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link was used to ensure a constanﬁ input force and a
displacement transducer was used to measure the amplitude

. of vibration as a function of frequency. Signals from the

six pressure transducers, the input force and the displacement
transducers were recorded simultaneously while their phase
rglations were measured by means of a phase meter.

Results are presented for foundations of five
different mass ratios. By use of the displacement functions
the compatibility of the results is checked. The results
are compared with those predicted by the'Reissner-Sung
-theory. The dynamic pressure distribution is used as a

means of comparison.















CHAPTER 3

THE REISSNER-SUNG THEORY

An analytical solution for the steady-state vibration of
a foundation resting upon the surface of a semi-infinite,
isotropic, homogeneous, elastic_body has been investigated
by Reissner (1936). His solution is limitea to a rigid circular
mass subjected to a vertical harmonic force. Reissner's
solution assumes a uniform contact pressure distribution.

Sung (1953) extended Reissner's work to include parabolic
and rigid base pressure distribution.

A mathematical model of the foundation-soil system is
represented in Figure 1. It is assumed that the soil can be
represented as a semi-infinite, isotropic¢,homogeneous, elastic body.
The footing is axially symmetric and absolutely rigid thus
producing uniform displacement beneath the footing. It is
assumed that tﬁere are no shear stresses acting on the found-
ation soil. interface. The periodic force acts through the

centre of gravity of the footing.

Q

J,

i

<X
0_4 G,p,V

- R

Figure 1. MATHEMATICAL MODEL OF FOUNDATION-SOIL SYSTEM



The equation of motion of the system can be expressed by
the following:

mox = R-0Q (1)
- Rleimt _ Qlei(mt + ¢Q-R) (2)
where
) mg = mass of foundation
X = displacement of footin§
Q = input force having amplitude Q;
R = soil reaction force having amplitude R;
w = angular frequency
¢Q—R = phase difference between input force and
soil reaction
i = /-1
e .= 2.71828.....

The solution to this problem as developed by Reissner and |

Sung is

iwt

R .
x = ;lg (£, + ify) e (3)

(o)
where

f,, £, = displacement functions

G shear modulus of soil

The acceleration can be determined from equation (3) by
differentiation

e ¢ - 2 1
X = —Blﬂ— (fl + ifz) elwt

roG (4)



. Substitution of equation (4) in equation (2) yields

-lezm . . .
—2 (f; + ify) ™" = riet¥t - g1 (0t * 4 ) (5
o

Simplification of the above expression is achieved by

the introduction of two dimensionless parameters. One

parameter is the frequency factor, ags defined as

(6)

a_ = wr
o o

Qlo

where
p = density of soil

The other parameter is the mass ratio, b, defined as

b = =2 (7)

3
pr,

By substitution of equations (6) and (7) in equation
(5) the result is

wt wt Qlei(wt + ¢Q-R)

—Rlaé b(f; + if,) et = Rlel -

or . -Rya? b(f, + ify) = Ry - 0;e*%0-R (8)

Two equations are formed by taking the real and imaginary
parts respectively.

2
-Rja_bf; = R} - Q) cos $9-R (9)

Rlaébfz Q1 sin ¢Q-R (10)

From equations (9) and (10) the following relationship is

derived b azf
o 2

tan ¢, p = (11)

2
l+Db aofl
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By applying equation (11) in equation (10) the following

relationship can be derived

R, = 9 (12)
J(1 + baZfy)? + (bagf2)2

From equation (3) it follows that

-1 - f2
¢R—x = tan 1 (13)

By substitution of equations (12) and (13) in (3) and
the results arranged such that
x =X el(wt + ¢x—R) ' (14)

it is found that

2 2
X = QIG f1 + £3 (15)
To® /(1 + palf;)? + (balf,)?

