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Lay Abstract

In the field of autonomous vehicles and mobile robots, a future path is determined

given certain sensor information about the surroundings. Some contexts like search

and rescue, racing, mapping and exploration require a robot to make intelligent path

planning decisions with no prior information on what the environment looks like,

what obstacles exist or where to go. Here, a standalone local path planner is needed

to provide a reasonable trajectory based on limited information. This thesis presents

algorithms that allow vehicles to traverse safe local paths in real-time when the en-

vironment is unknown. Safety is obtained by maintaining large distances to nearby

obstacles where possible while also promoting a smooth, controlled path. Extensions

to this framework dynamically promote higher speeds, account for the future paths

of other detected vehicles and maintain path safety while simultaneously pursuing

a leader vehicle. Simulation and experimental results show the comparison of algo-

rithms detailed in the thesis and how safer, superior paths are made compared to

existing local planners.
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Abstract

This thesis presents the development of safe and versatile local path planning al-

gorithms through Model Predictive Control (MPC) in the absence of a global path

planner for applications such as search and rescue, mobile robotics and autonomous

vehicle racing. Rather than formulating a local planner that tracks and controls to-

wards a known global path, the foundational novel method presented in this thesis

relies solely on continually updating an optimal local reference trajectory and solving

a non-convex optimization MPC problem for control commands to track this path.

Successive tracking lines are generated through a quadratic optimization to max-

imize the distance to nearby obstacles (detected through LiDAR) while having head-

ing directions aimed towards large open spaces. Quadratic costs are derived to follow

these lines closely, subject to nonholonomic system constraints as described by the

kinematic bicycle model. Via a Sequential Least Squares Quadratic Programming

(SLSQP) online solver utilizing analytical gradients, feasible and locally optimal so-

lutions are reliably found in real-time operating circumstances.

This approach is extended to incorporate dynamic obstacles into vehicle avoidance.

Vehicle detection exploits a custom-trained Convolutional Neural Network (CNN) us-

ing the You Only Look Once (YOLO) architecture. Red, Green, Blue (RGB) detec-

tions are projected into depth space, and an Extended Kalman Filter (EKF) obtains
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predicted vehicle paths. These tracked vehicle paths are then added to the path

planning algorithm to handle adversarial vehicle avoidance in multi-vehicle scenarios.

An alternative formulation introduces a fourth-order Bezier curve model in place

of the successive tracking lines, which combines the generation of an optimal path

and actuation to the path into one non-convex optimization. Constraints on vehicle

dynamics are incorporated directly into the construction of the curve, and potential

fields from nearby obstacles ensure a safe path is maintained. Computation complex-

ity is reduced, and smooth paths are reliably found in real-time.

The aforementioned local planners are incorporated in a leader-follower hierarchy,

which balances the need for pursuit tracking with the safety of the generated path as

before. Arbitrary following configurations are enabled through the pursuit formula-

tion, and adaptive pursuit vs. safety weightings are dictated by continuously updating

obstacle proximity. This framework sets the basis for modular and extendable flexible

formation fleets in unknown areas using only local path planning.

Results are exhibited in both a simulation environment and on a 1/10th scale

autonomous vehicle. Real-time navigation is achievable, and trajectories are shown

to be safer and achieve superior performance compared to existing local planners when

the assumption of a known global planned path is removed. The algorithms presented

in this thesis are compared, and their ability to obtain their desired objectives in

varying environments is shown.
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Chapter 1

Introduction

1.1 Motivation

The development of faster real-time hardware has proved to be a valuable synergy

for modern robotics and autonomous vehicle systems. To achieve safe and efficient

navigation, autonomous systems need to make intelligent decisions quickly and re-

sponsively [1]. Increased sensor and computing capabilities have expanded the set

of methods through which these decisions can be effectively made. Extensive prior

research explores the navigation of autonomous vehicles & mobile robots in environ-

ments that have defining, structured characteristics (such as roads) [2–5] or are known

in advance of the robot’s travel [6–9]. These assumptions are impractical in general

situations, particularly in applications such as search and rescue, certain racing sce-

narios, exploration & mapping tasks, as well as military operations. In such events,

the environment is unstructured, unknown, and a desired goal position is elusive.

Local path planning assumes no knowledge of the robot’s global surroundings and

thus, many existing navigation methods are non-transferable to these situations. The
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focus in these circumstances turns from generating an ideal path to a goal towards

instead continuously updating the most sensible short-term trajectory as the robot

progresses through the unknown space. Guarantees on successful passage are limited

given this imperfect global knowledge, so prioritizing safe and locally optimal paths

becomes the target.

A unifying, parameterized framework is needed to generalize successful navigation

from a single, assumed environment to the diverse and unknown spaces encountered

in real-world conditions. Some simple local path planning approaches have limited

forward-looking capabilities, focusing predominantly on the next control action while

relying on a predefined global reference path to track [10, 11]. More thoughtful

existing exploratory techniques chart local trajectories but again rely on a global path

for tracking [12–15]. When these local planners are paired with frontier exploration

in the absence of a known fixed global path, performance degrades and distance to

obstacles decreases, heightening the risk of collisions. Thus, a thorough construction

of a receding optimal, feasible path is introduced that can be transferable to an

arbitrary environment with no prior knowledge of a desired global path.

The deficiencies in existing standalone local path planners motivate the devel-

opment of a new framework for local navigation. This framework should prioritize

safety and establish a general, environment-independent formulation to simultane-

ously generate and actuate to an optimal, feasible local trajectory. Leveraging modern

hardware capabilities, this framework generates safer paths in real-time than exist-

ing standalone local planners, with adaptations meeting further control desires. This

thesis presents the formulation of such a framework and extensions to further vari-

ants. These include one that tracks and avoids dynamic obstacles, one that prioritizes

2
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faster speeds, one that generates smooth paths even computationally faster and one

that maintains a safe path while synchronously pursuing a leader vehicle.

1.2 Problem Statement

A major challenge of local path planning is the lack of broader situational knowledge

that comes with a global plan. Sensible path planning decisions can now only be

made with local context, and so our ability to reach certain unknown global regions

may be impaired. The robot’s objective is therefore reformulated from reaching a

known location to instead progressing along the best choice of local path for the

duration of its travel. The choice of the best local path, formulated and continuously

updated online, is typically made with respect to a known global path but must now

be determined separately. Therefore, the dual problem of generating an optimal path

and controlling the vehicle to follow the path arises. Model Predictive Control (MPC)

is a commonly used method for generating and controlling towards desired paths [1].

In MPC, an optimization is formulated to obtain the system control inputs over a

future receding time horizon; the first input is applied, and the process is repeated

for the next sample time. A general approach is needed for this optimal local path

design that applies in any arbitrary environment where the vehicle could be deployed.

Another prevalent concern for path planning is reliably computationally tractable

solvers for real-time applications. Since responsive autonomous systems must con-

tinually update and adapt on the scale of fractions of a second, control decisions

need to be determined quickly. Path planning problems typically yield non-convex &

non-linear optimizations [16, 17] which are difficult to quickly solve globally. Some

methods simplify the problem through linearizations [18]; however, model accuracy
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and applicability are lost. Important non-linearities can arise from steering angle

dependencies and vehicle dynamics based on the kinematic bicycle model. These

relationships must be fully expressed in order to achieve accurate trajectories over

longer horizons. Using Sequential Quadratic Programming (SQP) solvers is a way

to efficiently obtain good solutions to non-linear, non-convex optimizations [19, 20]

in real-time if valuable insights into the problem are exploited. For the sacrifice of

global optimality, a sufficient locally optimal solution is instead used, which, when

paired with a sensible starting guess, yields promising results.

In global planners, the existence of dynamic obstacles raises the need for responsive

local planning to update the trajectory in real-time. This issue applies to the case of

local planning in unknown environments with greater flexibility, as the ideal reference

path can be greatly affected by the behavior of moving obstacles. Synchronized sensor

fusion is required for object detection and tracking in order to both identify specific

moving obstacles and quantify state properties. This matter becomes more complex

in unstructured environments when compared to roads, as moving obstacles can come

in many forms and arrangements, increasing the dimensionality of the problem space.

Instead of representing estimated future trajectories assuming zero curvature [21], a

constant curvature model is used to increase the accuracy of the predicted model for

arbitrary obstacle motion. By fully parameterizing all nearby moving obstacles and

monitoring changes in motion, the local planner can be designed to predict the future

behavior of hazards. Thus, the vehicle can correspondingly act early to avoid collisions

& formulate safer paths in unknown territories and contexts like multi-vehicle racing.

With developments in single robot path planning, increased interest has turned to-

wards collaborative multi-robot exploration teams. Fixed formations are maintained
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in the absence of obstacles [22], whereas individual vehicle safety is preserved through

collision avoidance [23], thus temporarily breaking formation. In new, unknown envi-

ronments, local planners must achieve path safety through a flexible fleet formation.

Fleets may have communication channels between agents [24]; however, this may not

always be the case, which complicates the problem. A general structure is desired for

local planning in unknown areas, which enables arbitrary formation patterns, sizes

and shapes through modular characteristics.

Current outstanding challenges in the literature motivate the design of a univer-

sal local path planner for situations where the surroundings are unknown and inter-

vehicle collaborative or adversarial dependencies may exist. A framework must be

introduced to enable real-time, responsive path planning based only on current knowl-

edge and predictions while incorporating system non-convexities and non-linearities

to preserve accuracy. Safety considerations should be prioritized while also meeting

requirements on vehicle dynamics and inter-vehicle interaction. This thesis seeks to

explore the development of such a local path planning formulation.

1.3 Thesis Contributions

In this thesis, the challenge of safe local path planning in unknown, multi-vehicle

circumstances is addressed through the construction of novel MPC algorithms with

accessible, open-source implementation1 for general use in real-time operation. These

proposed planners rely only on local sensor data (which can be obtained via LiDAR)

without a known global path or desired goal location. Safer paths are yielded than

existing exploration methods, making these planners attractive for search and rescue

1https://github.com/schaiblc/McMaster_AEV_MPC_Algorithms
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applications. Subsequent developments extend the standalone local planner to ac-

commodate more complex situations involving other vehicles, both through collision

avoidance and pursuit navigation. Thus, these local planning approaches can also be

applied to autonomous multi-vehicle racing contexts for safe navigation on unknown

courses. Non-convex MPC optimization problems are formulated, and smooth, con-

tinuous analytical gradients are exploited to enable fast, real-time solving through an

SQP-based solver.

A novel MPC local planner and control algorithm is proposed, entitled Sequential

Tracking Line Model Predictive Control (STLMPC). This approach solves successive

quadratic programming optimizations to obtain discontinuous line segments repre-

senting the ideal local reference path. This cumulative path maximizes distance to

local obstacles while proceeding in the direction of larger, open local spaces. The kine-

matic bicycle model is used to represent nonholonomic vehicle constraints and limits

on control inputs. Costs are attributed to tracking accuracy of the local reference

path and control effort expended. The MPC’s receding prediction horizon accounts

for future behavior in the present and updates at the controller rate (equivalent in

practice to that of the LiDAR sensor’s publishing rate). Detected & tracked vehicle

trajectories are estimated based on a constant curvature model and are considered

temporally to mitigate collision risk over the future time horizon. Forward velocities

are maximized subject to safety limits under a fast exploration alternate scheme. Ve-

locity restrictions arise based on turning angle conditions and obstacle proximity. To

the author’s knowledge, this is the first formulation of a safe, standalone MPC local

planner with the aforementioned design targets, applicable to multi-vehicle contexts.

An alternative algorithm that combines planning and control into a single path
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is presented through Quartic Bezier Model Predictive Control (QBMPC). A fourth-

order Bezier curve smoothly incorporates constraints on vehicle dynamics while also

meeting limitations on the path to obstacle vicinity. Potential field-like forces are

developed to obtain a curve that maintains safety from hazards. Smooth paths are

generated, and a reduction in optimization variables ensues as the Bezier control

points are found to describe the curve’s motion. To the author’s knowledge, this for-

mulation is the first Bezier curve method to achieve simultaneous local planning and

control in unknown environments with no tracking reference and incorporate physi-

cal limits on maximum changes in curvature & forward velocity. Also, this method

enables the predicted path duration time to be arbitrarily scaled while maintaining

the fixed parameterization of the Bezier curve.

The novel STLMPC and QBMPC approaches are modified to fit dynamic pur-

suit scenarios of a leader vehicle through the P-STLMPC and P-QBMPC algorithms,

respectively. Adaptive weighting is provided to balance the focus on maintaining

a pursuit formation as opposed to traversing a safe path based on instantaneous

proximity to obstacles. These methods provide a flexible framework for arbitrary for-

mation configurations and fleet sizes in unknown environments where local planning

is exclusively used. Vehicle-to-vehicle communication is not required to coordinate

formation, thus simplifying hardware requirements and removing the risk of com-

munication failure. To the author’s knowledge, this is the first approach to develop

communication-less, flexible fleet formations that can contend with obstacle hazards

in unknown environments using only local planning and no known tracking reference.

Finally, the novel algorithms are implemented in practice, and results are shown.

These experiments show the applicability and performance of these methods across
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different testing setups and environments. Validation occurs both in simulation and

experimentally using a 1/10th scale autonomous vehicle.

1.4 Organization of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 explores existing

literature focused on the areas of local planning, model predictive control, and multi-

vehicle navigation contexts. Chapter 3 introduces the Sequential Tracking Line Model

Predictive Control method, which serves as a basis for further navigation algorithms

developed. The simulation and experiment testing architectures used in the thesis are

presented, and results are illustrated for the performance of this base algorithm. In

Chapter 4, vehicle detection and tracking via extended Kalman filtering are covered to

establish the foundation of a multi-vehicle path planning approach. Vehicle avoidance

is derived from the tracked vehicle paths and is implemented in STLMPC, where

implementation results are provided.

Chapter 5 expands the complexity of the STLMPC method by introducing a

non-constant velocity. Here, the velocity is influenced by vehicle and environmental

conditions, which leads to more flexible, controllable path planning. In Chapter 6,

an alternative formulation to STLMPC, the Quartic Bezier Model Predictive Con-

trol scheme is developed. This method aims to reduce complexity while providing

smoother paths, and its performance is compared to STLMPC. Chapter 7 augments

both STLMPC and QBMPC to consider the pursuit of a leader vehicle in an unknown

space. Now, objectives on both pursuit tracking and maintaining safety in the local

region are weighed for effective planning. Lastly, Chapter 8 completes the thesis by

presenting conclusions and highlighting some possible directions for future research.
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Chapter 2

Literature Review

This chapter presents an overview of existing literature pertinent to the topics dis-

cussed subsequently in this thesis. An overview of methods for local path planning is

presented with a specific focus on the use of MPC in existing approaches. Previous

work on detection & tracking of dynamic obstacles is explored, as well as planning

methods that consider these factors. Existing research on the use of Bezier curves for

path generation and smoothing is explored, and finally, studies on multi-vehicle fleet

navigation problems are highlighted.

2.1 Local Path Planning Techniques

Navigation techniques for mobile robots are primarily categorized as either global

planners or local planners [25]. Often, the role of the local planner is to accom-

modate real-time, unexpected changes in a known environment to track the global

planner while performing online obstacle avoidance [26]. One simple method for doing

this is through PID (Proportional-Integral-Derivative) control for tracking a desired
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trajectory. This approach is not optimization-based and thus has minimal compu-

tation time and can yield acceptable performance in simple simulated environments

[11]. However, possible system constraints are not considered, and optimality is not

defined, while performance is also reliant on a previously defined reference trajectory.

Even in simple simulation cases, tracking a reference is done with smaller errors when

using a more sophisticated MPC framework [27, 28]. PID controller performance is

also highly subject to tuning, which can greatly affect tracking error and accuracy

[29].

Another local planning technique that tracks a reference path is through the pure

pursuit algorithm [30]. This method uses a chosen look-ahead distance to determine

the necessary curvature that will move the vehicle to the identified point on the

reference path. The vehicle effectively chases a point ahead of it on the reference

trajectory, continually ensuring it tracks the path. This method’s performance is

highly dependent on the choice of look-ahead distance, and adaptive selection methods

have yielded decreased tracking errors [10, 31, 32]. Variable linear velocities have been

incorporated into pure pursuit, lending greater flexibility for safe operation [33]. This

approach has limited computation and time costs but lacks the complexity of MPC

methods, which can accommodate more difficult, dynamic local navigation scenarios.

The Artificial Potential Field (APF) method [34] seeks to determine the best local

path for obstacle avoidance through an expression of attractive and repulsive forces.

The presence of a desired goal location attracts the vehicle while nearby obstacles

& hazards repel the path to maintain safety. Challenges with this approach have

been identified, namely oscillations in the presence of obstacles & narrow passages,
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susceptibility to falling into local minima solutions and failure of passage when obsta-

cles are closely spaced [35]. Modifications have subsequently been made to encourage

the escape of local minima [36–38]; however, in more complicated environments, the

computation costs rise and the risk of poor local minima selection increases. There-

fore, many modern path planning approaches turn to using global planners that are

grid-based, like Dijkstra’s Algorithm [39] & A* [40], or sampling-based, like Rapidly-

exploring Random Trees (RRTs) [41], for navigation to a known goal (the attraction

force). Local planning is often done by one of the following methods, which ensure

collision avoidance (the repulsive force) while tracking the global trajectory.

Through the Dynamic Window Approach (DWA) [12], the search space for the

desired local path is reduced to two dimensions: the translational and rotational ve-

locities. Only feasible velocity pairs are considered based on vehicle dynamics and

unsafe trajectories that result in collisions are ignored. The optimization prioritizes a

heading towards the goal location, clearance of nearby obstacles, and a larger forward

velocity. Velocity pairs are sampled, and the pair producing the highest objective re-

sult is chosen. This approach places explicit considerations on vehicle dynamics con-

straints in contrast to previous methods and engages in collision avoidance. However,

the velocity and curvature of the future trajectory are assumed to be constant, which

is restrictive and impractical. Furthermore, cost weights are fixed, which can lead to

poorer performance in different environments, and the path update rate may be lower

than the real-time control rate. Recent work has aimed to extend DWA to cases with

dynamic obstacles [21, 42] and make DWA adaptive to varying environments through

reinforcement learning [43, 44].

Finally, using an elastic band algorithm, the nature of the global path is preserved
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while deforming to accommodate obstacle avoidance. Regional bubbles are introduced

to express free space along the global trajectory for the collision-free path and are

adjusted to satisfy real-time collision avoidance if the original path becomes unsafe

[13]. The Timed Elastic Band (TEB) planner [14] extends on this by accounting

for constraints on vehicle dynamics. Local solutions are found through large-scale

optimizers for sparse systems, though the path update rate can become slower in

complex environments. Shorter paths are encouraged, even more so in further work

[45], which may lead to close proximity to obstacles & therefore collision risk under

uncertainty or with dynamic obstacles. In these cases and in general, parameter

tuning can highly impact performance [46]. MPC extensions of TEB have been

examined [47]; however, MPC has come to be preferred in the place of TEB for local

planning of robots with complex dynamics like nonholonomic constraints [15].

2.2 Model Predictive Control for Actuation &

Planning

The application of Model Predictive Control (MPC) to real-time path planning and

control purposes has been a more recent development, due to improvements in com-

putational resources and algorithm efficiency [48, 49]. MPC was first widely used

in oil & chemical industry control processes [50] where its ability to handle hard

constraints and its predictive nature yielded better performance than classical con-

trollers like bang-bang & PID [51]. MPC [52, 53] explicitly uses a model to solve an

optimization problem for the optimal inputs over a future time horizon. Often, the

cost function is formatted to track a reference (Figure 2.1) while considering system

12



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

Figure 2.1: Graphical representation of Model Predictive Control, illustrating future
control inputs, outputs and reference trajectory.

constraints. For each time step, only the first control action of the optimized future

trajectory is applied before conducting the optimization again at the next sample [54].

This receding prediction horizon balances current and future performance, providing

anticipatory behavior based on the configurable definition of optimality.

The use of MPC in autonomous vehicle and mobile robot applications is split into

two categories: motion control and path planning [1]. For motion control purposes,

the reference trajectory is already defined, and the goal of the MPC problem is to

determine the optimal control inputs to track the known path accurately. This is often

the role of MPC in local planners when performing obstacle avoidance and tracking

a predefined global path. Extensive research on collision avoidance in road traffic

conditions for autonomous vehicles has used MPC as a motion planner. One popular

method uses a 3D potential field approach to avoid collisions, forming a reference

trajectory which multiconstrained MPC then tracks, generating front steering angle
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commands [2]. MPC has also been used to control complex maneuvers like lane

changes [55] while ensuring yaw stability [56] as well as maintaining lateral stability in

icy road conditions [16]. In mobile robot contexts, potential field trajectory planning

and MPC tracking have been applied with an adaptive prediction horizon length [57].

A prominent open-source MPC local planner [15] can both track a reference trajectory

as well as perform collision avoidance while reaching intermediate goal positions along

a globally known path.

Some local planners attempt to increase the role of MPC in path planning while

also providing motion control. In a warehouse application, only a single goal location

is known, and MPC is used to obtain the optimal local path and control inputs [58].

While this method removes the need for a global planner, significant assumptions

in the formulation are made on the warehouse environment to ensure success, and

the obstacle setup used in simulation is simplistic. Motion planning in autonomous

vehicles has been explored by incorporating actuator dynamics, nonholonomic con-

straints and collision avoidance to generate local trajectories [59]. This approach

only formulates its trajectory to terminate at a desired local goal position instead

of tracking a full reference path. Another paper uses a potential field method in a

human-like approach to autonomous vehicle decision making, which avoids following

a predefined path [60]. Instead, conditions like obstacle avoidance and maintaining

safe lane driving are prioritized for MPC path planning while making lane change

decisions based on a game theory framework.

Many studies have sought to extend the use of MPC with adaptations and ad-

ditional steps. A model-free predictive controller is developed, removing the need
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for model learning, which can sometimes be complex & laborious [61]. This pro-

posed method only holds for a short preview horizon until accuracy fades, meaning

it is inapplicable to path planning tasks such as collision avoidance. Tubes are in-

troduced in MPC to handle uncertainty and provide a robust, collision-free region

around the nominal path [62]. Further research has focused on reducing computa-

tional costs through geometric reformulations [63]. Although real-time applicability

has improved for nonlinear solvers, attempts have been made at linearizing certain

nonlinear MPC problems. Depending on the situation, these approximations may not

significantly deteriorate performance while reducing computational costs [18]. Rein-

forcement learning has been paired with MPC both in a hierarchical setup [64] and

using MPC in training. When properly trained, the reinforcement learning method

is shown to decrease computational time while maintaining similar paths to MPC in

simple, simulated environments [65].

Applications of varying schemes of model predictive control to autonomous vehi-

cle racing are also common in existing literature. One approach extracts a local map

from sensor data before estimating the track center line based on curved walls con-

structed by consecutive obstacles (assuming constant track width) [66]. This method

achieves comparable performance to global methods but with higher computation

times. Model Predictive Contouring Control (MPCC) is used here and in other rac-

ing studies [67], implementing linear approximations and a contraction constraint to

ensure stability while attempting to both minimize the center line contour following

error and maximize vehicle speed [68]. Alternatively, a sampling-based optimization

approach, Model Predictive Path Integral (MPPI) control, makes parallel samples in

the control space, removing the need for separate planning and execution steps [69].
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By guiding the convergence target of the solution, an extension enhances performance

for racing when multimodalities exist in the optimal action distribution [70].

2.3 Dynamic Obstacle Detection & Tracking

Assuming static environments for path planning may be insufficient for many real-

world applications. Thus, the need for real-time dynamic obstacle recognition and

tracking must be incorporated for versatile path planners. Vehicle detection and ob-

ject classification have been prominent subjects of focus due to modern developments

in machine learning and, more recently, deep learning [71]. An early approach used a

Gaussian mixture model (GMM) to determine if pixels were part of the background

or not, attempting to handle lighting and seasonal changes [72]. Thereafter, machine

learning methods have been designed to use known properties for vehicle detection

and classification from RGB images. Shape- or edge-based methods identify vehi-

cles from their outlines in contrast to the background [73], while appearance-based

techniques perform classification after training on corresponding datasets [74].

Most vehicle detection used presently takes the form of deep learning, where neural

networks make class predictions based on learned visual features [75]. Two types

are Faster Region-based Convolutional Neural Networks (Faster R-CNNs) [76] and

You Only Look Once (YOLO) networks [77]. YOLO splits an image into grid cells

and determines bounding boxes for predicted detection classes all in one pass of the

neural network, making it popular in real-time detection/classification applications

[78–80]. Deep learning methods are also applied to enhance the use of Doppler radar

in detection and tracking applications [81, 82].

Once moving obstacles are detected, positional and orientational states must be
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tracked to direct path planners and avoid collisions. A classic approach that re-

cursively estimates states with updated observation knowledge is known as Kalman

filtering [83]. Noisy measurements are filtered, and a time-varying state estimate

allows for tracking given uncertainties [84, 85]. This method is broadened to the

Extended Kalman Filter (EKF) by performing linearizations on non-linear systems,

which are common in autonomous vehicle tracking problems [86]. EKFs can then es-

timate target positions and velocities to predict future motion for either tracking [87]

or collision avoidance purposes [88]. Although some detection methods, like those us-

ing CNNs, can be susceptible to occasional missing frames, state estimation remains

effective using Kalman filtering [89].

Path planning with tracked dynamic targets becomes a more challenging problem

than in the static case. One extension of DWA considers time such that trajectories

of dynamic obstacles aren’t crossed. Going further, it introduces a tree formulation

where future curvature arcs are considered over a horizon to choose the best velocity

pair to apply at the current time [42]. Using a constant velocity model for dynamic

obstacles detected from a local costmap, TEB is extended to penalize close distances

to time-sampled moving objects [90]. Similarly, an MPC planner parameterizes mov-

ing obstacles by fixed, blocked regions at sampled times to maintain distance and

prevent collisions [15]. In a racing application, vehicle overtaking is achieved through

nonlinear MPC, where overtaking is enacted only if the maneuver has a low risk of

collision [91]. In application, sensor fusion of RGB-D (RGB-Depth) cameras with

LiDAR has enabled path tracking of dynamic obstacles in 3D space [92, 93].
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2.4 Bezier Curve Trajectory Formulations

The Bezier curve is an important tool for designing smooth, efficient trajectories

not only in path planning but also in computer graphics and animation [94]. Bezier

curves are based on Bernstein polynomials [95], where a few control points can fully

characterize a parametric curve with fixed start and end coordinates. Figure 2.2

shows the increased flexibility of Bezier curves with added control points, where each

point effectively pulls & shapes the curve towards it. Bezier curves are effective

in smoothing predefined, piecewise linear paths and can also be used for collision

avoidance and path planning.

The most prevalent use of Bezier curves in the field of autonomous vehicles and

mobile robotics is for curve interpolation and smoothing [96]. In one study, Dijkstra’s

algorithm selects the shortest path based on a Voronoi graph where Bezier curves are

then applied to smooth the piecewise linear segments into a less rigid trajectory [97].

Quintic Bezier curves are used on piecewise linear paths to achieve C2 (curvature)

continuity, ensuring feasibility for autonomous vehicle travel before MPC is performed

to select the optimal path velocity [98]. A further extension ensures C3 continuity

by using quintic trigonometric Bezier curves with two shape parameters to smooth a

predefined skeleton path [99]. Similarly, other methods rely on waypoints to achieve

smooth turns while also maintaining continuity between segments [100, 101]. A quar-

tic Bezier curve formulation seeks to generate control points that provide adaptive

speeds under different path curvatures without additionally computing the speed pro-

file [102]. This method maintains continuity while following waypoints corresponding

to the predefined path.
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Figure 2.2: Bezier curves, control points and control polygons for each order curve.
(a) Linear Bezier Curve (b) Quadratic Bezier Curve (c) Cubic Bezier Curve (d)

Quartic Bezier Curve

Some approaches use Bezier curves more thoroughly for path generation as op-

posed to smoothing and interpolation. In a simulated autonomous vehicle study,

obstacle avoidance is achieved while maintaining travel along waypoints of an ini-

tial path using quadratic programming and Hildreth’s algorithm [103]. The Bezier

method is shown to generate better paths than a separate potential field approach

while also having faster computation times. Another paper evaluates a dynamic

trajectory planning method for varying simulated road conditions based on poten-

tial fields to guide the Bezier curve’s path [104]. Unknown parameters are reduced

through the use of the Bezier curve, and vehicle dynamics direct the trajectory choice.

Separate optimizations are done; first for the Bezier curve curvature and second for

the speed and acceleration profiles.
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Through a Bezier path generation algorithm, a study regarding mobile robots

achieves local collision avoidance while pursuing a global path [105]. Control points

are added to avert local obstacles while the global trajectory is formed through a

Bezier curve interpolation of an RRT path. Lastly, genetic algorithms are augmented

with Bezier curves to achieve security, minimal length and smoothness of the resulting

path [106, 107]. Here, the genetic algorithm explores the space between a start and

local goal point to select the control points that maximize the fitness function and

thus produce the best trajectory.

2.5 Navigation in Pursuit & Fleet Formation

Contexts

Some applications require cooperative navigation among agents, either via leader-

follower schemes or extendable fleet configurations. Often, some form of communi-

cation exists between vehicles [1], whether it be directional (from leader to follower)

[24] or bidirectional [108]. A common architecture is distributed MPC, where com-

munication occurs between neighboring agents regarding positions and planned paths

[22, 109]. This allows each agent to make their own decentralized decisions while pro-

viding this information to other agents, maintaining swarm intelligence. Sometimes,

however, communication isn’t possible, and each agent must operate using only its

own sensor-based knowledge [110].

In leader-follower formations, information typically flows downstream such that

the followers track the leader [111]. Research has explored the leader-follower hier-

archy for teams of agents where the leader follows global planners like RRT [112],
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D*Lite [23] and Dijkstra’s Algorithm [113]. The pursuing agents track the leader in

the predetermined formation while potential field forces maintain shape and prevent

collisions both with obstacles and between agents. In another application, a lead ve-

hicle is tracked in an outdoor, off-road environment using LiDAR, RGB cameras and

radar sensors [110]. The controlled vehicle pursues the tracked leader by solving an

MPC problem through an interior point solver, maintaining a safe separating distance

that increases when traveling at higher speeds.

By considering both maximum allowed distances between vehicles due to com-

munication range requirements and minimum distances to prevent collisions, another

study stacks the leader-follower approach to a successive string of robots [114]. The

leader-follower framework can also be used in varying formations where N robots are

controlled through N − 1 decentralized leader-follower connections. This approach is

used in a three-level control architecture where relative formation positions are subject

to obstacle avoidance [115]. It is assumed that a high-level coordinator can reassign

leader-follower connections and parameters, yielding varying formation patterns.

For more general, distributed MPC problems, agents consider interactions with all

nearby agents instead of a single leader. To ensure agents don’t collide or significantly

interfere with each other when planning towards a goal, a centralized nonlinear MPC

approach is investigated [116]. Deadlocks can occur when vehicles outside of the local

communication range become close, presenting the risk of inter-vehicle collisions. The

centralized optimization uses knowledge of all vehicles to ensure that vehicle paths

maintain separating distances and presents collision-free navigation in simulation.

Conversely, a different method distributes the computational load of the optimal
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control problem between the agents and only performs one solution iteration per con-

trol update [117]. This saves computation & communication costs, and the solution

converges as the vehicles head towards their destination. To enable smooth forma-

tion splitting and merging in the presence of obstacles and with communication loss,

homotopy classes can be used to split agents into appropriate, adaptable groups [118].

