
POWER ALLOCATIONS FOR

DELAY-CONSTRAINED TASK OFFLOADING

IN CELL-FREE WIRELESS NETWORKS



POWER ALLOCATIONS FOR DELAY-CONSTRAINED TASK

OFFLOADING IN CELL-FREE WIRELESS NETWORKS

By SUBAHA MAHMUDA, MSc

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Applied Science

McMaster University © Copyright by Subaha Mahmuda, August

2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/


McMaster University

MASTER OF APPLIED SCIENCE (2025)

Hamilton, Ontario, Canada (Electrical and Computer Engineering)

TITLE: Power Allocations for Delay-Constrained Task Offloading

in Cell-Free Wireless Networks

AUTHOR: Subaha Mahmuda

MSc (Electronics and Communication Engineering),

Izmir Institute of Technology, Izmir, Turkey

SUPERVISOR: Dongmei Zhao

NUMBER OF PAGES: xiii, 53

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Lay Abstract

Our mobile phones have small batteries and limited computing power. When faced

with complex tasks that must be done quickly, our phones may not be able to finish

the tasks on time. Instead, they offload these tasks wirelessly to the nearby cell

towers, where mini data centers with powerful computers process the data and send

back the results.

This thesis improves this offloading by developing a new learning method that

helps devices decide the best way to send tasks under changing wireless conditions and

limited battery power. Using advanced technology called Transformers, the system

learns patterns over time to make smarter decisions.

Results show that this method uses less energy and meets deadlines better than

existing approaches.

This work can help make wireless devices more reliable and energy-efficient when

connecting to nearby servers for task processing.
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Abstract

This thesis addresses the uplink resource allocation problem in a cell-free (CF) envi-

ronment, where mobile devices (MDs) periodically offload application data for pro-

cessing to a shared edge server (ES) co-located at the central unit (CU). These user

applications require timely processing at the ES, while the uncertain and time-varying

wireless transmission conditions, combined with the limited battery energy of the

MDs, make this difficult.

To tackle this challenge, we propose a deep reinforcement learning framework

based on the Deep Deterministic Policy Gradient (DDPG) algorithm, enhanced with

Transformer encoders in both the actor and critic networks. The resulting Transformer-

based DDPG (T-DDPG) framework captures spatial-temporal dependencies in dy-

namic wireless conditions to make more informed decisions.

Simulations are conducted under varying numbers of MDs and task sizes. The pro-

posed T-DDPG consistently outperforms conventional DDPG, achieving both lower

task completion time and energy consumption, while improving the rate of task com-

pletion within deadlines. These results highlight the effectiveness of spatial-temporal

policy learning for real-time uplink scheduling in CF edge computing systems.
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Chapter 1

Introduction

The rapid advancement of mobile applications such as augmented reality, virtual

reality, autonomous driving, and holographic communications has placed increasing

demands on wireless communication systems. These applications require not only

high data rates and ultra-low latency, but also significant computational resources,

which often exceed the processing capabilities of conventional mobile devices [8, 4].

Sixth-generation (6G) networks are expected to address these challenges through

innovations in both computing and communication technologies.

To meet these growing requirements, Mobile Edge Computing (MEC) can be a

key enabler that brings computation closer to the network edge [10, 20]. At the

same time, Cell-Free (CF) networks offer a novel architecture that eliminates the

limitations of traditional cellular networks, enhancing reliability, spectral efficiency,

and user fairness [12]. The integration of MEC and CF networks presents a promising

approach to realize low-latency, energy-efficient, and scalable edge intelligence in 6G

systems.

The remaining part of this chapter introduces the core concepts of MEC and CF
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networks. It also highlights the motivation for this research and provides an overview

of the contributions and structure of the thesis.

1.1 Mobile Edge Computing (MEC)

MEC is a network architecture in which computation and storage resources are de-

ployed at the edge of wireless networks to handle tasks offloaded from mobile devices.

Compared to offloading all computation to remote cloud servers, MEC can signifi-

cantly reduce transmission delays by bringing processing capabilities closer to end

users [17, 15].

In the MEC framework, a user uploads task data to a MEC server via the uplink.

The task is then executed at the edge server, and the result is sent back to the user

via the downlink. This localized approach is well-suited for real-time applications

where latency and reliability are critical. Compared to traditional cloud computing,

MEC reduces service delay, alleviates core network congestion, and enhances user

experience in computation-intensive services [13, 25].

However, the effectiveness of MEC systems is heavily dependent on the underlying

wireless network’s ability to support low-latency, high-throughput communication,

which is a limiting factor in conventional cellular architectures.

1.2 Cell-Free Networks

In traditional cellular networks, communication performance is heavily influenced by

the presence of cell boundaries. Each user connects to a dedicated base station (BS)

within a predefined geographic area, which can lead to deteriorating signal quality,

2
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higher interference, and reduced data rates, particularly at the cell edges. As next-

generation applications increasingly demand ultra-reliable, low-latency connectivity,

conventional cell-based architectures become insufficient.

CF networks have emerged as a promising alternative for 6G systems [12]. In CF

architectures, the concept of cell boundaries is eliminated. As illustrated in Fig. 1.1, a

large number of geographically distributed Access Point (APs), all connected to and

coordinated by a Central Unit (CU), collaboratively serve users. These APs operate

on the same time-frequency resources and adopt a user-centric approach, ensuring

uniformly high-quality service across the entire network.

Figure 1.1: Architecture of Cell-Free Network

CF networks typically operate under Time Division Duplexing (TDD), where

uplink and downlink transmissions share the same frequency band but are separated in

time. This duplexing mode enables the use of channel reciprocity, allowing downlink

channel state information (CSI) to be inferred from uplink measurements based on

the pilot signals sent from the mobile devices (MDs).

3
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In CF networks, the user-transmitted signals cannot be directly decoded at indi-

vidual APs, as all APs concurrently serve and receive signals from all users. Instead,

upon receiving the aggregated analog pilot and data signals, the APs perform ap-

propriate processing, such as channel estimation or local combining, then quantize

the resulting information and forward it to the CU via fronthaul links, where final

decoding is carried out. Depending on where channel estimation is performed (at the

APs or at the CU) and what is forwarded (e.g., raw quantized observations, quan-

tized channel estimates, or locally combined data), three representative strategies are

considered: Estimate Quantize, Quantize Estimate, and Decentralized Combining

[1].

