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NOMENCLATURE

A Cross sectional area

B Flanco width of channel

C Coefficient governing the effective width

d Depth of channel

EA Young’s Modulus, Tangent Modulus

o Distance of centroid from web plate

G’Gt Shear Modulus, Tangent Shear Modulus

Soc^yy

T 
P

Second Moments of area about axes XX and YY

Polar Moment of Inertia

K/ 

^1

Coefficient of interaction in torsion and flexcure

Torsional rigidity

L Length of the column

in Developed length of section

Eh t* ts
Moments of external forces

P Perpendicular distance from centroid to the tangent 
to the curve at any point x,y

Q Ratio of web width to flange width

Rx’VKp Geometrical constants governing buckling in 
torsion and flexure

rx*VP0 Radii of gyration in flexure across XX,YY and 
torsional radius of gyration about S axis

t Wall thickness

Uw 

u.u

Potential energy of external loads

Displacement parallel to ” ^ ” axis

V strain energy
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v.v Displacements parallel to ” 7) ’* axis

w’Vwy Internal load and its components in the directions 
XX and YY

' o’vo
Co-ordinates of shear centre with respect to the 
principal rimes*

Geometrical constants for cross sections

p Angle of rotation of section

Turpins stiffness

5a Compreaoicn of longitudinal fibre

n.c.
* i

longitudinal strains

*1 Angle made by the ”i*’th plate element to the 
” yj :: axis 1?

-V feinson’s ratio

Axial stress

Ratio of Tangent Modulus to Young’s Modulus

Vi Displacement of ’i’th plate in the direction of 
the ” ^ ” axis
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CHAPTER I 

INTRODUCTION

1,1 The possibility of occurrence of torsional column failure was 

first recognised when open thin walled sections were used in aircraft 

structures, and experience revealed that columns of open cross section 

tend to bend and twist simultaneously under axial loading. The import- 

ance of this physical phenomenon lies in the fact that the critical load 

(Buckling load) for these columns nay be much less than the elastic 

critical load as obtained by Euler for flexural buckling, on account of 

the onset of twisting deformation caused by low torsional stiffness of 

the open cross sections.

1.2 . Vagner introduced the theory for such columns with his concept 

of unit warping^. He based his theory on the arbitrary assumption that 

the centre of rotation of the cross section under torsion and flexure was 

2 
the centre of shear. This is, in general, not the case, and Bleich and 

C'stenfeld have given more general analysis applicable to both symmetric 

and unsymmetric sections. liaising use of the theorem of stationary potent­

ial energy Bleich demonstrated that the usual differential equations for 

flexural buckling were valid for singly symmetric sections like channels, 

provided the displacements of the centre of shear rather than the displace- 

ment of the centroid were considered. Kappus, Lundquist, and Fligg * 

established on exact theory by which they showed that the centre of rotat­

ion will bo such as to make potential energy a minimum.

1
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1.3 All the above theories assume plane cross sections warp but that 

there is no distortion in their geometry in the plane of their cross 

sections, i.e., the various parts of the cross sections retain the same 

relative orientation even with warping. It is also assumed that overall 

failure of the section in torsional fie:rural budding takes place and is 

not accompanied by local buckling. Attempts have been made^, by Chilvor 

and others to clearly define regions of local and overall buckling with­

out success. Separate analysis of local and overall buckling can only 

give approximate values, since it is unrealistic in so far as it separates 

a single phenomenon into two separate and arbitrary phenomena. An analy­

sis to cover local and overall buckling simultaneously would be mathemat­

ically intractable. However, a large number of tests would enable clear 

identification of the type of buckling, as a function of the parameters de­

noting the geometrical configuration, the size of the flange and web, the 

size of lip, and the thickness of the sheeting. From such results, it would 

be possible to earmark ranges of these parameters in which either local or 

primary budding may be anticipated. This would mean that, when a new 

section is to be assessed for its strength, it would be first seen if it 

would fail by primary buckling or local budding, then the mode of budd­

ing has thus been ascertained, the relevant design formulae can be chosen 

to determine working loads.

1 .^ It has been observed from tests carried out by Kollbrunnor and

Chilvor^ that most of the experimental points lie well above the theoretic­

ally predicted values of strength for thin walled cross sections like



5

angles, channels, and lipped channels* This would indicate that the pres­

ent theoretical approach makes a conservative estimate of strength, and 

leaves a good extent of the load potential unused. To ensure development 

of specifications and codes of practice designed to make the fullest use 

of this potential in thin-walled sections, it would be necessary to 

Q 
conduct extensive testing, and phenomenological studies, winter and 

associates tested lipped channels, and top hat sections and have reported 

the results. The lack of agreement between theoretical and experimental 

results has shown that there is need for a large number of tests before any 

design specifications can be made. The importance of the effect of initial 

imperfections on the critical loads is another aspect which has remained 

unexplored. In view of the large reserve of strength beyond the initial 

buddling load of these sections, an elasto-plastic approach may bo more 

appropriate.

1.5 A complete and comprehensive bibliography of work done in this

field in Luropo is furnished in Kollbrunner*s treatise on budding.

1.6 The open sections commonly used so far arc angles, lipped channels, 

channels and lipped angles. Channels with inward and outward lips have been 

frequently employed. The incipience of lateral budding of individual 

plate elements certainly depends on the constraint or the lack of it at the 

free edges. The lips co far used provide constraint in a direction trans­

verse to the plane of the flange plate element in u channel and transverse
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to tho lege of angles* But the stiffening lip, by itself, has a very low 

transverse stiffness* be can observe, while testing such channels under 

compression, that tho lips buckle and distort very early in tho loading 

process* Tho very early sotting in of tho waving in these lips reduces 

their contribution to the lateral stiffness of the outstanding flange.

It may bo that, because of thio, increase in strength is not in direct 

proportion to tho increase in cross sectional area caused by the provision 

of straight lips. The present investigation has been undertaken to deter­

mine other shapes of flange stiffening or web stiffening which would improve 

efficiency of the section as a whole. Fig. 1.1 shows the various chapes pro­

posed for this purpose.

She circular lips in these sections have multidirectional stiffness, 

and therefore stiffen the outstanding flanges, and the web plate against 

local buckling. Preliminary tests have shown that increase in strength can 

be achieved by tho provision of such lips in tho cross sections (Photographs 

1.1 and 1.2).

1.7 Provision of lips in tho cross sections also help to stiffen it 

torsionally. In many instances those lips prevent overall buckling and 

restrict failure to local buckling* This fact can be appreciated better from 

tho theoretical analysis presented subsequently. A channel section 8 inches 

by 4 inches and 36 inches long has been selected for tho purpose of studying 

the influence of geometry of tho cross section on tho critical load, and on 

the possibility of torsional collapse. Referring to Fig.!-2, u,b,c, the

distance from tho centroid to the shear centre along tho X axis of syntnetry
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STRAIGHT LIPPED UHAKLEL Al FAILURE

PHOTOGRAPH 1.1
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is obtained from the relation;

m m

S

where ”x,y”, are the co-ordinates of any point on tho centre line of the 

cross section

”ra” the full developed length of the section from one tip to the 

other

”1 '* Moment of inertia about axis XX 
xx

”p” the perpendicular distance from centroid to the tangent at the 

point (x,y) on the centre line of the cross section.

The shear centre is the point through which the resultant shear stress on 

the section due to the shear field passes. If an external load passes 

through the centre of shear ,the section bends without twisting. If a torque 

T acts on the section and it rotates through an angle e, then

T = Ki6

where K^ is the uniform torsional stiffness. For a wall of uniform thicknes 

”t", K equals G m t^/j, where G is the elastic modulus in shearing. The 

warping stiffness for a cross section (f) is obtained from the relation 

obtained by Bleich ;
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Warping stiffness T» + A?(i-M
4-fxx —*

whore ”dn depth of channel in inches

"A” area of channel in square inches

”e” distance of Centroid from the wob centre line

“xx’^yy Kowata of inertia about xx and yy resply

”Tr” Warping stiffness

The above equation is approximate and is within one percent of 

the values for bulbed channels, channels with circular lips as determined 

by Coodiers solution. Table 1.1 provides the Geometrical properties of 

four different sections of channels.

1.8 It may bo observed that provision of circular lips increases the 

warping stiffness considerably. When warping is restrained by flat end 

supports as in ordinary construction it is reasonable to expect a greater 

torsional stiffness for sections with greater warping rigidity. This 

aspect of the problem has not received its due attention, and in exploratory 

tests it was obvious that the warping rigidity had much to do with the 

prevention of torsional displacements of the section. The theoretical 

analysis and evaluation of geometrical constants bring out the mathematical 

relationship between warping stiffness and torsional radius of gyration.



Section. TT Rp
Uarping 
shyness 

par 
unit t

^5y x 
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unitT

■by 
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unift
airoiif' 
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___ 1
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Cl
8

J

^ Radius 3-448 1-664. 1-153 1-05 555-2 214-86 52-87 41533

c <1 
8

c

Radius 
6" —o 4

3^54 1-61 1-31 1-16 782-7 270-0 57-92 455-25

G" Radius

L-p 4
W 4"

3-41 1-674 155 1-155 76 6- 2Z4-93 54-182 433-15.