Further studies on formation frameworks explore different governing rules and

principles for collective navigation. Per one approach, optimality is redefined to de-

termine the minimal energy paths for agents, locally or globally, in a decentralized

manner [119]. Another paper explores a centralized planning layer that generates

dynamic targets for each agent to track while using potential field forces between

agents, keeping flexibility and safety [120]. A comprehensive framework achieves

static path planning and dynamic tracking while being able to alter robot forma-

tion through inter-vehicle and vehicle-to-cloud communication channels [121]. Rein-

forcement learning has also been integrated into multi-vehicle navigation problems

where training occurs over different formations, goal points and obstacle configura-

tions [122, 123].
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Chapter 3

Sequential Tracking Line Model

Predictive Control

This chapter introduces the method entitled Sequential Tracking Line Model Pre-

dictive Control (STLMPC), which is expanded upon in additional chapters. This

approach provides a safe, standalone local path planning technique that maximizes

local distances to obstacles while conforming to constraints on vehicle dynamics. At

each time step, quadratic programming is used to obtain successive ideal reference

tracking lines, and a nonlinear MPC problem is solved through an SQP solver for the

optimal steering angle commands to navigate.

The outline of the chapter is as follows. First, the formulation of the STLMPC

algorithm is shown, including both the creation of tracking lines and the MPC op-

timization that ensues. The case of localization through Adaptive Monte Carlo Lo-

calization (AMCL) is shown, which allows for increases in the look-ahead horizon of

STLMPC. The simulation and experimental architectures for this and all subsequent

chapters are discussed, and results are provided for the tested STLMPC algorithm.
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3.1 STLMPC Formulation

3.1.1 Generation of Tracking Lines

The unknown environment is constructed based on a set of detected obstacles (in prac-

tice, through a sensor such as LiDAR). Here, the Nobs obstacles, {(xobs,i, yobs,i)}Nobs−1
i=0

are denoted with respect to the moving vehicle frame, Tbase = [xbase, ybase, θbase]
T . For

each obstacle, the polar coordinates, {(robs,i, θobs,i)}Nobs−1
i=0 can be obtained accordingly

through robs,i=
√

x2
obs,i + y2obs,i and θobs,i=tan−1(

yobs,i
xobs,i

) while the reversion back to the

Cartesian frame follows from the inverse equations. The proposed convention assigns

the +x direction to point ahead of the vehicle, +y to point left and +θ to rotate

counterclockwise (starting from 0 along the positive x axis) as seen in Figure 3.1.

Figure 3.1: Vehicle states and coordinate vehicle frame with positive x (red) and y
(green) directions shown. The coordinates of two obstacles are shown with respect

to the base frame.
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The vehicle state is described by five variables, [x, y, θ, δ, v] where x and y are

the vehicle position coordinates, θ is the vehicle orientation, δ is the current steer-

ing/turning angle and v is the forward velocity. The fixed wheelbase parameter, l,

describes the distance between the front and rear axles of a given vehicle.

To obtain the reference tracking line, a heading direction is first required. The

approach taken, inspired by the Follow the Gap Method (FGM) [124], initially orders

the Nobs obstacles in increasing order of θobs,i where for all i ∈ {0, ..., Nobs − 1},

−π ≤ θobs,i < π. A threshold distance is defined by dsafe, where all obstacles with

robs,i ≤ dsafe are assumed to be immediate potential hazards. For all obstacles in

the front π radian window (−π
2
≤ θobs,i ≤ π

2
), the largest range-weighted angular gap

with only obstacles further than dsafe is found, providing the gap’s start and end

angles, θstart & θend (Algorithm 1). The safest gap balances the angular size with

larger obstacle ranges in the gap & exceeding dsafe to ensure the safest local direction

of travel. Once the safest angular gap is obtained, the heading direction is calculated

as:

θhead =
θstart + θend

2
(3.1.1)

Now, the obstacles are split into left, right and excluded clusters with respect to the

heading angle. Obstacles with θobs,i ∈ [θhead + al, θhead + bl] belong to the left cluster,

Ol, while obstacles satisfying θobs,i ∈ [θhead−br, θhead−ar] fall into the right cluster, Or.

The Cartesian forms, Ol ={(xobs,i, yobs,i)}
Nleft−1
i=0 and Or ={(xobs,i, yobs,i)}

Nright−1
i=0 are

then used in a quadratic optimization to obtain the reference tracking line. Here, Nleft

andNright denote the number of left and right obstacles, respectively. Obstacles can be

subsampled to limit the number of constraints and, thereby, optimization complexity.
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Algorithm 1: Safest Local Angular Gap Formulation

Input: Obstacle Ranges {robs,i}, Obstacle Angles {θobs,i}
Output: θstart, θend

1 Sort obstacles by ascending angle;
2 LargestGap = 0, CurrentGap = 0, GapLength = 0;
3 for θobs,i ∈ [−π

2
, π
2
] do

4 if robs,i > dsafe then

5 CurrentGap += robs,i
θobs,i+1−θobs,i−1

2
;

6 if GapLength = 0 then
7 θstart curr = θobs,i;
8 GapLength += 1;

9 if robs,i ≤ dsafe or θobs,i+1 /∈ [−π
2
, π
2
] then

10 if CurrentGap > LargestGap then
11 LargestGap = CurrentGap;
12 θstart = θstart curr;
13 θend = θobs,i−1;

14 CurrentGap = 0, GapLength = 0;

15 end

The basis for the tracking line optimization comes from the concept of Support

Vector Machines (SVMs) [125]. SVM identifies a decision boundary (linear or non-

linear) that best separates classes of points by maximizing the margin between them.

This approach can be used for path planning that maximizes distance to obstacles

and has been explored in global planning approaches to find paths between a start

point and goal [126, 127].

The parallel right and left bounding lines on the obstacle clusters are described

respectively (Figure 3.2) by:

wT q + b = 1 (3.1.2)

and

wT q + b = −1 (3.1.3)
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Figure 3.2: Left & right bounding lines for the defined obstacle clusters as well as
the optimal center tracking line generated.

where wT = [wx, wy] and qT = [x, y]. These parallel bounding lines define a con-

sistent maximum margin and preserve symmetry, forming the basis for the convex

optimization problem. The optimization variables are the line parameters, namely

xT = [wx, wy, b]. To maximize the distance between the lines, d = 2√
wTw

, the denom-

inator is minimized via a standard quadratic objective. Linear inequality constraints

are developed to ensure obstacles remain on the separated side of each bounding line.

Finally, b is bounded to ensure that the (0,0) reference exists between the two bound-

ing lines and thus the vehicle is in the middle of the bounded obstacle clusters. The

quadratic optimization with linear inequality constraints is proposed:

min
w,b

1

2
wTw

subject to wTpi + b− 1 ≥ 0 ∀pi ∈ Or

wTpj + b+ 1 ≤ 0 ∀pj ∈ Ol

− 1 + ϵ ≤ b ≤ 1− ϵ

(3.1.4)
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which can be solved through Goldfarb & Idnani’s active-set dual method [128]. Here,

ϵ is assumed to be a small number, and in practice, a small quadratic objective term

is placed on b to ensure the problem is strictly convex.

The tracking line becomes the center line between the bounding left and right

lines, wT q + b = 0, and through normalization, the tracking line parameters are

reduced from three to two:

wT q + 1 = 0, where we redefine wT ← 1

b
[wx, wy] (3.1.5)

This process is now extended to the general case of nMPC sequential tracking lines,

each of kMPC future samples (with sample time ∆t). Using the current reference

frame point, pbase,i = [xbase,i, ybase,i]
T , the closest point on the tracking line, pstart,i, is:

[xstart,i, ystart,i]
T = pbase,i −

wT
i pbase,i + 1

∥wi∥2
· wi (3.1.6)

Taking the orientation of the tracking line using the two-argument inverse tangent

function, θtrack,i = −atan2(wx,i, wy,i) and the vehicle’s current velocity, v, the end

point of the tracking line, pend,i is found through:

[xend,i, yend,i]
T = pstart,i + v∆t kMPC · [cos(θtrack,i), sin(θtrack,i)]T (3.1.7)

This becomes the reference point for the next tracking line, pbase,i+1 = pend,i. All

obstacles are transformed from the original reference, pbase,0 (with obstacles denoted

{(x(0)
obs,j, y

(0)
obs,j)}

Nobs−1
j=0 ) to the new reference through:
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x(i+1)
obs,j

y
(i+1)
obs,j

 =

 cos(θtrack,i) sin(θtrack,i)

− sin(θtrack,i) cos(θtrack,i)

 ·
x(0)

obs,j − xend,i

y
(0)
obs,j − yend,i

 , j ∈ {0, ..., Nobs − 1}

(3.1.8)

where the process then repeats, starting from finding the best heading direction. After

each sequential tracking line, wi (for i ∈ {0, ..., nMPC − 1}) is solved for (Equations

3.1.4 & 3.1.5) in its corresponding frame of reference, a normalized transformation is

done back to the initial base frame for ensuing Equations 3.1.6 & 3.1.7:

wx,i

wy,i

← A

cos(θtrack,i−1) − sin(θtrack,i−1)

sin(θtrack,i−1) cos(θtrack,i−1)

 ·
wx,i

wy,i

 (3.1.9)

with the normalization term,

A =
1

1−
[
wx,i wy,i

]
·

 cos(θtrack,i−1) sin(θtrack,i−1)

− sin(θtrack,i−1) cos(θtrack,i−1)

 ·
xend,i−1

yend,i−1


(3.1.10)

The parameters, wi, for these nMPC tracking lines (Figure 3.3) are next used in

the MPC optimization formulation.

3.1.2 MPC Optimization - Objective

The non-linear MPC optimization follows from tracking the ideal reference path sub-

ject to constraints on vehicle dynamics. In this STLMPC formulation, the vehicle

states are reduced to [x, y, θ, δ] where v is assumed constant over the future trajectory.

The control inputs, δi, determine the turning behavior of the vehicle and thus the

predicted path, which is represented by the xi, yi & θi states.
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Figure 3.3: Sequential tracking lines with bounding lines and respective obstacles
for nMPC = 3. Tracking line start and end points are denoted accordingly with

respect to the initial base frame.

The MPC horizon length is based on the number of sequential tracking lines

generated, where nMPC lines, each tracked for kMPC samples, yield a horizon length

of nMPCkMPC samples. For the given state variables, discretized over the future

horizon samples, 4nMPCkMPC total optimization variables are used. The multi-term

objective is constructed to balance proximity to the ideal piecewise linear path with

a heading direction aligned along the path as well as the control effort expended over

the horizon. The form of the objective function is therefore:

Fobj(δi) = λd2Fd2(δi) + λḋ2Fḋ2(δi) + λδ2Fδ2(δi) (3.1.11)

where the λ = [λd2 , λḋ2 , λδ2 ] weights determine the relative significance of each objec-

tive term, and normalization by one weight reduces the number of weights by one.

The measure of proximity used between the vehicle and the piecewise path is a

summation of squared Euclidean distances along the prediction horizon. This ensures
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a path that maintains closeness to the reference over the full trajectory while also

having a convenient quadratic cost. Here, each vehicle position is measured against

the corresponding tracking line, w̃i, at that sample time:

w̃i = wj for jkMPC ≤ i < (j + 1)kMPC (3.1.12)

which produces the objective term:

Fd2(δi) =

nMPCkMPC−1∑
i=0

(w̃T
i Pi + 1)2

∥w̃i∥2
(3.1.13)

where Pi =

xi

yi

 represents the vehicle positional state at the ith time sample.

The Fḋ2(δi) term denotes the cost placed on the vehicle’s orientation with respect

to the tracking lines, which is minimized when the predicted trajectory and reference

path are parallel. In practice, this term minimizes oscillations and discourages paths

that turn aggressively towards the reference path. The time derivative for each sam-

ple’s distance between vehicle and tracking line is found, squared and summed to get

a cost of similar form to Equation 3.1.13. This follows from:

nMPCkMPC−1∑
i=0

di =

nMPCkMPC−1∑
i=0

(w̃T
i Pi + 1)

∥w̃i∥
(3.1.14)

where:

nMPCkMPC−1∑
i=0

ḋi =
d

dt

nMPCkMPC−1∑
i=0

(w̃T
i Pi + 1)

∥w̃i∥
=

nMPCkMPC−1∑
i=0

(w̃T
i Ṗi)

∥w̃i∥
(3.1.15)
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assuming only Pi changes over time and disregarding the discontinuous jumps in the

otherwise constant w̃i when the next tracking line is followed. Then:

Fḋ2(δi) =

nMPCkMPC−2∑
i=0

ḋ2i =

nMPCkMPC−2∑
i=0

(w̃T
i Ṗi)

2

∥w̃i∥2
(3.1.16)

and since Ṗi =
1
∆t

xi+1 − xi

yi+1 − yi

 is obtained via forward differencing, the last term of

the summation has no forward difference and is discarded, leading to a sum over

i ∈ {0, ..., nMPCkMPC − 2}.

The final term captures the cost of control effort over the future horizon. Control

inputs consist of the steering angles, δi, assuming the constant velocity trajectory.

The magnitudes are minimized to reduce control effort and unnecessary oscillations

in the predicted path, promoting stability. Again, the objective term takes on the

form of a summation of squares through:

Fδ2(δi) =

nMPCkMPC−1∑
i=0

δ2i (3.1.17)

The objective function is thus a sum of three quadratic terms; the first two are

functions of position (as well as orientation and δi indirectly), and the third is a

function of steering angle. The quadratic construction is well-suited for standard non-

convex solvers (non-convexities arise in the constraints), such as SQP-based methods

like SLSQP, which is implemented. The objective’s analytical gradients with respect

to each state variable are provided for reference in Appendix A.1 and are used in the

gradient-based SLSQP solver [129] for proper numerical conditioning & stability.
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3.1.3 MPC Optimization - Constraints

In order to minimize the prior objective function, several equality (denoted by h) &

inequality (denoted by g) constraints must be satisfied relating to the vehicle kine-

matics and control input limits. The initial vehicle position and orientation for the

future path are fixed to start at the initial base frame. Therefore, since all parameters

of the future path are taken with respect to Tbase, the initial state values correspond

to x0 = 0, y0 = 0 & θ0 = 0.

From here, the vehicle dynamics follow from the kinematic bicycle model [130]

under the assumption of no slip. This commonly used approach simplifies the vehicle’s

motion to that of a single-track/bicycle model with front-wheel steering, which holds

for reasonably low tire slip angles and lateral accelerations [131]. Under this model,

the positional arguments vary over the future trajectory by the equations:

xi+1 = xi +∆t vi cos(θi + βi) ∀i ∈ {0, ..., nMPCkMPC − 2} (3.1.18)

and

yi+1 = yi +∆t vi sin(θi + βi) ∀i ∈ {0, ..., nMPCkMPC − 2} (3.1.19)

where βi represents the vehicle slip angle at sample i. Simplifying by assuming v is

constant and βi = 0 for all i yields hx,i and hy,i through:

xi+1 = xi +∆t v cos(θi) ∀i ∈ {0, ..., nMPCkMPC − 2}

hx,i = xi+1 − xi −∆t v cos(θi), hx,i = 0 (3.1.20)

and

yi+1 = yi +∆t v sin(θi) ∀i ∈ {0, ..., nMPCkMPC − 2}

hy,i = yi+1 − yi −∆t v sin(θi), hy,i = 0 (3.1.21)
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which represent 2(nMPCkMPC − 1) equality constraints. The vehicle orientation

evolves over the trajectory according to the model according to:

θi+1 = θi +∆t
vi cos(βi)

l
(tan(δf,i)− tan(δr,i)) ∀i ∈ {0, ..., nMPCkMPC − 2} (3.1.22)

with fixed wheelbase, l as well as front (δf,i) & rear (δr,i) steering angles. Again, the

slip angle is set to 0 and v is constant, while front-wheel steering means δr,i = 0 for

all i. Taking δi = δf,i as the control inputs generates hθ,i:

θi+1 = θi +∆t
v

l
tan(δi) ∀i ∈ {0, ..., nMPCkMPC − 2}

hθ,i = θi+1 − θi −∆t
v

l
tan(δi), hθ,i = 0 (3.1.23)

for an additional nMPCkMPC − 1 equality constraints. The non-convex equality con-

straints, hx,i, hy,i&hθ,i, described in Equations 3.1.20, 3.1.21 & 3.1.23 importantly

reflect the non-linear vehicle dynamics and therefore cause the optimization to be

non-convex.

Now, the control input bounds are expressed based on the physical limitations of

the vehicle. First, the steering angles are bounded in magnitude by the servo motor

or steering system’s maximum limits:

−δmax ≤ δi ≤ δmax ∀i ∈ {0, ..., nMPCkMPC − 1} (3.1.24)

where δmax denotes the largest allowable steering angle magnitude in radians, appli-

cable to both left (+) & right (-) turning angles. Another restriction is on the steering

angle’s maximum rate of change, ∆δmax, in both the left and right directions. Again,
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influenced by the physical limits on the steering method, the inequality constraints,

gδ+,i & gδ−,i, follow from:

−∆t∆δmax ≤ δi+1 − δi ≤ ∆t∆δmax ∀i ∈ {0, ..., nMPCkMPC − 2}

gδ+,i = δi+1 − δi −∆t∆δmax, gδ+,i ≤ 0 (3.1.25)

gδ−,i = −δi+1 + δi −∆t∆δmax, gδ−,i ≤ 0 (3.1.26)

where forward differencing means only 2(nMPCkMPC−1) inequality constraints ensue.

Lastly, the initial steering angle is fixed based on the previous time sample’s

control input. Since the servo motor or steering mechanism used requires time to

transition from the last to a new steering angle, the control input is applied a sample

in advance. This ensures that by the next time sample, the steering angle will be

equal to the desired value according to the optimized path. In practice, this approach

minimizes oscillations and improves stability as well as the ability of the vehicle to

follow predicted paths. This corresponds to:

δ0 = δlast (3.1.27)

where δlast was the control input applied based on the previous step’s MPC optimiza-

tion. The steering angle applied every control step is δcmd = δ1, the first control input

over the predicted trajectory that is not fixed. Analytical gradients for the constraints

with respect to optimization variables are provided for reference in Appendix A.1.
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3.1.4 STLMPC Algorithm Pseudocode

Based on the constructed objective and constraint functions, the STLMPC optimiza-

tion problem takes the form:

min
xj ,yj ,θj ,δj

λd2Fd2 + λḋ2Fḋ2 + λδ2Fδ2

subject to gδ+,i ≤ 0, gδ−,i ≤ 0

hx,i = 0, hy,i = 0, hθ,i = 0

− δmax ≤ δj ≤ δmax

x0 = 0, y0 = 0, θ0 = 0, δ0 = δlast

∀i ∈ {0, ..., nMPCkMPC − 2}

∀j ∈ {0, ..., nMPCkMPC − 1}

(3.1.28)

which contains quadratic objective terms, non-linear equality and linear inequality

constraints as well as fixed initial state variables and control input. This non-convex

problem is solvable through non-linear solvers, where high-quality local optimum so-

lutions are found through a feasible starting guess in the region of the global optimum.

The choice of an effective starting guess is significant to ensure both convergence and

that the obtained local optimum achieves a low objective value, similar to the global

optimum. Algorithm 2 indicates the process for obtaining effective starting guesses.

Here, θ̃track,i denotes the orientations of the tracking lines, w̃i, in the initial base

frame. The first steering angle, δ0, is fixed based on the control input applied in

the previous timestep, where all successive δi values come from aligning the vehicle

orientation, θi, to that of the tracking line, θ̃track,i. The limits on change in steering

angle and bounds on magnitude are considered when finding successive control inputs,

and after each future sample, the remaining states, xi, yi & θi are updated based on

the kinematic bicycle model. As a result, the starting guess for the optimization
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variables is found, which seeks to align the predicted path’s orientation with that of

the sequential tracking lines.

Algorithm 2: Formulation of Starting Guess for STLMPC Optimization

Input: Tracking Line Orientations (θ̃track,i),Last Steering Angle (δlast)
Output: xi, yi, θi, δi

1 for j = 0 to nMPC − 1 do
2 for i = 0 to kMPC − 1 do
3 if j = 0 and i = 0 then
4 δi+jkMPC

= δlast, xi+jkMPC
= 0, yi+jkMPC

= 0, θi+jkMPC
= 0;

5 else

6 δtrack = tan−1( l
∆t v

(θ̃track,i+jkMPC
− θi+jkMPC

));

7 if θi+jkMPC
< θ̃track,i+jkMPC

then
8 δi+jkMPC

= min(δtrack, δi+jkMPC−1 +∆t∆δmax, δmax);

9 else if θi+jkMPC
> θ̃track,i+jkMPC

then
10 δi+jkMPC

= max(δtrack, δi+jkMPC−1 −∆t∆δmax,−δmax);
11 xi+jkMPC

= xi+jkMPC−1 +∆t v cos θi+jkMPC−1;
12 yi+jkMPC

= yi+jkMPC−1 +∆t v sin θi+jkMPC−1;

13 if i < kMPC − 1 or j < nMPC − 1 then
14 θi+jkMPC+1 = θi+jkMPC

+∆tv
l
tan δi+jkMPC

;

15 end

16 end

The SLSQP solver has two termination conditions set in practice to ensure the

real-time control rate is maintained. One condition ensures that when the relative

change in the optimization variables (using an L1 norm) decreases below a certain

threshold, the optimization concludes. This is because small changes in the solver’s

optimization steps indicate it has arrived at a local optimum, and further progress

is likely to be limited. Alternatively, a maximum optimization time is set such that

if the solver times out, the best feasible solution up to that point is returned and

used. In the unlikely case of optimization failure, the previous control inputs are

maintained until the next control step, where the STLMPC algorithm conducts a
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new optimization with the updated data.

The complete structure of the STLMPC algorithm is shown in Algorithm 3. This

process follows the outlined steps in this chapter, generating nMPC tracking lines

through quadratic optimizations before performing the MPC optimization for the

next steering angle command to apply. By updating the reference frame to the end

of each tracking line, future navigation decisions are made with respect to forward

positions while the path is mapped back to the base frame. Sampling each of the

nMPC tracking lines for kMPC samples provides the path to track for each timestep,

and an effective starting guess ensures a high-quality solution is obtained. The vehicle

commands, δcmd & vcmd = v, are applied to maintain autonomous driving, and the

process repeats at the next control step.

Algorithm 3: STLMPC Algorithm Framework

Input: Obstacle Ranges {r(0)obs,iobs
}, Obstacle Angles {θ(0)obs,iobs

}, Last Steering
Angle (δlast), Constant Velocity (v)
Output: Steering Angle Command (δcmd), Constant Velocity (v)

1 pbase,0 = [0, 0]T , θtrack,−1 = 0, iobs ∈ {0, ..., Nobs−1}, i ∈ {0, ..., nMPCkMPC−1};
2 {(x(0)

obs,iobs
, y

(0)
obs,iobs

)} ← {(r(0)obs,iobs
, θ

(0)
obs,iobs

)};
3 for j = 0 to nMPC − 1 do

4 θhead ← SafestAngularGap({(r(j)obs,iobs
, θ

(j)
obs,iobs

)});
5 O(j)

l ,O(j)
r ← FindObstacleClusters(θhead, {(x(j)

obs,iobs
, y

(j)
obs,iobs

)});
6 wj ← SolveTrackingLineQP(O(j)

l ,O(j)
r );

7 wj ← TransformtoBaseFrame(wj, pbase,j, θtrack,j−1);
8 pbase,j+1, θtrack,j ← getNextReferenceFrame(pbase,j, wj, v);

9 {(x(j+1)
obs,iobs

, y
(j+1)
obs,iobs

)} ←
NextFrameObstacles(pbase,j+1, θtrack,j, {(x(0)

obs,iobs
, y

(0)
obs,iobs

)});
10 end
11 w̃i ← SampledTrackingLines(wj);
12 xi, yi, θi, δi ← MakeStartingGuess(w̃i, δlast);
13 xi, yi, θi, δi, δcmd ← SLSQP Opt(xi, yi, θi, δi, v, w̃i);
14 Apply δcmd, vcmd = v and repeat process for next control step;
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3.2 STLMPC using Localization

The standard STLMPC algorithm presented can be extended in the case of local-

ization to an existing occupancy grid. The context of local planning remains the

same in that a goal location is not known, and global planning is not done. However,

now the observation range is extended such that obstacles are seen even further in

advance, enabling more accurate future tracking lines and path planning decisions.

Furthermore, imperfect sensor data can miss certain detections and obstacles, but

through localization, a complete grid map can augment detections for more complete

coverage.

The Adaptive Monte Carlo Localization (AMCL) framework uses a particle filter

to estimate the robot’s moving position in a known map [132]. The likelihoods of

sampled states being the true robot position are updated when new sensor data is

received, while the sample with the highest weight is estimated as the state. Adaptive

sampling ensures fewer samples are used when there is high confidence in the esti-

mate and more samples are used when globally localizing with low confidence [133].

Localization performs best and an accurate estimate is obtained quickest when the

approximate initial vehicle position is known; however, localization is also possible

with an unknown initial state.

Through AMCL, an updated effective transform (two successive transforms in

practice since odometry is used, Todom) is obtained between the fixed known map and

the moving vehicle base frame. The AMCL transform that represents the localized

vehicle pose in the fixed map frame is given by TAMCL = [xAMCL, yAMCL, θAMCL]
T

where obstacles in the fixed map are converted to the vehicle’s moving frame through:
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x(0)
obsmap,i

y
(0)
obsmap,i

 =

 cos(θAMCL) sin(θAMCL)

− sin(θAMCL) cos(θAMCL)

 ·
xmap,i − xAMCL

ymap,i − yAMCL

, i ∈ {0, ..., Nmap−1}

(3.2.1)

The map obstacles can be subsampled to obtain Nmap points, maintaining com-

putational tractability. Moreover, only map obstacles with r
(0)
obsmap,i

< dmax are used

in optimization, ensuring that non-immediate obstacles (far from the vehicle) are ig-

nored. For future tracking line frames of reference, a similar transform to Equation

3.1.8 is performed where now all obstacles, {(x(j)
obstot

, y
(j)
obstot

)} are considered:

{(x(j)
obstot

, y
(j)
obstot

)} = {{(x(j)
obs,i, y

(j)
obs,i)}

Nobs−1
i=0 , {(x(j)

obsmap,i
, y

(j)
obsmap,i

)}Nmap−1
i=0 } (3.2.2)

From here, the same steps as before proceed for the tracking line and non-linear

MPC optimizations, except with added and more complete obstacle coverage. The

case of navigation using localization to a known map is shown in Figure 3.4, where

the selection of future tracking lines is aided by the increased map obstacle coverage

ahead of the vehicle. As shown, the maximum map obstacle distance, dmax, exceeds

the LiDAR sensor range, dLIDAR.

Thus, while the sensor cannot detect past the obstacle directly ahead, using the

map data ensures effective, extended path planning decisions beyond this look-ahead

distance. Also, coverage is improved even within the sensor range, as obscured areas

that the sensor cannot detect are now known from the map. In the results to come,

the performance of STLMPC when using AMCL is compared to the case without,

and the look-ahead range for effective path planning is contrasted.
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Figure 3.4: Detected obstacles, range and reference tracking lines for navigation
with only sensor (blue) as well as with AMCL (red). Longer-term path planning is

possible through AMCL, and obstacle detection coverage is more complete.

3.3 System Architecture

For testing and implementation of the STLMPC algorithm as well as work in future

chapters, both simulation and experimental environments are used. For simulation

purposes, testing is done in the f1tenth simulator environment [134] with varying

maps while visualization is done using RViz. The vehicle’s sensors are replaced by

passing map information to the vehicle, such as in the form of laser scans. Detections

of other vehicles are represented by known simulated vehicle positions and orien-

tations. Testing in the f1tenth simulator allows for performance evaluation in an

effectively ideal environment before the algorithm is ported to the physical vehicle.

The software stack is implemented in C++ & Python using ROS Noetic, the

final ROS 1 distribution, on Ubuntu 20.04.6 LTS with Jetpack 5.1.4. Navigation and

path planning are done in a C++ node, whereas inference for vehicle detection is

performed by a Python node using NVIDIA TensorRT. The tracking line quadratic
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optimizations are done using the C++ library, QuadProg++, while the MPC non-

linear optimizations use the NLOPT library, specifically NLOPT’s SLSQP solver

[129]. For wireless interfacing between the target machine and a laptop (Intel i7-

8565U, 8GB RAM) for development and testing, NoMachine was used. Remote access

to the target machine was established over a 2.4GHz wireless connection using the

laptop’s mobile hotspot.

For experimental purposes, McMaster University’s MacAEV (Figure 3.5) is used,

which is built on a 1/10th scale RC vehicle platform [135]. The NVIDIA Jetson AGX

Orin serves as the onboard processing unit featuring a 12-core ARM Cortex-A78AE

CPU, a 2048-core NVIDIA Ampere GPU and 64GB of LPDDR5 RAM. For LiDAR,

the RPLIDAR A2M8 laser scanner has a range of 12m with a rotational speed of ∼10

Hz (the control rate for navigation) and an angular resolution < 0.5◦.

Figure 3.5: McMaster University Autonomous Electrified Vehicle (MacAEV)
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Using the RealSense D435i RGB-D camera at 30 fps, 640 x 480 color frames are

obtained in a 69◦ x 42◦ FOV while 848 x 480 depth frames are found in a 87◦ x 58◦

FOV. The BNO055 IMU is used for dead reckoning and fusing information from a

gyroscope, accelerometer and magnetometer; vehicle state data is provided at 100

Hz through I2C. The system is powered by a 3-cell, 11.1 V, 5,000 mAh, 35C LiPo

battery, and the MacAEV wheelbase, l, is measured as 0.287 m.

The vehicle velocity is provided through a 3,200 kV (RPM per volt), four-pole,

brushless DC motor, while a servo motor provides the vehicle steering angle. An elec-

tronic speed controller, VESC, is used to control velocity and steering angle through

published commands derived from path planning. In addition to remote wireless con-

trol via a laptop, a Logitech F710 joystick can enable autonomous driving as well

as manual driving if necessary. The integrated system supports real-time navigation

through STLMPC as well as the additional algorithms proposed in this thesis.

The system architecture is illustrated through a block diagram in Figure 3.6. The

navigation framework is shown integrated with the sensor data received and remote

interfacing commands, while the output steering angle and velocity commands are

applied to the servo and brushless DC motors, respectively, enabling autonomous

driving. Again, Todom represents the vehicle position in the fixed, global frame using

dead reckoning, where AMCL provides the position in the known map frame through

TAMCL. The use of the RGB-D camera and YOLO model for vehicle detection,

tracking and avoidance via MPC will be discussed more extensively in Chapter 4.

The 3D tensor C̃ denotes the color frame pixels obtained from the RGB-D camera,

while D̃ represents the depth frame pixels. The bounding boxes for all vehicles in

frame, as detected by YOLO, are denoted by B.
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Figure 3.6: The integrated system’s block diagram, which illustrates the sensors
used, navigation framework, actuation and remote interfacing with the target

machine. In simulation, sensors and vehicle actuation are replicated.

3.4 Simulation Results

The simulation results in this section are carried out in the f1tenth simulator en-

vironment where the kinematic bicycle model is used to model the MacAEV, set-

ting l =0.287 m, δmax =0.4189 rad, ∆δmax =3.2 rad/s, constant v=1.5 m/s and

∆t=0.1 s. For heading angle selection, dsafe =2 m, al=ar=
π
9
rad & bl=br=

π
2
rad.

Two successive tracking lines are used, where nMPC = 2 and kMPC = 8 create a

receding prediction time horizon of 1.6 s. The objective base weight factors are

λd2 = 1, λḋ2 = 30 & λδ2 = 1 while the solver terminates if the relative change in

optimization variables decreases below 0.1% or the optimization time exceeds 50 ms.
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The successive reference tracking lines are shown in a simulated test case with

the resulting optimized trajectory at two separate time samples (Figure 3.7). In each

case, the predicted trajectory is smooth (minimizing control effort) and balances close

tracking of the reference path with maintaining a heading direction parallel to each

successive tracking line.

(a) (b)

Figure 3.7: Resulting trajectory after optimization for the given successive tracking
lines at two separate time samples. The subsampled obstacles are shown for

visualization, although subsampling is not done when finding the tracking lines.