Unlike traditional cellular networks, where signal detection is handled indepen-

dently at each base station, the CU in cell-free networks coordinates across all APs to

achieve coherent reception. This centralized approach improves spectral efficiency and

robustness, especially in environments with dense user deployments or non-uniform

traffic loads [11]. Moreover, it supports scalable and adaptive coordination schemes

such as user-centric clustering and dynamic AP selection [2], enabling efficient and

flexible network management. Thus, the CU acts as the central processing hub re-

sponsible for channel estimation, signal detection, and coordination, which collectively

enable the benefits of distributed access in cell-free wireless networks.

The integration of CF networks with MEC introduces new opportunities to en-

hance both communication and computation performance for end users. Meanwhile,

it brings more challenges to timely and efficient computation offloading, since the data

transmission environment of different MDs are more coupled in the CF networks.

4
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1.3 Related Work

Edge computing has emerged as a crucial paradigm to meet the increasing demand

for low-latency, computation-intensive mobile applications. Several complementary

models, such as fog computing [3], cloudlets [16], and MEC [10] have been developed

under the broader concept of multi-access edge computing. These paradigms enable

task offloading from resource-constrained mobile devices to nearby servers, reducing

latency and energy consumption. Among them, MEC has gained particular traction

for its ability to support ultra-low latency services in 6G.

A major research thrust in MEC lies in optimizing task offloading strategies and

resource allocation, to jointly minimize latency and energy consumption. For exam-

ple, several studies have explored energy-efficient offloading under latency constraints

[23], [24], while others have aimed to reduce computation delay within energy budgets

[14]. Partial offloading strategies for single-user (e.g.,[21]) and multi-user (e.g.,[22])-

MEC systems have been studied, focusing on the joint optimization of communication

and computation resources.

More sophisticated models incorporate stochastic task arrivals and time-varying

channels. For instance, dynamic offloading and resource allocation approaches using

Lyapunov optimization have been proposed to balance power consumption and ser-

vice delay [9], [10]. However, these centralized optimization-based methods are often

limited by high signaling overheads and require full knowledge of network dynam-

ics, making them less practical for highly dynamic environments with strict real-time

requirements.

In recent years, there has been growing interest in integrating MEC with CF

systems to further improve service reliability and latency. Unlike traditional cellular

5
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architectures, CF systems eliminate cell boundaries and allow all APs to cooperate in

serving users, thereby enhancing spectral and energy efficiency [12]. This architectural

shift opens up new possibilities for user-centric edge computing systems.

The potential of combining CF systems with MEC has been investigated in recent

works, e.g.[6], which study the joint optimization of task partitioning and computa-

tional resource allocation to minimize energy consumption and execution latency. In

[5] authors also explore the concept of successful edge computing probability (SECP)

under stochastic network models, utilizing tools from queuing theory and stochastic

geometry. However, their work assumes fixed transmission powers and static resource

allocation, which may limit system adaptivity in practical and dynamic wireless en-

vironments.

Building upon this, [7] proposes a user-centric, MEC-enabled CF-framework that

jointly optimizes uplink transmit power and computational resources. Their formula-

tion aims to minimize user transmit power while ensuring fair spectral efficiency. This

line of research highlights the emerging convergence of distributed radio access and

edge computing to support low-latency, energy-efficient services in next-generation

wireless networks.

Despite these advancements, the field is still in its early stages, particularly when

it comes to scalable, learning-based methods for network resource allocation in CF-

MEC systems. While existing studies have made progress, there remains considerable

scope for improvement, motivating the development for adaptive frameworks capable

of learning and reacting to dynamic environments.

6
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1.4 Motivation of the Work

Recent advances in combining edge computing with distributed wireless access ar-

chitectures have shown promise in enhancing service reliability and reducing latency.

However, most of the existing research in this area relies on centralized optimiza-

tion techniques that require complete and often static knowledge of the network

state. These methods typically assume fixed user positions, deterministic channel

conditions, or predefined task models, which limit their applicability in real-world

deployments where user dynamics and task patterns are unpredictable.

Additionally, traditional optimization-based approaches are computationally in-

tensive and difficult to scale with increasing network size or user density. The com-

plexity of jointly optimizing network resource allocations for multiple users in a dis-

tributed environment such as CF networks makes real-time decision making particu-

larly challenging.

To address these challenges, reinforcement learning (RL) offers a data-driven al-

ternative that can adaptively learn optimal policies from interaction with the environ-

ment. Actor-critic algorithms such as Deep Deterministic Policy Gradient (DDPG)

are well-suited for continuous control problems like uplink power allocation and re-

source scheduling. However, conventional RL models may struggle to generalize in

highly dynamic environments without incorporating temporal structure or attention

to spatial dependencies.

In this context, integrating Transformer architectures into the DDPG frame-

work presents a promising direction. Transformer encoders can effectively capture

spatio-temporal correlations in the observed state sequences, enabling better gener-

alization and more informed decision-making. This motivates the development of a

7
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Transformer-based DDPG (T-DDPG) algorithm to address the uplink resource al-

location problem in CF-MEC systems, with the goal of minimizing task completion

time while ensuring reliable and adaptive performance under varying conditions.

1.5 Our Contribution

This thesis focuses on the uplink resource allocation problem in a CF environment

with mobile users, aiming to minimize total energy consumption of mobile devices,

subject to their maximum transmission power and the task completion deadlines.

We present DDPG and T-DDPG-based resource allocation algorithms specifically

designed for random and time-varying channel conditions. These algorithms support

low-latency task offloading, crucial for real-time edge computing.

The proposed approach forms a foundational step toward enabling time-sensitive

and computation-intensive tasks for the 6G era.

8
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Chapter 2

System Model and Problem

Formulation

A cell-free network is considered as shown in Fig.2.1, where a number of MDs are

connected to the CU through the APs. Let M and K, respectively, be the sets of

MDs and APs.