Tabla 1-1
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1.9 Post buckling strength of thin vailed members is on inportant 

aspect which should be considered in this context. Just because a thin 

walled structural element has buckled, it cannot bo presumed to have been 

destroyed. In fact, it can take several tines the initial buckling load 

before finally collapsing. Even at ultimate failure the collapse leaves 

a largo portion of the elements completely undamaged (Seo photographs 

1.2 and 1.5) • This emphasizes the fact that just because the structural 

element shows up ripples on its surface it should not bo considered to 

have collapsed. ”

• It would be of interest to refer to a residential block built in West 

Germany, and reported in Dor Stahlbau, July, 1962. In this Gorman 

structural frame, channels of 7 cm x 4 cm, and wall thickness varying

/ from 2 mm to 5 mm (0.0775 - 0418”) have been used as columns. The thick­

nesses correspond to U.S. gauges 14 to 6. Tao spacing of tho columns is 

very close, viz. 3 to 4 feet. In air frame design it is taken fcr grunted 

that buckling of the skin panels will be normally encountered, and should 

be ignored so long as the strength io unimpaired. In tho same manner, a 

small amount of buckling in a thin walled structural member, is not 

significant so long as it does not impair the strength of tho element 

concerned. Therefore, it should bo possible to define strength of these 

elements in relation to their out of plane buckling, for the purpose of 

formulating a design code. In most cases, however, the structural frame 

will be encased with a fireproof material and the ripples would not bo

seen on the surface.



1*5-

1*10 Failure of a thin v/^lcd element has to bo defined arbitrarily - 

because very heavy distortions will certainly bo ruled out. To start with, 

wo way say failure can bo said to occur when lateral displacment exceeds 

5 tines the thickness of element. In a similar canner any widening of the 

open section under loading can also bo specified - for instance, for a 

channel with 8” web and 4” flanges, it should bo acceptable if the outstand­

ing edges of tho channel flanges, approach towards or recede from each 

other by 0.25”, i.o. 1/32 of tho width. Those limitations would satisfy 

aesthetics. Besides, the working load of tho structure is still only a 

fraction of tho ulticatejBwU-

1.11 For a state of loading under which tho stresses in tho section 

nowhere exceed tho licit of proportionality, Timoshenko3'^ among others, 

developed tho concept of effective width. However, beyond tho limit of 

proportionality it may not be correct to use these relations. An empirical 

2 .
approach can be made use of as in Bleich’o work • Also, with tho now 

generally accepted tangent modulus concept it is possible to develop form­

ulae which are simpler to use.



CHAPTER II

AIMS OF THE INVESTIGATION AND MATHEMATICAL ANALYSIS

2.1 The analysis detailed in the following pages closely follows the 

2
method derived by Bleich , as it is the most suitable approach for sections 

made up of rectilinear plate elements. The relevant part of this develop­

ment is outlined in the following. * Figure 2.1 shows the cross section 

of a column of uniform section composed of a number of flat plates - which 

are very thin when compared to their lengths X,Y,Z, represents the system 

of axes corresponding to the undoformed configuration. We also consider 

axes ” ^ z t? ” originally merging with X and Y, but under-going displace­

ments and rotation along with the cross section. The components of dis­

placement parallel to ” ^,T| ” axes are u & v (Fig. 2.1).

Under external loading the displacements of any point in the plane 

will be a function of the displacements x,y, of the centroid and the 

rotation ” g ”• Also these displacements can be treated as a function of 

u»v,”p ”• It is also tacitly assumed that the geometry of the crocs section 

does not alter, and displacements are considered to be rigid body movements 

and rotations. Even though each plate element can bend in its own plane, 

and its cross section remains plane, the compression member as a whole may 

warp. The planes of adjacent plates may be different altogether after 

deformation. This assumption is reasonable since, away from the supports, 

use can be made of St. Venant’s principle and also a^y variation in warping

15
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FIG-2.1
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FIG.2-2 (b)
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within the small thickness of the plate element itself ignored. Considering 

the ”i”th plate element along with the r’i-l"th and the ”i+l”th plate (see 

Fig. 2.2b)। since "p” is small it may be assumed Cos ”p" equals 1 and 

Sin "p” equals ”^”,

Then, ’• 77^” the displacement parallel to the T) axis is

T)t = -u. Sin^ + v Cos^ + pr£

The curvature of the "i“th plate in its own plane is *

and the longitudinal strain at the centroid is e^. The strain energy of 

one plate element, due to direct and flexural deformation, is

rjCEI^'+EAi^)^ (2.1)

For all "n” plates in the cross section the strain energy is

vi = i i (EI1!; +EA^i) d5 (2.2)

ll=i

the integral being carried over the whole range ” |_”»

At each corner where two plates join the longitudinal strain should 

be the same so that the conditions of continuity are satisfied. Consider­

ing the "i-l”th plate and the ”i"th plate then

— 1 11 Ts^VV-i =£<-a^ (2.3)
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For ”n” such plate elements there are ”n-l” junctions and hence ”n-l” compat­

ibility equations;

If the average longitudinal strain "c” is defined by the equation

A 6 ”Z AfCj (2.5b)

n 
where A equals Z A[ 

i=i

If "e^” is the difference between the strain "e^” and the average strain 

”c”, it can be written

£j = ^ -6
(2.4)

Equation 2.J can be rewritten as follows:

t H ii
£i-, + Oi-.Vi = £i '^i (2.5)

Also from equation 2.5b

n
£ A^t = O

i=i

(2.6)

There ore ”n-l" relations 2.5 and the ”n”th equation is given by 2.6. It

is possible, therefore, to express strain differences “s^” in terms of 

curvatures •' T^*"* By substituting values of "s^" in terms of "e^" in 

equation 2.2 the resulting equation is:

(2.7)



the mixed terms of '^" and "s" vanishing because of relation 2.6. Differ­

entiating the equation giving values of ”7^” in terms of u,v, 0 it can 

be written

The above relation shews that the curvatures are linear functions of u , 

v 1 , and *’ ^ ' * since 0 is an invariant for any particular plate and 

depends solely on the geometry of the section.

Using this function ” yj’.1 " a general expression for strain energy "V” is 

obtained as,

(2.9)

where "a,". "a-,”. —— ax depend upon the geometry of the section. It con 

be shown that

°^1 = ^ > ^s^ °Q = Ixy = <9 since XX,yy are principal axes

lutting now "a " = 2 ”B " , "ax" =22 a- = Rn 
p y o *> ^ P

the expression for strain energy becomes

\/ 1 I /” H 11 " ii 11 " 11 ^ \ I
1 = Z k^1^^ 4-2E?Jup>+2£Rx‘V P-+ £RpP>4 EA£ J <i^ (2.1c)
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The constants R , R , R , 
* y p

occur in thio problem and not in ordinary flexure.

These can bo evaluated for any section by using the relations 2.4, 2.5, 2.6.

If the section is symmetrical about tho’y'axis R = 0; if about the "y”

axis R ex 0. Ehen there is symmetry about both ”x” and “y” axis only R

has a value the others vanishing simultaneously.

2.2 While considering strain energy due to shear it is permissible to 

ignore the bending shear as its contribution is much smaller than the torsion­

al shear. If T is the torque at any section, the strain energy for the 

whole column con be written as

(2.11)

where G is the shear modulus of the material.

K for narrow rectangular section is dt^/5, and for a section composed 

of such sections only wo can, with reasonable accuracy, add the values 

for individual plates.

Thus K equals V Id^

Ll

The strain energy due to bending and torsion may now bo written thus;

V^+Vs =

-£ (EI^+EI^ +2Efyu.|3+2ER/U|5 + ERpp-tGKp+AE€ ; (2.12)
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2.5 It is now possible to evaluate the potential energy of the external 

loads (Fig. 2«5)

Uw =- fxuj^^tpffij)^ (2-13)

Transforming thio into a function of u, and v by using

x = u.Cosp -vSinp

y = uSihf+uGsp

where it has been tacitly assumed ”P” to bo small so that Sin ”p” equals 

”p” and Cos ”p” equals 1 nearly. It may now be assumed that a = u, and 

y = v without appreciable error. Tho potential energy of external loads

may be expressed thus:

+vuj^ +pTn^5
(2.14)

The final expression for potential energy is

FT = Uw +VS +7^ -

2 ( ElyU+EI^Vz ERyU £ +2E^vp + ERpp1 

+ GKp’ -tAEc2”-2uujx-2tju) -^ai™?)

If this integral should have an extremum value tho variation ”6nG” should

tend to zero which yields the following Eulerian equations.
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ElyU.-*ER^p - ujx (2.16a)

ET,V +ER.P -LUy (2.16b)

ER^u 4'ER;v +ERpp-GKp =mt (2.16c)

EA( =O (2.16d)

It is interesting to compare these equations with these obtained by

conventional theory of bending

ii
£1 u = -M 
y y

yield

iv
S5 “Wx

X >M which on differentiating twice

iv
EI v = W 
x y

The additional terms containing R and R & R 
x y p

show the influence of torsion

and flexure.

