
GEOMETRIC DEEP LEARNING FOR TIME

SERIES AND FOUNDATION MODELS

GEOMETRIC DEEP LEARNING FOR FINANCIAL TIME SERIES

AND EFFICIENT FINE-TUNING OF FOUNDATION MODELS

BY

REZA ARABPOUR DAHOEI, B.Sc.

a Thesis

submitted to the Department of Computational Science and

Engineering

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Master of Science

© Copyright by Reza Arabpour Dahoei, August 2025

All Rights Reserved

Master of Science (2025) McMaster University

(Department of Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Geometric Deep Learning For Financial Time Series and

Efficient Fine-Tuning of Foundation Models

AUTHOR: Reza Arabpour Dahoei

B.Sc. Mathematics and Applications

SUPERVISOR: Anastasis Kratsios

NUMBER OF PAGES: xv, 102

ii

Lay Abstract

This thesis presents two contributions at the intersection of artificial intelligence and

mathematics.

First, I introduce a novel method for adapting large language models on widely

available hardware. This approach recovers half of the performance lost when using

an untuned base model instead of a GPU fine-tuned one, while running on a single

laptop with minimal cost and energy consumption. It makes specialized models more

accessible, preserves privacy by keeping data local, and promotes environmentally

responsible computing.

Second, I develop a practical framework for working with history-dependent stochas-

tic processes commonly used in quantitative finance. Such processes are often too

large to compute efficiently. The method proposed here compresses them into a

low-dimensional representation and then applies a computational model, enabling

efficient simulation, estimation, and practical application.

Together, these contributions introduce novel algorithms capable of addressing

real-world problems from fresh perspectives.

iii

Abstract

This thesis presents two significant research contributions: one focuses on improving

the adaptation of large language models (LLMs) using parameter-efficient fine-tuning

(PEFT), and the other addresses the effective modelling of history-dependent stochastic

processes—specifically Volterra processes, which are commonly applied in quantitative

finance.

In the first part, I introduce a user-friendly adaptation pipeline that boosts the

performance of a standard foundation model, bringing it much closer to a fully fine-

tuned, task-specific version. Remarkably, it achieves this while using significantly

less compute and memory, all while keeping data private. The pipeline leverages

existing learnable low-rank adapters (LoRA) for known datasets and predicts adapter

values for new datasets using this readily available information. Its main advantage

is that it can run on a standard laptop without requiring GPU power, ensuring that

data remains local. This method effectively closes about half of the performance gap

between an untuned base model and a fully fine-tuned one, making specialized models

more accessible to researchers, practitioners, and everyday users who lack expensive

infrastructure or work with sensitive data on devices like smartphones.

The second part addresses a computational challenge in translating the non-

Markovian Volterra process into a format suitable for computation. This translation is

iv

difficult because the data history dimension affecting the current state grows with the

length of the path. I propose a two-step approach to make this process manageable:

first, the Volterra process is mapped onto a simpler, lower-dimensional manifold; then, a

geometric deep learning model—a “hypernetwork"—is applied, specifically designed for

the manifold’s structure. We provide both mathematical and computational evidence

demonstrating the model’s effectiveness and practicality (with proofs developed by

co-authors available in the main paper), along with extensive testing of each parameter

to validate our approach.

v

To my family—especially my father,

who passed away while I was studying abroad. I could not be by his side.

He is and always will be deeply missed.

vi

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Dr.

Anastasis Kratsios, for his unwavering support, invaluable advice, insightful comments,

and guidance throughout my master’s program. It is no exaggeration to say I feel

lucky to have him as my supervisor. His constant support and understanding have

played a crucial role in all aspects of my life and my research in the last two years. I

deeply believe many of the good things that happened to me simply could not have

been possible without his support, and I will always be thankful for the opportunities

and the trust he provided to me.

Next, I would also like to thank my family and my partner, who have been the

strength in my heart and the reason in my mind to push through and not give up.

Not a single second passed without thinking of them. Without their sacrifice, I could

not be here.

Last but not least, I am profoundly grateful to Dr. Erin Clements, Hanadi Attar-

Elbard, Emily Warnock, and Dr. Ben Bolker for their constant support, which made

me feel like I truly belonged where I am. Also, McMaster University, the Vector

Institute, Canadian Institute for Advanced Research, Bank of Montreal, Mitacs, the

Province of Ontario, and the Government of Canada for providing me with the

opportunity and resources to learn, enjoy, and contribute to the things I love.

vii

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

Abbreviations xii

Declaration of Academic Achievement xiv

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 5

2 LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation

Framework for LLMs 14

2.1 Introduction . 16

2.2 Related Work . 17

2.3 Preliminaries . 18

2.4 LoRA Generation Pipelines for CPU 20

viii

2.5 Theoretical Guarantees . 22

2.6 Experimental Results . 25

2.7 Conclusion . 27

2.8 Appendix . 39

3 Low-dimensional approximations of the conditional law of discrete-

time Volterra processes: a non-positive curvature approach 64

3.1 Introduction . 66

3.2 Model Structure . 69

3.3 Ablation Study . 72

3.4 Ablation Results . 75

3.5 Conclusion . 82

3.6 Appendix . 84

4 Conclusion 99

ix

List of Figures

2.1 Coefficient distributions for each approach. 58

3.1 The GDN model. 69

3.2 The HGN model. 70

3.3 Situation I - Nearly Logarithmic Degradation of HGN Accuracy . . . 81

3.4 Situation II - Nearly Perfect GDN Prediction by HGN 82

3.5 Typical Learning Curves - Including Cases With Exploding Gradients 89

x

List of Tables

2.1 Performance of our cheap LoRA pipelines. 26

2.2 Time elapsed for each step of the pipeline for all 502 datasets at once

(CPU only). 51

2.3 Exact match performance of our lightweight LoRA prediction pipelines. 57

3.1 Drift Ablation: Sensitivity to the structure of the drift (µ) of X. . . . 76

3.2 Random Factor Ablation: Sensitivity to the randomness (λ) in the

stochastic factor process S. 77

3.3 Dimension Ablation: Sensitivity to Dimension (d) of the Volterra

Process X. 77

3.4 Non-Markovianity Ablation: Sensitivity to the persistence of memory

(w) in X. 78

3.5 Diffusion Ablation: Sensitivity to the size of the fluctuations (ς) in the

diffusion of X. 79

3.6 Curvature Ablation: Sensitivity to the size of the fluctuations (ς) in

the diffusion of X. 80

3.7 Examples of Exploding Gradients . 90

xi

Abbreviations

AI Artificial intelligence

C.I. Confidence interval

CPU Central processing unit

CSE Computational Science and Engineering

EM Exact match

GB Gigabyte

GDN Geometric deep neural network

GPU Graphics processing unit

HGN Hypergeometric network

i.i.d. Independent and identically distributed

JS Jensen–Shannon divergence

IMSE Intrinsic mean squared error

KAN Kolmogorov-Arnold networks

xii

KL Kullback–Leibler divergence

LLM Large language model

LoRA Low-rank adaptation

MB Megabyte

ML Machine learning

MLP Multi-layer perceptron

MMD Maximum mean discrepancy

MoE Mixture of experts

MSE Mean squared error

PEFT Parameter efficient fine tuning

RAM Random access memory

ReLU Rectified linear unit

RNN Recurrent neural network

SDE stochastic differential equation

SSD Solid-state drive

std. dev. Standard deviation

WD Wasserstein distance

xiii

Declaration of Academic Achievement

These research contributions have been done during the terms of my master’s degree:

1 Reza Arabpour, John Armstrong, Luca Galimberti, Anastasis Kratsios, Giulia

Livieri. “Low-dimensional approximations of the conditional law of discrete-time

Volterra processes: a non-positive curvature approach”. Under review at Analysis

and Applications, May 2024.

– Contributions: Implemented and ran all the coding, numerical experiments,

and ablation studies for the parameters. Introduced ideas to incorporate

a new form of transfer learning and parallelization into the pipeline, as a

result of which, the framework has become 60 times faster in practice and

can be used to solve problems of much larger dimensions in a rational time.

2 Reza Arabpour, Haitz Sáez de Ocáriz Borde, Anastasis Kratsios. “LoRA

Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for

LLMs”. Accepted to International Conference on Machine Learning (ICML)

2025 Workshop on Efficient Systems for Foundation Models, July 2025.

– Contributions: Have been a part of the idea development and done all

the coding and experiments during that phase, and for the final version of

xiv

the framework as well. Have done one third of the writing and proposed

multi-threading and parallelization into the pipeline, making the framework

execution time reasonable for end users.

3 “ Enhancing Predictive Power in Financial Markets: Leveraging Autoencoders

for Time Series Embeddings in Capital Markets ”. Ongoing six-month research

project through Mitacs and in partnership with the Bank of Montreal (BMO).

– Contributions: Created a comprehensive financial data generation system

using the state-of-the-art mathematical finance models to generate a large

amount of high-quality data useful for training and stress testing deep

learning models. Currently working on extracting meaningful features

using wavelet analysis techniques and the transformer architecture.

xv

Chapter 1

Introduction

The recent wave of advancement of artificial intelligence (AI) and machine learning

(ML) has revolutionized numerous domains by enabling the analysis and prediction

of complex, high-dimensional data in different shapes and formats, from numbers to

images/audio, and even text. At their core, neural networks are fascinating tools that

are mathematical models invented in the last 80 years [1] and are continually evolving.

These models are becoming the state of the art in various challenging computational

tasks, such as natural language processing (NLP) [2] or computer vision [3]. Despite

being under the same umbrella of deep learning, the underlying data that different

models are being created for is inherently different, and this difference can change

many things. A model that works well on a specific type of data might not be even

close to the performance of a different one on another data [4]. These phenomena

point to a fundamental question: the study of different data shapes along with the

capabilities of different family of models or algorithms and their ability to represent or

learn them. This study involves leveraging the geometric structures inherent in data

to design more efficient and practical models, which is called geometric deep learning.

1

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[5]

This thesis works on the same perspective but from a computational aspect.

It explores two distinct yet structurally related contributions: the development of

a framework for adapting large language models (LLMs) efficiently under realistic

compute, cost, and privacy constraints; and the creation of practical approximations

for conditional dynamics of history-dependent (non-Markovian) Volterra processes

that arise in many areas like mathematical finance. The thread connecting these two

research ideas is the task of approximating or predicting the internal parameters of a

machine learning model that solves a desired problem using a higher-level model. In

our case, our downstream problem solver models are primarily deep neural networks,

and the higher-level model proposed is known as a hyper-geometric network (HGN),

which will be the main focus of the third chapter and the core idea of the framework

presented in the second chapter. A major reason for focusing on this point of view is

its ability to address critical challenges in accessibility, scalability, and computational

feasibility simultaneously, thereby bridging the theoretical insights from mathematics

to real-world applications.

1.1 Motivation

A big portion of the AI revolution in the past few years has been a direct result of the

invention of very large models with billions of parameters pre-trained on vast datasets

and capable of general-purpose tasks. A pre-training has been done on the entire

data on the internet, which embodies a huge portion of all the information generated

by human beings in history. These large models, called foundation models [6], such

as GPT [7], Llama [8], Gemini [9], and Mistral [10] models, exemplify this trend,

2

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

demonstrating remarkable capabilities in language understanding and generation.

However, despite their capability, they are rarely perfectly aligned with a new, domain-

specific task. Their deployment for specialized tasks, thus, often requires fine-tuning, a

process in which the model parameters are updated to align more with domain-specific

data. As models and datasets scale up, full end-to-end fine-tuning of these large

foundation models simply becomes impractical for many due to memory, compute,

cost, and data-governance constraints. This crucial problem has been addressed by

parameter-efficient fine-tuning (PEFT) [11] techniques, offering a strong trade-off

between performance and efficiency by modifying only a small subset of parameters

while keeping most of the model parameters frozen. Among these, the Low-Rank

Adapter (LoRA) [12] approach has become standard due to its combined simplicity

and surprisingly powerful effectiveness, often changing as few as 1-4% of parameters

while maintaining +90% of performance [12]. However, most PEFT pipelines still

assume GPUs to generate outputs and calculate the task-specific gradient to update

parameters, which, for modern massive LLMs, makes LoRA fine-tuning still expensive

and inaccessible to many. Thus, a pertinent question arises: Can one generate new

low-rank adapters to fine-tune large language models on new tasks without the need

for GPUs?

Shifting focus to the domain of quantitative finance, one of the main use cases

of mathematics and machines in finance is the task of modelling, simulating, or

approximating financial time series. These mathematical models are the heart of

many downstream tasks, such as risk management and asset pricing, and affect the

entire economy every day. There has been a long history of financial markets like

stock markets, which date back to the 1500s; however, the mathematical modelling

3

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

of financial markets arose centuries later in the 1900s when Louis Bachelier used

probability theory in his thesis titled The Theory of Speculation to introduce a

stochastic process today known as Brownian motion [13]. Stochastic processes are

the mathematical tools that are being used to study and model the randomness in

many fields and have been advanced to express more complex behaviours, such as

history-dependent random processes. Not surprisingly, many financial time series

exhibit long memory (history-dependence), unlike Markovian processes, where future

states depend only on the current state. A family of models that are capable of

modelling such processes is the Volterra processes. Volterra-type models, including

rough-volatility families [14], incorporate the entire historical path, making them

suitable for phenomena like volatility clustering or long-memory effects in asset prices.

However, despite their theoretical promises, they come with practical drawbacks. Such

processes are often too large to be feasible to compute efficiently when translated into

the computational world, since the effective history dimension affecting the current

state grows with the length of the path. In this situation, where traditional approaches,

such as Monte Carlo methods or numerical solutions to stochastic differential equations

(SDEs), become infeasible for long horizons or high-dimensional settings, a gap in

theory and practice becomes more obvious: How can one use these promising non-

Markovian models, like the Volterra, in practice to simulate or approximate with them

efficiently?

Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 details the LoRA meta-

generation framework, including preliminaries on datasets as probability distributions,

4

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

the proposed pipelines (attentional, normalized, and neural), theoretical guarantees via

propositions and theorems, and experimental results on downstream tasks. Chapter

3 focuses on the low-dimensional approximations for Volterra processes, introducing

a novel geometric deep learning model, ablation studies on Volterra processes with

varying key parameters to see the empirical results of the model’s performance, and

appendices with algorithms and additional figures. And finally, Chapter 4 concludes

this thesis with a summary and future directions.

1.2 Contributions

Chapter 2

This chapter addresses the first question mentioned above: “Can one generate new

low-rank adapters to fine-tune large language models on new tasks without the need

for GPUs?” by introducing a zero-shot LoRA meta-generation procedure. The

answer developed here is to directly predict the adapter parameters using only CPU,

without any gradient calculation or training, thus no GPU at all; just a fast, on-

device post-processing step that preserves privacy and reduces cost to a fraction while

improving the performance of the foundation model by more than 150% on the given

dataset. At the core, the framework combines the knowledge of a bank of pre-trained

LoRAs using distributional alignment between the new dataset and previously fine-

tuned adapter weights on known datasets that can be freely found on the internet.

Finding this optimal combination or mixture of LoRAs is theoretically grounded in

propositions and theorems that demonstrate, with high probability, a ReLU Multi-

Layer Perceptron (MLP) architecture, designed to run efficiently on a CPU, can

5

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

identify the optimal coefficients for combining existing LoRAs. These optimal LoRA

mixture coefficients, representing a weighted sum of pre-trained LoRA parameters,

are determined based on the given dataset alignment features. This process effectively

minimizes the downstream task loss, which measures the model’s error on new, specific

tasks. Additionally, this work provides nearly optimal closed-form solutions through

lightweight, neural network-free alternatives (e.g., the Attentional or Normalized

approaches). Interestingly, experiments reveal that the neural network-free variants

of the pipeline perform comparably to the theoretically near-optimal neural network

solution (the MLP-based approach).

We conducted a series of comprehensive experiments [15] on more than 500 datasets

[16] using a large language model (LLM), Mistral-7B-v0.2 [10], that is powerful out

of the box, but fine-tuning it for specific tasks often demands industry-grade GPU

resources. In experiments, we tested three different versions of our pipeline across

502 dataset–adapter pairs and measured using the “Rouge-L” metric. The adaptation

was done exclusively on the CPU, while GPUs are used only to evaluate the adapted

models. The best lightweight pipeline reached Rouge-L of ≈ 0.52 on average, filling a

large portion of the performance gap between the base model with a Rouge-L score of

≈ 0.19 and the fully GPU fine-tuned models (Rouge-L score of ≈ 0.75 on average). In

other words, the pipeline “recovers roughly half” of the lost accuracy at nearly zero

cost.

Chapter 3

This chapter addresses the second question mentioned, “How can one use these promis-

ing non-Markovian models, like the Volterra, in practice to simulate or approximate

6

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

with them efficiently?” The solution proposed to this challenge, overcoming the curse

of dimensionality, is presented as a two-step framework: first, project the (infinite-

dimensional) conditional law of the process onto a low-dimensional statistical manifold

of non-positive curvature. Second, on that manifold, apply a sequentially geometric

deep learning (GDN) model with a hyper-geometric network, or hypernetwork in short,

that updates internal parameters of these GDNs over time. In simpler words, we

show that by compressing the law into a curved but controlled space and learning on

that space with a hypernetwork, the conditional evolution of non-Markovian systems

becomes computationally feasible and stable enough for real applications in finance.