From the phase angle relations it is known that

*0-x T %0-r T ®r-x (16)
Thus tan ¢ = tan (¢ + ¢ )
Q-x Q-R R—-x

= —£2 (17)

£, + baé(f% + £3)

The Displacement Functions

The displacement functions are dependent upon the
frequency factor, Poisson's ratio of the soil, and the type
of pressure distribution. Reissner (1936) determined the
diéplacement functions assuming uniform pressure distribution.
Sung (1953) extended his solution for parabolic and rigid

base pressure distribution. The stress distributions assumed
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by Sung are given as follows:

(i) Rigid Base Pressure Distribution

Qleimt
p(r,t) = — for r<r
21rro Mrg - r? °
(18)
=0 for r >ro
(ii) Uniform Pressure Distribution
0 eiwt
p(r,t) = —-1_2___. for r <r°
s (19)
=0 ‘ for r>r .
o .

(iii) Parabolic Pressure Distribution

2 0 eiwt
p(r,t) = —;"l—— for r<r_
=0 for r»> ro
where
p = pressure

r, = radius of foundation

r radius of any point on foundation

The displacement functions determined by Sung'are shown
as a power series representation in Tables I and II and in
graphical form in Figure 2. Sung-limited his analysis for
o<ao<1.5 for which he assumed the pressure distribution to be

"independent of frequency.

Resonant Frequency and Maximum Amplitude of Vibration

The amplitude of vibration can now be determined as a

function of frequency. Equation (15) can be expressed






POWER SERIES REPRESENTATION OF THE FUNCTION

TABLE II

f, (After Sung)

Rigid
Base

1/4
1/3

1/2

0.214474 a
o

0.148594

0.130630:

0.104547

0.039416

0.023677

0.020048

0.014717

0.002444

0.001294

0.001052

0.000717

o))
[o)X3,}

[+1]
QO wm O w

o

Uniform

1/4
1/3

1/2

0.214474

0.148594

0.130630

.0.104547

0.029561
0.017757
0.015037

0.011038

0.001528

0.000808

0.000658

0.000444

L V]
OoOw oOwm

o))
ow

Parabolic

1/4
1/3

1/2

0.214474

0.148594

0.130630

0.104547

0.019708

0.011837

0.010024

0.007358

0.000764

0.000405

0.000328

0.000222

€T
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in dimensionless form

XGr 2 2
o _ / f1 + fz (21)

Q, J(l + baéfl)2 + (bagfz)Z

The right hand portion of equation (21) is defined as

2 2
A = fl + fz . A (22)
(1 + pa2f,)? + (ba2f;)?

where A is termed the amplitude factor. The maximum

value of A is termed Amax and occurs at the resonant
frequency of the foundation.

' For a given foundation, the mass ratio is defined and
is a constant. Amplitude-frequency relations can then be
determined by varying the frequency factor and knowing the
relation between the displacement functions and the frequency
factor. Figure 3 shows the amplitude—frequency relations
for different mass ratios assuming a parabolic pressure
distribution and Poisson's ratio of 1/3.

' The resonant freéuency and maximum amplitude of

vibration can be determined from Figure 3 by the following

equation if the soil properties are known.

= 921
xmax rOG Amax (23)

The value of the frequency factor for which the maximum

o

a
_ o G .
fo=m_; /% ' (24)

amplitude occurs defines the resonant frequency, £ _.
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Determination of the resonant frequency and maximum
amplitude of vibration for mass ratios not shown in Figure 3
require interpolation. Richart (1960) presented Sung's
results in a form more useful to practising engineers. Richart
limited his analysis to the rigid base pressure distribution.

Figures 4 and 5 are in similar form to that used by
Richart but are presented for parabolic pressure distribution.
Figure 4 may be used to determine the resonant frequency.

