
Formal Approach to Uncertainty Modelling
in DIS Ontologies



Formal Approach to Information Uncertainty
Modelling and Domain Adequacy in DIS Ontologies

By
DEEMAH ALOMAIR,

M.Sc. (Computer Science)

A Thesis Submitted to the Department of Computing and Software
and the School of Graduate Studies of McMaster University

in the Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science

McMaster University
Hamilton, Ontario

© Copyright by Deemah Alomair, September 18, 2025

http://www.mcmaster.ca/


Doctor of Philosophy (2025)
Department of Computing and Software
McMaster University
Hamilton, Ontario, Canada

TITLE: Formal Approach to Information Uncertainty Modelling and Domain Adequacy
in DIS Ontologies

AUTHOR:
Deemah Alomair,
M.Sc. (Computer Science)

SUPERVISOR:
Dr. Ridha Khedri
Professor, Department of Computing and Software
McMaster University, ON, Canada

SUPERVISORY COMMITTEE CHAIR:
Dr. Ryszard Janicki
Professor, Department of Computing and Software,
McMaster University, ON, Canada

SUPERVISORY COMMITTEE MEMBERS:
Dr. Hassan Ashtiani
Associate Professor, Department of Computing and Software,
McMaster University, ON, Canada

Dr. Ridha Khedri
Professor, Department of Computing and Software,
McMaster University

NUMBER OF PAGES: xi, 182

ii

https://computational.mcmaster.ca/
http://www.mcmaster.ca/


Lay Abstract
Modern intelligent systems rely on ontologies to represent domain knowledge and sup-
port automated reasoning. However, these systems often face uncertainty arising from
information imperfection (e.g., incompleteness or inconsistency) or uncertainty of rele-
vance. This thesis addresses two key challenges: how to model and reason about uncer-
tainty caused by imperfect information in ontologies, and how to manage uncertainty
of relevance by ensuring an ontology’s adequacy for its intended domain. To address
these problems, it introduces a classification of uncertainty types. Extends the Domain
Information System (DIS) framework with quantitative modelling and reasoning capa-
bilities, leveraging possibility theory to manage incomplete knowledge. It also proposes
a structured formulation to assess ontological domain adequacy through ontological and
data commitment principles. Additionally, it integrates statistical validation techniques
to determine the relevance of data-defined concepts. By bridging formal ontology engi-
neering with uncertainty modelling, the thesis lays the foundation for more trustworthy
ontology-based systems in data-driven environments.
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Abstract
Ontologies play a central role in structuring domain knowledge and enabling automated
reasoning within a given domain. However, real-world applications increasingly demand
ontologies that can tolerate and represent uncertainty, stemming from either imperfect
information or a mismatch between the ontology and its intended domain. This the-
sis addresses two fundamental types of ontological uncertainty: (1) uncertainty due to
information imperfections, such as incompleteness and ambiguity; and (2) uncertainty
of relevance, which arises when ontologies fail to capture the semantics of their domain
adequately.

To address these challenges, this thesis makes four key contributions. First, it presents
a comprehensive survey and classification of uncertainty modelling approaches in domain
ontologies, synthesizing a decade of research (2010-2024). It then proposes a formal tax-
onomy that links types of uncertainty with their appropriate mathematical formalisms
for management, and their points of occurrence within the ontologies. Second, it pro-
poses a possibilistic extension to the Domain Information System (DIS) framework that
incorporates necessity-weighted formulas to model incomplete information and support
flexible, logic-based reasoning. Third, it introduces a novel theory of domain adequacy,
based on formal notions of ontological and data commitments, to guide the construc-
tion of minimal yet semantically sufficient sub-ontologies. Fourth, it extends this theory
to statically defined datascape concepts, developing a practical framework and tooling
that enables automated validation of data adequacy through statistical evaluation of
real-world datasets.

Altogether, this work advances the theoretical foundation and practical implemen-
tation of uncertainty-aware ontology engineering. It demonstrates how to unify data-
centric reasoning with formal ontology design, yielding systems that are not only seman-
tically rigorous but also grounded in empirical evidence. The results offer a principled
approach to managing uncertainty in ontology-based systems, making them more adapt-
able, interpretable, and aligned with dynamic, data-driven domains.
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Chapter 1

Introduction

1.1 General Context

In today’s data-driven world, data analytics has become a cornerstone for extracting
meaningful insights from vast and complex systems. It encompasses a wide range of
methodologies, from classical statistical approaches to more advanced Machine Learning
(ML) techniques, each designed to uncover patterns, predict outcomes, and support
decision-making across various domains.

Statistical methods form the foundation of data analytics, relying on probability the-
ory, hypothesis testing, regression analysis, and Bayesian inferences [Lista, 2023]. These
methods offer well-grounded principles for analyzing data, quantifying uncertainty, and
making data-driven decisions. For example, in epidemiology, logistic regression models
help estimate disease probabilities based on risk factors, while time-series forecasting
techniques enable financial analysts to predict market trends.

Beyond classical statistical techniques, ML has significantly enhanced analytical ca-
pabilities by enabling models to learn patterns from data and make predictions [Kenge,
2020]. ML techniques are broadly categorized into supervised learning, unsupervised
learning, and semi-supervised learning, among other types [Kenge, 2020]. Despite their
power, ML models often operate as black boxes, providing little interpretability or explicit
reasoning over structured knowledge [Hassija et al., 2024]. This limitation necessitates
logic-based approaches that complement data-driven techniques with formalized reason-
ing.

A key framework in logic-based knowledge representation and generation is Descrip-
tion Logic (DL), which underpins a family of formal ontology languages designed for
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structured knowledge representation with well-defined semantics such as Web Ontol-
ogy Language (OWL) [Antoniou and Harmelen, 2009], and Web Ontology Language-2
(OWL2) [Grau, 2009]. It provides the theoretical foundation for defining ontology-based
concepts, roles, and individuals in a precise and machine-interpretable manner [Baader
et al., 2005]. These languages support several reasoning tasks including, subsumption,
consistency verification, and insistence checking. DL-based reasoning allows for the
derivation of implicit knowledge, ensuring logical coherence and semantic consistency in
structured knowledge bases.

Building on these foundations, researchers and developers sought a tool capable of
representing information in a manner that facilitates knowledge extraction, supports
logical analysis, and enables explicit and transparent reasoning. Such a tool must keep
pace with the current scalability demands of modern knowledge-based systems while
satisfying reasoning requirements. In this context, ontology has emerged as one of the
leading frameworks for domain knowledge representation and reasoning, particularly in
the era of data analytics and advanced computing.

Originally, ontology was considered a branch of philosophical science before it emerged
in the field of data analytics. From the philosophical point of view, ontology can be
viewed as the study of existing, existence, or nature of being [Berryman, 2019]. On
the other hand, in the discipline of ontology engineering, ontology can be defined as a
formal, explicit specification of a shared conceptualization [Gruber, 2018]. Informally,
ontology structure consists of a set of concepts, their definitions, relationships, instances,
properties, and constraints expressed as axioms. Ontology is a popular tool in the field
of the semantic web. It is one of the main engines to represent and reason on seman-
tic web knowledge due to its indisputable features. With the use of ontology, infor-
mation accessibility, re-usability, and interoperability are becoming feasible with lower
overhead. Moreover, data heterogeneity issues have lessened. Ontologies have several
applications in the semantic web, like in healthcare [El-Sappagh et al., 2018], information
retrieval [Jain et al., 2021], decision making [He et al., 2022], and e-commerce [Karthik
and Ganapathy, 2021].

Ontology languages are known to be formal languages used to construct ontologies,
in such a way that knowledge is encoded, represented, and reasoned upon. There ex-
ists a different classification of ontology languages. However, according to [Maniraj and
Sivakumar, 2010], ontology languages can be classified into three main categories: logic-
based languages (e.g., [Baader et al., 2005]), frame-based languages (e.g., [Xue et al.,
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2010]), and graph-based languages (e.g., [Corbett, 2008]). The former includes any lan-
guage that is based on logic, like first-order predicate logic, rule-based logic, and DL.
Examples of such languages are OWL, and Knowledge Interchange Format (KIF) lan-
guage [Genesereth, 1991]. Frame-based languages like F-logic [Kifer et al., 2000]. While
the latest is the languages that are represented graphically by one of the graphical means,
like a semantic network as in Resource Description Framework (RDF) language [Pan,
2009]. A comprehensive review of ontology languages can be found in [Kalibatiene and
Vasilecas, 2011].

From a different perspective, ontology can be used as a component of a system, like
in the Ontology-Based Data Access (OBDA) system [Xiao et al., 2018], DOGMA [Jarrar
and Meersman, 2008], and DIS [Marinache et al., 2021]. These are examples of frame-
works that separate domain knowledge represented by an ontology from data contents
that are stored as records in a database format. These frameworks proved to be more
suitable for dealing with information integration and expansion processes.

In particular, the DIS framework adopts a bottom-up, data-centric approach to on-
tology construction. It builds ontologies directly from datasets through a Cartesian con-
struction of concepts, where complex concepts are formed by combining atomic elements.
It structurally separates domain knowledge (the ontology) from data views (the dataset),
linking the two via a formal mapping operator. This architectural separation grounds
the ontology in data, helping reduce mismatches between conceptual and observed data
values. Unlike DL-based ontologies, which separate the A-Box and T-Box logically, DIS
enforces this separation structurally, leading to improved modularity, transparency, and
maintainability in ontology design. DIS is especially useful in domains where ontolo-
gies must be generated or adopted from real-world datasets, offering a principled way
to align conceptual models with empirical data. Moreover, DIS supports mereological
reasoning by employing cylindric algebra to represent datasets and Boolean algebra to
construct conceptual mereological structure. This enables robust modelling of parthood
relations within structured data [Andrew LeClair, 2025]. In contrast, traditional on-
tology languages such as OWL are effective for defining conceptual structures [Guarino
et al., 2009] but struggle to capture the internal mereological relationships of Cartesian
datasets without relying on complex extensions like OBDA systems [Poggi et al., 2008].
Incorporating Cartesian types into OWL for mereological reasoning in non-trivial and
can introduce inference ambiguities [Krieger and Willms, 2015]. The DIS framework
will be used extensively throughout this thesis. A detailed overview of DIS can be found
in [Marinache, 2025]. Moreover, a theoretical background of this framework is discussed
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extensively in chapter 3, chapter 4, and chapter 5.

1.2 Specific Context

Although classical ontologies have achieved substantial success, their ability to manage
uncertainty remains a significant challenge. Classical ontologies are widely used for rep-
resenting crisp and well-defined knowledge. However, their inherent rigidity makes them
ill-suited for handling the uncertain aspect of real-world [Fareh, 2019]. As knowledge
representation becomes increasingly complex, uncertainty emerges as a critical challenge
in ontology-based systems, affecting both the adequacy of the domain ontologies and the
information they encode.

Broadly, two major types of uncertainty arise in ontology-based systems. The first is
uncertainty due to information imperfection, which is an inherent aspect of knowledge
and manifests in various forms. The literature presents several classifications of infor-
mation imperfection [Karanikola, 2018, Ma et al., 2013]. However, the most common
types of imperfections are incompleteness, imprecision, vagueness, ambiguity, and incon-
sistencies [Bosc and Prade, 1997, Ma et al., 2013]. Alternatively, some literature [Anand
and Kumar, 2022, Ceravolo et al., 2008, Stoilos et al., 2005] considers all the aforemen-
tioned types of imperfection as types of uncertainty. Thus, uncertainty may arise from
information incompleteness, imprecision, vagueness, ambiguity, or inconsistencies. This
type of uncertainty is extensively addressed and discussed in chapter 2, and chapter 3,
of this thesis. The second type relates to uncertainty of relevance, which concerns the
adequacy of a domain ontology in capturing the necessary concepts, relationships, and
instances for a given domain. Addressing this type of uncertainty requires ensuring that
the ontology accurately reflects the domain’s intended scope and purpose [Waterson and
Preece, 1999]. This type of uncertainty is extensively addressed and discussed in chap-
ter 4, and chapter 5, of this thesis. These two major types of uncertainty occurring
within ontological systems are illustrated in Figure 1.1.

Currently, different formalisms have been developed to extend ontology languages
and their foundational components, such as DL, to effectively manage uncertainty aris-
ing from information imperfections. Each formalism is designed to address a specific
manifestation of uncertainty, ensuring that different types of imperfections are system-
atically handled. The most prominent formalisms found in the literature for manag-
ing uncertainty in domain ontologies are possibility theory (e.g., [Dubois and Prade,
2015]), Dempster-Shafer Theory (DST) (e.g., [Sentz and Ferson, 2002]), rough set theory

4
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Figure 1.1: Major Types of Ontological Uncertainty.

(e.g., [Akama et al., 2020]), paraconsistent logic (e.g., [Priest, 2002]), probability theory
(e.g., [Laha and Rohatgi, 2020]) and fuzzy logic (e.g., [Zimmermann, 2011]). Each of
these offers distinct methodologies for reasoning under uncertainty, contributing to more
flexible and expressive ontology-based systems. A detailed discussion of these formalisms
and the specific types of uncertainty they address is provided in chapter 2. Moreover,
a developed taxonomy that presents the major types of ontological uncertainty due to
imperfect information along with their corresponding formalisms to manage is presented
in Figure 1.2.

Figure 1.2: Ontological Uncertainty Taxonomy
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From another perspective, ontological commitment plays a crucial role in addressing
the uncertainty of relevance by ensuring that a domain ontology accurately captures the
essential concepts and relationships required for a given domain. It establishes agreed-
upon assumptions about the nature of these concepts and their interrelations, explic-
itly defining the ontology’s scope and intended use. Ontological commitment helps in
identifying a sufficient ontology that aligns with the real-world requirements while also
reducing the size and complexity of the ontology. This structured approach facilitates
the extraction of a minimal yet comprehensive ontology that remains robust enough to
support reasoning within its intended domain, thereby enhancing decision-making pro-
cesses. Furthermore, aligning ontological commitment with data commitment extends
relevance beyond the conceptual level, ensuring that all concepts, relationships, and
instances are semantically supported by the underlying dataset.

1.3 Motivation

As knowledge representation and extraction processes continue to evolve, the need for
semantically rich and uncertainty-aware systems becomes increasingly important. On-
tologies have emerged as a powerful framework for structuring and reasoning about
knowledge due to their ability to explicitly define concepts and relationships semanti-
cally within a domain. However, classical ontologies are inherently crisp, making them
unsuitable for handling uncertainty, a fundamental aspect of real-world knowledge. This
limitation has driven extensive research into extending ontological models to incorporate
uncertainty-handling mechanisms.

Existing approaches primarily focus on addressing uncertainty due to information im-
perfections, such as vagueness, incompleteness, and inconsistency, using well-established
formalisms like fuzzy logic, probability theory, and possibility theory. These approaches
enhance ontologies by making them more flexible and expressive. However, understand-
ing, classifying, and effectively applying uncertainty-handling approaches is a complex
and challenging task due to the diverse and growing number of formalisms and ap-
proaches proposed in the literature. The field of uncertainty modelling in ontologies
is vast and fragmented, making it difficult for researchers and practitioners to identify
the most suitable formalism or approach for a given application. There is a press-
ing need for a comprehensive classification of existing approaches that systematically
categorize methods based on the types of uncertainty they address and the reasoning
capabilities they provide. Additionally, there is a critical need to develop clear guidelines
and a structured framework that explicitly describes where uncertainties might arise in
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ontology-based systems and how to effectively handle them. Such a framework would
provide a systematic roadmap for integrating uncertainty-aware mechanisms into ontolo-
gies, ensuring that the uncertainty of information imperfections is addressed coherently
and practically.

From a different perspective, most of the existing approaches do not fully address the
uncertainty of relevance, the challenge of ensuring that an ontology adequately captures
the necessary domain’s concepts and relationships. This type of uncertainty affects the
validity, completeness, and applicability of an ontology for real-world decision-making
and reasoning. To bridge this gap, ontological commitment plays a crucial role in ensur-
ing domain adequacy by extracting the appropriate ontology governing domain scope.
Furthermore, aligning ontological commitment with data commitment ensures that the
ontology remains not only conceptually relevant but also grounded in real-world datasets.
By achieving this, we can move towards more adaptive, systematically meaningful, and
practically useful ontology-based reasoning systems.

1.4 Problem Statement

With the scalability of knowledge-based systems and the emergence of big data and
its continuous developments, the focus on uncertainty within these systems is increas-
ingly gaining attention. While traditional ontologies are effective in representing well-
structured knowledge, their crisp and rigid nature makes them unsuitable for handling
uncertainty. The latter is a fundamental aspect of real-world knowledge. To address
this limitation, various uncertainty-handling formalisms have been introduced to extend
ontology languages and improve their flexibility. However, despite significant progress,
several key challenges remain unresolved.

First, the field of uncertainty modelling in ontologies is vast, complex, and frag-
mented, making it challenging to identify, classify, and apply appropriate uncertainty-
handling approaches. The absence of a clear taxonomy and structured framework for
uncertainty modelling hinders the selection of the most suitable formalism for specific ap-
plications. Researchers and practitioners currently lack systematic guidelines that help
in determining which formalism to adopt based on the nature of uncertainty present in
a given ontology. Thus, there is a critical need for a comprehensive study that:

1. Clearly defines the different types of uncertainty in ontology-based systems and
their sources.
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2. Classifies and organizes existing uncertainty-handling approaches, mapping them
to the specific types of uncertainty addressed and the formalism adopted.

3. Establishes structured guidelines to assist in selecting the most appropriate for-
malism for a given uncertainty.

Second, most ontology-based reasoning frameworks assume complete or deterministic
information. In practice, however, incomplete information is common, particularly in
dynamic and data-driven environments. Existing frameworks do not offer systematic
support for modelling and reasoning under incomplete information. While possibilistic
logic offers a principled way to handle this form of uncertainty, there remains a gap in
its integration into structurally grounded ontology frameworks such as DIS. A unified
framework is needed to embed uncertainty tolerance modelling within ontologies, while
maintaining ontological coherence.

Third, traditional uncertainty research tends to focus on uncertainty due to informa-
tion imperfections, such as vagueness, incompleteness, and inconsistency, while largely
overlooking the equally critical issue of uncertainty of relevance. Ensuring that an ontol-
ogy adequately captures the required domain concepts and relationships is essential for
its validity and applicability. The lack of formal methods to address the uncertainty of
relevance makes it difficult to determine whether an ontology sufficiently represents its
intended domain. Ontological commitment provides a structured approach to mitigate
this issue, but its integration with ontological-based systems remains under-explored.

Fourth, while ontological commitment ensures that an ontology aligns with domain
semantics, a parallel challenge lies in ensuring data-driven adequacy. Data commitment,
which ensures that the ontology’s concepts are sufficiently supported by available data,
remains unexplored. Without mechanisms to assess and enforce data commitment, an
ontology may contain concepts that are either irrelevant to the dataset or inadequately
instantiated, leading to poor domain coverage or misleading reasoning results. Achiev-
ing optimal domain adequacy thus requires a formal understanding of how ontological
and data commitments interact, and a method for validating both in a coherent and
integrated manner.

Last, with the increasing role of data-driven decision making, ontologies must in-
corporate statistically-defined concepts derived from observed data. However, current
ontology frameworks lack support for verifying whether such data-driven concepts are
logically consistent and semantically committed to the ontology. There is a need for a
structured mechanism for ensuring the data commitment of statistically defined concepts

8
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within the ontological frameworks, which bridges statistical modelling with ontological
reasoning, thus enabling seamless integration of statistical evidence into formally data-
driven ontologies.

By addressing these challenges, ontology-based systems can evolve into more robust,
scalable, and systematically aware frameworks capable of reasoning under uncertainty
and supporting reliable decision-making in complex, real-world applications.

1.5 Research Questions

The key Research Questions (RQs) guiding this thesis focus on developing a comprehen-
sive understanding of uncertainty in domain knowledge and its formal modelling within
ontology frameworks. Understanding the nature of uncertainty is the first step toward
developing effective methodologies for managing it, requiring a clear distinction between
different types of uncertainty, including information imperfections and uncertainty of
relevance.

Regarding uncertainty arising from information imperfection, a critical aspect is to
understand the types of uncertainty introduced into domain ontologies. Equally im-
portant is the identification and classification of existing mathematical formalisms that
support uncertainty handling, enabling the structured and precise modelling of uncertain
aspects within ontology-based systems. This study further aims to establish guidelines
and selection criteria for choosing the most suitable formalism based on the type of
uncertainty. Additionally, this work explores how uncertainty due to information imper-
fections can be formally represented within ontology-based frameworks, such as the DIS
framework, to support more expressive and adaptable knowledge models. Specifically,
this study explores the following set of RQs in this context:

1. RQ-1: How can uncertainty resulting from imperfect information be formally mod-
eled and managed within domain ontologies?

• RQ-1.1: What are the different types and sources of uncertainties that arise
in the context of domain ontologies?

• RQ-1.2: Where are uncertainty reside within a ontological framework (e.g.,
concepts, instances)?

• RQ-1.3: What mathematical formalisms are available for representing and
reasoning about such uncertainties?

9
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• RQ-1.4: What selection criteria or guidelines can support choosing the most
appropriate formalism based on the nature of the uncertainty involved?

2. RQ-2: How can data-driven ontology frameworks formally represent and manage
uncertainty due to imperfect information?

• RQ-2.1: How can uncertainty resulting from information imperfections be
formally represented within the DIS framework?

• RQ-2.2: What specific type of uncertainty arise in DIS, and which formalism
is most suitable for managing it?

• RQ-2.3: How can reasoning be conducted effectively in an uncertainty-aware
DIS framework?

Another critical aspect is ensuring the adequacy of domain ontologies, particularly
in dynamic and evolving domains where concepts and relationships may change
over time. This helps in reducing the growing complexity of large and monolithic
ontologies. This research investigates how ontological commitment can be struc-
tured to address the uncertainty of relevance, ensuring that an ontology remains
adequate and representative of its domain. This study also examines the role
of data commitment in maintaining ontology relevance. Specifically, it explores
how aligning ontological commitment with data commitment ensures that all con-
cepts, relationships, and instances within the ontology are grounded in real-world
datasets. Another critical aspect is ensuring the adequacy of domain ontologies for
statistically defined concepts, ensuring that statistical learning models and ontolog-
ical structure remain aligned, thus improving the applicability of such ontologies.
Specifically, this study explores the following set of RQs in this context:

3. RQ-3: What constitutes domain adequacy in ontologies, and how can it be en-
sured?

• RQ-3.1: What approaches ensure the adequacy of domain ontologies? and
what role does ontological and data commitments play in this matter?

• RQ-3.2: How can domain adequacy be ensured and validated within the DIS
framework?

• RQ-3.3: How can the domain adequacy of an ontology be assessed for statis-
tically defined concepts within the DIS framework?

10

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Deemah Alomair; McMaster University– Department of Computing and
Software

By addressing these research questions, this thesis aims to develop a comprehensive
structure for uncertainty management in ontologies, providing clear guidelines for select-
ing appropriate formalisms, ensuring ontology relevance and adequacy, and enhancing
reasoning efficiency for real-world applications.

1.6 Objectives

The key research objectives driving this study are designed to systematically develop a
structured approach for understanding, modelling, and managing uncertainty in ontology-
based systems (e.g., DIS). The following objectives define the scope of this research:

Objective 1: Identify and Classify Uncertainties in Ontologies.

This objective focuses on analyzing the different types of uncertainties that arise in
ontology-based systems, distinguishing between uncertainty of relevance and uncertainty
due to information imperfections. A structured classification will provide a foundation
for selecting appropriate modelling techniques. This objective directly addresses Re-
search Question 1.

Objective 2: Investigate Formalism for Uncertainty Handling.

This objective aims to explore and analyze the various mathematical formalisms used
to model and manage uncertainty of imperfections in ontologies, including fuzzy logic,
probability theory, possibility theory, DST, rough set theory, and paraconsistent logic.
This objective directly addresses Research Question 2.

Objective 3: Establish Guidelines for Selecting the Best Uncertainty Han-
dling Formalism.

Given the diversity of approaches for managing uncertainty, this objective aims to de-
velop a clear taxonomy or selection criteria to guide researchers and practitioners in
choosing the most appropriate formalism based on factors such as the type of uncer-
tainty and where uncertainty might arise within the ontology frameworks. This objective
directly addresses Research Question 3.
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Objective 4: Develop a Structured Approach for Representing Uncertainty
of Imperfections in DIS Framework.

Building on the classification and formalism selection, this objective focuses on designing
a structured approach for modelling uncertainty due to information imperfection in the
DIS framework. This approach defines where uncertainty arises, how it can be formally
modelled within DIS structure, and how reasoning mechanisms can be adopted to handle
uncertainty effectively. This objective directly addresses Research Question 4.

Objective 5: Ensure Ontology Domain Adequacy Through Ontological and
Data Commitments.

Since the uncertainty of relevance arises when ontology does not sufficiently capture its
intended domain, this objective focuses on ontological and data commitments as methods
for ensuring domain adequacy. This involves establishing a structured theory for defining
an ontology’s scope, aligning it with real-world domain requirements, and preventing
conceptual and data-grounded gaps. This objective directly addresses Research Question
5.

Objective 6: Determine Ontology Domain Adequacy for Statistically Defined
Concepts.

Statistically defined concepts, those derived from statistical inferences, pose challenges
for ontology modelling. This objective aims to explore methodologies for ensuring on-
tology domain adequacy when integrating such concepts. Specifically, it investigates
how to ensure the data commitment of those concepts within the DIS framework. This
objective directly addresses Research Question 6.

By achieving these objectives, this research provides a comprehensive framework for
uncertainty management on ontologies, offering structured guidelines for formalism se-
lection, ensuring domain adequacy (including statistically defined concepts), integrating
data commitment, and enhancing reasoning efficiency.

1.7 Thesis Contributions

This thesis makes several key contributions to the field of ontology-based reasoning
under uncertainty, addressing both classical imperfection (e.g., incomplete information)
and relevance uncertainty (i.e., adequacy of an ontology to a domain). The contributions
are categorized as follows:
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1. A comprehensive survey on uncertainty modelling in ontologies (out-
come of Objectives 1-3)

To establish a solid foundation for this research, a systematic survey was conducted
on uncertainty modelling in ontology-based systems. This review provides a struc-
tured analysis of existing approaches, offering insights into the different formalisms
employed and their applicability in handling uncertainty. Specifically, it:

• Introduces a guidance taxonomy that systematically maps different types of
uncertainty to appropriate modelling formalism. This taxonomy, presented
in Figure 1.2, also identifies where uncertainty may arise within an ontological
framework, serving as a roadmap for researchers and practitioners.

• Provides a theoretical foundation by outlining formalisms commonly used to
model and reason about uncertainty in ontologies, ensuring clarity on their
theoretical underpinnings.

• Classifies reviewed papers based on the formalism adopted, facilitating an or-
ganized understanding of how uncertainty has been addressed across different
formalisms.

• Analyzes the orientation of each study, distinguishing between foundational
research and application-driven approaches, those based on prior modelling
approaches.

• Identifies key motivations and domain area behind uncertainty modelling,
specifying the problem under investigation and challenges addressed in each
study.

• Details the modelling approaches applied to integrate uncertainty into onto-
logical frameworks, shedding light on the methodologies used.

• Examines the reasoning procedures proposed in the reviewed studies.

• Investigates the integration of ML and Natural Language Processing (NLP)
techniques in the reviewed approaches, assessing their role in uncertainty
reasoning approaches.

• Lists supporting tools or languages used in uncertainty-aware ontology mod-
elling, offering practical insights into available resources.
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• Illustrates any given evaluation of the reviewed approaches, discussing how
they were validated and the effectiveness of their proposed approaches.

2. A framework for handling uncertainty due to incomplete information in
ontologies (outcome of Objective 4)

This contribution focuses on addressing uncertainty arising from incomplete infor-
mation in ontology-based reasoning systems. It proposes:

• An enhanced DIS framework incorporating quantitative possibility theory to
model and reason under incomplete information.

• A weighted formula extension that spans across all components of the DIS
framework to systematically handle uncertainty, based on a solid mathemat-
ical foundation.

• An extended reasoning procedure based on the enhanced framework.

3. A Cartesian theory of domain adequacy for ontologies (outcome of Ob-
jective 5)

To address relevance uncertainty (i.e., ensuring an ontology is adequate for its
domain), this contribution proposes:

• A formal distinction between objective reality (representing the objective ex-
istence) and datascape reality (representing how the underlying data captures
reality).

• A formal mathematical foundation for assessing optimal domain adequacy,
ensuring that the ontology-based system adheres to both ontological and data
commitments.

• The ontological commitment theory and its related properties to identify the
minimal sub-ontologies (modules) that maintain domain adequacy.

• The data commitment theory, its related properties, and its interplay with
the ontological commitment.

4. A framework for data commitment of statistically defined concepts (out-
come of Objective 6)

The contribution addresses the challenge of integrating statistical data-driven con-
cepts into ontology-based reasoning by:
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• Developing a structured approach for data commitment, ensuring that statis-
tically defined concepts align with the semantic and logical foundations of an
ontology.

• Bridging the gap between statistical reasoning and ontological inference, mak-
ing ontology-based systems more flexible and data-driven.

• Extending DISEL with the proposed uncertainty-tolerance framework to en-
able applying it practically in real-world applications.

1.8 Description of Contributions to Publications

This thesis has been prepared in the "sandwich thesis" format. This section describes
the contribution of each of the co-authors to the work.

Chapter 2: A Comprehensive Review of Uncertainty Modelling in Domain
Ontologies.

Authors: Deemah Alomair, Ridha Khedri, and Wendy MacCaull.

The idea of conducting a systematic review paper emerged during the first year
of the PhD journey. It becomes evident that the domain of uncertainty modelling in
ontologies is vast and fragmented, necessitating a structured classification of existing
approaches. As researchers in this field, we recognized the importance of comprehensively
understanding and categorizing existing methodologies based on key factors such as the
type of uncertainty handled and the formalism adopted.

Dr. Ridha Khedri initiated the idea of conducting the review, and as a team (i.e.,
Deemah Alomair, Ridha Khedri, and Wendy MacCaull), we collaboratively formulated
research questions, specified the search period (2010-2024), and defined search keywords.
The research questions were iteratively refined until we finalized a set of eleven key
research questions. Additionally, the team identified the necessity of snowballing the
initial set of retrieved papers to ensure comprehensive coverage of relevant literature.

Two levels of snowballing were conducted to expand the review scope. Deemah
Alomair was responsible for the entire snowballing process, leading to the identification
of 562 relevant papers for analysis. These papers were subsequently classified based on
the formalism adopted to handle uncertainty, resulting in eight categories: fuzzy-based,
probability-based, possibility-based, rough set-based, paraconsistent-based, DST-based,
combined or hybrid-based, and review-based papers.
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To ensure a continuous review process, team members engaged in weekly paper dis-
cussions, systematically reading and analyzing papers, classified based on formalisms.
Discussions were held to assess the contributions of each paper to the research questions.
All analysis and findings were stored in a tabulated format in a cloud-based environ-
ment, accessible to all team members. Deemah Alomair was responsible for curating and
distributing weekly reading materials to the rest of the team. All the team members
read and discussed the papers together.

Moreover, Deemah Alomair proposed an initial guidance taxonomy that works as a
roadmap to understand where uncertainty might arise within ontology frameworks and
what the best formalisms are to manage them.

The review phase spanned approximately three years (2021-2024). Upon completing
the initial analysis, Deemah Alomair was responsible for filtering and synthesizing the
results, structuring the findings into the results section of the paper. Following this,
Deemah Alomair wrote the entire review paper, drafting all sections and sub-sections
before submitting it for feedback to Dr. Ridha Khedri and Dr. Wendy MacCaull. The
paper underwent multiple rounds of refinement until the final version was approved by
all team members.

This extensive work is presented in chapter 2 of this thesis. The material in this
chapter has been accepted for publication in the highly ranked ACM Computing Sur-
veys journal, with 2024 Impact Factor: 28.0 (ranked 1/147 in Computer Science Theory
& Methods). The manuscript, spanning 61 pages, adheres to the rigorous standards
of the journal. The copyright of the material is held by the authors, with publication
rights licensed to ACM. This review constitutes a major contribution to this field, of-
fering a comprehensive classification and evaluation of uncertainty due to information
imperfections modelling approaches in domain ontologies.

Chapter 3: Possibilistic extension of Domain Information System (DIS)
Framework.

Authors: Deemah Alomair, and Ridha Khedri.

The idea of developing a comprehensive framework to address uncertainty due to
imperfect information emerged at the beginning of the PhD journey. The initial chal-
lenges are identifying the specific type of uncertainty we have, determining the most
suitable formalism, and effectively integrating that formalism into the DIS framework.
To establish a solid foundation, we prioritized conducting a systematic survey to gain a
broader understanding of the domain, classify existing approaches, and determine where
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our framework fits within the landscape. As the survey paper neared completion (2024),
we understood our framework focus, clearly identified the type of uncertainty being
addressed, and selected the most appropriate formalism to support it.

Through weekly discussions, we systematically formulated our complete framework.
We determined that our primary concern was to address uncertainty due to incomplete
information and concluded that possibility theory was the most appropriate formalism
(a detailed rationale for this selection is provided in the paper). Consequently, we ex-
tended the DIS structure by associating a necessity degree with each instance-to-concept
mapping, relation, attribute-to-concept mapping, and concept definition. This enhance-
ment embeds uncertainty tolerance directly into all components of the DIS framework,
enabling it to represent and reason with incomplete information.

The writing phase spanned approximately one year (2024-2025). Following the ini-
tial draft, the paper underwent multiple rounds of refinement until a final version was
approved by all team members.

This extensive work is presented in chapter 3 of this thesis. The material was accepted
for publication in the SCITEPRESS Digital Library as part of the proceedings of the
17th International Conference on Knowledge Engineering and Ontology Development.
The manuscript, comprising 12 pages, meets the rigorous standards expected by the
conference and its associated publication venue. The copyright is held by the authors,
with publication rights licensed to SCITEPRESS, Science and Technology Publications.

This paper constitutes a significant contribution to the field, offering a novel approach
to uncertainty modelling in domain ontologies by enhancing the DIS framework with a
structured uncertainty-tolerant model. It provides theoretical insights into the integra-
tion of weighted formulas and demonstrates how this extension enables more robust
and efficient reasoning procedures. This work establishes a foundational framework for
reasoning over uncertain domain knowledge within ontology-based systems.

Chapter 4: Towards a Cartesian Theory of Domain Adequacy of Ontologies.
Authors: Deemah Alomair, and Ridha Khedri.

The idea of writing about domain ontology adequacy emerged during the literature
review phase. It becomes evident that the uncertainty of relevance is a critical aspect of
uncertainty modelling in ontologies that requires exploration. This type of uncertainty
is rooted in philosophy and is traditionally addressed through ontological commitment.
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To develop a comprehensive understanding, we began by analyzing the domain and
identifying its fundamental components. Through weekly discussions, we progressively
formulated our theory. During this process, we recognized that the reality of the DIS
framework is divided into two primary aspects: the objective and the datascape. Each
aspect requires a distinct form of commitment, objective commitment and data commit-
ment, which collectively ensure the domain adequacy of an ontology.

To maintain steady progress, the team engaged in structured weekly discussions,
systematically analyzing findings and integrating insights into the paper. The writing
phase spanned approximately two years (2023-2025). Following the initial draft, the
paper underwent multiple rounds of refinement until a final version was approved by all
team members.

This extensive work is presented in chapter 4 of this thesis. The material in this
chapter has been submitted, on August 1th, 2025, for publication and now it is under
review phase. The manuscript, spanning 27 pages, adheres to the rigorous standards of
the journal.

This paper constitutes a significant contribution to this field, offering a novel per-
spective on domain adequacy in ontologies by examining the interplay between data
commitment and ontological commitment. It advances theoretical insights into how
minimal sub-ontologies, or modules, can be effectively identified to ensure domain ade-
quacy. By formally linking definitions of ontological and data commitments to domain
adequacy and optimal domain adequacy, this work establishes a foundational framework
for assessing the sufficiency of ontologies in representing and reasoning about real-world
domains.

Chapter 5: Domain-adequacy of Ontologies with Statistically-defined
Concepts.

Authors: Deemah Alomair, Yihai Chen, Yijie Wang, and Ridha Khedri.

The idea of investigating domain ontology adequacy for statistically defined concepts
emerged during the formulation of our adequacy theory. While we are in the phase
of developing the ontological domain adequacy theory, we extended our perspective to
interoperate statistical language into the DIS framework. A key question arose: What
if datascape concepts are defined using statistical language? Addressing this question
highlighted the need for a comprehensive framework that integrates both regular and
statistical concepts. Consequently, we designed a system framework and developed a
language to ensure data adequacy for statistically defined concepts.
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Through weekly discussions, we progressively refined our theory and systematically
proved its properties. During this process, we proposed an approach to verify the
relevance of ontology concepts that are defined using terms involving data elements
and statistical language. The proposed approach enhances the domain adequacy of a
given ontology concerning a specific dataset, leading to a more refined and relevant
sub-ontology. Furthermore, we automated the process of assessing domain ontologies’
adequacy by generating R programs that run within a DISEL plug-in. The latter is
an ontology specification language based on DIS framework [Wang et al., 2022]. The
automation system is implemented as a DISEL editor plug-in. Through a case study on
a weather ontology, we illustrate the approach’s application and demonstrate how the
automated verification process results in a smaller, more domain-adequate ontology.

The writing phase spanned approximately two years (2023-2025). Deemah Alomair
was responsible for generating the R-programs that process the dataset to compute
the statistical measures or samples necessary for verifying the relevance of concepts.
Yijie Wang extended this work by integrating the R−based library into the DISEL
plug-in, ensuring compatibility and seamless integration. Additionally, Wang verified
the relevance of statistical datascape concepts to the domain based on the underlying
dataset. Deemah Alomair drafted the initial manuscript and submitted it for feedback
from Dr. Ridha Khedri. Following the initial draft, the paper underwent multiple rounds
of refinement until a final version was approved by all team members.

This extensive work is presented in chapter 5 of this thesis. The material in this
chapter has been submitted, on August 14th, 2025, for publication and now it is under
review phase. The manuscript, spanning 30 pages, adheres to the rigorous standards of
the journal.

This paper constitutes a significant contribution to the field, offering a novel perspec-
tive on the domain adequacy of the statistically defined datascape concept within the
DIS framework. It examines the data commitment of these special types of concepts
and derives the corresponding ontological commitment, collectively advancing theoreti-
cal insights into how minimal sub-ontologies, or modules, can be effectively identified to
ensure domain adequacy.

1.9 Thesis Outline

This thesis is structured into multiple chapters to establish a comprehensive framework
for addressing uncertainty in ontology-based systems. The organization of the thesis is
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as follows:

Chapter 1: Introduction. This chapter presents the fundamental purpose and
scope of the research. It introduces the general context of data analytics, followed by
a discussion of the research motivations, problem statement, and key challenges. The
research questions and objectives that guide this study are outlined, and a summary of
the main contributions is provided, linking them to relevant publications. The chapter
concludes with an overview of the thesis structure.

Chapter 2: A Comprehensive Review of Uncertainty Modelling in Do-
main Ontologies. This chapter provides an in-depth survey of existing approaches
to uncertainty modelling in ontology-based systems. It categorizes uncertainty-handling
approaches based on their underlying formalisms, including fuzzy logic, probability the-
ory, possibility theory, rough sets, paraconsistent logic, DST, and hybrid approaches.
The chapter also introduces a guidance taxonomy, which serves as a roadmap for se-
lecting suitable uncertainty-handling formalism in ontology frameworks. This work is
considered a major contribution to this research as it covers the vast literature in this
field.

Chapter 3: Possibilistic extension of Domain Information System (DIS)
Framework. This chapter introduces and extends the DIS framework to incorporate
quantitative possibility theory to handle uncertainty due to incomplete information. The
chapter explains the motivation for choosing possibility theory, details the integration of
weighted components into the DIS structure, and presents the mathematical formaliza-
tion of the enhanced framework. It also explores how this extended framework improves
the reasoning and expressiveness when dealing with incomplete or imperfect information
in ontology-based systems.

Chapter 4: Towards a Cartesian Theory of Domain Adequacy of Ontolo-
gies. This chapter develops a novel theoretical framework for ensuring domain adequacy
in ontology-based reasoning. It introduces the concepts of ontological commitments and
data commitment, formalizing their roles in maintaining relevance and completeness
within an ontology. The chapter distinguishes between objective reality and datascape,
demonstrating how these aspects influence ontology domain adequacy. The proposed
framework provides a theoretical foundation for addressing relevance uncertainty, ensur-
ing that ontologies remain semantically appropriate and robust.

Chapter 5: Domain-adequacy of Ontologies with Statistically-defined Con-
cepts. This chapter presents a framework that bridges the gap between statistical data
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representations and ontology-based reasoning. It focuses on data commitment mecha-
nisms that ensure statistically derived concepts are accurately integrated into the onto-
logical structure. The chapter provides a modular approach for handling such concepts,
ensuring that ontologies remain adequate when incorporating concepts derived from
statistical analysis.

Chapter 6: Conclusion and Future Work. This chapter summarizes the key
contributions and findings of the thesis. It reflects on the key values of the proposed un-
certainty modelling frameworks, discussing their theoretical and practical implications.
Additionally, the chapter outlines the suggested future research directions and potential
improvements.

Appendix: DISEL: A Language for Specifying DIS-based Ontologies. This
appendix presents the DISEL language, designed for specifying ontologies within the DIS
framework. It introduces the core syntactical constructs of DISEL and demonstrates
their use through a simplified weather ontology example. Since DISEL was employed
in the specification work discussed in chapter 5, it is included here to ensure the thesis
remains self-contained and accessible. The inclusion of this material supports the un-
derstanding of the tools and methodologies underlying the contributions and findings of
the thesis.

