into camera

time, transmission time, and server time. Due to minor information loss during frame

compression, the accuracy of all approaches experiences a slight drop of < 2%, while

their relationship remains consistent with the results in Table 4.3. Since BlockHybrid

utilizes parallel computation, as shown in Figure 4.5, the camera processing time

overlaps with the communication time, and the latter partially overlaps with the

91

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

server time. The camera time dominates the end-to-end latency of BlockHybrid,

since it includes the overhead of running the policy network and the tracker on a

resource-poor device. However, the reduction in the number of processed blocks

leads to significantly lower communication and server computation costs, enabling

BlockHybrid to achieve the lowest end-to-end latency among all the approaches. FD,

which always transmits the full frame to the server, generates the most network traffic

and thus incurs the longest end-to-end latency, with the transmission time being the

dominating factor. As shown in Table 4.3, BlockCopy and EHCI transmit and process

more blocks than BlockHybrid, leading to higher transmission time and server time.

Overall, BlockHybrid achieves the best accuracy-latency trade-off, accelerating the

end-to-end processing by 31.5%–39.1%, with only a minimal accuracy drop of 0.7%–

1.3%, compared to FD.

To further enhance system efficiency, we apply inter-frame pipelining, which al-

lows different processing stages: camera processing (LC), transmission (LT), and

server-side processing (LS) of different frames, to overlap in time. The average per-

frame latency can be approximated as Lavg ≈ max(LC , LT , LS), meaning that the

overall pipeline is bottlenecked by the slowest stage [159]. As shown in Figure 4.9

and Figure 4.10, the bottleneck varies depending on the method. For BlockHybrid

and BlockCopy, the policy network runs on a resource-constrained embedded device,

making camera-side computation the bottleneck. In contrast, FD suffers from trans-

mission bottlenecks, as it sends full frames to the server, leading to significantly higher

communication overhead. Meanwhile, EHCI processes more blocks than BlockCopy,

shifting the bottleneck to server-side computation. Overall, with pipelining, BlockHy-

brid still achieves the lowest per-frame latency among all methods, demonstrating its

92

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

effectiveness in latency-sensitive edge video analytics applications. This experiment

also highlights the importance of carefully balancing the computation and communi-

cation costs across different pipeline stages to maximize system throughput.

4.4.7 Visualization

To further demonstrate the performance of BlockHybrid, we provide visualizations

of three scenes in Figure 4.11, with the number of hard blocks indicated below each

image. It is evident that the policy network effectively differentiates between hard

and easy blocks. The easy blocks are mainly found in sparse regions with few ob-

jects, whereas the hard blocks concentrate in crowded regions, regions with occluded

objects, and regions with incoming objects, aligning well with expectations.

4.5 Conclusion

In this chapter, we introduced BlockHybrid, a novel framework for efficient object

detection that leverages fine-grained block-wise conditional execution to mitigate the

inefficiencies of traditional pipelines. By classifying blocks as hard or easy using a

policy network and applying different processing strategies accordingly, BlockHybrid

significantly reduces redundant computation and communication. Extensive evalua-

tions on public benchmarks and a real-world testbed demonstrate that BlockHybrid

achieves a superior trade-off between accuracy and efficiency, outperforming SOTA

methods.

93

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

2 5 . 6 % 2 7 . 6 %

1 0 0 . 0 % 1 0 0 . 0 %

4 1 . 8 % 4 2 . 2 %4 6 . 7 % 5 0 . 5 %

M O T 1 7 W i l d T r a c k
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

No
rm

. N
etw

ork
 Tr

aff
ic

 B l o c k H y b r i d F D
 B l o c k C o p y E H C I

(a) Normalized network traffic

7 1 . 0 %

6 4 . 4 %

7 1 . 7 %

6 5 . 7 %

6 9 . 9 %

6 3 . 1 %

7 0 . 6 %

6 3 . 9 %

M O T 1 7 W i l d T r a c k
6 0 %

6 5 %

7 0 %

7 5 %

Ac
cu

rac
y

 B l o c k H y b r i d F D
 B l o c k C o p y E H C I

(b) Accuracy

Figure 4.8: (a) Normalized network traffic and (b) accuracy of different methods on
two datasets.

B l o c k H y b r i d0

4 0

8 0

1 2 0

1 6 0

Av
g.

La
ten

cy
(m

s)

M e t h o d

 S e r v e r
 T r a n s m i s s i o n
 C a m e r a

F D B l o c k C o p y E H C I

1 5 5 . 5

1 1 4 . 9 1 1 2 . 2
9 4 . 7

M O T 1 7

(a) MOT17

B l o c k H y b r i d0

4 0

8 0

1 2 0

1 6 0

Av
g.

La
ten

cy
(m

s)

M e t h o d

 S e r v e r
 T r a n s m i s s i o n
 C a m e r a

F D B l o c k C o p y E H C I

1 4 3 . 7
1 1 4 . 8 1 1 3 . 1

9 8 . 5

W i l d T r a c k

(b) WildTrack

Figure 4.9: Average end-to-end latency of different methods on two datasets.
End-to-end latency includes camera time, transmission time and server time.

4 1 . 2
4 5 . 1

6 2 . 9 6 3 . 0

4 4 . 4
4 8 . 04 8 . 6 5 0 . 7

M O T 1 7 W i l d T r a c k
3 0

4 0

5 0

6 0

7 0

Av
g.

La
ten

cy
(m

s) B l o c k H y b r i d F D
 B l o c k C o p y E H C I

Figure 4.10: Average end-to-end latency of different methods with pipelining on two
datasets.

94

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

MOT17-04

F
ra

m
e

 #
 7

9
1

:
7

.8
%

F
ra

m
e

 #
 7

9
2

:
1
1
.7

%
F

ra
m

e
 #

 7
9
3

:
1

4
.1

%
F

ra
m

e
 #

 7
9
4

:
1

3
.3

%
F

ra
m

e
 #

 7
9
5

:
1

3
.3

%

F
ra

m
e

 #
 1

5
2

6
:

1
4

.1
%

WildTrack-Cam1 WildTrack-Cam7

F
ra

m
e

 #
 1

5
2

7
:

1
8

.8
%

F
ra

m
e

 #
 1

5
2

8
:

2
1

.9
%

F
ra

m
e

 #
 1

5
2

9
:

2
1

.9
%

F
ra

m
e

 #
 1

5
3

0
:

2
1

.9
%

F
ra

m
e

 #
 1

6
5

3
:

2
9

.7
%

F
ra

m
e

 #
 1

6
5

4
:

3
1

.3
%

F
ra

m
e

 #
 1

6
5

5
:

2
6

.6
%

F
ra

m
e

 #
 1

6
5

6
:

3
1

.3
%

F
ra

m
e

 #
 1

6
5

7
:

4
0

.6
%

F
ig

u
re

4.
11

:
V

is
u
al

iz
at

io
n

of
B

lo
ck

H
y
b
ri

d
ac

ro
ss

th
re

e
sc

en
es

.

95

http://www.mcmaster.ca/

Chapter 5

SEED: An End-to-End Selective

Execution Framework for

Transformer-Based Object

Detection in Edge Video Analytics

This chapter is based on the manuscript: Renjie Xu and Rong Zheng, “SEED: An End-to-End
Selective Execution Framework for Transformer-Based Object Detection in Edge Video Analytics”,
which is currently under submission. The work has not been published, and copyright remains with
the author at the time of thesis submission.

96

Ph.D. Thesis – R. Xu McMaster University – Computer Science

5.1 Introduction

Cameras have become deeply embedded in the urban environments, driven by the

rapid development of IoT and visual sensing technologies. They are now ubiquitous

in streets, buildings, factories, and homes, supporting a broad range of smart ap-

plications. As a result, video analytics has become a central focus in both research

and industry, enabling capabilities such as traffic monitoring, anomaly detection,

and behavior analysis [2]. Many of these applications demand low-latency or even

real-time processing. For example, in ITS [33], promptly detecting abnormal driving

or pedestrian behavior is critical for issuing early warnings to drivers via vehicu-

lar communication networks, helping to prevent potential traffic accidents. In such

latency-sensitive scenarios, it is crucial to design an efficient execution framework

that enables rapid and accurate video analytics.

Recently, ViTs [160] have gained popularity for their strong representation capa-

bility, outperforming CNNs in many video analytics tasks [21, 161]. However, their

self-attention mechanism incurs high computational cost due to its quadratic com-

plexity with respect to token count [160]. For instance, a 1024 × 2048 frame with

16 × 16 patch size produces over 8000 tokens, posing significant challenges for de-

ployment in edge video analytics systems [96]. To mitigate this, prior work explores

network pruning [22], parameter quantization [23], layer splitting [162], and efficient

attention [24, 25], aiming to reduce overhead while preserving accuracy.

However, most existing methods are content-agnostic and treat all regions in video

frames equally. In practice, it is often unnecessary to process entire frames uniformly.

For example, traffic monitoring primarily concerns dynamic entities like vehicles and

pedestrians, instead of background regions [33]. This motivates selective execution,

97

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

which allocates computation to semantically important regions while reducing or skip-

ping others. Final predictions are generated by merging features from heterogeneous

regions. Selective execution is widely adopted in edge video analytics systems [2],

where a smart camera selects informative regions at runtime and transmits them to

an edge server for further processing. Prior works [95, 94, 96] estimate informative

regions by expanding past detections using motion heuristics, often leading to over-

selection beyond necessary scope. Others [19, 152] use policy networks that are not

jointly optimized with the detector. As a result, the detector is not adapted to the

selected blocks, which may lead to feature inconsistencies at region boundaries and

compromise accuracy. Token pruning methods [101, 100] adopts gating modules em-

bedded within the detector to select informative tokens. This coupling limits their

use in edge deployments where block selection must be performed upfront to filter

out non-IBs before transmission.

To mitigate these weaknesses, we propose SEED, an end-to-end selective execution

framework for accelerating ViT-based object detection pipelines. SEED consists of a

lightweight decision network (DecisionNet) and a block-wise ViT detector (BlockDet).

Each frame is divided into uniform-sized blocks; DecisionNet identifies informative

blocks (IBs) using semantic cues. IBs are fully processed by BlockDet, while non-

IBs are lightly processed. To demonstrate the flexibility of SEED, we design two

variants with distinct selective execution strategies: SEED-TR (token reuse), which

reuses historical features for non-IBs, and SEED-EE (early exit), which terminates

inference early for non-IBs. The DecisionNet and BlockDet are jointly trained in an

end-to-end manner, optimizing selection strategies directly for detection performance.

However, this is non-trivial due to unstable block decisions and poor detection quality

98

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

DecisionNet

Camera

BlockDet
Post-

Processing

Edge Server
IBs

Camera

Detector
Post-

Processing

Edge Server

Input Frames

Captured Frames

Full Frame

Input

(a) Conventional pipeline

DecisionNet

Camera

BlockDet
Post-

Processing

Edge Server
IBs

Camera

Detector
Post-

Processing

Edge Server

Input Frames

Captured Frames

Full Frame

Input

(b) Proposed pipeline

Figure 5.1: Comparison between conventional pipeline and the proposed pipeline

.

at early stages. To address this, we propose a three-stage training strategy involving

BlockDet pre-training, DecisionNet warm-up, and joint optimization. In the last two

stages, pseudo-labels derived from ground-truth annotations are used to supervise

DecisionNet, making the approach detector-agnostic. Moreover, the DecisionNet is

designed to be lightweight and can run efficiently on resource-constrained IoT devices

(e.g., smart cameras). This enables a distributed deployment, where the DecisionNet

runs on the camera side to select IBs that are then sent to the BlockDet deployed on

an edge server for processing. As illustrated in Figure 5.1b, only the selected IBs are

transmitted to the server, significantly reducing communication and computational

overhead compared to naively transmitting full frames, as shown in Figure 5.1a.