2.4 An arbitrary origin St(xo,yQ) is chosen of which the displacements 

will be designated "u” and ”v” and ”p”. Mow from 21g. 2.4 it way bo 

written u = u + y B and v = v - x^p (2.17)

3ince x and y remain the ease before and after deformation, and are 
0 0 *

arbitrary it is possible to assume x = R r and y = -R ._O yXx -o y/I
V
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i’ov/ the relations (2*17) bacon©

U.=u-^P -u^u-^p ■ (2.18)

If these values are introduced into 2.16 the following relations arc* 

obtained

EImu. “ ^x (2.19a)

ei^ = ^ (2.19b)

E^E^E^-^-^f'7 ii
-GK0 (2.19c)

V.o can refer n. with respect to the new origins, (shear centre) in which 

caoe

Q. a 5 + y w - X w (2.2G)
ts t ox o y

using 2.19a and (b) co substitutions in (c) the relation becomes

e(S_t" ^)?-gkp=™^^-x’u,j (2,a)

Comparing 2.20 and 2,21 the right hand expressions of the equalities arc

identical. If a now constant ” tt ” is defined as follows
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the equations 19 reduce to

ELjii ” ^x (2.23a)

E^’ = uDj (2.23b)

EPP - GKp" = 7nh (2.23c)

Equations 2.23 are similar to the conventional equations in bending except 

that all displacements "u” and "v" are referred to the centre of shear 

rather than the centroid. From 2.2}, if 0 equals zero, "m^” equals zero 

which means that the resultant of the external loads should pass through 

S-(definition of the centre of shear). Also if there is no bending dis­

placement w and xz are both zero, then the centre of shear becomes the 
y 

centre of rotation in pure torsion. The above state of affairs may not 

be true in the neighbourhood of the extremities of the bar.

The value of the warping constant ” J1" is calculated by Timoshenko 

and Goodier in a different manner, and is more accurate than the form 

used here in the case of angles and tees, where the distance of the section 

from the shear centre is also small. In the case of channels, however, 

Bleich’s values are within 0.5 percent of the Goodier values, and yet can 

be obtained in a much simpler manner.

2.4 COLUMNS WITH AXIAL LOADING. An axially loaded column remains straight 

until the buckling load is reached, and if the expression (Equation 2.12) 

for strain energy is employed, ”u”, ”v” remain zero prior to budding.
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then buckling does take place it is convenient to use values of tangent 

2
moduli E. and G. . But the term EAs in the integral cannot be avoided 

except by considering datum for energy to be the initially straight but 

compressed state* Also it is necessary to reckon the potential energy 

of external loads from the same datum. Hence, it can be written that

V = 2^ ^tt"1^^?^^') dj
(2.24)

If E^E S T, then E. » Et where "t" is a function of the stress. It may

also be assumed G, x Gv, though it would be more precise to assume

G. = G J~x as in the theory of plates. But "t” is actually smaller in

value than " 4~’t“ ”, as "t” is less than 1. The analysis, would there­

fore be conservative and acceptable.

If the above simplification is used tho expression for potential energy

becomes

Z
(ETI,U%ETTy+ETTp',+ 6TK&' ) *, (2.25)

The tangent modulus theory is assumed to bo realistic as has been 

established by Shanley and use is made of E^ rather than Von Karman’s 

reduced or effective modulus. It may be noted that E^ = ^^a.

If the datum for potential energy of external loads is assumed 

as the initially straight but compressed configuration, there are two 

effects to be considered; the change of longitudinal stress in fibres



causin'; a chance in strain, and a displacement entirely duo to curvature.

If the new stress in a fibre io a, * 6 % the chance in strain io

6 a, 
X V/ork done trill bo

L

UW= "C^-tS^)^ 8« dfl)
Jo

Ignoring higher order terms of small quantities and setting constant

shortening of fibre over length ” i n as 6 the relation becomes

L
(2.26)

If the whole cross section is considered, ’’Uy” becomes

(2.27a)

Sinco there is no change in axial loading during tho buckling process

Hence,

(2.27b)

"5 ” can bo determined in a 
c

canner similar to a lino in one plane:

MM'WW-'J^ -
J^O + iV^^-}*) -



FIG.2.5
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a

(2.23)

It is possible to express ” △ ” and ” △ J’ in terns of u, v, and ”p”.

△ x = x0-x+(u-x0+x)Cos/3-fu-yo+y)Sfnp = U- + <yo-y)p (2.2$a)

△y “ yo~y + (^~xo -<-x)5fn^4-Gu-yo+y)6Qsp - v-^-x)^ (2.29b)

The equations 2.29 with simplification arc admissible as only small

values of ”u”t ”v” and ”0” are considered, if these values arc introduced 

into 2.28, it leads to double integrals with respect to dz and dA, and

if the following geometrical relations are observed

I dA = A
A

I xdA -° 
A

= Polar moment of inertia 

about shear centre.

the potential energy Uy reduces to

L,
u« = t ['V (^^-^9“'?'

Jo L

tZ^A^'p'- ^P' J ^



The potential energy then becomes

L
^2 [ Erlu^11 *Et<I^ij\ ErTj3 -+GrKp - okA^u+v'J

-26^Ay0lip 4-2 ^A^'^ - ^IpP* J ^ (2.51)

From the theorem of stationary potential energy the Eulerianiquaticns

(2.52) are obtained,

ErIyA<5jAiA%AyX =° (2.32a)

E-^lx^SiA-u-C^A^p" = 0 (2.52b)

M yX-^ AxV+ Ett^c^ - Gtk) ^ 0

2.5 COLUMNS WITH ONE .EX 3 OF SYMMETRY.

For sections like channels, if there is symmetry about tho x axis

Y is zero. Then.



r- -r IV - a 11 — . »
Mx^ + ^V - ^Axop = 0

— t^AxoU -+Ey"TP -f^lp-G-rK)^' =0

(2.33b)

(2.35c)

Equation 2,53® yields

(2.p4)

Equations 2.53b and 2.3Jc do not contain “u” but only v and ”P”. This

means in tho direction ”y” buckling and twisting are intertwined, and

tho stress ”0 ” obtained from the conventional theory, viz

0, =

is not correct.

If simply supported ends aro only considered for x = 0 and x = L , 

■ * 11
u = Q, 0 e 0, u = 0, p = C, are tho boundary conditions which help

reduce the constants of integration from 8 to 2.

”v and ”3 ’ may be expressed as

al = C( Sin rwnb , p s Ca Sin ^

If this value is used in tho original differential equations nonvanish­

ing values of ”v" and ”p” are possible only when the determinant of their 

coefficients vanishes. The critical stress can bo expressed as

(T ILEX• 3^ = (i^
where R^, is the equivalent radius of gyration obtained from tho Quadratic

relation.
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and T is tho radius of gyration about y axis.

If the Poisson's ratio for steel is assumed 0,30 and tho ratio

0 .

the expression for v_ becomes 
P

J— -t-OO39O±-£2-
If. If

(2.57)

Tho equivalent radius of gyration assumes tho fora

(2.38)



0-^) where

7^ is the polar radius of gyration about the centre of shear. Winter, 
x 2

Chajes and associates call ( 1 - 7^) the interaction coefficient K. 
o'

It con be appreciated that to keep 7' large the value of this coeffic­

ient of interaction should be large although this is not a direct

relationship or proportionality. It is possible to calculate deform­

ation corresponding to the roots of the qu-dratic equation in 7^(2.j2) 

and the centre of rotation for the section is found to be

v2- ■

if torsional stiffness of a section is small 7 is close to 7^ and the 

centre of rotation can bo assumed to merge with tho contra of shear. 

The formula

can bo used for end conditions other than pinned by substituting tho

effective lengths as in Euler formulae for simple buckling in flexure.

2.6 Recently, Winter^ and his team have enlargedon the Timoshenko 

. 12 .
Goodier approach. For singly symmetrical sections tho critical lead

in torsional flexure is given by the tiro roots of tho quadratic
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To ( P-PxXP-P^) - P^- o 
which can also bo writton as

whore P = flexural buckling load

Pure torsional buck-ling lead

harping stiffness

Shape factor where x is the 
o

distance between the centroid

and shear centre and Y is the o

polar radius of gyration about the

shear contra.

P a critical load

For P to have a large value the factor ;> the coefficient of interaction

lias to bo large. rhe largest veluo of K.will be unity when ”x ”
o

onuals

zero, i.o. when tho shear centre coincides with the centroid as in doubly

symmetrical sections. However, critical load P depends dco upon tho

critical load in pure torsional buckling (i'^) and trie critical load in 

pure flexure about axis YY (P,.), The values of P^ and P^ arc also 

governed by tho cross sectional geometry. Shus an increase in the coeff-



iciont of interaction ”K" alone will not neon a higher critical stress

in torsional flexural bucklingo Tho coefficient of interaction furnishes

only an idea of closeness or otherwise of the values of the critical load

to the torsional critical load P^. Coefficient of interaction unity 

implies that the crippling load in torsional flexural buckling is the

sane as the crippling load needed to cause budding in torsion <v* In

this case P equals P^. Smaller values of "K^” imply that budding will 

be due to combined bending and twisting.

2.7 SCOPE OF THE PRESENT INVESTIGATION.

The material used in the present investigation was G.I. sheeting 

of U.S. gauge 24, of thickness 0.02>9”o The length available for column 

testing on the testing machine was only >5 inches between tho platens. 

