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Abstract

The growing prevalence of functional and cognitive impairments among older adults

presents significant societal challenges, particularly because these conditions often re-

main undetected until they progress into more serious health concerns. Traditional

clinical assessments, which rely primarily on self-reported data, can be hindered by

recall bias and subjectivity, limiting their utility for early detection. To address these

gaps, this thesis proposes an interpretable, AI-driven framework that integrates am-

bient sensor data with machine learning (ML) and large language models (LLMs) to

support the identification of behavioral changes in smart home environments. Rather

than replacing self-report, this approach aims to complement it, with the ultimate

goal of enabling timely clinical intervention and promoting aging-in-place with dignity

and autonomy.

Despite recent advancements, current approaches to behavior anomaly detection

face critical limitations, including underutilization of temporal dependencies, nar-

row focus on intra-activity anomalies, reliance on labeled data, poor model gener-

alizability, and lack of interpretability. This research addresses these challenges by

proposing a novel, multi-component framework that integrates: (1) inverse reinforce-

ment learning (IRL) models for scalable, label-efficient behavior change detection;
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(2) Transformer-based architectures with transfer learning to improve generalizabil-

ity and mitigate cold-start issues; (3) a synthetic data generation model (BehavGAN)

to augment training data diversity; and (4) an LLM-based interpretability layer to

translate activities of daily living (ADL) logs and anomaly detections into human-

readable, clinician-friendly summaries.

Grounded in Fogg’s Behavior Model, the proposed system captures both point

and collective anomalies by modeling inter-activity and temporal patterns of ADLs.

Experiments on public smart home datasets (CASAS-Twor, CASAS-Aruba, and

Kastaren) demonstrate high performance across modules: over 90% recall in behav-

ior change detection with an 11% false positive rate, effective cross-user generaliza-

tion, and successful near real-time monitoring capabilities. LLM integration further

bridges the gap between quantitative sensor data and qualitative clinical insight,

while human-in-the-loop (HITL) mechanisms and risk mitigation strategies address

challenges related to bias, hallucinations, and ethical oversight.

This thesis contributes a scalable, explainable, and ethically aware solution to

preventive geriatric care, demonstrating how AI and generative technologies can be

responsibly deployed in eldercare to enhance quality of life, reduce healthcare burden,

and empower clinicians with actionable, real-time insights.
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Definitions and Abbreviations

Definitions

Activities of Daily Living

The activities of everyday life. ”Basic ADLs include eating, dressing,

getting into or out of a bed or chair, taking a bath or shower, and

using the toilet”. ”Instrumental activities of daily living (IADL)

are activities related to independent living and include preparing

meals, managing money, shopping, doing housework, and using the

telephone.” In the scope of this research, ADL covers both basic ADL

and IADL.

Behavior An ordered sequence of activities represented as events.

Event An instance of ADL performed by the resident at a specific time,

date, and location for a period of time (An activity is defined with

some attributes such as activity type, duration, and period-of-day).

Smart Home The resident’s home that is equipped with ambient sensors

xv



Wearable Sensors

Privacy-preserving non-intrusive vital sign sensors that are worn on

the body.

Baseline Period

A 2-3 months training data collected from ADL monitoring in a

smart home

Behavior Routine

The usual behavior of the residents in the baseline period

Behavior Change

A considerable deviation from the behavior routine such as missing

activities, unusual durations, changes in the sequence or timing of

events, repetitive actions that are out of the ordinary, unexpected

interruptions, and instances of idle time that are unusual.

Abbreviations

AAL Ambient Assisted Living

AI Artificial Intelligence

ADL Activities of Daily Living

BCD Behavior Change Detection

BERT Bidirectional Encoder Representations from Transformers

FBM Fogg’s Behavior Model

xvi



GAN Generative Adversarial Network

HITL Human-in-the-Loop

IRL Inverse Reinforcement Learning

LLM Large Language Model

MDP Markov Decision Process

ML Machine Learning

MLM Masked Language Model

RL Reinforcement Learning

xvii



Chapter 1

Introduction

The growing prevalence of functional [Hajek and König, 2016] and cognitive [Lisko

et al., 2021] impairments among older adults poses significant societal challenges. As

the number of individuals experiencing these declines increases, so too does the ur-

gency for effective early intervention strategies. While traditional clinical assessments

rely heavily on self-reported data, susceptible to issues like recall bias and variabil-

ity in reliability [Piau et al., 2019], monitoring technologies can offer complementary

insights. However, these systems also face limitations, such as difficulty detecting

certain symptoms, potential unreliability, and risks of misclassification. Thus, a more

comprehensive and effective approach lies in integrating both self-reported informa-

tion and monitoring data to better identify early signs of deterioration. Concurrently,

a substantial proportion of older adults live independently, making continuous, ob-

jective monitoring both a logistical and ethical necessity.

Recent advancements in sensor technology have enabled the seamless collection of

data on ADLs within the home environment. These sensors offer a promising alterna-

tive to subjective assessments, providing continuous, objective data that can capture
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subtle, gradual changes in daily routines—changes that may indicate the onset of se-

rious health issues such as dementia or other chronic conditions [Nathan et al., 2018].

This objective monitoring is critical, as unaddressed deviations in ADL patterns can

precipitate a cascade of adverse health events, including malnutrition, falls, and fur-

ther cognitive decline, thereby increasing the likelihood of institutionalization [Claes

et al., 2015].

In parallel, the integration of artificial intelligence (AI) into healthcare, particu-

larly through deep learning and reinforcement learning, has opened new avenues for

interpreting complex sensor data. By leveraging these advanced methodologies, this

research proposes a novel framework to detect deviations from established behavioral

patterns in older adults. Furthermore, the emerging role of large language models

(LLMs) in transforming raw sensor data into coherent, human-readable clinical nar-

ratives presents an innovative method for bridging the gap between complex data

analysis and actionable healthcare insights. However, while LLMs offer the potential

to enhance care delivery by highlighting behavioral anomalies and suggesting early

interventions, they also introduce risks such as misinterpretation, bias, and ethical

concerns regarding patient privacy and clinical decision-making.

The motivation behind this research is twofold. First, it seeks to address the

pressing need for reliable, continuous monitoring of older adults’ health by employing

state-of-the-art machine learning techniques to detect early signs of behavioral change.

Second, it aims to explore the dual potential and challenges of applying LLMs to

convert sensor-derived ADL data into insightful patient notes, ensuring that these

technologies are integrated with adequate risk mitigation and human oversight. This

thesis endeavors to develop a robust, risk-aware framework that not only improves

2
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early detection of health-related events but also supports timely and effective clinical

intervention, ultimately enhancing the quality of care for older adults while allowing

them to age in place with dignity and independence.

The remainder of this chapter is organized as follows: first, I present the problem

statement and research questions. Then, I discuss the theoretical foundation underly-

ing the proposed approach. Next, I highlight the key research contributions, followed

by an overview of the dissertation’s organization.

1.1 Problem Statement and Research Questions

Behavioral changes in older adults serve as key indicators for maintaining independent

living, yet traditional qualitative assessments of ADLs often lack the precision and

objectivity needed for early detection of potential health declines. This research

proposes a quantitative approach using advanced ML techniques to monitor subtle

shifts in ADL patterns, thereby enabling earlier identification of health events that

could lead to more severe conditions if not promptly addressed.

In parallel, the study evaluates the potential of LLMs to transform quantitative

ADL data into informative clinical narratives. It examines both the efficacy and

risks of employing LLMs to detect and explain behavioral anomalies, while rigorously

addressing the associated practical challenges. Central to this investigation is the

development of risk-aware frameworks and transparent evaluation methodologies that

integrate ML and LLM technologies with human oversight. This balanced approach

aims to enhance care delivery in healthcare settings through responsible technological

integration. In this research, I seek to answer the following questions:

3
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• (RQ1) Detection Efficacy: how effectively can machine learning algorithms an-

alyze ADL patterns to detect early behavioral changes in older adults?

• (RQ2) Evaluation Framework: how can the effectiveness and efficiency of the

proposed approach be systematically evaluated?

• (RQ3) Generalizability of Models: to what extent can models trained on the

ADL data of one resident be generalized or adapted to predict the behavior of

other residents?

• (RQ4) LLM Inference: how LLMs can be applied to produce logical inferences

aligned with observed behavioral changes?

1.2 Theoretical Support

Fogg’s Behavior Model (FBM) postulates that human behavior is influenced by three

principal factors: ability, motivation, and trigger [Fogg, 2009]. Unlike other behavioral

theories that focus solely on ability and motivation, FBM introduces the concept of a

trigger as a necessary catalyst for behavior change. The model classifies triggers into

three distinct types:

1. Spark Designed to counteract low motivation, a spark leverages intrinsic or

extrinsic motivational factors (e.g., highlighting potential risks) to prompt the

desired behavior.

2. Facilitator When the challenge lies in the individual’s ability to perform a

task, facilitators provide the necessary support to enable the behavior.

4
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Figure 1.1: A depiction of the trigger’s role in Fogg’s Behavior Model. The user’s
motivation and ability should be above a threshold (the blue curve) to make the

user respond positively to a trigger

3. Signal When both motivation and ability are sufficient, a signal serves as a

timely reminder to initiate the behavior.

FBM also emphasizes the importance of the behavior activation threshold; triggers

must be administered at the right moment. If a trigger is ill-timed, it may not only

fail to produce the intended effect but could also distract or negatively influence the

individual’s behavior 1.1. Based on FBM, my proposed approach hypothesizes that

context-sensitive triggers can effectively support older adults in maintaining their

daily routines and accessing needed care. Specifically, when a decline in motivation

is detected, an appropriately timed spark may reinvigorate engagement in ADLs.

Alternatively, if reduced ability is the underlying issue, interventions in the form of

facilitators—such as external support—could be more beneficial. In situations where

both motivation and ability are intact, a well-timed signal may suffice to reinforce

5
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routine behaviors. Consequently, the proposed system is designed to dynamically

evaluate the individual’s current state and determine whether to deploy a spark,

facilitator, or signal, ensuring that interventions are both appropriate and effective.

1.3 Research Contributions

Inspired by Fogg’s behavior model [Fogg, 2009], I design a data-driven solution for

the early detection of behavior changes in older adults that are triggered by the

onset of health events. I follow a design science research approach in which a new

artifact is designed to solve a real-life problem. I use public datasets that are obtained

by monitoring the ADLs of older individuals living in smart homes equipped with

ambient sensors. The main contributions of this research will be as follows. Each

contribution is explicitly linked to the research question it addresses.

• ML-Based Framework for Behavior Change Detection (addresses De-

tection Efficacy): to answer “How effectively can machine learning algorithms

analyze ADL patterns to detect early behavioral changes in older adults?”, I

introduce a novel ML-based framework for behavior change detection in older

adults by analyzing sequences of ADLs in order to offer care providers objective

indicators about the health status of the older adult living alone at home. This

framework employs semi-supervised and supervised learning techniques (e.g.,

IRL and Transformer-based classifier models) to identify deviations from es-

tablished routines. By evaluating detection performance (e.g., precision, recall,

F1-score) on public smart-home sensor datasets, we demonstrate the frame-

work’s capability to flag subtle shifts in behavior that may indicate emerging

6
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health issues.

• Simulation-Based Evaluation with BehavGAN-Augmented Sensor Data

(addresses Evaluation Framework): to answer “How can the effectiveness

and efficiency of the proposed approach be systematically evaluated?”, I design

and conduct simulations on augmented ADL datasets by injecting controlled

behavioral deviations, such as increased restroom visits or prolonged inactiv-

ity, that correspond to known health events (e.g., urinary tract infections). In

addition, I introduce BehavGAN, a novel GAN-based method for synthesizing

realistic ADL sequences when real data are scarce. Using these augmented

datasets, I quantify detection accuracy (e.g., precision, recall) and false-alarm

rates. This contribution defines a reproducible evaluation protocol, covering

simulation design and performance metrics for future studies.

• Transfer Learning for Cold Start Mitigation (addresses Generalizabil-

ity of Models): to answer “To what extent can models trained on the ADL

data of one resident be generalized or adapted to predict the behavior of other

residents?”, I apply transfer learning strategies that leverage pre-trained models

on existing residents’ data to bootstrap detectors for new users. Specifically, I

fine-tune BERT Classifier on a small amount of labeled data from a new resi-

dent, demonstrating that transferred models achieve superior detection accuracy

while requiring fewer individual-specific data. This contribution substantiates

the feasibility of cross-resident adaptation in real-world deployments.

• LLM Interpretation Layer for Clinical Narratives (addresses LLM In-

ference): to answer “How LLMs can be applied to produce logical inferences

7
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aligned with observed behavioral changes?”, I develop a pipeline that converts

ML model outputs, such as behavior change scores, and contextual information

(e.g., Demographic or medication information along with ADL log) into struc-

tured prompts for a large language model (e.g., Gemini, Claude, or GPT-4).

The LLM then is tuned to generate evidence-based explanations.

1.4 Thesis Organization

This thesis is organized into six main chapters and supporting appendices. Chapter 1

introduces the research problem, outlines the theoretical foundations, and highlights

key contributions. Chapter 2 presents an extensive literature review covering abnor-

mal behavior definitions, ambient assisted living (AAL), behavior anomaly detection,

relevant AI and data analytics approaches, and identifies research gaps. Chapter 3

details the proposed methodology, including models for behavior change detection,

synthetic data generation using BehavGAN, and an LLM-based clinical note genera-

tion framework. Chapter 4 evaluates the proposed system using real-world datasets,

reporting experimental results for each system module. Chapter 5 discusses key find-

ings, limitations, and ethical considerations, particularly around trust and privacy

in AI-assisted monitoring. Finally, Chapter 6 concludes the thesis by summarizing

the main contributions, answering research questions, and outlining future research

directions. Appendices provide supplementary background on core AI techniques

and technical implementations. This structured approach ensures that theoretical,

methodological, and practical dimensions of the research are thoroughly addressed.
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Chapter 2

Literature Review

In this section, I provide a review of the related works in behavior change detection.

First, I provide a review of ”abnormality” definition in the context of activities of

daily living. Next, I discuss studies of Ambient Assisted Living (AAL), where sen-

sor networks are utilized to assist residents in their daily living. Then, I provide a

summary of studies of behavior anomaly detection in the context of home care. I

also review related work that applies different data analytics methods to behavior

anomaly detection. Then, I explore the use of LLMs for automating note generation

to enhance clinical efficiency and documentation accuracy. Finally, I elaborate on the

research gap that is identified through reviewing related work, which is the focus of

this research.

2.1 Definition of Abnormal Behaviour

Abnormal behavior in Activities of Daily Living (ADLs) broadly refers to any no-

ticeable deviation from an individual’s established patterns of daily routine, across

9
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dimensions such as timing, duration, location, order, or statistical likelihood. These

deviations can indicate underlying health or cognitive issues, especially in older adults

or individuals with chronic conditions. However, since no single, universal definition

of abnormality applies across all contexts, the literature presents a variety of inter-

pretations.

The definitions fall under several conceptual categories:

2.1.1 Core Categories of Abnormality

• Temporal Deviations: activities performed at atypical times (e.g., preparing

dinner at 2 a.m.).

• Spatial Deviations: tasks completed in unexpected locations (e.g., brushing

teeth in the kitchen).

• Sequential Deviations: altered order of events (e.g., taking medication before

eating rather than after).

• Duration Deviations: time spent on an activity is unusually long or short

relative to personal norms.

• Statistical Deviations: actions that have low likelihood under learned prob-

abilistic or neural models (e.g., rare event sequences).

• Contextual Rule Violations: actions that contradict semantic, behavioral,

or sensor-based rules (e.g., motion detected without light activation).

• Behavioral Omissions or Insertions: skipping usual steps (e.g., missing

meals), or inserting unexpected sub-events (e.g., repeating parts of tasks).
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• Entropy or Disorder Spikes: increases in entropy over sensor sequences,

often indicating environmental disruption (e.g., unplanned visits).

• Unexpected Inactivity or Idle States: lingering in a state of inactivity

where action is typically expected.

2.1.2 Additional Definitions from the Literature

In addition to the above conceptual types, the following definitions emerged from the

broader literature:

• [Durand and Barlow, 2003] Definition: “actions that are unexpected and

often evaluated negatively because they differ from typical or usual behavior.”

• [Mahmoud et al., 2011] Definition: any ADL segment whose feature vector

differs significantly (via Euclidean or Mahalanobis distance) from a personalized

normal template.

• [Hoque and Stankovic, 2012] Definition: high-level deviations from ex-

pected sequences that violate contextual or causal rules.

• [Pazhoumand-Dar et al., 2015] Definition: any device usage sequence with

low likelihood under an HMM trained on normal usage.

• [Karakostas et al., 2016] Definition: discrepancies between predicted (ex-

pected) and actual behavior based on task models.

• [Nazerfard, 2018] Definition: violations of learned temporal association rules

between activities, including irregular sequencing and unexpected gaps.
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• [Yahaya et al., 2019b] Definition: outliers detected by a one-class SVM

trained only on normal ADL data.

• [Koutli et al., 2019] Definition: sequences with low posterior probability in

a hidden semi-Markov model of habit sequences.

• [Konios et al., 2019] Definition: deviations from a personalized baseline mea-

sured by distance functions.

• [Howedi et al., 2020] Definition: abnormality indicated by spikes in fuzzy

entropy over sensor data windows.

• [Ardebili et al., 2020] Definition: violations of manually defined IF–THEN

context-aware sensor rules.

• [Mustafa et al., 2020] Definition: duration deviations in stages of ADLs

beyond group-level statistics.

• [Yahaya et al., 2019a] Definition: instances where a Normality Score, com-

puted via an ensemble of one-class methods, exceeds a threshold.

• [Yahaya et al., 2019c] Definition: “any notable departure from a person’s

typical behavioral pattern,” judged by internal and external model consensus.

• [Arifoglu and Bouchachia, 2019b] Definition: “a departure from expected

activity patterns,” learned via CNNs trained on both real and synthetic data

representing dementia-related behaviors.

• [Shang et al., 2020] Definition: “a low likelihood of an activity given learned

regularity features like time-consistency and frequency.”
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• [Fahad and Tahir, 2021] Definition: “missing or extra sub-events in an ac-

tivity and unusual durations of the activity.”

• [Wang et al., 2023] Definition: deviation from learned patterns in timing,

frequency, or order, often related to cognitive impairment.

• [Tay et al., 2023] Definition:

– accidental anomalies: Detected by abrupt sensor changes (e.g., falls).

– non-accidental anomalies: Violations of sequence/time/location norms (e.g.,

repetitive or out-of-order actions).

Across a decade of research, the consensus is clear: abnormal behavior in ADLs is

any significant deviation, whether in timing, duration, sequence, or context, from a

personalized model of normal routine. Techniques vary from probabilistic models to

entropy measures and rule-based systems, but all aim to flag deviations indicative of

health concerns or safety issues.

Throughout this research, “behavior change” is viewed not just as an “abnormal-

ity” but as any noticeable shift away from a person’s normal routine of daily

living. This could involve skipping tasks they usually perform, spending an unusual

amount of time on an activity (either much longer or much shorter), changing the

order or timing of events, repeating something more than they normally would, ex-

periencing unexpected interruptions, or lingering idle when they typically wouldn’t.

This thesis adopts a person-centric definition of behavior change. Rather than relying

on static rules, we emphasize learning personalized baselines over time and tracking

behavioral drift in terms of semantic structure, timing, and frequency. This adaptive
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approach ensures sensitivity to meaningful anomalies while preserving tolerance for

individual variability.

2.2 Ambient Assisted Living

In this subsection, related work on Ambient Assisted Living (AAL) for older adults

is reviewed. AAL has proven useful in monitoring Activities of Daily Living because

many societies struggle to sustain an aging population due to rising healthcare costs

and a shortage of caregivers. Figure 2.1 shows an example home environment that is

equipped with different ambient sensors, including motion sensors, door sensors, tem-

perature sensors, and light sensors. Older adults’ daily routines and how they conduct

ADLs are considered to be reliable signs of healthy aging. Using ambient sensors to

monitor older adults’ indoor ADLs have several benefits over other monitoring tech-

niques like wearable sensors or video surveillance systems. First, when compared to

voice detection or video surveillance systems, ambient sensors present the least pri-

vacy risk[Himmel and Ziefle, 2016, Kavitha and Binu, 2019]. Second, since they do

not need to be worn constantly and do not interfere with daily activities, ambient

sensors offer greater ease of use for older adults[Marschollek et al., 2014, Wilkowska

et al., 2022, Kavitha and Binu, 2019]. Third, ambient sensors are suited to be inte-

grated into ADL monitoring systems since they are simple to install and cost-effective

for end users [Uddin et al., 2018]. Fourth, compared to video streams, ambient sensor

data analysis requires substantially less computational time and power[Kavitha and

Binu, 2019]. A variety of aspects of installing high-density environmental sensors in

dwellings is investigated by Keohane et al. [Keohane et al., 2018]. Ambient sensors

are specifically installed in an environment that supports independent living in order
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Figure 2.1: Adopted from [Crandall and Cook, 2013]: the floor plan of Kyoto
Testbed that is equipped with Motion (M), Light (L), Door (D), and Temperature

(T) sensors.
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to identify ADL behavioral patterns. These patterns are then used to assess the well-

being of individuals in their living environments. The study sought to extract from

the data the following ADLs: toileting, bathing, sleeping, clothing, mobility (trans-

ferring), and cooking (kitchen activity). 48 sensors were distributed throughout an

87-year-old woman’s home during a three-month pilot project. The area included

a kitchen, bathroom, long hallway, and bedroom. SmartThings multi-purpose sen-

sors were attached to items like doors to monitor their opening and closing times

as well as their acceleration, direction, and room temperature. SmartThings outlets

were hooked into wall outlets to control and monitor lights, devices, and small ap-

pliances. Also, the Netatmo Indoor Module detects pressure, carbon dioxide, sound

levels, temperature, humidity, and other variables.