1.10 Conclusion

This chapter outlined the fundamental purpose and scope of this research, providing a
structured foundation for the study. It began by establishing both the general and spe-
cific contexts, introducing key foundational concepts such as data analytics, ontology,
and uncertainty types to contextualize the research within the broader domain. The
chapter then presented the main motivations behind this work, emphasizing the chal-
lenges and limitations of the current field. This was followed by a clear articulation of
the problem statement, defining the research gap that this study aims to address.

The discussion then transitioned into the core research questions that underpin the
investigation. These questions were formulated to systematically explore how differ-
ent uncertainty types impact reasoning within ontology-based systems and how formal
methods can be leveraged to enhance expressiveness and accuracy in reasoning under un-
certainty. To address these questions, the key research objectives were outlined, detailing
the specific goals that guide this study.
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A significant portion of this chapter was dedicated to positioning the research contri-
butions within the field. A comprehensive overview of the contributions was provided,
explaining how each aligns with the research objectives and demonstrating their dissem-
ination through publications. Finally, this chapter concluded with a detailed outline of
the thesis structure, providing a roadmap for the chapters that follow.
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Chapter 2

A Comprehensive Review of
Uncertainty Modelling in Domain
Ontologies

This chapter presents a comprehensive literature review of uncertainty modelling ap-
proaches in domain ontologies, covering the period from 2010 to 2024. It addresses the
first three objectives of this thesis: to identify and classify the different types of un-
certainties that arise in ontologies, and their handling formalisms, and to provide clear
guidelines for the best formalism selection. The review is guided by a set of guiding
questions that inform the analysis, including the motivations for modelling uncertainty,
the formalisms employed, and the types of uncertainty addressed in the selected studies.

This work provides the theoretical and contextual foundation for the subsequent
contributions in the thesis. It introduces a structured taxonomy that identifies the
primary carriers of uncertainty in ontologies and relates them to both the types of
uncertainty (e.g., incompleteness, imprecision, or inconsistencies) and the corresponding
modelling formalisms, such as possibility theory, fuzzy logic, or probability theory.

27



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Comprehensive Review of Information Uncertainty Modelling in Domain
Ontologies

DEEMAH ALOMAIR∗,McMaster University, Canada

RIDHA KHEDRI,McMaster University, Canada

WENDY MACCAULL, St. Francis Xavier University, Canada

Domain ontologies are essential for representing and reasoning about knowledge, yet addressing information uncertainty within
them remains challenging. This review surveys approaches to modelling information uncertainty in domain ontologies from 2010
to 2024. It categorizes modelling formalisms, identifies information uncertainty types, and analyzes how information uncertainty
is integrated into ontology components. It reviews reasoning techniques and emerging methods, including Machine Learning and
Natural Language Processing. The review examines languages, tools, and evaluation strategies. The purpose is to map the landscape of
information uncertainty modelling in domain ontologies, highlight research gaps and trends, and provide structured guidance for
selecting suitable approaches.

CCS Concepts: • Computing methodologies → Ontology engineering; Description logics; Probabilistic reasoning; Vague-
ness and fuzzy logic; Reasoning about belief and knowledge; • Information systems → Ontologies.
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1 Introduction

In the era of data-driven analytics, domain ontologies have emerged as pivotal tools for modelling structured knowledge
across various domains, enabling applications in fields such as healthcare [1], information retrieval [2], decision
making [3], and e-commerce [4]. An ontology, as formally defined in the literature [5], is an explicit, formal specification
of a shared conceptualization. Informally, a domain ontology, in most cases, consists of a set of concepts, relationships
among these concepts, individuals, and constraints, representing knowledge within a specific domain.

While classical ontologies are widely used in representing crisp, well-defined knowledge, their inherent rigidity
makes them ill-suited for uncertain information [6]. Information uncertainty remains an inherent aspect of knowledge
and manifests in various forms, such as incompleteness, vagueness, ambiguity, imprecision, and inconsistency [7].
Consequently, researchers have extended classical ontologies and their underlying structures, such as Description Logic
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2 Deemah Alomair, Ridha Khedri, and Wendy MacCaull

(DL), to handle uncertainty using several formalisms. Specifically, possibility theory (e.g., [8]), Dempster-Shafer Theory
(DST) (e.g., [9]), rough set theory (e.g., [10]), paraconsistent logic (e.g., [11]), probability theory (e.g., [12]) and fuzzy
logic (e.g., [13]). Although classical ontologies have achieved substantial success, their ability to manage information
uncertainty remains a significant challenge.

1.1 Motivation

The challenge of incorporating information uncertainty into ontological frameworks is well-documented [6, 14], and
a range of approaches have been proposed for representing and reasoning about information uncertainty in domain
ontologies. However, a significant gap remains when considering review papers: no existing review systematically
examines information uncertainty modelling across all major uncertainty formalisms (e.g., possibility theory, DST,
rough set theory, paraconsistent logic, probability theory, and fuzzy set theory). Existing reviews typically focus
on individual information uncertainty formalisms, such as fuzzy-based ontologies [15, 16, 17] or Bayesian Network
(BN)-based probabilistic ontologies [14, 18]. For the most part, these reviews are descriptive and lack systematic
methodologies. An exception is the systematic review presented in [19], which concentrates exclusively on BN-based
probabilistic ontologies. Our search process did not reveal any review, beyond BN, that addresses probabilistic ontologies
more broadly. An exception is the review [20], which offers broader coverage addressing fuzzy, probabilistic, and
possibilistic-based ontologies.

1.2 Contributions

This systematic review addresses a critical gap in the literature by providing a comprehensive review of information
uncertainty modelling in domain ontologies. First, it introduces a novel taxonomy that offers a structured framework for
understanding and addressing different types of information uncertainty within domain ontology frameworks and the
formalisms to handle them. Second, the review summarizes the theoretical foundations of six information uncertainty
formalisms: possibility theory, DST, rough set theory, paraconsistent logic, probability theory, and fuzzy set theory,
providing essential insights for researchers and practitioners. Third, it presents a systematic methodology to address
specific guiding questions about various aspects of information uncertainty modelling within domain ontologies. It
outlines the guiding questions and the inclusion and exclusion criteria. It elaborates on the results of the guiding
questions in a structured manner. The review synthesizes and compares contributions from related surveys and reviews,
critically analyzing their scope and methodologies.

Overall, this study provides a systematic review that encompasses the full spectrum of information uncertainty
modelling formalisms within domain ontologies to serve as a practical roadmap for ontology engineers and developers,
particularly those focused on designing, modelling, or reasoning about ontological systems under uncertain information.
This review clarifies the current state of the field and reveals gaps, limitations, and emerging trends. It aims to
facilitate informed decision-making in the selection of uncertainty-modelling techniques, ultimately contributing to the
development of more expressive and resilient ontology-based systems. This review provides a robust and consolidated
reference point for the literature concerned with modelling uncertain knowledge within domain ontologies.

1.3 Outline of Paper

The remainder of this paper is organized as follows: The theoretical foundations and formalisms for addressing
information uncertainty are provided in section 2. The review methodology, including the guiding questions and
inclusion/exclusion criteria, is detailed in section 3. Findings and answers to the guiding questions are presented
Manuscript submitted to ACM

29



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Comprehensive Review of Information Uncertainty Modelling in Domain Ontologies 3

in section 4. Related reviews are summarized in section 5. Discussion of key insights is provided in section 6, and a
conclusion is drawn in section 7. In the supplementary materials, we provide detailed categorizations of the approaches
based on their formalism and scope of focus, along with the bibliography of the excluded studies.

2 Preliminaries and Definitions

This section overviews the theoretical background on uncertainty types and their management formalisms. The nature
of uncertainty is detailed in subsection 2.1, while relevant formalisms are discussed in subsection 2.2.

2.1 Information Imperfection and Domain Ontology

Uncertainty is a multifaceted concept without a single universal definition, with multiple classifications proposed
across disciplines and contexts [21]. In modelling and decision-making, a common distinction is based on the nature of
uncertainty, namely into aleatory and epistemic. Aleatory uncertainty arises from intrinsic randomness or variability
inherent in the observed world, reflecting irreducible nondeterministic behaviour. It is therefore often referred to as
irreducible uncertainty, inherent uncertainty, variability, or stochastic uncertainty. In contrast, epistemic uncertainty

results from lack of knowledge or insufficient information about the system or environment and is, in principle,
reducible through additional data collection or improved modelling. In the literature, it is also referred to as reducible
uncertainty, subjective uncertainty, or cognitive uncertainty [22]. Another prominent classification focuses on the
occurrence of uncertainty within system design, distinguishing among data uncertainty, model uncertainty, and structural

uncertainty [23]. Within this scheme, the underlying nature of uncertainty (aleatory or epistemic) may vary depending
on the specific case. Data uncertainty can be further divided into, for example, algorithmic uncertainty [24] and
experimental uncertainty [25]. From an information-theoretic perspective, uncertainty is understood to originate
from deficiencies in the available information itself, often referred to as uncertainty-based information or imperfect
information [26]. Such information deficiencies are incompleteness, imprecision, vagueness, ambiguity, or inconsistency.
It is worth noting that classification schemes differ on how to situate these deficiencies: some, such as [22], regard
all forms of imperfect information as epistemic uncertainty. while others [27, 28] treat imperfect information more
broadly, encompassing both aleatory and epistemic aspects, which may manifest in different forms (e.g., inconsistency,
incompleteness, vagueness, and imprecision). In this review, we focus primarily on imperfect information, which, for
simplicity, we will hereafter refer to as uncertainty. We provide a detailed description of its different forms below.

Incompleteness arises from partial knowledge about the domain, leading to uncertainty across possible interpretations.
To address this, an estimation degree is calculated for possible worlds. For example, while we cannot be certain it will
snow tomorrow, we can estimate its likelihood. For further details on incompleteness, refer to [29].

Imprecision is the lack of exactness or specificity in representing information, leading to approximate or qualitative
descriptions. For example, phrases like "the temperature is around 25 degrees" or "John’s weight is either 65 or 67 kg"
illustrate imprecision. For further details on imprecision, refer to [30].

Vagueness, also known as fuzziness, occurs when a term or proposition lacks a precise evaluation or clearly defined
boundaries. In other words, there is no universally accepted meaning for the concept. Terms such as "old," "young," and
"tall" may vary depending on the context and do not always imply a certain assessment. Graded propositions under
fuzzy set theory are used to provide a partial truth of such propositions. For further details on vagueness, refer to [31].

Ambiguity occurs when a term has multiple meanings. For instance, the phrase "the food is hot" could mean either
"warm" or "spicy". Therefore, it is important to determine the appropriate meaning in a specific context. For further
details on ambiguity, refer to [30].
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Inconsistency, also known as contradiction or conflict, refers to a conflict between the meanings of multiple statements.
For example, having both sentences, "John is travelling to Toronto at 3:00 PM tomorrow" and "John is travelling to
Montreal at 3:00 PM tomorrow", leads to inconsistency. For further details on inconsistency, refer to [28].

Despite increasing research addressing uncertainty in ontology-based systems, most studies focus on specific types
of uncertainty in isolation, concentrating on particular formalisms and modelling approaches. While some works,
like [7], offer partial classifications of ontological uncertainty covering aspects such as incompleteness, vagueness,
inconsistency, and management formalisms, to date, however, no comprehensive, visual taxonomy exists that integrates
major uncertainty types, their ontological locations, and their corresponding management formalisms. Foundational
insights remain scattered across the literature but lack synthesis into a unified, visual framework. To address this gap,
we developed the taxonomy presented in Figure 1 to order the large set of works covered in the literature in the period
of 2010-2024. The purpose of the taxonomy, which is grounded in an extensive review of the literature, is to serve as a
conceptual roadmap that clarifies how various uncertainty types commonly arise and are addressed within ontological
frameworks.

This taxonomy classifies uncertainty into two main types based on where it arises in domain ontologies: concept
uncertainty and information uncertainty. Conceptual uncertainty has three key carriers: First Semantic ambiguity,
where a concept’s meaning depends on the context (e.g., "Apple" as fruit or technology company). Second Attribute

of concept, where uncertainty occurs in concept definitions, especially when vague or fuzzy attributes characterize
concepts (e.g., the concept "NoisyArea" defined by the attribute "HighNoiseLevel", which has no strict cutoff). Third,
Relationship between concepts, such as uncertainty in the subsumption relation (e.g., Intern ⊑ Employee, might be
uncertain). Although classical DL cannot inherently capture such uncertainties, these carriers can arise when modelling
a domain using DL-based TBox axioms. For example, semantic ambiguity may appear in the TBox axiom "𝐴𝑝𝑝𝑙𝑒 ⊑ ⊤",
with context determining the intended interpretation. Uncertain attributes can occur in data property restrictions,
like NoisyArea ≡ Area ⊓ ∃ HighNoiseLevel. ≥ ℎ, where ℎ is context-dependent. HighNoiseLevel is a data property
(in DL) akin to an attribute in database ontologies or relational-based models, which is used to define the concept
"NoisyArea". The third carrier can occur in the subsumption TBox axioms. For example: Son ⊑ Child, which may not
hold universally.

Information uncertainty addresses the challenge of mapping instances to their appropriate concepts or relations.
For example, linking the instance "John" to the concept "Student" or relating "John" to the "AcL" company via the
relation "work_at" involves uncertainties in associating individuals with the correct concepts or relationships. These
types of information uncertainty cannot be modelled directly by DL-based ABox assertions. For instance, the assertion
"𝐽𝑜ℎ𝑛 : 𝑆𝑡𝑢𝑑𝑒𝑛𝑡" indicates that "John" is a member of the "Student" concept, but this membership might be uncertain
or context-dependent. Similarly, the relation assertion "(𝐽𝑜ℎ𝑛,𝐴𝑐𝐿) : 𝑤𝑜𝑟𝑘_𝑎𝑡" may also be uncertain. Since classical
DL does not inherently represent such uncertainty, these TBox and ABox axioms need to be extended by suitable
formalisms to incorporate certainty or belief degrees that can express and support the uncertainty in these axioms.

These uncertainties stem from incomplete, imprecise, vague, or inconsistent information, as shown by arrows in
our taxonomy. Every uncertainty carrier in ontology might be caused by one or more types of uncertainty. To handle
these different types of uncertainty, one or a combination of formalisms can be employed. In particular, incomplete

information is often managed using probability theory, DST, or possibility theory. Imprecise and vague information are
commonly addressed through rough set theory or fuzzy set theory. Inconsistency is typically addressed using DST,
paraconsistent logic, probability theory, or possibility theory. These formalisms are depicted by dashed arrows in
the taxonomy, while dotted arrows represent subcategories within some of these formalisms. Overall, this taxonomy
Manuscript submitted to ACM
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provides a comprehensive framework for identifying different types of uncertainty and applying the most appropriate
formalism to manage and resolve them within an ontological system.

Fig. 1. Ontological Uncertainty Taxonomy.

2.2 Theoretical Background on Formalisms to Handle Uncertainty

This subsection briefly introduces the six formalisms used to handle uncertainty in domain ontologies: Fuzzy set theory,
probability theory, DST, possibility theory, rough set theory, and paraconsistent logic.

2.2.1 Fuzzy Set Theory and Fuzzy Logics. The concept of fuzzy set theory, developed by L. A. Zadeh [32], extends the
classical set theory to handle partial truth. In fuzzy set theory, the truth value of a fuzzy proposition 𝑥 is assigned
a real number between 0 and 1, determined by a membership function 𝜇𝐹 , defined as 𝜇𝐹 (𝑥) : 𝑈 → [0, 1] , where 𝑈
is the universal set [33]. This function (i.e., 𝜇𝐹 ) indicates the degree to which an object belongs to the set. A higher
membership grade suggests that the object is more suitable for the set. A fuzzy set 𝐹 can be defined based on 𝜇𝐹 as
𝐹 = {(𝑥, 𝜇𝐹 (𝑥)) | 𝑥 ∈ 𝑈 }, where 𝐹 represents the fuzzy set, which is a collection of elements and their membership
degrees, while 𝜇𝐹 represents the membership function that assigns degrees of membership to elements of the fuzzy set
𝐹 [33, 34].

Fuzzy logic, based on fuzzy set theory, is a type of many-valued logic. There are two widely accepted interpretations
of fuzzy logic: the broad view and the narrow view. The broad view applies fuzzy logical connectives and concepts
from fuzzy set theory to develop techniques for "approximate reasoning," and it has various applications, such as fuzzy
controllers and fuzzy IF-THEN rules [35]. The narrow interpretation focuses on constructing deductive systems within
the context of fuzzy logic, involving a comparative understanding of truth similar to classical mathematical logic,
including propositional and predicate calculi, as well as considerations of axiomatization, (in)completeness, complexity,
and related aspects. This interpretation is often referred to as Mathematical Fuzzy Logic (MFL) [35]. Both Type-1 and
Type-2 fuzzy logic, defined below, can be studied from both of these viewpoints.

Type-1 fuzzy logic, which is based on crisp and static membership functions, is the most widely known type of fuzzy
logic. Type-2 fuzzy logic, on the other hand, involves fuzzy membership grades and interval representations [36, 37].
In fuzzy logic, norm-based operators model uncertainty in a structured way. These are Triangular Norms (T-norms)
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Table 1. Combination functions of various fuzzy logics

Łukasiewicz logic Gödel logic Product logic Zadeh logic
𝑎 ⊗ 𝑏 max(a+b - 1, 0) min(a, b) 𝑎 · 𝑏 min(a, b)
𝑎 ⊕ 𝑏 min(a+b, 1) max (a, b) a+b - 𝑎 · 𝑏 max(a, b)

𝑎 ⇒ 𝑏 min(1-a+b, 1)
{
1, if 𝑎 ≤ 𝑏,
𝑏, otherwise

min(1, b/a) max(1-a, b)

⊖𝑎 1 - a
{
1, if 𝑎 = 0
0, otherwise

{
1, if 𝑎 = 0
0, otherwise

1- a

(fuzzy intersections), Triangular Conorms (T-conorms) (fuzzy unions), also known as S-norms, fuzzy negations, and
fuzzy implications [38]. A T-norm is a function 𝑇 : [0, 1] × [0, 1] → [0, 1] satisfying commutativity, associativity,
monotonicity, and identity (𝑇 (𝑥, 1) = 𝑥). Its dual, a T-conorm, has similar properties but with 0 as its neutral element.
Fuzzy negation, denoted by ¬, is a function 𝑁 : [0, 1] → [0, 1] satisfies 𝑁 (0) = 1, 𝑁 (1) = 0, and antitonicity. Fuzzy
implications include S-implications (also called the Kleene-Dienes implications), defined using T-conorms and fuzzy
negation 𝐼𝑆 (𝑥,𝑦) = 𝑆 (¬𝑥,𝑦) [39], and R-implications (also called the residual implications, or the residua) are defined as
follows: 𝑅(𝑥,𝑦) = 𝑠𝑢𝑝{𝑧 ∈ [0, 1] | 𝑇 (𝑥, 𝑧) ≤ 𝑦},∀𝑥,𝑦 ∈ [0, 1], where 𝑇 is a left-continuous T-norm [40]. For a thorough
review of fuzzy-based implications, we refer the reader to [39]. Gödel logic (𝐺), Product logic (⊓), Łukasiewicz logic (Ł),
and Zadeh logic are examples of norm-based fuzzy logic [41]. For a comprehensive understanding of these logics, refer
to [42]. A comparative overview of these logics is provided in Table 1.

Intuitionistic fuzzy sets, which are a generalization of fuzzy sets, specify the degrees of membership 𝜇𝐹 , the degree
of non-membership 𝑉𝐹 , and the degree of hesitation 𝜋𝐹 for an element to a set. The hesitation degree measures the
level of uncertainty in assigning the membership degree of an element to a fuzzy set [43].

2.2.2 Probability Theory. Probability theory is a branch of mathematics that provides a framework for understanding
and reasoning about random events [44]. It deals with both quantitative and qualitative probabilities. Quantitative
probability is expressed as numerical values ranging from 0 to 1, while qualitative probability uses ordinal language to
describe the likelihood of an event.

In probability theory, a sample space 𝑆 is defined as the set of all possible outcomes of a random experiment, which
might be finite or infinite, depending on the nature of the experiment. For example, when rolling a six-sided die, the
sample space is 𝑆 = {1, 2, 3, 4, 5, 6}. Each individual result from a trial of the experiment is called an outcome. In the die
rolling example, each face value (1 through 6) is an outcome. An event is any subset of the sample space, representing
one or more outcomes. For instance, the event "rolling an even number" corresponds to the subset 𝐴 = {2, 4, 6}.

A probability measure 𝑃 assigns a numerical value to each event, representing the likelihood of that event occurring.
This function must satisfy the following properties [44]: (1) 0 ≤ 𝑃 (𝐴) ≤ 1,∀𝐴 ⊆ 𝑆 . (2) 𝑃 (𝑆) = 1, and (3) for any
pairwise disjoint events 𝐴1, 𝐴2, ..., 𝐴𝑛 ⊆ 𝑆, 𝑃 (⋃𝑛

𝑖=1𝐴𝑖
)
=
∑𝑛
𝑖=1 𝑃 (𝐴𝑖 ). This is known as the axiom of (finite) additivity.

A probability model consists of a nonempty set called the sample space 𝑆 , a collection of events that are subsets of 𝑆 ,
and a probability measure 𝑃 assigning a probability between 0 and 1 to each event.

A random variable is a function from the sample space 𝑆 to the set R of all real numbers, i.e., 𝑋 : 𝑆 → R. It assigns
a numerical value to each outcome in the sample space. A random variable can be either discrete or continuous. A
discrete random variable takes values from a finite or countably infinite set (e.g., rolling a six-sided die). A continuous
random variable takes values from an uncountable range or interval (e.g., the height of a person in a population).
Manuscript submitted to ACM
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The probability distribution of a random variable indicates the likelihood of each possible value it can take. This is
characterized by specific functions: a Probability Mass Function (PMF) for discrete random variables, which assigns
probabilities to each value the variable can take. For example, the PMF of rolling a die is 𝑃 (𝑋 = 𝑘) = 1

6 , 𝑘 = 1, 2, .., 6.
A Probability Density Function (PDF) is used for continuous random variables, where probabilities are defined over
intervals rather than single points. More detailed explanations and foundational concepts on probability distributions
and their associated functions can be found in [44].

The conditional probability 𝑃 (𝐴 | 𝐵) expresses the probability of event 𝐴 occurring given that 𝐵 has occurred, and is
defined as [44]:

𝑃 (𝐴 | 𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵) , provided 𝑃 (𝐵) ≠ 0.

From this, Bayes’ Theorem is derived, which provides a way to express the conditional probability of 𝐴 given 𝐵 in terms
of the reverse conditional probability 𝑃 (𝐵 | 𝐴):

𝑃 (𝐴 | 𝐵) = 𝑃 (𝐵 | 𝐴)𝑃 (𝐴)
𝑃 (𝐵)

Conditional probability allows us to compute the joint probability of 𝑃 (𝐴 ∩ 𝐵), which represents the likelihood of two
events 𝐴 and 𝐵 occurring together and expressed as: 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴)𝑃 (𝐵 | 𝐴) .

An extension to the traditional First-Order Logic (FOL) [45] is Probabilistic First-Order Logic (PFOL) [46]. In
PFOL, probabilities can be associated with logical statements and predicates, as opposed to FOL, which only deals
with deterministic predicates. A probabilistic predicate can be expressed as ∀𝑥 (Φ(𝑥) → 𝑃𝑟 (Ψ(𝑥)) = 𝑝), where Φ(𝑥)
represents the premise predicate, and Ψ(𝑥) represents the consequent predicate. This statement means that for every 𝑥 ,
if Φ(𝑥) is true, then the probability ”𝑃𝑟” that Ψ(𝑥) it true is exactly 𝑝 . Thus, 𝑝 quantifies the likelihood of Ψ(𝑥) being
true under the condition that Φ(𝑥) holds. Similar to FOL, the grounding process is crucial in PFOL. Grounding involves
generating ground predicates or ground atoms by instantiating variables with constants. This process relies on the
Herbrand logic [47], which defines a universe of all possible ground terms constructed using the function symbols and
constants of the language. For instance, in a language with constants 𝑎 and 𝑏 and a predicate Φ(𝑥), ground predicates
such as Φ(𝑎) and Φ(𝑏) can be formed. In PFOL, probabilities can be assigned to these ground predicates. For instance,
one can formulate a probabilistic assertion like: "If Φ(𝑎) is true, then Φ(𝑏) is true with a probability 𝑝".

In [48], an analysis framework of PFOL is presented. This framework differentiates between Type-1 and Type-2 PFOL
through statistical and epistemic probability, receptively. Type-1 PFOL deals with statistical probabilities and is based
on objective frequencies or distributions of attributes. This type of probability considers the likelihood of a particular
situation occurring within a population and is grounded in facts. On the other hand, Type-2 PFOL is concerned with
epistemic probabilities, which represent the subjective degree of belief an individual has in various possible worlds or
interpretations. Therefore, Type-1 PFOL is linked to statistical (objective) probability, while Type-2 PFOL is associated
with epistemic (subjective) probability, highlighting the distinction between empirical observations and personal beliefs.

Probabilistic Graphical Models (PGMs) [49] are powerful frameworks for representing and reasoning about uncertain
information in a structured way. These models combine concepts from graph theory and probability theory to provide
a compact representation of complex systems involving uncertainty. Examples of these models include Dynamical
Uncertainty Causal Graphs (DUCG) [50], Conditional Random Fields (CRF) [51], Markov Network (MN) [52], BN [53]
and its extensions such as Multi-Entity Bayesian Networks (MEBN) [54], and Object Oriented Bayesian Networks
(OOBN) [55]. These models are used to represent the probabilistic relationships between variables in the graph. Among
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these, BN and MN are PGMs most commonly used in conjunction with ontologies. For a thorough description of PGMs,
refer to [49].

2.2.3 Dempster-Shafer Theory. The DST, also known as evidence theory or theory of belief functions, is a mathematical
framework for modelling epistemic uncertainty [9]. It emerged as an alternative to traditional probabilistic theory
and serves as a generalization of probability theory in a finite discrete space. One of the key features of DST is the
combination of evidence obtained from multiple sources and the modelling of conflict among them [9]. The theory
allows for a higher level of abstraction when interpreting evidence and provides a framework for explicitly addressing
uncertainty and conflict in decision-making processes.

Mathematically, the representation of DST relies on three primitive functions: Basic Probability Assignment (BPA)
or mass function (𝑚), belief or lower bound probability function (𝐵𝑒𝑙), and plausibility or upper bound probability
function (𝑃𝑙). The concept of mass value is crucial in the DST as it represents the belief allocated directly to a specific
subset of the frame of discernment Θ, (i.e., the set of all possible outcomes or hypotheses). In DST, hypotheses are
propositions or statements about the domain that may compromise one or more events. The mass function𝑚 assigns
a value to each subset 𝐴 of Θ and must satisfy specific conditions to ensure a valid distribution of belief. Firstly,𝑚
is defined as a mapping from the power set of Θ to the interval [0, 1], expressed mathematically as𝑚 : 2Θ → [0, 1].
Secondly, the mass assigned to the empty set must be zero, which means that𝑚(∅) = 0. Lastly, the total mass distributed
across all subsets of Θ must sum to 1, expressed as

∑
𝑆⊆Θ

𝑚(𝑆) = 1. For any set 𝐴 ⊆ Θ,𝑚(𝐴) denotes the measure of

evidence of 𝐴. However, it does not provide information about the subsets of 𝐴. To analyze the measure of evidence for
any subset of 𝐴, we need to obtain the mass value for the subset itself.

From𝑚(𝐴) we can derive 𝐵𝑒𝑙 (𝐴), and 𝑃𝑙 (𝐴). 𝐵𝑒𝑙 (𝐴) = ∑
𝑆⊆𝐴

𝑚(𝑆) is the sum of all masses of 𝐴’s proper subsets, and

represents its lower bound probability value. 𝑃𝑙 (𝐴) = ∑
𝑆∩𝐴≠∅

𝑚(𝑆) is the total mass of all the sets that intersect with set

𝐴, and represents its upper bound probability value. Interdependency is a key feature of the DST, allowing us to derive
the other two values of {(𝑚(𝐴), 𝐵𝑒𝑙 (𝐴), 𝑃𝑙 (𝐴))} given one of them. For instance, Belief can be used to derive Plausibility:
𝑃𝑙 (𝐴) = 1 − 𝐵𝑒𝑙 (𝐴′), where 𝐴′ is the complement of set 𝐴. The probability value of set 𝐴 falls in the interval between
the upper and lower bound values. A single probability value 𝑃 (𝐴) is obtained when the plausibility measure 𝑃𝑙 (𝐴)
and the belief measure 𝐵𝑒𝑙 (𝐴) are identical, consistent with classical probability theory, where 𝐵𝑒𝑙 (𝐴) = 𝑃𝑙 (𝐴) = 𝑃 (𝐴).
For more detailed information about the basic measures of DST, readers are referred to [9, 56].

In DST, there are several rules for combining evidence from different independent sources to support specific events
or sets of events. The original rule for this purpose is called Dempster’s rule of combination or orthogonal sum. It has
faced criticism for not considering conflicts between different sources and assuming full agreement among them [9, 56,
57]. Efforts towards developing modified rules have been made, such as Yager’s rule [58], Inagaki’s unified combination
rule [59], Zhang’s center combination rule [60], and Dubois, Prade’s disjunctive pooling [61, 62], among others (e.g., [9,
57, 58]).

Key distinctions exist between probability theory and DST. In probability theory, probabilities are assigned to specific
events, whereas in DST, beliefs are assigned to non-singleton and to empty sets of events. This allows evidence in
DST to be linked to multiple or sets of events, carrying meaning at a higher level of abstraction without assumptions
about the events within the set. Another difference is how ignorance is handled: in probability theory, the probability
of an unknown event is one minus the sum of the probabilities of other events in the considered sample space. In
DST, ignorance is explicitly represented by assigning a mass to the vacuous set, which includes all hypotheses with no
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specific evidence [63]. For instances, consider a frame of discernment𝑈 = {𝐴, 𝐵,𝐶}, representing three possible states:
𝐴, 𝐵, and 𝐶 . Assigning a vacuous mass means𝑚(𝑈 ) = 1 and𝑚({𝐴}) = 𝑚({𝐵}) = 𝑚({𝐶}) = 0, indicating complete
uncertainty with no evidence favoring any outcome.

The integration of DST with a graph-based theory for modelling uncertain knowledge using belief functions is
explored in [64]. The resulting graph, referred to as the Directed Evidential Network (DEVN), offers a unified graphical
and numerical framework for representing uncertain knowledge through belief functions.

2.2.4 Possibility Theory. Possibility theory is a mathematical framework for understanding and reasoning about
incomplete and inconsistent knowledge [8]. This theory is classified into twomajor branches: qualitative and quantitative
possibility theory. Qualitative possibility theory provides an ordinal interpretation of the possibility of a proposition to
occur, without explicitly providing a numerical value. For instance, a meteorologist might state that it is very possible it
will rain tomorrow, possible that it will be cloudy, and less possible that it will be sunny, without indicating precise
numerical measures. In quantitative possibility theory, a numerical value is used to indicate the degree of possibility of
a proposition. For instance, the meteorologist could state that the possibility of rain is 0.9, cloudy weather is 0.6, and
sunshine is 0.2, with the values lying within a normalized range from 0 to 1.

Possibility distribution represents the epistemic state of an agent; that is, the agent’s knowledge about the actual
state of the world. A possibility distribution is a function that assigns to each element in a set of states a plausibility
degree drawn from a totally ordered scale. Let 𝑆 denote the set of states of affairs, which might be a finite or an infinite
set. The distribution is formally defined as a mapping 𝜋 : 𝑆 → 𝐿, where 𝐿 is a totally ordered scale of plausibility values,
often instantiated as the real unit interval [0, 1], but it can also take other forms, such as a finite chain or the set of
non-negative integers. The value 𝜋 (𝑥) expresses how plausible the state 𝑥 ∈ 𝑆 is, specifically [8]:

• 𝜋 (𝑥) = 0 indicates that 𝑥 is impossible.
• 𝜋 (𝑥) = 1 indicates that 𝑥 is totally possible (i.e., totally plausible).

The larger the value of 𝜋 (𝑥), the more plausible the state 𝑥 is considered to be. Assuming 𝑆 is exhaustive, there must
exist at least one 𝑥 ∈ 𝑆 such that 𝜋 (𝑥) = 1. Multiple states 𝑥 in 𝑆 may also simultaneously have a possibility degree of 1.
From the possibility distribution 𝜋 , the possibility measure Π and necessity measure 𝑁 can be defined over any subset
𝑋 ⊆ 𝑆 as follows [8]:

Π(𝑋 ) = sup
𝑥 ∈𝑋

𝜋 (𝑥) and 𝑁 (𝑋 ) = inf
𝑥∉𝑋

(1 − 𝜋 (𝑥)).

Equivalently, the necessity measure can be expressed as: 𝑁 (𝑋 ) = 1 − Π(𝑋 ′), where 𝑋 ′ is the complement of 𝑋 in 𝑆 .
The possibility measure Π(𝑋 ) quantifies the extent to which the set 𝑋 is plausible or consistent with the available
knowledge. Its dual, the necessity measure 𝑁 (𝑋 ), expresses the degree of certainty that 𝑋 is implied by that knowledge.

The maxitivity axiom expresses the fundamental property of the possibility measures in possibility theory, expressed
as Π(𝐴 ∪ 𝐵) = max(Π(𝐴),Π(𝐵)). In contrast, the necessity measure fulfills the dual axiom, expressed as 𝑁 (𝐴 ∩ 𝐵) =
min(𝑁 (𝐴), 𝑁 (𝐵)) .

The minimum specificity principle, one of the foundational concepts of possibility theory, posits that any state not
known to be impossible should remain under consideration. In the context of possibility theory, a possibility distribution
𝜋 is considered at least as specific as another distribution 𝜋 ′ if, for every state 𝑥 in the universe 𝑆 , the relationship
𝜋 (𝑥) ≤ 𝜋 ′(𝑥) holds. This ordering implies that 𝜋 is at least as informative and restrictive as 𝜋 ′. The possibilistic
framework also provides ways to express cases of incomplete knowledge. In the case of complete knowledge, for some
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specific state 𝑥𝑖 , 𝜋 (𝑥𝑖 ) = 1 and 𝜋 (𝑥) = 0 for all other states 𝑥 ≠ 𝑥𝑖 , signifying that only 𝑥𝑖 is possible. In contrast, complete
ignorance is represented by assigning 𝜋 (𝑥) = 1 for every 𝑥 in 𝑆 , indicating that all states are equally possible [8].

An important strength of possibilistic logic lies in its ability to effectively manage inconsistency [65, 66]. This is
achieved through the concept of an inconsistency level, denoted as Inc(K), which quantifies and localizes the degree of
contradiction within a knowledge base. This level represents the highest certainty degree at which a contraindication can
be derived from the knowledge base 𝐾 . Formally, the inconsistency level is expressed as 𝐼𝑛𝑐 (𝐾) =𝑚𝑎𝑥{𝛼 | 𝐾 ⊢ (⊥, 𝛼)}.
In this formula, the notation 𝐾 ⊢ (⊥, 𝛼) indicates that a contradiction (⊥) can be inferred from the knowledge base
𝐾 with a certainty degree 𝛼 . Thus, Inc(K) identifies the maximum level of certainty associated with contradictory
information within 𝐾 . If 𝐼𝑛𝑐 (𝐾) = 0, the knowledge base is consistent. However, when 𝐼𝑛𝑐 (𝐾) ≥ 0, the possibilistic
logic isolates inconsistency by excluding formulas with a certainty level less than or equal to Inc(K). The filtered subset,
𝐾𝑐𝑜𝑛𝑠 , is guaranteed to be consistent and serves as the foundation for subsequent reasoning.

The theory of possibility has various connections to other theories. Some (e.g., [67]) have suggested that it is a
specific case of DST by equating the necessity and possibility measures of possibility theory to the belief and plausibility
measures of DST. From a different perspective, Zadeh [67] has linked the possibility theory with fuzzy set theory,
using possibility distributions to offer graded semantics for natural language statements. In his view, the possibility
distribution of a set of alternatives is equivalent to a fuzzy set, and the membership function represents the degree of
possibility. Looking at it from another angle, possibility theory is often linked to probability theory as an effective way
to handle imprecise probability. In this interpretation, the probability is expressed as an interval using two measures
(i.e., necessity and possibility) instead of a single point as in traditional probability theory. For a thorough analysis of
possibility theory, its types, basic notions, and interpretations, we refer the reader to [8].

2.2.5 Rough Set Theory. Rough Set theory, also known as the theory of approximation [68], is commonly used when
there is vagueness or imprecision in the data. It is applicable when, based on the available information, an object cannot
be definitively categorized as a member of a set or its complement.

In an information system 𝑆 = (𝑈 ,𝐴), where 𝑈 is a finite, non-empty set of objects called the universe, and 𝐴 is a set
of all attributes, we assign a set𝑉𝑎 for each attribute 𝑎 ∈ 𝐴, representing the possible values of 𝑎.𝑉𝑎 is referred to as the
domain of 𝑎. For any subset 𝐵 of 𝐴, we can define a binary relation 𝐼 (𝐵) on 𝑈 , called the indiscernible relation [68].
This relation is an equivalence relation that divides 𝑈 into a set of equivalent classes, where items within the same
equivalence class cannot be distinguished based on the considered attributes. This relation is defined as follows:

∀(𝑥,𝑦) ∈ 𝑈 2
(
(𝑥,𝑦) ∈ 𝐼 (𝐵) ⇐⇒ (∀𝑏 ∈ 𝐵 · 𝑏 (𝑥) = 𝑏 (𝑦)) ),

where 𝑏 (𝑥) represents the value of attribute 𝑏 for the element 𝑥 [68, 69]. 𝑈 /𝐼 (𝐵), or simply𝑈 /𝐵, represents the family
of equivalence classes of 𝐼 (𝐵), or the partition specified by 𝐵. These equivalence classes are referred to as 𝐵-elementary
sets or 𝐵-granules. An equivalence class of 𝐼 (𝐵), (a block of the partition 𝑈 /𝐵), containing 𝑥 , is represented by 𝐵(𝑥), or
[𝑥]𝐵 . If (𝑥,𝑦) belongs to 𝐼 (𝐵), we shall state that 𝑥 and 𝑦 are 𝐵-indiscernible (indiscernible with regard to 𝐵).

Given the information system 𝑆 = (𝑈 ,𝐴), where 𝑋 ⊆ 𝑈 , and 𝐵 ⊆ 𝐴, and based on the indiscernible relation
𝐼 (𝐵), two distinct crisp sets of 𝑋 can be defined: 𝐵∗ (𝑋 ) and 𝐵∗ (𝑋 ). These are referred to as the 𝐵-lower and 𝐵-upper
approximations of 𝑋 , respectively, and are defined as follows:

𝐵∗ (𝑋 ) =
⋃
𝑥 ∈𝑈

{𝐵(𝑥) : 𝐵(𝑥) ⊆ 𝑋 }, and 𝐵∗ (𝑋 ) =
⋃
𝑥 ∈𝑈

{𝐵(𝑥) : 𝐵(𝑥) ∩ 𝑋 ≠ ∅}.
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The lower approximation or the positive region is the set of objects that can be classified with full certainty as elements
of 𝑋 . The upper approximation, also known as the negative region, indicates the set of objects that possibly belong
to the target set 𝑋 . The boundary region, (𝐵𝑁 )𝐵 (𝑋 ), is the difference between the upper approximation and lower
approximation, expressed as (𝐵𝑁 )𝐵 (𝑋 ) = 𝐵∗ (𝑋 ) − 𝐵∗ (𝑋 ), which consists of the objects that cannot be classified as
belonging or not belonging to the target set 𝑋 . If the boundary region (𝐵𝑁 )𝐵 (𝑋 ) = ∅, then 𝑋 is considered crisp (exact)
in relation to 𝐵. On the other hand, if (𝐵𝑁 )𝐵 (𝑋 ) ≠ ∅, then 𝑋 is considered rough (inexact) in relation to 𝐵. The target
set 𝑋 is called a rough set if and only if the boundary region is not empty, that is, if 𝐵∗ (𝑋 ) ≠ 𝐵∗ (𝑋 ). Otherwise, the
target set is considered to be crisp [68, 69].

2.2.6 Paraconsistent Logic. The core principle of paraconsistent logic is invalidating the principle of explosion, which
states that from a contradiction (expressed as 𝐴,¬𝐴), any arbitrary statement 𝑄 can be inferred. In classical logic, this
principle (i.e., 𝐴,¬𝐴 ⊢ 𝑄) means that if both proposition 𝐴 and its negation ¬𝐴 are true, then any statement 𝑄 logically
follows, regardless of its relevance to 𝐴. Paraconsistent logic is therefore a type of logic that is designed to avoid
deriving a trivial conclusion from inconsistent premises [11]. Several types of logic exhibit paraconsistency, including
many-valued paraconsistent logic, distance-based paraconsistent logic, and argumentation-based paraconsistent logic.
Many-valued paraconsistent logics introduce special connective operators, adjust certain inference rules, and define
additional truth values. This usually requires sacrificing some classical logic principles and inference rules. Examples
of a well-known many-valued paraconsistent logics include Kleene three-valued logic [70], the logic of Paradox [71],
Belnap four-valued logic [72], Quasi-classical logic [73], and Nelson four-valued logic [74]. A comprehensive comparison
between these logics is provided in Table 2. Another class of paraconsistent logic is argumentation-based paraconsistent
logic, which refers to a type of logical system that combines principles from argumentation theory with paraconsistent
logic, as elucidated in detail in [75]. A third class of paraconsistent logic is distance-based paraconsistent logic, which
was initially defined for a propositional language with a two-valued interpretation Λ2 = {𝑇, 𝐹 } (similar to classical
logic). However, it can be naturally extended to many-valued logic. Pseudo-distance and aggregation functions play a
role in determining the overall logical behaviour within the framework of distance-based logic, which is thoroughly
explained in [76].