Now, STLMPC is evaluated against other local path planning methods, and

performance is contrasted. These methods follow the standard ROS navigation

stack where the central move base node links a local and global planner, integrated

via nav core, to achieve navigation & obstacle avoidance using 2D occupancy grid

costmaps. As this thesis explores navigation in unknown environments, no global

goal location is provided, and instead, these planners use a common exploration

package, explore lite. This method updates unexplored frontiers in real-time, where

in these tests, the largest one ahead of the vehicle is used as the current goal.

The global planner then plots a path to the time-varying goal while the local plan-

ner performs collision avoidance, yielding the optimized path for immediate motion.
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Three common local planners in ROS—dwa local planner [12], teb local planner [14]

& mpc local planner [15]—are used here with default parameters except for MacAEV-

specific values for kinematics & physical properties. Additionally, a limited, non-

predictive PD (Proportional-Derivative) approach is compared. This scheme gen-

erates a single tracking line (through the QP approach used in STLMPC) at each

control step and maintains tracking by performing feedback linearization to obtain

each step’s desired steering angle control input (assuming constant velocity).

Table 3.1: Performance of STLMPC & other local planners in simulated Map #1

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

DWA explore 0.207 1.147 0.060 0.008 0.492 0.011

TEB explore 0.521 1.289 0.075 0.011 1.474 0.027

MPC explore 0.278 1.268 0.124 0.032 1.246 0.201

PD 0.508 1.677 0.080 0.012 1.482 0.009

STLMPC 0.611 1.718 0.082 0.014 1.480 0.009

The performance of these four alternative local planning approaches is contrasted

with that of STLMPC on a simulated map course. Table 3.1 provides key metrics

where k̃ ∈ {0, ..., k̃end} denotes the sample time, ranging over the full test and dmin,k̃

indicates the minimum obstacle proximity to the current vehicle position at sample

k̃. Moreover, min
k̃

dmin,k̃ represents the minimum obstacle proximity over the full test

and d̄min denotes the average minimum proximity while the averages (|δcmd,k̃|, v̄cmd,k̃)

and variances (Var(δcmd,k̃),Var(vcmd,k̃)) of the control inputs are also included.

Notably, STLMPC achieves superior safety through min
k̃

dmin,k̃ & d̄min compared

to other planners while attaining low control effort and a velocity near the desired
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constant value. Figure 3.8 presents each planner’s full trajectory, where STLMPC

effectively maintains a path near the center of the course throughout. The value of the

tracking line approach is shown as PD achieves a central path similar to STLMPC,

whereas the exploration methods do not, thereby risking closer obstacle proximities.

Figure 3.8: Trajectories obtained by each local planner in simulated Map #1. Each
trajectory starts at the (0,0) global position & proceeds clockwise around the course.

Of the exploration planners, local planning via TEB is most effective where DWA

progresses at a lower speed than desired and MPC experiences unexpected oscillations

at times due to occasional poor optimization solutions.

The steering angle control inputs and steering rates are also provided for STLMPC

(Figure 3.9). The resulting trajectory over the full course evidently satisfies the opti-

mization’s bounds on steering angle magnitude (−δmax ≤ δi ≤ δmax) and constraints

on steering angle rate (gδ+,i, gδ−,i ≤ 0). Control inputs are smooth for most of the

simulation, while aggressive steering occurs near the end at the sharp hairpin turn.
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(a) (b)

Figure 3.9: In the simulation using Map #1, STLMPC achieves a path where (a)
steering angle control inputs remain within the dotted bounds (±δmax) & (b)

steering rates satisfy the dotted extents (±∆δmax).

3.5 Experimental Results

Experimental testing is conducted using the MacAEV in varying environmental con-

figurations, beginning in this section with Experiment #1 (the course layout is pro-

vided in Appendix B). These tests validate local planner performance in real-world

conditions with imperfect sensor capabilities and vehicle dynamics that are not fully

captured by the kinematic bicycle model. Navigation using this chapter’s STLMPC

in Experiment #1 is recorded by video for visualization1. The same parameter values

used in simulation are retained in the experiment, and performance is also evaluated

for several local exploration planners as well as the non-predictive PD approach.

Each local planner trajectory over the map is given by Figure 3.10, where the

STLMPC, AMCL-localized STLMPC & PD trajectories maintain smooth travel along

the center of the course compared to the exploration-based planners. Each planner’s

performance is further evaluated in Table 3.2 with the same metrics as in simulation.

1https://www.youtube.com/watch?v=hOUxxvMQrGM
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Figure 3.10: Trajectories obtained by each local planner in Experiment #1. Each
path starts at the (0,0) global position & proceeds counterclockwise around the map.

The STLMPC methods perform best in terms of the obstacle proximity metrics

while also exhibiting low control effort and attaining an average velocity (including

initial acceleration and deceleration upon course completion) near the desired speed

of 1.5 m/s. Here, PD performs comparably to STLMPC, although marginally worse

across the metrics tested, while the TEB local planner achieves the best performance

among the exploration-based approaches.

Table 3.2: Performance of STLMPC & other local planners in Experiment #1

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

DWA explore 0.385 0.654 0.118 0.028 0.491 0.012

TEB explore 0.570 0.843 0.157 0.032 1.356 0.139

MPC explore 0.313 0.831 0.253 0.073 0.858 0.149

PD 0.587 0.978 0.147 0.032 1.281 0.107

STLMPC 0.688 0.972 0.113 0.025 1.304 0.071

STLMPC localized 0.640 0.982 0.116 0.019 1.296 0.065
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Furthermore, each planner’s computation time (tcomp,k̃) is compared in both the

average (t̄comp) and worst (max
k̃

tcomp,k̃ denoted as max tcomp for brevity) case via Ta-

ble 3.3. Here, the exploration-based planners have three planning stages: updating

unexplored frontiers & setting a new local goal, global planning to this goal and fi-

nally, local planning to track this path while performing collision avoidance. Each

exploration method differs in the third stage where the computation times for each

step are denoted by tfrontier,k̃, tglobal,k̃ & tlocal,k̃ respectively and summed for the total

planning computation time, tcomp,k̃.

The simplistic PD approach achieves the lowest average computation time, while

STLMPC with nMPC = 2 & kMPC = 8 also attains reliably low planning times. The

computational performance of STLMPC in this experiment is similar to that of TEB,

while the introduction of localization via AMCL has minimal impact on computation

time. Notably, MPC-based exploration has significantly longer planning times, far

exceeding the 100-ms control period in the worst case.

Table 3.3: Planning computation times for STLMPC & other local planners in
Experiment #1

Local Planner
t̄frontier
(ms)

t̄global
(ms)

t̄local
(ms)

t̄comp

(ms)

max tfrontier
(ms)

max tglobal
(ms)

max tlocal
(ms)

max tcomp

(ms)

DWA explore 3.6 0.9 11.8 16.3 7.4 1.9 27.9 37.1

TEB explore 1.9 0.8 3.2 5.9 5.2 1.5 8.3 15.0

MPC explore 2.0 1.1 43.7 46.7 3.8 10.2 484.8 498.8

PD 0.5 1.7

STLMPC 6.5 15.8

STLMPC localized 6.9 12.3
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While the overall performance of STLMPC with and without AMCL-based local-

ization is similar, the effect on path planning at individual iterations is significant.

Figure 3.11a shows the STLMPC tracking lines and optimized path at a single it-

eration in Experiment #1 without localization, while Figure 3.11b shows the same

planning iteration, now using localized map data. The planner without AMCL does

not see around the right wall and therefore plans to turn right.

However, using localized map data, it is clear that this unseen area is bounded

by a wall out of sight, and thus, the AMCL-localized planner correctly plans ahead

to turn left. In practice, STLMPC without AMCL proceeds along the correct path

once it detects the obscured wall, and this deficiency in effective look-ahead horizon

leads to negligible differences in performance, as seen in earlier results. The tests

conducted in Experiment #1 illustrate the performance improvements of STLMPC

over existing methods and the applicability of STLMPC to real-life contexts for safe,

standalone local path planning.

(a) (b)

Figure 3.11: Tracking lines and optimized trajectory at a shared timestep for
STLMPC with/without AMCL in Experiment #1. The predicted paths differ as (a)

STLMPC without AMCL turns right, not seeing an obscured wall, while (b)
STLMPC with AMCL turns left, detecting the obscured wall via the known map.
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Chapter 4

Vehicle Detection, Tracking &

Avoidance

In this chapter, the process for detecting, estimating, tracking and avoiding mov-

ing obstacles, specifically other vehicles, is explored. The motivation is to extend the

STLMPC algorithm from Chapter 3 to better predict the behavior of dynamic objects

and plan a safe path accordingly. This multi-stage process works in real-time con-

ditions, ensuring quick information flow to the path planner for operation in rapidly

evolving environments.

This chapter proceeds chronologically as the dynamic obstacle accommodation

framework does. First, the use of a convolutional neural network is discussed, which

outputs detected vehicle bounding boxes in the RGB frame. Then, a method is

proposed for associating boxes with known detections and fusing RGB & depth infor-

mation for pose estimation. Using an extended Kalman filter, detected vehicle states

are updated and tracked before being incorporated into Chapter 3’s STLMPC. Lastly,

simulation and experimental results are provided for tracking & path planning.
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4.1 Vehicle Detection with a Convolutional Neural

Network

In order to achieve perception of dynamic obstacles like other vehicles, computer

vision is required beyond the laser scanning used for static obstacle detection. Now,

a module is used with both an RGB camera as well as depth capabilities through

stereo vision using two infrared cameras. The image frame of RGB pixels is denoted

by C̃ ∈ RHc×Wc×3 where Hc is the RGB image height and Wc is the width. Similarly,

the depth image is represented by D̃ ∈ RHd×Wd with height, Hd, and width, Wd, not

generally being equal to that of the RGB image.

A Convolutional Neural Network (CNN) is used following the You Only Look Once

(YOLO) framework for real-time vehicle detection1 using RGB images, C̃. YOLO

achieves fast performance through a single pass of the neural network and outputs

bounding boxes for classified objects as well as class probabilities. The YOLOv5s

model is implemented, which scales down the base YOLOv5 model architecture to

achieve real-time inference while maintaining detection accuracy.

The YOLOv5s model uses 7.2 million parameters, 213 layers and a standard

backbone–neck–head architecture. The backbone, CSPDarknet in this case, is the

main body that extracts features from the image, while feature aggregation occurs

in the neck, using PANet. The detection head, YOLO Head, yields final predictions

as outputs for bounding boxes, classes and class probabilities. Letterboxing is done

to convert the 640 x 480 x 3 RGB image to a 416 x 416 x 3 input for the CNN

while maintaining the original aspect ratio, since YOLO performs better on square

1It should be noted that the YOLO model used in this thesis for vehicle detection was trained
and implemented on the MacAEV by Leo Calogero during his time as an undergraduate summer
researcher in the Department of Electrical and Computer Engineering at McMaster University.
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images. Upon detection, the resulting bounding boxes are rescaled to the original

image dimensions.

Custom training data is gathered and compiled on Roboflow before training is done

on the YOLOv5s model through Ultralytics. Custom training allows for classification

of the MacAEV, which isn’t an otherwise standard recognizable class by YOLO.

This is the only detectable class, and so all detections represent other MacAEV

agents in the environment. Training is done on augmented data, such as through

image rotation, blurring, increased noise, and image shearing, which reduces model

overfitting. This is also valuable as the camera is attached to the MacAEV, which,

during motion and especially rotation, can experience increased blurring. Leveraging

the 2048-core NVIDIA Ampere GPU and inference through the TensorRT engine,

MacAEV detection maintains a 30 fps throughput on the RGB image pipeline.

As a result of vehicle detection through YOLO, classified objects with probabilities

and bounding boxes are provided. To reduce the chance of false positives, only

detections with confidence exceeding the threshold of 40%, sthresh=0.4 are considered:

si > sthresh, i ∈ {0, ..., Ndet − 1} (4.1.1)

where si denotes the confidence of the ith detection and Ndet is the total number

of detections in the current image frame. Each detection’s class, ℓi, corresponds to

the MacAEV since this was the only object class used in testing. Each detection’s

bounding box, bi, in the 640 x 480 RGB image frame is represented by:

bi = [xmin
i , ymin

i , xmax
i , ymax

i ]T i ∈ {0, ..., Ndet − 1} (4.1.2)
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where the rectangle that encapsulates the classified object is fully parameterized by its

two diagonal corners, (xmin
i , ymin

i ) and (xmax
i , ymax

i ). In this image coordinate system,

x represents the width direction and increases in the rightward direction, while y

represents the height direction and increases in the downward direction. Here, the

RGB image, C̃ has RGB pixels denoted by c̃y,x ∈ R3. This coordinate frame also

applies to the depth image, D̃, where pixel depths are denoted by d̃y,x. The bounding

boxes for detected vehicles in the image coordinate system are depicted in Figure

4.1. The set of all bounding boxes, B, for the current image frame is denoted by

B = {b0, ..., bNdet−1}, which is empty in the case of no detections. The bounding

boxes obtained for each RGB image frame are then used in further steps of vehicle

estimation, tracking and avoidance.

Figure 4.1: Two detected vehicles are identified via YOLO with corresponding
bounding boxes, b0 & b1. Each bounding box is fully described by its two diagonal

corner points, while the image coordinate frame is indicated for the
Wc = 640 pixel, Hc = 480 pixel RGB image.
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4.2 Pose Estimation of Observed Vehicles

Pose estimation proceeds from the detected bounding boxes acquired from the YOLO

model previously. To accommodate multiple vehicle detections, association of bound-

ing boxes to known previous detections must be done. In this sense, a framework

is proposed for handling new detections, associating detections with their respective

tracked vehicles in the multi-detection case, and removing tracked vehicles if no new

corresponding detections are received. Now, each grouped detection is converted from

a bounding box in the RGB frame to a pose in 3D space through the relevant depth

camera data. These become the positional measurements for the detected vehicles,

which are used in extended Kalman filtering for vehicle state tracking.

4.2.1 Vehicle Association

In multi-object tracking, detections must be paired with their corresponding tracked

objects across a stream of RGB images. However, issues can arise in the presence

of noise, blur & occlusions and in the case of overlapping classified objects in frame.

Deep learning can perform both detection and tracking of center points based on

successive frames; however, identity switches occur frequently for detections, espe-

cially during occlusion [136]. Meanwhile, methods that track bounding box position

and size uncertainties to match objects based on prior detections in the multi-object

tracking case can handle temporary occlusions or movements out of frame [137].

For assigning new detections from the YOLO model to existing tracked vehicles,

Vtrack:

Vtrack = {νtrack,0, ..., νtrack,Ntrack−1} (4.2.1)
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the bounding boxes, B, of the latest RGB image are used. The number of detections

in the image frame, Ndet, and the number of currently tracked vehicles, Ntrack, are

generally not equal, so detection association considers new as well as missing detec-

tions. The currently detected bounding boxes are denoted as bi, i ∈ {0, ..., Ndet − 1},

while each tracked vehicle has its own corresponding known bounding box from its

most recent previous detection, btrack,j, j ∈ {0, ..., Ntrack − 1}. The bounding box

midpoints are gathered as:

bmid
i = (

xmin
i + xmax

i

2
,
ymin
i + ymax

i

2
) ∀i ∈ {0, ..., Ndet − 1} (4.2.2)

and

bmid
track,j = (

xmin
track,j + xmax

track,j

2
,
ymin
track,j + ymax

track,j

2
) ∀j ∈ {0, ..., Ntrack − 1} (4.2.3)

for the detected and known tracked vehicle bounding boxes, respectively.

For each detection’s midpoint, the unassigned, tracked vehicle with the closest

previous bounding box midpoint is assigned the detection’s bounding box. Once

assigned, only the remaining tracked vehicles are considered for the other detected

bounding boxes. If the distance of the closest midpoint match exceeds a threshold,

dassoc, the detection is not associated with an existing tracked vehicle and instead

represents a new tracked vehicle. For detection association, the closest tracked vehicle

(indexed by j∗i ) for each detection (indexed by i) is found through:

j∗i = arg min
j∈J

∥bmid
track,j−bmid

i ∥2≤dassoc

∥bmid
track,j − bmid

i ∥2 ∀i ∈ {0, ..., Ndet − 1} (4.2.4)
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where J denotes the set of unassigned tracked vehicle indices, which contracts for

every assigned detection in this iterative process. All associated bounding boxes are

assigned to their appropriate tracked vehicle for the current frame:

btrack,j∗i = bi ∀i ∈ {0, ..., Ndet − 1} if j∗i exists (4.2.5)

which both resets the respective missed frame count, Nmiss,j, to 0 and allows for

the current pose measurement to be made using image depth data. For any tracked

vehicles remaining in J after all detections are processed, a new measurement is not

made and the number of missed frames increases.

If there exists no corresponding j∗i for the ith detection since either ∀j ∈ J ,

∥bmid
track,j − bmid

i ∥2 > dassoc or Ndet > Ntrack, the new tracked detection, νnew is in-

corporated in the tracked vehicle (Vtrack ← Vtrack ∪ {νnew}) and known bounding

box (Btrack ← Btrack ∪ {bi}) sets. This multi-object approach therefore associates

detections based on closest bounding boxes in successive frames while also handling

the cases of new and missed detections (Figure 4.2). Vehicles continue to be tracked

for several consecutive missed frames, and accuracy can be maintained even with

intermittent detections.

4.2.2 Sensor Fusion

Now, using the bounding boxes, bi, which are appropriately associated with the correct

tracked vehicles, position measurements are derived, which will be used to update

vehicle state tracking. Given the relevant bounding box for the color pixels, the

relevant depth pixels are retrieved through integration of the two images, and an

averaged 3D position is obtained from the image. Unlike going from a depth to
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(a) (b) (c)

Figure 4.2: Successive RGB frames with YOLO detected inner (b̂i) and outer (bi)
bounding boxes in the case of: (a) initial detection of νtrack,0, (b) missed (νtrack,0)

and new (νtrack,1) detections & (c) recovered detection for νtrack,0.

color pixel, however, the transformation from a color to depth pixel is not direct or

guaranteed due to the lack of 3D knowledge of the color pixel (corresponding to a ray

of possible depths). Methods that align the depth and camera frames in preprocessing

resolve this issue but introduce meaningful lag in the RGB-D image pipeline. Thus,

timestamped color and depth images are paired, and a process is developed to extract

the 3D positions of only relevant color pixels at 30 fps for vehicle state estimation

without aligning all pixels in a time-consuming, lag-inducing manner.

To convert a depth pixel to a 3D point in the depth frame, the depth camera

intrinsics are considered, namely the focal lengths, fx,d & fy,d and principal point

offsets, cx,d & cy,d. Assuming a distortion-free image (where distortions are undistorted

iteratively otherwise), the 3D point, pdepthyd,xd
for a depth pixel, d̃yd,xd

is obtained in the

depth frame via:

pdepthyd,xd
= [

d̃yd,xd
(xd − cx,d)

fx,d
,
d̃yd,xd

(yd − cy,d)

fy,d
, d̃yd,xd

]T (4.2.6)

and can be converted to the base frame for path planning through the transformation,

Tdepth. To convert the point, pdepthyd,xd
to the color camera frame, the transform between
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the depth (described by Tdepth) and color (described by Tcolor) frames is applied.

For the 3D point in the color frame, pcoloryc,xc
= [x, y, z]T , the color pixel location,

(xc, yc) in its frame coordinates is found through:

(xc, yc) = (fx,c
x

z
+ cx,c, fy,c

y

z
+ cy,c) (4.2.7)

using the color camera intrinsics, fx,c, fy,c, cx,c & cy,c where again no distortion is as-

sumed. The steps to convert (xd, yd) → (xc, yc) are used to iteratively acquire the

corresponding depth pixels for the color pixels used in the bounding box. A smaller,

centered, self-contained bounding box is defined for each detected box in order to

average depth measurements over a central area of the MacAEV. This limits the risk

of background depth pixels being included and provides an estimate of the vehicle’s

central position. The self-contained boxes, b̂i are defined by:

b̂i =



1− ζxmin
0 ζxmin

0

0 1− ζymin
0 ζymin

1− ζxmax 0 ζxmax 0

0 1− ζymax 0 ζymax


· bi (4.2.8)

considering the scaling factors, ζxmin
, ζymin

, ζxmax & ζymax ∈ [0, 1] which control the

edges of the inner bounding box. These factors can be shifted from the center towards

a particular edge of the outer box to better track vehicles with bounding boxes cut

off by the frame extents.

A starting point of half the inner box’s corner, (x̂min
i , ŷmin

i ), is selected as the

initial estimate of depth pixel corresponding to this corner’s color pixel (due to the

depth camera’s larger FOV). Then, applying Equation 4.2.6, the depth-to-color frame

transform and Equation 4.2.7 to obtain the corresponding color pixel coordinates, the
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difference between these and the desired starting color pixel coordinates, (x̂min
i , ŷmin

i ),

is halved (for quicker computation time than a standard line search) and applied to

the depth pixel estimate. This iterative process continues until the matching color

pixel estimate is within the inner bounding box.

Iterating over the grid of consecutive depth pixels until the color pixels in the

inner bounding box are fully covered, the resulting depth values are converted to 3D

positions (Equation 4.2.6) and averaged over all valid depths. The resulting measured

position transformed to the vehicle base frame, ptrack,i, is therefore the average over the

inner bounding box, which provides a less noisy, central estimate of vehicle position.

4.3 Extended Kalman Filter Vehicle Tracking

4.3.1 Overview & Initialization

A common method for target tracking is the Kalman Filter (KF), while in the case

of nonlinearities in the process or measurement models, the Extended Kalman Filter

(EKF) is used. This approach estimates the states of detected vehicles, which update

as new position measurements are processed from the depth images received. Here,

the measurement zj,k = [xtrack,j,k, ytrack,j,k]
T corresponding to the jth tracked vehicle

is used in the EKF to estimate the vehicle states, x̂j,k = [xj,k, yj,k, θj,k, δj,k, vj,k]
T at

time k according to a constant velocity & curvature model.

The update rate of the EKF is equal to the control rate of the path planner (in

practice, determined by the publication rate of the laser sensor), which is typically

slower than the camera rate. Thus, multiple image frames are received and converted

to position measurements per EKF update. The most recent measurement since the
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last EKF update is used, where this sample aggregation process reduces the chance

of missed frames between filter updates. Furthermore, as position changes at 30 fps

may be indistinguishable in successive frames, reducing the EKF update rate helps

eliminate redundant measurements. Meanwhile, averaging aggregated measurements

can reduce noise, assuming it is zero-mean and uncorrelated. After a number of

EKF updates without new measurements (where Nmiss,j > Nmax
miss), a vehicle is no

longer tracked; however, it can be recovered as a separate tracked vehicle instance if

it reappears later.

To initialize newly tracked vehicles, two-point initialization is used. Once mea-

surements are obtained for consecutive updates, the state is initialized as:

x̂j,k =



xtrack,j,k

ytrack,j,k

atan2(ytrack,j,k − ytrack,j,k−1, xtrack,j,k − xtrack,j,k−1)

0

min(
∥zj,k−zj,k−1∥2

∆t
, vmax

0 )


(4.3.1)

where zero curvature is initially assumed and vmax
0 limits the initial velocity to a

reasonable value in the case of noisy measurements. The covariance is initialized as:

Pj,k =



σ2
x0

0 0 0 0

0 σ2
y0

0 0 0

0 0 σ2
θ0

0 0

0 0 0 σ2
δ0

0

0 0 0 0 σ2
v0


(4.3.2)

where σ2
x0
, σ2

y0
, σ2

θ0
, σ2

δ0
&σ2

v0
describe the initial variances for each state estimate. The

tracking process follows three general steps: transformation, prediction & correction.
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First, the latest measurement and previous vehicle state are transformed from the

ego vehicle’s previous frame to the current one (since it too is moving in the global

frame). Then, the EKF prediction and correction steps are performed to obtain the

updated state and covariance estimates.

4.3.2 State & Measurement Transformation

To transform past state and measurement data to the current ego vehicle’s base

frame, the past and current transforms between the moving base frame and fixed

global frame are stored. For state estimates, after each EKF update, the transform

Todom,k (via odometry) is stored. In the next EKF update, the old and current trans-

forms (respectively denoted now as Todom,k−1 = [xodom,k−1, yodom,k−1, θodom,k−1]
T and

Todom,k = [xodom,k, yodom,k, θodom,k]
T ) are used to transform the position & orientation

state estimates to the current frame:
xnew
j,k−1

ynewj,k−1

1

 = T new
odom ·


cos(θodom,k−1) − sin(θodom,k−1) xodom,k−1

sin(θodom,k−1) cos(θodom,k−1) yodom,k−1

0 0 1

 ·

xold
j,k−1

yoldj,k−1

1

 (4.3.3)

θnewj,k−1 = θoldj,k−1 − (θodom,k − θodom,k−1) (4.3.4)

where the transformation between the fixed frame and the new vehicle base frame,

T new
odom, is described by:

T new
odom =


cos(θodom,k) sin(θodom,k) −xodom,k cos(θodom,k)− yodom,k sin(θodom,k)

− sin(θodom,k) cos(θodom,k) xodom,k sin(θodom,k)− yodom,k cos(θodom,k)

0 0 1


(4.3.5)
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For measurements, the same process holds, but now the fixed to old vehicle frame

transform used has the closest timestamp to the time when the measurement’s depth

image was captured. Here, the position measurement uses this distinct old transform

in the process described in Equation 4.3.3. This provides the most accurate, time-

sensitive conversion of the measured, tracked vehicle position to the fixed frame, then

to the new ego vehicle frame.

The base frame in consecutive EKF updates is depicted in Figure 4.3 for transform-

ing the prior tracked vehicle estimates to the new vehicle base frame. Two vehicles

are tracked, where their final EKF updated states at time k and corresponding future

trajectories are shown. Note that the tracked vehicle position states correspond to

the vehicle’s center due to the average position measurement being obtained over the

central vehicle section from before. While the position and orientation of the ego

vehicle are quantified with respect to the fixed frame here, the tracked vehicles are

always assessed with respect to the ego vehicle base frame.

Figure 4.3: Consecutive ego vehicle base frame transformations to the fixed frame
are shown, used to convert tracked vehicle states and measurements to the current

frame. Two tracked (red) vehicles are illustrated with their predicted paths.
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4.3.3 Prediction

The next step is to predict the tracked vehicle state, x̂j,k|k−1 and covariance matrix,

Pj,k|k−1 using the last sample’s state & covariance matrix as well as the model dy-

namics and adaptive process noise covariances. State prediction uses the nonlinear

kinematic bicycle model based on the current estimated steering angle and velocity

according to:

x̂j,k|k−1 =



xj,k−1 +∆t vj,k−1 cos(θj,k−1)

yj,k−1 +∆t vj,k−1 sin(θj,k−1)

θj,k−1 +∆t
vj,k−1

l
tan(δj,k−1)

δj,k−1

vj,k−1


(4.3.6)

For the nonlinear process model (Equation 4.3.6), f(·), the linearized state transition

matrix, Fj,k−1 is obtained through the Jacobian:

Fj,k−1 =



1 0 −∆t vj,k−1 sin(θj,k−1) 0 ∆t cos(θj,k−1)

0 1 ∆t vj,k−1 cos(θj,k−1) 0 ∆t sin(θj,k−1)

0 0 1 ∆t
vj,k−1

l cos2(δj,k−1)
∆t
l
tan(δj,k−1)

0 0 0 1 0

0 0 0 0 1


(4.3.7)

which enables the predicted covariance to be found through matrix multiplication.
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Another necessary component is the process noise covariance, Qj,k−1, which rep-

resents the uncertainty in the system’s evolution due to unmodeled dynamics or dis-

turbances. The process noise covariance is initialized to the initial covariance matrix,

Qj,k−1 = Pj,k−1 (Equation 4.3.2), where it is assumed that each state variable’s pro-

cess noise is uncorrelated. If no measurement is obtained, the estimated state vector

and covariance matrix take on the values in Equations 4.3.6 and 4.3.10, respectively,

with the forthcoming correction step skipped (leading to an estimate with lower con-

fidence). Here, the process noise covariance is considered exclusively, which increases

uncertainty over time. If measurements are once again obtained, the correction step

is applied to the state estimate and covariance matrix, increasing confidence.

The process noise is adaptively scaled by a term reflecting both the ego vehicle (v)

and the tracked vehicle (vj,k−1) current velocities, as higher speeds introduce greater

uncertainty in the estimate. This term is given by qscale where:

qscale =


1 if

v vj,k−1

αQ
≤ 1

v vj,k−1

αQ
if 1 <

v vj,k−1

αQ
< qscalemax

qscalemax if
v vj,k−1

αQ
≥ qscalemax

(4.3.8)

The process noise scaling factor is bounded by 1 and qscalemax to ensure reasonable

values, while the velocity-dependent term is scaled by αQ to control the rate at which

higher velocities increase the process noise. The resulting adaptive process noise after

being initialized at each step via σ2
x0
, σ2

y0
, σ2

θ0
, σ2

δ0
&σ2

v0
is scaled according to:

Qj,k−1 ← qscaleQj,k−1 (4.3.9)

ensuring that process noise is considered adaptively under varying tracking conditions.
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The linearized state transition and process noise covariance matrices are incorpo-

rated in the covariance prediction described by:

Pj,k|k−1 = Fj,k−1Pj,k−1F
T
j,k−1 +Qj,k−1 (4.3.10)

where the predicted state vector and covariance matrix are now augmented with the

acquired measurement data to update the estimate for each in the final EKF step.

4.3.4 Correction

To complete the EKF update, the position measurement of each tracked vehicle is

compared to the prior estimated state based on the confidence in each to obtain a new,

updated estimation. The constant measurement model, H, is linear as the position

measurement directly represents the position states, so the innovation is found by:

yj,k = zj,k −Hx̂j,k|k−1, H =

1 0 0 0 0

0 1 0 0 0

 (4.3.11)

The innovation, yj,k, describes the difference between the measurement observed and

what is expected based on the predicted states, while the innovation covariance, Sj,k,

quantifies the uncertainty of this updated difference.

Another necessary covariance matrix is that of the measurement noise, Rj,k, with

individual measurement noises σ2
xmeas,j,k

& σ2
ymeas,j,k

:

Rj,k =

σ2
xmeas,j,k

0

0 σ2
ymeas,j,k

 (4.3.12)
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which, similarly to the process noise covariance, is updated adaptively. The measure-

ment noise is scaled by the range between the ego and tracked vehicles since larger

distances increase the absolute position uncertainty of the depth camera measure-

ments. Additionally, the noise is scaled by a term reflecting the ego and tracked

vehicle velocities (just as with the process noise) because higher velocities decrease

confidence in the time-sensitive position measurements.

From here, the innovation covariance matrix is found from the predicted and

measurement noise covariance matrices:

Sj,k = HPj,k|k−1H
T +Rj,k (4.3.13)

The innovation covariance matrix is then used to find the Kalman gain, Kj,k:

Kj,k = Pj,k|k−1H
TS−1

j,k (4.3.14)

which directly provides the degree to which the predicted state estimate and co-

variance matrix are adjusted in light of the new measurement. The updated state

estimate for the jth tracked vehicle at time k becomes:

x̂j,k|k = x̂j,k|k−1 +Kj,kyj,k (4.3.15)

while for the covariance matrix, the updated value equals:

Pj,k|k = (I−Kj,kH)Pj,k|k−1 (4.3.16)

where I denotes the 5 x 5 identity matrix.
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The updated state vector, x̂j,k = x̂j,k|k and covariance matrix, Pj,k = Pj,k|k are

used again in the next EKF update starting from Equation 4.3.3 and following the

transformation, prediction, correction framework. The updated state estimate can

now be used to model the detected vehicle’s trajectory over a future time horizon.

This information is incorporated into the MPC path planning algorithm, enabling

the ego vehicle to avoid dynamic, tracked obstacles in real-time.