We consider, a time-division duplexing (TDD) based system. Each channel co-

herence interval, also referred to as a time interval for simplicity, is divided into three

phases: τp for uplink pilot transmission, τu for uplink data transmission, and τd for

downlink data transmission. Define τc = τp + τu + τd. Let t = 1, 2, . . . denote the

index of the time intervals. For each link between MD m and AP k, the signals are

subject to both large-scale fading Gm,k and small-scale fading hm,k,t. We assume that

the small-scale fading remains constant within each time interval and changes one

interval to the next [12].

9



M.Sc. Thesis – S. Mahmuda; McMaster University – Electrical and Computer Engineering

Figure 2.1: System Model

2.1 Data Transmission from the MDs

We consider an application scenario, where each MD should periodically send its

application data to the edge server which is co-located at the CU for processing.

One example of such applications is that the MD needs to maintain its own Digital

Twin (DT) that is hosted at the edge server. Let d̄MD
m be the total amount of data

that MD m should send to the edge server every time interval, and this requires c̄m

execution cycles at the edge server to process in order to extract features required to

maintain the DT. td is defined as the deadline to finish processing the data from MD

m at the server. We assume that the pilot transmissions result in perfect channel

estimation [12]. Although this is an idealized assumption, it provides a valuable basis

for future studies on the impact of imperfect channel estimation on mobile device

power allocation.

Let Pm,t be the transmission power of MD m at time interval t, where Pm,t ∈

10
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[0, Pm,max] with Pm,max the maximum transmission power of MD m.

The transmitted signals are quantized at the APs and forwarded by the APs to

the CU, where the signals from individual MDs are decoded. With matched filter,

the received signal-to-interference ratio (SINR) of the signal is given as below [18]:

γm,t =
Pm,t

[∑
k∈KGm,k|hm,k,t|2

]2
∑

n∈M,n 6=m

Pn,t

∣∣∣∣∣∑
k∈K

√
Gn,kGm,kh

∗
n,k,thm,k,t

∣∣∣∣∣
2

+ σ2

(2.1.1)

Note that all simultaneous transmissions cause interference and contribute to the

denominator along with the noise power σ2 in (2.1.1). With this, the instantaneous

data transmission rate of MD m at time t is given as

Rm,t = B log2(1 + γm,t) (2.1.2)

2.2 Data Receiving at the CU

Let dCU
m,t be the number of bits that the CU has received from MD m at the beginning

of time interval t. We have dCU
m,1 = 0 and

dCU
m,t+1 = min{(dCU

m,t +Rm,tτu), d̄
MD
m } (2.2.1)

11
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2.3 Data Processing at the CU

Let c̄m denote the maximum number of CPU cycles required to complete the pro-

cessing of application data from MD m, and cm,t represent the remaining number of

CPU cycles to be processed at the CU for MD m at the beginning of the tth time

interval. We have,

cm,t+1 =

 c̄m, if dCU
m,t < d̄MD

m(
cm,t − fCU

m,tτc
)+
, otherwise

(2.3.1)

where fCU
m,t is the allocated CPU speed of the CU to process the data from MD m at

time interval t and

∑
m

fCU
m,t ≤ fCU

max, (2.3.2)

and fCU
max is the maximum computational capacity of the CU.

We assume that, at any given time, the CU’s total CPU resources are equally shared

among all MDs requiring computation. That is,

fCU
m,t =

cm,t∑
∀m∈M′ cm,t

fCU
max (2.3.3)

where M′ = {m|m ∈M, cm,t > 0, dCU
m,t = d̄MD

m }.

That means, the CU will not start processing the data until it receives all data from

the MD.

12
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2.4 Objective

Let tFINm be the finishing time of data processing at the CU for MD m. We have

cm,t > 0, if t < tFINm (2.4.1)

cm,t = 0, otherwise (2.4.2)

Our objective of this resource allocation problem is to minimize the energy con-

sumption of the MDs, subject to the maximum transmission power of individual MDs

and the task completion deadline. The above problem can be formulated as,

min
Pm,t∀m,t

∑
t

∑
m∈M

Pm,t (2.4.3)

s.t. Pm,t ≤ Pm,max, ∀m ∈M, ∀t (2.4.4)

tFINm ≤ td, ∀m ∈M (2.4.5)

Markov Decision Process (MDP) is a good approximation of the discussed prob-

lem, as the system’s evolution at each time step depends only on the current state

and the selected action (i.e., the transmission power of the MDs). The state captures

all relevant information, including the instantaneous channel conditions, currently

received amount of data at the CU, and computation status. The wireless channel

varies over time following probabilistic dynamics, allowing future channel behavior

to be predicted based on current observations. The next state depends solely on

the current state and action, satisfying the Markov property and enabling sequential

decision-making through reinforcement learning. Next, we will first reformulate the

13
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above optimization problem into an MDP problem. We will then solve it using RL

methods.

14
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Chapter 3

Methodology

This chapter first reformulates the optimization problem in Section 2.4 into an MDP

problem, and then presents the RL algorithms for solving the problem.

3.1 MDP Formulation

To effectively capture the stochastic and time-varying nature of wireless environments

and computation demands, we reformulate the original optimization problem as an

MDP. This framework enables learning a sequential decision policy that adapts to

changes in channel conditions, task arrival patterns, and resource constraints. Unlike

traditional model-based optimization techniques, the MDP-based approach allows the

system to learn directly from environment interactions, without requiring full knowl-

edge of system dynamics. This is particularly advantageous in practical scenarios

where optimal decisions depend not only on current observations but also on antici-

pated future variations. An MDP problem includes the state space, the action space,

and the state transitions.

15
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3.1.1 State Space

The system state st at the begining of the time interval t, can be represented as

st = [hm,k,t, d
CU
m,t, cm,t, ∀ m ∈ M and k ∈ K], where hm,k,t is the channel state

between MD m and AP k at t, dCU
m,t ∈ [0, d̄MD

m ] is the total number of received bits in

the CU at t from MD m, and cm,t ∈ [0, c̄m] is the remaining number of CPU cycles

to be executed for MD m at t.

We have the following observations:

• For a given m, at any time interval t, hm,k,t is independent of dCU
m,t and cm,t.

• For a given m, at the beginning of time interval t, if dCU
m,t = 0, then cm,t = c̄m.

This happens, when an MD just started transmitting its data to the CU.

• For a given m, if 0 < dCU
m,t < d̄MD

m , then cm,t = c̄m.This happens during the time

MD m is uploading the data to the CU.