A channel section 8" x 4” was chosen so that failure by flexure and torsion 

2
may result. It has been established elsewhere that combined bonding 

and twisting is likely to occur in short lengths of columns of channel 

cross sections. (Besides this, a section of these cross sectional dimen­

sions, when fully analysed for buckling as a column and as a beam, could 

be used us a structural element for single storey ridged portal frames). 

The present phase of the investigation covers budding under axial compress­

ion only. Another noteworthy feature of the sections studied in this 

series is tho very high thinness ratio, i.e., the ratio of tho widest plato 

in tho cross section to its thickness. The actual value hero is 335,

calculated on the web width of 8 inches.
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2.8 The significant geometrical constants for these channels with

circular lips at the ends of the flanges, and channels with 4 circular

lips in their cross section, have been computed by using nondimensional

parameters. The parameter Q is the ratio of the web width to the flange

vridth. and the parameter R is the ratio of the radius of the bulb to the

flange width Thus Q and R inter-relate the flange, the circular lips

and the web in respect of their dimensions. Except for the radius of

gyration for pure torsional budding (R.) and that for torsional flexural 

budding (R^), all other quantities are linear functions of the thickness 

of the sheeting. R_, R„ vary as ”t * ”, as obtained in equation 2,35.
p Xi

The very small thickness of sheeting, viz. 0.0239”, does not influence

the values of R and R_, significantly and this influence has been ignored 
P

without much loss of accuracy. In attempting to rationalize a design

procedure, the equivalent radius of gyration concept used by Chwalla and

other European investigators is employed. This would lead to an expression

for critical stress in torsional flexural buckling ”o ’’ 
c

|TEt

where ”1/R'' is the equivalent slenderness ratio and 11 is the Tangent

Modulus of the material

and Rp, in magnitude for 

thickness is small as in

In general, the value of R$ is smaller than R 

short lengths of open cross sections. When

the present case, R^ remains less than R even

for longer lengths. This is where thin walled sections differ from hot

rolled sections on account of their thinness. Table 2.8 shows tho value

of R , R , R , R for different cross sections and also the ratio R
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TABLE 2.8

Section

8 *4

R 
X

R 
y

Ep re
R? / A 
E w Recarks 

&
Serial Iio.

lie"
3.26 1.59 1.068 0.973 0.0485 1

3.448 1.664 1.159 1.05 0.0575 2

--^6" 
8 3.382 1.560 1.143 1.017 0.0540 3

3.284 1.610 1.310 1.160 0.0605 4

2?
3.430 1.538 1.119 0.914 0.0437 5

—ol*

3.41 1.674 1.330 1.155 0.0690

6
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A being the area expressed in terms of the developed width of sections

concerned. The ratio R./A takes into account the different cross section- 
K W

al areas of the sections and reduces it to a single parameter for compar­

ison. The length being constant, critical stress is directly proportional

2
to Rr,. The following is the order in which the sections can be placed 

starting from the section having the largest value of this parameter, and 

proceeding in the descending order.

1,

2.

Channel No. 6

Channel No. 4

(Table 2.8)

)( do

3. Channel No. 2 ( do )

4. Channel No. J ( do )

5. Channel No. 1 ( do )

6. Channel No. 5 ( do )

2.9 OFTIWUH SHAPE

Using the I.B.M. 7040 computer the following geometrical 

properties were calculated for varying values of non-dimensional para­

meters Q and R:

1. Equivalent radius of gyration RE

2. Radius of gyration for pure torsional buckling Rp

J. Warping Stiffness ” T1 ”

Of the above quantities, R? and Rp were computed as ratios, which, when 

multiplied by the flange width in any system of units, would yield the 

corresponding radius of gyration. Warping stiffness ” p ” is of the 

sixth power of linear dimensions, and the non-dimensional coefficient will
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have to bo multiplied by the sixth power of the fiance width<> nil values 

refer to trait thickness of shooting. For any given sheeting the value of 

the warping stiffness obtained from the curves will have to bo further 

(multiplied by the magnitude of the actual sheet thickness. It should be 

borne in mind that a and R, relate the flange width, web width and the 

radius of the bulb.

Figs. 2.6(A) and 2.6(B) show the variation of the non-dinensional 

parameter governing equivalent radius of gyration with varying values of 

O and R. Big. 2.6(A) refers to a channel with flange bulbs only, and 

this fact is narked on the figure for easy identification. Fig. 2.6(B) 

refers to a channel with 4 bulbs and contains a sketch of the section for 

identification. Referring to Fig. 2.6(A), for any value of Q loss than 

0.625, increasing values of parameter R (increase in bulb radius) reduces 

R,, except that when R changes from 6.09 to 0.12, R.; tends to increase in 

this range. In tho range of y from 0.625 to 1.5u, for all values of R, 

the parameter governing R. increases with Q. For any given 0 in this 

range increase in bulb radius results in decrease in A' . For a value of 

Q greater than 1.5 and less than 2, tho curve corresponding to R = 0.C3 

has smaller ordinates than tho curve for R = 0.06. On tho whole, in the 

range of Q from 0.625 to 1.50 change in radius results in a larger change 

in I^than in the range of Q from 1.50 to 2.0. In tho range of ■< from 

1.50 to 2.0 tho curves for R = 0.05, O.C6, 0.09 orc very close to eno 

another. Liven the curve for R = 0,12 doos not show a much smaller ordinate 

for R. than tho rest nt 0 = 2.0.

Referring to Fig. 2.6(B) for the channel with 4 bulbs, the curves 

for R^ for various radii R = 0.05, C.06, C.C9, 0.12 are very close to one



1

2^
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another# Tills means that the influence of change in bulb radius is much 

less evident in this case than in the channel considered in Fig. 2.6(A). 

In Fig. 2.6(3), in the range of Q = 0.5 to 0.75, the largest parameter 

for equivalent radius of gyration is given by the smallest radius of 

bulb R = 0.03. From Q = 0.75 bo Q = 1.44 the largest value of R_, occurs 

with a radius of bulb 0.06 times the flange width. From Q = 1.44 to 

Q = 1.875, a radius corresponding to R = 0.09 provides the greatest li.„ 

Tron Q = 1.875 to Q = 2,0, radius corresponding to R = 0.12 furnishes 

the greatest value of 3„,

Comparing the graphs in Fig. 2.6(A) and 2.6(3), the curves in 

(3) show greater ordinates than in (A) for the values of Q between 0,625 

and 2. Comparison is made in the following of some specific points to 

emphasize this trend.

At a radius of R = 0,03, for parameter Q = 1.0, the channel with 

2 bulbs (Fig. 2.6(A)) has an equivalent R„ = 0.1755. The channel with 4 

bulbs (Fig. 2.6(3)) has a value 0.1395. At R = 0.C6 and Q = 1.0 the 

values for the channels with 2 bulbs and the channel with 4 bulbs are 

0.164 and 0.196 respectively. At the same ratio 0 = l.C, at R = 0.09, 

the two values are 0,118 and 0,1375 respectively for the channels in 

Fig.s 2.6(A) and (3). At R = 0.12, with 9 at a value 1 again, the values 

for Rg are 0.10 and 0.1745 for the two channels.

The change in this parameter defining the equivalent radius of 

gyration at a constant value of 0 = 1.5 can now be studied. The values 

referred to here are again in the same order, viz. value for 2 bulbed 

channel (Fig. 2.6(A)) followed by the value for 4 bulbed channel (Fig. 2.6(B)). 

At R = 0.03, the values are 0.213 and 0,2315. At R = 0.06, the values are
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C.2J15 and 0.2455* At 2 = 0.09 the values are 0.202 and 0.253* At

R = 0.12, tho values are 0,1775 and 0.2415*

At a constant value of Q = 2.0, at R = 0,05, the values for R-, 

are 0.247 and 0,257. At R = 0.06, the values are 0.253 and 0,276. 

(Fig. 2.6(A) and (B) ), At R = 0.09, the values are 0,244 and 0.2cJ, 

and at R = C.12 they are 0.228 and 0.215 respectively. (See also 

Table 2.8).

To emphasize the influence of shape on R„ and R,,,

icular section, computations were made for 8" x 4” and 4” x 2” channels

v/ith 2 bulbs and with 4 bulbs. The curves showing the actual values of

the two radii of gyration R,, and R in inches can be seen in Figs. 2.6(C) 
h p

and 2.6(D). Referring to Fig. 2.6(0), the 8” x 4” channel has maximum

R^ when the radius of the bulb is 0.2”, and the 4” x 2” channel has 

maximum at bulb radius of 0.07”. It is also to be noted that the curves 

for R„ and Rr fall off steeply from the maximum and for radius of bulb 

0.8” to 0.9" both the radii of gyration are sensibly the sane for an 

8" x 4" channel. For a 4" x 2" channel the two curves are very close to 

each other in the region R = 0.3” to 0.4".

Referring to Fig. 2.6(D) pertaining to a channel with 4 bulbs, R^ 

is a maximum at a radius of bulb equal to 0.35 inch for 8" x 4" channel 

and at a radius equal to 0.2" for 4" x 2" channel. Compared to Fig. 2.6(C), 

the curves in Fig. 2.6(D) fall away at a flat slope from the maximum. This

means that the reduction in equivalent radius of gyration with increasing 

radii of bulb is more gradual in this case. The curves for equivalent 

radius of gyration R_, in this case, are well below those for R„ indicat- 
p

ing that a pronounced torsional flexural buckling is more likely in such







51

sections than in those with 2 bulbs.

