

 i

Crises as Temporality

A Critical Reimagination of the Networked Music Ensemble

via Live Coding Experimentation

 ii

CRISES AS TEMPORALITY

A CRITICAL REIMAGINATION OF THE NETWORKED MUSIC ENSEMBLE

VIA LIVE CODING EXPERIMENTATION

BY ALEJANDRO FRANCO BRIONES

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment

of the Requirements for the Degree Doctor of Philosophy

McMaster University © Copyright by Alejandro Franco Briones, August 2025

 iii

McMaster University DOCTOR OF PHILOSOPHY (2025) Hamilton, Ontario (Communication Studies and

Media Arts)

TITLE: Crises as Temporality: A Critical Reimagination of the Networked Music Ensemble via Live Coding

Experimentation

AUTHOR: Alejandro Franco Briones

SUPERVISOR: Dr. David Ogborn

NUMBER OF PAGES: ix, 296

 iv

Abstract

This research seeks to understand the role of music-making in environments heavily mediated by digital

networked technology. I argue that music can be understood as a practice capable of anticipating shifts

in the current mode of production and regimes of representation. Throughout the project, I unravel a form

of subjectivity capable of overcoming the convergence of the crises of care, ecology, representational

politics, and economy provoked by a capitalist class that consumes the means for its own reproduction

and, with it, the means to reproduce life. This project does so by reimagining the arena of networked

music as a collective non-commodified place for care and mutual aid. For this work, I have developed a

research creation project that includes artwork, a piece of software for music exploration, and a written

thesis, with all three components exploring the themes of temporality and crisis as mediated by

networked computation and digital technologies. The first artwork discussed is Temazcal 2: a live-coded

documentary co-created with Rolando Hernández. In this work we explore ideas about subjectivity and

crises connected to the temazcal: both a sweat-lodge of pre-Hispanic origin common in southern and

central Mexico as well as a canonic electroacoustic music work. The second artwork is TimekNot: a

Domain Specific (Programming) Language designed to express polytemporal musical ideas and

instantiate them as triggered audio samples. The third work is La Fábrica Colapsada: a cybernetic opera

exploring the relationship between crisis and time as revealed in the stories of the 2017 earthquake of

Mexico City. In observing the earthquake from a disaster studies perspective, I argue that the current

music creation context can be seen as a disaster, engulfed in crisis, as well. From this perspective, I

argue that within the algorithmic networked ensemble, new ways of framing social relations can allow us

to imagine a world where many worlds can fit.

 v

Acknowledgement

No one is alone. Doctoral projects can only happen with others. This project is no exception. I want to thank so

many people that made this work possible. Only some of them are on this page.

Thanks to my supervisor David Ogborn for all the crucial and committed support, including very meaningful

meetings to nerd out on music, books and code. Thanks to my committee members, Sara Bannerman and Andrea

ZeƯiro, for all their encouragement to keep going and with whom I had hard (in a good way!), meaningful and caring

conversations that made this dissertation a strong text. I could not ask for a better supervisory committee. I am

deeply grateful.

Thanks to Rolando Hernández, with whom I failed to build temazcales. Thanks to Iván López, with whom I

hallucinated Pirarán for the first time. Thanks to Diego Villaseñor for all the philosophy, programming and music, as

well as the incredible back and forth of theories, code, listening sessions and support.

I want to express my love and gratitude to my family: my father Guillermo Franco Valencia, my mother María Isabel

Briones Castañeda, and my brother Guillermo Franco Briones. Memo, Mamá y Papá.

Muchas gracias por todo su enorme apoyo.

Thanks to Cassandra Weimann and Lorraine Bell for providing such excellent support for my work and studies. I

would also like to thank the Factory Media Centre and the Art Council of Windsor and Region for their support in

the development of my art practice. As well I would like to thank Chris Myhr for his great feedback on concerts and

artworks.

Thanks to these weirdos: Sharmeen Khan, seldom heard DJ and exemplar comrade; Geordie Dent, time-hacker,

pizza-salad wizard and eviction warrior; Rossana Lara, gurú of music scholarship; Aida Khorsandi, outstanding

anarchic cable modulator; Behrang Takhayori, new year’s traveler companion; Mehrdad Jafari Rad, Dastgah

navigator; Sarah Imrisek, amazing dream-to-Hydra translator; Clementine Oberst and Gil Niessen, the best peers I

could ask for; Alejandro Tamayo, whose sound poem still resonates on the wall of my house; Michael Palumbo,

excellent community operator; Susie Kim and Freddie Villarete, friends of many brain conversations; and César

Juárez tlasokamati miek compa!

Especially many thanks to my partner Sara Swerdlyk, brilliant scholar and furious knitter without whom this PhD

would not be possible.

 vi

Content

Content ..vi

Introduction ... 1

Precursor and Chapter 1 ... 9

Precursor and Chapter 2 ... 12

Final Artwork and Chapter 3 .. 13

Chapter 1 - Temazcal 2: Subjectivity, Crisis and the Internet ... 14

The Conversations to Mind .. 24

Temazcal 2: Archive and Documentary Practice ... 44

Revelations from the Loop of Practice and Theory ... 67

Chapter 2 - TimekNot: displacing drones and beats with radical polyphony 71

The Temporal Notation and the Computation of Time .. 84

The Aural Notation.. 100

Higher Order Idioms and Computations ... 108

The Standalone and the Score Widget.. 113

Conclusion:: TimeNotation -> TimeNot -> TimekNot -> TimeKnit .. 115

Chapter 3 - The Collapsed Factory: Converging Crises as Critical Periods 118

Critical Period: Disaster as (Temporarily-)Situated Knowledge ... 130

 vii

La Fábrica Colapsada ... 150

Art(work) in the Net(work): The Algorithmic Networked Ensemble as a Site of Care and Mutual Aid .. 162

Conclusion .. 180

Bibliography ... 189

Appendices ... 201

A.1 Temazcal 2 Support Materials .. 201

A.2 La Fábrica Colapsada Support Materials .. 201

A.3 TimekNot Support Materials .. 202

A.4 TimekNot Source Code ... 202

 1

Introduction

This research seeks to understand the role of music-making in environments heavily mediated by digital

networked technology. Throughout this work, I have come to understand music as a practice capable of

anticipating shifts in the current mode of production and regimes of representation. This project – Crises

as Temporality – aims to unravel a form of subjectivity capable of overcoming what Nancy Fraser

describes as the multidimensional crisis of cannibal capitalism (2022): the convergence of the crises of

care, ecology, representational politics and economy provoked by a capitalist class that consumes the

means for its own reproduction and, with it, the means to reproduce life. This project does so by

reimagining the arena of networked music as a collective non-commodified place for care and mutual

aid. As part of this dissertation, I supplement Fraser’s framework by appending to this multitude of crises

the crisis of the imagination – through which it is easier to imagine the end of the world than the end of

capitalism – explored by scholars of the British cultural studies tradition such as Frederic Jameson and

Mark Fisher.

The crucial questions posed in this project are: How can the networked music ensemble become a site of

mutual aid and social reproduction pushing back against Eurocentric, androcentric, and anthropocentric

music institutions susceptible to market capture? How can the lived experiences of the performers and

the abstractions acquired by programming skills, scholarly research, and music work be synthesised into

something reminiscent of Massumi’s (2013) ‘lived abstraction’ ? By music work, I refer to the work that

produces music forms, algorithms, and techniques for new music: prominent in this research is

polytemporality as a set of algorithms that generate a novel musical texture. Finally, how can this lived

 2

abstraction – the embodied and sensorial experience of ideas and concepts – be organically bound to the

internet, instantiated as software, and yet accessible for broad collective knowledge and artistic

production?

This research has led me to develop a research creation project that includes artwork, a piece of software

for music exploration, and a written thesis, with all three components exploring the themes of

temporality and crisis as mediated by networked computation and digital technologies. I aim to critically

intervene in the fields of internet studies, data cultures, time studies, sound studies, artistic practice

(specifically algorithmic music and live coding), and computational science. In the written section of my

dissertation, I employ Marxist-feminist theory, assemblage theory, and decolonial frameworks to

contextualise, describe, and expand conceptually upon the interventions made by the artefacts created.

The main contributions of this research are threefold. Firstly, I have created a series of documented

networked digital performance pieces and interactive digital archives that employ novel conceptions of

time, software, and musical materials. The performances are: the on-the-fly documentary Temazcal 2

presented at the Networked Imagination Laboratory in March 2022;1 and the live-coded cyber-opera La

Fábrica Colapsada also performed at McMaster’s Networked Imagination Lab in May 2023.2 These

artefacts push forward a new understanding of the unfolding temporality of crises and the care networks

1 Temazcal 2 has video documentation uploaded to YouTube appended as an URL to the dissertation as appendix A.1.1. The
performance also has a repository of audio, videos, images, texts, among many other materials that can be consulted as
appendix A.1.2.
2 La Fábrica Colapsada was first performed at Arraymusic in April 2023, this has video documentation uploaded to YouTube
appended as an URL to the dissertation as appendix A.2.1. The most recent performance at the Networked Imagination Lab on
May 2023 has audio documentation and it is hosted in a website that displays the story-telling mechanisms of the opera, the
URL for it is appended to this dissertation as appendix A.2.2. The work also has three repositories of audio, videos, images,
texts, code, among many other materials that can be consulted as appendix A.2.3, A.2.4 and A.2.5.

 3

they inspire. Secondly, I have designed and produced TimekNot, a domain-specific programming

language for networked improvisational music creation, as software in a public internet-bound repository

capable of triggering audio samples within a polytemporal musical framework I developed.3 This software

is available for public use under a GNU General Public License, contributing a valuable tool for

audiovisual creation to anyone interested in polytemporality, algorithmic music, and the live coding

artistic movement. Additionally, I have created software for earthquake data sonification and

spatialisation in the context of the networked music found in the repositories for La Fábrica Colapsada.

