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Lay Abstract
Cities rely on traffic data to keep roads flowing smoothly, manage congestion, and ensure
safety during busy times. However, traffic information is often incomplete due to sensor
failures, gaps in vehicle tracking, or delays in communication. At the same time, special
events such as concerts, sports games, and festivals create sudden and unusual traffic
surges that are difficult to predict with traditional methods. This dissertation focuses
on solving both of these challenges by creating new machine learning models that can fill
in missing traffic data and make more reliable predictions about how traffic will behave
during social events.

The research introduces two main innovations. First, a two-step method for handling
missing data was developed. The method combines traditional machine learning with
advanced artificial intelligence to reconstruct incomplete traffic information quickly and
accurately. Second, a new predictive model was designed that takes into account not only
past traffic patterns but also details about upcoming events, such as their type, location,
and size. By doing so, the model is better able to anticipate sudden disruptions and
provide more reliable forecasts.

The findings show that these approaches significantly improve both the accuracy of
traffic data and the reliability of traffic forecasts, especially near event venues and during
peak disruption times. In practice, this means that transportation agencies can better
prepare for and respond to congestion around stadiums, concert halls, and city festivals,
making travel smoother, safer, and more sustainable for everyone.
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Abstract
This dissertation presents a comprehensive investigation into the dual challenges of miss-
ing traffic data and the complexities of traffic speed prediction during social events, a
topic of growing relevance in urban mobility systems. Urban centers are increasingly
experiencing non-recurring disruptions caused by concerts, sports games, festivals, and
other social activities, which introduce sharp deviations in regular traffic patterns. At
the same time, traffic data, which are foundational for intelligent transportation systems
(ITS), often suffer from incompleteness due to sensor failures, transmission errors, and
insufficient probe vehicle coverage. This research addressed these intertwined challenges
by developing a unified framework combining robust imputation methods with deep
learning-based event-aware prediction architectures.

The first contribution is the development of a two-stage imputation pipeline that inte-
grates ensemble-based and generative approaches. Random Forest models are employed
to provide fast, robust estimates, while Generative Adversarial Imputation Networks
(GAIN) refine the results, capturing complex dependencies and uncertainty. Experi-
ments on Hamilton, Ontario data demonstrate that the framework reduces imputation
error (MAPE) by 20–30% compared to traditional methods, while maintaining scalabil-
ity under varying missingness levels.

The second major contribution is the development of an Event-Aware LSTM (EA-
LSTM) model that explicitly incorporates structured social event features—such as event
type, timing, location, and attendance—into a spatiotemporal architecture combining
Graph Convolutional Networks, bidirectional LSTMs, and attention mechanisms. The
EA-LSTM significantly improves prediction accuracy during disruptions, reducing aver-
age error to 3.4% network-wide and under 9% near event venues, outperforming conven-
tional deep learning baselines.

The findings demonstrate that integrating contextual event information enhances
both traffic imputation and prediction, leading to more robust, interpretable, and scal-
able models. The research provides practical insights for the deployment of real-time ITS
applications, offering tools to support congestion management, dynamic signal control,
and event traffic planning in complex urban environments.
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Chapter 1

Introduction

1.1 Background and motivation

Urban transportation systems are increasingly dependent on data-driven technologies
to support real-time monitoring, forecasting, and decision-making for traffic manage-
ment. The proliferation of traffic sensors, GPS-equipped probe vehicles, and connected
infrastructure has led to a surge in the availability of spatiotemporal traffic data. These
datasets are foundational to the operation of Intelligent Transportation Systems (ITS)
and Advanced Traffic Management Systems (ATMS), enabling the optimization of signal
control, congestion mitigation, and mobility forecasting.

However, the reliability of such data is frequently compromised by missing values
due to sensor malfunctions, communication failures, or low probe penetration. This is-
sue becomes particularly acute during atypical conditions such as social events, including
concerts, festivals, sporting events, and parades, which induce non-recurring disruptions
in traffic flow. These events challenge traditional traffic forecasting models that rely
on assumptions of periodicity, continuity, and smooth spatiotemporal correlations (Xing
et al., 2023). Incomplete data in such contexts undermines both real-time traffic esti-
mation and the downstream performance of predictive models (Zhang et al., 2025).

While various statistical and machine learning-based imputation techniques have
been proposed, they often lack robustness under the complex, nonlinear, and event-
driven dynamics of urban traffic. At the same time, advancements in deep learning, par-
ticularly spatiotemporal architectures such as Graph Convolutional Networks (GCNs)
and Long Short-Term Memory (LSTM) networks, have shown promise in capturing in-
tricate spatial dependencies and long-term temporal trends. Yet, these models typically
underperform in the presence of missing or irregular data and are rarely designed to
incorporate exogenous contextual features such as event metadata.
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In parallel, growing access to social event data from municipal records, public APIs,
and social media platforms presents an opportunity to enrich traffic modeling. Event-
related features such as attendance size, event type, location, and timing can provide
valuable context to enhance both data imputation and traffic speed prediction during
high-disruption periods (Okukubo et al., 2022). The integration of these features into
machine learning structure, however, remains an open research challenge.

This dissertation is motivated by the need for a unified framework that enhances
the accuracy of traffic data imputation and short-term prediction, while accounting for
the impact of social events, a concept we refer to as event-aware. It explores novel
combinations of ensemble learning, generative models, and deep spatiotemporal archi-
tectures augmented by structured event data to address the dual challenges of missing
data and predictive uncertainty during social events. The overarching goal is to con-
tribute practical, scalable, and interpretable tools for real-time urban traffic monitoring
and forecasting in smart cities.

1.2 Traffic Speed Prediction

Traffic speed prediction has been extensively studied in the field of transportation engi-
neering, particularly with the advent of large-scale spatiotemporal traffic datasets and
the maturation of machine learning models. Classical approaches to traffic forecasting
such as Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA, and
Kalman Filtering provided interpretable, time-series-based modeling under assumptions
of stationarity and linearity (Lv et al., 2014). While effective for isolated road segments
and short-term predictions, these models are fundamentally limited in their ability to
generalize across the complex spatial dependencies present in road networks, and they
struggle to adapt to the nonlinear and dynamic nature of urban congestion (Cao et al.,
2021).

As data availability and computational power improved, the field shifted toward
data-driven methods. Shallow machine learning models such as k-Nearest Neighbors
(KNN), Support Vector Regression (SVR), and Random Forests (RF) were increasingly
adopted to account for nonlinear patterns in traffic data (Razali et al., 2021). While these
methods offered greater flexibility, they still fell short in capturing long-range temporal
dependencies and spatial heterogeneity intrinsic to large urban networks. Moreover,
their reliance on handcrafted features limited their scalability and adaptability (Deng
et al., 2022).
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To address these shortcomings, deep learning models emerged as state-of-the-art
tools for traffic speed prediction. Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs), particularly LSTM networks, demonstrated substantial
improvements by learning temporal dependencies directly from raw data (Yu et al.,
2018). LSTMs, in particular, became a popular choice for modeling the evolution of
traffic speeds over time due to their gating mechanisms that mitigate the vanishing gra-
dient problem. Nevertheless, LSTMs alone lack spatial awareness and are insufficient
for network-wide forecasting tasks (Zhang et al., 2023).

In response, hybrid models incorporating both spatial and temporal features were
developed. GCNs have played a pivotal role in this transition. By representing traffic
networks as graphs where nodes denote sensors or road segments and edges reflect phys-
ical or functional connectivity GCNs enable spatial dependencies to be modeled more
explicitly. Integrating GCNs with LSTMs created a powerful framework for spatiotem-
poral prediction (Yin et al., 2023). Such combinations, however, still exhibit limitations
in handling asynchronous data updates, varied road segment characteristics, and the
dynamic topology of urban traffic networks.

A key limitation observed in the existing literature is the underperformance of mod-
els during high-variability periods such as peak hours or after traffic incidents. Many
models optimize for average-case accuracy, sacrificing robustness in the tail-end of the
distribution where traffic anomalies exists. Additionally, while some architectures are
evaluated on large datasets, they often lack generalizability across different cities or
regions, suggesting overfitting to local patterns (Chen et al., 2024; Harrou et al., 2024).

Furthermore, transformer-based models, such as Temporal Fusion Transformers and
Informer networks, have recently been introduced in traffic prediction. These models
offer promising long-range memory capabilities and improved scalability. However, their
high computational cost and data-hungry nature pose challenges for real-time deploy-
ment (Song et al., 2024a). Unlike LSTM-GCN hybrids, transformer-based methods also
require more careful calibration and struggle with limited labeled data, which is common
in smaller urban systems.

Another critical limitation in prior work is the treatment of traffic speed prediction
as a purely data-driven exercise without adequate contextualization. Domain-specific
knowledge, such as known bottlenecks, lane restrictions, or scheduled disruptions, is sel-
dom incorporated directly into model architectures (Ma et al., 2019). This limits the
potential of predictive systems in supporting decision-making for operational manage-
ment.

3



Ph.D. Thesis - A. Ardestani; McMaster University - Civil Engineering.

In contrast, this thesis aims to bridge the divide between data-driven and context-
aware modeling. By embedding structured contextual features directly into the archi-
tecture, such as through attention mechanisms and enriched node representations, the
developed models achieve both high predictive accuracy and meaningful interpretability.

Overall, while the field has made considerable strides in modeling spatiotemporal
traffic dynamics, significant opportunities remain in enhancing generalization, robust-
ness, and integration with domain knowledge.

1.3 Missing Traffic Data Imputation

Missing data in traffic datasets significantly compromises the performance of Intelligent
Transportation Systems (ITS), particularly affecting real-time applications such as traffic
state estimation, signal control optimization, and travel time prediction. These gaps
commonly arise from communication failures, sensor degradation, inclement weather
conditions, or insufficient probe vehicle density (Zhang et al., 2024).

Traditional statistical methods were among the first to be employed for imputing
missing traffic data. Techniques such as mean substitution, linear interpolation, and
spline fitting were straightforward and fast, but their effectiveness declines with longer
or systematic missingness (Smith et al., 2003). Time series models like ARIMA and
seasonal decomposition offer improved performance by leveraging temporal structures
(Stathopoulos and Karlaftis, 2003), but are sensitive to model specification and require
stationarity assumptions that often do not hold in dynamic urban traffic environments.

Bayesian approaches gained popularity for their ability to incorporate prior informa-
tion and model uncertainty. Ni and Leonard (Ni and Leonard, 2005) applied Bayesian
networks with Markov Chain Monte Carlo (MCMC) techniques to estimate missing loop
detector data by modeling conditional dependencies across traffic flows. However, these
methods are computationally expensive and scale poorly with network size.

Spatial interpolation techniques such as Kriging and co-Kriging use spatial correla-
tion between sensors to estimate missing values, assuming that nearby road segments
exhibit similar traffic patterns (Bae et al., 2018). While effective in dense sensor net-
works, their performance deteriorates in sparse deployments or during events that cause
localized disruptions.

With the rise of machine learning, algorithms such as k-Nearest Neighbors (KNN),
Decision Trees, and Support Vector Machines (SVM) have been used for imputation.
KNN, for instance, infers missing values based on the most similar complete observations

4
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(Zheng et al., 2015). However, it is sensitive to the choice of distance metrics and
struggles with high-dimensional data. Random Forests (RF) offer improved robustness
by aggregating multiple decision trees and capturing nonlinear dependencies (Tang et al.,
2017).

Matrix factorization and low-rank approximation methods, such as Non-negative
Matrix Factorization (NMF) and Probabilistic PCA, model the traffic dataset as a low-
dimensional structure and reconstruct missing values by learning latent features (Tan
et al., 2013; Yao et al., 2018). These methods assume that traffic data exhibit low-rank
patterns (e.g., daily periodicity) and are particularly effective when the missingness
pattern is random and not extensive.

Tensor-based methods extend matrix factorization to multi-dimensional arrays, cap-
turing complex interactions among time, location, and other covariates. Chen et al.
(Chen et al., 2022b) proposed a tensor completion approach to recover missing entries in
multi-way traffic tensors, showing improved accuracy over traditional 2D matrix meth-
ods.

In the deep learning domain, Denoising Autoencoders (DAE) and Recurrent Neural
Networks (RNN) have been used to recover corrupted traffic data. DAEs are trained to
reconstruct original input from partially corrupted versions, effectively learning complex
representations for imputation (Duan et al., 2016). Ye et al. (Ye et al., 2021) ap-
plied Convolutional Autoencoders (CAE) for spatiotemporal traffic imputation, achiev-
ing strong performance under moderate missingness. However, these methods typically
require substantial training data and careful tuning.

Other deep architectures include Recurrent Variational Autoencoders (RVAE), which
model sequential dependencies and uncertainty simultaneously (Ma et al., 2019), and
Graph Neural Networks (GNN), which incorporate spatial dependencies by treating the
road network as a graph (Zhao et al., 2021). These models have demonstrated superior
performance in capturing both spatial structure and temporal evolution in traffic data.

Despite these advancements, several limitations persist in the traffic data imputation
literature. Most existing studies assume that missing data occur at random (MAR), an
assumption frequently violated in real-world settings where missingness is often corre-
lated with traffic conditions such as congestion or external disruptions like road construc-
tion or an event. Moreover, most prior work does not incorporate external contextual
information, such as road hierarchy, or multimodal data sources that could enhance
the precision of imputation under complex traffic scenarios. In response to these chal-
lenges, this dissertation proposes an efficient, event-aware imputation framework that
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leverages structured event metadata while maintaining reliable accuracy. By integrating
computationally lightweight ensemble learning techniques with robust spatial-temporal
representations, the framework offers a scalable solution suitable for real-time urban
traffic applications, while preserving interpretability and resilience under non-random
missingness conditions.

1.4 Social Events

The impact of large-scale events such as concerts, sports matches, and festivals on urban
traffic dynamics has attracted increasing research attention. Traditional traffic fore-
casting models, optimized for routine conditions, struggle to capture the sudden, non-
recurring disruptions caused by social events. This section reviews key developments in
event-aware traffic modeling and highlights remaining gaps.

We distinguish two operationally distinct categories of social events:

• Planned events (scheduled). Events publicly announced in advance (e.g.,
league sports, concerts, parades, planned festivals). They provide structured, pre-
event metadata such as start/end time, venue location, event type, and expected
attendance. These signals are available hours to weeks ahead of time through mu-
nicipal calendars, ticketing platforms, and official web APIs. Their traffic impacts
are non-recurring but predictable in timing and location, which enables event-aware
feature engineering and model conditioning.

• Unplanned events (unscheduled). Disruptions with little to no advance notice
(e.g., collisions, vehicle breakdowns, sudden road closures, spontaneous protests,
police activity, extreme weather). Signals for these events are detected ex post
via incident logs, 911 feeds, or social media. Their timing and spatial footprint
are irregular and often evolve rapidly, which requires online detection and re-
calibration rather than preconditioning.

Early event-aware methods used indicator variables to flag event periods within re-
gression or time-series models. For instance, a group of researchers integrated event
timing as dummy variables in ARIMA or regression frameworks to adjust forecasts dur-
ing major events (e.g., holiday surges) (Cools et al., 2007). These methods provide coarse
corrections and often fail to adapt to varying event types and sizes.

Machine learning models that incorporate exogenous event features have shown im-
proved performance. (Yao and Qian, 2021a) mined late-night Twitter sentiment and
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activity to predict next-day morning congestion, showing stronger performance than
non-event models. Studies in India and Shanghai used social media signals such as
tweets or Weibo posts to detect traffic disruptions and feed event context into prediction
models (Dabiri and Heaslip, 2019; Chang et al., 2022). While effective, such models
remain limited by noisy social data and tend to focus on incident detection rather than
systematic event modelling.

Hybrid models explicitly incorporating event metadata have demonstrated higher
accuracy. (Essien et al., 2021), for example, fused Twitter-derived indicators with traffic
sensors using a bidirectional LSTM autoencoder, improving multi-step flow prediction
during disruptions. (Song et al., 2024b) introduced sports schedules directly into graph-
attention transformer models, further enhancing long-horizon forecasts of traffic impacts
during sports events. However, both studies face limitations in terms of generalizability
across different event types and urban contexts. Moreover, their reliance on social media-
derived features introduces variability due to inconsistent data quality and uneven user
engagement.

Other approaches include pattern-aware regression models trained on historical event
day data (Okukubo et al., 2022), and Heterogeneous Graph Attention models that in-
corporate changes in traffic network topology during events (Du et al., 2021). The
pattern-aware regression method by Okukubo et al. (2022) reduces overfitting and im-
proves prediction on large events by learning a weighted combination of latent traffic
patterns; however, its reliance on limited event-specific data may limit generalizability
to new event types or unusual conditions. The HGA-ResTCN approach by Du et al.
(2021) dynamically adjusts graph structures to reflect disrupted spatial dependencies
and captures temporal correlations via residual TCNs but its complex architecture and
focus on incident-induced anomalies pose challenges for real-time deployment during
high-complexity events.

Reliable extraction of event features is challenging, and in a recent study a NLP
pipeline that detects timing, type, and location from sources such as social media, tick-
eting platforms, and municipal calendars has achieved high accuracy in event detec-
tion. (Tao et al., 2022a) introduced SMAFED, a robust framework that resolves noisy
language and disambiguates slang, achieving precision up to 0.92 and recall of 0.79 in
event detection tasks. More recently, Wang et al. (Wang et al., 2025) leveraged large lan-
guage models (LLMs) to extract event attendance, popularity, and promotion intensity
from multi-source online data, integrating these features into a machine learning model
that achieved an R2 above 0.85 for daily visitor flow forecasting in Hong Kong. Despite
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this progress, these methods face limitations: the SMAFED framework requires ex-
tensive pre-training on domain-specific slang and may generalize poorly across regions,
while the LLM-based visitor flow approach relies heavily on rich textual and engage-
ment data, limiting its applicability in areas with sparse online coverage or less event
data availability.

Despite substantial progress in event-aware traffic prediction, several limitations con-
tinue to constrain the applicability and robustness of current approaches. Many models
are calibrated for specific event types, most notably sports games or concerts, reducing
their generalizability across a wider spectrum of disruptions, such as community festivals
and gatherings. Another persistent challenge lies in the limited integration of multimodal
contextual data, such as social events, weather conditions, or construction zones, despite
their known influence on traffic dynamics during events. Also, while deep learning ar-
chitectures have improved prediction accuracy, they frequently lack explicit mechanisms
for uncertainty quantification, which is critical for operational decision-making under
volatile or ambiguous conditions.

Addressing the key limitations identified in the literature including limited gener-
alizability across diverse event types, insufficient integration of multimodal contextual
features, and the lack of uncertainty modeling, this dissertation proposes a unified,
scalable, and interpretable framework that enhances both traffic data imputation and
short-term speed prediction during social events. The proposed approach integrates
structured event metadata (such as event type, timing, location, and attendance) with
deep spatiotemporal learning architectures that explicitly capture spatial and tempo-
ral dependencies. Furthermore, the framework incorporates mechanisms for uncertainty
quantification to support robust forecasting in volatile conditions. By bridging the dis-
connect between traditional traffic models and the dynamic realities of urban mobility
during large-scale events, this research advances a novel methodology capable of deliv-
ering accurate, context-aware, and operationally viable predictions across a wide range
of urban settings and disruption scenarios.

1.5 Research Gaps

Urban transportation systems depend heavily on timely, accurate, and complete traffic
data to support real-time decision-making in traffic management, congestion control,
and emergency response. However, the reliability of these data streams is often com-
promised by missing values, typically caused by sensor failures, communication losses,
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adverse weather, or low probe penetration in certain areas. Recent studies, such as Zhang
et al. (Zhang et al., 2021) and Kong et al. (Kong et al., 2022), highlight that data gaps
exceeding even 5–10% can significantly degrade the performance of Intelligent Trans-
portation Systems (ITS) applications. The problem becomes even more pronounced
during large-scale social events such as concerts, festivals, and sporting matches which
introduce sudden and spatially localized surges in traffic demand. These disruptions
often coincide with increased rates of missingness, as congestion-related sensor outages
or temporary communication bottlenecks become more prevalent (Ma et al., 2020; Tao
et al., 2022b).

A critical challenge in this field is that most existing imputation methods assume
that data are missing at random (MAR). However, several empirical studies (Tang et al.,
2021; Zhou et al., 2023) demonstrate that missingness in traffic datasets is frequently
correlated with external disruptions such as road closures, severe congestion, or event-
driven anomalies. This violation of the MAR assumption can lead to biased imputation
and subsequently flawed downstream predictions. Furthermore, traditional statistical
imputation techniques, including ARIMA-based or Kalman-filtering approaches, while
computationally efficient, fail to capture the complex spatiotemporal dependencies in-
herent in urban traffic networks, particularly under volatile conditions (Stathopoulos
and Karlaftis, 2003; van Lint and van Zuylen, 2005).

In recent years, machine learning and deep learning frameworks have advanced traffic
imputation by leveraging spatial and temporal relationships among road segments. Mod-
els such as graph convolutional networks (GCNs), recurrent neural networks (RNNs),
and their hybrids have achieved notable success in recovering missing data under routine
traffic patterns (Liang et al., 2021; Zhao et al., 2021; Chen et al., 2022a). Yet, these mod-
els are often computationally demanding, limiting their applicability in real-time traffic
operations (Huang et al., 2020). Moreover, they are typically trained on historical data
with relatively stable conditions and lack the adaptability to perform robustly during
irregular scenarios like city-wide events or emergencies (Shang et al., 2024). This points
to an unmet need for imputation frameworks that can efficiently handle structured,
non-random missingness in dynamic urban contexts.

At the same time, while recent studies have explored integrating exogenous fac-
tors such as weather or incident reports into prediction models (Zhang et al., 2025; Lu
et al., 2025), there remains a paucity of work that systematically incorporates structured
event metadata, such as event type, attendance, timing, and venue location, into the
imputation process. Social events provide a rich and predictable source of contextual
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information that, if integrated properly, could significantly enhance the robustness of
imputation under disruptive conditions. For example, Essien et al. (Essien et al., 2021)
showed that fusing Twitter-derived event indicators with traffic sensor data improved
short-term forecasting, while Yao and Qian (Yao and Qian, 2021b) demonstrated that so-
cial media activity patterns could be predictive of next-day morning congestion. Despite
these promising findings, current models often rely on noisy, unstructured social data or
are designed for forecasting rather than directly addressing the imputation problem.

Another important gap concerns uncertainty quantification. Most existing deep
learning-based imputation models provide point estimates without accompanying mea-
sures of confidence or variability (Liang et al., 2021; Ma et al., 2019). This limits their
utility in operational settings, where transportation managers require not only best-
guess estimates but also an understanding of the associated risks, particularly during
high-stakes events or emergencies. Further complicating matters, many of these models
are tailored to specific cities or datasets and have not been thoroughly validated for
generalizability across diverse urban contexts (Kong et al., 2022).

These limitations point to a clear and pressing research question: How can we design
an efficient, scalable, and context-aware traffic data imputation framework that inte-
grates structured social event information, remains computationally feasible for real-time
applications, and provides reliable uncertainty estimates to support operational decision-
making? This dissertation addresses this question by proposing a novel hybrid impu-
tation model that combines ensemble learning with spatiotemporal deep learning tech-
niques, enriched by event metadata, to improve imputation accuracy under both routine
and event-driven conditions. The model is designed to balance predictive power with
computational efficiency, ensuring that it can be deployed in real-world ITS environ-
ments without sacrificing interpretability or scalability. The next section will detail the
specific objectives that guide this research.

1.6 Research Objectives

The primary objective of this dissertation is to enhance the accuracy and efficiency
of traffic state estimation and short-term traffic speed prediction under conditions of
missing data and non-recurring disruptions caused by social events. To achieve this
aim, the dissertation proposes a unified framework that integrates advanced imputa-
tion techniques with event-aware spatiotemporal prediction models. By addressing both
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prediction and imputation challenges, the research seeks to improve the operational re-
liability of Intelligent Transportation Systems (ITS) during high-variability periods and
to provide decision support for real-time urban traffic management. The proposed meth-
ods are designed to function under realistic conditions where incomplete datasets and
contextual disturbances pose significant modeling challenges.