Athanasios et al. [Dasios et al., 2015] detail practical experiences with developing,

deploying, and running a wireless sensor network (WSN)-based prototype system for

monitoring senior care in residential settings. The monitoring is based on the record-

ing of environmental variables such as temperature, humidity, and light intensity as

well as micro-level occurrences that allow inferring daily actions such as moving, sit-

ting, sleeping, and using electrical appliances and plumbing parts. The prototype is

composed of low-cost, off-the-shelf components and license-free software, making it

an economical solution.

Ambient sensor data are widely used for analyzing behavior patterns. When older

adults age in place, there are health events that can be prevented and reduced by

analyzing ADLs [Nathan et al., 2018]. Long-term health conditions, such as the

risk of falls, have typically been diagnosed through assessments conducted in clinical

settings. Smart Homes, however, enable ongoing monitoring of residents’ behaviors
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and vital signs over an extended period. This technology can assist in diagnosing

and managing chronic conditions while reducing the burden on healthcare services.

Using sensor data, it is possible to develop a behavioral profile for residents and

observe changes over time. For example, toileting is essential for survival and a

crucial sign of one’s health [Cove-Smith and Almond, 2007]. Urinary Tract Infections

(UTIs) can be prevented by maintaining a regular washing and toileting schedule,

which can also be a sign of urinary incontinence (UI). For those over 70, UTI is a

common cause of death that frequently goes undiagnosed [Cove-Smith and Almond,

2007]. Sleep is crucial for cognitive function, particularly for memory consolidation.

A deterioration in cognitive function and changes in mood are typically experienced

by people who get less than seven hours of sleep each night[Alhola and Polo-Kantola,

2007]. Furthermore, a decrease in mobility is found to be correlated with increased

fall risk. Using ambient sensors, it is possible to track sleep duration and patterns,

mobility level, patterns of performing ADLs, etc.

Moura et al. [Moura et al., 2022] present an algorithm for learning health changes

based on the correlation of context-enriched frequent behavior patterns and cognitive

and physical health deterioration. Although the sequence of activities is taken into

account in their work, it is only for short-term behavior patterns.

Li et al.[Li et al., 2018] advise examining older adults’ movement patterns in their

homes using unsupervised learning. They advise utilizing a Bayesian framework with

nominal matrix factorization to obtain highly understandable everyday routines.

Saives et al. [Saives et al., 2015], used sequence mining techniques to discover

the most frequent patterns in the stream of sensor data that represent the inhabi-

tant’s activities. These patterns are subsequently represented using an extended finite
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automaton, which can be utilized for recognizing activities and generating activity

events.

Identifying intra- and inter-activity association patterns from older adults’ every-

day routines is advised by Lin et al. [Lin et al., 2013]. A data mining technique

is used to extract the most frequent sequences of steps within each specific activ-

ity (intra-activity pattern) and within a group of everyday activities (inter-activity

pattern).

Rashidi et.al [Rashidi and Cook, 2009] introduced CASAS, an adaptable smart-

home system that makes use of machine learning to identify trends in occupants’

daily routines and create automation rules that mirror those habits. The suggested

strategy makes no presumptions regarding the model’s underlying properties, such as

the activity structure. Nevertheless, finding the patterns of the residents of a smart

house is entirely left to the proposed algorithms. To identify recurring patterns,

they employ a variation of the Apriori algorithm. They record crucial temporal

data, such as event durations and start times, as well as contextual data, such as

start-up triggers. In this method, the resident plays a crucial role in determining

the automation policy for the environment. The resident can specifically direct the

system by offering explicit input, or s/he can let the system learn about and adjust

to changes in the pattern of activities on its own.

2.3 Behavior Anomaly Detection in Home Care

Detecting behavioral anomalies is a dynamic area of research that encompasses various

elements of Telecare and Telehealth. Recent developments in smart home research

for health monitoring demonstrate that these technologies can effectively detect and
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anticipate health changes in near real-time. In order to show how collaboration

between smart homes and care providers may be used to successfully detect and report

clinically important health events that can be automatically recognized by smart

homes, Fritz et al. [Fritz et al., 2022] present a series of health event examples. In the

homes of 25 individuals with various chronic health conditions, ambient sensors were

installed. The study examined two cases of congestive heart failure exacerbations,

one case of a urinary tract infection, two cases of bowel inflammation flare-ups, and

four cases of sleep disturbances among participants. The authors discovered evidence

that suggests automated identification of health events may be provided by ongoing

sensor-based monitoring of patient behavior in residential settings. Nursing insights

into data from smart home sensors are also suggested for use in launching preventive

measures and offering prompt care.

Yahaya et al. [Yahaya et al., 2019c], suggested a novel method for assembling a

group of novelty detection algorithms. The novelty detection procedure determines

whether test data significantly deviates from the data available during training in

order to identify new or unknown data. Abnormality in ADLs is defined as any

notable departure from a person’s typical behavioral pattern. The idea of internal

and external consensus serves as the foundation for the suggested Consensus Nov-

elty Detection Ensemble (CNDE) technique. External consensus refers to a voting

mechanism among different models in the ensemble. Internal consensus refers to a

decision-making process that takes place within each individual model of the ensem-

ble, where multiple components or mechanisms contribute to the final output through

an internal voting system. Based on each model’s performance and a score termed

the ”Normality Score,” the weight of the model is estimated. The data are classified
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as abnormal (anomalous) depending on the crossing of a specific threshold, and as

normal otherwise, using the computed score.

Dalal et al. outline two key application areas for their rule-based approach to the

inference of elders’ activity: detecting Independent Activities of Daily Living (IADLs)

for the detection of abnormalities in activity data patterns and the passive and covert

detection of probable emergency scenarios. Results showed the viability and valid-

ity of knowledge-engineered rules, which outperformed mechanically generated rules

produced by supervised learning with random forest [Dalal et al., 2005].

Howedi et al. [Howedi et al., 2020] use entropy measurements to do anomaly

detection in daily activities. they demonstrated that the suggested method will find

anomalies in environments with multiple occupants when there are visitors. The

suggested entropy measurements are based on identifying the highest entropy value

in routine daily activities, which would be applied as a threshold to identify anomalous

ADL behaviors in previously unreported data.

2.4 Data Analytics for Behavior Anomaly Detec-

tion

Abnormal behavior can be defined as ”actions that are unexpected and often eval-

uated negatively because they differ from typical or usual behavior” [Durand and

Barlow, 2003]. Because the concept of an anomaly is difficult to define precisely and

is closely tied to patient behaviors and the types and course of pathologies, artificial

intelligence, and more specifically machine learning techniques, have been used to

learn to recognize those anomalies. These methods could be categorized into three
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groups, as follows: [Nie et al., 2015]:

• Supervised anomaly detection methods develop classifiers by learning from

labeled data that includes both normal and abnormal instances, enabling them

to classify new data as either normal or anomalous.

• Semi-supervised anomaly detection approaches build a representation of nor-

mal behavior based solely on provided examples of typical activity, and then

evaluate how likely new data points are to conform to this learned behavior.

• Unsupervised anomaly detection methods identify outliers within unlabeled

data by assuming that most data points represent normal behavior, allowing

deviations to be flagged as anomalies.

From another perspective, anomaly detection methods can be categorized as:

• Profiling techniques construct a model that represents normal behavior, en-

abling the identification of deviations that may indicate anomalies.

• Discriminating methods that train a model to discriminate an abnormal ac-

tivity from a normal activity, assuming that abnormal events have occurred

before (only signature anomalies can be detected.) [Sanfeliu and Cortés, 2004].

Scholars have used machine learning methods extensively to analyze ADLs with the

goal of providing on-time care and predicting older adults’ health conditions. Many

studies benefit from the availability of datasets for daily activities, including the use

of machine learning methods for predicting/detecting anomalous behavior [Arifoglu

and Bouchachia, 2019a, Lotfi et al., 2012a, Riboni et al., 2015a, Suryadevara et al.,

2013b].
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Fahad et al.[Fahad and Tahir, 2021] propose a method for detecting behavior

anomalies by taking into account two types of abnormality: missing or extra sub-

events in an activity and unusual durations of the activity. They trained an H2O

model to classify events using labeled activities (normal, anomaly). The main problem

with such supervised models is that they must be trained using labeled data, which

is time-consuming and difficult to generate.

Yahya et al. [Yahaya et al., 2021] suggested an adaptive system pipeline for ad-

justing to changes in human behavior. The authors propose a forgetting factor feature

that enables the model to be adjusted to a person’s current habits while forgetting

outmoded behavioral patterns. In the forgetting factor, two separate techniques are

used to adapt to the dynamic behavior of the person. First, the data dissimilarity

technique assesses the similarity of the activity data in order to remove dissimilar data.

Second, the data aging technique discards previous behavioral routines depending on

the age of the activity data.

Casagrande et al.[Casagrande et al., 2018] have used recurrent neural networks to

forecast the future values of the activities for each sensor. When abnormal behavior

is anticipated in the near future, the caregiver is informed using the projected values.

Investigations into data gathering, classification, and prediction were conducted in

actual homes with dementia-affected elderly residents.

In assisted living settings, temporal characteristics of ADLs are taken into consid-

eration to forecast the next activity. Nazerfard [Nazerfard, 2018], presents an associ-

ation rule mining module that identifies associations among ADLs that are grouped

according to the start time and duration of the related ADL. The sequence of the

activities is also taken into account.
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Karakostas et al. [Karakostas et al., 2016] present an anomaly detection approach

in which the predicted user activity is represented by a task model. The predicted

and actual behavior are then compared to see if any variance (anomaly) has occurred.

The problem with such model-based anomaly detection approaches is that they fail

to detect anomalies that have not previously occurred. Ismail et al. [Ismail et al.,

2019] propose a context-aware framework for learning and predicting human behavior.

Behavior contexts such as weekdays and the time of day are collected from residents’

real-life data to improve the accuracy of activity prediction.

Cook et al. [Cook and Schmitter-Edgecombe, 2009] have developed algorithms for

automatically learning separate Markov models for each of the five classes of activity

(Telephone Use, Hand Washing, Meal Preparation, Eating and Medication Use, and

Cleaning). These models are used to both categorize the activities that are carried

out in smart homes and to identify errors and inconsistencies in those activities.

Krishna et al. [Krishna et al., 2018], proposed a Long Short-Term Memory(LSTM)-

based method for detecting anomalies in daily activity sequences, as well as a com-

parison of the proposed method with the Hidden Markov Model, which demonstrates

comparable results for the LSTM model. Moallem et al. [Moallem et al., 2019] pre-

sented an anomaly detection method in smart homes based on deep learning. They

used binary sensor data to train a predictor model, which is a recurrent neural net-

work, to predict which sensors will turn on/off and how long the event will last.

Alberdi et al. [Alberdi et al., 2018] considered the viability of detecting the multi-

modal symptoms that are frequently impaired in Alzheimer’s Disease (AD) using

covertly obtained activity-aware smart home behavior data. Using longitudinal smart

home data collected over an average of more than two years for 29 older adults, the
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data were automatically assigned to the appropriate activity classes. Time-series

statistics with ten behavioral variables were also derived. Every six months, mobility,

cognition, and mood were assessed. With the help of these data, regression models

were built to forecast test-measured symptoms, and feature selection analysis was

carried out. Classification models were created to detect trustworthiness and abso-

lute changes in the scores that indicated symptoms. The findings demonstrate that

activity-aware smart home data can be used to forecast symptoms related to mobility,

cognition, and sadness.

Arifoglu et al. [Arifoglu and Bouchachia, 2019b] examined the problem of dementia-

affected older individuals’ activity recognition and inappropriate behavior detection.

Given the difficulty in getting real-world data, the research first proposes an approach

for creating synthetic data that reflects on some behavioral issues of people with de-

mentia. The second part of the study looked at Convolutional Neural Networks

(CNNs), which can be used to predict patterns in activity sequences and identify ab-

normal behavior associated with dementia. The identification of activities is regarded

as a sequence labeling issue, and anomalous behavior is highlighted based on a de-

parture from expected patterns. Additionally, the effectiveness of CNNs is evaluated

in comparison to cutting-edge techniques like Conditional Random Fields (CRFs),

Hidden Semi-Markov Models, Hidden Markov Models, and Naive Bayes (NB). The

outcomes show that CNNs are in a competitive position with the listed state-of-the-

art methods.

Shang et al. [Shang et al., 2020] proposed a Feature-based Implicit Irregularity

Detection (FIID) method that utilizes unsupervised learning to extract regularity fea-

tures and estimate the likelihood of implicit irregularities. In their approach, regular
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daily behaviors are characterized by activities that occur frequently and follow consis-

tent timing patterns. The probability of implicit irregularity in an individual’s daily

health state is then determined within a multidimensional feature space constructed

from these extracted features.

Lago et al. [Lago et al., 2017] introduced contextualized behavior patterns, a

long-term behavior model that takes context-related variability into account and then

codifies the key ideas relating to activities in Ambient Assisted Living. This study

shows that using semantic similarity makes it easier to detect behavioral changes.

2.5 AI for Activities of Daily Living Monitoring

The application of artificial intelligence (AI) in healthcare has garnered significant

attention due to its potential to enhance patient monitoring and care delivery. Within

this domain, the use of LLMs for processing and interpreting ADLs data represents

a novel and rapidly evolving area of research.

Despite advancements in sensor technologies, the interpretation of ADL data re-

mains a challenge due to the complexity and volume of the collected information.

Traditional approaches rely on rule-based systems or machine learning models trained

on pre-defined features [Timon et al., 2023]. However, these methods often lack the

flexibility to generalize across diverse patient populations or adapt to new patterns

of behavior. This limitation has motivated the exploration of LLMs as a means to

transform raw sensor data into actionable insights.

LLMs have significantly advanced the automation of medical note generation,

enhancing clinical efficiency and documentation accuracy. Recent research explores
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various applications, methodologies, and challenges associated with LLMs in health-

care note generation.

For instance, the HEAL model [Yuan et al., 2024]—a 13B LLaMA2-based LLM—was

specifically trained for medical conversations and automated scribing. HEAL outper-

formed GPT-4 and PMC-LLaMA in PubMedQA with an accuracy of 78.4% and

matched GPT-4 in generating high-quality clinical notes, demonstrating the cost-

effectiveness of domain-specific LLMs compared to general-purpose models. Similarly,

another study [Brake and Schaaf, 2024] compared two approaches for generating clini-

cal notes: one that produced sections independently and another that generated them

sequentially. Both methods achieved comparable ROUGE scores and factuality met-

rics, with LLMs like LLaMA2 exhibiting inter-rater reliability comparable to human

annotators for evaluating note consistency.

Beyond accuracy, other research has focused on specific use cases. For example,

LLMs have been applied to automate discharge note generation for cardiac patients

[Jung et al., 2024], reducing documentation time while maintaining comprehensive

and accurate summaries. AscleAI [Han et al., 2024] presented a clinical note man-

agement system that automates the creation, organization, and retrieval of notes,

streamlining documentation workflows and improving clinician productivity. Addi-

tionally, LLMs have been employed to generate synthetic patient-physician dialogues

from clinical notes [Das et al., 2024], creating realistic conversational data for training

and evaluation purposes.

Further advancements include the use of generative AI to focus on patient-centric
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note generation [Biswas and Talukdar, 2024], which enhances the quality and rele-

vance of documentation by prioritizing the patient’s perspective. Research on generat-

ing and de-identifying clinical discharge summaries for the Indian healthcare context

[Singh et al., 2024] highlights the potential for LLMs to address privacy-preserving

data generation needs. Lastly, frameworks such as MedSyn [Kumichev et al., 2024]

leverage LLMs to generate realistic synthetic medical texts, contributing to the de-

velopment of robust AI systems for healthcare.

Despite these advancements, challenges persist. LLMs can produce hallucinated

or incorrect information, potentially compromising patient safety. Data privacy is

another critical concern, as LLMs must adhere to strict healthcare data protection

regulations. Seamlessly integrating AI-generated notes into clinical workflows also

poses challenges, requiring careful consideration to ensure clinician acceptance. Au-

tomated evaluation of LLM-generated notes shows promise, with studies suggesting

that LLMs can assist in assessing note consistency, though human oversight remains

essential [Brake and Schaaf, 2024].

2.6 Research Gap

In this section, I will provide a comparative review of the related works that apply

different data-driven methods to detect behavior changes using sensor data. In Ta-

ble 2.1, important features of these studies are summarized in order to identify the

research gap.

The method as well as the method type that is used in the work is identified ac-

cording to Supervised/Unsupervised/Semi-supervised categorization. Related works

are also compared in terms of behavior features that are considered in formulating
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behavior. In terms of the analysis time frame, some approaches focus on a short-

term analysis of behavior while a few works also consider long-term behavior patterns.

According to [Lin et al., 2013], the sequence of activities, as well as individual activity,

can both exhibit anomalous patterns. Among the studies, some perform abnormality

detection within individual activity classes (intra-activity analysis), while some oth-

ers consider abnormalities that are detected from inter-activity dependencies (Level

of analysis). Furthermore, I identify the target subjects that are studied in each

research. Some works focus on patients only, while others consider older adults who

live alone. The type of anomaly that is considered in the related works is also an

important factor when comparing methods. An anomaly can be a point anomaly, a

collective anomaly, or a contextual anomaly. As stated by [Erhan et al., 2021], a point

anomaly occurs when a single data point deviates from the rest of the dataset. Con-

versely, a collective anomaly arises when a group of related data points collectively

differs from the overall dataset. In this case, while individual points may appear

normal, their specific sequence or pattern signifies the anomaly. Finally, a contextual

anomaly occurs when a data point is considered anomalous only within a particu-

lar context, while in other situations it would be regarded as normal. Additionally,

I provide information on the type of data utilized in the analyses across various

studies.

I hypothesize that analyzing data streams of ADLs from an ambient-assisted envi-

ronment could help identify the onset of an acute and unusual event in ADLs (e.g., use

of the bathroom at night, followed by several hours of immobility) or subtle changes

over time (e.g., disorganization in stereotypical habits). By leveraging non-intrusive

sensors, my approach can deliver important insights to caregivers, including family
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members and healthcare providers, enabling effective monitoring of older adults in

their own homes and supporting their ability to live independently.

While there are plenty of studies on behavior anomaly detection in older adults,

temporal features are not utilized to their full potential. Most of the studies reflect on

point anomalies. However, anomalies that can only be identified by considering the

sequential features of data are not explored well. Some works are limited to finding

abnormalities within activity classes, while there can be abnormalities that can only

be detected by a higher-level analysis of activities. Therefore, appropriate behavior

granularity needs to be considered. It is also important for the method to present

a generalizable solution that can be tuned for different target users in a reasonable

time. This feature would allow the method to start learning the behavior patterns

from a pre-learned model as opposed to learning from scratch.

To address the above-mentioned issues, I hypothesize that deep learning IRL-

based methods (semi-supervised) combined with transformer-based classifier models

(supervised) that have been proven effective in analyzing time series data can be

effectively applied in analyzing ADL data streams for detecting deviations from

normal behavior. I propose considering temporal features of behavior to detect

collective abnormalities in long-term behavior. This research considers inter-

activity dependencies in order to understand behavior routines from. I apply state-

of-the-art IRL-based methods in order to minimize the need for labeled data. The

Transformer-based supervised method will also address the ”cold start” issue, in which

the algorithm is unable to make any conclusions about residents for whom it has not

yet received sufficient training data.
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Another significant research gap lies in the translation of ML outputs into action-

able insights. Existing studies have predominantly focused on detecting abnormalities

using traditional ML methods, without paying sufficient attention to how these out-

puts are integrated into the decision-making process of care providers—the ultimate

users of the system. There is a notable absence of research exploring the presentation

of these results in an interpretable and user-friendly format. My research explores the

usage of Generative AI capabilities to translate logs and raw ML results into human-

understandable notes. This approach aims to support care providers by delivering

clear, objective reports that complement self-reported data, rather than replacing it.