Thirdly, I wrote this dissertation in which I weave together ideas and practice, arguing for a

reconceptualisation of the electronic, networked music ensemble and media arts in an era of converging

crises. My main theoretical contribution within my written doctoral work has been to reframe sonic media

art practice as, primarily, the locus of new social relations of care and, secondly, a niche for forms of art-

making that supersede gatekeeping by elite cultural expressions and the limits of industry and market.

La Fábrica Colapsada, the aforementioned final artwork for my PhD project, includes a documented

performance of a hybrid – in-person and web-based – algorithmic opera based on the earthquake that

catastrophically struck Mexico City in September 2017. The opera is a networked music and live coding

act – where coding in front of an audience becomes performance art – and draws extensively from

existing social and geological data, relevant scientific literature, and my personal experiences, both as a

programmer-artist and as someone who experienced first-hand the earthquake. Multiple art-research

methods based on data analysis and processing, like sonification, are fundamental aspects of the

3 Video demonstrations hosted in YouTube of TimekNot’s earliest experiments is appended as appendix A.3. TimekNot’s
source code is appended to this dissertation as appendix A.4.

 4

artwork. Similarly, I have constituted multiple repositories of audiovisual digital materials that form a

series of archives deployed and publicly accessible on the internet to be reconfigured with software as a

live performance. The artwork highlights a specific conception of temporality and crisis revealed by the

seismic event and the emerging social relations. I have drawn from Peer Illner, Tithi Bhattacharya, Gabor

Maté, David Harvey, Nick Dyer-Witheford, Atle Mikkola Kjøsen, James SteinhoƯ, and other relevant

critical theory literature to reconceptualise the site of the performance – in this case, the networked

environments – and to critically approach the crisis engendered by the earthquake.

The earthquake theme of the opera allows me to expand on temporality and crisis and, additionally, to

apply specific social reproduction theory ideas on disaster to the nature-culture divide that often

obscures the eƯects of cannibal capitalism: namely, the naturalisation of human suƯering – usually

understood as an eƯect of earthquakes – without a proper understanding of failing institutions and

markets. I propose that the real disaster is the retreating institutions whose purpose has become to

liberate markets from human friction – an inversion of our common sense. I embody such inversion

through the stories told as part of the artwork.

The circumstances surrounding the earthquake – particularly the fact that 32 years prior, an even more

devastating earthquake hit Mexico City on the same date – enables me to trace the impact of

neoliberalism as an ideology that has shaped reality in the period between the two earthquakes. The

narrative I am piecing together interrogates the response to the catastrophe under state-managed

capitalism and, now, under financialisation. What characteristics reappear? What is diƯerent among

them? More relevant for this project is whether the texture of time, the way people experience time in

these critical periods, aƯects normative temporality. What is possible when the people of Mexico City are

 5

exposed to such a texture of time? What relations of care and social reproduction are constructed in the

face of this immense destruction? And what can we learn from Mexico City’s relationship with

earthquakes in a post-pandemic, ever-in-crisis world? In exploring these questions with live coding and

data sonification, my PhD research bridges disciplinary discussions within data studies, media arts, and

internet studies on the role of networks and data beyond their disciplinary and commodifying roles.

This artistic project involved small but profound networked collaborations with a specific set of people,

namely: Rolando Hernández Guzmán, an excellent sound artist and curator from Mexico City; Iván López

Pineda, a brilliant composer, producer, and percussionist from Morelia; and Diego Villaseñor de Cortina,

a philosopher, programmer, musician, and long-standing collaborator of mine from Mexico City as well.

I met the challenge of collaborations in networked environments with know-how developed as part of my

PhD of live coding systems, workflows and software. I particularly relied on Estuary, TidalCycles,

SuperCollider, Flok, Reaper, and Audiomovers – mostly open-source software. Perhaps central to my

networked, collaborative expertise is Estuary, “a browser-based platform for live coding that allows a

heterogeneous collection of live coding languages to be used together in collaborative ‘ensembles’”

(Ogborn et al., 2022, p. 1). As a past member of the research team and someone closely involved with the

project, I see Estuary as both an influence on my understanding of networks and a set of possibilities to

explore in developing performances and software.

I also developed code snippets, programs, and software, such as spatialisation software, interfaces, and

custom-functions for MIDI communication, among many other things that emerged as requirements for

our experiments. At first, the idea was to work with ensembles in a more structured manner, but as the

COVID crisis and lockdown conditions deepened, it became necessary to pay more attention to aspects

 6

of care and social reproduction around ensemble-formation than aspects of networked music

production. Thus, this doctoral work ended forming two small-but-intimate ensembles preoccupied

perhaps more on life than music and technology.

The artwork’s infrastructure is a series of time-keeping, spatialisation, and datafication software

developed as deliverables for this project. This software will be available in various repositories online

most of which will be appended to this dissertation. This software stands as data and text that

illuminates specific aspects of this research. However, the software – more or less minimal pieces of

code designed to help users to accomplish specific tasks for audio and artistic work – is intended to aid

performers to use as art-making tools and programmers to use as algorithms to integrate into their

software. The most relevant component of this infrastructure is the programming language I am currently

developing: TimekNot. This language enables performers to think about music-making in a radical

polyphony style, where every monophonic line has its own rhythmic and/or metric rationality. By

including time expressions as part of the program rather than assuming a ‘master’ clock, TimekNot

makes it possible to think of points of convergence that communicate otherwise diƯerent musical

materials. This computer language is a tool I am developing specifically for live coding, a growing art

practice and movement characterised by the explicit use of code as performance art, in which on-the-fly

generated code creates side-eƯects, like sound or visuals. In this context, the programming language is

revealed as part of the live-coding show by projecting the performer’s computer screen to the audience.

Thus, the language I designed for my PhD research is made with meaningful and expressive syntax and

grammar. This language aims to reflect upon the conventional understanding of the internet, often

framed as (cyber)space, and focus on the temporalities aƯorded by networks.

 7

I have drawn extensively from methods and theories associated with what Chapman and Sawchuk (2015)

term ‘research-creation’, adopting a substantial trans-disciplinary approach where I combine digital

humanities, social sciences, computer science, and art practice. I rely on a practice and movement that

envisions programming as a cultural activity. If programming for scientific or industrial research is

oriented towards the questions of how and why – where the interest lies in describing an object or

defining a series of instructions for the computer to complete a task in the most eƯicient way possible –

the programming I draw from, as expressed in the Handbook for Live Coding (Blackwell et al., 2022, p.

140), relies on the question: what if? Thus, the outcome of programming is not determined by a series of

predefined desired objects or processes but by exploring unknown data, novel side-eƯects (such as

music) and, especially, unforeseen social arrangements. The kind of programming embodied by live

coding is thus a way to continuously develop, test, and share new theories on diƯerent relationships

between data structures, usability in a community context, and art production. As a research

methodology, live coding can produce a vast number of materials to analyse and engage with in a critical

manner.

To complement the research creation aspects of my PhD project based on programming and music-

making, I have engaged in theoretical explorations that attempt to make a partition between, on the one

hand, artworks driven by marketization, and, on the other hand, anti-market art practices using techno-

scientific frameworks while also embracing emancipation. This analysis is conceptually grounded in

Nancy Fraser’s triple movement (Fraser, 2020), which is an in-depth intervention into the social theory

developed by the sociologist Karl Polanyi (2001 [1944]). Fraser’s framework of the triple movement seeks

to explain the relationship between marketization, social protection, and emancipation through, on the

 8

one hand, recognizing the market’s co-optation power by integrating a political-economy critique of

capitalism into emancipatory struggles and, on the other hand, re-embedding the economy into society

mediated by emancipatory movements.

My doctoral research has been shaped by cycles of art-creation, theoretical reflection, and software

production; these cycles exist recursively and not necessarily in a linear sequence. However, a significant

trend can be traced: art-creation leads to theoretical insights that can be instantiated as software for art

creation. This methodology has emerged from the research material and my research interests, which is

how I have organised the written dissertation. As explained in this dissertation, an artwork starts the

cycle, theory follows, software is designed, and, finally, an artwork, and its theoretical aftermath, are

created again.

I hesitate to participate in matters of positionality for a few reasons. Firstly, as a racialised man from the

global south who has struggled with matters of immigration while finishing a PhD in a reactionary nation-

state committed to politically scapegoating international students, I fear being fixed and reduced – under

a positive or a negative light – into an identity rather than taken seriously as a committed scholar.

Secondly, according to Srivastava (2024), DEI frameworks and dialogues within university settings have

failed in the context of anti-racist oppression. Despite the presence of anti-racist politics in institutions

like universities, racial conflict has increased in the past years. Furthermore, it is my personal experience

that positionality, often supported through intersectionality, reveals more of what a scholar does not care

about rather than what they do. It is no surprise to me that higher education institutions – and some of

their members – show so little care about matters of class in contrast to gender, sexual orientation, or

race.

 9

However, I am grateful to be involved with people that take diversity, equity, and inclusion seriously:

pushing the institutional limits further towards a space of social justice capable of dialogue and mindful

of the limits and openings it entails. I believe the unfortunate historic moment in which we currently

transit is an opportunity for people open to new ideas to reconstitute DEI frameworks perhaps closer to a

social reproduction perspective where class and matters of identity converge more closely and better.

Reflecting upon this dissertation, I have thought of the artefact discussed in Chapter 1 as functioning as a

positionality question rather than a statement. As will become evident while reading Chapter 1, the

mestizaje framework is used by the Mexican state to identify me racially, as with the racial profile of most

Mexicans. Not so evident are the questions of masculinity and male privilege – particularly in the context

of music-making – that I have attempted to tackle via the ensemble practice I have developed. Lastly,

matters of representation are key for the tuning capacities implemented as part of TimekNot.