• For a given m, if dCU
m,t = d̄MD

m , then cm,t ≤ c̄m.This happens when MD m has

finished uploading the data to the CU and the CU should start (if cm,t = c̄m)

or has already started (if cm,t < c̄m) processing the offloaded data.

3.1.2 Action Space

Let at be the action at time t, then at = [Pm,t, ∀m], where Pm,t ∈ [0, Pm,max]

3.1.3 State Transitions

Channel states. We consider the finite state Markov channel model, where each

channel has a finite number of states, and there is a fixed and known probability for

16
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the channel to transit from one state to another, and the transition probabilities are

independent of other elements in the state space. Converting the continuous channel

gains into a finite number of channel states will be presented in Chapter 4.

Received data at CU:

dCU
m,t+1 = min{(dCU

m,t +Rm,tτu), d̄
MD
m } (3.1.1)

Remaining computation:

cm,t+1 =

 c̄m, if dCU
m,t < d̄MD

m(
cm,t − fCU

m,tτc
)+
, otherwise

(3.1.2)

The defined MDP captures the sequential nature of the transmission power alloca-

tion problem under stochastic wireless channel conditions, which vary over time due

to random fading. These dynamics are inherently difficult to model or optimize us-

ing conventional approaches. RL, however, allows an agent to learn optimal decision

policies by interacting with the environment, without requiring complete knowledge

of the underlying channel model.

Since power allocation decisions are made repeatedly and each action (e.g., a cho-

sen transmission power level) affects future system performance metrics such as task

completion time and energy consumption, RL is particularly well-suited for optimiz-

ing long-term cumulative rewards.

Given the continuous and high-dimensional nature of the action space in this prob-

lem, traditional discrete-action methods such as Deep Q-Networks (DQN) are not

appropriate. To address this, we adopt the DDPG algorithm, which is specifically

17
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designed for continuous action spaces. To further improve performance in tempo-

rally dynamic and partially observable environments, we enhance this framework by

integrating a Transformer-based encoder, resulting in the T-DDPG algorithm.

Next, we present the reward function, conventional DDPG framework, detailing

its core components, including the actor–critic architecture, experience replay, target

networks, and update mechanisms. We then introduce the T-DDPG extension, which

incorporates a Transformer encoder into both the actor and critic networks to better

capture temporal and spatial dependencies in the input sequences. An overview is

provided to highlight the architectural differences and performance gains achieved

through this enhancement.

3.2 Proposed Reward Function

At any given time t, the immediate reward rt is the sum of all individual rewards rm,t

across all MDs.

rt =
∑
m

rm,t (3.2.1)

where,

rm,t =



β · td − t
td
− Pm,t
Pm,max

, cm,t > 0 and t ≤ td

β · td − t
td
− α′ − Pm,t

Pm,max

, cm,t > 0 and t > td

0, cm,t ≤ 0

(3.2.2)
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The reward in (3.2.2) is designed to balance task completion time with power con-

sumption. The first term β td−t
td

encourages early task completion by providing higher

rewards at earlier time steps, where β controls the relative importance of finishing

quickly. The second term − Pm,t
Pm,max

penalizes excessive transmit power. If the task

is not finished before the deadline, an additional penalty −α′ is applied, ensuring

that meeting the deadline is prioritized over saving power. Finally, when the task is

already completed (cm,t ≤ 0), the reward is set to zero. In conclusion, this reward

allows adjusting the trade-off between timeliness and energy efficiency.

3.3 Deep Deterministic Policy Gradient (DDPG)

To handle continuous action spaces, we employ DDPG as our base algorithm. DDPG

is an off-policy actor-critic method, as illustrated in Figure 3.1. It is built on an

actor–critic architecture, where the actor network learns a policy that generates con-

tinuous deterministic actions based on the current environment state, and the critic

network learns a value function that evaluates these actions by estimating the cor-

responding Q-values. The critic takes both the state and action as input, while the

actor uses only the state. To enhance training stability and data efficiency, DDPG

employs target networks for both actor and critic, along with an experience replay

buffer. Below we elaborate the DDPG algorithm given in Algorithm 1.

Initially, the target networks are synchronized with their evaluation counterparts:

θQ
′
= θQ, θµ

′
= θµ

where θQ and θµ, respectively, denote the parameters of the critic and actor networks.
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Figure 3.1: Structure of DDPG algorithm

At each time step t, the agent observes a state st and selects an action at = µ(st |

θµ) +Nt, where Nt denotes exploration noise. The resulting transition (st, at, rt, st+1)

is stored in the replay buffer (Algorithm 1- line 12). Once populated, mini-batches

are drawn to train the networks. Let B ⊂ D denote a minibatch of N transitions

(si, ai, ri, si+1) sampled from the replay buffer D.

For critic updates, the target Q-value for each sample i ∈ B is computed as (Algo-

rithm 1- line 18) :

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

) (3.3.1)

where- γ ∈ [0, 1] is the discount factor, and the critic loss is:

L =
1

N

∑
i∈B

(
Q(si, ai|θQ)− yi

)2
(3.3.2)

The actor network is updated by maximizing the expected return J(θµ), defined as:

J(θµ) = Es∼ρµ [Q(s, µ(s|θµ))] , (3.3.3)
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where ρµ is the state distribution induced by the policy µ. The deterministic policy

gradient is approximated using mini-batches (Algorithm 1- line 19):

∇θµJ ≈
1

N

∑
i∈B

∇aQ(si, a|θQ)
∣∣
a=µ(si)

∇θµµ(si|θµ) (3.3.4)

To ensure stable learning, the target networks are updated using soft updates (algo-

rithm 1- line 20):

θQ
′ ← τθQ + (1− τ)θQ

′
, θµ

′ ← τθµ + (1− τ)θµ
′

(3.3.5)

where τ ∈ (0, 1) denotes the soft update coefficient.
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Algorithm 1 Conventional Deep Deterministic Policy Gradient (DDPG)

1: Initialize actor learning rate αa, critic learning rate αc
2: Set discount factor γ, soft update rate τ
3: Initialize actor network µ(s|θµ), critic network Q(s, a|θQ)
4: Initialize target networks µ′(s|θµ′), Q′(s, a|θQ′