For a given value of b, a, is determined for a given value

of Poisson's ratio. The resonant frequency can then be
determined using equation (24). Figure 5 may be used to
determine the maximum amplitude of vibration. For a given
value of b, Amax is determined for a given value of Poisson's
ratio. The maximum amplitude of vibration can then be
determined using equation (23). The results shown in

Figures 3, 4, and 5 were calculated with an IBM 7040 computer

using Sung's displacement functions.
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TABLE III

DESCRIPTION OF TEST SERIES

Series Weight of Mass Confining Shear ' Maximum Amplitude of Resonant

No. Footing Ratio Pressure Modulus Vibration (IN x 10~%) Frequency
. (LBS) '(LB/FT?2) (LB/IN2) (cps)
I 21.7 13.5 58 . 2209 " 3.44 99.4
I . 29.8 18.5 80 2672 3.32 93.9
III 37.9 23.5 101 " 3086 3.23 '89.8
v 46.5 28.8 124 3489 '3.16 . 86.4
\' _ 54.6 33.8 145 3842 3.11 - 83.8

144
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SOil'Description

The soil used for this project was a densely compacted
uniform Ottawa sand. The water content was found to be
negligible. The specific gravity was determined to be 2.66.
The density of the sand was found to be 110 lb/ft3 which
corresponds to a void ratio of 0.51. The grain size
distribution appears in Figure 6.

Shear Modulus of Soil

Hardin and Richart (1963) have investigated the shear
modulus for dry Ottawa sand. They found experimentally that
the shear wavé velocity was dependent on the confining |
pressure and the void ratio and independent of grain size and
distribution for the range tested which were between the No. 20
énd No. 140 standard sieves. The resonant column method was
used with a double amplitude of vibration of 10—3 radian at
the free end with the other end fixed. The experimentally
obtained results were presented in the form of empirical
equations for determination of the shear wave velocity. The
maximum deviation of the experimental results and the empirical

equations was about 10 per cent.

_ ) 1/4
Cg = (170 - 78.2 e)o (25)
for o_ >2000 1b/ft2
C, = (119 - 56.0 e)o /10 (26)
C
for o _ £2000 1b/ft2
where o, = confining pressure in'lb/ftz
Cs = shear wave velocity in ft/sec

e = void ratio
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Hardin (1965) converted the above equations to predict
the shear modulus. The shear modulus may be expressed as

G = pc; (27)

where G shear modulus
Substitution of Cg from equation (27) in equation (26)

yields the following results:

G = (32.17 - 14.80 e)2 1/2 . (28)
(1 + e) c
for o >2000 1b/ft?
G = {22.52 - 10.60 e)?  3/5 (29)
(1L + e) ¢

for o_ <2000 lb/ft’

where G = the shear modulus in psi for Oq in lb/ft2

The effect of varying the amplitude of vibration on the
shear modulus has been investigated by Hall and Richart (1963).
They used the resonant column method for Ottawa sand. They
found that the shear modulus decreases as the amplitude of
vibration increases. This decrease was a maximum of 15% as
the double amplitude of vibration was increased from

5 3

1 x 10 ° to 2.5 x 10 ° radians.

Determination of the Confining Pressure

The difficulty of determining the shear modulus is the
computation of the confining pressure for a foundation resting
upon a semi-infinite mass. Chae (1964) assumed the confining
pressure to be the static weight divided by the contact area.

A check of this assumption can be made using the experimental
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resonant frequency and equations (6) and either (28) or (29)

o]
a, anoro /6 (6)

(22.52 - 10.60 e)2 5 3/5
(1 + e) c

G =

(29)

The value of aj is determined theoretically and the value

of fo is determined experimentally. The value of G can now
be calculated from equation (6). Substitution of G into
equation (29) enables a calculation of oé which can then be
compared with the original assumption of calculating One
Using this method, Chae found that the confining pressure
was less than the assumed average normal pressure. The
confining pressure may be expressed as the following function

of the average normal pressure.

o = k2 |
c A, (30)
where k = confining pressure factor

W = weight of foundation
Ac = contact area
‘Using the above method Chae found that « was in the range of
0.49 to 0.56 for densely compacted Ottawa sand.
The value of x was assumed to be 0.50 for this research
program. The value of the shear modulus and its associated
confining pressure is shown in Table III, and is graphic&lly

depicted in Figﬁre 7.