Precursor and Chapter 1

As a precursor to my final project and the software TimekNot, as well as a key deliverable of my PhD

project work, I have co-created with Rolando Hernández the live-coded documentary Temazcal 2. In the

context of this dissertation a live-coded documentary stands as a montage of audiovisual materials

emerging from the clash between conventional cinematic documentaries, live coding practice, and

various tense positionalities and natural, as well as computational, languages. This artwork has allowed

me to experiment with the aƯordances of networked environments, storytelling on the web, crisis as

temporality, live coding strategies and techniques, and the online ensemble as mutual aid and social

reproduction in the context of the global pandemic. Temazcal 2, as extensively described in my first

 10

chapter, emerges in the context of the early pandemic, when musicians were confined to the internet and

denied normal employment opportunities that would allow them to live from art practice. This artwork

exists as a collection of multiple media items (videos, audio samples, images, code, text, etc.) that, when

activated, allow my collaborator Rolando (a sound artist from Mexico City), Diego Villaseñor (a close

collaborator of mine that would recur throughout my art practice), and I to perform a live-coded

documentary exploring two notions of the temazcal: as a trope in specific Mexican modernist music

environments and as a sweat lodge of prehispanic origin that is an important part of the family history of

my collaborator. From the creation of this artwork, a set of ideas became evident for Rolando and me:

Firstly, the temazcal technology cannot be rebuilt (neither metaphorically nor literally) by us without

forcing relationships of extraction into others since the knowledge required for such an operation is lost

from Rolando’s family core. Secondly, considering the advance towards integrated global capitalism that

has been occurring since the eighties – the time from which various acts of appropriation converged with

electroacoustic music development in Mexico – the hegemonic arrangement that enabled appropriation

has been put into question not only by emancipatory forces but also by market forces altogether. Third,

by acknowledging the first and second points, we avoid Temazcal 2 falling back into forms of subjectivity

and narratives that unwillingly update the power of an oppressive nation-state. At the same time, we

attempt to suppress any forms of capture by the forces that Fraser terms ‘progressive neoliberalism.’ A

form of subjectivity emerges that is incommensurable to common figures related to colonialism, like the

Indigenous, the settler, and the mestizo.

As observed, the theory is enriched by the research creation project and vice versa. Academic

conversations regarding Indigenous studies, the settler-colonial complex, decolonial thought, Marxism,

 11

and feminism assist in the creation of programming code, ephemeral programming languages, digital

archives, and audiovisual documents, which simultaneously instantiate theoretical insights that allow

the authors and audiences to have a rich experience beyond texts or art.

A ‘double consciousness’ emerges from the analysis of this artwork. On one hand, a sharp critique of the

appropriation of Indigenous identity tied to the Mexican state and its modernist artists forms the core of

Temazcal 2. In this instance, I refer to a particular English-educated Mexican composer and how some of

their artworks respond to an ideological state mandate to assimilate Indigenous identity. On the other

hand, a relationship with non-Western, non-scientific forms of knowledge is emphasised, which cannot

be reduced to the global north’s (or global north-aligned) critical studies drive to deny any form of

situated knowledge and positive relationship with the land created by those who do not identify as

Indigenous. Rolando’s familial relationship with the land does not arise from Indigenous identity or past

cultural experiences, but from a desire to resist the void subjectivity tied to forced migration, cultural

assimilation, and proletarianisation.

I will refer to the concept of subjectivity presented in this chapter as ‘double consciousness,’ which

captures the interplay and feedback between the ‘progressive’ modernity, where “production appears as

the aim of mankind [sic] and wealth as the aim of production” (Marx, 1973 [1857–61], p. 488), and the

local social forms, where “the human being appears as the end of production” (Marx, as quoted in

Harvey, 2023, p. 223). This artwork reveals two distinct states of double consciousness. This double

consciousness indicates a dynamic subject capable of creating tactical and necessary inversions of

themselves by articulating class consciousness alongside cultural identity.

 12

Precursor and Chapter 2

The other major precursor and deliverable of my doctoral research is the first version of the computer

language TimekNot, which is currently available as a repository and software deployed in the

collaborative, live coding environment Estuary. TimekNot, the artifact explored in the second chapter, is a

modest programming language that allows live coders to create heterogeneous, music-oriented

temporal relationships on the fly and instantiate them as triggered audio samples. In other words, it

allows live coders to create music structures with audio samples in an improvisatory manner. TimekNot’s

core is a robust systematisation of time relations between relatively autonomous musical layers. Hence,

it can be understood as a polytemporal language. The root of such an unconventional musical style and

rationality is partly based on the explorations of Mexican experimental musicians and composers, but it

is also the eƯect of living in a city like Mexico, where the soundscape is often occupied by multiple

sound-systems blasting diƯerent music and sounds at the same time. Thus, polytemporality is an

abstraction that originates in material and lived experience. What is interesting about the kind of

polytemporality I am invoking is that diƯerence is not an operation that needs to be solved toward

identity. Neither does this polytemporality dismiss the eƯects of the multiple timelines on each other.

Time does not need to be collapsed into universality, but polytemporality maintains the tension of

diƯerence, and diƯerent speeds, as a valuable cultural experience.

The final artwork, the opera mentioned previously, builds upon many aspects of the precursors

discussed here. More precisely, the ‘double consciousness’ unveiled in Chapter 1 is a theoretical

steppingstone, while the Domain Specific Language described in Chapter 2 is a primary tool and

environment to reshape music relations with a networked ensemble.

 13

Final Artwork and Chapter 3

In Chapter 3, I analyse – and theoretically expand upon – La Fábrica Colapsada, the opera I created as

part of my doctoral work that re-envisions disaster through the lens of social reproduction, cybernetics,

and cultural critique. Closely observing the circumstances and responses around the Mexico City

earthquakes of 1985 and 2017, the opera allows me to elaborate on concepts such as ‘toxic resilience’

and ‘generative’ and ‘reactive resistance’ to explore how crises reshape time and introduce novel ways of

sensing the world. The concepts mentioned here may further express the ‘double consciousness’

explored within Temazcal 2. The ‘ways of sensing’ I have envisioned through the analysis of the

earthquakes has become a pattern to understand further the ways in which music creation operates as

well, in a similar crisis to the one provoked by the earthquakes. Through the networked ensemble in

which I participate, Pirarán, I argue for the rejection of ‘toxic resilience,’ instead rethinking technology and

music-making away from profit-hoarding and cultural domination – and closer towards a framework that I

came to understand as ‘algorithmic acid communism.’ Music-making finds its minimal material

conditions within TimekNot and the technical ecology surrounding it.

Crises are often understood as ruptures in the flow of normal time, eventually reabsorbed into the empty

temporality of capitalism once they subside. However, under cannibal capitalism – with its constant,

overlapping crises – this framing is not adequate. The structure we inhabit, the social totality itself, is the

crisis. Each rupture examined in this research unveils the imagination required to end the ongoing

nightmare. Rather than viewing them as an array of crises, I trace critical periods in which historical,

psychosocial, infrastructural, cultural, and lived experiences converge into technologies, art practices,

and cultural expressions that point toward a world in which many other worlds fit.

 14

Chapter 1 - Temazcal 2: Subjectivity, Crisis and the Internet

In this chapter, I discuss Temazcal 2, an artwork that is a collection of multiple media items such as

videos, audio samples, images, code, text, etc. When activated, these assets assist my collaborator,

Rolando, and me in performing a live-coded documentary exploring two notions of the temazcal: as a

renowned piece by an electroacoustic music composer and as a type of sweat lodge of pre-Hispanic

origin used in traditional healing practices in Mesoamerica. The latter technology serves as inspiration for

the former. I begin the chapter by contextualizing my collaboration with Rolando Hernández, a sound and

conceptual artist and curator from Mexico City, with whom I worked between 2017 and 2023 and who

was my main collaborator for Temazcal 2. In executing this project, Roland and I also worked with Diego

Villaseñor de Cortina, a philosopher, musician, and programmer from Mexico City, with whom I often

collaborate. Throughout the chapter, I also refer to Rolando’s and my earlier collaboration with César

Juárez Joyner, a musician and film scholar also from Mexico City, as well as the organisations and

institutions connected to Temazcal 2, like the Networked Imagination Lab and the Factory Media Centre. I

start this section by aiming to contextualise the reception and creation process of this artwork. I

introduce key conversations, precedents, and collaborations, while also preparing the reader for the

challenging theoretical discussion in the second section.

In the second part of this chapter, I present a theoretical discussion that stands at the centre of the

artwork: the tense relationship between the figures of the Indigenous, the settler, and the mestizo that

emerged from my position as an immigrant from Mexico in a doctoral program in Canada and the material

and historic conditions for the performance of Temazcal 2 in 2022. The theoretical connections

 15

presented here can be traced back to the creative process and the reception of Temazcal 2. This section

reveals the aƯordances of art creation as a form of knowledge production, but more interestingly, it

proposes a form of subjectivity that negates the settler, the Indigenous, and the mestizo: the three figures

related to colonial societies in the context explored. Similarly, it proposes a double consciousness

capable of articulating questions of land and labour.

In the third part of this chapter, I describe in detail the development of the artwork as a musical work, its

storytelling aspects, and the research involved in its creation. Three main takeaways emerge as I guide

the reader through the artwork’s rationale. First, the temazcal technology, once a crucial component of

Rolando’s family life, cannot be recuperated by us without exercising relations of extraction onto others.

Second, the necessary and relentless critique of artistic practices, such as electroacoustic music, and

its impetus to appropriate and reshape technologies like the temazcal to advance the colonial project of

mestizaje can be misconstrued in the absence of more generative narratives on the subject. Finally,

artworks such as Temazcal 2 describe and perform a form of incommensurable subjectivity that refuses

to be explained as Indigenous or settler within the settler-colonial paradigm and through mestizaje as the

Mexican state’s colonial project. This form of subjectivity can be described as double consciousness: a

consciousness that articulates the situated knowledge of Rolando’s family alongside techniques of

appropriation that transform a global project towards whiteness – like mestizaje – into a possibility of

interconnected self-determination and a way of being in this world that fosters social relations beyond

capitalism and nationalism.