3 Methodology

In this section, we outline the methodology used in this review. This paper is based on the systematic review guidelines
provided by Kitchenham and Charters [82]. The systematic review process involves the following steps: (1) Identi-
fication of the guiding questions, as detailed in subsection 3.1. (2) Clear articulation of the research strategy, found
in subsection 3.2. (3) Establishment of reliable inclusion and exclusion criteria, outlined in subsection 3.3. (4) Provision
of details regarding data collection, found in subsection 3.4 and data analysis, as discussed in subsection 3.5.

3.1 GuidingQuestions

Our review aims to address various aspects of uncertainty modelling in domain ontologies by addressing several
key guiding questions. These include the formalisms used to capture uncertainty, whether the paper is foundational
or application-oriented, and the motivations behind modelling uncertainty, as well as the domain areas. We also
explore the sources and types of uncertainty, as well as the location of uncertainty within the domain ontologies,
based on our developed taxonomy. In addition, we examine how uncertainty is captured through formalisms, whether
decidable reasoning procedures are employed, and the role of Machine Learning or Natural Language Processing
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Table 2. Comparison of Key Types of Many-Valued Paraconsistent Logics

Logic type Key features Semantics & structure Ref.
Kleene
three-
valued
logic

- Truth values: Undetermined𝑈 (gap), True (𝑇 ), False (𝐹 )
- Defines two interpretations: strong (𝐾𝑠 ) treats𝑈 as 𝑇 , and
weak (𝐾𝑤) treats𝑈 as 𝐹
- No tautologies

- Truth ordering: 𝐹 ≤𝑡 𝑈 ≤𝑡 𝑇
- knowledge ordering: 𝑈 ≤𝑘 𝑇
and𝑈 ≤𝑘 𝐹
- Pre-bilattice structure based
on these orderings.

[70,
77]

The logic of
Paradox

- Truth values: True (𝑇 ), False (𝐹 ), Paradoxical 𝑃 (glut)
- Paradoxical value 𝑃 indicating both true and false
- Contains tautologies.

- Same truth tables as Kleene’s
(𝐾𝑠 ).

[71]

Belnap’s
four-
valued
logic

- Truth values: True (𝑇 ), False (𝐹 ), None (𝑁 ), Both (𝐵)
- No tautologies
- Both logic of Paradox and the Kleene’s three-valued logic
are special cases:
- Logic of Paradox omits "ignorance" (𝑈 )
- Kleene’s three-valued logic omits "contradiction" (𝑃 ).

- Distributive bi-lattice struc-
ture ⟨𝐵, ≤𝑡 , ≤𝑘 ⟩ known as
FOUR.

[72,
78]

Quasi-
Classical
logic

- Retains Belnap’s four values
- Restricts certain proof rules, such as disjunction introduction,
from combining with decomposition rules like resolution
- Logic weaker than classical logic
- Connectives behave classically
- No tautologies.

- Two semantics: strong and
weak satisfaction.

[73,
79]

Nelson’s
four-
valued
logic

- Retains Belnap’s four values.
- Introduces strong negation (∼) to express explicit falsehood
- Allows independent interpretation of 𝑝 and ∼ 𝑝 , enabling
both to be true simultaneously
- Contains tautologies.

- N4 semantics is represented
by N4-lattices.

[74,
80,
81]

(NLP) in modelling uncertainty. Finally, we look at the tools and languages (e.g., Extensible Markup Language (XML),
SemanticWeb Rule Language (SWRL)) supporting these approaches, and highlight any given evaluations of the proposed
approaches. These guiding questions serve as structured classification criteria commonly used in systematic literature
reviews to guide data extraction and comparative analysis. Overall, this review paper addresses the following guiding
questions:

• GQ1: What are the formalisms used to capture uncertainty?
• GQ2: Is the paper foundational or an application?
• GQ3-A: What are the given motivations for modelling uncertainty? GQ3-B: What is the specific problem under
investigation (i.e., the domain area)?

• GQ4-A: What is the source of the uncertainty? GQ4-B: What are the specific types of uncertainty (e.g., impre-
ciseness, incompleteness)?

• GQ5: How can the uncertainty raised in the ontology be classified based on our developed taxonomy (Figure 1)?
• GQ6: How is the formalism used to capture uncertainty?
• GQ7: Does the paper indicate that it uses a decidable reasoning procedure?
• GQ8: Does the paper contain any Machine Learning approach to help model uncertainty?
• GQ9: Does the approach to manage uncertainty involves NLP?
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• GQ10-A: Is the approach supported by languages? GQ10-B: Is the approach supported by tools (e.g., using
existing tools or building a new supporting tool)?

• GQ11: What is the given evaluation of the modelling approach (if any) (e.g., case study, experiment)?

3.2 Search Process

We conducted our search using the Engineering Village portal, which provides access to the Compendex and Inspec

databases. Given the breadth of this area, we focused our search on the period between 2010 and 2024 to ensure
comprehensive coverage of recent literature while maintaining a manageable scope across the full spectrum of relevant
studies. This timeframe allows us to delimit our review to the most recent advancements in modelling and reasoning
about uncertainty in ontologies. Using specific keywords, our initial search yielded "519" articles. This search was
performed using a structured query with carefully selected keywords to target relevant articles. The search keywords
are presented in Listing 1.

Listing 1. Search keywords

( ( u n c e r t a i n t y OR un c e r t a i n OR vague OR i n c o n s i s t e n t OR imp r e c i s e ) AND ( Bayes i an
Network OR rough s e t s OR Dempster − Sha f e r OR fuz zy l o g i c OR p o s s i b i l i t y OR
P o s s i b i l i s t i c OR p r o b a b i l i s t i c OR p a r a c o n s i s t e n t OR fuz zy s e t s OR p r o b a b i l i t y )
AND ( model ing OR rea son ing OR mode l l i ng OR r e p r e s e n t a t i o n OR hand l i ng ) AND
onto logy OR on t o l o g i e s ) AND (20 2 4 OR 2023 OR 2022 OR 2021 OR 2020 OR 2019 OR
2018 OR 2017 OR 2016 OR 2015 OR 2014 OR 2013 OR 2012 OR 2011 OR 2010 ) NOT

( " IoT " OR " I n t e r n e t o f t h i n g s " OR " Temporal " OR " da t a f u s i o n " OR " i n f o rma t i on
f u s i o n " OR " e v o l u t i o n r e a son ing " OR " on to logy matching " OR " Bu s i n e s s Model " OR
" on to logy a l i gnment " OR " o n t o l o g i e s a l i gnment " OR " mining " ) )

The search terms were within the subject, title, and abstract of the document to ensure relevancy. These studies must
be published as book chapters, journal articles, or reference papers. The "NOT" clause excludes articles on topics such
as IoT, fusion, alignment, and temporal reasoning. These areas often involve uncertainty related to data processing,
integration, or temporal aspects rather than uncertainty inherent to domain knowledge within ontologies. Our review
focuses specifically on uncertainty that arises from the domain conceptualization itself, rather than uncertainties
stemming from ontological alignment or system integration tasks.

These articles were then subjected to inclusion and exclusion criteria explicitly explained in subsection 3.3. We
removed 167 duplicate papers and excluded 68 more based on our assessment of their abstracts, which left us with a
selection of 284 papers. In addition, we carried out a comprehensive literature review using the snowballing technique,
which involved examining referenced papers published between 2010 and 2024 to form further layers of literature. This
process added 278 papers to our initial set, resulting in a total of 562 reviewed papers. After reviewing the papers, we
end up with a total of 117 modelling studies. The paper selection process is depicted in Figure 2.

3.3 Inclusion and Exclusion Criteria

The inclusion criteria for this review focus on selecting articles that address uncertainty modelling through a variety of
formal formalisms. Specifically, we include studies that utilize possibility theory, DST, rough set theory, paraconsistent

Manuscript submitted to ACM

40



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Deemah Alomair, Ridha Khedri, and Wendy MacCaull

Fig. 2. Paper Selection Process

logic, probability theory, fuzzy set theory, or any combination of these frameworks. We strictly review papers that
match our keyword search, as provided previously in subsection 3.2, or those identified through a snowballing process.

We apply several exclusion criteria to ensure the relevance and quality of the papers included in the review. First, we
eliminate duplicate articles and limit the scope of the papers written in English. We excluded marginal articles that,
while focusing on ontologies and related aspects, do not address uncertainty modelling within domain ontologies. We
also exclude papers lacking sufficient technical details on the uncertainty modelling aspect, as well as older versions of
papers for which more comprehensive and updated versions exist. Finally, articles with restricted access, where no full
version is available online, are also excluded from our review.

3.4 Data Collection

The papers under review are categorized into nine general categories based on the formalism used to handle uncertainty.
The categories are the following: possibility theory, DST, rough set theory, paraconsistent logic, probability theory, fuzzy

set theory, hybrid, other, and review. In Table 3, we present a clear classification of the papers and the total number of
papers for each formalism. The first group is derived from the initial phase of our research keywords. The second group
is obtained through snowballing of the first group. The third group results from a further round of snowballing, this
time applied to the second group.

Table 3. Total Numbers of Reviewed Papers Categorized by Formalism

Formalism Initial phase First snowballing Second snowballing Total
Possibilitic 16 2 3 21
DST 14 8 4 26
Rough set 8 3 0 11
Paraconsistent 10 9 1 20
Probabilistic 130 56 34 220
Fuzzy 79 69 76 224
Hybrid 17 4 1 22
Other 4 5 0 9
Review 6 3 0 9

284 159 119 562

After reviewing the papers, we categorized each classification from Table 3 into four main groups based on the
scope of the papers. The first group, modelling papers, includes studies focused on modelling or both modelling and
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reasoning, further divided into two subclasses: DL-based and non-DL-based. The second group, reasoning papers,
includes studies on reasoners, reasoning algorithms, and optimization techniques. The third group, application papers,
directly addresses GQ2 by identifying application-oriented studies. The final group, excluded papers, encompasses those
excluded based on the specified exclusion criterion. Tabulated representations of these categorizations, Table 13 to
Table 20 in the Supplementary Materials, provide clear answers to GQ1 and GQ2 of our study. Specifically, the tables
divide studies by formalisms and highlight applications-oriented works.

3.5 Data Analysis

We conducted a comprehensive analysis of the guiding questions across all selected papers, that is, those studies that
focus on modelling or involve both modelling and reasoning, a total of 117 papers. The data for each paper are presented,
analyzed, and tabulated, aligned with the guiding questions (GQs) provided in subsection 3.1. The analyzed data are:

• The formalisms employed to model uncertainty within the ontological frameworks (addressing GQ1);
• The orientation of the paper, whether foundational or application-oriented (addressing GQ2);
• Motivations for modelling uncertainty (addressing GQ3-A) and the domain area (addressing GQ3-B);
• Sources of uncertainty (addressing GQ4-A) and types of uncertainty (addressing GQ4-B);
• The location of uncertainty in the ontology based on the developed taxonomy (addressing GQ5);
• The approach applied to model uncertainty within the ontological framework (addressing GQ6);
• Decidable reasoning procedures (addressing GQ7);
• Involvement of Machine Learning or NLP approaches (addressing GQ8 and GQ9);
• Supporting languages or tools (addressing GQ10-A-B);
• Evaluation of the approaches (addressing GQ11).

4 RESULTS

In this section, we present the review results organized according to the guiding questions (GQ1-GQ11) provided
earlier. Each aspect of uncertainty modelling is explored in a dedicated subsection, categorized based on the formalism
used (GQ1). Additionally, all selected papers are foundational in orientation (GQ2). In subsection 4.1, we examine
the motivations for modelling uncertainty in domain ontologies, along with the specific domain areas where it is
applied (GQ3-A and GQ3-B). Next, subsection 4.2 presents the types of uncertainty being modelled and identifies their
sources (GQ4-A and GQ4-B). Following this, subsection 4.3 identifies where the uncertainty is depicted within the
ontological framework (GQ5). Next, subsection 4.4 specifies how these formalisms are applied in the ontology (GQ6),
while subsection 4.5 highlights any reasoning tasks provided in the studies (GQ7). The role of Machine Learning and NLP
is examined in subsection 4.6, which identifies cases where these techniques are used to support uncertainty modelling
(GQ8 and GQ9). In subsection 4.7 we present the languages and tools that facilitate the modelling process (GQ10-A and
GQ10-B). Finally, subsection 4.8 provides an overview of the evaluation methodologies used in the reviewed papers
(GQ11). The Supplementary Materials include two tree-like structures: the first tree, Figure 3, classifies papers based on
GQ4-A, GQ4-B, and GQ5, while the second, Figure 4, organizes them according to GQ7-GQ11.

4.1 Motivations and Domain Areas for Uncertainty Modelling in Ontology

The motivations for uncertainty modelling in domain ontologies, summarized in Table 4, fall into two broad categories:
knowledge representation (43 papers) and reasoning (74 papers). Although these aspects often overlap, papers tend to
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emphasize one over the other. For analytical clarity, we classified them accordingly, while fully acknowledging that
the two are frequently intertwined. Knowledge representation primarily focuses on enhancing the expressiveness of
ontologies to better capture incomplete, ambiguous, imprecise, or inconsistent domain knowledge. Reasoning aims
primarily to perform inference tasks in the presence of uncertainty, such as uncertain query answering or classification.
We note that the separation is not rigid: many papers contribute to both aspects. However, for thematic synthesis, this
classification helps to highlight the dominant focus of each work.

Table 4. Motivations for Uncertainty Modelling within Ontological Frameworks Categorized by Formalism

Formalism Motivation
Reasoning Knowledge representation

Possibilistic [83, 84, 85, 86, 87, 88] [89, 90]
DST [91, 92, 93, 94, 95, 96]
Rough set [97, 98] [99, 100]
Paraconsistent [78, 101, 102, 103, 104, 105, 106, 107, 108] [109]
Probabilistic [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124]
[125, 126, 127, 128, 129, 130, 131, 132]

Fuzzy [133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160, 161, 162, 163, 164]

[165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191]

Hybrid [192, 193] [194, 195]
Other [196, 197] [198]

Table 5 outlines the domain areas where uncertainty modelling in domain ontologies has been applied, as identified in
the reviewed papers. The applications cover a wide range of fields, including information retrieval, Intrusion Detection
System (IDS), Decision Support System (DSS), Case-Based Reasoning (CBR), and the semantic web. The analyzed papers
not cited in Table 5 present general-purpose applications, highlighting foundational modelling or reasoning approaches
that can be adopted across multiple domains.

Table 5. Domain Area for Uncertainty Modelling within Ontological Frameworks Categorized by Formalism

Formalism Domain Area
Semantic
web

Data
fusion

Medical
domain

Geo-
spatial

Robotics Information
retrieval

IDS Ontology
learning

CBR Science DSS Gaming

Possibilistic [84, 85, 88] [89] [90] [83]
DST [92] [93,

94]
[96] [91]

Rough set [97] [99]
Paraconsistent [78, 102, 103,

107]
[101]

Probabilistic [110, 114, 120,
123, 127, 129]

[113, 115,
121, 131]

[125,
126]

[116, 118,
119]

[130] [132]

Fuzzy [134, 145, 146,
147, 151, 172,
180, 186, 188]

[136, 137,
144, 164]

[159] [148, 171] [143,
163,
167]

[152, 153, 165,
174, 175, 176,
182, 183, 185,
187]

[133] [149, 156,
166]

[138, 162,
168, 169, 170,
179, 178]

[139,
140,
141,
142]

Hybrid [193, 194, 195]
Other [197]

4.2 Sources and Types of Uncertainty

In our review of selected papers, we identified a range of sources of uncertainty addressed across various applications.
These sources include sensor limitations, conflicting information from different sources, measurement errors, and model
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limitations. On top of that, contextual factors contribute to uncertainty, as they often influence how information is
interpreted. Lastly, some papers did not specify a particular source of uncertainty, so we identified these as undetermined.
Some papers addressed multiple sources of uncertainty, resulting in their being cited more than once. This aspect is
summarized and presented in Table 6.

Table 6. Sources of Uncertainty Categorized by Formalism

Formalism Sources of Uncertainty
Sensors Contradictory

sources
Measurements
errors

Model
limitations

Context Undetermined

Possibilistic [85, 89] [84, 85, 86] [90] [87] [83, 88]
DST [91, 93] [93, 94] [93] [92, 95, 96]
Rough set [100] [97] [98, 99]
Paraconsistent [78, 101, 103] [104, 105, 106, 107, 108] [102, 109]
Probabilistic [117,

125]
[110, 120] [125] [125] [111, 112, 113, 114, 115, 116, 118, 121,

127, 128, 129, 130, 131]
[119, 122, 123, 124,
126, 132]

Fuzzy [134, 133, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 149, 150,
152, 153, 154, 155, 158, 159, 160, 161, 164,
165, 166, 167, 168, 170, 171, 172, 173, 175,
176, 177, 178, 180, 181, 182, 183, 184, 185,
188, 189, 190, 191]

[148, 151, 156, 157,
162, 163, 169, 174,
179, 186, 187]

Hybrid [193, 195] [192, 194]
Other [197] [196, 198]

The reviewed papers identified several distinct types of uncertainty, including incomplete information, as well as
vague and imprecise information, which were often considered together. Inconsistent information is also commonly
noted. Some studies address multiple types collectively. These are categorized as "Several types", while other studies do
not specify a particular type of uncertainty; these are categorized as "Undetermined". This aspect is summarized and
presented in Table 7.

Table 7. Types of Uncertainty Categorized by Formalism

Formalism Types of Uncertainty
Incomplete
information

Vagueness and Imprecision Inconsistency Several types Undetermined

Possibilistic [85] [83, 84, 86, 88] [87, 89, 90]
DST [92] [95] [91, 93, 94, 96]
Rough set [99] [97, 98, 100]
Paraconsistent [78, 103, 104, 105,

106, 107, 108, 109]
[101, 102]

Probabilistic [110, 121] [111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 122,
123, 124, 125, 126, 127, 128,
129, 130, 131, 132]

Fuzzy [133, 134, 135, 136, 137, 139, 140, 141, 142,
143, 144, 148, 149, 151, 155, 156, 157, 158, 159,
160, 161, 163, 165, 166, 167, 168, 169, 170, 171,
173, 174, 175, 176, 177, 178, 180, 181, 182, 183,
184, 185, 186, 188, 189, 190, 191]

[150, 154] [138, 145, 146, 147, 152,
162, 153, 164, 172, 179,
187]

Hybrid [194] [192, 193, 195]
Other [196] [197, 198]
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4.3 Location of Uncertainty within Ontology

In the reviewed papers, we found that uncertainty in domain ontologies might arise at several points, namely, in the
relationship between concepts, the properties or attributes associated with concepts, the semantic ambiguity of concepts,
the mapping of instances to concepts, and the mapping of instances to relationships. Some papers focus on a single
location of uncertainty, while others address multiple areas. Consequently, we have categorized these papers as "Several
locations". This aspect is summarized and presented in Table 8.

Table 8. Location of Uncertainty Categorized by Formalism

Formalism Locations of Uncertainty
Relationship
between
concepts

Attribute of
concept

Semantic
ambiguity
of concept

Mapping
instance to
concept

Mapping
instances to
relationship

Several locations

Possibilistic [89] [83, 84, 85, 86, 87, 88, 90]
DST [91] [92, 94] [93, 95, 96]
Rough set [98, 99] [97] [100]
Paraconsistent [101, 109] [78, 102, 103, 104, 105, 106, 107, 108]
Probabilistic [113, 115, 121,

126]
[111, 124,
129]

[130] [110, 112, 114, 116, 117, 118, 119, 120,
122, 123, 125, 127, 128, 131, 132]

Fuzzy [188] [136, 164,
165]

[134, 135, 138,
139, 140, 141,
142, 143, 144,
150, 162, 163]

[168, 169,
170, 171,
179]

[133, 137, 145, 146, 147, 148, 149, 151,
152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 166, 167, 172, 173, 174, 175,
176, 177, 178, 180, 181, 182, 183, 184,
185, 186, 187, 189, 190, 191]

Hybrid [192, 193, 194, 195]
Other [196, 197, 198]

4.4 Modelling Approach

In this subsection, we present the results of how different approaches are used to model uncertainty, categorized
by the adopted formalism. Each sub-subsection is dedicated to an analysis of papers based on each formalism. We
divide these approaches into two main classes: DL-based approaches, which represent the majority of the papers, and
non-DL-based approaches. Specifically, for DL-based approaches, we examine whether the approach extends only
the TBox, only the ABox, or the entire knowledge base, or if it operates at the language level by adding annotations
to support uncertainty modelling. In addition, we analyze and present papers that adopt non-DL based approaches,
exploring their contributions to uncertainty modelling.

4.4.1 Possibilistic Papers. In possibilistic DL-based approaches, uncertainty is addressed by incorporating necessity or
possibility degrees into the axioms of the ontologies. This can involve ABox assertions, in [85], TBox axioms in [87],
or both TBox and ABox axioms, demonstrated in [83, 84, 88]. The study of [86], goes further by incorporating a
possibility distribution for each interpretation in addition to the axioms. The work of [90] operates at the language
level by introducing annotations to Web Ontology Language 2 (OWL2) to enable support for possibilistic ontologies.
An approach [89], not based on DL, assigns possibility degrees directly to ontology concepts.

4.4.2 Dempster-Shafer Papers. In DST papers, uncertainty is managed by incorporating belief values with various
components of the ontology. In [92], the authors introduce a method to convert an ontology into a Terminological
Decision Tree (TDT), where each node corresponds to a concept in the ontology and belief values are assigned to each
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node to capture uncertainty. Another study [95], based on DL, introduces belief values to both ABox and TBox axioms to
form an extended knowledge base, while [91] adds annotation "hasMass" to Web Ontology Language (OWL) to support
belief-based concepts. In addition, a non-specific DST-based ontology, which can be added as an upper ontology to
OWL is developed in [93, 94], incorporating the Uncertain_Concept to facilitate DST-based reasoning. Lastly, paper [96]
focuses on subjective DL-Lite by adding belief values to ABox assertions.

4.4.3 Rough Set Papers. In rough set DL-based papers, rough concepts are introduced by generating upper and lower
approximations of the concepts. These approximations are derived based on the indiscernibility relation, which is defined
by the values of the set of attributes characterizing the concept [97, 99, 100]. In [98], the author focuses on the language
level by proposing r-OWL, an extension of OWL with added annotations designed to support the representation and
reasoning of rough ontologies.

4.4.4 Paraconsistent Papers. Paraconsistent logics are commonly used to manage inconsistencies within DL-based
ontologies, with different approaches leveraging various types of paraconsistent semantics. Belnap’s four-valued
paraconsistent logic, as applied in [78, 101], associates to each DL-concept or relation two subsets: one representing
positive membership and the other representing negative membership. The truth values {𝑇, 𝐹, 𝐵,𝑈 } are used to capture
the membership of instance to this concept/relation. Specifically, 𝑇 (True) indicates that an instance belongs to the
positive membership set, while 𝐹 (False) indicates membership in the negative subset. 𝐵 (Both) represents cases where
the instance simultaneously belongs to both subsets. Finally,𝑈 (Unknown) represents cases where an instance does
not belong to either subset. On the other hand, paper [109] introduces a dual interpretation structure, ⟨Δ𝑃𝐼 , ·𝐼+, ·𝐼−⟩,
designed to support Nelson’s four-valued paraconsistent logic. In this framework, Δ𝑃𝐼 is a non-empty domain, while
·𝐼+ and ·𝐼− are interpretation functions that assign two subsets, 𝐴𝐼+ and 𝐴𝐼−, to each concept and relation within
Δ𝑃𝐼 . These subsets represent the positive (𝐴𝐼+) and negative (𝐴𝐼−) interpretations of the concepts or relations. The
framework also defines a paraconsistent negation as (¬𝐶)𝐼+ := 𝐶𝐼−. Papers [104, 108] inherits the semantics of the
quasi-classical paraconsistent logic, which defines two interpretations: weak and strong. The weak interpretation is
a reformulation of Belnap’s four-valued interpretation, and the strong interpretation redefines the interpretations of
the disjunction of concepts and conjunction of concepts of the weak interpretation to validate some inferences rules.
The DL fragment SROIQ is extended in [103] with Kleene’s three-valued paraconsistent logic, introducing truth values
{𝑇, 𝐹, 𝐼 }, where 𝐼 represents indeterminate, while [107] presents a variant of Kleene’s three-valued logic with {𝑇, 𝐹, 𝐵},
where 𝐵 denotes both true and false, extending the DL fragment ALC with paradoxical paraconsistent logic. From a
different perspective, paper [102] studies a number of different paraconsistent semantics for SROIQ such as Belnap’s,
and Kleene’s three-valued paraconsistent logics. Argumentation-based paraconsistent DL is presented in [105], while
distance-based paraconsistent DL is introduced in [106].

4.4.5 Probabilistic Papers. Probabilistic approaches to uncertainty modelling in domain ontologies can be broadly
divided into two main directions: extending domain ontologies and their languages with probabilistic axioms and
leveraging PGMs. The first direction focuses on embedding probabilities, either epistemic or statistical, into ontological
structures. For instance, statistical probabilities have been added to both TBox axioms and ABox assertions of DL-based
ontologies, as demonstrated in [122], while epistemic probabilities have been applied to ABox assertions in [125, 131],
entire knowledge base axioms in [114, 119], and relational axioms in [126]. Probabilistic knowledge bases further extend
this direction by combining a classical TBoxwith probability assertions based on discrete or continuous distributions [117,
121], and naïve Bayes classifiers have been employed to calculate probabilities for all relations in the ontology in [115].
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These classifiers are probabilistic models based on Bayes’ theorem, assuming strong independence among features [199].
Another approach [118], does not specify whether the probabilities used are statistical or epistemic, but simply attaches
probabilities to ABox assertions. In contrast, log-linear description logic adopts a different perspective by representing
an ontology as a pair consisting of a deterministic CBox,𝐶𝐷 , and an uncertain CBox,𝐶𝑈 . The uncertain CBox is defined
as 𝐶𝑈 = {(𝑐,𝑤𝑐 ) | c is an EL++ axiom and𝑤𝑐 a real valued weight for c} [124].

Distribution semantics [200] extends logical systems by assigning probabilities to axioms, enabling reasoning over
uncertainty in ontologies. It forms the basis of the DISPONTE probabilistic framework, which incorporates probabilistic
axioms into domain ontologies for uncertain knowledge reasoning [120, 123].

Further, probabilistic extensions to ontology languages enhance uncertainty modelling. For example, annotated OWL
adds probabilistic annotations to facilitate reasoning [111, 116], and PR-OWL introduces constructs like "definesUncer-
taintyOf" to explicitly define probabilistic concepts [129]. In addition, the paper [132] extends PR-OWL by introducing
the PR-OWL decision language, an advancement achieved by integrating the Multi-Entity Decision Graph (MEDG)
framework into the existing structure. This integration enables effective decision-making within domain ontologies,
even in the presence of domain uncertainty.

The second direction employs PGMss such as BNs and Markov Logic Network (MLN)s to represent probabilistic
ontologies. BNs are integrated into ontology frameworks to provide a probabilistic axiomatic foundation [112, 113, 127,
128, 130], while MLNs extend ontology languages such as Datalog+/– with probabilistic semantics [110].

4.4.6 Fuzzy Papers. Fuzzy ontological approaches enhance traditional ontology frameworks by incorporating member-
ship degrees into instances, relationships, concepts, or combinations of these elements. Several types of fuzzy logics,
including T-norms-based, type-1, and interval type-2 fuzzy logics, have been employed to support these enhancements.
These approaches have enabled representations of uncertainty in ontological models, as detailed below.

T-norms-based fuzzy logics have been extensively used to extend DL frameworks. The paper [160] introduces the
fALCN-DL, which incorporates fuzzy concepts, fuzzy roles, and fuzzy interpretations. The work of [154] presents
a tractable fuzzy extension of EL++ using Gödel T-norms-based logic. Other contribution includes the extension of
SROIQ-DL with a combination of Gödel and Zadeh logics [173]. The development of fuzzy ALCH-DL is introduced
in [181], and the introduction of fuzzy ALC-DL is found in [189, 191].

Type-1 fuzzy logic is frequently used to extend several DLs by integrating fuzzy membership functions into various
ontology components. The works of [150, 162] explore mapping instances to concepts, while [179] focuses on relation-
ships between instances of concepts. In addition, studies of [133, 148, 177] extend the entire ontological structure by
incorporating fuzzy membership functions, enabling diverse applications across domains. At the language level, the
study of [190] extends OWL2 by integrating fuzzy annotations. This includes fuzzy concepts, fuzzy nominal, fuzzy
relations, fuzzy axioms, fuzzy modifiers, and fuzzy datatype annotations.

Interval type-2 fuzzy logic has also been adopted to extend several DLs. The development of IFALCN, an extension of
ALCN is introduced in [184]. In addition, fuzzy ALC is found in [156], and Gf-EL++, a generalized fuzzy extension of
EL++ is proposed in [186]. A comprehensive paper that defines type-0, type-1, interval and type-2 fuzzy DLs is [161].

Other approaches include methodologies for fuzzy ontology construction, as proposed in [165, 166, 176], and the
introduction of Fuzz-Onto, a meta-ontology for representing fuzzy concepts, fuzzy relationships, and fuzzy proper-
ties [149]. In addition, techniques that integrate fuzzy logic with Formal Concept Analysis (FCA) to create Fuzzy Formal
Concept Analysis (FFCA) for ontology construction are discussed in [174, 175]. On the other hand, approaches that
combine fuzzy-DL with fuzzy Horn logic rules to construct hybrid knowledge bases are presented in [151, 158, 188].
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Some studies address the priority or importance of properties in determining membership degrees highlighting
the role of property importance and priority in membership calculations [134, 135]. On the other hand, paper [180]
defines and analyzes fuzzy comparison cuts, a method for representing fuzzy knowledge about comparisons between
membership degrees by annotating concepts and roles with comparison expressions. The work of [159] introduces
intuitionistic fuzzy sets to represent both membership and non-membership functions in a spatial domain ontology.
The study of [157] extends the well-known fuzzy f-SHIN DL, creating the L-SHIN framework by using certainty lattices.
Paper [155] enhances ALC DL by incorporating multi-valued semantics based on certainty lattices.

Techniques for translating structures like XML, Unified Modelling Language (UML), Fuzzy Enhanced Entity Rela-
tionship (FEER), and Fuzzy Object-Oriented Database (FOOD) into fuzzy ontologies through predefined translation
rules have been proposed in the studies [145, 146, 147, 152, 153, 172, 178, 182, 183, 185, 187].

One group of authors has contributed papers on constructing interval type-2 fuzzy-DL for use in various domains,
namely IDS and DSS [167, 168]. They have also explored various applications of fuzzy-DL in different contexts, as seen
in [169, 170, 171]. Another group of researchers has focused on constructing fuzzy ontologies and inference systems for
domains such as gaming, malware detections, scheduling systems, and diet recommendations [139, 141]. In some of
their publications, they incorporate type-2 fuzzy logic and a fuzzy markup language, as demonstrated in [136, 137, 138,
140, 142, 143, 144, 163, 164].

4.4.7 Hybrid Papers. Hybrid approaches leverage combinations of two formalisms to address uncertainty in domain
ontologies. In [194], a fuzzy ALC(D) is extended by assigning belief values to each fuzzy assertion in the ABox, with this
extension also applying to non-fuzzy assertions. In a different approach, described in [193], a new ontology language
Belief-Augmented OWL (BOWL), which integrates OWL-DL with the Belief-Augmented Frames (BAF) [201]. In this
model, each fact about individuals (i.e., each ABox assertion), which may be fuzzy, is augmented with Belief-Augmented
Frames (BAF), a pair comprising belief and disbelief measures. A fuzzy rough extension of the SROIQ(D) is proposed
in [195], where fuzzy-DL relations are augmented with rough approximation sets, which include tight and loose lower
and upper approximations. Similarly, paper [192] develops upper and lower approximations of a concept based on two
similarity relations defined over paraconsistent sets, rather than fuzzy sets.

4.4.8 Other Papers. Other approaches include those that do not adopt any of the primary formalisms identified in our
search keywords, namely, probability theory, possibility theory, DST, rough set theory, fuzzy logic, and paraconsistent
logic. We identified three additional formalisms used to manage uncertainty within domain ontologies: truth gap
theory, Defeasible Logic Programs (DeLP), and soft set theory. In the following, we provide a brief introduction to each
formalism, followed by a discussion of the approaches that adopt these formalisms.

A truth gap refers to a convex interval or ordered sequences of values within a specific domain where the satisfaction
of a membership assertion to a vague concept cannot be definitely determined. In other words, when the value of an
attribute (e.g., price, size, etc.) falls within this interval, the membership of the concept is indeterminate: it is neither
definitely true nor definitively false [202]. The work of [196] introduces a framework for addressing vagueness in
domain ontologies by leveraging truth gaps to represent indeterminate concepts within OWL2. In this framework,
assigning instances to vague concepts based on specific attributes can result in three possible cases: 𝑡𝑡 for "definitely
true", 𝑓 𝑓 for "definitely false", and numerical ranges (truth gaps) when the membership of an individual 𝑎 to concept 𝐶
is indeterminate.

It is worth noting that DeLP represents a formalism for reasoning that incorporates defeasible reasoning, where
conclusions can be retracted or modified in light of new evidence or exceptions [203]. Unlike classical logic, where
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conclusions are final, DeLP supports non-monotonic reasoning, which means that adding new information can alter or
invalidate previous conclusions. In the work of [197], the 𝛿-ontology framework extends DL ontologies by interpreting
them as DeLP. It partitions the DL TBox 𝑇 into two distinct sets: a strict terminology (𝑇𝑆 ), containing non-defeasible
axioms, and a defeasible terminology (𝑇𝐷 ), containing defeasible axioms. The ontology is represented as a tuple
Σ = (𝑇𝑆 ,𝑇𝐷 , 𝐴), where 𝐴 is the ABox. The framework uses two functions, 𝑇Π and 𝑇Δ, to translate strict and defeasible
rules in DeLP, receptively. The partitioning allows for reasoning with potentially inconsistent ontologies by maintaining
strict rules that must hold universally and defeasible rules that can be retracted or modified based on new information.

Soft set theory is one of the parameterized theories introduced to handle uncertainty and address challenges faced
by other uncertainty management frameworks, such as the difficulty in defining membership functions in fuzzy set
theory [204]. Mathematically, given a finite sample space 𝑈 , and a set of parameters 𝐸, a soft set (over 𝑈 ) is defined
as a pair (𝐹, 𝐸), where 𝐹 maps each parameter 𝜖 ∈ 𝐸 to a subset of 𝑈 . In other words, a soft set can be viewed as a
parameterized family of subsets of 𝑈 . These sets 𝐹 (𝜖) may overlap, intersect, be disjoint or even be empty, depending
on the relationship between parameters and the sample space elements. In [198], the authors integrate soft set theory
with DLs, where DL concepts act as parameters for the soft set. The approach leverages a DL interpretation 𝐼 = (Δ𝐼 , ·𝐼 ),
which consists of a domain interpretation Δ𝐼 and an interpretation function ·𝐼 . The interpretation function maps each
atomic concept or role to a subset of the domain Δ𝐼 . A soft set (𝐼 , 𝑀) is defined as a pair, where 𝐼 = (Δ𝐼 , ·𝐼 ) is a model
of DL knowledge base, and𝑀 is a set of DL concepts. The mapping 𝐼 | 𝑀 : 𝑀 ⇒ 𝑃 (Δ𝐼 ) assigns each concept 𝐶 in𝑀
to a subset of Δ𝐼 , representing the set of 𝐶-elements (or approximate individuals) in the soft set. For instance, a soft
set might include approximations like (Expensive Hotels, {ℎ1, ℎ4}), where the first part of the pair is a concept (i.e.,
Expensive Hotels), and the second part is a set of approximate values, "instances", (i.e., {ℎ1, ℎ4}) corresponding to hotels
that are considered "approximately" expensive.

4.5 Reasoning

As presented previously in the graphs of subsection 3.4, some of the papers focus on modelling and reasoning simul-
taneously. In particular, 81 papers out of 117 reviewed involve reasoning tasks. These reasoning tasks encompass a
variety of tasks, including subsumption, satisfiability, instance checking, entailment, and checking knowledge base
inconsistency. Some papers address more than one reasoning task, and as a result, they are cited multiple times. Others
cover all the reasoning tasks outlined. This information is summarized and tabulated in Table 9.

4.6 Machine Learning or NLP Approaches

This subsection focuses specifically on papers that employ Machine Learning or NLP techniques as part of their
methodology to handle or support uncertainty modelling within the ontological framework. While Machine Learning
or NLP are commonly used in ontology learning and construction [205, 206], our aim here is not to address such uses,
but to highlight cases where these techniques directly contribute to managing uncertainty. Among the 117 reviewed
papers, we find that only a few papers utilized either Machine Learning or NLP-based approaches to support uncertainty
modelling within ontological framework papers. Paper [91] applies DST as the formalism and uses Hidden Markov
Model (HMM), a Machine Learning approach, to compare it with their proposed method. Similarly, paper [92] integrates
DST with Terminological Random Forest (TRF), an ensemble of TDTs, as a Machine Learning approach. This enhanced
DST was applied to infer class membership for instances. Paper [115] presents a probabilistic study, leveraging a Naïve
Bayes classifier, another Machine Learning approach, to calculate probability values. On the other hand, paper [176]
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Table 9. Reasoning Tasks Categorized by Formalism

Formalism Reasoning task
Subsumption Satisfiability Consistency Instance

checking
Entailment Query

answering
All reasoning tasks

Possibilistic [86, 90] [88] [83, 85] [90]
DST [91, 95] [92, 93, 96] [96]
Rough set [98] [97]
Paraconsistent [104, 105] [107, 108] [102]
Probabilistic [113] [118, 122] [116] [121, 128,

132]
[110, 115, 117, 118,
119, 120, 123, 124]

[111, 112, 114, 125, 127, 129, 131]

Fuzzy [186] [155] [180, 184] [150] [158, 188] [148, 158] [133, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 152, 153,
154, 156, 157, 159, 160, 161, 162,
163, 164, 173, 178, 181, 182, 183,
187, 189, 191]

Hybrid [195] [195] [193] [192]
Other [196, 197] [198]

adopts a fuzzy approach that relies on similarity measures, an NLP method, to identify fuzzy similar relations, where
the final similarity degree derived from the given formula was encoded as the degree of membership.

4.7 Languages and Tools

In this survey, we identified several languages used to support the modelling and reasoning of uncertainty in ontological
frameworks in the 117 reviewed papers. These include both ontology representation languages (such as OWL, OWL2
variants, and UML) and rule-based languages (Fuzzy Markup Language (FML) and SWRL). Representation languages are
employed to formally define concepts and relationships within ontologies, providing the logical foundation for uncertain
knowledge modelling. Rule-based languages, on the other hand, are used to express inference rules or fuzzy mechanisms
that operate over these ontologies. Table 10 summarizes the use of these languages under each uncertainty formalism.
Some papers utilized multiple languages, leading to their inclusion in the analysis more than once. Conversely, papers
that did not specify a language were excluded from Table 10. General-purpose implementation, programming languages,
or query languages such as Java, C++, Python, Structured Query Language (SQL), and XML are excluded from the table,
as they are not primarily designed for ontology modelling or rule-based reasoning.

Table 10. Ontology Representation and Rule Languages Used for Uncertainty Modelling, Categorized by Formalism

Formalism Language
OWL OWL2 OWL2-

QL
OWL2-
EL

OWL2-
RL

UML FML SWRL

Possibilistic [88] [90] [83] [86]
DST [91, 93] [94] [93]
Rough set [97] [98]
Paraconsistent [78, 108] [102, 101, 103, 106]
Probabilistic [111, 115, 116, 119, 129, 130, 132] [121] [118] [124]
Fuzzy [143, 145, 146, 147, 149, 150, 152,

153, 155, 156, 162, 167, 168, 169,
170, 171, 172, 174, 175, 176, 177,
179, 182, 183, 185, 187, 188]

[161, 173, 190] [151] [165,
176,
178]

[138,
140, 141,
143, 164]

[162,
175]

Hybrid [193, 194] [150, 195]
Other [196]
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Throughout the 117 papers analyzed, a wide range of tools were utilized to support uncertainty modelling in
ontological frameworks. These included the use of algorithms implemented through the OWL API, alongside various
existing DL-based reasoners, such as Pellet, Fact++, and Hermit reasoners. In addition, DeLorean, a fuzzy description
logic reasoner, and Fuzzy-DL, another fuzzy reasoner, were utilized in several papers. Pronto, a probabilistic ontology
reasoner, was also applied. Table 11 highlights the extensive range of existing tools leveraged to address uncertainty in
ontological systems.