4.4 Avoidance of Dynamic Obstacles in STLMPC

The base STLMPC algorithm is now extended to consider the future trajectories of

other tracked vehicles according to a constant velocity & curvature model. Each con-

trol step, vehicle tracking and estimation occur following the EKF process before the

updated state vectors are used to ensure collision avoidance and safe path planning

in these more complex, multi-vehicle environments. Now, the tracked future trajecto-

ries are segmented into successive timeframes (just as with the tracking lines), where

obstacles that reflect the tracked vehicle paths are used in the tracking line quadratic

optimizations.

Using the kinematic bicycle model, future tracked vehicle state estimates are pre-

dicted based on fixed steering angle and velocity according to the current estimate

(as in state prediction via Equation 4.3.6). The future predicted paths are therefore

described by:

x̂j,k+i|k ∀j ∈ {0, ..., Ntrack − 1}, i ∈ {0, ..., nMPCkMPC − 1} (4.4.1)

For simplification as before, x̂j,k+i = x̂j,k+i|k where the future states of the Ntrack

69



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

vehicles are considered in successive timeframes to generate the qth tracking line by:

O(q)
obstot
←O(q)

obstot
∪ {(x(q)

j,k+i, y
(q)
j,k+i)} for qkMPC≤ i<(q + 1)kMPC , q∈{0, ..., nMPC − 1}

(4.4.2)

This samples the tracked trajectories just as the tracking lines into nMPC successive

segments, where each is kMPC samples long. Here, O(q)
obstot

= {(x(q)
obstot

, y
(q)
obstot

)} denotes

the set of obstacles for the qth tracking line which is later split into left (O(q)
l ) and

right (O(q)
r ) clusters for tracking line generation. The set of obstacles for each tracking

line now becomes the combination of sensor detections (O(q)
obs = {(x

(q)
obs,i, y

(q)
obs,i)}

Nobs−1
i=0 ),

known map obstacles via AMCL (if used) (O(q)
obsmap

= {(x(q)
obsmap,i

, y
(q)
obsmap,i

)}Nmap−1
i=0 ) and

newly, the detected vehicle paths (O(q)
obsdet

= {(x(q)
j,k+i, y

(q)
j,k+i)}

(q+1)kMPC−1, Ntrack−1
i=qkMPC , j=0 ):

O(q)
obstot

= O(q)
obs ∪ O

(q)
obsmap

∪ O(q)
obsdet

(4.4.3)

where x
(q)
j,k+i & y

(q)
j,k+i represent the transformed tracked vehicle position in the frame

of the qth tracking line optimization.

As before (Equation 3.1.8), all of the obstacles must be transformed from the base

frame to the future tracking line reference frame for each quadratic optimization.

This applies to the future states of the tracked vehicle, where the orientation is also

transformed via:

θ
(q)
j,k+i = θj,k+i − θtrack,q−1 (4.4.4)

expressing θj,k+i in the base frame as θ
(q)
j,k+i in the qth tracking line optimization frame.

To more accurately model the moving vehicle and its shape, the outline is used

to generate obstacles for avoidance as opposed to the moving center described in

Equation 4.4.1. The four corners of the vehicle body, Ĉ
(q)
j,k+i are extracted based on
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orientation in the future frame (Equation 4.4.4), position, as well as vehicle length,

lv and width, wv dimensions:

Ĉ
(q)
j,k+i =

cos(θ(q)j,k+i) − sin(θ
(q)
j,k+i)

sin(θ
(q)
j,k+i) cos(θ

(q)
j,k+i)

 ·
 lv

2
lv
2
− lv

2
− lv

2

−wv

2
wv

2
wv

2
−wv

2

+

x(q)
j,k+i

y
(q)
j,k+i

 ·1T (4.4.5)

Here, 1 denotes the 4 x 1 column vector of ones and the resulting 2 x 4 vehicle

corner matrix contains the four corner position pairs for the jth tracked vehicle at

time k + i in the qth tracking line optimization frame. For each corner position,

ĉ
(q)
j,k+i,n, n ∈ {0, ..., 3}, the vehicle edge is discretized and the points are added to

O(q)
obstot

in place of just the vehicle center point. For the qth tracking line optimization,

this is denoted by:

O(q)
obstot
←O(q)

obstot
∪ {(1− m

nedge

)ĉ
(q)
j,k+i,n +

m

nedge

ĉ
(q)
j,k+i,n+1 mod4},m={0, 1

nedge

, ...,
nedge−1
nedge

}

(4.4.6)

where nedge denotes the number of interpolated edge points along each side of the

tracked vehicle, qkMPC ≤ i < (q + 1)kMPC , j ∈ {0, ..., Ntrack − 1} and n ∈ {0, ..., 3}.

Therefore, for each tracked vehicle at each sampled trajectory point corresponding

to the relevant tracking line optimization, the estimated vehicle outline is transformed

and interpolated. The interpolated points for each respective tracking line & all

points in O(q)
obstot

are used starting from finding the safest angular gap, through to the

quadratic optimization (Equation 3.1.4). With the nMPC tracking lines, STLMPC

fulfills the same non-linear optimization as before, but now with tracking lines that

perform dynamic obstacle avoidance. Figure 4.4 shows the generation of tracking lines

using the tracked vehicle outline over successive segments of the future trajectory.
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Figure 4.4: The detected (red) vehicle’s trajectory is predicted and segmented into
three intervals. The outline of the vehicle along the trajectory is converted into

obstacles, O(q)
obsdet

which, when added to the static obstacles, O(q)
obs generate the three

successive ideal tracking lines.

4.5 Simulation Results

The f1tenth simulator environment is again used, following the same setup as pre-

sented in Chapter 3 but now for a new map and accounting for a simulated, detected

vehicle. Camera-based vehicle detection is not used here, so instead, the adversarial

vehicle pose is directly used as the measurement at each control step in the EKF, en-

abling vehicle tracking. Some relevant parameters in addition to those in Chapter 3

include lv=0.5 m, wv=0.4 m, σ2
x0

= σ2
y0

= 0.01 m2, σ2
θ0
=σ2

δ0
=( π

36
)2 rad2, σ2

v0
=0.05 m2

s2
,

Nmax
miss = 5 & nedge = 5. The successive tracking lines and optimized path are shown

in the simulated environment at two sample times (Figure 4.5). Here, dynamic ob-

stacle avoidance is clear, as the detected vehicle trajectory influences tracking line

generation, constructing reference and ensuing optimized paths that avoid collisions.
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(a) (b)

Figure 4.5: Local path planning in simulation at two samples, considering dynamic
obstacle avoidance. The detected vehicle shape is projected over its future
trajectory and used as obstacles for generating the successive tracking lines.

The detected vehicle trajectory is used sequentially, where the first half of the

estimated path is used to construct the first tracking line, with the second half being

used for the second line. Figure 4.5a shows the case of overtaking the detected vehicle

while maintaining a central, safe path. On the other hand, Figure 4.5b illustrates a

detected vehicle that crosses in front of the ego vehicle, forcing a maneuver behind

the detected vehicle’s predicted trajectory to avoid a collision.

Evaluation of the local planners in a full simulated test case is shown on a new

map (Map #2) in Figure 4.6 for Chapter 3’s STLMPC and TEB which only consider

obstacles statically here as well as Chapter 4’s STLMPC which considers detected

vehicle obstacles dynamically through prediction. TEB is chosen for evaluation as it is

the most effective exploration planner based on earlier results. The paths are mostly

the same until the detected vehicle is encountered, at which point static obstacle

STLMPC—and even more so, dynamic obstacle STLMPC—swerves opposite to the

detected vehicle’s motion to prevent collision. The positions of the vehicle using each
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planner are shown at an instance before the detected vehicle is avoided, where dynamic

obstacle STLMPC maintains the safest path in the presence of the adversarial vehicle.

Figure 4.6: Local planner trajectories for dynamic obstacle avoidance in simulated
Map #2. Darker color gradients for each path show time progression, while one
shared time sample before vehicle avoidance is indicated by a point on each path.

The performance of each approach in this simulation is quantified in Table 4.1.

Static & dynamic obstacle STLMPC perform comparably with marginal improve-

ments in the dynamic approach. In this wide track, TEB performs similarly, although

slightly inferior to the STLMPC approaches in terms of safety and control effort.

Table 4.1: Performance of local planners including STLMPC for dynamic obstacle
avoidance in simulated Map #2

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

TEB explore 1.491 2.081 0.064 0.008 1.472 0.034

STLMPC static 1.561 2.284 0.049 0.007 1.482 0.015

STLMPC dynamic 1.596 2.258 0.048 0.006 1.482 0.015
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4.6 Experimental Results

Vehicle detection, tracking and avoidance are now evaluated in real-world condi-

tions using Experiment #2’s layout (Appendix B). The use of RGB & depth camera

data and a YOLO-based model for detection presents multiple challenges to effective

dynamic obstacle avoidance through both noisy sensor data and imperfect vehicle

detection. Additionally, the fact that only the position is observable leads to dif-

ficulties in accurately tracking the orientation, steering angle and velocity states.

Thus, the covariance values used for initialization, as well as process and measure-

ment noises, are increased. Some values modified from use in simulation include

σ2
x0

= σ2
y0

= 0.05 m2, σ2
θ0
= σ2

δ0
= ( π

18
)2 rad2, & σ2

v0
= 0.15 m2

s2
.

Vehicle detection and tracking are assessed while the ego vehicle is stationary,

where the tracked trajectory is obtained & compared to the true path of the detected

vehicle (Figure 4.7).

Figure 4.7: True detected vehicle and EKF estimated trajectories in Experiment
#2. The ego vehicle is stationary at the given position while the detected vehicle

drives in a clockwise loop starting from the point (3.36, -4.34).
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The estimated trajectory is noisy, although closely accurate both in time and space

to the true path, owing to the direct observability from depth camera measurements.

Additionally, the unobservable states are evaluated over time (Figures 4.8a, 4.8b &

4.8c) as well as the determinant of the covariance matrix, illustrating confidence

(Figure 4.8d). The orientation and velocity states are closely tracked, although the

steering angle is estimated more poorly, where sharp changes in turning go undetected.

The confidence decreases for times of higher steering angles while sudden spikes occur

when detections are missed and the EKF correction step is forgone.

(a) (b)

(c) (d)

Figure 4.8: The true detected vehicle and tracked unobservable states are recorded
over time for (a) orientation, (b) steering angle & (c) velocity. The (d) covariance

matrix determinant is obtained from EKF tracking to quantify confidence over time.
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Dynamic obstacle/vehicle avoidance is tested in Experiment #2, where the per-

formance of STLMPC is recorded and provided by video2. STLMPC is evaluated

both with and without dynamic obstacle avoidance, while TEB-based exploration is

additionally assessed where obstacles are only considered statically. Each planner’s

trajectory is provided in Figure 4.9 alongside that of the detected vehicle, where the

TEB-based planner takes minimal action to avoid the adversarial vehicle. Here, Chap-

ter 3’s STLMPC swerves around the moving vehicle while this chapter’s STLMPC

makes the most significant maneuver to avoid the detected & tracked vehicle, ensuring

safety. At a shared time sample before the detected vehicle is avoided, it is evident

how dynamic obstacle STLMPC maintains the greatest clearance from the oncoming

detected vehicle.

Figure 4.9: Local planner trajectories for dynamic obstacle avoidance in Experiment
#2. Darker color gradients for each path show time progression, while one shared

time sample before vehicle avoidance is indicated by a point on each path.

2https://www.youtube.com/watch?v=uKgcKcMBytk
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The performance metrics for each tested planning algorithm are shown in Table

4.2. Dynamic obstacle STLMPC performs best in terms of obstacle proximity, with

static obstacle STLMPC performing similarly, differing only at the point of dynamic

vehicle avoidance. All planners exhibit similar control efforts, where the additional

vehicle avoidance maneuver leads to slightly larger average steering angle magnitudes

for the STLMPC methods.

Table 4.2: Performance of local planners including STLMPC for dynamic obstacle
avoidance in Experiment #2

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

TEB explore 0.487 0.846 0.181 0.050 1.249 0.142

STLMPC static 0.531 0.908 0.195 0.048 1.211 0.069

STLMPC dynamic 0.562 0.910 0.196 0.045 1.234 0.053

Computation times for each planner are given in Table 4.3, where each planner

achieves similar performance. Average computation times are low for all methods,

while static obstacle STLMPC achieves the lowest worst-case time. Dynamic obstacle

STLMPC has the poorest worst-case time, which occurs around the time of detected

vehicle avoidance, as the local path optimization becomes more difficult. This time

is still within the 100-ms control period, maintaining on-time vehicle actuation.

Table 4.3: Planning computation times for local planners including dynamic
obstacle STLMPC in Experiment #2

Local Planner
t̄frontier
(ms)

t̄global
(ms)

t̄local
(ms)

t̄comp

(ms)

max tfrontier
(ms)

max tglobal
(ms)

max tlocal
(ms)

max tcomp

(ms)

TEB explore 1.7 0.9 3.7 6.3 2.5 3.4 13.6 19.6

STLMPC static 6.4 12.7

STLMPC dynamic 6.8 42.3
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Chapter 5

Non-Uniform Velocity STLMPC

The aforementioned STLMPC algorithm assumes a fixed velocity over the future pre-

dicted trajectory and, moreover, over the course of the vehicle’s operation. This can be

restrictive and potentially problematic in certain navigation circumstances. By intro-

ducing an additional degree of freedom in the STLMPC optimization, more flexible

navigation can be achieved while meeting limitations to ensure safe, environment-

aware velocities. Higher, safe velocities are prioritized, which makes racing a natural

application of this new path planning algorithm.

This chapter presents the extension to STLMPC by first introducing the dif-

ferences in the approach. The modified objective function and additional velocity-

dependent constraints are then presented. Finally, analysis is conducted, showing

performance compared to the original STLMPC method in both simulation and ex-

perimental tests.
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5.1 Modifications to STLMPC

The non-uniform velocity STLMPC approach draws on the same framework as the

approach outlined in Chapter 3 (with extensions in Chapter 4), except now, adding

velocity considerations. The key differences compared to the original STLMPC pro-

cess are outlined as follows:

• The ego vehicle states & therefore optimization variables become [xi, yi, θi, δi, vi]

∀i ∈ {0, ..., nMPCkMPC − 1}, thereby denoting a total of 5nMPCkMPC optimiza-

tion variables.

• The objective function has an added velocity-dependent term that prioritizes

higher velocities over the future horizon.

• Existing constraints now use vi in place of v; the same follows for the ensuing

gradients.

• Limits on velocity magnitude as well as acceleration are implemented.

• A velocity limiting function is constructed that varies with the steering angle.

This ensures that during tighter turns, the vehicle speed is reduced, which

maintains safety, reducing the chances of skidding and, in hypothetical extreme

cases, rollover.

• Velocity is limited by proximity to nearby obstacles in the forward direction. A

function that performs bandpass filtering is applied to obstacles, where the soft

minimum distance to objects directly ahead is obtained. This minimum distance

is used for vehicle slowdown & braking to prevent collisions and preserve safe

speeds in tighter environments.
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• The current vehicle speed is obtained through the VESC and is used as v0,

which forms the initial state of the predicted trajectory through MPC.

• The optimization’s initial guess now requires a selection of initialized velocity

variables, which here are assumed constant for simplicity.

• The first free velocity variable from the optimization solution, v1, is applied to

the vehicle for navigation (vcmd) in tangent with the steering angle.

5.2 Augmented Objective Function

For racing applications specifically, fast navigation at higher velocities is promoted.

This can transfer to more general scenarios where the fastest speed is encouraged,

while still maintaining safety as defined by subsequent metrics. To encourage quicker

paths, an additional velocity-dependent term, Fv2(vi) is introduced into the STLMPC

objective function:

Fv2(vi) =

nMPCkMPC−1∑
i=0

1

v2i
(5.2.1)

This term takes a similar form to the squared sum of steering angles term (Equa-

tion 3.1.17) except now, higher velocities are encouraged, so the reciprocal of each

squared velocity is summed and minimized. This additional term, Fv2(vi) with weight

λv2 is added to the multi-term objective with Chapter 3’s quadratic form terms (Equa-

tion 3.1.11), where each is weighted according to its relative significance:

Fobjv(δi, vi) = λd2Fd2(δi, vi) + λḋ2Fḋ2(δi, vi) + λδ2Fδ2(δi) + λv2Fv2(vi) (5.2.2)

Here, only three weights are required if normalized to remove a parameter.
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The final objective function is denoted by Fobjv(δi, vi), which is a function of the

control inputs, both δi and vi. The weighting emphasis placed on the new velocity

term compared to the original STLMPC terms determines how much higher speeds

are prioritized at the cost of poorer tracking line following and higher steering angle

control effort. The pertinent gradients for the augmented objective function, which

differ from those of the original STLMPC approach, are detailed in Appendix A.2.

5.3 Additional Velocity-Based Constraints

While pursuing quicker velocity paths, the increased flexibility in the optimization

means behavior can be further tuned/constrained to meet specific criteria. The ex-

isting STLMPC constraints and corresponding gradients now use the varying vi (Ap-

pendix A.2) instead of the constant v. Limits on the velocity variables come from

both physical limits on vehicle dynamics as well as safety considerations. In terms

of limits on vehicle dynamics, the maximum (vmax) and minimum (vmin) bounds on

allowed velocities for the particular vehicle are used:

vmin ≤ vi ≤ vmax ∀i ∈ {0, ..., nMPCkMPC − 1} (5.3.1)

To prevent backwards motion, vmin is set to 0 but can be suitably increased to force

forward motion or decreased to allow reverse driving in a potential future extension

of STLMPC (although the singularity in the velocity-dependent objective term would

need to be considered).

Linear inequality constraints are developed from the maximum change in consecu-

tive applied velocities over the future MPC horizon. Here, the maximum acceleration

denoted by ∆vmax and similarly, deceleration denoted by −∆vmax are used to form
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the constraints, gv+,i & gv−,i according to:

−∆t∆vmax ≤ vi+1 − vi ≤ ∆t∆vmax ∀i ∈ {0, ..., nMPCkMPC − 2}

gv+,i = vi+1 − vi −∆t∆vmax, gv+,i ≤ 0 (5.3.2)

gv−,i = −vi+1 + vi −∆t∆vmax, gv−,i ≤ 0 (5.3.3)

The velocity applied to the vehicle in the last sample’s MPC optimization is given

by vlast. Just as with the steering angle, the DC motor for the velocity control input

takes time to transition to the next commanded velocity. The velocity command,

vcmd, is therefore applied a sample in advance to ensure that by the next control

step, it has reached this state per the predicted MPC path. So, the current initial

velocity is fixed by the last command (confirmed in practice through the VESC’s

updated reading), v0 = vlast, while the command applied at the current time is the

first optimized control input not fixed, vcmd = v1.

5.3.1 Turn-Rate-Dependent Velocity Limits

To ensure vehicle safety is preserved, especially when path planning at higher ve-

locities, constraints are introduced on velocity during turns. If turning with a high

instantaneous steering angle, |δi|, a high instantaneous velocity, vi, may cause the

vehicle to lose control, skid, or, in the worst case, rollover. Thus, a velocity-limiting

function, fvsteer , is introduced, which sets the maximum allowable velocity based on

the current steering angle magnitude. Instead of expressing magnitude as an abso-

lute value, a reciprocal quadratic steering angle expression is used to ensure smooth

gradients:

fvsteer,i =
vmax

1 + ( δi
δmax

)2
(5.3.4)
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This maximum allowable velocity function is shown in Figure 5.1 where the limit

decreases from vmax when the turning angle is zero to vmax

2
when the steering angle

magnitude equals |δmax|. Using fvsteer,i , inequality constraints (gvsteer,i) can be formu-

lated for each sampled velocity to ensure the safe maximum velocity function is not

exceeded for the current steering angle:

vi ≤ fvsteer,i ∀i ∈ {0, ..., nMPCkMPC − 1}

gvsteer,i = vi −
vmax

1 + ( δi
δmax

)2
, gvsteer,i ≤ 0 (5.3.5)

These additional nMPCkMPC inequality constraints are incorporated in the optimiza-

tion with analytical gradients as presented in Appendix A.2.

Figure 5.1: The velocity-limiting function, dependent on the current steering angle.
At zero turning angle, the maximum velocity is allowed; meanwhile, at the
maximum turning angle, only half the maximum velocity is permitted.
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5.3.2 Vehicle Slowdown via Obstacle Proximity

To handle tight spaces with collision risks in close proximity to the vehicle, velocity

is reduced to maintain control. Particularly, hazards in front of the agent present

immediate dangers where the vehicle must either swerve around or brake before col-

lision. A safe stopping distance is identified to slow the vehicle down and prevent

head-on collisions while considering the vehicle’s maximum deceleration. This allows

the vehicle to maneuver safely in crowded spaces while coming to a stop and avoiding

collisions in the worst case, if no safe path exists.

Using all obstacles in the vehicle base frame, the set is subsampled to maintain

computational tractability by only using obstacles with a separation distance exceed-

ing dsep to all other subsampled obstacles:

Oobssub = {(xobstot,i, yobstot,i) ∈ R2 | ∥(xobstot,i, yobstot,i)− (xobssub,j, yobssub,j)∥2 ≥ dsep}

(5.3.6)

where the subsampled set is expanded iteratively by considering all remaining obstacle

distances in the original set to the subsampled set (∀i ∈ {0, ..., Nobstot − 1} and for

expanding Nobssub , j ∈ {0, ..., Nobssub−1}). Here, dsep is set low but can be increased if

the number of subsampled obstacles remains too high. For each obstacle in the subset

{(xobssub,j, yobssub,j)}
Nobssub

−1

j=0 , the distance and heading angle between each predicted

vehicle state (xi, yi& θi ∀i ∈ {0, ..., nMPCkMPC − 1}) and obstacle is considered. The

distance between the vehicle at sample i and the jth obstacle is given by:

di,j =
√

(xi − xobssub,j)
2 + (yi − yobssub,j)

2 (5.3.7)
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where the heading angle in the base frame is:

θi,j = atan2(yobssub,j − yi, xobssub,j − xi) (5.3.8)

However, the predicted vehicle state has orientation in the base frame of θi, so the

obstacle heading angle is found with respect to this orientation instead:

θdiff,i,j = atan2(sin(θi,j − θi), cos(θi,j − θi)) (5.3.9)

where this equation wraps the angular difference correctly to the normalized range,

(−π, π]. To consider only hazardous obstacles ahead of the vehicle during each future

sample (Figure 5.2), a passband is constructed by −θbandmax ≤ θdiff,i,j ≤ θbandmax where

θbandmax is the maximum angular difference at which an obstacle is considered. The

distance from the vehicle to the nearest obstacle in the passband (dbandmin
) is used

in a velocity limiting function to slow the vehicle down when objects are in close

proximity, directly ahead.

Figure 5.2: Passband obstacles (red) with the minimum obstacle proximity, dbandmin
.

86



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

To consider only obstacles in the vehicle’s forward FOV, a smooth bandpass func-

tion is created (Figure 5.3a) which ensures analytical gradients can be found. This

function takes the form:

θband,i,j =
1

1 + e−sθ(θdiff,i,j+θbandmax )
− 1

1 + e−sθ(θdiff,i,j−θbandmax )
(5.3.10)

with transition steepness between the passband and stopband denoted by the param-

eter sθ. Obstacles with relative heading angles in the passband have θband,i,j ≈ 1 while

those in the stopband have θband,i,j ≈ 0. Now, a weighted softmin function (Figure

5.3c) is used to get the approximate minimum obstacle distance at sample i, dbandmin,i,

considering all obstacles in the passband:

dbandmin,i = −
1

βv

log(

Nobssub
−1∑

j=0

θband,i,j e
−βvdi,j) (5.3.11)

The sharpness of the approximation is controlled by βv, where higher values more

accurately model the true minimum but with poorer numerical stability. Using the

softmin function as a smooth approximation ensures continuous gradients and nu-

merical stability for the optimization solver.

The final velocity-limiting function (Figure 5.3b) based on obstacle proximity,

fvobs,i is represented by an exponential term, dependent on dbandmin,i:

fvobs,i = vmax(1− e−
dbandmin,i−dstop

αv ) (5.3.12)

Here, dstop denotes the obstacle distance where the vehicle is forced to stop, and the

decay rate, αv, controls how sharp the velocity limit decrease is as dbandmin,i is reduced.
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Finally, inequality constraints are constructed (gvobs,i) for each sample to limit the

velocity variables according to fvobs,i :

vi ≤ fvobs,i ∀i ∈ {0, ..., nMPCkMPC − 1}

gvobs,i = vi − vmax(1− e−
dbandmin,i−dstop

αv ), gvobs,i ≤ 0 (5.3.13)

where corresponding gradients are provided in Appendix A.2.

(a) (b)

(c)

Figure 5.3: Function shapes for: (a) the heading angle passband, (b) the
velocity-limiting function based on obstacle proximity & (c) the softmin function

assuming only two distances where both θband,i,0 and θband,i,1 = 1.
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5.4 Final Optimization Problem Formulation

The ensuing optimization problem makes the necessary alterations to Chapter 3’s

STLMPC optimization (Equation 3.1.28), thus formulating:

min
xj ,yj ,θj ,δj ,vj

λd2Fd2 + λḋ2Fḋ2 + λδ2Fδ2 + λv2Fv2

subject to gδ+,i ≤ 0, gδ−,i ≤ 0, gv+,i ≤ 0, gv−,i ≤ 0

gvsteer,j ≤ 0, gvobs,j ≤ 0

hx,i = 0, hy,i = 0, hθ,i = 0

− δmax ≤ δj ≤ δmax, vmin ≤ vj ≤ vmax

x0 = 0, y0 = 0, θ0 = 0, δ0 = δlast, v0 = vlast

∀i ∈ {0, ..., nMPCkMPC − 2}, ∀j ∈ {0, ..., nMPCkMPC − 1}

(5.4.1)

where all existing instances of v in STLMPC are replaced with the respective opti-

mization variable, vj. The initial guess for the optimization follows the framework

detailed in Algorithm 2 where vj replaces v and each velocity variable is initialized

to a constant value for simplicity, such as vlast or
vmax

2
.

With higher velocities promoted if safe, the solver will provide a solution with

a varying, non-constant velocity over the predicted path’s time horizon. As in the

original STMPC approach, SLSQP is used as the optimization solver and the op-

timized path is provided by [xj, yj, θj, δj, vj], j ∈ {0, ..., nMPCkMPC − 1}. The first

free steering angle and velocity variables, δ1& v1 are applied as δcmd& vcmd before the

process is repeated at the next control step (similar to the process in Algorithm 3).
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5.5 Simulation Results

This new formulation is now evaluated in simulation on a third map (Map #3) with

existing parameters repeated from prior simulations. Some parameter values specific

to this chapter include λv2 = 1, vmin =0 m/s, vmax =3 m/s, ∆vmax =2.5 m/s2,

θbandmax =
π
8
rad, sθ =200 rad−1, βv=10 m−1, dstop =0.8 m & αv =0.5 m. The nominal

velocity remains 1.5 m/s from previous simulations for the other tested methods

(Chapter 3’s STLMPC & exploration via TEB) as well as for this chapter’s initial

guess to maintain feasibility. However, the maximum allowed speed of 3 m/s allows

this chapter’s approach to achieve faster speeds when safe. For lower steering angle

magnitudes, higher velocities at the corresponding samples are allowed beyond vmax

2
.

The three local planner trajectories in Map #3 are shown in Figure 5.4, where

navigation occurs around the track clockwise. The variable-velocity STLMPC ap-

proach achieves a faster course time than the other methods while maintaining a

velocity that satisfies all safety constraints, thereby ensuring lower velocities during

sharp turns and vehicle slowdown before the course’s dead-end wall.

Figure 5.4: Local planner trajectories including for non-uniform velocity STLMPC
in simulated Map #3. Darker color gradients for each path show time progression,
where variable-velocity STLMPC completes the course significantly faster and is

therefore lighter throughout.
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Table 5.1: Performance of variable-velocity STLMPC & other local planners in
simulated Map #3

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

ttot

(s)

TEB explore 0.521 1.076 0.107 0.020 1.360 0.097 41.3

STLMPC const v 1.070 1.591 0.079 0.014 1.452 0.030 40.7

STLMPC vary v 0.957 1.589 0.101 0.017 2.288 0.357 26.2

The speed improvement is shown for variable-velocity STLMPC in Table 5.1 where

ttot indicates the total time to complete the track. Here, each STLMPC method

achieves similar safety improvements over TEB-based exploration, while this chapter’s

STLMPC has a higher velocity variance since it is now optimized and required to

quickly change to satisfy constraints. These rapid fluctuations are shown in Figure

5.5 where velocities above 1.5 m/s must satisfy the steering angle-based constraint,

which is only guaranteed for the other planners below 1.5 m/s. A gradual reduction

in velocity upon course completion is evident in this chapter’s approach.

Figure 5.5: Velocity control inputs for each local planner in simulation using Map
#3. Dotted bounds indicate the vehicle’s minimum and maximum allowed velocities.
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5.6 Experimental Results

Vehicle racing using velocity-varying STLMPC is tested in real-world circumstances

via the layout constructed in Experiment #3 (Appendix B). The track contains tight

corners, meaning a large, constant velocity will lead to crashes and thus, a varying

velocity is required, which reduces for turns and increases for straightaways. STLMPC

parameters follow from simulation except now, dsafe = 1.25 m & dstop = 0.5 m to

accommodate the tighter track. This track poses challenges to a number of the tested

local planners, where only a select few complete the course.

DWA- & MPC-based exploration proceed very slowly and repeatedly run into

obstacles in this setup; therefore, they are not included in the following results. Fur-

thermore, the PD approach fails to successfully navigate the first turn, even at low

speeds, crashing early on in the experiment. The TEB-based planner fails at high

speeds, but when the maximum permissible speed is reduced to 1 m/s, the vehicle

is able to complete the course, although it encounters collisions at two specific track

sections. Constant-velocity STLMPC at 3 m/s fails but succeeds at 1.5 m/s while

variable-velocity STLMPC uses vmin = 0 m/s & vmax = 3 m/s as in simulation.

The performance of variable-velocity STLMPC is shown by video1 as well as

among all planners that complete the course in Figure 5.6. Variable-velocity STLMPC

takes several corners tighter than constant-velocity STLMPC and sacrifices safety in

some spots to achieve higher speeds and a faster track time. Operating at faster speeds

means less reaction time and poorer maneuverability; however, adequate safety is

maintained by the variable-velocity formulation’s constraints, and a visibly safe path

is produced. The TEB-based planner completes the course but collides along the left

1https://www.youtube.com/watch?v=yKPFWdbwx-4
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track wall as well as at the top of the map due to the sharp turns within the course.

Figure 5.6: Local planner trajectories including for variable-velocity STLMPC in
Experiment #3. Darker color gradients for each path show time progression, where
variable-velocity STLMPC completes the course fastest and is therefore lightest.

The planners are evaluated further in Table 5.2, which presents proximity, control

input and total track time metrics. The minimum obstacle proximity for the TEB

planner is not applicable, as collision occurs, while variable-velocity STLMPC attains

poorer proximity metrics compared to constant-velocity STLMPC due to more ag-

gressive motion at higher speeds. However, velocity-varying STLMPC achieves the

lowest steering angle average magnitude and variance due to its direct, fast motion

on straight track sections. The variable-velocity method achieves the highest average

velocity & fastest track time by increasing speed when safe during navigation.
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Table 5.2: Performance of variable-velocity STLMPC & other local planners in
Experiment #3

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

ttot

(s)

TEB explore N/A 0.532 0.261 0.086 0.863 0.092 25.4

STLMPC const v 0.528 0.747 0.224 0.068 1.176 0.082 15.8

STLMPC vary v 0.403 0.720 0.196 0.057 1.456 0.331 12.8

Planning times are provided for each method (Table 5.3), where velocity-varying

STLMPC has significantly longer times compared to STLMPC with a constant veloc-

ity. The additional velocity variables and constraints introduce added dimensionality

to the optimization, increasing the complexity. Nonetheless, solutions are found reli-

ably within the control period, while in the worst case, the solver terminates grace-

fully after timing out at the 50-ms limit. TEB struggles with the course’s sharp turns,

where the worst-case computational time is obtained, exceeding the control period.