 16

Materiality and History

The collection of digital items referred to here takes the material form of an online repository containing

materials created and curated by Rolando and me. The repository is primarily organised into indexed

scenes, which imply a sequence that should be understood as the order in which the scenes are to be

performed. There are no explicit instructions on how to play the scenes or how to arrange the specific

materials for each scene, allowing performers to discuss and devise their own interpretations of the

materials.

The number of performers needed for Temazcal 2 can vary from two to any number of people; so far, the

performance has been carried out by three people: Rolando, myself, and Diego, who acts as the

'interpreter' of the music by modifying on-the-fly code snippets composed by me. The repository is bound

to (but not limited by) the software Estuary, which is the environment where the performance is executed.

In Estuary, programming code and digital items are articulated and displayed as audiovisual signals that

are mixed and composed together.

The live-coded documentary premiered simultaneously at the Networked Imagination Laboratory4 at

McMaster University, streamed online via the Factory Media Centre5 on YouTube, and showcased in the

Intercuraduría gallery6 in Mexico City. It was received by two live audiences and the delocalized, deferred

audience of the internet. Additionally, there is a recorded performance that can be presented as an

4 The Networked Imagination Laboratory is in McMaster University. It is a collaborative space to conduct research on
networked art-practices, live coding, spatial audio, video game development where a lot of my research took place as a
doctoral student.
5 Factory Media Centre is a not-for-profit artist-driven resource centre for film, video, new media, installation, sound art, and
other multimedia art forms based in Hamilton.
6 Intercuraduria was a project of curadoras (female curators) that attempt to rethink art curation in Latin-American.

 17

experimental documentary. The register narrates in a very specific manner, employing an audiovisual

algorithmic montage to depict the relationships that Rolando and I have with the Indigenous technology

related to Rolando’s family, which has inspired artworks like Temazcal (1984) composed by Javier Álvarez.

Originally, the temazcal (derived from the Macehualcopa word temazcalli, meaning steam house) is a

ceremonial structure, a round, womb-like, ground-level sweat lodge, where ritual and medicinal

ceremonies, often related to birth, take place. The temazcal is a traditional artifact connected to healing

practices in the valley of Mexico and the southern part of the country sometimes bound to Nahua

cultures. This medical practice has been displaced by Western medicine as people using temazcales for

these purposes are uprooted by violent processes of dispossession. In the context of this artwork,

Temazcal (capitalised, Temazcal 1 from now on) is an iconic electroacoustic music piece for maracas

and fixed media by Javier Álvarez, which premiered in the UK in 1987, that appropriates and re-signifies

the temazcal. I argue that Álvarez’s artwork simultaneously builds nationalist narratives of the Mexican

state – where the assimilation of Indigenous knowledge is performed as a predecessor of the figure of the

mestizo, a mix of Indigenous and white cultures, ultimately a whitening project – while also reifies

Eurocentrism and tropes of progress by adhering closely to classical music traditions, as well as

scientific understandings of sound and electroacoustic techniques and technologies. The artwork is

composed using a counterpoint logic: while I analyse the electroacoustic piece Temazcal 1, Rolando

oƯers the story of his family and their movements from the Mixteca Alta to Mexico City and back, along

with their relationship with forms of knowledge and social reproduction strategies, some of which have

been lost and others transformed in the face of capitalist destruction. The migration processes of both

Rolando and me are, in many ways, fundamental to understanding this artwork.

 18

Temazcal 2 was developed conceptually by Rolando Hernández and me from 2017 until the summer of

2022. In 2017, Rolando and I coincided in a course on Macehualcopa (the language of the Nahua peoples

of the central part of Mexico), where we encountered a remarkably familiar yet profoundly distant culture

compared to our everyday reality. Earlier that year, Rolando invited me to participate in the Ensamble

Negro, a music formation consisting of Mexico City-based musicians and sound artists assembled for

the occasion by the Umbral music sessions to perform the work of Peter Ablinger, an Austrian composer

often associated with neo-conceptualism, as part of his visit to Mexico City. The conversations inspired

by these two experiences slowly evolved into plans to develop artistic projects together that would

explore time and Mesoamerican philosophies in depth. In 2018, we produced our first collaboration in

which Rolando acted as a curator, and I programed, composed, and performed (along with 17 other

musicians with unconventional practices) an interactive score for polytemporal music. In 2019, we finally

co-created an opera performed by the free improvisation ensemble Ruido Trece and other guest

instrumentalists and sound artists, including Rolando and me. The opera and the networked ensemble

piece mentioned here explored notions of time like polytemporality but did not yet approach explicitly

any notion of Mesoamerican philosophy.

In the spring of 2020, the COVID-19 crisis erupted with well-known global consequences. One

consequence was the widespread suppression of performance arts in their conventional spaces, which

was catastrophic for artists who depended on concert venues, museums, theatres, nightclubs, and all

kinds of infrastructure for them to earn a living through their art practice or make life worth living by art

practice. The early COVID-19 lockdown was an opportunity to articulate experimental technology in the

service of artists that would quickly require the means to keep making art in the new living conditions.

 19

This aspect of my research, amidst the unfolding catastrophe in which it operates, will be addressed in

Chapter 3 a little bit further.

In this spirit, Rolando and I planned two networked performances for the summer of 2020: Dos Sures, a

series of live-coded radio performances using the platform Campo Sónico (designed by Diego primarily

to crowdsource sounds from Archive.org) for Radio Alhara; and In Xiuh Ce Amatl, an ambitious live-coded

documentary that intended to problematise the renewed interest in Mexican identity that the current

political crisis had inspired in certain Mexican intellectual circles: namely, the crisis of hegemony that

challenged the (neo)liberal ‘democratic’ Mexican period and the strong comeback of nationalist

sentiment that re-ignited questions of mestizaje, indigeneity, whiteness, and more. This crisis is also a

fundamental aspect of Temazcal 2, and a thorough explanation of it will unfold in the next section of this

chapter.

For In Xiuh Ce Amatl we collaborated with César Juárez Joyner, a composer, film director and performer

of folk music, and a speaker of Macehualcopa that would introduce notions of Mesoamerican

philosophies to shape the performance. The work was presented at the Networked Music Festival, which

happened transnationally but was organised by people located in Newcastle, UK; we also performed the

piece for the Campamento Extendido Cyberpunk Posternura online concert series, organised in Valdivia,

Chile. This collaboration with César, and the connections made between Canada, Mexico, the UK, and

Chile during the process, constituted a key exchange of ideas and conversations. This exchange allowed

César to significantly advance his documentary filmmaking research while also enabling Rolando and

me to envision a longer form that addresses a recurring trope we identified as central to our networked

collaboration, which I will describe in the following section. Before delving into the analysis of Temazcal

 20

2, I will elaborate on my collaboration with César, which oƯers essential insights for understanding the

potency of the work discussed.

César Juárez Joyner positions himself in his master's dissertation (2021) as a ‘functional speaker’ of an

Indigenous language (Macehualcopa); a language that he has, “since childhood, heard extinguishing in

the voice of [his] grandfather (Juárez Joyner, 2021, p. 9).” This life experience has allowed him to explore

the processes and limitations through which documentary film practice represents minoritised

languages and peoples. According to this research, language functions as a repository of social relations.

Thus, if documentary film practice is understood as a formal consequence of the transmutation between

technique, media and language, this language must be considered part of a thought-process that

transcends film tradition when engaging with the social relations embedded in Indigenous languages. If

documentary film practice is not transformed by the Indigenous visions it attempts to represent, it risks

becoming visual anthropology or ethnographic cinema, which risks fixing and solidifying the western-

northern gaze. Juárez Joyner reveals through his research the need to explore other ways of telling the

history of minoritised people that do not adapt language and cultures to the documentary form but

transform documentary form into something that can adequately express the cultures that interpellate

it.

In Xiuh Ce Amatl is a difrasismo – a grammatical construction in which two words or concepts are

combined to form a third one as a metaphor – that can be literally translated as ‘the fire and one paper;’ a

better translation is ‘burning paper,’ or perhaps more precisely, living memory. Via live coding, the work is

a radical exploration of the way Nahua philosophies trans-mutate both coding and documentary film

practice. This process is described as follows:

 21

The notion of an archive does not refer to a physical space with specific records but rather to

complex cultural and philosophical entanglements that our bodies receive and may later respond

to through reasoning and stimuli. In this sense, collective memory is proposed as a space for

triggering individual reflection processes, where the viewer reconstructs their own cultural history

through unfamiliar narratives and speculative historiographic lines (Juárez Joyner, 2021, p. 101).7

Juárez Joyner further describes the compositional logic applied to the audiovisual components of the

documentary as follows:

A narrative axis was developed based on the Mexica notion of the guerra florida, in which war was

seen as a necessary exercise for the circulation of time. This concept gave rise to a system of

dualities (red/black, huehuetl/ teponaxtli) that permeates the entire work. It influenced elements

such as the color palette and the approach to sound design—where, despite both operating in

real-time, the algorithms shaping their behavior adhered to this philosophical system (Juárez

Joyner, 2021, p. 103).8

The work came to be understood by Juárez Joyner as an algorithmic montage that creates a juxtaposition

of imagery and (natural) languages, as well as a juxtaposition of algorithms and computational

languages. Furthermore, in the tradition of Sergei Eisenstein and others related to the Soviet Avant-Garde

7 Automatic translation, original: La noción de archivo no corresponde a un espacio físico con registros puntuales sino a complejos entreveramientos
culturales y filosóficos que nuestro cuerpo recibe y a los que posteriormente, tal vez reaccione a través de razonamientos y estímulos. En dicho sentido se
propone la memoria colectiva como un espacio para detonar procesos de reflexión individual en los que el espectador recree su propia historia cultural bajo
la forma de narrativas poco familiares y líneas historiográficas especuladas.