Table 11. Tools Used for Uncertainty Modelling in Ontologies Categorized by Formalism

Formalism Tool
OWL API Existing DL rea-

soners
FuzzyDL DeLorean Pronto Protégé Jena

framework
Possibilistic [88] [88] [90]
DST [91] [91] [93]
Rough set [97, 98] [97, 98]
Paraconsistent [78, 108] [78, 101, 102, 103,

107, 108, 109]
[101]

Probabilistic [120] [121] [129]
Fuzzy [151, 179,

190]
[178] [167, 168,

188, 190]
[153, 169, 173,
182, 183, 190]

[143, 156, 162, 167, 168,
170, 171, 174, 190]

Hybrid [195] [195]
Other [198]

In addition to the tools summarized in Table 11, many studies introduced specialized tools or prototypes. Within
the possibilistic category, [90] presents a custom possibilistic reasoner, while [88] develops PossDL, a possibilistic DL
reasoner supporting inconsistency handling. In the paraconsistent category, the work of [108] developed PROSE, a
paraconsistent reasoner. For probabilistic approaches, the study of [115] proposes an optimized Naive Bayes classifier
using AdaBoost; [124] develops ELOG, a reasoner for EL++ ontologies. Paper [130] proposes PrOntoLearn system
for probabilistic ontology learning; and [132] develops MEDG. The BUNDLE reasoner in [120] supports DISPONTE
ontologies by integrating PELLET for OWL reasoning and ProbLog [207] for probabilistic Prolog reasoning. The latter
is a well-known logic programming language that is commonly used for implementing reasoning systems, often
utilized in rule-based reasoning frameworks and ontology-based systems [208]. BORN, a Bayesian DL reasoner, is used
by [113], building on earlier work [209]. In the fuzzy category, a variety of tools were introduced. These include a
custom fuzzy-OWL reasoner [149], the DL-MEDIA prototype [148], and automated ontology construction tools such as
FXML2FOnto [182] (from fuzzy XML), FEER2FOnto in [152, 172] (from FEER models), FRDB2Onto in [153] (from Fuzzy
Relational Database (FRDB) in MySQL), FRDB2DL in [145] (constructing f-ALCNI KBs), and FOOD2FOWL (from FOOD
models and database instances). The eHealthcare application [162] classifies individuals based on fuzzy rules. Finally, in
the hybrid category, the work of [193] implements a reasoner for BOWL using Constraint Logic Programming (CLP)
paradigm.

4.8 Evaluation of the Approaches

In the selected papers, two types of evaluations might be found: use case demonstrations (i.e., a simplified, hypothetical
example used to demonstrate the approach) and real-world experiments (i.e., a practical test conducted in a real
environment to evaluate performance and effectiveness). In Table 12, we provide a comprehensive list of all papers that
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include an evaluation of their proposed modelling approaches, categorized according to the formalisms employed. Any
paper not included in Table 12 does not present an evaluation.

Table 12. Evaluation Types of the Proposed Approaches Categorized by Formalism

Formalism Evaluation Type
Use Case Experiment

Possibilistic [87, 90] [88, 89]
DST — [91, 92, 95]
Rough set [98, 99] [97]
Paraconsistent — [78, 101, 105, 106, 108]
Probabilistic [132] [111, 115, 116, 119, 120, 124, 125, 126, 130, 177]
Fuzzy [134, 135, 152, 153, 168, 169, 189] [133, 136, 137, 138, 139, 141, 142, 143, 144, 145, 147, 148, 149, 150,

151, 156, 162, 163, 164, 166, 167, 171, 175, 176, 178, 179, 182, 185, 190]
Hybrid [195] [193, 194]
Other [197] —

5 RELATEDWORK

In this section, we provide an overview of previous reviews conducted between 2008 and 2024 that focus on uncertainty
modelling within domain ontologies. These papers are categorized based on the discussed formalism to uncertainty
modelling in ontologies, specifically into fuzzy and probabilistic reviews. Notably, only one review paper covers both
formalisms. It is noteworthy that fuzzy ontology reviews are more numerous compared to probabilistic ontology reviews.
In the following, we provide a summary of these reviews.

The first category focuses on fuzzy-DL reviews. The literature on fuzzy-DL presents several review and survey
papers that examine extensions and applications of fuzzy-DL for managing vagueness. The works of [30, 31, 41] provide
descriptive overviews summarizing key fuzzy modelling approaches, applications, and reasoning methods, along with
a comprehensive list of fuzzy-DL reasoners. Review [210] explores fuzzy extensions of OWL and their equivalent
fuzzy-DL, discussing semantics derived from OWL’s syntactic constructs and presenting a serialization method for
abstract syntax into Resource Description Framework (RDF)/XML. The paper also introduces an approach for reducing
fuzzy OWL ontology entailment to fuzzy-DL satisfiability. Similarly, [15] focuses on a prototypical fuzzy-DL based on
classical ALC, discussing various fuzzy semantics such as Zadeh semantics, Gödel, Łukasiewicz, and product T-norms,
and their impact on reasoning complexity and open challenges.

Another category focuses on fuzzy ontologies and is not restricted to DL-based literature. The paper [211] provides a
concise review highlighting two main approaches to fuzzy ontologies: one modifies existing ontology languages to
incorporate fuzzy representation, while the other develops dedicated fuzzy extensions. Another work [212] offers a brief
subjective review exploring fuzzy ontology generation frameworks, tools, languages, applications, aggregation operators,
and plug-ins, along with recommendations for new tools and languages to automate fuzzy ontology development and
reasoning. The review of [16] presents a comprehensive review focusing on two perspectives: the extensions of classical
ontologies with fuzzy logic, addressing both representation and reasoning, and the challenges associated with fuzzy
ontologies: mapping, integration, storage, and applications. Review [17] provides an extensive review that discusses
fuzzy ontology frommultiple aspects: definitions, applications, representations, development approaches, and evaluation
approaches, comparing various fuzzification methods and highlighting shortcomings in existing approaches. Paper [213]
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offers a brief review defining the concepts of vagueness (fuzziness), and uncertainty, exploring the mathematical
foundations of fuzzy logic and fuzzy set, and discussing the structure and representation tools in fuzzy ontologies. On
the other hand, paper [214] conducts a Systematic Mapping Study (SMS) exploring the contributions of fuzzy logic and
ontology in the information systems, providing a general overview of relevant topics, future directions, and countries
contributing to this field. Lastly, the work of [215] provides a detailed subjective review discussing type-2 fuzzy logic
and its shortcomings in the context of ontology. This paper also offers a comprehensive list of type-2 fuzzy logic
applications within the semantic web. Paper [216] explores the current advancements in representing and reasoning
with fuzzy knowledge within RDF, OWL2 family, and rule languages. It further demonstrates how these frameworks
can be extended to encompass annotation domains, enabling support for temporal and provenance information.

A different category covers Bayesian ontologies, focusing on the integration of probabilistic and logical reasoning.
Paper [19] conducts a systematic literature review addressing three key research questions: the motivations, factors,
and techniques for combining logical and probabilistic reasoning in knowledge bases, particularly using BN. The paper
examines the foundational principles of integrating probabilistic with logical reasoning in ontologies and highlights
prominent techniques and approaches. The work of [18] provides a brief comparative review discussing several
approaches that merge ontologies with Bayesian Networks, analyzing their limitations, strengths, and primary purposes.
Lastly, paper [14] conducts a comparative study of four Bayesian-based ontology approaches, concluding with a matrix
that summarizes the results. Their findings suggest that BayesOWL is the most effective approach based on the provided
metrics: complexity, accuracy, ease of implementation, availability of reasoning mechanisms, and supporting tools.

A final category addresses general reviews on managing uncertainty in expressive DL and ontology languages that
combine more than one formalism. We found only one review [20], which provides a descriptive overview of the main
approaches for managing uncertainty and vagueness in DL. The review highlights available methods for probabilistic,
possibilistic, and fuzzy ontologies. Although this review was published in 2008 and falls outside the scope period of our
review, it is one of the unique reviews in this domain, and we include it in our analysis.

6 DISCUSSION

This systematic review maps the landscape of uncertainty modelling in domain ontologies by analyzing 117 research
papers through multidimensional aspects, focusing on a set of guiding questions. This review presents existing works
and reveals emerging trends and critical gaps.

A central finding drawn from GQ3-A is that reasoning is the main motivation for integrating uncertainty into
ontologies. As shown in Table 4, 74 of the 117 analyzed papers emphasize reasoning over knowledge representation,
highlighting a strong focus on enabling uncertain inference. GQ3-B shows that uncertainty-aware ontologies span
diverse application domains such as the semantic web, medical informatics, and robotics, as shown in Table 5. Fuzzy
logic and probabilistic-based approaches dominate the field due to their wide applicability across diverse domains.
Additional application-driven studies are listed in the Supplementary Materials in the Application category of each table.

From (GQ4-A, Table 6) we observe that context is themost frequently cited source of uncertainty in fuzzy-based studies,
and (GQ4-B, Table 7) point out that vagueness and imprecision are predominantly modelled with fuzzy logic, which
is consistent with the role of fuzzy logic in modelling domain-dependent and context-based concepts. Contradictory
information is a dominant source of uncertainty in works employing possibilistic logic, DST, and paraconsistent logic,
reflecting their intended use in reasoning with inconsistent information. Notably, many papers address multiple types
of uncertainty, reinforcing the observation that uncertainty in ontologies is inherently multi-faceted. Regarding the
locations of uncertainty (GQ5, Table 8), most studies address several components of ontologies simultaneously, such as
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concept definitions, relations, and instance data, suggesting that uncertainty is typically distributed and interconnected
within knowledge structures. These findings are reflected in the structure of the proposed taxonomy (Figure 1).

The analysis of reasoning tasks (GQ7, Table 9) reveals that many formalisms, including possibilistic, rough set, and
hybrid-based approaches, support only a narrow range of reasoning capabilities, typically limited to one or two tasks. In
contrast, fuzzy-based studies exhibit a dominant trend toward providing comprehensive reasoning systems that cover
all major reasoning tasks. It is worth noting that recent developments in typicality reasoning within DLs have opened
promising directions for advanced ontology-based reasoning. Recent work by [217] and earlier studies (e.g., [218, 219])
introduce probabilistic typicality axioms (e.g., 𝑝 :: 𝑇 (𝐶) ⊑ 𝐷) grounded in distribution semantics, allowing uncertainty
to be captured within prototypical knowledge. The PEAR tool [220] supports reasoning in these enriched settings.
In parallel, the works of [221, 222] extend typicality-based DLs with fuzzy logic. While these approaches represent
important advancements in integrating prototypical reasoning with uncertainty handling in DLs, it is important to
emphasize that typicality-based reasoning addresses a different class of problems than those targeted in our work.
Specifically, typicality focuses on modelling default knowledge, capturing what is generally true for most instances of a
concept, while allowing for exceptions. This is conceptually distinct from the types of classical uncertainty addressed
in our survey, which include vagueness, incompleteness, and inconsistent information. Although similar formalisms,
such as fuzzy logic and probability theory, may be used in both domains, they serve different semantic purposes: in
typicality, they help characterize degrees of typicality, whereas in uncertainty modelling, they are employed to quantify
missing, imprecise, or conflicting information in the domain knowledge.

Notably, Machine Learning and NLP techniques remain underutilized in the context of uncertainty modelling within
ontology-based frameworks, featuring in only a small fraction of the surveyed literature (GQ8-9). This limited presence
reflects a broader research gap: while formal uncertainty models are well-established, the potential benefit of combining
them with Machine Learning and NLP methods is not yet fully realized.

In terms of language usage (GQ10-A, Table 10), uncertainty modelling is largely built upon semantic web standards,
especially OWL and its profiles, reinforcing the foundational role of description logic-based standards in ontology-based
systems. (GQ10-B, Table 11) also highlights the development of dedicated tools, such as FuzzyDL and DeLorean for fuzzy
logic, Pronto for probabilistic ontologies, and PossDL for possibilistic reasoning. In contrast, paraconsistent approaches
often reduce reasoning to classical DL fragments, enabling reuse of standard DL-based reasoners like Pellet, HermiT,
or FaCT++. This difference highlights a divergence in tool development strategies: while some formalisms require
bespoke reasoning engines due to their non-classical semantics, others can be reduced to the classical DL infrastructure,
leveraging established reasoning support without the need for new tools.

Finally, evaluation practices assessed through (GQ11, Table 12) reveal that only 56% of modelling studies include any
form of empirical validation. This points to a significant gap in assessing real-world performance and emphasizes the
need for more rigorous evaluations to ensure the practical viability of uncertainty-aware ontology systems.

7 CONCLUSION

This review provides a systematic analysis of uncertainty modelling in domain ontologies, categorizing approaches
primarily based on their modelling formalisms. A comprehensive taxonomy was developed to identify specific locations
and types of uncertainty within ontological structures. In addition to this, we presented reasoning methods that
complement these modelling approaches. The review also examined the tools and languages used for uncertainty
modelling, highlighting the integration of Machine Learning and Natural Language Processing techniques to support
these efforts. The findings establish a solid foundation for advancing research, highlighting opportunities to refine
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current methods and address gaps identified in the ontological systems. Future research could include a review that
focuses on the reasoning aspects, including complexity, tractability, and decidability, to address computational challenges
and improve the effectiveness of reasoning in uncertain ontology frameworks.
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8 Supplementary Materials

In the Appendix, we present tables (Table 13—Table 20) that systematically classify the reviewed uncertainty modelling
studies. We classify the papers by their focus: modelling, modelling combined with reasoning, specific reasoning
algorithms or reasoners, and application-based studies. The first two classes (i.e., modelling and modelling combined
with reasoning) are further divided into DL, and non-DL based papers. In some cases, additional subcategories are
introduced based on specific branches of the formalism. For instance, within the probabilistic classification, we distinguish
between BN-based and MLN-based studies.

These tables include a dedicated section that details the excluded references, organized into distinct subdivisions:
studies not found (i.e., no accessible version available), older versions of expanded papers, works lacking sufficient
technical details on modelling, and marginal cases. Marginal studies are further divided into subcategories, including
those where classical ontologies serve as input to uncertainty reasoning, merging approaches, ontology repair, and
other peripheral contributions. This structured classification provides a systematic and detailed overview of both the
included and excluded works, emphasizing the diversity of methodologies and scopes in uncertainty modelling across
the reviewed literature, categorized by the adopted formalism.

Table 13. Possibilistic Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling DL-based — [84, 87]
Non-DL-based — [89]

Modelling and reasoning DL-based — [83, 85, 86, 88, 90]
Non-DL-based — —

Reasoning algorithms and reasoners — — [223, 224]
Application — — —

Excluded

Not found — —
Old version — [225, 226, 227, 228, 229, 230]
Short on technical details — [231]

Marginal
Classical ontology is input
to uncertainty reasoning

[232, 233]

Merging approach [234]
Ontology repair [235]

Table 14. DST Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling DL-based — [94]
Non-DL-based — —

Modelling and reasoning DL-based — [91, 92, 93, 95, 96]
Non-DL-based — —

Reasoning algorithms and reasoners — — [236]
Application — — —

Excluded

Not found — —
Old version — [237, 238, 239, 240, 241, 242, 243, 244]
Short on technical details — [245, 246]

Marginal

No uncertainty modelling involved [247, 248, 249, 250]
Merging approach [251]
No ontology involved [252]
Classical ontology is input to uncer-
tainty reasoning

[253, 254, 255]
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Table 15. Rough Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling DL-based — [100]
Non-DL-based — [99]

Modelling and reasoning DL-based — [97, 98]
Non-DL-based — —

Reasoning algorithms and reasoners — — [256]
Application — — —

Excluded

Not found — [257]
Old version — [258, 259]
Short on technical details — [260, 261]
Marginal Granular approach [262]

Table 16. Paraconsistent Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling DL-based Multi-valued paraconsistent logic [78, 101, 103, 109]
Distance-based paraconsistent logic [106]

Non-DL-based — —

Modelling and reasoning DL-based Multi-valued paraconsistent logic [102, 104, 107, 108]
Argumentation-based paraconsistent [105]

Non-DL-based — —
Reasoning algorithms and reasoners — — [263, 264]
Application — — —

Excluded

Not found — —
Old version — [265, 266, 267, 268, 269, 270]
Short on technical details — —
Marginal Ontology integration process [271, 272]

Table 17. Hybrid Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling
DL-based DST + fuzzy [194]
Non-DL-based — —

Modelling and reasoning
DL-based

Paraconsistent + rough set [192]
Rough + fuzzy [195]
BAF + fuzzy [193]

Non-DL-based — —
Reasoning algorithms and reasoners — — [273]
Application — — [274, 275, 276]

Excluded

Not found — [277, 278, 279, 280]
Old version — —
Short on technical details — [281, 282, 283, 284]

Marginal
Classical ontology is input to
uncertainty reasoning

[285, 286, 287]

Not working with ontology [288, 289, 290]
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Table 18. Probabilistic Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling
DL-based BN [130]
Non-DL-based CRF [126]

Modelling and reasoning

DL-based

Probabilistic logic [115, 116, 118, 121]
Herbrand set [122, 124]
Discrete and continuous distribution [111, 117]
Type-2 PFOL (i.e., epistemic) [119, 120, 131]
Type-1 and type-2 PFOL [123]
BN [112, 113, 114, 127, 128]
MEBN [129]
MLN [110]
Multi-Entity Decision Graph [132]

Non-DL-based CRF [125]
Reasoning algorithms and
reasoners

— — [291, 292, 293, 294, 295, 296, 297, 298, 299,
300, 301, 302, 303, 304, 305, 306, 307, 308, 309,
310, 311, 312, 209, 313, 314, 315, 316, 317]

Application — — [318, 319, 320, 321, 322, 323, 324, 325, 326,
327, 328, 329, 330, 331, 332, 333, 334, 335,
336, 337, 338, 339, 340, 341, 342, 343, 344,
345, 346, 347, 348, 349, 350, 351, 352, 353,
354, 355, 356, 357, 358, 359, 360, 361, 362]

Excluded

Not found — [363, 364, 365, 366, 367, 368, 369, 370]
Old version — [371, 372, 373, 374, 375, 376, 377, 378, 379,

380, 381, 382, 383, 384, 385, 386]
Short on technical details — [387, 388, 389, 390, 391, 392, 393, 394, 395,

396, 397, 398, 399]

Marginal

Classical ontology is input to
uncertainty reasoning

[400, 401, 402, 403, 404, 405, 406, 407, 408,
409, 410, 411, 412, 413, 414, 415, 416, 417,
418, 419, 420, 421, 422, 423, 424, 425, 426,
427, 428, 429, 430, 431, 432, 433]

No uncertainty modelling involved [434, 435, 436, 437, 438, 439, 440, 441, 442]
Ontology repair [443, 444]
Probabilistic RDF [445, 446, 447, 448]
Software engineering methodological
process

[449, 450, 451, 452, 453, 454, 455, 456, 457]

Translate the probabilistic DL into
probabilistic first-order logic

[291, 458]

Probabilistic knowledge base (not on-
tology)

[459, 460, 461]

Translate ontology into BN or its ex-
tensions

[462, 463, 464, 465, 466, 467, 468, 469, 470,
471, 472, 473, 474, 475, 476, 477, 478]

About preferences [479, 480, 481, 482, 483]
Ontology learning process [484, 485, 486]
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Table 19. Fuzzy Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling DL-based
Transfer(UML, EER,..etc) to fuzzy ontol-
ogy

[147, 172, 185]

Linguist modelling [159]
Fuzzy with horn logic [158, 188]
Interval-type2 linguistic fuzzy logic [168]
Interval-type2 fuzzy logic [167]

Non-DL-based
Fuzzy set theory(Zadeh) [165]
Fuzzy set Theory+weighted properties [134, 135]
Linguistic modelling [166]

Modelling and reasoning

DL-based

Transfer(UML, EER,..etc) to fuzzy ontol-
ogy

[145, 146, 152, 153, 178, 182, 183, 187]

Linguist modelling [170, 171, 179]
T-norm-based logic [190]
T-norm-based with horn logic [151]
Fuzzy set theory(Zadeh) [149, 169, 174, 175, 176, 177]
Intuitionistic fuzzy sets [159]
Fuzzy with horn logic [158, 188]
Finite chain [181]

Non-DL-based
Fuzzy set theory(Zadeh) [133]
Type-2 fuzzy logic [136, 137, 138, 139, 140, 141, 142, 144, 164,

163]
Reasoning algorithms and
reasoners

— — [487, 488, 489, 490, 491, 492, 493, 494, 495,
496, 497, 498, 499, 500, 501, 502, 503, 504, 505,
506, 507, 508, 509, 510, 511, 512, 513, 514, 515]

Application — — [516, 517, 518, 519, 520, 521, 522, 523, 524,
525, 526, 527, 528, 529, 530, 531, 532, 533, 534,
535, 536, 537, 538, 539, 540, 541, 542, 543, 544,
545, 546, 547, 548, 549, 550, 551, 552, 553, 554,
555, 556, 557, 558, 559, 560, 561, 562, 563, 564,
565, 566, 567, 568, 569, 570, 571]

Excluded

Not found — [572, 573, 574, 575, 576, 577, 578]
Old version — [579, 580, 581, 582, 583, 584, 585, 586, 587,

588, 589, 590, 591, 592, 593, 594, 595, 596, 597,
598, 599, 600, 601]

Short on technical details — [602, 603, 604, 605, 606, 607, 608, 609, 610,
611, 612, 613, 614, 615, 616]

Marginal

Inductive logic programming [617, 618]
Fuzzy UML/relational database [619, 620, 621, 622]
Adding additional features to fuzzy-
ontology

[623, 624, 625, 626, 627, 628, 629, 630]

Natural language processing [631]
Software engineering methodological
process

[632, 633, 634, 635, 636, 637]

Ontology integration [638]
No fuzzy ontology modelling involved [639, 640, 641, 642, 643, 644]
Fuzzy markup language [645, 646]
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Table 20. Other Ontology Papers Classified based on Scope

Scope Sub-scope Sub sub-scope References

Only modelling
DL-based — —
Non-DL-based — —

Modelling and reasoning
DL-based

Soft set theory [198]
Vagueness theory [196]
Augmentation theory [197]

Non-DL-based — —
Reasoning algorithms and reasoners — — [647, 648]
Application — — —

Excluded

Not found — —
Old version — [649]
Short on technical details — —

Marginal
Ontology integration [650, 651]
Ontology classification [652]

In the following, we present a visual classification of the reviewed studies based on the guiding questions related
to uncertainty in ontologies. The first tree, presented in Figure 3, illustrates the primary sources of uncertainty
identified across the literature, such as sensor errors, contradictory sources, and contextual factors, which addressing
question (GQ4-A). The types of uncertainty encountered (GQ4-B) include incomplete information, vagueness, and
inconsistency. Finally, highlights the various locations where uncertainty manifests within ontological structures
(GQ5), such as relationships between concepts, attributes, and semantic ambiguities. This hierarchical representation
facilitates understanding of how different aspects of uncertainty are addressed in existing research. The second tree,
presented in Figure 4, organizes the analyzed studies according to key guiding questions related to reasoning tasks,
methodological involvement, and supporting technologies. It begins with GQ7, which classifies studies based on the
specific reasoning tasks they address, including subsumption, satisfiability, consistency checking, instance checking,
entailment, query answering, and those covering all reasoning tasks comprehensively. Following this, GQ8 identifies
studies that incorporate Machine Learning techniques, while GQ9 highlights the involvement of NLP methods. The
tree then branches into GQ10-A, categorizing the supported ontology languages, such as OWL, OWL2 profiles, UML,
FML, and SWRL, reflecting the diverse modelling formalisms employed. Finally, GQ10-B lists the existing tools and
reasoners that underpin these approaches, including OWL API, DL reasoners, FuzzyDL, DeLorean, Pronto, Protégé,
and the Jena framework. Additionally, we address GQ11 by classifying the types of evaluation provided in the studies,
such as use cases and experimental validations. This hierarchical classification illustrates the multi-faceted nature
of uncertainty modelling research, spanning reasoning capabilities, methodological integrations, tool support, and
evaluation practices.
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GQ4-A: Sources of uncertainty

Sensors [85, 89, 91, 93, 117, 125]

Contradictory Sources [84, 85, 86, 93, 94, 78, 101, 103, 110, 120, 197]

Measurement Errors [90, 93, 100, 125]

Model limitations [87, 97, 104, 105, 106, 107, 108, 125]

Context

[83, 88, 92, 95, 96, 98, 99, 102, 109, 111, 112,
113, 114, 115, 116, 118, 121, 127, 128, 129,
130, 131, 134, 133, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 149,
150, 152, 153, 154, 155, 158, 159, 160, 161,
164, 165, 166, 167, 168, 170, 171, 172, 173,
175, 176, 177, 178, 180, 181, 182, 183, 184,
185, 188, 189, 190, 191, 193, 195, 196, 198]

Undetermined
[119, 122, 123, 124, 126, 132, 148, 151, 156,
157, 162, 163, 169, 174, 179, 186, 187, 192,
194]

GQ4-B: Types of uncertainty

Incomplete Information [85, 92]

Vagueness and Imprecision

[133, 134, 135, 136, 137, 139, 140, 141, 142,
143, 144, 148, 149, 151, 155, 156, 157, 158,
159, 160, 161, 163, 165, 166, 167, 168, 169,
170, 171, 173, 174, 175, 176, 177, 178, 180,
181, 182, 183, 184, 185, 186, 188, 189, 190,
191, 194, 196]

Inconsistency [83, 84, 86, 88, 95, 99, 78, 103, 104, 105, 106,
107, 108, 109]

Several types
[87, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101,
102, 110, 121, 150, 154, 192, 193, 195, 197,
198]

Undetermined

[111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 138, 145, 146, 147, 152, 162,
153, 164, 172, 179, 187]

GQ5: Locations of uncertainty

Relationship between concepts [113, 115, 121, 126, 188]

Attribute of concept [89, 98, 99, 111, 124, 129, 136, 164, 165]

Semantic ambiguity of concept [91, 97, 101, 109, 130]

Mapping instance to concept [92, 94, 134, 135, 138, 139, 140, 141, 142, 143,
144, 150, 162, 163, 196, 197, 198]

Mapping instances to relationships [168, 169, 170, 171, 179]

Several locations

[83, 84, 85, 86, 87, 88, 90, 93, 95, 96, 100, 78,
102, 103, 104, 105, 106, 107, 108, 110, 112,
114, 116, 117, 118, 119, 120, 122, 123, 125,
127, 128, 131, 132, 133, 137, 145, 146, 147,
148, 149, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 166, 167, 172, 173, 174,
175, 176, 177, 178, 180, 181, 182, 183, 184,
185, 186, 187, 189, 190, 191, 192, 193, 194,
195]

Fig. 3. Visualization and Classification of Reviewed Studies Based on GuidingQuestions 4-A, B and 5.
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GQ7: Reasoning Task

Subsumption [86, 90, 98, 113, 186, 195]

Satisfiability [88, 155, 195]

Consistency [83, 85, 91, 95, 104, 105, 118, 122, 180, 184]

Instance checking [90, 92, 93, 96, 116, 150, 193, 196, 197]

Entailment [107, 108, 121, 128, 132, 158, 188]

Query Answering [96, 97, 102, 110, 115, 117, 118, 119, 120, 123,
124, 148, 158, 192]

All reasoning tasks

[111, 112, 114, 125, 127, 129, 131, 133, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 152, 153, 154, 156, 157, 159, 160, 161,
162, 163, 164, 173, 178, 181, 182, 183, 187,
189, 191, 198]

GQ8: Machine Learning involvement [91, 92]

GQ9: NLP involvement [176]

GQ10-A: Supported Languages

OWL

[88, 91, 93, 97, 78, 108, 111, 115, 116, 119,
129, 130, 132, 143, 145, 146, 147, 149, 150,
152, 153, 155, 156, 162, 167, 168, 169, 170,
171, 172, 174, 175, 176, 177, 179, 182, 183,
185, 187, 188, 193, 194]

OWL2 and its profiles
[90, 83, 86, 94, 98, 102, 101, 103, 106, 121,
118, 124, 161, 173, 190, 151, 150, 195, 196]

UML [93, 151]

FML [93, 138, 140, 141, 143, 164]

SWRL [162, 175]

GQ10-B: Supported Existing Tools

OWL API [88, 91, 78, 108, 151, 179, 190]

Existing DL reasoners [88, 91, 97, 98, 78, 101, 102, 103, 107, 108,
109, 120, 178, 198]

FuzzyDL [167, 168, 188, 190, 195]

DeLorean [153, 169, 173, 182, 183, 190, 195]

Pronto [121]

Protégé
[90, 97, 98, 101, 143, 156, 162, 167, 168, 170,
171, 174, 190]

Jena framework [93, 129]

GQ11: Evaluation Type

Use Case
[87, 90, 98, 99, 132, 134, 135, 152, 153, 168,
169, 189, 195, 197]

Experiment

[88, 89, 91, 92, 95, 97, 78, 101, 105, 106, 108,
111, 115, 116, 119, 120, 124, 125, 126, 130,
177, 133, 136, 137, 138, 139, 141, 142, 143,
144, 145, 147, 148, 149, 150, 151, 156, 162,
163, 164, 166, 167, 171, 175, 176, 178, 179,
182, 185, 190, 193, 194]

Fig. 4. Visualization and Classification of Reviewed Studies Based on GuidingQuestions 7 to 11.
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Chapter 3

Possibilistic extension of Domain
Information System (DIS)
Framework

This chapter presents a novel extension of the DIS framework to support uncertainty
modelling and reasoning under incomplete information grounded in possibility theory,
which effectively captures partial knowledge through necessity-weighted formulas. It
addresses the fourth objective of this thesis: to develop a structured approach for rep-
resenting uncertainty of imperfections in DIS framework. The extended DIS framework
enables the representation of uncertain concepts, relationships, and assertions, and sup-
ports necessity-based reasoning tasks such as subsumption and concept satisfiability.
The chapter introduces the model’s formal semantics, system architecture, and reason-
ing procedure.
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Abstract: Uncertainty poses a significant challenge in ontology-based systems, manifesting in forms such as incomplete
information, imprecision, vagueness, ambiguity, or inconsistency. This paper addresses this challenge by
introducing a quantitative possibilistic approach to manage and model incomplete information systematically.
Ontologies are modelled using the Domain Information System (DIS) framework, which is designed to handle
Cartesian data structured as sets of tuples or lists, enabling the construction of ontologies grounded in the
dataset under consideration. Possibility theory is employed to extend the DIS framework, enhancing its ability
to represent and reason with incomplete information. The proposed extension captures uncertainty associated
with instances, attributes, relationships, and concepts. Furthermore, we propose a reasoning mechanism within
DIS that leverages necessity-based possibilistic logic to draw inferences under uncertainty. The proposed
approach is characterized by its simplicity. It improves the expressiveness of DIS-based systems, introducing
a foundation for flexible and robust decision-making in the presence of incomplete information.

1 INTRODUCTION

One of the primary challenges in knowledge-based
systems, particularly those that rely on ontologies for
domain reasoning, is managing uncertainty stemming
from incomplete information. In dataset-driven on-
tologies, data is contextualized to define concepts, re-
lationships, and instances. However, real-world ap-
plications frequently suffer from missing or partial
information, leading to epistemic uncertainty (Sentz
and Ferson, 2002). This type of uncertainty affects in-
stance classification, attribute reliability, relationship
strength, and concept validity. When unaddressed,
such uncertainty can render ontologies either overly
rigid, failing to accommodate partial knowledge, or
misleading, by permitting unjustified inferences. Ef-
fectively managing uncertainty is therefore essential
to ensure the expressiveness, reliability, and adapt-
ability of ontology-based systems, especially in the
context of decision support or automated reasoning
systems. To illustrate, consider a customer service
ontology; the concept PositiveFeedback may de-
pend on attributes like Satisfaction, Quality, and
ResponseTime. If one of these values is missing or

a https://orcid.org/0000-0001-9397-9999
b https://orcid.org/0000-0003-2499-1040

partially available, classical inference systems may
fail to classify an instance as PositiveFeedback or
do so incorrectly. This highlights the need for a
framework that can represent and reason under par-
tial knowledge.

This paper introduces a quantitative possibilistic
extension to the Domain Information System (DIS)
framework (Marinache et al., 2021) to represent and
reason under partial knowledge. DIS is a bottom-
up, data-centric formalism that constructs ontologies
from datasets, structurally separating the domain on-
tology from the data view and linking them via a map-
ping operator. Unlike Description Logic (DL)-based
ontologies, which separate the A-Box and T-Box log-
ically, DIS achieves this separation structurally and
grounds the ontology in data, reducing data-ontology
mismatches. DIS is useful for aligning ontologies
with real-world datasets, which makes it particularly
effective for domains where ontologies must be gen-
erated or adapted from existing data sources, im-
proving modularity, transparency, and maintainability
in ontology design. In contrast to traditional ontol-
ogy languages like Web Ontology Language (OWL),
which struggle to directly represent mereological re-
lationships in Cartesian datasets (i.e., the structured
data itself) without complex extensions, DIS lever-
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ages cylindric algebra and Boolean algebra to model
both data structures and conceptual part-whole re-
lations. This enables more natural and robust han-
dling of mereological reasoning within structured
data. However, the original DIS model does not cap-
ture domain uncertainty and information uncertainty.
The proposed approach overcomes this by associating
each ontological component with quantified certainty.

Unlike vagueness or imprecision, the focus here
is on uncertainty due to incompleteness, typically
addressed via probability theory (e.g., (Laha and
Rohatgi, 2020)), possibility theory (e.g., (Dubois
and Prade, 2015)), or Dempster–Shafer theory
(e.g., (Sentz and Ferson, 2002)), as discussed in (Alo-
mair et al., 2025). In this study, possibility theory
is adopted and rationale behind this selection is ex-
plained in the section 5.

The proposed approach models uncertainty across
all key ontological elements: attributes, concepts, re-
lationships, and instances. The key contributions of
this paper are as follows:
1. Modelling Uncertainty of Attributes: Introduces a
necessity-based mapping from the dataset’s attributes
to ontology concepts.
2. Modelling Uncertainty of Instances: Proposes an
instance distribution relation (SV D ), allowing a datum
(instance) to be assigned to multiple sorts (attributes)
with varying degrees of certainty.
3. Modelling Uncertainty of Relationships: Intro-
duces necessity-based relationship, which allows re-
lationships to hold with varying levels of certainty.
4. Modelling Uncertainty of Concepts: Refines the
construction of datascape concepts (which depend on
available data values) by incorporating uncertainty
modelling into their data-specializing predicate.
5. Possibilistic Reasoning for Uncertainty-Aware In-
ference: Develops a reasoning mechanism within
the DIS framework, leveraging necessity-based pos-
sibilistic logic to support inference under incomplete
information.

The paper is structured as follows: Section 2 in-
troduces foundational theories. Section 3 presents the
integration of possibilistic components into the DIS
framework, followed by uncertainty-aware reasoning
in Section 4. Section 5 reviews related work and of-
fers a discussion. Section 6 concludes the paper and
outlines future directions.

2 PRELIMINARIES

This section reviews uncertainty in ontology, intro-
duces possibility theory and possibilistic logic, and

presents the theoretical background of the DIS frame-
work.

2.1 Uncertainty and Ontology

Information imperfection includes incompleteness,
imprecision, vagueness, ambiguity, and inconsis-
tency (Ma et al., 2013; Bosc and Prade, 1997). The
paper adopts a broad interpretation, considering un-
certainty as arising from any of these deficiencies,
as adopted in (Anand and Kumar, 2022; Ceravolo
et al., 2008). Incompleteness arises when informa-
tion is partial. This creates uncertainty about which
interpretation of a statement to rely on, often ad-
dressed by calculating an estimation degree for possi-
ble worlds (Straccia, 2013). Imprecision refers to the
lack of exactness, occurring when data is expressed
in approximate or qualitative terms instead of pre-
cise values (Ma et al., 2013). Vagueness emerges
when terms or concepts lack clear boundaries (Strac-
cia and Bobillo, 2017). Ambiguity arises from mul-
tiple interpretations (Ma et al., 2013), and incon-
sistency involves contradictions, such as conflicting
statements (Bosc and Prade, 1997).

An extensive review of uncertainty modelling in
domain ontologies is presented in (Alomair et al.,
2025). The survey examines over 550 studies pub-
lished between 2010 and 2024 on this topic. A guid-
ing taxonomy is proposed, classifying ontological un-
certainty into concept uncertainty and information
uncertainty. This classification supports the system-
atic identification of uncertainty types across onto-
logical frameworks and the selection of appropriate
formalisms to manage them. Concept uncertainty in-
volves uncertainty of relationships, uncertainty of at-
tributes defining a concept, and uncertainty due to se-
mantic ambiguity, where context influences the inter-
pretation of a concept. Information uncertainty con-
cerns associating instances with concepts or relations.
The identified uncertainties are attributed to incom-
plete, imprecise, vague, or inconsistent information.
Then, various formalisms are presented to manage
these uncertainties. This taxonomy offers a structured
approach to understanding and addressing uncertainty
in ontology-driven systems. A visual representation
of the taxonomy is shown in Figure 1.

2.2 Possibility Theory and Possibilistic
Logic

Possibility theory models incomplete and inconsis-
tent knowledge using qualitative (ordinal) or quan-
titative (numerical) approaches (Dubois and Prade,
2015). The qualitative approach ranks events with-
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Figure 1: Ontological Uncertainty Taxonomy.

out numerical degree (e.g., ”highly possible”, ”pos-
sible”, or ”less possible”), while the quantitative ap-
proach assigns a numerical degree to represent de-
grees of possibility. Possibility distribution represents
an agent’s knowledge about the world by assigning
plausibility degrees to states in a set S, which may be
finite or infinite. Formally, it is a function π : S → L,
where L is a totally ordered scale (often [0,1]). The
value π(x) expresses how plausible the state x ∈ S. A
value of π(x) = 0 means state x is impossible, while
π(x) = 1 means it is fully plausible. If S is exhaustive,
at least one state must have plausibility 1. The possi-
bilistic framework captures both complete and incom-
plete knowledge. Complete knowledge is represented
by assigning possibility 1 to a single state and 0 to
all others. Complete ignorance is modeled by assign-
ing possibility 1 to all states, indicating that any state
could be true. The possibility distribution forms the
basis for defining possibility and necessity measures
over any subset X ⊆ S:

Π(X) = sup
x∈X

π(x) and N(X) = inf
x/∈X

(1−π(x)), (1)

where Π(X) indicates feasibility, and N(X) expresses
certainty (Alola et al., 2013). The measures are dual
via: N(X) = 1 − Π(X ′), where X ′ is the comple-
ment of X . Possibility measures follow the maxitiv-
ity axiom: Π(A∪ B) = max(Π(A),Π(B)), while ne-
cessity measure satisfies the dual minitivity axiom:
N(A∩ B) = min(N(A),N(B)). The necessity degree
for the union of two sets satisfies the following prop-
erty, expressed as (Dubois and Prade, 2014):

N(A∪B)≥ max(N(A),N(B)) (2)

Uncertainty has often been treated as if it were
only randomness, managed through probability the-
ory, which is statistical in nature and grounded in
measure theory (Zadeh, 1977). Yet uncertainty also
has other facets (e.g., vagueness, incompleteness), re-
quiring a distinct treatment provided by possibility
theory, which is non-statistical and rooted in fuzzy
set theory. Probability is associated with likelihood,

belief, frequency, or proportion, while possibility ex-
presses feasibility or ease of attainment; what is pos-
sible may not be probable, and what is improbable
need not be impossible. In probability theory, mea-
sures are additive, requiring the sum of probabilities
for mutually exclusive events in a universe of dis-
course to equal one. In contrast, possibility mea-
sures follow max–min rules, as indicated earlier. Ran-
dom variables correspond to probability distributions,
whereas fuzzy variables correspond to possibility dis-
tributions, defined by membership functions rather
than frequencies. The imprecision intrinsic to hu-
man cognition and natural language is better modeled
by possibility theory rather than probability theory.
Moreover, probability and possibility are connected
by a consistency principle: decreasing possibility re-
duces probability, but not vice versa (Zadeh, 1977).
Furthermore, a distinction between possibility and
probability theories has been made through an exam-
ple of ”Hans is eating eggs for breakfast”. In his ex-
ample, the possibility distribution of (πX (3) = 1) sug-
gests it is entirely possible for Hans to eat three eggs,
but the probability (PX (3) = 0.1) indicates this out-
come is statistically rare. This demonstrates that high
possibility does not imply high probability, though
an impossible event (πX (u) = 0) has zero probability
(PX (u) = 0).

Possibility theory underpins possibilistic logic,
which we limit here to necessity-based possibilistic
logic (Dubois et al., 1994; Dubois and Prade, 2014;
Nieves et al., 2007). In this logic, a formula is a
pair (θ,α), where θ is a classical first-order logic for-
mula, and α ∈ [0,1] is a certainty or priority degree.
This pair indicates that θ is certain at least to level α,
(i.e., N(θ)≥ α). The interval [0,1] can be replaced by
any linearly ordered scale. Standard limit conditions
hold: Π(⊥) = N(⊥) = 0, Π(⊤) = N(⊤) = 1, where
⊥ and ⊤ denote contradiction and tautology, respec-
tively. In the formal system of this logic, the follow-
ing properties hold: N(θ ∧ γ) = min({N(θ),N(γ)})
and N(θ ∨ γ) ≥ max({N(θ),N(γ)}), where θ and γ
are formulae. One of its main rules is the weakest
link resolution rule:

(¬θ ∨ γ,α),(θ ∨ δ,β) ⊢ (γ ∨ δ,min(α,β)), (3)

Here, the conclusion’s certainty is the smallest among
the premises, reflecting that an inference chain is lim-
ited by its weakest premise.

The weighted minimum and maximum opera-
tions, introduced in (Grabisch, 1998; Dubois and
Prade, 1986) within the framework of possibility the-
ory, generalize the standard min and max functions to
account for elements from different contexts, each as-
sociated with a distinct weight of importance. These
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operations refine aggregation by modulating the influ-
ence of each element based on its assigned weight.