The hypernetwork can also be read as a gating mechanism in a mixture-of-experts

view, letting the model adapt to evolving, non-stationary dynamics. The effectiveness

and feasibility of the proposed model are mathematically and computationally proven,

with mathematical proofs available in the main paper [17], and supported by an

extensive ablation study of each parameter [18]. As can be seen with the extensive

ablation studies examining sensitivity to drift (µ), randomness (λ), dimension (d),

memory persistence (w), fluctuations (ς), and curvature at Chapter 3, the approach

shows strong empirical results, with the hypernetwork generated GDNs for future

time steps often tracking the trained GDNs on those time steps closely over time.

All together, the work presented in this thesis introduces practical algorithms for

real-world problems through an efficient, novel, and geometry-aware lens. Allowing

for the modelling of sophisticated processes within a reasonable time frame with an

acceptable error bound, and prioritizing efficiency without sacrificing performance,

paves the way for more accessible and sustainable AI practices. These works not only

advance methodological frontiers but also underscore the value of interdisciplinary

7

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

thinking, combining computational science, engineering, and mathematics to address

current challenges in machine learning and finance.

8

Bibliography

[1] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943. URL

https://doi.org/10.1007/BF02478259.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems, volume 30. Curran Associates, Inc.,

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521,7553:436—-444, 2015. URL https://doi.org/10.1038/nature14539.

[4] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/

4235.585893.

[5] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric

9

https://doi.org/10.1007/BF02478259
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1038/nature14539

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

deep learning: Grids, groups, graphs, geodesics, and gauges, 2021. URL https:

//arxiv.org/abs/2104.13478.

[6] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma

Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,

Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-

szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John

Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren

Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori

Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle

Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri,

Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei

Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal

Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,

Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani,

Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan,

Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko,

Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech,

Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren,

Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa

Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex

Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William

Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,

Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui

10

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and

risks of foundation models, 2022. URL https://arxiv.org/abs/2108.07258.

[7] Alec Radford and Karthik Narasimhan. Improving language understanding

by generative pre-training. 2018. URL https://api.semanticscholar.org/

CorpusID:49313245.

[8] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume

Lample. Llama: Open and efficient foundation language models, 2023. URL

https://arxiv.org/abs/2302.13971.

[9] Gemini Team at Google et. al. Gemini: A family of highly capable multimodal

models, 2025. URL https://arxiv.org/abs/2312.11805.

[10] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-

dra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guil-

laume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre

Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and

William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

[11] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang.

Parameter-efficient fine-tuning methods for pretrained language models: A critical

review and assessment, 2023. URL https://arxiv.org/abs/2312.12148.

[12] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

11

https://arxiv.org/abs/2108.07258
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2312.12148

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language

models, 2021. URL https://arxiv.org/abs/2106.09685.

[13] Introduction to mathematical finance. https://pi.math.cornell.edu/~mec/

Summer2008/spulido/Math_Finance.html. Accessed: 2025-09-01.

[14] Christian Bayer, Peter K. Friz, Masaaki Fukasawa, Jim Gatheral, Antoine

Jacquier, and Mathieu Rosenbaum. Rough Volatility. Society for Industrial

and Applied Mathematics, Philadelphia, PA, 2023. doi: 10.1137/1.9781611977783.

URL https://epubs.siam.org/doi/abs/10.1137/1.9781611977783.

[15] Reza Arabpour Dahoei. Lora fine-tuning without gpus: A cpu-efficient

meta-generation framework for llms. https://github.com/arabporr/

LoRA_Fine-Tuning_Without_GPUs_A_CPU-Efficient_Meta-Generation_

Framework_for_LLMs, 2025.

[16] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amir-

reza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran,

Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary

Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima

Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar,

Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravse-

haj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha

Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral,

Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and Daniel Khashabi. Super-

naturalinstructions: Generalization via declarative instructions on 1600+ nlp

tasks, 2022. URL https://arxiv.org/abs/2204.07705.

12

https://arxiv.org/abs/2106.09685
https://pi.math.cornell.edu/~mec/Summer2008/spulido/Math_Finance.html
https://pi.math.cornell.edu/~mec/Summer2008/spulido/Math_Finance.html
https://epubs.siam.org/doi/abs/10.1137/1.9781611977783
https://github.com/arabporr/LoRA_Fine-Tuning_Without_GPUs_A_CPU-Efficient_Meta-Generation_Framework_for_LLMs
https://github.com/arabporr/LoRA_Fine-Tuning_Without_GPUs_A_CPU-Efficient_Meta-Generation_Framework_for_LLMs
https://github.com/arabporr/LoRA_Fine-Tuning_Without_GPUs_A_CPU-Efficient_Meta-Generation_Framework_for_LLMs
https://arxiv.org/abs/2204.07705

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[17] Reza Arabpour, John Armstrong, Luca Galimberti, Anastasis Kratsios, and

Giulia Livieri. Low-dimensional approximations of the conditional law of volterra

processes: a non-positive curvature approach, 2024. URL https://arxiv.org/

abs/2405.20094.

[18] Reza Arabpour Dahoei. Hyper networks. https://github.com/arabporr/

HyperNetwork, 2023.

13

https://arxiv.org/abs/2405.20094
https://arxiv.org/abs/2405.20094
https://github.com/arabporr/HyperNetwork
https://github.com/arabporr/HyperNetwork

Chapter 2

LoRA Fine-Tuning Without GPUs: A

CPU-Efficient Meta-Generation

Framework for LLMs

14

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Abstract

Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language

Models (LLMs) by enabling parameter-efficient updates. However, their widespread

adoption remains limited by the reliance on GPU-based training. In this work, we

propose a theoretically grounded approach to LoRA fine-tuning designed specifically

for users with limited computational resources, particularly those restricted to stan-

dard laptop CPUs. Our method learns a meta-operator that maps any input dataset,

represented as a probability distribution, to a set of LoRA weights by leveraging a large

bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of per-

forming new gradient-based updates, our pipeline constructs adapters via lightweight

combinations of existing LoRAs directly on CPU. While the resulting adapters do not

match the performance of GPU-trained counterparts, they consistently outperform the

base Mistral model on downstream tasks, offering a practical and accessible alternative

to traditional GPU-based fine-tuning.

15

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

2.1 Introduction

As models and datasets scale up, full fine-tuning becomes increasingly unrealistic for

most practitioners. The largest foundation models—often built by tech giants with

almost unlimited compute [1, 2, 3, 4, 5]—can have hundreds of billions of parameters,

making traditional fine-tuning for individuals prohibitively expensive. Parameter-

efficient fine-tuning (PEFT) methods [6, 7, 8, 9, 10] offer a workaround: instead of

updating all weights, they tweak a small subset, slashing compute and storage costs

while maintaining reasonable performance. Among these, the Low-Rank Adapter

(LoRA) [11] approach has become standard due to combined simplicity and surprisingly

powerful effectiveness. Nevertheless, for modern massive LLMs, LoRA fine-tuning can

still be long and heavy. Thus, the following question arises:

Can one generate new low-rank adapters to fine-tune large language models on new

tasks without the need for GPUs?

We address this concern by introducing a zero-shot LoRA meta-generation proce-

dure aimed at CPU-only users. Our approach takes novel datasets, each potentially

containing a variable number of instances, as input. It then outputs LoRA weights for

a pre-trained LLM, where the prediction relies on a combination of instances from an

existing bank of LoRAs [12]. Importantly, the way in which these combinations are

performed is lightweight enough to be computable on a standard contemporary CPU

in a few minutes (see Table 2.2 in Appendix 2.8.3), with no need for GPU clusters.

Main Contribution Our principled LoRA meta-generation pipeline provides light-

weight, “cheap” LoRAs that approach the performance of GPU-fine-tuned models

(which are often inaccessible to many) and outperform the base “non-finetuned” model.

16

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

These contributions are theoretically grounded in Proposition 1 and Theorem 1. To-

gether, these demonstrate that, with high probability, a ReLU Multi-Layer Perceptron

(MLP) architecture, designed to run efficiently on a CPU, can identify the optimal

coefficients for combining existing LoRAs. These optimal LoRA mixture coefficients,

as defined in (2.3.3) (representing a weighted sum of pre-trained LoRA parameters),

are determined based on the given dataset alignment features. This process effec-

tively minimizes the downstream task loss, which quantifies the model’s error on

new, specific tasks. Additionally, our work also provides nearly optimal closed-form

solutions through lightweight, neural network-free alternatives (e.g., the Attentional or

Normalized approaches). Our experiments reveal that the neural network-free variants

of our pipeline perform comparably to the theoretically near-optimal neural network

solution (the MLP-based approach).

Section 2.2 provides a discussion of related work concerning LoRA. We introduce

the preliminaries for formalizing datasets as probability distributions in Section 2.3.

Section 2.4 presents our LoRA generation pipelines. Their respective theoretical

guarantees are later detailed in Section 2.5, and experimentally validated in Section 2.6.

2.2 Related Work

Since its introduction, the utility of LoRA [11] has expanded significantly beyond

classical LLM post-training and language. It is now employed in diverse fields such

as vision language models [13] and Vision Transformers [14]. LoRA has also proven

valuable in image generative modeling for rapid Stable Diffusion fine-tuning and

personalization [15, 16, 17, 18], and for score distillation [19], although more principled

17

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

LoRA-free methods have recently emerged [20]. Its application even extends to fine-

tuning base models into reasoning models using reinforcement learning [21], and in the

development of new adapters for graph neural networks and Graph Transformers [22].

Alongside this expanding applicability, numerous LoRA variants have emerged,

often aiming to further reduce computational overhead. For instance, quantization

offers a way to lower memory consumption both during training [23, 24, 25] and

after [26]. The number of trainable parameters can also be reduced through adaptive

rank allocation [27]. Further inspired by ideas around weight or projection reuse [28, 29],

strategies to decrease trainable LoRA parameters include learning diagonal rescaling

of frozen random B and A LoRA matrices (VeRA) [30], deriving B and A from the

singular value decomposition of the pre-trained W0 and optimizing a smaller matrix

in the resulting space (SVDiff) [31], learning a linear combination of fixed random

matrices (NOLA) [32], and fine-tuning with orthogonal matrices (BOFT) [33]. LoRAs

have also been explored from a more theoretical viewpoint [34, 35, 36].

Our focus here is on LoRA generation on CPU, which none of the aforementioned

works explore. We would like to reiterate that all our pipelines, including those using

artificial neural networks can be trained solely using CPUs.

2.3 Preliminaries

Datasets as Probability Distributions To describe our pipeline, we first need

a unified framework for datasets with a varying number of instances. As such, we

fix dimensions d,D ∈ N+. Given our training datasets D1, . . . , DN ⊂ X for some

(non-empty) compact input domain X ⊆ Rd+D corresponding to one of N possible

down-stream tasks T1, . . . , TN which our Transformer model (Mistral-7B-Instruct-v0.2)

18

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

fθ : Rd → RD, whose parameters θ ∈ Rp lie in a p ≫ 0 dimensional Euclidean

parameter space. Since the entries of each dataset are permutation-invariant, then,

following the synthetic data generation literature, e.g. [37], it is natural to represent

each dataset Dn as an empirical distribution (probability measure) via

PDn =
1

Nm

∑
(x,y)∈Dm

δ(x,y) (2.3.1)

on the domain X where Nm
def.
=#Dn; i.e. PDn =

∑Nm

m=1 wmδ(xm,ym) with wm = 1/Nm

for each m = 1, . . . , Nm.

The support of the measure PDn , namely, {(x1, y1), . . . , (xm, ym)} represent in-

stances in Dn and the weights wm ∈ [0, 1] sum to 1, i.e. w belongs to the Nm simplex

∆Nm

def.
= {u ∈ [0, 1]Nm :

∑Nm

i=1 ui = 1}, and represent the relative frequency of instance

of data-point in Dm. We denote the set of probability measures on X by P(X).

Pipeline Inputs and Distributional Alignment Scores We then choose a

data-similarity score where ρ : P(X) × P(X) → [0,∞]. For this, we choose a

(dis)similarity metric between probability distributions (measures) on X , e.g. an

information-theoretic divergence such as Kullback Leibler (KL) divergence or a metric

such as the 1-Wasserstein distance W1. This dissimilarity score then allows us to

extract alignment scores between any new dataset D (encoded as a probability

measure PD on the data-domain X) and every dataset (Dn)
N
n=1 in our database via

align : P(X)→ ∆N

align(PD)
def.
= Softmax

(
(ρ(PD, PDn)

N
n=1

)
. (2.3.2)

19

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Once the (softmax-normalized) alignment scores are computed, they are passed to

a network. Here in our proof of concept, we use a simple MLP (trained on CPU),

which yields a set of mixture weights WD ∈ ∆N . These mixture weights are then used

to combine the pre-trained LoRA weights θ1, . . . , θN , from our database. Note that

each LoRA weight θn was specialized for task Tn and pre-trained on dataset Dn. The

output of our model is thus simply the mixture of LoRAs

D 7→ PD 7→
N∑
n=1

WD θn (2.3.3)

and lies in the convex hull of the pre-trained LoRA weights θ1, . . . , θN in the parameter

space Rp. Therefore, we only need to learn (or compute, as we will see in Section 2.4)

the mapping in (2.3.3). Based on this we are able to obtain LoRA weights with no

fine-tuning, directly out-of-the-box.

2.4 LoRA Generation Pipelines for CPU

We now mathematically formalize our end-to-end cheap LoRA pipelines. Further

details on how these were practically implemented can be found in Appendix 2.8.3.

Our main theoretical guarantee (Theorem 1) is general enough to apply not only to

LoRAs fed into transformers but also to nearly any mixture-of-expert-based parameter

prediction pipeline.

2.4.1 Setup

Let d,D ∈ N+. Let ℓ : RD × RD → [0,∞) be Lipschitz. Let f : Rp × Rd → RD be a

locally Lipschitz model, mapping the parameters θ ∈ Rp and an input x ∈ Rd to an

20

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

output fθ(x) ∈ RD. Also, We are given a pre-trained model θ0 ∈ Rp.

Purely for simplicity, we consider the standardized data-domain X = [0, 1]d+D.

Following [38]. We henceforth fix a task distribution P ∈ P(S) quantifying the

probability of selecting any one dataset in S at random. We consider a metric space

of datasets D ⊆ P([0, 1]d+D) metrized by ρ, where the topology generated by ρ is no

coarser than the topology of convergence in distribution. We fix a K ∈ N+ datasets

paired with “fine-tuned” model parameters (D1,∆θ1), . . . (DK ,∆θK) in D × Rp. Let

co(∆θ) def.
= {ϑ ∈ Rp : (∃w ∈ ∆K)ϑ =

K∑
k=1

wk∆θK}

where ∆K
def.
= {w ∈ [0, 1]K :

∑K
k=1 wk = 1}.

2.4.2 Very-Cheap LoRAs: Attentional Approach

Consider the following approach which maps any new incoming dataset D to the

following mixture of LoRAs

CAtt(D) def.
= [softmin ◦ align(D)]⊤︸ ︷︷ ︸

LoRA Alignment Scores

(∆θ1, . . . ,∆θK)︸ ︷︷ ︸
Pre-Trained LoRAs

(2.4.1)

We refer to the pipeline in (2.4.1) as our attentional approach since the dataset

D1, . . . , DK play a similar role to the keys in attention mechanisms [39]. The LoRA

alignment scores in (2.4.1) are analogous to contextual alignment scores, and the

pre-trained LoRA parameters play a similar role to the value matrices in [39]. The

softmin is used instead of a softmax since maximal distance alignment happens when

two datasets have a distance of 0 from one another, not some arbitrarily large number.

We examine a normalized version of distance vector (2.4.1) in our experiments, see

21

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Appendix 2.8.3 for details.

2.4.3 Cheap Nearly-Optimal LoRAs: Neural Approach

Our neural approach injects non-linear flexibility into how the distances are mapped

to the LoRA alignment scores in (2.4.1) using a deep learning model C : D → co(∆θ);

in this paper, this will always be an MLP. This allows our cheap LoRA approach to

learn how to detect and align complicated non-linear alignments between the new

dataset and those defining each pre-trained task. This neural approach thus sends

any dataset D to the following mixture of LoRAs

C(D) def.
= [softmin ◦f̂ ◦ align(D)]⊤︸ ︷︷ ︸

Neural-LoRA Alignment Scores

(∆θ1, . . . ,∆θK)︸ ︷︷ ︸
Pre-Trained LoRAs

(2.4.2)

where f̂ : RK → RK is an MLP with activation function ς, and we write align(D) in

place of align(PD) understanding the correspondence D → PD as implicit.

2.5 Theoretical Guarantees

We now provide guarantees on the optimality of both our main approaches. We also

demonstrate the existence of an oracle optimizer, yielding the best possible LoRA if

the user had access to complete information on the task distribution.

2.5.1 Attentional Approach

Our cheapest out-of-the-box LoRA pipeline (2.4.1) is optimal in a PAC-Bayesian sense

of [40].