Table 5.3: Planning computation times for variable-velocity STLMPC & other local
planners in Experiment #3

Local Planner
t̄frontier
(ms)

t̄global
(ms)

t̄local
(ms)

t̄comp

(ms)

max tfrontier
(ms)

max tglobal
(ms)

max tlocal
(ms)

max tcomp

(ms)

TEB explore 4.5 1.0 8.6 14.1 14.6 2.5 102.4 119.6

STLMPC const v 6.7 18.9

STLMPC vary v 32.2 61.4

Each planner’s speed profile is detailed in Figure 5.7 over the course of Experiment

#3. Variable-velocity STLMPC attains speeds over 2 m/s on straight track sections,

while speeds approaching 3 m/s are not used, maintaining safety on the tight track.

Constant-velocity STLMPC fluctuates in speed in practice, additionally incorporating

a slowdown mechanism (external to the optimization) when nearing obstacles ahead.

Both methods maintain high respective speeds compared to TEB, which slows greatly
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when obstacle collision arises, taking significantly longer to complete the track.

Figure 5.7: Velocity control inputs for each local planner in Experiment #3. Dotted
bounds indicate the vehicle’s minimum and maximum allowed velocities.

Finally, the variable-velocity STLMPC algorithm’s speed profile is presented over

time against the dynamic bounds used in the optimization’s constraints (Figure 5.8).

Velocity is bounded here by both a function that limits speeds when making sharp

turns (Equation 5.3.5) as well as a slowdown function when approaching obstacles

directly ahead (Equation 5.3.13). The speed profile successfully satisfies these bounds

within the control limits while attaining the highest possible speeds for fast navigation.

Figure 5.8: Speed profile for velocity-varying STLMPC in Experiment #3. The
vehicle’s forward velocity is limited at each step within control limits by functions of
steering angle and forward obstacle proximity, used as constraints in optimization.
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Chapter 6

Quartic Bezier Model Predictive

Control

An alternative path planning method is proposed to STLMPC, entitled Quartic Bezier

Model Predictive Control (QBMPC). This approach removes the need for tracking

line generation & following, instead using potential fields from obstacles to achieve

the optimal fourth-order Bezier curve path. Constraints on vehicle dynamics are

incorporated directly into the curve’s shape while maintaining a minimum distance

to obstacles. The non-linear optimization proceeds for every control sample, attaining

smoother predicted paths in less computation time compared to STLMPC.

The chapter follows by highlighting the inspiration for the QBMPC algorithm’s

development and the construction of the new path planner using Bezier curves. The

algorithm is detailed, from steps that precede the optimization to the objective and

constraint function configurations, concluding with vehicle control using the predicted

path. Tests are then performed in both simulation and physical environments, com-

paring QBMPC performance to that of prior methods.
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6.1 Motivation & Bezier Curve Composition

Previous chapters have explored the use of the STLPMC algorithm and some ex-

tensions therein. By approaching the problem of local path planning in unknown

environments from a new perspective, the QBMPC method is created, which allows

for comparisons between the algorithms and subsequent discussion. One facet of the

STLMPC approach is that nMPC quadratic optimizations are performed before the

MPC optimization to acquire the successive reference tracking lines. These convex

optimizations are computationally fast & efficient; however, this new alternative al-

gorithm aims to achieve simultaneous planning and control using only the non-linear

MPC optimization.

Here, real-time local tracking lines aren’t generated, and instead, a fourth-order

Bezier curve provides the path, influenced by potential fields from obstacles. While

an initial MPC optimization guess is formulated using successive safest local angular

gap headings, no predefined path is followed, which lends additional flexibility to the

resulting solution. Local optima are sufficient using the potential fields approach as

the non-convex solver provides safe, high-performing local solutions with reasonable

initial guesses near the global optimum.

Using a Bezier curve provides a steep decrease in optimization variables, as now

only the curve’s control points determine the shape. For a Bezier curve of order n,

only n + 1 control points exist, compared to the 5nMPCkMPC variables used for the

discretized path in STLMPC, assuming a non-constant velocity. As a result, the

average optimization time is lower for QBMPC, which enables faster control rates

and thus, even more responsive vehicle behavior.

Finally, the use of a Bezier curve encourages smoother paths with more gradual

97



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

changes in turning angle. This is in contrast to the STLMPC approach, where the

objective was to closely track disjoint, piecewise linear reference paths. These factors,

therefore, motivate the discussion & formulation of the QBMPC algorithm as a new

technique for local path planning in unknown environments.

For an n-degree Bezier curve, the general parametric formula follows as:

B(t) =
n∑

i=0

(
n

i

)
(1− t)n−itiPi, t ∈ [0, 1] (6.1.1)

where Pi = [xi, yi]
T is the curve’s ith control point and t denotes the parameter which

moves a point along the Bezier curve from P0 at t = 0 to Pn at t = 1. The curve

is deformed towards the intermediate control points according to the Bernstein basis

and is always contained entirely inside the convex hull of its control points. Here,

t does not denote arc length but instead time on a fixed unit scale, which for the

purposes of QBMPC is extended to describe motion over a general time, tξ.

In the ensuing algorithm, a fourth-order (n = 4) Bezier curve is used:

x(t) = (1− t)4x0 + 4(1− t)3tx1 + 6(1− t)2t2x2 + 4(1− t)t3x3 + t4x4, t ∈ [0, 1]

(6.1.2)

y(t) = (1− t)4y0 + 4(1− t)3ty1 + 6(1− t)2t2y2 + 4(1− t)t3y3 + t4y4, t ∈ [0, 1]

(6.1.3)

which provides path flexibility while not overfitting and introducing unnecessary path

fluctuations. However, the degrees of freedom in this curve are reduced due to initial

starting conditions, and thus the optimization variables are reduced from 2(n + 1).

First off, the original position (x0, y0) = (0, 0) is fixed in the moving vehicle base
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frame for each optimization. Additionally, using the kinematic bicycle model, the

initial velocity is fixed in the +x direction (θ0 = 0) and so x′(0) = vlast and y′(0) = 0.

Already considering (x0, y0) = (0, 0), this means:

x′(t) = (−16t3 + 36t2 − 24t+ 4)x1+(24t3 − 36t2 + 12t)x2+(−16t3 + 12t2)x3+4t3x4

(6.1.4)

y′(t) = (−16t3 + 36t2 − 24t+ 4)y1+(24t3 − 36t2 + 12t)y2+(−16t3 + 12t2)y3+4t3y4

(6.1.5)

So, x′(0) = 4x1 = vlast & y′(0) = 4y1 = 0 meaning that P1 is fixed in the unit

time scale case as (x1, y1) = (vlast
4

, 0). However, when parameterizing the curve for

t ∈ [0, 1] but over a true, scaled timeframe τ ∈ [0, tξ], now t = τ
tξ
. Thus, the actual

physical velocity vector is represented by [dx
dτ
, dy
dτ
]T = [dx

dt
· dt
dτ
, dy
dt
· dt
dτ
]T where at t = 0,dx

dt
· dt
dτ

dy
dt
· dt
dτ


∣∣∣∣∣∣∣
τ=0

=

vlast
0

 =

4x1 · 1
tξ

4y1 · 1
tξ

 which means in the general case, the second

fixed control point is (x1, y1) = (
vlasttξ

4
, 0).

Furthermore, the initial steering angle, δlast, is fixed, removing another degree of

freedom. The curvature of a Bezier curve over time, κ(t), describes the instantaneous

sharpness of the curve’s turn with respect to arc length (independent of choice of tξ):

κ(t) =
x′(t)y′′(t)− y′(t)x′′(t)

((x′(t))2 + (y′(t))2)3/2
(6.1.6)

where positive curvatures denote counterclockwise turns and negative values corre-

spond to clockwise rotations. As required for calculating the curvature, the second

derivatives of the fourth-order Bezier curve (where y1 = 0) are given as:

99



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

x′′(t) = (−48t2 + 72t− 24)x1 + (72t2 − 72t+ 12)x2 + (−48t2 + 24t)x3 + 12t2x4

(6.1.7)

y′′(t) = (72t2 − 72t+ 12)y2 + (−48t2 + 24t)y3 + 12t2y4 (6.1.8)

Now, the curvature is expressed with respect to time by considering the mag-

nitude of the variable velocity, v(t) = ∥B′(t)∥2 to obtain the orientation deriva-

tive, θ̇(t) = κ(t) · ∥B′(t)∥2. From the kinematic bicycle model (Equation 3.1.23),

θ̇(t) = v(t)
l
tan(δ(t)). Comparing the equations yields:

κ(t) =
tan(δ(t))

l
(6.1.9)

where for t = 0 & δ(0) = δlast, the initial curvature becomes κ(0) = 48x1y2
64x3

1
= 3y2

4x2
1
.

Using the fixed value of x1 =
vlasttξ

4
, now y2 =

4x2
1 tan(δlast)

3l
based on initial conditions.

Therefore, a general nth order curve is reduced to 2(n + 1) − 5 variables, mean-

ing the quartic Bezier curve used in the MPC optimization has only five variables:

x2, x3, y3, x4& y4 (Figure 6.1).

Figure 6.1: Four potential Bezier curve paths (solid) and their respective control
polygons (dotted) with fixed P0,P1 & y2 according to δlast and vlast.
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6.2 Initialization

The initial guess for the quartic Bezier curve control points, used in the MPC opti-

mization, is derived from two successive safest angular gap headings. Consequently,

the approach outlined in Algorithm 1 and Equation 3.1.1 is used as was done in

Chapter 3 to get the left and right obstacle clusters for the reference tracking line

optimization. Now, though, θhead is directly used in the place of the tracking line

for the initial path guess, and no quadratic optimizations are conducted. Initially,

[xstart,0, ystart,0]
T = [0, 0]T and instead of Equation 3.1.7, now:

[xend,i, yend,i]
T =


pstart,i +

3
n
vlasttξ · [cos(θhead,i), sin(θhead,i)]T if i = 0

pstart,i +
1
n
vlasttξ · [cos(θhead,i), sin(θhead,i)]T if i > 0

(6.2.1)

where i ∈ {0, ..., n− 3} since the first three control points are at least partially fixed.

Thus, the first free control point, pend,0 is determined by proceeding along the

heading direction for 3
n
of the total horizon time, tξ, compared to 1

n
for all subsequent

control point guesses. For the next heading angle, pstart,i+1 = pend,i and the process

repeats with the transformation of all obstacles to the new frame (similar to Equation

3.1.8 but now using θhead,i instead of θtrack,i). Each safest gap heading is converted

back to the base frame through θhead,i ← θhead,i + θhead,i−1 before Equation 6.2.1 to

acquire the control points in the current vehicle frame. For the fourth-order Bezier

curve, the initial control point guesses are:

x2 =
2

3
xend,0, (x3, y3) = (xend,0, yend,0), (x4, y4) = (xend,1, yend,1) (6.2.2)

This provides an initial path in the direction of the safest successive angular gaps

(Figure 6.2) as in STLMPC and is extendable to curves of order n > 4 as well.
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Using AMCL-based localization and dynamic obstacles operates exactly as in

STLMPC, where the obstacle set is extended by the map and tracked vehicle points.

The only difference is that the base frame obstacle set contains the entire trajectories

of tracked vehicles until time tξ, as opposed to successive timeframe segments that

were used for tracking line generation (Equation 4.4.2). Therefore, the trajectory over

the full time horizon is used to find each successive safest angular gap, as well as in

the subsampled obstacle set used in the QBMPC objective and constraint functions.

Figure 6.2: The initial QBMPC guess of control points and corresponding curve
(green). Safest heading angles with respect to the base frame +x axis dictate the

initial guess for x2, x3, y3, x4 & y4 while x0, y0, x1, y1 & y2 are fixed.

6.3 Potential Field-Based Objective

The optimal quartic Bezier curve is attained by minimizing a potential field function

that discourages close proximities to obstacles over the full trajectory, thus main-

taining a safe path. This method requires no reference path to follow and responds

to unknown environments with strong repulsive forces pushing the path from obsta-

cles towards safe regions through the objective’s control point gradients. Through
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a strategic initial guess generated as described, the Bezier curve path explicitly pro-

motes high local obstacle clearance like in STLMPC but without a tracking reference.

The velocity over the predicted path is allowed to vary, providing flexibility, but

higher velocities aren’t prioritized like in Chapter 5. Nonetheless, incorporating a

velocity-based objective term could be a future extension of QBMPC for racing ap-

plications. There is also no objective term on control effort as in STLMPC; however,

the Bezier curve path inherently generates smooth, gradually turning paths by design.

To gauge obstacle proximity over the full duration of the curve, the path is dis-

cretized evenly in time, t (and effectively τ). Here, the points on the Bezier curve,

(xξ,i, yξ,i) are:

(xξ,i, yξ,i) = (x(ti), y(ti)), ti =
i

nξ − 1
, i ∈ {0, ..., nξ − 1} (6.3.1)

for a total of nξ discretized points, which depend on the optimization variables:

the control points. Now, the potential field function is developed, which consid-

ers subsampled obstacles and all nξ discretized points. The obstacle subsampling

follows the same process as described in Equation 5.3.6 for all detected, map and

tracked vehicle points in the total obstacle set. This obtains the obstacle subset

Oobssub = {(xobssub,j, yobssub,j)}
Nobssub

−1

j=0 where each obstacle enacts a potential field

upon the Bezier curve path.

The potential field-based objective function is thus formulated as a sum of the

repulsive forces from each subsampled obstacle to each discretized Bezier curve point:

Fobjξ(x2, x3, y3, x4, y4) =

nξ−1∑
i=0

Nobssub
−1∑

j=0

1

d2ξ,i,j
e−αξd

2
ξ,i,j (6.3.2)
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with gradients in Appendix A.3 where each squared curve-to-obstacle proximity is

given as:

d2ξ,i,j = (xξ,i − xobssub,j)
2 + (yξ,i − yobssub,j)

2 (6.3.3)

Instead of a standard inverse-square relationship, an exponentially decaying weight

for higher squared distances is incorporated in each summed term, further reducing

the effect of numerous far obstacles in favor of the effect of one obstacle in close

proximity. This prioritizes the nearest obstacles the most in the cost, such that the

optimal path avoids close proximities over the predicted horizon’s full duration. Here,

αξ affects how sharply the weight decays for higher squared distances, controlling the

degree to which closer proximities dominate in the objective. The selection of three

αξ values and their effect on the objective cost for a single curve-to-obstacle distance

is shown in Figure 6.3.

6.4 Constraints on the Bezier Curve Profile

6.4.1 Velocity-Embedded Curve Constraints

In order to restrict the Bezier curve path to be feasible, vehicle dynamics are incor-

porated into the curve shape. The first limits on vehicle behavior come from the

minimum (vξ,min) & maximum (vξ,max) allowed velocities, which are incorporated for

a general path time horizon, tξ. A positive minimum velocity is necessary in this for-

mulation to prevent unnecessary stopping under normal operation, as the objective

does not inherently encourage higher velocities like in Chapter 5. In the event that

there is no safe route and path planning fails, the vehicle can slow to a stop based on

the predefined dstop to prevent collisions.
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Figure 6.3: The potential field function for a single curve-to-obstacle proximity with
three weight decay factors, αξ,0 = 0 < αξ,1 < αξ,2. Fscale denotes a symbolic scale for
the objective function, dmax is the maximum range from earlier chapters and dξ,min

is the minimum allowed proximity, used as a constraint.

The velocity of the Bezier curve, τ ∈ [0, tξ] is denoted by the derivative’s magni-

tude:

v(τ) = ∥dB
dt
· dt
dτ
∥2 =

√
(
x′(t)

tξ
)2 + (

y′(t)

tξ
)2 (6.4.1)

with the first derivatives of the Bezier curve given by Equations 6.1.4 & 6.1.5. Again,

the curve is discretized by vξ,i = v(ti) = ∥B′(ti)∥2 for ti =
i

nξ−1
, i ∈ {0, ..., nξ − 1}.

Taking the squared velocity for simplification, the velocity at each discretized point

is constrained between the minimum and maximum:

v2ξ,min ≤ (v(τ))2 ≤ v2ξ,max where for i ∈ {0, ..., nξ − 1},
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gv+ξ ,i = (x′(ti))
2 + (y′(ti))

2 − t2ξv
2
ξ,max, gv+ξ ,i ≤ 0 (6.4.2)

gv−ξ ,i = −(x
′(ti))

2 − (y′(ti))
2 + t2ξv

2
ξ,min, gv−ξ ,i ≤ 0 (6.4.3)

By choosing a sufficiently high nξ for the Bezier curve order n, satisfying the con-

straints for the discretized points means the constraints are effectively satisfied for

the entire curve. Sampling evenly in time ensures that all regions of the curve over

the future horizon are evaluated and made to satisfy the limits on vehicle dynamics.

This discretization provides tractable closed-form constraints for maintaining a viable

path, which depend on the placement of the quartic Bezier curve’s control points.

Similarly, the acceleration at each discretized point is evaluated where the accel-

eration in the direction of motion of the Bezier curve is given by:

a(t) =
B′(t) ·B′′(t)

∥B′(t)∥2
=

x′(t)x′′(t) + y′(t)y′′(t)√
(x′(t))2 + (y′(t))2

(6.4.4)

This expression projects the acceleration vector, B′′(t) onto the normalized velocity

vector, B′(t)
∥B′(t)∥2 to determine the acceleration or deceleration in the forward direction,

which is constrained to the feasible range. By taking x′(τ) = x′(t) · dt
dτ

= x′(t)
tξ

and

x′′(τ) = x′′(t)
tξ
· dt
dτ

= x′′(t)
t2ξ

(similarly for y), acceleration for general time, τ ∈ [0, tξ] is:

a(τ) =

1
t3ξ
(x′(t)x′′(t) + y′(t)y′′(t))

1
tξ

√
(x′(t))2 + (y′(t))2

=
1

t2ξ
a(t) (6.4.5)

Now, for the maximum acceleration, aξ,max and deceleration, −aξ,max limits, the

squared forward acceleration is constrained for each discretized point via aξ,i = a(ti).

This ensures that both positive and negative forward accelerations are bounded in

magnitude by |aξ,max| in one constraint for each of the nξ points:
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−aξ,max ≤ a(τ) ≤ aξ,max → (a(τ))2 ≤ a2ξ,max where for i ∈ {0, ..., nξ − 1},

gaξ,i =
(x′(ti)x

′′(ti) + y′(ti)y
′′(ti))

2

(x′(ti))2 + (y′(ti))2
− t4ξa

2
ξ,max, gaξ,i ≤ 0 (6.4.6)

Therefore, the quartic Bezier curve is constrained to the vehicle’s permissible velocity

dynamics in a general formulation for any time horizon length, tξ (corresponding

analytical gradients are in Appendix A.3).

6.4.2 Curvature-Embedded Curve Constraints

Additional path restrictions are influenced by limitations on steering angle, which

translate to the curvature of the Bezier curve. As in STLMPC, the steering angle

is constrained by inequalities on both magnitude and rate of change. The path

curvature, which depends on the optimization variables (control points), is given by

Equation 6.1.6 (and is independent of the choice of tξ) while the relation to steering

angle is provided in Equation 6.1.9.

Invoking δξ,max and −δξ,max in the place of δ(t) yields the maximum and minimum

allowed curvature along the path, respectively. By ensuring the curvature at each

discretized point, κξ,i = κ(ti) is within the tolerated range, the curvature constraints

are created:

tan(−δξ,max)

l
≤ κ(τ) = κ(t) ≤ tan(δξ,max)

l
where for i ∈ {0, ..., nξ − 1},

gκ+
ξ ,i =

x′(ti)y
′′(ti)− y′(ti)x

′′(ti)

((x′(ti))2 + (y′(ti))2)3/2
− tan(δξ,max)

l
, gκ+

ξ ,i ≤ 0 (6.4.7)

gκ−
ξ ,i = −

x′(ti)y
′′(ti)− y′(ti)x

′′(ti)

((x′(ti))2 + (y′(ti))2)3/2
− tan(δξ,max)

l
, gκ−

ξ ,i ≤ 0 (6.4.8)

The limit on the steering angle’s rate of change can be expressed by ensuring
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δ′(t) is within the limits of −δ′ξ,max and δ′ξ,max. Expressing the curvature through the

steering angle, δ(t) = tan−1(lκ(t)), the derivative becomes:

δ′(t) =
lκ′(t)

1 + (lκ(t))2
(6.4.9)

where, applying the quotient rule to Equation 6.1.6, the curvature derivative κ′(t) is:

κ′(t) =
(x′y′′′ − y′x′′′)((x′)2 + (y′)2)− 3(x′x′′ + y′y′′)(x′y′′ − y′x′′)

((x′)2 + (y′)2)5/2
(6.4.10)

omitting functional notation for the sake of brevity. The third derivatives are now

required, obtained by differentiating Equations 6.1.7 and 6.1.8:

x′′′(t) = (−96t+ 72)x1 + (144t− 72)x2 + (−96t+ 24)x3 + 24tx4 (6.4.11)

y′′′(t) = (144t− 72)y2 + (−96t+ 24)y3 + 24ty4 (6.4.12)

The steering angle derivative is converted to general time, τ where κ(τ) = κ(t) but

using x′′′(τ) = x′′′(t)
t2ξ
· dt
dτ

= x′′′(t)
t3ξ

(similarly for y) and the appropriate conversions for

the first and second derivatives, Equation 6.4.10 becomes κ′(τ) = 1
tξ
κ′(t). Therefore,

δ′(τ) = 1
tξ
δ′(t) and the curvature derivative constraints can now be formulated at each

of the nξ discretized curve points (where κ′
ξ,i = κ′(ti)):

−δ′ξ,max ≤ δ′(τ) ≤ δ′ξ,max where for i ∈ {0, ..., nξ − 1},

gκ′+
ξ ,i =

lκ′(ti)

1 + (lκ(ti))2
− tξδ

′
ξ,max, gκ′+

ξ ,i ≤ 0 (6.4.13)

gκ′−
ξ ,i = −

lκ′(ti)

1 + (lκ(ti))2
− tξδ

′
ξ,max, gκ′−

ξ ,i ≤ 0 (6.4.14)

These curvature constraints (gradients included in Appendix A.3) are generalized to

an arbitrary timescale, tξ, and complete the vehicle dynamics-based quartic Bezier

curve restrictions.
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6.4.3 Minimum Curve-to-Obstacle Proximity Limit

The final set of constraints ensures a minimum safe obstacle clearance, dξ,min, is main-

tained through the duration of the predicted path. While the objective encourages

higher distances to nearby obstacles through potential field forces, it doesn’t explic-

itly prohibit a single low curve-to-obstacle distance if the rest of the curve achieves

a low cost function. In order to prevent collisions and ensure that only safe paths

are selected, the minimum obstacle proximity constraint and its gradients shape the

control points such that the curve maintains at least the buffer distance, dξ,min, to

the nearest obstacle.

To obtain each curve-to-obstacle distance, the curve is discretized and the ob-

stacles are subsampled as in the objective (Equation 6.3.2). The minimum obstacle

distance for each discretized curve point is obtained through a softmin function, sim-

ilar to that used in Equation 5.3.11 but with no weighting factors on each term:

dξ,min,i = −
1

βξ

log(

Nobssub
−1∑

j=0

e−βξdξ,i,j), i ∈ {0, ..., nξ − 1} (6.4.15)

where βξ serves as the approximation sharpness in place of Equation 5.3.11’s βv and

the individual curve-to-obstacle distances dξ,i,j are from the square root of Equation

6.3.3. This discretization and subsampling approximates the full curve-to-obstacle

minimum distance expression (not closed-form) in a computationally tractable form.

The smooth minimum function ensures gradients (Appendix A.3) can be found so

the optimization solver can move the control points (and thus the curve) away from

obstacles in close proximity.

The softmin distance is finally compared to the minimum permissible distance in
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the curve-to-obstacle proximity inequality constraints:

dξ,min ≤ dξ,min,i, i ∈ {0, ..., nξ − 1}

gdξ,i =
1

βξ

log(

Nobssub
−1∑

j=0

e−βξdξ,i,j) + dξ,min, gdξ,i ≤ 0 (6.4.16)

This set of constraints is sampled evenly in t & τ and is the same, irrespective of the

choice of tξ. The planned quartic Bezier curve path is shown in Figure 6.4, sampled in

both t & τ , which maintains the minimum proximity, dξ,min to any nearby obstacles.

When nξ is sufficiently high, satisfying the minimum proximity requirement for each

discretized point effectively satisfies the condition for the full curve.

Figure 6.4: Quartic Bezier curve path (green) and discretized curve points in both
the Bezier curve parameter, t, and physical time, τ , for a low curve point count for
illustration purposes, nξ = 5. The subsampled obstacles all exceed the minimum
distance, dξ,min, to both the curve (black, solid bounds) and each discretized curve

point (dashed, circle bounds).
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6.5 Culminating Optimization & Actuation

After completing the QBMPC optimization, the predicted path is obtained through

the fixed control point coordinates, (x0, y0), (x1, y1) & y2 as well as the optimized

control point coordinates, x2, (x3, y3) & (x4, y4). In practice, the control points are

bounded in the optimization by −dmax ≤ x2, x3, y3, x4, y4 ≤ dmax to confirm the

predicted trajectory stays within the maximum look-ahead range used for all local

obstacles in Oobssub . The final QBMPC optimization problem is thereby described as:

min
x2,x3,y3,x4,y4

Fobjξ

subject to gv+ξ ,i ≤ 0, gv−ξ ,i ≤ 0, gaξ,i ≤ 0, gdξ,i ≤ 0

gκ+
ξ ,i ≤ 0, gκ−

ξ ,i ≤ 0, gκ′+
ξ ,i ≤ 0, gκ′−

ξ ,i ≤ 0

− dmax ≤ x2, x3, y3, x4, y4 ≤ dmax

x0 = 0, y0 = 0, x1 =
vlasttξ
4

, y1 = 0, y2 =
4x2

1 tan(δlast)

3l

∀i ∈ {0, ..., nξ − 1}

(6.5.1)

Now, the final control points reflect the quartic Bezier curve optimization solution

for local path planning. In order to actuate the vehicle along the path, the steer-

ing angle and velocity commands must be extracted from the curve upon successful

termination of the optimization.

Since the Bezier curve’s initial conditions (as in STLMPC) correspond to δlast and

vlast, the control inputs according to the curve at the next control step time, ∆t, are

found and applied at the current time. This ensures the steering angle and velocity

transition over the nonzero required time to the values at the next timestep, given by

the predicted path (this control input scheme is carried over from earlier chapters).
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Converting the physical time τstep = ∆t to the normalized curve parameter tstep =
∆t
tξ

ensures the Bezier curve is evaluated at the correct scaled point.

Now, ascertaining the curvature, κ(t) at tstep (where κ(τ) = κ(t)) yields the desired

steering angle command through the relationship described in Equation 6.1.9:

δcmd = δ(τstep) = tan−1(lκ(tstep)) (6.5.2)

For the velocity command, Equation 6.4.1 is used to obtain the physical velocity at

τstep through the Bezier curve velocity and scaled time horizon parameter, tξ:

vcmd = v(τstep) =
1

tξ

√
(x′(tstep))2 + (y′(tstep))2 (6.5.3)

The resulting control input pair (δcmd, vcmd) provides vehicle actuation to achieve

the predicted Bezier curve path during navigation. The physical actuation transition

from (δlast, vlast) to (δcmd, vcmd) over ∆t matches the Bezier curve’s smooth transition

over time in both curvature and velocity. The QBMPC approach continues for each

control step to attain real-time local path planning in unknown environments.

6.6 Simulation Results

The QBMPCmethod is now contrasted to Chapter 5’s non-uniform velocity STLMPC

as well as TEB-based exploration in a fourth simulation environment (Map #4).

Here, QBMPC-related parameters include tξ =2 s, nξ =10, αξ =5.5m−2, βξ =10m−1,

vξ,min =1.5 m/s, vξ,max =3 m/s & dξ,min =0.3 m. The QBMPC optimized path is

provided at two sample times with the governing control points subject to potential

fields from nearby obstacles (Figure 6.5).

112



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

(a) (b)

Figure 6.5: Resulting trajectory and associated control points after optimization for
QBMPC at two separate time samples. Each optimized curve is smooth and far

from obstacles due to acting potential field forces.

A high minimum velocity is incorporated as QBMPC does not prioritize higher

velocities, and a minimum velocity of 0 m/s causes the planner to slow to a stop. The

choice of minimum and maximum velocity allows for comparison against Chapter

5’s approach and TEB-based exploration with a relatively constant 1.5 m/s speed.

Steering angle-based velocity constraints are guaranteed to be satisfied via TEB at

this speed, while instead of directly considering these constraints, QBMPC achieves

smooth, safe curves for trajectories inherently. The performance of each of these

planners on Map #4 is illustrated in Table 6.1.

Table 6.1: Performance of QBMPC & other local planners in simulated Map #4

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

ttot

(s)

TEB explore 0.469 0.943 0.109 0.021 1.476 0.014 44.6

STLMPC 0.618 1.115 0.111 0.022 2.397 0.208 27.9

QBMPC 0.819 1.254 0.078 0.013 1.742 0.184 43.1
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Once again, STLMPC outperforms TEB-based exploration while also achieving

the fastest course time. QBMPC achieves a slower time as it does not prioritize speed

but shows value through improved safety metrics compared to STLMPC. Addition-

ally, control effort is lower, owing to the Bezier curve’s smoothness, where variances

in both steering angle and velocity control inputs are lower than in STLMPC. This

is further shown in Figure 6.6 where QBMPC attains a safer & smoother albeit

slower path than STLMPC. Thus, each method presents its own advantages and use

cases, while minor adjustments in each formulation can raise new possibilities, such

as QBMPC in racing contexts.

Figure 6.6: STLMPC, QBMPC & TEB-based exploration local planners in
simulated Map #4. Darker color gradients for each path show time progression
(proceeding counterclockwise around the track) where STLMPC completes the

course fastest and is thus lighter throughout.

The safety advantages of the QBMPC approach are further visualized in Figure

6.7. QBMPC reliably maintains the highest minimum obstacle proximity of the ap-

proaches, preserving a clearance consistently exceeding 1 m even in narrower sections
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and around corners. All three approaches maintain obstacle clearances above the

minimum allowed amount, which is used as a constraint in the QBMPC formulation.

Figure 6.7: Minimum obstacle proximity at each sample time (dmin,k̃) for the three
tested local planners in simulation using Map #4. The dotted lower bound indicates

the minimum allowed obstacle proximity in QBMPC (dξ,min).

6.7 Experimental Results

Using the MacAEV in two new experiment setups (Appendix B), QBMPC is evalu-

ated both in a static environment (Experiment #4) and in a dynamic environment

with an adversarial, detected vehicle (Experiment #5). Carrying over parameters

used in Chapter 5’s experiment for variable-velocity STLMPC, QBMPC maintains

the values used in simulation except with a shorter prediction time horizon, tξ = 1 s.

All aforementioned exploration-based planners are contrasted in Experiment #4 as

well as the non-predictive, single tracking line PD approach.

Operation of the QBMPC algorithm in Experiment #4 is recorded1 and the tra-

jectories obtained by each approach are documented in Figure 6.8. In this experiment,

1https://www.youtube.com/watch?v=3j0edNW95D0
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Chapter 5’s STLMPC achieves a significantly faster course time than all other meth-

ods, while QBMPC attains a smooth path that best follows the center of the track.

Here, exploration-based planners have more path fluctuations, where corners are cut

the most by DWA, risking collision. The PD method struggles at the widest section

of the track, failing to predict the turn and overshooting, narrowly avoiding collision.