8 Automatic translation, original: Se desarrolló un eje narrativo a través de la noción mexica de la guerra florida, en la que la guerra era un ejercicio necesario
para la circulación del tiempo. Con ello se creó un sistema de dualidades (rojo / negro, huehuetl/teponaxtli) presente en toda la obra. Ello determinó
elementos como la paleta de colores o el tipo de tratamiento sonoro que, aún cuando ambos fueran en tiempo real, los algoritmos que acotaban dicho
comportamiento atendían a dicho sistema filosófico.

 22

and Soviet Montage Theory cinema movement (Nemchenko, 2017), these juxtapositions are not merely

contemplative. Instead they attempt to foreground the dialectical tensions, as reflected in the quote

above and, pragmatically, infect life with the experience of the artwork. In the case of In Xiuh Ce Amatl,

the audience was invited to conceive of memory as living, as a practice rather than a static repository of

fixed images and ideas. Finally, this work was the first exploration of the enunciation of Macehualcopa in

the context of live coding and an experiment of Macehualcopa as a meaningful medium to communicate

with computers. More research is required to fully grasp the implications of using this language as a base

for future human-computer relations. It is especially interesting to think of a live coding language that

makes use of difrasismos as is a common practice in Macehualcopa.

With all these lessons in mind, Rolando and I started working on Temazcal 2 once the Factory Media

Centre notified us that we were recipients of their artist residency program &Now.9 The infrastructure

provided by McMaster University as part of my PhD program gave us suƯicient resources to focus almost

exclusively on the development of the artwork.

The process that led to the creation of Temazcal 2 is filled with strange resonances between our ideas,

intentions, national processes of, both, reconciliation and assimilation put in place in Canada and

Mexico, and the diƯerent reception mechanisms put in place in a networked environment. Present in all

these conversations are Indigenous Peoples from the Abya Yala (but in the case if this artwork: Mexico

and Canada) and the historical and incommensurable debts that colonial societies owe these groups.

Indigenous Studies and Indigenous knowledges are highly contextual and often rest on the concrete

9 &Now is a production residency and scholarship that helps artists to produce new works or finish pending ones.

 23

relations between the nation-state and the Indigenous Nations encapsulated within them. Glen Sean

Coulthard, a Dene scholar from Yellowknife oƯers his fifth thesis, Beyond the State, as a conclusion for

his work ‘Red Skin White Masks’ that adumbrates this position:

I would venture to suggest that over the last forty years Indigenous peoples have become

incredibly skilled at participating in the Canadian legal and political practices[.] In the wake of the

1969 White Paper, these practices emerged as the hegemonic approach to forging change in our

political relationship with the Canadian state. We have also seen, however, that our eƯorts to

engage these discursive and institutional spaces to secure recognition of our rights have not only

failed, but have instead served to subtly reproduce the forms of racist, sexist, economic, and

political configurations of power that we initially sought, through our engagements and

negotiations with the state, to challenge (2014, p. 179).

 The critical theory in this chapter, while only partially engaged with Indigenous knowledge and struggles,

seeks to supplement Coulthard’s fifth thesis and Yásnaya Gil’s notion of an ‘us without state’ (2018) by

breaking the dialectics between Indigenous Nationhood and the state. Unfortunately, this needs to be

interpreted in a perhaps bleaker light as presented by Gil. A guiding question for me to write this chapter

and for the reader to orient themselves has been: What will happen when structures of power and

processes of dispossession engendered as neo-feudal, transnational stacks finally absorb suƯicient

functions of the state and become capable of coordinating an oƯensive against all Indigenous people

without the viscosity of the states encapsulating them?

Under this light I am imagining a broad communicative space incommensurable to paradigms such as

mestizaje or settler colonialism, both locked into state logics. This artwork, rather than focusing

 24

exclusively on Indigenous people and their knowledge, is precisely about the necessary subjects

emerging from processes of coevalness (Loingsigh, 2019) as is immigration, as well as transnational

ensemble-making and networked music allowed by the internet. The historical debts owed to Indigenous

Peoples by colonial societies will not be resolved in a collegial conversation between whites and

Indigenous in institutional settings. Nor by the strong dialectics of mestizaje promoted by the state, which

ultimately favour Western rationality. As I will argue in the next section, the key lies in the continuities

between land and labour struggles, or perhaps generally, in the way people can face the current

multidimensional crisis.

The Conversations to Mind

Temazcal 2 reveals, particularly through Rolando’s family history, a form of subjectivity that, while

interplaying with them, cannot be properly described by the framework of mestizaje common to Mexican

intellectual discourse, nor by the binary opposition of Indigenous and settler figures that dominate Anglo-

American intellectual conversations. These conversations have made their way into certain Mexican

intellectual niches through various means, including the imperial relations between Anglo-America and

Latin America, the academic hegemonic power of Anglo-American universities and their global influence,

or the communication processes enabled by networked environments (like the one presented in this

chapter), or any combination of these factors.

Temazcal 2 falls short of grasping the gendered dimensions of temazcal technology. Federici’s work

highlights the role of women’s work and the way in which capitalism changed the gendered relationships

 25

of family, housework and social reproduction (Federici, 2004, 2018). This is relevant to this artwork given

the gendered nature of the temazcal technology. As Federici demonstrates:

With the persecution of the folk healer, women were expropriated from a patrimony of empirical

knowledge, regarding herbs and healing remedies, that they had accumulated and transmitted

from generation to generation, its loss paving the way for a new form of enclosure. This was the rise

of professional medicine, which erected in front of the "lower classes” a wall of unchallengeable

scientific knowledge, unaƯordable and alien, despite its curative pretenses (Federici, 2004, p.

201).

With Federici’s Marxist-feminist critique in mind, an eƯort is in place in Temazcal 2 to foreground

Rolando’s female family members. Nevertheless, my analysis remains to fall short on such dimension.

Moreover, beyond the gendered dimension here signaled, the epistemic one appears also as an

interesting theme to explore. Art practices that remain in the intersection of art and science relate

uncomfortably with forms of knowledge as the one here presented. On the one hand, there is a process

of appropriation and re-signification; on the other, there is a profound dismissal.

The figures of the Indigenous, the settler, and the mestizo mentioned here come into play when rethinking

the significance and scope of Temazcal 2 in the specific context where it was performed: a networked

environment localised simultaneously in Mexico City and Hamilton (Canada). I will argue how the

subjectivity anticipated in Temazcal 2 emerges from conversations where these three concepts, relevant

to the context of the work, express an unresolvable tension.

 26

Tense Figures: Indigenous and Settler

According to Vizenor (1999), the representation of the ‘Indian’ in the Anglosphere celebrates an absence

rather than marking the presence of Indigenous subjects by perpetually producing simulated copies of

‘the tribal.’ In the media, representations of Indigenous Peoples are overdetermined by stereotypes and

negative portrayals of culture often bound to white people’s appropriation of Indigenous expressions. In

Vizenor’s Manifest Manners, there can be no ‘authentic’ or essential truth of what it means to be ‘Indian’

but misreadings, misrepresentations, mistranslations and misconstructions that can either deepen

exploitation and expropriation of Indigenous Peoples or are capable of building Indigenous Sovereignty

and self-determination. So, for Vizenor, Indigeneity is an extremely dynamic and de-essentialised

category.

For Yásnaya Gil the category of Indigenous is political (A. Gil, 2018). This means that beyond any cultural

diƯerences that might exist between the Mexican mestizo population and Indigenous Peoples (or, in any

case, diƯerences between diƯerent Indigenous nations) are secondary to what is most relevant: the self-

determination of people. For example, the first (and only) Indigenous president of Mexico cannot be

understood as an Indigenous political agent since the ideological reality he built was a form of positivist,

capitalist liberalism in detriment of most Indigenous Peoples and the start of the narrative of mestizaje as

a whitening project.

Both perspectives are contrasting; however, both share a de-essentialised conception of the category of

Indigenous. On the one hand, Vizenor argues that Indigenous Peoples are free to understand the term

Indigenous in any way they choose. On the other hand, Gil makes it clear that the political project of self-

determination and community building (and preserving) is what makes such a category relevant. I want to

 27

clarify once more that the concept of Indigenous as understood by Vizenor and Gil are not what is being

contested by Temazcal 2 but the relationship that people like Rolando and me have with the Indigenous

category that cannot be reduced to mestizaje or settler colonialism.

Contrastingly, the settler is an identity that “mirrors the construction of ‘Indigenous’ in contemporary

terms (Lowman & Barker, 2015, p. 2).” These two concepts, settler and Indigenous, have in common a

connection to the land. However, this connection, for settlers, has been forged “through violence and

displacement (Lowman & Barker, 2015, p. 3).” The term settler (and its relationship with the term

Indigenous) is strategically significant as it enables people to highlight the dynamics of dispossession

and power in Canada, a nation-state understood within the framework of settler colonialism. Settler

colonialism should be viewed as a form of colonialism based on the occupation of land by settlers

displacing Indigenous populations.

There have been attempts to apply the framework described here to Latin America (Wolfe, 2006);

however, it remains unclear how it can be translated to that context. According to Castellanos (2017, p.

777), settler colonialism “is a slippery concept to apply to Latin America where nation-building projects

have framed criollización/creolization as ‘an indigenizing process.’ We are left with the quandary of

debating who is a settler.” The term has met resistance, partly due to a translation problem – settler

colonialism as “colonialismo de colonos” appears as a redundant concept. However, such redundancy

goes beyond a translation issue and highlights a series of diƯicult dichotomies.