By automatically generating concise yet comprehensive summaries, the system can

help reduce the cognitive burden on care providers, minimizing the need to manually

gather and reconcile information from various sources while still acknowledging the

value of patient-reported insights.

In summary, this research not only seeks to enhance anomaly detection by incor-

porating temporal and inter-activity features through advanced ML-based methods,

but it also aims to bridge the gap between complex ML outputs and practical clinical

decision-making. By integrating Generative AI to produce interpretable summaries,

the proposed solution aspires to offer a holistic approach that is both technically

robust and user-centric.
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Table 2.1: Summary of the related works that apply data-driven methods to detect behavior changes using sensor data

Research ML Method Behavior Features Time Frame Level of Analysis Target Subjects Anomaly Type Data Type

U
n
s
u
p
e
r
v
is
e
d

[Banaee

et al.,

2020]

Temporal Associ-

ation Rule Min-

ing

Temporal features (Duration, Freq. per day, Freq. per time of

day)

Short-term Inter-activity Dementia patients Collective anomaly,

Point anomaly

Activity log

[Suryadevara

et al.,

2012]

Sequential Pat-

tern Mining

Usage of household appliances and furniture Short-term Intra-activity Older adults N.A.(Predicts the

next sub-sequence of

activities)

Activity log

[Shang

et al.,

2020]

DBSCAN Clus-

tering

Frequency, Occurrence time Short-term Intra-activity. Older adults Point anomaly Activity log

[Yahaya

et al.,

2021]

One-class SVM Start time, Duration, Number of sleep interruptions Long-term Intra-activity Older adults Contextual anomaly Sleep log

[Nazerfard,

2018]

Temporal Associ-

ation Rule Min-

ing and Cluster-

ing

Start time, Duration Short-term Inter-activity Older Adults Collective anomaly Activity log

[Xiao

et al.,

2024]

Loss-guided Mask

Autoencoder

Temporal sensor data and user activity sequences Short-term Intra-activity The public Point and Contextual

anomaly

Multi-sensor time

series

S
e
m

i-
s
u
p
e
r
v
is
e
d

[Zhu

et al.,

2015]

DBN (Dynamic

Bayesian Net-

work)

Wearable motion sensors (body activity, and hand gesture),

location context

Short-term Inter-activity Older adults Point anomaly, collec-

tive anomaly, contex-

tual anomaly

Activity log, Lo-

cation log

[Virone

et al.,

2008]

Statistical Pre-

dictive Algorithm

Room occupancy period, Activity level Short-term Inter-activity The public Point anomaly Movement data

[Forkan

et al.,

2015b]

Hidden Markov

Model and Fuzzy

Rule-based Model

Start time, End time, Type of activity, Location, Vital sign Short-term Inter-activity Older adults Point anomaly, Col-

lective anomaly

Activity log, Lo-

cation log, Vital

sign data

[Zekri

et al.,

2020]

DBSCAN Clus-

tering, Temporal

Similarity Score

Start time, Duration, Location Long-term Inter-activity Older adults Point anomaly Activity log
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[Cardinaux

et al.,

2008]

Gaussian Mixture

Model

Start time, Duration, Weekend or Weekday, Activity level, Fre-

quency

Short-term Intra-activity Older adults Point anomaly Motion detection,

Space and stor-

age utilization,

Appliance use

Research ML Method Behavior Features Time Frame Level of Analysis Target Subjects Anomaly Type Data Type

S
u
p
e
r
v
is
e
d

[Zhao

et al.,

2014]

K-Means and

Markov Chain

Model

Start time and duration of time spent in each room Short-term Intra-activity and

Inter-activity

Older adults living

alone

Point anomaly, Col-

lective anomaly

Spatiotemporal

data

[Arifoglu

and

Bouchachia,

2019b]

Convolutional

Neural Network

The sequence of sensor readings (i.e. sensor firing) Short-term Intra-activity Dementia sufferers Collective anomaly Activity log

[Fahad

and

Tahir,

2021]

H2O autoencoder Duration, Number of subevents for each activity class Short-term Intra-activity Older adults Point anomaly Activity log

[Lotfi

et al.,

2012a]

RNNs Start time, duration Short-term intra-activity Dementia patients Point anomaly Activity log

[Forkan

et al.,

2015a]

MapReduce Apri-

ori and Classifica-

tion

Current and last activity, Room temperature, and Vital signs Short-term Intra-activity Patients Point anomaly Activity log,

Room tempera-

ture log, Vital

sign data

[Alberdi

et al.,

2018]

Classification Duration, Time spent per day per activity, Time out of the

home, Daily sleep duration and frequency, Total number of

activated sensors, Total walking distance per day, Complex-

ity of the daily routine, Number of totals and non-repeated

activities per day, Maximum and minimum inactivity times,

Similarity with the previous day

Short-term Inter-activity AD patients N.A.(Predicts the

multi-modal symp-

toms of AD

Activity log)
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Chapter 3

Proposed Approach

In this chapter, I introduce my proposed approach which integrates three main com-

ponents, Smart Monitoring, Anomaly Detection, and Interpretation that col-

laboratively deliver the system’s anticipated output. As illustrated in Figure 3.1, the

process starts with collecting sensor data from smart homes, which includes extensive

logs that are subsequently analyzed to identify ADLs. A variety of ambient sensors

installed throughout the home, such as sleep sensors, motion sensors, contact sensors,

smart plugs, smart pill boxes, and vital sensors, enable the system to establish a

comprehensive and non-intrusive monitoring solution.

Following data collection and ADL detection, the framework employs data aug-

mentation via a synthetic data generation technique [Akbari et al., 2022]. This aug-

mentation not only enlarges the dataset but also diversifies the range of behavioral

scenarios, simulating variations that may occur in real-world settings. In parallel,

domain-specific anomalies that are identified based on established knowledge of dis-

ease symptoms and relevant physiological signals, are deliberately injected into the

dataset. These anomalies serve to both challenge the model during training and

rigorously assess its detection capabilities during evaluation.
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Figure 3.1: The Proposed framework showing the steps in converting raw sensor
data into interpretable outputs for the care providers

Subsequent to data preparation, machine learning algorithms are applied to the

enriched dataset to identify patterns within the ADL sequences. The primary ob-

jective here is to detect deviations from expected behavioral patterns. The system

ultimately outputs an indicator that signals whether the observed behavior diverges

from normative patterns.

The final stage of the framework is the Interpretation component, which is de-

signed to bridge the gap between the opaque inner workings of the machine learning

model and the explicit input-output framework. While the ADL sequences serve as

the known inputs and the deviation indicators represent the observable outputs, the

transformation process that leads from input to output remains largely hidden. The

Interpretation Layer addresses this by extracting and highlighting specific indicators

within the behavior sequence that can account for the detected deviation. For in-

stance, an abrupt change in sleep duration or an unexpected shift in meal timings

might serve as critical explanatory markers.

To accomplish this, large language models are employed to analyze historical
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ADL data alongside the output from the Behavior Change Detection (BCD) module.

This analysis culminates in a comprehensive descriptive summary that contextualizes

the behavioral anomalies. By elucidating the underlying indicators, the summary

provides healthcare professionals and caregivers with clear, evidence-based insights,

thereby enhancing their ability to make informed decisions. The workflow of the

proposed solution is depicted in Figure 3.2, which will be further discussed in the

following sections.

3.1 Modeling and Detecting Changes in ADL

In this section, I introduce two models that I developed to detect behavior changes; an

IRL-based Behavior Change Detection(BCD) model and a Transformer-based BCD

model. Before introducing the two models, I need to model human indoor behavior

for relatively unconstrained environments. This behavior representation will then be

utilized in both proposed models as input.

3.1.1 Behavior Representation

Considering behavior as a sequence of discrete tokens (sleeping, eating, watching TV,

preparing meals, etc.), two important quantities emerge: i) content: activities that

constitute a behavior; and ii) order: the temporal arrangement of the constituent ac-

tivities. The idea of tokenizing behavior in this work is similar to the way researchers

in Natural Language Processing (NLP) have looked at documents as vectors of their

constituent words (see Vector Space Model, VSM [Salton et al., 1975]). Approaches

such as VSM capture the content of a sequence in an efficient way. However, they

completely ignore its order. Behavior is not fully defined by its activity content alone;

rather, by its natural activity orderings. Therefore, a model to capture activity order
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Figure 3.2: The Workflow of the Proposed Solution
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in an explicit manner is needed. For this purpose, I consider a sliding window of size

W over a behavior sequence to take into account all possible sequences of length T .

I consider the start time of ADL as the baseline for the order of tokens in sequences.

Therefore, in the case of interleaved ADL, ADL will be put in the sequence according

to their start time.

In order to feed the behavior sequence into the Behavior Change Detection (BCD)

module, it needs to have a fixed length. However, behavior sequences can be of

any length as people perform a different number of ADL each day. To tackle this

issue, I define a sliding window (with a shift delta of 1) that allows for sliding over

the dynamic-length sequences and capturing ADL dependencies. In this approach,

although the length of sequences is fixed to a predefined value (sliding window length),

truncating the sequences does not harm the process of capturing ADL dependencies as

the dependency between the token at the truncating point and its pre- or post-tokens

will be observed in the previous or next sequences, respectively when the window

slides over the original sequence. The sliding window size is a parameter of the model

that needs to be determined depending on the contextual features of analysis that

the generated data will be used for. For example, if data are to be used for learning

short patterns, it makes sense to have a small sliding window.

To determine an appropriate value for T , I need to find a small-enough num-

ber that, while it limits model complexity, is suitable for covering a representative

sequence of the individual’s patterns of behavior. In this research, I model human

behavior B as an ordered sequence of events:

B = e1, e2, ..., ei, ..., eW (3.1.1)

where ei refers to an event. I define event ei as a tuple that consists of the activity
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type ai, duration di, and period-of-day pi:

ei = (ai, di, pi);where ai ∈ {activity types} and

di ∈ {activity duration range} and

pi ∈ {period of day range}

(3.1.2)

An example event is (Sleeping, Long, Night).

Then, I reshape B to a flat tensor B′ in order to feed it into the algorithm:

B′ = y1, y2, ..., yk, ..., yT ;

where yk = ai if k rem 3 = 0 and

yk = di if k rem 3 = 1 and

yk = pi if k rem 3 = 2

s.t. i = bk + 2

3
c

(3.1.3)

where T is the window size and equals 3×W . It is worth mentioning that activity

type and period-of-day are categorical data that need to be encoded in integers so they

can be fed into the BCD module. For activity duration, I also discretize the values

so the model deals with categorical values. This is helpful to simplify the model by

decreasing the state space. As the range of duration in different activity types varies,

I first normalize the duration for each activity type, separately. Then, an equal-width

discretization method is applied to turn the duration values into categorized values

(e.g., extra short, short, medium, long, extra long).
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3.1.2 Behavior Change Detection Models

In this section, I discuss the two proposed models for detecting behavior changes. The

IRL-based model employs a semi-supervised approach, while the Transformer-based

classifier model utilizes a supervised approach.

A: IRL-based BCD Model

In this section, I present my proposed approach for detecting behavior change using

Inverse Reinforcement Learning [Ng et al., 2000]. I input recent ADLs into the model

to understand the behavior patterns and intentions. I developed a model to detect

ADL behavior changes using IRL.

As shown in Figure 3.3, the proposed method works in three layers: input, process,

and output. Sensor data logged over 2-3 months (baseline period) are processed in the

offline IRL module to learn the weights of the feature vector and the reward function

R(s, a). Then, the online IRL module receives the real-time behavior sequence of the

resident and calculates its associated reward. Finally, the fusion center compares the

calculated reward with a predefined threshold, which represents the average reward

for normal sequences, to determine the normality of the real-time behavior.

Problem Formulation I represent the Behavior Change Detection problem as a

Markov Decision Process. I define the MDP elements as follows:

• State st ∈ STATES: a sliding window of size W that represents a se-

quence of the W latest ADL events that the individual has performed at time

t: et−W , ..., et;

• Action a ∈ Actions: the next ADL event et+1;

• Transition T (st, a): after taking action a in state st, the agent transitions to
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Figure 3.3: The IRL-based Behavior Change Detection Model

state s′ that equals et−W+1, ..., et, et+1, which slides the behavior window one

token forward.

I propose an IRL algorithm that estimates the reward function R(s, a) from obser-

vations. In this model, observations are the ADL trajectories that the individual

performs. I use a discount factor to consider the expected future rewards in the

long-term reward calculation.

I hypothesize that learning the reward function will enable us to understand un-

usual ADL sequences. The threshold-based fusion center evaluates the real-time re-

ward and determines the normality of the behavior by comparing the associated

reward of the real-time behavior sequence with a predefined threshold Rth. In the

following blocks, the offline IRL module as well as the online IRL and fusion module

are presented.

In algorithm 1, the action space and the observation space are defined based on the

number of activity classes (an activity class is a combination of ADL type, timing and

duration) and the number of previous activities, respectively. The reward network R
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Algorithm 1: Offline IRL

Require: Expert demonstrations τe = (s1, a1, s2, a2, ...) , ADL window size W ,
Episode length epl, Hidden size hiddens, Learning rate lr, Number of epochs
numepochs

Ensure: Reward function R
1: Define the reward network R using a neural network with input size W , hidden

size hiddens, and output size equal to the number of activity classes
2: Define the optimizer (Adam) and the loss function (CrossEntropy) for the

reward network
3: Define a custom Gym environment based on the MDP with parameters

(S,A, T,R, γ) , where S is the state space, A is the action space, T is the
transition function, and γ is the discount factor.

4: Train the reward network R using the state-action pairs in τe and the optimizer
and loss function for a specified number of epochs

5: return R

is defined using a neural network with input size W , hidden size hiddens, and output

size equal to the number of activity classes. The optimizer and the loss function

are also defined. The episode length is defined as epl. The log data is converted to

state-action pairs, and the reward network R is trained using these pairs and the

optimizer and loss function for a specified number of training epochs. The trained

reward function R is returned as the output of the algorithm.

Algorithm 2: Online IRL and Fusion Module

Data: Real-time ADL Sequence Inputseq, Reward threshold Rth, Reward
function R

Result: 0 (No Potential Behavior Change is Detected), 1 (Potential
Behavior Change is Detected)

1 Pass the Inputseq to the reward network and get R(Inputseq);
2 if R[actual action] ≤ Rth then
3 return 1;

4 else
5 return 0;

Algorithm 5 includes an online IRL module that receives a trained reward function
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R, as well as a real-time sequence of ADL and a predefined threshold Rth to determine

the normality of the behavior sequence. The reward function outputs a reward value

for each activity class. In the fusion center, the reward value of the current activity is

compared to Rth to determine whether the activity conforms to the typical behavior

pattern.

B: Transformer-based BCD Model

In this section, I introduce a model that leverages BERT Language models [Devlin

et al., 2019] to process ADL sequences, comparable to text corpus.

As illustrated in Figure 3.4, The ADL sequences are fed into the BERT model,

which tokenizes them into constituent tokens. After that, tokenized input is embed-

ded. When transforming tokens into tensors of numbers in the embedding layer, the

position, context, and token are all taken into account. As a result, a brief nap in the

middle of the day is coded differently than a short nap at night, because the position

of the token is taken into account when embedding.

The embedded sequences pass through the encoding layer with attention heads

to encode the entire sequence in the next layer. I use the BERT-Base-uncased archi-

tecture for my implementations, which has 12 attention heads. Finally, a standard

classifier, such as a logistic regression classifier, receives the encoded sequence and

produces the sequence label, which specifies whether the ADL sequence is a potential

anomaly or not.

A major benefit of using BERT models in sequence analysis is their ability to

leverage transfer learning. BERT models are initially pre-trained on a large, general-

domain text corpus. Afterward, this pre-trained model can be fine-tuned on domain-

specific data to perform specialized tasks effectively. Existing research suggests that

transfer learning is effective in BERT models. However, a recent study questions the

effectiveness of transfer learning when it comes to using pre-trained BERT models for

42

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Ph.D. Thesis – F. Akbari; McMaster University – DeGroote School of Business

Figure 3.4: The Architecture of the BERT Model for Behavior Change Detection

domains with a high percentage of exclusive vocabulary such as biomedical domain

[Gu et al., 2021].

Transfer learning, on the other hand, can be useful for training the BERT model

using datasets obtained from multiple residents’ ADLs and then fine-tuning the BERT

for a specific resident in hand in a shorter amount of time. As a result, for a new

resident, the BERT model does not need to be trained from scratch. This feature of

the model considerably improves the model’s generalizability. I will run the model

in two different settings and compare the outcomes, keeping these two characteristics

of transfer learning in mind: (1) training the BERT from scratch and fine-tuning on

each resident’s data. (2) using the pre-trained BERT models and fine-tuning on each

resident’s ADL sequence data.
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3.2 Synthetic Data Generation

Access to datasets detailing individuals’ daily behaviors can greatly support a wide

range of research, particularly in applying machine learning techniques to predict and

identify anomalous behaviors[Li et al., 2020, Suryadevara et al., 2013a, Arifoglu and

Bouchachia, 2019c, Kristiansen et al., 2021, Riboni et al., 2015b, Lotfi et al., 2012b,

Moutacalli et al., 2015], predicting health conditions [Fritz et al., 2022] or predict-

ing clinical health scores [Cook and Schmitter-Edgecombe, 2021]; and development

of reminder and recommender systems in healthcare support and the supervision of

long-term behavior [Han et al., 2012, Zhao et al., 2021, Chaminda et al., 2012]. Fur-

thermore, the efficiency and effectiveness of deep learning methods depend on the

quality and quantity of training data. Due to the following reasons, existing datasets

of real data do not meet the requirements of research in this area: i) Data scale:

machine learning model training often demands extensive datasets; ii) Data privay:

health monitoring raises privacy issues for individuals whose activities are tracked

[Jourdan et al., 2020]; and iii) Labeled data: supervised learning requires labeled

datasets, but the process of labeling is labor-intensive and time-consuming.

That being said, synthetic data generation methods have been considered exten-

sively for simulation studies. Generating synthetic datasets is widely used in different

domains of study such as computer vision and natural language processing to address

the issue of data scarcity. Apart from model-based data generators and simulators

[Synnott et al., 2015, Ma and Sartipi, 2015], Generative Adversarial Networks (GANs)

have gained significant attention in recent years for their ability to generate realistic

images, text, electronic health records (EHRs), and even music using limited real-

world data [Radford et al., 2015, Ledig et al., 2017, Yang et al., 2017, Yu et al., 2017,

Baowaly et al., 2019]. However, GANs have rarely been used for generating realistic

data related to human behavior. Such a dataset could be very beneficial for health
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monitoring, given the sensitivity of this type of data.

Identical Sample Generation Issue

Generative adversarial networks (GANs) can be difficult to train when it comes to

generating sequences consisting of tokens from a limited token space. The issue lies

in the fact that the GAN model is trained to generate samples similar to the real

data. Thus it is probable that the model will repeat itself and generate records that

are identical to the real data. An intuition behind why identical sample generation

issue occurs is that the discriminator’s output is the only information that is provided

to the generator. Therefore, if the discriminator identifies that a generated sample is

very similar to the real data, it passes high rewards to the generator and the generator

continues to generate from that pattern repeatedly. This issue becomes more severe

when it comes to generating data from a limited token space, including behavior

sequence generation. In behavior sequences, token space is limited to the activities

that an individual can realistically do, which is likely to have less variety than would

be seen, for example, in language space or image space.

To address this issue, I introduce a combined reward method that incorporates

the BLEU score in the reinforcement mechanism. According to SeqGAN, RGθ
Dφ

is an

action-value function of a sequence, that calculates the expected accumulative reward

starting from state s, taking action a, and following policy Gθ. The discriminator’s

reward is calculated both for complete and partial sequences as follows:

RGθ
Dφ

(a = yt, s = B′1:t−1) =
1
N

∑N
n=1Dφ(B′1:t

n), B′1:t
n ∈MCGβ(B′1:t;N) for t < T

Dφ(B′1:t) for t = T

(3.2.1)
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where Dφ(B′1:T ) is the discriminator’s output for a complete sequence (when t = T ),

B′1:T , indicates the probability that the sequence is from real sequence data or not.

For partial sequences (when t < T ), N samples of complete sequences (B′1:t
n) that

are sequels to the partial sequence will be selected from Monte Carlo tree to be used

for estimating the ultimate reward associated with a partial sequence Dφ(B′1:t
n). As

shown in the above formula, the discriminator reward is calculated after the generation

of each token (activity a = yt) with a current state of s.