22

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Proposition 1 (Existence: Optimal Oracles for Fine-Tuning). For every K ∈ N+ and

{(Dk,∆θk)}Kk=1 ⊂ D × Rp with each Dk finite and non-empty. For every α > 0 and

each dataset D ∈ D, the LoRA Alignment Scores in (2.4.1) satisfy

softmin ◦ align(D)︸ ︷︷ ︸
LoRA Alignment Scores

∈ argminw∈∆k

1

K

K∑
k=1

wk ρ(D,Dk)︸ ︷︷ ︸
Dataset Alignment

+
1

α

K∑
k=1

wk log(wk)︸ ︷︷ ︸
Entropic Penalty

Proof. See Appendix 2.8.2.

2.5.2 Neural Approach

The attentional pipeline, in (2.4.1), only checks for the alignment of a dataset with

the datasets previously used for training the adapters in the bank. In contrast our

neural approach, in (2.4.2), optimizes for the downstream performance of the predicted

mixture of LoRA experts. Surprisingly, at least theoretically, one only needs a small

MLP between the distance vector and softmin normalization layers to perform this

out-of-the-box downstream (near) optimal LoRA generation. Our first guarantee for

the neural approach demonstrates the existence of a map, i.e., an oracle predictor,

which returns the best possible downstream optimization.

Proposition 2 (Existence: Optimal Oracles for Fine-Tuning). For every dataset D ∈ D

there exists an oracle parameter ϑ⋆ ∈ co(∆θ) satisfying

E(X,Y)∼D

[
ℓ(fθ+ϑ⋆(X), Y)

]
︸ ︷︷ ︸

Oracle Error

= inf
∆θ∈co(∆θ)

E(X,Y)∼D

[
ℓ(fθ+∆θ(X), Y)

]
.︸ ︷︷ ︸

Optimal Error

Proof. See Appendix 2.8.2.

23

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Our next and main results show that our pipeline can implement the optimal

downstream mixture of LoRA predictors to achieve precision. Our result only relies

on one structural regularity condition on our data, guaranteeing that: the inverse

problem of recording a dataset/measure from its distance measurements to the available

datasets/measures is possible. Effectively, this means that the metric dimension, in

the graph-theoretic sense (see [41] for details), of the space D is exactly K.

Assumption 1 (Well-Posed Inverse Problem). Let (D, ρ) be compact and suppose

that ρ metrizes the weak topology (convergence in distribution) on D. We require that:

the map align : D → [0,∞)K injectively maps any D ∈ D to

align(D) def.
=
(
ρ(D,Dk)

)K
k=1

.

Theorem 1 (ε-Optimal Cheap Fine-tuning). Let ς : R→ R be a Lipschitz activation

function which is differentiable with non-zero derivative on at least one point. For

every 0 < ε ≤ 1, there is a MLP C : RK → RK with activation function ς such that

the ϵ-optimal selection property:

E(X,Y)∼D

[
ℓ(fθ+C(D)(X), Y)

]
︸ ︷︷ ︸

Cheap Fine-Tuning

≤ inf
∆θ∈co(∆θ)

E(X,Y)∼D

[
ℓ(fθ+∆θ(X), Y)

]
︸ ︷︷ ︸

Fine-Turning Oracle

+ε

holds with P-probability at-least 1− ε.

Proof. See Appendix 2.8.2.

24

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

2.6 Experimental Results

A comprehensive evaluation was conducted to assess the performance of three distinct

approaches (Attentional, Normalized, and Neural) in conjunction with four established

distance metrics (or divergences): Wasserstein Distance (WD), Kullback–Leibler

(KL) divergence, Jensen-Shannon (JS) divergence, and Maximum Mean Discrepancy

(MMD). This evaluation aimed to systematically compare the outputs generated by

each combination of approach and metric. The primary evaluation criterion for the

quality of the generated adapters was Rouge-L, a metric ranging from 0 to 1 that

quantifies similarity based on the overlap of the longest common subsequences between

generated and reference outputs [42]. We also include Exact Match (EM) results in

Appendix 2.8.4.

Our experimental setup used the Mistral-7B-Instruct-v0.2 model [43] and a dataset

comprising 502 English dataset-adapter pairs sourced from the Lots-of-LoRAs Hug-

gingFace repository [12]. Further technical details regarding the implementation are

provided in Appendix 2.8.3.

Our experimental setup highlighted a key distinction in resource usage: the actual

computation and adaptation of the LoRA adapters were performed exclusively on

the CPU. GPUs, however, were essential only for the evaluation phase. This is

because each adapted LLM, after being modified by our pipeline, needed to be loaded

onto a GPU to generate outputs on its respective test set. To thoroughly assess the

performance of each approach-distance (or divergence) metric pairing, we executed

the entire pipeline twelve times for each of the 502 datasets. This exhaustive process

covered every unique combination of approaches and distance metrics. Following the

generation of outputs, the Rouge-L score was calculated for the test set of each dataset,

25

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

and the reported values reflect the average of these scores across all runs.

2.6.1 Performance Comparison and Analysis

Our work is benchmarked against two key performance indicators. First, the perfor-

mance of the base foundation model without any fine-tuning, representing a scenario

where an end-user with limited computational resources applies a foundation model

to a new dataset: this yielded an average and standard deviation Rouge-L score of

0.192 ± 0.181. Second, we compare against the performance of a GPU-fine-tuned

model, achieved without hardware limitations, which obtained an Rouge-L score of

0.746 ± 0.265. Table 2.1 presents the average and standard deviation of Rouge-L

performance for all approaches across the four distance (or divergence) metrics on the

downstream task.

The JS divergence-based Normalized approach achieved the highest score, with

an average Rouge-L of 0.520. This represents an improvement of 0.328 over the base

model’s score of 0.192. It is worth mentioning that even our Attentional approach,

despite its simplicity, significantly outperforms the base foundation model across all

distance metrics. Interestingly, the neural approach does not seem to justify the

additional computational cost, as its performance improvement over the Attentional

and Normalized approaches is generally minimal or even worse.

Table 2.1: Performance of our cheap LoRA pipelines.

Approach WD KL JS MMD

Attentional (std. dev.) 0.426(±0.290) 0.501(±0.272) 0.486(±0.270) 0.486(±0.270)

Normalized (std. dev.) 0.495(±0.267) 0.488(±0.269) 0.520(±0.277) 0.497(±0.269)

Neural (std. dev.) 0.494(±0.265) 0.482(±0.268) 0.484(±0.272) 0.493(±0.270)

26

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

2.7 Conclusion

In conclusion, our work presents a practical, simple, and theoretically supported

pipeline for generating LoRAs suitable for fine-tuning LLMs using only a CPU. This

pipeline significantly reduces the typically required computational demands, making

fine-tuning accessible even to users with limited hardware resources or on edge devices

with privacy constraints.

We proved the existence of a lightweight ReLU MLP backbone, runnable on a CPU,

that can reliably approximate optimal LoRA adapter weights and biases, thereby

effectively minimizing downstream task loss in Theorem 1. Surprisingly, the simplest

versions of our pipeline (Attentional and Normalized) achieved performance matching

that of the MLP backbone version, further demonstrating the efficiency and power of

our approach.

Our experiments, using the Mistral-7B-Instruct-v0.2 model on 502 diverse datasets,

demonstrate substantial improvements over the baseline model, with the best con-

figuration achieving a 0.328 increase in performance (Rouge-L score) over the base

model, bridging more than half of the performance gap between the base model and

the GPU fine-tuned reference. While our CPU-generated adapters do not yet match

the performance of GPU-trained adapters, they provide a compelling alternative in

resource-limited settings.

Future work could explore the applicability of these approaches to other language

models as more LoRA adapter banks become open-source, as well as to tasks beyond

NLP. Likewise, it would be of interest to better understand how many LoRA adapters

would be required to generate new, high-quality adapters—that is, what size of bank

is necessary? We expect this to depend on the task, data modalities, and possibly

27

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

even the model architecture. Finally, our method could also potentially be used for

LoRA initialization (pre-heating) before fine-tuning on a GPU.

28

Bibliography

[1] Hugo Touvron et al. Llama: Open and efficient foundation language models.

arXiv preprint arXiv:2302.13971, 2023.

[2] OpenAI. Gpt-4 technical report, 2023. Available at https://openai.com/

research/gpt-4.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang

Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang

Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma,

Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong

Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu,

An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi

Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru

Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen

technical report, 2023. URL https://arxiv.org/abs/2309.16609.

[4] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,

Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,

Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou,

Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,

29

https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://arxiv.org/abs/2309.16609

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi

Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang

Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5

technical report, 2025. URL https://arxiv.org/abs/2412.15115.

[5] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,

Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,

Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun

Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,

Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian

Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi

Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie

Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan,

Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang

Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang,

Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi

Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.

Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu,

Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang

Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang,

Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian

Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,

Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin,

Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang

Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang

30

https://arxiv.org/abs/2412.15115

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song,

Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,

Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong

Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,

Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang,

Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,

Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,

Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You,

Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,

Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,

Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,

Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie,

Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025.

URL https://arxiv.org/abs/2412.19437.

[6] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham

Neubig. Towards a unified view of parameter-efficient transfer learning. In

International Conference on Learning Representations, 2022. URL https://

openreview.net/forum?id=0RDcd5Axok.

[7] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić,

Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. AdapterHub: A frame-

work for adapting transformers. In Qun Liu and David Schlangen, editors,

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, pages 46–54, Online, October 2020. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.7. URL

31

https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

https://aclanthology.org/2020.emnlp-demos.7.

[8] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,

Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,

Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang Liu, Jie Tang,

Juanzi Li, and Maosong Sun. Delta tuning: A comprehensive study of parameter

efficient methods for pre-trained language models, 2022. URL https://arxiv.

org/abs/2203.06904.

[9] Bruce X.B. Yu, Jianlong Chang, Lingbo Liu, Qi Tian, and Chang Wen Chen.

Towards a unified view on visual parameter-efficient transfer learning. arXiv

preprint arXiv:2210.00788, 2022.

[10] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-

efficient fine-tuning for large models: A comprehensive survey, 2024. URL

https://arxiv.org/abs/2403.14608.

[11] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language

models. 2021. URL https://arxiv.org/abs/2106.09685.

[12] Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen,

Kristjan Greenewald, Mikhail Yurochkin, and Justin Solomon. Compress then

serve: Serving thousands of loRA adapters with little overhead, 2024. URL

https://openreview.net/forum?id=hHNVn4hFPk.

[13] Xin Li, Dongze Lian, Zhihe Lu, Jiawang Bai, Zhibo Chen, and Xinchao Wang.

32

https://aclanthology.org/2020.emnlp-demos.7
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=hHNVn4hFPk

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Graphadapter: Tuning vision-language models with dual knowledge graph. In

Advances in Neural Information Processing Systems, 2023.

[14] Wei Dong, Dawei Yan, Zhijun Lin, and Peng Wang. Efficient adaptation of large

vision transformer via adapter re-composing. In Advances in Neural Information

Processing Systems, 2023.

[15] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models, 2022. URL

https://arxiv.org/abs/2112.10752.

[16] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal

Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-

to-image generation using textual inversion. arXiv preprint arXiv:2208.01618,

2022.

[17] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein,

and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for

subject-driven generation. arXiv preprint arXiv:2208.12242, 2022.

[18] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal

tuning for latent-based editing of real images. ACM Transactions on Graphics

(TOG), 42(1):1–13, 2022.

[19] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun

Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with varia-

tional score distillation. In Thirty-seventh Conference on Neural Information Pro-

cessing Systems, 2023. URL https://openreview.net/forum?id=ppJuFSOAnM.

33

https://arxiv.org/abs/2112.10752
https://openreview.net/forum?id=ppJuFSOAnM

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[20] Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan Greenewald, Vi-

tor Campagnolo Guizilini, Timur Bagautdinov, Vincent Sitzmann, and Justin

Solomon. Score distillation via reparametrized DDIM. In The Thirty-eighth

Annual Conference on Neural Information Processing Systems, 2024. URL

https://openreview.net/forum?id=4DcpFagQ9e.

[21] Shangshang Wang, Julian Asilis, Ömer Faruk Akgül, Enes Burak Bilgin, Ollie

Liu, and Willie Neiswanger. Tina: Tiny reasoning models via lora, 2025. URL

https://arxiv.org/abs/2504.15777.

[22] Pantelis Papageorgiou, Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, and

Michael M. Bronstein. Graph low-rank adapters of high regularity for graph neural

networks and graph transformers. In First Workshop on Scalable Optimization

for Efficient and Adaptive Foundation Models, 2025. URL https://openreview.

net/forum?id=gxhZj6uvFC.

[23] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and

Kurt Keutzer. A survey of quantization methods for efficient neural network

inference, 2021.

[24] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:

Efficient finetuning of quantized llms. ArXiv, abs/2305.14314, 2023. URL

https://api.semanticscholar.org/CorpusID:258841328.

[25] Han Guo, Philip Greengard, Eric P. Xing, and Yoon Kim. Lq-lora: Low-rank plus

quantized matrix decomposition for efficient language model finetuning, 2024.

[26] Prateek Yadav, Leshem Choshen, Colin Raffel, and Mohit Bansal. Compeft:

34

https://openreview.net/forum?id=4DcpFagQ9e
https://arxiv.org/abs/2504.15777
https://openreview.net/forum?id=gxhZj6uvFC
https://openreview.net/forum?id=gxhZj6uvFC
https://api.semanticscholar.org/CorpusID:258841328

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Compression for communicating parameter efficient updates via sparsification

and quantization. arXiv preprint arXiv:2311.13171, 2023.

[27] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis,

Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive

budget allocation for parameter-efficient fine-tuning, 2023.

[28] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding

sparse, trainable neural networks, 2018.

[29] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and

Mohammad Rastegari. What’s hidden in a randomly weighted neural network?

In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.01191. URL http:

//dx.doi.org/10.1109/CVPR42600.2020.01191.

[30] Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based

random matrix adaptation, 2024.

[31] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and

Feng Yang. Svdiff: Compact parameter space for diffusion fine-tuning. arXiv

preprint arXiv:2303.11305, 2023.

[32] Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri,

and Hamed Pirsiavash. Nola: Networks as linear combination of low rank random

basis, 2023.

[33] Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen

Feng, Zhen Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black,

35

http://dx.doi.org/10.1109/CVPR42600.2020.01191
http://dx.doi.org/10.1109/CVPR42600.2020.01191

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Adrian Weller, and Bernhard Schölkopf. Parameter-efficient orthogonal finetuning

via butterfly factorization. In ICLR, 2024.

[34] Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation.

In The Twelfth International Conference on Learning Representations, 2024. URL

https://openreview.net/forum?id=likXVjmh3E.

[35] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez De Ocáriz Borde,

Rickard Brüel Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail

Yurochkin, and Justin Solomon. Asymmetry in low-rank adapters of foundation

models. In Proceedings of the 41st International Conference on Machine Learning,

pages 62369–62385, 2024.

[36] Anastasis Kratsios, Tin Sum Cheng, Aurelien Lucchi, and Haitz Sáez

de Ocáriz Borde. Sharp generalization bounds for foundation models with asym-

metric randomized low-rank adapters, 2025. URL https://arxiv.org/abs/

2506.14530.

[37] Behnoosh Zamanlooy, Mario Diaz, and Shahab Asoodeh. Locally private sampling

with public data. arXiv preprint arXiv:2411.08791, 2024.

[38] Jonas Rothfuss, Martin Josifoski, Vincent Fortuin, and Andreas Krause. Scalable

pac-bayesian meta-learning via the pac-optimal hyper-posterior: from theory to

practice. The Journal of Machine Learning Research, 24(1):18474–18535, 2023.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

36

https://openreview.net/forum?id=likXVjmh3E
https://arxiv.org/abs/2506.14530
https://arxiv.org/abs/2506.14530

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[40] Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of

variational approximations of gibbs posteriors. Journal of Machine Learning

Research, 17(236):1–41, 2016.

[41] Richard C Tillquist, Rafael M Frongillo, and Manuel E Lladser. Getting the lay

of the land in discrete space: A survey of metric dimension and its applications.

SIAM Review, 65(4):919–962, 2023.

[42] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In

Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004.

Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/W04-1013.

[43] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-

dra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guil-

laume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre

Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and

William El Sayed. Mistral 7b. 2023. URL https://arxiv.org/abs/2310.06825.

[44] Renjie Wang, Cody Hyndman, and Anastasis Kratsios. The entropic measure

transform. Canad. J. Statist., 48(1):97–129, 2020. ISSN 0319-5724,1708-945X.

doi: 10.1002/cjs.11537. URL https://doi.org/10.1002/cjs.11537.

[45] Charalambos D. Aliprantis and Kim C. Border. Infinite dimensional analysis.

Springer, Berlin, third edition, 2006. ISBN 978-3-540-32696-0; 3-540-32696-0. A

hitchhiker’s guide.

37

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://arxiv.org/abs/2310.06825
https://doi.org/10.1002/cjs.11537

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[46] James R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, second

edition, 2000. ISBN 0-13-181629-2.

[47] Olav Kallenberg. Foundations of modern probability, volume 99 of Probability

Theory and Stochastic Modelling. Springer, Cham, third edition, 2021. ISBN

978-3-030-61871-1; 978-3-030-61870-4. doi: 10.1007/978-3-030-61871-1. URL

https://doi.org/10.1007/978-3-030-61871-1.

[48] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Grad-

uate Texts in Mathematics. Springer-Verlag, New York, 1995. ISBN 0-387-

94374-9. doi: 10.1007/978-1-4612-4190-4. URL https://doi.org/10.1007/

978-1-4612-4190-4.

[49] Achim Klenke. Probability theory—a comprehensive course. Universitext.