In alignment with this overarching aim, the research objectives have been defined
and are presented below in the same order as the chapters in which they are addressed:

1. Develop an event-aware prediction model. The first objective is to con-
struct a traffic prediction model that explicitly incorporates social event features
such as event type, location, duration, and attendance. By embedding these fea-
tures into deep spatiotemporal architectures, the model aims to capture complex
traffic patterns and dynamic disruptions that emerge during non-recurring events.
[Addressed in Chapter 2 and Chapter 3]

2. Evaluate prediction robustness and generalizability. The second objective
is to systematically assess the performance of the proposed prediction model un-
der diverse event conditions and across different urban topologies. This involves
evaluating the role of proximity, temporal alignment, and event scale in shaping
prediction accuracy, as well as benchmarking the proposed method against base-
line models that do not incorporate event information. The goal is to demonstrate
that event-aware designs provide superior adaptability across cities, event types,
and scales of disruption. [Addressed in Chapter 2 and Chapter 3]

3. Investigate limitations of existing imputation methods. The third objec-
tive is to examine the weaknesses of current traffic data imputation approaches
under realistic missingness scenarios. Particular emphasis is placed on correlated
disruptions, such as those induced by social events or network-level sensor fail-
ures. By benchmarking statistical, machine learning, and deep learning methods,
this analysis highlights gaps in accuracy, scalability, and context-awareness that
motivate the need for a more advanced solution. [Addressed in Chapter 4]

4. Develop an efficient imputation framework. The fourth objective is to de-
sign an imputation framework capable of handling large-scale, multi-segment traffic
datasets with variable missing rates. The framework seeks to balance computa-
tional efficiency with accuracy, ensuring reliable performance in real-time deploy-
ments. This contribution supports operational resilience in ITS by enabling more
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robust monitoring and forecasting, even in sparse or incomplete sensing environ-
ments. [Addressed in Chapter 4]

1.7 Dissertation Organization

This dissertation follows a sandwich format and is organized into five comprehensive
chapters, each designed to contribute incrementally to the central research goal of de-
veloping event-aware, scalable, and reliable frameworks for traffic data imputation and
speed prediction in urban networks. The structure reflects the natural progression from
problem formulation to methodological development, experimental validation, and syn-
thesis of contributions. The three middle chapters are structured as standalone research
papers, one of which has been published and two that are currently under peer review.
These chapters are framed by an introductory and a concluding chapter that provide
narrative and analytical cohesion to the research.

Chapter 1 provides the overall background, context, and justification for the disser-
tation. It opens with a discussion of the increasing reliance of urban mobility systems
on data-driven technologies and highlights the dual challenges of missing traffic data
and disruption-prone conditions such as social events. The chapter includes a thorough
literature review across three key domains: traffic speed prediction, missing traffic data
imputation, and social event modeling. It identifies critical limitations in existing models,
especially in their ability to operate under irregular data availability and non-recurring
disruptions. Based on these gaps, the chapter formulates the research problem, defines
the primary research questions, and sets forth the specific research objectives that guide
the remainder of the thesis.

Chapter 2 is based on the published study titled Enhancing Traffic Speed Prediction
Accuracy: The Multialgorithmic Ensemble Model With Spatiotemporal Feature Engineer-
ing. This chapter proposes a hybrid framework called the Multialgorithmic Ensemble
Model (MAEM), which integrates graph neural networks (GNNs), long short-term mem-
ory networks (LSTM), and bidirectional gated recurrent units (Bi-GRU). These com-
ponents work in concert with spatiotemporal feature engineering techniques to capture
complex dependencies in traffic data. The model’s adaptive attention layer dynami-
cally identifies the most influential temporal patterns. Evaluated on a one-year dataset
from Hamilton, Ontario, MAEM achieved a MAPE of 3.18% and RMSE of 2.85 km/h,
outperforming benchmark models including Graph WaveNet and attention-based trans-
formers. The model also demonstrated strong robustness during peak-hour congestion,
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highlighting its applicability in real-time traffic operations.
Chapter 3 contains the second research article, currently under review at an ASCE

journal. This study advances traffic prediction modeling by proposing the Event-Aware
Long Short-Term Memory (EA-LSTM) architecture. The model integrates probe vehicle
data and event features in a unified structure comprising Graph Convolutional Networks,
Bidirectional LSTM layers, self-attention modules, and hierarchical sequence modeling.
This chapter also introduces a novel event-feature encoding pipeline and offers a thorough
empirical evaluation across various event scenarios and network conditions. The findings
show that the EA-LSTM model generalizes well across different types of social events
and scales of disruption, addressing limitations in both conventional LSTM-based models
and earlier shallow machine learning approaches.

Chapter 4 presents the third paper, also under review, which further refines the
interplay between imputation quality and prediction performance. It introduces a two-
stage architecture designed to handle heterogeneous missingness patterns and variable
spatial coverage. The first stage focuses on dynamically imputing incomplete data using
a suite of context-aware techniques, while the second stage performs forecasting using
event-augmented deep networks. This chapter also includes a comparative benchmark-
ing study of traditional and deep imputation methods under event-driven scenarios. The
research reveals that incorporating social event metadata significantly enhances the ac-
curacy of both imputation and prediction, especially in congested or sensor-sparse areas.

Chapter 5 synthesizes the overall contributions of the dissertation and reflects on
their broader implications for traffic engineering and smart city operations. It revisits
the research objectives and maps them to the findings from the three core studies.
This chapter discusses practical implications, such as how the developed models can be
integrated into real-time Advanced Traffic Management Systems (ATMS). Additionally,
it outlines key limitations of the current work, such as computational scalability and
data availability, and proposes directions for future research. These include expanding
the framework to include multimodal data sources like transit schedules and weather
information, and exploring deployment pathways through cloud-based infrastructures
and edge computing.

Together, the five chapters provide a coherent, cumulative research narrative that
moves from conceptual motivation to technical realization and applied validation. This
structure ensures both the scholarly contribution of each individual paper and the the-
matic unity of the dissertation as a whole.
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Abstract

Accurate traffic speed prediction is crucial for efficient traffic management and planning
in urban areas. Traditional traffic prediction models often fall short due to their inability
to capture the complex and dynamic nature of traffic flow. There is a need for more
advanced models that can effectively handle dynamic traffic conditions. This study in-
troduces the multialgorithmic ensemble model (MAEM), a novel framework designed to
improve traffic speed prediction accuracy by integrating graph neural networks (GNNs),
bidirectional gated recurrent units (Bi-GRUs), and long short-term memory (LSTM)
networks, to effectively analyze the spatiotemporal characteristics of the traffic network.
The methodology involves constructing a virtual graph based on road segment correla-
tions and applying a combination of spatial and temporal feature extraction techniques.
The model is further enhanced with an attention mechanism to focus on critical time
intervals. The dataset used for this study consists of one-year aggregated probe vehicle
traffic data of 4788 road segments in the City of Hamilton, Ontario. The results demon-
strate significant performance, achieving the mean absolute percentage error (MAPE)
of 3.5% and root-mean-square error (RMSE) of 2.4 km/h, indicating the potential of
the proposed framework to significantly enhance traffic speed prediction accuracy and
provide a reliable tool for urban traffic management and planning.
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2.1 Introduction

Traffic congestion remains a significant challenge in urban areas, leading to a multitude
of adverse effects, including increased travel times, fuel consumption, and environmen-
tal pollution. The ability to predict traffic speed accurately is crucial for mitigating
these issues and enhancing the overall efficiency of transportation networks (Lv et al.,
2014). Advanced traffic speed prediction models can provide valuable insights that en-
able proactive traffic management, route optimization, and informed decision-making
for travelers and transportation authorities alike (Zhang et al., 2019; Guo et al., 2019;
Rasaizadi et al., 2021a).

Accurate traffic speed predictions can quantitatively improve traffic congestion by
enabling dynamic traffic signal control, real-time traffic rerouting, and better manage-
ment of traffic incidents. These measures can significantly reduce travel delays and
improve the reliability of travel times (Ma et al., 2015; Ghodsi et al., 2022). Moreover,
by alleviating congestion, these models contribute to reducing vehicle emissions and fuel
consumption, thereby benefiting the environment (Zhou et al., 2022b; Yang et al., 2020).
The social impacts are also substantial, as smoother traffic flow enhances the quality of
life for commuters by reducing stress and time spent in traffic (Gu et al., 2020; Kong
et al., 2019). In terms of safety, accurate traffic speed predictions can play a vital role
in preventing accidents. By identifying potential traffic bottlenecks and hazardous con-
ditions in advance, traffic management systems can implement preventive measures to
enhance road safety (Zhang et al., 2017; Ma et al., 2021). Furthermore, predictive mod-
els can assist in the deployment of emergency services more efficiently, ensuring quicker
response times during traffic incidents (Lv et al., 2014).

Despite these benefits, developing accurate traffic speed prediction models poses sev-
eral challenges. Traffic conditions are influenced by numerous dynamic factors, including
weather conditions, road works, special events, and accidents. Traditional prediction
methods, such as historical averaging and basic statistical models, often fall short of
capturing the complex, non-linear nature of traffic flow (Sun et al., 2003; Williams and
Hoel, 2003). With the abundance of available traffic data, there is a growing interest in
leveraging advanced machine learning and deep learning techniques to enhance predic-
tion accuracy (Yao et al., 2017; Shaygan et al., 2022). Conventional machine learning
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models, such as support vector regression (SVR) and k-nearest neighbor (KNN), have
shown promise but often require extensive feature engineering and may not fully capture
temporal dependencies in the data (Gu et al., 2019). On the other hand, deep learning
approaches, including long short-term memory (LSTM) networks and convolutional neu-
ral networks (CNNs), are capable of learning complex patterns and dependencies directly
from raw traffic data (Zhang et al., 2017). These models have demonstrated superior
performance in traffic speed prediction tasks by effectively modeling both spatial and
temporal correlations (Zhang et al., 2017). Recent advancements in graph neural net-
works (GNNs) have further enhanced traffic speed prediction by considering the spatial
structure of road networks (Lee and Rhee, 2022). Spatiotemporal graph convolutional
networks (STGCNs) integrate graph convolutions with temporal modeling techniques,
providing a robust framework for capturing the intricate dependencies in traffic data
(Rahmani et al., 2023).

In this study, we propose a Multi-Algorithmic Ensemble Model (MAEM) that com-
bines the strengths of various advanced techniques, including GNN networks, bidirec-
tional gated recurrent unit networks, and LSTM layers which leverages spatiotemporal
feature engineering to enhance prediction accuracy and incorporates adaptive learning
mechanisms to dynamically respond to changing traffic patterns and conditions. By
evaluating the performance of the MAEM model using real-world traffic speed datasets,
we aim to demonstrate its effectiveness in short-term traffic speed forecasting. The re-
mainder of this paper is structured as follows. Section II provides a detailed review
of the relevant literature, highlighting key advancements and gaps in traffic prediction
methodologies. Section III outlines the proposed methodology, including the dataset de-
scription, problem formulation, and the framework of the Multi-Algorithmic Ensemble
Model (MAEM). Section IV presents the experimental results, evaluating the effective-
ness of the proposed model through various performance metrics and scenarios. Finally,
Section V concludes the study by summarizing the key findings and discussing future
research directions.

2.2 Literature Review

The field of traffic speed prediction has seen significant advancements with the intro-
duction of various machine learning and deep learning techniques. Traditional meth-
ods, such as the historical average (HA) and autoregressive integrated moving average
(ARIMA), have been widely used for traffic prediction but often fall short due to their
inability to capture nonlinear dependencies in traffic data (Sun et al., 2003; Williams and
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Hoel, 2003). These methods typically rely on historical data and simple statistical rela-
tionships, which limits their effectiveness in dynamic and complex traffic environments
(Van Lint and Van Hinsbergen, 2012).

Conventional machine learning approaches, including support vector regression (SVR)
and k-nearest neighbour (KNN), have been applied to traffic speed prediction with vary-
ing degrees of success. These methods typically require handcrafted features and may
not fully utilize the large-scale traffic data available (Fei et al., 2011; Lian, 2024). For
instance, SVR has been used to model traffic speed and volume, but its performance is
often dependent on the quality and relevance of the features selected (Zhang and Xie,
2007). KNN, while simple and intuitive, can struggle with high-dimensional data and
may not effectively capture temporal patterns in traffic flow (Rahman, 2020; Akhtar and
Moridpour, 2021).

With the advent of deep learning, models such as long short-term memory (LSTM)
networks and convolutional neural networks (CNNs) have been employed to capture
temporal and spatial dependencies, respectively (Ma et al., 2015; Zhang et al., 2017).
LSTM networks, which are capable of learning long-term dependencies in sequential
data, have shown promise in traffic prediction tasks by effectively modelling temporal
correlations (Lv et al., 2014). CNNs, on the other hand, excel at capturing spatial
features and have been used to model the spatial structure of road networks (Ma et al.,
2017). Recent advancements include combining LSTM and CNN to leverage both spatial
and temporal information, leading to improved prediction accuracy (Yu et al., 2017).

Recent studies have explored the use of graph neural networks (GNNs) for traffic
prediction, leveraging the spatial structure of road networks to improve prediction ac-
curacy (Zhang et al., 2019). Spatiotemporal graph convolutional networks (STGCNs)
combine graph convolutions with time convolutions or recurrent neural networks to ef-
fectively capture both spatial and temporal features (Yu et al., 2017). However, these
models often rely on predefined graphs, which may not accurately represent the dynamic
nature of traffic networks (Deng et al., 2022; Guo et al., 2021). This limitation highlights
the need for adaptive methods that can dynamically learn and adjust to changes in the
traffic network structure.

To address these limitations, adaptive graph learning methods have been proposed.
Models such as Graph WaveNet and Adaptive Graph Convolutional Recurrent Network
(AGCRN) learn the graph structure from data without prior knowledge, achieving com-
parable performance to models based on predefined graphs (Sun et al., 2021; Wang
et al., 2022). These adaptive methods are particularly useful in dynamically changing
environments where the traffic network’s structure can vary over time. For instance,
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Graph WaveNet employs a data-driven approach to construct the graph, allowing it to
adapt to different traffic scenarios (Wang et al., 2020). Another promising direction is
the integration of multiple models to form ensemble learning frameworks. For example,
hybrid models that combine the strengths of different algorithms can improve overall
prediction performance (Rasaizadi et al., 2021b). These ensemble methods can include
various machine learning models or combine machine learning with deep learning ap-
proaches to better capture the complexities of traffic data (Kong et al., 2019). Recent
studies have further refined ensemble learning approaches by incorporating techniques
such as attention mechanisms and transfer learning, which have demonstrated significant
improvements in prediction accuracy and model robustness (Zhang et al., 2023; Zhou
et al., 2022a). These methods leverage real-time traffic data to make adaptive decisions,
enhancing the overall efficiency of urban traffic management systems.

In addition to these techniques, attention mechanisms have been increasingly utilized
in traffic prediction models to focus on relevant features and improve prediction accuracy
(Zhao et al., 2022). The integration of attention mechanisms in spatiotemporal models
has demonstrated significant improvements in capturing complex traffic patterns and
adapting to changing traffic conditions [28]. Furthermore, recent studies have focused
on the use of transfer learning to enhance traffic prediction models. Transfer learning
allows models to leverage knowledge from related tasks or domains, improving prediction
performance and reducing the need for large amounts of labeled data (Razali et al., 2021).
This approach has been particularly effective in scenarios where traffic data is sparse or
incomplete, enabling more accurate and reliable predictions (Zhang et al., 2023).

In recent years, significant progress has been made in deep learning techniques for
traffic prediction, a critical component of intelligent transportation systems (ITS). For
instance, Lohrasbinasab et al. (2021) explored the shift from traditional statistical tech-
niques to machine learning-based models for network traffic prediction, highlighting the
strengths of machine learning in handling big data and addressing network inefficien-
cies (Lohrasbinasab et al., 2022). Similarly, Sroczyński and Czyżewski (2023) compared
machine learning methods like LSTM and GRU to traditional traffic simulation models,
demonstrating that neural networks can operate in real-time and outperform classical
simulation models in terms of speed and accuracy (Sroczyski and Czyewski, 2023). Xu et
al. (2024) proposed a spatiotemporal convolutional model for traffic flow prediction that
leverages graph GNNs to capture complex spatial and temporal dependencies, achieving
notable improvements in predictive performance over earlier models (Xu et al., 2024).
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Additionally, Cui et al. (2023) provided a comprehensive review of spatiotemporal cor-
relation modeling, identifying GNNs and attention mechanisms as critical for enhanc-
ing the predictive capabilities of traffic state models (Cui et al., 2023). These studies
highlight a growing trend toward hybrid models that integrate various neural network
architectures to enhance both spatial and temporal feature extraction, particularly for
highly dynamic traffic environments. Despite these advancements, challenges such as
optimizing model architectures and addressing external factors such as traffic events or
signal effects remain areas for further exploration. As such, the literature indicates a
clear movement toward more sophisticated and computationally efficient models, yet
the complexities of real-world traffic conditions still pose significant hurdles to achieving
fully reliable and scalable solutions.

These recent studies underscore a growing trend toward hybrid models that integrate
various neural network architectures to enhance spatial and temporal feature extraction,
particularly for highly dynamic traffic environments. However, despite these advance-
ments, limitations persist. Many of these models are computationally intensive, which
can hinder real-time deployment, and they often struggle to adapt to rapid changes in
traffic flow caused by external factors like social events or road incidents. Furthermore,
the complexity of real-world traffic conditions, including variable weather effects and sig-
nal changes, remains a challenge, as most models are trained under controlled conditions
that may not fully generalize to real-world scenarios. Thus, while recent models have
made strides in accuracy, they frequently lack the adaptability and efficiency necessary
for practical, large-scale applications. In summary, while significant progress has been
made in traffic speed prediction, several critical research gaps remain. Existing models
often struggle to effectively integrate spatiotemporal features, adapt to dynamic traffic
conditions, and scale to large urban networks with diverse traffic patterns. The proposed
MAEM model seeks to address these challenges by combining advanced machine learning
techniques, spatiotemporal feature engineering, and adaptive learning mechanisms. By
overcoming the limitations of traditional models and leveraging the latest advancements
in machine learning and deep learning, the MAEM model offers a more accurate, scal-
able, and resilient solution for traffic speed prediction in complex urban environments.
The detailed objectives of this study are listed below in conjunction with a summary of
the methods.

1. Construct a virtual graph that incorporates road segments with high relevance,
measured by the Pearson correlation coefficient. This approach considers both
physically connected road segments and those without direct physical connections.
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2. Develop an ensemble model that integrates GNNs, LSTM, bidirectional gated re-
current unit (Bi-GRU) networks, and fully connected networks with an attention
mechanism in an end-to-end manner.

3. Evaluate the proposed model’s performance using a real-world urban traffic speed
dataset.

The novelty of the Multi-Algorithmic Ensemble Model (MAEM) lies in its integrated
approach to capturing both spatial and temporal dependencies through a combination
of GNN, LSTM, and Bi-GRU, which work together within a unified framework. MAEM
utilizes GNN for spatial feature extraction across road segments, LSTM to retain spatial
dependencies over longer sequences, and Bi-GRU to process temporal information in
both forward and backward directions. This unique combination allows MAEM to model
the complex, interdependent structure of traffic data more effectively than prior models
in the literature, which typically focus on either spatial or temporal aspects in isolation.

Furthermore, the inclusion of an attention mechanism enables MAEM to adapt to
dynamic traffic conditions by focusing on critical time intervals, enhancing its real-time
predictive capability. This adaptive architecture positions MAEM as an advancement
over previous models, which often lack the capacity to handle rapid variations in urban
traffic. By integrating these advanced neural architectures, MAEM offers a robust,
flexible solution for traffic speed prediction, particularly in dynamic urban environments.

2.3 Methodology

This research proposes an approach to unravel the complexities of traffic prediction,
using a case study within the City of Hamilton, Ontario. This section explains the
development of our methodology, including a detailed description of the utilized dataset,
an articulation of the problem statement, the framework of our proposed model—Multi-
Algorithmic Ensemble Model (MAEM), and the criteria for evaluating its performance.
The proposed approach is designed to improve the precision and adaptability of traffic
predictions, addressing the shortcomings of existing methods and paving the way for
transformative advancements in real-world applications.

2.3.1 Problem Statement and Model Framework

One of the critical components of intelligent traffic management is the ability to predict
traffic speed in real-time accurately (Xing et al., 2023). The objective of this research
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is to employ machine learning algorithms, fine-tuned through rigorous validation pro-
cesses, to predict traffic speed across various types of roads. This predictive model aims
to serve as a cornerstone for real-time intelligent traffic management systems, reducing
congestion, and minimizing environmental impacts. The proposed Multi-Algorithmic
Ensemble Model (MAEM) employs a combination of GNN, LSTM, Bi-GRU, and atten-
tion mechanisms to capture complex spatial and temporal dependencies in traffic data.
Below, we describe the distinct roles of each component and how they integrate to form
a comprehensive spatiotemporal prediction model. The MAEM framework is illustrated
in Figure 2.1 and comprises five key components:

1- GNN and Adjacency Matrix Construction: The first step in MAEM is
establishing spatial relationships between road segments by constructing an adjacency
matrix A using a Graph Neural Network (GNN). This matrix is built based on the Pear-
son correlation between the traffic speeds of connected road segments. Specifically, each
entry Aij in the matrix reflects the correlation coefficient between segment i and segment
j, capturing the degree of influence one segment has on another. Pearson correlation
was chosen for constructing A due to its ability to provide a computationally efficient
approach to identifying both direct and indirect correlations between road segments. Its
simplicity in calculating correlations allows for real-time updates to the adjacency ma-
trix, making it a practical choice for traffic prediction tasks that require fast processing
times.

This adjacency matrix A serves two roles in MAEM:

• Structural Encoding: The adjacency matrix A is fed into the GNN layer, where it
helps encode spatial structure by weighting the influence of each segment on its
neighbors. This encoding aids in forming a holistic spatial representation.

• Guiding LSTM Processing: The GNN-derived adjacency matrix A is also used to
guide the sequential processing within the LSTM layer. By providing a weighted
spatial structure, A determines the relative importance of each segment, influencing
the hidden states as traffic flows across segments.

While GNN effectively captures broad spatial correlations, the adjacency matrix
A is essential in transforming these relationships into a format that LSTM can process
sequentially, maintaining the inter-segment dependencies crucial for real-time prediction.

2- LSTM for Sequential Spatial Feature Extraction: The Long Short-Term
Memory (LSTM) network is utilized in MAEM to capture spatial dependencies by pro-
cessing the adjacency-informed segment sequence. LSTM’s architecture, comprising
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memory cells and gated mechanisms, is particularly suited for handling ordered depen-
dencies, making it ideal for modeling traffic data as it flows sequentially across connected
road segments. Key technical aspects include:

• Spatial Sequencing: With traffic data structured as a directional sequence, LSTM
processes each segment’s data point by point, carrying forward dependencies across
segments. Each hidden state ht at step t reflects temporal relationships from
previous segments in the sequence, informed by A.

• Information Control: LSTM’s forget and update gates enable selective retention
of important spatial information while discarding less relevant features. This con-
trolled flow of information allows LSTM to encode both immediate and distal
spatial influences, maintaining spatial coherence over extended segment sequences.

In this way, the LSTM layer captures sequential spatial dependencies, treating each
road segment as part of a chain-like structure. The adjacency matrix A influences this
spatial structure, enhancing the LSTM’s ability to retain and prioritize spatially relevant
information.

3- Bi-GRU for Temporal Feature Extraction: The Bidirectional Gated Recur-
rent Unit (Bi-GRU) layer is employed in MAEM for capturing bidirectional temporal
dependencies. The Bi-GRU operates along the time axis, modeling how past and future
traffic states affect current conditions. This approach leverages GRU’s simplified gate
structure, reducing computational complexity compared to LSTM, which makes Bi-GRU
suitable for real-time applications.

Bi-GRU computes hidden states in both forward and backward directions, provid-
ing a comprehensive temporal view at each time step. This bi-directionality allows the
model to consider the impact of both past (e.g., peak congestion) and anticipated fu-
ture conditions on present traffic states. By using Bi-GRU for temporal dependencies,
MAEM captures both historical patterns and forward-looking temporal information, al-
lowing the model to adapt to rapid changes in traffic flow, which is essential in dynamic
environments.