Fig. 2.7(A) and (B) shows that the variation in the non-dimension- 

al parameter governing warping rigidity ”p ” increases initially, 

reaches a maximum and decreases with further increase in radius. To 

obtain warping rigidity of a section the parameter ” p ” shown on Fig. 

2.7(A) and (B), will have to be multiplied by the sixth power of the flange 

width first, and then further multiplied by the thickness of sheeting. 

Comparing maximum ordinates at Q = 1.0 and Q = 2.0, the values of ” p ” 

are 0.09 and 0.54 respectively. Hence, increase in Q has a significant 

effect on ” p ”, The maximum warping rigidity for Q = 2.0 occurs at a 

radius of 0.09 times the flange width.

Referring to Fig. 2.7(B), for a 4 bulbed channel, the constant 

” p ” continuously increases with R. This increase is steep for higher 

values of Q of 1.5 and 2, and is flatter for values of Q of 1 and 0.5. 

For instance, at a radius per unit flange width of 0.04, ” T ” for 

Q = 2.0 is 0.61 and for Q = 1.0, it is 0.155. Here also the influence 

of increase in Q is significant. Comparing Figs. 2.7(A) and 2.7(B) it 

can be seen that the values of the warping rigidity for the 4 bulbed 

channel are always larger than those for the 2 bulbed channels. At Q = 1, 

the maximum value for coefficient "p ” is 0.09, corresponding to a bulb 

radius of 0.04 times flange width (Fig. 2.7(A)). The 4 bulbed channel, 

however, has a value of 0.105 for the values Q = 1.0 and R = 0.04.

At Q = 1.5, the maximum value for the coefficient ” P ” is 0.255 

(Fig. 2.7(A)) at a radius equal to 0.065 of the flange width. At 

corresponding value of Q and R, the 4 bulbed channel (Fig. 2.7(B)) has a

” P ” value of 0.45.
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At a value of Q = 2.0, the maximum value for " P ” in a 2 bulbed 

channel (Fig. 2.7(A)) is 0.54 at a radius of 0.09 times the flange 

width. For the 4 bulbed channel for the corresponding value of Q and R, 

the value of ” p ’’ is nearly 1.0. irom the above it may bo observed 

that increase in ” p ” is much larger in 4 bulbed channels, notwithstand­

ing its cross sectional area being larger, than the 2 bulbed channel. 

One reason for thia is that in the case of 2 bulbed channels the centroid 

tends to shift away from the web plate for increasing bulb radii, where­

as in a 4 bulbed channel, the web bulbs balance the flange bulbs and 

help maintain a small distance between the web and the centroid, even with 

increasing radius. Study of the influence of geometrical shapes on the 

warping stiffness can best be made only by preparing graphs as in 2.7(A) 

and (B), for varying proportions. The variation in the warping rigidity 

does not bear a simple relation to the cross sectional dimensions of the 

channel, and computations must bo made for each different combination 

of web, flange, and lip dimensions. Because of this, no generalisation 

can bo made of the influence of geometry on the warping stiffness.

Considering the influence of shape on the "coefficient of inter- 
2

action”, ( 1. - Av ), Fig. 2.8(A) provides a comparison between two

different sizes of the two bulbed and 4 bulbed sections. Both for 8” x 

4” channel and 4” x 2” channel the value of the coefficient of interaction 

is greater when 4 bulbs are provided. Further, increase in radius causes 

a decrease in the coefficient of interaction in both cases, 'rhe rate of 

decrease is larger for smaller sections than for larger one, as cun be 

seen from the slopes of the descending sclents of the curves, another





O1 
1^
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significant point is that with increasing radius of bulbs, tho coeffic­

ients of interaction for both 2 bulbed and 4 bulbed channels approach 

each other closely. From the point of view of the constant of inter­

action ”Iy" which should be high for a greater critical load, there is 

no significant difference between the two types of channels at larger 

radii of bulbs. (See the range 2 = 0.5 to 0.9 for 4” x 2” channel and 

2 = 0.8 to 1.0 for tho 8” x 4” channel, in Fig. 2.8(A). Figure 2.8(A) 

and (B) indicate that the channel sections 8” x 4’’ and 4” x 2” sections 

show a coefficient of interaction less than unity. This would neon that 

these sections are likely to fail by torsional flexural buckling. This 

was an important criterion in the final choice of sections for experiment­

al work.

2.10 Buckling collapse of a column is, in general, a combination of 

local and overall buckling. Tile problem of demarcating the regions of 

possible local buckling and possible overall budding is mathematically 

very complex and remains to bo solved. Only in the case of equal angle 

sections do tho criteria for local and overall budding yield the same 

critical stress. If local buckling occurs first, resulting in failure, 

it should bo possible to employ an empirical approach for such sets of 

columns. Final collapse is a combination of local and overall budding, 

in all but very short columns. Whether local buckling or overall buckling 

is the first to occur in tho proccsa of loading is an important consider­

ation for assessment of column strength.
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2,11 As a sequel to the foregoing theoretical study of the behaviour

of bulbed channels, experimental work was planned and carried out as

outlined in the following chapter. It can be seen from Table 2.8 that

the equivalent radius of gyration IL, is less than the minimus radius

°f gyration in flexure "R ” in all the sections considered. Hence, it

may be expected that the sections chosen for tests would buckle in the

torsional flexural mode, rather than in pure flexure. The purpose of 

tho experimental work was to determine if failure did take place in the 

mode anticipated or not. Further tests would demonstrate the actual

behaviour of such columns.



CHAPTER III

EXPERIMENTAL WORK AND RELATED DISCUSSION

5.1 Ae a prelude to detailed testing with complete instrumentation, 

a number of different channel shapes were tested in an Olsen screw 

type testing machine. The maximum length of column that could bo 

accommodated on the machine was 56 inches. Fig. 5*1 shows the diff­

erent 8” x 4” channel shapes chosen for the tests. These shapes arc 

as follows;

(a) Plain channel 8” x 4”.

(b) Channel 8” x 4" with half inch diameter bulbs at the ends 

of flanges.

(c) 8” x 4” channel with bulbs at the ends of flanges, and 

also at the junction of webs and flanges. Diameter of 

bulbs is 1/2 inch.

(d) 8” x 4” channel with triangular lips of the same developed 

length as a half inch bulb.

(o) 8” x 4” channel with half inch diameter bulbs at the 

junctions of webs and flanges only.

(f) 8” x 4” channel with inward lips each equal to the developed 

length of half inch bulb.

57
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3.2 Ttie results of preliminary tests are shown in Table 3.1 Actual 

record of test results is given in the Appendix. The values shown in 

Table 3*1 are average values of the loads. Section (c) carried loads 

in the range of 8,500 to 9,^00 lbs in fully instrumented tests carried 

out later. In this case the values in the preliminary tests were lower 

because of initial imperfections. These being the first such sections 

attempted in forming, some denting and tool marking -was unavoidable, 

especially in forming the web bulbs.

From the preliminary results it was decided to conduct fully 

instrumented tests only on sections (b), (c), (e), and (f), shown in Fig. 

3.1, so as to study circular bulbs and straight lips, and compare their 

relative influence.

3.3 The purpose of the experimental investigation was to;

i) observe the influence of cross sectional shape on ultimate 

strength as a strutt.

ii) observe the mode of collapse and classify it as local budd­

ing or overall buckling.

iii) study the out-of-plane deformation of the web and the flanges 

at various stages of the leading to see the extent to which 

they could be allowed without being aesthetically unaccept­

able.

iv) study the distribution of stresses in the cross section, and 

to determine the influence, if any, of the bulbs provided 

in the cross sections.
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FIG 51

TABLE 3-1

5cchon.
2—° <4----

Pult m

• Lbs
2758 6500 5360 6480 6500 6150

Remarks 2 -fesE A-tests 2 Fes Is 2 tests 4-tesls 2 tests
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FIG. 3.2

FIG.33.
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v) arrive at a semi-empirical approach to evaluate the strength 

of such columns.

vi) investigate the possibility of using these sections as struct­

ural skeletons for lightly loaded structures.

5.4 CONDITIONS OF TESTS

At mid height of the column, J/8 inch Budd foil type resistance 

strain gauges were mounted at locations shown in Fig. J.2(a,b,c,d). 

Except on the bulbs, one gauge was mounted on each face of the web or 

flange plate, with the idea of separating the direct and flexural strains 

for the analysis. The gauges were all Type C-6 with gauge factor rang­

ing from 2 to 2.1. The gauges were all mounted parallel to the longitud­

inal axis of the column. A multiple switching and bridge unit with a 

galvanometer indicator was used for balancing the gauges at each load 

stage. Two dial gauges were mounted at right angles to the web plate to 

measure the relative rotation of the section at mid height, and one more 

dial gauge was provided at the middle of the web for measuring the out-of­

plane displacements of the web. Photograph >.l and Fig. J.5 show the arrange­

ments. By measuring the difference in displacement at gauges (1) and 

(2), and dividing it by ”1$”, their distance apart, the rotation ” ft ” is 

directly obtained in radians. It is to be noted that by this means overall 

lateral displacement normal to the web is cancelled out of the measurements. 