Let X = {x1, · · · ,xn} be a set of criteria. Let ai and
wi be, respectively, the score and the weight of impor-
tance attributed to criterion xi such that Σn

i=1wi = 1.
Then we have:

Weighted Min(a1, · · · ,an) = min(i | 1 ≤ i ≤ n :
max((1−wi),ai)).

This formulation ensures that elements with lower
weights contribute less to the overall minimum com-
putation. Similarly, the operation Weighted Max is
given by:

Weighted Max(a1, · · · ,an) = max(i | 1 ≤ i ≤ n :
min(wi,ai)).

2.3 Domain Information System

DIS is an ontology framework consisting of three
primary components (Marinache et al., 2021; Mari-
nache, 2025): Domain Ontology View (DOnt) O, Do-
main Data View (DDV) A , and mapping function τ
linking A to O, forming the structure D = (O,A ,τ).

The DOnt, O =(C ,L ,G), is composed of three el-
ements. The concept structure C = (C,⊕,ec), which
is a commutative idempotent monoid where the car-
rier set C includes an empty concept (ec), a set of
atomic concepts (T ) derived directly from dataset at-
tributes, and composite concepts formed using the ⊕
operator. The Boolean lattice L = (L,⊑c) organizes
concepts hierarchically based on a natural order ⊑c,
defined as c1 ⊑c c2 ⇐⇒ c1 ⊕ c2 = c2. Lastly, the set
of rooted graphs G provides additional expressiveness
by capturing concepts and relations beyond those de-
fined by the lattice structure. Each rooted graph Gti =
(Ci,Ri, ti) consists of a set of vertices Ci ⊆C, a set of
edges Ri, and a root vertex ti ∈ L.

The DDV, A = (A,+,⋆,−,0A,1A,{ck}k∈U), is
formalized as a diagonal-free cylindric algebra, where
U is a finite set of sorts (the universe). The main
notion of this view is sort, which corresponds to an
attribute in the dataset. The ordered pair of a sort
and its value is known as Sorted Value (SV). A
set of SV with a maximum of one SV for each sort
forms Sorted Datum (S Datum). The carrier set A
consists of Sorted Data (S Data), structured as a set
of S Datum. The cylindrification operators ck are in-
dexed by the sorts used in the data, corresponding to
the elements of L, the carrier set of the Boolean lattice
L . For a deeper understanding of cylindric algebra,
readers are referred to (Imieliński and Lipski, 1984).

The final component of DIS is the mapping func-
tion τ : A → L, which links the elements of A in DDV
to their corresponding concepts in the Boolean lattice
L within DOnt. To define τ, several helper opera-
tors introduced, one of which is the helper mapping
operator η : U → L. This ensures a one-to-one corre-
spondence between the sorts in DDV and the atomic
concepts in the Boolean lattice of DOnt. Ensuring
a seamless mapping from data attributes to ontology
concepts: η(Sattr) = attr, where Sattr and attr are a
sort and an atomic concept, respectively.

In DIS, concepts are categorized based on their de-
pendence on objective reality or data elements, lead-
ing to the distinction between objective concepts and
datascape concepts, denoted by Cd . Objective con-
cepts exist independently of any dataset. For instance,
consider the objective statement ∃(x | x ∈ Animal :
Pet(x)). The concept Pet remains valid regardless
of whether supporting data is available. In contrast,
datascape concepts rely on data for their definition
and existence. For instance, consider the modified
example ∃(x | x ∈ Animal : Active Pet(x)). The con-
cept Active Pet, defined as a pet that exercises for at
least one hour daily, depends on a specific data source
such as daily activity logs. If such data is unavailable
or does not meet the required conditions, the concept
cannot be realized. Formally, a datascape concept in
a DIS is defined as follows:

Definition 1 (From (Alomair and Khedri, 2025),
Datascape Concept). Let D = (O,A ,τ) be a given
DIS. For a carrier set A in A and a lattice L in
O, a datascape concept Cd is defined as follows:

Cd
def
= {a | τ(a) ∈ L ∧ Φ(a)}, where a ∈ A and Φ

is a data-specializing predicate expressed in Disjunc-
tive Normal Form (DNF). This predicate Φ is given
by: Φ(a) =∨ (i | 1 ≤ i ≤ N : Ψi(a)), with N is a
natural number, and each conjunctive clause Ψi(a)
is defined as: Ψi(a) =∧ ( j | 1 ≤ j ≤ M : Ω(i, j)(a)),
where M is a natural number and Ω(i, j)(a)= ( f(i, j)(a ·
sort name(i, j)),c(i, j))∈ R(i, j), where f(i, j) ∈F , and
F = {⊕,ec,⊤L ,+,⋆,−,0,1,τ,cyl} is the set of func-
tion symbols, c(i, j) is a ground term in the DIS lan-
guage, and R(i, j) is a relator.

Based on the above definition, we define the oper-
ation ⊕ as an operation on concepts.

Definition 2. Let D = (O,A ,τ) be a given DIS. Let
Cd1 = {a | τ(a)∈ L ∧Φ1(a)}, and Cd2 = {a | τ(a)∈
L ∧ Φ2(a)} be two datascape concepts defined on D .
We have Cd1 ⊕Cd2 =

Cd1 ∪ Cd2 = {a | τ(a) ∈ L ∧ (Φ1(a) ∨ Φ2(a))}.
The structure of the Cd1 ⊕Cd2 is that of a datas-

cape as (Φ1(a)∨ Φ2(a)) is in DNF and the other con-
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ditions stipulated by Definition 1 are satisfied. More-
over, the empty concept e can be perceived as a datas-
cape concept defined as e = {a | τ(a) = ec ∧ false}=
/0. Hence, if we take, for a given DIS, Cd is the set of
datascape concepts, then (Cd ,⊕,ec) is a commutative
monoid due to the properties of set union.
Illustrative Example of DIS Construction. We con-
sider a CustomerService dataset with the attributes:
Satisfaction, Quality, and ResponseTime. The
corresponding DIS structure is built as follows:

1. Lattice construction: Each dataset attribute
is mapped to an atomic concept: τ =
{(Quality,Status),(ResponseTime,Duration),
(Satisfaction,Comfort)}. Then the rest of the
Boolean lattice is generated, where each node rep-
resents a possible composition of atomic concepts
(e.g., status Tenure= Status⊕Duration).

2. Objective rooted graph concept: Rooted graphs
enrich the ontology beyond lattice nodes.
One such objective concept is Feedback,
rooted at CustomerService, and defined ab-
stractly as follows: Feedback

def
= {a | τ(a) ∈

CustomerService}.

3. Datascape rooted graph concept: A rooted graph
concept might be a datascape concept, in which
its definition depends on data. For exam-
ple, the concept PositiveFeedback can be
defined as: PositiveFeedback= {a | τ(a) ∈
CustomerService ∧ a.Satisfaction ≥ 0.6}.
The predicate here indicates that an instance a of
the Satisfaction attributes should have a value
greater than or equal to 0.6.

4. Construction of the domain data view: An ex-
ample of SV is (Quality, Good). An exam-
ple of S Datum is dt 1 = {(Quality, Good),
(ResponseTime, Fast), (Satisfaction, Yes)}.
An example of S Data is a = {dt 1,dt n}.

5. Building the whole DIS system: The DIS is then
formed by (O,A ,τ). A full illustration of the DIS
structure is shown in Figure 2.

3 UNCERTAINTY MODELLING
IN DIS FRAMEWORK

In this section, we extend the DIS framework to
handle uncertainty by addressing two key questions:
What type of uncertainty can be modelled, and where
in the DIS framework it can be introduced. As noted
in section 1, we focus on incomplete information and
adopt possibility theory as the formalism.

Figure 2: Customer Service DIS Framework.

To illustrate where uncertainty can arise, Figure 3
shows an example using a customer service dataset.
Database attributes may assign values, introducing
uncertainty of instances. These attributes are mapped
via the operator τ (shown by arrows) to atomic con-
cepts introducing uncertainty of attributes. The lat-
tice is further expanded with multiple rooted graphs,
such as PositiveFeedback and Feedback, introduc-
ing uncertainty of concepts. The Feedback graph in-
cludes specialized concepts like Rating, with arrows
indicating semantic paths among these concepts, cap-
turing the uncertainty of relationships.

Since the focus is on uncertainty due to incom-
plete information, it is crucial to distinguish between
data and information. In our formalism, a datum is
strictly a raw value without any assigned context (e.g.,
the number 3.7 isolated from metadata, units, or se-
mantics). At this stage, it has no uncertainty; Un-
certainty arises only when contextual interpretation is
applied (e.g., labelling 3.7 as “sensor voltage reading
with ±0.2 error”). We acknowledge that the broader
literature often treats data as implicitly contextualized
(and thus uncertain), but our formalism explicitly sep-
arates raw values from their contextual layers. It is
also important to emphasize that the assigned degree
is explicitly interpreted as a measure of certainty, not
as a degree of truth or graded quality. For this reason,
we adopt necessity-based possibilistic logic, where
necessity degrees directly correspond to the degree of
certainty. This interpretation aligns naturally with our
setting, in which the degree reflects the certainty in
the existence of concepts, in instance-to-concept and
attribute-to-concept associations, and in the presence
of relationships. In our approach, we examine four
types of uncertainty:
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Figure 3: Necessity Degrees Assigned to DIS

1. Uncertainty of mapping instances to sorts: When
mapping a value to a sort(attribute), for example, as
indicated in Figure 3, the Quality attribute being as-
signed values like Good or Bad, with a necessity de-
gree reflecting the degree of certainty with which the
value belongs to a given sort. For instance, assigning
(Good,0.9) to Quality indicates that for this particu-
lar instance, it is 0.9 certain that the Quality is Good.

2. Uncertainty in mapping attributes to atomic con-
cepts: When mapping a sort to a lattice concept, such
as associating Quality with the Status concept as
N(Quality→ Status) = 0.7.

3. Uncertainty of relationships: When defining rela-
tionships among rooted graph concepts, like the rela-
tionship between Rating and Feedback is associated
with N(isA(Rating,Feedback)) = 0.9.

4. Uncertainty of datascape concepts: This
uncertainty arises when a concept is defined
in terms of data conditions that may them-
selves be uncertain. For example, consider
the datascape concept PositiveFeedback, de-
fined as PositiveFeedback = {a | τ(a) ∈
CustomerService ∧ a.Satisfaction ≥ 0.6}.
Here, the condition (Φ(a) = a.Satisfaction≥ 0.6)
is the data-specializing predicate that character-
izes the concept. In our framework, the necessity
degree of the datascape concept itself, that is, the
degree to which the concept PositiveFeedback
holds in the presence of incomplete information, is
derived directly from the necessity with which its

data-specializing predicate is satisfied.

The first three types of uncertainty that are listed
above are given by the domain expert, while the last
one is calculated.

3.1 Uncertainty of Mapping Instances
to Sorts

In the traditional DIS framework, data records
(instances) are typically assigned to sorts (attributes)
through a certain mapping function. This assign-
ment is SV : V → U, where V is a finite set of
values assigned to the sort, and U is a finite set
of sorts (the universe). For example, consider a
customer service database presented in Figure 3,
where the attribute Quality can take values such
as Good and Bad. The traditional mapping function
would assign these values to the Quality sort,
as SV(Good) = Quality and SV(Bad) = Quality.
However, uncertainty brings nondeterminism in this
mapping, as a value might be assigned to several
sorts with some degree of certainty. Hence, to
account for the uncertainty in these assignments,
we introduce a new relation called the instance
distribution relation, denoted SV D , and defined as
SV D ⊆ V × U × [0,1]. The relation SV D relates a
data value to sorts and necessity degree that represent
the degree of certainty in the assignment. A data
value might be assigned to several sorts with varying
degrees of certainty. In the example, the instance
distribution relation could return values like: SV D =
{ (Good,(Quality,0.9)),(Bad,(Quality,0.9)),
(Bad,(Quality,0.4)),(Good,(Satisfaction,0.7))}.
Here, the data value Good is assigned to the Quality
sort with a certainty of 0.9, while the value Bad is
assigned to the same sort with two different certainty
degrees: 0.9 and 0.4. These reflect varying contexts,
such as different data records, where assignment
certainty differs. Although the notation does not
explicitly represent context, it is implicitly captured
through association with different instances. Addi-
tionally, Good is assigned to the Satisfaction sort
with a certainty of 0.7. This extension enables the
framework to better reflect uncertainty by accommo-
dating varying degrees of certainty in data-to-sort
assignments.

3.2 Uncertainty in Mapping Attributes
to Atomic Concepts

As previously discussed in subsection 2.3, the DIS
framework defines the helper mapping operator η :
U → L, which assigns each sort (attributes) in U to its
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corresponding atomic concept in the Boolean lattice.
Similar to the uncertainty of instances, uncertainty in
attribute mapping introduces non-determinism when
associating sorts with atomic lattice concepts. To ac-
count for this, we define the mapping distribution re-
lation ηD , which captures the uncertainty in this map-
ping. The relation ηD ⊆ U × L× [0,1] is provided
by a domain expert, and assigns a necessity degree to
each potential mapping.

Consider the customer service database presented
in Figure 3, where the mapping operators η are de-
fined as follows:

η(Quality) = Status,η(Satisfaction) =
Comfort,η(ResponseTime) = Duration.

In this mapping, the sorts Quality, Satisfaction,
and ResponseTime correspond to the atomic con-
cepts Status, Comfort, and Duration, respectively.
To capture the uncertainty in these mappings, the
mapping distribution relation ηD assigns a necessity
degree to each association:

ηD(Quality) = (Status, 0.7),
ηD(Satisfaction) = (Comfort, 0.9),
ηD(ResponseTime) = (Duration, 0.8).

These degrees indicate the degree of certainty in each
mapping, allowing the DIS framework to handle the
uncertainty in the alignment between data attributes
and ontology concepts.

3.3 Uncertainty of Relationships

Within the DIS framework, there are relationships be-
tween the concepts of rooted graphs and a parthood
relationship between the concepts of the Boolean lat-
tice. The parthood relationship ⊑c forms the rela-
tionship between objective concepts given in the lat-
tice. The existence of this relationship among lat-
tice concepts is certain, as they are constructed by
a Cartesian construction from the atomic concepts.
In other terms, a concept k1 is considered a partOf
another concept k, if k1 is a Cartesian projection of
k or if its atomic structure is a subset of that of k.
However, the relations among the concepts of the
rooted graph might be uncertain. Given a rooted
graph Gti = (Ci,Ri, ti), Ci ⊆ C, Ri ⊆ Ci ×Ci, ti ∈ L,
its relation is transformed to give each edge a neces-
sity degree. We extend Ri to a necessity-based RD

i .
Hence, RD

i ⊆ Ri× [0,1], which incorporates necessity
degrees to quantify the degree of certainty associated
with each relationship.

In the customer service database illustrated in Fig-
ure 3, the relation of the rooted graph, denoted by Ri,
is the following: Ri =

{(isA(PositiveFeedback,CustomerService)),
(isA(Complaints,Feedback)),

(isA(Rating,Feedback)),

(isA(Feedback,CustomerService)),

(isA(Compliments,Feedback))}

Hence, the relations RD
i is given as follows: RD

i = {
(isA(PositiveFeedback,CustomerService),0.4),
(isA(Complaints,Feedback),1),
(isA(Rating,Feedback),0.9)
(isA(Feedback,CustomerService),0.5),
(isA(Compliments,Feedback),0.7)}
These necessity degrees quantify the degree of cer-
tainty in each relationship, enabling the framework
DIS to systematically capture and reason about un-
certainty in relational structures.

3.4 Uncertainty of Datascape Concepts

If we examine the elementary predicate Ω(i, j)(a),
which is used in building the data-specializing predi-
cate Φ(a) of a datascape concept and which is equal
to ( f(i, j)(a ·sort name(i, j)),c(i, j))∈R(i, j), we find that
there are two sources of uncertainty. The first comes
from mapping a datum a to a sort due to the usage
of the term a · sort name(i, j), and the second comes
from the relator R(i, j) used in Ω(i, j)(a). Hence, by
capturing these two sources of uncertainty, we capture
the uncertainty of the datascape concept. For that, we
adopt the weighted minimum function, previously de-
fined in subsection 2.2. The weights of instance map-
ping winst, and the weight of the relationship wrel

assign relative importance to the necessity measures
SV D(a) and RD

i (a), with winst+wrel = 1. Then, we
have the following inductive procedure for calculat-
ing the necessity degree NΦ(a) of a datascape concept
having Φ as its data-specializing predicate.

Procedure 3.1 (Necessity Degree of a Datascape
Predicate). Let D = (O,A ,τ) be a given DIS. Let
Cd = {a | τ(a) ∈ L ∧ Φ(a)} be a datascape con-
cept that is defined within D , and has Φ as its spe-
cializing predicate. For a given element a ∈ A, let
δ = (winst = wWrel) ∨

(
(SV D(a)≤ (1−winst)) ∧

(RD
(i, j)(a) ≤ (1 − wWrel))

)
. The necessity degree

N(Φ(a)) is computed inductively as follows:

• Base cases:
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1. N(true) = 1;
2. N(false) = 0.
3. N(Ω(i, j)(a)) =



min
(

SV D(a),RD
(i, j)(a)

)
, if δ = true,

min

(
max

(
(1−winst),SV D(a)

)
,

max
(
(1−wrel),RD

(i, j)(a)
))

, otherwise.

• Inductive cases:
1. Conjunction of atomic predicates:

N(Ψi(a))= min
(

j | 1≤ j ≤M : N(Ω(i, j)(a))
)

2. Disjunction of conjunctive clauses:

N(Φ(a)) = max
(

i | 1 ≤ i ≤ N : N(Ψi(a))
)

In the base case, the necessity degree of each
atomic predicate is considered. The necessity degree
of the ground terms true and false are, respectively,
1 and 0. For the elementary term Ω(i, j)(a) forming
Φ(a), we have several cases:
• When we have equal weights of all the criteria, then
the weights are omitted in determining N(Ω(a)).

• When both the certainty of a mapped to its sort
is below 1 minus the weight assigned to the map-
ping, and the certainty of the relator RD

(i, j)(a) used
in Ω is also below 1 minus the weight assigned to
the relationship, then the weights are also omitted.
Hence, when (SV D(a) ≤ (1−winst) and RD

(i, j)(a) ≤
(1−wWrel) means that the importance or influence of
the mapping of instances to sorts and the relator in the
overall-uncertainty determination outweighs the level
of uncertainty associated with it. That is why we ig-
nore the weights in this case.
We can extend the necessity degree function to the
datascape concepts as follows: N(Cd)

def
= N(Φ) =

max
(

a | a ∈ A : N(Φ(a))
)

, where Cd = {a | τ(a) ∈
L ∧ Φ(a)} is a datascape concept that is defined
within a DIS D . We take the max of the individual
necessity degrees due to the union property described
earlier in Equation 2.

For objective concepts in the lattice, the composi-
tion operator ⊕ enables the formation of new concepts
by composing existing ones i.e., creating composite
concepts from the set of atomic concepts T . Writing
k = k1 ⊕ k2 means that concept k is constructed by
the Cartesian product of concepts k1 and k2. These
concepts are certain and carry no uncertainty. An al-
ternative way to consider uncertainty in an objective

concept is considering its specializing predicate that
is always true, hence its certainty degree is 1.

4 REASONING ON
POSSIBILISTIC DIS
FRAMEWORK

We discuss several reasoning tasks and their govern-
ing inference rules for deriving conclusions in differ-
ent reasoning scenarios. These tasks are concept sat-
isfiability and concept subsumption. Each of which is
explained in detail. We use N to denote the necessity
degree function.

4.1 Concept Satisfiability

In this subsection, we examine concept satisfiability
in necessity-based reasoning within the DIS frame-
work, distinguishing between the objective and the
datascape concept satisfiability.

In the classical DIS framework, a datascape con-
cept is considered satisfiable if its corresponding data
values exist within the carrier set of the DDV. How-
ever, in the necessity-based extension of DIS, we in-
troduce the necessity degree to account for incom-
plete information of the data specializing predicate
(Φ(a)), which defines the datascape concept. In
this extended framework, a datascape concept Cd is
deemed satisfiable if there exists at least one instance
a ∈Cd such that the necessity degree N(a,Cd) of this
instance is strictly greater than zero. Therefore, a
datascape concept is satisfiable if and only if its ne-
cessity degree is strictly greater than zero, indicating
that there is sufficient data support for the concept’s
existence.

Definition 3. Let D = (O,A ,τ) be a given DIS. Let
Cd = {a | τ(a) ∈ L ∧ Φ(a)} be a datascape concept
that is defined within D , with Φ(a) as its data spe-
cializing predicate. The datascape concept Cd is sat-
isfiable, denoted by stsfd(Cd), if and only if ∃(a |
a ∈ A : N(Φ(a))> 0).

For objective concepts within the Boolean lattice,
their certainty is inherently guaranteed, as they are
directly linked to the DDV of the DIS under con-
sideration. Thus, their satisfiability is inherently en-
sured, meaning they are both valid and certain to ex-
ist. The satisfiability of a composite concept is also
guaranteed, as its atomic components have a degree
of necessity of one. In this case, the combination of
their necessity degree results in the composite con-
cept also having a necessity degree of one, ensuring
its satisfiability. If, from another perspective, one sees
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objective concepts as concepts that are independent
of datasets, which translates into a data specializing
predicate equivalent to true, then using Definition 3
and Procedure 3.1(item 1), one infers that its neces-
sity degree is also equal to one.
Claim 4.1. Let Cd1 and Cd2 be datascape concepts
defined in a given DIS. Let Φ1(a) and Φ2(a) be their
data specializing predicates, respectively. We have
stsfd(Cd1 ⊕Cd2)≡ stsfd(Cd1) ∨ stsfd(Cd2).

Proof. The concepts Cd1 and Cd2 are two datas-
cape concepts. Hence, by Definition 1 and for D =
(O,A ,τ) is a given DIS, we can write Cd1 and Cd2

as follows: Cd1
def
= {a | τ(a) ∈ L ∧ Φ1(a)}, and

Cd2
def
= {a | τ(a) ∈ L ∧ Φ2(a)}.

Then, we have stsfd(Cd1 ⊕Cd2)

≡ ⟨ Definition 2 ⟩
stsfd{a | τ(a) ∈ L ∧ (Φ1(a) ∨ Φ2(a))}

≡ ⟨ Definition 3: Satisfiability of datascape
concept ⟩

∃(a | a ∈ A : N(Φ1(a))> 0 ∨ N(Φ2(a))> 0)
≡ ⟨ Axiom Distributivity for ∨ ⟩

∃(a | a ∈ A : N(Φ1(a))> 0)
∨ ∃(a | a ∈ A : N(Φ2(a))> 0)

≡ ⟨ Definition 3 ⟩
stsfd(Cd1) ∨ stsfd(Cd2)

Example 4.1 (Satisfiability of a Datas-
cape Concept). Consider the datascape con-
cept PositiveFeedback = {a | τ(a) ∈
CustomerService ∧ a.Satisfaction≥ 0.6}.
Thus, this concept consists of a single atomic predi-
cate: Ω(a) = (a.Satisfaction ≥ 0.6). Assume
the following information is provided by a domain
expert:

• Instance distribution relation:
SV D(a1) = (Good,(Satisfaction,0.7))

• Relator necessity degree: RD(a1) = (Good ≥
0.6, 0.8)

• Wights of importance: winst = 0.4,wWrel = 0.6
Then, using Procedure 3.1, we compute the necessity
degree of the atomic predicate:

min
(
max(1−winst,SV D(a1)), max(1−wWrel,RD(a1))

)

= min(max(0.6,0.7), max(0.4,0.8)) = 0.7
Since Φ(a) consists of just this atomic predicate, we have:

N(Cd) = N(Φ(a)) = N(Ω(a1)) = 0.7
By Definition 3, the concept is satisfiable because
N(Φ(a)) > 0. Hence: stsfd(PositiveFeedback)
holds.

4.2 Necessity-Based Subsumption

In general, we say that a concept C1 subsumes a con-
cept C2 if every instance of C2 is in C1. In classical
DIS, we have an additional kind of subsumption re-
lationship. It is the partOf relationship, denoted by
⊑c, that exists among the members of the Boolean
lattice. When we write C1⊑cC2, it indicates that the
instances of C1 are obtained through the projection of
corresponding instances of C2 on the attributes defin-
ing C1. In this case, we say that C2 subsumes C1. The
formal definition of DIS based subsumption is given
below:

Definition 4. Given a DIS D = (O,A ,τ). Let C1 and
C2 be two concepts in the set of concepts of D . We
say that C2 ⊑C1 iff one of the conditions holds:

1. C1 ∈ L ∧ C2 ∈ L ∧ C2 ⊑c C1.
2. C1 and C2 are two datascape concepts with data
specializing predicates Φ1 and Φ2, respectively and
∀(a | a ∈ A : Φ2(a) =⇒ Φ1(a)).
3. C1 ∈ L and C2 is a datascape concept. We have
(C1,C2) ∈ R∗, where R∗ is the reflexive transitive clo-
sure of a relation R of the graph rooted at C1.

Definition 4 formalizes concept subsumption in
DIS, covering both objective and datascape concepts.
First, if C1 and C2 are objective concepts in the ontol-
ogy lattice, subsumption holds if C2⊑cC1, meaning
C2 is structurally more specific than C1 per the lat-
tice order, reflecting the traditional subclass relation
of the lattice hierarchical structure. Second, if both
are datascape concepts defined by data specializing
predicates Φ1 and Φ2, then C2 ⊑ C1 holds if ∀a ∈ A,
the implication Φ2 =⇒ Φ1 is satisfied. This ensures
all instances satisfying C2 also satisfy C1. Third, if
C1 is an objective concept and C2 is a datascape, sub-
sumption holds if a path exists from C1 to C2 in the
reflexive-transitive closure R∗ of relation R. Notably,
all concepts in the graph rooted at C1 are considered
a specialization of C1. Subsumption is a partial order
(reflexive, antisymmetric, transitive) over concepts, as
stated in the following claim.

Claim 4.2. Given a DIS D = (O,A ,τ), the subsump-
tion relation on the set of concepts in D is a partial
order.

Proof. We provide a proof for each case of the sub-
sumption relation as given in Definition 4.

1. In the first case, the subsumption relation is iden-
tical to the partOf (i.e., ⊑c) relation. The latter sat-
isfies the properties required for subsumption (reflex-
ivity, transitivity, and anti-symmetry) because it is de-
fined on a Boolean lattice, which is itself a partially
ordered set (poset) (Marinache, 2025).
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2. In the second case, the subsumption relation ⊑ de-
fines a partial order over the datascape concepts. This
is due to the properties of the logical =⇒ operation
that satisfies the properties of partial order (Gries and
Schneider, 1993, Pages 57-59).
3. In the third case, subsumption is interpreted as
membership to the reflexive transitive closure R∗. It
is established that a reflexive transitive closure on an
acyclic graph is a partial order. Indeed, the rooted
graphs are acyclic, as furthermore each is a Directed
Acyclic Graph (DAG).

In the context of necessity-based subsumption, the
subsumption necessity degree is determined by a do-
main expert. In addition, as the transitivity of sub-
sumption applies, the degree of transitive subsump-
tion is governed by the weakest link resolution rule,
presented previously in subsection 2.2. This approach
to possibilistic transitivity reasoning has been adopted
in prior research (e.g., (Mohamed et al., 2018; Ben-
ferhat and Bouraoui, 2015)) and has shown effective-
ness in handling uncertainty within possibilistic on-
tologies.
Claim 4.3. Let D = (O,A ,τ) be a DIS. Let C1, C2,
and C3 be concepts defined in D . Let

R⊑ = {(C1,C2) | C1 ∈C ∧ C2 ∈C ∧ C1 ⊑C2}
and RD

⊑ is its corresponding necessity relation. We
have:

((C1,C2),α) ∈ RD
⊑ ∧ ((C2,C3),β) ∈ RD

⊑
=⇒ ((C1,C3),min(α,β)) ∈ RD

⊑

Proof. ((C1,C2),α) ∈ RD
⊑ ∧ ((C2,C3),β) ∈ RD

⊑
≡ ⟨ Definition of RD

⊑ ⟩
(C1,C2) ∈ RD

⊑ ∧ (C2,C3) ∈ RD
⊑

∧ N((C1,C2)) = α ∧ N((C2,C3)) = β
=⇒ ⟨ Transitivity of R⊑ and the weakest link

resolution rule (Equation 3) ⟩
(C1,C3) ∈ RD

⊑ ∧ N((C1,C3)) = min(α,β)
≡ ⟨ Definition of RD

⊑ ⟩
((C1,C3),min(α,β)) ∈ RD

⊑

The necessity-based subsumption between objec-
tive concepts (partOf relation) invariably assumes
a necessity degree of 1, since the parthood relation
among lattice concepts is considered fully certain i.e.,
N(partOf) = 1, as indicated previously in subsec-
tion 3.3. This certainty extends naturally to the tran-
sitivity of partOf relation, whereby the minimum ne-
cessity degree computed over a chain of parthood re-
lations, among lattice concepts, gives a degree of 1.

Example 4.2 (Transitivity of Concept Subsump-
tion in DIS). Let C1 = Complaints, C2 =
Feedback, C3 = CustomerService be three
concepts defined in given DIS. Suppose the following
necessity-based subsumption relationships are pro-
vided by the domain expert:

{((Complaints,Feedback),0.6),
((Feedback,CustomerService),0.8)} ⊆ RD

⊑

By Claim 4.3, the transitive subsumption relation
holds with:

N(Complaints,CustomerService) = 0.6

5 RELATED WORK AND
DISCUSSION

This section reviews ontology modelling approaches
that handle uncertainty using possibility theory, and
explains our choice of this formalism.

In possibilistic DL-based approaches, uncertainty
is modelled by assigning necessity or possibility de-
grees to ontology axioms at different levels. For
instance, Pb-π-DL-Lite (Boutouhami et al., 2017)
assigns necessity degrees only to ABox assertions,
allowing uncertain instance membership such as
(Status,Good) = 0.9 in the CustomerService do-
main, without modelling uncertainty at concept or
relationship levels. The work of (Sun, 2013) fo-
cuses on uncertainty at the TBox level, assign-
ing necessity degrees to TBox axioms such as
N(isA(Rating,Feedback)) = 0.8, yet does not sup-
port uncertain instance classification or data-driven
concept definitions. Similarly, studies such as (Ben-
ferhat and Bouraoui, 2015; Benferhat et al., 2014;
Qi et al., 2011) extend possibilistic logic to both
TBox and ABox axioms, enriching the expressive-
ness by allowing weighted axioms at multiple lev-
els; however, their frameworks still assume that con-
cepts like PositiveFeedback are defined and do not
enable concept definitions directly derived from data
(i.e., datascape concepts). The study of (Mohamed
et al., 2018) further incorporates possibility distribu-
tions over interpretations, adding expressiveness to
represent uncertainty about models themselves, but
does not provide mechanisms to ground concepts in
uncertain data attributes or integrate graded uncer-
tainty at the attribute-concept mapping level.

At the language level, (Safia and Aicha, 2014)
propose extending Web Ontology Language 2
(OWL2) with possibilistic annotations, enabling un-
certainty representation in both concepts and in-
stances. Using the CustomerService example, one

99



could annotate a concept like PositiveFeedback, or
an instances like Fast with possibility degrees, yet
the approach still requires concepts to be pre-defined
and does not support automatic or context-aware con-
struction of concepts from data conditions. Finally,
the work of (Ben Salem et al., 2018) assigns possi-
bility degrees directly to concepts outside DL seman-
tics, like assigning possibility degree to the concept
PositiveFeedback, but does not address uncertainty
propagation from attribute data to instances or model
uncertainty in relationships or attribute mappings.

In contrast, our DIS-based framework uniquely in-
tegrates uncertainty at all levels: attributes, instances,
relationships, and data-driven concepts. For example,
we model uncertain attribute-concept mappings such
as N(Quality→ Status) = 0.7, uncertain instance-
concept classification like (Good,0.9), and relation-
ships such as N(isA(Rating,Feedback)) = 0.9. Our
datascape concept PositiveFeedback is defined by
a data-specializing predicate reflecting the actual sat-
isfaction values, allowing uncertainty in satisfaction
data to propagate naturally to the membership degree
in PositiveFeedback concept. This unified, data-
grounded modelling allows more expressive, context-
aware reasoning about uncertain information com-
pared to existing possibilistic ontology methods.

From a methodological standpoint, choosing an
uncertainty formalism requires alignment with the
modelling goals and constraints of the framework.
While several candidates exist, including probabilis-
tic approaches and Dempster-Shafer Theory (DST),
we adopt possibility theory for its suitability to our
framework. Probability theory enforces the addi-
tivity axiom, requiring the sum of probabilities for
mutually exclusive events in a universe of discourse
to equal one even under insufficient data (Kovaler-
chuk, 2017), leading to challenges in accurately rep-
resenting uncertainty. In contrast, possibility the-
ory relaxes this constraint, making it more suitable
for the proposed approach. This rationale is sup-
ported by several possibilistic ontology frameworks
(e.g., (Bal-Bourai and Mokhtari, 2016; Boutouhami
et al., 2017)). Regarding DST, it is primarily de-
signed for belief fusion from multiple sources (Mc-
Clean, 2003), whereas our approach derives certainty
from a single source. Moreover, DST typically as-
signs belief to sets of hypotheses rather than indi-
vidual ones, making it more suitable for representing
group-level uncertainty. In contrast, the DIS frame-
work demands fine-grained certainty assignments to
individual attributes, values, and relationships (Sentz
and Ferson, 2002; Gordon and Shortliffe, 1984). Pos-
sibility theory directly supports this by enabling ne-
cessity degrees to annotate specific elements, making

it a natural fit for our ontology-based model.

6 CONCLUSION AND FUTURE
WORK

This paper presents a principled extension of the
DIS framework to support reasoning under incom-
plete information using necessity-based possibilis-
tic logic. Unlike most ontology-based systems that
assume complete information, our approach mod-
els uncertainty across instances, attributes, relation-
ships, and concept definitions, enabling fine-grained,
graded reasoning. A key advantage is replacing bi-
nary inferences with necessity-valued conclusions, al-
lowing cautious reasoning with partial information.
Overall, this approach provides a structured foun-
dation for possibilistic reasoning in ontology-based
systems advancing more expressive and uncertainty-
aware knowledge representations essential for robust
decision-making in complex, data-limited contexts.

We are currently automating necessity-based rea-
soning tasks using the Domain Information System
Extended Language (DISEL) tool (Wang et al., 2022).
Future work will focus on automating necessity de-
gree assignment via machine learning, integrating
fuzzy logic to handle imprecision, developing a scal-
able reasoning engine, and applying the framework
to real-world domains. Once the automation is in
place, we plan to use DISEL to reason over data col-
lected from network security prevention mechanisms.
This data is often uncertain and originates from di-
verse sources with varying levels of reliability. Fur-
thermore, this data originates from log files, whether
structured or semi-structured, making it well-suited
for DIS modelling. The goal is to pre-process and
clean the data (Khedri et al., 2013), then apply the
proposed reasoning framework to facilitate reliable
and context-aware security decision-making in highly
dynamic and complex uncertain landscapes.
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Chapter 4

Towards a Cartesian Theory of
Ontology Domain Adequacy

This chapter presents the formal theory of domain adequacy, addressing the fifth objec-
tive of this thesis: (i) Ensuring the domain adequacy of an ontology through ontological
commitment, and (ii) Aligning ontological commitment with data commitment.

This work develops the notion of domain adequacy within the Cartesian framework,
with a focus on the DIS model. The domain adequacy is characterized by explicit onto-
logical and data commitments. This chapter formally defines both types of commitments
and establishes their associated properties. It explores the interplay between ontological
and data commitments and introduces a principled approach for identifying minimal
adequate sub-ontologies that are sufficient to ensure domain adequacy. Altogether, this
chapter lays the conceptual and theoretical foundation for the plugin system developed
in the following chapter.
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Abstract

Ontological commitment refers to the entities a theory assumes to exist, whether
explicitly stated (e.g., objects, relations) or implied through contextual depen-
dencies. The literature diverges on how such commitments are defined. Authors
restrict them to variables bound by extensional quantifiers in bivalent first-order
logic, excluding individual constants. By contrast, others hold that ontologi-
cal commitment arises only through direct reference: when an object is known
by acquaintance and explicitly referred to. Despite their differences, both
perspectives presuppose a single, objective ontological reality.
This paper extends the concept of ontological commitment to the domain of
data analytics by distinguishing between two levels of reality: objective real-
ity, where concepts exist independently of data, and datascape reality, where
existence is contingent on specific datasets. It introduces two complementary
forms of commitment: ontological commitment, aligning the ontology with con-
ceptual understanding, and data commitment, ensuring compatibility with the
data under consideration. Within a formal Cartesian framework grounded in the
Domain Information Systems (DIS) model, the paper defines domain adequacy as
the satisfaction of both forms of commitment. The proposed approach supports
ontology modularization through commitment functions and evaluates how well
an ontology reflects both semantic intent and data evidence. This work lays the
theoretical foundation for designing ontologies that are both logically coherent
and empirically grounded for intelligent systems.
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1 Introduction

1.1 Prelude

Ontologies are representations of entities that are in the world under consideration and
that constitute its reality. We call this world domain. Therefore, ontologies represent
a cognition of objective reality at its most abstract level. Usually, they are represented
as a collection of concepts and the relationships among them. Hence, the fundamental
question that should be answered by an ontology is which entities are in the domain
under consideration and how they relate to each other [1].

When we contemplate a broad and comprehensive domain, such as that encom-
passed by SNOMEDCT ontology [2] for the medical domain, we find that it involves
367,827 concepts. Working with an ontology of this size is computationally very
demanding. Even if we consider only one view of this large ontology, such as
SNOMED TEST, which is about medical testing and it involves 4332 concepts [3],
the size of the ontology remains significant, and one wonders whether involving all the
concepts of an ontology or one of its views is necessary or not. The size alone leads
to difficulties in processing or maintaining the ontology due to the complexity arising
from the number of concepts and their relations [4]. These large ontologies are com-
monly referred to as monolithic [5]. Ideally, when we need to perform an ontology-based
reasoning on a statement or a query, we should be able to systematically and automat-
ically extract the part of the monolithic ontology that is relevant to our specific needs.
The issue is about what ought to guide us in this selection of the relevant part of the
domain and how to delimit and extract this relevant part. We need to have the part of
our domain/world/ontology that is essential for the proper evaluation of a statement
(or query) and its related statements in the domain under consideration. Intuitively,
if we take as an example the statement ∃(x | x ∈ Human : Daughter(x) )1, it explic-
itly requires the existence in the domain of a concept Human and a concept Daughter.
Moreover, it implicitly requires the existence of concepts Parent 1 (e.g., Mother) and
Parent 2 (e.g., Father). The concepts Parent 1 and Parent 2 do not explicitly appear
in the statement, but they are related to it due to relationships in the domain and
the explicitly given concepts. For instance, the concept Daughter is supposedly related
to the concept Mother by the relationship IsBirthMotherOf that is in the ontology of
the domain relating Daughter and Mother. These concepts that are either explicitly
or implicitly related to the statement and the relationships among them are com-
monly referred to as the ontological commitment of the statement under the domain
of consideration. One important question is as follows: Are these concepts and their
relationships the only ones that are relevant to the considered statement, or are there

1Throughout this paper, we adopt the uniform linear notation provided by Gries and Schneider in [6]. The
general form of the notation is ⋆(x | R : P ) where ⋆ is the quantifier, x is the dummy or quantified variable,
R is a predicate representing the range, and P is an expression representing the body of the quantification.
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others? Then, we are concerned with how we can get, from a statement and a given
ontology, the smallest part of the ontology that includes all the explicit and implicit
concepts and their relationships. We refer to this part of the ontology that we get from
a statement as the objective reality related to the statement.

From another perspective, if we take the following statement ∃(x | x ∈ Human :
Studious Daughter(x) ) where the concept Studious Daughter is defined as someone
who is a daughter and who is scoring 100% in all the courses. Certainly, this statement
requires, as indicated above, the existence of concepts daughter and all the related
concepts and relationships. Hence, it has an objective reality associated with it. More-
over, it has an association with a dataset as it is defined based on some needed data
(a list of courses and the grades obtained for these courses). Hence, the existence of
this concept Studious Daughter depends on the data. We might have a dataset that
indicates that there is no daughter who is scoring 100% in all the courses. Hence, this
concept does not exist in reality as given by the data. In this sense, we say that the
concept Studious Daughter has to have an objective existence and a data-related exis-
tence. The existence of a concept has to be in the objective reality and the datascape
reality. Hence, we are referencing the data that underpin the ontology to verify the
appropriateness of a particular statement for the domain. This referencing essentially
constitutes data commitment, which in turn guarantees the domain-adequacy of the
ontology.

From the above, we notice that we have two realities: the objective reality and
the datascape reality. When we say that an ontology is ”the study of what might
exist” [7], we understand from the above that we have an objective existence and a
data existence. Therefore, we have two types of concepts: objective concepts and the
datascape concept. An objective concept is the concept that, in its definition, does not
refer to data, indicating that any dataset does not deny its existence and its existence is
ensured independently of the data that is considered. The concept daughter presented
above does not refer to data and therefore it has by default an existence independently
of the dataset under consideration (i.e., objective reality). A datascape concept is the
concept that, in its definition, signifies that its existence is contingent upon the data it
refers to. In the case of the mentioned concept, Studious Daughter, it is explicitly tied
to data, demonstrating its reliance on the dataset being considered for its existence
(i.e., datascape reality). Therefore, when we consider a statement, we find that it ought
to have a commitment to an objective existence and another to a data existence. Then,
when delving into domain adequacy, it is imperative to differentiate between objective
commitment and the data commitment as perceived within the dataset landscape.