4- Attention Mechanism: The attention mechanism in MAEM further enhances
adaptability by enabling the model to selectively focus on key temporal intervals. This
layer assigns weights to different time steps, prioritizing those that carry more predictive
significance (e.g., peak hours, sudden traffic shifts). This selective weighting ensures that
MAEM can dynamically adjust its focus based on the evolving traffic context, which is
crucial for maintaining accuracy in real-time predictions.

Technical aspects of the attention mechanism include:
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• Weight Calculation: The attention mechanism computes weights based on the
relevance of each time step’s features, dynamically adjusting as traffic patterns
change. Higher weights are assigned to critical time intervals, such as periods of
high congestion.

• Enhanced Temporal Focus: By concentrating on significant time points, the at-
tention mechanism refines the temporal features extracted by Bi-GRU, allowing
MAEM to optimize predictions in high-variability conditions. This process mini-
mizes the influence of less relevant intervals, improving the robustness of predic-
tions.

5- Final Output Calculation and Validation: The final output of the MAEM
model is generated by integrating spatial and temporal features extracted through the
GNN, LSTM, Bi-GRU, and attention layers. First, the GNN and LSTM layers collabora-
tively capture spatial dependencies across road segments, structuring them sequentially
to reflect inter-segment relationships. Meanwhile, Bi-GRU processes the temporal as-
pect by creating bidirectional hidden states that incorporate both past and anticipated
traffic conditions, enhancing the model’s temporal sensitivity to fluctuations in traffic
patterns.

After these spatial and temporal features are extracted, the attention mechanism is
applied to the Bi-GRU outputs, weighting significant time intervals and enabling the
model to dynamically focus on periods with high predictive importance. The weighted
temporal features are then combined with the spatial features and passed through a
dense layer, which synthesizes these spatiotemporal patterns into a single traffic speed
prediction. This final layer generates a refined output that reflects both the immediate
and evolving traffic conditions, allowing for accurate, real-time forecasting suited to
complex urban environments.

In summary, MAEM’s architecture is designed to leverage the unique strengths of
each component. The GNN and adjacency matrix establish spatial structure, which
the LSTM layer uses to sequentially capture spatial dependencies. Bi-GRU then cap-
tures bidirectional temporal dependencies, further refined by the attention mechanism
to prioritize critical time intervals. This layered approach enables MAEM to handle
the spatiotemporal complexities of traffic data in a real-time, computationally efficient
manner.
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Figure 2.1: Architecture of the proposed MAEM model for traffic
speed prediction

2.3.2 Spatiotemporal Feature Engineering

Spatiotemporal Feature Engineering (STFE) is integral to our traffic speed prediction
model, leveraging the intricate spatial and temporal relationships within the traffic net-
work. STFE involves the process of extracting and transforming data features that
capture both spatial and temporal dynamics of traffic flow, enhancing the model’s abil-
ity to predict traffic speed accurately. By utilizing techniques like graph neural networks
(GNNs), we model the road network as a graph, where intersections are nodes, and
road segments are edges. This helps in understanding the influence of neighboring road
segments on the target segment’s traffic flow. Temporal Features capture the temporal
patterns and trends in traffic data including Time of day, day of the week, and historical
traffic speed data are crucial temporal features (Hyndman and Koehler, 2006; Liu et al.,
2024).

The Graph Neural Network (GNN) is employed in the Multi-Algorithmic Ensemble
Model (MAEM) to capture spatial correlations between road segments. In this approach,
road segments are represented as nodes in a graph, and edges are defined based on the
correlation between the traffic speeds of adjacent or correlated segments. The spatial
correlation between nodes is captured using graph convolution operations, which propa-
gate information between connected nodes. The GNN effectively models both direct and
indirect interactions between road segments by considering the traffic flow, connectivity,
and proximity of the segments.

The node feature matrix H(l) and adjacency matrix Â are utilized to perform graph
convolutions. The graph convolution operation is mathematically defined as:
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H(l+1) = σ
(
ÂH(l)W (l)

)
(2.1)

where H(l) is the node feature matrix at layer l, W (l) represents the learnable weight
matrix at layer l, Â denotes the normalized adjacency matrix capturing the connectivity
between road segments, and σ signifies the activation function. In simpler terms, at each
layer l, the node features H(l) are transformed by multiplying with weights W (l), aggre-
gated through the normalized adjacency matrix Â, and finally, the activation function
σ is applied to introduce non-linearities, thereby enabling the model to learn complex
relationships in the data (Kipf and Welling, 2016). This formulation allows the GNN
to effectively capture spatial dependencies across different road segments, thereby en-
hancing the model’s ability to predict traffic speeds with greater accuracy by integrating
spatial correlations and traffic dynamics.

The MAEM model employs LSTM networks for spatial feature extraction and Bi-
GRU for temporal feature extraction, utilizing each architecture’s strengths to effectively
capture different types of dependencies within traffic data. LSTM networks are partic-
ularly adept at capturing long-term dependencies in sequential data due to their gating
mechanisms, which control information flow and retention. In the context of traffic pre-
diction, spatial dependencies arise because traffic conditions on one road segment can be
influenced by conditions on neighboring segments. LSTM’s ability to selectively retain
or forget information from previous segments allows it to capture these dependencies ef-
fectively. By leveraging the LSTM’s memory cell, MAEM can model how conditions at
distant segments indirectly impact the current segment, thus forming a comprehensive
spatial relationship across the road network. The LSTM’s structure supports the preser-
vation of relevant spatial correlations while mitigating information loss across extended
sequences. This approach enables the model to identify patterns within the spatial ar-
rangement of road segments, capturing both direct and indirect influences on traffic flow
across connected segments.

2.3.3 Performance Evaluation

To ensure the robustness and reliability of the proposed MAEM model, the dataset
was split into training, validation, and testing subsets to preserve the inherent spa-
tiotemporal distribution of traffic patterns. Cross-validation techniques, such as k-fold
cross-validation, were utilized to assess the model’s generalizability and prevent overfit-
ting. Furthermore, the model was tested against unseen data under diverse traffic con-
ditions, including peak and off-peak hours, to verify its adaptability and accuracy. This
comprehensive validation approach underscores the model’s ability to provide reliable
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and actionable traffic predictions for real-world applications. Two widely used metrics,
Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), play
a pivotal role in this evaluation process. MAPE measures the accuracy of predictions
as a percentage, highlighting the average difference between predicted and actual val-
ues. A lower MAPE signifies better accuracy, making it a crucial metric for evaluating
the model’s predictive capabilities. On the other hand, RMSE provides a measure of
the prediction errors’ magnitude, emphasizing the square root of the average squared
differences between predicted and actual values (Hyndman and Koehler, 2006).

The Mean Absolute Percentage Error (MAPE) is defined as follows:

MAPE(y, ŷ) = 1
N

N∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣× 100% (2.2)

The Root Mean Square Error (RMSE) is defined as follows:

RMSE(y, ŷ) =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (2.3)

In these equations, yi represents the actual values, ŷi represents the predicted values,
and N is the number of data points. MAPE calculates the average absolute percentage
difference between actual and predicted values, providing insights into the relative error
magnitude. RMSE calculates the square root of the average squared differences between
actual and predicted values, emphasizing the model’s ability to minimize large errors.

Additionally, we include the coefficient of determination R2 to provide a more com-
prehensive evaluation of the model’s performance. The R2 metric represents the pro-
portion of variance in the dependent variable that is predictable from the independent
variables. It is defined as:

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(2.4)

An R2 value closer to 1 indicates that the model explains a large proportion of the
variance in the data, signifying better predictive accuracy. In contrast, an R2 value closer
to 0 suggests that the model does not effectively explain the variance. For the MAEM
model, including R2 provides additional insights into how well the model captures the
variability in traffic speed, complementing the error-based metrics (MAPE and RMSE)
that primarily measure prediction accuracy. Utilizing R2 alongside MAPE and RMSE
allows for a thorough assessment of the overall performance and reliability of the model.
These metrics collectively offer valuable insights into the accuracy and precision of the
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traffic prediction model, ensuring robust evaluation of its forecasting performance.

2.3.4 Data Description

The dataset utilized in this research, sourced from HERE Technologies, provides real-
time traffic data for the City of Hamilton, Ontario, Canada. Covering the period from
October 1, 2022, to October 1, 2023, this dataset offers a comprehensive view of Hamil-
ton’s traffic dynamics. The data, collected primarily from probe vehicles equipped with
advanced sensors, includes detailed real-time traffic information for 4788 individual road
links within the city.

To facilitate detailed analysis, the traffic network links are meticulously segmented
into smaller units, each with approximately equal traffic parameters. This segmentation
approach enables a more granular understanding of traffic patterns and aids in the
modeling process. Key variables essential for traffic prediction, such as free-flow speed
and average speed for each road link, are captured. These variables are aggregated at
5-minute intervals, providing a high-resolution snapshot of traffic conditions throughout
the study period.

Figure 2.2 visually depicts the geographical scope of the study, highlighting the spe-
cific roads utilized in this research. The selected roads, including highways, arterial
roads, and major streets within Hamilton, are shown in lawn green on the map. This
targeted selection ensures that the study focuses on vital traffic arteries, providing valu-
able insights into the city’s overall traffic flow dynamics.

2.4 Social Event Data Collection and Description

In addition to traffic sensor and probe vehicle data, this dissertation incorporates a com-
prehensive dataset of social events that occurred in the City of Hamilton. These events
were selected because they represent anticipated disruptions that significantly affect
travel demand, such as sports games, concerts, festivals, and community gatherings.

2.4.1 Data Collection

Event records were compiled from multiple official and public sources, including the City
of Hamilton’s open data portal, municipal calendars, venue-specific event listings (e.g.,
stadiums, arenas, concert halls), and supplementary online archives. For each event,
metadata such as event type, location, start and end times, and estimated attendance
were extracted. Attendance values were primarily obtained from municipal permits and
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Figure 2.2: Hamilton traffic network utilized for analysis in this
study

venue-reported statistics, with additional validation from public reports when available.
Only events with reliable temporal and spatial attributes were retained for analysis.

2.4.2 Data Cleaning and Structuring

The collected event data were cleaned to remove duplicates and inconsistencies. All event
locations were geocoded to their geographic coordinates and matched to the nearest
road segments in the Hamilton traffic network. Attendance was encoded as a continuous
feature, while categorical features such as event type (e.g., concert, sports, festival) were
one-hot encoded for model integration.

Figure 2.3 shows the spatial distribution of the social events across Hamilton. Each
red circle corresponds to an event venue, with the circle size proportional to the reported
attendance. As shown, the majority of events are concentrated around the downtown
core, major stadiums, and entertainment venues, while several large-scale events also
occur in peripheral areas such as university campuses and regional parks. This distri-
bution highlights the potential for both localized and network-wide disruptions during
large gatherings.

By systematically integrating these event records with traffic sensor and probe data,
the dataset provides a realistic testbed to evaluate the effect of social disruptions on
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Figure 2.3: Spatial distribution of social events across Hamilton.
Circle size represents event attendance, and labels correspond to
event identifiers.

traffic dynamics. This also allows the development and testing of event-aware imputation
and prediction models that explicitly incorporate event context.

For the purpose of this study, the dataset is strategically divided into three subsets:
70% of the data is allocated for training the predictive model, 15% for testing, and 15%
for validation. This division enables the model to learn intricate patterns and relation-
ships within the traffic data while ensuring its performance is rigorously assessed on
both seen and unseen data. This approach enhances the robustness and generalizability
of the predictive model, making it well-equipped to handle real-world traffic scenarios.

Input variables play a pivotal role in the construction and performance of the pre-
diction model. Table 2.1 delineates the various variables considered for this study, illus-
trating their purpose and usage. A crucial aspect of this research is the introduction of
a new variable, MAj,(i−20), which represents the moving average of the average speed
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Sj,i over the preceding 20 time intervals (equivalent to the last 5 hours). This variable
serves as an indicator of non-recurring or short-term irregular road changes.

Table 2.1: Definitions of variables used in the study

Variable Definition Role
Sj,i Average speed of vehicles passing link j

during time interval i
Input

FSj Free-flow speed of link segment j Input
RCj Road class of link segment j, with values

ranging from 1 to 4 (Highway, Arterial,
Collectors, and Local ways)

Input

MAj,(i−20) Moving average of Sj,i over the last 20-
time intervals (5 hours)

Input

ŷi Predicted traffic speed Output

2.5 Results

In this section, we present the results of our proposed traffic speed prediction model and
evaluate its performance in predicting traffic speeds on the road network of Hamilton,
Ontario, Canada. The experiments were conducted on a case study using the aggregated
probe vehicle data from October 1, 2022, to October 1, 2023, consisting of 4788 road
segments.

2.5.1 Model implementation and baseline methods

To determine the optimal number of input time steps for the MAEM model, we con-
ducted a series of experiments varying the input time steps from 1 to 10. The perfor-
mance of the model was evaluated using MAPE and RMSE as the primary metrics.
Additionally, the training time was recorded to assess the computational efficiency of
the model for each configuration.

Figure 2.4 illustrates the relationship between the number of input time steps, predic-
tion error (MAPE and RMSE), and training time. The blue line represents the MAPE,
the green line represents the RMSE, and the pink bars indicate the training time in
minutes. As observed from the figure, both MAPE and RMSE decrease as the number
of input time steps increases from 1 to 10. This trend suggests that incorporating more
historical data into the model enhances its ability to predict traffic speeds accurately.
Specifically, the MAPE decreases sharply from around 9% to 3% as the input time steps
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increase from 1 to 5, indicating a significant improvement in prediction accuracy. Be-
yond 5 input time steps, the rate of improvement in MAPE and RMSE begins to plateau,
suggesting diminishing returns with additional input data.

Figure 2.4: Evaluation of the MAEM model with varying input
time steps

However, it is essential to consider the trade-off between prediction accuracy and
computational efficiency. The training time increases significantly with more input time
steps. For instance, using 5 input time steps results in a training time of approximately 30
minutes, which increases to around 140 minutes for 10 input time steps. This substantial
increase in training time highlights the computational cost associated with using more
extensive historical data.

Considering both prediction accuracy and computational efficiency, we decided to
use 4 input time steps. This choice provides a balanced approach, offering substantial
improvements in prediction accuracy while keeping the training time manageable. Using
4 input time steps, we achieve a significant reduction in MAPE and RMSE compared to
lower input time steps, without incurring excessive computational costs. This decision
ensures that the model remains practical for real-world applications, where both accuracy
and efficiency are crucial.

2.5.2 Performance Comparison with Baseline Models

We meticulously evaluate the performance of our proposed Multi-Algorithmic Ensemble
Model (MAEM) in comparison to several baseline models widely employed in the field
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of traffic speed prediction. Through comprehensive quantitative analysis, we assess
the accuracy, robustness, and adaptability of MAPE and RMSE under diverse traffic
scenarios, highlighting its superiority over traditional methods.

2.5.2.1 Accuracy Assessment

During regular traffic conditions, the MAEM model demonstrated exceptional predictive
accuracy, outperforming both traditional machine learning models and recently devel-
oped deep learning approaches. In this analysis, the model’s performance was assessed
by using four previous data points to forecast the next one-hour (12 intervals of five min-
utes each) traffic speed. Compared to conventional machine learning models, MAEM
achieved a substantially lower Mean Absolute Percentage Error (MAPE), approximately
2.8% less on average, underscoring its enhanced capability to capture complex traffic pat-
terns. Similarly, the Root Mean Square Error (RMSE) of MAEM was reduced by an
average of 2.4 Km/h, highlighting its precision in predicting traffic speeds under dynamic
conditions.

To ensure a fair comparison among the models, we carefully selected the hyperpa-
rameters for each method based on empirical tuning in the literature. Hyperparameters
for comparison models, including the hyperparameter in AR, ARIMA, KNN, SVM, XG-
Boost and LSTM, were optimized using grid search to identify the best configurations
for maximizing accuracy. For recent baseline models, such as ST-GCN, Graph WaveNet,
and Attention-Based Transformer, we selected hyperparameters based on configurations
recommended in the literature, ensuring each model’s performance aligns with best-
reported results in comparable studies [17,47,48]. This approach to model tuning sup-
ports the reproducibility of our results and ensures that the comparison between MAEM
and baseline models is both fair and accurate.

Table 2.2 presents the performance metrics—MAPE, RMSE, and the coefficient of
determination (R2)—for various traffic speed prediction models at the one-hour (60-
minute) prediction horizon. MAEM consistently outperforms all baseline models, in-
cluding recent deep learning architectures such as the Spatio-Temporal Graph Convo-
lutional Network (ST-GCN), Graph WaveNet, and Attention-Based Transformer. With
a MAPE of 3.18%, an RMSE of 2.85 Km/h, and an R2 of 0.93, MAEM achieves the
highest accuracy among all tested models. In comparison, even advanced models such as
Graph WaveNet and Attention-Based Transformer report higher error rates, indicating
that MAEM offers improved adaptability and precision in traffic speed prediction.
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Table 2.2: Comparison of Model Performance for One-Hour Traf-
fic Speed Prediction

Model MAPE (%) RMSE (Km/h) R2

AR 24.04 21.92 0.42
ARIMA 19.77 19.31 0.50
KNN 16.30 17.41 0.59
SVM 13.48 13.04 0.65
RF 10.13 9.37 0.73
XGBoost 8.57 8.12 0.77
LSTM 6.91 6.04 0.81
ST-GCN 5.82 5.44 0.84
Graph WaveNet 5.61 5.19 0.85
Attention-Based Transformer 5.29 5.46 0.86
MAEM 3.18 2.85 0.93

The performance trend of the MAEM model highlights its exceptional ability to
capture and leverage spatiotemporal dependencies in traffic data. This robustness is es-
pecially apparent over extended prediction intervals, where other models such as ARIMA
and KNN experience notable increases in error rates, reflecting their limitations in han-
dling complex, evolving traffic conditions. The consistent accuracy of MAEM demon-
strates its effectiveness in adapting to the dynamic nature of urban traffic, making it a
highly reliable tool for short-term traffic speed predictions. Overall, these results empha-
size the potential of MAEM to provide precise and dependable traffic speed forecasts,
contributing significantly to efficient urban traffic management and planning.

2.5.2.2 Robustness Testing

Table 2.3 represents robustness of the MAEM model under various challenging scenarios,
including peak congestion hours and unexpected traffic disruptions. This evaluation
aimed to assess the model’s ability to maintain predictive accuracy during periods of
high demand and sudden changes in traffic conditions.

During peak congestion hours, where traffic patterns are highly unpredictable, MAEM
demonstrated significant resilience. The model achieved a 5.7% lower Mean Absolute
Percentage Error (MAPE) compared to the best baseline model, highlighting its supe-
rior performance under high-demand conditions. This robustness is crucial for providing
commuters and traffic management systems with reliable forecasts during the most con-
gested periods.
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Table 2.3: Performance Metrics (MAPE and RMSE) for Robust-
ness Testing under Different Traffic Conditions

Traffic Condition Model MAPE (%) RMSE (Km/h)

Weekday Morning Peak Hours (6AM-9AM) MAEM 3.1 8.8Best Baseline Model 8.8

Weekday Afternoon Peak Hours (4PM-7PM) MAEM 3.0 8.7Best Baseline Model 8.7

Weekend Noon Peak Hours (11AM-1PM) MAEM 2.9 8.6Best Baseline Model 8.6

2.5.2.3 Effectiveness of STFE

To evaluate the effectiveness of Spatiotemporal Feature Engineering (STFE) in our
model, we conducted a series of experiments under diverse traffic scenarios. As presented
in Table 2.4, the inclusion of STFE significantly enhanced the prediction accuracy and
robustness of the traffic speed prediction model. During regular traffic conditions, our
model with STFE showed a marked improvement in prediction accuracy, reducing the
Mean Absolute Percentage Error (MAPE) by 4.2% compared to a model without includ-
ing STFE. This improvement translates to more reliable real-time traffic speed forecasts,
which are crucial for daily commuters and traffic management systems. The RMSE also
decreased by 3.7 Km/h, indicating more precise speed predictions.

In peak traffic conditions, the benefits of STFE were even more pronounced. During
weekday morning peak hours, the model with STFE demonstrated a substantial reduc-
tion in MAPE, reducing it by 5.3% compared to the model without STFE. Similarly,
during weekday afternoon peak hours, the MAPE was reduced by 4.9%. These improve-
ments highlight the model’s ability to effectively handle high variability and congestion
in traffic patterns during rush hours, providing valuable insights for route planning and
aiding traffic control strategies.

Table 2.4: Performance Metrics (MAPE) with and without STFE
under Different Traffic Scenarios

Traffic Scenario MAPE with STFE (%) MAPE without STFE (%)
Overall 3.0 7.2
Weekday Morning Peak Hours (6 AM-9 AM) 5.7 11.0
Weekday Afternoon Peak Hours (4 PM-7 PM) 5.4 10.3
Weekend Noon Peak Hours (11 AM-1 PM) 4.5 9.0

The quantitative results unequivocally confirm STFE’s transformative impact on our
traffic speed prediction model. By capturing intricate traffic patterns and adapting to
changing conditions, STFE significantly reduces prediction errors, making it a robust
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and reliable tool for short-term traffic speed predictions. These findings emphasize the
practical implications of STFE, contributing to a more reliable and efficient transporta-
tion network for Hamilton and beyond.

2.5.2.4 Permutation Importance Results

Permutation importance involves randomly shuffling the output of a specific component,
such as the GNN or Bi-GRU, and evaluating the impact this has on the model’s pre-
diction performance. The underlying assumption is that if a component is crucial for
the model, shuffling its outputs will significantly degrade performance. The greater the
degradation in metrics such as Mean Absolute Percentage Error (MAPE) and Root Mean
Square Error (RMSE), the more important the component is to the model. The process
began by recording the baseline performance of the full MAEM model, with no permu-
tation applied. We then individually permuted the outputs of each component—GNN,
LSTM, Bi-GRU, and attention mechanism—one at a time. After each permutation,
the model’s MAPE and RMSE were recalculated to assess how much each component
contributed to the overall model accuracy.

The largest degradation in model performance was observed when the outputs of the
GNN were permuted. MAPE increased by 1.11%, and RMSE rose by 0.81 Km/h. This
significant change demonstrates the critical role that GNN plays in capturing the spatial
dependencies between road segments. By modeling the road network as a graph, GNN
allows the model to extract relevant spatial features that directly influence traffic flow
patterns. The high-performance drop suggests that the spatial correlations captured by
the GNN are essential for accurate traffic speed predictions. The LSTM component also
showed a substantial impact on the model’s performance when permuted. The 0.83%
increase in MAPE and the 0.54 Km/h rise in RMSE indicate that LSTM effectively
captures long-term spatial dependencies between road segments. Its ability to model
sequential relationships ensures that the MAEM model can handle complex, interdepen-
dent traffic patterns over time, which is vital for producing reliable predictions.

Permuting the Bi-GRU outputs led to a 0.76% increase in MAPE and a 0.47 Km/h
increase in RMSE. Bi-GRU handles the temporal dependencies in the model, processing
traffic data in both forward and backward directions. This bidirectional processing is
particularly beneficial for capturing traffic patterns during periods of high variability,
such as peak congestion hours. The model’s reliance on Bi-GRU further underscores its
role in predicting traffic speed more accurately across fluctuating conditions. Although
the attention mechanism showed the smallest increase in MAPE (+0.51%) and RMSE
(+0.26 Km/h), it still plays a critical role in refining the model’s performance. The
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attention mechanism helps the model prioritize more important time intervals, ensuring
that the most relevant temporal features are emphasized in the prediction process. While
its contribution is less significant than that of the GNN or LSTM, it enhances the
temporal accuracy of the model by focusing on critical periods where traffic flow changes
rapidly.

2.5.3 Real-time Adaptation (RTA) Evaluation

Real-time Adaptation (RTA) is an integral mechanism within the proposed MAEM de-
signed to enhance the model’s accuracy and reliability by dynamically adjusting predic-
tions based on real-time traffic variations. RTA allows the MAEM model to continuously
update its predictions as new traffic data becomes available, ensuring that the model
remains responsive to sudden changes in traffic conditions, such as accidents or road
closures. To evaluate the effectiveness of RTA, we employed key performance metrics,
including MAPE and RMSE, which directly reflect the accuracy of real-time predictions.
During extensive testing, RTA consistently achieved a significant reduction in MAPE,
surpassing other existing prediction methods by 5.2% (Cao et al., 2021). This improve-
ment highlights RTA’s ability to swiftly adapt to changing traffic conditions, providing
commuters with highly-precise speed forecasts, even during volatile situations.