) with weights θµ
′ ← θµ, θQ

′ ←
θQ

5: Initialize replay buffer D ← ∅
6: for each episode do
7: Initialize environment and receive initial state s0
8: Set t← 0
9: while not done do
10: Select action at = µ(st|θµ) + Nt according to the current policy and explo-

ration noise
11: Execute action at, observe reward rt, next state st+1, and done flag dt
12: Store transition (st, at, rt, st+1, dt) into D
13: if enough samples in D then
14: Sample mini-batch B ⊂ D, where B = {(si, ai, ri, si+1, di)}Ni=1

15: for each i ∈ B do
16: Compute target Q-value:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)

17: end for
18: Update critic using (3.3.2)
19: Update actor using (3.3.4)
20: Soft update target networks:

θQ
′ ← τθQ + (1− τ)θQ

′
, θµ

′ ← τθµ + (1− τ)θµ
′

21: end if
22: st ← st+1

23: t← t+ 1
24: end while
25: end for
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3.4 Transformer-Based DDPG (T-DDPG)

While the basic DDPG algorithm effectively addresses continuous action spaces, it pri-

marily relies on the current state to make decisions, which may limit its performance

in partially observable or highly dynamic environments. To overcome this limitation,

we extend DDPG by incorporating Transformer encoders into both the actor and

critic networks. This enhanced architecture, termed T-DDPG, is designed to capture

spatial and temporal dependencies by processing sequences of past states rather than

relying solely on the current observation. The architecture of the T-DDPG algorithm

is given in Figure 3.2.

Unlike the basic DDPG, the actor network in T-DDPG, µ(s1:T |θµ), receives a

sequence of past states s1:T , the sequence of states are first embedded and passed

through positional encodings. The Transformer encoder processes this sequence to

extract spatial-temporal aware features, capturing both temporal dependencies across

past states and spatial dependencies across nodes or links. These enriched features

are then used to generate the deterministic action. Similarly, the critic network

Q(s1:T , a|θQ) utilizes the same encoded sequence and concatenates it with the action

to estimate the Q-value.

Figure 3.2: Architecture of T-DDPG algorithm
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At each time step t, the environment state sequence s1:T is updated via a sliding

window. The agent selects an action using the actor:

at = µ(s1:T |θµ) +Nt

where Nt is a temporally correlated exploration noise. The environment returns

the reward rt, next state st+1, and termination flag dt, and the transition tuple

(s1:T , at, rt, s
′
1:T , dt) is stored in a replay buffer (Algorithm 2- line 17).

During training, a batch of transitions is sampled from the buffer. The target

Q-value for each sample is computed as:

yi = ri + γQ′(s′1:T,i, µ
′(s′1:T,i))

where Q′ and µ′ are the target critic and actor networks. The critic is updated by

minimizing the mean squared error loss as in (3.3.2) (Algorithm 2- line 25). The actor

is updated by maximizing the expected Q-value as mentioned in (3.3.4) (Algorithm 2-

line 26). Soft target updates are performed after each training step as in the DDPG

framework (Algorithm 2- line 27).

By modeling sequences with self-attention, T-DDPG can focus on the most rele-

vant historical information. This sequence-aware design enhances the agent’s ability

to reason over delayed effects, track temporal patterns, and generate more robust

decisions in dynamic wireless environments where instantaneous observations may be

insufficient.
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Algorithm 2 Transformer-based Deep Deterministic Policy Gradient (Transformer-
DDPG)

1: Initialize actor learning rate αa, critic learning rate αc
2: Set discount factor γ, soft update rate τ
3: Initialize Transformer-based actor µ(s1:T |θµ), critic Q(s1:T , a|θQ)
4: Initialize target networks µ′, Q′ with θµ

′ ← θµ, θQ
′ ← θQ

5: Initialize replay buffer D ← ∅
6: for each episode do
7: Initialize environment and state sequence s1:T
8: Set t← 0
9: while not done do
10: TransformerEncoder Forward Pass:
11: Embed state: x← Linear(s1:T ) + PE[:, : T, :]
12: Encode: z ← Transformer(x)
13: Select last time step: z ← z[:,−1, :]
14: Actor Forward: at ← sigmoid(Wz + b) ·max action +Nt
15: Execute action at, observe rt, st+1, dt
16: Update sequence: s′1:T ← shift-append(s1:T , st+1)
17: Store transition (s1:T , at, rt, s

′
1:T , dt) ∈ D

18: if |D| ≥ N then
19: Sample mini-batch B = {(si, ai, ri, s′i, di)}Ni=1

20: for each i ∈ B do
21: Critic Target:
22: a′i ← µ′(s′i)
23: yi ← ri + γQ′(s′i, a

′
i)

24: end for
25: Update critic using (3.3.2)
26: Update actor using (3.3.4)
27: Soft update target networks:

θQ
′ ← τθQ + (1− τ)θQ

′
, θµ

′ ← τθµ + (1− τ)θµ
′

28: end if
29: s1:T ← s′1:T
30: t← t+ 1
31: end while
32: end for
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3.5 Comparison Between DDPG and T-DDPG

The key distinction between DDPG and T-DDPG lies in how temporal dependencies

are treated within the actor and critic networks.

In DDPG, decisions are made based solely on the current state and action, pro-

cessed through feedforward layers. This approach lacks temporal modeling and pro-

cesses each transition independently, limiting performance in environments where the

history of states influences optimal actions.

Conversely, T-DDPG leverages Transformer encoders to process sequences of past

states, allowing it to learn from context and capture complex dependencies over time.

The self-attention mechanism provides a dynamic weighting of prior information,

which enhances both action generation and Q-value estimation.

Figure 3.1 through Figure 3.2 visually illustrate these differences. T-DDPG’s

architecture enables richer policy learning by incorporating structured temporal fea-

tures, offering clear advantages in environments with evolving dynamics, such as edge

computing networks with variable channel conditions and computation loads.
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Chapter 4

Simulation Setup and Evaluation

This chapter presents the simulation setup and the results of evaluating the proposed

T-DDPG framework under different channel models. First, the simulation environ-

ment and key parameters are described. Then, performance outcomes are analyzed

separately for the 2-state and 3-state finite state Markov channel (FSMC) cases.