Springer, Cham, third edition, 2020. ISBN 978-3-030-56402-5; 978-3-030-

56401-8. doi: 10.1007/978-3-030-56402-5. URL https://doi.org/10.1007/

978-3-030-56402-5.

[50] J. Dugundji. An extension of Tietze’s theorem. Pacific J. Math., 1:353–367,

1951. ISSN 0030-8730,1945-5844. URL http://projecteuclid.org/euclid.

pjm/1103052106.

[51] Anastasis Kratsios and Léonie Papon. Universal approximation theorems for

differentiable geometric deep learning. J. Mach. Learn. Res., 23:Paper No. [196],

73, 2022. ISSN 1532-4435,1533-7928.

[52] Patrick Kidger and Terry Lyons. Universal approximation with deep narrow

networks. In Conference on learning theory, pages 2306–2327. PMLR, 2020.

38

https://doi.org/10.1007/978-3-030-61871-1
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-3-030-56402-5
https://doi.org/10.1007/978-3-030-56402-5
http://projecteuclid.org/euclid.pjm/1103052106
http://projecteuclid.org/euclid.pjm/1103052106

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[53] Rickard Brüel Gabrielsson. Lots of loras. https://huggingface.co/

Lots-of-LoRAs, 2025.

[54] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amir-

reza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran,

Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary

Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima

Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar,

Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravse-

haj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha

Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral,

Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and Daniel Khashabi. Super-

naturalinstructions: Generalization via declarative instructions on 1600+ nlp

tasks. 2022. URL https://arxiv.org/abs/2204.07705.

2.8 Appendix

Funding

A. Kratsios and R. Arabpour acknowledge financial support from an NSERC Discovery

Grant No. RGPIN-2023-04482 and No. DGECR-2023-00230. They also acknowledge

that resources used in preparing this research were provided, in part, by the Province

of Ontario, the Government of Canada through CIFAR, and companies sponsoring

the Vector Institute1.
1https://vectorinstitute.ai/partnerships/current-partners/

39

https://huggingface.co/Lots-of-LoRAs
https://huggingface.co/Lots-of-LoRAs
https://arxiv.org/abs/2204.07705
https://vectorinstitute.ai/partnerships/current-partners/

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

2.8.1 Additional Background

This appendix presents any additional background required for the formulation of our

main results, proofs of our guarantees, and additional experimental details.

Foundation Model Fine-tuning and Attention Layers

In modern LLMs, fine-tuning all parameters can be computationally expensive and

memory-intensive. LoRA [11] provides an efficient alternative by introducing low-rank

updates to pre-trained weight matrices, particularly focusing on attention layers in

transformer-based models. Given query Q, key K, and value V matrices, the standard

attention mechanism computes the attention scores

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V, (2.8.1)

where dk is the dimension of the keys and queries.

Low-Rank Adapter (LoRA) Fine-tuning

In large transformers, these weight matrices dominate the parameter count, making

them an ideal target for LoRA’s efficient fine-tuning. By applying low-rank updates to

these matrices, LoRA achieves significant savings in memory and computation without

retraining the entire model. Consider a pre-trained weight matrix W0 ∈ Rdout×din ,

typically representing the projection matrices in the attention mechanism. Instead

of updating the entire matrix, LoRA modifies the weights by adding a low-rank

perturbation:

W = W0 +∆W, (2.8.2)

40

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

where ∆W is constrained to have rank(∆W) = r ≤ min(dout, din). To efficiently

parameterize ∆W , LoRA decomposes it as:

∆W = BA, (2.8.3)

where B ∈ Rdout×r and A ∈ Rr×din . During fine-tuning, the original weights W0

remain frozen, and only the parameters in A and B are optimized. In traditional

full fine-tuning, the entire weight matrix is updated, requiring dout · din trainable

parameters. In contrast, the LoRA decomposition introduces only r · (din + dout)

trainable parameters, which is more efficient when r ≪ min(dout, din).

Distance Measures between Probability Distributions

We remind the reader of the necessary definitions required in formulating the distance

between datasets, when interpreted as finitely supported probability measures (distri-

butions). Given two probability distributions P and Q defined on a separable and

complete (Polish) metric space X equipped with its Borel σ-algebra and metrized by

a metric ρ : X 2 → [0,∞), these measures of discrepancy (or divergences) are defined

as follows:

Wasserstein Distance (WD). For distributions P and Q with cumulative dis-

tribution functions FP and FQ respectively, the 1-Wasserstein distance is defined

as:

W1(P,Q)
def.
= inf

π

∫
(x,y)∈X 2

ρ(x, y)π(d(x, y)) (2.8.4)

41

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

where the infimum is taken over all joint probability distributions π on X × X (with

the product σ-algebra) whose marginals are P and Q.

Kullback–Leibler Divergence (KL). The KL divergence measures the relative

entropy between two distributions:

DKL(P ∥ Q) def.
=


∫
logx∈X

dP
dQ

(x)P (dx) : if P ≪ Q

∞ : if P ̸≪ Q

(2.8.5)

where P ≪ Q denotes the absolute continuity of P with respect to Q, and dP
dQ

denotes

the Radon-Nikodym derivative, or probability density, of P with respect to Q.

Jensen–Shannon Divergence (JS). The JS divergence is a symmetrized version

of KL divergence:

DJS(P ∥ Q) =
1

2
DKL(P ∥M) +

1

2
DKL(Q ∥M) (2.8.6)

where M = 1
2
(P +Q).

Maximum Mean Discrepancy (MMD). If H is a Reproducing Kernel Hilbert

Space (RKHS) H of functions over X with reproducing kernel function k; then we

may also define the MMD between P and Q by

MMD2(P,Q) = Ex,x′∼P [k(x, x′)]− 2Ex∼P,y∼Q[k(x, y)] + Ey,y′∼Q[k(y, y′)]. (2.8.7)

42

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

If X is Rd and H = L2
γ(Rd) for the standard Gaussian measure γ ∼ N(0, Id), then k

is often chosen to be a Gaussian kernel, i.e., k(x, y) = exp(−∥x−y∥2
2σ2).

2.8.2 Proofs

We now prove the main result of our paper. We begin with the proof of our simplest

result, Proposition 1.

Proof of Proposition 1

For any dataset D, note that argminw∈∆k

1
K

∑K
k=1 wk ρ(D,Dk) +

1
α

∑K
k=1 wk log(wk).

Now, by [44, Proposition 1] its unique minimizer, which we denote by w⋆D, is given by

w⋆D =
e−ρ(D,Dk)∑K
i=1 e

−ρ(D,Di)
= softmin ◦ align(D).

Simultaneous Proof of Theorem 1 and Proposition 2

We now derive Proposition 2 and Theorem 1 within the same proof, as their derivation

is most naturally undertaken together.

Step 1 - Existence of a Measurable Selector

We will first set up the Measurable Maximum Theorem, see e.g. [45, Theorem 18.19].

Consider the constant correspondence

φ : D ↠ 2R
p

D 7→ co(∆θ).

43

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Since co(∆θ) is a closed, non-empty, and bounded set then the Heine-Borel theorem

implies that co(∆θ) is compact. Whence φ is a correspondence with non-empty,

compact, and convex values. Let B ⊆ D be a Borel set, then

φ(B) def.
=
⋃
D∈B

φ(D) =
⋃
D∈B

co(∆θ) = co(∆θ). (2.8.8)

Since co(∆θ) is closed it is Borel; whence, φ is not only a weakly measurable correspon-

dence [45, 18.1 Definition (1)] but it is also a Borel measurable correspondence [45,

18.1 Definition (3)]. Thus, the correspondence φ satisfies the requirements of [45,

Theorem 18.19].

Next, consider the objective function

L : D × Rp → [0,∞)

(D,B) 7→ E(X,Y)∼D
[
ℓ(fθ+ϑ(X), Y)

]
.

(2.8.9)

We will show that L is a Carathéodory function by showing it is continuous. Since

D × Rp is a product (topological) space, then [46, Theorem 19.6] guarantees that f is

continuous if and only if each of its component functions is continuous; we show the

latter.

Fix D ∈ D. Since C and the softmax function are locally Lipschitz, and since ℓ

is Lipschitz, then their composition is locally Lipschitz. Whence, for each (x, y) ∈

[0, 1]d+D the map

Λx,y : co(∆θ)) ∋ ϑ 7→ ℓ(Cθ+ϑ(x), y))

44

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

is λ-Lipschitz, for some λ ≥ 0. By Jensen’s inequality we have: for each ϑ1, ϑ2 ∈ co(∆θ)

∣∣∣E(X,Y)∼D
[
ΛX,Y (ϑ1)

]
− E(X,Y)∼D

[
ΛX,Y (ϑ2)

]∣∣∣
=
∣∣∣E(X,Y)∼D

[
ΛX,Y (ϑ1)− ΛX,Y (ϑ2)

∣∣∣
≤ E(X,Y)∼D

[∣∣ΛX,Y (ϑ1)− ΛX,Y (ϑ2)
∣∣]

≤ λE(X,Y)∼D

[∥∥ϑ1 − ϑ2

∥∥].
Thus, L is locally Lipschitz in its second argument; in particular, it is continuous in

its second argument.

Now, we show continuity in its first argument. Fix ϑ ∈ co(∆θ). Let (Dn)
∞
n=1 be a

sequence in D converging to some measure D ∈ D. Since d metrizes the (relative) weak

topology in P([0, 1]d+D) relative to D, then by Alexandrov’s Portmanteau Theorem, see

e.g. [47, Theorem 5.25], for every continuous and bounded function g ∈ Cb([0, 1]d+D)

we have

lim
n↑∞

∣∣E(X,Y)∼Dn [g(X, Y)]− E(X,Y)∼D[g(X, Y)]
∣∣ = 0. (2.8.10)

Since λx,y(ϑ) is locally-Lipschitz for each ϑ ∈ co(∆θ) and [0, 1]d+D is compact then

(x, y) 7→ λx,y(ϑ) is bounded (and of course continuous). Thus, we may pick g in (2.8.10)

to be (x, y) 7→ λx,y(ϑ); whence,

lim
n↑∞

∣∣E(X,Y)∼Dn [λX,Y (ϑ)]− E(X,Y)∼D[λX,Y (ϑ)]
∣∣ = 0. (2.8.11)

Thus, L is continuous in its first argument as well. Therefore, L is continuous, which

implies that it is Carathéodory. This completes the verification of all the conditions

of the Measurable Maximum Theorem, again see [45, Theorem 18.19 (2)], have been

45

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

verified. Whence: 1) for each D ∈ D the argmin set

M(D) def.
=
{
ϑ ∈ co(∆θ) : E(X,Y)∼D

[
ℓ(fθ+∆θ(X), Y)

]
= ℓ⋆(D)

}

is non-empty; where the corresponding oracle loss is given by

ℓ⋆(D) def.
= inf

∆θ∈co(∆θ)
E(X,Y)∼D

[
ℓ(fθ+∆θ(X), Y)

]
.

This establishes Proposition 2. Moreover, [45, Theorem 18.19 (1) and (3)] further imply

that there exists a measurable selector S : D → co(∆θ); i.e. S is Borel measurable for

each D ∈ D where the following optimal selection property holds:

S(D) ∈M(D). (2.8.12)

Step 2 - Change of Domain

Next, we create a “copy” of S in “distance domain” [0,∞)K . By the well-posedness

assumption made in Assumption 1, the map align : D → [0,∞)K is injective. Thus,

align is bijective onto its image. Since each component of align is given by the 1-

Lipchitz, and therefore continuous, function D : D 7→ ρ(D,Dk) ∈ [0,∞); then [46,

Theorem 19.6] implies that align is continuous. Consequentially, align is a measurable

bijection onto its image align(D). Thus, [48, corollary 15.2] implies that align has a

measurable inverse ψ : align(D)→ D on its image align(D); i.e.

align ◦ψ = 1align(D) and ψ ◦ align = 1D. (2.8.13)

46

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Define the map S ′ : align(D)→ co(∆θ) by composition with ψ via

S ′ def.
=S ◦ ψ.

Let S̃ be any measurable extension of S ′ to all of RK ; e.g.

S̃ def.
=S ′Ix∈align(D) +∆θ1 Ix ̸∈align(D).

By construction: for each D ∈ D

S̃ ◦ align(D) = S(D). (2.8.14)

Step 3 - High-Probability of Continuity

Consider the pushforward (probability) measure Q def.
= align♯ P on [0,∞)K , supported

on align(D). Now, by Lusin’s Theorem, as formulated in [49, Exercise 13.1.3], for

every ε ∈ (0, 1] there exists a compact subset Kε ⊂ supp(Q) ⊆ align(D) such that

Q(Kε) ≥ 1− ε and S̃|Kε ∈ C(Kε, co(∆θ)) (2.8.15)

where C(Kε, co(∆θ)) denotes the set of continuous functions from Kε to co(∆θ).

Since S̃|Kε is continuous and its image lies in a closed convex set then the Dugundji-

Tietze theorem, see [50, Theorem 4.1], implies that there exists a continuous extension

Sε : RK → co(∆θ); i.e.

Sε(x) = S̃(x) (2.8.16)

for all x ∈ Kε.

47

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Step 4 - Approximation by Models of the form (2.4.2)

Let W : RK−1 → RK be the affine map of [51, Example 13]. Then, by nearly identical

computation to [51, Example 13], we find that the map

RK → co(∆θ)

w 7→ softmax(W (w))⊤(L1, . . . , LK)

(2.8.17)

also satisfies [51, Assumption 8].

Since softmin = softmax(−·); set W̃ def.
= −W , and note that, the result of (2.8.17)

can be re-expressed as

RK → co(∆θ)

w 7→ softmin(W̃ (w))⊤(L1, . . . , LK)

(2.8.18)

Since S̃ is continuous, Kε ⊂ RK is a non-empty compact set, and ς is a continuous

activation function satisfying the Kidger-Lyons condition, of [52]; namely it is differ-

entiable with non-zero derivative at at least one point in R, then (mild variant) of [51,

Theorem 37 (ii)] implies that: for every δ > 0 (to be fixed retroactively) there exists

an MLP f̂ : RK → RK with activation function ς such that the map

f̂ def.
= [softmin ◦C(·)]⊤(L1, . . . , LK) : RK → co(∆θ)

satisfies the uniform approximation guarantee

max
x∈Kε

∥∥Fδ(x)− Sε(x)∥∥ < δ. (2.8.19)

Now, by (2.8.14), the continuous extension property in (2.8.16), and the approximation

48

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

guarantee in (2.8.19) we find that

max
D∈ψ(Kε)

∥∥f̂ ◦ align(D)− S(D)
∥∥ = max

x∈Kε

∥∥f̂ − Sε(x)∥∥ < δ. (2.8.20)

The continuity of L, defined in (2.8.9), implies that δ > 0 may be taken to be small

enough so that: for each D ∈ ψ(Kε)

∣∣L(D, θ + Cδ)− L(D, θ + S(D))
∣∣ < ε. (2.8.21)

Step 5 - ϵ-Optimality with high probability

Combining the ε-uniform approximation guarantee in (2.8.21) for Cδ ◦ align with the

optimality guarantee for S in (2.8.12) implies that: for each D ∈ ψ(Kε)

L(D, θ + Cδ)− ε ≤ L(D, θ + S(D)) = ℓ⋆(D). (2.8.22)

Now, since D 7→ L(D, θ + Cδ) is the composition of continuous functions, it is

continuous and therefore measurable; whence the set

M⋆
ε

def.
=
{
L(D, θ + Cδ)− ε ≤ ℓ⋆(D)

}
is Borel measurable and contains ψ(Kε). In particular, P(M⋆

ε) is well-defined. Finally,

the lower-bound in (2.8.15) yields

P(M⋆
ε) ≥ P(ψ(Kε) ≥ Q(Kε) ≥ 1− ε

49

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

which concludes our proof.

2.8.3 Implementation Details

In our implementation, we used the Lots-of-LoRAs HuggingFace repository [53],

which contains 502 dataset-adapter pairs for Mistral-7B-Instruct-v0.2. From these

502 English datasets, 10 are manually selected to ensure diversity of tasks spanning

classification, commonsense reasoning, and question generation domains for evaluation.

Additionally, 492 datasets are randomly selected from the 1616 diverse natural language

processing (NLP) tasks provided by [54]. Each adapter comprises p = 9, 437, 184

parameters, stored as 32-bit floating-point numbers (approximately 36 MB).

To further reduce the computational load of our training procedure, we implemented

several critical optimizations in Step 2:

1. Symmetry exploitation: For symmetric difference metrics (WD, JS, and

MMD), we calculate only half of the possible N ×N distances, reusing values

obtained from calculations done for pair (i, j), where i < j, as the (j, i) pair as

well.

2. Pre-computation of probability distributions: For metrics requiring prob-

ability density functions (KL and JS), we pre-calculate and cache these distribu-

tions for all datasets to avoid repeating these costly computations.

3. Parallelization: We also utilize multi-threading capabilities by assigning each

distance calculation to a separate CPU thread, allowing these independent

computations to be processed concurrently.

50

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Table 2.2 reports the time elapsed at each stage of our LoRA generation pipeline,

measured on a Dell XPS 15 (Intel i7-13700H, 14 cores, 64 GB RAM). All steps, except

for the final inference and adapter loading, were executed using the CPU only across

502 datasets. Importantly, we ran this benchmark by predicting the adapter for each

of the 502 datasets, assuming the remaining 501 were given, to evaluate the overall

performance of our pipeline.