To evaluate the performance of SEED, we compare it against state-of-the-art

approaches on two public datasets and a real-world edge video analytics testbed,

using an NVIDIA Jetson TX2 as the camera and an Ubuntu desktop as the edge

99

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

server. Experimental results demonstrate that SEED significantly accelerates end-to-

end processing while maintaining competitive accuracy.

In summary, our key contributions are as follows:

• We propose SEED, an end-to-end selective execution framework that prioritizes

computation on IBs to accelerate ViT-based detection.

• We design a lightweight and decoupled DecisionNet for real-time block selection.

• We implement two SEED variants: SEED-TR (token reuse) and SEED-EE

(early exit) to demonstrate flexible execution strategies.

• We present a three-stage training strategy with pseudo-label supervision, en-

abling stable and joint optimization of DecisionNet and BlockDet.

• We deploy a prototype of SEED on a real-world testbed, validating its perfor-

mance in edge video analytics.

5.2 Motivation

In this section, we demonstrate the spatial redundancy in video frames and the po-

tential efficiency gains enabled by selective execution.

5.2.1 Redundancy of Videos

Videos often contain significant spatial redundancy, leading to additional overhead

when all regions are processed uniformly. To quantify this redundancy, we analyze two

representative datasets: MOT17 [104] and WildTrack [105], each comprising multiple

video sequences. Each frame is resized to 1024 × 2048 and divided into 16 × 32

100

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 5.1: Redundancy of MOT17 and WildTrack datasets.

Sequence # Frame Density1 IBs2

MOT17-02 600 31.0 22.5%
MOT17-04 1050 45.3 35.6%
MOT17-05 837 8.3 72.2%
MOT17-09 525 10.1 29.8%
MOT17-10 654 19.6 19.6%
MOT17-11 900 10.5 42.7%
MOT17-13 750 15.5 8.0%

WildTrack-Cam1 2000 35.8 27.2%
WildTrack-Cam2 2000 24.9 42.9%
WildTrack-Cam3 2000 38.3 47.6%
WildTrack-Cam4 2000 29.3 22.9%
WildTrack-Cam5 2000 27.0 31.0%
WildTrack-Cam6 2000 34.2 27.8%
WildTrack-Cam7 2000 30.9 30.5%
1 Density denotes the average number of objects per frame.
2 IB refers to informative block.

blocks of size 64 × 64. These sequences span a wide range of crowd densities, with

object counts per frame ranging from 8.3 to 45.3 in MOT17 and from 24.9 to 38.3

in WildTrack. Despite such variations in scene complexity, the proportion of IBs,

defined as the blocks containing target objects, remains relatively low across most

sequences.

As shown in Table 5.1, several sequences in MOT17, such as MOT17-02 and

MOT17-13, exhibit extremely sparse distributions of IBs, covering only 22.5% and

8.0% of the spatial grid, respectively. Even in denser scenarios like MOT17-04, IBs

still only account for 35.6%. Similar trends are observed in WildTrack, where the IB

ratio stays below 50% in most camera views, reaching as low as 27.2% in Cam1. These

statistics highlight the substantial irrelevant or redundant spatial content present in

101

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

real-world videos.

5.2.2 Benefits of Selective Execution in ViTs

For a single ViT encoder with N input tokens and token dimension D, the per-layer

complexity is O(12ND2 + 2N2D) [160]. Stacking L layers leads to a total complexity

of O(L(12ND2 + 2N2D)). N grows quadratically with frame size and often exceeds

D by a large margin, dominating the complexity.

Selective execution saves computation by directly reducing N . In the token reuse

setting, only the N ′ selected tokens are processed through all L encoder layers, while

the remaining N − N ′ tokens are directly reused. The total backbone complexity

is O(L(12N ′D2 + 2N ′2D)). This leads to significant savings when N ′ � N , as no

computations is performed on unselected tokens. In the early exit setting, all N

tokens are processed by the first L′ < L layers, after which only the selected N ′

tokens are further processed by the remaining L− L′ layers. The overall complexity

becomes O(L′(12ND2 +2N2D))+O((L−L′)(12N ′D2 +2N ′2D)), which also benefits

from small N ′, though the initial L′ layers still incur a fixed cost over all tokens.

To validate the computational benefits of selective execution, we measure the

actual encoder latency across different block execution ratios, as shown in Figure 5.2.

Both strategies exhibit a clear nonlinear latency trend: latency decreases sharply

as fewer blocks are executed, with diminishing returns at lower execution ratios.

Specifically, when only 10% of the blocks are processed, latency decreases from 574.2

ms to 17.8 ms with token reuse, and from 574.6 ms to 155.5 ms with early exit.

These empirical results are consistent with the complexity analysis: both strategies

achieve significant speedups at low execution ratios, confirming the effectiveness of

102

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

La
ten

cy
(m

s)

E x e c u t e d B l o c k s
(a) Token reuse

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

La
ten

cy
(m

s)

E x e c u t e d B l o c k s
(b) Early exit

Figure 5.2: Relationship between number of executed blocks and encoder latency.
Input size: 1024× 2048, patch size: 16× 16.

selective execution in reducing computational cost.

5.2.3 Decoupled Inference and Joint Training

Prior works [94–96] identify informative regions using heuristics, typically by expand-

ing regions around previously detected bounding boxes (bboxes) to account for object

motion. For example, Arena [96] expands a fixed number of patches in all directions,

while EHCI [95] and FDDIA [94] scale the width and height by fixed factors. Such

heuristics often result in redundant selections and thus unnecessary processing over-

head. Other methods [19, 152] employ separate policy networks trained on detection

results from consecutive frames, where blocks with large motion are more likely to be

selected. Without joint optimization with the policy, the detector is not adapted to

diverse block-wise inputs, suffering from block artifacts that can degrade accuracy.

SViT [101] integrates gating modules into the ViT blocks of the detector to identify

informative tokens layer by layer. While effective, it requires full-frame token pro-

cessing before selection, making it unsuitable for distributed end-edge deployments

where lightweight, upfront decision-making is needed to reduce the transmission of

103

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 5.2: High-level comparison of SEED and other methods.

Method Learnable
Decoupled
Inference

Joint
Training

SEED (ours) 3 3 3

SViT [101] 3 7 3

Arena [96] 7 3 7

BlockCopy [19] 3 3 7

non-IBs. In contrast, SEED introduces a lightweight and learnable DecisionNet that

is decoupled from, but jointly trained with, the detector. This design enables ac-

curate and early selection of IBs on resource-constrained end devices. A high-level

comparison of SEED and the most relevant methods is shown in Table 5.2.

5.3 SEED Design

In this section, we present the design of SEED, covering the overall framework, the

decision network, the block-wise detector, and the three-stage training strategy.

5.3.1 Overview

The overview of SEED is illustrated in Fig. 5.3. The input is first ¬ down-sampled and

passed to the DecisionNet. The ­ DecisionNet (Section 5.3.2) generates a decision

grid, based on which the ® BlockDet (Section 5.3.3) performs selective execution. The

detection results are then ¯ post-processed (e.g., filtering low-confidence bboxes) to

produce the final output.

SEED supports two variants, SEED-TR and SEED-EE, each realized by adap-

tively executing selected blocks within the BlockDet. In SEED-TR, only IBs are

104

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

DecisionNet

Input Frames

4× Down-

sample

BlockDet
Post-

ProcessingInput

Token

Reuse
Early

Exit1 2

3 4

Output

Figure 5.3: Overview of SEED.

fully processed, while non-IBs are skipped by reusing their tokens from previous ex-

ecutions. In SEED-EE, all blocks are processed, but non-IBs exit early after fewer

encoder layers. Both DecisionNet and BlockDet are jointly trained to optimize detec-

tion performance (Section 5.3.4). For clarity, we refer to the modules in SEED-TR

and SEED-EE as DecisionNet-TR/EE and BlockDet-TR/EE, respectively.

5.3.2 Decision Network

The architecture of the DecisionNet is depicted in Figure 5.4. Given the input Ik ∈

RĤ×Ŵ×Ĉ , where k ≥ 1 denotes the index of the frame in a video sequence, the

DecisionNet outputs a decision grid Gk that guides the subsequent selective execution

process.

The input varies across SEED variants. In SEED-TR, which involves token reuse

across frames, historical context is critical for guiding block decisions. Accordingly,

DecisionNet-TR takes four inputs: 1) the down-sampled current frame x̂k, 2) the

down-sampled previous frame x̂k−1, 3) the previous detection results Dk−1, and 4)

the previous block decision grid Gk−1. In SEED-EE, DecisionNet-EE does not rely

on temporal information and only uses x̂k as input.

The network architecture is identical for both variants. The input Ik passes

105

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Conv 16×16, 64

Stride 16

Input

(෡H × ෡W× ෠C)
MLP 1

64 → 16

MLP 2

16 → 2

Output

(෡N × 1)
Gumbel

Softmax

෡N × 64

෡N × 16 ෡N × 2

Figure 5.4: Architecture of DecisionNet.

through one Conv layer and two MLP layers to output the logits Pk:

Pk = MLP1,2(Conv(Ik)) ∈ RN̂×2. (5.3.1)

A Gumbel-Softmax layer is then applied to Pk to produce the decision grid:

Gk = GumbelSoftmax(Pk) ∈ {0, 1}N̂×1. (5.3.2)

5.3.3 Block-Wise Detector

The ViT detector from [96] is adopted as BlockDet. In SEED-TR, it follows the

original design (BlockDet-TR), while in SEED-EE, it is extended with an early-

exit mechanism (BlockDet-EE). These two variants showcase SEED’s extensibility to

different selective execution strategies within a unified framework. The architectures

of BlockDet-TR and BlockDet-EE are shown in Figure 5.5.

BlockDet-TR: SEED-TR has two phases: full inference and selective inference.

For the first frame xk (k = 1), BlockDet-TR performs full inference. The frame

x1 ∈ RH×W×C is first divided into N non-overlapping patches of size P × P :

x1
p = [x1

p,1; x1
p,2; · · · ; x1

p,N], x1
p,i ∈ RP 2C . (5.3.3)

106

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

1 2 3 4 5 6 7 8 9

Transformer

Encoder

Hybrid Feature Reconstruction

𝐶𝑎

𝐶𝑏

DecisionNet-TR

× 𝐿

1/4

1/8

1/16

1/32

DeConv

Detection

Head

Linear Projection of Flattened Patches

1 2 3 4 5 6 7 8 9

Transformer Encoder

Hybrid Feature Reconstruction

1/4

1/8

1/16

1/32

DeConv

Detection

Head

Encoder

× 𝐿′

× 𝐿 − 𝐿′

𝑥𝑘−1𝑥1 𝑥2 … 𝑥𝑘𝑥𝑘−1𝑥1 𝑥2 … 𝑥𝑘

SelectiveFull
DecisionNet-EE

Linear Projection of Flattened Patches

BlockDet-TR BlockDet-EE

Embedded

Patches

Multi-Head

Attention

Norm

MLP

+

+

Norm

Encoder

𝐿 ×

IB

Non-IB

Figure 5.5: Architectures of BlockDet-TR and BlockDet-EE.