Figure 6.8: Local planner trajectories including for QBMPC in Experiment #4.
Darker color gradients for each path show time progression, where variable-velocity

STLMPC completes the course fastest and is therefore lightest.

Additionally, these results are displayed in Table 6.2, proving the value of variable-

velocity STLMPC in achieving faster navigation and QBMPC in attaining safer,

smoother travel. The DWA and MPC planners complete the track with very slow

times while not excelling in other metrics compared to the alternative planners. PD &

TEB perform comparably, where PD has a poorer minimum obstacle proximity but a

better average proximity. Across the board, STLMPC & QBMPC perform best with

high obstacle clearance throughout, while STLMPC attains the lowest course time

and QBMPC is the second fastest while expending low control effort.
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Table 6.2: Performance of QBMPC & other local planners in Experiment #4

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

ttot

(s)

DWA explore 0.219 0.604 0.228 0.072 0.499 0.009 30.8

TEB explore 0.487 0.715 0.298 0.104 0.948 0.214 19.2

MPC explore 0.512 0.745 0.236 0.074 0.492 0.001 35.5

PD 0.388 0.758 0.242 0.079 1.123 0.142 20.5

STLMPC 0.469 0.781 0.235 0.070 1.693 0.296 12.0

QBMPC 0.596 0.861 0.222 0.067 1.284 0.077 17.9

Computation times for each algorithm (Table 6.3) indicate the significant improve-

ment yielded by QBMPC over STLMPC. QBMPC substantially reduces the number

of optimization variables, opting for a smooth path instead of a more complex, dis-

cretized trajectory. This produces a far lower planning time than STLMPC, both

on average and in the worst case when considering a variable velocity (Figure 6.9).

QBMPC performs on the scale of the simple PD method, while STLMPC is com-

parable to the exploration planners, using graceful optimization timeout to maintain

real-time control. Reducing the prediction time horizon (and thus optimization vari-

ables) via nMPC & kMPC improves planning time at the cost of shorter look-ahead.

Table 6.3: Planning times for QBMPC & other local planners in Experiment #4

Local Planner
t̄frontier
(ms)

t̄global
(ms)

t̄local
(ms)

t̄comp

(ms)

max tfrontier
(ms)

max tglobal
(ms)

max tlocal
(ms)

max tcomp

(ms)

DWA explore 3.1 0.8 25.1 29.0 7.1 1.8 42.5 51.4

TEB explore 2.9 1.0 4.8 8.7 5.8 4.5 16.3 26.6

MPC explore 2.8 0.8 20.4 24.1 8.5 1.8 147.0 157.3

PD 0.5 8.0

STLMPC 33.7 55.5

QBMPC 1.2 2.3
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Figure 6.9: Planning computation times for STLMPC & QBMPC at each timestep
over the full navigation duration in Experiment #4. The dotted upper bound

indicates the optimization timeout limit, set to 50 ms.

Next, the QBMPC algorithm is evaluated in Experiment #5 alongside Chapter

5’s STLMPC & TEB, the highest performing exploration planner. Dynamic vehicle

avoidance is achieved by QBMPC, illustrated by video2, while each local planner’s

performance is quantified via Table 6.4. Again, QBMPC maintains the largest obsta-

cle clearance while also expending low control effort despite the maneuvers enacted to

maintain safety, such as avoiding the detected vehicle. STLMPC is considerably faster

than the other methods, attaining higher speeds and larger velocity fluctuations.

Table 6.4: Performance of local planners including QBMPC for dynamic obstacle
avoidance in Experiment #5

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

ttot

(s)

TEB explore 0.242 0.778 0.205 0.046 1.201 0.158 15.4

STLMPC 0.371 0.807 0.167 0.036 1.743 0.602 9.9

QBMPC 0.467 0.895 0.184 0.044 1.328 0.155 13.8

2https://www.youtube.com/watch?v=m4K5vlIFxEA

118

https://www.youtube.com/watch?v=m4K5vlIFxEA


M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

Each planner’s trajectory is given in Figure 6.10 along with the detected vehicle

path, which poses an immediate danger, forcing collision avoidance. Both STLMPC

& QBMPC react to the detected vehicle moving rightward directly ahead by swerving

left, behind the adversarial vehicle. STLMPC, operating here with a higher speed

than QBMPC, has a longer prediction horizon and therefore reacts earlier to avoid the

vehicle, although both methods maintain safe paths. Alternatively, TEB-based explo-

ration considers the vehicle statically, failing to correctly swerve around the oncoming

vehicle. It crosses directly in front of the adversarial vehicle and risks collision if the

other vehicle is not manually slowed, as in this case. Computational times are shown

for this experiment in Table 6.5 where QBMPC again vastly outperforms STLMPC.

Figure 6.10: Local planner trajectories for dynamic obstacle avoidance in
Experiment #5. Darker color gradients for each path show time progression, while
one shared time sample before vehicle avoidance is shown by a point on each path.

Table 6.5: Planning times for QBMPC & other local planners in Experiment #5

Local Planner
t̄frontier
(ms)

t̄global
(ms)

t̄local
(ms)

t̄comp

(ms)

max tfrontier
(ms)

max tglobal
(ms)

max tlocal
(ms)

max tcomp

(ms)

TEB explore 3.0 2.1 5.7 10.8 6.1 10.8 53.6 70.4
STLMPC 29.4 57.8
QBMPC 1.2 3.2
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Chapter 7

Pursuit Model Predictive Control

The local path planning methods detailed throughout the thesis are now adapted to

cooperative multi-vehicle contexts through a flexible pursuit formulation. Using ve-

hicle detection & tracking from Chapter 4, detected vehicles with pursuable, feasible

trajectories are followed instead of avoided as before. Here, the pursuit reformulation

of Chapter 5’s STLMPC (with a varying velocity) is designated as P-STLMPC, while

Chapter 6’s QBMPC is entitled P-QBMPC (P- denotes pursuit). These frameworks

allow for decentralized multi-vehicle fleets where each agent adaptively balances pur-

suit formation with traversing a safe local path in the unknown environment. Each

vehicle can dynamically join or leave the pursuit formation, performing its original

path planning algorithm otherwise, and no fixed, designated leader is required.

The development of these adaptive pursuit algorithms is presented in this chapter.

A summary of the approach & its features is documented before the framework for

flexible, adaptive pursuit is outlined. The P-STLMPC & P-QBMPC algorithms are

then formulated individually, starting from their original constructions. The perfor-

mance of these methods is given in simulated & experimental multi-vehicle setups.
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7.1 Overview

The STLMPC and QBMPC algorithms previously formulated provide local path

planning in unknown environments with detected vehicles considered adversarially

as obstacles for avoidance. However, some navigation applications use teams of mo-

bile robots or autonomous vehicles that interact cooperatively and maintain a defined

formation. Now, vehicle detection and tracking yield a desired target to pursue, as

long as the path is achievable and the detected vehicle is heading away from the

ego vehicle. Here, the original path planning approach is enhanced with a pursuit

adaptation for integration in multi-vehicle, collaborative contexts.

Under normal circumstances, the original, chosen path planning algorithm is con-

ducted; however, if a pursuable, tracked vehicle is identified, the ego vehicle seeks a

path that maintains an arbitrary formation to the leader vehicle. When exclusively

considering pursuit, the desired path lags the leader’s position in the moving leader

base frame by (xρ, yρ) generally. This enables any formation or arrangement to be

chosen between the two vehicles when navigating. However, each vehicle is still re-

sponsive to the unknown surroundings during path planning and adaptively weighs

the mode of operation between full pursuit based on the arbitrary formation, (xρ, yρ),

and the original MPC algorithm for safe local path planning & obstacle avoidance.

An adaptive pursuit weight parameter ρ is introduced to dynamically update

the emphasis placed on the pursuit and safe local planning objectives to achieve

flexible pursuit in unknown environments. Using the minimum distance between the

predicted path and the subsampled obstacles after each optimization, the pursuit

weight ρ is updated to reflect the adaptive operation mode. If the optimized path

has a close proximity to obstacles over multiple control steps, the pursuit weight is
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continually decreased in favor of prioritizing a safe generated path via either STLMPC

or QBMPC. However, when obstacle proximity becomes less of a concern, pursuit is

prioritized, which can slightly sacrifice the choice of a safe path in order to follow the

leader in the designated formation.

This approach thereby extends the path planning framework to incorporate col-

laborative interactions with other vehicles in unstructured, unknown surroundings.

Here, the leader detection indicator η ∈ {0, 1} is used to enact adaptive pursuit when

a leader is detected (η = 1) while disabling pursuit when no leader is found (η = 0).

Detected vehicles that present collision risks are still dynamically avoided, and in the

case of no detections, the algorithm reverts to the base path planner. No inter-vehicle

communication is required as each vehicle dynamically responds individually to mod-

ularly construct or disassemble formation where required. When pursuing a leader

vehicle, a minimum following proximity is satisfied to prevent vehicle collisions and

provide space for the follower to respond in case of unpredictable leader motion.

No vehicle is explicitly designated the leader; instead, the vehicle with a leading

position performs normal path planning while all trailing vehicles latch on to forma-

tion individually using pursuit-augmented path planning. Each vehicle can break off

to perform standard local path planning if needed to preserve a safe path and can

later rejoin the multi-vehicle formation if a leader is re-detected. Therefore, this setup

provides a flexible framework for pursuit in changing environmental conditions to nav-

igate safely as before while maintaining a scalable vehicle formation when possible.

The case of two vehicles in a leader-follower scheme is primarily covered in this chap-

ter, although this modular, decentralized framework forms a basis for accommodating

more complex multi-vehicle fleet configurations.
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7.2 Flexible Formation Framework

Using an adaptive pursuit weight based on obstacle proximity, ρ, and an arbitrary

pursuit formation defined by (xρ, yρ), flexible multi-vehicle navigation is developed.

The leader vehicle is assumed to path plan normally with no knowledge of a pursuing

vehicle. The follower vehicle is taken as the ego vehicle in pursuit-augmented path

planning, where the leader is detected and tracked as νlead = νtrack,0 according to

Chapter 4. There is assumed to only be one tracked vehicle at a time for pursuit

purposes in this leader-follower scheme, where, in the case of multiple simultaneous

detections (Ntrack > 1), each is treated adversarially and dynamically avoided.

The present EKF estimated states for the leader vehicle are given in the follower

vehicle base frame by [xlead, ylead, θlead, δlead, vlead]
T . Depending on these states, the

leader is either pursued and the leader detection indicator η = 1, or the trajectory

is determined to be a collision risk or unable to be pursued. In this case, no leader

is pursued, η = 0 and the vehicle is avoided. The necessary conditions where η = 1,

since the detected leader is both pursuable and not a collision risk, are:

• vlead ≤ vleadmax : The leader vehicle velocity is below a maximum threshold.

• −π
2
≤ θlead ≤ π

2
: The orientation of the leader vehicle in the follower’s base

frame is in a direction away from the follower vehicle.

• −δmax ≤ δlead ≤ δmax: The leader vehicle’s estimated steering angle is feasible.

•
√

x2
lead + y2lead ≤ dleadmax : The leader is within a reasonable distance of the

pursuing vehicle.

• xlead > 0: The detected vehicle is, in fact, leading in front of the ego vehicle.
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• |ŝlead(tξ)κlead| =
∣∣∣tξvlead tan(δlead)

l

∣∣∣ < 2π where ŝ denotes arc length: Specifically

for QBMPC, the leader’s predicted trajectory doesn’t make a full rotation over

tξ, the future time horizon. This is to ensure the quartic Bezier curve model of

the constant curvature trajectory remains accurate.

With a single tracked leader now, the set of obstacles used via subsampling in the

optimization is similar to before. Now, though, the detected vehicle points according

to the leader are used for pursuit, not within Oobsdet for dynamic obstacle avoidance.

These obstacles, therefore, aren’t included in the set for tracking line and optimization

purposes. Furthermore, any sensor-based obstacle detections in Oobs corresponding

to the leader vehicle’s vicinity are removed to encourage pursuit and not avoidance:

Oobs ← Oobs \ {(xi, yi) ∈ Oobs | ∥(xi, yi)− (xlead, ylead)∥2 ≤ lv} (7.2.1)

All detections within the vehicle length, lv, of the leader’s position are excluded from

the obstacle set, which is then used for path planning as before.

Now, the P-STLMPC & P-QBMPC algorithms proceed with a shared framework,

using the adaptive pursuit weight, ρ, to update the significance of each method meet-

ing its respective pursuit objective as opposed to its respective original navigation

objective. This weight is updated after each optimization using the minimum sub-

sampled obstacle proximity along the predicted path. For P-STLMPC, the minimum

proximity is:

dobsmin
= min

i∈{0,...,nMPCkMPC−1}
(xj ,yj)∈Oobssub

∥(xi, yi)− (xj, yj)∥2 (7.2.2)

while for P-QBMPC, it is:
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dobsmin
= min

i∈{0,...,nξ−1}
(xj ,yj)∈Oobssub

∥(xξ,i, yξ,i)− (xj, yj)∥2 (7.2.3)

The weight factor is constrained to the range ρ ∈ [0, 1] where ρ = 0 indicates orig-

inal STLMPC or QBMPC while ρ = 1 means the new pursuit objective is exclusively

considered. This temporal weight updates based on obstacle proximity, whether or

not a leader vehicle is currently detected, such that if a new leader is found, adaptive

pursuit can proceed based on existing safety conditions. When the minimum obstacle

proximity, dobsmin
<dnav, the original safe local navigation algorithm weighting (1−ρ)

is increased by the maximum allowed change. On the other hand, if dobsmin
>dρ, the

pursuit weighting, ρ is increased by the maximum allowed change. Under steady-state

conditions (nearly constant dobsmin
), the weight stabilizes, balancing both objectives.

The adaptive pursuit weight update term, γρ after each optimization is therefore:

γρ =


−sρ if dobsmin

≤ dnav

2sρ
dρ−dnav

dobsmin
− sρ − 2sρdnav

dρ−dnav
if dnav < dobsmin

< dρ

sρ if dobsmin
≥ dρ

(7.2.4)

where sρ denotes the maximum transition magnitude allowed in a single update. For

dnav<dobsmin
<dρ, the update term increases linearly as dobsmin

increases according to

Figure 7.1. The resulting adaptive pursuit weight is thus updated and bounded via:

ρ =


0 if ρ+ γρ ≤ 0

ρ+ γρ if 0 < ρ+ γρ < 1

1 if ρ+ γρ ≥ 1

(7.2.5)
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Figure 7.1: Update term, γρ (added to the adaptive pursuit weight) as a linear
function of minimum obstacle proximity for dnav<dobsmin

<dρ. Here, the update
magnitude is clipped at −sρ when dobsmin

≤ dnav and at sρ when dobsmin
≥ dρ.

7.3 P-STLMPC Formulation

7.3.1 Initialization Procedure

The P-STLMPC approach extends beyond the design of STLMPC from Chapter 3 by

dynamically weighing this original method against the new target of pursuit in real-

time. Just as in STLMPC, this new approach uses the full set of obstacles (excluding

those associated with the leader vehicle) to generate nMPC successive tracking lines.

Using these tracking line headings and the last commanded steering angle & velocity

via Algorithm 2, the initial feasible guess for the original STLMPC approach is de-

noted by the variables xnav,i, ynav,i, θnav,i, δnav,i, vnav,i where i ∈ {0, ..., nMPCkMPC−1}.

Now, however, in the case that a leader is detected (η = 1), the starting guess

is modified to also achieve pursuit according to the current adaptive weighting. The

balance of these objectives in formulating an effective initial guess is significant for
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attaining an effective local optimum from the non-convex solver. The initial guess

formulation incorporates xpur,i, ypur,i, θpur,i, δpur,i, vpur,i which provides a starting point

for the pursuit optimization & is weighed with the original algorithm’s guess according

to ρ while maintaining feasibility.

The constant curvature model for the leader’s trajectory corresponds to a circular

arc with the signed radius (+ for counterclockwise rotation, − if clockwise):

rlead =
1

κlead

=
l

tan(δlead)
(7.3.1)

where δlead ← sgn(δlead) ·max(|δlead|, δleadmin
) is bounded by a minimum magnitude,

δleadmin
in order to avoid singularities & prevent numerical instability when dividing

by small values. The leader position along the future estimated trajectory in the

leader’s base frame (discretizing using the control step time, ∆t) is then:

(xlead,i, ylead,i)=(rlead sin(
i vlead∆t

rlead
), rlead(1−cos(

i vlead∆t

rlead
))) ∀i∈{0, ...,nMPCkMPC−1}

(7.3.2)

while the future velocity vector in the leader vehicle’s current base frame becomes:

[vleadx,i, vleady ,i]
T=vlead · [cos(

i vlead∆t

rlead
), sin(

i vlead∆t

rlead
)]T ∀i∈{0, ...,nMPCkMPC − 1}

(7.3.3)

The velocity vector is then transformed to the pursuing vehicle’s base frame, and

the heading angle is acquired through:vleadx,i
vleady ,i

← R(θlead) ·

vleadx,i
vleady ,i

 =

cos(θlead) − sin(θlead)

sin(θlead) cos(θlead)

 ·
vleadx,i
vleady ,i

 (7.3.4)

θlead,i = atan2(vleady ,i, vleadx,i) (7.3.5)
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To pursue the leader with a lagging position, (xρ, yρ) in the leader’s moving frame, the

desired pursuit path positions, (xρ,i, yρ,i) and velocities, (vρx,i, vρy ,i) are found. Trans-

forming from the evolving leader base frame to the current follower frame over the

path planning time horizon, the discretized reference pursuit trajectory that main-

tains the desired formation is generated in the ego vehicle base frame (Figure 7.2):

xρ,i

yρ,i

 =

xlead

ylead

+R(θlead) ·

xlead,i

ylead,i

 +R(θlead,i) ·

−xρ

−yρ

 (7.3.6)

where the rotation matrices R(θlead) & R(θlead,i) follow the same form as in Equation

7.3.4. The transformed velocity vector in the follower’s frame for each point on the

discretized reference pursuit trajectory (i ∈ {0, ...,nMPCkMPC − 1}) incorporates the

standard rigid-body velocity relation [138] through:

vρx,i
vρy ,i

=R(θlead)(

vleadx,i
vleady ,i

+ vlead
rlead

M(


0

0

1

×

−xρ

−yρ

0

))=R(θlead)(

vleadx,i
vleady ,i

+ vlead
rlead

M


yρ

−xρ

0

)
(7.3.7)

expressing both the translational leader velocity and the lagging pursuit position’s ro-

tational velocity. The 2D vector is restored from the cross product byM =

1 0 0

0 1 0

.
Now that the ideal pursuit path is formulated, the initial guess seeks to follow it

while maintaining feasibility. The procedure shown in Algorithm 2 is again used, now

comparing θpur,i to atan2(yρ,i − ypur,i, xρ,i − xpur,i) and choosing the δpur,i that aligns

the orientation with the heading direction needed to reach the ideal pursuit path’s

current point.
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Figure 7.2: The leader vehicle, a future predicted position (at sample k) and its
constant curvature path (green) for (xlead,i, ylead,i). The lagging position with respect
to the leader’s frame, (xρ, yρ), is negative in y by convention since the leader is right
of the lagging position. The ideal pursuit trajectory (gray) is given by (xρ,i, yρ,i).

In turn, xpur,i, ypur,i & θpur,i are updated after each steering angle is found and

all velocities are set as vpur,i = vlead. Additionally, each δpur,i can be set to δlead if

initially near the desired pursuit path (
√

(xρ,0 − xpur,0)2 + (yρ,0 − ypur,0)2 ≤ dρ,thresh)

to provide a smooth, constant curvature initial guess for the pursuit path without

unnecessary fluctuations.

The initial guesses based on tracking lines and pursuit are now combined by

weighing the positions of the trajectories according to ρ, where the weighted path is

bounded by the extent of each prior guess path:

(xi, yi) = ((1− ρ)xnav,i + ρxpur,i, (1− ρ)ynav,i + ρypur,i) (7.3.8)

with the orientations, θj = atan2(yj+1 − yj, xj+1 − xj) ∀j ∈ {0, ..., nMPCkMPC − 2}

which are wrapped to the correct interval. Now, the feasible initial guess for the

sampled velocity (j ∈ {1, ..., nMPCkMPC − 2}) is found through:

vj =

√
(xj+1 − xj)2 + (yj+1 − yj)2

∆t
, vnMPCkMPC−1 = vnMPCkMPC−2 (7.3.9)
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Algorithm 4: P-STLMPC Initial Guess Procedure

Input: Tracking Lines (w̃i), Last Control Inputs (δlast, vlast), Lagging Pursuit
Position (xρ, yρ), Leader Detection Indicator (η), Leader States
(νlead), Adaptive Pursuit Weighting (ρ)

Output: Initial P-STLMPC Guess (xi, yi, θi, δi, vi)
1 if η = 1 then
2 xnav,i, ynav,i, θnav,i, δnav,i, vnav,i ← STLMPC Guess(w̃i, δlast, vlast);
3 xρ,i, yρ,i ← RefPursuitPath(νlead, xρ, yρ);
4 for i = 0 to nMPCkMPC − 1 do
5 vpur,i = vlead;

6 if i > 0 and
√

x2
ρ,0 + y2ρ,0 > dρ,thresh then

7 δpur,i ←
TurnToRefPath(xρ,i,yρ,i,xpur,i,ypur,i,θpur,i,δpur,i−1,vpur,i,δmax,∆δmax);

8 else if i > 0 and
√
x2
ρ,0 + y2ρ,0 ≤ dρ,thresh then

9 δpur,i ← MatchLeaderCurvature(δpur,i−1, δlead, δmax,∆δmax);
10 else
11 δpur,i = δlast, xpur,i = 0, ypur,i = 0, θpur,i = 0;
12 if i < nMPCkMPC − 1 then
13 xpur,i+1, ypur,i+1, θpur,i+1 ←

BicycleKinematics(xpur,i, ypur,i, θpur,i, δpur,i, vpur,i);

14 end
15 x0, y0, θ0 = 0;
16 for i = 1 to nMPCkMPC − 1 do
17 xi, yi ←WeighPositions(xnav,i, ynav,i, xpur,i, ypur,i, ρ);
18 vi−1 ← FeasibleVelocityForwardDiff(xi−1, yi−1, xi, yi, vmax, vmin);
19 if i > 1 then
20 θi−1 ← FindOrientations(xi−1, yi−1, xi, yi);
21 δi−2 ← FeasibleSteeringAngles(θi−2, θi−1, δi−3, vi−2, δmax,∆δmax);

22 end
23 vnMPCkMPC−1=vnMPCkMPC−2, δnMPCkMPC−1=δnMPCkMPC−2=δnMPCkMPC−3;
24 δ0 = δlast, v0 = vlast;
25 for i = 0 to nMPCkMPC − 2 do
26 xi+1, yi+1, θi+1 ← BicycleKinematics(xi, yi, θi, δi, vi);
27 end

28 else if η = 0 then
29 xi, yi, θi, δi, vi ← STLMPC Guess(w̃i, δlast, vlast);
30 Begin P-STLMPC Optimization using xi, yi, θi, δi, vi ∀i∈{0, ...,nMPCkMPC−1};
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and bounded to the feasible range, vmin ≤ vj, vnMPCkMPC−1 ≤ vmax. The steering

angle is then found based on using successive orientations in the kinematic bicycle

model (j ∈ {1, ..., nMPCkMPC − 3}):

δj = tan−1(
l(θj+1 − θj)

vj ∆t
), δnMPCkMPC−1 = δnMPCkMPC−2 = δnMPCkMPC−3 (7.3.10)

The steering angles are then bounded by the maximum allowed magnitude & rate

of change (per Algorithm 2’s structure). Initial conditions fix δ0 = δlast and v0 = vlast

while the final xi, yi & θi come from applying the kinematic bicycle model once more

with the final δi & vi formulated.

Therefore, this initial guess approach appropriately weighs the tracking line &

pursuit guesses before obtaining the weighted trajectory’s corresponding control in-

puts. For samples when the control input is infeasible, the closest feasible value is

used before proceeding as usual for subsequent samples. A feasible trajectory is thus

generated in this method (Algorithm 4), beginning the optimization with a suitable

guess based on varying ρ & aiming to initialize near the region of the global optimum.

7.3.2 Adaptive Tracking Line vs. Pursuit Objective

The objective for P-STLMPC adaptively weighs terms that promote following the

generated reference tracking lines with terms that achieve pursuit in formation. This

approach uses both the varying pursuit weight, ρ, and the current leader detection

indicator, η. The complete adaptive pursuit objective is therefore given by:

Fobjρ,w = (1− ηρ)λd2Fd2 + (1− ηρ)λḋ2Fḋ2 + η(1− ρ)λv2Fv2ρ
+ λδ2Fδ2

+ (1− η)λv2F∆v2 + ηρλρ,d2Fρ,d2 + ηρλρ,ḋ2Fρ,ḋ2 (7.3.11)

with base weighting factors, λρ,w = [λd2 , λḋ2 , λv2 , λδ2 , λρ,d2 , λρ,ḋ2 ] where normalizing
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all weights by one weight factor removes the redundancy in parameters.

Here, the objective in the case of no leader detection (η = 0) is equivalent to

λd2Fd2+λḋ2Fḋ2+λδ2Fδ2+λv2F∆v2 which corresponds to non-uniform velocity STLMPC

(Equation 5.2.2) but with a modified velocity-based objective term, F∆v2 instead of

Fv2 . Meanwhile, if a leader is detected (η = 1), the adaptive pursuit weight balances

the tracking line formulation terms, Fd2 , Fḋ2 & Fv2ρ
(where Fv2ρ

is a newly developed

velocity term), with the pursuit terms, Fρ,d2 & Fρ,ḋ2 while using a constant steering

angle (control effort) term, Fδ2 . For higher ρ, the pursuit terms have higher relative

weights, while for lower ρ, the STLMPC-based terms are favored in optimization.

Instead of prioritizing higher speeds, this approach seeks to navigate at a safe

speed when performing standard STLMPC while matching the leader’s speed in the

case of pursuit. Thus, the new velocity-based term in the case of no leader is given:

F∆v2 =

nMPCkMPC−2∑
i=0

(vi+1 − vi)
2 (7.3.12)

This term ensures that unnecessary changes in velocity (acceleration or deceleration)

are avoided and a relatively constant velocity is maintained for smoothness, where

possible. Initializing the optimization with a moderate, constant speed such as vmax

2

ensures safe velocities are sustained throughout. Furthermore, for temporary missed

leader detections, the vehicle will progress at a moderate speed, attempting to remain

behind the leader and prevent accidental acceleration into the back of the leader.

When a leader is detected and tracked, a term is incorporated to align the fol-

lower’s velocity with that of the estimated leader:

Fv2ρ
=

nMPCkMPC−1∑
i=0

(vi − vlead)
2 (7.3.13)
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This term is given higher weight when ρ is less, since it corresponds to the STLMPC-

based terms. When a leader is known but obstacles are in close proximity, STLPMC

is prioritized, using Fv2ρ
to ensure the leader’s velocity is matched. This means space

is maintained between the vehicles, and effective pursuit occurs even when it is not

explicit. When obstacle clearance increases over time once more, pursuit is weighed

more heavily and the follower’s velocity is allowed to vary & adjust to follow the

reference pursuit path, thus maintaining formation.

Now, the pursuit terms are constructed which promote a trajectory that maintains

the arbitrary formation, (xρ, yρ), with the leader. The sampled pursuit reference path

that maintains this lagging position in the leader’s frame was previously derived as

(xρ,i, yρ,i) ∀i ∈ {0, ..., nMPCkMPC − 1} (Equation 7.3.6). Thus, a term similar to

the tracking line term Fd2 is created, which seeks to minimize the sum of squared

distances between the sampled predicted trajectory and the pursuit reference path:

Fρ,d2 =

nMPCkMPC−1∑
i=0

((xi − xρ,i)
2 + (yi − yρ,i)

2) (7.3.14)

Similarly to STLMPC’s Fḋ2 , a squared derivative term is also utilized, which

reduces path fluctuations and aligns the predicted trajectory’s orientation with that

of the pursuit reference path at each sample. Based on Equation 7.3.14:

nMPCkMPC−1∑
i=0

dρ,i =

nMPCkMPC−1∑
i=0

√
(xi − xρ,i)2 + (yi − yρ,i)2 (7.3.15)

nMPCkMPC−1∑
i=0

ḋρ,i =

nMPCkMPC−1∑
i=0

(xi − xρ,i)(ẋi − ẋρ,i) + (yi − yρ,i)(ẏi − ẏρ,i)

dρ,i
(7.3.16)

nMPCkMPC−1∑
i=0

ḋ2ρ,i =

nMPCkMPC−1∑
i=0

((xi − xρ,i)(ẋi − ẋρ,i)+(yi − yρ,i)(ẏi − ẏρ,i))
2

(xi − xρ,i)2 + (yi − yρ,i)2
(7.3.17)
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Now, the derivatives of the predicted trajectory’s position are found by forward dif-

ferencing: ẋi = xi+1 − xi & ẏi = yi+1 − yi. This restricts the sum to the first

nMPCkMPC − 1 elements where the forward difference is defined. The derivatives of

the reference pursuit path’s positions, xρ,i & yρ,i are given by the respective velocity

components, vρx,i & vρy ,i as expressed in Equation 7.3.7. Therefore, the final pursuit

objective term is described by:

Fρ,ḋ2 =

nMPCkMPC−2∑
i=0

((xi − xρ,i)(xi+1 − xi − vρx,i)+(yi − yρ,i)(yi+1 − yi − vρy ,i))
2

(xi − xρ,i)2 + (yi − yρ,i)2

(7.3.18)

Using these newly formulated pursuit terms, the leader vehicle is able to be fol-

lowed in a flexible framework (Equation 7.3.11) that also balances safe local navigation

for varying obstacle-based safety considerations via ρ. The analytical gradients for

all new objective terms presented in this section are provided in Appendix A.4.

7.3.3 Minimum Leader-Follower Proximity Constraint

While achieving adaptive pursuit via the aforementioned approach, additional safety

requirements must be realized. All prior constraints on vehicle dynamics, permissible

control inputs and obstacle proximity are carried over from Chapter 5. Now, a pursuit

constraint is introduced specifically for when a leader is detected. In order to prevent

collisions with the leader, a minimum following distance is satisfied over the full

predicted trajectory. This limit ensures that, in the event the leader stops or moves

unexpectedly, space and time are preserved for the follower to react and avoid a

collision.

Akin to prior minimum distance constraints (Equations 5.3.13 & 6.4.16), a smooth
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softmin function is used, ensuring analytical gradients can be found (Appendix A.4).

The future leader position (Equation 7.3.2) is transformed to the follower’s frame via:

xlead,i

ylead,i

←
xlead

ylead

+R(θlead) ·

xlead,i

ylead,i

 (7.3.19)

since the leader position is directly tracked and not the lagging pursuit position given

in Equation 7.3.6. Instead of directly using the leader’s transformed position though,

the four corners of the vehicle’s shape are derived using the leader’s future heading

angle, θlead,i (Equation 7.3.5) and physical length & width dimensions (lv & wv):

Ĉlead,i =

cos(θlead,i) − sin(θlead,i)

sin(θlead,i) cos(θlead,i)

·
 lv

2
lv
2
− lv

2
− lv

2

−wv

2
wv

2
wv

2
−wv

2

+
xlead,i

ylead,i

·1T (7.3.20)

with 1, the 4 x 1 column vector of ones. This expression is similar to Equation 4.4.5

(used in dynamic vehicle avoidance), where now Ĉlead,i denotes the leader vehicle’s

four corners at the ith sample while ĉlead,i,n, n ∈ {0, ..., 3} represents each individual

corner (Figure 7.3). The distance between the predicted trajectory and the leader’s

nth corner at sample i is:

dlead,i,n=
√
(xi − ĉleadx,i,n)

2+(yi − ĉleady ,i,n)
2 ∀i∈{0, ..., nMPCkMPC−1}, n∈{0, ..., 3}

(7.3.21)

Therefore, the resulting soft minimum distance between follower and leader over

the trajectory is formulated as:

dleadmin
= − 1

βρ

log(

nMPCkMPC−1∑
i=0

3∑
n=0

e−βρdlead,i,n) (7.3.22)
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The use of βρ controls the accuracy of the softmin function in this context, similar to

βv & βξ used previously. As before, higher values correspond to closer approximations

to the true minimum at the risk of poorer numerical stability.