Since I want to guide the generator in a direction that avoids generating com-

pletely identical sequences as the real data and moreover generates a diverse variety

of sequences, I need to evaluate it in terms of diversity. The BLEU score gives us a

sense of how similar the generated sequence is to the reference set (the real data).

Then, I can conclude that samples with a very high BLEU score are likely to trap

the model into the issue of identical sample generation. Therefore, I define a new

action-value function based on the BLEU score as:

RGθ
b (a = yt, s = B′1:t−1) =

1
N

∑N
n=1Rb(B

′
1:t
n), B′1:t

n ∈MCGβ(B′1:t;N) for t < T

Rb(B
′
1:t) for t = T

(3.2.2)

where Rb(B
′
1:T ) is the BLEU score associated with a complete sequence B′1:T which

indicates the similarity of B′1:T to the reference data. Now that the model has a sense

of the diversity of the generated sample, I define a combined reward that is a function
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of both R and Rb:

Rcomb = f(R,Rb) =
max(R)−R if Rb > Threshold

R otherwise

(3.2.3)

where max(R) equals max(RGθ
Dφ

(a = yt, s = B′1:t−1) : yt ∈ γ) that is the maximum

discriminator reward calculated for N generated sequences in every rollout. γ is the

vocabulary of candidate tokens. R and Rb also refer to the discriminator’s reward

and the BLEU reward defined respectively in equations C.0.1 and C.0.2. An overall

picture describing the adversarial learning mechanism in my proposed solution is

presented in Figure 3.5.

BLEU Score Calculation Computational Cost Issue

As specified by Papineni Papineni et al. [2002], the BLEU score is a modified n-

gram measure of the precision of a hypothesis, given a set of references R. ’Modified

precision’ is the maximum number of occurrences for each n-gram of a hypothesis in

the reference set, with an upper bound of the number of occurrences for that n-gram

in the hypothesis. The geometric mean is calculated over the precisions for all values

of n and multiplied by a brevity penalty, which is 1.0 if the hypothesis sentence is of

the same or smaller length than the reference sequence and less than 1.0 otherwise.

Thus, a BLEU score of 1.0 means that for all n-grams in the hypothesis, there is at

least one sequence in the reference set in which the number of n-gram occurrences

is equal to or greater than that of the hypothesis sequence. Its length is also less

than or equal to the length of the hypothesis sequence. Assuming that the length
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Figure 3.5: Overall architecture of BehavGAN describing the proposed adversarial
learning mechanism. The generator network starts generating batches of sequences
from a normal distribution. Then, generated sequences with the label ”fake” along
with real sequences with the label ”real” are fed into the discriminator network to

distinguish real data from fake data. The Discriminator network keeps training
based on Cross-Entropy loss. A reward for the generated sequences will be
calculated using the BLEU score based on Equation C.0.3. This reward is

backpropagated to the generator to guide its learning by reinforcing quality yet
diverse sequences.
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of generated sequences is fixed to be equal to the length of the reference sequences,

brevity penalty would be 1. Usually, n is set to 4 and I denote this metric as BLEU-4

which can measure the similarity between sequences by counting unigrams, bigrams,

trigrams and 4-grams. The larger the value of n, the smaller is the BLEU score. In

this paper, I apply BLEU-4 as a similarity metric to be calculated in every training

loop of the generator.

As demonstrated in Algorithm 3, presented in Appendix C, in every training epoch

my algorithm, BehavGAN, calculates the BLEU score for a batch of generated sam-

ples. In other words, in each epoch k, the generator generates a sequence which will

then be used to calculate the BLEU scores associated with the complete sequence and

all the possible partial sequences. The method estimates the BLEU score for partial

sequences by applying the rollout mechanism. As explained above, in the rollout

mechanism a sample of size N is picked to estimate the BLEU score. Considering

the fact that the BLEU score calculation is time-consuming, I need to resolve this

issue as this calculation will be performed N × T ×K times; where N is the rollout

number, T is the sequence length and K is the number of epochs.

Therefore, each time I compute the BLEU score for a hypothesis sequence, I com-

pare its n-grams with those of the reference sequences. Since the reference sequences

are not changing, I can count the n-grams in the reference sequences only once and

utilize that number each time I need to calculate the BLEU score for a new hypothe-

sis, instead of counting the n-grams for every candidate calculation. To optimize the

BLEU score calculation I use a hash table data structure. In my implementation, I

use the python dictionary data structure where the key is the ”n-gram” and its asso-

ciated value is the maximum number of occurrences of the corresponding n-gram in a

reference sequence. This way, a huge number of calculations are pre-calculated once

and the resulting constant values are easily accessible. This implementation makes

my algorithm capable of providing feedback based on the BLEU metric in a timely
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manner.

3.3 LLM-Based Note Generation

The integration of artificial intelligence (AI) into healthcare has catalyzed transfor-

mative advancements in patient monitoring and care delivery. Among these, LLMs

have emerged as a promising tool for generating human-readable patient notes from

sensor-derived data, particularly in the context of ADL monitoring. Smart sensors

embedded in the living environment capture continuous streams of data on activities

such as eating, sleeping, and mobility patterns, enabling healthcare providers to better

understand patients’ daily routines and detect potential health issues. Through data

analysis, LLMs can convert intricate activity logs into clear, meaningful narratives,

identifying anomalies and providing possible explanations to support timely inter-

ventions. For instance, an unusual rise in nighttime bathroom visits could indicate a

potential urinary tract infection (UTI), enabling early medical evaluation.

However, while LLMs hold significant potential for enhancing care efficiency and

accuracy, their deployment in healthcare also introduces critical risks. These models,

which rely on probabilistic text generation, can produce misleading or incorrect infor-

mation, posing challenges to clinical decision-making. Errors such as hallucinations,

misinterpretations, or overgeneralizations may lead to misdiagnoses, unnecessary in-

terventions, or delayed responses. Furthermore, ethical concerns including bias in

training data, lack of explainability, and potential breaches of privacy, underscore the

need for cautious and responsible integration of LLMs into healthcare workflows.

The application of LLMs to ADL monitoring represents a novel approach with

dual benefits and challenges. On the one hand, they can bridge the gap between

raw sensor data and actionable healthcare insights, offering personalized and proac-

tive care for populations such as older adults or individuals with chronic conditions.
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On the other hand, their deployment necessitates robust risk mitigation strategies,

including human-in-the-loop oversight to ensure that clinical expertise remains cen-

tral to decision-making. Over-reliance on AI-generated insights without sufficient

human judgment could unintentionally diminish the role of healthcare professionals,

exacerbating the risks of automation.

This section explores the efficacy and risks of using LLMs in transforming ADL

data into insightful patient notes. Specifically, I investigate the potential of LLMs to

enhance care delivery by identifying and explaining behavioral anomalies, while also

addressing the ethical, regulatory, and practical challenges of their deployment. My

research emphasizes the importance of balancing automation with human judgment

through risk-aware frameworks and transparent evaluation methods.

The main goals of the ’Note Generation’ component are as follows: 1. Trans-

forming ADL logs into insightful notes to generate patient notes from ADL logs

collected via smart sensors, providing insights into daily routines and potential health

issues. 2. Investigating risk mitigation strategies, including human-in-the-loop

approaches, to ensure the reliability and accountability of AI-generated notes in clini-

cal decision-making. 3. Proposing effective methods for transforming activity log

data into prompts for LLMs, leveraging techniques such as Few-shot Prompting and

Chain of Thought to improve output quality. 4. Evaluating the logical inferences

of LLMs, assessing their alignment with actual behavioral anomalies associated with

various medical conditions.

In this section, I aim to demonstrate the dual potential and risks of deploying

LLMs in healthcare. I advocate for a responsible, risk-aware approach to harnessing

the capabilities of generative AI while ensuring accuracy, accountability, and eth-

ical compliance in patient care. Ultimately, my findings contribute to advancing

personalized healthcare for vulnerable populations, enabling timely interventions and

improved outcomes through a synergistic partnership between AI systems and human
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expertise.

3.3.1 Background

This subsection provides an overview of fine-tuning approaches for large language

models. By fostering a comprehensive comprehension of these concepts, the recogni-

tion of the technical and theoretical underpinnings of my proposed approach and its

potential applications in the realm of smart home care can be enhanced.

Fine-tuning of LLMs

Language models have made significant advancements in NLP tasks, thanks to the

emergence of large-scale language models (LLMs) like GPT-3.5. These models are

pretrained on vast amounts of text data and capture extensive linguistic knowledge.

However, to adapt LLMs to specific tasks or domains, a process called fine-tuning is

necessary.

While pretrained LLMs possess a wealth of general language knowledge, they lack

task-specific understanding. Fine-tuning is essential to bridge this gap. By fine-

tuning, the pre-trained knowledge can be leveraged and adapted to specific tasks,

allowing the model to excel in specialized areas. Fine-tuning is a key component of

transfer learning. By starting with a pre-trained model and fine-tuning it on a

specific task, you can accelerate the training process and leverage the model’s general

language understanding for the new task. Fine-tuning is beneficial when labeled

data for the specific task is limited. By utilizing a pre-trained model’s knowledge,

fine-tuning can effectively adapt it to the task using a smaller dataset. Fine-tuning

on top of a pre-trained model is often more efficient than training from scratch. It

saves computational resources and time by skipping the initial training stages and

converging faster to a solution.
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Fine-tuning is the process of training a pretrained LLM on task-specific or domain-

specific data to make it more effective for a particular task. During fine-tuning, the

model learns to generalize from the task-specific data while retaining the valuable

linguistic knowledge it acquired during pretraining. Fine-tuning helps improve per-

formance, especially when labeled training data for the target task is limited.

There are three primary approaches to fine-tuning LLMs: self-supervised, su-

pervised, and reinforcement learning from human feedback (RLHF) [Ouyang et al.,

2022].

• Self-Supervised Fine-Tuning [Kalyan et al., 2021] involves training the LLM

on a large corpus of unlabeled data for a related auxiliary task. The model

learns to predict missing/next words in the input text, effectively creating its

own supervision. This self-supervised pretraining provides a strong initialization

for fine-tuning, allowing the model to capture general language understanding.

• Supervised Fine-Tuning [Devlin et al., 2019] is the most common approach,

where the LLM is trained on a labeled dataset specific to the task at hand.

The labeled data contains input-output pairs, allowing the model to learn the

task-specific mapping. During supervised fine-tuning, the model updates its

parameters based on the labeled examples, adapting its knowledge to the specific

task requirements.

• Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al.,

2022] involves training the LLM using reinforcement learning techniques, where

human-generated feedback serves as rewards or reinforcement signals. RLHF

aligns model outputs with human preferences through feedback mechanisms.

This approach is particularly useful in scenarios where obtaining a large labeled

dataset is challenging. The model interacts with a human in a dialogue-style
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setting or receives rewards based on its generated outputs, gradually improving

its performance through reinforcement learning.

Each approach has its advantages and considerations. Self-supervised fine-tuning

benefits from large amounts of unlabeled data, supervised fine-tuning is effective when

labeled data is available, and RLHF is suitable for scenarios where direct supervision

is not readily accessible. While fine-tuning offers numerous benefits, it is important

to be aware of potential pitfalls. Using a small dataset or excessive epochs can

lead to overfitting, where the model performs well on the training data but fails

to generalize to new data. Insufficient training or an excessively low learning rate

can lead to underfitting, a situation where the model does not effectively capture

the underlying patterns of the task. Fine-tuning poses the risk of catastrophic

forgetting, where the model loses its broad knowledge acquired during pretraining.

This can hinder its performance across various natural language processing tasks.

By understanding these potential pitfalls and employing appropriate strategies,

fine-tuning can be effectively utilized to adapt LLMs to specific tasks, domains, and

evolving requirements, maximizing their performance and applicability in various

NLP scenarios. By fine-tuning, the gap between general language knowledge and task-

specific understanding will be closed. The approaches of self-supervised, supervised,

and RLHF provide flexibility in adapting LLMs depending on the availability of data

and the nature of the task.

3.3.2 Descriptive Note Generation

In the realm of healthcare, understanding the comprehensive well-being of individ-

uals is crucial for providing effective and personalized care. Traditional methods of

gathering information, such as in-person assessments or manual data collection, can

be time-consuming and resource-intensive. However, recent advancements in NLP
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and machine learning have introduced a transformative approach: Language Mod-

els (LMs) and, more specifically, LLMs. These powerful models have the potential

to revolutionize the way healthcare providers obtain insights into the situation of

individuals by leveraging data from sensor-monitored activities of daily living.

NLP, the branch of artificial intelligence concerned with the interaction between

computers and human language, plays a pivotal role in bridging the gap between

technical machine learning models and non- technical healthcare providers. By har-

nessing the capabilities of NLP, LLMs can effectively communicate complex machine

learning concepts and outputs to healthcare professionals in a language they under-

stand. This empowers healthcare providers to harness the potential of LLMs without

requiring an in-depth understanding of the underlying technicalities. One promising

application of LLMs in healthcare is the generation of comprehensive and human-

understandable notes summarizing an individual’s behavior patterns based on data

collected from sensors monitoring their activities of daily living. ADLs encompass

routine activities such as eating, sleeping, mobility, and personal hygiene. By us-

ing sensors strategically placed within an individual’s living environment, it becomes

possible to capture valuable data that can shed light on their overall well-being and

daily patterns. However, deriving actionable insights from this wealth of sensor data

can be challenging without the aid of advanced analytical tools.

This is where LLMs come into play. By training these models on vast amounts of

data, they acquire the ability to understand and analyze patterns within the sensor-

monitored ADL data. Furthermore, prompt engineering techniques, such as few-shot

prompt engineering, provide an avenue for fine-tuning LLMs and their foundation

models using domain-specific data. This process involves providing targeted instruc-

tions or examples to the model during training, enabling it to generate comprehensive

notes that precisely capture the nuances of an individual’s behavior patterns based

on the sensor data. These notes can highlight potential abnormalities, symptoms,
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and underlying reasons behind the observed behavior patterns.

The integration of LLMs and ML-based anomaly detection models can be particu-

larly powerful. While the core ML model detects potential behavior changes through

a sequence of ADLs, the LLM model, which is already trained and fine-tuned on

domain- and patient-specific data, can generate a comprehensive note on the poten-

tial abnormality, pointing to possible patterns, symptoms, and reasons behind the

abnormality. This complementary approach provides a holistic understanding of an

individual’s situation, aiding healthcare providers in monitoring and addressing their

well-being effectively. LLMs can be tailored for generating comprehensive notes about

the individual’s behavior from sequences of ADLs by leveraging prompt engineering

techniques and domain-specific training data. Here is an explanation of the process:

• Data Collection: first, data are collected from sensors that monitor the individ-

ual’s ADLs. These sensors can capture information on various activities, such as

eating, sleeping, mobility, personal hygiene, etc. Sensor data is first processed

for ADL recognition, producing a sequence of activities that is then fed into the

LLM.

• Training the LLM: the pre-trained LLM is further trained using a large corpus

of text, which includes domain-specific data related to the individual’s behavior

patterns and ADLs. This training enables the LLM to learn the statistical pat-

terns, language structures, and domain-specific knowledge necessary to generate

meaningful and relevant notes.

• Fine-tuning with Prompt Engineering: to tailor the LLM for generating notes

about the individual’s behavior, prompt engineering techniques are employed.

Prompt engineering involves providing targeted instructions or examples, known

as prompts, to the LLM during the fine-tuning process. These prompts guide

the model to generate notes specifically focused on summarizing the individual’s
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behavior patterns based on the ADL sequences. Prompt engineering is a low-

cost yet effective approach because it lets you “steer” a pre-trained model toward

a new task or domain without the need for retraining or modifying the model’s

internal weights. By simply crafting or refining the input prompt, you can guide

the model’s behavior without updating any of its millions (or billions) of pa-

rameters. This means you can deploy your solution immediately without the

heavy computational costs associated with full model fine-tuning. Pretrained

LLMs already contain a vast amount of general language and domain-agnostic

knowledge. Prompt engineering taps into that existing reservoir, coaxing the

model to apply what it knows to a specific problem by framing the input cor-

rectly. Since you’re not performing any additional training, you don’t need large

labeled datasets or specialized hardware (like GPUs) to modify the model. This

makes prompt engineering especially attractive for rapid prototyping or use in

resource-constrained settings.

• Domain-Specific Training Data: to enhance the LLM’s understanding of the

individual’s behavior, domain-specific training data is incorporated. These data

can include human-generated notes or summaries of disease symptoms. The

LLM is fine-tuned using these labeled data to capture the specific reasons behind

the changes in the behavior pattern.

• Generating Notes: once the LLM is trained and fine-tuned, it can generate

human-understandable notes based on the input sequences of ADLs. The LLM

analyzes the patterns in the ADL data and generates coherent and comprehen-

sive notes that highlight potential abnormalities, symptoms, and the underly-

ing reasons behind observed behavior patterns. These notes can aid healthcare

providers in monitoring the individual’s well-being, identifying issues, and pro-

viding personalized care recommendations.
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The potential benefits of leveraging LLMs for generating human-understandable notes

from ADL sensor data are numerous. Healthcare providers can gain valuable insights

into the individual’s sleep patterns, mobility, diet, and overall daily routine, enabling

them to identify potential issues, monitor changes in health status, and provide per-

sonalized care recommendations. Furthermore, the automated generation of compre-

hensive notes alleviates the burden on healthcare professionals, freeing up their time

to focus on critical decision-making and direct patient interaction. In conclusion,

the integration of LLMs, NLP, and sensor-monitored ADL data presents an excit-

ing opportunity to enhance the understanding of an individual’s behavior patterns

for healthcare providers. By combining the power of NLP to communicate machine

learning results and the capabilities of LLMs to analyze ADL data, these models

can generate detailed, human-understandable notes, enabling healthcare providers

to deliver more personalized and effective care. With the aid of prompt engineer-

ing techniques, LLMs can be fine-tuned to exhibit domain-specific expertise, further

amplifying their value in the healthcare domain.

My proposed approach combines a behavior change detection module with fine-

tuned LLMs to generate descriptive notes highlighting abnormal occurrences within

the activity log data. To provide meaningful insights and contextual information

about the detected behavior changes, I employ LLMs for generating descriptive notes.

Figure 3.6 illustrates my proposed architecture for training an LLM for note genera-

tion.

The LLMs can be fine-tuned on the activity log data, which enables them to learn

domain-specific language patterns and characteristics. Fine-tuning can involve self-

supervised training of LLMs on a large corpus of activity log data (Figure 3.6a),

supervised tuning by further training of LLMs on a labeled Question-Answer (e.g.,

Prompt-Note) dataset (Figure 3.6b), or utilizing techniques such as prompt engi-

neering and few-shot learning to enhance their performance in our specific scenario
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(a) A: Self-supervised Tuning

(b) B: Supervised Tuning

(c) C: Prompt Engineering

Figure 3.6: The Proposed Architecture for Note Generation
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(Figure 3.6c).

I incorporate prompt engineering techniques, carefully designing informative and

context-rich prompts to guide the LLMs in generating notes specifically tailored to

behavior change occurrences in the activity log data. Given the behavior change

detection module’s output, I pass the abnormal days’ activity logs to the fine-tuned

LLMs. The LLMs utilize the learned knowledge from the fine-tuning process and the

context provided by the prompts to generate descriptive notes. These notes highlight

the specific locations or instances within the activity logs where behavior change is

detected, aiding in the interpretation and understanding of the abnormality patterns.

My proposed approach combines the strengths of behavior change detection mod-

ules with fine-tuned LLMs to provide descriptive notes that pinpoint abnormal oc-

currences in activity log data. By leveraging prompt engineering, the LLMs’ ability

to generate contextually relevant and informative notes is enhanced. This approach

contributes to a comprehensive understanding of abnormal behavior, enabling do-

main experts to take appropriate actions based on the generated notes and improve

anomaly detection and monitoring systems.

3.3.3 Human-in-the-Loop AI Systems

The integration of LLMs into patient monitoring and note generation presents sig-

nificant opportunities but also introduces risks related to reliability, bias, and ethical

concerns. A human-in-the-loop approach, which incorporates human oversight into

AI-driven processes, is essential for ensuring the safe and effective deployment of

generative AI in healthcare. By leveraging Human-AI collaboration and interaction

dynamics, as shown in Figure 3.7 , HITL frameworks can enhance model account-

ability, improve accuracy, and mitigate potential harms.
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Figure 3.7: The Interaction of AI and Human to Mitigate Risks of Leveraging AI in
Healthcare

Ensuring Clinical Oversight and Decision Support

Generative AI models are highly capable of synthesizing large volumes of patient

data, but they lack the contextual awareness and clinical reasoning skills that human

healthcare professionals possess. A HITL approach ensures that AI-generated patient

notes and anomaly detections are reviewed, validated, and corrected by clinicians

before they influence medical decisions. This prevents over-reliance on AI outputs,

reducing the risk of misdiagnoses, hallucinations, and misleading insights that could

compromise patient care.