An attempt was made to obtain even bearing at the ends against the machine 

platens, by sand papering and smoothfiling. All the tests were conducted 

with a constant cross head speed of 0.0025 inches per minute. At each
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PHOTOGRAPH 3.1

ARRANGEuiENT POR MEASURELZM’ OP ROTATION OP CROSS
SECTION
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PHOTOGRAPH 3.2(b)

CHANNEL WITH POUR BULBS Al PAI LURE



$5

chccon load level tho screw drive was declutched and gauge readings record­

ed.

5.5 Since tho preliminary tests had shown that all sections collapsed 

by local buckling, it was decided to have flat ends for tho main tests 

also. Photographs 3.2(a) refer to failure of section (b) with two bulbs 

at ends of flanges, 3.2(b) refers to failure of section (c) with four 

bulbs. Photograph 3.2(c) shows tho mode of failure of plain lipped 

channel. It Day be noted in tho photograph that the web bulbs arc all 

still straight when tho flange bulbs have gone into one half wave, and 

the flanges have budded considerably.

®io direct longitudinal unit strains in the various sections are 

represented in Figs. 3.3(a,b,c,d,c,f,g,h,k). Figs. 3.^ (a,b,c,d,e) show 

the flexural strains at tho same locations. Fig. 3.5(a) and (b) shew 

tho distribution of stress at nominal stress levels, shown or. them and 

provide an idea of the distribution of stress over the cross section.

3.6 The movements of the middle cross section measured by tho throe 

dial gauges mounted as already mentioned, aro recorded in Table 3.2. 

The figures mentioned hero refer to tho maximum values observed. It may 

bo clearly seen that tho rotation is very small. host of the rotation 

occurred during end stages of loading. The maximum out-of-planc displace­

ment doos not exceed 5 times the thickness of tho shooting, i.o. 0,1195 

inches. But duo to tho square buckling patterns on the column even this
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Table 5.2

Section "p" 
Degrees

"614”
Inches

—0
0.06 0.117

0.25 0.028

0.29 0.067

0.12 0.072
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movement has a disconcerting appearance. A movement of up to 5 times the 

plate thickness may go unnoticed, and this was not exceeded until about 

80% of the load capacity was reached. Final buckling of plates at fail­

ure, occurred generally at locations other than midheight of the section, 

where strain gauges have been mounted.

5.7 Figs. J.4(a to e) show flexural strains in various flange and web 

locations. The meandering shape of the curves indicates the changes from 

one mode of buckling to the other. These changes are not occurring at 

the same nominal compressive stress in all cases, but occur at various 

stress levels differing from each other. The least flexural strains at 

flange positions Fl and F2 occur in a 4 bulbed channel. Because of tho 

waviness of the curves we cannot conclude whether any flange location 

always displays greater strains than the rest in flexure. The camo cond­

itions also exist in the flanks of the web hl and VS. The centre of tho 

web WM has a low level of flexural strain in all cases except in the 

channel with stiffening bulbs in the flanges, in which case the strains 

are 4 times as largo as in the rest of the sections at this location. 

(Fig. J.4e).

Stiffening of the flange s with bulbs appears to bo preferable to 

using straight lips, because tho straight lips themselves got into a 

number of half waves whereas the bulbs remain straight until they buclQe 

into a half wave just prior to the ultimate load.

It has been suggested^’^ that the strength of a stiffened sheet

may be approximately computed as tho sum of the strength of the stiffeners
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and of tho individual sheet panels. The bulbs, which rerain straight, 

experience Greater intensities of stress than the budded flanges and 

webs which take up comparatively smaller stresses. The above study of 

flexural strains serves as a measure of budding in the web and flange 

plate elements in various sections. Ejqoerimental values of flexural 

strains for such thin trailed sections stiffened with bulbs, have not 

been presented earlier elsewhere. Larger number of tests nay reveal a 

consistent pattern of behaviour in these sections, conclusively. The 

present tests do not reveal any consistent trends that could bo 

Generalised.

3.8 Table J.3 gives comparative longitudinal direct strain levels 

at various flange and web locations, taking strain at the web or flange 

bulb as the basis of comparison. Tho following can be observed from 

tho Table 3.3. In tho following, strain at 71 is referred to as C™, 

and at Bl as and so on.

i) As nominal stress increases the ratios "J^d" , '^£”» etc. decrease. 

- eBl EB4

Hence at higher stress levels the bulbs boor a much higher proportion 

of the axial strains. Since the order of strains measured is well with­

in the elastic range, virtually in all cases we can conclude that stress 

levels at bulbs increase more rapidly than at other locations. This 

means a proportionately larger part of the load is borne by tho bulbs at 

higher levels of loading.

ii) At the stress level, 10,COO and 12,COO psi tho ratios are mostly
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less than unity shoving that the largest stress intensities occur at the 

bulbs. However, at a lower nominal stress level, 5,000 psi, bulbs have 

smaller stress levels in the channel with flange bulbs only. In the 

channel with 4 bulbs also one flange and one web location show hitler 

stress levels than the bulb. Since these points are not consistent with 

the general, trend it could be that they are affected by residual stress­

es. Hence the distribution of residual stresses across the cross section 

may have to bo studied in detail by employing slicing techniques. Yield­

ing due to combined direct and flexural stress always occurred at points 

other than the bulbs, and caused failure of the whole section, Ulis 

demonstrates the effectiveness of the bulbs.

In most of the test specimens with bulbs it was observed that the 

strains measured in the bulbs were consistently larger than those in the 

web and flange plates. However, the flange shown was recorded as being 

higher than bulb strain in one of the channels with 4 bulbs. This may be 

due to the distortion undergone by the flange bulb. The bulb strain could 

be measured ’with only one strain gauge on the outer surface of the bulb, 

and the readings could have been vitiated by even the slightest bending 

of the bulb. A single strain gauge can give longitudinal strain, only if 

it is mounted along the neutral surface of the bulb section. The strain 

gauges were mounted on the bulb at a point farthest from the web, i.e. the 

outer terminal of the diameter of the bulb parallel to tho XX axis. This 

was considered adequate as lateral buckling was anticipated across the XX 

axis, and the gauge would then be at tho neutral surface. But the curves 

relating bulb strain to tho nominal compression in tho section ore not 

straight as they would have been if the gauges wore exactly at the neutral
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surface of tho bulbs or lips.

3.9 To dotornino the Young*c Modulus of the tutorial of the channel

sections, throe coupon tests wore conducted which yielded on average

value of 28 x 10^ psi for E and a static tensile yield stress of 4o,45G

pd. fig. 3.7 chows the Tangent modulus corresponding to various stress 

intensities in the transitional range between the limit of proportion­

ality and the static yield. As cun bo seen on the figure, these are 

also based on the static values of the stresses at a given strain.

3.10 In analysing stiffened plates, in a semi-empirical canner, a part 

of tlic plating adjoining the stiffeners lies been assumed to act with the 

stiffener in resisting axial loading. Godes of practice in Britain, 

U. G. A, and elsewhere have laid down rules for computing effective widths 

of plating adjacent to stiffeners. Tae ratio of effective 'width to the 

total width of plating in the crocs section has been related to the non- 

dimensional factor ”^_/e~ ”, or ” k^1’. In the present case, at every 

hvo1 Eve

nocanal suress level, the efkective wicth ex flange and web plates was 

computet! as that needed to sustaxxi the oxxal xoae at a stress s^ual to 

the average stress in the bulbs oi- lips. It should be Lorne in .'1111 that 

those bulbs and lips experience the largest stresses. These values of 

effective width can bo compared to the ..inter curve"*' at present adapted 

by the American Institute of Lteci Construction. Lae curve is bus si on

the formula;
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fee = 
b

where bQ = effective width of flange and web plates

b = tet □! widths of flange and web plates

£ = Young’s I!odulus

a = maximum stress in section

t a thickness of plate

applicable within limits of "HF ” between 0.2 and C.6. Tho original 
o'

formula proposed by Vinter was of tho form below; yielding lower effect­

ive widths than formula 3.1.

£c = 1-9-L/Zf|- 0-5741.fir) 
b bverk bio-/ (3.2)

Tlio non-dimensional parameter "-pj— ” covers the effect of thinness of

tho sheeting in relation to width, and also includes the buckling

characteristic. That is tho reason why investigators into this field

have used this parameter as a convenient variable. In tho present series 

of tests tho lower limit of the parameter wac 03 l°w 33 0,0835» 

and as high as 0,668, The ..'inter curve is recommended for use in the 

range of ”l_f^ ” *o, 0,2 to 0.6, because, below a ratio of 0,2 tho 
O'

intensity of stress will bo very high and tho effective widths obtained 

from the formula nay not bo realised; also when ” t_ E ” is 0.6 and
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above the stress is so low that the whole section is deemed to be effect­

ive.

Figs. 5.6(a) and (b) have been made from the experimental results. 

Fig. 5.6 (a) gives the points plotted considering the individual bulb or 

lip separately in the various sections. The values of parameter 

”b/t ^a/E" in Fig. 5.6(a) are plotted for each lip or bulb at various 

nominal stresses. Fig. 5.6(b) relates to the average values for the lips 

and bulbs at various nominal stress levels. In both figures the constant 

"C” which defines the effective width of the section in relation to the 

total width of plating in web and flanges, has been plotted for varying 

values of the non-dimensional parameter ”b/t x/ o/E”, The non-dimensional 

constant "C" is derived from the following relationship:

Effective width of section = Developed width of bulbs + C (Total width 

of flange and web plate).