1.2 Motivations

The motivation for this work arises from the longstanding tension between ontologi-
cal realism and epistemic access to entities. Ontological commitment, as debated by
philosophers, concerns what a theory assumes to exist, whether via quantification
over variables or direct reference. However, in practical systems that rely on ontolo-
gies, especially in data-driven domains, there is an increasing need to reconcile these
abstract commitments with the empirical structure provided by data. The classical
view presumes a single layer of reality that ontologies aim to describe. Yet, many
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real-world systems operate with layered realities: one defined by normative or theo-
retical constructs, and another shaped by what data captures or omits. For example,
while being a ”student” may be institutionally defined, determining who qualifies often
depends on observable data such as enrollment records. This reveals a deeper philo-
sophical issue: the interplay between what exists in abstract (objective reality) and
what is instantiated through empirical evidence (data reality). Such cases motivate
a formal framework that respects both dimensions, acknowledging that ontological
discourse must sometimes be grounded not only in theory but also in contingent,
data-driven representations of the world.

1.3 Contributions

In this paper, we consider a Cartesian world where concepts are formed by a product
construction of a given set of atomic concepts. We focus on structured data, repre-
sented either as a set of tuples of the same size, such as records in a dataset, or of
different sizes, such as entries in log files. In Domain Information System (DIS), each
tuple is formed by combining values from defined attributes (sorts), and the space of
all possible tuples corresponds to the Cartesian product of these attribute domains.
Therefore, we consider the elements of data to lie within a Cartesian space, reflect-
ing that each record is a point determined by its attribute values. Within this world,
we present a theory of ontological commitment and data commitment. This Cartesian
world allows us to consider datasets that are either lists or tuples, which covers the
bulk of datasets available. These datasets are either databases or log files of struc-
tured but not necessarily relational data. We use DIS framework [8], presented in
Subsection 2.1, which provides a system that is composed of a domain ontology view,
a domain data view, and a mapping between them. Our theory gives a mathematical
understanding of ontological commitment and data commitment, and it uses them to
reduce the size of the ontology. Hence, the obtained ontology could be more efficient
when used in tasks as hypothesis verification or conjecture validation. We show that
there is a link between ontology modularization [4] and ontological commitment. We
advocate using modularization to drive ontological commitment, which is a way to
effectively utilize a monolithic ontology by breaking it into smaller components (called
modules) through a process of modularization [9, 10]. It brings more efficient query
answering and other reasoning tasks [11], and eases the maintenance of ontologies [12].
We find in [13] that modularization helps in the reconciliation of multiple ontologies
into one. As a final contribution, we define optimal domain adequacy and elucidate
its relationship with ontological and data commitments.

1.4 Structure of the paper

The paper is structured as follows. Section 2 provides an overview of the foundational
theories and concepts relevant to our study. Section 3 introduces the notation of the
datascape concept. Section 4 presents a comprehensive example of the DIS frame-
work. Section 5 discusses the data and ontological commitments underlying the DIS
framework, along with key theorems and properties. Section 6 reviews related work
and discusses our findings. Finally, Section 7 offers concluding remarks and directions
for future research.
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2 Preliminaries

In this section, we introduce the DIS framework, which provides the structural basis
for our ontology modelling, and the concept of modularization.

2.1 Domain Information System

DIS [8, 14, 15] is an ontology framework that is formed by three main components:
domain ontology O, domain data view A, and a function τ that maps the latter to
the former to obtain the final structure D = (O,A, τ).

The first component O is composed of three elements O = (C,L,G), where C
is the concept structure whose carrier set C is formed by the empty concept ec, a
collection of atomic concepts, and other composite concepts. Atomic concepts are
directly derived from the attributes of the dataset or from the domain knowledge.
Composite concepts are unordered tuples of atomic concepts that are obtained by
combining atomic concepts using the ⊕ operator. The structure C = (C,⊕, ec) is a
commutative idempotent monoid.

The second component of the domain ontology is the Boolean lattice L = (L,⊑c),
where ⊑c is the natural order defined on the idempotent monoid (i.e., c1 ⊑c c2 ⇐⇒
c1 ⊕ c2 = c2). Hence, L is a free Boolean lattice that is generated from a given set, T ,
of atomic concepts from C, and L is the carrier set of L.

The third element of the domain ontology is the set of rooted graphs, where an
element Gti = (Ci, Ri, ti) is a rooted graph on the set of vertices Ci ⊆ C, having
the set of edges given by Ri, and is rooted at the vertex ti ∈ L. The vertices, other
than the root of a rooted graph from Gti are concepts that are not directly generated
by the Cartesian product construction of the elements of T (i.e., the set of atomic
concepts from which the lattice is formed). In this way, the Boolean lattice generated
from the atomic concepts and the rooted graphs presents a more enriched view of the
ontological perception that we have from the dataset. The formal definition of domain
ontology structure is presented in Definition 1.

Definition 1 (From [15], Domain Ontology Component) Let C = (C,⊕, ec) be a commu-
tative idempotent monoid. Let ⊑c be the natural order on C, defined as ∀(c, d | c, d ∈ C :
c ⊑c d ⇐⇒ c ⊕ d = d ). Let L = (L,⊑c) be a free Boolean lattice, generated from a set of
atoms in C. Let I be a finite set of indices, and G = {Gti}ti∈L,i∈I a set of graphs rooted in
L. A domain ontology is the structure O = (C,L,G). □

The second element of DIS is the domain data view, which is abstracted as
diagonal-free cylindric algebra A = (A,+, ⋆,−, 0A, 1A, {ck}k∈U ), where U represents
the finite set of attributes of the considered dataset. The cylindrification operators ck
are indexed by the sorts used in the data and which correspond to the elements of L,
the carrier set of L. The main notion of this view is the notion of sort, which cor-
responds to an attribute in the dataset. The ordered pair of the sort and its value is
called sorted value, for short, s value. Then, we construct a sorted datum, for short,
s datum, by a collection of s value with a maximum of one s value for each sort.
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Fig. 1 Abstract View of Organization DIS Framework.

Finally, sorted data, for short, s data is a collection of s datum. The cylindric alge-
bra’s carrier set, A, is regarded as a collection of s data. The formal definition of
data view structure is provided in Definition 2. For more information about cylindric
algebra, we refer the reader to [16, 17].

Definition 2 (From [15], Domain Data View Component) Let O = (C,L,G) be a domain
ontology of a DIS D = (O,A, τ). A domain data view associated with D is a diagonal-free
cylindric algebra A = (A,+, ⋆,−, 0A, 1A, {ck}k∈U ), where U is the universal set of sorts
under consideration. □

The last element of DIS is the mapping operator τ : A → L, that relates the ele-
ments of A to the elements of the Boolean lattice in O. For simplicity and without loss
of rigour, we consider that τ maps the sorts of the data to their corresponding objec-
tive concepts in L. A partial view of DIS framework corresponding to the organization
dataset is presented in Figure 1.

2.2 The language of DIS mathematical structure

In this sub-section, we present the language of DIS, which specifies the syntactical
elements, operations, and relations that characterize its structures. It allows us to
use the above structures to analyze and reason about them. As introduced above,
DIS is a system that involves two mathematical structures: the domain ontology view
and the domain data view. The language of the domain ontology is, therefore, the
union of the concept language, lattice language, and the relational language coming
from the graph structure of the rooted graphs attached to it. The signature of the
domain ontology view is MO = (MC ,ML,MG), where MC = (CAtC ,⊕, ec) is the
signature of the concept part and CAtC is the set of concepts freely generated by the
two operators (composition ⊕, and empty concept ec). The signature of the lattice
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part ML = (LAtL ,⊕, ec,⊤L), where LAtL ⊆ CAtC that includes the atomic concepts.
Also, we have the signature of the relational part of the ontology as given by the rooted
graphs. This signature is MG = (C,Rt1 , · · · , Rtn) for Rti , 1 ≤ i ≤ n, is a relation
of the rooted graph Gti . The second structure brings an algebraic language coming
from cylindric algebra that allows articulating terms representing elements in the data
view. The signature of the data view is MA = (A(D,U),+, ⋆,−, 0, 1, {ck}k∈U ). The
carrier set of the cylindric algebra AD,U is freely generated by all the operators over a
set of data elements, called the generating set, which is derived from the universe U .
The set of s-datums D may be used to obtain the universe U or vice-versa, as detailed
in [15]. In summary, the DIS structure is a many-sorted structure having a many-
sorted signature S = {C,L,A}, where sort C is the sort attributed to the concepts in
the domain ontology component. L is the sort of concepts embedded in the Boolean
lattice, and A is the sort of domain data view structure. Then, the signature of DIS
ΣDis is defined as follows:

Definition 3 (Borrowed from [15], DIS Signature) Let D = (O,A, τ) be a Domain Infor-

mation System. The signature ΣDis is given by the tuple ΣDis = (F ,R, rf , rr), where

F = {⊕, ec,⊤L,+, ⋆,−, 0, 1, τ, cyl} is the set of function symbols; R = {⊑c,≤} ∪ {Ri}i∈I is

the set of relation symbols (where I is a set of indeces); and rf , rr are the arrity mappings,

defined as follows:

rf (⊕) = (C.C,C) rr(⊑c) = (L,L) rf (τ) = (A,L) rr(Ri) = (C,C)

rf (−) = (A,A) rr(≤) = (A,A) rf (ec) = rf (⊤L) = (e, L)

rf (cyl) = (A.L,A) rf (0) = rf (1) = (e,A) rf (+) = rf (⋆) = (A.A,A) □

Based on DIS sorts, there are three finitely countable sets of variables: The set
XC = {K,K1, ...,Kn} denotes the variables of sort C. The set of sort L vari-
ables represented by the notation XL = {k, k1, .., kn}, and XA is the collection of
variables of sort A that we represent using the notation {a, b, a1, ..an}. Then, Let
X = {X s | s ∈ S} be the S-indexed set. The elements of the set Υ of constants are
nullary functions (functions with arity 0), hence Υ is a subset of functions F . Overall,
the variables in X , relations in R, and functions in F provide the non-logical symbols
of the DIS language. Moreover, the language provides a set of logical symbols such as
{∧,∨,¬,⇒, ∀, ∃, true, false}, brackets and parenthesis symbols, and relational symbols.
Over this language, the DIS-based expressions (terms and formulae) are constructed
inductively. A formal definition of DIS-based terms and formulas is provided in Defi-
nition 4. Moreover, if we add to DIS language other operations coming from statistics,
we, therefore, augment the set of operations by a set Fstat. Hence, terms might involve
statistical functions on data values or sets of data values. The statistical operations
would allow us to use statistical functions in DIS terms.

Definition 4 (Borrowed from [15], DIS-based Terms and Formulas) Let Σ = (F ,R, rf , rr)
be a DIS-based signature. Let X be a set of variables, and a set of constants Υ ⊆ F . We call
TX(Σ) the set of X-terms of type Σ defined inductively as follows:
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1. Basic terms: X ∪Υ ⊆ TX(Σ)

2. Composite terms: ∀(t1, t2, .., tnf , f | t1, t2, .., tnf ∈ TX(Σ) ∧ f ∈ F : f(t1, t2, ..., tnf ) ∈
TX(Σ) )

3. There are no other terms in TX(Σ).

We call Θ(Σ) the set of formulas of type Σ and define it inductively as follows:

1. Atomic formulas: ∀(t1, t2, .., tnR , R | t1, t2, .., tnR ∈ TX(Σ) ∧ R ∈ R : R(t1, t2, ..., tnR) ∈
Θ(Σ) )

2. Composite formulas: Let ⋄ ∈ {∧,∨,⇒, ⇐⇒ } be a logical operator, ◦ ∈ {∀,∃} a quantifier,
x ∈ X , and ϕ, ψ ∈ Θ(Σ). Then ¬ϕ ∈ Θ(Σ), ϕ ⋄ ψ ∈ Θ(Σ), and ◦(x | x ∈ X : ϕ(x) ) ∈
Θ(Σ). □

In DIS, terms and formulas are used to define a concept. The concepts we are
distinguishing in the remainder of the paper are defined in the language given by the
above signature.

2.3 Ontology Modularization

As we will discuss in Subsection 5.2, ontological commitment leads to a module of the
ontology being considered. In this sub-section, we discuss the background related to
ontology modularization. A module is a sub-ontology that comprises a subset of the
original ontology’s concepts and relations. Modularization is the process of retrieving
this module from an ontology according to predetermined specifications [4]. In other
terms, modularization can be interpreted as a function m(O) that extracts a sub-
ontology (i.e., module) OM from a given ontology O. The techniques employed for
ontology modularization are classified as module extraction or partitioning methods.
This classification is based on the type of output produced [18]. Module extraction is
the process of building one or more modules that address a desired set of concepts and
axioms of an input query. Partitioning, as an alternative, is the process of splitting
an ontology into a collection of modules so that the unification of all the modules
encompasses the original ontology. Normally, this collection would consist of disjoint
modules [19]. However, in certain articles (e.g., [20]), the definition of partitioning has
been left, in which the disjointness is not a requirement. In some literature, the term
decomposition is frequently used as another name for the partitioning process [20, 21].
Moreover, approaches to modularization can also be categorized as logical, hybrid,
or graphical. For a comprehensive analysis of ontology modularization, we refer the
reader to the survey paper [4].

2.4 Ontology Modularization in DIS

In the following, we provide the formal definition of a module. Then, we discuss
the view traversal modularization approach of DIS framework. It is important to
note that various modularization techniques are explored in the context of the DIS
framework [22]. However, our focus in this study is solely on the view traversal mod-
ularization technique. Therefore, whenever we refer to the modularization technique
in the following sections, we specifically mean view traversal.
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Definition 5 (Borrowed from [22], Ontological Module) A module M of a domain ontology
O = (C,L,G) is the ontology M = (CM ,LM ,GM ) that satisfies the following:

1. CM ⊆ C

2. LM = (LM ,⊑c) such that LM ⊆ CM , LM is a Boolean sub lattice of L, and ec ∈ LM

3. GM = {Gn | Gn = (Cn, Rn, tn) ∧ Gn ∈ G ∧ tn ∈ LM},
where CM and C are the carrier sets of CM and C, respectively. □

It is worth noting that rooted graphs of the module include all the rooted graphs
in the initial ontology that have roots at one of the nodes of the sublattice LM of the
module.

We can define simple operations on modules that allow us to combine modules. Let
M1 = (CM1 ,LM1 ,GM1) and M2 = (CM2 ,LM2 ,GM2) be two modules of an ontology
O = (C,L,G), where LM1 (resp., LM2) is freely generated from the set of atomic
concepts T1 (resp. T2). We define M1 +M2 as a module M satisfying the following:

1. CM = CM1 ∪ CM2

2. LM is the module that is freely generated from T1 ∪ T2.
3. GM = GM1 ∪ GM2

This operation on modules of an ontology O is closed on the set of modules of O.
Moreover, it is commutative, associative, and has the empty module as its zero.

View traversal is the process of extracting a self-contained sub-ontology from the
primary ontology that serves a specific topic [11]. In the view traversal approach, a
focal point for creating the module is the identification of the starting concept or
group of concepts denoted as Cst. Starting from these specified concepts, the module
is achieved by forming the principal ideal generated from Cst. In the context of lattice
theory, the principal ideal is defined as follows:

Let B be a Boolean algebra with carrier set B, and b ∈ B. The principal ideal
generated by b is defined as:

L↓b
= {a ∈ B | a ≤ b}

The Principal ideal is a Boolean sub-lattice generated by a set of concepts that encom-
passes all concepts that are subordinated or part of the starting concept Cst. The
starting concept might be a concept in the Boolean lattice, a rooted graph concept, or
more than one concept. Having established a comprehension of the starting concepts
and the principal ideal, we can formulate the extraction of a view traversal module
through the modularization function, which is formally defined in Definition 6.

Definition 6 (Borrowed from [22], Modularization Function) Let O = (C,L,G) be a domain
ontology of a DIS D = (O,A, τ). Let the set MD include all view traversal modules that are

feasible to retrieve from O. The modularization function m
(
O, c

)
is defined as follows.

m : MD × C → MD,

Where m(O, c) = (Cv,Lv,Gv), where:
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1. Lv = (L↓c
,⊑c) is a Boolean lattice

2. Gv = {Gi | Gi ∈ G ∧ ti ∈ Lv}
3. Cv = {d | d ∈ L↓c

∨ ∃(Gi | Gi ∈ Gv : d ∈ Ci )}. □

As special cases, we have the ontology itself is considered as a view traversal
module of (O,⊤), which is exemplified by setting c to ⊤. Conversely, the empty
ontology, denoted by O0, comprises solely the empty concept ec in its carrier set,
is a view traversal module of (O,⊥). The carrier set of the Boolean lattice of the
atomic ontology consists of two elements: an atom, denoted by a, and the empty
concept ec, and involves the rooted graphs rooted at a. Such instances, along with
other straightforward scenarios for view traversal, are elucidated in the subsequent
Lemma [4].

Lemma 1 Given a domain ontology O, then the following is true:

1. O = m(O,⊤)

2. O0 = m(O,⊥)

3. Oa = m(O, a) for any atom a ∈ L. □

We can easily prove that for concepts c1 and c2 from C. We have

m(O, c1 ⊕ c2) = Mc1 +Mc2 , (1)

where Mc1 = m(O, c1) and Mc2 = m(O, c2).

3 Datascape Concepts

In Section 1, we discussed that we have two kinds of concepts: the objective ones
and the ones that are defined using data elements. We refer to the latter concepts as
datascape concepts. A datascape is commonly used to indicate a conceptual landscape
composed of data that is typically visualized or analyzed to reveal new knowledge.
Hence, a datascape concept is a concept from the data landscape, and its definition
involves data elements. Formally, we can define a datascape concept as follows:

Definition 7 (Datascape Concept) Let D = (O,A, τ) be a given DIS. Let A be the carrier
set of the data view A and L be the set of the lattice in O. A datascape concept is a concept
d that is defined as follows:

d
def
= {a | τ(a) ∈ L ∧ Φ(a)}, where

a ∈ A, and Φ is a formula given in Disjunctive normal form (DNF) as Φ(a) = ∨ (i | 1 ≤
i ≤ N : Ψi(a) ), with N is a natural number, and Ψi(a) = ∧ (j | 1 ≤ j ≤ M : Ω(i,j)(a) ),
whereM is a natural number and Ω(i,j)(a) = (f(i,j)(a ·sort name(i,j)), c(i,j)) ∈ R(i,j), where
f(i,j) ∈ F , c(i,j) is a ground term in DIS language, and R(i,j) is a relator. We refer to Φ as
a data specializing predicate, expressed within the formal language of D. □
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Φ is also commonly referred to as a conjunctive query (e.g., [23, 24]). The condition
τ(a) ∈ L ensures that the data that we are considering is relevant to the ontological
view. The sorts used in defining a are linked to the lattice of objective concepts L. In
the remainder of the paper, we assume that all data specializing predicates are within
the language of the DIS under consideration, augmented with statistical functions.
Hence, Definition 7 underpins the syntactical structure of a datascape concept.

Most of the time, datascape concepts are used to specialize objective concepts.
For instance, the datascape concept of Studious Daughter, which is presented in
Section 1, is a specialization of the objective concept Daughter. The specialization is
by characterizing, using a predicate Φ, a subgroup of objective concepts using data
elements.

Based on the above definition, we define the operation ⊕ introduced in Subsec-
tion 2.1 as an operation on concepts.

Definition 8 Let D = (O,A, τ) be a given DIS. Let d1 = {a | τ(a) ∈ L ∧ Φd1
(a)}, and

d2 = {a | τ(a) ∈ L ∧ Φd2
(a)} be two datascape concepts defined on D. We have

d1 ⊕ d2 = d1 ∪ d2 = {a | τ(a) ∈ L ∧ (Φd1
(a) ∨ Φd2

(a))}.

The structure of the d1 ⊕ d2 is that of a datascape as (Φd1(a) ∨ Φd2(a)) is in DNF
and the other conditions stipulated by Definition 7 are satisfied. Moreover, the empty
concept e can be perceived as a datascape concept defined as e = {a | τ(a) = ec ∧
false} = ∅. Hence, if we take, for a given DIS, Cd is the set of datascape concepts, then
(Cd,⊕, ec) is a commutative monoid due to the properties of set union.

4 Illustrative Example of DIS

We consider an organization dataset schema that consists of the five attributes:
worker (wkr), profession (prof), financial (fincl), unit, and task. This means
that the concept organization is defined as the join of all those attributes:
organization = wkr ⊕ prof ⊕ fincl ⊕ unit ⊕ task. The construction of the DIS
structure D = (O,A, τ) from this dataset is achieved according to the steps below:
Building the lattice of core concepts. We take the dataset attributes and map
them to a set of atomic concepts. The attribute wkr is mapped to the atomic concept
emp, prof is mapped to the atomic concept occ, fincl is mapped to finc, unit is
mapped to dep, and task is mapped to proj. Hence, τ = {(wkr, emp), (prof, occ),
(fincl, finc), (unit, dep), (task, proj)}. The mapping τ can be, in some cases, the
identity function. The set of obtained atomic concepts is used to generate a complete
Boolean lattice of concepts as illustrated by Figure 2a. The concepts of the lattice are
a subset of the set of concepts C that is augmented by the concepts of the next step.
The mapping τ allows us to translate an attribute into a concept.
Building the family of rooted graphs of the ontology. The lattice alone, while
it brings all the concepts obtained from the attributes of the dataset, is not enough to
capture all concepts of the domain that are related to the dataset. The domain knowl-
edge allows us to enrich the set of concepts with other concepts that are related to the
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(a)

(b)

Fig. 2 (a) Constructed Lattice for Organization Ontology. (b) Rooted Graphs Attached to Several
Lattices’ Concepts.

concepts of the lattice and therefore to the dataset. These concepts and their relation-
ships form the rooted graphs. In our case, rooted graph concepts can be constructed
using three distinct approaches.

The first approach is to define rooted graph concepts abstractly based on objective
reality, without using the underlying data in their definition, or, in other terms, without
providing a mathematical construction for them.

The second approach, referred to as defining datascape concepts, encompasses data
constraints within the definition of a rooted graph concept. For instance, a rooted
graph concept representing ”blue collar” could include specific occupational types such

as manual labor. Formally, it can be expressed as follows: Blue collar
def
= {a | τ(a) =

work affiliation ∧ a.prof = “manual”}. This concept is a specialization of the
lattice concept work affiliation, which includes only the workers who hold manual
occupations. Another illustration of a datascape concept is the High Income Wrkplce.
This datascape concept is applicable only when the average financial status of the
organization exceeds a specified threshold. Formally, it is expressed as follows:

High Income Wrkplce = {a | τ(a) = organization ∧ average(a.fincl) > threshold}
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The third approach involves constructing rooted graph concepts based on other rooted
graph concepts, which also constitute a specialization of the latter concepts. For exam-
ple, starting with a general rooted graph including the Blue collar concept, one
can derive further specialized concepts such as Factory worker, Electrician, or
Construction worker.

In the above examples, some rooted graph concepts are constructed using statisti-
cal or aggregation operators. The utilization of these operators introduces complexities
during later stages of data validation, necessitating additional analysis to ensure
the data relevance of these concepts. Some rooted graphs attached to several lattice
concepts are presented in Figure 2b.
Construction of the domain data view. In this example, we have five sorts
wkr, prof, fincl, unit, and task. An example of s value is (unit, “IT”). An
example of s datum is dt1 = {(wkr, “John”), (prof, “office job”), (unit, “IT”)
(task, “development”)}. An example of s data is a = {dt1, dtn}. We denote the
set of s-data as A on which we can have a set of variables XA. The structure A
= (A,+, ⋆,−, 0A, 1A, {ck}k∈U ) forms a diagonal-free cylindric algebra and gives us the
data view A.
Building the whole DIS system. In our case, the DIS is then formed by (O,A, τ).

The DIS constructed in the above steps has a language that allows us to define
terms and formulas. For instance, the constant wkr is a term. Forming composite terms
involves combining one or more basic terms with an associated function f ∈ F . For
example, we can define a term that uses the language of the ontology and the language
of the data view, such as having

τ(a) = work affiliation ∧ a.prof = “desk-based”

One can use this term to define a concept

White collar
def
= {a | τ(a) = work affiliation ∧ a.prof = “desk-based”}

In DIS we can use the relators of the language to combine terms into a formula.
For example, we can use the relator ⊑c to relate the terms Proj Budget and budget

to get the basic formula Proj Budget ⊑c budget. An example of a composite formula
is obtained by relating composite terms with a relator from the language of DIS. For
instance, the concept of High Income Wrkplce, defined earlier as a datascape concept,
is regarded as being defined involving a composite formula.

5 Data commitment and ontological commitment

Given a statement or a formula that we need to perform a reasoning task on, one
obvious question that arises is what would be the necessary and sufficient ontological
world needed to reason on it. This ontology would include only the necessary con-
cepts and their relationships. This minimality of the ontology brings computational
benefits compared to using the whole available ontology. The objective of attaining a
small adequate ontology for a formula is, as we show below, achieved using data com-
mitment and ontological commitment of the formula. Verifying the data commitment
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of a formula leads to the elimination or preservation of irrelevant datascape concepts
and the concepts that they specialize. We eliminate a concept when the underlying
data does not support its existence. Then, through the ontological commitment, we
obtain the minimal sub-ontology that suffices for the reasoning on the formula.

5.1 Data Commitment and Its Usage

Demonstrating data commitment of a formula within the DIS framework entails sub-
stantiating the presence of its components within the domain. Specifically, when
evaluating the data commitment of a given formula, we are verifying the legitimacy
of the incorporated data within that formula according to a specific domain. The
data commitment is a function that we denote by PA, and that evaluates the formula
concerning the domain data-view component (i.e., dataset). The evaluation function
yields a Boolean value. The returned value indicates the confirmation that the data
under consideration supports the existence of the characterized concept, or not. Datas-
cape concepts that their specializing predicates evaluate to false should be omitted
from the ontology. Conversely, datascape concepts whose specializing predicates eval-
uate to true should be included in the subsequent ontology. The formal definition of
the data commitment function for a formula within the DIS framework is provided by
Definition 9.

Definition 9 (Data Commitment Function) Let D = (O,A, τ) be a given DIS. Let A be
the carrier set of component A. Let a ∈ A, Φ be a data specializing predicate as defined
in Definition 7. We define the formula data commitment relative to A, that we denote by
PA(Φ(a)), as follows:

• Base cases:

1. PA(Ω(i,j)(a)) = ∃
(
b | b ∈ A : τ(b) ⊑ τ(a) ∧ (f(i,j)(b · sort name(i,j)), c(i,j)) ∈ R(i,j)

)

2. PA(λ(a)) = true, for any λ(a) that is not of the structure of Ω(i,j)(a);

• Inductive cases:

1. PA(Ψi(a)) = ∧
(
j | 1 ≤ j ≤M : PA(Ω(i,j)(a))

)

2. PA(Φ(a)) = ∨
(
i | 1 ≤ i ≤ N : PA(Ψi(a))

)
□

Definition 9 delimits the data commitment of a specific formula Φ. In the ini-
tial base scenario of the data commitment function, the formula Ω(i,j)(a) assigns
a value c(i,j) to sort name(i,j) utilizing one of the relators r ∈ R(i,j). For exam-
ple, Ω(i,j)(a) = average(a.Salary ≥ 16000). It can be reformulated as: Ω(i,j)(a) =
(average(a.salary), 16000) ∈ ≥. In part two of the base cases, the formula is either
true, like in the objective concept or false, such as for e. As a result, we regard the
data commitment in these cases as true. The inductive part puts the results together
from all the elementary formulas that form Ψi and Φ.

In the following, we consider several valid claims corresponding to the data
commitment regarding a given DIS.
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Claim 1 Let Φ1 and Φ2 be two data specializing predicates defining two datascape concepts
d1 and d2. Then PA(Φ1(a) ∨ Φ2(a)) = PA(Φ1(a)) ∨ PA(Φ2(a)).

Proof Φ1(a) and Φ2(a) are both in DNF. Since Φ1 and Φ2 are two data specializing predicates
defining two datascape concepts d1 and d2, then we can define them as follows:

• Φ1
def
= ∨ (i | 1 ≤ i ≤ N : Ψi ), and

• Φ2
def
= ∨ (i | (N + 1) ≤ i ≤ P : Ψi ) for some N and P in N.

PA(Φ1 ∨ Φ2)

= ⟨ Definitions of Φ1 and Φ2 ⟩
PA

(
∨(i | 1 ≤ i ≤ N : Ψi )

∨ ( ∨ (i | (N + 1) ≤ i ≤ P : Ψi ))
)

= ⟨ Quantifier range split ⟩
PA

(
∨ (i | 1 ≤ i ≤ P : Ψi )

)

= ⟨ Definition 9 ⟩
∧
(
i | 1 ≤ i ≤ P : PA(Ψi)

)

= ⟨ Quantifier range split ⟩
∧
(
i| 1 ≤ i ≤ N : PA(Ψi)

)

∨ ∧
(
i | (N + 1) ≤ i ≤ P : PA(Ψi)

)

= ⟨ Definition 9; Definition of Φ1 and Φ2 ⟩
PA(Φ1) ∨ PA(Φ2)

□

Definition 10 (Data Commitment of a Datascape Concept) Let D = (O,A, τ) be a given
DIS. The data commitment of the datascape concept d = {a | τ(a) ∈ L ∧ Φ(a)}, denoted by
CA(d), is PA(Φ(a)). □

Claim 2 The data commitment of an Objective concept is true.

Proof

CA(Objective concept)

= ⟨ Definition 10 ⟩
PA(Φ)

= ⟨ In an objective concept, we have Φ(a) ≡ true, for every a ∈ A ⟩
PA(true)

= ⟨ By Definition 9-Case 2 ⟩
true

□
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In the claim above, we introduce the notion of data commitment to an objective
concept. In the case of an objective concept, we consider Φ = true, which is one of
the base cases of the data commitment function to a formula as given previously in
Definition 9.

Claim 3 Let d1 and d2 be datascape concepts defined in a given DIS. We have CA(d1⊕d2) =
CA(d1) ∨ CA(d2).

Proof The concepts d1 and d2 are two datascape concepts. Hence, by Definition 7 and for
D = (O,A, τ) is a given DIS, we can write d1 and 2 as follows:

• d1
def
= {a | τ(a) ∈ L ∧ Φ1(a)}

• d2
def
= {a | τ(a) ∈ L ∧ Φ2(a)}

CA(d1 ⊕ d2)

= ⟨ Definition 8; Definition of set union ⟩
{a | τ(a) ∈ L ∧ Φ1(a) ∨ τ(a) ∈ L ∧ Φ2(a)}

= ⟨ Definition 10 ⟩
PA(Φ1 ∨ Φ2)

= ⟨ Claim 1 ⟩
PA(Φ1) ∨ PA(Φ2)

= ⟨ Definition 10 ⟩
CA(d1) ∨ CA(d2)

□

In the following, we revisit the example presented in Section 4 to gain a better
understanding of the data commitment.

Example 1 Let us consider our interest in reasoning about the datascape concept Soft dvlp,

defined as follows:

Soft dvlp
def
= {a | τ(a) = Occ Dep Proj ∧ a.unit = “IT” ∧ a.task = “Development”

∧ a.prof = “desk-based”}

Subsequently, we extract the data specializing predicate of Soft dvlp expressed as follows:

Φ(Soft dvlp) = (a.unit = “IT” ∧ a.task = “Development” ∧ a.prof = “desk-based”)

Let us assume that, in our case, the data commitment function PA(Φ(Soft dvlp))
returns true, affirming the existence of data supporting the validity of the
above formula. Hence, the Soft dvlp concept and its specialized concepts (i.e.,
E-learning software, E-commerce software) should be included in the ontology. On the
other hand, if we assume that in our scenario, there is no data that supports the validity of
this formula and PA(Φ(Soft dvlp)) returns false. Then, the concept of Soft dvlp and its
specialized concepts are excluded from the ontology under consideration.
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5.2 Ontological Commitment

Within the DIS framework, the ontological commitment of a concept entails identi-
fying and extracting the smallest module required for effective reasoning on queries
and statements. This module encompasses all pertinent concepts and their related
concepts, determined by the ontological commitment function CO. The CO function
employs a recursive function, MapToConcept, to determine the composite concept cor-
responding to the maximum concept in the lattice that encompasses all the needed
objective concepts.

The ontological commitment function CO operates based on the composite
concept returned from the MapToConcept(Φ(a))function. A formal definition of
MapToConcept(Φ(a)) is outlined in Definition 11, followed by a formal definition of
the ontological commitment function for a datascape concept.

Definition 11 (Mapping Sorts to Concepts Function) Let O = (C,L,G) be a domain ontol-
ogy of a DIS D = (O,A, τ). Let Φ be a data specializing predicate. Let Γ be the set of data
specializing predicates.

We define the function MapToConcept : Γ −→ C , as follows:

• Base cases:

(a) MapToConcept
(
Ω(i,j)

)
= τ(sort name(i,j)), for 1 ≤ i ≤ N ∧ 1 ≤ j ≤M ;

(b) MapToConcept
(
λ
)
= ec, for any λ that is not of the structure of Ω(i,j);

• Inductive cases:

(c) MapToConcept(Ψi) = τ(sort name(i,M)) ⊕ MapToConcept
(
∧ (j | 1 ≤ j ≤ (M − 1) :

Ω(i,j) )
)
;

(d) MapToConcept(Φ) = MapToConcept(ΨN ) ⊕ MapToConcept
(
∨ (i | 1 ≤ i ≤ (N − 1) :

Ψi )
)
.

□

This function takes a formula that has the structure given in Definition 7 and
returns the composite concept that is formed by all atomic concepts relevant to the
formula. Its base case (a) deals with elementary literals that do not involve compound
operations like conjunction or disjunction, but have the prescribed structure. The base
case (b) considers terms that do not abide by the prescribed structure. The cases
where Φ(a) is either true or false are special cases of case (b). Cases (c) and (d) are for
handling conjunctive and disjunctive predicates, respectively. Due to the symmetry
and transitivity of ⊕, the order in which we split a conjunction (or disjunction) into a
literal and a smaller (formed with fewer constructing literals) conjunction (or disjunc-
tion) does not matter. The idempotence of ⊕ ensures that the sort names present in
many conjunctions will be present only once in the concept returned by the function
MapToConcept.

The ontological commitment function of a concept makes usage of the
MapToConcept function defined above, and the modularization technique. Hence, the
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utilization of a modularization technique becomes imperative for constructing a sub-
ontology or sub-lattice rooted at the target concept. This sub-lattice encompasses all
associated sub-concepts and validated datascape concepts to the target concept. The
formal definition of the ontological commitment function to a datascape concept is as
follows.

Definition 12 (Ontological Commitment of a Datascape Concept) Let O = (C,L,G) be a
domain ontology of a DIS D = (O,A, τ). Let

m : MD × C → MD,

be a modularization function, where MD is a set of modules (i.e., ontologies). Let d be a

datascape concept such that d
def
= {a | τ(a) ∈ L ∧ Φ(a)}, and ∀(a | a ∈ d : τ(a) ∈ L ).

The ontological commitment of d, denoted by CO(d), is m
(
O, ⊕(a | a ∈ d : τ(a) ) ⊕

MapToConcept(Φ)
)
. □

In the following, we consider O = (C,L,G) be a domain ontology of a DIS D =
(O,A, τ), and m : MD ×C → MD, is a modularization function, where MD is a set
of modules obtained from O.

Claim 4 Let d be an objective concept such that d = {a | τ(a) ∈ L}. The ontological
commitment of d is

m
(
O, ⊕(a | a ∈ d : τ(a) )

)
.

Proof

CO(d)

= ⟨ Definition 12 ⟩
m
(
O, ⊕(a | a ∈ d : τ(a) )⊕ MapToConcept(Φ)

)

= ⟨ Objective concept
def
= {a | τ(a) ∈ L}. Hence Φ(a) ≡ true ⟩

m
(
O, ⊕(a | a ∈ d : τ(a) )⊕ MapToConcept(true)

)

= ⟨ MapToConcept
(
λ(a)

)
= ec, if λ(a) is not of the structure of Ω(i,j)(a).

In this case λ(a) ≡ true ⟩
m
(
O, ⊕(a | a ∈ d : τ(a) )⊕ ec

)

= ⟨ ec is the zero for ⊕ ⟩
m
(
O, ⊕(a | a ∈ d : τ(a) )

)

□

In Definition 11, when Φ is true or false, it defines an objective concept d. In
this case, the ontological commitment of d corresponds to the view travel module
originating from the supremum in the lattice L of the ontology, derived from the
mapping τ of its values. When Φ = true, it indicates an objective concept. Conversely,
if Φ(a) = false, the concept is the empty concept e.
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Claim 5 Let c1 and c2 be concepts from C. We have CO(c1 ⊕ c2) = m(O, c1 ⊕ c2) =
Mc1 +Mc2 , with Mc1 = m(O, c1) and Mc2 = m(O, c2).

Proof Let c1 and c2 be two concepts having as data specializing predicates Φ1 and Φ2,

respectively.

CO(c1 ⊕ c2)

= ⟨ Definition 12 and using Definition 8 ⟩
m
(
O, ⊕(a | a ∈ (c1 ⊕ c2) : τ(a) )

⊕ MapToConcept(Φ1 ∨ Φ2)
)

= ⟨ Definitions of c1 and c2 ⟩
m
(
O, (c1 ⊕ c2)

)

= ⟨ Equation 1 with Mc1 = m(O, c1) and Mc2 = m(O, c2) ⟩
Mc1 +Mc2

□

We recall that when we define a concept c, we identify the sorts that are used
to define it. Then, we use the function MapToConcept to get the concept k in
the ontology that is the supremum of the images of each of the sorts defining c.
Finally, the ontological commitment of c concerning the ontology O is the module
obtained by view-traversal on concept k. Due to the strong link between ontologi-
cal commitment and modularization, several results can be established for ontological
commitment that come directly from the properties of modularization. Many of the
results obtained for the modularization using view-traversal [4] are transportable to
ontological commitment. For instance, the following results are valid for ontological
commitment.

Claim 6 Let CO(k) = (Ck,Lk,Gk) be the ontological commitment of a concept k with regard
to the ontology O. Then we have ∀(c | c ∈ Lk : c ⊑c k ).

Proof CO(k) returns a module, where its lattice has k as its maximum element. Hence, every
concept element of the lattice of the ontological commitment module is below k in the lattice
Lk. □

In Claim 6, by abuse of notation, we write c ∈ Lk to indicate c in the carrier
set Lk of the lattice Lk. The claim indicates that if a concept c is in the lattice of
the ontology obtained by the ontological commitment of the concept k, then c must
be a part of the concept k. The counter positive of the conclusion of Claim 6 is
∀(c | c ∈ C : ¬(c ⊑c k) =⇒ ¬(c ∈ Lk) ), which equivalently states that if a concept
c is not a part of the Cartesian construction of concept k, then it will not be in the
lattice of the obtained module and consequently not in the ontological commitment
module.
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Fig. 3 Constructed Module for Occ Dep Proj Concept.

Claim 7 (Ontological Commitment Composition) Let O = (C,L,G) be a domain ontology
of a DIS. Let c1, c2 be two concepts in L such that c2 ⊑c c1.

CO(CO(O, c1), c2) = CO(O, c2)

Proof The ontological commitment CO(O, c1) is Mc1 = (Cc1 ,Lc1 ,Gc1). The lattice Lc1 has
c1 as its maximum (top) element. Then, the ontological commitment of c2 considering the
ontology Mc1 (i.e., CMc1

(c2)) we obtain a module Mc2 . Since, we have c2 ⊑c c1 them
we have Mc2 is a sub-module of Mc1 , which is also a sub-module of O. Mc2 is equal to
CO(O, c2). A detailed proof would invoke minor results from [4]. □

Claim 7 indicates that if c2 is a constituent of c1 (via a Cartesian construction),
then the ontological commitment of c2 can be obtained by first having the ontological
commitment of c1, then we use the obtained module as our main ontology in which
we look for the ontological commitment of c2.

In the following, we revisit the example presented in Section 4 to gain a clearer
understanding of the ontological commitment function.

Example 2 Let us consider our interest in reasoning about the datascape concept Soft dvlp,
which is a rooted graph concept that specializes the lattice concept Occ Dep Proj. Conse-
quently, the extracted module from CO function should be rooted at Soft dvlp, encompassing
all its sub-concepts and valid datascape concepts associated within it (i.e., data commitment
of datascape concepts have been validated in Example 1). In this example, the ontological
commitment function CO proceeds to extract the sufficient module to reason with the concept
Soft dvlp utilizing the modularization. The extracted module is depicted in Figure 3.
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5.3 Using Data Commitment and Ontological Commitment

Ontological commitment and data commitment are distinct notions. A concept that
has an ontological commitment different than the trivial empty ontology O0 does not
necessarily imply that its data commitment is valid (i.e., equivalent to true), and vice
versa. These two notions pertain to different realms, and asserting that one does not
provide evidence for the other. Furthermore, there are cases where two concepts share
the same ontological commitment (i.e., they comprise the same set of atomic concepts),
yet one may demonstrate data commitment while the other does not, contingent upon
the constraints imposed by the formulation of the concepts. For instance, consider
the concepts c1 = {a | τ(a) = work affiliation ∧ a.prof = “manager”}, and c2 =
{a | τ(a) = work affiliation ∧ a.prof = “senior Manager”}. Both c1 and c2 share
the same set of concepts (i.e., {emp, occ, work affiliation}), indicating identical
ontological commitments to the domain. However, because c2 only retrieves the subset
“Senior manager” from the concept “manager”, it might result in a different data
commitment based on the given dataset. If the dataset does not include instances
where occ = “Senior manager”, then this concept lacks data commitment.