Next, the initial tokens z̃1
0 are obtained after applying the linear projection E ∈

RP 2C×D:

Ca ← z̃1
0 = [x1

p,1E; x1
p,2E; · · · ; x1

p,NE], (5.3.4)

where z̃1
0 is cached in Ca. Position embeddings Epos ∈ RN×D are then added to the

initial tokens to preserve positional information as:

z1
0 = z̃1

0 + Epos. (5.3.5)

The resulting tokens z1
0 are processed through L transformer encoder layers [160] to

produce the final output z1
L, which is cached in Cb:

z1
` = Encoder(z1

`−1), ` = 1, . . . , L, (5.3.6)

Cb ← z1
L. (5.3.7)

Each encoder layer consists of a multi-head self-attention (MSA) and a feed-forward

107

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

network (MLP), both with residual connections and layer normalization (LN) [160].

z̃1
` = MSA(LN(z1

`−1)) + z1
`−1, ` = 1, . . . , L, (5.3.8)

z1
` = MLP(LN(z̃1

`)) + z̃1
` , ` = 1, . . . , L. (5.3.9)

Notably, the caches Ca and Cb are updated in every inference and re-initialized at

the next full inference phase. The tokens z1
L output from the encoder are then fed

to the hybrid feature reconstruction (HFR) layer, which is a single-layer transformer

decoder [96, 163] to construct the complete token sequence. To enhance detection

performance, a feature pyramid network (FPN) is adopted to extract multi-scale

features {f1, f2, f3, f4} from different depths:

f1 = DeConv1(z̃
1
0), f2 = DeConv2(z̃

1
0), (5.3.10)

f3 = HFR(z1
L), f4 = Conv(f3). (5.3.11)

These features are combined and then passed to a detection head [50, 96] to generate

detection results (e.g., bboxes, classes, etc.).

For the remaining frames xk (k > 1), BlockDet-TR performs selective inference.

DecisionNet-TR takes as input Ik = {x̂k, x̂k−1,Dk−1,Gk−1} and outputs a block de-

cision grid Gk, which determines the IB indices Bk. Here, |Bk| = N ′, where N ′ � N .

The corresponding tokens z̃k
0,Bk are then extracted for further processing, with posi-

tion embeddings added based on their original locations in xk:

zk0,Bk = z̃k0,Bk + E′pos,Bk , E′pos,Bk ∈ RN ′×D. (5.3.12)

108

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

The resulting tokens zk
0,Bk are processed by the encoder to obtain zk

L,Bk , following

Eq. 5.3.6. The newly computed tokens zk
L,Bk and the reused tokens zk

L,Bkc
retrieved

from the cache Cb, are then jointly fed into the HFR layer. Here, Bkc denotes the

complement of Bk, corresponding to the non-IB indices. The HFR layer recovers

the full token sequence and reconstructs spatial and semantic relationships between

new and reused tokens, producing a coherent global representation for downstream

prediction. Similarly, the input token sequence z̃k0 is formed by merging z̃k
0,Bk with

z̃k
0,Bkc

, where the latter is retrieved from the cache Ca. After obtaining z̃k0 and zkL, the

caches are updated accordingly for future use:

Ca ← z̃k0, Cb ← zkL. (5.3.13)

Finally, the multi-scale feature pyramid {f1, f2, f3, f4} is computed, following Eq. 5.3.10

and Eq. 5.3.11. The remaining steps are the same as those in the full inference phase.

BlockDet-EE: For each frame, SEED-EE performs selective inference via early

exiting. DecisionNet-EE processes x̂k and outputs a decision grid Gk that indicates

whether each block should undergo full or shallow processing by BlockDet-EE.

The input patches xkp are first transformed into tokens zk0 ∈ RN×D following

Eq. 5.3.3– 5.3.5. These tokens are then processed by the first L′ layers of the encoder:

zk` = Encoder(zk`−1), ` = 1, . . . , L′. (5.3.14)

At this point, the early exit mechanism is triggered. For non-IBs Bkc , inference halts

and their intermediate features zk
L′,Bkc

are directly retained. For IBs Bk, computation

109

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

continues through the remaining layers:

zk`,Bk = Encoder(zk`−1,Bk), ` = L′ + 1, . . . , L. (5.3.15)

The final token sequence zkL is reconstructed within the HFR layer, which first merges

the early-exited tokens zk
L′,Bkc

and the fully-processed tokens zk
L,Bk , and then refines

the combined sequence to recover cross-token relationships. Subsequent processing,

including multi-scale feature fusion and detection head inference, follows the same

procedure as BlockDet-TR.

Note that the early exit point L′ in BlockDet-EE is tunable and can be adjusted

according to application-specific requirements and the target accuracy-latency trade-

off. For simplicity and to showcase the feasibility of BlockDet-EE, we set L′ = L/4

throughout this study.

5.3.4 Joint Training

Naively training the DecisionNet and BlockDet jointly from scratch using only task

loss is problematic. At the early stage of training, the DecisionNet produces unsta-

ble block decisions, failing to provide meaningful spatial guidance for the BlockDet.

Meanwhile, the BlockDet itself lacks basic object detection capability due to random

initialization. These two issues reinforce each other negatively: inaccurate block se-

lections weaken the training signals for the BlockDet, while the inadequately trained

BlockDet provides ineffective feedback for improving the DecisionNet. This mutual

dependence creates a cold-start problem that hinders convergence and degrades over-

all detection performance.

To address this issue, we propose a three-stage training strategy:

110

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

BlockDet Pre-training: The BlockDet is first initialized with a backbone pre-

trained on a large-scale dataset [157]. To adapt it to the selective execution setting,

we further fine-tune it using partially masked inputs by randomly dropping 50% of

the blocks during training to simulate sparse spatial patterns. This strategy improves

the robustness of the BlockDet to partial inputs and prepares it for the subsequent

block-wise selective inference.

DecisionNet Warm-Up: We then train the DecisionNet independently using

supervision from a pseudo-label decision grid G. This grid can be derived from ground-

truth annotations. The training objective is to make the predicted grid Ĝ approximate

G, providing a more informative initialization. The grid loss is defined in Eq. 5.3.16:

Joint Optimization: Once both networks are warmed up, we jointly train the

DecisionNet and BlockDet in an end-to-end manner:

Lgrid = LBCE(Ĝ,G), (5.3.16)

Lcomplexity = LMSE(τ,
1

N̂

N̂∑
i=1

Ĝi), (5.3.17)

Ltotal = Ltask + α · Lgrid + β · Lcomplexity. (5.3.18)

Here, Ltask refers to the standard detection loss from BlockDet (e.g., classification and

bbox regression) [50], while Lgrid encourages block selection to stay close to meaningful

spatial regions [164]. Additionally, Lcomplexity constrains the overall execution cost to

align with a target block selection ratio τ [100, 101]. The balancing weights α and

β control the contribution of each auxiliary loss term. This staged strategy enables

stable convergence and allows the DecisionNet to learn a selection policy that is both

effective and computationally efficient.

111

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Pseudo-Label Grid: To supervise the training of the DecisionNet, we construct

a pseudo-label grid G that serves as an approximate ground truth for block impor-

tance. For SEED-TR, G is generated by projecting ground-truth bboxes onto the

block grid, where each block is marked as 1 if it overlaps with any object, and 0 oth-

erwise. This provides a coarse but effective approximation of the blocks that require

full processing. For SEED-EE, the construction of G additionally considers whether

a block can be handled by shallow inference. We first mark all blocks overlapping

with ground-truth objects as 1. Then, a shallow detector (with depth L′) is used to

perform inference on the training set. If a ground-truth object is successfully detected

by the shallow detector, the corresponding block is re-labeled as 0. The rationale is

that blocks correctly processed by early layers do not need deeper computation, and

can therefore be processed with early exit.

5.4 Evaluation

In this section, we evaluate the performance of SEED through extensive experiments.

We begin with the experimental setup, followed by comparisons with several baselines

on two benchmark datasets and a real-world testbed.

5.4.1 Experimental Setup

The hardware platform consists of the NVIDIA Jetson TX2 and the Dell desktop

introduced in Section 2.5. The two devices are connected via a D-Link AX4800 router

over a 2.4GHz Wi-Fi network, with an average bandwidth of 20.1 Mbps measured

using iperf. Evaluation is conducted in two settings: the benchmark evaluation

112

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

(Section 5.4.5) runs all computation on the desktop for controlled comparison, while

the testbed evaluation (Section 5.4.6) distributes computation between the Jetson

TX2 (as a smart camera) and the desktop (as an edge server) to simulate a real-

world edge video analytics deployment.

5.4.2 Datasets and Metrics

We evaluate SEED on two representative pedestrian detection datasets mentioned

in Section 2.3: MOT17 and WildTrack. Each video sequence is split into 75% for

training the DecisionNet and BlockDet, and 25% for testing. All frames are resized

to 1024×2048 for consistency. For evaluation, we use mAP@0.5 to measure accuracy,

and report end-to-end latency and network traffic to measure efficiency, as introduced

in Section 2.4.

5.4.3 SEED Configuration

The DecisionNet has ∼0.1M parameters, less than 0.3% of BlockDet’s 44.6M. The

BlockDet adopts Faster-RCNN [50], a two-stage detector with ViT-Small as the back-

bone. The network configuration follows [96], with encoder depth L = 12, embedding

dimension D = 384, and patch size = 16× 16. One block in DecisionNet corresponds

to a 4× 4 grid of patches. The pre-trained weights of ViT-Small are from [157]. The

target block selection ratio τ = 20%, and the balancing hyperparameters α = 4, β = 5.

The BlockDet is first pre-trained for 60 epochs with an AdamW optimizer [165] (learn-

ing rate 1e-4, weight decay 1e-3). The DecisionNet is then warmed up for 30 epochs

with AdamW (learning rate 1e-3, weight decay 1e-4). The joint training is finally

conducted for 50 epochs using the same settings as in the BlockDet pre-training.

113

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

5.4.4 Baselines

SEED is compared against the following baselines. To ensure a fair comparison, all

methods use the same detector framework, while their training strategies and block

selection mechanisms follow their respective original designs.

• Full-Frame Detector (FD): This is a standard baseline where the detec-

tor (with L encoder layers) performs full-frame inference without any form of

selective execution.

• FD-Quarter: A lightweight variant of FD in which all frames are processed

by a shallower detector with L′ = L/4 encoder layers.

• FD-Random: A naive baseline where 30% of the blocks are randomly selected

for processing, serving as a reference to assess the benefit of content-aware

selection.

• BlockCopy [19]: A separate policy network identifies IBs, which are then

processed by the detector. Features corresponding to non-IBs are cached and

reused across frames to reduce redundant computation.