In this relationship, the thickness of the sheeting ”t” has been eliminated 

since it is uniform. The effective widths, therefore, are in the sone 

proportion as the effective areas of the section. In Fig. 5«6(a) and (b) 

the Winter curve is plotted alongside for convenient reference. All the 

points from the tests lie above the Winter curve showing that 'Winter's 

proposals are conservative. Also shown on the same two figures are three 

points, corresponding to three different sections, plotted to indicate 

the values when the stress at the bulbs reaches the yield stress for the 

material, vim. 40,450 psi. These three points are hypothetical since 

stresses recorded in the bulbs just prior to failure were less than the 

yield stress, and failure was caused by yield at a section where strain 

gauges were not provided. The trends observed in these curves are similar
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to those reported by earlier investigators,1^ It is to be noted that 

the points are generally located higher than the Winter curve, giving 

a greater effective width than anticipated by '..’inter. This could be a 

distinct feature of such thin sheets like the present one (C.0239"), and 

could bo exploited more fully than at present. Lewis *' points out 

tests carried out on corrugated steel sheet panels yielding tost results 

which arefar above the Winter curves. The "b/t" ratio of the section 

tested by Lewis was 250, compared to 75 which is normally allowed by 

building codes for load bearing members. At this value of "b/t" (75), 

the test results would be expected to be closer to the 'Winter curve. 

Tlie "b/t" ratio of the sections in the present series of tests is 555, 

6 7 
much larger than oven the value for the roof cladding referred to. *

5»H To determine whether the strain gauge readings on the whole rep­

resent the state of overall strain and stress in the section accurately, 

the following comparison was made. The average strain in the longitud­

inal direction was taken as the average of all the measured longitudinal 

strains at a given nominal stress. The stress corresponding to the 

average strain recorded was then compared to tho nominal stress, which is 

obtained by dividing the load by the cross sectional area of the strut. 

Table 5,4 contains figures pertaining to two different nominal stress 

levels.

The section with no flange bulbs, the last one in Table J.4 

indicates that more gauges in the outstanding flanges would be necessary, 

so that tho low strains on these may bring down the average of the strains
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Section Nominal Stress Level

KSI

Stress level 
as computed 
from the aver­
age of record­
ed strains

KSI

___ o

10.9

8.72

8.367

6.51

10.9

8.72

8.17

8.22

10.9

8.72

9.12

7.71

c

1 .

10.9

8.72

14.17

12.80

Table 3.4
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measured. In the channel with straight lips, the average measured values 

are smaller than the nominal stress. This would indicate that sore gauges 

should have been located in the vicinity of the comers. In the above 

tests, gauges wore placed 1” from the corners, it being assumed that the 

influence of edge restraint could bo adequately measured at this position, 

which is only 1/8 of the web width away from the corner.

The corners in the sections with no bulbs constitute boundaries 

between the web and the flange plates, which have different aspect ratios, 

and go into different modes of budding as the loading advances. In a 

strictly physical sense, compatibility demands that the stress at the 

corner could have only one value, and this could be read by mounting a 

gauge right at this position. In the sections with corner bulbs, the 

gauges will have to be always provided as these stiffeners constitute a 

distinct and separate structural part of the cross section.

3.12 From what has been observed during the tests it would be reason­

able to assume that bulbs arc fully effective until failure is caused by 

the yield stress being reached at some point in the cross section; and 

that parts of the web and the flange plates adjacent to the bulb make a 

partial contribution to the ultimate strength. It is concluded that many 

more strain gauges at closer spacing will be required to obtain a better 

evaluation of variation of stress in the cross section.

Table 5.5 shows the various values of ”C" for the different sections 

talcing a yield stress of 40,450 psi as the basis of the calculation. The 

thickness of the sheeting has been eliminated as before and reference is



Table 3.5

Section Load 
lbs.

Total width 
to sustain 
loud at 
40,450 psi

Developed 
width of 
bulbs

Total 
area 
of 
plates 
only

"C"

6600 6.4" 3.142" 16" 0.203

5600 5.79” a. 16" 0.362

8500 8.8" 6.283" 16" 0.157

c---

6600 6.4" 3.142" 16" 0.203

(These values of "C" are shown on Fig. 3.6 at ” ^y^ = 12.70 ", and 

constitute a minimum value for the effective width at the hypothetical 

maximum load)



made to widths alone. It should be noted that the coefficient ”C" applies 

only to the effective width of the plates and does not include the 

developed width of plating in the stiffening elements such as circular 

or triangular lips. Circular lips on the web or the flange are considered 

fully effective to the last.



CHAPTER IV

COMPARISON OF EXPERIMENTAL RESULTS WITH THEORY

4.1 Theoretical analysis had indicated that the channels considered

would fail by overall torsional flexural buckling. All the channels 

tested failed by local buckling.

4.2 Analytical study placed the sections in the following descend-

2
ing order of strength, the criterion being the value of (R„ /A ,) in each

case:

i) Channel with 4 bulbs

ii) Channel with 2 bulbs at the ends of the flanges

iii) Channel with triangular lips

iv) Channel with straight lips

v) Channel with bulbs at the junctions of web and flanges only.

Based on the tost results, the following is the descending 

order of strength of the sections;

i) Channel with 4 bulbs

ii) / Channel with 2 bulbs at the ends of the flanges

\ Channel with bulbs at the junctions of web and flanges

iii) Channel with triangular lips

iv) Channel with straight lips.

97
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It may be seen that the channel with bulbs at the junction of web and 

flanges is stronger than predicted by theory. One possible explanation 

may bo that due to the heavy flange buckling even at small loads, the web 

shares most of the load. This was indicated in the tests by larger web 

strain levels. Winter recommends that the strength of an unstiffened 

flange should be totally ignored, it may be also that the dimensions 

8” x lp' with 1/2” bulbs, results in nearly the sane strength for channels 

tri.th and without flange bulbs. This could be a coincidence. Only tests 

tri.th channels of different dimensions, and different ratios of web to 

flange can establish the superiority of the one or the other.

4 .J Table 4.1 shows the comparative theoretical and experimental 

strengths, the strength of a straight lipped channel being assumed to be 

unity. The probable causes for the discrepancy between theory and the 

tests are discussed in the following paragraph.

4 ,4 All the specimens were tested with their ends flat on the machine 

platens. In the analysis, the equivalent radius of gyration refers to 

primary overall budding. Since this was not the mode of failure actually 

observed in the tests, the change of mode from primary to local budding 

could cause the discrepancy between theory and test results. If sections 

of larger slenderness ratio than in the present series were tested with 

their ends pinned or fixed, primary budding would have ensued, and there 

would probably be greater agreement between the analytical and experimental 

strengths.
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Section

Strength

Theoretical based 
on B_2 per unit width

Observed in

teats

No. of

tests

1.245 1.519 6

1.185 1.179 5

1.113 1.16 2

l.C 1.0 2

0.9025 1.179 3

Table 4.1



CHAPTER V

CONCLUSIONS

5,1 The tests conducted so far have shown that an 8” x 4” channel 

with 1/2” bulbs at the ends of flanges lias greater strength than a 

similar channel with plain lips, the cross sectional area of both the 

sections being the sane. The bulbed channel has 17,8^ greater ultimate 

strength than the lipped channel. The channel with four bulbs and the 

lipped channels can be compared by observing the ultimate load borne per 

unit width of the centre line of the plates in the cross section. This 

comparison shows the bulbed channel with four bulbs has 3^ more ulti­

mate load per unit width of cross section than the channel with straight 

lips. Channels with web bulbs only also proved to be 17.8^ stronger 

than plain lipped channels. Channels with triangular lips are 16^ 

stronger than plain lipped channels of the same cross sectional area.

5*2 The rotation of the midsection was less than half a degree. The 

failure was definitely in local buckling. The maximum out-of-plane dis­

placement of web amounted to 4.9 times the plate thickness. Up to oOp 

of the ultimate load the out-of-plane deformation remained within twice 

the plate thickness.

ICO
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5.5 Stiffening elements of triangular or circular shape have been

found to be superior to straight lips in enhancing the strength of a 

channel•

5.4 The values of the coefficient "C” defining the effective width

in relation to the parameter ”b/tJ o/E", are all above the curve

proposed by V/inter. The trends in the results show that the effective 

width concept could be applied to the type of sections under consideration.

5.5 The variation in effective width is dependent on the shape of

the stiffening elements

5.6 Ultimate strength of such sections is a function of the position

of the stiffening bulb or lip, and its shape.



CHAPTER VI

SUGGESTIONS FOR FURTHER RESEARCH

6,1 From the experience gained from the present investigations the 

following suggestions for further research are made in order of import­

ance, in the following paragraphs.

6.2 The present series of tests have shown that it will be necess­

ary to test similar sections over greater lengths or sections with 

smaller cross sectional dimensions over the same length, so that regions 

of local and overall buckling may be defined by the slenderness ratio, 

and the thinness ratio ”b/t”. The results of these tests could be plotted 

as functions depending upon the parameter "L/R^ x t/b”, which could 

simultaneously take into account both primary and local buckling. These 

tests should be carried out with the ends of the strut fixed in position 

and direction. This would enable comparison with the conventional theory 

based on overall buckling, and would also enable determination of the 

critical load by the Southwell method. But, where there is local buckling 

the end conditions are not likely to influence the results significantly. 