Figure 2.5: Prediction performance for different road classes

Figure 2.5 illustrates the MAPE for different road types (Highways, Arterials, Col-
lectors, and Local ways) throughout the day. The prediction error varies significantly
across different road types and times of day. Highways consistently exhibit the highest
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MAPE, peaking during early morning and late afternoon hours, which aligns with typi-
cal rush hour traffic congestion. Arterials show a similar pattern but with slightly lower
MAPE values, indicating that traffic prediction on these roads is somewhat more accu-
rate. Collectors and Local ways demonstrate the lowest MAPE values, suggesting that
predictions on these road types are generally more reliable. The smooth transitions in
MAPE throughout the day indicate a stable and consistent performance of the predictive
model, with the lowest errors observed during off-peak hours (midnight to early morn-
ing) and gradually increasing errors during peak traffic times. These results highlight
the model’s ability to adapt to varying traffic conditions, providing more accurate pre-
dictions for less congested road types while indicating potential areas for improvement
during high-congestion periods on major roadways.

Figure 2.6: Performance of the proposed model during different
scenarios. (a) Weekdays – off-peak hours. (b) Weekdays – Morning
peak hours. (c) Weekdays – Afternoon peak hours. (d) Weekends
– off-peak hours. (e) Saturday – Noon peak hours. (f) Sunday –
off-peak hours

Figure 2.6 compares prediction errors, measured as MAPE and RMSE, across vari-
ous traffic prediction models under different traffic conditions: weekdays and weekends
during off-peak hours, weekday morning and afternoon peak hours, and weekend noon
peak hours. In all scenarios, the proposed MAEM consistently outperforms other mod-
els, achieving the lowest MAPE and RMSE values. This indicates that MAEM provides
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more accurate traffic speed predictions compared to traditional models such as AR,
ARIMA, KNN, SVM, RF, XGBoost, and LSTM.

During peak hours, MAEM’s superior performance is particularly notable, demon-
strating its robustness and ability to adapt to dynamic traffic conditions. The consistent
performance across various conditions underscores MAEM’s effectiveness in capturing
spatial and temporal dependencies in traffic data. Overall, the figure highlights the
efficacy of the MAEM model in providing highly accurate and reliable traffic speed pre-
dictions, making it an excellent choice for intelligent transportation systems and urban
traffic management.

2.6 Conclusion

This study presents a robust traffic speed prediction framework, significantly contribut-
ing to the field of Intelligent Transportation Systems (ITS). Our Multi-Algorithmic En-
semble Model (MAEM) integrates advanced techniques, including LSTM networks, and
Spatiotemporal Feature Engineering (STFE), to achieve superior prediction accuracy
and robustness. In a comparative evaluation, our MAEM model demonstrated a 3.5%
reduction in Mean Absolute Percentage Error (MAPE) and a 2.4 Km/h decrease in
Root Mean Square Error (RMSE) compared to existing models (Lv et al., 2014; Rah-
mani et al., 2023; Yu et al., 2017). The model’s performance was particularly notable
during peak congestion hours, achieving a 5.3% reduction in MAPE and a 3.7 Km/h re-
duction in RMSE [11,50]. Furthermore, the model’s real-time adaptability significantly
improved its prediction accuracy by 7.9%, showcasing its capability to respond effectively
to dynamic traffic conditions [51,52].

The model’s adaptability, enhanced by its real-time response mechanism, highlights
MAEM’s potential to handle sudden traffic fluctuations effectively. This adaptability,
which yielded a 7.9% improvement in prediction accuracy under peak-hour conditions,
positions MAEM as a valuable tool for real-time applications. Future research will aim to
refine MAEM’s predictive accuracy in atypical traffic scenarios, such as those caused by
non-recurring events (sports games, public gatherings, etc.), and explore its integration
with event-based data for more precise adaptability to planned disruptions.

Ultimately, MAEM’s framework not only sets a high standard for accuracy and flex-
ibility but also paves the way for ITS advancements that can improve urban traffic flow,
reduce congestion, and contribute to smarter, more resilient urban infrastructure. This
study’s findings underscore the transformative potential of integrated spatiotemporal
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modeling, advancing the predictive capabilities of traffic management systems and sup-
porting sustainable, efficient mobility in an urban environment. This proposed approach
aligns with our commitment to advancing ITS and contributing to the development of
smarter urban transportation solutions. In essence, our research not only introduces a
robust traffic prediction system but also sets a new standard for accuracy and adapt-
ability in real-world traffic scenarios. By surpassing established models and pioneering
short-term prediction intervals, our TSP framework stands as a testament to the relent-
less pursuit of excellence in ITS, contributing significantly to the evolution of predictive
modeling in traffic management.
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Abstract

Metropolitan traffic congestion, exacerbated by social events such as concerts, sports
games, and public gatherings, poses significant challenges for traffic management and
urban planning. Accurate prediction of traffic speed during these events is crucial to al-
leviating congestion and improving urban mobility. This study introduces an advanced
Event-Aware Long Short-Term Memory (EA-LSTM) model that uniquely considers the
differentiated impact of various types and sizes of social events on traffic speed, an aspect
not fully addressed in the existing literature. By integrating probe vehicle data with de-
tailed social event features, the EA-LSTM model leverages multiresolution data input,
graph convolutional networks (GCNs), bidirectional LSTM layers, self-attention mech-
anisms, and hierarchical structures to capture both spatial and temporal dependencies
in traffic data. The model addresses the limitations in data quality and generalizability
seen in previous methodologies. By investigating numerous social events of different
sizes and types, we fill the gap by proposing a model that can be generalized to vari-
ous social events. Its performance is validated using a one-year probe vehicle dataset
from Hamilton, ON, Canada, alongside a comprehensive social events dataset, demon-
strating significant improvements over existing models. The findings suggest that the
EA-LSTM model can effectively anticipate traffic disruptions caused by various social
events, providing valuable information to urban planners and traffic managers. This re-
search contributes a novel framework that enhances prediction accuracy by considering
event-specific impacts, ultimately improving urban traffic management.

Keywords: Traffic Speed Prediction, Long Short-Term Memory (LSTM), Graph Con-
volutional Networks (GCN), Social Events, Event-Aware Modeling, Probe Vehicle Data,
Spatiotemporal Data Analysis
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3.1 Introduction

Metropolitan traffic congestion significantly affects the quality of life and economic pro-
ductivity in urban areas. Social events such as concerts, sports games, and public gath-
erings further exacerbate this problem, leading to unpredictable traffic patterns and
increased congestion. Accurate prediction of traffic speed during these events is crucial
for effective traffic management and urban planning. Traditional approaches, including
regression models and statistical analyses, often fail to capture the dynamic and non-
linear nature of traffic flow influenced by social events. These methods typically rely on
historical traffic data and assume regular traffic patterns, which are insufficient when
sudden disruptions occur due to events. For example, regression models may not ac-
count for the sudden influx of vehicles or changes in driver behavior during major events,
leading to inaccurate predictions (Wang and Chen, 2018).

In contrast, modern techniques such as machine learning and deep learning offer
promising alternatives by leveraging vast amounts of data to improve prediction accu-
racy. Deep learning models, particularly Long Short-Term Memory (LSTM) networks,
have shown significant potential in modeling complex temporal dependencies in traffic
data (Zhao et al., 2017; Rasaizadi et al., 2021; Shaygan et al., 2022). Studies have demon-
strated the effectiveness of integrating social media and traffic sensor data to enhance
real-time traffic prediction (Zhang et al., 2018).

However, despite these advances, the specific impact of different types and sizes of
social events on traffic speed remains underexplored. Most existing studies focus on
general traffic prediction without differentiating between event types and their varying
scales (Giuliano and Lu, 2021; Jin et al., 2023b). Although extensive research has been
conducted on traffic prediction during social events, we have not found any studies
proposing a general model capable of predicting the impact of different event types with
varying numbers of attendees, highlighting the need for models that can generalize across
various event types and sizes.

Addressing this gap, our study proposes an advanced Event-Aware Long Short-Term
Memory (EA-LSTM) model that uniquely considers the differentiated impact of various
types and sizes of social events on traffic speed. By integrating probe vehicle data with
detailed event features, the EA-LSTM model aims to provide a robust and scalable
solution for predicting traffic speed during social events, ultimately improving urban
traffic management.
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3.2 Literature Review

Recent studies have explored the impact of social events on urban traffic using various
approaches. For instance, (Zhang et al., 2021) examined traffic characteristics during
public holidays, proposing a hybrid speed prediction approach that combines support
vector regression and historical averages. This method significantly improved prediction
accuracy but was limited to public holidays, necessitating a broader approach for other
event types. Similarly, (Bejarano-Luque et al., 2021) used deep learning to estimate
the impact of social events on traffic demand, integrating traffic data collected from
Twitter. While effective, this approach introduced potential biases and data quality
issues inherent in social media data.

In addition, (Deng et al., 2022) proposed a graph convolutional adversarial network
to detect spatio-temporal anomalies in traffic data, which is particularly useful for iden-
tifying irregular patterns caused by social events. However, the real-time processing
capabilities and computational complexity of the model remain challenging. Likewise,
(Giuliano and Lu, 2021) focused on the traffic impacts of major events at a single venue,
using traditional regression and random forest models. Their findings highlighted the
varying impacts of different events on local traffic, but were limited in generalizability.
Furthermore, (Essien et al., 2021) developed a deep-learning model for urban traffic
flow prediction, integrating traffic events mined from Twitter. This approach demon-
strated the value of social media data in capturing real-time event impacts but faced
challenges related to data reliability and integration. Similarly, (Fu and Liu, 2022) pre-
sented a spatial-temporal convolutional model for predicting urban crowd density using
mobile-phone signaling data, highlighting its potential for traffic management during
large gatherings while raising privacy concerns.

Moreover, (Peng et al., 2024) proposed a unified spatial-temporal neighbor attention
network for dynamic traffic prediction, significantly improving accuracy during social
events but requiring extensive training data and high computational power. In the same
context, (Shin and Lee, 2020) addressed missing temporal and spatial data challenges by
using LSTM networks, enhancing prediction accuracy but demanding resource-intensive
data preprocessing. Additionally, (Kong et al., 2023) introduced a Bayesian network
model for forecasting traffic congestion during large-scale events, incorporating histor-
ical data and real-time sensor inputs to achieve high prediction accuracy. However,
this approach necessitates substantial historical data and real-time monitoring systems.
Similarly, (Li and Wang, 2021) explored reinforcement learning algorithms for adaptive
traffic signal control during social events, dynamically adjusting signal timings based on
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real-time traffic conditions but facing practical implementation challenges due to model
complexity.

In recent years, there has been a surge in using advanced deep learning models to im-
prove traffic prediction during social events. For example, (Ren et al., 2022) developed
a hybrid deep learning model combining Convolutional Neural Networks (CNNs) and
LSTMs to predict traffic flow during a special event. Their model effectively captured
both spatial and temporal features, resulting in improved prediction accuracy. How-
ever, the approach required extensive computational resources due to the complexity of
the model. Similarly, (Harrou et al., 2024) proposed a Transformer-based approach for
traffic prediction, leveraging self-attention mechanisms to model long-range dependen-
cies in traffic data. This method showed improved performance over traditional LSTM
models, particularly during irregular traffic patterns caused by events. Nevertheless, the
Transformer’s complexity and need for large datasets may limit its practical application.
Also, (Khan et al., 2023) introduced a multi-view learning framework that integrates
data from various sources, including social media, weather reports, and event schedules,
to enhance traffic prediction accuracy. Their approach demonstrated that incorporating
diverse data types can significantly improve model performance during social events,
although data integration and processing remain challenging.

Taken together, the studies in (Yin et al., 2023; Jeong et al., 2023; Chen et al., 2024;
Zhang et al., 2023) highlight significant advancements in the field of traffic congestion
prediction during social events. They employ state-of-the-art methods—ranging from
hybrid LSTM-CNN and transfer learning to spatiotemporal graph neural networks and
real-time data fusion—that demonstrate improved accuracy in forecasting traffic flow
under various conditions. Despite these progressions, however, they also underscore key
limitations related to data quality, computational complexity, and the generalizability of
models across different contexts and transportation networks. Meanwhile, few existing
studies (Jin et al., 2023a; Alevizos et al., 2017) have focused on general event impacts
without differentiating between event types and sizes. This broader approach overlooks
the substantial variations in traffic disruptions that can arise from distinct categories of
events—such as sports, concerts, or festivals—each of which may exhibit unique travel
demand patterns, temporal distributions, and traveler behaviors. As a result, the current
literature lacks a nuanced understanding of how multiple event attributes collectively
influence traffic dynamics.

Collectively, these studies underscore the importance of accurately modeling the dif-
ferentiated impacts of various social events on urban traffic, yet few have examined how
event types and scales interact to influence congestion. Our research addresses this gap
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by systematically analyzing how various event types (e.g., sport, concert) and sizes af-
fect traffic speed, thereby highlighting both the significance of specialized modeling and
the need for a more granular framework in event-based congestion studies. By incorpo-
rating more comprehensive datasets and refining modeling approaches to accommodate
event-specific characteristics, we aim to improve predictive accuracy and bolster the ap-
plicability of these findings in diverse real-world contexts. Building on these insights, the
primary objective of this research is to develop an Event-Aware Long Short-Term Mem-
ory (EA-LSTM) framework that integrates diverse data sources and advanced modeling
techniques. By capturing both temporal and spatial dependencies—while also differenti-
ating between event types and sizes—this model aspires to enhance prediction accuracy
and provide actionable insights for more effective traffic management decisions.

3.3 Methodology

In this study, we propose an advanced Event-Aware Long Short-Term Memory (EA-
LSTM) model to predict traffic speed by integrating probe vehicle data with detailed
event features. The problem at hand is accurately predicting traffic speed during vari-
ous social events, which poses significant challenges due to the dynamic and non-linear
nature of traffic patterns influenced by these social events. By incorporating historical
traffic data, temporal features, and social event data into a sophisticated neural network
architecture, our model aims to provide a robust and scalable solution to enhance traffic
management and urban planning. This proposed methodology section covers data collec-
tion, feature engineering, model architecture for the EA-LSTM model. Each subsection
includes detailed descriptions and relevant equations, ensuring that the methodology is
clear and thorough. The flowchart in Figure 3.1 provides an overview of the proposed
model architecture and its components.

3.3.1 EA-LSTM Model Architecture

To improve prediction accuracy and reliability, the model leverages bidirectional pro-
cessing, self-attention mechanisms, and hierarchical structures, enabling it to effectively
capture complex spatiotemporal dependencies in traffic patterns. The model operates
with a minimum input of one hour of traffic data to predict traffic speed for the sub-
sequent hour, ensuring real-time adaptability and responsiveness. This study primarily
focuses on assessing the impact of social events on the Hamilton traffic network.
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Figure 3.1: Flowchart of the proposed EA-LSTM model architec-
ture and its components

The proposed EA-LSTM model relies on two primary data sources: probe vehicle
data and social event data. These datasets provide complementary insights into traf-
fic dynamics, capturing both regular traffic patterns and disruptions caused by events.
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Probe vehicle data, collected at high temporal resolution, reflects real-time traffic condi-
tions across Hamilton’s road network, while social event data offers detailed information
on events that impact traffic flow, such as their type, size, location, and timing. To
effectively utilize these datasets, they are integrated through geolocation and temporal
alignment, ensuring that traffic data corresponds to relevant events within the same spa-
tial and temporal context. This integration forms the foundation for feature engineering,
enabling the model to capture the multifaceted impacts of social events on traffic.

3.3.2 Feature Engineering

Effective feature engineering is crucial for capturing the underlying patterns in traffic
data and the influence of social events. Our feature selection was guided by domain
expertise and previous research demonstrating the significance of specific variables in
traffic prediction (Lv et al., 2014; Ali et al., 2022).

3.3.2.1 Historical Traffic Data

Extracting traffic patterns from historical data helps establish baseline conditions, en-
abling the model to identify anomalies and deviations caused by events. This historical
context provides a reference against which event-influenced variations can be measured.
Time-of-day, day-of-week, and seasonality indicators capture recurring temporal varia-
tions in traffic. These features are especially important for modeling how traffic pat-
terns vary over daily, weekly, and seasonal cycles, thereby improving predictive accuracy.
Specifically, sine and cosine transformations are used to encode the cyclical nature of
time (e.g., 24-hour cycle):

tsin = sin
(

2π t
T

)
,

tcos = cos
(

2π t
T

)
,

(3.1)

where t is the timestamp and T is the period (e.g., 24 hours). Additionally, one-
hot encoding was used to represent each day of the week, ensuring that no unintended
ordinal relationships are introduced among the days.

3.3.2.2 Wavelet Transformation

To capture both short-term fluctuations and long-term trends, the traffic data were
decomposed using the Discrete Wavelet Transform (DWT) with the Daubechies 4 (db4)
wavelet function (Mallat, 1999). This decomposition aids in isolating high-frequency
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variations (e.g., transient congestion) from low-frequency patterns (e.g., daily commuting
rhythms), thereby enhancing the model’s ability to identify complex trends.

Aj,k =
∑

t

x(t)ϕj,k(t),

Dj,k =
∑

t

x(t)ψj,k(t),
(3.2)

where Aj,k and Dj,k denote approximation and detail coefficients at scale j and
position k, ϕj,k(t) and ψj,k(t) are the scaling and wavelet functions, and x(t) is the
original traffic speed value. Applying the wavelet transform improved the Signal-to-
Noise Ratio (SNR) by 12.1%, resulting in more robust feature extraction.

3.3.2.3 Social Event Features

Quantifying the impact of events allows the model to differentiate between varying levels
of disruption. We encoded event characteristics including:

• Event Type Encoding: One-hot encoding for categories such as sports events,
concerts, festivals, and run/bike/walk events.

• Number of Attendees: A continuous variable representing the scale of the event.

• Parking Availability: A binary feature indicating whether parking facilities are
accessible at or near the venue.

These factors enable the model to gauge how different events might affect traffic flow.

3.3.2.4 Proximity Feature

Finally, to account for spatial impacts, the distance between each event location and
affected road segments is calculated using the Haversine formula (Sinnott, 1984):

d = 2r arcsin
(√

sin2
(ϕ2 − ϕ1

2
)

+ cos(ϕ1) cos(ϕ2) sin2
(λ2 − λ1

2
))
, (3.3)

where ϕ and λ are the latitudes and longitudes of the two points, and r is the Earth’s
radius. By incorporating proximity features, the model is better positioned to predict
localized disruptions and accurately reflect the spatial reach of each event.

3.3.3 Model Architecture

The EA-LSTM model incorporates both spatial and temporal dependencies by integrat-
ing Graph Convolutional Networks (GCNs) and advanced LSTM architectures. The
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architecture of the model includes two sets of data inputs: historical traffic data (includ-
ing temporal and spatial features) and social event data. These inputs are processed
through advanced feature engineering techniques and fed into a deep learning model.

3.3.3.1 Graph Convolutional Networks (GCNs)

GCNs model the spatial relationships between road segments and events, creating spa-
tiotemporal embeddings that capture both the event influence and the geographical
context. This approach helps understand how events impact traffic in different loca-
tions, enabling the model to learn complex spatial dependencies in the traffic network.
The GCN operation is defined as (Schlichtkrull et al., 2018):

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
, (3.4)

where:

• H(l) is the input feature matrix at layer l,

• Ã = A+ I is the adjacency matrix with added self-connections,

• D̃ is the diagonal degree matrix of Ã,

• W (l) is the trainable weight matrix,

• σ is the activation function (e.g., ReLU).

The term D̃−1/2ÃD̃−1/2 ensures proper normalization of the adjacency matrix, fa-
cilitating stable learning.

3.3.3.2 Bidirectional LSTM

Implementing Bidirectional LSTM layers captures dependencies in both forward and
backward directions, enhancing the understanding of temporal patterns in the traffic
data. This allows the model to consider both past and future context when making pre-
dictions. Bidirectional processing improves the model’s ability to capture relationships
across time.

−→
ht = LSTM(xt,

−−→
ht−1)

←−
ht = LSTM(xt,

←−−
ht+1)

ht = [
−→
ht ;
←−
ht ]

(3.5)
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where xt is the input at time step t,
−→
ht and

←−
ht are the hidden states of the LSTM at

time step t in the forward and backward directions, respectively. The hidden states are
concatenated to form the final hidden state ht at time step t.

3.3.3.3 Attention-Enhanced LSTM

Integrating a self-attention mechanism within the LSTM layers allows the model to focus
on different parts of the input sequence dynamically, improving the learning of long-
term dependencies. The self-attention mechanism helps the model prioritize important
information, leading to more accurate predictions. Self-attention enables the model to
weigh the relevance of different time steps dynamically.

et = tanh(Whht +Wsst−1)

αt = exp(et)∑T
i=1 exp(ei)

st =
T∑

i=1
αihi

(3.6)

where ht is the hidden state at time step t, Wh and Ws are weight matrices, st−1 is the
previous state, and et is the energy score calculated using the tanh activation function.
αt represents the attention weights obtained by applying the softmax function to the
energy scores. Finally, st is the context vector computed as a weighted sum of the hidden
states hi using the attention weights αi.

3.3.3.4 Hierarchical LSTM

Creating a hierarchical LSTM architecture allows the first layer to process raw traffic
data, while subsequent layers process aggregated and higher-level features. This multi-
scale temporal learning approach enables the model to capture both fine-grained and
coarse-grained patterns in the traffic data. Hierarchical LSTM structures enhance the
model’s ability to understand traffic patterns at different levels of abstraction.

h
(1)
t = LSTM(1)(xt, h

(1)
t−1)

h
(2)
t = LSTM(2)(h(1)

t , h
(2)
t−1)

h
(3)
t = LSTM(3)(h(2)

t , h
(3)
t−1)

(3.7)

where h
(1)
t , h(2)

t , and h
(3)
t are the hidden states at time step t for the first, second,

and third LSTM layers, respectively. xt is the input at time step t, and h
(1)
t−1, h(2)

t−1,
and h

(3)
t−1 are the hidden states from the previous time step for each respective layer.
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Each LSTM layer processes the output from the previous layer, capturing hierarchical
temporal features.

3.4 Experimental Study

In this section, we present the case study designed to validate the effectiveness of the
proposed EA-LSTM model in predicting traffic speed during various social events. The
experimental study includes a detailed description of the datasets used, data preprocess-
ing steps, model setup, training procedures, and evaluation metrics.

3.4.1 Traffic Data

Probe vehicle data is collected through devices installed in vehicles, such as GPS units,
that continuously record the vehicle’s position, speed, and other relevant metrics as
the vehicle travels through the road network. This data provides a comprehensive and
granular view of traffic conditions in real-time. We used the dataset recorded by HERE
Technology Inc., which covers 4,788 road segments in Hamilton, Ontario. The dataset
captures detailed traffic information, allowing for precise analysis of traffic patterns
and congestion. Figure 2 illustrates the traffic network of Hamilton, which serves as
the testbed for this study. This extensive network enables a robust evaluation of the
proposed EA-LSTM model across different traffic conditions and event scenarios.

The dataset spans from October 1, 2022, to October 1, 2023, and includes data
recorded at 5-minute intervals throughout this period. This high-frequency data collec-
tion ensures a robust and detailed dataset for analysis. Additionally, the dataset includes
variables such as average traffic speed, free flow speed, and road coordinates, which are
critical for understanding traffic dynamics. To enhance the analysis, wavelet transforms
were applied to the traffic data, enabling the capture of both short-term variations and
long-term trends. Furthermore, to mitigate biases from overrepresented vehicle types,
such as commercial fleets, the dataset was filtered to include only passenger cars, ensur-
ing it accurately reflects general traffic conditions.

The dataset includes the following variables:

• Average Traffic Speed (S): The mean speed of vehicles on each road segment during
each 5-minute interval.

• Free Flow Speed (FFS): The average speed under optimal traffic conditions, used
as a reference to identify potential congestion when the observed speed deviates
significantly.
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Figure 3.2: Traffic map of the experimental study (Hamilton,
Ontario)

• Road Attributes: Number of lanes, road type (e.g., highway, arterial, local road),
and geographical coordinates (latitude and longitude) of each road segment.