Table 2.2: Time elapsed for each step of the pipeline for all 502 datasets at once (CPU only).

Pipeline Step Time

1. Dataset-Adapter pairs gathering:
Downloading raw data 15 min

2. Datasets Pre-processing:
Tokenization 10 min

3. Distribution similarity calculations:
Wasserstein (WD) 3 hours
Kullback–Leibler (KL) 5 min
Jensen–Shannon (JS) 5 min
Maximum Mean Discrepancy (MMD) 1.5 hours

4. Distances Processing (Coefficients):
Base attentional 3 min
Normalized 3 min
MLP-based 45 min

5. Adapter prediction:
Calculating adapters and saving 5 min

Excluding GPU inference and adapter loading, generating predicted adapters for

502 datasets across 12 methods took roughly 9 hours. In typical use—predicting one

adapter using a single variate of our LoRA generation pipeline and metric—runtime

is much lower: generating one adapter from 100 reference pairs takes 10–20 minutes,

depending on compute, memory, network, and dataset size. Runtime scales roughly

linearly with the number and size of reference datasets, as most steps run independently

51

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

per dataset. However, full experimental runs involving pairwise comparisons (e.g.,

distance computations) scale quadratically with the number of datasets.

Pipeline Steps

We evaluate three pipelines for predicting LoRA adapter parameters. The Attentional

method is lightweight, using only matrix multiplications with no learned components.

The Normalized method standardizes distance values to a normal distribution to

stabilize the SoftMin stage. The Neural method trains a small CPU-based MLP to

minimize MSE between predicted and actual adapter weights and biases.

Dataset-Adapter pairs gathering

Our approach relies on pre-existing fine-tuned adapters and their corresponding

datasets. We begin by gathering a set of N datasets, denoted as {Di}Ni=1, where

for each dataset, we also have the optimal adapters, {θn}Nn=1. These adapters are

generated by fine-tuning the same base model, using the same adapter structure, on

their respective datasets.

Datasets Pre-processing

Next, we tokenize each dataset using the base model’s tokenizer, converting inputs and

outputs into integer sequences. Formally, we apply a tokenizer T : S → Zl×V (where l

being the length of the tokenized sequence and V being the tokenizer’s vocabulary

size) to map each string to its sequence of token IDs. The resulting sequences denoted

{T (Di)}Ni=1, contain all the tokenized inputs followed by the outputs for each dataset.

This preprocessing step is computationally efficient and highly parallelizable. We also

52

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

extract the LoRA adapter parameters (weights and biases) from each fine-tuned model,

reshape them into one-dimensional vectors, and stack them into a matrix θall ∈ RN×p

(N being the number of dataset-adapter pairs, and p the number of parameters per

adapter). Thus, each row represents the parameters of a single adapter.

Distribution Distance Computation

A key step in our pipeline is computing the dissimilarity between datasets, which

are treated as probability distributions over tokenized sequences. Given tokenized

datasets {T (Di)}Ni=1, we compute pairwise distances using four established measures:

the Wasserstein distance, Kullback–Leibler divergence, Jensen–Shannon divergence,

and Maximum Mean Discrepancy, as defined in Appendix 2.8.1. For each tokenized

dataset T (Di), we calculate a distance vector:

δi = [ρ(T (Di), T (D1)), ρ(T (Di), T (D2)), . . . , ρ(T (Di), T (DN))]

where ρ is the chosen divergence metric. In practice, we mask the self-distance

ρ(T (Di), T (Di)) by assigning it a large value prior to normalization. Note that here

we are emphasizing the tokenization step using the T (Di) notation, whereas in the

main text we often omit this.

Distances Processing (With different methodologies)

The goal here is to find how close each dataset is to the current dataset and to assign

coefficients to them in such a way that these coefficients increase as the similarity

increases.

53

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Attentional Approach In this baseline approach, we directly apply the softmin

function to the distance vectors, after masking the self-corresponding entry. For each

dataset Di, we calculate:

wi(j) = softmin(δi(j) | j ∈ 1, 2, ..., N, j ̸= i) (2.8.23)

where δi(j) = ρ(T (Di), T (Dj)) represents the distance between the tokenized datasets.

Attentional Approach - With Normalization In this variant, we normalize

each distance vector to have zero mean (µ = 0) and unit variance (σ = 1), effectively

applying z-score standardization. This transformation is equivalent to applying a

softmin with an adaptive temperature τi = σi (its own standard deviation). When σi is

small, the temperature is low, leading to sharper, more peaked (i.e., sparse) coefficient

distributions. Conversely, larger σi results in flatter distributions. Empirically, we

observe that most σi values are small after masking the self-distance, which leads to

sparser weights—and, interestingly, improved performance.

Neural Approach The third pipeline, justified by Theorem 1, uses a small MLP

to map distance values to adapter weights. It minimizes the MSE between predicted

and actual adapter parameters (weights and biases). The MLP used here has three

fully connected layers, with the first two followed by layer normalization and ReLU

54

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

activations.

h = ReLU(Layer Normalization(W1x+ b1)), h ∈ R4000

ĥ = ReLU(Layer Normalization(W2h+ b2)), ĥ ∈ R4000

ŷ = W3ĥ+ b3, ŷ ∈ R1

(2.8.24)

(2.8.25)

(2.8.26)

where x ∈ R is a single distance value (scalar), W1 ∈ R4000×1, W2 ∈ R4000×4000, and

W3 ∈ R1×4000 are weight matrices, and b1 ∈ R4000, b2 ∈ R4000, and b3 ∈ R1 are bias

terms. We apply the MLP to transform all distance values:

wi(j) = softmin(MLP(δi(j)) | j ∈ 1, 2, ..., N, j ̸= i) (2.8.27)

Adapter Prediction

We make our prediction with a straightforward linear combination of existing adapters,

weighted by the processed distances:

θ̂i =
N∑

j=1,j ̸=i

wi(j)θj. (2.8.28)

This formulation effectively answers the key question: “Based on the distances

between a new dataset and each of the datasets with known adapters, what proportion

of information should the new adapters inherit from each of the fine-tuned (reference)

adapters?” The processed distances serve as coefficients determining the knowledge

transfer from each source adapter.

In our study, to make the predictions for all datasets more efficient, we construct

a weight (coefficient) matrix W ∈ RN×N where row i contains the processed distances

55

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

wi, allowing us to compute all predictions simultaneously by leveraging hardware

acceleration and vectorization.

Deployment and Inference Predicted adapters match the size of flattened fine-

tuned adapters and can be reshaped to their original structure, ensuring full compati-

bility with existing LoRA inference pipelines. Once generated, they can be directly

loaded for downstream use.

2.8.4 Further Experimental Evaluation

This appendix presents a detailed account of our experimental observations.

Exact Match Evaluation

In addition to Rouge-L, we evaluate our LoRA generation pipelines using the Exact

Match (EM) metric, which measures the fraction of test samples for which the

model’s output exactly matches the expected string. This is a particularly meaningful

complement for classification-style tasks common in our dataset corpus, where outputs

are short, well-defined, and often categorical. Without any fine-tuning, the Mistral

model achieved a score of 0.016± 0.069. Ideally, if the user had access to GPUs, the

GPU fine-tuned models would achieve an average exact match score of 0.654± 0.351.)

As shown in Table 2.3, each of our pipelines performs substantially better than the

base foundation model, but as expected, it does not achieve the same predictive

power as LLMs with fine-tuned LoRAs. Additionally, note that we observe a strong

correlation between Rouge-L and EM scores across all methods and distance metrics.

Both evaluation scores consistently rank the Normalized approach with JS as the top-

performing configuration. While Rouge-L captures partial overlap between generated

56

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

and reference sequences, EM provides a stricter binary signal of correctness. Despite

this difference in granularity, the relative performance of the Attentional, Normalized,

and Neural approaches remains consistent, suggesting that improvements in soft

sequence similarity are accompanied by gains in exact prediction accuracy.

Table 2.3: Exact match performance of our lightweight LoRA prediction pipelines.

Approach WD KL JS MMD

Attentional (std. dev.) 0.288(±0.297) 0.344(±0.302) 0.328(±0.296) 0.327(±0.295)
Normalized (std. dev.) 0.338(±0.296) 0.330(±0.297) 0.373(±0.314) 0.340(±0.298)
Neural (std. dev.) 0.338(±0.294) 0.323(±0.295) 0.325(±0.296) 0.337(±0.298)

Coefficient Distribution Analysis

Figures 2.1a, 2.1b, and 2.1c below show the LoRA matrices produced by each approach

across each of our datasets. In each visualization, both the horizontal and vertical

axes list the dataset, and each of the (i, j)th entries indicates the darkness of pixels,

which corresponds to the proportion of the pre-trained LoRA from dataset i used to

predict the LoRA for dataset j. Darker pixels indicate lower coefficients, while brighter

ones indicate higher weights assigned to a source adapter for each target dataset.

Interestingly, the Normalized approach exhibits extreme sparsity in distribution; not

to be mistaken for matrix sparsity, most weights are near zero, and each prediction

is dominated by one or two reference adapters, as shown by the presence of isolated

bright pixels in a largely dark matrix. In contrast, the Neural (MLP) and Attentional

methods display greater dispersion in the coefficients, with many rows exhibiting

moderate weights across a broader range of source adapters. This reflects a more

distributed and nuanced reuse of prior adapters. Given that the Normalized approach

exhibits slightly better performance in practice, this visualization may suggest that

57

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

sparsity is important, but further investigation in follow-up work is encouraged.

(a) Attentional (b) Normalized (c) Neural (MLP)

Figure 2.1: Coefficient distributions for each approach.

Sample Outputs Generated by Predicted Models

Below, we have included four randomly selected inputs, expected outputs, and the

generated texts by a model with predicted adapters using our best configurations: the

JS-divergence-based Normalized approach.

Input Prompt [Task ID 671]:

"Definition: In this task, you’re given an ambiguous question (which can be answered

in more than one way). Your task is to provide one question which clarifies the input

question and it has one unique answer, and also provide an answer to the generated

question. Generated question and answer should be separated with a new line.

Positive Example 1 -

Input: Lucifer how many episodes are in season 3?

Output: How many episodes of season 3 of Lucifer were there, including bonus episodes?

26

58

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Positive Example 2 -

Input: What is the tallest ride at six flags over texas?

Output: What is the tallest roller coaster at six flags over texas 2001?

The Titan

Negative Example 1 -

Input: Lucifer how many episodes are in season 3?

Output: How many episodes of season 3 of Lucifer were there, including bonus episodes? 26

Negative Example 2 -

Input: What is the tallest ride at six flags over texas?

Output: What is the tallest roller coaster at six flags over Texas 2001?

Now complete the following example -

Input: When was season 7 of game of thrones released?

Output:

"

Expected Answer:

"When was season 7, episode 1 of game of thrones released through simulcast?

July 16, 2017"

Model Output:

"When was season 7 of game of thrones released in the US?

July 16, 2017

59

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Input Prompt [Task ID 431]:

"Definition: In this task you are given a sentence. You must judge whether the object of

the main clause is singular(like: apple) or plural(like: apartments). Label the instances as

"Singular" or "Plural" based on your judgment.

Positive Example 1 -

Input: They both let out relieved breaths at the doctorś words.

Output: Plural

Positive Example 2 -

Input: He signaled the bartender and ordered one more drink.

Output: Singular

Negative Example 1 -

Input: I collect my painting supplies.

Output: Singular

Negative Example 2 -

Input: I saw the ramp leading back toward the surface.

Output: Plural

Now complete the following example -

Input: For some unknown reason, that second kiss wreaked more emotional havoc than

the first had.

Output:

60

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

"

Expected Answer:

"Singular"

Model Output:

"Singular"

Input Prompt [Task ID 322]:

"Definition: In this task, you are given a public comment from online platforms. You

are expected to classify the comment into two classes: threat and non-threat. Threat is

a statement that someone will be hurt or harmed, especially if the person does not do

something in particular.

Positive Example 1 -

Input: Comment: Enough already. Cut the head off this snake.

Output: Threat

Positive Example 2 -

Input: Comment: Disgusting comment, I pity anyone who has to live with you.

Output: Non-threat

Negative Example 1 -

Input: Comment: Bravo! Bravo!

Encore!! Encore!! Encore!!

61

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Output: Threat

Negative Example 2 -

Input: Comment: ... after shooting her with her own gun.

Output: Non-threat

Now complete the following example -

Input: Comment: It’s a good thing that right wing illiterates in farms don’t read the

newspaper.

Output:

"

Expected Answer:

"Non-threat"

Model Output:

"Non-threat"

Input Prompt [Task ID 1398]:

"Definition: Given a fact, create a question that can be answered using the fact. Construct

the question such that it is unambiguous, has a unique answer and the answer can be

given using the fact.

Positive Example 1 -

Input: Fact: deep sea animals live deep in the ocean

62

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Output: Frilled sharks and angler fish live far beneath the surface of the ocean, which is

why they are known as?

Positive Example 2 -

Input: Fact: as an object moves , the kinetic energy of that object will increase

Output: An example of lots of kinetic energy would be?

Negative Example 1 -

Input: Fact: water is often brackish in an estuary

Output: What is the sun made of?

Negative Example 2 -

Input: Fact: if a liquid disappears then that liquid probably evaporated

Output: What happens is water is mopped up?

Now complete the following example -

Input: Fact: as the use of a crop increases , the amount of crops planted will increase

Output:

"

Expected Answer:

"When the demand for corn rises?"

Model Output:

"Which crop is most likely to be planted in large quantities due to its high demand?"

63

Chapter 3

Low-dimensional approximations of

the conditional law of discrete-time

Volterra processes: a non-positive

curvature approach

64

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Abstract

Predicting the conditional evolution of discrete-time Volterra processes with stochastic

volatility is a crucial challenge in mathematical finance. While deep neural network

models offer promise in approximating the conditional law of such processes, their

effectiveness is hindered by the curse of dimensionality caused by the infinite dimen-

sionality and non-smooth nature of these problems. To address this, we propose a

two-step solution. Firstly, we develop a stable dimension reduction technique, pro-

jecting the law of a reasonably broad class of discrete-time Volterra processes onto

a low-dimensional statistical manifold of non-positive sectional curvature. Next, we

introduce a sequentially deep-learning model tailored to the manifold’s geometry, which

we show can approximate the projected conditional law of the considered Volterra

process. Our model leverages an auxiliary hypernetwork to dynamically update its

internal parameters, allowing it to encode non-stationary dynamics of the Volterra

process, and it can be interpreted as a gating mechanism in a mixture of expert models

where each expert is specialized at a specific point in time. Our hypernetwork further

allows us to achieve approximation rates that would seemingly only be possible with

very large networks.

Keywords: Geometric Deep Learning, Measure-Valued Stochastic Processes, Non-

Positive Curvature, Barycenters, Universal Approximation, hypernetworks, Mixture

of Experts.

65

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

3.1 Introduction

There is a broad class of stochastic processes known as Volterra processes, which

represent a rich yet well-structured class of non-Markovian stochastic differential

equations (SDEs, henceforth) with latent stochastic factors. Both the discrete and

the continuous versions of stochastic Volterra processes, and their generalizations [1],

play a crucial role in mathematical finance (e.g., [27, 2, 16, 10]), reservoir computing

(e.g., [24, 19]), engineering (e.g., [45]), and computational biology (e.g., [29]); in this

paper, we focus on the discrete version.

Dynamic prediction of the conditional distribution of a non-Markovian Volterra

process X, given its realized path up to a specific time t, is a fundamental problem

that spans various scientific fields, including Bayesian modeling (see, e.g., [7]) and

mathematical finance (see, e.g., [40, 4]).

In this work, we consider Rd-valued discrete-time non-Markovian Volterra processes

X which evolve according to the following dynamics:

Xt+1 = Xt +Drift(t,X[0:t]) + Diffusion(t,X[0:t],S[0:t])Wt, t = 0, . . . , T − 1, (3.1.1)

where W def.
=(Wt)

T−1
t=0 is an independent and identically distributed (i.i.d., henceforth)

collection of Rd-valued standard normal random variables defined on a probability

space (Ω,F ,P) (i.e., a Gaussian white noise), and S def.
=(St)

T−1
t=0 is a symmetric matrix-

valued1 latent stochastic process independent of W , and X0 = x0 ∈ Rd. In Equation

(3.1.1), X[0:t] denotes the random vector (X0, . . . , Xt) consisting of the values of the

process X and x[0:t] the vector (x0, . . . , xt) representing its realization up to time

1In this paper, we use the bold face letter S to highlight that the process (St)
T−1
t=0 is a matrix-valued

process.