As we cannot determine, at the outset, whether buckling would be primary 

or local, it would be advisable to presume primary budding would take 

place and to make the ends of the struts either fully fixed or pinned.

102



Should local buckling occur the difference between different
end conditions

need not bo emphasized.

6.J Since residual stresses arc known to precipitate yielding at 

some points, and generally tend to distort the stress distribution duo 

to superimposed loading, it would be desirable to measure tho nature and 

magnitude of residual stresses by applying slicing techniques. Tho 

determination of these residual stresses would give the true stress 

carried due to loading alone at various points, and could bo used for 

comparison between oimiler sections, with identical shapes, but with 

varying metal thicknesses and bulb diameters. Hardening of tho material 

at tho corners and bulbs may also influence tho stress distribution. 

Hardening up to ^ over tho rest of tho section lias been reported.^ 

whether tills has any direct effect on tho test results is a topic for 

further research. Work hardening in thin sheets is yet to be investigated 

in detail, and work is progressing at Cornell University, and elsewhere.

6.4 In the present series tho sheet used was U.S. gauge 24 of thick­

ness c.0239”. Thio was chosen as it was readily available and could bo 

formed into the required shapes with a brake press available in the 

laboratory, ihrther tests will bo core helpful if the sheeting is of any 

of U.S. gauges 1G-14, which is likely to bo wore acceptable from the 

point of view of the building codes. Since the flexural rigidity of a 

pluto is directly proportional to tho cube of its thickn^- , 
^uican, bhiexer shoots
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nay experience much less out-of-plane deformation than in the present

case.

6.5 For the purpose of arriving at some form of design recommendation 

for such bulbed sections it would be necessary to test sections with the 

same overall dimensions, but made up of varying sheet thicknesses. This 

would lead to a more precise determination of the influence of sectional 

geometry on the crippling strength. For a given thickness of sheeting 

different overall dimensions nay be tried keeping the ratio of web to 

flange, and tho ratio of the radius of bulb to the flange width constant 

in each case, or in other words, conduct tests on geometrically similar 

sections. This would pin-point the significance of the thinness ratio 

"b/t”.

6.6 With regard to instrumentation, in future tests it is recomnended 

that a larger number of strain gauges be used over the cross section in 

general. In particular, gauges should be closely spaced together in tho 

vicinity of bulbs and lips, and corners. If foil strain gauges of smaller 

sizes are used, it should be possible to mount gauges as close as 1/4” 

apart from one another, and at other parts of the cross sections position 

them at intervals of 1/2”. It is felt this would enable a closer 

evaluation of the effective widths of the individual flange and web 

components.
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APPENDIX A (SAMPLE CALCULATIONS)

Shear Centre. W

— 6- • -

35/stance oF centroid from tueb ^ z&w^^^^ ^
13-2

Moment oF inertia a bond XX axis -

- 8/lZ -^ 4 x4x4~ ■+~^x I-G3 4-^x I-6 x3-z s ^O4>^ ffi 

Xo = 15/stance between centroid and shear centra

. (I-6*15.'3Z’I-6xZ 42x128 + '■% *8)/2o4-O9 = ^'^

lyy ^ ^^4 4- 8x1-5 4 2*1'6 xZ 5 * 48'667 M

Polar moment about shear centre ^

- ^0 4-03+ 4 8-6 6 7 ± I a-2 xXo =3 9 3-76/0*'

Polar radius of q a rat ton about shear centre Po

= F 393-76 ~ = 4-53" 

ft* = 3-Z6" Ry r 1-59"

Warping constant ^ ^ i
4- 3X*

= ^148-67 -+x-25xi9-zf 1- ^i)'] .-449JZ. in6

» 3f" /- 0-0239 J3 = 0-023°? T^n/Sma.
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/ 443J2 ^o^SOxO^a^j/ 

/ -33 3-76 33 3-76
= 1-068“

Re - £qu/va/en/- radius opgyradon /priorston and f/^ur^.

a- 973
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e a 0^07"

Ixx= ^2^6. m4

Iyy = 23 -338'7/’)4

Ry = 1-239"

Xo - b84°

harping constant f = 328-24 in eper unit thickness 

If , 3/3-534 in4 7?^ mis"

E^ufva/znf 'radius ah’ gyration R^

1/= 0'3/4



•^xx = 2Z1C6 in4 Tyy ± 48 3/3/n4 Tp ^ 375-47/h4'

Xo a^. x2-5*^ *1-63 75x2 + lifx S-7x r-Z5 X3687S + 2*8*4’+25^/22/-^

^ ^4^"
#x .- 3-382/' Zj o I-56" ^ x 1-135"

^a-rp^ constat [ * 4^4-5 irf per uni] thickness

Ltju/valenh radius op gyration R^.

= 1-017"
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£ = 1-492"

• 4 
7^ = 214-86 m

^0 = ( ^ y3'S + ?•

= 2-76"

-Zyy — 5^*8 /fl d^p — 413‘23.

Plasty Constant T* 555-2 inbper unif thickness 

7^x _ 3’448 ^X ~ ^' 6^4

^ - |•/5•3,,

£ ^u/va/en/ radius of gyTahdn Re

~ a-11 z ^nriii?^>‘:3^

J 1-294.

^^3-7^ +2*8*4 +I-49Z*~')/z,4s^
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All lrulbsi"j

e ^ bz6u
’ 1^ = 270 m4 ^j s 57^2 m4 1p x 45 6 in4 

yo = 2-40 in

harping constant [~ = 782-7 /h6per unit thickness

Rp = ^i"

^7uruale.nt y^clius oPggration R^ -

4- 283 - 4-^3z^ 4*4’41*0-758

1-516

H
= H6
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£ = /5Z7

I** - 224-333 in4 ^ =■ 54-/8Z in4

Xa x Z-818
Ji? - 433-"3 /h4

kJarping constant f - 7C& in^ per an fl thickness

Cymvale.nl radius oPgyration He

= 1-155

Cymvale.nl
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APPSJDIX B

TABLE 1

VALUES CF KOIi-DIMESlCiiAL FACTOR GOVERNING R_

\ Q

R
0.5 1.0 1.5 2.0 Rccarks

C.O1 0.10308 0.16645 0.20657 0.23276

0.02 0.10414 0.17156 0.21378 0.24162

0.03 0.10192 0.17310 0.21799 0.24758

o.o4 0.09715 0.17224 0.21972 0.25118

o.cs 0.09021 0.16922 0.21940 0.25230

0.06 0.08136 0.16433 0.21734 0.25274

0.07 0.07045 c.15790 0.21378 0.25125
B

o.oB 0.05679 0.14993 0.20888 0.24850 RADIUS RB

o.G9 0.03791 0.14049 0.20279 0.24465 qB

0.10 0.01965 0.12951 0.19558 0.23980

0.11 0.04639 0.11675 0.18128 0.23404

0.12 0 0.10172 0.17790 0.22741

0.13 0 0.08334 0.16757 0.21997

0.14 0 0.05868 0.15557 0.21171

0.15 0 0 0.14227 0.20262

0.16 0 0 0.12709 0.19266

0.17 0 0 0.10931 0.13176

0.18 0 0 0.03739 0.16917

0.19 0 * 0.05676 0.15651

0.20 0 0 0 0.14166
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AEt'LLIIlL B
TABLE II

VALUED GF NON-DIKtliSlCL’AL FACTOR GOVEBHUiG Bg

Q

R
0.5 1.0 1.5 2.0 Besarics

0.01 0.10862 0.17210 o.ac93 0.23573

0.02 0.11443 0.18249 0.22235 0.24802

0.05 0.11622 0.18947 0.23150 0.23772

0.04 0.11501 0.19534 0.25799 U.2g558

0.05 c.11170 0.19353 0.24234 0.27156

o.Q6 0.10706 0.19556 0.24546 0.27595

o.o? 0.10171 0.19410 0.24/61 0.27936

g
0.08 0.09611 0.19147 0.24743 0.20179

RAMUS RB

0.09 0.09058 c.13795 0.24692 0.28340 (?B

0.10 0.08535 0.18580 0.24564 0.28435
____ Q

, c
0.11 0.08054 0.17923 0.24577 0.28476

0.12 0.076a 0.17442 0.24147 0.28478

0.15 0.07238 0.16954 0.23885 0.28453

0.14 0.06906 0.16471 0.23608 0.28411

0.15 o.c66a 0.16004 0.25324 0.28564

c.16 0.06583 0.15563 0.25044 0.23322

o.l? 0.06190 0.15154 0.22777 0.23293

0.18 0.06059 0.14782 0.22551 0.28281

c.19 0.05930 0.14452 0.22312 0.28505

0.20 0.05864 0.14166 0.22125 0.28357
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APPEKDIX C

PaHlHUIARI TESTS

Section

8 <4

Ultimate load in pounds

Teat I Teat II Test III Tost IV Average

2,750 2,726 2,733

6.560 6,440 6,450 6,550 6,500

5,450 5,270 5,56o

6,520 6,440 6,48o

6,530 6,460 6,500 6,510 6,500

6,700 6,76c — -—- 6,730