In this section, I argue that the binary understanding of dispossession, whether through land or labour,

cannot be clearly partitioned to develop distinct theoretical frameworks. Furthermore, “[t]he emphasis

on binaries risks reproducing a monolithic, self-contained theory of settler colonialism lacking historical

 28

and relational specificity, the very project initially challenged by Patrick Wolfe (Castellanos, 2017, p.

778)”. The question here is, in what ways does partitioning colonialism in such specific manners advance

a more complete understanding of the field?

The answer given by Speed (2017) appears as a critique to Wolfe’s tendencies towards binaries and an

amendment of Latin-American blind spots regarding structures of dominance and dispossession

identified as settler-colonial. Speed also identifies a gap in Indigenous studies that could be

compensated by ‘southern’ scholarship:

Above, I argued that there is a dual theoretical gap that coincides with a North–South divide in

indigenous studies, one in which northern theorizations of the settler state have not grappled fully

with neoliberal capitalism, and southern theories of the neoliberal state fail to recognize the

significance of settler logics that structure the conditions of state formation, including in its

current neoliberal iteration. In this essay, there was space only to argue the problematics of one

side of that divide, in an eƯort to open a path for considering the settler structures of Latin

America. The significance of neoliberalism in the Native north will have to remain for a later essay

(Speed, 2017, pp. 788-789).

When ‘northern’ intellectuals find the space and time to discuss capitalism, I believe they might find

other redundancies between Latin-American and Anglosphere frameworks that often form a close

articulation between Marxism and decolonial (or Indigenous) thought. Furthermore, in ‘southern’

settings, it would not be uncommon to find Indigenous intellectuals entirely rejecting the framework of

mestizaje while upholding epistemologies closer to (but not quite like) settler colonialism. All partitions,

either Wolfe’s land/labour or Speed’s North/South should be contested.

 29

There is a necessity to integrate and seriously consider settler colonial critiques of Latin American

frameworks. Specifically, the positive construction of the Indigenous figure cannot be reduced to a

matter of identity for Latin Americans. Indeed, emerging scholarship in Latin America already

systematically produces this critique, so there is a need to incorporate settler colonialism into these

conversations. Nevertheless, the image of the settler risks creating a new form of dispossession for those

who cannot be considered Indigenous but have seldom benefited from (settler) colonialism. The settler

colonial framework may benefit white people (the closest concept to settler in this context) in places like

Mexico by erasing a majoritarian portion of the population that self-identifies within mestizaje and

exclusively discussing indigeneity and, by extension, settlers. In the south, the Indigenous/settler binary

cannot stand as it is usually presented.

I have the impression that the binary grammar of ‘settler’ and ‘Indigenous’ is more readily and easily

applied in the north than in the south, even if there are complications with its application on both sides of

that divide. So, in a networked and globalised world, where Anglo-American and Latin American contexts

can be juxtaposed as we have done for Temazcal 2, what would be the implications of adopting a

grammar that fits with the global north but remains ‘slippery’ for the global south? Drawing from

Chakraborty (2000), is there any possibility that the Mexican context remains ‘in the waiting room of

history,’ while the conceptually whole ‘Canadian’ modernity is something to be aspired by the incomplete

‘Mexican’ modernity? Is it problematic to frame Indigenous Peoples in the geographic north as ‘global

north’ and mixed populations in the south as settlers? As noted by Castellanos, there is a need for a

communicative space between scholars from the south and the north to discuss such matters; whether

this conceptual space engages with the settler colonial complex or another kind of conceptual construct

 30

(just to name another one: Zapatista philosophy) remains to be explored. Temazcal 2 precisely attempts

to override forms of transnational communication that appear rooted in domination and control.

Whititude, Ethos Barroco, and Mestizaje

In Temazcal 2 I associate the script I wrote as a pseudo-essay to Temazcal 1’s reification of the Mexican

state, and its intellectuals, ideological figure of mestizaje. I invoke Bolívar Echeverría and Federico

Navarrete’s conceptions of race to critique one of Mexico’s most performed electroacoustic music

pieces.

Bolívar Echeverría has developed the concept of blanquitud (a word composed by blanco (white) and the

sufix -tud (which implies abundancy of) as a form of capitalist orientation. I will re-constitute this concept

into the English language as a portmanteau of whiteness and attitude: whititude. Such an orientation

favours certain (Protestant) capitalist rationality and forms of knowledge:

Whititude is all the set of visible features that come with productivity, from the clean and ordered

body’s physical appearance and its environment to the quality of language, the discrete positivity

of the attitude and the gaze and the restrain and composure of the gestures and movements

(Echeverría, 2010, p. 59)10.

Thus, whititude should not be understood (only) as whiteness in a racial or phenotypic sense but as a

realisation of capitalist ethics, where people willingly assimilate into the capitalist way of life no matter

their pigmentation. Thus, whititude allows us to associate processes of racial oppression with that of

10 My translation, original in Spanish: [La blanquitud] es todo el conjunto de rasgos visibles que acompañan a la productividad,
desde la apariencia física de su cuerpo y su entorno, limpia y ordenada, hasta la propiedad de su lenguaje, la positividad
discreta de su actitud y su mirada y la mesura y compostura de sus gestos y movimientos

 31

capitalist accumulation, which is a more precise way of understanding racialisation. As racial capitalism

(Robinson, 2019) illuminates all capitalism as a process of racialisation, Echeverría’s concept would

imply how resilience under capitalism can be observed as a whitening process. Furthermore,

Echeverría’s conception of race is profoundly bound to class. Similarly, land is tied to labour, and

decolonial thinking is inseparable to class struggle.

The ‘ethos barroco’ is a concept proposed by Echeverría (1998) as a mechanism of resistance, allowing

Indigenous urban populations of the XVI century to appropriate European cultural codes as survival

strategies following the emergence of the colonial order in places like Mexico. Within ethos barroco lies a

modernity that diƯers from capitalism. The ethos barroco can be contrasted with the mestizaje project.

Navarrete understands whititude from a diƯerent perspective; he extends the concept to all forms of

rationalistic and progressive European modernity projects. He associates the concept of whititude with

the state project of mestizaje quite convincingly. The mestizo subject is associated with eugenic-oriented

raza cósmica (Vasconcelos, 1948) and has been a key figure in understanding the Mexican post-

revolutionary state. Mestizaje describes a subject that is a mix of white and Indigenous Peoples, and it

has been imposed as dominant in the post-revolutionary hegemonic arrangement bound to the Mexican

state.

In México Racista (2016), Federico Navarrete describes the various ways whiteness is perceived and

weaponised in Mexico to maintain a racialised structure of power, with its roots in the caste system of the

era virreinal. Similarly, he disarticulates mestizaje, revealing it as a modern invention originating in 19th

century political processes, functioning more as an ideological figure than a social reality in the country.

This book debunks the persistent myth of the Mexican state as non-racist; after all, the first Mexican

 32

president was Afro-American, one of his most relevant reformists was Indigenous and the Mexican

revolution pushed upwards an immense amount of people of colour into positions of power and privilege.

We could interpret these examples as manifestations of whititude in Mexican history.

However, Navarrete’s denunciation of racism, more than building a radical (other) modernity as

Echeverría has done, seems to be a call to reform our liberal landscape: (a) reinvent media

representations: advertisements should reflect the demography of the country and comedy should not

be made at the expense of minorities; and (b) reinvent citizenship and democratic representation

capable of fulfilling the 'broken promises’ of liberalism. These calls are rooted in the USA’s liberal

strategies, as explicitly stated by the author, which confirms that Mexico indeed belongs to the waiting

room of history, aspiring to a complete modernity similar to that of the American empire before Trump.

This racial ambiguity, echoing Echeverría’s whititude, present in Navarrete’s denunciation of Mexican

racism is useful for understanding how diƯerent projects of mestizaje have evolved in Mexico. Navarrete

has constructed the project of mestizaje as a whitening project by racially and culturally propagating a

becoming-white of Indigenous and Afro-Mexican people. This is more than a project towards capitalist

rationality where whiteness acquires a diƯerent connotation. Considering the critique based on whititude

and Navarrete’s elaboration on racism via American liberalism, Navarrete’s categories appear to

disarticulate the relationships between whiteness and capitalist rationality by focusing on representation

without considering any forms of critique of the political economy and matters of distribution.

For example, when discussing the forced disappearance and murder of the 43 teachers from Ayotzinapa

that initiated Mexico’s change in hegemony around 2014, Navarrete provides a complete picture of

 33

representation, taking into account factors such as pigmentation, income, geography, and Indigeneity but

fails to mention the political orientation of the militant teachers:

Indeed, the 43 victims of this crime against humanity belonged to the most marginalized and

ignored sectors of Mexican society. They were excluded because of their regional origin in

Guerrero, one of the country’s poorest and most violent states; because of their poverty; because

at least 11 of them spoke a native language other than Spanish (as Mixe linguist Yásnaya Aguilar,

who provided this information, would put it); because of their physical appearance and skin

color—traits rarely represented in the media, advertising, or dominant social narratives, and

almost always associated, due to ingrained racism, with poverty and so-called illegitimate forms

of political and social behavior. Finally, they were excluded because they were engaged in political

activities that many commentators deemed subversive and therefore illegal and worthy of

persecution (Navarrete Linares, 2016, p. 181).11

He then proceeds to trace the associations between these teachers and other relevant historical figures

in Mexican history. As he weaves his narrative, he transforms the meaning of these historic figures. He

reconstitutes them in the framework of ‘political participation and struggle for citizen’s rights’ rather than

explicitly invoking them as what they are: militant Marxist revolutionaries. Navarrete, using the grammar

11 Automatic translation from: En efecto, las 43 víctimas de ese crimen de lesa humanidad pertenecen a los sectores más
marginados e ignorados de la sociedad mexicana: son excluidos por su origen regional, en Guerrero, uno de los estados más
pobres y violentos del país; lo son por su pobreza; lo son por el hecho de que al menos 11 de ellos son hablantes de una
lengua materna distinta al español (como diría la lingüista mixe Yásnaya Aguilar, quien me dio este dato); lo son también por
su aspecto físico y su color de piel, casi nunca presentes en los medios de comunicación, la publicidad y las
representaciones dominantes de nuestra sociedad, casi siempre asociados por nuestro racismo a la miseria y a las formas no
válidas de comportamiento político y social; lo son, finalmente, porque estaban asociados a actividades políticas que
muchos comentaristas califican de subversivas y, por lo tanto, de ilegales y dignas de persecución.