4.1 Simulation Setup

We consider a wireless communication system whereM MDs andK APs are randomly

deployed within a 500 m× 500 m cell-free network area, with their positions sampled

from a uniform distribution. The Euclidean distance between the mth MD and the

kth AP, denoted by dm,k, is used to compute the path loss. For simplicity, we consider

only the path loss component of the large-scale fading, denoted as Gm,k. The path

loss is modeled as:

Gm,k = G0
m,k ·

(
dm,k
d0

)−α
(4.1.1)
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where G0
m,k is the path loss at a reference distance d0, and α denotes the path loss

exponent. The overall channel gain is given as,

Hm,k,t = Gm,k · (hm,k,t)2 (4.1.2)

where hm,k,t denotes the small-scale fading component, modeled using Rician distri-

bution.

The values of Hm,k,t may have high variability, especially in environments with

diverse node placements and dynamic fading conditions. As a result, directly using

continuous-valued channel gains can lead to training instability. To address this and

enhance both training stability and generalization capability, the continuous channel

gains are discretized into a fixed number of representative discrete levels using a linear

quantization scheme, and the original wireless channels are modeled as a FSMC. To

model the original channel into an N -states FSMC, N − 1 thresholds are needed

to divide the entire range of channel gain values into N intervals, each of which is

mapped to one channel state. In addition, transition probabilities for the channel to

switch from one state to another should also be found. Details of these are available

in [19].

The default simulation parameters and simulation hyperparameters are summa-

rized below in Tables 4.1 - 4.3. Some of the parameters in Table 4.1 have been

borrowed from [18].
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Table 4.1: Default Simulation Parameters

Notation Parameter Value

fCUmax Maximum computational capacity of the CU 100GHz

Ncpb Number of cycles to process one bit task 500 cycles/bit

B Total system bandwidth 5MHz

Pm,max Maximum transmission power 0.5W

d̄MD
m Task size 1Mbits

td Task completion deadline 4ms

α′ Penalty parameter 5

β Scaling factor 1.0

d0 Reference distance for pathloss 10m

α pathloss exponent 3

σ2 Power of the AWGN 2× 10−14W

Table 4.2: Simulation Hyperparameter for DDPG Training

Hyperparameter Value

Dicount factor,γ 0.99

Actor learning rate 0.0001

Critic learning rate 0.0001

Soft update rate 0.005

Batch size 64

Replay buffer size 106

Exploration noise 0.1

Actor-Critic layer architecture
2 layers, 256 neu-
rons/layer
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Table 4.3: Simulation Hyperparameter for Transformer

Hyperparameter Value

Number of Transformer encoder layer 3

Size of embedding layer 256

Number of heads in multi head attention 4

Dimension of the feed forward network 512

4.2 Simulation Results: 2-state FSMC Case

First, the wireless channel is modeled as a two-state FSMC. To evaluate the effec-

tiveness of the proposed reward function in equ. (3.2.2), it is compared against three

alternative reward functions. At any given time t, the reward of MD m can be defined

as rm,t.

Reward Function 1:

rm,t =



−1, cm,t ≤ 0 and t ≤ td

−10 · t− td
td

, cm,t ≤ 0 and t > td

−.01, otherwise

(4.2.1)

This reward applies a fixed small penalty −1 for completing the task before the dead-

line, and a harsher penalty that increases linearly with delay if completion occurs

after the deadline. This reward function introduces a discontinuity at the deadline,

where the reward abruptly shifts from a constant value (−1) to a linearly decreas-

ing function. This sudden change introduces noise in the attention mechanism of
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sequence-based models like Transformer-DDPG, hindering their ability to learn tem-

poral dependencies.

Reward Function 2:

rm,t =


− t− Pm,t

Pm,max
, cm,t > 0

0, cm,t ≤ 0

(4.2.2)

This reward penalizes the agent proportionally to the elapsed time and the normalized

transmit power as long as the task remains unfinished, while assigning zero reward

upon completion. Such a formulation naturally encourages earlier completion, since

prolonging execution leads to increasingly negative returns. However, the absence of

an explicit deadline-aware component limits its effectiveness in time-sensitive scenar-

ios.

Reward Function 3:

rm,t =



10 · td − t
td
− Pm,t

Pm,max
, cm,t > 0 and t ≤ td

−1.0− Pm,t
Pm,max

, cm,t > 0 and t > td

0, cm,t ≤ 0

(4.2.3)

This reward encourages early task completion by providing a higher positive return

when tasks are completed well before the deadline and gradually reducing the reward

as time progresses. Once the deadline is missed, it imposes a fixed negative penalty

along with the power cost, thereby explicitly discouraging late completions.
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Compared to the above three reward functions, the proposed reward offers a

smooth and continuous formulation, maintaining linear decay across time and ensur-

ing a gradual transition at the deadline. This provides more stable gradient signals,

improving learning in sequence-aware architectures.

Comparison between the proposed reward function and the above three rewards is

shown in Figure 4.1. The results show that, for all four reward functions, the average

task completion time increases with the number of MDs due to increased traffic load

in the network. For each reward function, T-DDPG outperforms DDPG. In addition,

for both DDPG and T-DDPG, the proposed reward function consistently achieves

lower task completion times than the other three reward functions.
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Figure 4.1: Average task completion time of DDPG & T-DDPG using different
rewards (number of APs = number of MDs)
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For the remaining part of this chapter, we only show the results based on the

proposed reward function. The learning curves of both the DDPG and T-DDPG

agents are illustrated in the Fig. 4.2 and Fig. 4.3, respectively. The DDPG agent sta-

bilizes after approximately 400 episodes, whereas T-DDPG converges within around

150 episodes, indicating that T-DDPG achieves faster convergence.

0 1000 2000 3000 4000 5000
Episode

0.02

0.01

0.00

0.01

0.02

Re
wa

rd

Learning Curve

Figure 4.2: Learning curve of DDPG agent
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Figure 4.3: Learning curve of T-DDPG agent

Fig. 4.4 shows the performance comparison between the DDPG and T-DDPG
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agent in terms of average task completion time over the number of MDs. As expected,

both agents experience increased task completion time as MD density rises, due to in-

creased computational load. Meanwhile, T-DDPG consistently achieves lower average

completion times than DDPG. This demonstrates T-DDPG’s ability to better cap-

ture temporal dependencies and dynamic interference patterns via the Transformer

architecture, allowing it to make more informed power allocation decisions.