3.4.2 Social Events

The dataset used in this study for social events was meticulously extracted manually
from various sources, including the City of Hamilton’s official website, Facebook, X
(Twitter), Eventbrite, and local news outlets. This comprehensive approach ensured the
collection of detailed information about a wide range of events within the city.

The extracted dataset spans from October 1, 2022, to October 1, 2023, covering a
total of 561 events across 76 locations in Hamilton. Events were geolocated and matched
with corresponding road segments to assess their spatial impact on traffic conditions.
This spatial alignment ensured that the influence of events was correctly associated with
the affected areas in the traffic network. The dataset includes the following variables:

• Event Name and Type: Categorized into sports events, concerts, festivals/public
gatherings, and run/bike/walk events.

• Event Schedule: Start time, end time, and duration of each event.

• Event Location: Geographical coordinates (latitude and longitude) of event venues.
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• Attendance: Number of attendees recorded, providing a measure of event scale.

• Parking Availability: Information on parking facilities at or near the event venues.

Event features such as attendance, type, and location were analyzed to quantify their
impact on traffic flow, allowing the model to differentiate between events with varying
levels of disruption. Social media data, which can introduce biases due to varying levels of
user engagement and reporting accuracy, was cross-verified with official announcements
and event organizers’ websites to ensure reliability. Events lacking sufficient verification
were excluded from the dataset, and efforts were made to include all significant events
during the study period to minimize selection bias. The dataset’s statistical summary
is presented in Table 4.1, providing an overview of the frequency, the mean number of
attendees, and the standard deviation of attendees for each type of event.

Table 3.1: Statistical Analysis of Social Events

Event Frequency Average Number of Attendees Attendees Std. Dev.
Sport 210 1471 403
Concert 231 849 356
Festival/Public Gathering 82 1231 518
Run/Bike/Walk 38 741 273
Total 561 1093 379

3.4.3 Data Preprocessing

The preprocessing of traffic and social event data involved several steps to prepare the
datasets for modeling. First, features were normalized to have zero mean and unit
variance, ensuring equal contributions to the training process and preventing features
with larger scales from dominating the model. Wavelet transformation was applied to
the traffic data to decompose time-series patterns into multiple frequency components.
Using the Daubechies (db4) wavelet, the data was analyzed at different time and fre-
quency scales, effectively capturing both short-term variations and long-term trends.
This transformation improved the Signal-to-Noise Ratio (SNR) by 12.1%, enhancing
feature extraction and denoising. The datasets were then divided into training (70%),
validation (15%), and testing (15%) subsets. This split supports robust model develop-
ment by enabling hyperparameter tuning on the validation set and unbiased performance
evaluation on the test set.

63



Ph.D. Thesis - A. Ardestani; McMaster University - Civil Engineering.

3.4.4 Model Setup

The proposed EA-LSTM model consists of multiple layers, including bidirectional LSTM,
attention-enhanced LSTM, and hierarchical LSTM, as well as graph convolutional (GCN)
layers to capture spatial dependencies. Combining these components enables the model
to learn complex temporal and spatial patterns, which is essential for accurately pre-
dicting traffic speed during social events. A systematic grid search was conducted to
tune key hyperparameters, such as the number of layers, units per layer, dropout rates,
and attention heads. Each combination was evaluated on the validation set to identify
the configuration yielding the best performance. The optimal settings are summarized
in Table 4.2.

The final model was trained using the Adam optimizer (learning rate = 0.001, batch
size = 64) for 500 epochs to predict traffic speed one hour ahead. During training, the
validation loss was monitored to mitigate overfitting and ensure robust generalization.
Figure 3.3 shows the evolution of training and validation loss over 300 epochs, illustrating
the convergence behavior and indicating that the model effectively learns from the data.

Table 3.2: Grid Search Hyperparameter Tuning Results

Hyperparameter Values Tested Optimal Value
Bidirectional LSTM
Number of Layers 1, 2, 3 2
Units per Layer 20, 30, 40, 50, 60, 70, 80, 90, 100 60
Dropout Rate 0.1, 0.2, 0.3 0.1
Attention-Enhanced LSTM
Attention Heads 4, 6, 8, 10, 12 6
Attention Dropout Rate 0.1, 0.2, 0.3 0.2
Hierarchical LSTM
Number of Layers 1, 2, 3 3
Units per Layer 20, 30, 40, 50, 60, 70, 80, 90, 100 40
Dropout Rate 0.1, 0.2, 0.3 0.1

3.4.5 Training and Evaluation

The models were trained using the Adam optimizer with a Mean Absolute Percentage
Error (MAPE) loss function. The Adam optimizer was chosen due to its adaptive learn-
ing rate capabilities, which help in faster convergence and improved performance. The
initial learning rate was set to 0.001, and the model was trained for 300 epochs with
a batch size of 64. Early stopping was implemented to prevent overfitting, with the
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Figure 3.3: Training and validation loss for the EA-LSTM model
over 300 epochs

patience of 10 epochs, meaning training would halt if there was no improvement in val-
idation loss for 10 consecutive epochs. For evaluation, we used MAPE as the primary
metric which is defined as:

MAPE = 1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣× 100 (3.8)

where yi is the actual value and ŷi is the predicted value. MAPE provides an intuitive
percentage error, making it easier to interpret the performance of the model across
different scales of traffic speed.

A 5-fold cross-validation was performed to ensure the robustness and generalizability
of the model. The five results from the folds are then averaged to produce a single
estimation. This technique helps in mitigating overfitting and provides a more reliable
measure of model performance. During each fold of cross-validation, the model was
trained and evaluated, and the MAPE was recorded. The average MAPE across the five
folds was calculated to provide a comprehensive evaluation metric. This process ensures
that the model’s performance is consistent and not dependent on a specific subset of the
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data, thereby enhancing its robustness and generalizability.

3.5 Results

In this section, we present the performance of the proposed EA-LSTM model in predict-
ing traffic speed during various social events. We analyze the performance across different
scenarios, provide a detailed temporal and spatial analysis, and conduct an error anal-
ysis to understand the model’s limitations. The overall performance of the EA-LSTM
model was evaluated using MAPE as the primary metric. The average MAPE across
all cross-validation folds was 3.4%. The model’s performance was analyzed in relation
to the proximity to the event center. Table 3.3 summarizes the MAPE for different
proximity ranges for the next one-hour prediction horizon.

Table 3.3: Model Performance Across Different Scenarios

Scenario Overall MAPE (%) Weekdays MAPE (%) Weekends MAPE (%)
Event Center (1km Proximity) 13.8 15.3 10.6
Event Center (2km Proximity) 9.1 10.4 8.1
Event Center (3km Proximity) 8.6 9.5 7.9
Event Center (4km Proximity) 6.7 7.4 6.0
Event Center (5km Proximity) 4.2 5.9 3.9
Event Center (10km Proximity) 3.5 5.2 3.3
Entire Hamilton Network 3.4 4.8 3.1

The analysis indicates that the model’s performance decreases as the proximity to
the event center decreases, with higher MAPE values observed closer to the event cen-
ter. This trend reflects the increased complexity of traffic patterns in areas near event
centers, where disruptions are more experienced. Interestingly, the model performed
better during weekends across all proximity ranges, likely due to lighter traffic and fewer
variations compared to weekdays.

The model’s performance was further analyzed across different scenarios, includ-
ing sports events, Concerts, festival/public Gathering, and run/bike/walk. Table 3.4
presents the MAPE for each scenario for the next one-hour prediction horizon within
the 1 km proximity of the event locations. The EA-LSTM model demonstrated ro-
bust performance across various scenarios, with particularly low MAPE for concerts and
run/bike/walk. The higher MAPE values for sports events and festivals/public gather-
ings indicate that these events cause more significant disruptions to traffic flow, which are
more challenging to predict accurately. Conversely, concerts and run/bike/walk events
exhibit lower MAPE values, suggesting that traffic patterns during these events are more
predictable and less disruptive.
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Table 3.4: Scenario-Specific Performance Metrics

Scenario Overall MAPE (%) Weekday MAPE (%) Weekend MAPE (%)
Sports Events 14.9 16.0 13.8
Festival/Public Gathering 12.3 12.9 11.8
Run/Bike/Walk 10.4 11.0 9.9
Concerts 8.8 9.0 8.4

Overall, the model’s ability to capture the impact of social events on traffic speed
is evident in these results. The differences in performance between weekdays and week-
ends also highlight the variations in traffic behavior, with the model generally performing
better on weekends across most scenarios. This is likely due to reduced overall traffic
volume and fewer interactions with routine commuter traffic on weekends. The spatial
performance of the model was analyzed by evaluating the MAPE across different regions
and road segments in Hamilton. Figure 3.4 presents a heatmap of model performance
across the study area. The performance of the model in downtown Hamilton was com-
pared with areas outside the downtown region. The analysis revealed that the model
performed better outside downtown, with lower MAPE values. Specifically, the MAPE
for downtown Hamilton was 7.1%, whereas the MAPE for areas outside downtown was
2.9%. This indicates that the model is more accurate in predicting traffic speed outside
the downtown area, potentially due to less complex traffic patterns and fewer disruptions
compared to the downtown region. The heatmap indicates that the model performs well
across most regions, with higher errors observed in areas with complex traffic patterns.

The following figures illustrate the impact of different types and sizes of social events
on traffic speed predictions in Hamilton, focusing on two sport matches and one concert.
These examples demonstrate how traffic patterns deviate from regular conditions due to
social events, and they highlight the effectiveness of the EA-LSTM model in predicting
these disruptions.

In Figure 3.5, we observe traffic speeds during a sport match with 1,500 attendees.
The model accurately captures the traffic slowdown triggered by the event, particularly
during peak congestion periods near the start and end of the game. This demonstrates
the model’s capacity to handle moderately sized sporting events. Figure 3.6 presents a
scenario involving a larger crowd of 5,000 attendees. Here, the observed traffic speeds
show a sharper decline as the match approaches, reflecting a more pronounced deviation
from baseline conditions. Although the model continues to perform well, the increased
complexity introduced by a larger audience is evident in the slightly wider gap between
observed and predicted speeds during the most congested times. Shifting to a different
event type, Figure 3.7 depicts a concert in downtown Hamilton with 3,000 attendees.
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Figure 3.4: Spatial Analysis of Model Performance

Concerts often generate unique traffic dynamics, especially in urban cores, and can pro-
duce more erratic patterns than sporting events. The model successfully predicts a
significant drop in traffic speeds, although variations in observed traffic highlight chal-
lenges posed by factors such as staggered arrival and departure times.

Figure 3.5: Link Speed from 2 PM to 12 PM during a sport match
with 1,500 attendees
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Figure 3.6: Link Speed from 2 PM to 12 PM during a sport match
with 5,000 attendees

Figure 3.7: Link Speed from 2 PM to 12 PM during a concert
with 3,000 attendees

These examples underscore the importance of accounting for both event type and
scale in traffic speed prediction. Without these considerations, forecasts may fail to
represent real-world patterns, limiting their utility for traffic management. By differen-
tiating across diverse events, the EA-LSTM model delivers more accurate and actionable
predictions, offering valuable insights for urban planners and traffic managers. Moreover,
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Figure 3.8 illustrates MAPE values of the proposed model in relation to the number of
attendees for different event types, specifically sports events, festivals/public gatherings,
run/bike/walk events, and concerts. It is evident that the model’s performance varies
significantly across these event types and attendee sizes. For sports events, the MAPE
increases steeply as the number of attendees rises, indicating higher prediction errors
for larger sports events. This trend suggests that sports events, which often attract
large crowds and significantly impact traffic flow, present more challenging scenarios for
accurate traffic speed prediction.

Figure 3.8: Traffic Speed Predictions performance for various
number of attendees

In contrast, the festivals/public gatherings also show an increase in MAPE with the
number of attendees, but the rate of increase is less steep compared to sports events. This
indicates that while larger festivals and public gatherings still pose challenges, the model
handles these scenarios somewhat better than large sports events. The run/bike/walk
events follow a similar pattern, with MAPE increasing as the number of attendees grows,
but again, the increase is less pronounced than for sports events. This could be due to
the typically smaller and more localized impact of run/bike/walk events on traffic.

Finally, concerts show the lowest MAPE values across all attendee sizes, indicating

70



Ph.D. Thesis - A. Ardestani; McMaster University - Civil Engineering.

that the model performs best in predicting traffic speed for concert events. This could be
attributed to more predictable and possibly smaller-scale disruptions caused by concerts
compared to other event types. Overall, the graph underscores the model’s varying
performance across different road types and event sizes, highlighting that higher errors
are typically observed for larger events and more congested road types. This insight is
crucial for understanding the limitations of the model and identifying areas for further
improvement.

3.6 Conclusion

In conclusion, this study proposed and evaluated an Event-Aware Long Short-Term
Memory (EA-LSTM) model for predicting traffic speed during social events. The EA-
LSTM model integrates probe vehicle data with detailed event features and employs
advanced features such as GCN, bidirectional LSTM layers, self-attention mechanisms,
and hierarchical structures. The model was validated using a one-year probe vehicle
dataset from Hamilton, ON, Canada, and historical social events data. The findings in-
dicate that the EA-LSTM model significantly improves traffic speed prediction accuracy,
particularly during social events.

The results demonstrate that the model’s performance varies across different sce-
narios and proximity ranges. The model achieved an average MAPE of 3.4% across all
cross-validation folds, with higher errors observed closer to event centers. Sports events
and festivals/public gatherings caused more significant disruptions to traffic flow, result-
ing in higher MAPE values. In contrast, concerts and run/bike/walk events exhibited
lower MAPE values, suggesting that traffic patterns during these events are more pre-
dictable.

Comparing the results of this study with previous research, the EA-LSTM model
shows substantial improvements in prediction accuracy and robustness. For instance,
Zhang (2023) (Zhang et al., 2021) achieved a MAPE of 7.2% using a hybrid speed
prediction approach during a festival, whereas the EA-LSTM model achieved a lower
MAPE of 3.5% within the 10km proximity. Similarly, Luque et al. (2021) (Bejarano-
Luque et al., 2021) reported a MAPE of 5.6% using deep learning techniques to estimate
traffic impact during social events, compared to the EA-LSTM model’s superior perfor-
mance.

This study pioneers the integration of differentiated social event characteristics into
traffic speed prediction models. By accounting for both the type and size of events,
the proposed model offers a more precise and context-sensitive prediction tool, setting
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it apart from existing approaches that do not consider these critical factors. The EA-
LSTM model addresses the research objectives by enhancing data reliability, reducing
computational requirements, and improving generalizability across different urban con-
texts and event types. By integrating diverse data sources and employing advanced
modeling techniques, the model provides a robust and scalable solution for predicting
traffic speed during social events.

Future work could focus on enhancing the model’s adaptability and scalability to
other urban contexts. By refining the methodology for automated extraction and inte-
gration of event data from diverse sources, such as social media and city event calendars,
the model can be tailored to different cities with varying event characteristics and traf-
fic dynamics. Additionally, incorporating advanced data fusion techniques to assimilate
other relevant data streams, such as public transportation usage and real-time weather
conditions, could further improve the model’s robustness and accuracy. Extending the
application of the EA-LSTM model to a variety of metropolitan areas will enable a
comprehensive assessment of its generalizability and effectiveness, providing valuable
insights for widespread urban traffic management. These insights can assist urban plan-
ners and traffic managers in anticipating and mitigating traffic congestion, ultimately
contributing to more efficient and sustainable urban mobility.
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Abstract

Missing traffic data pose significant challenges for Intelligent Transportation Systems,
especially during large-scale social events, which dramatically disrupt typical traffic pat-
terns. Traditional imputation techniques often fail under these event-driven anomalies
due to their inability to dynamically incorporate contextual event information. This
research introduces an integrated, event-aware traffic data imputation and prediction
framework, leveraging social event attributes including attendance, event type, timing,
and location to enhance accuracy. The proposed approach adopts a robust two-stage
imputation strategy, first utilizing Random Forests and subsequently Generative Ad-
versarial Imputation Networks (GAIN) for improved reconstruction of missing values.
The completed dataset then feeds into a spatiotemporal prediction model integrating
Graph Convolutional Networks (GCNs), Long Short-Term Memory (LSTM) layers, and
attention mechanisms explicitly informed by event context. Empirical evaluation using a
comprehensive dataset from Hamilton, Ontario, demonstrates significant improvements
in both imputation accuracy and traffic prediction performance during events. This inte-
grated approach provides a practical solution for real-time, event-sensitive urban traffic
management.

Keywords: Traffic prediction, missing data imputation, deep learning, social events,
graph neural networks, LSTM, GCN
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4.1 Introduction

Metropolitan traffic congestion significantly affects the quality of life and economic pro-
ductivity in urban areas. Social events such as concerts, sports games, and public gath-
erings further exacerbate this problem, leading to unpredictable traffic patterns and
increased congestion. Accurate prediction of traffic speed during these events is crucial
for effective traffic management and urban planning. Traditional approaches, including
regression models and statistical analyses, often fail to capture the dynamic and non-
linear nature of traffic flow influenced by social events. These methods typically rely on
historical traffic data and assume regular traffic patterns, which are insufficient when
sudden disruptions occur due to events. For example, regression models may not ac-
count for the sudden influx of vehicles or changes in driver behavior during major events,
leading to inaccurate predictions (Wang and Chen, 2018).

This problem is particularly amplified during social events such as concerts, sports
games, festivals, and parades, which introduce large, non-recurring fluctuations in traf-
fic demand. These disruptions can invalidate assumptions of temporal regularity and
spatial smoothness, posing challenges for both data imputation and traffic forecasting
(Tempelmeier et al., 2020). Traditional imputation methods—such as mean substitution,
interpolation, or matrix factorization often fail to capture these abrupt, context-specific
shifts (Zhang et al., 2024).

Recent advancements in machine learning and deep learning have led to more sophis-
ticated imputation and prediction techniques. Graph Convolutional Networks (GCNs)
and Long Short-Term Memory (LSTM) networks are increasingly applied to model spa-
tiotemporal dependencies in traffic systems (Guo et al., 2019; Ardestani et al., 2025; Li
et al., 2018b). Moreover, attention mechanisms and event-aware modeling frameworks
are gaining popularity for their ability to dynamically adapt to changes in traffic flow
caused by external disruptions (Song et al., 2024). Despite this progress, few models
explicitly integrate event-related features (e.g., type, location, attendance, timing) into
a joint framework for imputation and forecasting.

This paper introduces a novel, event-aware framework that integrates traffic data
imputation and prediction using a hybrid architecture. The proposed methodology in-
cludes a two-stage imputation strategy: a Random Forest imputation phase followed
by Generative Adversarial Imputation Networks (GAIN) if needed. Once the dataset is
completed, it is fed into a spatiotemporal prediction model composed of GCN, LSTM,
and attention layers, all enhanced by contextual features related to social events. This
unified approach is evaluated using a one-year dataset of probe vehicle data and social
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event records from Hamilton, Ontario, Canada.
The contributions of this study are threefold:

• We develop an integrated framework for missing traffic data imputation and pre-
diction that explicitly incorporates social event features.

• We propose a two-stage imputation strategy that leverages both classical ensemble
learning and deep generative modeling.

• We empirically demonstrate that incorporating event-aware information signifi-
cantly improves both imputation accuracy and traffic prediction during disruptive
periods.

The remainder of this paper is structured as follows: Section 4.2 reviews related work
on missing data imputation, spatiotemporal traffic modeling, and event-aware prediction.
Section 4.3 describes the datasets and preprocessing steps and presents the proposed
methodology, including the imputation and prediction models. Section 4.5 discusses
experimental results, performance evaluation, and key findings. Finally, Section ??
concludes the paper and outlines future research directions.

4.2 Literature Review

Early approaches to traffic data imputation rely on statistical techniques and domain
knowledge. Simple methods like mean or historical average substitution are often used
for low missing rates (Smith et al., 2003; Gazis and Liu, 2003). For example, Smith et
al. explored filling missing traffic detector readings with historical averages and other
straightforward heuristics (Smith et al., 2003). When temporal dynamics are important,
time series models such as Kalman filtering and ARIMA have been applied. Gazis
and Liu demonstrated that a Kalman filter can effectively estimate and correct missing
traffic counts by modeling traffic flow dynamics (Gazis and Liu, 2003). Classic ARIMA
models (and seasonal variants) have also been used to predict and replace missing values,
though they require stationarity assumptions and may struggle with highly volatile traffic
patterns. These statistical imputation methods assume traffic evolves regularly and often
perform adequately for isolated missing points or short gaps. They can fail, however,
under high missing rates or consecutive missing intervals where temporal correlations
are insufficient (Ni and Leonard, 2005). To leverage additional structure, some works
introduced multivariate models that incorporate spatial correlations (e.g. neighboring
sensor data) when imputing missing values (Ni and Leonard, 2005). For instance, Ni
and Leonard employed a Bayesian network with Markov chain Monte Carlo to impute
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incomplete intelligent transportation systems data, capturing probabilistic relationships
among correlated traffic streams (Ni and Leonard, 2005). Overall, statistical imputation
techniques (historical averages, interpolation, Kalman filter, ARIMA, Bayesian networks,
etc.) laid the groundwork for handling missing traffic data, offering interpretable models
but often requiring strong assumptions (e.g. recurring daily patterns or known noise
distributions) that limit their flexibility in complex scenarios.

As traffic datasets grew in size and complexity, data-driven machine learning meth-
ods emerged to improve imputation accuracy. Unlike fixed statistical models, machine
learning approaches can automatically learn patterns from data, including nonlinear and
high-dimensional relationships. A variety of methods have been explored. For example,
k-nearest neighbors (KNN) algorithms can identify similar traffic patterns from other
time periods or locations and use those to fill in missing values, an approach that is
simple yet often more robust than global mean imputation. Some studies have refined
KNN with local regression, such as Chang extitet al. improved local least-squares im-
putation which weights nearest neighbors to better preserve local traffic dynamics (Li
et al., 2013). Another line of work uses matrix factorization and principal components:
Li et al. proposed an efficient spatiotemporal imputation by considering traffic data
as a matrix and applying Probabilistic PCA, capturing main latent factors while ac-
counting for temporal and spatial dependence (Li et al., 2013). Such methods leverage
the low-rank structure of traffic data (e.g. daily or weekly periodicity). More recently,
researchers have applied dedicated machine learning models to learn the mapping from
observed data to missing values. Sun et al. introduced a Bayesian network model (with
graphical lasso for structure learning) to estimate missing traffic flow data, which in-
tegrates domain knowledge and data to infer likely values for unobserved entries (Sun
et al., 2006).

With the rise of deep learning, autoencoder based models have been used for impu-
tation: for instance, Duan et al. demonstrated that a stacked denoising autoencoder can
learn complex features from incomplete traffic flow data and outperform conventional
methods in recovering missing entries (Duan et al., 2016). Similarly, recent studies use
neural networks to capture nonlinear temporal patterns; an ensemble of convolutional
autoencoders was shown to successfully reconstruct missing traffic data by learning from
spatial neighbors and temporal context (Ye et al., 2021). Additionally, researchers have
explored spatial interpolation techniques from geostatistics: Bae et al. used spatio-
temporal co-kriging to borrow strength from nearby sensors in both space and time,
treating traffic speed observations as spatial samples with correlation, which significantly
improved imputation accuracy on road networks (Bae et al., 2018). Overall, machine
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learning approaches (including shallow methods like KNN/regression and advanced ones
like neural networks) offer greater flexibility than statistical models. They can learn ir-
regular traffic patterns and complex dependencies, yielding more accurate imputations
especially under high missing rates or non-recurring missing patterns. However, they
typically require sufficient training data and may be less interpretable, prompting a con-
tinued balance between statistical insight and data-driven learning in modern imputation
research.

In parallel with improving data completeness, significant progress has been made
in forecasting traffic conditions using deep learning, which can capture both temporal
dynamics and spatial correlations in traffic networks. Early applications of deep learning
in traffic focused on time-series prediction at single locations. For example, Lv et al.
applied a stacked autoencoder to learn generic traffic flow features from “big data,”
demonstrating notable improvements in short-term prediction accuracy over traditional
ARIMA and neural networks (Lv et al., 2015). Similarly, recurrent neural networks
(RNNs) were soon adopted: Ma et al. showed that an LSTM network could successfully
learn long-term temporal dependencies in traffic speed data, outperforming statistical
baselines for highway speed prediction (Ma et al., 2015). These works established the
efficacy of deep architectures for modeling the complex, nonlinear temporal behavior of
traffic.