Definition 13 Let O be a domain ontology of a DIS D = (O,A, τ). An ontology O satisfies
domain adequacy for a set of concepts A with regards to D iff for every c ∈ A, we have CA(c)
is valid, and CO(c) is a non-trivial ontological module of O.

Having CA(c) for a concept in A indicate that there is data in the dataset under
consideration related to it; it means that c is relevant and hence can be kept in the
ontology. The second condition indicates that the ontological commitment of c is not
the empty concept, and there is a module of O that includes only the relevant concepts
that are needed to reason on c. This module makes as few claims as possible about
the world being modelled and sufficient to reason of c.

In Definition 14, we introduce a stronger notion of domain adequacy, which is the
notion of optimal domain adequacy.

Definition 14 Let O = (C,L,G) be a domain ontology of a DIS D = (O,A, τ). An ontology
O satisfies optimal domain adequacy for a set of concepts Q with regards to D iff it satisfies
domain adequacy for Q and O = +(c | c ∈ Q : CO(c) ).

To satisfy the optimal domain adequacy, in addition to satisfying the domain ade-
quacy for Q, the ontology O must be exactly the summation of all the ontological
commitments of every element of Q. It is optimal in the sense that it contains exactly
only the concepts that have data relevance and belong to the ontological commitment
of one of the concepts of Q and no more, no less.

If the maximum element ⊤ of the lattice of O is in Q and O has the property of
domain adequacy, then O has the optimal domain adequacy for the set of concepts
Q with regards to D. This is due to Lemma 1-Case(1) and the idempotence of the
summation of modules.
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6 Related Work and Discussion

In the literature, views on ontological commitment vary. A prominent perspective is
Quine’s view [25, 26], known as knowledge by description, which confines ontological
commitment to variables bound by extensional quantifiers in bivalent first-order logic,
excluding individual constants, (e.g., ∃(x | x : x = student ∧ x = Jhon )). Here,
the bounded variable x is ontologically committed to its world since ∃(x) admits its
existence. In contrast, Barcan Marcus [27] advocates a view where ontological com-
mitment is through direct reference (i.e., direct verifying to an object should be made
by an individual), requiring objects to be known by acquaintance rather than descrip-
tion. This divergence is reconciled in [28], which proposes a hybrid formal language
integrating both Quine and Marcus perspectives through a first-order logic framework
with variables and individuals.

Although Quine and Marcus’ views differ, they both consider one reality of the
ontology. Our approach distinguishes between objective and datascape realities. This
separation of realities offers superior insight into the commitment of a statement or a
concept involving data elements. A concept may have existence in the objective reality,
but not necessarily in the datascape reality. For instance, considering the example we
used for Quine’s view, we may have the concept ”student” as an object in the domain,
but not ”John”. Thus, x exhibits ontological commitment, but not data commitment.

From an engineering perspective [29], a distinction is made between the definition
of ontological commitment from a philosophical perspective and an engineering per-
spective. A formal definition of ontological commitment from an engineering point of
view is given as ”A formalized mapping between terms in a knowledge-base and iden-
tical or equivalent terms in an ontology” [29]. It is seen that this provided definition
is similar to ours regarding ontological and data commitments. Indeed, in the data
commitment part, we are mapping the given formula into the set of concepts in the
ontology satisfying this formula based on the given domain. For the ontological com-
mitment part, we are mapping the target concept to the appropriate sub-ontology
based on the function MapToConcept, and the usage of the appropriate modulariza-
tion technique. The mapping is made easy with the help of the mapping operator (i.e.,
τ), which we use in both the data commitment function and MapToConcept function
defined earlier in Definition 9, and Definition 11, respectively.

In [30], the authors introduced a Description Logic (DL) family called Strict
Ontological-Committed DL-Lite (STOC-DL-Lite), a variant of the widely known DL-
Lite family. STOC-DL-Lite extends DL-Lite by incorporating ontological commitment
concepts, providing a richer framework for ontology modelling. A knowledge base
K in STOC-DL-Lite consists of a CBox (containing global ontological commitment
concepts) alongside the standard TBox and ABox found in any DL-Lite knowledge
base. An ontological commitment concept is denoted by ◦C, where C is a well-formed
concept excluding (⊥). This indicates K’s explicit commitment to ◦C within CBox.
Semantically, every universal entity in K is an explicitly committed concept, with
additional implicit commitments derived from the TBox, and ABox. The strict com-
mitment context SC-context of K encompasses all committed concepts, determined
inductively through a set of coherent rules applied to the CBox, TBox, and ABox. The
approach to ontological commitment in [30] differs from that of this paper. While [30]
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focuses on identifying a comprehensive set of explicit and implicit commitments across
the entire knowledge base, this research identifies the minimal sub-ontology committed
to a specific concept or formula.

Concept satisfiability is a fundamental reasoning task in DL-based ontologies [31].
A concept C is satisfiable if there exists an interpretation in the knowledge base
where it has instances (i.e., CI ̸= ∅). This process verifies whether a concept can have
instances within the knowledge base. If no instances satisfy a concept, it indicates
unsatisfiability. Several algorithms have been developed to check concept satisfiabil-
ity [32, 33]. In traditional DL-based ontology, concept satisfiability is binary: a concept
is either satisfiable (true) or not (false). However, in logics that support uncertainty
management, such as fuzzy-DL or probabilistic-DL, a concept might be satisfiable to
a certain degree [34, 35]. From our perspective, there are similarities between con-
cept satisfiability and data commitment. Both tasks aim to verify if data supports
the existence of a particular concept within a knowledge base. In data commitment,
if a concept cannot be satisfied by any instances in the dataset, it implies a log-
ical inconsistency within the ontology, similar to unsatisfiability in traditional DL
reasoning.

Gruber’s principle of minimal ontological commitment [36] advocates for ontologies
to make minimal claims about the modelled world, allowing the parties committed
to the ontology freedom to specialize and instantiate the ontology as needed. Our
approach refines this principle by extracting a sub-ontology (i.e., a module) containing
the essential explicit concepts (from data specializing predicates) and implicit concepts
(from rooted graph relationships) along with their relationships. Through Definition 13
and Definition 14, we linked ontological and data commitments to domain adequacy
and optimal domain adequacy, respectively. Certainly, there are more results to work
out based on these definitions, which makes this paper a step towards a comprehensive
theory on domain adequacy.

In [28], we find that ontological commitment and ontological presuppositions are
two similar concepts in ontology. However, they refer to different ontological aspects.
Ontological commitment brings up the concepts that a theory or statement implies or
assumes to hold up. Ontological presuppositions give the underlying assumptions or
beliefs about reality assumed within a certain discourse.

7 Conclusion and Future Work

We consider ontologies in a context where the domain consists of atomic concepts or
those built from atomic elements using Cartesian constructions. This framework is
well-suited to structured or semi-structured data. In big data environments, roughly
20% is structured, 10–20% is semi-structured, and 60–70% is unstructured. While
unstructured data dominates, much of it can be transformed into structured form,
though proportions vary by source, industry, and context. Our Cartesian approach,
though limited in data handling, offers a precise formalization of concepts often treated
informally. To our knowledge, this is the first formal treatment of ontological and data
commitments in relation to domain adequacy, marking a step toward a comprehensive
framework for reasoning about these notions.
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We introduced a formal Cartesian framework addressing domain adequacy through
its ontological and data commitment aspects, establishing a clear link between ontol-
ogy modularization and ontological commitment. By leveraging these commitments,
we developed a DIS that represents only the essential concepts and relationships of a
domain.

This work focuses on DIS ontologies where concepts and relationships are cer-
tain, without addressing uncertainty modelling. However, extensive research exists
on ontologies capturing uncertain concepts, relationships, and instances, as reviewed
in [37]. As future work, we plan to extend our framework to address ontological and
data commitments in uncertain ontologies and to further expand the proposed the-
ory to derive additional results. This paper serves as a foundational step toward a
comprehensive theory of domain adequacy.
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Chapter 5

Domain-adequacy of Ontologies
with Statistically-defined
Concepts: A DISEL plug-in

This chapter presents a practical implementation of the adequacy theory introduced
earlier, focusing on datascape concepts whose definitions rely on statistical evaluation. It
addresses the sixth objective of this thesis by determining the ontology domain adequacy
for statistically defined concepts. The proposed system enables empirical verification of
concept definitions and demonstrates how statistically grounded ontology engineering
can be supported in practice. A case study is included to illustrate the process and
benefits of the approach.
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Abstract

An ontology usually captures a domain conceptualization. It involves the
concepts within this domain and the relationships among them. This do-
main is the reality within which a system using the ontology exists and with
which it interacts. A core part of this reality is the objective reality, which is
formed by the concepts and the relationships that are deemed by the expert
as important, noticeable, and relevant. Peripheral to the objective reality
is a reality relative to the data to be analyzed. It is referred to as datas-
cape reality. In this paper, we propose an approach to the verification of the
relevance of datascape concepts of an ontology that are defined using terms
involving data elements and statistical language. The proposed approach
aims at improving the data adequacy of a given ontology regarding a specific
dataset, leading to a smaller, more adequate ontology. We also propose an
automation of data adequacy of ontologies through the generation of R pro-
grams run by the Domain Information System Extended Language (DISEL)
plug-in to obtain the most adequate sub-ontology for the given data set. The
automation system is presented as a DISEL Editor plug-in. Through a case
study of a weather ontology, we illustrate the usage of the approach, and
we demonstrate the automation of the verification process, which leads to a
smaller, more data-adequate ontology.

∗Corresponding Author: Deemah Alomair
Email addresses: alomaird@mcmaster.ca (Deemah Alomair), yhchen@shu.edu.cn

(Yihai Chen), wyj981113@shu.edu.cn (Yijie Wang), khedri@mcmaster.ca (Ridha
Khedri)

Preprint submitted to Journal of Web Semantics September 17, 2025

131



Keywords: Knowledge representation, reasoning, Ontologies, Data
commitment, Statistical analysis, Data adequacy, Dataset-driven ontologies.

1. Introduction

1.1. Prelude

Ontologies serve as structured representations of a domain, capturing its
key concepts and the relationships among them. The domain, in this con-
text, refers to the portion of reality that the ontology is intended to model
and reason about. This ontological reality can be understood as compris-
ing two distinct yet interconnected types. The first is the objective reality:
the conceptual structure defined by domain experts, grounded in theoreti-
cal or abstract knowledge and independent from any underlying data. The
second is what we refer to as the datascape reality, a perspective derived
from observed data. While objective reality reflects enduring domain under-
standing, datascape reality captures dynamic patterns and trends revealed
through data. This distinction gives rise to two types of concepts within
an ontology: Objective concepts, which exist independently of data and are
typically defined in the conceptual core of the ontology (e.g., City, Animal).
Datascape concepts, which are defined using data-driven constraints or sta-
tistical conditions (e.g., an AgedCity where more than 20% of the population
is over 65, or an ActiveAnimal defined based on activity logs).

We refer to concepts defined using data-driven conditions as datascape
concepts [1]. These concepts typically specialize the objective concepts, in
some cases, by adding statistical constraints. For example, given the objec-
tive concept City, a datascape concept like AgedCity may be defined as a
city where more than 20% of the population is above 65 years old, based
on demographic data. Similarly, from the objective concept Animal, we can
define the datascape concept ActiveAnimal as an animal whose recorded
average daily movement exceeds a specified threshold based on sensor logs.

The validity of these datascape concepts depends on the underlying dataset.
For instance, a dataset describing urban centers in a young population may
contain no instances satisfying the AgedCity definition. In such cases, re-
taining the concept adds unnecessary complexity and misaligns the ontology
with the actual data context. This highlights the need to distinguish between
the two types of adequacies: Domain adequacy, where a concept aligns with
the objective reality of the domain. The approach used to validate domain
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adequacy is called ontological commitment. Data adequacy, where the con-
cept is supported by the dataset under consideration. The approach used to
validate data adequacy is called data commitment.

While domain adequacy is ensured through ontological commitment, as
thoroughly discussed in [1], this paper focuses on data adequacy, addressed
through data commitment. Building on the foundations in [1], we tackle
the verification of data commitment for datascape concepts, those defined
statistically based on the dataset, and identify concepts lacking sufficient data
support. Unsupported concepts are pruned, yielding a leaner, data-grounded
ontology that remains semantically coherent and contextually aligned with
the underlying data.

1.2. Motivation

A new challenge has emerged in ontology engineering as ontologies are
increasingly applied in data-intensive environments. In such contexts, on-
tologies are often constructed or adopted in direct alignment with the con-
tent of the available datasets, which we refer to as dataset-driven ontologies.
These ontologies commonly include datascape concepts: concepts whose def-
initions are grounded in the dataset under consideration and in some cases
they are defined based on statistical properties or data-derived thresholds
(e.g., a concept like Hot-weather, defined as having an average temperature
above 30◦C). While this data-centric approach enables ontologies to capture
domain-specific patterns observed in data, it also brings a crucial problem
related to the fact that not all statistically defined concepts are universally
valid across datasets. For instance, a concept such as Very-Rainy-Weather
may be well-supported in a tropical climate dataset, but becomes irrelevant
when applied to data from arid or polar regions. Retaining such unsupported
concepts introduces ontological noise. Concepts that lack instantiation in the
data do not contribute to reasoning and may degrade the performance or in-
terpretability of ontology-based systems. This issue is particularly acute in
dynamic or frequently updated data-driven ontologies, where the underlying
datasets evolve, requiring the ontology to remain tightly aligned with the
current empirical reality.

The problem becomes even more pronounced in large-scale ontologies,
where the cost of unnecessary or unsupported concepts compounds. For
example, SNOMEDCT [2], a comprehensive medical ontology, contains ap-
proximately 367,827 concepts, posing considerable computational and main-
tenance challenges. Even a focused subset such as the SNOMED TEST
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view, dictated to medical testing and comprising 4,332 concepts [3], remains
substantial. This raises a fundamental question: Is it necessary, or even
beneficial, to engage with the full set of concepts in such a large ontology,
or within any of its specialized views? The challenge, therefore, is not to
develop an entirely new class of ontologies, but rather to ensure the contin-
ued adequacy of existing dataset-driven ontologies as their underlying data
contexts evolve. Standard techniques for ontology pruning and modulariza-
tion tend to focus on structural criteria or logical preservation and do not
account for the empirical validity of concepts based on the dataset currently
in use. As such, there is a critical gap between structural adequacy (logi-
cal consistency and modularity) and data adequacy (database relevance and
support). Our work addresses this gap by proposing a data-based mecha-
nism for validating and pruning unsupported datascape concepts. This not
only ensures that the ontology remains aligned with the empirical dataset but
also significantly reduces its complexity and size. This result in more focused
and lightweight ontologies that enhances the utility and maintainability of
dataset-driven ontologies.

1.3. Contributions

This paper introduces a method to improve the overall ontological data
adequacy of dataset-driven ontologies by validating the relevance of statisti-
cally defined concepts. Our key contributions are as follows:
−Formalization of data commitment for the datascape concept: We formal-
ize the approach to evaluate the data commitment of the datascape concept,
which is defined using statistical conditions over data attributes. The data
commitment approach allows us to assess the data-level adequacy of the on-
tological concepts in a principled way.
−Automated validation framework: We design and implement an automated
validation system for Domain Information System (DIS) framework (DIS is a
bottom-up, data-centric formalism that constructs ontologies from datasets
using a Cartesian construction of concepts. It separates domain knowledge
(ontology) from data views (dataset), linking the two via a mapping operator.
This structure allows concepts to be grounded in data while preserving onto-
logical structure [4]). The proposed system parses statistical predicates from
the ontology definition, generates corresponding R programs, executes them
against the dataset, and evaluates whether each datascape concept satisfies
its statistical condition.
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−Ontology pruning based on data relevance: Concepts that fail the data-
commitment test are automatically pruned from the ontology. This results
in a smaller, more concise, and data-grounded sub-ontology that preserves
only concepts with actual relevance to the dataset under analysis.
−Operational integration with Domain Information System Extended Lan-
guage (DISEL) and R: We integrate this pruning mechanism into the DISEL
ontology editor (a specification language for DIS framework), enabling users
to perform statistical adequacy checks during ontology development. Our
system bridges logical ontology modelling with statistical data analysis via
seamless R engine integration.
−Case study with cross-datasets evaluation: We conduct a case study us-
ing a weather ontology applied to multiple datasets representing different
geographic climates. This demonstrates the effectiveness of our method in
tailoring a dataset-driven ontology to its specific data context and highlights
how pruning decisions vary based on underlying data characteristics.

1.4. Structure of the paper

The remainder of the paper is structured as follows. Section 2 introduces
the theoretical background. Section 3 presents our framework for validating
data commitment of statistical datascape concepts. A case study is discussed
in Section 4. Related work is reviewed in Section 5, and conclusions and
future directions are provided in Section 6.

2. Preliminaries and Basic Concepts

In this section, we present the essential background for the paper to be
self-contained. We introduce DIS, DISEL, and data statistical analysis.

2.1. Domain Information System

The DIS framework [4] is designed to map structured knowledge stored
in a dataset with its associated ontology for representation and reasoning
purposes. The framework comprises three main components: an ontology
(denoted by O), a data view (denoted by A), and a mapping function (de-
noted by τ) that links data to concepts in the ontology. These elements give
the DIS structure D = (O,A, τ).

The construction of the domain ontology structure is based on three el-
ements O = (C,L,G). The first component is the structure C = (C,⊕, ce),
where C carries all the concepts presented in the lattice or rooted graphs,
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has ce as the empty concept, and ⊕ is an operator for composing concepts
of C. C is a communicative idempotent monoid. The second component
is the Boolean lattice structure L = (L,⊑c). The set of concepts within
the lattice is either directly obtained from the database schema (i.e., atomic
concepts) by mapping each attribute in the dataset to an atomic concept
within the lattice or obtained through the Cartesian composition of the
atomic concepts using the ⊕ operator. The relationship between a concept
and its sub-concepts is the partOf relation denoted by ⊑c and defined as
a ⊑c b ⇐⇒ a ⊕ b = b. The last component is the rooted graph structure
G. A rooted graph Gti = (Ci, Ri, ti) involves concepts in Ci by relating them
using relation Ri, and ti ∈ L forms the root. Rooted graphs represent the
concepts that are somehow related to a concept in the Boolean lattice and
not directly generated by the composition operator. In this way, the Boolean
lattice might be enriched with multiple rooted graphs having their roots at
different lattice concepts.

The second component of a DIS system is the domain data view A =
(A,+, ⋆,−, 0A, 1A, {ck}k∈U), where U represents the finite set of attributes
(sorts) of the considered dataset. The cylindrification operators ck are in-
dexed by the attributes (sorts) used in the data and that correspond to the
elements of L, the carrier set of L [4, 5]. The central concept in this view is
the notion of a sort, which corresponds to an attribute in the dataset. A pair
consisting of a sort and one of its values is referred to as a sorted value.
A sorted datum is then formed as a collection of sorted values, containing
at most one sorted value per sort. A collection of such sorted datum forms
the sorted data. The carrier set A of the cylindric algebra is interpreted as
a set of sorted data. For more information about cylindric algebra, we refer
the reader to [5, 6].

The last element of the DIS is the mapping operator τ , which maps the
data in A to its corresponding concepts in the Boolean lattice L. Thus, the
complete structure of DIS is D = (O,A, τ).

2.2. Domain Information System Extended Language

DISEL is a high-level ontology specification language developed based on
the DIS framework [7]. It offers a user-friendly, eXtensible Markup Language
(XML)-based syntax designed to abstract away the low-level metathetical
details of DIS, making the ontology engineering process more accessible to
domain experts and practitioners. DISEL inherits the semantics of DIS and
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is organized around four core constructs: include, AtomDomain, concept,
and graph, described below.

1. include allows the integration of external ontologies, enabling ontology
reuse and modular composition.

2. AtomDomain defines the atomic concepts of the ontology, typically aligned
with dataset attributes. These form the base elements of the Boolean
lattice (i.e., level above the smallest element ce of the lattice). For each
atomic concept, DISEL allows declaration of the concept name and an
optional concept description.

3. concept specifies composite or derived concepts. For each concept, DISEL
allows declaring its name, associated sub-lattice (latticeOfConcepts), a
mathematical definition (in Isabelle-like syntax [8, 9], often wrapped in
XML-CDATA [10]), and an optional description.

4. The graph construct introduces rooted graphs and consists of four com-
ponents: a name specifying the graph concept, RootedAt indicating the
root node, edge defining each arc and its endpoints using from-to sub-
elements, and relation, a list of edges belonging to the same relation.

To assist users in building ontologies, the DISEL Editor was developed as
open, multi-source software implemented in the Qt environment [11]. It sup-
ports the full DISEL specification process—from defining atomic concepts
and generating the Boolean lattice to adding rooted graphs and importing
external ontologies. The main interface is shown in Figure 1. The left panel
facilitates the addition and editing of atomic and composite concepts, while
the right panel visualizes the generated lattice and any rooted graphs linked
to lattice elements. Clicking a lattice node reveals its associated rooted graph
and attached concept definitions. Concepts and relations can be added man-
ually or imported from other DISEL ontologies using the include construct.
A complete example, the weather ontology, along with tool downloads, and
the schema documentation is available in the official repository [12, 13].

2.3. Statistical Analysis

Descriptive and inferential statistics are widely used in data analysis [14,
15]. Descriptive statistics summarize data using aggregation functions such
as the mean, median, and mode (measures of central tendency), as well as
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Figure 1: DISEL Editor Interface Overview.

range, variance, and standard deviation (measures of dispersion) [16].
Several statistical computations fall under descriptive statistics and are clas-
sified into subtypes, including types of variables, measures of frequency,
central-tendency, dispersion/variation, and position calculation. In essence,
descriptive statistics quantitatively capture the characteristics of observed
data and can thus describe features of a datascape concept.

The second, inferential statistic, is used to draw conclusions from data
through statistical tests. This process typically involves selecting a subset
of individuals or data points from a larger population and then making in-
ferences or predictions about the population based on the characteristics
of the sample. In other words, it refers to the process of inferring or gen-
eralizing findings from a sample to a broader population [15]. Estimation,
regression analysis, and hypothesis testing are some of the most com-
mon methodologies used in inferential statistics [17, 18].

In data analytics, statistical tools and programming languages play a piv-
otal role in extracting insights from complex datasets. Prominent examples
include Python [19] and R [20], along with user-friendly programs like Ex-
cel, Statistical Analysis System (SAS) [21], and Statistical Package for the
Social Sciences (SPSS) [22]. Among these, R stands out for its robustness
and versatility, widely favored by statisticians, data scientists, and analysts.
Its extensive ecosystem of statistical packages and libraries supports a broad
range of analytical tasks. The language’s extensibility fosters collaboration
within the active R community, allowing users to develop and share cus-
tom packages. The use of specialized Integrated Development Environments
(IDEs), such as RStudio, enhances the user experience for interactive anal-
ysis and visualization. Notably, R excels in data visualization, particularly
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with the ggplot2 package, which provides a powerful framework for creat-
ing expressive and informative plots. Its open-source nature ensures ongoing
development and support [23]. The adoption of R by major companies like
Google and Ford further underscores its relevance in data analytics and sta-
tistical modeling [23]. For these reasons, we adopt R in our system.

3. Data Commitment of DIS-based Ontology

The primary objective of the proposed approach is to enable data commit-
ment validation for concepts defined in the DIS framework. This approach
facilitates the generation of an instantiated version of the ontology that op-
timally reflects the domain as represented in the dataset. By enhancing the
capabilities of DISEL, the extended version goes beyond static ontology spec-
ification; it ensures that the defined concepts are empirically grounded in the
data.

As illustrated in Figure 2, the proposed system architecture introduces
two integrated reasoning sub-systems: statistical reasoning and formal rea-
soning. This paper focuses exclusively on the statistical reasoning sub-
system, which is responsible for evaluating the empirical support of statistical-
based datascape concepts within a given dataset (i.e., data commitment).
The formal reasoning sub-system, which will support reasoning over vali-
dated concepts, is planned as part of future work. A detailed overview of the
statistical reasoning sub-system is presented in the following subsection.

3.1. Statistical Reasoning Sub-System

3.1.1. Overview

In the DIS framework, concepts may originate from two distinct perspec-
tives: Objective concepts, which are independent of any dataset, and datas-
cape concepts, whose existence is conditioned by dataset-specific properties.
While objective concepts are typically defined through logical composition
within the Boolean lattice, datascape concepts are constructed by adding
data restriction to a concept, in some cases, by using statistical predicates.
These datascape concepts are typically attached to rooted graph concepts
within the ontology.

Given a datascape concept defined by a statistical condition, it is not
guaranteed that the dataset under consideration supports any instance that
satisfies it. The goal of the statistical reasoning sub-system is to evaluate
whether each such concept is data-committed, i.e., whether it has actual
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Figure 2: Proposed System Architecture

support in the dataset. If not, it is pruned from the ontology. This process
reduces ontological noise and tailors the ontology to reflect domain grounded
in data.

3.1.2. Formal Description

Let O = (C,L,G) be a DIS ontology consisting of a Boolean lattice L
of objective concepts and a set G of rooted graphs representing datascape
concepts. Let A be a dataset with a set of instances. Each rooted graph
concept CG ∈ G is associated with a statistical predicate. Formally, we can
define a datascape concept as follows:

Definition 1 (Datascape Concept, borrowed from [1]). Let D = (O,A, τ)
be a given DIS. Let A be the carrier set of the data view A, and L be the
Boolean lattice in O. A datascape concept is a concept CG that is defined as
follows:

CG = {a | τ(a) ∈ L ∧ ΦCG
(a)},

where a ∈ A, and Φ(a) is a formula given in Disjunctive Normal Form (DNF)
as ΦCG

(a) = ∨(i | 1 ≤ i ≤ N : Ψi(a) ), with N is a natural number,
and Ψi(a) = ∧(j | 1 ≤ j ≤ M : Ω(i,j)(a) ), where M is a natural number
and Ω(i,j)(a) = (f(i,j)(a · sortname(i,j)), c(i,j)) ∈ R(i,j), where f(i,j) ∈ F , and
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F = {⊕, ec,⊤L,+, ⋆,−, 0, 1, τ, cyl} is the set of function symbols, c(i,j) is a
ground term in DIS language, and R(i,j) is a relator. We refer to Φ as a data
specializing predicate, expressed within the formal language of D.

In the remainder of the paper, we assume that all data-specializing predi-
cates are within the language of the DIS under consideration, augmented with
statistical functions. A datascape concept CG is said to be data-committed
if and only if there exists at least one instance a ∈ A such that the concept’s
data-specializing predicate ΦCG

(a) evaluates to true:

(∃a | a ∈ A : ΦCG
(a) = true ),

That is, the condition ΦCG
(a) = true is satisfied if and only if there exists an

instance a ∈ A that fulfills the constraints specified by ΦCG
. Otherwise, CG

is deemed unsupported and excluded from the instantiated ontology. The
result of this validation process is a pruned ontology O′ = (C ′,L,G ′) where:

G ′ = {CG | CG ∈ DCC},

where DCC is the set of data committed concepts.

3.1.3. System Architecture

The statistical reasoning sub-system is implemented as a modular archi-
tecture that automates the data commitment validation process. It consists
of five coordinated modules:

1. Ontology Parsing Module: Identifies statistical predicates in rooted
graph concept definitions.

2. R-Program Generation Module: Translates statistical conditions into
executable R code.

3. R-program Execution Module: Runs the generated R code and re-
trieves evaluation results.

4. Statistical Terms Evaluation Module: Evaluates the truth value of
predicates based on the R output.

5. Ontology Instance Generation Module: Builds a new ontology contain-
ing only data-committed datascape concepts.
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These modules form an integrated framework that transforms DISEL ontol-
ogy into a data-grounded version consistent with the current dataset. The
pruning process carried out by the above modules is formalized as follows:

1. For each rooted graph concept CG, extract the predicate Φ(a).

2. Identify statistical function calls in Φ(a) and map them to correspond-
ing R functions.

3. Fetch required data from D and evaluate each function using R engine.

4. Substitute functions calls in Φ(a) with their evaluated values, yielding
a simplified predicate Φ′(a).

5. Evaluate the predicate Φ′(a) defining the datascape concept over all
a ∈ A.

6. If ∃a ∈ A such that Φ′(a) is true, retain CG; otherwise, discard it.

7. Construct the new ontology O′ with the updated set of rooted graph
concepts.

3.1.4. Ontology Parsing Module

This module performs the initial extraction of statistical predicates from
the ontology specification. It operates over the DISEL language’s rooted
graph construct, specifically focusing on the newly introduced predicate

element, where statistical conditions are defined. Each predicate typically
includes a combination of dataset attribute references and statistical opera-
tions such as mean, variance, or distribution-fit.

The module applies a grammar-aware parser to detect and extract the
structure of each predicate, isolating the function names and their associ-
ated arguments. A predefined keywords dictionary is maintained internally,
which maps recognized statistical terms to their corresponding R functions.
This ensures compatibility with the statistical engine and prevents syntactic
ambiguity. For example, if the term average appears, it is mapped to R’s
mean() function, and its argument is resolved against the dataset attributes.

Once a statistical predicate is successfully parsed, the module produces an
intermediate representation that encapsulates the function name, argument
bindings, and relational references to dataset attributes. This intermedi-
ate representation is then passed to the R-Program Generation Module for
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further processing. This parsing stage is essential to decouple the ontology
specification from backend execution logic, allowing predicates to be authored
in a domain-friendly language while ensuring backend compatibility.

3.1.5. R-program Generation Module

The R-Program Generation Module is responsible for transforming parsed
statistical predicates into executable R code. After the Ontology Parsing
Module extracts a statistical expression from a datascape concept’s predi-
cate, this module maps the identified statistical terms to their corresponding
R functions, constructs valid R expressions, and assembles complete scripts
that can be executed later. This module maintains a library of 28 statisti-
cal functions, logically organized into four functional categories: Sampling,
descriptive statistics, distribution fitting, and regression analysis. These func-
tions are defined to operate directly over database-resident data tables, using
RMariaDB package [24] to establish connections and retrieve attribute values
from the relational dataset associated with the ontology.

In the sampling category, the module supports multiple functions: Ran-
dom sampling, column sampling, conditional sampling, stratified sampling,
and cluster sampling. The sampling result is stored as a temporary table in
a session of the database to allow the user to perform any further statistical
operations on it. As the running session ended, the created sampling data
frames were deleted. The descriptive statistics category includes operations
like median, mean, mode, range, maximum value, minimum value, top

values, head values, variance, standard deviation, interquartile

range, quantile, sum, and data frame statistical summary functions. The
distribution fitting category identifies the best-fitting probability distribu-
tion for a given attribute using established statistical tests (e.g., goodness of
fit) [25]. The regression category supports both linear and logistic regression
models.

To support flexible predicate evaluation, the module generates three dis-
tinct types of return values, depending on the structure of the predicate and
the kind of statistical reasoning required:

1. Simple type: It returns a single value or a list. Such as mean, median

and distribution type. They are typically used in predicates that
involve direct comparisons (e.g., mean(a.temp) > 30)

2. Regression type: These return structured results in the form of R data-
frame. This output is for predicates having a regression model, e.g.,
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Figure 3: R-program Generation Module

determining whether a specific predictor significantly affects an out-
come variable.

3. Sampling type: This represents a two-stage predicate structure. First,
a sampling operation is performed (e.g., conditional or cluster Sam-
pling), which generates a temporary subset of the data. Then, a sim-
ple or regression operation is applied to that subset. For example,
mean(a.temp) might be calculated only on a stratified sample of high-
humidity regions. These predicates require nesting, and the R script is
generated to reflect this layered logic.

The internal flow of predicate processing is illustrated in Figure 3. As
depicted in the diagram, the sampling-type operations often initiate the pro-
cess, generating new data frames as input for further analysis. Depending
on the predicate, the output from the sampling stage is then passed to ei-
ther the simple-type component for basic statistical computation or to the
regression-type component for modelling.

The generated R scripts are passed to the R-Program Execution Module,
where they are run against the live datasets. Their output, whether scalar
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values, lists, or structured regression objects, is returned for evaluation.
In summary, the R-Program Generation Module not only translates high-

level statistical predicates into executable form, but also encodes the ap-
propriate computation logic tailored to each predicate’s structure. By dis-
tinguishing between simple, regression, and sampling-based predicates, the
system maintains both flexibility and semantic clarity in data validation,
structured to execute independently and return results in a format compati-
ble with the evaluation module. The output of this module is passed to the
R-Program Execution Module for runtime evaluation.

3.1.6. R-Program Execution Module

The R-Program Execution Module enables the evaluation of statistical
predicates defined within the ontology by executing corresponding R code
on real-time data. Once the generated R script is received, the module
runs it within an embedded R environment seamlessly integrated into the
Qt-based system. The integration, achieved through the use of the RInside
and Rcpp libraries [26], allows the module to access and retrieve live data
from the underlying dataset. These packages provide a bridge between C++
applications and the R interpreter, ensuring that statistical computations
can be invoked programmatically and results can be retrieved seamlessly.

This module also uses ANTLR4 to ensure that statistical expressions,
especially those involving nested terms or function compositions, are parsed
correctly and transformed into syntactically valid R expressions. The output
produced by the execution (e.g., numeric values, vectors, data frames, or
regression models) is returned to the Statistical Terms Evaluation Module
for interpretation and decision-making.

This module is responsible not only for executing statistical logic but also
for managing error handling, data type consistency, and resource cleanup. It
ensures that each predicate is evaluated reliably and the results are correctly
formatted for subsequent evaluation, forming a critical bridge between on-
tology semantics and statistical computation.

3.1.7. Statistical Terms Evaluation Module

The Statistical Terms Evaluation Module is responsible for assessing whether
each datascape concept, defined by a statistical predicate, is empirically sup-
ported by the dataset, i.e., whether it exhibits data commitment. This deci-
sion determines whether the concept should be retained or pruned from the
final instantiated ontology.
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Once the R-program Execution Module completes its task and returns the
evaluated result of a predicate based on the underlying dataset, this module
receives both the computed value and the original predicate expression asso-
ciated with a datascape concept. The key responsibility of this module is to
reconstruct and evaluate the predicate by substituting the statistical term in
the predicate with the actual computed result, then checking if the result-
ing condition is evaluated to true. For example, consider a datascape con-
cept HumidWeather with the predicate ΦCG

(a) = {average(a.humidity) ≥
80%}. Let assume that the average(a.humidity) evaluates to 76.2%, by
the R-program Execution Module. Then this module substitutes this value
into the predicate and evaluates the expression 76.2 > 80. Since the condi-
tion is false for this evaluation, the concept HumidWeather is marked as not
data-committed.

This module supports all three types of return values produced by the R-
Program Generation Module. Once the evaluation is complete, each concept
is annotated with a binary status: retain (data-committed) or prune (not-
committed). The full set of data-committed concepts is then passed, along
with the original ontology structure, to the Data-Grounded Ontology Instance
Generation Module.

3.1.8. Data Grounded Ontology Instance Generation Module

The Data Grounded Ontology Instance Generation Module is the final
component in the statistical reasoning sub-system. Its role is to construct an
instantiated version of the ontology that includes only those datascape con-
cepts which have been verified as data-committed. In doing so, this module
ensures that the ontology remains both semantically consistent and empiri-
cally grounded concerning the dataset it was generated from.

This module receives two inputs: the original ontology specification (in-
cluding all lattice concepts and rooted graph component) and the set of datas-
cape concepts that were evaluated as committed by the Statistical Terms
Evaluation Module. Using this information, it generates a refined ontology
instance O′ = (L,G ′), where:

− L is the Boolean lattice of objective concepts, preserved in full.

− G ′ ⊆ G is the set of rooted graph concepts for which ∃a ∈ A such that
Φ(a) = true.

This module processes the ontology by iterating through all rooted graph
constructs and copying only those whose predicates were satisfied. Each
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retained datascape concept CG ∈ G ′ is attached to its corresponding lattice
concept, maintaining the ontological hierarchy and rooted graph structure
as defined in the original DISEL specification. The output of this module is
a pruned, data-committed ontology that faithfully represents the domain as
instantiated in the current dataset. This output can be:

− Exported for use in external tools or downstream reasoning engines;

− Visualized using DISEL Editor;

− Passed to the formal reasoning sub-system described in subsection 3.2.

By filtering the ontology based on actual data support, this module reduces
complexity, removes irrelevant concepts, and enhances domain specificity,
crucial in dynamic, data-intensive applications where datasets frequently
change and the ontology must remain aligned. In summary, the Data-
Grounded Ontology Instance Generation Module completes the final commit-
ment step, transforming an abstract, data-grounded ontology into a concrete,
contextually valid domain representation grounded in statistical evidence.

3.2. Formal Reasoning Sub-System

While the Statistical Reasoning sub-system validates datascape concepts
by assessing their empirical support in a dataset, the Formal Reasoning sub-
system is designed to enable symbolic knowledge derivation through logical
inference. It builds upon the Data-Grounded Ontology Instance generated
in the previous phase and provides a mechanism for deriving implicit knowl-
edge, checking consistency, and answering domain-specific queries using for-
mal logic.

This sub-system targets objective and committed datascape concepts
alike, treating the instantiated ontology as a formal knowledge base over
which logical reasoning can be performed. The reasoning engine used in
this component is based on Isabelle/HOL, a widely used interactive theorem
prover that supports higher-order logic [8]. While the implementation of this
sub-system is left for future work, its three primary modules are described
below.

1. Ontology Instance Parsing Module: This module parses the instanti-
ated ontology, which is encoded in DISEL’s XML-based syntax. The
parser identifies formal elements such as concept names, their defini-
tions, and graph-based relationships. Each element is extracted and
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translated into a corresponding construct in Isabelle/HOL’s theory
language. Specifically, objective concepts are mapped to type-level
declarations and definitions, while rooted graphs are translated into
relational or set-theoretic assertions.

2. Translation to Isabelle Theory Module: Once the ontology content has
been parsed, it is translated into a valid Isabelle/HOL theory. This the-
ory serves as a formal specification of the ontology, enabling symbolic
manipulation and logical derivation. The translation preserves concept
hierarchies, set memberships, and conditions specified in the original
ontology. Each concept is represented as a definition or predicate, and
inter-concept relationships (e.g., edges in rooted graphs) are formalized
as functions, relations, or rules depending on their semantics.

3. Automated Reasoning and Knowledge Derivation Module: With the
Isabelle theory in place, the sub-system performs automated reason-
ing tasks. These include verifying the satisfiability of concepts, detect-
ing inconsistencies, proving subsumption between concepts, or deriving
new assertions based on logical entailment. Reasoning is carried out
using Isabelle’s built-in tactics and automation support, allowing for
both human-interactive and fully automated workflows.

Importantly, this sub-system operates over the pruned, validated ontology,
ensuring that only empirically grounded and semantically relevant concepts
are used during reasoning. This enhances both the tractability and inter-
pretability of the outcomes. The formal reasoning component completes the
ontology cycle: beginning with the user-defined specification in DISEL, vali-
dating its empirical grounding via statistical analysis, and enabling inference
through higher-order logic. By integrating data commitment validation with
formal reasoning, the framework supports the development of ontologies that
are both data-adequate and logically robust.

4. Case Study

4.1. Data Collection

This case study is adapted from a smart home weather ontology intro-
duced in [27], implemented in Web Ontology Language 2 (OWL 2) using
Protégé and the Pallet reasoner [28]. The ontology defines five core cat-
egories: weather phenomenon, weather condition, weather state, weather
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report, and weather report source, each with sub-concepts. For example,
weather phenomenon includes temperature, humidity, sun position, wind, and
atmospheric pressure. We focus on the Weather-state concept and its sub-
concepts: Hot-weather, Windy-Weather, Cold-weather, Dry-weather, and
Rainy-Weather. To demonstrate our approach’s flexibility and effectiveness,
we extend this subset with derived datascape concepts defined by statistical
predicates, which evaluate their data commitment. The datasets used come
from the Visual Crossing weather dataset [29], representing four geographi-
cally and climatically diverse locations in 2022:

1. Shanghai: Represents a tropical urban climate.

2. Antarctica: An extreme polar climate.

3. Bilma (Sahara Desert): An extremely dry oasis climate.

4. Iquitos (Amazon): A rainforest climate with high humidity.

4.2. Data Analysis

From the dataset, we select five core attributes: precipitation, wind,
temp, pressure, and humidity. These attributes are mapped to atomic
concepts in the ontology via the mapping operator τ (as defined in subsec-
tion 2.1). Using the ⊕ operator, we then generate a Boolean lattice L that
reflects all compositions of atomic concepts. The Boolean lattice with its
associated rooted graph concepts is illustrated in Figure 4.

All rooted graph concepts linked to the Weather-state concept are de-
fined via statistical predicates, embedded within the predicate property of
each rooted graph concept. In our study, we selected five such rooted graph
concepts. Their formal definitions in the DISEL-XML format are presented
in Figure 5, while their statistical conditions are summarized below:

1. Rainy-Weather: Average precipitation > 2mm.

2. Very-Rainy-Weather: Average precipitation > 5mm.

3. Windy-Weather: Average wind speed > 10m/s.

4. Stormy-Weather: Average wind speed > 20m/s.

5. Severe-Weather: Standard deviation of wind or precipitation > 5, valid
only if Stormy-Weather or Very-Rainy-Weather is true.