Poisson's Ratio

Phalen (1963) has determined the compressive wave velocity

for cohesionless soils using a seismograph with dynamite as a
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Predicted Resonant Frequencies and Maximum Amplitude of

Vibration

The Reissner-Sung theory was used to determine the
dynamic response of the footing for each series of tests. A
parabolic pressure distribution was assumed with Poisson's
ratio of 1/3 and the shear modulus values as determined
previously. The predicted resonant frequencies and amplitudes
of vibration appear in Table III and are shown graphically
in Figure 8. A more complete analysis of the predicted
dynamic response appears in Chapter 6 along with the experimental
results. An IBM 7040 computer was used to predict this

response. The computer program appears in Appendix C.
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as necessary.

3. The footing was placed upon a piece of plywood
measuring 8" x 8" x 1/4" which rested on the sand. The
purpose of this was to minimize sand disturbance during
.assemblage of the apparatus. The footing was attached to
the vibration generator by a shaft. The cylinder containing
the shaft was aligned vertically using a transit.
Realignment.wasvnot necessary provided the cylinder was not
moved. The footing was lifteé up and the piece of plywood
gently removed. 'The'footing was then placed on the soil and
the loading apparatus bolted rigid.

4, Sstatic pressure distribution tests were performed
before each dynamic test. The footing was vibrated for about
a minute to ensure that the footing came into full contact
‘with the soil.. The vibration was then stopped and the
pressure regdings recorded. The process was repeated until
about five sets of readings were recorded. Before the
dynamic test was commenced, the pressure transducers were
adjusted to zero output.

5. The displacement transducer was then positioned and
adjusted for a zero output. During the course of the testing
the displacement transducer would have to be adjusted a

number of times due to settlement of the footing. 1If

settlement greater than approximate1§'1/4" occurred, the
loading apparatus was lowered so that the vibration generator

would function properly.
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are known then the response of a foundation of any mass
ratio can be determined. Four variables were measured

experimentally; they‘ were ¢ , X, and ¢ Any two

Q-R' Rl Q-x"
of these variables may be used to determine the displacement
functions by using the two corresponding equations from the

following four equations.

bagfz
tan ¢, _ = —2 (11)
Q=R 3 4 pazsf, .
(o]
— 01
R, = (12)
/il + paZf)? + (balf,)?
2 2 .
x = 21 / £, + £5 (15)
¥o® /' (1 + balf))2 + (balf,)? '
tan ¢ = ~fp (17)

@7* £, + pal(£} + £3)

Two methods were used to determine the displacement
functions. Method A uses equations (15) and (17) while Method
B uses equations (11) and (12).

(i) Method A

The solution of equations (15) and (17) for £, and £,

has been determined by Chae (1964). An error, however, was
found in his solution. The corrected solution appears in
Appendix A, and follows the notation of Chae wherever possible.
The solution gives two sets of values for f, and £;. The theory,

however, demands that f; be negative and f, positive. A

computer program was written to determine the displacement
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as well as other experimental results.. The program appears
in Appendix D.

The experimental and theoretical values of the
displacement function f; as a function of frequency facéor
are shown in Figure 20. The results of all five mass ratios
are included in the diagram. The experimental results are
close to the theoretical values for the frequency factor in
the range of 0.3 to 0.4 which coincides with the range of the
resonant frequencies. The displacement function £; is
generally less than that predicted when the frequency is less
than the resonant frequency and greater when higher than the
resonant frequency. The difference is attributed to the fact
.that the predicted pressure distribution does not correspond
to the actual pressure distribution. .