Bias Detection and Continuous Model Refinement

One of the primary risks of LLMs in healthcare is the potential for biased outputs,

particularly if the training data does not adequately represent diverse patient popu-

lations. HITL systems enable continuous feedback loops where healthcare providers

can flag and correct biased or inaccurate AI-generated content. This feedback can be
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incorporated into reinforcement learning from human feedback (RLHF) models, im-

proving future iterations of the system and making them more reliable across different

demographic and medical contexts.(refer to Deepseek RL approach )

Context-Aware Interpretation of Patient Data

AI models may misinterpret activity log data, generating insights that lack clinical

relevance or fail to account for patient-specific factors such as comorbidities, envi-

ronmental influences, or behavioral patterns. Human experts play a crucial role in

contextualizing AI-generated notes by integrating external knowledge and patient his-

tory, ensuring that outputs align with real-world medical conditions. By maintaining

human interpretability, AI-generated insights can be adjusted to better support indi-

vidualized patient care.

Reducing Automation Bias and Promoting Trust

Automation bias, the tendency of users to over-trust AI-generated outputs, can lead

to blind acceptance of incorrect or incomplete information. HITL systems mitigate

this risk by enforcing a verification protocol where human clinicians must approve

or modify AI-generated patient notes before they are used in clinical settings. This

structured oversight not only improves patient safety but also enhances trust in AI-

assisted healthcare, ensuring that the technology is viewed as a decision-support tool

rather than a replacement for human expertise.

Ethical and Legal Accountability

AI-generated patient documentation raises concerns about liability, ethical responsi-

bility, and transparency in medical decision-making. Integrating a HITL mechanism

ensures that critical clinical decisions are ultimately governed by qualified healthcare
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professionals, preserving human oversight and accountability in AI-supported health-

care systems [Shahriari and Shahriari, 2017, Guidance, 2021]. This safeguards against

legal ambiguities and ensures compliance with regulatory frameworks, such as HIPAA

and GDPR, which govern patient data privacy and medical decision-making.

The success of generative AI in patient monitoring and note generation depends

on effective Human-AI collaboration. By maintaining a structured human-in-the-loop

framework, healthcare professionals can maximize the benefits of AI while minimizing

risks related to reliability, bias, and ethical concerns. Future research should focus

on optimizing these collaborative dynamics, ensuring that AI systems are designed

to complement, rather than replace, human expertise in clinical decision-making.
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Chapter 4

Evaluation and Results

In this section, I discuss my evaluation method to show the efficiency of my proposed

framework in detecting and reporting behavior changes. I, first, introduce the datasets

I used. Then, I discuss the evaluation metrics and evaluation process. Finally, I

present the results of my work for each component of the framework separately.

4.1 Datasets

In this section, I introduce three public datasets that I used throughout my experi-

ments.

4.1.1 CASAS-Twor Dataset

To evaluate the proposed Transformer-based model for behavior change detection,

I chose the CASAS-Twor2010 dataset [Cook, 2010] which consists of normal daily

activities that two residents,R1 and R2, performed in the WSU smart apartment

testbed during the 2009-2010 academic year. Some examples from this data set

are shown in Table 4.2. In this dataset, thirteen types of indoor activities were
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included. Bathing, Bed-Toilet-Transition, Eating, Enter-Home, Housekeeping, Leave-

Home, Meal-Preparation, Personal-Hygiene, Sleep, Sleeping-Not-in-Bed, Wandering-

in-Room, Watch-TV, and Work were recorded using motion sensors, door sensors and

temperature sensors. As shown in Table 4.2, start and end times for each activity

were recorded, making it possible to calculate the duration of the activity. Also,

the time ordering of activities was captured. As there is no overlap in the times of

activities performed, I can conclude that concurrent activities were not considered.

The CASAS-Twor2010 dataset has 2,804,813 records which have recorded a total 3744

number of activities comprising 1903 activities for resident A and 1841 activities for

resident.

As the original data is not labeled, in order to use it for training the supervised

change detection model, I inject samples of behavior abnormalities by rearranging

ADLs and manipulating activity duration. For example, while in the original ADL

sequences eating occurs after meal preparation, I reversed the ADLs’ order to inject

partially misordered sequences. I also created some abnormalities by randomly shuf-

fling the ADLs. I intentionally make abnormal records frequent (oversampling) in

order to avoid imbalanced data problems.

4.1.2 CASAS-Aruba

The CASAS-Aruba dataset [Cook, 2010] consists of activities that a woman performed

at home during a period of seven months. A few examples from this dataset are shown

in Table 4.2. In this dataset, eleven types of indoor activities were included. Meal

preparation, Relaxing, Eating, Working, Sleeping, Washing Dishes, Bed to Toilet,

Entering Home, Leaving Home, Housekeeping, and Respiration were recorded using

motion sensors, door sensors, and temperature sensors. As shown in Table 4.2, start

and end times for each activity were recorded, making it possible to calculate the
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Table 4.1: Example data from CASAS-Twor2010 dataset.

Date Time SensorID SensorState Activity

24-8-09 00:15:25 M034 ON R2 Sleep begin
24-8-09 00:15:27 M047 OFF
. . . .
24-8-09 00:16:27 M047 ON R1 Sleep end
24-8-09 00:16:29 M048 ON R1 Wandering in room begin
. . . .
24-8-09 00:23:44 M048 OFF
24-8-09 00:23:52 M048 ON R1 Wandering in room end
24-8-09 00:23:53 M047 ON R1 Sleep begin
24-8-09 00:23:53 M046 ON
. . . .
24-8-09 06:32:46 P001 507 R1 Sleep end
24-8-09 06:32:46 D005 CLOSE R1 Personal Hygiene begin
24-8-09 06:32:47 M038 OFF
. . . .
24-8-09 06:37:48 M040 OFF R1 Personal Hygiene end
24-8-09 06:38:22 P001 579 R1 Bathing begin
24-8-09 06:39:08 T004 20.5
. . . .
24-8-09 06:51:00 M040 OFF
24-8-09 06:51:02 P001 5053 R1 Bathing end
24-8-09 06:51:04 M038 OFF R1 Personal Hygiene begin
. . . .
24-8-09 06:54:37 D005 OPEN R1 Personal Hygiene end
24-8-09 07:07:50 M034 OFF R2 Sleep end
. . . .
24-8-09 07:07:57 M038 ON R2 Personal Hygiene begin
. . . .
24-8-09 07:08:45 M019 ON R1 Meal Preparation end
. . . .
24-8-09 07:08:48 M024 ON R1 Leave Home begin
. . . .
24-8-09 07:08:58 M024 OFF R1 Leave Home end
. . . .
24-8-09 07:10:43 M037 ON R2 Personal Hygiene end
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Table 4.2: Example Data from CASAS-Aruba Dataset.

Date Time SensorID SensorState Activity

2010-11-04 00:03:50 M003 ON Sleeping begin
2010-11-04 00:03:57 M003 OFF
2010-11-04 00:15:08 T002 21.5
. . . . .
. . . . .
. . . . .
2010-11-04 05:40:43 M003 OFF Sleeping end
2010-11-04 05:40:51 M004 ON
2010-11-04 05:40:52 M005 OFF BedToToilet begin
. . . . .
. . . . .
. . . . .
2010-11-04 05:43:30 M004 OFF BedToToilet end

Table 4.3: CASAS-Aruba Dataset Statistics

Number of Records Number of ADL

1,719,558 6,477

duration of the activity. Also, the time ordering of activities was captured. Table 4.5

and Table 4.4 present some overall statistics on the Aruba dataset.

Figure 4.1 illustrates the behavior trend of the Aruba resident for two weeks.

Looking at the plot, it can be seen that there is a clear pattern in the activities

over the course of the month. For example, there are periods where the woman is

predominantly sleeping or eating, followed by periods where she is predominantly

working or engaging in other activities. Additionally, we can see that there is some

variation in the activities from day to day, with some days showing more variety in

activities than others. Figure 4.2, It also demonstrates the behavior trend over two

days, highlighting the similarity in behavior patterns between the two days.
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Table 4.4: ADL Types in CASAS-Aruba Dataset

ADL Type Number of Records

eating 257

enter home 431

housekeeping 33

leave home 431

meal preparation 1606

Bed to Toilet 157

Wash Dishes 65

sleeping 401

work 171

Relax 2910

Resperate 6

Figure 4.1: The Behavior Trend of the Aruba Resident over Two Weeks

68

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Ph.D. Thesis – F. Akbari; McMaster University – DeGroote School of Business

Figure 4.2: The Behavior Trend of the Aruba Resident over Two Days

Table 4.5: Kastaren Dataset Statistics.

Dataset Number of Records Number of Activities
Kastaren 2,120 245

4.1.3 Kastaren

In Kastaren dataset seven different activities are annotated, namely: leave house,

toileting, showering, sleeping, preparing breakfast, preparing dinner and preparing a

beverage. Table 4.5 presents some overall statistics about this dataset.
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4.2 Results

In this section, I introduce the evaluation process and present the results of four main

components of my proposed framework as follows:

• BehavGAN model, which is introduced to create synthetic data.

• BERT-based BCD module

• IRL-based BCD module

• Note generation module

4.2.1 BehavGAN Model

In this section, I discuss my experimentation to generate synthetic dataset based on

a real dataset. I introduce the proposed combined reward evaluation, and discuss the

evaluation process which illustrates the improvement to the quality of generated data

compared to those in baseline methods such as MLE, LeakGAN and SeqGAN.

Table 4.6 presents the specification of the high performance computing platform,

i.e., the Nvidia’s DGX-1 HPC server, that I used for computations in this research

project. To develop a GAN for generating synthetic yet realistic dataset, I chose two

real daily activity datasets as ground-truth data to test the effectiveness of Behav-

GAN. These were: (i) the CASAS-Aruba dataset (4.1.2) [Cook, 2010], which consists

of activities that a woman performed in a home during a period of seven months;

and (ii) Kastaren dataset (4.1.3) [Van Kasteren et al., 2008] consisting of 28 days of

sensor data with annotation of activities.

As discussed in Section 3.2, I first encoded the dataset records and defined a

sliding window of size 10 (BehavGAN), or padded sequences until length 20 is reached

(BehavGAN padded) from which behavior tensors were calculated for the model. I
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Table 4.6: NVIDIA high performance computing platform used in this research.

HPC Server
GPU Architecture NVIDIA Volta
GPU Product NVIDIA Tesla V100
Driver Version 418.126.02
CUDA Version 10.1
GPU Memory 16 GB HBM2
Memory Bandwidth 900 GB/sec
System Memory 251 GiB

Operating System
OS Version Ubuntu 18.04.4

Software
Programming Language Python 3.6.9
Libraries NVIDIA Release 20.01-tf2

chose 10 and 20 for the sequence lengths by analyzing the real data sequences. It

turned out that most days have less than 10 ADLs, which suggests defining the sliding

window size of 10. Also, the maximum length of daily sequences in the real data is 16,

which is why I set the padded sequence length to 20 to allow for generating marginally

longer sequences. These tensors are represented in Algorithm 3 as members of the S

set. The Algorithm then generates negative samples via the generator network and

eventually outputs a final generated dataset. Table 4.7 illustrates the parameters I

set for running the BehavGAN algorithm on CASAS-Aruba and Kastaren datasets.

I ran the model for the two datasets, separately.

I employed the same architecture for both the generator and the discriminator

networks as in the original SeqGAN study. The Tanh activation function is used

in the generator’s LSTM network. The hidden states are then mapped into the

output token distribution via a Softmax output layer. For pre-training, the generator

implements Negative Log-Likelihood Loss (MLE pre-training steps). The generator

seeks to maximize the reward as well as the discriminator’s loss. The discriminator
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network outputs the likelihood that a given sequence is real using a fully connected

Sigmoid layer. Before the final fully connected layer, it adds a highway layer and a

dropout layer (0.75). The discriminator uses Cross Entropy loss. All parameters are

randomly initialized. Both networks use Adam optimizer. For calculating the BLEU

reward (RGθ
b ) I used BLEU-4 as it is usually used for evaluating the similarity of a

hypothesis sequence to a reference set.

I also ran SeqGAN and LeakGAN algorithms [Yu et al., 2017, Guo et al., 2018]

with real data as input. For the sake of comparison I implemented a MLE model

to generate synthetic data, which aims to maximize the log-likelihood of ground-

truth sequences. Simply put, it is trained to predict the next token based on the

ground-truth tokens that have come before it. This method was also used in the pre-

training of SeqGAN and my proposed algorithm, but in this case, I did not use it for

pre-training but for the training process. Figure 4.3 shows the distribution of BLEU-

4 scores for CASAS-Aruba data as well as generated data using MLE, SeqGAN,

LeakGAN, BehavGAN, and BehavGAN padded (BehavGAN with padding). The

purpose of this comparison is to examine if the similarity of the generated data to

real data is comparable to what happens in real data. I want it to resemble what

happens with real-world data. To compare the distribution of synthetic data with

that of real data I calculate BLEU-4 score for each dataset. To calculate BLEU scores

for synthetic datasets, I consider the real data as the reference set while the generated

data with each model is considered as the candidate set. To calculate BLEU scores for

the real data (CASAS), I partitioned the real data into two separate ordered subsets.

The first half goes to the candidate set and the second half goes to the reference set.

By comparing all candidate sequences with the reference set I calculate the similarity

of the first half to the second half.

As shown in Figure 4.3, the generated sequences using SeqGAN, LeakGAN and
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Table 4.7: Run parameters for BehavGAN model

Parameter CASAS-Aruba Kastaren
No of Generated Records 10,000 1,000
BL Threshold 0.85 0.8
Sequence Length 10, 20 10, 20
Pre-training Epochs 50 250
Training Epochs 150 200
Generator’s Learning Rate 0.08 0.03

MLE are very similar to the reference set (CASAS data). The issue with data dis-

tribution of three baseline methods is that Using baseline models, a major amount

of the generated data is too similar to the original data (i.e., Q1, Q2(Median), Q3,

and Maximum are all too similar), reducing the diversity of the generated data. My

method, as compared to MLE, LeakGAN, and SeqGAN, decreases the proportion

of generated sequences that are overly close to the real data (BLEU-4 score near

1). It is important to note that my proposed algorithm can produce sequences that

are comparable to the real dataset (median remains around 0.85) while avoiding the

generation of a large number of identical records (Q3 is in the neighborhood of 0.9).

This feature of BehavGAN makes it a better solution for generating synthetic data.

Furthermore, the results suggest that employing padded sequences in the model has

no considerable impact on the similarity and diversity of generated sequences. Setting

a longer maximum length (20) for generated sequences in BehavGAN padded may

explain why BLEU-4 scores are marginally lower.

Table 4.8 presents comparison metrics in terms of similarity (BLEU-4 score av-

erage and variance) and diversity (identical records proportion) for experiments on

CASAS and Kastaren datasets. In this table, real data is used as the baseline for

comparison. I provide the average BLEU-4 score for the real data, MLE-, LeakGAN-,

SeqGAN-, BehavGAN, and BehavGAN padded-generated data to illustrate that the
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Figure 4.3: Comparison of BLEU-4 Score Distribution for CASAS-Aruba Data with
Synthetic Data Generated with MLE, LeakGAN, SeqGAN, BehavGAN, and

BehavGAN padded (BehavGAN with padding) using box plots. A large portion of
the generated data using baseline models is too similar to the original data (i.e., Q1,
Q2(Median), Q3, and Maximum are all too close), seriously affecting the diversity of
the generated data. In comparison to MLE, LeakGAN, and SeqGAN, my technique
reduces the proportion of generated sequences that are excessively similar to the real
data (BLEU-4 score near 1). An important point to note here is that my proposed
algorithm (with and without padding) can generate sequences that are comparable
to the real dataset (median is still around 0.85) while avoiding the generation of a

significant number of identical records (Q3 is slightly higher than 0.9).
* The circles on the box plots represent outliers.
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proposed algorithm is capable of generating a synthetic dataset with a high similarity

to the real data. For calculating the BLEU score I consider the real data and the

generated data as the reference set and the candidate set, respectively. Moreover,

according to this table my proposed reward method improves the output dataset by

decreasing identical sequences while maintaining an acceptable similarity rate. I ran

each model for five times and report the average value for each reported item. In

order to further analyze the ability of BehavGAN in generating interleaved activities,

I compute the BLEU-4 score to measure the similarity of generated sequences that

include concurrent activities with the reference set. The results (an Average BLEU-4

score of 0.86 with a Variance of 0.08) indicate that generated sequences that include

concurrent activities still have high similarity to the reference data. I also investigate

the diversity of these sequences by calculating the Identical Record Ratio. Only 14

percent of these sequences are identical to the reference sequences.

Table 4.9 shows how the speed of BLEU score calculation is enhanced by imple-

menting a hash table structure. In this table, the run time of my algorithm (for 150

epochs) with and without the enhancement solution is compared. The runtime of the

original SeqGAN algorithm for the same number of epochs and parameters is slightly

lower, i.e. 130 mins, which is not a significant difference considering the fact that my

proposed algorithm outputs higher quality data.

Effectiveness of BehavGAN

In this section, I perform an experiment to evaluate the effectiveness of BehavGAN

in synthesizing behaviour sequences. This experiment is designed to demonstrate the

effectiveness of generated data in machine learning tasks. I describe the task and the

results of training the model using data augmented by synthesized data vs training

the model with real data only.

Bidirectional Encoder Representations for Transformers (BERT) are standard
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Table 4.8: Comparison of similarity and diversity metrics on CASAS-Aruba and
Kataren datasets.

Dataset Algorithm BLEU-4 Identical
Record Ra-
tio

AVG - VAR

CASAS-Aruba
MLE 97.2% - 0.003 14.2%
LeakGAN 94.0% - 0.04 49.8%
SeqGAN 99.4% - 0.00006 47.6%
BehavGAN 89.3% - 0.020 8%
BehavGAN padded 83.6% - 0.011 8.1%
Real data 90.8% - 0.013 6%

Kastaren
MLE 91.2% - 0.0025 17.3%
LeakGAN 95.1% - 0.06 61.2%
SeqGAN 92.9% - 0.033 56.3%
BehavGAN 87.4% - 0.024 12%
BehavGAN padded 82.4% - 0.041 7.6%
Real data 88.5% - 0.027 8.4%

Table 4.9: BLEU score calculation speed

With hash table Without hash table
Run Time (150 Epochs) 145 mins 4,100 mins
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Figure 4.4: Two-Phase training in BERT models using unlabeled and labeled data.

building blocks for training task-specific Natural Language Processing (NLP) mod-

els [Devlin et al., 2018]. When fine-tuned utilizing domain-specific labeled data,

pre-trained BERT models have been shown to be effective, cost-effective, and time-

efficient in addressing downstream tasks [Gu et al., 2021]. This is greatly beneficial

since models are pre-trained using general unlabeled data, where labeling is a costly

and time-consuming task and little labeled data is available. Subsequently, they can

be fine-tuned to a particular supervised task, such as sentiment classification, with a

rather small, labeled dataset as illustrated in Figure 4.4.

The input to a BERT model is text/sequence spans, such as sentences divided by

special tokens [SEP]. Masked Language Modeling (MLM) and Next Sentence Predic-

tion (NSP) are two tasks used to pre-train the BERT model with unlabeled data to

capture the inter-dependencies between words and sentences. BERT can extract sev-

eral contextual and structural features during pre-training if adequate training data

is provided.

Masked Language Modeling (MLM) is the process of masking tokens in a sequence

with an arbitrary probability of 15% - 20% with a masking token, [MASK], and

instructing the model to fill (predict) that mask with an appropriate token. The goal

of the training is to reduce the cross-entropy loss between the original masked tokens
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and the predicted ones as much as possible. This allows the model to focus on the

right (tokens on the right side of the mask) and left (tokens on the left side of the

mask) contexts at the same time. Models may learn textual patterns from unlabeled

data via MLM, which is employed in pre-training tasks. NSP is used to pre-train the

model by having it anticipate the sentence that comes after each one in the training

corpus.

In this section, I demonstrate the effectiveness of BehavGAN, my proposed syn-

thetic behavior sequence generation approach, by presenting the results of a MLM

task that is trained on both original and synthetic data generated by BehavGAN, as

well as synthetic data generated by three baseline methods. For each method, I train

separate masked models with training data, which includes 90% of real data aug-

mented by the generated data with the corresponding method. The trained model is

then evaluated on test data, which is 10% of the real data. Each sequence is treated

as an input to the MLM task. During the training process, 15% of the tokens will

be chosen at random and masked. The model is trained to predict masked tokens

throughout the training process as shown in Figure 4.5. As a result, the model’s low

evaluation loss suggests that it has acquired contextual and structural features of the

data, making it suitable for use as a pre-trained model for tasks including abnormal-

ity detection, next activity prediction, etc. MLM has also been directly used to solve

problems like System Log Anomaly Detection [Lee et al., 2021] and Text Denoising

[Sun and Jiang, 2019].