Finally, the single constraint is formed to ensure the closest inter-vehicle proximity

over the trajectory exceeds the minimum safe following distance, dleadsafe , through:

dleadsafe ≤ dleadmin
when η = 1

if η = 1, gdlead =
1

βρ

log(

nMPCkMPC−1∑
i=0

3∑
n=0

e−βρdlead,i,n) + dleadsafe , gdlead ≤ 0

(7.3.23)

where the inequality is only considered if a leader vehicle is detected. This ensures

that, in practice, for no leader detection, the constraint is not included in the active

set during solving via SLSQP.

Figure 7.3: The predicted ego vehicle trajectory (gray), which maintains a
separation of dleadsafe from the leader (green) throughout. Here, the sampled paths
are shown for visualization at i = 0, k where k is an arbitrary future sample. The

leader vehicle is characterized by its box-bounded corner points, ĉlead,i,n, for
ensuring a safe following distance is maintained.
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7.4 P-QBMPC Formulation

7.4.1 Bezier Curve Initialization

As an alternative to P-STLMPC, the P-QBMPC algorithm is presented, which is

inspired by Chapter 6’s QBMPC method. This approach has a similar framework

to P-STLMPC, where the adaptive pursuit weight is now used to balance safe plan-

ning via potential fields with pursuit. Initializing a path guess for optimization is

done as in P-STLMPC, where here, the original QBMPC guess is weighed with

the new pursuit guess based on ρ. The QBMPC guess obtained using successive

safest angular gap headings is given by xnavξ,2, xnavξ,3, ynavξ,3, xnavξ,4, ynavξ,4, which

is used exclusively if η = 0. However, when η = 1, the pursuit initial guess,

xpurξ,2, xpurξ,3, ypurξ,3, xpurξ,4, ypurξ,4, is incorporated into the final guess as well.

For path initialization to achieve effective pursuit, a quartic Bezier curve model

of the leader’s constant curvature & velocity trajectory is constructed. An approach

[139] is used, which achieves an approximation order of eight & a lower Hausdorff

distance between arc and approximation than prior methods when the central angle,

0 < α̃leadξ <
π
2
. The presented model is designed to approximate circular arcs of unit

radius with 0 < α̃leadξ < π by the quartic Bezier curve defined by the control points:

(x̃leadξ,0, ỹleadξ,0) = (1, 0), (x̃leadξ,1, ỹleadξ,1) = (1, ũleadξ)

(x̃leadξ,2, ỹleadξ,2) = r̃leadξ(cos(
α̃leadξ

2
), sin(

α̃leadξ

2
))

(x̃leadξ,3, ỹleadξ,3) = (cos(α̃leadξ), sin(α̃leadξ)) + ũleadξ(sin(α̃leadξ),− cos(α̃leadξ))

(x̃leadξ,4, ỹleadξ,4) = (cos(α̃leadξ), sin(α̃leadξ))

(7.4.1)

where:
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r̃leadξ =
8

3
− 5

3
cos(

α̃leadξ

2
)− 4

3
ũleadξ sin(

α̃leadξ

2
) (7.4.2)

ũleadξ =
3 cos(

α̃leadξ

2
) sin(

α̃leadξ

2
)− 2 sin(

α̃leadξ

2
) + 4

√
2 sin3(

α̃leadξ

4
)

2 cos2(
α̃leadξ

2
)

(7.4.3)

For the leader’s full trajectory over the predicted horizon, the central angle,

α̃leadξ =
ŝlead(tξ)

rlead
is derived from the arc radius (Equation 7.3.1) and total arc length,

ŝlead(tξ) = tξvlead. The signed radius is again used here, indicating the rotational

direction of the circular arc’s progression depending on δlead. This approximation is

applied to represent trajectories with central angles, −2π < α̃leadξ < 2π, over the pre-

dicted horizon, where reduced—although acceptable—accuracy for increasing angles

is shown in Figure 7.4. While full rotations are unlikely over a short prediction time

horizon, for an arbitrary and sufficiently long tξ, these motions can be adequately

modeled by this approximation.

(a) (b) (c)

Figure 7.4: Quartic Bezier curve approximations to unit circular arcs with
corresponding control points & polygons for increasing central angles. The model is

shown for: (a) α̃leadξ =
3π
8
, (b) α̃leadξ =

7π
8
and (c) α̃leadξ =

15π
8
.
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The control points and their corresponding Bezier curve for the unit circular arc

are now transformed in the general case of arbitrary radius, orientation and position

for application in pursuit. The curve is first scaled by the radius magnitude, |rlead|

and translated to begin at the origin via:

x̃leadξ,k ← |rlead| (x̃leadξ,k − 1), ỹleadξ,k ← |rlead| (ỹleadξ,k), k ∈ {0, ..., 4} (7.4.4)

Now, the curve with positive (counterclockwise) rotation begins in the +y direc-

tion while the curve with negative (clockwise) rotation proceeds initially in the −y

direction. Thus, the +y direction is taken as the base frame +x direction (since this

is assumed to be the direction of forward velocity) while +x is represented as −y

in the vehicle base frame. The scaled approximated Bezier curve control points are

now transformed to the follower’s base frame, obtaining (xleadξ,k, yleadξ,k) using this

coordinate transform and the leader’s position & orientation:

xleadξ,k

yleadξ,k

 =

xlead

ylead

+R(θlead) ·

 ỹleadξ,k

−x̃leadξ,k

 , k ∈ {0, ..., 4} (7.4.5)

Note that for this calculation, θlead + π is used in place of θlead if δlead is negative in

order to orient the approximation’s initial −y direction motion correctly to the +x

base frame direction.

To complete the initial pursuit path guess, the leader’s Bezier curve control points

are used to find the lagging pursuit path’s control points. The leader’s curve is first

sampled by tk = k
4
, k ∈ {0, ..., 4}, reflecting a sample for each control point. Using

the control points (xleadξ,k, yleadξ,k) and sampled tk values, the curve is represented

by (xleadξ,ξ,k, yleadξ,ξ,k) through the form of Equations 6.1.2, 6.1.3 & 6.3.1. The first
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derivative is (x′
leadξ,ξ,k

, y′leadξ,ξ,k) which follows Equations 6.1.4 & 6.1.5, now incorpo-

rating the nonzero terms (4t3k− 12t2k +12tk− 4)xleadξ,0 & (4t3k− 12t2k +12tk− 4)yleadξ,0

respectively in each coordinate.

From here, the leader’s future orientation along the predicted Bezier curve in the

follower’s frame is:

θleadξ,k = atan2(y′leadξ,ξ,k, x
′
leadξ,ξ,k

) (7.4.6)

Assuming the evenly spaced samples correspond approximately to each control point

for the constant curvature & velocity trajectory, each point is transformed (similarly

to Equation 7.3.6) to the path lagging by (xρ, yρ) using its sample’s orientation:

xpurξ,k

ypurξ,k

 =

xleadξ,k

yleadξ,k

+R(θleadξ,k) ·

−xρ

−yρ

 , k ∈ {0, ..., 4} (7.4.7)

These control points represent the reference pursuit path that attains the arbitrary

leader-follower formation as a quartic Bezier curve and form the initial guess, which

is likely infeasible. However, this is the unconstrained optimal path in the case of

exclusive pursuit, and initializing in this manner yields solutions in the region near the

feasible global optimum. Finally, the QBMPC and pursuit initial guesses are weighed

by ρ when η = 1 (each coordinate is then bounded by ± dmax as in QBMPC):

xkx =(1−ρ)xnavξ,kx+ρxpurξ,kx , yky =(1−ρ)ynavξ,ky+ρypurξ,ky , kx∈{2, 3, 4}, ky∈{3, 4}

(7.4.8)

where only the control points that aren’t fixed by initial conditions are used in the

resulting initial guess, and thereafter, optimization. Therefore, depending on the

adaptive pursuit weight, the initial guess balances prioritizing safe obstacle avoidance

through potential fields with pursuit in formation via obstacle proximity over time.
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7.4.2 Adaptive Potential Field vs. Pursuit Objective

The new objective introduces a pursuit term, Fρξ,d2 weighed against the original

QBMPC objective’s single term, Fobjξ from Equation 6.3.2:

Fobjρ,ξ = (1− ηρ)λξFobjξ + ηρλρξ,d2Fρξ,d2 (7.4.9)

with base weighting factors, λρ,ξ = [λξ, λρξ,d2 ] where normalization means only one

weight factor is a free parameter. In the scenario where η = 0, the problem reduces to

the original QBMPC algorithm, where the objective becomes Fobjξ when normalizing

by the base weighting factor. However, when a leader exists & η = 1, pursuit is

enacted where the adaptive pursuit weight balances the objective terms dynamically.

From the initialization step, the reference pursuit path that maintains the desired

formation (xρ, yρ) with the leader is given by the control points (xρξ,k, yρξ,k), equivalent

to the initial pursuit guess (xpurξ,k, ypurξ,k) from Equation 7.4.7. Now, the pursuit

objective term is constructed by the sum of squared distances between the predicted

trajectory and reference pursuit path for each non-fixed control point coordinate:

Fρξ,d2 =
4∑

kx=2

(xkx − xρξ,kx)
2 +

4∑
ky=3

(yky − yρξ,ky)
2 (7.4.10)

This objective term prioritizes paths that more closely resemble the trajectory

that maintains formation with the leader by shaping the governing control points

accordingly. Instead of discretizing the paths and evaluating distances between tra-

jectories, the control points are used directly here to promote path similarity. The

analytical gradients for this new objective term are presented in Appendix A.5. A

visualization of the quartic Bezier curves and their corresponding control points for

both the optimized path and reference pursuit trajectory is shown in Figure 7.5.
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Figure 7.5: Leader (light green), reference pursuit (dark green) & optimized ego
vehicle (gray) quartic Bezier curve paths. The predicted trajectory attains a feasible

path which aligns non-fixed control points (xkx , yky) with those governing the
reference pursuit path (xρξ,kx , yρξ,ky) in the case of exclusive pursuit.

7.4.3 Bezier Curve Pursuit Proximity Constraint

When engaging in pursuit, the leader-follower proximity is monitored through the

predicted trajectory, and a minimum is enforced as in P-STLMPC. This constraint

ensures the follower remains behind the leader with adequate space to maintain safety

in multi-vehicle environments. A soft minimum function is used once more, where

nξ samples are taken of each curve (i ∈ {0, ..., nξ − 1}) over tξ, the prediction time

horizon. For the ego vehicle Bezier curve path being optimized, the discretized points,

(xξ,i, yξ,i) follow the form of Equation 6.3.1.

Meanwhile, the constant curvature & velocity model is used for the leader’s trajec-

tory (xlead,i, ylead,i), eliminating any minor inaccuracies that may arise from using the

quartic Bezier curve model. The leader’s path is sampled evenly in ŝlead,i, where now

ŝlead,i =
i

nξ−1
tξvlead with redefined i (instead of i vlead∆t from P-STLMPC) is used in
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Equations 7.3.2 & 7.3.3. Proceeding with the new sampling definition for i, Equations

7.3.4 & 7.3.5 yield the leader’s orientation at each sample, θlead,i and Equation 7.3.19

expresses the leader’s discretized position, (xlead,i, ylead,i) in the follower’s frame.

Just as in P-STLMPC, Equation 7.3.20 uses the leader’s position & orientation

to obtain the four corners of the vehicle’s shape, Ĉlead,i for more practical inter-

vehicle distance measurements. Now, the distance between the discretized ego vehicle

trajectory and the leader’s nth corner at sample i becomes:

dleadξ,i,n =
√

(xξ,i − ĉleadx,i,n)
2 + (yξ,i − ĉleady ,i,n)

2 ∀i ∈ {0, ..., nξ − 1}, n ∈ {0, ..., 3}

(7.4.11)

The soft minimum distance parallels Equation 7.3.22 where it is now represented by:

dleadmin,ξ
= − 1

βρ

log(

nξ−1∑
i=0

3∑
n=0

e−βρdleadξ,i,n) (7.4.12)

The ensuing single constraint ensures inter-vehicle distances exceed the minimum

allowed value, dleadsafe , over the full prediction duration and is given through:

dleadsafe ≤ dleadmin,ξ
when η = 1

if η = 1, gdlead,ξ =
1

βρ

log(

nξ−1∑
i=0

3∑
n=0

e−βρdleadξ,i,n) + dleadsafe , gdlead,ξ ≤ 0 (7.4.13)

This inequality is only enforced when a leader is detected and has analytical gradients

as provided in Appendix A.5. By evenly sampling over the leader & follower trajec-

tories in time, the proximity between the vehicles is equally considered throughout

all stages of the future time horizon. This constraint is enforced regardless of how

much priority pursuit is given via ρ such that multi-vehicle navigation remains safe

and collision-free both in and out of formation.
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7.5 P-STLMPC & P-QBMPC Algorithm

Pseudocodes

The P-STLMPC & P-QBMPC frameworks, therefore, both provide flexible pursuit

in formation with a minimum permissible following distance while also satisfying

safe local path planning as before. The complete formulation of the P-STLMPC

optimization problem is denoted by:

min
xj ,yj ,θj ,δj ,vj

(1− ηρ)λd2Fd2 + (1− ηρ)λḋ2Fḋ2 + η(1− ρ)λv2Fv2ρ
+ λδ2Fδ2

+ (1− η)λv2F∆v2 + ηρλρ,d2Fρ,d2 + ηρλρ,ḋ2Fρ,ḋ2

subject to gδ+,i ≤ 0, gδ−,i ≤ 0, gv+,i ≤ 0, gv−,i ≤ 0

gvsteer,j ≤ 0, gvobs,j ≤ 0, if η = 1, gdlead ≤ 0

hx,i = 0, hy,i = 0, hθ,i = 0

− δmax ≤ δj ≤ δmax, vmin ≤ vj ≤ vmax

x0 = 0, y0 = 0, θ0 = 0, δ0 = δlast, v0 = vlast

∀i ∈ {0, ..., nMPCkMPC − 2}, ∀j ∈ {0, ..., nMPCkMPC − 1}

(7.5.1)

Alternatively, the P-QBMPC optimization problem is expressed as:

min
x2,x3,y3,x4,y4

(1− ηρ)λξFobjξ + ηρλρξ,d2Fρξ,d2

subject to gv+ξ ,i ≤ 0, gv−ξ ,i ≤ 0, gaξ,i ≤ 0, gdξ,i ≤ 0

gκ+
ξ ,i ≤ 0, gκ−

ξ ,i ≤ 0, gκ′+
ξ ,i ≤ 0, gκ′−

ξ ,i ≤ 0

if η = 1, gdlead,ξ ≤ 0

− dmax ≤ x2, x3, y3, x4, y4 ≤ dmax

x0 = 0, y0 = 0, x1 =
vlasttξ
4

, y1 = 0, y2 =
4x2

1 tan(δlast)

3l
∀i ∈ {0, ..., nξ − 1}

(7.5.2)
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After successful optimization, P-STLMPC & P-QBMPC derive the control inputs

applied at each step, δcmd & vcmd from the solution in the same manner as in STLMPC

& QBMPC, respectively. The shared procedure for these pursuit algorithms at each

control step is provided in Algorithm 5, which enables safe local path planning in

multi-vehicle cooperative contexts.

Algorithm 5: Pursuit Model Predictive Control Framework

Input: Detected & Localized Obstacles (Oobs,Oobsmap), Last Control Inputs
(δlast, vlast), Lagging Pursuit Position (xρ, yρ), Tracked Vehicles
(Vtrack), Adaptive Pursuit Weighting (ρ), Bezier Curve Order (n = 4)

Output: New Control Inputs (δcmd, vcmd), Updated Pursuit Weighting (ρ)
1 if Ntrack = 1 and IsPursuableAndSafe(νtrack,0) then
2 η = 1;
3 νlead = νtrack,0;
4 Oobs ← RemoveObsNearLeader(Oobs, νlead);
5 Oobstot = Oobs ∪ Oobsmap ;

6 else
7 η = 0;
8 Oobsdet ← VehicleAvoidanceObs(Vtrack);
9 Oobstot = Oobs ∪ Oobsmap ∪ Oobsdet ;

10 Oobssub ← ObsSubsampling(Oobstot , dsep);
11 if Using P-STLMPC then
12 w̃i ∀i ∈ {0, ..., nMPCkMPC − 1} ← GenerateTrackingLines(vlast,Oobstot);
13 xi, yi, θi, δi, vi ← InitialGuess P-STLMPC(w̃i, δlast, vlast, xρ, yρ, η, νlead, ρ);
14 xi, yi, θi, δi, vi, δcmd, vcmd ←

P-STLMPC Opt(xi, yi, θi, δi, vi, w̃i, δlast, vlast, xρ, yρ, η, νlead, ρ,Oobssub);
15 dobsmin

← MinimumObsProximity(xi, yi,Oobssub);

16 else if Using P-QBMPC then
17 θhead,j ∀j ∈ {0, n− 3} ← GenerateHeadingAngles(vlast, tξ,Oobstot);
18 (xk, yk) ∀k ∈ {0, ..., n} ←

InitialGuess P-QBMPC(θhead,j, δlast, vlast, xρ, yρ, η, νlead, ρ, tξ);
19 x2, x3, y3, x4, y4, δcmd, vcmd ←

P-QBMPC Opt(xk, yk, xρ, yρ, η, νlead, ρ, tξ,Oobssub);
20 dobsmin

← MinimumObsProximity(xk, yk,Oobssub);

21 ρ← UpdatePursuitWeight(dobsmin
, ρ);

22 Apply control inputs, δcmd & vcmd then proceed to next control step;
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7.6 Simulation Results

The P-STLMPC & P-QBMPC algorithms are now evaluated and contrasted in a

simple leader-follower scheme in simulation using a new map, Map #5. In this test, a

leader vehicle with a constant velocity of 1.7 m/s traverses the environment and is pur-

sued by the ego vehicle using each of the pursuit algorithms. Leader vehicle detection

is again simulated without the use of a camera, while each algorithm utilizes param-

eter values from the tests in prior chapters. The shared flexible pursuit parameters

used include dnav=0.8 m, dρ=1.5 m, sρ=0.05, dleadsafe =0.7 m & βρ=80 m−1. Specif-

ically for P-STLMPC, the base weighting factors are λd2 = 1, λḋ2 = 30, λv2 = 0.2,

λδ2 = 0.2, λρ,d2 = 20 & λρ,ḋ2 = 2, while for P-QBMPC, λξ = 1 & λρξ,d2 = 0.1.

Selecting the following formation as (xρ, yρ) = (2.1,−0.6), the optimized trajec-

tory is shown at a single time sample for P-STLMPC (Figure 7.6a) & P-QBMPC

(Figure 7.6b). Here, the map has two possible routes, split by an obstacle in the mid-

dle. P-STLMPC’s tracking line method chooses the first open route for navigation;

however, the leader vehicle progresses along the second, further route.

(a) (b)

Figure 7.6: Optimal trajectories for P-STLMPC & P-QBMPC at a single, shared
time sample. Each algorithm balances its original objective with following the

pursuit reference path, lagging the leader in formation.
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In the P-STLMPC test, the pursuit weight at the given sample time is 1.00, while for

P-QBMPC, it is 0.88 due to high local obstacle clearances, leading each method to

strongly prioritize pursuit and follow the leader through the second route.

For the same pursuit formation, the two pursuit trajectories over the full simula-

tion are provided in Figure 7.7. Each approach maintains a central path, prioritizing

safety initially before tracking the pursuit reference in formation when the map opens

up at the first turn. For the rest of the test, the pursuit weight remains high, and

so each algorithm preserves formation behind the leader accurately until the leader

reaches a dead end, where navigation terminates. Visibly, P-STLMPC has more path

fluctuations to maintain formation, while P-QBMPC is smoother and has somewhat

poorer pursuit tracking but with lower control effort expended.

These results are additionally shown in Table 7.1 for both pursuit algorithms,

where each achieves successful adaptive pursuit with certain advantages.

Figure 7.7: P-STLMPC & P-QBMPC for a given leader trajectory and pursuit
formation in simulation using Map #5. Darker color gradients for each path show
time progression where the P-STLMPC, P-QBMPC and pursuit reference paths all

lag behind the leader throughout the simulation.
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Table 7.1: Performance of P-STLMPC & P-QBMPC in simulated Map #5

Local Planner
min
k̃

dmin,k̃

(m)

d̄min

(m)

d̄ρ,0,k̃
(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

P-STLMPC 0.680 1.741 0.256 0.124 0.025 1.902 0.167

P-QBMPC 0.871 1.718 0.476 0.049 0.003 1.793 0.149

In addition to metrics used in prior simulations, d̄ρ,0,k̃ represents the average distance

error between the ego vehicle and the initial point of the corresponding sample’s

pursuit reference path, measuring pursuit accuracy. P-STLMPC achieves better pur-

suit at the cost of inferior minimum obstacle proximity compared to P-QBMPC.

Lower control effort is used by P-QBMPC, shown by the average steering angle and

variance of both control inputs, while P-STLMPC achieves a higher average speed.

P-STLMPC makes more abrupt motions to satisfy control objectives and thus covers

more distance in the same simulation timeframe compared to smoother P-QBMPC.

Over this simulation, the minimum obstacle proximity is illustrated over time

(Figure 7.8a) as well as conversely, the pursuit tracking error, d̄ρ,0,k̃ (Figure 7.8b).

After the initial narrow corridor, the obstacle clearances rise beyond dρ, leading the

pursuit weight (Figure 7.8c) to increase, prioritizing pursuit. Sudden, momentary

drops in obstacle clearance decrease the pursuit weight, such as when the vehicle nears

corners or the centrally placed obstacle in Map #5. Also noticeable is how pursuit

accuracy is highest when obstacle clearances increase, as safe maneuvers are possible

with more open space. At the map’s dead end, the ego vehicle slows to a stop, and

the pursuit weight becomes zero as obstacles prevent any further navigation. Thus,

the adaptive pursuit algorithms are both able to conserve high obstacle clearances

while accurately following the leader vehicle through the simulated environment.
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(a) (b)

(c)

Figure 7.8: Over the full simulation using Map #5, P-STLMPC & P-QBMPC
balance prioritization of safe navigation with pursuit. This dynamic weighting is

controlled by (a) the minimum obstacle proximity over time, where the lower (dnav)
and upper (dρ) bounds affect the pursuit weight update. Furthermore, (b) the error
between the vehicle and reference pursuit paths over time indicates pursuit accuracy,
while (c) the time-varying pursuit weight governs behavior in the flexible formation.

7.7 Experimental Results

Cooperative multi-vehicle navigation is assessed in real-world conditions for both P-

STLMPC & P-QBMPC using the track layout in Experiment #6 (Appendix B).
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As in simulation, a simple leader-follower scheme is tested—now with two formation

configurations. For each configuration, performance is evaluated in the case when

both vehicles operate using P-STLMPC as well as P-QBMPC (as the leader detects no

other vehicles, its planning reduces to standard STLMPC & QBMPC, respectively).

Parameters from prior experiments are retained while now, dsafe = 2 m, dnav = 0.4 m,

dρ = 0.9 m & dleadsafe = 0.4 m to accommodate the track layout.

The formations tested are (xρ, yρ) = (0.5,−0.3) where the pursuing vehicle is

behind and to the left of the leader (Experiment #6-1) and (xρ, yρ) = (0.5, 0.3) where

the follower trails on the right (Experiment #6-2). Tighter formations are used

due to decreased detection & tracking accuracy at higher ranges. For P-STLMPC,

vmin = 0 m/s while vmax = 1.5 m/s for the follower and 1 m/s for the leader to ensure

the follower can gain on the leader if it falls behind. For P-QBMPC, tξ =1.5 s &

vmin = 0.5 m/s while again, vmax = 1.5 m/s for the follower and 1 m/s for the leader.

The trajectories obtained by P-STLMPC & P-QBMPC in Experiment #6-1 are vi-

sualized in Figures 7.9a & 7.9b respectively, while P-STLMPC specifically is recorded

and documented by video1. This track is designed to encourage safe navigation in the

narrow, right portion while promoting pursuit in formation as the track opens up on

the left. Both planners attain paths that closely align directly behind the leader in the

narrow section before branching to the leader’s left in the wider area. Fluctuations in

the leader’s P-QBMPC path are amplified in the pursuit reference path, although the

following vehicle successfully maintains travel to the leader’s left. Robust detection

and tracking with a limited camera FOV becomes challenging when both vehicles

are in motion (especially at higher speeds), although these results illustrate that this

flexible formation framework can function in real-world conditions.

1https://www.youtube.com/watch?v=49ws64lPL-c

150

https://www.youtube.com/watch?v=49ws64lPL-c


M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

(a) (b)

Figure 7.9: Flexible formation navigation using the trailing leftward formation of
Experiment #6-1. Here, leader & follower navigate using (a) P-STLMPC & (b)
P-QBMPC. Darker color gradients show time progression where the P-STLMPC,
P-QBMPC and pursuit reference paths all lag behind the leader throughout.

Performance of both adaptive pursuit methods is shown numerically in Tables

7.2 & 7.3. P-QBMPC achieves superior performance over P-STLMPC based on ob-

stacle proximity metrics, while planning times are consistently faster. However, P-

STLMPC exhibits lower control effort in this experiment (partially as the leader ve-

hicle’s STLMPC path is straighter, with less emphasis than QBMPC on maintaining

high obstacle clearance). P-STLMPC also has a higher average speed and achieves

superior pursuit tracking. Both P-STLMPC & P-QBMPC achieve better pursuit

tracking when ρ is larger, as it is further prioritized, while larger pursuit weights also

correspond to a higher average obstacle clearance. The minimum following distance

over the full experiment, using the four corners of the leader’s shape (min
n,k̃

dlead,0,n,k̃)

satisfies the smallest allowed distance, dleadsafe = 0.4 m for both algorithms.
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Table 7.2: Control input and planning time performance for P-STLMPC &
P-QBMPC in Experiment #6-1

Local Planner
min
k̃

dmin,k̃

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

t̄comp

(ms)

max tcomp

(ms)

P-STLMPC 0.449 0.192 0.043 0.973 0.047 34.9 64.6

P-QBMPC 0.552 0.227 0.065 0.808 0.098 1.4 5.9

Table 7.3: Obstacle proximity and pursuit accuracy performance for P-STLMPC &
P-QBMPC in Experiment #6-1

ρ < 0.5 ρ ≥ 0.5

Local Planner
d̄min

(m)

d̄ρ,0,k̃
(m)

d̄min

(m)

d̄ρ,0,k̃
(m)

d̄min

(m)

d̄ρ,0,k̃
(m)

min
n,k̃

dlead,0,n,k̃

(m)

P-STLMPC 0.824 0.461 0.752 0.510 1.184 0.201 0.420

P-QBMPC 0.828 1.338 0.716 1.680 0.832 1.322 0.497

Moreover, the minimum obstacle proximity, pursuit tracking error and pursuit

weight are evaluated over time for both P-STLMPC (Figure 7.10a) & P-QBMPC

(Figure 7.10b) in Experiment #6-1. In both cases, larger obstacle clearance in the

second half of the course increases pursuit weight which in turn decreases pursuit

tracking error. The interplay between these metrics is evident where each is balanced

during navigation dynamically. For P-QBMPC, the leader vehicle initially travels

faster than the follower, exiting pursuit range. However, as the follower catches up, it

achieves a low pursuit error just as in P-STLMPC (this occurs in both experiments,

explaining the deceptively high pursuit errors for P-QBMPC in Tables 7.3 & 7.5).

In the second adaptive pursuit experiment (Experiment #6-2), the follower now

trails the leader on the right, where trajectories are shown in Figure 7.11 and QBMPC

in particular is recorded by video2. Again, each trailing vehicle stays in the center

2https://www.youtube.com/watch?v=zwTHNDGbHSE
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of the track during the narrow section before pursuing the leader on the right in the

wider region. Thus, flexible formation is achieved as the environment varies.

(a) (b)

Figure 7.10: Obstacle proximity, pursuit tracking error and pursuit weight over time
in Experiment #6-1 for (a) P-STLMPC and (b) P-QBMPC.

(a) (b)

Figure 7.11: Flexible formation navigation using the trailing rightward formation of
Experiment #6-2. Here, leader & follower navigate using (a) P-STLMPC & (b)
P-QBMPC. Darker color gradients show time progression where the P-STLMPC,
P-QBMPC and pursuit reference paths all lag behind the leader throughout.
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Results from Experiment #6-2 are further shown in Tables 7.4 & 7.5 which confirm

trends observed in Experiment #6-1. Again, P-QBMPC maintains higher obstacle

clearance while P-STLMPC maintains pursuit formation more accurately. As in Ex-

periment #6-1, P-QBMPC attains low pursuit error once it catches up to the leader

after quickly falling behind initially, which is not immediately clear from the numeri-

cal results. Nonetheless, the pursuit error is shown to decrease for both planners when

the pursuit weight exceeds 0.5 as obstacle clearance increases and more open space

exists for maneuvers. Once more, P-QBMPC demonstrates a significant reduction in

planning time over P-STLMPC, and both planners exceed the safe following distance.

Table 7.4: Control input and planning time performance for P-STLMPC &
P-QBMPC in Experiment #6-2

Local Planner
min
k̃

dmin,k̃

(m)

|δcmd,k̃|
(rad)

Var(δcmd,k̃)

(rad2)

v̄cmd,k̃

(m/s)

Var(vcmd,k̃)

(m2/s2)

t̄comp

(ms)

max tcomp

(ms)

P-STLMPC 0.346 0.162 0.035 0.934 0.091 35.8 60.4

P-QBMPC 0.534 0.188 0.057 0.816 0.117 1.4 4.6

Table 7.5: Obstacle proximity and pursuit accuracy performance for P-STLMPC &
P-QBMPC in Experiment #6-2

ρ < 0.5 ρ ≥ 0.5

Local Planner
d̄min

(m)

d̄ρ,0,k̃
(m)

d̄min

(m)

d̄ρ,0,k̃
(m)

d̄min

(m)

d̄ρ,0,k̃
(m)

min
n,k̃

dlead,0,n,k̃

(m)

P-STLMPC 0.757 0.766 0.685 0.849 1.103 0.357 0.492

P-QBMPC 0.904 1.122 0.812 1.185 0.925 1.096 0.559

The proximity, pursuit error and pursuit weight time-varying values in Experiment

#6-2 are displayed for P-STLMPC & P-QBMPC (Figures 7.12a & 7.12b respectively).

Both approaches attain higher pursuit weights based on higher obstacle clearance

towards the end of the course. Pursuit errors for each method decrease consistently
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below 0.5 m during the wide region of the course while each algorithm still maintains

a safe path. This performance aligns with that of Experiment #6-1, indicating that

that this formulation of adaptive pursuit works in practice for arbitrary formations.

(a) (b)

Figure 7.12: Obstacle proximity, pursuit tracking error and pursuit weight over time
in Experiment #6-2 for (a) P-STLMPC and (b) P-QBMPC.

Lastly, the velocities for each leader-follower pair are stipulated in Figure 7.13. The

leader maintains a more constant speed while the follower’s speed profile fluctuates

to maintain formation. Here, it is evident that in P-QBMPC, the follower falls far

behind initially and needs to speed up rapidly to achieve accurate pursuit once more.