• SViT [101]: Layer-wise token pruning is applied to each frame independently.

The gating module inside each ViT block selects informative tokens for fur-

ther processing, while unselected tokens reuse representations from the previous

layer.

• Arena-TR [96]: A full frame is processed periodically to obtain a complete

set of tokens, which are then cached. For subsequent frames, IBs are selected

based on previous detection results. Only tokens from the selected blocks are

114

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

updated, while those from non-IBs are reused to reconstruct a complete token

sequence for detection.

• Arena-EE: A variant of Arena adapted for early exit. All tokens pass through

the first L′ = L/4 layers of the encoder. Only tokens corresponding to IBs

continue through the remaining layers, while others exit early without further

computation.

.

5.4.5 Benchmark Evaluation

We evaluate SEED against the selected baselines on MOT17 and WildTrack under

token reuse and early exit. For fair comparison, SEED-TR is compared with FD,

BlockCopy, SViT and Arena-TR, while SEED-EE is compared with FD, FD-Quarter,

FD-Random and Arena-EE. The results are reported in Table 5.3 and Table 5.4.

In the token reuse setting, SEED-TR gains 82.0% mAP on MOT17, with only a

1.6% drop from FD, while executing only 27.2% of the blocks and reducing latency

by 75.5%. In contrast, BlockCopy, lacking joint optimization, suffers from block

artifacts and shows a larger accuracy drop (4.6%) despite executing more blocks

(37.8%). SViT reaches the same accuracy as SEED-TR (82.0%) with slightly higher

block usage (30.1%) and latency. Arena-TR determines IBs using motion heuristics,

executing more blocks (41.6%) and reducing latency (66.5%) less than SEED-TR.

Similar trends are observed on WildTrack. SEED-TR reaches 76.1% mAP with only

28.5% of blocks executed and a 74.4% latency reduction. BlockCopy and Arena-TR

require significantly more computation (up to 45.4%) yet show lower accuracy. SViT

115

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 5.3: Benchmark evaluation on two datasets for token reuse.

Dataset Method Accuracy (%,%) Blocks (%) Latency (ms)

MOT17

SEED-TR 82.0 (↓ 1.6) 27.2 168.6 (↓ 75.5%)
FD 83.6 100 689.1

BlockCopy 79.0 (↓ 4.6) 37.8 218.7 (↓ 68.3%)
SViT 82.0 (↓ 1.6) 30.1 194.2 (↓ 71.8%)

Arena-TR 81.4 (↓ 2.2) 41.6 230.8 (↓ 66.5%)

WildTrack

SEED-TR 76.1 (↓ 1.7) 28.5 176.6 (↓ 74.4%)
FD 77.8 100 688.5

BlockCopy 72.9 (↓ 4.9) 38.9 222.8 (↓ 67.6%)
SViT 76.2 (↓ 1.6) 31.4 198.7 (↓ 71.1%)

Arena-TR 75.7 (↓ 2.1) 45.4 248.7 (↓ 63.9%)

remains competitive in accuracy (76.2%) but executes more blocks (31.4%) and is

overall less efficient than SEED-TR.

In the early exit setting, SEED-EE achieves 83.3% mAP on MOT17, closely

matching FD (83.6%) while executing only 22.6% of blocks and reducing latency

by 57.4%. FD-Quarter, although faster due to its shallow backbone, suffers from a

significant accuracy drop of 11.4%. FD-Random reaches similar latency as SEED-

EE but incurs an 8.4% drop in accuracy due to its naive block selection. Arena-EE

achieves 82.8% accuracy with 48.8% latency reduction, but still executes significantly

more blocks (43.4%) due to its reliance on past detection results. On WildTrack,

the trend remains consistent. SEED-EE continues to deliver better results, achieving

77.2% mAP with 23.7% of blocks executed and 56.9% latency reduction. In contrast,

FD-Random and FD-Quarter still show poor accuracy (10.1%–13.4% lower than FD),

while Arena-EE, although competitive in accuracy, consumes nearly twice the number

of blocks as SEED-EE.

116

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Table 5.4: Benchmark evaluation on two datasets for early exit.

Dataset Method Accuracy (%,%) Blocks (%) Latency (ms)

MOT17

SEED-EE 83.3 (↓ 0.3) 22.6 293.2 (↓ 57.4%)
FD 83.6 100 688.3

FD-Quarter 72.2 (↓ 11.4) 100 264.8 (↓ 61.5%)
FD-Random 75.2 (↓ 8.4) 30.0 311.7 (↓ 54.7%)
Arena-EE 82.8 (↓ 0.8) 43.4 352.4 (↓ 48.8%)

WildTrack

SEED-EE 77.2 (↓ 0.6) 23.7 296.1 (↓ 56.9%)
FD 77.8 100 687.6

FD-Quarter 64.4 (↓ 13.4) 100 264.5 (↓ 61.5%)
FD-Random 67.7 (↓ 10.1) 30.0 312.2 (↓ 54.6%)
Arena-EE 76.8 (↓ 1.0) 46.8 365.4 (↓ 46.9%)

5.4.6 Testbed Evaluation

As described in Section 5.4.1, our testbed consists of a camera and an edge server. To

minimize communication overhead, we adopt different optimizations for token reuse

and early exit. In both settings, IBs are identified on the camera, merged into a com-

pact frame, compressed, and transmitted to the server. For early exit, a downsampled

copy of the original frame is also sent; the server then upsamples it to the original

size and replaces the corresponding blocks with the received IBs to reconstruct the

full frame for downstream processing. For fairness, these optimizations are applied

to all the baselines as well. Figures 5.6 and 5.8 show the normalized network traffic

and accuracy of different methods in both settings across two datasets. Figures 5.7

and 5.9 further break down the average end-to-end latency into camera time, trans-

mission time, and server time. Due to the slight information loss during compression,

the accuracy across all methods shows a minor decrease of less than 2%, with their

relative performance consistent with the benchmark evaluation in Tables 5.3–5.4.

As depicted in Figures 5.7 and 5.9, server-side inference dominates end-to-end

117

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

2 9 . 0 3 0 . 6

1 0 0 . 0 1 0 0 . 0

3 9 . 7 4 0 . 9

1 0 0 . 0 1 0 0 . 0

4 3 . 6 4 7 . 6

M O T 1 7 W i l d T r a c k2 0

4 0

6 0

8 0

1 0 0
No

rm
. N

etw
ork

 Tr
aff

ic (
%)

 S E E D - T R
 F D
 B l o c k C o p y
 S V i T
 A r e n a - T R

(a) Normalized network traffic

8 0 . 6

7 4 . 5

8 2 . 4

7 6 . 3
7 7 . 5

7 0 . 9

8 0 . 7

7 4 . 7

8 0 . 1

7 4 . 1

M O T 1 7 W i l d T r a c k6 5

7 0

7 5

8 0

8 5

Ac
cu

rac
y (

%)

 S E E D - T R
 F D
 B l o c k C o p y
 S V i T
 A r e n a - T R

(b) Accuracy

Figure 5.6: (a) Normalized network traffic and (b) accuracy of different methods in
the token reuse setting on two datasets.

S E E D - T R F D B l o c k C o p y S V i T A r e n a - T R0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Av
g.

La
ten

cy
(m

s) S e r v e r
 T r a n s m i s s i o n
 C a m e r a

2 2 4 . 2

8 6 3 . 3

3 1 8 . 3 3 6 7 . 8 3 0 9 . 7

(a) MOT17

S E E D - T R F D B l o c k C o p y S V i T A r e n a - T R0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Av
g.

La
ten

cy
(m

s) S e r v e r
 T r a n s m i s s i o n
 C a m e r a

2 2 7 . 9

8 3 9 . 5

3 1 4 . 4 3 4 9 . 1 3 2 1 . 6

(b) WildTrack

Figure 5.7: Average end-to-end latency of different methods in the token reuse
setting on two datasets.

latency across all methods due to the high computational cost of running the de-

tector. FD, which transmits and processes full frames without selective execution,

incurs the highest network traffic and latency. SEED-TR achieves the lowest latency,

demonstrating reductions of 74.0% and 72.9% on MOT17 and WildTrack, respec-

tively, compared to FD. SViT, with its gating module embedded within the detector,

requires transmitting full frames and thus offers limited communication savings. In

addition, BlockCopy and Arena-TR execute more blocks than SEED-TR, leading to

higher communication and computation overhead.

In the early exit scenario, SEED-EE achieves accuracy comparable to FD while

118

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

3 5 . 1 3 8 . 9

1 0 0 . 0 1 0 0 . 01 0 0 . 0 1 0 0 . 0

4 2 . 7 4 5 . 4
5 6 . 0

6 2 . 1

M O T 1 7 W i l d T r a c k2 0

4 0

6 0

8 0

1 0 0
No

rm
. N

etw
ork

 Tr
aff

ic (
%) S E E D - E E

 F D
 F D - Q u a r t e r
 F D - R a n d o m
 A r e n a - E E

(a) Normalized network traffic

8 2 . 0

7 5 . 7

8 2 . 4

7 6 . 3

7 1 . 0

6 2 . 8

7 3 . 6

6 6 . 1

8 1 . 6

7 5 . 2

M O T 1 7 W i l d T r a c k6 0

6 5

7 0

7 5

8 0

8 5

Ac
cu

rac
y (

%)

 S E E D - E E
 F D
 F D - Q u a r t e r
 F D - R a n d o m
 A r e n a - E E

(b) Accuracy

Figure 5.8: (a) Normalized network traffic and (b) accuracy of different methods in
the early exit setting on two datasets.

S E E D - E E F D F D - Q u a r t e r F D - R a n d o m A r e n a - E E
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Av
g.

La
ten

cy
(m

s) S e r v e r
 T r a n s m i s s i o n
 C a m e r a

3 6 4 . 9

8 6 2 . 1

4 3 9 . 2 3 8 6 . 1 4 5 7 . 9

(a) MOT17

S E E D - E E F D F D - Q u a r t e r F D - R a n d o m A r e n a - E E
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Av
g.

La
ten

cy
(m

s) S e r v e r
 T r a n s m i s s i o n
 C a m e r a

3 6 5 . 1

8 4 8 . 5

4 2 4 . 9 3 8 0 . 6
4 6 6 . 6

(b) WildTrack

Figure 5.9: Average end-to-end latency of different methods in the early exit setting
on two datasets.

reducing latency by 57.7% and 57.0% on MOT17 and WildTrack, respectively. No-

tably, despite being around 15% faster than SEED-EE in server-side processing, FD-

Quarter transmits full frames, which increases communication time and diminishes its

advantage, resulting in even longer end-to-end latency. FD-Random achieves similar

latency to SEED-EE but suffers significant accuracy degradation due to its random

selection strategy. Arena-EE, while offering slightly lower accuracy than SEED-EE,

processes a greater number of blocks, leading to higher transmission and server times.

119

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

5.4.7 Visualization

To further illustrate the effectiveness of SEED, Figure 5.10 presents a visualization

of multiple representative scenes for both SEED-TR and SEED-EE, along with the

proportion of selected IBs displayed below each frame. Selected IBs are highlighted in

red and detection results are marked as green bboxes. It shows that the DecisionNet

makes accurate and content-aware block decisions. In SEED-TR, IBs tend to cluster

in regions with high object density or severe occlusion, while non-IBs are mostly

associated with sparse areas or slowly moving objects. A similar pattern is observed

in SEED-EE, where IBs concentrate around challenging regions, i.e., those with dense

objects, and non-IBs are typically found in easier areas with few or isolated objects.