For this experiment, I used BERT-base-uncased from Hugging Face library with

six attention heads. I run the baseline methods as well as the BehavGAN to generate

10,000 records. Then, I combine synthetic data with 90% of real data. Now, I run

the MLM task with each training set. In the evaluation step, the aforementioned

trained models will be evaluated using the evaluation set (10 percent of the real data

from CASAS). In Figure 4.6, I present the evolution of the masked model during the
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Figure 4.5: An illustration of the Masked Language Modeling task for predicting
MASK tokens in ADL sequences.

training steps. As illustrated in this figure, training loss decreases throughout the

training process. However, training the model with BehavGAN results in the most

consistent and rapid reduction in training loss.

Table 4.10 presents the evaluation loss of the MLM experiment, where the number

in front of each method shows the evaluation loss of the MLM on the data generated

by that method. Also, the number in front of Real data shows the evaluation loss

of the MLM on the original CASAS data. We can deduce from these findings that

BehavGan has effectively increased the model’s accuracy in predicting masked tokens

(0.11 decrease in the Cross-Entropy Loss of the model). Other methods do not show

noticeable improvement in training the model.

Human Evaluation

In addition to evaluating the similarity and diversity of generated data using the

BLEU score metric, human evaluation was conducted in order to make sure the

79

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Ph.D. Thesis – F. Akbari; McMaster University – DeGroote School of Business

Figure 4.6: A Comparison of Training Loss for the Masked Language Modeling Task
using Real Data, MLE-, LeakGAN-, SeqGAN-, and BehavGAN-generated Data.

Table 4.10: The Evaluation Loss of the MLM task - CASAS dataset

Algorithm Cross-Entropy Loss
MLE 0.59
LeakGAN 0.63
SeqGAN 0.62
BehavGAN 0.53
Real data 0.64
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generated behavior sequences made sense in terms of the order and the duration of

activities. To that purpose, I enlisted the help of three raters, who were given 50

sample sequences to rate on a scale of 1 to 5, with the higher the number, the more

likely the sequence is perceived to be real. Two raters are Ph.D. students in the

field of health management, and one is a Ph.D. student in the field of management

sciences. Prior to collecting their judges, I double-checked that they fully compre-

hended the task. To ensure that they only use their common sense to determine if

the presented sequence is real or fake, I anonymized the data and released no detail

about the typical ADL patterns in the data. The sample data includes 10 random

samples from real data, random samples generated by the baseline methods, 10 sam-

ples each, and 10 random samples generated by my proposed method. I excluded

generated sequences that are identical to the real data since the BLEU score eval-

uation revealed that a large proportion of generated sequences by baseline methods

was identical to the real dataset. This is not desired when it comes to synthesizing

data. Instead, I want the method to be able to generate valid yet diverse sequences.

Table 4.11 presents the result of the human evaluation phase. For each model, I

report the average score from the three raters. The results indicate that the gener-

ated sequences of the BehavGAN make more sense when compared to the MLE-, the

SeqGAN- and the LeakGAN-generated sequences. Table 4.12 provides a few sam-

ples of sequences that are generated by BehavGAN and the SeqGAN method, the

method with best results among the baseline methods, to illustrate the superiority

of the BehavGAN output. The SeqGAN-generated sequences simply repeat some

frequent sub-sequences, for example, (LeaveHome, EnterHome) or (MealPreparation,

Relax), but the method performs weakly in generating various activity sequences and

does not follow some common-sense rules such as eating after meal preparation. The

reason is the SeqGAN tries to maximize the similarity to ground-truth sequences,
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Table 4.11: Human evaluation score

Method Average Human Score
MLE 2.1
SeqGAN 3.2
LeakGAN 2.6
BehavGAN 3.7
Real data 4.8

thereby sacrificing its diversity. BehavGAN does show better performance in gener-

ating various patterns, and its sequences mostly follow common-sense rules of daily

activities. The behaviour sequence in the model I propose can be simulated in the

same way as GANs can simulate the meaningful order of words in linguistic models.

The reason the generator doesn’t generate sequences like ”LeaveHome -¿ WashDishes

-¿ EnterHome,” for example, is that this pattern doesn’t appear in the real sequences

I supplied the model. Actually, the “LeaveHome” token always follows the “Enter-

Home” token. However, in comparison to the ground truth sequences, BehavGAN

has issues in dealing with sleep duration.

4.2.2 BERT-based BCD Module

In this section, I present the results of running the BERT model for detecting behavior

changes of two residents in CASAS-Twor Dataset. First, I train the predictor model

with 90 percent of ADL sequences of resident R1. I then evaluate the model using

the remaining 10 percent of the unseen ADL sequences of resident R1 (Experiment

1). I also repeat this experiment for resident R2 (Experiment 2).

In two separate experiments, I tested the model for predicting behavior changes

of resident R2 without fine-tuning (Experiment 3) and with fine-tuning (Experiment

4) on resident R2 data. In experiment 3, I used a pre-trained model which was
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trained on ADL sequences of resident R1 to predict behavior changes in resident R2.

In experiment 4, I fine-tuned a pre-trained model using ADL sequences of resident

R2, where the pre-trained model is trained on ADL sequences of resident R1. The

intuition is that while different residents have their unique routines of life, there are

commonalities that can be transferred from one model to the other (the Transfer

Learning feature in Transformers). I expect the former experiment to show less

accurate predictions. The reason is that different residents are supposed to have

their unique routine of life which makes it unlikely to precisely predict their behavior

change without fine-tuning the model on their specific data.

I also determined the number of training epochs by monitoring training loss and

evaluation loss in order to avoid under- or over-fitting. The goal was to train an

accurate model with training data (low training loss) that also shows promising per-

formance on the evaluation data (low evaluation loss). The parameters I set for

running the BERT-based classifier are listed in Table 4.13.

Table 4.14 shows the results of the four experiments for 10 training epochs. The

high values of accuracy, AUC, precision, and recall illustrate the capability of the

BERT-based classifier model in predicting behavior changes for both residents (E1

and E2). I acknowledge that training the model from scratch for each new resident is

inefficient and possibly impossible. Therefore, experiments E3 and E4 were created to

investigate the transfer learning characteristic of Transformers in this specific problem.

In experiment E3, I assume that I do not have access to resident R2’s ADL data. As

a result, I train the model using data from resident R1 and test it using data from

resident R2. The model predicts behavior changes well (high accuracy and recall),

but it has a significant False Positive rate (noticeably poorer precision than E2),

which means the classifier incorrectly labels some normal patterns as abnormal. In

experiment E4, I use resident R2’s ADL data to fine-tune the trained model from

experiment E3. The results show a slight increase in all metrics, which I interpret as
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the capability of the model to transfer learned knowledge from one resident’s behavior

to predicting the behavior anomalies of others.

Some sample outputs from the classifier are shown in Table 4.15. The first three

samples are correctly predicted as abnormal with relatively high probabilities. The

reason is that they have clues of abnormal behavior such as long personal hygiene

at night or leaving home without returning, which are not usual behavior of the

resident. The next two samples (4 and 5) are also correctly predicted as normal with

high probabilities. The last sequence is not classified correctly.

My findings suggest that the BERT-based classifier is capable of detecting be-

havior changes in ADL sequences. Transfer learning has also proven to be useful in

fine-tuning a pre-trained model for a new resident. These results acknowledge the ap-

plicability of Transformer models to the behavior change detection problem through

analyzing the ADL sequences. It is also a significant finding that transfer learning

feature of Transformers is effective in training the models for new residents without

requiring a huge amount of data collection and labeling for the new resident.

4.2.3 IRL-based BCD Module

In this subsection, I present the evaluation results of the IRL-based BCD module

using the CASAS-Aruba dataset.

I split the CASAS dataset into train and test sets with a 70-30 ratio. Using

the train set, I trained the inverse reinforcement learning model to associate reward

values to each action (activity class) in a given state (ADL sequence) from sequences

of ADLs data. I then evaluated the model’s performance on the test set.

Table 4.16 shows the activity codes and their corresponding activity labels. These

codes are used to identify different activities that are performed by the individual.

For example, the code ”4” represents the activity of bathing for a long duration in
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Figure 4.7: The distribution of activity classes in the train set

the morning, and the code ”18” represents the activity of transitioning from bed

to toilet for a short duration at midnight. Overall, this table serves as a reference

to understand the codes that are used to represent these activities in the following

graphs.

To provide an overview of the dataset, I first generated a bar chart showing the

distribution of data over various activity classes (Figure 4.7). The chart revealed that

the dataset is imbalanced, with some activity classes occurring more frequently than

others.

I trained the model using Adam optimizer, learning rate of 0.001 and window

size of W = 10 on Google Colab environment with a T4 GPU, 14GB of system RAM

and 15GB of GPU RAM. I monitored its training progress by tracking the cross-

entropy loss over the 1000 epochs of training. Figure 4.8 shows the line chart of the

model’s training loss. As can be seen, the model’s loss decreases from 12 to 2.5 over

the 1000 epochs of training, indicating that the model is learning to assign higher

rewards to next activities that conform to the behavior pattern of the individual and

lower rewards to abnormal activities. This suggests that the model is able to capture
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Figure 4.8: Cross-entropy Loss over 1,000 Epochs of Training

the underlying patterns in the data.

The decrease in cross-entropy loss over the training epochs indicates that the

model is learning to minimize the difference between its predicted activity classes

and the actual activity classes. This is an important feature of the model, as it allows

us to detect behavior changes in older adults more accurately and efficiently. Next,

I analyzed the model’s performance using a HeatMap that displays the normalized

average reward for each predicted and actual activity class (Figure 4.9). The X-axis

represents the predicted activity class by the IRL model, while the Y-axis represents

the actual activity class. The lighter colors in the HeatMap indicate a higher reward,

while the darker colors indicate a lower reward. I observed that the Heatmap’s diag-

onal is apparent, which indicates that the trained model is able to give high rewards

to activity classes that match the actual activity class. This suggests that the model

can correctly identify the majority of activity classes. Additionally, I noticed that

there are dark cells corresponding to each actual activity class, which indicates that

the model is able to identify activity classes that are not very probable to occur in
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Figure 4.9: The average reward for predicted activity classes in the train set
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some states. This is an important feature of the model, as it allows us to identify

anomalies in the data that may indicate behavior changes.

However, I also observed that apart from the light cells in the diagonal, there

are other light cells present in the HeatMap. This is because, in each state, there

is more than one single activity class that is possible to occur due to the diverse

nature of the behavior patterns of an individual. This suggests that the model may

sometimes predict multiple activity classes with similar probabilities. To further

evaluate the model’s performance, I define a metric ’Alternative Activity Reward

Accuracy (AARA)’ to measure how accurately the model assigns high rewards to

activity classes that could be alternatives to the true activity classes. I do this by

calculating the ratio of high-reward activity classes present in the training set when

added to the end of the current state S.

Also, ’Low-Reward Irrelevance Rate (LRIR)’ metric calculates the proportion of

low-reward activity classes that are not present in the training set when added to

the end of the current state S. A higher ratio suggests that a significant portion of

low-confidence predictions are correctly identifying irrelevant classes.

AARA =

∑n
i=11(ri > θ ∧ S&ai ∈ TrainSet)∑n

i=11(ri > θ)
LRIR =

∑n
i=1 1(ri < θ ∧ S&ai /∈ TrainSet)∑n

i=11(ri < θ)
(4.2.1)

where:

• n is the total number of predictions.

• ri is the reward for the predicted activity class i.

• θh is the threshold for high rewards.

• θl is the threshold for low rewards.

• S is the current state (i.e. previous W-1 ADL events)
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• ai is the predicted activity class.

• 1 is the indicator function, which is 1 if the condition is true and 0 otherwise.

• TrainSet is the set of ADL sequences in the training data.

θh is set to 0.85 while θl is set to 0.15 according to reward statistics and the fact that

rewards are normalized. An AARA of 0.96 and an LRIR of 0.93 indicate that the

model performs significantly well in capturing the behavior patterns.

The HeatMap graph clearly shows that certain activities cannot be substituted

with others in a typical situation. For instance, sleeping for a medium duration at

night cannot be replaced with bed to toilet transition, eating, or a long personal

hygiene. Additionally, less frequently occurring activities like wandering in the room

are generally associated with lower average reward values, except when they actually

occur. This is reflected in the graph as the diagonal cells for such activities remain

light, while almost all other cells in the column are dark.

To ensure that my IRL model was able to generalize well, I evaluated its perfor-

mance on a separate test set that was not used during the training phase. I used the

same bar chart and HeatMap visualizations to demonstrate the test set performance,

as I did for the training set. Figure 4.10 shows the bar chart for the test set, which

has a similar distribution of data across the various activity classes as the training set.

This indicates that the test set is representative of the overall dataset and that the

model is able to generalize effectively beyond the training data. Overall, the evalua-

tion of the IRL model on the test set provides further evidence of its robustness and

effectiveness in accurately predicting activity patterns and rewards for residents in

smart homes. Figure 4.11 shows the HeatMap for the test set, which displays similar

results as the HeatMap for the training set. The diagonal is apparent, indicating that

the model is able to accurately predict the majority of activity classes, and there are

dark cells corresponding to each actual activity class, suggesting that the model is
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Figure 4.10: The distribution of activity classes in the test set

able to identify activity classes that are not very probable to occur in some states.

Additionally, there are light cells present in the HeatMap, which suggests that the

model is able to predict multiple activity classes with similar probabilities in some

states.

The fact that my IRL model produced similar results for the test set as for the

training set suggests that the model is not overfitted to the training data and can

effectively generalize to new, unseen data. This is a crucial feature of the model, as it

enables us to apply it to new datasets with confidence, thereby improving our ability

to detect behavior changes in older adults more accurately and efficiently.

The robustness of my IRL model is particularly important in the context of home-

care, where residents’ behavior patterns can vary widely and change over time. By

accurately predicting these patterns and detecting any changes, my model can help

caregivers and researchers to better understand the needs and preferences of individ-

ual residents, and to develop tailored interventions that improve their quality of life.

Overall, the ability of my IRL model to effectively generalize to new datasets is a

significant advantage that enhances its practical utility in real-world care settings.

90

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Ph.D. Thesis – F. Akbari; McMaster University – DeGroote School of Business

Figure 4.11: The average reward for predicted activity classes in the test set
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Data Augmentation

To evaluate the ability of my models to identify behavior changes, I introduced syn-

thetic abnormal sequences into the dataset. Based on existing literature, changes in

physical activity levels, alterations in rest periods between tasks, changes in sleep

patterns, forgetting to complete tasks, and repeating tasks are all included in the

symptom profiles of diseases such as Alzheimer’s, heart disease, urinary tract in-

fections, diabetes, and others. I therefore introduced these changes into the ADL

sequences in the CASAS dataset. I also inject samples of behavior abnormalities by

rearranging ADL and manipulating activity duration. For example, while in the orig-

inal ADL sequences eating occurs after meal preparation, I reversed the ADL order

to inject partially misordered sequences. I also created some abnormalities by ran-

domly shuffling the ADL. After injecting %10 synthetic abnormal sequences, SMOTE

method is used to oversample the abnormal sequences to ensure a balanced dataset. I

used the augmented labeled dataset to evaluate the performance of the fusion module.

Table 4.17 presents the performance metrics for the proposed approach, including

accuracy, precision, recall, and F1 score, at different threshold values. The results

show that using lower threshold values increases the number of false positives, in-

dicating that more normal ADL sequences are incorrectly classified as abnormal.

Conversely, higher threshold values result in a decrease in recall, indicating that the

model is more likely to miss abnormal cases. I recommend selecting a threshold value

that balances precision and recall. To aid in this decision, I also report the F1 score,

which is the harmonic mean of precision and recall. This score provides a single metric

that combines both precision and recall, making it useful for selecting an appropriate

threshold.

To compare the performance of my proposed BCD models with baseline mod-

els, I implemented an LSTM classifier and a Transformer-based classifier with the
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same sequence size. In my implementation of the LSTM model, I adopted the ar-

chitecture proposed by [Zerkouk and Chikhaoui, 2019], utilizing a hidden size of 64

and an embedding size of 200. For the BERT model, I employed the ’AutoMod-

elForSequenceClassification’ from the Hugging Face Transformers library, using the

pretrained ’bert-base-uncased’ model.

According to Table 4.18, in my analysis, I observed that recall is significantly

higher than precision for both the LSTM and BERT models. This discrepancy sug-

gests a lower performance on the positive class, as indicated by a higher false positive

rate. In contrast, the IRL model demonstrates superior overall performance when

evaluating the F1 score, which provides a balanced measure of precision and recall.

The experimental results suggest that both BERT and LSTM are not particularly

effective in the given context, despite their demonstrated success in various other

applications. This limitation can primarily be attributed to the insufficient size of

the training dataset, which is inadequate for effectively training deep neural network

models such as LSTM and BERT. Furthermore, based on the performance of the

BERT-based model described in the previous subsection, it can be concluded that

processing longer input sequences (e.g., 128 events) is necessary for Transformer-based

models to achieve satisfactory performance. However, this requirement represents a

significant limitation, particularly for real-time (or near real-time) use cases such

as the current problem, where it is impractical to wait for the observation of 128

events before detecting abnormalities in ADL. Additionally, the pre-training of BERT

involves general-domain text sequences, which may not translate well to the specific

nuances of ADL sequences without substantial fine-tuning. LSTM networks also face

challenges in managing longer sequences, which can further affect performance.

To enhance the adaptability of Transformer models like BERT to specialized tasks,

future research should prioritize fine-tuning with domain-specific data. This approach

could potentially mitigate the limitations observed in my study and improve model
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efficacy in similar applications.

The results demonstrate that my IRL model effectively detects behavior changes

in older adults from ADL sequences with high accuracy. The model successfully iden-

tifies activity classes unlikely to occur in certain states, aiding healthcare professionals

in detecting anomalies and potential behavior changes.

My evaluation on the augmented dataset highlights the effectiveness of my ap-

proach in identifying behavior changes linked to various diseases. By accurately

detecting these changes, my method has the potential to enhance the quality of care

provided to residents in smart homes.

4.2.4 Note Generation Module

In this section, I present the experimental results of note generation using large lan-

guage models (LLMs). To begin, I provide a summary of various symptoms associated

with different health conditions, which can be identified through the monitoring of

ADLs and their related changes. Next, I showcase example notes generated by ap-

plying various prompting strategies.

Health Abnormalities via Sensors

Based on domain-specific knowledge of diseases and symptoms, abnormalities in the

behavior sequences of older adults can be detected using data from ambient sensors

monitoring daily activities like eating, sleeping, bathing, and meal preparation. These

abnormalities often correspond to common health conditions such as cognitive decline,

depression, and mobility issues. For instance, irregular sleep patterns, forgetfulness,

or repetitive actions may indicate cognitive impairments, while changes in appetite or

reduced activity levels might suggest depression. Similarly, decreased physical activity

or difficulty completing tasks could point to arthritis or other mobility challenges.
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Understanding these patterns enables early identification of potential health concerns.

Each abnormality is linked to specific health conditions and supported by re-

search references, providing a comprehensive framework for interpreting sensor data.

Conditions like Parkinson’s disease, cardiovascular issues, or diabetes exhibit distinct

behavioral indicators, such as tremors, fatigue, or frequent urination, respectively.

Additionally, sleep disorders, malnutrition, and social isolation manifest through dis-

ruptions in routines, such as altered sleep patterns or reduced social interactions. By

leveraging this knowledge, caregivers and healthcare systems can use sensor data to

implement timely interventions, improving the quality of life for older adults. The

following table summarizes these health conditions and their associated abnormalities

for quick reference.

Engineering Prompts: Translating ADL Logs into Descriptive Notes

Designing an effective prompt for a large language model to interpret ADL logs and

generate meaningful notes for health professionals requires a structured approach.

The goal is to provide the LLM with sufficient context, baseline data, and specific

abnormalities to ensure the output is both accurate and actionable. Below, I outline

the key elements of the prompt engineering process used in my research.

• Contextualizing the Input

To enable the LLM to generate insightful notes, the first step is to establish a

clear context. This involves framing the ADL logs within the broader scope of

the patient’s health and daily routine. For example, the prompt begins with a

summary of the patient’s baseline behavior over a defined period, highlighting

normal patterns for key activities such as sleeping, eating, bathing, and mobility.

This allows the LLM to differentiate between expected variations and significant

deviations.
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Example Prompt Section: “Patient X’s baseline activity patterns over the past

two weeks include 8 hours of sleep nightly, meals prepared and consumed at

regular intervals (three times daily), and consistent bathroom visits occurring

6–8 times per day. Mobility patterns show regular movement between kitchen,

living room, and bedroom during waking hours.”