66

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

t. The Drift : [0,∞) × (Rd)t+1 → Rd, and the (non-singular) Diffusion : [0,∞) ×

(Rd)t+1 × (Sym(d))t+1 → Sym+(d) are defined as

Drift
(
t, x[0:t]

)
def.
=

t∑
r=0

κ(t, r)µ(t, xr),

Diffusion
(
t, x[0:t], s[0:t]

)
def.
= exp

(
1

2

t∑
r=0

κ(t, r) [σ(t, xr) + sr]

)
,

(3.1.2)

for all t ∈ N+, where N+ denotes the set of natural numbers strictly greater than zero

(on the other hand, we use N to denote the non-negative integers), x[0:t] ∈ Rd(t+1),

and s[0:t] ∈ (Sym(d))t+1; Sym(d) (respectively Sym+(d)) denotes the set of d × d

symmetric matrices (respectively symmetric and positive definite) with real entries,

exp(·) denotes the matrix exponential. Besides, κ : {(t, r) ∈ N2 : r ≤ t} 7→ [0, 1] is the

so-called Volterra kernel, and µ : R1+d 7→ Rd, σ : R1+d 7→ Sym(d) are Lµ-Lipschitz and

Lσ-Lipschitz functions respectively; we call a function whose best Lipschitz constant

is at most L an L-Lipschitz function. The conditional distribution we are interested

in will be expressed as P[Xt+1 ∈ ·|X[0:t] = x[0:t]].

Although there are several machine learning models to learn a process’s conditional

distribution on its historical paths (see, e.g. [9, 18, 39, 11, 13]) and deep-learning

models for approximating signed measure-valued functions (see, e.g. [12, 30, 6, 15]),

the available quantitative approximation bounds for measure-valued models (see, e.g.,

[31, 3]) suggest that measure-valued maps cannot be approximated efficiently. This is

due to two factors. Firstly, they are infinite-dimensional, meaning they suffer from

extreme forms of the curse of dimensionality; see [35] for a lower bound in the linear

case. Secondly, most spaces of probability measures, e.g., Wasserstein spaces, do

not have any smooth or linear structure, which a deep-learning model can naturally

67

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

leverage. To the best of our knowledge, there are currently no available deep-learning

models which can approximate the evolving conditional distribution of most stochastic

processes while also depending on a computationally feasible number of parameters.

To address these issues, we present a two-step approach for dynamically approxi-

mating P[Xt+1 ∈ ·|X[0:t] = x[0:t]]. The first step is based on the following observation.

Should the path s[0:t] of the process S be observable in Equation (3.1.1), Xt+1 would be

Gaussian distributed when conditioned on the realized path x[0:t]. Whence, by allowing

for an irreducible dimension-reduction-type error, we project P[Xt+1 ∈ ·|X[0:t] = x[0:t]]

onto the C∞ Riemannian manifold Nd of non-singular d-dimensional Gaussian mea-

sures; we call this projection the Gaussian random projection. Interestingly, projecting

the conditional distribution of the stochastic Volterra process X, conditioned on its

realized path x[0:t] up to any time t, P[Xt+1 ∈ ·|X[0:t] = x[0:t]], down to Nd results in

a (generalized) dynamical system between finite-dimensional spaces. Since all the

resulting spaces are finite-dimensional and well-structured, one can reasonably hope

that this system can be approximated without the curse of dimensionality if the

involved maps are regular enough, a feature not shared by infinite-dimensional approx-

imation problems [35, 3]. There is a well-developed literature on the approximation

of dynamical systems by recurrent deep-learning models such as reservoir computers

[23, 20, 24, 21], recurrent neural networks [37, 26], or transformers [48].

However, the available universal approximation results in the literature only apply

to dynamical systems between linear input spaces and systems whose dynamics do not

change in time. We therefore first extend the static geometric deep-learning of [31] to

a sequential/dynamic model capable of processing sequences of inputs and outputs in

any given appropriate pair of non-positively curved Riemannian manifolds, e.g. on

68

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Nd, and we then, in the main paper, prove a universal approximation showing that it

can approximate most time-inhomogeneous dynamical systems between these spaces,

possibly having infinite but polynomially fading-memory.

3.2 Model Structure

The first step of our two-step approach employs a Gaussian random projection, we

define a map sending any x[0:t] ∈ R(d+1)t to a unique point, denoted by Πx[0:t] , in

Nd. The second step consists in the approximation of the map x[0,T] 7→
(
Πx[0:t]

)T
t=0

,

which defines a long-memory dynamical system on the Riemannian manifold Nd,

while respecting the forward flow of information in time; i.e., the map is causal.

Toward this aim, we develop a more general approximation theory for causal maps

between geodesically complete and simply connected Riemannian manifolds, globally

non-positively curved. We denote by (N , h) and (M, g) the source and the target

manifold, respectively. We begin with a static case that does not consider time, in

which we propose a geometric deep-learning (GDN) model, illustrated in Figure 3.1.

Encode:

Linear Features

Decode:

Generate Predictions

Latent Reprentation:

ReLU MLP

Affine ReLU Affine ReLU Affine ReLU Affine

Figure 3.1: The GDN model.

The figure 3.1 displays the GDN model f̂ used in the static case, which processes

an input in x[−H:0] ∈ N 1+H, interpreted as sequential points x−H, . . . , x0 inputs in N ,

in three steps: an encoding, transformation, and decoding phase. First, it linearize

69

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

(green) the inputs in N 1+H along products of geodesics emanating from a set of

reference points x⋆0, . . . , x⋆H in N 1+H. It then transforms the linearized features and

maps them to a vector v in the tangent space of M using a standard ReLU-MLP

(yellow); ReLU-MLP stands for Multilayer Perceptron (MLP) with Rectified Linear

Unit (ReLU) activation function. In the decoding phase (purple), the model maps v

to a point f̂(x[−H:0]) onM by traveling geodesics inM emanating from a reference

point y⋆ therein with initial velocity v.

Then, we consider a dynamic version of our static results above and we propose a

Hypergeometric network (HGN) model, illustrated in Figure 3.2, where an auxiliary

feedforward neural network, which we call a hypernetwork ([25]) synchronizes the

parameters of several GDNs each of which independently approximates the map

x[0,T] 7→
(
Πx[0:t]

)T
t=0

for a unique t. In other words, we obtain a federated algorithm

where a sequence of independent experts approximate the dynamical system at indi-

vidual points in time, after which an overarching hypernetwork is used to synchronize

them and create the recurrence without having to optimize (backpropagate) in time.

Encode:

Linear Features

Current
Parameters

(time t)

Updated
Parameters

(time t+1)

Hypernetwork:

Update MLP's Parameters

Decode:

Generate Predictions

Latent Reprentation:

ReLU MLP

Affine ReLU Affine ReLU Affine ReLU Affine

Affine ReLU Affine ReLU Affine ReLU

Figure 3.2: The HGN model.

The figure 3.2 displays the HGN model. The green layer encodes sequence segments

70

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

in the input manifold into distances relative to a reference/landmark point x⋆. These

linearized features are then processed through a ReLU MLP, illustrated by the

yellow, applying fully-connected affine (also called linear) layers interspersed with

ReLU activation functions (orange). Finally, the purple module decodes the vector v

generated by the ReLU MLP into a manifold-valued prediction, by travelling along a

geodesic emanating from a reference/landmark point y⋆ therein with initial velocity v.

It applies the GDN model while iteratively updating its internal parameters, at each

time step, using an (blue) auxiliary ReLU network, the hypernetwork.

As a notable analogy, as seen in mixture of experts (MoE) models such as Gem-

ini [22], Switch Transformers [17], Mixtral [28], and many others (e.g. [42, 14, 36, 41,

43]) which have taken a central role in modern deep learning, due to their ability to

scale up the model complexity while maintaining a constant computational cost on

the forward pass [32, 34] via a gating mechanism which routes any given input to one

of a large number of “expert” neural network models, which is then used to produce

a prediction from that input. Thus, only the gating network parameters and the

selected “expert” neural network are ever activated for that input. One can interpret

our HGN (hypergeometric network) as a mixture of infinitely many experts, each of

which specializes in predicting at exactly one moment in time. The hypernetwork in

our HGN model acts as a gating mechanism that, given the current point in time,

routes the input to the corresponding expert at that moment in time.

As my main contribution to this work, we empirically verify the trainability of

the proposed model and the role of each component via an ablation study evaluating

the dependence of the model on its parameters. All code can be found at https:

//github.com/arabporr/HyperNetwork .

71

https://github.com/arabporr/HyperNetwork
https://github.com/arabporr/HyperNetwork

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

3.3 Ablation Study

We complemented our theoretical analysis of the Gaussian random projection and

the HGN (available in the main paper) with the numerical analysis of these new

tools. The primary purpose of this section was to show how such a pipeline can be

implemented and to explain the role of each component of our model and how each of

these interacts with the Volterra process X. Since there are no available benchmarks

for approximating dynamical systems on Riemannian manifolds, which are guaranteed

to be universal, we instead perform an ablation study to better understand the

dependence of each of these various factors determining the process X. Additional

details are provided in 3.6.

Experiment Setup Consider a family of i.i.d. random Bernoulli variables (Bt)
∞
t=0

taking values in {0, 1} with equal probabilities of each state. Fix a randomness

parameter λ ≥ 0 and define the random matrices

St
def.
=λBt · Id

where t ∈ N and d ∈ N+. Fix a weight w ∈ (0, 1], Lipschitz functions µ : Rd 7→ Rd,

ς : Rd 7→ (0, 2], and a d × d symmetric positive-definite matrix σ. Consider the

d-dimensional stochastic process

Xt+1 = Xt +Drift(Xt−1, Xt) + Diffusion(Xt,St)Wt

Drift(z, x) def.
=wµ(x) + (1− w)µ(z)

Diffusion(x, s) def.
= ς(x) · σ + s,

(3.3.1)

72

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

for t ∈ N, where (Wt)
T
t=0 are i.i.d. d-dimensional standard normal random variables

independent of (Bt)
T
t=0, and both X−1, X0 are d-dimensional standard normal random

variables. The diffusion component of the process Xt, conditionally on Xt, randomly

moves between ς(Xt) · σ and ς(Xt) · σ + λId with equal probabilities, independently of

the driving Gaussian white noise. For any T ∈ N+, path x[−1:T] ∈ R(2+T)d, and integer

0 ≤ t ≤ T , the Nd-valued random variable Qx[−1:t]
is distributed according to

P
[
Qx[−1:t]

= Nd(xt +Drift(xt−1, xt), ς(xt)
2 · σ2)

]
=
1

2

P
[
Qx[−1:t]

= Nd(xt +Drift(xt−1, xt), (ς(xt) · σ + λId)
2)
]
=
1

2

(3.3.2)

We choose to index starting from t = −1 instead of t = 0 here only to emphasize that

we are discarding the first data point to set up our trained model’s memory.

By [46, Proposition 5.5] and the product Riemannian structure on (Nd, J) we have

that the barycenter of Law(Qx[0:t]) is the Cartesian product of the barycenters of its

components, up to identification of (Nd, J) with (Rd × Sym+(d), δ ⊕ g). Using the

expression of the barycenter between two-points in (Sym+(d), g) (see [8, page 1701])

we find that

β(Qx[−1:t]
) = Nd

(
xt +Drift(xt−1, xt)), ς(xt) · σ2(σ−2(λId + ς(xt) · σ)2)1/2

)
. (3.3.3)

Next, we confirm that the HGN model can indeed approximate the map x[−1:t] →

β(Qx[−1:t]
) in practice. Furthermore, we inspect the dependence of each of the com-

ponents of our framework on the parameters defining the Volterra process (3.3.1);

namely, the drift µ, the diffusion σ, ς , the randomness of the stochastic factor process

λ > 0, and the effect of non-Markovianity w.

73

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

HGN Training Pipeline The HGN model is trained as follows. First, we sample

several N ∈ N+ paths segments {x(n)[−1:T]}Nn=1 up to time T ∈ N+ and we train a GDN

to predict y(n)1
def.
= β(Q

x
(n)
[−1:1]

) given each sampled path, by minimizing the intrinsic mean

squared error (IMSE)

ℓ1(θ)
def.
=

N∑
n=1

dg(fθ(x
(n)
[−1:1]), y

(n)
1)2

where θ parametrizes a set of GDNs of pre-specified depth and width. The IMSE is

optimized using the native ADAM optimizer built into Pytorch until a suitable GDN

parameter θ1 is obtained.

Then, for every subsequent time t, each we train a GDN by rolling the training

window forward and minimizing the corresponding GDN

ℓt(θ)
def.
=

N∑
n=1

dg(fθ(x
(n)
[t−2:t]), y

(n)
t)2 (3.3.4)

where y(n)t
def.
= β(Q

x
(n)
[t−2:t]

). To avoid instability due to the several symmetries present in

the parameter space of most MLPs, see e.g. [5, 44], and thus of our GDNs, we initialize

the optimization of each GDN at time t+1 using the optimized parameters θt obtained

by minimizing ℓt at time t. Additionally, this implicitly encodes a transfer-learning

effect, whereby the GDN responsible for predicting at time t encodes the pre-trained

structure in previous times. We note that when training the first GDN, 20 ADAM

epochs are used while subsequent GDNs are sequentially fine-tuned using 10 ADAM

epochs.

Once we have trained each “expert” GDN {fθt}Tt=0, specialized only on approxi-

mating β(Q·) at each time t, the HGN can be trained by minimizing the hyper-MSE

74

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

ℓhyper in the common parameter space Rp of the GDNs. Namely,

ℓhyper(ϑ)
def.
=

T−1∑
t=0

∥hϑ(θt)− θt+1∥2,

where ϑ encodes the parameters of a hypernetwork of fixed depth and width. The

HGN is then fully encoded into the pair (θ0, h). Additional details and pseudo-code

are contained in Appendix 3.6.

3.4 Ablation Results

We study the sensitivity of the HGN and GDN models to the principal characteristics

dictating the stochastic evolution of X. We subsequently study the effect of encoding

a large number of GDN “experts” into a single HGN.

We fixed one base problem (a process with a specific set of parameters) and

30 additional variations used during our ablation study, each with a similar set of

parameters but with exactly one hyperparameter different (e.g. drift, volatility, etc...)

perturbed during each ablation. The training set consists of the first t = 0, . . . , 159

time steps, and the test set consists of the final 160, . . . , 200 time steps of the process

X. In each result, we report 95% empirical confidence intervals. All experiment details

on the computational resources used are in 3.6.1.

Sensitivities to aspects of X We begin by ablating the sensitivity of the HGN and

GDN models to: the simplicity/complexity of the drift (µ), the level of randomness

(λ) in the stochastic factor S, the effect of large/small fluctuations (ς) in the diffusion,

the dimension (d) of the process X, and the level of non-Markovianity/persistence

75

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

of memory (w) of the process X. In each case, we report the intrinsic mean squared

error for the GDN and HGN models and the confidence intervals formed from one

standard deviation of the loss distribution about the (mean) intrinsic mean squared

error across all time steps in the test set.

Table 3.1: Drift Ablation: Sensitivity to the structure of the drift (µ) of X.

µ GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

1
100

1.27× 10−6 [1.18, 1.36]× 10−6 4.78× 10−4 [3.89, 5.67]× 10−4

1
10

2.21× 10−6 [2.03, 2.39]× 10−6 4.39× 10−2 [3.65, 5.13]× 10−2

1
2
(1
100
− x) 1.58× 10−3 [1.55, 1.60]× 10−3 1.58× 10−3 [1.55, 1.60]× 10−3

e−x + cos(x
100

) 1.04× 10−5 [0.88, 1.19]× 10−5 1.41× 10+1 [1.29, 1.53]× 10+1

Table 3.1 shows that the HGN and GDN models can predict Volterra processes

whose drift is both simple, e.g. constant, or complicated, e.g. exhibiting osculations

cos(x/100) and decay such as e−x. Nevertheless, as one would expect, the more

complicated drifts are more difficult to learn for both models, as reflected by larger

test set errors. Moreover, as the drift becomes more complicated the gap between the

test set performance of the HGN and GDN models grows as the parameters of the

GDN become increasingly difficult to predict for the hypernetwork in the HGN model.

76

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Table 3.2: Random Factor Ablation: Sensitivity to the randomness (λ) in the stochastic
factor process S.

λ GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

0 3.47× 10−7 [3.36, 3.58]× 10−7 3.49× 10−7 [3.41, 3.58]× 10−7

0.1 1.58× 10−3 [1.55, 1.60]× 10−3 1.58× 10−3 [1.55, 1.60]× 10−3

0.25 2.32× 10−5 [2.19, 2.46]× 10−5 7.67× 10−4 [6.87, 8.46]× 10−4

0.5 8.94× 10−5 [8.25, 9.63]× 10−5 4.22× 10−3 [3.75, 4.69]× 10−3

0.75 2.25× 10−4 [2.07, 2.44]× 10−4 1.34× 10−2 [1.21, 1.47]× 10−2

0.9 3.30× 10−4 [3.00, 3.60]× 10−4 1.69× 10−2 [1.55, 1.83]× 10−2

1 4.30× 10−4 [3.91, 4.69]× 10−4 2.12× 10−2 [1.94, 2.30]× 10−2

Table 3.2 shows that all models have increasingly larger challenges when predicting

from processes with large levels of randomness (λ) in the stochastic factor S influencing

their diffusion component. This is because the larger λ is, the more spread out both

states (3.3.2) of the random variable Qx[−1:t]
becomes and, consequentially, the more

information is lost when computing the intrinsic averaging using β. As anticipated,

highly random stochastic factors produce a larger gap in the test set performance of

the GDN and the HGN models.