These patterns are consistent with the intended behavior of each variant.

5.5 Conclusion

In this chapter, we presented SEED, an end-to-end trainable framework for selective

execution in ViT-based object detection. SEED leverages a lightweight and content-

aware DecisionNet to identify informative blocks, enabling the downstream BlockDet

to reduce computation through either token reuse (SEED-TR) or early exit (SEED-

EE) strategies. Both networks are trained jointly to achieve optimal block selection

and execution. Extensive evaluations on public datasets and a real-world testbed

demonstrate that SEED accelerates edge video analytics by reducing computation

and communication costs, with only minimal accuracy loss.

120

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

SEED-TR

MOT17-04

SEED-TR

WildTrack-Cam7

SEED-EE

MOT17-09

SEED-EE

WildTrack-Cam4

F
ra

m
e

 #
8
1
1
:
2
0
.3

%

F
ra

m
e

 #
1
6
8
1
:
2

8
.3

%

F
ra

m
e

 #
4
9
1
:
6

.1
%

F
ra

m
e

 #
1
7
0
1
:
1

0
.0

%

F
ra

m
e

 #
8
1
2
:
2

0
.1

%

F
ra

m
e

 #
1
6

8
2
:
2
8

.5
%

F
ra

m
e

 #
4
9
2
:
6

.1
%

F
ra

m
e
 #

1
7
0
2
:
9
.0

%

F
ra

m
e

 #
8
1
3
:
2

0
.1

%

F
ra

m
e

 #
1
6
8
3
:
2

8
.1

%

F
ra

m
e

 #
4
9
3
:
6

.1
%

F
ra

m
e

 #
1
7
0
3
:
9

.8
%

F
ra

m
e

 #
8
1
4
:
1

9
.7

%

F
ra

m
e

 #
1
6
8
4
:
2

8
.1

%

F
ra

m
e

 #
4
9
4
:
5
.5

%

F
ra

m
e

 #
1
7
0
4
:
1
0
.4

%

F
ra

m
e

 #
8
1
5
:
1
9
.9

%

F
ra

m
e

 #
1
6
8
5
:
2
8

.3
%

F
ra

m
e

 #
4
9
5
:
6

.2
%

F
ra

m
e
 #

1
7
0
5
:
9
.6

%

F
ig

u
re

5.
10

:
V

is
u
al

iz
at

io
n

of
S
E

E
D

-T
R

an
d

S
E

E
D

-E
E

ac
ro

ss
m

u
lt

ip
le

sc
en

es
.

121

http://www.mcmaster.ca/

Chapter 6

Conclusion

122

Ph.D. Thesis – R. Xu McMaster University – Computer Science

6.1 Summary

This thesis addresses the challenge of accelerating VAPs on resource-constrained edge

platforms by exploring adaptive and content-aware strategies that reduce redundant

computation and communication. We propose three approaches: FastTuner, Block-

Hybrid, and SEED, that address different dimensions of the accuracy-efficiency trade-

off.

FastTuner introduces a runtime configuration optimization framework for MOT.

By learning heatmap representations offline and integrating configuration selection

with tracking in a shared model, it efficiently chooses the best resolution-backbone

pair for the pipeline, enabling low-overhead and adaptable execution.

BlockHybrid targets efficient object detection through fine-grained block-wise con-

ditional execution. It distinguishes between “hard” and “easy” blocks using a policy

network, assigning them to a heavy-weight detector or lightweight tracker, respec-

tively, to reduce redundant computation and communication.

SEED advances this direction by coupling block selection and execution in an end-

to-end trainable architecture tailored for ViT-based detection pipelines. A lightweight,

context-aware DecisionNet identifies informative regions, enabling the BlockDet to se-

lectively process them via token reuse (SEED-TR) or early exit (SEED-EE), achieving

efficient inference without compromising accuracy.

6.2 Limitations

While the proposed frameworks demonstrate superior performance, several limitations

remain.

123

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

In FastTuner, the optimal configuration is decided every K frames under the as-

sumption that video content remains relatively stable over short intervals. However,

this assumption may not hold in highly dynamic scenes. Future work can explore

adaptive strategies for determining K based on scene variation, enabling the frame-

work to respond more effectively to rapid changes. Moreover, the current design

considers only two control knobs: frame resolution and backbone model. Incorpo-

rating additional knobs such as frame rate and quantization parameter (QP) could

enhance adaptability and generality. As the configuration space expands, however,

the number of heatmaps and associated computation also increases. Efficient sam-

pling or approximation techniques should be investigated to mitigate this overhead

and preserve runtime efficiency.

A major limitation of BlockHybrid lies in its decoupled architecture. Block se-

lection and execution are performed separately, and the block-wise detector and

lightweight tracker operate independently. This prevents end-to-end training of the

full pipeline. While block-wise fine-tuning can partially alleviate block artifacts, a

mismatch often exists between offline and online stages. During offline fine-tuning,

reused features typically come from adjacent frames with minimal temporal drift,

whereas in online stages, cached features used for block merging may originate from

distant frames, introducing severe inconsistencies. These issues necessitate periodic

full-frame inference to refresh cached features and tracker references. As shown in

Table 4.7, increasing the update interval amplifies feature inconsistencies and leads

to a sharp drop in accuracy.

SEED addresses this limitation by coupling block selection and execution within

124

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

an end-to-end training and inference pipeline. This integration enables joint op-

timization of both components, effectively reducing block artifacts and improving

coordination between them. However, as the DecisionNet is trained offline, its perfor-

mance can degrade when camera viewpoints or scene conditions change significantly,

such as when cameras are repositioned or deployed in new environments. In such sce-

narios, re-training or fine-tuning may be required to ensure reliable block selection.

Moreover, although SEED is currently focused on object detection, the framework is

inherently general and can be extended to other vision tasks, such as segmentation,

with only minor architectural modifications and task-specific training strategies.

6.3 Future Work

Beyond addressing limitations of individual approaches, we have identified several

directions for future research that are critical to the development of real-time and

scalable EVA systems.

First, realizing fully adaptive pipelines remains an open challenge. Current frame-

works often rely on manually defined intervals or static policies (e.g., fixed K or fixed

thresholds) to control adaptation frequency, which may not generalize well across

diverse or unpredictable video streams. Future systems must jointly optimize tempo-

ral scheduling (e.g., adaptive K for configuration switching), spatial selection (e.g.,

identifying informative blocks), and model configuration (e.g., resolution, backbone,

depth) under strict latency and energy budgets. For instance, consider a traffic mon-

itoring system deployed at a busy urban intersection. During peak hours, rapid scene

changes (e.g., vehicles turning, pedestrians crossing) may require high spatial resolu-

tion and short adaptation intervals (i.e., small K), with fine-grained block selection

125

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

to capture dynamic regions. At the same time, the system must choose a power-

ful model to maintain detection accuracy. However, this high-cost configuration is

unsustainable during low-bandwidth periods or when power is constrained. Instead

of adapting each dimension independently, a joint scheduler must reason about the

trade-offs, for example, using a lower-resolution input with a stronger model and

longer reuse interval, or increasing resolution but reducing the number of selected

blocks, to stay within the system’s budget while maximizing task performance. De-

signing such a unified controller that can coordinate these interacting dimensions in

response to both content dynamics and runtime constraints is a key direction for

future research.

Second, integrating the proposed frameworks into a complete system stack is es-

sential for deployment in real-world edge environments. While this thesis focuses

primarily on optimizing inference pipelines, practical deployments involve many addi-

tional system-level components, including input buffering, communication scheduling,

and multi-camera coordination. In distributed settings, unstable network conditions

such as jitter and packet loss, can affect system performance. Delayed or missing

frames may lead to outdated inputs for configuration selection, suboptimal block

decisions, or corrupted feature reuse, ultimately degrading accuracy and stability.

In multi-camera settings, naively applying existing methods by treating each video

stream independently leads to complexity that scales linearly with the number of

cameras. In practice, overlapping fields of view (FoVs) are common, particularly in

dense environments like traffic intersections, where multiple roadside cameras may

observe the same or adjacent regions. Therefore, to reduce redundant computation,

a system must go beyond isolated decisions and instead coordinate processing across

126

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

streams, jointly selecting the most informative viewpoints and regions.

Third, while this thesis focuses on per-frame inference, deeper integration of tem-

poral modeling and memory-aware mechanisms could significantly enhance system

efficiency. Human perception naturally accumulates information over time, allowing

us to ignore static or predictable regions. Similarly, future systems should leverage

long-term spatio-temporal context to suppress redundant processing. For example,

a block that has remained visually static across several frames could be skipped en-

tirely, or updated at a lower frequency, while attention is directed to regions with

motion or novel activity. This requires not only memory-aware tracking modules, but

also inference models that are capable of selectively updating representations based

on content novelty. Lightweight memory modules, causal temporal attention, and

event-triggered inference policies are promising techniques to explore in this space.

Finally, generalizing selective execution to a broader range of tasks beyond object

detection and tracking is an important avenue for future research. While this thesis

demonstrates results on object detection and tracking, many practical applications,

such as semantic segmentation, action recognition, multi-modal fusion, and scene-

level understanding, could also benefit from adaptive and context-aware execution.

For example, in retail analytics, selectively analyzing only store zones with customers

could reduce processing cost while preserving key behavioral insights. Designing task-

agnostic decision modules or training objectives that generalize across different vision

tasks would make such frameworks more widely applicable.

Overall, the proposed frameworks offer promising building blocks toward efficient

edge video analytics. To fully realize this vision, future research must focus on uni-

fied, cross-layer solutions that co-optimize models, decision modules, and runtime

127

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

infrastructure. Such efforts are essential to achieving truly responsive, intelligent,

and scalable video analytics in real-world edge deployments.

128

http://www.mcmaster.ca/

Bibliography

[1] Elly Cosgrove. One billion surveillance cameras will be watching

around the world in 2021. https://www.cnbc.com/2019/12/06/

one-billion-surveillance-cameras-will-be-watching-globally-in-2021.

html, 2022. Accessed: September 9, 2025.

[2] Renjie Xu, Saiedeh Razavi, and Rong Zheng. Edge video analytics: A survey on

applications, systems and enabling techniques. IEEE Commun. Surv. Tutor.,

25(4):2951–2982, 2023.

[3] Amita Potnis. Managing unstructured data growth requires a fresh

approach. https://www.quantum.com/globalassets/documents/

idc-vendor-spotlight.pdf, 2024. Accessed: September 9, 2025.

[4] Shibo Wang, Shusen Yang, and Cong Zhao. SurveilEdge: Real-time video query

based on collaborative cloud-edge deep learning. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 2519–2528, 2020.

[5] Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guoliang Xing, Jianwei Niu,

129

https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html
https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html
https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html
https://www.quantum.com/globalassets/documents/idc-vendor-spotlight.pdf
https://www.quantum.com/globalassets/documents/idc-vendor-spotlight.pdf

Ph.D. Thesis – R. Xu McMaster University – Computer Science

and Zhenchao Ouyang. VIPS: Real-time perception fusion for infrastructure-

assisted autonomous driving. In Proc. Annu. Int. Conf. Mobile Comput. Netw.