Fig. 4.5 shows the total energy consumption of both agents under increasing MD

load. The DDPG agent shows a sharper increase in energy usage with more MDs,

reaching up to around 0.048 J for 16 devices. In contrast, the T-DDPG agent main-

tains significantly lower energy consumption throughout, rising more gradually and

consuming around 0.02 J at 16 MDs. This improvement highlights T-DDPG’s supe-

rior resource efficiency, as it optimizes transmission power more effectively by utilizing

historical channel and traffic information through its attention-based mechanism.
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Figure 4.4: Average task completion time of DDPG and T-DDPG in 2-state channel
condition (number of APs = number of MDs)

The percentage of task completion within the deadline on MD counts is shown in

Fig. 4.6. This is a crucial performance metric for time sensitive applications. While
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Figure 4.5: Total energy consumption of DDPG and T-DDPG in 2-state channel
condition (number of APs = number of MDs)

DDPG begins with a high completion rate at low MD counts, its performance degrades

rapidly with increasing device density, 2.5% at 14 MDs and falling below 1% at 16

MDs. In contrast, T-DDPG maintains a robust completion rate even in congested

scenarios, achieving over 65% at 14 MDs and 20.5% deadline adherence at 16 MDs.

This significant improvement reflects the Transformer’s capacity to anticipate and

adapt to time-varying system dynamics, ultimately enabling better compliance with

delay constraints under high load conditions.
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Figure 4.6: Percentage of task completion within deadline of DDPG and T-DDPG
in 2-state channel condition (number of APs = number of MDs)

Now, for a network comprising 10 MDs and 10 APs, the performance of the DDPG

and T-DDPG algorithms is evaluated in terms of average task completion time, total

energy consumption and the percentage of deadline-compliant tasks under varying

numbers of transmitted bits in Figs. 4.7 to 4.9. In Fig. 4.7, as the number of

transmitted bits increases from 10 to 50 Mbits, the average task completion time

rises for both agents. However, T-DDPG achieves up to a 34.9% reduction in task

completion time compared to DDPG at 50 Mbits, demonstrating its superior ability

to handle larger data transmissions.

Fig. 4.8 presents the total energy consumption with respect to the number of

transmitted bits. As the transmitted data increases, both DDPG and T-DDPG

agents exhibit higher energy consumption. However, T-DDPG achieves 88.9% lower

energy usage than DDPG at maximum bit loads, highlighting its more efficient power

allocation strategy.

The task completion rate within the deadline under varying transmission bit for

DDPG and the T-DDPG agent is illustrated in Fig. 4.9. As the number of transmitted
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bits increases, the completion rate declines for both agents. For DDPG, the rate drops

sharply to 0% at 20 Mbits and remains at 0% beyond that. In contrast, T-DDPG

maintains significantly higher completion rates, achieving 93.6% at 20 Mbits and

70.4% at 30 Mbits, demonstrating its robustness in meeting quality-of-service (QoS)

requirements under increased data loads.
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Figure 4.7: Average task completion time vs. transmitted bits in 2-state channel
condition for DDPG and T-DDPG
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Figure 4.8: Total energy consumption vs. transmitted bits in 2-state channel
condition for DDPG and T-DDPG
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Figure 4.9: Task completion rate within deadline vs. transmitted bits in 2-state
channel condition for DDPG and T-DDPG

4.2.1 Impact of Reward Parameters (β, α′) on Performance

Fig. 4.10 and Fig. 4.11 show the influence of the reward parameters β and α′ on

the trade-off between energy efficiency and task completion rate. For β = 1, α′ = 5,

energy consumption remains relatively low, but DDPG exhibits a sharp decline in

completion success under high load. In contrast, T-DDPG maintains above 95%

success up to 12 MDs with only modestly higher energy, highlighting its ability to

capture temporal and spatial dynamics. Increasing the penalty to α′ = 12 further

improves deadline satisfaction for both methods, with T-DDPG sustaining over 80%

success at 14 MDs, though at the cost of 20-30% higher energy.

At the lower shaping weight β = 0.25, overall success rates are weaker, as the

reduced time-shaping incentive limits early task completion. Nevertheless, T-DDPG

still consistently outperforms DDPG across all cases. In summary, larger α′ values

improve completion rate but increase energy usage, while a stronger shaping factor β

provides a more balanced trade-off without requiring excessively high penalties.
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Figure 4.10: Impact of reward parameters on the total energy consumption of
DDPG and T-DDPG in 2-state channel condition (number of APs = number of

MDs)
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Figure 4.11: Impact of reward parameters on the percentage of task completion of
DDPG and T-DDPG in 2-state channel condition (number of APs = number of

MDs)
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4.3 Simulation Results: 3-state FSMC Case

In the second step, the wireless channel is modeled as a three-state FSMC. To assess

the behavior of the DDPG and T-DDPG agents in this setting, the same set of

evaluation metrics used in the two-state FSMC case is considered.

The average task completion time over the MDs for 3-state channel is presented

in Fig. 4.12. It can be seen that the rising trend for both agents are same as the

Fig. 4.4. However, DDPG performs slightly worse than in the 2-state case due to the

added variability, while T-DDPG performs better, benefiting from temporal attention

to exploit richer channel state transitions.

Fig. 4.13 illustrates the total energy consumption under varying number of MDs

for 3-state channel. Here, DDPG’s energy consumption rises slightly compared to the

2-state case, especially for larger MD counts. In contrast, T-DDPG consumes even

less energy in the 3-state case for most MD counts.

DDPG and T-DDPG’s task completion rate within the deadline is shown in

Fig. 4.14. It can be seen, DDPG’s rate drops quickly as the number of MDs in-

creases, falling below 30% at 12 MDs. On the other hand, T-DDPG maintains a

much higher completion rate, above 98% up to 12 MDs and still over 80% at 14 MDs.