• Providing Detected Behavior Changes

The second component is the presentation of detected behavior changes. These

are deviations from the baseline activity patterns identified by the behavior

change detection system. Each behavior change is described with specifics,

such as sequence of activities, timing, and duration. This precision helps the

LLM understand the nature and extent of the deviations.

Example Prompt Section: “Here is the sequence of activities on Saturday Jan

12, which is detected as a potential abnormality: 12 AM- 4:11 AM: Sleeping

4:11 AM- 4:30 AM: Personal Hygiene 4:11 AM- 4:18 AM: Wandering in Room

...”

• Instructing the LLM to Generate Notes

The final step involves instructing the LLM to synthesize the provided informa-

tion into a concise and informative note for health professionals. The instruction

emphasizes the need to explain the potential significance of the abnormalities

and suggest possible health concerns or conditions that may warrant further

investigation.

Example Prompt Section: “Based on the patient’s baseline patterns and the

detected behavior changes, generate a note for health professionals. The note

should:

– Summarize the detected behavior changes.
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– Explain potential underlying health conditions linked to these deviations.

– Highlight the need for further clinical evaluation, where applicable.

– Use clear and professional language appropriate for healthcare documen-

tation.”

Example Output

Generated Note: “The patient has exhibited significant deviations from baseline

activity patterns over the past week. Specifically, there is increased nighttime

activity (2:00 AM–4:00 AM), which may suggest sleep disturbances or disori-

entation. Additionally, the absence of meal preparation for three days raises

concerns about potential depression, cognitive decline, or malnutrition. Pro-

longed inactivity during waking hours could indicate fatigue, reduced mobility,

or acute illness. These abnormalities warrant further assessment to determine

underlying causes and inform appropriate interventions.”

• Few-Shot Prompting for Enhanced Note Generation

To improve the accuracy and contextual relevance of the LLM’s output, I incor-

porated a few-shot prompting strategy. This technique involves providing the

model with several examples of high-quality input-output pairs that demon-

strate how to transform ADL logs and detected behavior changes into descrip-

tive notes for health professionals. By doing so, the model learns the desired

style, tone, and structure of the output, increasing its ability to generate con-

sistent and actionable insights.

Rationale for Few-Shot Prompting

Few-shot prompting serves to anchor the LLM’s responses by offering concrete

examples of well-crafted notes. This reduces the likelihood of irrelevant or
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overly generic outputs and ensures the generated notes are tailored to health-

care professionals’ needs. It is particularly valuable when interpreting complex

data like ADL logs, where nuanced patterns must be linked to potential health

conditions.

Structuring Few-Shot Examples

Each example in the prompt follows a consistent structure:

– Input: context (baseline ADL logs), detected behavior changes, and the

task instruction.

– Output: a detailed, professional note that summarizes abnormalities, links

them to possible health concerns, and suggests further steps for evaluation.

Benefits of Few-Shot Prompting

By incorporating these examples, the LLM can better:

– Recognize patterns and align them with relevant health conditions.

– Maintain a professional tone suitable for clinical documentation.

– Adapt its responses to reflect variability in patient behaviors and abnor-

malities.

• Implementation in Practice

For real-world use, the few-shot examples can be tailored to reflect specific pa-

tient demographics, healthcare contexts, and data collection methods. This

approach ensures that the model generates outputs that are both relevant and

actionable, enhancing its utility as a tool for translating ADL logs into mean-

ingful healthcare insights.
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Few-shot prompting, when combined with a well-structured base prompt, pro-

vides a robust framework for leveraging LLMs in health data interpretation

while maintaining consistency and reliability in generated outputs.

By structuring the prompt with these elements, the LLM can effectively bridge

the gap between raw sensor data and actionable insights, providing healthcare

professionals with a clearer understanding of the patient’s condition while pre-

serving their decision-making authority.
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Table 4.12: Sample real sequences and sample sequences from the baseline methods
and the proposed method

Method Sample Sequence
SeqGAN Relax133;MealPreparation20;Relax31;LeaveHome2;EnterHome137;

MealPreparation36; Relax138;MealPreparation69;Relax199;Sleeping62
SeqGAN LeaveHome2;EnterHome101;Relax221;MealPreparation26;Relax125;

MealPreparation85; Relax282;Sleeping367;BedtoToilet1;Sleeping43
SeqGAN Relax145;LeaveHome2;EnterHome144;LeaveHome2;EnterHome101;

LeaveHome2;EnterHome150;MealPreparation10;Relax140;LeaveHome2
SeqGAN MealPreparation41;Relax129;MealPreparation62;Relax47;

MealPreparation63;Relax84; LeaveHome1;EnterHome159;LeaveHome1;
EnterHome138

BehavGAN Eating9;Relax74;Work27;MealPreparation22;Relax51;Sleeping183;
BedtoToilet1;Sleeping180;BedtoToilet3;Sleeping117

BehavGAN LeaveHome1;EnterHome128;WashDishes6;Relax26;MealPreparation61;
Eating32;Relax94;Sleeping452;BedtoToilet2;Sleeping148

BehavGAN EnterHome153;Eating17;Relax87;Work58;MealPreparation86;Relax26;
Eating36;Sleeping171;BedtoToilet3;Sleeping224

BehavGAN Eating6;Relax141;WashDishes4;Relax70;Sleeping64;BedtoToilet2;
Sleeping311;MealPreparation72;Relax103;Eating45

BehavGAN MealPreparation11;Realx7;MealPreparation45;Relax3;MealPreparation18;
Relax19;
MealPreparation6; Relax1;Eating&Relax15;Relax9

CASAS-Aruba LeaveHome2;EnterHome145;Relax234;Housekeeping9;Relax89;Work20;
Relax340;Sleeping343;BedtoToilet4;Sleeping377

CASAS-Aruba Relax141;MealPreparation17;Eating19;WashDishes4;Relax51;LeaveHome1;
EnterHome125; MealPreparation84;Relax287;LeaveHome1

CASAS-Aruba MealPreparation15;Eating9;MealPreparation57;Eating13;Relax72;Eating16;
Relax138; Housekeeping19;Work66;MealPreparation33

CASAS-Aruba Relax313;Sleeping359;BedtoToilet1;Sleeping350;MealPreparation36;Relax87;
Eating62;WashDishes7; Relax22;LeaveHome2

CASAS-Aruba Relax61;Sleeping58;MealPreparation18;Relax1;Eat&Relax7;Relax59; Meal-
Preparation6; Relax3;MealPreparation25;Relax4; Eating12

Note: each event is represented by the type of activity performed followed by its
duration in minutes. Events are separated by ”;”.
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Table 4.13: Run parameters for BERT model

Parameter Value

Training Epochs 10

Loss function Cross Entropy

Learning Rate 2e-5

Warm up Proportion 0.1

Drop-out rate 0.1

Max Sequence Length 128

Table 4.14: Comparison of Experiments.

Evaluation Metrics

Experiments Accuracy Precision Recall F1 AUC

E1 : Classifier for R1 ADLs
trained on R1 ADLs

0.87 0.89 0.84 0.86 0.88

E2 : Classifier for R2 ADLs
trained on R2 ADLs

0.82 0.88 0.75 0.81 0.83

E3 : Classifier for R2 ADLs
trained on R1 ADLs

0.81 0.64 0.90 0.75 0.79

E4 : Classifier for R2 ADLs
trained on R1 ADLs and fine-
tuned on R2 ADLs

0.84 0.69 0.90 0.78 0.82
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Table 4.15: Samples of BERT-based ADL classifier output.

Prediction Probabilities and Label

ID Input ADL Sequence True Label Class ”0” Class ”1” Label

(1)

PersonalHygieneLongNight
WorkShortNight SleepShort-
Night PersonalHygieneShort-
MidNight WorkShortMidNight
LeaveHomeShortMidNight

1 0.01 0.99 1

(2)

PersonalHygieneMediumMidNight
WorkShortMidNight Leave-
HomeShortMidNight

1 0.33 0.66 1

(3)

SleepShortNight Person-
alHygieneMediumMorning
BathingMediumMorning Meal-
PreparationShortMorning
LeaveHomeShortMorning

1 0.31 0.69 1

(4)

EnterHomeShortNight Work-
ShortNight PersonalHygien-
eShortNight SleepShortMid-
Night BedToiletTransition-
ShortMidNight PersonalHy-
gieneShortMorning LeaveHome-
ShortMorning EnterHomeShort-
Morning

0 0.9989 0.0010 0

(5)

SleepShortNight WorkShort-
Night SleepShortNight Bed-
ToiletTransitionShortNight
SleepShortNight WorkShort-
Morning SleepShortMorning
WatchTVShortNight

0 0.81 0.19 0

(6)

WorkShortNight LeaveHome-
ShortNight EnterHomeShort-
MidNight SleepShortMidNight
LeaveHomeShortMidNight

1 0.51 0.49 0

”0” is the Normal Class, and ”1” is the Abnormal Class.
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Activity Label Activity Code
Bathing (Long, Morning) 4
Bathing (Medium, Morning) 24
Bathing (Short, Morning) 15
Bed to Toilet Transition (Short, Midnight) 18
Bed to Toilet Transition (Short, Night) 2
Eating (Medium, Night) 21
Eating (Short, Night) 32
Enter Home (Short, Midnight) 33
Enter Home (Short, Morning) 14
Enter Home (Short, Night) 9
Leave Home (Medium, Midnight) 36
Leave Home (Short, Midnight) 19
Leave Home (Short, Morning) 8
Leave Home (Short, Night) 30
Meal Preparation (Medium, Night) 26
Meal Preparation (Short, Midnight) 28
Meal Preparation (Short, Morning) 7
Meal Preparation (Short, Night) 20
Personal Hygiene (Long, Morning) 25
Personal Hygiene (Long, Night) 34
Personal Hygiene (Medium, Midnight) 23
Personal Hygiene (Medium, Morning) 5
Personal Hygiene (Medium, Night) 31
Personal Hygiene (Short, Midnight) 27
Personal Hygiene (Short, Morning) 3
Personal Hygiene (Short, Night) 12
Sleep (Medium, Night) 29
Sleep (Short, Midnight) 17
Sleep (Short, Morning) 11
Sleep (Short, Night) 1
Wandering in Room (Short, Morning) 13
Watch TV (Short, Morning) 35
Watch TV (Short, Night) 16
Work (Short, Midnight) 22
Work (Short, Morning) 6
Work (Short, Night) 10
Wandering in Room (Short, Night) 0

Table 4.16: The Mapping of Activity Classes to Activity Codes
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Threshold Accuracy Recall Precision F1

0.6 0.73 0.87 0.65 0.744
0.75 0.74 0.84 0.66 0.739
0.85 0.73 0.81 0.72 0.762
0.9 0.74 0.76 0.73 0.744

Table 4.17: Evaluation metrics for different thresholds.

Model Accuracy Recall Precision F1

LSTM 0.55 0.89 0.54 0.672
BERT 0.51 0.86 0.58 0.693

IRL(th=0.85) 0.73 0.81 0.72 0.762

Table 4.18: Evaluation metrics for baseline models.
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Table 4.19: Abnormalities Detected and Associated Health Conditions

Condition Abnormalities and Explanation
Cognitive Decline Irregular sleep patterns, wandering, forgetfulness,

repetitive actions, disorientation. Memory loss and
confusion affect daily activities [Burns and Iliffe, 2009].

Depression Changes in appetite, altered sleep, reduced activity, ne-
glect of hygiene. Lack of motivation impacts daily rou-
tines [Fiske et al., 2009].

Parkinson’s Disease Bradykinesia, reduced mobility, tremors affecting
tasks. Motor symptoms impair speed and coordination
[Jankovic, 2008].

Sleep Disorders Insomnia, sleep apnea, restless leg syndrome. Dis-
rupted sleep leads to fatigue and altered activities
[Crowley, 2011].

Malnutrition Decreased food intake, weight loss indicators. Results
from reduced appetite or difficulty preparing meals
[Morley, 2012].

UTIs Increased bathroom visits, restlessness or agitation.
Urinary frequency and discomfort disrupt activity
[Rowe and Juthani-Mehta, 2013].

Arthritis Reduced activity, difficulty with physical tasks. Pain
and stiffness limit mobility [Hunter, 2011].

Cardiovascular Diseases Fatigue, reduced activity, shortness of breath. Fa-
tigue and decreased stamina impact routines [Moser
and Riegel, 2008].

Diabetes Frequent urination, changes in eating habits, fatigue.
Symptoms affect energy levels and physiological needs
[Kirkman et al., 2012].

Social Isolation Reduced social interactions, increased sedentary behav-
ior. Linked to decreased activity and mental health
risks [Nicholson, 2012].

Medication Mismanage-
ment

Inconsistent routines, frequent kitchen visits without
meals. Confusion in medication schedules alters daily
tasks [Pretorius et al., 2013].

Acute Illness Sudden activity changes, prolonged inactivity. Immedi-
ate physical changes affect activity levels [Clegg et al.,
2013].

Dehydration Reduced fluid intake, confusion, disorientation. Cogni-
tive impairment reduces activity [Schols et al., 2009].

Falls Sudden stop in movement, irregular patterns. Falls
cause injuries, limiting mobility [Rubenstein, 2006].

BPSD Agitation, restlessness, aggression. Linked to dementia-
related behaviors disrupting routines [Kales et al.,
2015].
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Example 1

Input

Baseline: Patient Y exhibits regular mobility, with average walking intervals of
5–10 minutes every hour and consistent meal preparation three times daily.

Abnormalities: Here is the sequence of activities on Saturday Jan 12, which is
detected as a potential abnormality:

12 AM- 7:21 AM: Sleeping

7:21 AM- 7:34 AM: Personal Hygiene

7:36 AM- 8:28 AM: Watch TV

...

4:36 PM- 6:20 PM: Sleep not in Bed

Instruction: Generate a professional note explaining these abnormalities and
their potential implications.

Output

The patient has shown prolonged periods of inactivity during afternoon hours,
deviating from their usual baseline of regular mobility. This could indicate
fatigue, early signs of depression, or physical discomfort such as joint pain or
stiffness. These observations warrant further clinical evaluation to identify
potential contributing factors.

Table 4.20: Example 1 - Input-output formatting for clinical abnormality analysis.

106

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Ph.D. Thesis – F. Akbari; McMaster University – DeGroote School of Business

Example 2

Input

Baseline: Patient Z’s baseline activities include preparing meals twice daily
and minimal bathroom usage at night (1–2 visits).

Abnormalities: Here is the sequence of activities on Saturday Jan 12, which is
detected as a potential abnormality:

12 AM- 2:11 AM: Sleeping

2:11 AM- 2:24 AM: Personal Hygiene

2:26 AM- 4:28 AM: Sleeping

4:29 AM- 4:35 AM: Personal Hygiene

4:35 AM- 5:48 AM: Sleeping

5:49 AM- 5:53 AM: Personal Hygiene

5:55 AM- 7:28 AM: Sleeping

7:30 AM- 7:35 AM: Watch TV

...

3:36 PM- 4:20 PM: Watch TV

Instruction: Generate a professional note explaining these abnormalities and
their potential implications.

Output

Recent data indicates a complete lack of kitchen activity for two days, which
may point to decreased appetite, physical discomfort, or cognitive challenges in
meal preparation. Additionally, a significant increase in nighttime bathroom
usage suggests potential urinary tract infection (UTI) or diabetes-related
symptoms. Further assessment is recommended to explore these possibilities
and provide appropriate intervention.

Table 4.21: Example 2 - Input-output formatting for clinical abnormality analysis.

107

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Chapter 5

Discussion

As the world’s population ages, enabling proactive, personalized healthcare for older

adults has become imperative. Our research pursues an end-to-end framework for

activity-based monitoring in smart homes, comprising (1) synthetic data generation,

(2) behavior change detection, (3) and automated note generation with human over-

sight. Each component addresses a critical bottleneck, from scarce labeled data to

ethical deployment, while collectively advancing toward reliable, scalable AI-driven

eldercare.

5.1 Synthetic Data Generation

Publicly available datasets of older adults’ ADLs remain limited, hampering research

into early health-degradation signals. To bridge this gap, we adapted Generative Ad-

versarial Networks (GANs), proven on images, text, and music, to synthesize realistic

ADL sequences. Rather than raw sensor traces, our GAN works on tokenized activity

representations, allowing us to generate diverse, privacy-preserving behavior logs.
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5.1.1 Key Findings and Hyperparameter Insights

• Thresholding for Diversity: we found that setting the discriminator thresh-

old inversely to the token-space size is critical: a lower threshold discourages

mere memorization and encourages novel sequence generation.

• Sequence Volume Control: limiting the total number of synthetic sequences

prevents mode collapse, over-repetition of a few patterns.

• Similarity Metric Choice: BLEU-4 proved appropriate for our mid-length

sequences; however, it may underperform on very short or very long activity

logs, suggesting alternative sequence-distance measures for other contexts.

5.1.2 Limitations and Future Directions

For future research, behavior representation needs further improvement to capture

more features of an individual’s life. Due to the unavailability of a real dataset

containing more features such as vital signs or health status we will await future

developments of this nature.

5.2 Behavior Change Detection

Detecting gradual or abrupt deviations in daily routines can flag early health issues,

such as cognitive decline or mobility impairment. We proposed transformer-based

classifiers trained on tokenized ADL logs, leveraging their capacity for long-range de-

pendency modeling alongside an IRL-based model capable of near real-time behavior

change detection without requiring long observational sequences.
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5.2.1 Training Paradigms: From-Scratch vs. Fine-Tuning

• From Scratch (Domain-Specific Pretraining): building a BERT-style

model solely on ADL sequences allows the masked language modeling (MLM)

and next-sentence prediction (NSP) objectives to learn domain semantics.

• Fine-Tuning Pretrained Models: applying a general-domain BERT (or

RoBERTa, GPT-3, BERT-Large) and fine-tuning on ADL data benefits from

large-scale language understanding but may misinterpret activity order divorced

from natural language logic.

A systematic comparison of these paradigms will reveal whether domain pretrain-

ing yields superior sensitivity to subtle behavior shifts.

5.2.2 Data Scarcity and Synthetic Augmentation

Supervised behavior classifiers are bottlenecked by scarce labeled “abnormal” ADL

sequences. In our study, we induced artificial irregularities by shuffling activity orders,

varying durations, and injecting patterns associated with health-related symptoms.

Future experiments should validate transformer performance on real abnormal se-

quences collected from individuals with known health conditions, ideally leveraging

the GAN-generated data to augment rare event classes. Furthermore, while my ex-

periments indicate that learned knowledge can transfer from one resident to another,

additional investigations are needed to assess the generalizability of these models. In

particular, evaluating the performance of pretrained models on new residents remains

an open question, as this study was limited by the lack of multi-resident data.

Another limitation of this study is that inaccuracies in ADL recognition may

propagate errors into the behavior change detection module, directly affecting its

performance.
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5.2.3 Limitations of Sequence Length and State Space

While the proposed IRL-based model represents a significant advancement in be-

havior change detection, it is important to acknowledge a critical limitation: as the

length of ADL sequences increases, the corresponding size of the state space grows

exponentially. This phenomenon, rooted in the underlying Markov Decision Process

(MDP) formulation, poses significant challenges to model training.

Specifically, longer sequences result in a combinatorial explosion of possible state

transitions, which increases the demand for extensive training data to adequately

represent and generalize across the expanded state space. This becomes particularly

problematic in real-world settings where annotated ADL data is scarce or unevenly

distributed.

Despite this limitation, our approach remains promising. Integrating inverse re-

inforcement learning techniques and transformer-based architectures can be further

explored to uncover subtle shifts in resident behavior. These can support earlier

interventions and ultimately enhance quality of life in smart home environments.

5.3 LLM-Based Note Generation with Human-in-

the-Loop

Automated summarization of ADL logs into clinical notes promises to reduce clinician

burden. However, large language models can hallucinate, embed bias, and lack clinical

reasoning. By integrating a HITL framework, AI drafts are systematically reviewed,

corrected, and approved by healthcare professionals, ensuring safety, accuracy, and

accountability.
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5.3.1 Enhancing Trust and Reducing Bias

• Clinical Oversight: every AI-generated note passes through a clinician before

affecting care decisions, guarding against misdiagnoses.

• Bias Feedback Loops: providers flag biased or inaccurate phrasing, feeding

corrections back into reinforcement learning from human feedback (RLHF) to

iteratively de-bias the model.

• Automation Bias Mitigation: enforced verification prevents over-trust in AI

outputs, fostering a collaborative “AI as assistant” paradigm rather than “AI

as replacement.”

5.3.2 Ethical, Legal, and Interpretability Considerations

HITL ensures final medical judgments remain human-driven, aligning with HIPAA

and GDPR. Context-aware interpretations, accounting for comorbidities or living

environments, further ground AI summaries in real patient circumstances.