(MobiCom), pages 133–146, 2022.

[6] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong. Edge video analytics

for public safety: A review. Proc. IEEE, 107(8):1675–1696, 2019.

[7] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,

Minlan Yu, Paramvir Bahl, and Matthai Philipose. VideoEdge: Processing

camera streams using hierarchical clusters. In Proc. IEEE/ACM Symp. Edge

Compt. (SEC), pages 115–131, 2018.

[8] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic,

and Saurabh Bagchi. VideoChef: Efficient approximation for streaming video

processing pipelines. In Proc. USENIX Conf. Annu. Tech. Conf. (USENIX

ATC), page 43–55, 2018.

[9] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,

Paramvir Bahl, and Michael J. Freedman. Live video analytics at scale with ap-

proximation and delay-tolerance. In Proc. USENIX Symp. Netw. Syst. Design

Implement. (NSDI), page 377–392, 2017.

[10] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and

Ion Stoica. Chameleon: scalable adaptation of video analytics. In Proc. Conf.

ACM Special Interest Group Data Comm. (SIGCOMM), pages 253–266, 2018.

[11] Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li. InFi:

End-to-end learnable input filter for resource-efficient mobile-centric inference.

130

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

In Proc. Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), page 228–241,

2022.

[12] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry

Xu, and Ravi Netravali. Reducto: On-camera filtering for resource-efficient

real-time video analytics. In Proc. Conf. ACM Special Interest Group Data

Comm. (SIGCOMM), pages 359–376, 2020.

[13] Chengyi Qu, Rounak Singh, Alicia Esquivel-Morel, and Prasad Calyam.

Learning-based multi-drone network edge orchestration for video analytics. In

Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages 1219–1228, 2022.

[14] Kongyange Zhao, Zhi Zhou, Xu Chen, Ruiting Zhou, Xiaoxi Zhang, Shuai Yu,

and Di Wu. EdgeAdaptor: Online configuration adaption, model selection and

resource provisioning for edge DNN inference serving at scale. IEEE Trans.

Mobile Comput., 22(10):5870–5886, 2022.

[15] Ran Xu, Fangzhou Mu, Jayoung Lee, Preeti Mukherjee, Somali Chaterji,

Saurabh Bagchi, and Yin Li. SmartAdapt: Multi-branch object detection

framework for videos on mobiles. In Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit. (CVPR), pages 2528–2538, 2022.

[16] Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter Bai, Ganga Meghanath, So-

mali Chaterji, Subrata Mitra, and Saurabh Bagchi. ApproxNet: Content and

contention-aware video object classification system for embedded clients. ACM

Trans. Sens. Netw. (TOSN), 18(1):1–27, 2021.

[17] Fang Dong, Huitian Wang, Dian Shen, Zhaowu Huang, Qiang He, Jinghui

131

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Zhang, Liangsheng Wen, and Tingting Zhang. Multi-exit DNN inference ac-

celeration based on multi-dimensional optimization for edge intelligence. IEEE

Trans. Mobile Comput., 22(9):5389–5405, 2022.

[18] Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and Mi Zhang. FlexDNN: Input-

adaptive on-device deep learning for efficient mobile vision. In Proc. IEEE/ACM

Symp. Edge Compt. (SEC), pages 84–95, 2020.

[19] Thomas Verelst and Tinne Tuytelaars. BlockCopy: High-resolution video pro-

cessing with block-sparse feature propagation and online policies. In Proc. IEEE

Int. Conf. Comput. Vis. (ICCV), pages 5158–5167, 2021.

[20] Thomas Verelst and Tinne Tuytelaars. SegBlocks: Block-based dynamic reso-

lution networks for real-time segmentation. IEEE Trans. Pattern Anal. Mach.

Intell., 45(2):2400–2411, 2022.

[21] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-

had Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey.

ACM Comput. Surv. (CSUR), 54(10s):1–41, 2022.

[22] Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang,

Ji Liu, and Zhangyang Wang. Unified visual transformer compression. In Proc.

Int. Conf. Learn. Represent. (ICLR), 2022.

[23] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun.

Ptq4vit: Post-training quantization for vision transformers with twin uniform

quantization. In Proc. Eur. Conf. Comput. Vis. (ECCV), pages 191–207, 2022.

132

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[24] Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile

vision transformers. arXiv preprint arXiv:2206.02680, 2022.

[25] Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan,

Ming-Hsuan Yang, and Fahad Shahbaz Khan. SwiftFormer: Efficient additive

attention for transformer-based real-time mobile vision applications. In Proc.

IEEE Int. Conf. Comput. Vis. (ICCV), pages 17425–17436, 2023.

[26] Renjie Xu, Keivan Nalaie, and Rong Zheng. BlockHybrid: Accelerating object

detection pipelines with hybrid block-wise execution. IEEE Internet Things J.,

12(13):24148–24158, 2025.

[27] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen.

Bridging the edge-cloud barrier for real-time advanced vision analytics. In Proc.

USENIX Conf. Hot Topics Cloud Comput., page 18, 2019.

[28] Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin, Junchen Jiang, and Kai

Chen. Enabling edge-cloud video analytics for robotics applications. IEEE

Trans. Cloud Comput., 11(2):1500–1513, 2022.

[29] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,

Henry Hoffmann, and Junchen Jiang. Server-driven video streaming for deep

learning inference. In Proc. Conf. ACM Special Interest Group Data Comm.

(SIGCOMM), pages 557–570, 2020.

[30] Huaizheng Zhang, Meng Shen, Yizheng Huang, Yonggang Wen, Yong Luo,

Guanyu Gao, and Kyle Guan. A serverless cloud-fog platform for DNN-based

133

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

video analytics with incremental learning. arXiv preprint arXiv:2102.03012,

2021.

[31] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object de-

tection for mobile augmented reality. In Proc. Annu. Int. Conf. Mobile Comput.

Netw. (MobiCom), pages 1–16, 2019.

[32] Bin Qian, Zhenyu Wen, Junqi Tang, Ye Yuan, Albert Y Zomaya, and Rajiv

Ranjan. OsmoticGate: Adaptive edge-based real-time video analytics for the

internet of things. IEEE Trans. Comput., 72(4):1178–1193, 2022.

[33] Shanzhi Chen, Jinling Hu, Yan Shi, Li Zhao, and Wen Li. A vision of C-V2X:

Technologies, field testing, and challenges with chinese development. IEEE

Internet Things J., 7(5):3872–3881, 2020.

[34] Yuqi Dong, Guanyu Gao, Ran Wang, and Zhisheng Yan. Collaborative video

analytics on distributed edges with multiagent deep reinforcement learning.

arXiv preprint arXiv:2211.03102, 2022.

[35] Hongpeng Guo, Beitong Tian, Zhe Yang, Bo Chen, Qian Zhou, Shengzhong

Liu, Klara Nahrstedt, and Claudiu Danilov. DeepStream: Bandwidth effi-

cient multi-camera video streaming for deep learning analytics. arXiv preprint

arXiv:2306.15129, 2023.

[36] Liming Ge, Wei Bao, Dong Yuan, and Bing B Zhou. Edge-assisted deep video

denoising and super-resolution for real-time surveillance at night. In Proc.

Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pages 783–785, 2022.

134

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[37] Hui Sun, Qiyuan Li, Kewei Sha, and Ying Yu. ElasticEdge: An intelligent

elastic edge framework for live video analytics. IEEE Internet Things J.,

9(22):23031–23046, 2022.

[38] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shah-

baz Khan, Ming-Hsuan Yang, and Ling Shao. Multi-stage progressive im-

age restoration. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.

(CVPR), pages 14821–14831, 2021.

[39] Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. FFA-Net:

Feature fusion attention network for single image dehazing. In Proc. AAAI

Conf. Artif. Intell. (AAAI), volume 34, pages 11908–11915, 2020.

[40] Gary Bradski. The OpenCV library. Dr. Dobb’s Journal: Software Tools for

the Professional Programmer, 25(11):120–123, 2000.

[41] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),

volume 1, pages 886–893, 2005.

[42] David G Lowe. Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vis., 60:91–110, 2004.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proc. IEEE/CVF Conf. Comput. Vision and

Pattern Recognit. (CVPR), pages 770–778, 2016.

[44] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:

135

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[45] Andrews Sobral and Antoine Vacavant. A comprehensive review of background

subtraction algorithms evaluated with synthetic and real videos. Comput. Vis.

Image Underst., 122:4–21, 2014.

[46] Sandeep Singh Sengar and Susanta Mukhopadhyay. A novel method for moving

object detection based on block based frame differencing. In Proc. Int. Conf.

Recent Adv. Inf. Technol. (RAIT), pages 467–472, 2016.

[47] Anshuman Agarwal, Shivam Gupta, and Dushyant Kumar Singh. Review of

optical flow technique for moving object detection. In Proc. Int. Conf. Contemp.

Comput. Inform. (IC3I), pages 409–413, 2016.

[48] Sepehr Aslani and Homayoun Mahdavi-Nasab. Optical flow based moving ob-

ject detection and tracking for traffic surveillance. Int. J. Electr. Comput. Energ.

Electron. Commun. Eng., 7(9):1252–1256, 2013.

[49] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,

and Matti Pietikäinen. Deep learning for generic object detection: A survey.

Int. J. Comput. Vis., 128(2):261–318, 2020.

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:

Towards real-time object detection with region proposal networks. In Proc. Int.

Conf. Neural Inf. Process. Syst. (NeurIPS), page 91–99, 2015.

[51] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

136

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

once: Unified, real-time object detection. In Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit. (CVPR), pages 779–788, 2016.

[52] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 7263–7271,

2017.

[53] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[54] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector.

In Proc. Eur. Conf. Comput. Vis. (ECCV), pages 21–37, 2016.

[55] Laura Leal-Taixé. Multiple object tracking with context awareness. arXiv

preprint arXiv:1411.7935, 2014.

[56] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple

online and realtime tracking. In Proc. IEEE Int. Conf. Image Process. (ICIP),

pages 3464–3468, 2016.

[57] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime

tracking with a deep association metric. In Proc. IEEE Int. Conf. Image Pro-

cess. (ICIP), pages 3645–3649, 2017.

[58] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin Bal-

achandar Gnana Sekar, Andreas Geiger, and Bastian Leibe. MOTS: Multi-

object tracking and segmentation. In Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit. (CVPR), pages 7942–7951, 2019.

137

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[59] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang.

Towards real-time multi-object tracking. In Proc. Eur. Conf. Comput. Vis.

(ECCV), pages 107–122, 2020.

[60] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as

points. In Proc. Eur. Conf. Comput. Vis. (ECCV), pages 474–490, 2020.

[61] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu.

FairMOT: On the fairness of detection and re-identification in multiple object

tracking. Int. J. Comput. Vis., 129:3069–3087, 2021.

[62] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtar-

navaz, and Demetri Terzopoulos. Image segmentation using deep learning: A

survey. IEEE Trans. Pattern Anal. Mach. Intell., 44(7):3523–3542, 2021.