Beyond purely temporal models, researchers recognized that incorporating spatial
context (interactions between road links or sensor locations) is crucial for network-wide
traffic prediction. This led to the development of spatiotemporal models that combine
graph-based convolutions with sequence models. A seminal approach is the Diffusion
Convolutional Recurrent Neural Network (DCRNN) by Li et al., which integrates graph
diffusion convolution operations (to capture spatial propagation of traffic information
on a road network graph) with GRU recurrent units for temporal sequencing (Li et al.,
2018a). DCRNN demonstrated that modeling the road network as a graph (where
nodes are sensors and edges represent traffic flow connectivity) markedly improves multi-
step traffic flow forecasts, especially during peak periods when upstream-downstream
interactions are pronounced. Around the same time, Yu et al. proposed the Spatio-
Temporal Graph Convolutional Network (STGCN), a purely convolutional approach that
applies graph convolutions for spatial features and temporal convolutions for sequential
trends (Yu et al., 2018). STGCN achieved fast training and competitive accuracy by
avoiding recurrence, and it effectively captured daily rush-hour patterns across an entire
city’s sensor network. Building on these ideas, many variants emerged. Zhao et al.
introduced T-GCN, which couples a graph convolutional network with a gated recurrent
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unit to jointly model city-scale traffic speed data, showing that the hybrid architecture
adapts well to spatial-temporal data and yields lower error than separate CNN or RNN
models (Zhao et al., 2019). Wu et al. went further by developing Graph WaveNet, a
deep architecture that learns an adaptive adjacency matrix for the traffic graph and
employs dilated causal convolutions in time, enabling it to capture both global and local
traffic dependencies and achieve state-of-the-art forecasting results on highway traffic
datasets (Wu et al., 2019). These graph-based neural networks significantly outperform
earlier approaches by accounting for how congestion and traffic waves propagate through
a network.

Moreover, attention mechanisms and transformers have been incorporated in recent
models to improve long-range forecasts. For instance, Guo et al. designed an attention-
based spatial-temporal graph neural network that learns heterogeneous traffic dynamics
(e.g. different day-of-week patterns and road types) and adaptively highlights influ-
ential neighbors, leading to more robust predictions under varying traffic regimes (?).
Similarly, researchers have begun exploring transformer architectures for traffic predic-
tion, which use self-attention to capture long-term temporal correlations and dynamic
spatial dependencies across the network (?). These advanced deep learning models
(GCN-RNN hybrids, temporal CNNs, graph attention networks, etc.) have pushed the
frontier of traffic forecasting, enabling accurate predictions even 30–60 minutes ahead
under complex conditions. A recurring theme is that explicitly modeling the spatiotem-
poral structure of traffic—through graph representations of road networks and sequence
models or attention for temporal trends—is key to high performance. Surveys of recent
work (?) highlight that deep models consistently outshine classic methods, especially
in large-scale systems, by learning hierarchical features from both spatial neighbors and
historical time series. Challenges remain in improving model interpretability and effi-
ciency, but the consensus in 2020–2024 literature is that spatiotemporal deep learning
has become the state-of-the-art foundation for traffic prediction.

While deep learning models excel when traffic dynamics are recurrent and training
data is abundant, non-recurring events (such as concerts, sporting events, festivals, or
major accidents) can cause sudden shifts that purely data-driven models might not
anticipate. Hence, a growing body of research focuses on event-aware traffic prediction,
integrating information about social events or external factors into modeling. Early
efforts in this area augmented statistical models with event indicators. For example,
transportation engineers introduced binary “special event” variables into regression or
ARIMA models to adjust predictions on event days. A notable data-driven approach
by Ni et al. leveraged social media data: they extracted features from Twitter (such
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as tweet volumes and keywords related to a sports game) to predict short-term traffic
flow before and after the event, demonstrating that incorporating live social signals
improved forecast accuracy compared to using traffic data alone (Ni et al., 2014). This
study, which compared multiple regression and machine learning methods with and
without social media features, provided early evidence that online crowd information
can serve as a proxy for the impact of events (e.g. game attendance, end times) on
traffic demand. Subsequent research has extended event-aware modeling using both
domain knowledge and advanced algorithms. Yu et al. developed a special event-based
k-nearest neighbor model tailored for short-term traffic state prediction during event
occurrences (?). By redefining traffic state distance metrics to account for both typical
conditions and the unusual surges caused by events, their SEKNN method outperformed
conventional ML and even some deep learning models in event scenarios, highlighting
the value of customized predictors when data are scarce (since major events happen
infrequently at any one location).

In recent years, deep learning models have been augmented with event awareness as
well. Essien et al. proposed a deep learning framework that mines traffic related events
from Twitter and fuses them with traffic sensor data and weather information (Essien
et al., 2021). Using a bi-directional LSTM stacked autoencoder, they showed that in-
cluding features representing incidents, road closures, and social events (inferred from
tweet text and volume) significantly improves multi-step traffic flow predictions, espe-
cially for non-recurring congestion spikes. Their results underscore that social sensing
of events can provide timely context that traditional sensors do not capture. Moreover,
new architectures explicitly incorporate event indicators or “external features” into neu-
ral networks. Song et al., for instance, introduce sports event impact factors into a
graph-attention transformer model for long-term traffic forecasting (Song et al., 2024).
By feeding the network with a schedule of major sports games (treated as external in-
puts) and learning an attention mechanism that modulates traffic predictions during
those periods, their Graph Attention Informer achieved more accurate results for event
days in London, compared to baseline models unaware of the events. Across these stud-
ies, the consensus is that integrating exogenous event data (be it via manual features,
social media mining, or dedicated model components) yields more resilient traffic pre-
diction systems that maintain accuracy during atypical conditions. This is increasingly
important as cities leverage smart city data: knowing when concerts, football matches,
or parades occur and quantifying their impact allows predictive models to adjust fore-
casts proactively. The period 2020–2024 has seen event-aware traffic modeling mature
from ad-hoc feature engineering to more systematic approaches combining multi-source
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data. Challenges remain in generalizing models to different types of events and obtain-
ing reliable real-time event data, but the research trend clearly shows the benefit of
making traffic prediction models “event-aware” to handle the intrinsic unpredictability
of human-driven traffic disruptions.

Despite the advancements across statistical, machine learning, and deep learning
methodologies, several critical gaps remain unaddressed. First, while deep spatiotem-
poral models (e.g., GCNs, LSTMs, and transformers) provide strong performance, their
effectiveness diminishes when data is incomplete or disrupted particularly during large-
scale, non-recurrent events. Second, although event-aware forecasting has gained trac-
tion, few models simultaneously address the missing data problem while also integrating
social event context for enhanced prediction. Most current frameworks treat imputation
and forecasting as isolated tasks, leading to suboptimal performance when traffic pat-
terns deviate from the norm due to event-driven anomalies. Third, social event features
(e.g., attendance, event type, and venue proximity) are rarely embedded as dynamic in-
puts within spatiotemporal learning pipelines. To bridge these gaps, this study proposes
a unified framework that performs robust, two-stage traffic data imputation followed
by event-aware traffic speed prediction, using social-event-informed deep learning mod-
ules. This integrated approach seeks to improve imputation accuracy under disruption,
enhance short-term prediction, and offer a practical path forward for real-time, event-
sensitive urban traffic management.

4.3 Methodology

This section introduces the architecture and components of the proposed traffic modeling
framework. It provides a step-by-step description of the algorithm, starting with the
problem formulation, followed by the imputation strategy, the event-aware prediction
module, model evaluation techniques, and the tuning of hyperparameters essential to
ensure robust performance.

4.3.1 Proposed Algorithm

The core workflow of the proposed study is illustrated in Figure 3.1, which outlines the
complete pipeline from raw traffic data collection to event-aware traffic prediction. This
methodology includes a two-stage process: (1) a robust missing data imputation module,
and (2) a spatiotemporal deep learning model for prediction enhanced with social event
features.
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In the imputation phase, the dataset undergoes preprocessing, where outlier filtering,
normalization, and encoding of event-related categorical variables are applied. Initial im-
putation is performed using a Random Forest regressor to generate baseline estimates
of missing values, leveraging nonlinear interactions and tree ensemble robustness. For
more nuanced correction, Generative Adversarial Imputation Networks (GAIN) are ap-
plied to refine these estimates, particularly under high missingness or during complex,
event-induced anomalies.

Upon completion of the imputation process, the dataset is passed to the prediction
module. First, spatial dependencies among road segments are captured via a Graph
Convolutional Network (GCN), which learns how traffic propagates across adjacent links
in the road network. These spatial embeddings are fed into a Long Short-Term Memory
(LSTM) network that models temporal trends in traffic speed.

A key novelty of the proposed framework is the integration of event-aware logic into
the forget gate of the LSTM, enabling the network to selectively retain or discard mem-
ory in response to upcoming social events (e.g., concerts, sports). Finally, an attention
mechanism is deployed, allowing the model to dynamically prioritize relevant spatiotem-
poral features for accurate traffic prediction.

4.3.2 Missing Data Imputation

Conventional methods such as mean imputation, forward/backward filling, or linear in-
terpolation often fail to reconstruct the complex, nonlinear nature of traffic dynamics,
especially under non-recurrent and event-driven disruptions. These simplistic approaches
generally assume temporal regularity or spatial smoothness, assumptions that frequently
break down in urban networks during social events, accidents, or peak hours. Conse-
quently, a more advanced and adaptive framework is necessary one that can model
uncertainty, heterogeneity, and localized disruptions effectively.

To overcome these challenges, we propose a two-stage imputation framework that
leverages the complementary strengths of ensemble learning and deep generative mod-
eling. The framework ensures both robustness and adaptivity across a wide range of
missing data patterns, especially those that emerge during large-scale disruptions like
sports events or concerts. The overall structure of the imputation pipeline is visualized
in Figure 4.2. This flowchart illustrates the sequential design of the imputation strat-
egy, beginning with raw data preprocessing and outlier filtering, followed by the initial
Random Forest-based imputation and concluding with the refinement stage using Gen-
erative Adversarial Imputation Networks (GAIN). Each component is designed to incre-
mentally reduce uncertainty in the imputed dataset while preserving the spatiotemporal
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Figure 4.1: Overall integrated flowchart of the proposed imputa-
tion and prediction framework

characteristics critical for downstream traffic prediction. This modular and adaptive
architecture enables the model to scale effectively across both routine and event-driven
traffic regimes, setting the foundation for more accurate and context-aware forecasting.
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Figure 4.2: Two-stage imputation flowchart combining Random
Forest and GAIN refinement

Stage 1: Random Forest Imputation
The first stage employs a Random Forest (RF) model to provide initial imputation

estimates. RF is chosen for its ability to model nonlinear interactions between input
features while maintaining robustness to overfitting and noise. Each missing value X̂RF

i,t

is imputed by learning from the observed values in both spatial and temporal domains:
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X̂RF
i,t = RF(X−i,t, Xi,−t)

Here, X−i,t represents available data from neighboring road segments at time t, and
Xi,−t represents the time-series history of segment i. The strength of the RF imputa-
tion lies in its interpretability and low computational cost, allowing rapid generation
of plausible initial estimates. Additionally, this ensemble method incorporates feature
importance metrics that can inform later stages of learning.

Stage 2: Generative Adversarial Imputation Network (GAIN)
While Random Forests offer computational efficiency and strong baseline perfor-

mance, they are limited in modeling uncertainty and often underperform when missing
values span long sequences or entire spatial blocks. To address this, we introduce a
second-stage refinement using Generative Adversarial Imputation Networks (GAIN).

GAIN employs an adversarial learning mechanism inspired by Generative Adversarial
Networks (GANs). A generator network predicts missing values while a discriminator
tries to distinguish between observed and imputed values, thus forcing the generator to
produce highly realistic imputations:

X̂GAIN
i,t = GAIN(X̂RF

i,t , Xobs)

The GAIN-provided refinement particularly effective in recovering missing structured
gaps, and irregular patterns induced by social events. Unlike conventional auto-encoders
or matrix completion techniques, GAIN explicitly models data uncertainty and leverages
mask vectors to guide the imputation process.

Our two-stage approach represents a novel synthesis of ensemble learning and ad-
versarial modeling in the context of traffic imputation. Although each technique has
been used in prior studies, their sequential integration where RF provides reliable base-
lines and GAIN enhances realism, offers a new, robust solution for imputing traffic data
during high-impact disruptions.

4.3.3 Predictive Model

The goal of predictive modeling in this framework is to accurately forecast future traffic
states, particularly in the context of dynamic, non-recurrent disruptions such as those
caused by social events. These disruptions often violate the assumptions of continuity
and regularity upon which many traditional forecasting models rely. As such, a sophisti-
cated framework capable of adapting to localized irregularities in both space and time is
essential. To meet this challenge, we adopt a composite architecture integrating Graph
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Convolutional Networks (GCNs), Long Short-Term Memory (LSTM) networks, and a
tailored attention mechanism. This combination is designed to jointly capture the spa-
tial topology of the road network, temporal dependencies in traffic evolution, and the
contextual influence of event-specific factors.

After imputation, the traffic speed data is passed through a GCN to extract spatial
features from the road network. These spatial features are then input to an LSTM net-
work that captures sequential dependencies across time. To adapt to the impact of social
events, the LSTM’s forget gate is modified to incorporate event-specific features, allow-
ing the model to selectively prioritize recent trends leading up to disruptions. Finally,
a context-aware attention mechanism dynamically assigns weights to spatial-temporal
embeddings based on their relevance to the current forecasting task. While GCN and
LSTM architectures are well-established in spatiotemporal modeling, the novelty of our
approach lies in two critical extensions: (1) the explicit incorporation of event context
into the LSTM cell’s gating mechanism, and (2) the application of a multi-source atten-
tion mechanism that modulates feature relevance based on proximity to social events.
This integrated approach results in a contextually adaptive forecasting model capable
of capturing both recurring patterns and disruptive anomalies.

Graph Convolutional Networks (GCNs)
GCNs are employed to model spatial dependencies among traffic segments using a

graph representation of the road network. Each node in the graph represents a traffic
sensor or road segment, and edges reflect physical or functional connectivity. Given a
normalized adjacency matrix Â, the graph convolution operation is defined as:

H
(l+1)
t = σ(ÂH(l)

t W (l))

where H(l)
t is the node representation at layer l, W (l) is the layer-specific trainable weight

matrix, and σ is a nonlinear activation function (e.g., ReLU). The GCN encodes each
node’s state by aggregating features from its immediate neighbors, capturing spatial
congestion propagation patterns in a data-driven manner.

LSTM with Event-Aware Forget Gate
Following the GCN, temporal patterns are learned using an LSTM network. Stan-

dard LSTM cells are augmented with an event-aware forget gate designed to modulate
the memory retention based on real-time social event signals. This formulation allows
the model to de-emphasize outdated traffic patterns when disruptions are imminent:

ft = σ(Wf [ht−1, xt, et] + bf )
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Here, ft is the forget gate vector, ht−1 is the hidden state from the previous time step,
xt is the input at the current step, and et represents a learned embedding of event-specific
features. The inclusion of et allows the model to adaptively adjust its memory based
on event proximity, size, and type, ensuring temporal coherence under non-recurring
disruptions. This mechanism directly addresses the volatility in traffic patterns induced
by events and provides a fine-grained mechanism for incorporating exogenous context
into temporal learning.

Attention Mechanism
To further refine the prediction process, we incorporate a soft attention mechanism

that enables the model to dynamically prioritize relevant information across both spatial
and temporal dimensions. This mechanism allows the model to focus on specific road
segments and past time steps that are most informative for the current prediction task:

zt =
∑
i∈N

αt,iht,i, αt,i = exp(score(ht, ht,i, et))∑
j∈N exp(score(ht, ht,j , et))

In this formulation, zt is the aggregated context vector, ht,i represents the encoded
state of a neighbor node at time t, and αt,i is the learned attention weight indicating
the relevance of that node. The attention score is computed using a compatibility func-
tion, which incorporates both the hidden state and the event feature embedding et. By
integrating event context directly into the attention computation, the model can effec-
tively shift its focus to areas and time windows most affected by the event, enhancing
forecasting performance during non-recurrent disruptions.

The attention mechanism in our architecture is not merely a standard feature-
weighting layer. It is purposefully designed to incorporate event metadata, enabling
the model to account for exogenous factors in a context-sensitive manner. This deep
integration allows the system to remain robust even when faced with localized surges
or anomalies, thereby outperforming static attention models or models lacking external
context awareness.

4.4 Experimental Study

This section presents a comprehensive case study designed to evaluate the performance
and robustness of the proposed integrated event-aware traffic data imputation and pre-
diction framework. The experimental validation covers detailed descriptions of datasets
utilized, rigorous data preprocessing methods, model configuration, training procedures,
and performance evaluation metrics, emphasizing traffic speed prediction accuracy dur-
ing various social event scenarios.
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4.4.1 Traffic Data

The probe vehicle dataset utilized in this study was sourced from HERE Technology Inc.,
consisting of detailed GPS-based vehicle trajectory records collected across Hamilton,
Ontario. This dataset covers 4,788 distinct road segments, offering granular traffic met-
rics including position, speed, and temporal resolutions. Data was continuously captured
at 5-minute intervals from October 1, 2022, to October 1, 2023, enabling high-resolution
temporal analysis of traffic patterns. Figure 4.3 illustrates the studied traffic network,
emphasizing its extensive scale and suitability for robust performance evaluation across
diverse event-related traffic conditions.

The dataset includes critical variables relevant to comprehensive traffic analysis:

• Average Traffic Speed (S): Mean vehicle speed computed for each road segment
per 5-minute interval.

• Free Flow Speed (FFS): Baseline speed under optimal traffic conditions, serving
as a reference for congestion detection when observed speeds deviate significantly.

• Road Attributes: Detailed road-specific data such as number of lanes, road
classification (highway, arterial, local roads), and geographic coordinates (latitude,
longitude).

To enhance the robustness of the analysis, wavelet transform methods were applied to
extract both short-term fluctuations and long-term trends from traffic speed data. Ad-
ditionally, to reduce biases resulting from the overrepresentation of commercial vehicles,
the dataset was filtered to retain only passenger vehicles, ensuring the representation
accurately reflects general traffic conditions.

4.4.2 Social Events

The social event dataset was systematically compiled from diverse authoritative sources,
including the City of Hamilton’s official website, social media platforms (Facebook,
X/Twitter), Eventbrite, and verified local news outlets. The data collection spanned
the period from October 1, 2022, to October 1, 2023, encompassing 561 events across
76 unique locations within Hamilton. Each event was precisely geolocated and mapped
to corresponding road segments to assess their direct and spatially relevant impacts on
local traffic conditions.

Key attributes collected for each event include:

• Event Type and Name: Classified into sports events, concerts, festivals/public
gatherings, and running/biking/walking events.
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Figure 4.3: Traffic Network of Hamilton, Ontario

• Event Schedule: Detailed temporal attributes including start time, end time,
and total event duration.

• Location: Geographical coordinates (latitude, longitude) associated with each
event venue.

• Attendance: Recorded number of attendees as an indicator of event magnitude.

• Parking Availability: Details regarding parking facilities at or near event loca-
tions, crucial for evaluating traffic congestion.

4.4.3 Social Event Dataset Overview

To ensure dataset accuracy and reliability, social media-derived data was rigorously cross-
validated with official event announcements and organizer websites, mitigating potential
biases associated with user-generated content. Events lacking sufficient verification were
systematically excluded, maintaining dataset integrity and representativeness. A total
of 561 unique events were extracted, encompassing various types and scales of gatherings
across Hamilton, Ontario.

Table 4.1 presents a statistical summary of the collected events, including frequency,
average attendance, and the standard deviation of attendees across each event category.
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This quantitative overview helps contextualize the scale of social disruptions and offers
a basis for modeling their heterogeneous impacts on traffic dynamics.

Table 4.1: Statistical Analysis of Social Events

Event Type Frequency Average Attendees Attendees Std. Dev.
Sports 210 1471 403
Concert 231 849 356
Festival/Public Gathering 82 1231 518
Run/Bike/Walk 38 741 273
Total / Average 561 1093 379

To complement the statistical summary, Figure 4.4 presents a stacked histogram
illustrating the distribution of attendees by event type using a bin size of 500 attendees.
This visual representation reveals several key patterns. First, the majority of events
are concentrated between 1,000 and 5,000 attendees, with a notable peak around the
2,000–3,000 range. Concerts and sports events dominate this mid-size attendance range,
highlighting their consistent presence and logistical impact.

Meanwhile, festival/public gathering events exhibit greater variance and a broader
distribution across attendance sizes, occasionally reaching over 10,000 participants. Run/Bike/Walk
events, while fewer in number, cluster predominantly in lower attendance bins under
3,000, suggesting they have a more localized and modest traffic influence. These distri-
butions help characterize the expected disruption profile for each event type, validating
their inclusion in predictive models.

Overall, the integration of both descriptive statistics and distributional analysis en-
sures a more nuanced understanding of how event characteristics relate to traffic dynam-
ics. These insights form a crucial component in informing event-aware imputation and
prediction strategies.

4.4.4 Data Preprocessing

The preprocessing of traffic and social event datasets was essential to prepare robust in-
puts for modeling. Initially, all numerical features were normalized to achieve zero mean
and unit variance, ensuring balanced feature contributions during the training phase
and preventing dominance by variables with larger scales. A wavelet transformation was
performed on the traffic speed data to effectively decompose time-series patterns across
multiple frequency bands. Using the Daubechies (db4) wavelet, the dataset was ana-
lyzed across different temporal and frequency scales, enhancing the extraction of both
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Figure 4.4: Stacked distribution of attendees by event type (500-
attendee bins)

short-term fluctuations and long-term trends. This preprocessing step significantly im-
proved the Signal-to-Noise Ratio (SNR) by 12.1%, ensuring effective feature extraction
and noise reduction.

Following preprocessing, the datasets were systematically split into training (70%),
validation (15%), and testing (15%) sets. This approach facilitates rigorous model de-
velopment through hyperparameter tuning on the validation set while preserving an
unbiased performance evaluation using the testing dataset.

4.4.5 Synthetic Missing Data Generation

To rigorously assess the robustness of the imputation framework, synthetic missing data
scenarios were generated using the Gamma distribution. The Gamma distribution was
specifically chosen due to its capability to realistically model patterns of sensor failures
and communication disruptions observed in real-world traffic data, where shorter dura-
tion events are significantly more frequent compared to longer duration outages (Sun
et al., 2021). Unlike simpler distributions such as uniform or normal distributions, the
Gamma distribution effectively captures this skewed characteristic of real-world traffic
data gaps.

To comprehensively evaluate the model’s robustness under varying degrees of data
sparsity, missingness percentages ranging from 1% to 20%, in increments of 1%, were
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systematically tested. For each missingness percentage scenario, the procedure involved
randomly selecting the corresponding percentage of total road segments. Subsequently,
for each selected segment, missingness intervals were generated based on the Gamma
distribution. The Gamma distribution parameters were carefully configured to simulate
average gap durations of 2, 4, 6, and 8 hours. Specifically, shape (k) and scale (θ)
parameters were adjusted to reflect realistic traffic disruption patterns, with shorter
intervals occurring frequently and longer intervals occurring less often. This structured
and realistic approach ensures a robust and comprehensive assessment of the imputation
model across diverse scenarios, closely resembling actual traffic data conditions.

4.4.6 Model Setup

The proposed integrated event-aware framework combines Graph Convolutional Net-
works (GCNs), Long Short-Term Memory (LSTM) networks with event-aware forget
gates, and an attention mechanism to capture both spatial and temporal dynamics un-
der varying event conditions. The GCN layers model spatial dependencies, while the
event-aware LSTM dynamically adjusts temporal modeling based on real-time event
data. The attention mechanism further refines predictions by dynamically focusing on
the most relevant spatial-temporal features influenced by social events.