Table 3.3: Dimension Ablation: Sensitivity to Dimension (d) of the Volterra Process X.

d GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

2 3.84× 10−6 [3.32, 4.36]× 10−6 4.27× 10−5 [3.83, 4.71]× 10−5

5 4.44× 10−6 [4.14, 4.75]× 10−6 9.56× 10−5 [0.88, 1.04]× 10−4

10 1.58× 10−3 [1.55, 1.60]× 10−3 1.58× 10−3 [1.55, 1.60]× 10−3

20 1.77× 10−3 [1.73, 1.81]× 10−3 1.76× 10−3 [1.72, 1.80]× 10−3

50 1.95× 10−3 [1.90, 2.00]× 10−3 1.94× 10−3 [1.89, 1.99]× 10−3

100 1.99× 10−3 [1.95, 2.03]× 10−3 1.99× 10−3 [1.95, 2.03]× 10−3

77

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Table 3.3 confirms the effect of dimensionality on the expressive power of the HGN

and GDN models. Importantly, the performance of the HGN consistently mirrors

that of the GDN model in dimensions 2 to 100. Since roughly the same number of

parameters is used in each case, then, naturally, the performance of both models is

better in low dimensions than in higher dimensions.

Table 3.4: Non-Markovianity Ablation: Sensitivity to the persistence of memory (w) in X.

Memory GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

0 3.34× 10−8 [2.82, 3.85]× 10−8 7.97× 10−6 [6.63, 9.31]× 10−6

0.1 9.31× 10−5 [8.64, 9.98]× 10−5 9.32× 10−5 [0.86, 1.00]× 10−4

0.25 1.02× 10−4 [0.94, 1.10]× 10−4 1.02× 10−4 [0.94, 1.10]× 10−4

0.5 1.58× 10−3 [1.55, 1.60]× 10−3 1.58× 10−3 [1.55, 1.60]× 10−3

Both the HGN and GDN models perform nearly identically for all degrees of

memory persistence, from Markovianity to higher levels of non-Markovian memory.

This confirms that the hypernetwork can reliably predict GDN parameters regardless

of the degree of memory.

78

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Table 3.5: Diffusion Ablation: Sensitivity to the size of the fluctuations (ς) in the diffusion of
X.

ς GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

0.005 4.53× 10−6 [4.19, 4.88]× 10−6 1.39× 10−4 [1.25, 1.54]× 10−4

0.01 5.02× 10−6 [4.67, 5.37]× 10−6 1.46× 10−4 [1.27, 1.66]× 10−4

0.05 1.01× 10−5 [0.94, 1.08]× 10−5 4.04× 10−4 [3.55, 4.54]× 10−4

0.1 1.90× 10−5 [1.79, 2.02]× 10−5 7.30× 10−4 [6.43, 8.17]× 10−4

1 1.17× 10−3 [1.09, 1.24]× 10−3 3.33× 10−2 [2.97, 3.70]× 10−2

10 4.13× 10−1 [3.69, 4.57]× 10−1 4.56× 10+0 [4.14, 4.99]× 10+0

100 2.80× 10+3 [2.74, 2.86]× 10+3 3.27× 10+3 [3.18, 3.35]× 10+3

1000 3.10× 10+5 [3.01, 3.18]× 10+5 3.15× 10+5 [3.07, 3.23]× 10+5

Table 3.5 shows that both models can reliably predict regardless of the diffusion

component of the process X has large or small fluctuations. As expected, the reliability

of the HGN predictions deteriorates when ς increases, as can be seen by an increase

in the standard deviation of the loss.

We single out the case where ζ is small, as there are at least two noteworthy

complicating factors, one numerical and the other geometric. For the former, it may

not be surprising that ζ causes numerical instability as the involved matrices will have

very small eigenvalues, which can be rounded down to zero by the machine during the

calculation due to the rounding errors that outweigh the values.

Consequently, many more parameters are required for the HGN to achieve a

comparable approximation accuracy when the target Gaussian measure is near the

Gaussian measure used as the base point of the exponential layer of the GDN (as

in Table 3.5). This shows that the constants in our main result concretely impact

practical implementations of the GDN and the HGN models.

79

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Table 3.6: Curvature Ablation: Sensitivity to the size of the fluctuations (ς) in the diffusion
of X.

ς GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

0.000001 2.34× 10−3 [2.30, 2.38]× 10−3 2.32× 10−3 [2.28, 2.36]× 10−3

0.0001 1.52× 10−3 [1.48, 1.57]× 10−3 1.54× 10−3 [1.50, 1.58]× 10−3

0.001 1.58× 10−3 [1.55, 1.60]× 10−3 1.58× 10−3 [1.55, 1.60]× 10−3

The next set of ablation studies continue to examine the efficacy of the hypernetwork

in encoding and predicting GDN parameters in the test set.

Ablation of the Hypernetwork Encoding

Our work also guarantees that the hypernetwork can effectively encode a large number

of GDNs. In particular, doing so suggests that the HGN model can be recursively

rolled, allowing us to predict well into the future. Two questions naturally arise: 1)

In practice, is a hypernetwork encoding of a sequence of GDN models legitimately

trainable? 2) Does the hypernetwork continue to generate well-performing GDN

models out-of-sample in future times? This section yields an affirmative yes to both

of these questions; thus showing the feasibility and reliability of the hypernetwork in

the HGN model.

In this next experiment, we test this by comparing three different degrees of hyper-

network encoding. These experiments are run with a subset of the same configurations

from the last section; which we annotate in each figure caption. Each of the figures 3.3

and 3.4 plot the test set performance of each model, which begins at time t = 160 and

ends at time t = 200.

(1) (GDN) no hypernetwork is used and only a different GDN “expert” is used to

generate predictions at any time, trained at time t−1. (2) (HGN 1 step) at every time

80

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

t, the hypernetwork loads the predictions of the GDN at time t− 1 and uses them to

predict a GDN, which is then used to predict at time t. In this case, the hypernetwork

component of the HGN is only ever used to make one-step-ahead predictions. (3)

(HGN) loads the GDN parameters at time 160 and then sequentially predicts the

parameters at every subsequent time t using its predicted parameters at time t− 1,

up until the terminal time t = 200. All three models perform nearly identically, as

illustrated by the log-scale losses. This shows that the hypernetwork encoding of the

GDN models is practically effective.

160 170 180 190 200
Time (t)

5.0

4.5

4.0

3.5

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance wrt. intrinsic loss of GDNs, HGNs, and Recurrently Predicted HGNs

GDN
HGN (1 step)
HGN (w. rec)

Figure 3.3: Situation I - Nearly Logarithmic Degradation of HGN Accuracy

Our experiments uncover two types of behaviours that the HGN can exhibit. The

first one is shown in Figure 3.3 above, the HGN performance slowly (logarithmically)

departs from that of the GDN as time rolls forward. This is typically what is observed

in most of our experiments. In this case, there is a small but growing gap between the

test set performance of the HGN and the GDN model, which increases as time flows

forward. Furthermore, this gap is roughly the same for both the 1-step and recurrent

81

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

HGN models.

160 170 180 190 200
Time (t)

2.88

2.86

2.84

2.82

2.80

2.78

2.76

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance wrt. intrinsic loss of GDNs, HGNs, and Recurrently Predicted HGNs

GDN
HGN (1 step)
HGN (w. rec)

Figure 3.4: Situation II - Nearly Perfect GDN Prediction by HGN

The second scenario, can be seen in Figure 3.4, is when the HGN continues to

nearly perfectly predict the performance of the GDN as time rolls forward. This occurs

in a subset of experiments where the GDN parameters do not change significantly

between time steps.

The GDN training occasionally suffers from exploding gradients during training; one

can re-run the stochastic gradient descent algorithm when this happens. We note that

there is nothing particular about instances when this happens (see Appendix 3.6.4).

3.5 Conclusion

We presented a framework for obtaining low-dimensional approximations of the con-

ditional distribution (non-Markovian) stochastic Volterra processes in discrete time.

First, we develop a tool, the Gaussian projection, for projecting the condition of

82

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

such processes down onto the C∞ Riemannian manifold Nd of non-singular Gaussian

measure with a perturbation J of its standard information geometry with favourable

geometric and computational properties. Like classical tools for dimension reduction

of probability measures (e.g. information projections), the Gaussian projection is

a projection-type optimization problem; however, unlike those tools, the Gaussian

projection is a Lipschitz operation and can even be a C∞ map under additional

conditions. Using these insights, we then constructed a sequential geometric deep

learning model which is compatible with the non-positive curvature of (Nd, J). We also

numerically illustrated the HGN model, showing its practical viability. We conducted

an ablation study, confirming our main theoretical results (which are available in the

full paper).

Future Research

In future work, we aim to extend our analysis to general stochastic processes, thereby

going beyond the stochastic Volterra setting. We would also like to explore the

impact of projecting onto different information-like geometries when approximating

the conditional law of various processes, and how to choose such geometries if one has

information on the structure of these processes.

Besides that, we consider replacing our ReLU MLP backbones with other deep

learning architectures such as Kolmogorov-Arnold networks (KAN) and modifying

our proofs with that backbone’s approximation theorem. For instance, using a KAN

we can use the approximation theorem of [33], using MLPs with different activation

functions, e.g. ReLUk or smooth activation functions, we can respectively rely on the

results of [38] or of [49], or using shallow neural networks we can appeal to the optimal

83

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

rates of [47]. Each of these is an interesting avenue of possible future research.

3.6 Appendix

Experiment Details

We include the details of the experiments in Section 3.3. We first explicitly describe the

algorithms we used to generate the sample paths from the Volterra process in (3.3.1),

to compute its Gaussian random projections, and to train the HGN from this data.

We then provide details on the hardware used to train these models.

3.6.1 Experiment and Compute Details

The architecture used to tackle those problems (identical for all the models) had

six layers with a maximum size of 512 in the GDN part and eight layers with

a maximum size of 1024 in the hypernetwork (ignoring the input-output layers).

Since the base parameter’s T value was 200, we had to train 200 GDNs and 1

hypernetwork. Considering the architecture mentioned, we had around 500, 000

parameters in each GDN and 750, 000, 000 in the hypernetwork to train. Despite

their size, these calculations are highly parallelizable. We trained our models within

a reasonable time by exploiting basic optimizations and employing the graphics

processing unit (GPU) to run the computations within each model in parallel. There

are still simple ideas that can improve the performance of these networks, like training

GDNs in parallel using multiple GPUs simultaneously. However, there was no need to

do that since our training time was short enough, and we would need more GPUs to

84

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

achieve that.

We ran experiments on the Vector Institute for Artificial Intelligence’s computing

cluster. Since each problem (process created with a specific set of parameters) is

entirely independent, we used 30 machines, one for each problem in parallel. All the

machines had the same configuration with 6 CPU cores, 1 Nvidia T4 GPU, 20 GB of

RAM, and 40 GB of SSD memory. The run-time limit for the instances was 12 hours,

although all machines finished their jobs in less than 8.5 hours. The problem with the

base parameter set took about 4 hours and 44 minutes, and the overall average was

around 6 hours. Note that these differences might be seen because not all machines

were on the same host computing node. Thus, the CPU and RAM models and clock

frequencies different amount for all the machines.

3.6.2 Algorithm Descriptions

The following algorithm is used to generate sample paths of the Volterra process

defined in (3.3.1).

85

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Algorithm 1: Construct X

Require: Number of training samples N ∈ N+, time-horizon T ∈ N+, dynamics µ,

σ, and ς, “noise” parameter 0 ≤ λ, memory 1 ≤ w ≤ 0.

For n : 0, . . . , N − 1 in parallel

for t : 0, . . . , T do

if t = 0 then
xn−1 ← 0

xn0 ← 0 // Get Initial States

end if

else

Sample: Z ∼ Nd(0, Id) // Generate Gaussian Noise

Sample: B ∼ Binom({0, 1}; 1/2) // Generate Hidden Process

x← wµ(xnt−1) + (1− w)µ(xnt) // Get Drift

y ← (ς(xnt) · σ +B λ Id)Z // Get Diffusion

xnt+1 ← xnt + x+ y // Update Diffusion

end if

xn ← (xnt)
T
t=0 // Save Sample Path

end for

end

X ← {xn}N−1
n=0 // Compile Dataset

return X

The next algorithm (Algorithm 2) implements the Gaussian projection of the

Volterra process in (3.3.1). This is given by the closed-form expression derived

in (3.3.3).

86

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Algorithm 2: Given a set of paths X in R(2+T)d, this algorithm returns an

array of input-output pairs, whose elements are pairs of paths x[−1:T] in X

paired with the parameters determining the path of Gaussian distributions

yx def.
=(Qx[−1:t]

)Tt=0 traced out by sequentially applying the barycenter map to

the process (Qx[−1:t]
)Tt=0.

Require: Time-Horizon, finite set of paths X ⊆ R(2+T)d, drift µ, diffusion

parameters σ and ς, and a “randomness” λ ≥ 0.

For x def.
=x[−1:T] ∈X in parallel

for t : 0, . . . , T do

µxt ← xt +Drift(xt−1, xt) // Get Mean of Projection

σxt ← ς(xt) · σ2(σ−2(λ Id + ς(xt) · σ)2)1/2 // Get Covariance of

Projection

end for

yx ←
(
µxt , vec(σ

x
t)
)T
t=0

// Get Outputs

end for

return Z ← {(x, yx)}x∈X // Return Array of Input-Output Pairs {(x, yx)}x∈X

Once the input data has been generated using Algorithm 1 and the corresponding

Gaussian random projections have been computed using Algorithm 2, then we have

input-output pairs which can be used to train the GDN and HGN models. Observe that

the training scheme that we used for GDNs avoids backpropagating in time (as with

RNNs). Thus, even if the HGN has a recursion, it can be trained without recursion

similarly and thus enjoys some of the training stability properties of transformers,

which RNNs do not share; namely, no backpropagation in time.

87

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Algorithm 3: Construct HGN
Require: A dataset Z ← {(x, yx)}x∈X , GDN depth and widths, (ReLU)

hypernetwork dimensions [d].
For t : 0, . . . , T in parallel
f̂θt ← argmin

f̂θ∈GDN [S],[L]

∑
x∈X

∥∥f̂θ(x[t−1:t])− yxt
∥∥2 // Optimize GDN Nodes

zt ← (θt, t) // Separate Parameters
end

/* Create Recurrence/ Encode Causality */

ĥ← argmin
h∈NNReLU

[d]

∑T
t=0 ∥h(zt)− zt+1∥22

/* Server receives parameters of optimized neural filters for each time window
*/
L : RP ([d]) × RQ 7→ RP ([d]) projection onto first component
return Trained HGN: (f̂ , z0, L).

3.6.3 Additional Loss Curves

We plot the loss curves, in the test set, of a representative subset of the experiments

reported in Tables 3.1, 3.4, 3.2, 3.5, and 3.6. Figure 3.5 shows that the behaviour

illustrated in Figures 3.3 and 3.4 persists across our experiments.

88

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

150 160 170 180 190 200
Time (t)

2.925

2.900

2.875

2.850

2.825

2.800

2.775

2.750

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (default values)

150 160 170 180 190 200
Time (t)

6.55

6.50

6.45

6.40

6.35

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0)

150 160 170 180 190 200
Time (t)

2.72

2.70

2.68

2.66

2.64

2.62

2.60

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.000001)

150 160 170 180 190 200
Time (t)

2.925

2.900

2.875

2.850

2.825

2.800

2.775

2.750

2.725

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.0001)

150 160 170 180 190 200
Time (t)

5.35

5.40

5.45

5.50

5.55

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 1000.0)

150 160 170 180 190 200
Time (t)

2.900

2.875

2.850

2.825

2.800

2.775

2.750

2.725

2.700
In

tri
ns

ic
 lo

ss
 (l

og
10

)
Test set performance of the GDNs, HGNs (1-step), and HGNs (d = 20)

150 160 170 180 190 200
Time (t)

4.4

4.3

4.2

4.1

4.0

3.9

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (Memory = 0.1)

150 160 170 180 190 200
Time (t)

4.3

4.2

4.1

4.0

3.9

3.8

3.7

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (Memory = 0.25)

150 160 170 180 190 200
Time (t)

6.0

5.5

5.0

4.5

4.0

3.5

3.0

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.01)

150 160 170 180 190 200
Time (t)

6

5

4

3

2

1

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.1)

150 160 170 180 190 200
Time (t)

5

4

3

2

1

0

1

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= exp(X) + cos(0.01 * X))

150 160 170 180 190 200
Time (t)

4.75

4.50

4.25

4.00

3.75

3.50

3.25

3.00

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.25)

150 160 170 180 190 200
Time (t)

4.25

4.00

3.75

3.50

3.25

3.00

2.75

2.50

2.25

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.5)

150 160 170 180 190 200
Time (t)

4.0

3.5

3.0

2.5

2.0

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.75)

150 160 170 180 190 200
Time (t)

3.5

3.0

2.5

2.0

1.5

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.9)

150 160 170 180 190 200
Time (t)

3.5

3.0

2.5

2.0

1.5

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 1)

150 160 170 180 190 200
Time (t)

5.50

5.25

5.00

4.75

4.50

4.25

4.00

3.75

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.005)

150 160 170 180 190 200
Time (t)

5.50

5.25

5.00

4.75

4.50

4.25

4.00

3.75

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.01)

150 160 170 180 190 200
Time (t)

5.0

4.5

4.0

3.5

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.05)

150 160 170 180 190 200
Time (t)

5.00

4.75

4.50

4.25

4.00

3.75

3.50

3.25

3.00

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.1)

150 160 170 180 190 200
Time (t)

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 1)

150 160 170 180 190 200
Time (t)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 10.0)

150 160 170 180 190 200
Time (t)

3.35

3.40

3.45

3.50

3.55

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 100.0)

150 160 170 180 190 200
Time (t)

6.25

6.00

5.75

5.50

5.25

5.00

4.75

4.50

4.25

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (d = 2)

150 160 170 180 190 200
Time (t)

5.50

5.25

5.00

4.75

4.50

4.25

4.00

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (d = 5)

150 160 170 180 190 200
Time (t)

8.0

7.5

7.0

6.5

6.0

5.5

5.0

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (Memory = 0)

150 160 170 180 190 200
Time (t)

2.0

2.5

3.0

3.5

4.0

4.5

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.1 * X + 0.01)

150 160 170 180 190 200
Time (t)

6.0

6.5

7.0

7.5

8.0

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (= 0.1 * X + cos(0.01 * X))

150 160 170 180 190 200
Time (t)

18

19

20

21

22

23

24

25

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (Memory = 1)

150 160 170 180 190 200
Time (t)

14

15

16

17

18

19

20

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (Memory = 0.9)

150 160 170 180 190 200
Time (t)

9

10

11

12

In
tri

ns
ic

 lo
ss

 (l
og

10
)

Test set performance of the GDNs, HGNs (1-step), and HGNs (Memory = 0.75)
GDN
HGN (1 step)
HGN (w. rec)
Test Set Begins

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5: Typical Learning Curves - Including Cases With Exploding Gradients

89

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

3.6.4 Exploding Gradients due to Small Eigenvalues

There is one additional case, illustrated in Figure 3.5, where the GDN or HGN suffers

from exploding gradients during training. We included some examples of learning

curves illustrating the exploding gradients phenomenon that occurs.