[63] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun

Li. LAVEA: Latency-aware video analytics on edge computing platform. In

Proc. IEEE/ACM Symp. Edge Compt. (SEC), pages 1–13, 2017.

[64] Haoxin Wang, BaekGyu Kim, Jiang Xie, and Zhu Han. LEAF+AIO: Edge-

assisted energy-aware object detection for mobile augmented reality. IEEE

Trans. Mobile Comput., 22(10):5933–5948, 2022.

[65] Ruoyu Zhang, Yutao Zhou, Fangxin Wang, and Zhi Wang. Maxim: DRL-based

cross-camera streaming configuration for real-time video analytics. In Proc.

IEEE Int. Conf. Multimed. Expo (ICME), pages 01–06, 2022.

[66] Rui Lu, Chuang Hu, Dan Wang, and Jin Zhang. Gemini: A real-time video

138

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

analytics system with dual computing resource control. In Proc. IEEE/ACM

Symp. Edge Compt. (SEC), pages 162–174, 2022.

[67] Miao Zhang, Fangxin Wang, and Jiangchuan Liu. CASVA: Configuration-

adaptive streaming for live video analytics. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 2168–2177, 2022.

[68] Lei Zhang, Yuqing Zhang, Ximing Wu, Fangxin Wang, Laizhong Cui, Zhi Wang,

and Jiangchuan Liu. Batch adaptative streaming for video analytics. In Proc.

IEEE Conf. Comput. Commun. (INFOCOM), pages 2158–2167, 2022.

[69] Peng Yang, Feng Lyu, Wen Wu, Ning Zhang, Li Yu, and Xuemin Sherman

Shen. Edge coordinated query configuration for low-latency and accurate video

analytics. IEEE Trans. Ind. Inform., 16(7):4855–4864, 2019.

[70] Miaomiao Liu, Xianzhong Ding, and Wan Du. Continuous, real-time object de-

tection on mobile devices without offloading. In Proc. IEEE Int. Conf. Distrib.

Comput. Syst. (ICDCS), pages 976–986, 2020.

[71] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. Deep-

Decision: A mobile deep learning framework for edge video analytics. In Proc.

IEEE Conf. Comput. Commun. (INFOCOM), pages 1421–1429, 2018.

[72] Xiangyu Li, Yuanchun Li, Yuanzhe Li, Ting Cao, and Yunxin Liu. FlexNN:

Efficient and adaptive DNN inference on memory-constrained edge devices. In

Proc. Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pages 709–723, 2024.

[73] Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, and Yufei Ding. Palleon:

139

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

A runtime system for efficient video processing toward dynamic class skew. In

Proc. USENIX Conf. Annu. Tech. Conf. (USENIX ATC), pages 427–441, 2021.

[74] Lin Sun, Weijun Wang, Tingting Yuan, Liang Mi, Haipeng Dai, Yunxin Liu,

and Xiaoming Fu. BiSwift: Bandwidth orchestrator for multi-stream video

analytics on edge. In Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages

1181–1190, 2024.

[75] Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan Sankaradas, Oliver Po,

Y Charlie Hu, and Srimat Chakradhar. Enhancing video analytics accuracy via

real-time automated camera parameter tuning. In Proc. Conf. Embed. Netw.

Sens. Syst. (SenSys), pages 291–304, 2022.

[76] Mike Wong, Murali Ramanujam, Guha Balakrishnan, and Ravi Netravali. Mad-

Eye: Boosting live video analytics accuracy with adaptive camera configura-

tions. In Proc. USENIX Symp. Netw. Syst. Des. Implement. (NSDI), pages

549–568, 2024.

[77] Manjiri A Namjoshi and Prasad A Kulkarni. Novel online profiling for virtual

machines. In Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution

Environ., pages 133–144, 2010.

[78] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A Lee.

AWStream: Adaptive wide-area streaming analytics. In Proc. Conf. ACM Spe-

cial Interest Group Data Comm. (SIGCOMM), pages 236–252, 2018.

140

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[79] Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra, So-

mali Chaterji, Yin Li, and Saurabh Bagchi. ApproxDet: content and contention-

aware approximate object detection for mobiles. In Proc. Conf. Embed. Netw.

Sens. Syst. (SenSys), pages 449–462, 2020.

[80] Ran Xu, Jayoung Lee, Pengcheng Wang, Saurabh Bagchi, Yin Li, and Somali

Chaterji. LiteReconfig: Cost and content aware reconfiguration of video ob-

ject detection systems for mobile GPUs. In Proc. Eur. Conf. Comput. Syst.

(EuroSys), pages 334–351, 2022.

[81] Sheng Zhang, Can Wang, Yibo Jin, Jie Wu, Zhuzhong Qian, Mingjun Xiao,

and Sanglu Lu. Adaptive configuration selection and bandwidth allocation for

edge-based video analytics. IEEE/ACM Trans. Netw., 30(1):285–298, 2021.

[82] Ning Chen, Siyi Quan, Sheng Zhang, Zhuzhong Qian, Yibo Jin, Jie Wu, Wen-

zhong Li, and Sanglu Lu. Cuttlefish: Neural configuration adaptation for

video analysis in live augmented reality. IEEE Trans. Parallel Distrib. Syst.,

32(4):830–841, 2020.

[83] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,

David G Andersen, Michael Kaminsky, and Subramanya Dulloor. Scaling video

analytics on constrained edge nodes. Proc. Mach. Learn. Syst., 1:406–417, 2019.

[84] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanab-

han Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. Bandwidth-efficient

live video analytics for drones via edge computing. In Proc. IEEE/ACM Symp.

Edge Compt. (SEC), pages 159–173, 2018.

141

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[85] Vinod Nigade, Lin Wang, and Henri Bal. Clownfish: Edge and cloud symbiosis

for video stream analytics. In Proc. IEEE/ACM Symp. Edge Compt. (SEC),

pages 55–69, 2020.

[86] Ting Li, Jiyan Sun, Yinlong Liu, Xu Zhang, Dali Zhu, Zhaorui Guo, and Liru

Geng. ESMO: Joint frame scheduling and model caching for edge video analyt-

ics. IEEE Trans. Parallel Distrib. Syst., 34(8):2295–2310, 2023.

[87] Jiansheng Dong, Jingling Yuan, Lin Li, Xian Zhong, and Weiru Liu. Optimizing

queries over video via lightweight keypoint-based object detection. In Proc. Int.

Conf. Multimedia Retrieval, pages 548–554, 2020.

[88] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and

Hari Balakrishnan. Glimpse: Continuous, real-time object recognition on mo-

bile devices. In Proc. ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages

155–168, 2015.

[89] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.

BranchyNet: Fast inference via early exiting from deep neural networks. In

Proc. Int. Conf. Pattern Recognit. (ICPR), pages 2464–2469, 2016.

[90] Santosh Kumar Nukavarapu, Mohammed Ayyat, and Tamer Nadeem. iBranchy:

An accelerated edge inference platform for IoT devices. In Proc. IEEE/ACM

Symp. Edge Compt. (SEC), pages 392–396, 2021.

[91] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-

efficiency trade-offs by selective execution. In Proc. AAAI Conf. Artif. Intell.

(AAAI), pages 3675–3682, 2018.

142

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[92] Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. Flexible

high-resolution object detection on edge devices with tunable latency. In Proc.

Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pages 559–572, 2021.

[93] Zheng Yang, Xu Wang, Jiahang Wu, Yi Zhao, Qiang Ma, Xin Miao, Li Zhang,

and Zimu Zhou. EdgeDuet: Tiling small object detection for edge assisted

autonomous mobile vision. IEEE/ACM Trans. Netw., 31(4):1765–1778, 2022.

[94] Xianwei Lv, Qianqian Wang, Chen Yu, and Hai Jin. A feedback-driven DNN

inference acceleration system for edge-assisted video analytics. IEEE Trans.

Comput., 72(10):2902–2912, 2023.

[95] Xingwang Wang, Muzi Shen, and Kun Yang. On-edge high-throughput col-

laborative inference for real-time video analytics. IEEE Internet Things J.,

11(20):33097–33109, 2024.

[96] Haosong Peng, Wei Feng, Hao Li, Yufeng Zhan, Qihua Zhou, and Yuanqing Xia.

Arena: A patch-of-interest ViT inference acceleration system for edge-assisted

video analytics. arXiv preprint arXiv:2404.09245, 2024.

[97] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.

Transformers are RNNs: Fast autoregressive transformers with linear attention.

In Proc. Int. Conf. Mach. Learn. (ICML), pages 5156–5165, 2020.

[98] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Lin-

former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768,

2020.

143

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[99] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,

Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,

Lukasz Kaiser, et al. Rethinking attention with performers. In Proc. Int. Conf.

Learn. Represent. (ICLR), 2021.

[100] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui

Hsieh. DynamicViT: Efficient vision transformers with dynamic token sparsifi-

cation. Adv. Neural Inf. Process. Syst. (NeurIPS), 34:13937–13949, 2021.

[101] Yifei Liu, Mathias Gehrig, Nico Messikommer, Marco Cannici, and Davide

Scaramuzza. Revisiting token pruning for object detection and instance seg-

mentation. In Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV),

pages 2658–2668, 2024.

[102] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Fe-

ichtenhofer, and Judy Hoffman. Token merging: Your ViT but faster. In Proc.

Int. Conf. Learn. Represent. (ICLR), 2023.

[103] Xuwei Xu, Sen Wang, Yudong Chen, Yanping Zheng, Zhewei Wei, and Jiajun

Liu. GTP-ViT: efficient vision transformers via graph-based token propagation.

In Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), pages 86–95,

2024.

[104] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad

Schindler. MOT16: A benchmark for multi-object tracking. arXiv preprint

arXiv:1603.00831, 2016.

[105] Tatjana Chavdarova, Pierre Baqué, Stéphane Bouquet, Andrii Maksai, Cijo

144

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Jose, Timur Bagautdinov, Louis Lettry, Pascal Fua, Luc Van Gool, and François

Fleuret. WildTrack: A multi-camera hd dataset for dense unscripted pedestrian

detection. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),

pages 5030–5039, 2018.

[106] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLOv8. https://

github.com/ultralytics/ultralytics, 2024. Accessed: September 9, 2025.

[107] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

geNet: A large-scale hierarchical image database. In Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), pages 248–255, 2009.

[108] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common

objects in context. In Proc. Eur. Conf. Comput. Vis. (ECCV), pages 740–755,

2014.

[109] Keivan Nalaie, Renjie Xu, and Rong Zheng. DeepScale: Online frame size

adaptation for multi-object tracking on smart cameras and edge servers. In Proc.

IEEE/ACM Seventh Int. Conf. Internet-of-Things Design Implement. (IoTDI),

pages 67–79, 2022.

[110] Renjie Xu, Keivan Nalaie, and Rong Zheng. FastTuner: Fast resolution and

model tuning for multi-object tracking in edge video analytics. IEEE Trans.

Mobile Comput., 24(6):4747–4761, 2025.

[111] Peigen Ye, Wenfeng Wang, Bing Mi, and Kongyang Chen. EdgeStreaming:

145

http://www.mcmaster.ca/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Secure computation intelligence in distributed edge networks for streaming an-

alytics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), 2024.