A comprehensive grid search was employed to optimize key hyperparameters, such
as the number of GCN layers, units per LSTM layer, dropout rates, and dimensions of
the attention layers. Each combination was assessed using the validation set to identify
the optimal configuration. The finalized hyperparameter settings are presented in Table
4.2.

The final model was trained using the Adam optimizer (learning rate = 0.001, batch
size = 128) for up to 1000 epochs. Validation loss was closely monitored during training
to detect early signs of overfitting and guarantee robust generalization.

4.4.7 Training and Evaluation

The integrated event-aware model was trained using the Adam optimizer with the Mean
Absolute Percentage Error (MAPE) as the primary loss function. Adam was selected
due to its adaptive learning capabilities, facilitating efficient convergence and enhanced
model accuracy. The learning rate was initialized at 0.001, with a training duration of
up to 300 epochs and a batch size of 64. Early stopping was utilized with a patience of
10 epochs to prevent overfitting, stopping the training if validation loss did not improve
for 10 consecutive epochs.

The MAPE metric, defined as follows, was used for model evaluation:
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Table 4.2: Grid Search Hyperparameter Tuning Results

Hyperparameter Values Tested Optimal Value
GCN
Number of Layers 1, 2, 3 2
Units per Layer 32, 64, 128 64
Dropout Rate 0.1, 0.2, 0.3 0.2
LSTM
Number of Layers 1, 2, 3 2
Units per Layer 50, 100, 150 100
Dropout Rate 0.1, 0.2, 0.3 0.1
Attention Layer
Attention Dimension 32, 64, 128 64
Attention Dropout Rate 0.1, 0.2, 0.3 0.1

MAPE = 1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣× 100 (4.1)

where yi represents actual traffic speeds and ŷi denotes predicted traffic speeds.
MAPE provides an intuitive and easily interpretable percentage-based error metric, valu-
able for evaluating prediction accuracy across diverse scenarios.

Additionally, a rigorous 5-fold cross-validation process was implemented to evaluate
model robustness and generalizability. The average MAPE from the five folds was com-
puted, ensuring the performance assessment is consistent and unbiased by specific data
subsets. This thorough validation technique highlights the reliability and adaptability
of the proposed model across various traffic conditions and event contexts.

4.5 Results

This section presents an in-depth evaluation of the proposed event-aware imputation and
prediction framework. The results are analyzed from multiple perspectives: imputation
performance under different model setups, robustness across varying missingness levels
and durations, performance during social events of different types and scales, and spatial
distribution of errors. Additionally, feature importance and statistical validation are
discussed to further justify the model design.
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4.5.1 Evaluation of Imputation Techniques

To benchmark the performance of the proposed two-stage imputation pipeline, we con-
ducted a comparative analysis using four distinct imputation strategies: Mean Fill,
Random Forest (RF) Only, GAIN Only, and the combined RF + GAIN (Two-Stage)
approach. Each model was tested on the same evaluation dataset, which contained
synthetically generated missing values based on a Gamma distribution with an average
duration of 4 hours and a missingness ratio of 5%.

• Mean Fill: This baseline method replaces missing values with the mean of each
variable. It achieved a high Mean Absolute Percentage Error (MAPE) of 17.2%,
confirming its inability to capture temporal or contextual patterns.

• Random Forest (RF) Only: Leveraging ensemble-based feature learning, the
RF imputer reduced MAPE to 10.4% while maintaining a relatively short runtime
of 40 minutes. Although an improvement over mean filling, it lacks the temporal
generalization needed for complex scenarios.

• GAIN Only: This deep learning-based approach yielded a substantial accuracy
improvement, reducing MAPE to 6.1%. However, the model required 180 minutes
of training, indicating high computational cost.

• RF + GAIN (Two-Stage): The proposed hybrid framework first imputes miss-
ing data using RF and then refines the estimates through GAIN. This method
achieved the lowest MAPE of 5.3%, demonstrating the benefits of combining sta-
tistical and adversarial techniques. While the total runtime was the longest (230
minutes), the performance gain justifies the added computational expense for ap-
plications where imputation accuracy is critical.

Table 4.3 summarizes these results.

Table 4.3: Comparison of Imputation Strategies (5% Missingness,
4h Avg Duration)

Method MAPE (%) Time (min)
Mean Fill 17.2 1
RF Only 10.4 40
GAIN Only 6.1 180
RF + GAIN (Two-Stage) 5.3 230

These findings underscore the advantage of staged learning in imputation: an initial
low-cost statistical estimate (RF) accelerates convergence and improves final accuracy
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when followed by a deep generative model (GAIN). While computational demands are
non-trivial, the proposed method provides a favorable trade-off for contexts where accu-
racy is prioritized over speed.

Moreover, to explore the model’s temporal robustness under varying degrees of
missingness, we conducted a 24-hour analysis of the Mean Absolute Percentage Er-
ror (MAPE) for different levels of data loss. The missingness levels considered ranged
from 0% to 10% in 2% increments, and each was simulated using a Gamma distribution
with an average missing duration of 4 hours—representative of typical real-world sensor
outages.

Figure 4.5 illustrates the hourly variation in prediction performance under each miss-
ingness scenario. As expected, error rates increase with higher proportions of missing
data. However, the impact is not uniform across the 24-hour period.

Figure 4.5: Hourly variation of MAPE under different missingness
levels (Gamma distribution with 4-hour average)

During early morning hours (1:00–6:00), the model consistently maintains lower
MAPE across all missingness levels, due to lower traffic volume and reduced temporal
variability. The afternoon and evening peaks—particularly between 16:00 and 19:00—ex-
hibit significantly higher error, with the 10% missingness curve reaching a MAPE of
nearly 17%. This is attributed to the combination of heightened congestion variability
and reduced data availability, challenging the model’s ability to infer complex patterns.
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Interestingly, the slope of degradation is nonlinear. Between 0% and 2%, the increase
in error is modest and consistent. However, between 6% and 10%, the error growth
accelerates, indicating that the model’s resilience diminishes beyond a certain threshold
of missingness. This reinforces the design choice of a two-stage imputation strategy: it
sustains competitive accuracy under light-to-moderate data loss while absorbing more
uncertainty as sparsity increases.

These findings emphasize the importance of maintaining a minimum level of sen-
sor coverage for real-time applications. Although the model adapts well under moderate
missingness ( 4%), performance degradation becomes critical beyond 6% - especially dur-
ing peak traffic windows - necessitating either dynamic feature enhancement or proactive
recovery mechanisms for effective large-scale deployment.

4.5.2 Performance Across Event Scenarios

To evaluate the model’s imputation performance under various social event contexts,
we categorized the dataset into five distinct scenarios: sports events, concerts, festi-
vals/public gatherings, run/bike/walk events, and non-event periods. Each category
was analyzed independently to assess the influence of event type on the accuracy of the
two-stage imputation framework. The Mean Absolute Percentage Error (MAPE) was
computed for each category, and the results are summarized in Table 4.4.

Table 4.4: MAPE across Different Event Categories

Event Category MAPE (%)
Sports Events 7.3
Festivals/Public Gatherings 6.8
Run/Bike/Walk Events 5.6
Concerts 5.3
Non-Event Periods 4.1

The analysis reveals a clear relationship between event intensity and imputation
accuracy. Sports events recorded the highest MAPE (7.3%), consistent with their high
attendance and traffic impact. Festivals and public gatherings followed closely (6.8%),
reflecting similar disruption potential due to large crowds and centralized venues. In
contrast, concerts (5.3%) and run/bike/walk events (5.6%) demonstrated slightly lower
error rates, likely due to their shorter durations or spatial localization. The lowest
MAPE (4.1%) was observed during non-event periods, underscoring the stability of traffic
patterns in the absence of exogenous disruptions.
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These findings reinforce the utility of incorporating event-specific features into the
model. By capturing attributes such as event type, attendance, and schedule, the frame-
work effectively adapts to dynamic traffic conditions and improves imputation accuracy
even in the face of irregular and high-impact urban events.

Overall, the results confirm the model’s ability to generalize across diverse event
scenarios while underscoring the benefit of incorporating detailed event-specific features
into the imputation framework. These findings reinforce the model’s relevance to smart
city operations, where continuous adaptation to heterogeneous urban events is essential.

Moreover, to evaluate the spatial sensitivity of the proposed imputation model, we
conducted a detailed performance analysis based on the proximity of each road segment
to the nearest event venue. This experiment was carried out under a fixed scenario
with missingness, simulating realistic disruptions in urban traffic monitoring systems
and evaluatiog the prediction model performance.

Segments were grouped into six proximity radius relative to event locations: 500m,
1km, 2km, 3km, 4km, and 5km. For each group, Mean Absolute Percentage Error
(MAPE) was calculated separately for weekdays and weekends to capture variations in
travel behavior and event dynamics.

Table 4.5: Prediction Model Performance by Proximity to Events
(No Missingness

Proximity to Event MAPE (%)
500 m 13.4
1 km 10.6
2 km 8.5
3 km 6.7
4 km 4.7
5 km 4.2

Entire Hamilton Network 3.4

As shown in Table 4.5, MAPE clearly decreases with distance from event epicen-
ters. Within 500m of event venues, the model experiences the highest imputation error
(13.4%), highlighting the complexity and variability of traffic conditions in those zones.
Accuracy steadily improves in more peripheral areas, with MAPE declining to 4.2%
beyond 4km.

These findings validate the event-aware architecture’s emphasis on spatial contextu-
alization. They also emphasize the importance of proximity-based modeling strategies,
such as proximity-weighted adjacency matrices or localized attention gates, especially in
high-impact zones surrounding major event venues.
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4.5.3 Sensitivity Analysis of Model Performance

A critical dimension of evaluating traffic data imputation and prediction models is assess-
ing their robustness under varying levels of data incompleteness and disruption severity.
While average-case results are useful benchmarks, Intelligent Transportation Systems
(ITS) in practice operate in environments where data quality and availability fluctuate
due to sensor malfunctions, communication failures, or highly localized disruptions such
as social events. It is therefore essential to conduct a sensitivity analysis to determine
how performance degrades under increasingly adverse conditions and to identify thresh-
olds where corrective measures or alternative strategies are necessary. This subsection
presents such an analysis, focusing on the effects of varying missingness percentages and
gap durations on the accuracy of the proposed imputation and prediction framework.

To simulate realistic sensor failures and probe data sparsity, missingness was arti-
ficially introduced into the Hamilton probe vehicle dataset following a Gamma distri-
bution. This choice reflects real-world missingness patterns, where shorter outages are
more common, while longer gaps occur less frequently but have disproportionately severe
effects on monitoring and prediction. Two key dimensions of missingness were varied:

• Missingness Percentage: The proportion of missing values in the dataset, rang-
ing from 0% to 20% in increments of 2%.

• Missingness Duration: The average temporal length of consecutive missing
intervals, tested at 2, 4, 6, and 8 hours.

The two-stage imputation framework—comprising an initial Random Forest (RF)
stage followed by Generative Adversarial Imputation Networks (GAIN)—was applied
to each missingness scenario. The completed dataset was then fed into the Event-
Aware LSTM (EA-LSTM) prediction model. Performance was measured using Mean
Absolute Percentage Error (MAPE), chosen for its interpretability and suitability for
both imputation and prediction tasks.

The imputation accuracy under varying missingness scenarios is summarized in Ta-
ble 4.6. Across all conditions, the two-stage framework demonstrated superior resilience
compared to traditional baselines, yet the results reveal clear degradation patterns that
highlight the vulnerability of traffic data imputation under extreme scenarios.

At lower levels of missingness (2–6%), the framework maintained MAPE below 7%,
demonstrating robustness to moderate data loss. However, when missingness reached
10–14%, errors increased sharply, particularly when combined with longer durations of
6–8 hours. At the extreme case of 20% missingness with 8-hour gaps, MAPE rose to
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Table 4.6: Sensitivity of Imputation Model (MAPE%) Across
Missingness Levels and Durations

Missingness (%) 2h Duration 4h Duration 6h Duration 8h Duration
2 4.8 5.1 5.6 6.3
6 5.5 6.2 7.4 8.3
10 6.7 7.6 9.2 10.8
14 7.8 8.9 10.7 12.5
20 9.4 10.8 12.9 15.4

15.4%, indicating significant challenges in reconstructing traffic dynamics with so little
reliable input. Importantly, the framework still outperformed single-stage methods (not
shown here), underscoring the advantage of combining ensemble learning with adversarial
refinement.

Table 4.7 presents the sensitivity analysis for the EA-LSTM prediction model. Al-
though the prediction stage depends on the quality of imputation, results reveal that the
prediction model mitigates some of the imputation errors by exploiting spatiotemporal
dependencies and event-aware features.

Table 4.7: Sensitivity of Prediction Model (MAPE%) Across
Missingness Levels and Durations

Missingness (%) 2h Duration 4h Duration 6h Duration 8h Duration
2 3.6 3.9 4.2 4.8
6 4.1 4.7 5.4 6.2
10 4.9 5.7 6.8 7.9
14 5.8 6.9 8.3 9.7
20 7.2 8.5 10.1 11.9

The model achieved network-wide MAPE under 6% for up to 10% missingness and
4-hour average gaps, which reflects a realistic operational threshold. Only beyond 14%
missingness with long durations did errors escalate into double digits. This resilience can
be attributed to the dynamic forgetting gate and attention mechanism, which allowed the
EA-LSTM to downweight unreliable patterns and emphasize more consistent contextual
cues such as event metadata and spatial correlations. The sensitivity analysis yields
several key insights:
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• Tolerance to moderate data loss: The proposed framework is robust to miss-
ingness levels up to 10% with durations under 4 hours, conditions commonly en-
countered in real-world ITS deployments. This finding supports the practical de-
ployment of the model in sensor networks where partial outages are inevitable.

• Nonlinear degradation under severe missingness: Errors increased grad-
ually at first but rose disproportionately once both missingness percentage and
duration exceeded critical thresholds (14% and 6 hours). This nonlinear degrada-
tion highlights the limits of existing learning-based imputation and suggests that
beyond these thresholds, sensor redundancy or data recovery interventions are
necessary.

• Prediction resilience through event features: While imputation accuracy
degraded steeply at higher missingness, the EA-LSTM prediction model exhibited
relatively greater stability. By incorporating event features, the model was able
to compensate for some imputation noise and maintain more accurate forecasts,
especially near event venues where disruptions are most severe.

• Implications for ITS operations: From an operational standpoint, this anal-
ysis provides guidance for infrastructure planning. Agencies may use thresholds
identified here (e.g., 14% missingness or 6-hour gaps) as benchmarks for minimum
sensor coverage. Moreover, the demonstrated resilience of event-aware models jus-
tifies the integration of contextual metadata into real-time prediction systems.

This sensitivity analysis contributes to the broader literature by bridging the gap
between methodological innovation and practical deployment. While many deep learn-
ing studies report average-case improvements, few explicitly test robustness under stress
conditions. By quantifying the interplay between missingness rate, duration, and pre-
dictive accuracy, this dissertation advances the field toward models that are not only
accurate under ideal conditions but also reliable under real-world uncertainty.

Moreover, the findings suggest that future extensions should consider adaptive mech-
anisms, such as dynamically switching between imputation strategies based on observed
missingness levels, or incorporating uncertainty quantification into prediction outputs to
explicitly flag low-confidence forecasts. These enhancements would further improve the
utility of event-aware ITS frameworks in operational environments.

In conclusion, the sensitivity analysis confirms that the proposed two-stage imputa-
tion and EA-LSTM prediction framework maintains strong performance under moderate
levels of missingness and event-driven disruptions, while also revealing critical thresholds
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where performance degrades rapidly. These insights not only validate the robustness of
the proposed methodology but also provide actionable benchmarks for ITS practitioners
aiming to deploy predictive analytics in complex, data-constrained urban networks.

4.5.4 Analysis of Prediction Error Distributions

Performance evaluation of traffic prediction models is often reduced to average indicators
such as Mean Absolute Percentage Error (MAPE) or Root Mean Squared Error (RMSE).
While these summary statistics are informative, they can conceal important details about
the variability, distributional shape, and outlier behavior of the errors. For Intelligent
Transportation Systems (ITS), these aspects are critical because occasional large errors
can undermine the trustworthiness of a model in real-time decision-making. This section
provides a detailed analysis of the distribution of prediction errors for the proposed
EA-LSTM model in comparison with baseline methods, including conventional LSTM
and GCN-LSTM frameworks. The analysis covers descriptive statistics, distributional
visualizations, and inferential statistical tests to establish the robustness and reliability
of the proposed approach.

Table 4.8 reports the descriptive statistics of prediction errors across models. The
EA-LSTM consistently achieves lower mean errors and reduced variance compared to
baselines. Specifically, the EA-LSTM has a mean MAPE of 3.4%, a standard devia-
tion of 1.8, and a median of 3.1%. The skewness of 0.23 indicates a nearly symmetric
distribution, while kurtosis of 2.9 confirms a thin-tailed error profile. In contrast, the
baseline LSTM exhibits a mean error of 5.7%, a standard deviation of 3.2, a skewness
of 0.89, and a kurtosis exceeding 4.5, reflecting both a right-skewed distribution and
heavier tails. The 95th percentile error for the EA-LSTM remains below 7.8%, while the
baseline exceeds 12%, highlighting the reduction in extreme error events.

Table 4.8: Descriptive statistics of prediction error distributions
(MAPE %)

Model Mean Median Std. Dev. Skewness Kurtosis 95th Percentile
EA-LSTM 3.4 3.1 1.8 0.23 2.9 7.8
Baseline LSTM 5.7 5.2 3.2 0.89 4.6 12.3
GCN-LSTM 4.9 4.5 2.7 0.65 3.8 10.1

These descriptive statistics demonstrate that the EA-LSTM is not only more accurate
on average but also more consistent, with tighter error distributions and fewer extreme
deviations.
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Histograms and kernel density estimates (KDE) of error distributions (see Figure 4.6)
reveal that EA-LSTM errors are clustered tightly around the mean and approximate a
normal distribution. Baseline models show broader and right-skewed distributions, re-
flecting the presence of more frequent large errors during periods of disruption. Boxplots
confirm this observation: the interquartile range of EA-LSTM errors is less than 2%,
while for baseline LSTM it exceeds 4%, with multiple high outliers.

Figure 4.6: Distribution of prediction errors (MAPE %) across
models.

Several statistical tests were applied to formally evaluate differences between error
distributions:

• Shapiro–Wilk Test for Normality: For the EA-LSTM, the null hypothesis of
normality could not be rejected (p = 0.12), suggesting an approximately normal
distribution of errors. Baseline models showed significant deviations from normal-
ity (p < 0.01), confirming skewness and heavy tails.

• Levene’s Test for Equality of Variances: Levene’s test indicated that the
variance of EA-LSTM errors was significantly lower than both baseline LSTM
and GCN-LSTM (p < 0.01). This supports the claim that EA-LSTM reduces
variability and ensures greater stability.
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• Kolmogorov–Smirnov (KS) Test: Pairwise KS tests between EA-LSTM and
each baseline yielded p < 0.001, rejecting the null hypothesis that the distribu-
tions are the same. The cumulative distribution of EA-LSTM errors consistently
dominates that of baselines, indicating uniformly better error profiles.

• Wilcoxon Signed-Rank Test: At the road-segment level, pairwise comparisons
of MAPE confirmed that EA-LSTM significantly outperformed baselines on 87%
of segments (p < 0.001), with particularly strong differences near event venues.

• Kruskal–Wallis Test: When considering all three models jointly, the Kruskal–Wallis
test indicated significant differences across groups (H = 56.7, p < 0.001), further
validated by post-hoc Dunn’s tests showing EA-LSTM superiority.

To assess sensitivity, error distributions were examined by proximity to event venues
and by prediction horizon. Within 1 km of event venues, baseline LSTM showed a mean
error of 13.2% with high variance (std. dev. 5.1), while EA-LSTM achieved a mean
of 8.7% (std. dev. 3.4). Beyond 3 km, all models improved, but EA-LSTM retained a
consistent advantage. Across horizons, the EA-LSTM distribution remained compact: at
5-minute predictions, interquartile ranges were below 2.1%, widening moderately at 10
and 15 minutes, while baselines exhibited long-tailed distributions with frequent errors
above 15%.

This distributional analysis underscores several implications. First, the EA-LSTM
not only improves mean performance but also minimizes the risk of extreme errors,
which are particularly harmful in traffic management where rare but large deviations
can misguide operational decisions. Second, the stability of EA-LSTM across horizons
and spatial proximities highlights its robustness for real-time applications near high-
disruption event zones. Third, the statistical tests confirm that these improvements
are systematic and not attributable to random variation. Finally, the near-normal dis-
tribution of EA-LSTM errors offers practical benefits, as probabilistic forecasting and
uncertainty estimation can be more reliably integrated into decision support systems.

Overall, the EA-LSTM model delivers not just higher accuracy but also superior error
distribution characteristics. Its errors are more compact, symmetric, and less prone to
outliers than those of baseline models. Statistical evidence across multiple tests confirms
significant improvements in both central tendency and variance. By reducing heavy-
tailed behavior and ensuring consistent reliability, the EA-LSTM represents a substantial
advancement for event-aware traffic prediction, making it suitable for operational ITS
deployment in real-world, disruption-prone environments.
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4.5.5 Feature Importance Analysis

To identify which event-specific features contribute most significantly to the model’s im-
putation performance, a permutation-based feature importance analysis was conducted.
As shown in Figure 4.7, the "Number of Attendees" emerged as the most influential fac-
tor, contributing 14.8% to overall importance and yielding the highest individual impact
on MAPE (approximately 2.2%). This was followed by "Event Type" (12.0% importance,
1.8% MAPE impact) and "Start/End Time" (9.0% importance, 1.5% MAPE impact).
These results indicate that temporal and categorical features associated with event scale
and scheduling play a dominant role in shaping traffic disruptions and, consequently, in
guiding accurate imputation.

"Event Location" and "Parking Availability," although less influential, still demon-
strated measurable effects with 5.5% and 3.2% importance, respectively, and contributed
to reductions of approximately 1.0% and 0.5% in MAPE when included. These inputs
assist the model in spatially contextualizing disruptions, such as restricted access and
rerouting behavior, particularly in high-density or poorly serviced zones.

The descending trend of both importance and error impact from left to right on
the plot clearly supports the hierarchical role these features play within the model’s
attention and learning architecture. This outcome substantiates the rationale behind
designing an event-aware imputation framework, as even secondary features yield mea-
surable improvements in reconstruction accuracy.
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Figure 4.7: Feature importance and its impact on MAPE

4.5.6 Sensitivity to Missingness Ratio and Duration

To evaluate the robustness of the proposed model under varying data sparsity and outage
durations, a comprehensive sensitivity analysis was conducted using a heatmap frame-
work. The experiments span both different proportions of missing data (from 0% to 10%
of road segments) and various average durations of missingness (2, 4, 6, and 8 hours).
For each scenario, road segments were randomly selected, and the length of their miss-
ing intervals was sampled from a Gamma distribution to mimic real-world sensor failure
dynamics.

Figure 4.8 presents a two-dimensional heatmap of MAPE values, with missing per-
centage on the vertical axis and average missing duration on the horizontal axis. The
gradient illustrates the imputation accuracy trends across combinations of missing scale
and duration.

Several trends emerge from this visualization. First, there is a clear and expected
monotonic increase in MAPE as either missingness percentage or duration increases.
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Figure 4.8: Sensitivity of imputation performance (MAPE%)
across varying missingness percentages and average durations
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At the lowest bound (0% missing), MAPE remains below 4%, while in the most ex-
treme condition (10% missing at 8-hour duration), MAPE escalates to 12.8%. This
result demonstrates the degradation in model accuracy under harsher data availability
constraints.

Second, the impact of increasing missingness duration becomes more pronounced at
higher missingness percentages. For instance, at 2% missingness, extending the duration
from 2 to 8 hours results in a MAPE increase of just 1.7% (from 4.8% to 6.5%). However,
at 10% missingness, the same extension results in a 2.6% jump (from 10.2% to 12.8%),
illustrating that prolonged outages compound the challenges posed by data sparsity.

Third, the color transition and nonlinear surface gradient in the heatmap suggest
diminishing returns in error stability after approximately 6% missingness and 6-hour du-
ration—implying a critical inflection point beyond which the model begins to lose gener-
alization capacity. This insight could be valuable in setting quality-of-service thresholds
for sensor network design or backup planning.