The éxperimental and theoretical values of the
displacement function f; versus frequency factor are shown in
~Figure 21. The experimental results follow the same general
pattern as that predicted to the range of the resonant
frequency. After the frequency factor has exceeded the range
of the resonant frequency, the displacement function f;
increases rapidly andithen decreases rapidly to a value less

than that predicted.
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According to the Reissner-Sung theory, the displacement
functions are independent of the mass ratio. Figure 26,
however, shows that as the méss ratio increases the
experimental value decreases for a given frequency factor.
This trend is not as evident for the displacement function
f, shown in Figure 21, Thus, it is evident that the
displacement function is dependent upon the mass ratio.
fhis_dependence,can be seén more clearly by examining the

parameters a_ and b.

i
(o}

L}

€

La ]
(o)
o)

(6)

b = 2 . (7)

These parameters are not independent since G is a function
of the confining preséure which is dependent upon the mass
of the foundation m,. This is the reason that the
displacement functions are dependent uﬁon the mass ratio.

A method of checking the reliability of £, and £, was-
used. The experimental values.of f, and f, were substituted

in equations (11) and (12) to determine the phase angle ¢Q—R

and the soil reaction Rl' The results of this check are
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at a given frequency the settlement occurred rapidly and then
reached a near steady-state value. Settlement was measured
with a deflectometer during two tests each having a mass

ratio of 13.5. The results showed total settlements of

1/3 and 1/2 of an inch.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The following conclusions are derived from the
foundation-soil system used in this research program. The
foundation consisted of a rigid circular footing resting on
the surface of a cohesionless soil. The footing was
"subjected to a constant vertical force.

(A) The magnitude of the contact pressure on the
foundation-soil interface is a function of frequency. The
maximum value occurs at the resonant frequency.

(B) The contact pressure distribution is a function
of frequency. The pressure at the centre of the foundation
is a maximum and decreases to a minimum at the edge. An
intermediate minimum pressure occurs at resonant frequencies
up to and inclﬂding the resonant frequency.

(C) The contact pressure acts in phase across the
foundation-soil interface.

(D) Experimental determination. of the displacement
functions is difficult due to their sensitivity to fluctuation
of the experimental data.

(E) Contrary to the Reissner-Sung.theory, the
displacement functions are dependent upon the mass ratio.

(F) The Reissner-Sung theory a;suming parabolic
pressure distribution gives conservative predictions of the

resonant frequency, amplitude of vibration and soil reaction.
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The resonant frequency and maximum amplitude of vibration can
be expected to be respectively about 10 and 20 per cent
lower than that predicted.

(G) Differences between the experimental and
predicted results are attributed to the differences in the
dynamic pressure distribution., The dynamic pressure
distribution is not exactly parabolic as predicted.

Recommendations

It is recommended that research be conducted concerning
the settlement of foundations when subjected to vibratory
loads. Effects of amplitude of vibration and time should be
included in the investigation. |

Further investigations are needed to predict the
dynamic response of foundation-soil systems under conditions
different from‘those considered herein. The effects of the
geometry of foundation, embedment of foundation, different
tyﬁes of soil, and different modes of vibration should be

included in these investigations.









APPENDIX A

FIRST DETERMINATION OF THE DISPLACEMENT FUNCTIONS

Equations (15) and (17) are used to solve for £f;

and f,.

X = Q1 f% + f% . (A-1)
Gr ' 2 2 2 2
o/ (1 + baofl) + (baofz)

: - £,
tan ¢, _ _ = (A-2)
Q-x £ 4+ pal (£} + £3)

By rearranging and squaring (A-1)
2

XGro\"_ £2 + £2 (3-3)
% (1 + ba’f;)2 + (baf,)?2 . _
(o] (o]
Let
2
D = bao (A-4)
2
XGr
(o]
= A-5
M o1 ( )
N = tan ¢, _ . (A-6)

and substituting in (A-2) and (A-3)