(a) (b)

Figure 7.13: Leader & follower speed profiles in Experiment #6-2 for (a)
P-STLMPC and (b) P-QBMPC. The velocity bounds are indicated for this

experiment, where P-QBMPC requires a nonzero lower bound to ensure constant
forward motion.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented the development of novel local path planners that establish safe

real-time navigation in unknown environments where a known global goal position

is not given. These navigation approaches are applicable to mobile robotics & au-

tonomous vehicles in contexts including search and rescue, racing & multi-vehicle

path planning within fleet formation. An MPC framework is implemented where

optimizing over a receding prediction horizon provides the optimal local path, which

is updated dynamically, considering environmental conditions and vehicle dynamics.

These proposed methods extend to any arbitrary environment, characterized by local

obstacles, that is traversed by an agent subject to nonholonomic system constraints.

After categorizing & reviewing existing literature pertinent to the topics discussed

in this thesis (Chapter 2), the initial formulation of the first novel path planning

algorithm was presented in Chapter 3. Here, successive tracking lines are constructed

based on local obstacles, where heading angles correspond to the direction of the
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largest open space, and quadratic optimizations ensure distances to local obstacles

are maximized. A non-convex optimization is conducted via SLSQP to determine

the optimal path, which follows the tracking line reference path while exhibiting

low control effort, all while abiding by the kinematic bicycle model (with constant

velocity) and limits on control inputs. Moreover, localization is used against a known

map to enhance the set of local obstacles and increase the effective look-ahead range.

Dynamic obstacles such as adversarial detected vehicles were then incorporated

into local path planning through Chapter 4. This approach uses a CNN, specifically

YOLO, to identify vehicles via bounding boxes, given an RGB image data stream.

Multiple detections are handled by properly associating each with its own tracked

vehicle, where sensor fusion via a depth camera then provides estimated poses. An

EKF is used to track vehicles using transformation, prediction & correction steps,

where the adversarial vehicle outlines are mapped over the predicted horizon and

added to the obstacle set for local path planning.

An extended & more complete formulation of the original navigation algorithm

was presented in Chapter 5, which removes the assumption of constant velocity.

Specifically for racing applications, this framework prioritizes higher speeds while

maintaining safe paths and satisfying control input limits. Additional optimization

constraints focus on reducing speed in tight turns and when obstacles lie immediately

ahead, posing significant collision risks.

Alternative to previous tracking line-based approaches, a new formulation uses a

fourth-order Bezier curve for local path planning & control via a single non-convex

optimization (Chapter 6). Successive heading angles in the direction of the safest

local gap are used in the initial guess for the curve’s control points. Using initial
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conditions and a potential field function that penalizes closer distances to local ob-

stacles, a smooth trajectory is generated in low computation time. Vehicle dynamics

are incorporated directly into the curve shape, a minimum allowed obstacle proximity

over the predicted curve is set & the curve is generalized to an arbitrary prediction

time horizon.

The tracking line & Bezier curve methods are each used in a novel cooperative

multi-vehicle scheme based on adaptive pursuit in Chapter 7. A time-evolving weight

is used, which encourages pursuit when the minimum obstacle distance to the vehi-

cle trajectory is high and prioritizes safe navigation via the respective initial path

planning formulation when the minimum obstacle clearance is low. Standard local

navigation occurs when no leader exists; however, the presence of a pursuable leader

ensures adaptive pursuit is conducted. An arbitrary leader-follower formation can

be flexibly maintained while preserving safety by considering nearby obstacles and a

minimum following distance. This decentralized, modular framework is extendable to

arbitrary fleet formations with more vehicles, where each agent can join or abandon

formation, and no fixed leader is required.

8.2 Future Work

The work conducted in this thesis has various opportunities for future extensions

and adaptations. Further work can expand the framework presented to fulfill local

navigation while satisfying additional criteria or adapt the framework to accommodate

alternative, unique path planning applications. Specifically, future work can:

• Formulate the presented algorithms, which assume the kinematic bicycle model

for different robot/vehicle models, to extend the framework to a wider set of
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agents. These potential models include the differential drive model (nonholo-

nomic) and the omnidirectional drive model (holonomic).

• Adaptively modify certain parameters like look-ahead range, prediction time

horizon, and base weighting factors for certain objective terms used in opti-

mization. This would allow further adaptive navigation to best suit varying

environmental conditions such as local obstacle proximities, amount of local

collision-free space & number of detected vehicles. Reinforcement learning could

be applied to learn from past navigation experience and, based on observed fea-

tures, dynamically tune parameters to achieve improved performance.

• Progressively build the global map as more of the unknown environment is

explored (in the case where no prior map is known). Global path planning

using this map can then gradually be incorporated with existing local planning.

In an exploration application, remaining unexplored regions can be identified

and targeted for navigation in a hierarchical approach.

• Further exploit camera abilities for more holistic object detection and environ-

ment classification beyond the capabilities of LiDAR. Additional application-

dependent criteria can be set, such as navigating towards certain static/dynamic

obstacles, modifying path planning depending on the surroundings and incor-

porating parallel yellow lines as lanes in on-road autonomous driving contexts.

• Extend vehicle detection to accommodate the full angular range around the

ego vehicle, not just the front FOV. This can ensure more perceptive vehicle

avoidance as well as navigation in modular flexible fleet formations, where not

just the immediate leader vehicle is considered.
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• Incorporate state estimation error covariances from the EKF into vehicle avoid-

ance such that higher covariances correspond to a wider band of occupied space

over the detected vehicle’s future trajectory. The approach in this thesis assumes

the estimate is accurate and is alone considered for the future trajectory; how-

ever, this extension yields a more conservative estimate of collision-risk space.

• Accommodate negative velocities for vehicle reversal functionality into the path

planning algorithms. This incorporates more flexible driving behavior for han-

dling scenarios like dynamic obstacle avoidance and ensures vehicle navigation

does not terminate at a dead end.

• Augment the Bezier curve path planning formulation to prioritize higher veloc-

ities for use in racing applications (similar to how the tracking line method was

modified in Chapter 5). Additionally, navigation using Bezier curves of different

orders can be tested and contrasted with the quartic Bezier curve used in this

thesis.

• Extend the modular pursuit path planning framework provided in Chapter 7 to

more complicated fleet formations with higher numbers of vehicles. By using

this algorithm as a fundamental basis, arbitrary & decentralized multi-vehicle

formations in unknown environments can be explored and tested. The case of

assembling formation with multiple detected leaders would have to be addressed.

• Accommodate cooperative local navigation for a team of heterogeneous agents.

Here, each robot/vehicle would perform specific tasks in the collaborative team

and would be detected, identified & modeled uniquely while also following its

own distinctive, independent navigation framework.
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Appendix A

Optimization Gradients

This appendix provides the analytically derived gradients for each MPC optimization

problem. These results are useful in obtaining accurate gradients during optimization

using a non-linear, SQP-based solver like SLSQP. For the purposes of this appendix

and to encourage brevity, only nonzero optimization gradients are explicitly shown.

A.1 STLMPC

For Fd2 (Equation 3.1.13),

∂Fd2

∂xj

=

nMPCkMPC−1∑
i=0

∂
∂xj

(w̃T
i Pi + 1)2

∥w̃i∥2
=
2w̃x,j(w̃

T
j Pj + 1)

∥w̃j∥2
∀j∈{0, ..., nMPCkMPC − 1}

(A.1.1)

∂Fd2

∂yj
=

nMPCkMPC−1∑
i=0

∂
∂yj

(w̃T
i Pi + 1)2

∥w̃i∥2
=
2w̃y,j(w̃

T
j Pj + 1)

∥w̃j∥2
∀j∈{0, ..., nMPCkMPC − 1}

(A.1.2)
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For Fḋ2 (Equation 3.1.16),

∂Fḋ2

∂xj

=

nMPCkMPC−2∑
i=0

∂
∂xj

(w̃T
i Ṗi)

2

∥w̃i∥2
=

∂
∂xj

(w̃T
j−1Ṗj−1)

2

∥w̃j−1∥2
+

∂
∂xj

(w̃T
j Ṗj)

2

∥w̃j∥2

∂Fḋ2

∂xj

=


−2w̃x,j(w̃

T
j Ṗj)

∥w̃j∥2 if j = 0

2w̃x,j−1(w̃
T
j−1Ṗj−1)

∥w̃j−1∥2 − 2w̃x,j(w̃
T
j Ṗj)

∥w̃j∥2 if ∀j ∈ {1, ..., nMPCkMPC − 2}

2w̃x,j−1(w̃
T
j−1Ṗj−1)

∥w̃j−1∥2 if j = nMPCkMPC − 1

(A.1.3)

Similarly,

∂Fḋ2

∂yj
=


−2w̃y,j(w̃

T
j Ṗj)

∥w̃j∥2 if j = 0

2w̃y,j−1(w̃
T
j−1Ṗj−1)

∥w̃j−1∥2 − 2w̃y,j(w̃
T
j Ṗj)

∥w̃j∥2 if ∀j ∈ {1, ..., nMPCkMPC − 2}

2w̃y,j−1(w̃
T
j−1Ṗj−1)

∥w̃j−1∥2 if j = nMPCkMPC − 1

(A.1.4)

For Fδ2 (Equation 3.1.17),

∂Fδ2

∂δj
=

nMPCkMPC−1∑
i=0

∂

∂δj
δ2i = 2δj ∀j ∈ {0, ..., nMPCkMPC − 1} (A.1.5)

For hx,j (Equation 3.1.20) and hy,j (Equation 3.1.21),

∂hx,j

∂xj

= −1, ∂hx,j

∂xj+1

= 1,
∂hx,j

∂θj
= ∆t v sin(θj) ∀j ∈ {0, ..., nMPCkMPC − 2}

(A.1.6)

∂hy,j

∂yj
= −1, ∂hy,j

∂yj+1

= 1,
∂hy,j

∂θj
= −∆t v cos(θj) ∀j ∈ {0, ..., nMPCkMPC − 2}

(A.1.7)
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For hθ,j (Equation 3.1.23),

∂hθ,j

∂θj
= −1, ∂hθ,j

∂θj+1

= 1,
∂hθ,j

∂δj
= −∆t

v

l cos2(δj)
∀j ∈ {0, ..., nMPCkMPC − 2}

(A.1.8)

For gδ+,j (Equation 3.1.25) and gδ−,j (Equation 3.1.26),

∂gδ+,j

∂δj
= −1,

∂gδ+,j

∂δj+1

= 1,
∂gδ−,j

∂δj
= 1,

∂gδ−,j

∂δj+1

= −1 ∀j∈{0, ..., nMPCkMPC − 2}

(A.1.9)

A.2 Non-Uniform Velocity STLMPC

All existing gradients (Equations A.1.1-A.1.9) are unchanged, except for replacing v

with vi where used. Now for Fv2 , hx,j, hy,j and hθ,j (Equations 5.2.1, 3.1.20, 3.1.21

and 3.1.23 respectively),

∂Fv2

∂vj
=

nMPCkMPC−1∑
i=0

∂

∂vj

1

v2i
= − 2

v3j
∀j ∈ {0, ..., nMPCkMPC − 1} (A.2.1)

∂hx,j

∂vj
= −∆t cos(θj),

∂hy,j

∂vj
= −∆t sin(θj)

∂hθ,j

∂vj
= −∆t

l
tan(δj) ∀j ∈ {0, ..., nMPCkMPC − 2} (A.2.2)

For gv+,j (Equation 5.3.2) and gv−,j (Equation 5.3.3),

∂gv+,j

∂vj
= −1,

∂gv+,j

∂vj+1

= 1,
∂gv−,j

∂vj
= 1,

∂gv−,j

∂vj+1

= −1 ∀j∈{0, ..., nMPCkMPC − 2}

(A.2.3)
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For gvsteer,j (Equation 5.3.5),

∂gvsteer,j
∂δj

=
2vmaxδ

2
maxδj

(δ2j + δ2max)
2
,

∂gvsteer,j
∂vj

= 1 ∀j ∈ {0, ..., nMPCkMPC − 1} (A.2.4)

For gvobs,j (Equation 5.3.13),

∂gvobs,j
∂xj

=
∂gvobs,j

∂dbandmin,j

· ∂dbandmin,j

∂s̃j
·

Nobssub
−1∑

i=0

(
∂s̃j,i

∂θband,j,i
· ∂θband,j,i
∂θdiff,j,i

· ∂θdiff,j,i
∂θj,i

· ∂θj,i
∂xj

+
∂s̃j,i
∂dj,i

· ∂dj,i
∂xj

)

(A.2.5)

∂gvobs,j
∂yj

=
∂gvobs,j

∂dbandmin,j

· ∂dbandmin,j

∂s̃j
·

Nobssub
−1∑

i=0

(
∂s̃j,i

∂θband,j,i
· ∂θband,j,i
∂θdiff,j,i

· ∂θdiff,j,i
∂θj,i

· ∂θj,i
∂yj

+
∂s̃j,i
∂dj,i

· ∂dj,i
∂yj

)

(A.2.6)

∂gvobs,j
∂θj

=
∂gvobs,j

∂dbandmin,j

· ∂dbandmin,j

∂s̃j
·

Nobssub
−1∑

i=0

(
∂s̃j,i

∂θband,j,i
· ∂θband,j,i
∂θdiff,j,i

· ∂θdiff,j,i
∂θj

) (A.2.7)

∂gvobs,j
∂vj

= 1 ∀j ∈ {0, ..., nMPCkMPC − 1} (A.2.8)

Here, s̃j =
∑Nobssub

−1

i=0 θband,j,i e
−βvdj,i , s̃j,i = θband,j,i e

−βvdj,i (Equation 5.3.11) and the

intermediate function gradients are (Equations 5.3.7 - 5.3.13):

∂gvobs,j
∂dbandmin,j

= −vmax

αv

e−
dbandmin,j−dstop

αv ,
∂dbandmin,j

∂s̃j
= − 1

βvs̃j
,

∂s̃j,i
∂θband,j,i

= e−βvdj,i

(A.2.9)

∂θband,j,i
∂θdiff,j,i

= sθ(
e−sθ(θdiff,j,i+θbandmax )

(1 + e−sθ(θdiff,j,i+θbandmax ))2
− e−sθ(θdiff,j,i−θbandmax )

(1 + e−sθ(θdiff,j,i−θbandmax ))2
) (A.2.10)

∂θdiff,j,i
∂θj,i

= 1,
∂θdiff,j,i
∂θj

= −1 (A.2.11)
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∂θj,i
∂xj

=
yobssub,i − yj

(xobssub,i − xj)2 + (yobssub,i − yj)2
,

∂θj,i
∂yj

= − xobssub,i − xj

(xobssub,i − xj)2 + (yobssub,i − yj)2

(A.2.12)

∂s̃j,i
∂dj,i

= −βvs̃j,i,
∂dj,i
∂xj

=
xj − xobssub,i

dj,i
,

∂dj,i
∂yj

=
yj − yobssub,i

dj,i
(A.2.13)

A.3 QBMPC

For Fobjξ (Equation 6.3.2) where i ∈ {0, ..., nξ − 1}, j ∈ {0, ..., Nobssub − 1} and each

control point is respectively indexed by kx ∈ {2, 3, 4} and ky ∈ {3, 4} throughout this

section,

∂Fobjξ

∂xkx

=

nξ−1∑
i=0

∂Fobjξ,i

∂xξ,i

· ∂xξ,i

∂xkx

,
∂Fobjξ

∂yky
=

nξ−1∑
i=0

∂Fobjξ,i

∂yξ,i
· ∂yξ,i
∂yky

(A.3.1)

With the intermediate function gradients (Equations 6.1.2, 6.1.3, 6.3.1 - 6.3.3):

∂Fobjξ,i

∂xξ,i

=

Nobssub
−1∑

j=0

∂Fobjξ,i,j

∂d2ξ,i,j
·
∂d2ξ,i,j
∂xξ,i

,
∂Fobjξ,i

∂yξ,i
=

Nobssub
−1∑

j=0

∂Fobjξ,i,j

∂d2ξ,i,j
·
∂d2ξ,i,j
∂yξ,i

(A.3.2)

∂Fobjξ,i,j

∂d2ξ,i,j
=−( 1

d4ξ,i,j
+

αξ

d2ξ,i,j
)e−αξd

2
ξ,i,j ,

∂d2ξ,i,j
∂xξ,i

=2(xξ,i−xobssub,j),
∂d2ξ,i,j
∂yξ,i

=2(yξ,i−yobssub,j)

(A.3.3)

∂xξ,i

∂x2

= 6(1− ti)
2t2i ,

∂xξ,i

∂x3

=
∂yξ,i
∂y3

= 4(1− ti)t
3
i ,

∂xξ,i

∂x4

=
∂yξ,i
∂y4

= t4i (A.3.4)

For gv+ξ ,i (Equation 6.4.2) and gv−ξ ,i (Equation 6.4.3),

∂gv+ξ ,i

∂xkx

=
−∂gv−ξ ,i

∂xkx

= 2x′
ξ,i

∂x′
ξ,i

∂xkx

,
∂gv+ξ ,i

∂yky
=
−∂gv−ξ ,i

∂yky
= 2y′ξ,i

∂y′ξ,i
∂yky

(A.3.5)
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Using intermediate gradients (Equations 6.1.4 and 6.1.5),

∂x′
ξ,i

∂x2

= 24t3i − 36t2i + 12ti,
∂x′

ξ,i

∂x3

=
∂y′ξ,i
∂y3

= −16t3i + 12t2i ,
∂x′

ξ,i

∂x4

=
∂y′ξ,i
∂y4

= 4t3i

(A.3.6)

For gaξ,i (Equation 6.4.6),

∂gaξ,i

∂xkx

=
2(x′

ξ,ix
′′
ξ,i+y′ξ,iy

′′
ξ,i)((x

′′
ξ,i

∂x′
ξ,i

∂xkx
+ x′

ξ,i

∂x′′
ξ,i

∂xkx
)(x′2

ξ,i + y′2ξ,i)− x′
ξ,i

∂x′
ξ,i

∂xkx
(x′

ξ,ix
′′
ξ,i+y′ξ,iy

′′
ξ,i))

(x′2
ξ,i + y′2ξ,i)

2

(A.3.7)

∂gaξ,i

∂yky
=
2(x′

ξ,ix
′′
ξ,i+y′ξ,iy

′′
ξ,i)((y

′′
ξ,i

∂y′ξ,i
∂yky

+ y′ξ,i
∂y′′ξ,i
∂yky

)(x′2
ξ,i + y′2ξ,i)− y′ξ,i

∂y′ξ,i
∂yky

(x′
ξ,ix

′′
ξ,i+y′ξ,iy

′′
ξ,i))

(x′2
ξ,i + y′2ξ,i)

2

(A.3.8)

With the additional intermediate gradients (Equations 6.1.7 and 6.1.8),

∂x′′
ξ,i

∂x2

= 72t2i − 72ti + 12,
∂x′′

ξ,i

∂x3

=
∂y′′ξ,i
∂y3

= −48t2i + 24ti,
∂x′′

ξ,i

∂x4

=
∂y′′ξ,i
∂y4

= 12t2i

(A.3.9)

For gκ+
ξ ,i (Equation 6.4.7) and gκ−

ξ ,i (Equation 6.4.8),

∂gκ+
ξ ,i

∂xkx

=
−∂gκ−

ξ ,i

∂xkx

=
(y′′ξ,i

∂x′
ξ,i

∂xkx
− y′ξ,i

∂x′′
ξ,i

∂xkx
)(x′2

ξ,i + y′2ξ,i)− 3x′
ξ,i

∂x′
ξ,i

∂xkx
(x′

ξ,iy
′′
ξ,i − y′ξ,ix

′′
ξ,i)

(x′2
ξ,i + y′2ξ,i)

5/2

(A.3.10)

∂gκ+
ξ ,i

∂yky
=
−∂gκ−

ξ ,i

∂yky
=

(x′
ξ,i

∂y′′ξ,i
∂yky
− x′′

ξ,i

∂y′ξ,i
∂yky

)(x′2
ξ,i + y′2ξ,i)− 3y′ξ,i

∂y′ξ,i
∂yky

(x′
ξ,iy

′′
ξ,i − y′ξ,ix

′′
ξ,i)

(x′2
ξ,i + y′2ξ,i)

5/2

(A.3.11)
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For gκ′+
ξ ,i (Equation 6.4.13) and gκ′−

ξ ,i (Equation 6.4.14),

∂gκ′+
ξ ,i

∂xkx

=
−∂gκ′−

ξ ,i

∂xkx

=
l

1 + (lκξ,i)2
∂κ′

ξ,i

∂xkx

−
2l3κξ,iκ

′
ξ,i

(1 + (lκξ,i)2)2
∂κξ,i

∂xkx

(A.3.12)

∂gκ′+
ξ ,i

∂yky
=
−∂gκ′−

ξ ,i

∂yky
=

l

1 + (lκξ,i)2
∂κ′

ξ,i

∂yky
−

2l3κξ,iκ
′
ξ,i

(1 + (lκξ,i)2)2
∂κξ,i

∂yky
(A.3.13)

Here,
∂κξ,i

∂xkx
and

∂κξ,i

∂yky
are equivalent to Equations A.3.10 and A.3.11, respectively, and

further intermediate gradients (Equations 6.4.10 - 6.4.12) are provided. Using the

numerator, κ′
num,ξ,i = (x′

ξ,iy
′′′
ξ,i−y′ξ,ix′′′

ξ,i)(x
′2
ξ,i+y′2ξ,i)−3(x′

ξ,ix
′′
ξ,i+y′ξ,iy

′′
ξ,i)(x

′
ξ,iy

′′
ξ,i−y′ξ,ix′′

ξ,i)

of Equation 6.4.10 with the gradients
∂κ′

num,ξ,i

∂xkx
and

∂κ′
num,ξ,i

∂yky
(for the quotient rule),

∂κ′
ξ,i

∂xkx

=

∂κ′
num,ξ,i

∂xkx

(x′2
ξ,i + y′2ξ,i)

5/2
−
5x′

ξ,i

∂x′
ξ,i

∂xkx
κ′
num,ξ,i

(x′2
ξ,i + y′2ξ,i)

7/2
,

∂κ′
ξ,i

∂yky
=

∂κ′
num,ξ,i

∂yky

(x′2
ξ,i + y′2ξ,i)

5/2
−
5y′ξ,i

∂y′ξ,i
∂yky

κ′
num,ξ,i

(x′2
ξ,i + y′2ξ,i)

7/2

(A.3.14)

∂κ′
num,ξ,i

∂xkx

=(y′′′ξ,i
∂x′

ξ,i

∂xkx

− y′ξ,i
∂x′′′

ξ,i

∂xkx

)(x′2
ξ,i + y′2ξ,i) + 2x′

ξ,i

∂x′
ξ,i

∂xkx

(x′
ξ,iy

′′′
ξ,i − y′ξ,ix

′′′
ξ,i)

−3((x′
ξ,i

∂x′′
ξ,i

∂xkx

+x′′
ξ,i

∂x′
ξ,i

∂xkx

)(x′
ξ,iy

′′
ξ,i−y′ξ,ix′′

ξ,i)+(y
′′
ξ,i

∂x′
ξ,i

∂xkx

−y′ξ,i
∂x′′

ξ,i

∂xkx

)(x′
ξ,ix

′′
ξ,i+y

′
ξ,iy

′′
ξ,i))

(A.3.15)

∂κ′
num,ξ,i

∂yky
=(x′

ξ,i

∂y′′′ξ,i
∂yky

− x′′′
ξ,i

∂y′ξ,i
∂yky

)(x′2
ξ,i + y′2ξ,i) + 2y′ξ,i

∂y′ξ,i
∂yky

(x′
ξ,iy

′′′
ξ,i − y′ξ,ix

′′′
ξ,i)

−3((y′ξ,i
∂y′′ξ,i
∂yky

+y′′ξ,i
∂y′ξ,i
∂yky

)(x′
ξ,iy

′′
ξ,i−y′ξ,ix′′

ξ,i)+(x
′
ξ,i

∂y′′ξ,i
∂yky

−x′′
ξ,i

∂y′ξ,i
∂yky

)(x′
ξ,ix

′′
ξ,i+y

′
ξ,iy

′′
ξ,i))

(A.3.16)

∂x′′′
ξ,i

∂x2

= 144ti − 72,
∂x′′′

ξ,i

∂x3

=
∂y′′′ξ,i
∂y3

= −96ti + 24,
∂x′′′

ξ,i

∂x4

=
∂y′′′ξ,i
∂y4

= 24ti (A.3.17)

For gdξ,i (Equation 6.4.16),

167



M.A.Sc. Thesis – Christian Schaible McMaster – Electrical & Computer Engineering

∂gdξ,i

∂xkx

=

∑Nobssub
−1

j=0 ( ∂
∂dξ,i,j

(e−βξdξ,i,j) · ∂dξ,i,j
∂xkx

)

βξ

∑Nobssub
−1

j=0 e−βξdξ,i,j
= −

∑Nobssub
−1

j=0

(xξ,i−xobssub,j
)

dξ,i,j

∂xξ,i

∂xkx
e−βξdξ,i,j∑Nobssub

−1

j=0 e−βξdξ,i,j

(A.3.18)

∂gdξ,i

∂yky
=

∑Nobssub
−1

j=0 ( ∂
∂dξ,i,j

(e−βξdξ,i,j) · ∂dξ,i,j
∂yky

)

βξ

∑Nobssub
−1

j=0 e−βξdξ,i,j
= −

∑Nobssub
−1

j=0

(yξ,i−yobssub,j)

dξ,i,j

∂yξ,i
∂yky

e−βξdξ,i,j∑Nobssub
−1

j=0 e−βξdξ,i,j

(A.3.19)

A.4 P-STLMPC

In this section, j ∈ {0, ..., nMPCkMPC−1} unless otherwise specified. Carrying over all

applicable existing gradients from Appendix A.2, additional objective term gradients

proceed with velocity terms F∆v2 and Fv2ρ
(Equations 7.3.12 and 7.3.13 respectively),

∂F∆v2

∂vj
=


−2(vj+1 − vj) if j = 0

−2(vj+1 − 2vj + vj−1) if ∀j ∈ {1, ..., nMPCkMPC − 2}

2(vj − vj−1) if j = nMPCkMPC − 1

(A.4.1)

∂Fv2ρ

∂vj
= 2(vj − vlead) (A.4.2)

For Fρ,d2 (Equation 7.3.14),

∂Fρ,d2

∂xj

= 2(xj − xρ,j),
∂Fρ,d2

∂yj
= 2(yj − yρ,j) (A.4.3)

For Fρ,ḋ2 (Equation 7.3.18) with intermediate sample set Jint = {1, ..., nMPCkMPC−2}

and each sample’s objective term, Fρ,ḋ2,j where Fρ,ḋ2 =
∑nMPCkMPC−2

j=0 Fρ,ḋ2,j,
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∂Fρ,ḋ2

∂xj
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ρ,ḋ2,j−1
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(F denom
ρ,ḋ2,j−1

)2
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if j=nMPCkMPC−1

(A.4.4)
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ρ,ḋ2,j−1
∂yj

F denom
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(A.4.5)

The numerator, F num
ρ,ḋ2,j

= ((xj − xρ,j)(xj+1− xj − vρx,j)+(yj − yρ,j)(yj+1− yj − vρy ,j))
2

and denominator, F denom
ρ,ḋ2,j

= (xj − xρ,j)
2 + (yj − yρ,j)

2 of Equation 7.3.18 are used in

the quotient rule with
∂F denom

ρ,ḋ2,j−1

∂xj
=

∂F denom
ρ,ḋ2,j−1

∂yj
= 0 and the remaining nonzero gradients,

∂F num
ρ,ḋ2,j

∂xj

=2((xj−xρ,j)(xj+1−xj−vρx,j)+(yj−yρ,j)(yj+1−yj−vρy ,j))(xj+1−2xj+xρ,j−vpx,j)

(A.4.6)

∂F num
ρ,ḋ2,j

∂yj
=2((xj−xρ,j)(xj+1−xj−vρx,j)+(yj−yρ,j)(yj+1−yj−vρy ,j))(yj+1−2yj+yρ,j−vpy ,j)

(A.4.7)

∂F denom
ρ,ḋ2,j

∂xj

= 2(xj − xρ,j),
∂F denom

ρ,ḋ2,j

∂yj
= 2(yj − yρ,j) (A.4.8)
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∂F num
ρ,ḋ2,j−1

∂xj

=2((xj−1−xρ,j−1)(xj−xj−1−vρx,j−1)+(yj−1−yρ,j−1)(yj−yj−1−vρy ,j−1))(xj−1−xρ,j−1)

(A.4.9)

∂F num
ρ,ḋ2,j−1

∂yj
=2((xj−1−xρ,j−1)(xj−xj−1−vρx,j−1)+(yj−1−yρ,j−1)(yj−yj−1−vρy ,j−1))(yj−1−yρ,j−1)

(A.4.10)

For the constraint gdlead (Equation 7.3.23),

∂gdlead
∂xj

= −
∑3

n=0
xj−ĉleadx,j,n

dlead,j,n
e−βρdlead,j,n∑nMPCkMPC−1

i=0

∑3
n=0 e

−βρdlead,i,n
(A.4.11)

∂gdlead
∂yj

= −
∑3

n=0

yj−ĉleady,j,n

dlead,j,n
e−βρdlead,j,n∑nMPCkMPC−1

i=0

∑3
n=0 e

−βρdlead,i,n
(A.4.12)

A.5 P-QBMPC

Maintaining all existing gradients provided in Appendix A.3 with notation following

i ∈ {0, ..., nξ − 1}, kx ∈ {2, 3, 4}, ky ∈ {3, 4}, the additional pursuit objective term,

Fρξ,d2 (Equation 7.4.10) has gradients,

∂Fρξ,d2

∂xkx

= 2(xkx − xρξ,kx),
∂Fρξ,d2

∂yky
= 2(yky − yρξ,ky) (A.5.1)

For gdlead,ξ (Equation 7.4.13) with
∂xξ,i

∂xkx
and

∂yξ,i
∂yky

provided in Appendix A.3,

∂gdlead,ξ
∂xkx

= −

∑nξ−1
i=0

∑3
n=0

xξ,i−ĉleadx,i,n

dleadξ,i,n

∂xξ,i

∂xkx
e−βρdleadξ,i,n∑nξ−1

i=0

∑3
n=0 e

−βρdleadξ,i,n
(A.5.2)

∂gdlead,ξ
∂yky

= −

∑nξ−1
i=0

∑3
n=0

yξ,i−ĉleady,i,n

dleadξ,i,n

∂yξ,i
∂yky

e−βρdleadξ,i,n∑nξ−1
i=0

∑3
n=0 e

−βρdleadξ,i,n
(A.5.3)
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Appendix B

Experiment Course Layouts

This appendix contains the layouts for all tested experiment setups (Experiments

#1-6). The experiments make use of varying environment configurations to illus-

trate the versatility of this thesis’ local planning algorithms. Experiment #1 tests

STLMPC with a constant velocity (Figure B.1a) while Experiment #2 incorporates

dynamic obstacle/vehicle avoidance into STLMPC (Figure B.1b). Experiment #3

evaluates non-uniform velocity STLMPC for racing (Figure B.1c) and Experiment

#4 assesses QBMPC (Figure B.1d). Dynamic obstacle/vehicle avoidance is consid-

ered for QBMPC in Experiment #5 (Figure B.1e), and finally, adaptive pursuit is

conducted using P-STLMPC & P-QBMPC in Experiment #6 (Figure B.1f). Naviga-

tion in each experiment setup is recorded by video and correspondingly provided for

viewing each local path planner in action1. These experiments illustrate the function-

ality of the algorithms presented in this thesis when faced with real-world conditions.

In these tests, standalone local path planning is achieved while maintaining safety and

meeting specific objective criteria in dynamic, unknown, multi-vehicle environments.

1https://www.youtube.com/playlist?list=PLXepHSd7xhvUFHHfbtSod06hIosCzU3bD
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Experiment course layouts for (a) Experiment #1, (b) Experiment #2,
(c) Experiment #3, (d) Experiment #4, (e) Experiment #5 & (f) Experiment #6.
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