This performance advantage is achieved while also consuming less energy than DDPG

across all MD counts, shown in Fig. 4.13.
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Figure 4.12: Average task completion time of DDPG and T-DDPG in 3-state
channel condition (number of APs = number of MDs)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of MDs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

To
ta

l E
ne

rg
y 

Co
ns

um
pt

io
n 

(J)

DDPG
T-DDPG

Figure 4.13: Total energy consumption of DDPG and T-DDPG in 3-state channel
condition (number of APs = number of MDs)
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Figure 4.14: Percentage of task completion within deadline of DDPG and T-DDPG
in 3-state channel condition (number of APs = number of MDs)

Figure 4.15 shows the average task completion time of DDPG and T-DDPG for

different bit counts in a 3-state channel model with 10 MDs and 10 APs. The 3-state

channel causes a slight increase in DDPG’s completion time compared to the 2-state

model (Fig. 4.7), due to greater channel variability. In contrast, T-DDPG maintains

stable performance.

As shown in Fig. 4.16, DDPG’s energy consumption increases with the number of

transmitted bits and is higher in the 3-state channel compared to the 2-state model

(Fig. 4.8). However, T-DDPG maintains low energy usage even in these conditions.

Fig. 4.17 shows that DDPG’s task completion rate drops sharply from 100% at 10

Mbits to 0% beyond 20 Mbits. In contrast, T-DDPG maintains higher rates, 94.7%

at 20 Mbits, 75.35% at 30 Mbits and still 24.75% at 40 Mbits. This indicates that

temporal attention helps T-DDPG better handle increased channel complexity and

larger data loads, ensuring more tasks complete within the deadline.
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Figure 4.15: Average task completion time vs. transmitted bits in 3-state channel
condition for DDPG and T-DDPG
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Figure 4.16: Total energy consumption vs. transmitted bits in 3-state channel
condition for DDPG and T-DDPG
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Figure 4.17: Task completion rate within deadline vs. transmitted bits in 3-state
channel condition for DDPG and T-DDPG

4.3.1 Impact of Reward Parameters (β, α′) on Performance

When extending the evaluation from a 2-state FSMC to a 3-state FSMC, both DDPG

and T-DDPG exhibit consistent trends, but with notable differences which can be

seen in Fig. 4.18 and Fig. 4.19. In a 3-state case, a slight increase in total energy

consumption for both DDPG and T-DDPG can be noticed in Fig. 4.18. This is

because the additional medium channel state leads the agents to allocate power more

conservatively compared to the binary channel representation. However, T-DDPG

consistently consumes less energy than DDPG, showing better adaptation across finer

channel variations.

In addition, the 3-state FSMC significantly improves the task completion rate

compared to the 2-state case, especially for the T-DDPG, shown in Fig. 4.19. With

an extra state capturing intermediate channel quality, the agent can better balance

transmission scheduling, avoiding unnecessary deadline violations. T-DDPG consis-

tently maintains a higher success rate, while DDPG degrades faster as MDs increase.
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Figure 4.18: Impact of reward parameters on the total energy consumption of
DDPG and T-DDPG in 3-state channel condition (number of APs = number of

MDs)
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Figure 4.19: Impact of reward parameters on the percentage of task completion of
DDPG and T-DDPG in 3-state channel condition (number of APs = number of

MDs)
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This chapter introduced a simulation framework to evaluate the performance of

DDPG and T-DDPG for time constrained task completion in CF networks. The

model incorporated distance dependent path loss, small-scale Rician fading, and quan-

tized channel gains under various channel state scenarios.

The simulation environment reflected practical wireless deployment conditions,

including transmission power limits, task generation processes, and dynamic channel

variations. Relevant system and learning parameters were summarized, and perfor-

mance was assessed using average task completion time, total energy consumption,

and the percentage of tasks completed within the deadline.

Simulation results demonstrated that T-DDPG consistently outperformed DDPG

across different channel conditions. The use of quantized channel gain modeling re-

duced learning complexity, enhanced training stability and accelerated convergence.

While the 2-state and 3-state FSMC models provided clear insights into system per-

formance, the framework can also be extended to higher-state models. Increasing the

number of channel states enables a finer representation of fading dynamics, poten-

tially improving decision accuracy and prediction reliability. However, this comes at

the expense of higher system complexity, including more elaborate transition proba-

bility estimation and increased computational overhead, which may limit scalability

in real-time scenarios.

Together, these results confirm that the T-DDPG agent surpasses standard DDPG

in energy efficiency and deadline adherence, particularly in dense and dynamic net-

work environments, making it a promising approach for real-time wireless resource

allocation. Overall, the findings highlight the effectiveness of Transformer-based re-

inforcement learning for wireless resource allocation and underscore the importance
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of realistic channel modeling in developing robust and scalable learning agents for

dynamic communication environments.
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Chapter 5

Conclusion

This thesis presented a Transformer-enhanced DDPG (T-DDPG) framework for re-

source allocation in CF-MEC networks, aiming to reduce the energy consumption

of mobile devices, subject to the maximum transmission power of the devices and

the task completion deadlines in dynamic wireless environments. Traditional DDPG

struggles to exploit temporal and spatial patterns, which we addressed by integrating

spatial-temporal Transformers into both the actor and critic networks. This allows

the agent to better leverage historical context and adapt to time-varying channel

conditions, modeled using path loss and Rician fading.

We discretized the channel dynamics using a FSMC model to simulate different

levels of channel granularity. A custom simulation environment was developed to

assess performance under different numbers of MDs and task sizes. Results showed

that T-DDPG outperformed DDPG across all metrics, achieving higher task success

rates and significantly reducing energy consumption, especially under heavier traffic

and finer-grained channel models.

These results demonstrate the suitability of T-DDPG for real-world applications
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like Digital Twins, augmented reality and mission-critical IoT, where real-time and

reliable uplink scheduling is essential. Nevertheless, certain limitations persist. The

proposed framework relies on offline training using simulated trajectories, which may

not fully capture the challenges of real-time deployment. Additionally, the computa-

tional complexity of the Transformer architecture could pose scalability challenges in

large-scale networks.

Future research may focus on incorporating online learning capabilities, extending

the framework to multi-agent settings, and employing adaptive or learnable channel

models to improve both performance and practical applicability.

In summary, this thesis shows that combining deep reinforcement learning with

spatial-temporal Transformers enables robust and efficient resource allocation in CF-

enabled edge networks, making it a promising direction for next-generation wireless

systems.
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