- fz > = N . (A"7)
£, + D(£f? + £3)
2 2 :
£f1 + £, =M (A-8)

(1 + DE;)2 + (Df2)2~
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From (A-8)

£2 4+ £5 = M(1 + Df;)2 + M(Df,)?2

v

M + 2MDf; + MD2f£? + MD%f3

M + 2MDf, + MD2 (£} + £3)
Mp?(£2 + £2) - (£2 + £2) + M + 2MDE, = 0
2 2 2
(fl + fz) (MD” - 1) + 2MDf1 + M=0 (A-9)

From (A-7)

- £, = Nf; + ND(f? + £3)

(£2 + £3)ND + Nfy + £ = 0 (A-10)
Let
c =Mp?2 -1 (A-11)
E = 2 DM (A-12)
and substituting in (A-9) and (A-10)
c(£? +£3) + Ef, +M=0 (a-13)
ND(£2 + £3) + Nf, + £, = 0 (A-14)
(a-13) x (X2
C
ND(£2 + £2) + Egg £+ Mgg =0 ‘ (A-15)
(A-15) - (A-14) _
END : MND
—C—-Nf1 —f2+T=0
END MND
- (END _ MND -16
f2 (C )fl + C (A )
Let
H =10 - (A-17)



...K -=

—=2} - 1] + tan?

XGr

Q

1

bg - x

L
o
ot (0 ean
b ag | tan ¢Q - x (XGro\'z
0, /

b2a

2b2a“(
: ‘o

y
(o]

[

XGro) >
o1 -1

XGr

2
[e)
_67_) tan¢Q - x

bza“
fo)

b a
o]

2(XGr

Q

1

(XGro)Z N
Q1

o) 2
) tan¢Q - %

b?a

4
(o]

(

XGI.‘O)Z _ 1
Q)

b2a

e,
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o \Ql

- tan 90 - x



APPENDIX B

SECOND'DETERMINATION OF THE DISPLACEMENT FUNCTIONS

Equations (11) and (12) are used to solve for £, and

fz.
_, ba?f,
¢Q—R = tan 1”07 (B-1)
1 + ba?f,
o
R, = 9 | (B-2)
/(1 + ba2f))2 + (ba2fz)?
Let
A=1+ bagfl (B-3)
B = baZ?f, _(B-4)
o
and substituting in (B-1) and (B-2)
-1 B
= — B—S
¢Q—R tan x (B-5)
Rl‘ = _—9_;-— (B—6)
VA2 + B2
Rearranging (B-6)
2
A2 + B2 = (91) : A (B-7)
Ry
Let
2 .
R)
and substituting in (B-7) and rearranging
B2 =c2 - p2? (B-9)
from (B-5)
A = B cot (B-10)

¢Q_R
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substituting (B-10) in (B-9)

2 - 2 _ Rp2 2
B C B¢ cot ?QéR

B = v// c? - » (B-11)
1 + cot ¢Q—R |

substituting (B-4) in (B-11)

t/// <
2
1l + cot ¢Q-R
f2=tc/ 1
2 2
baZ 1l + cot ¢Q-R

)| / 1 ~ (B-12)
2
baoR1 1 + cot ¢Q-R

2
baof2

substituting (B-12) in (B-11)

‘ //hi c? (B-13)

= ¢
A cot ¢Q_R’/& + cot?

¢0-R

substituting (B-3) in (B-11l)

. c?
1 + ba2f; = ¢ cot ¢._ ’,//h
°© _ Q-R 1 + cot?