[112] Mingjin Zhang, Jiannong Cao, Yuvraj Sahni, Qianyi Chen, Shan Jiang, and Lei

Yang. Blockchain-based collaborative edge intelligence for trustworthy and real-

time video surveillance. IEEE Trans. Ind. Informat., 19(2):1623–1633, 2022.

[113] Yuxin Kong, Peng Yang, and Yan Cheng. Adaptive on-device model update

for responsive video analytics in adverse environments. IEEE Trans. Circuits

Syst. Video Technol., 35(1):857–873, 2025.

[114] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer ag-

gregation. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),

pages 2403–2412, 2018.

[115] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and

Qi Tian. CenterNet: Keypoint triplets for object detection. In Proc. IEEE

Int. Conf. Comput. Vis. (ICCV), pages 6569–6578, 2019.

[116] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[117] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit. (CVPR), pages 4700–4708, 2017.

[118] Keivan Nalaie and Rong Zheng. AttTrack: Online deep attention transfer for

multi-object tracking. In Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis.

(WACV), pages 1654–1663, 2023.

146

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[119] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. RT-mDL:

Supporting real-time mixed deep learning tasks on edge platforms. In Proc.

ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages 1–14, 2021.

[120] Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi, and Junjie Yan.

POI: Multiple object tracking with high performance detection and appearance

feature. In ECCV 2016 Workshops, pages 36–42, 2016.

[121] Hei Law and Jia Deng. CornerNet: Detecting objects as paired keypoints. In

Proc. Eur. Conf. Comput. Vis. (ECCV), pages 734–750, 2018.

[122] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal

loss for dense object detection. In Proc. IEEE Int. Conf. Comput. Vis. (ICCV),

pages 2980–2988, 2017.

[123] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncer-

tainty to weigh losses for scene geometry and semantics. In Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 7482–7491, 2018.

[124] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bod́ık, Krishna Chintala-

pudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time

video analytics: The killer app for edge computing. Computer, 50(10):58–67,

2017.

[125] Tianxiang Tan and Guohong Cao. Deep learning video analytics through edge

computing and neural processing units on mobile devices. IEEE Trans. Mobile

Comput., 22(3):1433–1448, 2023.

147

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[126] Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang. Better never than

late: Timely edge video analytics over the air. In Proc. ACM Conf. Embedded

Netw. Sensor Syst. (SenSys), pages 426–432, 2021.

[127] Biyi Fang, Xiao Zeng, and Mi Zhang. NestDNN: Resource-aware multi-tenant

on-device deep learning for continuous mobile vision. In Proc. Annu. Int. Conf.

Mobile Comput. Netw. (MobiCom), pages 115–127, 2018.

[128] Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, and

Nicholas D. Lane. MobiSR: Efficient on-device super-resolution through het-

erogeneous mobile processors. In Proc. Annu. Int. Conf. Mobile Comput. Netw.

(MobiCom), pages 1–16, 2019.

[129] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang,

Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Sto-

ica. Ekya: Continuous learning of video analytics models on edge compute

servers. In Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), pages

119–135, 2022.

[130] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh, Junchen Jiang, Ravi

Netravali, Yuanchao Shu, Mohammad Alizadeh, and Victor Bahl. RECL: Re-

sponsive resource-efficient continuous learning for video analytics. In Proc.

USENIX Symp. Netw. Syst. Design Implement. (NSDI), pages 917–932, 2023.

[131] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. SplitPlace: AI aug-

mented splitting and placement of large-scale neural networks in mobile edge

environments. IEEE Trans. Mobile Comput., 22(9):5539–5554, 2022.

148

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[132] Shusen Yang, Zhanhua Zhang, Cong Zhao, Xin Song, Siyan Guo, and Hailiang

Li. CNNPC: End-edge-cloud collaborative CNN inference with joint model

partition and compression. IEEE Trans. Parallel Distrib. Syst., 33(12):4039–

4056, 2022.

[133] Yubin Duan and Jie Wu. Optimizing job offloading schedule for collaborative

DNN inference. IEEE Trans. Mobile Comput., 23(4):3436–3451, 2023.

[134] Xiao Zeng, Biyi Fang, Haichen Shen, and Mi Zhang. Distream: scaling live

video analytics with workload-adaptive distributed edge intelligence. In Proc.

ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages 409–421, 2020.

[135] Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, and Zhi Wang. To-

wards cloud-edge collaborative online video analytics with fine-grained server-

less pipelines. In Proc. ACM Multimedia Syst. Conf. (MMSys), pages 80–93,

2021.

[136] Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. EdgeML: An automl

framework for real-time deep learning on the edge. In Proc. Int. Conf. Internet-

of-Things Design Implement. (IoTDI), pages 133–144, 2021.

[137] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Ja-

son Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. ACM SIGARCH Comput. Archit. News, 45(1):615–

629, 2017.

[138] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. Dynamic adaptive DNN

149

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

surgery for inference acceleration on the edge. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1423–1431, 2019.

[139] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay.

Edge-host partitioning of deep neural networks with feature space encoding for

resource-constrained internet-of-things platforms. In Proc. IEEE Int. Conf.

Adv. Video Signal Based Surveillance (AVSS), pages 1–6, 2018.

[140] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco.

Distributed inference acceleration with adaptive DNN partitioning and offload-

ing. In Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages 854–863,

2020.

[141] Weiyu Ju, Dong Yuan, Wei Bao, Liming Ge, and Bing Bing Zhou. DeepSave:

Saving DNN inference during handovers on the edge. In Proc. IEEE/ACM

Symp. Edge Compt. (SEC), pages 166–178, 2019.

[142] Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska. Couper: DNN model

slicing for visual analytics containers at the edge. In Proc. IEEE/ACM Symp.

Edge Compt. (SEC), pages 179–194, 2019.

[143] Mengyuan Chao, Radu Stoleru, Liuyi Jin, Shuochao Yao, Maxwell Maurice,

and Roger Blalock. AMVP: Adaptive CNN-based multitask video processing on

mobile stream processing platforms. In Proc. IEEE/ACM Symp. Edge Compt.

(SEC), pages 96–109, 2020.

[144] Jian He, Chenxi Yang, Zhaoyuan He, Ghufran Baig, and Lili Qiu. Scheduling

DNNs on edge servers. arXiv preprint arXiv:2304.09961, 2023.

150

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[145] Kichang Yang, Juheon Yi, Kyungjin Lee, and Youngki Lee. FlexPatch: Fast

and accurate object detection for on-device high-resolution live video analytics.

In Proc. IEEE Conf. Comput. Commun. (INFOCOM), pages 1898–1907, 2022.

[146] Tianxiang Tan and Guohong Cao. Deep learning on mobile devices through

neural processing units and edge computing. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1209–1218, 2022.

[147] Ayan Chakrabarti, Roch Guérin, Chenyang Lu, and Jiangnan Liu. Real-time

edge classification: Optimal offloading under token bucket constraints. In Proc.

IEEE/ACM Symp. Edge Compt. (SEC), pages 41–54, 2021.

[148] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz.

Marvel: Enabling mobile augmented reality with low energy and low latency.

In Proc. ACM Conf. Embedded Netw. Sensor Syst. (SenSys), pages 292–304,

2018.

[149] Luyang Liu and Marco Gruteser. EdgeSharing: Edge assisted real-time lo-

calization and object sharing in urban streets. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1–10, 2021.

[150] Ganesh Ananthanarayanan, Yuanchao Shu, Landon Cox, and Vic-

tor Bahl. Project Rocket platform—designed for easy, customizable

live video analytics—is open source. https://www.microsoft.com/

en-us/research/publication/project-rocket-platform-designed-/

for-easy-customizable-live-video-analytics-is-open-source/, 2022.

Accessed: September 9, 2025.

151

http://www.mcmaster.ca/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-/for-easy-customizable-live-video-analytics-is-open-source/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-/for-easy-customizable-live-video-analytics-is-open-source/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-/for-easy-customizable-live-video-analytics-is-open-source/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[151] Anurag Ghosh, Srinivasan Iyengar, Stephen Lee, Anuj Rathore, and Venkat N

Padmanabhan. Streaming video analytics on the edge with asynchronous cloud

support. arXiv preprint arXiv:2210.01402, 2022.

[152] Keivan Nalaie and Rong Zheng. MVSparse: Distributed cooperative multi-

camera multi-target tracking on the edge. In Proc. IEEE Int. Conf. Adv. Video

Signal Based Surveillance (AVSS), pages 1–7, 2024.

[153] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward error:

Automatic detection of tracking failures. In Proc. Int. Conf. Pattern Recognit.

(ICPR), pages 2756–2759, 2010.

[154] Wei Liu, Shengcai Liao, Weiqiang Ren, Weidong Hu, and Yinan Yu. High-level

semantic feature detection: A new perspective for pedestrian detection. In Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 5187–5196,

2019.

[155] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In Proc.

IEEE/CVF Conf. Comput. Vision and Pattern Recognit. (CVPR), pages 4510–

4520, 2018.

[156] Irtiza Hasan, Shengcai Liao, Jinpeng Li, Saad Ullah Akram, and Ling Shao.

Generalizable pedestrian detection: The elephant in the room. In Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 11328–11337,

June 2021.

152

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

[157] Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. TinyMIM: An em-

pirical study of distilling mim pre-trained models. In Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), pages 3687–3697, 2023.

[158] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,

Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,

Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue

Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change

Loy, and Dahua Lin. MMDetection: Open MMLab detection toolbox and

benchmark. arXiv preprint arXiv:1906.07155, 2019.

[159] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[160] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[161] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua

Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision

transformer. IEEE Trans. Pattern Anal. Mach. Intell., 45(1):87–110, 2022.

[162] Linyi Jiang, Silvery D Fu, Yifei Zhu, and Bo Li. Janus: Collaborative vision

transformer under dynamic network environment. In Proc. IEEE Conf. Comput.

Commun. (INFOCOM), pages 1–10, 2025.

[163] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross

153

http://www.mcmaster.ca/

Ph.D. Thesis – R. Xu McMaster University – Computer Science

Girshick. Masked autoencoders are scalable vision learners. In Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 16000–16009, 2022.

[164] Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and Saehoon Kim. Sparse

DETR: Efficient end-to-end object detection with learnable sparsity. In Proc.

Int. Conf. Learn. Represent. (ICLR), 2022.

[165] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017.

154

http://www.mcmaster.ca/

	Lay Abstract
	Abstract
	Acknowledgements
	List of Abbreviations
	Declaration of Academic Achievement
	Introduction
	Motivation
	Contributions
	Organization

	Background
	Preliminaries of Video Analytics Pipeline
	Related Work
	Datasets
	Performance Metrics
	Hardware

	FastTuner: Fast Resolution and Model Tuning for Multi-Object Tracking in Edge Video Analytics
	Introduction
	Motivation
	Methodology
	Workload Placement on End and Edge Devices
	Performance Evaluation
	Conclusion

	BlockHybrid: Accelerating Object Detection Pipelines with Hybrid Block-Wise Execution
	Introduction
	Motivation
	BlockHybrid Design
	Evaluation
	Conclusion

	SEED: An End-to-End Selective Execution Framework for Transformer-Based Object Detection in Edge Video Analytics
	Introduction
	Motivation
	SEED Design
	Evaluation
	Conclusion

	Conclusion
	Summary
	Limitations
	Future Work