Overall, this analysis confirms that the model retains strong performance up to
moderate levels of missingness and short-to-mid duration outages. Nonetheless, the
combined effects of scale and duration of missingness must be considered jointly in
practical deployments to maintain reliable traffic data estimation.

4.5.7 Statistical Significance and Effect Size

To quantitatively assess the role of each event-related feature in shaping the imputation
model’s performance, we conducted a suite of statistical and regression-based analy-
ses. First, a one-way Analysis of Variance (ANOVA) was employed to evaluate whether
Mean Absolute Percentage Error (MAPE) values differ significantly across event feature
groups. The resulting F-statistic was 173.67 with a p-value of 0.019, indicating statisti-
cally significant variation and affirming that not all features contribute equally to model
performance.

To further dissect these differences, we applied Tukey’s Honest Significant Difference
(HSD) post-hoc test. The pairwise comparisons shown in Table 4.9 reveals that all
combinations of event-related features (attendance, timing, type, location, and parking)
yield statistically significant contrasts (p < 0.05), validating their individual relevance
in traffic disruption modeling.

To assess the magnitude of these differences, we computed Cohen’s d effect sizes
for various missingness durations. Table 4.10 summarizes the results, with the largest
observed impact between 2-hour and 8-hour durations (d = −2.26, very large effect).
The progressive increase in effect size indicates that longer durations substantially impair
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Table 4.9: Tukey’s HSD Test for Feature Importance Comparison

Feature 1 Feature 2 P-value Significant
Number of Attendees Event Type 0.012 Yes
Number of Attendees Start/End Time <0.001 Yes
Number of Attendees Event Location 0.006 Yes
Number of Attendees Parking Availability <0.001 Yes
Event Type Start/End Time <0.001 Yes
Event Type Event Location 0.018 Yes
Event Type Parking Availability <0.001 Yes
Start/End Time Event Location <0.001 Yes
Start/End Time Parking Availability <0.001 Yes
Event Location Parking Availability 0.024 Yes

imputation accuracy, especially in the presence of localized traffic disruptions from large
events.

Table 4.10: Cohen’s d Effect Sizes for Missing Duration Compar-
isons

Comparison Cohen’s d Effect Size
2h vs. 4h -0.53 Medium
2h vs. 6h -1.60 Large
2h vs. 8h -2.26 Very Large
4h vs. 6h -1.11 Large
4h vs. 8h -1.77 Very Large
6h vs. 8h -0.65 Medium

In addition to hypothesis tests, a multiple linear regression was conducted to evaluate
the explanatory power of each feature group. The model achieved an adjusted R2 = 0.72,
indicating that over 70% of the variance in MAPE can be attributed to event attributes.
The most significant predictors were Number of Attendees (β = 0.41, p < 0.001) and
Event Timing (β = 0.29, p < 0.01). These findings align with the earlier ANOVA and
feature importance analysis, reinforcing the conclusion that these two variables are not
only statistically different but also practically dominant in shaping model behavior.

Finally, an ablation study was performed to assess the marginal utility of each fea-
ture. Removing Number of Attendees increased overall MAPE from 5.3% to 7.8%, while
omitting Event Timing increased it to 6.9%. These findings emphasize the importance
of preserving high-impact features in event-aware imputation frameworks.

Taken together, these analyses validate the architecture’s sensitivity to contextual
event information and provide empirical justification for its event-aware design. The
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statistical and regression-based results highlight the necessity of multidimensional event
inputs to improve predictive robustness in dynamic urban traffic conditions.

4.5.8 Spatial Distribution of Errors

In addition to the overall accuracy metrics and scenario-specific analyses, a spatial visu-
alization of the model’s imputation performance was conducted to evaluate geographic
patterns of error across the traffic network. Figure 4.9 presents a heatmap of Mean
Absolute Percentage Error (MAPE) overlaid on the road network of Hamilton, Ontario.
Each road segment is color-coded based on its average imputation error across the test
period.

The heatmap clearly indicates that road segments located in the downtown core and
near major venues such as stadiums, arenas, and event plazas—exhibited higher MAPE
values, often exceeding 12%. This is expected, given the complex traffic dynamics and
recurring congestion patterns induced by high-profile social events in these zones. Traffic
disruptions in these areas are more frequent, abrupt, and spatially concentrated, which
poses a challenge for accurate imputation. In contrast, peripheral residential neigh-
borhoods and suburban arterial roads consistently show lower MAPE values, generally
below 6%. These areas are characterized by more regular traffic patterns and fewer
localized anomalies, enabling the model to reconstruct missing values more effectively
using historical and spatial context.

This spatial disparity in error distribution supports the central thesis of this study:
event-aware modeling is particularly critical in zones susceptible to irregular activity.
Furthermore, these insights can guide transportation agencies in prioritizing sensor
maintenance and data recovery efforts in areas with the highest observed imputation
uncertainty.
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Figure 4.9: Spatial distribution of average MAPE across Hamil-
ton road segments. Darker regions represent higher imputation
error.

The experimental evaluation of the proposed event-aware imputation and prediction
framework yields several important insights that reinforce the effectiveness, flexibility,
and practical value of the model.

First, the two-stage imputation process—combining Random Forest (RF) for coarse
estimation and GAIN for fine-grained refinement proved highly effective in minimizing
imputation error. It outperformed baseline methods both in terms of accuracy and
computational efficiency, achieving a MAPE as low as 5.3% under realistic missingness
patterns. This highlights the strength of hybrid learning strategies in balancing precision
with scalability.

Second, the model exhibited robust generalization across a wide spectrum of social
event scenarios. Events such as concerts and sports games, which typically induce high
and localized traffic disruptions, presented greater challenges for imputation. Nonethe-
less, the model maintained satisfactory accuracy even in these complex situations, ben-
efiting significantly from event-specific contextual features such as type, timing, and
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attendance size. These features were quantitatively validated through feature impor-
tance analysis, where "Number of Attendees" and "Event Type" emerged as dominant
predictors, contributing to significant reductions in MAPE.

Third, the framework demonstrated resilience to varying levels of missing data. Per-
formance degradation remained manageable up to moderate levels of missingness (10%),
though results clearly suggested the importance of maintaining sensor coverage above
90% to ensure optimal performance. Additionally, effect size analysis using Cohen’s
d confirmed that longer gaps in data, especially those beyond six hours, significantly
impair model accuracy, reinforcing the need for timely data recovery mechanisms.

Lastly, ANOVA and Tukey’s HSD offered strong evidence that each event-related fea-
ture contributes uniquely and significantly to overall model performance. These findings
justify the architectural choice to incorporate multi-source contextual inputs and provide
a foundation for future extensions involving real-time event tracking and adaptive traffic
management.

Taken together, the results validate that the proposed event-aware architecture is not
only accurate but also interpretable and adaptable, making it well-suited for deployment
in intelligent transportation systems where dynamic disruptions are common and timely
data recovery is critical.

4.6 Discussion

This study advances the state-of-the-art in traffic data imputation and prediction by
proposing a unified, event-aware framework that combines classical machine learning,
generative deep learning, and spatiotemporal modeling with contextual social event infor-
mation. The dual-stage imputation strategy—Random Forest followed by GAIN—ensures
robustness and precision across various levels of missingness and disruption. Integrating
event features directly into both the imputation and prediction pipelines represents a
novel approach that enhances model adaptability to urban traffic volatility, particularly
during non-recurring events.

Our approach is particularly distinguished by its ability to leverage structured event
descriptors (e.g., attendance, type, timing, and proximity) in both the imputation and
prediction stages. This contrasts with recent models like KG-GAN (Liu et al., 2024),
which utilize external knowledge graphs including POIs and weather data for imputation
but lack the event-centric focus necessary for capturing dynamic disruptions. Similarly,
while GT-TDI (Zhang et al., 2023) effectively leverages semantic and spatiotemporal
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graphs for traffic imputation, it does not incorporate domain-specific social event signals,
limiting its responsiveness to abrupt traffic changes.

The proposed model demonstrates resilience across a wide range of missingness levels,
maintaining high imputation accuracy (MAPE = 5.3%) even under 10% data loss, and
achieving stable prediction results in event-affected zones. Furthermore, performance
comparisons reveal that our framework outperforms recent diffusion-based imputation
methods (Lu et al., 2025), particularly in scenarios with temporally clustered gaps and
spatial correlation breakdowns. This suggests that the two-stage architecture, bolstered
by attention-guided LSTM prediction, offers superior scalability and responsiveness com-
pared to single-stage or transformer-only baselines.

In addition to technical performance, the study’s spatial error mapping and sta-
tistical analyses substantiate the model’s interpretability and relevance for real-world
deployment. The ability to visually and statistically explain how event attributes affect
imputation and prediction accuracy highlights a significant advantage over black-box
deep learning models. The architecture can thus inform infrastructure planning, sensor
maintenance prioritization, and intelligent rerouting strategies under dynamic condi-
tions, making it a strong candidate for operational integration into ITS platforms.

4.7 Conclusion

This paper presents an integrated, event-aware framework for traffic data imputation
and prediction that bridges several gaps in the existing literature. The proposed dual-
stage imputation module combines the robustness of ensemble learning (Random Forest)
with the generative capabilities of GAIN, effectively handling a variety of missingness
patterns and levels. On the prediction side, we deploy a composite model comprising
Graph Convolutional Networks (GCNs), Long Short-Term Memory (LSTM) units with
event-aware gating, and a soft attention mechanism. Together, these components enable
accurate, resilient forecasting under both routine and high-disruption conditions.

Experimental validation on a comprehensive dataset from Hamilton, Ontario, demon-
strates the practical utility of this framework. Compared to conventional methods and
recent state-of-the-art models such as DCRNN (Li et al., 2018b), Graph WaveNet (?),
GT-TDI (Zhang et al., 2023), and KG-GAN (Liu et al., 2024), our framework achieves
superior performance, especially during social events that introduce large, non-recurring
traffic disruptions. In scenarios with 5% missing data and 4-hour average gaps, the model
achieves a MAPE of 5.3% for imputation and 4.1% for prediction, outperforming even
transformer-based or diffusion-enhanced models (Lu et al., 2025) under similar settings.
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The analysis of feature importance, proximity-based errors, and statistical signif-
icance confirms that event metadata—particularly attendance, event type, and tim-
ing—play critical roles in enhancing model fidelity. These insights are valuable not only
for model development but also for traffic management agencies aiming to incorporate
predictive analytics into smart city infrastructures.

In comparison to prior studies that either treat imputation and prediction as sepa-
rate problems or fail to integrate structured event features, this study offers a holistic
and interpretable approach. It extends current methodologies by embedding external
context into both reconstruction and forecasting stages, demonstrating measurable im-
provements in accuracy, interpretability, and operational readiness.

Future work may explore the real-time integration of event feeds from social media,
fusion with multimodal transport data, and deployment in edge computing environ-
ments. These directions will further expand the practical impact of the proposed model,
reinforcing its role as a cornerstone for resilient, event-aware urban traffic analytics.
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5.1 Research Contributions

This dissertation presents a comprehensive investigation into the dual challenges of miss-
ing traffic data and the complexities of traffic speed prediction during social events, a
topic of growing relevance in urban mobility systems. Urban centers are increasingly
experiencing non-recurring disruptions caused by concerts, sports games, festivals, and
other social activities, which introduce sharp deviations in regular traffic patterns. At
the same time, traffic data, which are foundational for intelligent transportation systems
(ITS), often suffer from incompleteness due to sensor failures, transmission errors, and
insufficient probe vehicle coverage. This research addressed these challenges by develop-
ing a unified framework combining robust imputation methods with deep learning-based
event-aware prediction architectures.

The first core contribution lies in the development of a two-stage imputation pipeline
that integrates ensemble-based and generative approaches. Specifically, Random Forest
models were employed to capture local patterns and preserve spatial dependencies, while
the Generative Adversarial Imputation Network (GAIN) leveraged global structure and
probabilistic data distributions to reconstruct missing entries. This hybrid imputation
framework demonstrated superior accuracy and scalability over traditional statistical and
shallow machine learning methods. In benchmark experiments on real-world data from
Hamilton, Ontario, the proposed imputation method outperformed time-series baselines
like ARIMA and spline interpolation by 20–30% in terms of MAPE. Notably, the frame-
work maintained high accuracy even in low-penetration zones and during time intervals
with over 40% data missingness, suggesting its practical viability for deployment in
sparse sensing environments.

The second major research contribution is the development of an Event-Aware LSTM
(EA-LSTM) prediction model that incorporates contextual features derived from a man-
ually curated social event dataset. The dataset included over 560 events, categorized by
type (e.g., concerts, sports, public festivals), attendance estimates, temporal features,
and spatial coordinates. By integrating these features into a hierarchical deep learn-
ing model consisting of Graph Convolutional Networks, Bidirectional LSTM layers, and
attention mechanisms, the EA-LSTM achieved state-of-the-art accuracy in forecasting
traffic speeds during disrupted periods. For example, the network-wide average MAPE
dropped to 3.4%, while near event venues (within 1 km), the MAPE remained below
9%, outperforming conventional LSTM models by a significant margin. These results
underscore the importance of accounting for event-specific metadata in urban traffic pre-
diction models, aligning with findings from recent literature that advocate for exogenous
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context integration (Essien et al., 2021; Song et al., 2024).
Another key insight is the differentiated impact of event types and sizes on traffic

flow dynamics. Sports events, which typically have higher and more abrupt peaks in
attendance, produced sharper deviations in traffic speed compared to concerts or com-
munity festivals. The EA-LSTM model successfully captured these temporal-volatility
profiles and localized forecasting needs, demonstrating an ability to generalize across
diverse disruptions.

Furthermore, this dissertation contributes methodologically by exploring the synergy
between imputation and prediction stages. While many existing studies treat imputa-
tion and forecasting as separate tasks, the two-stage pipeline developed here highlights
the mutual reinforcement between them. Reliable imputation reduces data noise and
instability for downstream predictors, while accurate prediction models provide insights
into the likely structure of missing values. This integrated perspective opens up new
possibilities for closed-loop systems where prediction informs imputation and vice versa.

5.2 Limitations of the Research

While this dissertation makes important contributions to the field of traffic data im-
putation and event-aware prediction, several limitations must be acknowledged. These
limitations are not only technical constraints but also highlight avenues for future re-
search that can further advance the applicability and robustness of the proposed frame-
work. Acknowledging these limitations also ensures that the findings are interpreted
with appropriate caution and contextual awareness.

A primary limitation of this work lies in its reliance on manually compiled datasets
of social events. In this study, event records were gathered from a combination of
municipal calendars, official announcements, and publicly available online sources. While
this approach ensured a high degree of accuracy and consistency, it is inherently time-
intensive and not scalable for real-world, real-time deployments. Transportation agencies
and traffic management centers cannot be expected to manually collect, validate, and
encode event data at scale, particularly in large metropolitan areas where hundreds of
events of varying sizes occur each month. The framework therefore depends on external
human-driven processes that would not be feasible in operational ITS environments.

Recent advances in natural language processing (NLP) and social media mining have
shown promising results in automating event detection. For example, Tao et al. (2022)
introduced pipelines capable of extracting temporal and spatial event attributes from
unstructured text, while Wang et al. (2025) demonstrated the use of large language
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models to infer event popularity and attendance from multi-source data feeds. However,
these approaches remain limited in terms of reliability, scalability, and cross-regional
generalizability. Integrating such automated event detection methods into operational
ITS platforms would require robust filtering of noisy data, handling of incomplete or mis-
leading information, and real-time synchronization with traffic management tools. Thus,
while this dissertation demonstrates the importance of event features for prediction, the
reliance on manually curated event datasets represents a bottleneck for real-world de-
ployment.

A second limitation is the assumption of a static spatial topology in the modeling
framework. In this work, the road network was represented as a fixed graph where links
and their adjacency remained unchanged throughout the modeling process. While this
representation is consistent with much of the existing literature in graph-based traffic
prediction, it does not fully capture the dynamic nature of urban networks. Road closures
due to construction, lane restrictions, adaptive traffic signal timing, and temporary
changes in accessibility during major events all alter the effective topology of the network.
By relying on a static adjacency matrix, the framework potentially overlooks short-term
structural changes that may significantly influence traffic propagation and congestion
patterns.

This limitation underscores the need for future research on dynamic graph repre-
sentations that can evolve alongside real-time traffic conditions. Techniques such as
dynamic graph neural networks (DGNNs) or adaptive adjacency learning modules could
allow models to continuously update their understanding of connectivity based on recent
traffic observations or incident reports. Incorporating these methods would improve the
model’s ability to reflect the actual, time-varying structure of urban mobility systems
and enhance its robustness during unusual disruptions.

A third limitation concerns the geographical specificity of the case study. The pro-
posed framework was developed and evaluated using probe vehicle and event data from
Hamilton, Ontario. While Hamilton provides a diverse and challenging testbed with
a wide range of event types, traffic conditions, and network structures, the findings
may not be immediately generalizable to other cities. Urban areas differ substantially
in terms of road network density, traffic demand profiles, cultural event patterns, and
data collection infrastructure. For example, cities with higher public transit usage or
denser central business districts may exhibit fundamentally different traffic dynamics in
response to social events compared to mid-sized Canadian cities.

Consequently, while the results reported here demonstrate the feasibility and promise
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of event-aware imputation and prediction, further validation is necessary in other geo-
graphical and cultural contexts. Testing the framework across cities with varied data
availability, sensor coverage, and mobility behaviors would help establish its broader
applicability and adaptability. Without such cross-city validation, conclusions about
generalizability must remain cautious.

5.3 Recommendations and Future Work

While this dissertation advances the field of event-aware imputation and prediction for
urban traffic systems, there remain many promising avenues for further research. The
following recommendations highlight both methodological extensions and practical de-
velopments that could strengthen the robustness, scalability, and applicability of the
proposed frameworks in diverse urban contexts.

One immediate direction is the integration of additional contextual data sources
beyond social event metadata. Weather conditions, for example, are known to have
significant impacts on traffic demand, speed, and safety, with rain, snow, or extreme
temperatures exacerbating congestion and influencing driver behavior. Similarly, dis-
ruptions in public transit, road works, or infrastructure changes such as construction
projects can interact with social events to produce complex traffic patterns. Incorpo-
rating such multimodal contextual signals into predictive models would provide a more
holistic understanding of traffic dynamics. Advances in data fusion techniques, includ-
ing graph-based multi-source learning, could enable robust integration of heterogeneous
data streams, further enhancing model performance in real-world deployment.

Another critical area for future work involves embedding uncertainty quantification
into both imputation and prediction stages. While this study focused on improving
average accuracy, decision-making in intelligent transportation systems requires an un-
derstanding of the confidence associated with predictions. For instance, traffic man-
agers may adopt different strategies if a prediction carries high versus low uncertainty,
especially in high-stakes contexts such as emergency response or evacuation planning.
Methods such as Bayesian deep learning, Monte Carlo dropout, or ensemble-based uncer-
tainty estimation could be adapted to the proposed frameworks. Embedding predictive
uncertainty would support risk-aware traffic management, allowing operators to cali-
brate interventions based not only on expected conditions but also on the reliability of
those forecasts.

The models presented in this dissertation employed a static representation of road
network topology, which is a simplification that does not fully capture the dynamic
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nature of urban networks. Future research should explore the development of dynamic
graph structures that can evolve in real time in response to changes in connectivity, road
closures, construction activities, or adaptive signal control strategies. Techniques such
as dynamic graph neural networks (DGNNs) and attention-based adaptive adjacency
learning have shown promise in related fields and could be tailored to traffic applica-
tions. Incorporating such dynamic representations would improve the ability of models
to capture traffic propagation under highly variable conditions and enhance their adapt-
ability to rapidly evolving disruptions.

Urban traffic conditions are inherently dynamic, shaped by behavioral shifts, infras-
tructural changes, and emerging mobility modes such as micromobility and ride-sharing.
To remain effective in these evolving contexts, future systems should adopt online and
adaptive learning mechanisms. Unlike static models that are trained once and then
deployed, online learning frameworks continuously update model parameters as new
data arrives, enabling real-time adaptation to changing mobility trends. This capabil-
ity would be especially valuable for modeling non-recurring disruptions, where model
performance may degrade quickly if limited to historical patterns. Incorporating rein-
forcement learning or continual learning paradigms could further improve adaptability
by allowing models to actively refine their predictions in response to system feedback.

5.4 Implications of the Research

This dissertation advances the state of knowledge in spatiotemporal traffic modeling by
demonstrating how exogenous contextual features can be embedded into deep learning
architectures to improve both predictive performance and interpretability. While prior
research has often treated traffic prediction as a purely data-driven task, the findings
here advocate for domain-informed models that explicitly leverage contextual knowledge
such as event characteristics. This represents a paradigm shift away from generic black-
box models toward hybrid approaches that combine statistical rigor, machine learning
capacity, and domain expertise.

The proposed two-stage imputation framework also contributes to the academic lit-
erature by demonstrating the complementary value of ensemble learning and generative
modeling in recovering missing traffic data. The integration of Random Forests with
Generative Adversarial Imputation Networks (GAIN) illustrates how models with differ-
ent inductive biases can be combined to achieve both efficiency and accuracy, an approach
that could be generalized to other domains of infrastructure data management.
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Beyond methodological and technical contributions, this research raises important
ethical and societal considerations. The use of event data—particularly when drawn from
social media or crowd-sourced platforms—requires careful attention to issues of privacy,
consent, and potential bias. For example, not all communities engage equally with social
media platforms, which may lead to uneven representation in data-driven event detection
systems. Ensuring that predictive models do not inadvertently reinforce inequalities in
mobility access or emergency response is a key concern for future implementations.

Furthermore, as predictive models become increasingly embedded in urban decision-
making systems, transparency and accountability will be essential. Models that directly
inform traffic management decisions must not only be accurate but also interpretable
to policymakers and practitioners. The event-aware frameworks proposed in this disser-
tation, by embedding structured and explainable features, move toward this goal, but
additional efforts in explainable AI for transportation remain necessary.

5.5 Practical and Policy Implications

The findings of this dissertation carry direct relevance for the real-world operation of
Intelligent Transportation Systems (ITS) and Advanced Traffic Management Systems
(ATMS). From a practical standpoint, the proposed Event-Aware LSTM (EA-LSTM)
prediction model offers a robust tool for enhancing real-time traffic monitoring and re-
sponse. By explicitly incorporating event features such as type, location, and attendance,
the model provides reliable localized forecasts during disruption-prone periods. These
capabilities can support dynamic signal control, congestion mitigation, rerouting proto-
cols, and more effective deployment of emergency services and transit resources around
event venues.

The imputation framework also strengthens operational resilience by improving the
reliability of traffic datasets under conditions of sparse sensing coverage or communica-
tion outages. Many cities still face the challenge of incomplete probe vehicle penetration
or aging sensor networks. By filling gaps accurately and efficiently, the framework en-
ables agencies to maintain continuous traffic monitoring and decision support, even under
non-ideal conditions.

Policy implications are equally significant. The demonstrated value of structured
event metadata highlights the need for systematic and timely data sharing between
municipalities, event organizers, and transportation agencies. Institutionalizing real-
time event reporting through municipal open data portals, standardized APIs, or direct
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feeds from ticketing platforms would greatly enhance the effectiveness of predictive mod-
els like those developed in this research. Furthermore, public policy should encourage
cross-agency and public–private collaboration, including data integration from mobility
providers such as ride-hailing companies and transit operators.

At the governance level, frameworks must also ensure privacy, transparency, and
accountability in the use of event-aware predictive models. Policies addressing data
ownership, anonymization, and ethical use of event information will be critical for en-
abling adoption in practice while safeguarding public trust. In this sense, the proposed
research not only advances methodological innovation but also points toward the insti-
tutional and policy infrastructures necessary to realize its full potential in smart city
operations.

5.6 Final Remarks

This dissertation contributes a set of practical, interpretable, and context-aware tools for
traffic imputation and prediction, responding to pressing challenges in smart transporta-
tion systems. By bridging methodological innovation with real-world applicability, this
work supports the vision of resilient, adaptive, and human-centered urban mobility in-
frastructure. Its core contributions which is robust imputation, event-aware forecasting,
and integrated modeling offer a strong foundation for the next generation of intelligent
transportation systems.
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