19

149



Figure 4: Constructed Lattice with Its Rooted Graphs.
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Figure 5: XML Annotations for Rooted Graphs of Climate State Concept

Table 1: Predicates After Statistical Calculation and Evaluation Results In Shanghai
Predicates Edge(from) Edge(to) Predicate Evaluation

Average(weather.wind) > 10 Windy-Weather Weather-state True
Average(weather.wind) > 20 Stormy-Weather Weather-state True
Average(weather.precipitation) > 2 Rainy-Weather Weather-state False
Average(weather.precipitation) > 5 Very-Rainy-Weather Weather-state False
standardDeviation(weather.wind) > 5 Severe-Weather Stormy-Weather True
standardDeviation(weather.precipitation) > 5 Severe-Weather Very-Rainy-Weather False

4.3. Datascape Concept Validation for Data Adequacy

To assess the adequacy of datascape concepts, we analyzed each predicate
property in the XML specification using our parsing module. Predicates
containing statistical terms (e.g., Average and standardDeviation) were
evaluated using corresponding functions in the R engine. Table 1 shows the
statistical calculations associated with each predicate and its corresponding
evaluation outcome for the Shanghai dataset.

Concepts evaluated as false were considered not domain adequate and
pruned from the ontology. Conversely, concepts whose predicate returns
true are retained as rooted graph concepts attached to the ontology.
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Table 2: The Comparison of Experiment Results in Data-commitment
Concept Shanghai Antarctica Bilma Iquitos

Moist Weather ✓ ✓
Monsoon Weather ✓ ✓

Dry Weather ✓
Cold Weather ✓ ✓
Hot Weather ✓ ✓ ✓

Windy Weather ✓ ✓ ✓ ✓
Stormy Weather ✓ ✓ ✓
Rainy Weather ✓ ✓

Very Rainy Weather ✓
Severe Weather ✓ ✓ ✓ ✓

Pleasant Temperature Weather ✓
Stable Temperature Weather ✓ ✓ ✓

Humidity Temperature Correlation Weather ✓ ✓

4.4. Data Commitment Across Multiple Datasets

To verify data commitment across diverse domains, we repeated the val-
idation of the datascape concepts for each dataset. Table 2 summarizes
the data commitment for each datascape concept across datasets. Fig-
ure 6 illustrates rooted graph results per domain. The diversity of datasets
helped reveal concept dependencies specific to climate and region. For exam-
ple, the concept Severe-Weather in Bilma was supported by wind-related
data, whereas in Iquitos, precipitation variability emerged as the primary
contributing factor. Similarly, the concept Rainy-Weather is supported by
empirical data from the Bilma and Iquitos regions, but not from Shanghai
or Antarctica, thereby reinforcing the importance of empirical validation.

5. Related Work and Discussion

5.1. Ontological Commitment and Domain Adequacy

Ontological commitment is a well-established topic in both philosophical
and computing literature [30, 31, 32]. Informally, it refers to the require-
ment that concepts included in the ontology must correspond to entities that
genuinely exist in the intended domain. Several philosophical interpretations
exist, including those by Quine [33], Marcus [34], Russell [35], and others [30].
These perspectives typically operate under a unified notion of reality and do
not distinguish between data-related and objective existence.
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Figure 6: Validated Rooted Graph Concepts of Each Dataset
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Traditional approaches often conflate these two forms of reality, making
it unclear whether a concept’s relevance is based on structural semantics or
data-driven observation. In contrast, the approach proposed in [1] introduces
a dual-layered understanding of reality, distinguishing between objective and
datascape realities. Based on this distinction, they identify two comple-
mentary forms of commitments: (1) ontological commitment, which ensures
conceptual alignment with the abstract domain model, and (2) data commit-
ment, which validates empirical instantiation in a specific dataset. A concept
may be ontologically valid yet lack data commitment, and vice versa. Adher-
ing to both ontological and datascape commitments ensures optimal domain
adequacy of the ontology.

It is worth noting that while data commitment is an important dimension
of domain adequacy, it does not fully capture the semantic or inferential
relevance of a concept. Achieving full domain adequacy requires ensuring
both forms of commitments: ontological and data commitment. For a more
detailed discussion on optimal domain adequacy and the interplay between
these forms of commitment, we refer the reader to [1].

Our work contributes to the broader objective of achieving optimal do-
main adequacy by validating the data commitment of statistically defined
concepts. Although data commitment alone is insufficient for full adequacy,
it is critical for filtering unsupported concepts and maintaining alignment
with evolving data. Future extensions of our work will incorporate deeper
ontological validation and formal reasoning to support both dimensions of
adequacy in a unified framework.

5.2. Statistical Reasoning in Ontology Engineering

Statistical methods have been increasingly incorporated into ontology-
related work, particularly in areas like statistical knowledge representation
and intelligent data analytics. Examples include the development of statisti-
cal ontologies from domains such as biology [36], smart manufacturing [37],
and general statistical processes [38]. These ontologies primarily aim to repre-
sent statistical concepts, procedures, and their interrelationships in a formal
structure.

Our work departs from this direction. Rather than modelling statistical
knowledge, we employ statistical reasoning as a procedural tool to evaluate
and validate datascape concepts. This enables us to determine whether such
concepts are data-committed, and if not, to remove them from the ontology.
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Thus, our goal is not to create a statistical ontology but to use statistical
methods to ensure that the ontology remains adequate.

The proposed approach aligns with the emerging field of logical data an-
alytics, where statistical reasoning is used to test the validity of data-driven
hypotheses [39]. In our framework, dataset A is treated as a population
of domain instances, and datascape concepts are defined through statistical
predicates over these instances. These definitions are interpreted as hypothe-
ses that must be tested to confirm whether they represent valid characteristics
of the population. For example, the concept of Humid Weather may be de-
fined as a set of instances where the average humidity exceeds a threshold.
The existence of such a concept in the ontology depends on whether this
statistical pattern is actually present in the data.

5.3. Ontology Size Reduction and Modularization

Reducing ontology size while preserving reasoning capabilities is a long-
standing goal in knowledge representation. Various modularization tech-
niques have been proposed to extract minimal sub-ontologies relevant to
specific reasoning tasks [40]. One such approach, known as view traver-
sal [41], builds a view-dependent module by incorporating a target concept,
its sub-concepts, and their relationships.

However, most modularization techniques focus on preserving logical struc-
ture, without explicitly considering whether the retained concepts are rele-
vant in the context of a given dataset. In contrast, our approach introduces
data-ware modularization, where the inclusion of a datascape concept is con-
tingent upon statistical validation against the dataset. This leads to an on-
tology that is not only logically coherent but also data-committed, making
it particularly suitable for data-driven or dynamic applications.

6. Conclusion and Future Work

In this paper, we presented an approach for verifying the relevance of
ontology concepts that are defined using terms derived from data elements,
concepts that frequently incorporate constructs from statistical languages.
Specifically, we introduced an automated verification process using a statis-
tical reasoning system employed to DISEL specification. This verification
aims to reduce the ontology to include only concepts that are either ob-
jectively needed (i.e., objective concepts) or whose existence is empirically
supported by the given dataset (i.e., committed datascape concepts). The
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resulting ontology satisfies the data adequacy, enabling more efficient use in
downstream tasks such as reasoning or modularization. A case study was
used to demonstrate the practical utility of our approach and to validate the
automation of the verification process.

As part of future work, we plan to extend this framework to interoperate
with logical reasoning, either through formalization in Isabelle/HOL for DIS
ontologies or by interfacing with a decidable Description Logic (DL) reasoner
when the DIS language is restricted to an appropriate sub-language of a
first-order logic. Additionally, we aim to conduct an empirical evaluation on
large-scale ontologies to assess the impact of data commitment on ontology
size reduction. For instance, ontologies like SNOMEDCT [3], which contains
over 367,827 concepts, present a major bottleneck for reasoning tasks due to
their size. This empirical study will bring a better understanding of the gain
achieved in ensuring that the concepts of an ontology have data relevance.
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Chapter 6

Conclusion and Future Works

This thesis investigated the issue of ontological uncertainty modelling either related to
information or to the relevance of concepts and their relations. Central to this work is
the development of formal frameworks that enable ontology-based systems to operate
reliably in the presence of uncertainty. The research addressed multiple dimensions of
uncertainty, distinguishing between classical information imperfections such as incom-
pleteness and the more nuanced challenge of relevance uncertainty, which concerns the
contextual appropriateness of concepts within a specific domain and dataset. To tackle
these challenges, the thesis introduced a set of formal models, reasoning procedures,
and supporting tools that ensure both logical soundness and data alignment, thereby
enhancing the expressive power and practical utility of semantic systems.

6.1 Interpretation and Value of the Contributions

The contributions of this thesis offer a comprehensive and layered advancement in the
design and reasoning capabilities of ontology-based systems operating under uncertainty.
Taken together, they address a longstanding gap in semantic technologies: the lack
of formal, data-aligned, and uncertainty-aware reasoning mechanisms that reflect the
needs of real-world domains. The value of the work can be interpreted across several
dimensions:

• Clarifying the ontology-uncertainty relationship. The developed taxonomy of un-
certainty and its application through a structured survey provided the field with
a much-needed conceptual framework. It clarifies how different uncertainty types
(e.g., incompleteness, vagueness, inconsistencies) interact with ontology modelling,
and it identifies the appropriate formalism for each. This framework strengthens
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the theoretical foundation of uncertainty-aware ontology engineering and offers a
roadmap for selecting or designing reasoning tools fit for specific applications.

• Advancing uncertainty reasoning. Through the formal integration of possibility
theory, the thesis provides a fine-grained reasoning mechanism capable of oper-
ating over incomplete and uncertain knowledge. The use of necessity measures
allows logical assertions to be qualified with degrees of certainty, enabling nuanced
inference that more closely mirrors real-world decision-making processes. This is
particularly valuable in domains where information is usually incomplete or par-
tially available.

• Operationalizing reasoning under incompleteness. The DISEL tool transforms the
formal contributions of the thesis into a usable, automated reasoning environment
that supports necessity-weighted logic. DISEL demonstrates that reasoning un-
der uncertainty can be made tractable and practical. It facilitates key ontology
services, such as subsumption and concept satisfiability, in environments where
classical assumptions of completeness and determinism do not hold.

• Enhancing domain adequacy through commitment. The formalization of domain
adequacy, defined through the dual lens of ontological (structural alignment with
conceptual needs) and data commitment (empirical alignment with observed data),
offers a principled way to assess and improve the fitness of ontologies for their
intended use. This concept goes beyond traditional ontology evaluation metrics by
embedding both logical and data-oriented criteria, making it particularly relevant
in applied settings where ontologies must be tailored to actual domain behavior.

• Bridging data statistical semantics to logical reasoning. A central achievement
of this thesis lies in reconciling statistical data analysis with logical ontological
reasoning. By incorporating statistical validation mechanisms and defining data-
committed concepts, the thesis makes it possible to anchor ontological definitions
in empirical reality. This ensures that modelled concepts are not only theoretically
sound but also grounded in observable patterns, a critical requirement for domain-
specific intelligent systems.

6.2 Future Work

While this thesis lays a comprehensive foundation for modelling and reasoning with
uncertainty in ontology-based systems, it also opens several avenues for future research
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and development. These directions build upon the theoretical results, practical tools, and
insights into domain adequacy, aiming to further extend the applicability, expressiveness,
and performance of the proposed frameworks.

1. Formal verification of reasoning procedures and domain adequacy. The formal
reasoning mechanisms developed in this thesis, particularly those grounded in
necessity-based possibilistic logic, would benefit from machine-checked verifica-
tion using tools such as Isabelle/HOL. Formalizing the DIS framework and do-
main adequacy definitions in a proof assistant would strengthen the soundness
and trustworthiness of the reasoning procedures and enable certifiable inference in
safety-critical applications.

2. Integration of more expressive statistical and machine learning models. The cur-
rent statistical plug-in supports hypothesis-driven reasoning based on predefined
predicates. Future extensions could incorporate:

• Richer statistical models, including multivariate analysis, and time-series in-
ference.

• Interpretable machine learning models, such as decision trees or rule-based
learners, to discover or refine data-specializing predicates.

3. Support for evolving and streaming data. To extend applicability in dynamic
environments, the framework could be adopted to handle evolving datasets and
streaming data. This would require:

• Incremental validation of datascape concepts.

• Temporal extensions to the DIS framework to represent time-sensitive uncer-
tainty.

• Monitoring mechanisms to track and explain changes in necessity values over
time.

4. Expanded evaluation across multiple domains. While the case studies in this thesis
demonstrated feasibility, more diverse empirical evaluations are needed to gener-
alize the results. Future work should:

• Apply the framework to domains such as smart healthcare, intelligent educa-
tion systems, or cybersecurity.
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• Evaluate the performance of reasoning tasks under varying levels of incom-
pleteness.

• Access usability, ontology quality improvements, and user trust in real de-
ployment settings.

5. Enhancing interoperability and user accessibility. For broader adoption, future
versions of the DISEL tool and the statistical plug-in can be enhanced by:

• Developing a graphical interface for defining concepts, necessity weights, and
statistical predicates.

• Providing interoperability with OWL, RDF, and Protégé, enabling users to
import/export standard ontologies whole, leveraging the extended reasoning
capabilities.

• Building support for explainable reasoning visualizations, allowing users to
understand how necessity values propagate and impact reasoning outcomes.

6. Broadening the scope of uncertainty handling within DIS framework. This thesis
focused primarily on incompleteness and relevance uncertainty. Future work could
expand the framework to address additional uncertainty types, including vagueness
and inconsistency.
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Appendix A

DISEL: A Language for
Specifying DIS-based Ontologies

This appendix includes the full version of the published manuscript titled: DISEL: A
Language for Specifying DIS-based Ontologies, by Yijie Wang, Yihai Chen, Deemah
Alomair, and Ridha Khedri. This manuscript present the main syntactical constructs of
DISEL language, which is designed as a language for specifying DIS-based ontologies.

The content of this chapter is co-authored with Dr. Yihai Chen, Yijie Wang, and
Dr. Ridha Khedri, and has been published in the Lecture Notes in Computer Science
(LNAI, volume 13369), as part of the proceedings of the 15th International Conference
on Knowledge Science, Engineering and Management (KSEM 2022). The work is cited
as follows, with copyright held by the authors and Springer Nature:

Wang, Y., Chen, Y., Alomair, D., Khedri, R. (2022). DISEL: A Language for Spec-
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Abstract. We present the main syntactical constructs of DISEL lan-
guage, which is designed as a language for specifying DIS-based ontolo-
gies. The adoption of this language would enable the creation of shareable
ontologies for the development of ontology-based systems. We give the
main constructs of the language and we illustrate the specification of
the main components of a DISEL ontology using a simplified example
of a weather ontology. DIS formalism, on which the proposed language
is based, enables the modelling of an ontology in a bottom-up approach.
The syntax of DISEL language is based on XML, which eases the trans-
lation of its ontologies to other ontology languages. We also introduce
DISEL Editor tool, which has several capabilities such as editing and
visualising ontologies. It can guide the specifier in providing the essen-
tial elements of the ontology, then it automatically produces the full
DISEL ontology specification.

Keywords: Ontology · Ontology language · Ontology specification ·
Knowledge engineering · DIS formalism · Ontology visualization

1 Introduction

In the last two decades, we have seen an expansion in the volume and complex-
ity of organized data sets ranging from databases, log files, and transformation
of unorganized data to organized data [16,43]. To extract significant knowledge
from this data, the use of ontologies allows to connect the dots between infor-
mation directly inferred from the data to concepts in the domain of the data.
Ontology refers to a branch of metaphysics about the study of concepts in a
world (i.e., a reality). This world is commonly referred to in information sci-
ence as domain. The literature abounds with works related to the creation of
ontologies, and to the characterisation of the best methods to create representa-
tions of reality [20]. Ontologies have been used in several areas of knowledge. For
instance, in biological sciences and with the development of the GeneOntology
and the creation of the community of the Open Biological and Biomedical Ontol-
ogy (OBO) Foundry a wide interest rose to use of ontologies in this area [23].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Memmi et al. (Eds.): KSEM 2022, LNAI 13369, pp. 155–171, 2022.
https://doi.org/10.1007/978-3-031-10986-7_13
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Another area where ontologies are widely used is that of information sciences. A
wide literature has been published related to ontologies and their use in basic rea-
soning problems (e.g., [46]), learning (ontologies and queries) (e.g., [41]), privacy
management (e.g., [40]), interactive query formulation and answering (e.g., [29]),
or data cleaning [28]. These are only a few example of the areas of application
of ontologies in information sciences.

Ontologies are used to represent and reason about a domain. There are sev-
eral formalisms with their specific languages that are used to specify domain
knowledge, such as graphs (e.g., [22]), mathematical structures (e.g., [49]), and
logics (e.g., [17]). We found in [32] that there is no consensus to whether an
ontology only includes the concepts and relations of the domain, or if it also
includes the instances of concepts. This aspect led researchers to propose sev-
eral ontology languages based on various formalisms, which only a few of them
are widely being used. Two classes of languages are widely used and they are
related to the family of logic languages, Common Logic (CL) [3], and Ontology
Web Language (OWL) [13,39]. CL is developed from Knowledge Interchange
Format (KIF) [21], which is a variant of Lisp, and its dialects [38]. Hence, the
main language of CL has a functional programming style. There are indications
that CL’s main language is becoming a language based on Extensible Markup
Language (XML), which is called eXtended Common Logic Markup Language
(XCL). On the other hand, OWL has a wider usage and is based on the XML.
Several tools, such as Protégé-OWL editor, support the usage OWL.

Starting from a novel data-centered knowledge representation, called Domain
Information System (DIS) [31], we propose a high level language for ontology
specification. DIS is a formalism that offers a modular structure, which sepa-
rates the domain knowledge (i.e., the ontology) from the domain data view (i.e.,
the data or instances of the concepts). It is specific for dealing with Cartesian
domains where concepts are formed from atomic concepts through a Cartesian
construction. Hence, it is a formalism that takes advantage of a Cartesian per-
spective on information. The bulk of the data in what is referred to as big data
is structured data. It is essentially formed of machine-generated structured data
that include databases, sensor data, web log data, security log data, machines
logs, point-of-sale data, demographic information, star ratings by customers,
location data from smart phones and smart devices, or financial and accounting
data. The size of this data is increasing significantly every second. The need for
better data analytic techniques that go beyond the capabilities of a Database
Management System (DBMS) by connecting the data to concepts that are in
the domain but that cannot be defined in a DBMS. In a DIS, the core com-
ponent of an ontology is a Boolean lattice built from atomic concepts that are
imported from the schema of the dataset to be analysed. In [36], we found that
DIS enables the integration of several datasets and their respective ontologies
for reasoning tasks requiring data-grounded and domain-related answers to user
queries. Currently, the language of DIS is a low level language as it is based on a
set theory, lattice theory, and graph theory. In this paper, we present a high-level
language, called Domain Information System Extended Language (DISEL), that
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is structured and based on XML. It is built on the top of that of current DIS
mathematical language. DISEL uses a mixed structure of directed graphs and
trees to precisely capture DIS specifications. It is also based on XML so that it
can be easily integrated to many software systems. It aims to make specifying
ontologies as easy as possible and without any mathematical complications.

In Sect. 2, we introduce DIS on which DISEL is build. Then, we present
the example that is used to illustrate the usage of the constructs of the lan-
guage. In Sect. 3, we review ontology languages that we found in the literature.
In Sect. 4, we introduce the main elements of DISEL and we illustrate their usage
using the weather ontology introduced in Sect. 2. In Sect. 5, we give the main
design decisions of DISEL. In Sect. 6, we discuss the main features of DISEL, its
strengths, and its weaknesses. In Sect. 7, we present our concluding remarks and
point to the highlights of our future work.

2 Background

2.1 Domain Information System

DIS is a novel formalism for data-centered knowledge representation that
addresses the mapping problem between a set of structured data and its associ-
ated ontology [31]. It separates the data structure from the ontology structure
and automatically performs the mapping process between the two. A DIS is
formed by a domain ontology, a domain data view, and a function that maps
the latter to the first. The construction of the domain ontology structure is based
on three elements O = (C,L,G), where C is a concepts structure, L is a lattice
structure, and G is a set of rooted-graphs. A concept might be atomic/elemen-
tary, or composite. A concept that does not divide into sub-concepts is known
as atomic concept. In DIS and when for example the data is coming from a
database, atomic concepts are the attributes in the database schema. A com-
posite concept is formed by several concepts. The composition of concepts is an
operation ⊕ defined on C. The set of concepts making the structure (C,⊕, ce)
is an idempotent communicative monoid, that we denote by C.

The second component of the domain ontology structure is a Boolean lat-
tice L = (L,�c). It is a free lattice generated from the set of atomic concepts.
The composition between these concepts make up the remaining concepts of the
lattice. The set of concepts of the lattice are either directly obtained from the
database schema (i.e., atomic concepts), or obtained through the Cartesian com-
position of the atomic concepts using the operator ⊕. The relationship between
a concept and its a composed concept that involves it is the relation partOf

denoted by �c.
The last element of the domain ontology is the set of rooted graphs, where

an element Gti
= (Ci, Ri, ti) is a graph on the set of vertices Ci, having the

set of edges Ri, and is rooted at the vertex ti. Rooted graphs represent the
concepts that are somehow related to an atomic or composite concept from the
Boolean lattice. In other terms, they introduce the concepts that are not directly
generated from the database schemes and are related to an atomic or composite
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concept of the lattice through a relationship from the domain. In this way, the
Boolean lattice might be enriched with multiple rooted-graphs having their roots
at different lattice concepts.

Using the previous components, we get the full construction of the domain
ontology O = (C, L, G). The second component of DIS is the domain data view.
Domain data view is abstracted as diagonal-free cylindric algebra A = (A, +, *,
−, 0A, 1A, {ck})k∈L [25]. It is a Boolean algebra with cylindrification operators
{ck} [31]. The cylindrification operators are indexed over the elements of the
carrier set L of the Boolean lattice. The last element of the DIS is the mapping
operator τ , which maps the data in A to its related element in the Boolean
lattice of O structure. The mapping τ is a function that takes a datum from the
data set and returns its corresponding concept in the lattice. Thus, the complete
structure of DIS is D = (O, A, τ). An illustrative representation of the system is
shown in the Fig. 1, where the atoms of the lattice are Attr1 , Attr2 , and Attr3 .
We notice two rooted graphs that are attached to two elements of the lattice.
The reader can find in [36] a comprehensive case study related to a film and
TV domain which illustrates the usage of DIS.

Fig. 1. Abstract view of domain information system.

Hence, the formalism of DIS uses a basic mathematical language which is
that of lattices, relations, sets, and graphs. The need for a high level language
based on the current mathematical language of DIS would extend its use to users
who are not well versed in mathematics.

2.2 Illustrative Example

In this paper, we use an example of a weather ontology. Figure 2a gives the
dataset that to considered for the example. Figure 2b gives the Boolean lattice
associated with the dataset of Fig. 2a (which is borrowed from [7]). We notice
that the first level of the Boolean lattice consists of all attributes of the dataset,
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which are known as atomic concepts. Then, the upper levels are just compositions
between these atomic concepts. The top element of the obtained lattice is called
“Weather”, which is a composition between all atomic concepts. The lattice
alone, while it brings all the concepts obtained from the dataset, is not enough
to capture all concepts of the weather domain. For that reason, the need to
construct rooted-graphs is essential. More concepts are added to the rooted-
graphs, then linked to the Boolean lattice specific concepts by the relation of the
graph. For example, the rooted-graph Seasons is linked to the top of the lattice
Weather using IsAssociated relation as shown in Fig. 2c.

(a) Weather dataset
(Borrowed from [7]) (b) The Boolean lattice (c) One of the Rooted graphs

Fig. 2. A Dataset, its Boolean lattice, and one example of a rooted graph

3 Literature Review on Languages for Ontologies

The literature (e.g., [35]) reveals that there are two trends in developing ontology
languages. The first is based on functional languages. The second is XML-based.
For more exhaustive surveys on the ontology languages, we refer the reader
to [35]. In the following section, we present a brief review to reflect the latest
developments in this area.

3.1 Functional Languages

The main functional languages are KIF and CL. KIF [21] was proposed by Stan-
ford AI Lab in 1992. It can be considered as a Domain-specific Language (DSL)
based on Lisp. Although v language is capable of articulating specifications of
ontologies, it is designed to interchange the knowledge among different programs.
Many organizations designed dialects of KIF or proposed extensions to KIF (e.g.,
IDEF5 [42] or OBKC [12]) to specify ontologies.

CL [3] is a framework that contains a family of languages, which are called
dialects. Currently, CL has three dialects: Common Logic Interchange Format
(CLIF), Conceptual Graphs Interchange Format (CGIF), and XCL. The dialect
CLIF can be considered a simplified form of KIF 3.0. Therefore, its syntax is
very similar to KIF; they have Lisp-like syntax [3]. The dialect CGIF is to
describe conceptual graphs. It has two versions: Core CGIF and Extended CGIF.
The dialect XCL has an XML-based syntax. Actually, XCL is currently the
recommended syntax in CL, and the latter can be converted into XCL directly.
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3.2 XML-Based Languages

We explore the two main XML-based languages: DARPA Agent Markup Lan-
guage + Ontology Interchange Language (DAML+OIL) and OWL. DARPA
Agent Markup Language (DAML) [15] was merged with Ontology Inter-
change Language (OIL), which lead to the name DAML+OIL. The language
DAML+OIL is a markup language for web resources and it is based on Resource
Description Framework (RDF) and Resource Description Framework Schema
(RDFS). It gave a strong base for OWL [39], which is designed by W3C.

OWL is a markup language and it is based on DAML+OIL. That means
OWL has a relatively fixed format so that it can be easily reasoned on ontologies
written with it. Actually, OWL has become the most used language in ontology
modeling. The second version of OWL is called OWL2 [13]. In [13], the reader
can find a table comparing the different types of OWL grammars.

OWL2 has two semantics for reasoning. One is the Direct Semantics [24], the
other is the RDF-Based Semantics [45]. Using the Direct Semantics, ontologies in
OWL2 Description Logic (DL) can be translated to SROIQ which is a particular
DL, so that OWL2 could use some DL reasoner. Using the RDF-Based Seman-
tics, ontologies can keep the original meaning. In that way, we can say OWL2
DL is a subset of OWL2 Full. We provide a comparison between all previously
mentioned languages in Table 1.

Table 1. Comparison of ontology languages

Language Original grammar Based theory Extension

KIF Lisp First-order logic IDEF5

CL CFIL, CGIL, XCL First-order logic –

DAML+OIL XML RDF, RDFS –

OWL2 DL RDF/XML, OWL/XML,
Turtle, Functional Syntax,
Manchester Syntax

Direct Semantics - DL MOWL, tOWL

OWL2 Full RDF-based semantics

3.3 Other Ontology Languages

The area of knowledge representation and reasoning involves an indispensable
amount of uncertain, and vague information. However, ontology languages are
known to be definite (i.e., a concept or relationship exists or not). By default,
no support to uncertainty or vagueness is involved in the existing languages [19].
We started observing the rise in exploring languages for probabilistic or fuzzy
ontologies, which are ontology languages that are extended with probabilistic or
fuzzy formalisms in order to represent uncertainty and vagueness in the domain
knowledge. Several efforts to explore such an extension are ongoing. Existing
formalisms to handle uncertainty/vagueness in ontology languages are fuzzy
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logic [51], Bayesian Network (BN) [19], and Dempster Shafer Theory (DST) [37].
Some of the recent approaches that apply probabilistic ontology using BN frame-
work are: BayesOWL [18] and PR-OWL [14]. BN framework is a well-known
model to handle uncertainty. However, it was noticed that extending ontol-
ogy languages with such structure is not an easy task. Moreover, it produces a
complex framework [11]. On the other hand, fuzzy ontology approaches include
fuzzyOWL [47], and fuzzyOWL2 [10]. Combining fuzzy logic and BN is another
approach to get probabilistic ontologies. An example of DST-based ontology is
presented in [9]. Several reviews regarding uncertainty management in ontology
modelling are available like (e.g., [34,44]).

3.4 Summary

In [35], we find that the most of the ontology languages have the same source and
have been sponsored by Defense Advanced Research Projects Agency (DARPA).
This limits the diversity among these languages despite their large number. If not
disrupted by new ideas, ontology languages tend to have a relatively predictable
direction towards a family of similar languages. There is a trend leading to
having a family of languages where its members are simple dialects. This has
the risk of limiting the extent of usage of these dialects to a class of ontologies.
The diversity of languages based on different formalisms is the way to eventually
converge towards the objective of designing more simple and expressive ontology
languages. Our efforts to design a new language, DISEL, that is based on DIS
formalism is towards reaching this objective.

4 DISEL Syntax and Support Tool

In this section, we present the syntax of DISEL language and the features of
DISEL Editor (DISEL) tool, which can be downloaded from [2]. The syntax of
DISEL is based on XML language. The main component of DISEL is the part
for specifying ontologies. Following the DIS formalism for defining ontologies,
DISEL’s ontology structure is formed of five elements as indicated in Table 2.
We allocate a subsection for the first and second elements and then a subsection
is dedicated for each of the three remaining elements of this structure. The
complete DISEL specification of the Weather ontology of the example given
in Subsect. 2.2 is available in [5]. An XML schema of DISEL is given in [6]. We
also developed a tool named DISEL Editor. It enables ontology specifiers to use
a graphical user interface to enter the necessary elements of an ontology, then
the system automatically generates the full specification within DISEL language.
The current features of DISEL Editor include visual editing ontology, displaying
the Boolean lattice of the ontology and visualizing the rooted graph attached
to the concepts of the lattice. In the following subsections, we guide the reader
through the specification of the weather ontology to illustrate the usage of DISEL
Editor tool to specify the Weather ontology.

172



162 Y. Wang et al.

Table 2. Main constructs of an ontology

Element name Description Type Cardinality

include A language construct for
including the needed domain
information or ontologies
from other files

includeType [0, +∞)

name The name of ontology string only one

atomDomain The atoms of the domain atomDomainType only one

concept The definition of the concept conceptType [0, +∞)

graph The relation between
concepts

graphType [0, +∞)

4.1 DISEL Editor Interface Overview

In Subsect. 2.1, we indicated that a DIS ontology is formed by a lattice that
is obtained from a given set of atomic concepts. The lattice of concepts is then
systematically generated as a free Boolean complete lattice from the given set
of atoms. The interface of DISEL Editor, which is shown in Fig. 3, enables users
to obtain the lattice of concepts from the set of given atomic concepts. The
left dock window of DISEL Editor mainly shows the Atoms of the domain and
Concept information. The right upper tab window shows the Boolean lattice
generated from the set of atomic concepts that are provided in the Atoms of the
Domain. If the user clicks a concept in the shown Boolean lattice, DISEL Editor
changes the tab to show the rooted graph attached to (rooted at) this concept.
The bottom right text edit shows the definition of the selected concept.

Fig. 3. Interface overview
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4.2 Name and Include Constructs

The name construct is to be used for giving a unique name to the ontology.
As illustrated in [36], DIS allows the integration of several ontologies for a more
complex reasoning task than on a single ontology. To allow the usage of concepts
and relationships of an external ontology within the specified one, we use the
construct include to bring the sought external ontology. The include construct
uses as parameters a name attribute and a filePath attribute. The name element
specifies the name of the ontology to be included. The FilePath gives the path of
included ontology file. Listing 1.1 illustrates the usage of the include construct.
Sometimes we do not need to include the whole ontology. Sometimes, all what is
needed is a vertex (or a set of vertices) that is shared between the constructed
ontology and an external ontology. In this case, the usage of that vertex is as
illustrated in Listing 1.2, where the vertex summer is from an ontology named
“OntExample” that has been included using the include construct.

Listing 1.1. Code of include

<i n c lude name=”OntExample” f i l ePa t h=”OntExample . xml” />

Listing 1.2. Code of include

<edge>
<from DIS=”OntExample”>Summer</from>
<to>Seasons </to>

</edge>

4.3 AtomDomain Construct

AtomDomainType can only be included by an ontology with an alias atomDo-
main. It defines all the atoms of the ontology being specified. An atom is the
elementary concept in the sense that it cannot be obtained by the composition of
other concepts (for further mathematical details on the notion of atoms, we refer
the reader to the theoretical foundation of DIS [31,36]). Several types, such as
concept or atomSet, make use of atom. The XML schema of AtomDomainType
and AtomDomain is illustrated in [6]. The main constructs of an atom are given
in Table 3. Using DISEL Editor, the user can click the “Add” Button (see Fig. 3)
to create a new atom and show the information. While displaying the details of
AtomDomain, DISEL Editor shows the Boolean lattice of the current ontology
built by AtomDomain as illustrated in Fig. 3. Hence, the user can have a clear
understanding of the structure of the ontology.

4.4 Concept

The construct concept is the core element in DISEL language. It is used to
specify the concepts that are used in the ontology. The main constructs used in
concept are given in Table 4. Any concept, other than the atomic ones and the
ones generated from them to build the Boolean lattice, is introduced using the
construct concept. In Listing 1.3, Line 2 introduces the concept Temp.
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Table 3. Main constructs of an atom

Element name Description Type Cardinality

name The name of the atomic concept string only one

description The description of the atom concept string at most one

Table 4. Main constructs of a concept

Element name Description Type Cardinality

name The name of ontology string only one

latticeOfConcepts The set of atoms from which the
lattice is built

latticeOfConceptsType only one

fefinition The formulas used by concept string at most one

fescription The description of concept string at most one

Listing 1.3. Example of latticeOfConcepts

<l a t t i c eOfConcepts >
<concept>Temp</concept>
<atom>minTemp</atom>
<atom>maxTemp</atom>

</la t t i ceOfConcepts >

The construct LatticeOfConcepts is a set of atoms from which the lattice of
concepts is constructed using a Cartesian product construction. Hence, all the
concepts of the lattice are tuples of these atoms. If we have n atoms, then the
top element of the lattice is an n-tuple of the atomic concepts. It is possible
that under latticeOfConcepts we find only the atoms and the concepts obtained
from them. Also, not all the concepts obtained from the atom have a meaning
in the domain of application. The ones that do have a meaning are given the
names used for them in the domain of application. In Listing 1.3, we provide an
example of the latticeOfConecpts for the concept Temp, which is the name in
the weather domain for the tuple formed by atoms minTemp, and maxTemp. We
also provide a syntactic sugar called atoms and its usage is illustrated in Listing
1.4. It has been shown that the number of attributes in a well normalized dataset
schema rarely exceeds ten [48]. Since each attribute would give an atomic con-
cept, then the number of atomic concepts, associated to a normalized database,
rarely exceed ten concepts.

Listing 1.4. Syntactic sugar of atom in LatticeOfConcepts

<l a t t i c eOfConcepts >
<atoms>Ra i n f a l l Humidity</atoms>

</la t t i ceOfConcepts >
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It is common that in a domain related to a data set we have more concepts
than the ones obtained from the atomic concepts. For instance, we might need
new concepts related to concepts in the lattice through a rooted graph. In this
case, DISEL Editor enables the ontology specifier to add a new concept as shown
in Fig. 4.

Fig. 4. The concept tab window and dialog

The construct definition brings additional information about the concept.
For instance, the mathematical definition of the concept can be presented using
definition. For the convenience of writing, we adopted an Isabelle-like syntax
to be used to mathematically define concepts that we omit in this paper for
conciseness. At this stage, we can simply say that the type of definition is a string.
Specific syntactical analytic work is entrusted to a lexer and parser. Operators
that contain < and > may cause ambiguity, regarding whether they are part of a
markup text or simply part of a textual definition. We recommend to the user to
adopt XML CDATA1 to write the content that goes into definition. An example
of using CDATA to write the a definition is shown in [6]. The Backus-Naur Form
(BNF) of definition is shown in [1].

Finally, the construct description is to enable the ontology specifier to doc-
ument the ontology by adding descriptions of the introduced concepts.

4.5 Graph

The part graph of the specification of an ontology is to introduce the rooted
graphs that bring other concepts than what we have in the lattice of concepts.
It also brings relationships among these newly introduced concepts. This part of
the specification is for what is called rooted graphs in DIS, which are graphs that
must have their roots in the lattice of concepts. The main constructs used to

1 CDATA stands for Character Data and it indicates that the data in between these
strings should not be interpreted as XML markup.

176



166 Y. Wang et al.

introduce rooted graphs are given in Table 5. The constructs name and rootedAt
are self-explanatory. The construct edge is to introduce an edge in the specified
graph and it uses two sub-constructs, from and to, to give the endpoints of
an edge. The construct relation gives the set of edges of the graph. It also
uses sub-construct properties to introduce the properties of the relations such
as symmetry, transitivity, or being an order. The reader can find in [6] the
specification of the rooted graph that is presented in Fig. 2c.

Table 5. The main constructs of a graph

Element name Description Type Cardinality

name The name of rooted graph string only one

rootedAt The root node of rooted graph string only one

edge The structure of rooted graph edgeType [0, +∞)

relation The list of edge relationType [0, +∞)

5 Design Decisions

In the following, we present the main design decision for DISEL language. The
first design decision is related to basing the language on XML. The latter is
currently a widely used markup descriptive language. Many tools provide appli-
cation programming interfaces for XML to store and exchange information. XML
has a stable grammar that can be parsed easily. Basing a high level DIS language
on XML would increase the usage of DIS-ontologies by a wider community of
users. The exchange between the many ontologies languages that are based on
XML will be enhanced. We have considered basing DISEL language on functional
languages. Most popular languages are imperative languages. These languages
focus on how to process the problem. Functional languages recognize function
as first-class citizen. In some cases, functional language can regard its code as
information and modify its code. Traditional ontology languages, such as KIF,
expand Lisp’s grammar in this way. But the grammar of functional language is
too free and powerful to control. These are the reasons for taking the decision
to not base DISEL on functional languages.

6 Discussion

This paper presents the main syntactical constructs of DISEL language, which
was designed as a language for specifying DIS-based ontologies. The adoption
of this language would enable the creation of shareable ontologies for the devel-
opment of ontology-based systems such as the ones characterised in [27]. The
language DISEL is based on DIS formalism that is conceived for the specification
of information system. Therefore, it inherits the strengths and the shortcomings
of this formalist. As it is illustrated in [36], the DIS enables the construction of an
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information system in a bottom-up approach. To model the domain knowledge,
which is captured by the ontology element in DIS, we start from the attributes
found in the schema of the dataset to form the set of atomic concepts. The lat-
ter is then used to form a free Boolean lattice that its elements are constructed
from the atomic concepts using a Cartesian product construction. Then, we bring
additional concepts to the ontology by adding the rooted graphs. Each of these
graphs brings new concepts that are related to the concepts generated from the
datasets. Hence, any concept in the ontology is related to the dataset under
consideration. That is why the rooted graphs must have roots in the lattice of
concepts. As it is indicated in [36], formalisms such as DL [8], Ontology-Based
Data Access (OBDA) [50], and Developing Ontology-Grounded Methods and
Applications (DOGMA) [26] offer a clear separation of the domain ontology
from the data view. Then they need to match the data schema to the concepts
in the domain. This activity is called the mapping activity, which introduces non-
trivial challenges [50]. To avoid these challenges, the designers of DIS adopted a
data-guided approach for the construction of the ontology. The DIS formalism is
limited to a Cartesian world: the concepts of the lattice are tuples of concepts.
This means that concepts that are composite are formed by the Cartesian prod-
uct of atomic concepts. This is the case for the realities/domains where data is
structured (e.g., relational data bases or log files). DIS puts the data in the data
view and the domain knowledge in the ontology. This separation of concern in
the design of DIS enables an ease in the evolution and aging of its specification.

As previously indicated, the current language of DIS is formed by basic
mathematical languages of lattices, relations, graphs, and relations. We pro-
pose DISEL language as a high-level language that eases the specification by
guiding the specifier through the specification process and by hiding the above
low level mathematical language as much as possible. The DISEL Editor enables
the ontology specifier to interactively specify and change the ontology with ease.
It constitutes a visualisation system of the specified ontology. We aim at fur-
ther enhancing this system as we discuss in Sect. 7. The tools that compare to
DISEL Editor are Protégé and Eddy [33]. The first supports standard OWL and
enables the translation to a family languages. The second, Eddy, has an impor-
tant feature, which enables the use of Graphol language to graphically handle
ontologies.

An ontology specified using DISEL is intended to be compiled into a for-
mal Isabelle [4] specification. Then we use the proof assistant Isabelle/HOL to
automatically generate the DIS theory, as an extension of the HOL-Algebra the-
ories with explicit carrier sets. We explicitly representing the carrier sets of the
several algebraic structure used in their corresponding classes and locales. This
approach allows us to use a less complex approach for building the free Boolean
lattice component, and for reasoning on a DIS [36]. Then, the obtained DIS the-
ory is used to reason on the dataset and to generate fact-grounded knowledge
from the given data.
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7 Conclusion and Future Work

In this paper, we introduced DISEL and presented its main syntactical con-
structs. We used an example of a simplified weather ontology to illustrated its
usage. We also presented DISEL Editor, which enables us to write, modify, and
visualize a DISEL specification. Our future work aims at further enhancing the
capabilities of DISEL Editor. First, we plan to add to DISEL Editor capabil-
ities for compiling DISEL specification into a formal Isabelle [4] specification.
This work is at the publication stage and its software modules are at the testing
stage. Second, we aim at enhancing the visualization system of DISEL Editor
by adding capabilities related to ontology module visualization. If an ontology is
large and there is a need to automatically visualize or extract a module from it,
then DISEL Editor should be able to carry the extraction and the visualization
of the obtained module. We will consider the modularization techniques pre-
sented in [30,32] and that are appropriate for DIS ontologies. Third, we aim at
adding to DISEL Editor an API to ease the link between the considered dataset
and its ontology.

In [19], we found that there is no support to uncertainty or vagueness is
involved in existing ontology languages [19]. We aim at extending the syntax of
DISEL to enable the specification of uncertainty in ontologies. This would give
DISEL capabilities for data and statistical analysis. In such a way, we would
be able to use statistical reasoning on dataset or define probabilistic or fuzzy
concepts. We also aim at using ontologies specified using DISEL to tackle data
cleaning in continuation of the work given in [28].
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