A priori there is nothing particular about the target function being learned when

this occurs. For instance, the experiments in Table 3.1 where x 7→ 1
2
(1
100
− x) is

essentially the same as when x 7→ 1
10
x+ 1

100
; thus both should be equally easy to learn.

However, in the experiment recorded in Table 3.7, the model experiences exploding

gradients during training and thus the reported loss is relatively large. Similarly, the

drift x 7→ e−x+ cos(x
100

) and x 7→ x
10

+ cos(x
100

) are essentially the same; but again the

latter is not being learned due to exploding gradients during training (see Table 3.7

again). Similarly, the value of w is similar to those considered in Table 3.4; however,

the loss in situations where gradients exploded during training is several magnitudes

larger.

Table 3.7: Examples of Exploding Gradients

µ GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

1
10
x+ 1

100
4.19× 10+3 [2.75, 5.64]× 10+3 6.22× 10+3 [4.24, 8.21]× 10+3

x
10

+ cos(x
100

) 2.82× 10+7 [1.92, 3.71]× 10+7 2.98× 10+7 [2.05, 3.91]× 10+7

w GDN Loss Mean GDN Loss 95% C.I. HGN Loss Mean HGN Loss 95% C.I.

0.75 3.32× 10+11 [1.55, 5.09]× 10+11 3.32× 10+11 [1.55, 5.09]× 10+11

0.9 1.42× 10+19 [0.45, 2.40]× 10+19 1.42× 10+19 [0.45, 2.40]× 10+19

A closer look at the error logs shows that the exploding gradient occurs due to

rounding errors in the Riemannian distance function when the logarithm is applied to

small eigenvalues of the relevant positive-definite matrix. Though gradient clipping

90

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

typically solves this issue, it occasionally resurfaces, and we thus report it here.

91

Bibliography

[1] E. Abi Jaber, C. Cuchiero, L. Pelizzari, S. Pulido, and S. Svaluto-Ferro. Polyno-

mial volterra processes. Electronic Journal of Probability, 29:1–37, 2024.

[2] E. Abi Jaber, M. Larsson, and S. Pulido. Affine Volterra processes. The Annals

of Applied Probability, 29(5):3155–3200, 2019.

[3] B. Acciaio, A. Kratsios, and G. Pammer. Designing universal causal deep learning

models: The geometric (hyper) transformer. Mathematical Finance, 34(2):671–735,

2024.

[4] F. Aichinger and S. Desmettre. Utility maximization in multivariate Volterra

models. SIAM Journal on Financial Mathematics, 14(1):52–98, 2023.

[5] S. Ainsworth, J. Hayase, and S. Srinivasa. Git Re-Basin: Merging models modulo

permutation symmetries. In The Eleventh International Conference on Learning

Representations, 2023.

[6] F. E. Benth, N. Detering, and L. Galimberti. Neural networks in Fréchet spaces.

Annals of Mathematics and Artificial Intelligence, 91(1):75–103, 2023.

[7] J.-M. Bernardo and A. F. M. Smith. Bayesian theory. Wiley Series in Probability

92

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

and Mathematical Statistics: Probability and Mathematical Statistics. John

Wiley & Sons, Ltd., Chichester, 1994.

[8] D. A. Bini and B. Iannazzo. Computing the karcher mean of symmetric positive

definite matrices. Linear Algebra and its Applications, 438(4):1700–1710, 2013.

[9] C. M. Bishop. Mixture density networks. Aston University, 1994.

[10] A. Bondi, G. Livieri, and S. Pulido. Affine Volterra processes with jumps.

Stochastic Processes and their Applications, 168:104264, 2024.

[11] A. Borovykh, S. Bohte, and C. W. Oosterlee. Conditional time series forecasting

with convolutional neural networks. arXiv preprint arXiv:1703.04691, 2017.

[12] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural

networks with arbitrary activation functions and its application to dynamical

systems. IEEE Transactions on Neural Networks and Learning Systems, 6(4):911–

917, 1995.

[13] I. Chevyrev and H. Oberhauser. Signature moments to characterize laws of

stochastic processes. Journal of Machine Learning Research, 23(176):1–42, 2022.

[14] M. N. R. Chowdhury, S. Zhang, M. Wang, S. Liu, and P.-Y. Chen. Patch-level

routing in mixture-of-experts is provably sample-efficient for convolutional neural

networks. In International Conference on Machine Learning, pages 6074–6114.

PMLR, 2023.

[15] C. Cuchiero, P. Schmocker, and J. Teichmann. Global universal approximation

of functional input maps on weighted spaces. arXiv preprint arXiv:2306.03303,

2023.

93

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[16] C. Cuchiero and J. Teichmann. Generalized Feller processes and Markovian lifts

of stochastic Volterra processes: the affine case. Journal of Evolution Equations,

20(4):1301–1348, 2020.

[17] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion

parameter models with simple and efficient sparsity. Journal of Machine Learning

Research, 23(120):1–39, 2022.

[18] J. Gauthier. Conditional generative adversarial nets for convolutional face gen-

eration. Class project for Stanford CS231N: convolutional neural networks for

visual recognition, Winter semester, 2014(5):2, 2014.

[19] L. Gonon, L. Grigoryeva, and J.-P. Ortega. Reservoir kernels and Volterra series.

arXiv preprint arXiv:2212.14641, 2022.

[20] L. Gonon and J.-P. Ortega. Reservoir computing universality with stochastic

inputs. IEEE Transactions on Neural Networks and Learning Systems, 31(1):100–

112, 2019.

[21] L. Gonon and J.-P. Ortega. Fading memory echo state networks are universal.

Neural Networks, 138:10–13, 2021.

[22] Google. Gemini. Google, 2024.

[23] L. Grigoryeva and J.-P. Ortega. Universal discrete-time reservoir computers with

stochastic inputs and linear readouts using non-homogeneous state-affine systems.

Journal of Machine Learning Research, 19(24):1–40, 2018.

[24] L. Grigoryeva and J.-P. Ortega. Differentiable reservoir computing. Journal of

Machine Learning Research, 20(179):1–62, 2019.

94

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[25] D. Ha, A. M. Dai, and Q. V. Le. Hypernetworks. In International Conference on

Learning Representations, 2017.

[26] C. Hutter, R. Gül, and H. Bölcskei. Metric entropy limits on recurrent neural net-

work learning of linear dynamical systems. Applied and Computational Harmonic

Analysis, 59:198–223, 2022.

[27] A. Jacquier, C. Martini, and A. Muguruza. On VIX futures in the rough bergomi

model. Quantitative Finance, 18(1):45–61, 2018.

[28] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S.

Chaplot, D. d. l. Casas, E. B. Hanna, and F. Bressand. Mixtral of experts. arXiv

preprint arXiv:2401.04088, 2024.

[29] M. J. Korenberg and I. W. Hunter. The identification of nonlinear biological

systems: Volterra kernel approaches. Annals of Biomedical Engineering, 24:250–

268, 1996.

[30] Y. Korolev. Two-layer neural networks with values in a Banach space. SIAM

Journal on Mathematical Analysis, 54(6):6358–6389, 2022.

[31] A. Kratsios. Universal regular conditional distributions via probabilistic trans-

formers. Constructive Approximation, 57(3):1145–1212, 2023.

[32] A. Kratsios, H. S. d. O. Borde, T. Furuya, and M. T. Law. Approximation rates

and VC-dimension bounds for (P)ReLU MLP mixture of experts. arXiv preprint

arXiv:2402.03460, 2024.

[33] A. Kratsios and T. Furuya. Kolmogorov-arnold networks: Approximation

95

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

and learning guarantees for functions and their derivatives. arXiv preprint

arXiv:2504.15110, 2025.

[34] A. Kratsios, T. Furuya, J. A. L. Benitez, M. Lassas, and M. de Hoop. Mixture of

experts soften the curse of dimensionality in operator learning. arXiv preprint

arXiv:2404.09101, 2024.

[35] S. Lanthaler and A. M. Stuart. The parametric complexity of operator learning.

arXiv preprint arXiv:2306.15924, 2023.

[36] P. Li, Z. Zhang, P. Yadav, Y.-L. Sung, Y. Cheng, M. Bansal, and T. Chen. Merge,

then compress: Demystify efficient SMoe with hints from its routing policy. In

The Twelfth International Conference on Learning Representations, 2024.

[37] Z. Li, J. Han, E. Weinan, and Q. Li. Approximation and optimization theory for

linear continuous-time recurrent neural networks. Journal of Machine Learning

Research, 23:42–1, 2022.

[38] T. Mao and D.-X. Zhou. Rates of approximation by relu shallow neural networks.

Journal of Complexity, 79:101784, 2023.

[39] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784, 2014.

[40] Y. Mishura, S. Ottaviano, and T. Vargiolu. Gaussian Volterra processes as models

of electricity markets. SIAM Journal on Financial Mathematics, 15(4):989–1019,

2024.

[41] J. Puigcerver, C. R. Ruiz, B. Mustafa, and N. Houlsby. From sparse to soft

96

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

mixtures of experts. In The Twelfth International Conference on Learning

Representations, 2024.

[42] E. M. Saad, N. Verzelen, and A. Carpentier. Active ranking of experts based

on their performances in many tasks. In International Conference on Machine

Learning, pages 29490–29513. PMLR, 2023.

[43] R. Saqur, A. Kratsios, F. Krach, Y. Limmer, J.-J. Tian, J. Willes, B. Horvath,

and F. Rudzicz. Filtered not mixed: Stochastic filtering-based online gating for

mixture of large language models. arXiv preprint arXiv:2406.02969, 2024.

[44] E. Sharma, D. Kwok, T. Denton, D. M. Roy, D. Rolnick, and G. K. Dziugaite.

Simultaneous linear connectivity of neural networks modulo permutation. arXiv

preprint arXiv:2404.06498, 2024.

[45] S. B. Shiki, S. Da Silva, and M. D. Todd. On the application of discrete-time

Volterra series for the damage detection problem in initially nonlinear systems.

Structural Health Monitoring, 16(1):62–78, 2017.

[46] K.-T. Sturm. Probability measures on metric spaces of nonpositive curvature. In

Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002),

volume 338 of Contemp. Math., pages 357–390. Amer. Math. Soc., Providence,

RI, 2003.

[47] Y. Yang and D.-X. Zhou. Optimal rates of approximation by shallow relu k

neural networks and applications to nonparametric regression. Constructive

Approximation, pages 1–32, 2024.

97

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

[48] C. Yun, S. Bhojanapalli, A. S. Rawat, S. Reddi, and S. Kumar. Are transformers

universal approximators of sequence-to-sequence functions? In International

Conference on Learning Representations, 2020.

[49] S. Zhang, J. Lu, and H. Zhao. Deep network approximation: Beyond relu to

diverse activation functions. Journal of Machine Learning Research, 25(35):1–39,

2024.

98

Chapter 4

Conclusion

In this thesis, I have taken a look at the intersection of geometric deep learning,

foundation models, and mathematical finance, and focused on addressing current

practical computational challenges in large language model adaptation and non-

Markovian stochastic process approximations. As seen in the two primary contributions,

Chapters 2 and 3, I have demonstrated how geometry-aware frameworks can tackle

fundamental problems such as the curse of dimensionality and enhance accessibility,

scalability, and performance in real-world applications.

As presented in Chapter 2, the first contribution, I introduced a CPU-efficient

meta-generation framework for fine-tuning large language models using low-rank

adapters (LoRA) without using any GPU computation in a reasonable amount of

time. The proposed pipeline leverages distributional alignment between a given new

dataset and a bank of other datasets with known optimal adapters, enabling zero-

shot prediction of adapter parameters through three different lightweight methods:

attentional, normalized, and neural approaches. In our extensive experiments on over

500 datasets using Mistral-7B, these theoretically proven frameworks have successfully

99

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

outperformed the raw base model in more than 97% of the datasets while recovering

nearly half of the performance gap (on average) between untuned base models and

fully fine-tuned ones. Being light enough to run entirely on ordinary hardware, this

framework promises privacy-preserving adaptation, reducing memory and energy

consumption, and helping to make the specialized LLMs more accessible for users

without high-end infrastructure. At the end of the day, this work not only advances

parameter-efficient fine-tuning under hardware constraints but also highlights the

potential of reusing a droplet of the huge amount of public information on foundation

models, hopefully taking a small step towards more sustainable AI practices.

The second contribution, Chapter 3, tackled the computational intractability of

history-dependent Volterra processes, which are commonly used for modeling some

of the most important aspects of financial markets, such as volatility prediction and

asset prices, due to their non-Markovian behaviors. As a workaround for the main

problem, the curse of dimensionality, I proposed a two-step framework in detail: first,

to project the infinite-dimensional conditional law onto a low-dimensional manifold

of non-positive curvature, and second, to train local experts followed by a hyper-

geometric network (HGN) overlay that adapts these geometric deep neural networks

(GDNs) over time. Our ablation study across parameters like drift (µ), randomness

(λ), dimension (d), memory persistence (w), fluctuations (ς), and curvature further

confirmed the model’s robustness. The results showed that the HGN-forecasted GDNs

often follow the trained GDNs’ performance closely, or near-perfectly, if considering

the inherent numerical instabilities of calculations and mathematical operations on

computers. This achievement of overcoming the curse of dimensionality by using

geometric deep learning not only enables the efficient simulation and estimation of

100

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

Volterra processes but also underscores the value of looking through a geometry-aware

lens when facing interdisciplinary problems and the doors that can be opened by

mathematical tools.

These contributions illustrate a unified theme: approximating or predicting model

parameters via higher-level, geometry-informed architectures to solve downstream

problems efficiently. Borrowing and combining ideas from different fields, namely,

machine learning, mathematics, and quantitative finance, in this thesis, I advance

efficient methodologies that are not only theoretically sound but also practically

feasible, as supported by mathematical proofs, algorithmic implementations, and

extensive empirical experimentation.

Although these models are demonstrating strong results, like any other model, they

have limitations. During this research, we have done our best to look from a critical

point of view to our work and be the first one to see the caveats and weaknesses of

our work, many of which have been addressed and solved, and many remain as future

research opportunities.

The LoRA meta-generation pipeline, for instance, relies on the availability of a bank

of pre-trained adapters and datasets and may underperform on highly idiosyncratic

datasets that lie far from the distribution of the datasets with known optimal adapters.

Other places that have room for improvement are the tokenization procedure and the

neural network architecture used in the neural approach. Some promising ideas would

be using more complex methods to encode the information of each dataset or using

other neural network architectures, such as attention mechanisms or graph neural

networks, to better predict the combination ratios, which can potentially improve

the quality of the outputs due to the simplicity of the version we used. Similarly,

101

M.Sc. Thesis—R. Arabpour Dahoei McMaster University—CSE

the Volterra approximation assumes a specific manifold structure, which may require

further refinement for processes with extreme non-stationarities or higher-dimensional

complexities. Besides this, the same module simplicity, as seen in the LoRA framework,

can be seen in both the GDNs and the HGN used for the Volterra approximation

pipeline. The models used in that study have only a few layers and lack architectural

complexity. As a result, expecting enhancement in predictive power by exploring other

advanced architectures is not far from reality.

102

	Lay Abstract
	Abstract
	Acknowledgements
	Abbreviations
	Declaration of Academic Achievement
	Introduction
	Motivation
	Contributions

	LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs
	Introduction
	Related Work
	Preliminaries
	LoRA Generation Pipelines for CPU
	Theoretical Guarantees
	Experimental Results
	Conclusion
	Appendix

	Low-dimensional approximations of the conditional law of discrete-time Volterra processes: a non-positive curvature approach
	Introduction
	Model Structure
	Ablation Study
	Ablation Results
	Conclusion
	Appendix

	Conclusion