5.4 Data Availability and Privacy

5.4.1 Sensor-Based vs. Video Monitoring

• Privacy Advantages: ambient sensors such as motion detectors and pressure

mats can capture ADLs without relying on visual recordings, thereby preserving

personal dignity and mitigating ethical concerns. However, their limited granu-

larity compared to video monitoring can reduce the accuracy of ADL detection.

• Cost and Efficiency: sensor data demands far less storage and compute than

continuous video, enabling scalable, real-time anomaly detection with minimal
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infrastructure.

5.4.2 Challenges in Acquiring Paired Training Data for Note

Generation

Effective LLM fine-tuning requires parallel corpora of sensor logs and clinician-written

notes, yet privacy regulations, fragmented sensor ecosystems, and patient consent

barriers severely limit dataset sizes and standardization.
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Chapter 6

Conclusion

This thesis presented a comprehensive and interpretable AI-driven framework for

monitoring behavior changes in care environments using non-intrusive sensor data and

advanced machine learning techniques. The research was motivated by the increasing

need for early detection of health-related behavioral anomalies among older adults

living independently. The proposed system integrates behavior modeling, anomaly

detection, synthetic data generation, and large language model (LLM)-based interpre-

tation, all under a human-in-the-loop (HITL) paradigm. The framework is grounded

in Fogg’s Behavior Model, ensuring that technological interventions align with theo-

retical insights on behavior motivation and capability.

6.1 Addressing the Research Questions

This research presents a comprehensive framework for detecting behavior changes

in older adults using machine learning, addressing key challenges related to detec-

tion efficacy, evaluation methods, model generalizability, interpretability, and system

reliability.
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• Detection Efficacy(RQ1): this thesis developed and evaluated two complemen-

tary BCD modules: an IRL-based model that learned reward structures indica-

tive of normative behavior, and a Transformer-based model that captured tem-

poral dependencies in ADL sequences. Both approaches demonstrated strong

performance in identifying deviations from baseline behaviors, validated using

CASAS datasets. The models were able to detect subtle anomalies, such as pro-

longed inactivity or irregular sleep patterns, which often precede health events.

• Evaluation Framework(RQ2): to systematically assess the effectiveness of the

approach, I designed simulation experiments using augmented ADL datasets

where behavioral deviations—such as frequent restroom use or prolonged in-

activity—were synthetically injected to mimic real health events (e.g., urinary

tract infections). I introduced BehavGAN, a novel GAN-based model for gener-

ating realistic ADL sequences in data-scarce scenarios. This simulation protocol

enables consistent evaluation through quantifiable performance metrics and re-

producible experimental design.

• Model Generalizability(RQ3): to explore the generalizability of behavior mod-

els, I applied transfer learning techniques that adapt models trained on one

resident’s ADL data to new users. Specifically, fine-tuning a pre-trained BERT

classifier on limited labeled data from a new resident showed that high detection

accuracy can be achieved with minimal personalization. These results validate

the feasibility of cross-user model transfer for real-world deployment.

• LLM Inference(RQ4): to investigate how large language models (LLMs) can

be used to derive clinically meaningful insights, I developed a pipeline that

transforms behavior change signals and contextual data (e.g., demographics,

medication records, ADL logs) into structured prompts. LLMs such as GPT-4,

Gemini, or Claude are then used to generate evidence-based clinically relevant
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explanations, bridging the gap between ML outputs and clinical narratives.

• Reliability(RQ5): finally, to ensure safe and reliable integration of AI into care

workflows, I explored risk mitigation strategies, including human-in-the-loop

mechanisms. These approaches help maintain accountability and trustworthi-

ness of AI-generated outputs, particularly in sensitive clinical decision-making

contexts.

6.2 Research Implications

Our multi-component framework tackles core hurdles in smart-home monitoring: from

generating synthetic behavior data and detecting subtle ADL changes, to drafting

clinician-ready notes under a human-overseen regime, all while respecting patient

privacy. By integrating these modules, the system enhances both the scalability

and interpretability of behavior monitoring solutions for aging populations. Key

implications include:

• The development of BehavGAN demonstrates that GAN-based data augmenta-

tion can be leveraged to generate realistic and diverse ADL sequences, implying

that future research can focus on reducing dataset scarcity and improving model

robustness by synthetic data generation strategies.

• The effectiveness of ambient sensors in capturing fine-grained activity patterns

while preserving individual privacy suggests that non–vision-based monitoring

approaches deserve further exploration as a non-intrusive alternative for home-

based health monitoring systems.

• By demonstrating the complementary strengths of a Transformer-based ap-

proach (which excels at analyzing longer ADL sequences but requires labeled
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data) and an IRL-based approach (which operates semi-supervised), the results

suggest that combining supervised and semi-supervised paradigms can address

individual limitations. This highlights the potential for further research on

hybrid architectures that balance data requirements and sequence-length capa-

bilities, enabling more reliable behavior-change detection.

• The introduction of an LLM-driven clinical note generation module with HITL

safeguards implies that automating the translation of raw behavioral data into

clinically meaningful summaries is feasible, encouraging investigations into risk

mitigation strategies. Future work should focus on developing and validat-

ing oversight mechanisms to enhance the reliability and accountability of AI-

generated clinical notes in decision-making contexts.

6.3 Future Work

As we look ahead, the thesis outlines the following key directions for advancing the

framework and supporting long-term impact:

• Incorporating multimodal data (e.g., wearable sensors, vital sign sensors, sleep

sensors, environmental metadata) to enrich behavioral context.

• Exploring continual learning approaches to adapt to evolving behavior over

time.

• Addressing the exponential growth of the MDP state space in ADL sequence

modeling. This can be mitigated using state abstraction techniques such as

clustering behavioral motifs or deploying hierarchical reinforcement learning to

maintain tractability under limited training data.
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• Enhancing the robustness and specificity of LLM-generated clinical notes through

domain-specific training.

• Building Robust HITL Workflows. The human–AI handoff process can be opti-

mized by defining thresholds for clinician intervention, reducing cognitive load

while preserving safety and trust in automated interpretations.

• Investigating the generalizability of the framework by incorporating ADL logs

from multi-resident homes, examining how overlapping or interacting activity

patterns impact detection accuracy and model robustness.

• Assessing system usability among older adults, focusing on perceptions of tech-

nological paternalism [Voinea et al., 2024]; design participatory studies to elicit

user feedback, adapt interfaces, and ensure acceptance in real-world deploy-

ments.

• Evaluating the LLM-based clinical note generation module under diverse train-

ing scenarios, such as varying LLMs, fine-tuning on domain-specific corpora,

and fine-tuning strategies, to identify optimal configurations for accuracy and

relevance.

• Comparing the quality of automatically generated notes against human-authored

clinical summaries, quantifying differences in completeness, coherence, and clin-

ical utility.

By directly addressing each of the guiding research questions, this thesis estab-

lishes a foundation for intelligent, interpretable, and ethical eldercare solutions. It

demonstrates how advanced AI systems can augment human judgment in healthcare

without compromising trust, privacy, or clinical accountability. The proposed frame-

work offers a path forward for integrating ambient intelligence into aging-in-place

strategies, ultimately improving quality of life and care delivery.
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Appendix A

Background

In this chapter, the scientific background related to this research is discussed. First,

the Markov Decision Process (MDP) is introduced as a basis for formulating prob-

lems in Reinforcement Learning. I also present how Reinforcement Learning solves an

MDP-formulated problem. Finally, Inverse Reinforcement Learning (IRL), its bene-

fits as well as its differences with Reinforcement Learning is introduced.

A.1 Markov Decision Process and Reinforcement

Learning

A process can be considered a Markov Decision Process if the decision to be taken is

only dependent on the current state of the environment (Markov property [Fryden-

berg, 1990]). In other words, regardless of previous states of the environment, the

agent should be able to take proper action (make a decision) at any point in time.

Reinforcement Learning (RL) problems are commonly modeled using Markov De-

cision Processes (MDPs) [Russell, 1998]. An MDP is defined as M = 〈S,A, T,R, γ〉,
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where S represents the set of possible states, A denotes the set of available actions,

T is the transition function, R is the reward function, and γ is the discount factor.

A state represents the situation of the environment. It is important to represent

the state of the environment in a way that the Markov property is not violated. To be

more specific, the state representation must contain all the necessary information for

the agent to understand the current situation of the environment in order to take the

appropriate action. The environment offers a set of actions available in each state,

forming an action space from which the agent selects its actions. The agent interacts

with the environment by performing these actions, which may cause changes in the

environment’s state in response.

In the context of a Markov Decision Process (MDP), the likelihood of transitioning

to the next state St+1 depends solely on the current state St and the chosen action

At at time step t, regardless of any previous states or actions.

The transition function determines the resulting state the agent moves to. This

environment may be either deterministic or stochastic. In a deterministic setting, the

transition from state St to St+1 upon taking action At occurs with a probability of 1.

Conversely, in a stochastic environment, the transition function assigns a probability

value (p) to each possible transition tuple 〈St, At, St+1〉, representing the chance of

moving from state St to state St+1 after executing action At.

As a part of the interaction between the agent and the environment, upon the

agent’s action, the environment passes a reward on to the agent using a reward func-

tion. The reward gives the agent feedback about its performance in order to reinforce

the agent’s behavior positively or negatively. Guiding the agent via feedback can be

done by providing an immediate reward (discount factor γ of 0) or discounted reward

(discount factor γ of 1). While an immediate reward only takes into account the

reward associated with the current action, a discounted reward considers a trajec-

tory of rewards that are possible throughout the journey toward the terminal state.
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Therefore, a discounted reward is affected by rewards in the distant future, which

makes it a suitable approach where the agent’s actions have long-term consequences.

The agent’s primary objective is to select actions that maximize the total dis-

counted reward accumulated over a series of steps. The policy is referred to as a

function that determines what action to take in order to maximize the accumulated

reward given the current state of the environment. In order to find the optimal policy

of the agent, a value function Q is defined to estimate the expected reward that can

be obtained when following the policy, given a state-action pair (s, a). The optimal

policy yields the highest possible values for every state and is found by solving the

Bellman equation:

NewQ(s, a)︸ ︷︷ ︸
New Q-Value

= (1− α)Q(s, a) +α∣∣∣
Learning rate

[R(s, a)︸ ︷︷ ︸
Reward

+γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)] (A.1.1)

where the value function (Q) is approximated based on the cumulative expected

reward for (s,a).

If all the elements of an MDP are known, the solution can be computed before

ever actually executing an action in the environment. Otherwise, the agent will

need to experience the environment (i.e. trial and error) in order to understand the

environment dynamics and to estimate the optimal policy. In this case, the agent

starts in the first place with a random policy to choose the action given the current

state. Then, it receives the reward from the environment and updates its policy so

that in the next occurrences of a similar state, the agent would take a better action

leading to a higher reward.

When it comes to making a decision in stochastic environments, decision-making

turns into a tricky problem to be solved as model-based approaches cannot be applied
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due to the fact that the environment is not deterministic. In a deterministic environ-

ment, given the current state of the environment, the action that is taken by the agent

solely determines the next state without any uncertainty. However, in a stochastic

environment, an action in a given state can put the environment in different next

states due to the stochastic nature of the environment.

A.2 Inverse Reinforcement Learning (IRL)

The goal of Inverse Reinforcement Learning (IRL) is to model an agent’s preference

based on observed behavior, avoiding the need to manually specify the reward func-

tion. The observed agent’s interaction with its environment is commonly modeled as

a Markov Decision Process (MDP), where the solution is a policy that assigns actions

to states. Because the reward function of this MDP is not known, it is assumed that

the agent follows the optimal policy of the MDP. IRL has drawn a lot of interest

from researchers in the fields of artificial intelligence and machine learning because it

satisfies the needs listed below [Arora and Doshi, 2021].

• Demonstration replaces manual reward specification

The requirement to pre-specify the reward function restricts the use of RL and op-

timal control to issues where a reward function can be simply stated. Given that a

policy or example of intended behavior is known, IRL offers a technique to expand

the applicability of RL and minimize manual task specification design. While ob-

taining the entire desired policy is typically impractical, we have simpler access to

demonstrations of behavior, frequently in the form of recorded data.

• Improved Generalization

A reward function can be transferred to another agent and provide a concise repre-

sentation of an agent’s preferences. If the subject agent and the other agent have
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similar environments and purposes, the learned reward function can be employed ex-

actly as is; otherwise, it continues to serve as a valuable foundation even when the

agent specifications are slightly different. In fact, compared to the observed agent’s

policy, the reward function is naturally more transferrable, as Russell [Russell, 1998]

has pointed out.

A.2.1 Definition of IRL

In order to define IRL, I focus on the most popular framework for modeling the ob-

served agent’s behavior, which is the MDP. I use the standard terminology in Inverse

Reinforcement Learning (IRL), where the observed agent is called the expert and the

agent trying to learn is called the learner. IRL typically assumes that the expert

acts according to some underlying policy, denoted as πE, which is often unknown.

When the policy is not directly accessible, the learner observes sequences of state-

action pairs from the expert, known as trajectories. Although the reward function is

unknown, the learner usually assumes it follows a certain structure to facilitate learn-

ing. Common assumptions include representing the reward as a linear combination

of features, modeling it as a probability distribution over reward functions, or using a

neural network. With this background, we can now formally define the IRL problem

[Arora and Doshi, 2021].

Let an MDP without reward, model the interaction of the expert E with the envi-

ronment. LetD = 〈(s0, a0), (s1, a1), ..., (sj, aj)〉1, ..., 〈(s0, a0), (s1, a1), ..., (sj, aj)〉Ni=2, sj ∈

S, aj ∈ A, andi, j, N ∈ N be the set of demonstrated trajectories. A trajectory in D is

denoted as τ . We may assume that all τ ∈ D are perfectly observed. Then, determine

R̂E that best explains the observed behavior in the form of demonstrated trajectories.

123

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Ph.D. Thesis – F. Akbari; McMaster University – DeGroote School of Business

We may express the reward function as a linear sum of weighted features:

R(s, a) = w1φ1(s, a) + w2φ2(s, a) + ...+ wkφk(s, a) = wTφ(s, a) (A.2.1)

where φk : S → R is a feature function and weight wk ∈ R.

A.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] consist of two neu-

ral networks: a generator and a discriminator, which compete in a minimax game.

The generator creates samples starting from random noise, while the discriminator

learns to differentiate between these generated samples and real data, both of which

are input into a supervised learning model. The generator receives feedback from

the discriminator and aims to produce samples that closely resemble real data, mak-

ing it harder for the discriminator to tell them apart. Specifically, the discriminator

D is trained to maximize the accuracy of labeling both real and generated samples

correctly, whereas the generator Gis trained simultaneously to confuse the discrimi-

nator. Together, D and G engage in a two-player minimax game defined by the value

function V (D,G):

min
G
Gmax

D
V (D,G) =EY≈pdata(Y )[logD(Y )]

+ Ez≈pz(z)[log(1−D(G(z)))].

(A.3.1)

where pdata is the real data distribution and pz(z) is input noise used to learn pg. The

value function V is defined so as to maximize the discriminator’s error by minimizing

the generator’s error. According to the above formula, a good generator generates

samples similar to real data so that D(G(z)) would be close to 1 and D(Y ) would be
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close to 0 leading to maximizing log(D(Y ) + log(1−D(G(z))).

Although several versions of generative adversarial networks such as conditional

GANs, DCGAN, and InfoGAN [Mirza and Osindero, 2014, Radford et al., 2015, Chen

et al., 2016] have been presented and successfully used for generating verisimilar im-

ages, generating sequences of discrete tokens has not received much study. SeqGAN

is an effort to close this gap by providing an algorithm that leverages reinforcement

learning to calculate a reward based on the discriminator’s judgment on complete

generated sequences. The authors have also utilized a Monte Carlo search to cal-

culate the reward for partial sequences using rollout mechanisms. They have tested

the efficiency of their proposed algorithm using text and music datasets [Yu et al.,

2017]. LeakGAN [Guo et al., 2018] is also an effort to address the issue of long text

generation. The authors propose to allow the generator receive leaked information on

the discriminator’s high-level features and incorporate such signals into generation

steps. We (Akbari et al.) [Akbari et al., 2022] propose BehavGAN, a model-free

behavior sequence generator algorithm (Appendix C), by extending the original Seq-

GAN method. BehavGAN proposes a new use for GANs in the simulation of older

people’s behavior by learning the characteristics of a target dataset. By including

n-gram-based similarity metrics in the reinforcement mechanism, BehavGAN gains

an efficient reward function for GAN backpropagation.

In SeqGAN, the discriminator reward, which is backpropagated to the generator,

is formulated as:

RGθ
Dφ

(a = yT , s = y1:T−1) = Dφ(y1:T ). (A.3.2)

In this formula, Dφ(y1:T ) is the discriminator’s judgment on a complete sequence.

This stands for the discriminator’s estimate of the probability that the sequence is

real. It is then backpropagated to the generator as the reward in reinforcement. For

further details of SeqGAN please see the original paper [Yu et al., 2017].
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Appendix B

Metrics

The purpose of this appendix is to introduce the metrics that we will use for evaluating

the results of the proposed models for detecting bahvior changes. Accuracy is a

widely-used metric for measuring how much accurate a prediction is. It’s computed

by the sum of true predictions divided by the total predictions (See Formula B.0.1(a)).

While the model’s ability to distinguish positive and negative classes can be measured

by accuracy, it is not merely enough to measure the efficiency of a predictor model.

The first issue with accuracy metric is that it gives equal importance to all classes.

In problems that predicting one class is of more importance than the other/s, such

as anomaly detection, it is required to use other evaluation metrics such as recall and

precision.

In Precision, the focus is on the positive class predictions as shown in Formula

B.0.1(b). If the model predicts negative class poorly, it would not be caught by Preci-

sion. Also, if the data is imbalanced, Precision would not be sufficient for evaluation.

Recall, which can be calculated from Formula B.0.1(c), takes into account the false

negatives, which are super important in fraud detection, anomaly detection, etc. Fi-

nally, F1 measure is a combined metric which can be computed according to Formula
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B.0.1(d).

Accuracy =
TP + TN

TP + TN + FP + FN
(a)

Precision =
TP

TP + FP
(b)

Recall =
TP

TP + FN
(c)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(d)

(B.0.1)

Another useful metric for evaluating binary classifiers is AUC that reflects the area un-

der the ROC curve. Unlike accuracy, AUC is independent from prediction threshold.

This feature makes it an excellent statistic for evaluating the model in an unbiased

way.

A key deficiency of the aforementioned metrics is that they do not consider the

model confidence in predicting classes. For These metrics do not reflect if a model

predicts a true class with a high probability or a marginal probability. This is why

the model uses Cross Entropy or Log Loss for training (See Formula B.0.2, where p

is the prediction probability and y is class label, 0 or 1). Predictions that are closer

to the class label receive a lower Cross Entropy loss while the accuracy is a binary

true/false for a certain sample.

CrossEntropy = −(y log(p) + (1− y) log(1− p)) (B.0.2)
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Appendix C

BehavGAN Algorithm

The BehavGAN algorithm for data generation is provided here.

RGθ
Dφ

(a = yt, s = B′1:t−1) =
1
N

∑N
n=1Dφ(B′1:t

n), B′1:t
n ∈MCGβ(B′1:t;N) for t < T

Dφ(B′1:t) for t = T

(C.0.1)

RGθ
b (a = yt, s = B′1:t−1) =

1
N

∑N
n=1Rb(B

′
1:t
n), B′1:t

n ∈MCGβ(B′1:t;N) for t < T

Rb(B
′
1:t) for t = T

(C.0.2)

Rcomb = f(R,Rb) =
max(R)−R if Rb > Threshold

R otherwise

(C.0.3)
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Algorithm 3: Behavior GAN (BehavGAN).)

Require: Generator Policy: Gθ; Roll-out Policy Gβ; Discriminator Policy Dφ;
Real Sequence Dataset (Positive Samples) S = X1:T

Ensure: Synthetic Sequence Data (Negative Samples)

1: Initialize Gθ, Dφ with random weights θ, φ.
2: Pre-train Gθ using MLE on S
3: β ← θ
4: Generate negative samples using Gθ for training Dφ

5: Pre-train Dφ using negative and positive(S) samples via minimizing cross
entropy

6: repeat
7:

8: for g-steps do
9: Generate a sequence B′1:T = (y1, ..., yT ) ≈ Gθ

10: for t in 1 : T do
11: Compute RGθ

Dφ
(a = yt, s = B′1:t−1) by Eq.C.0.1

12: Compute RGθ
b (a = yt, s = B′1:t−1) by Eq.C.0.2

13: Compute Rcomb by Eq.C.0.3
14: end for
15: Update generator parameters via policy gradient
16: end for
17: for d-steps do
18: Use Current Gθ to generate negative samples and combine with given

positive samples S
19: Train discriminator Dφ for k epochs
20: end for
21: β ← θ
22: until BehavGAN converges
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