 34

of liberal tradition, unwillingly or not, builds a neoliberal progressive scholarship by purifying Mexican

history and Echeverría’s framework from its radical components.

Yásnaya Gil and Federico Navarrete are exceptionally critical of the mestizo paradigm. These scholars

point to individuals or state apparatuses that appropriate and weaponise Indigenous imagery and identity

for their own benefit and/or people outside Indigenous communities; to build narratives of national

identity; and to build subjectivities useful for capitalism and the nation-state. However, as explicitly

mentioned by Gil (2020, p. 126) and suggested by Navarrete’s more recent research interests, they

acknowledge a continuity between Indigenous Peoples, Afro-Mexicans and others that are yet to be

theorised. Gil accompanies her critique of mestizaje with a positive construction of the concept of

Indigenous subjectivity and a form of social protection predicated on Mixe political structures

incommensurable with European modernity. Since non-Mixe people cannot be included in such political

structures, the question for people who do not identify as Indigenous or participate in Indigenous

communities remains untouched.

Navarrete’s anti-racist critique of mestizaje is supported by a form of liberalism that resonates with the

social context of the USA. While México Racista may not be an academic text, it considers issues of

readability and accessibility for more general audiences. However, in this book, his critique of Mexican

racism hinges on purifying Mexican history and Latin American intellectual traditions of their most radical

aspects, such as Marxism and the work of Echeverría. This is the pattern that intellectuals with a foot in

the south and a foot in the north need to recognise: the specific pattern that Temazcal 2 is intentionally

avoiding is critiquing mestizaje from a settler-colonial perspective, which is generally practiced in the

 35

north and sanitised of the most radical aspects of critical theory so it may be commensurable with

progressive neoliberalism.

Triple Movements and Double Consciousness

As I have been building so far, a conversation between decolonial theory, Indigenous studies, Marxism,

and Marxist-feminism frameworks might illuminate some ways in which the process of capitalism, on a

global scale, interplays with the singularities described by Indigenous peoples, mestizos, and settlers.

Before sharply turning to Marxist analysis, it is important to understand that class is neither an identity

nor a vector in an identity grid that intersects with other identities. Class analysis does not reduce

diƯerent struggles or forms of oppression into a single kind that predetermines all forms of struggle.

However, it has a status that should be acknowledged:

We need to be reminded why Marxism ascribes a determinative primacy to class struggle. It is not

because class is the only form of oppression or even the most frequent, consistent, or violent

source of social conflict, but rather because its terrain is the social organization of production

which creates the material conditions of existence itself. The first principle of historical

materialism is not class or class struggle, but the organization of material life and social

reproduction. Class enters the picture when access to the conditions of existence and to the

means of appropriation are organized in class ways, that is, when some people are systematically

compelled by diƯerential access to the means of production or appropriation to transfer surplus

labour to others (Meiksins Wood, 1995, p. 108).

 36

Thus, class is necessary to understand forms of distribution of wealth that create the conditions of

‘existence itself’ under capitalism. To make commensurable issues of distribution and political

representation and agency, I will fundament my writings in the theory of the triple movement (Fraser,

2020, p. 320). According to Fraser, the triple movement is shaped as follows:

1) People resist extreme forms of marketisation that, on the one hand, seek to determine all aspects

of life and, on the other, deteriorate all forms of social protection as they prioritise financial gains

over the needs for people to live their lives.

2) As people resist marketisation, they attempt to re-embed the economy (everything that supports

life) into society. This may take the form of institutional support or networks of mutual aid.

However, the process of re-embedding the economy within society is not intrinsically good.

3) To avoid oppressive forms of social protection people put in place emancipatory mediations

capable of filtering-out returns to marketisation and pathways to oppressive social protection.

For instance, second wave feminist struggles to recognise unwaged housework are transformed into

equal access to the labour market for women under neoliberalism, missing the underlying point of

emancipatory movements: the labour market, that relies indirectly in unpaid housework, is intrinsically

exploitative. This form of exploitation erodes social reproduction by, instead of simply allowing women in

the workplace, allowing market forces to undermine the family wage. This misidentification, the belief

that inclusion of women in the labour market is liberating, produces a new misidentification: women’s

inclusion in the work force provokes wage stagnation. Such situation allows oppressive political

movements to reclaim the nuclear family, and the role of woman solely as care-givers, as a solution to

social problems engendered by neoliberal austerity. The triple movement helps us trace back the chain of

 37

misidentifications to correctly identify both marketisation – the commodification and exploitation of

women via waged labour – and oppressive social protection – by limiting women to the household and

unpaid care work – as the double-issue to be tackled.

A movement away from class determinism requires a theorisation and serious consideration of

emancipatory frameworks like decolonial studies, Indigenous studies, cultural studies, feminism, queer

theory, antifascism, etc. Marxism without such forces risks becoming a form of oppressive social

protection; inversely perhaps, emancipatory forces risk capture from marketisation without a critique of

political economy, which ultimately leads to radical forms of oppression. The decolonial critique of

mestizaje and the settler colonial complex by either Mexican or northern Indigenous Peoples, as already

discussed, remains ambiguously indiƯerent to issues of capital accumulation; similarly, the framework

of mestizaje tends to authoritarian regimes as the one party’s ‘perfect dictatorship’ of the Mexican

twentieth century shows. With this in mind, it is necessary to oƯer a brief Marxist analysis that can

supplement the categories here discussed.

The category of Indigenous in Mexico can be explained to resist proletarianisation of a surplus

population. Indigenous people, from a Marxist analysis, can be considered a reserve army of workers for

capital that keeps the price of labour low (Forssell Méndez, 2020). This, of course, does not mean that

Indigenous identity is reducible only to its relationship to capitalism (as a surplus population), but it is

useful to deploy such understanding strategically. In other words, Indigenous populations in Mexico

remain outside the productive processes associated with capitalism (selling labour in the market) but not

passively or outside the scope of market forces as often is the narrative. They are actively kept outside

such processes to keep wages down and pressure workers into low paying jobs. In that way, the well-

 38

known Mexican cheap and overworked labour force was produced. The process of mestizaje is precisely

the transformation of this form of surplus population into productive labour for capitalism. The capture of

Indigenous people into cycles of exploitation, is never just a process of proletarianisation but also that of

accumulation by dispossession (Harvey, 2004) and/or ongoing original accumulation (Luxemburg, 2003;

Whitener, 2021). This kind of dispossession is described by David Harvey as a process which "entailed

taking land, say, enclosing it, and expelling a resident population to create a landless proletariat, and

then releasing the land into the privatized mainstream of capital accumulation" (Harvey, 2005, p. 149).

Coulthard argues:

it is reasonable to conclude that disciplining Indigenous life to the cold rationality of market

principles will remain on state and industry’s agenda for some time to follow. In this respect Marx’s

thesis still stands. What I want to point out, rather, is that when related back to the primitive

accumulation thesis it appears that the history and experience of dispossession, not

proletarianization, has been the dominant background structure shaping the character of the

historical relationship between Indigenous peoples and the Canadian state (2014b, p. 13)

What are we to make of the tension between the Canadian and the Mexican context? It appears that

colonialism responds to concrete local conditions that makes it very diƯicult to draw parallels. From

such an observation, it also appears relevant to overcome the nation-state as an analytic limit. For this

reason, the Marxist analysis of our current social totality becomes key. As it will become clear in the last

part of this section, the current historic moment – moving away from neoliberalism – is characterised by

an exalted disarticulation of working conditions and labour movements, and market forces striving to

dispossess people beyond exploitation schemes. This is why it is fundamental to reintegrate the

 39

struggles of land and labour. As narrated in Temazcal 2, Rolando’s family is displaced from the Mixteca

Alta into Mexico City. This process of proletarianisation attempts to turn them into cheap labour and

dispossesses them of land and the means for social reproduction. This happened in the era of state-

managed capitalism, when cheap labour and land were needed to build capitalist extraction in the

country. Two generations later, a diƯerent form of capitalism triggers a new kind of movement discussed

in Temazcal 2: from Mexico City back to the Mixteca Alta.

Mexico City is a tense place in the era of crises provoked by uncontrolled financialisation; a site of

turbulence in which settlers, mestizaje and Indigenous realities clash. It is also one major market for real

estate; this is especially true in relationships with Anglo-America and Europe. There are figures that can

be related to the settler that could be theorised here: the whitexican, the digital nomad, the creative

class, the expat, the tourist, etc. These people, regardless of their pigmentation, nationality, or culture

build a form of whititude: an orientation towards capitalist lives, a capitalist ethos proper of Mexico City.

More exactly, their presence and habits of consumption in a city like Mexico have made life unlivable for

anybody else. Housing is unaƯordable, public spaces and institutions exist now to serve the wealthy, and

culture is changing (becoming further ‘cosmopolitan’, AKA white and European), and the Indigenous

Peoples have been transformed into an object of admiration but also a subject of contempt. As the global

north becomes unaƯordable for their disappearing middle classes, places like Mexico City are seen as a

viable alternative that allows them not to alter their lifestyle and class status. It is also important to

acknowledge that many of the people moving from the global north to Mexico City are themselves

dispossessed in their own countries by financialisation and, more recently, by fascism.