. Q1 cotéq g / 1 o1 (B-14)
1 = )

2 2

baoRl 1l + cot ¢Q-R
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2F6e29 10Xs 32HAMPLITUDE OF IMPUT FORCE (LBS) =5 F6.2)
WRITE(6+51) GAMIMAS G

51 FORVAT(24Xs 26HDENSITY OF SOIL (LB/FT3) =s F6els 20X» 24HSHEAR VOO

20LUS (LB/IN2) =3F84177)
WRITE(6552)

52 FORMAT(6Xs 9OHFREQUENCY> 5Xs 12HACCELERATIONs 4X» 12HAMPLIIUDE OF>»
15Xs 8HPHI(Q-X)»s 5X» 8HPHI(NO-R)s 5Xs QHFREQUENCYs 10Xs 22HDISPLACEX
2ENT FUNCTIONS) :

VRITE(65573)

53 FQRAAT(9Xs 3HCPSs 11Xs 7HFT/SEC?s 4Xs 16HDISPLACEMENT IMes 3X,

] 7HDEGREESs AXs THDEGREESs 7Xs GHFACTORs 10Xs T7HF1(=VE)s 9X»

2THF2{+VE) /)

DETERMAINATION OF DISPLACEMENT FUNCTIONS
Al=(DISPL*G*RO/Q)*#2

AilAl=A1%*A)

A2=RE¥ACH*AD

A2A2=A2%A2

A3=TAN(PHIQXR)

A3A3=A3%A3

Y1=2.0%A2%A1
Y2=A3A3%(A2A2%¥A1+1.0)
Y3=A2A2%A1-1.0
Y=Y1#(1e0+Y2/Y3)
TT1=NA2A2%#A1~1.0
TT2=A2A2%A1%A3+A3
TT3=TT2%TT2
TT46=A2A2#A1-1.0
T=TT1+TT3/TT4
IF(T.EQeC.2) GO TO 72
Ql=A2#A2%#AL#AL#A3XA3
Q2=02%#A2%A1~1.0
OQR=Q1/Q2+A1l
Cl=2«C#A2#A2%A3+A]
C2=A2%A2%A1-1.0
C=Cl1/C2=A3
S1=A2¥A1%A3
52=A2#A2%A1~1.0
$=51752
QUAD=Y*Y=4.0%T#QQ
F11=(=Y+DSQRT(QUAD) )/ (2.0%*T)
F12=(-Y-DSGRT(QUAD) )/ (2.0%T)
F21=C#F11+S .
r22=C#F12+S
GO TO 73
72 F11=-0Q/Y .
F12=0.0
F21=C%*F1ll1 + S
F22=0.0
73 WRITE(6+54)FREQs ACCELs DISPLs PHIQXD»s PHIQRDs AOs Flls F12)

1F21, F22 :
54 FORVAT(TX»> F6els 7Xs FO.6s 6Xs E10e3s 8Xs Fbels TX»> Fhals 8Xs Fbhe2

1y 7Xs FT7e3>






123G
1130

30

CE1=(C/7A2)%COT#ROCT-1.0/A2
|RI|E(O,114) 3F1s DF2

FORVAT(I1CXs SH DF1=s F6.3» 10X+ 5H DF2=»

METIHOD B

F6e3)

USING THESF DISPLACEMENT FUNCTIONS CALCULATE AMPLITURE OF

VISBRATICN AMD PHIQX
UP=DFI*DF1+DF2#DF2
DOWM1=(140+E%A0RAC*DFY ) %%2
PCuNZ—(WnnO‘AO*DFZ)**Z

DOVIN=0C0WMN]1 + DOWNZ
Adpvlﬁ—ﬂ/(G RNOI%XSORT(UP/NCWN)
PHI1=-DF2
PHIZ=DF 1+AZ2*UP
PHI=PHI1/PHI2
PHIR=ATAN(PHI)
PHID=87.,2G577#PHIR
ITF(PHID.LT.0.0) PHID=PHID+180.0
WRITE(65120) AMPVIB, PHID
FORMAT(10Xs 21H AMPLITUNE 0OF VIQRATIO\
118H PHIQX (DEGREES) =s F6e1//)
CONTINUE
WRITE(6530)
FORMAT (1H1)
STOP
END

(INS)

=9

810-39

10Xy

89