 40

Temazcal 2 has allowed me to radically transform the concept of settler-colonialism and understand

Mexico City’s colonisation within its scope. First, the people that were pushed out, through

marketisation, of the global north and relocated to Mexico City, are building a form of colonialism that

can be explained as settler-colonialism. Second, the influx of people from the global north to Mexico City

is building a progressive-neoliberal block – and a North American fascist block – that is profoundly

transforming the political landscape of the city and, with it, its history and class relations. This means

that forms of oppressive social protection may emerge from the erosion provoked by marketisation. The

availability of cheap housing for Anglo Americans and Europeans is already creating tensions between

these settlers and all kind of Mexican citizens. How can the government of the city respond to any

hostility between the new settlers and old citizens? I can imagine the state, upholding the mestizaje

narrative, might respond to the situation by furthering the ongoing whitening process. In doing so, a

destructive marriage between settler-colonialism and mestizaje becomes imminent. Third, with this

wave of whititude and by this form of settler-colonialism, new emancipatory forces are spread and

relocated as well. Within the people expelled by the global north it is possible to trace relevant forms of

solidarity capable of making Mexico City’s experience global. From this knowledge, questions emerge:

what is the position of the people displaced from rural Oaxaca 40 years ago by state-managed capitalist

forces and now displaced from Mexico City by financialised capitalism? What is the role of graduate

students in the global north that still call Mexico City their home?

As I mentioned, a figure is brought to the foreground in Temazcal 2 that remains elusive and nebulous

still, but some of its characteristics have been sketched throughout this section of the chapter. Like the

figure of the Indigenous as defined by Vizenor and Gil, this figure should be constructed as a set of

 41

misreadings, misrepresentations, and mistranslations of mestizaje capable of building a political

emancipatory project. A political project built with complex coevalness properties, capable of tracing

solidarities among diƯerent times and spaces. Here, it is relevant to try to understand networked

environments as a crucial component to reveal the world-creating processes of capitalism, where the

Canadian context can only exist insofar as the Mexican context does and vice versa. The most vital

aspect here revealed is to acknowledge Indigenous Peoples’ right to self-determination from all

geographies. It remains unclear what the precise language to describe the figure revealed in Temazcal 2

is, but the notion of a double consciousness can be helpful when put into words.

Double consciousness is a concept that originates from the black radical tradition. Du Bois (1997) coined

this term to understand the lives of African Americans as both Black people and citizens of the USA. The

term refers to an inner conflict derived from this fragmentation. Similarly, Fanon (2008) invokes a white

mask/black skin dichotomy to understand the psychic condition of Black people in Martinique engaged

within colonial relations with France. Fanon attempts to describe diƯerent ways Black people engage

with white, Western civilization. Often, Black people would mis-recognise themselves as Black until

meeting a situation where their racialisation is salient. All of this resonates with the condition of

mestizaje. Thus, mestizaje is a process of double consciousness reminiscent to what is described in the

black radical tradition. However, the double consciousness required in this context has a slightly

diƯerent connotation that builds on top of Du Bois’s concept. The meaning of double consciousness I

propose is an articulation of class consciousness with the generative forms of situated knowledge and

racialisation, as shown as alive in Rolando’s family. This kind of double articulation has the capacity to

uphold the triple movement’s advantageous critical distance from marketisation and oppressive social

 42

protection. Hence, when I describe a ‘double consciousness’ in relation to mestizaje, I mean to signal a

subjectivity that is capable of embodying something very specific: social protection mediated by

emancipation. Namely, this concept does not only allow racialised and proletarianised people to deploy

diƯerent modes of social relations whenever necessary, but also to recognise the tensions and

contradiction emerging from the diƯerent ways of being in the world.

 So far, the chic critique of Marxist teleology has remained unmentioned in this chapter. To develop my

double consciousness concept, I will need to tackle it now. Marx, in several moments of his work shows

admiration towards the technical progress of capitalist society and the bourgeoisie. As the argument

goes, capitalism clears the way from ‘pre-modern’ conditions of production to create the basis for

socialism. In ‘pre-capitalist’ modes of production, ‘human being appears as the aim of production [in

contrast with the] modern world, where production appears as the aim of mankind [sic] and wealth as

the aim of production (Marx & trans. Nicolaus, 1993, p. 488).” Capitalism’s destruction of modes of

production other than itself is celebrated by Marx as a necessary step towards socialism. This productive

destruction is characterised by an inherent emptying out of subjectivity. For example, artistic movements

orbiting around their love for technology can be understood as machines that output void subjects.

Nevertheless, Marx is a product of a fragmented and double social moment: romanticism and

enlightenment. As such, contradictory positions become clear in his work:

In bourgeois economics – and in the epoch of production to which it corresponds – this complete

working-out of the human content appears as a complete emptying-out, this universal

objectification as total alienation, and the tearing-down of all limited, one-sided aims as sacrifice

of the human end-in-itself to an entirely external end. This is why the childish world of antiquity

 43

appears on one side as loftier. On the other side, it really is loftier in all matters were closed

shapes, forms and given limits are sought for. It is satisfaction from a limited standpoint; while the

modern gives no satisfaction; or where it appears satisfied with itself, it is vulgar (Harvey, 2023, pp.

223-24; Marx & trans. Nicolaus, 1993, p. 488).

In this fragment, Marx contradicts the teleological point described earlier by denoting the void subject

from the movement towards socialism as vulgar. This is a useful way to understand mestizaje and to

perhaps further understand the liberal critiques of mestizaje as well.

Emerging from these ideas, it is possible to state that my role in the process of Temazcal 2 is to creatively

destroy Temazcal 1 and to establish the basis for a baroque form of communism that articulates the

racialised and Marxist consciousness. From this process, a subject appears in Rolando’s narration. The

interstitial subject traced in Temazcal 2 is capable of multi-perspective thinking and acting, capable of

contradictions, and adjusted to navigate crises that have often been their origin.

Rolando’s mother moved back to where her family came from by buying land and slowly building a

retirement/family home. This family home is neither a return to the ‘primordial home’ nor a movement

outside of capitalism, but it acknowledges the eƯects in people that these historic transformations had.

These changes involve both processes of whititude and baroqueness that build a contradictory position,

always tense and unsettled. The memory of a life that is not fully captured by systems of oppression is

ignited but constantly struggling to remain present. As seen at the end of Temazcal 2: the memory of the

ancestors is always lit in the night by a fragile flame on the verge of darkness but refusing to fade out.

 44

In the following section, I will describe the artwork as standing one year and a half after its completion

and presentation to the audience. The ideas expressed in this section will now describe the artistic

practice that formed them. The dialectic relationship between these ideas and the practice allowed me

to claim the baroque subjectivity (that is not empty at all) suggested here.

Temazcal 2: Archive and Documentary Practice

Preliminary Notes

The description of the work relies on two sources: the online repository that contains all the assets of the

artwork and the video documentation I recorded on the day of its premiere, both attached to this

dissertation. I argue that the artwork can be understood as a non-ephemeral interactive networked art

piece, which one of its main consequences is an on-the-fly documentary. This means that people can

use the repository to reconstruct it, manipulate it, reuse the material, and more. Furthermore, the precise

meaning of the densely signified documentary we assemble with live coding can only be accessed

through manipulation of the materials in the internet repository. Perhaps Estuary serves as a favorable

interface for this artwork, but many others can be used as well.

There are two main reasons for presenting the documentary in this way. Firstly, Temazcal 2 explores a

speculated return to orality, which translates in our minds to a non-fixed form of knowledge production.

This idea is inspired by César’s elaboration on archive: “The notion of an archive does not refer to a

physical space with specific records but rather to complex cultural and philosophical entanglements that

our bodies receive and may later respond to through reasoning and stimuli” (Juárez Joyner, 2021, p. 101).

In other words, the knowledge and experiences raised by this documentary should inhabit and traverse

 45

bodies, rather than being stockpiled in some digital medium. At least, this was our initial intention, which

has proven very diƯicult to realise in a world that relies on stockpiled information as evidence of

existence. Secondly, Temazcal 2 responds to Malovich’s critique of interactive art (Manovich, 2009),

where ephemeral interaction is interpreted as manipulation of audiences by creating the illusion that

insignificant choices constitute freedom. By opening various pathways for people to access the materials

of the artwork without providing a specific tailor-made interface for interaction, we are reasserting an

interactive art aligned with a substantial form of agency: use the materials, explore them, create meaning

with them, undo it, unfold it, erase it, etc. The core of these ideas can be found in the last chapter of the

recently published live coding manual (2022), which defines its relevance as “[...] not so much [as] a

mode d’emploi or user’s manual on or about live coding [but] as an attempt to explore live coding as a

user’s manual or guide” (Blackwell et al., 2022, p. 240).

This layer of the artwork presents many challenging conditions of availability. Thus, I believe that this

layer will probably be more accessible and advantageous to other live coding practitioners and other

people involved in programming and networked art. However, the broader audience will likely not take full

advantage of the freedom provided by this documentary. Nevertheless, it will still be available as video

documentation on YouTube, recorded on the day of its first public performance. Therefore, I will refer

primarily to the video documentation and, to a lesser extent, the repository to describe the artwork in this

chapter.

This performance was an arrangement of the repository established between Rolando and me with

ongoing feedback and input from Diego (the music code performer). A good metaphor for understanding

the relationship between the repository and the performance is the night sky: the night sky and its visible

 46

stars represent the repository, while the traced constellations symbolise the performance. The

repository's materials can be categorised into various ideas we aim to convey: some images refer to

Rolando's family; others relate to the site of a form of knowledge (the temazcal artifact) explored in the

documentary; others include carved images on musical instruments that have been digitally

reconstructed, along with schemes of constellations. A specific category of materials consists of maraca

samples recorded to serve as the main instrument of this artwork but can also be utilised generally as an

instrument for any type of performance or music session in Estuary, along with many other digital

instruments that process samples. There is a collection of code snippets that form a composition of

repository material into programs that can be evaluated in Estuary. Everything related to the creation of

Temazcal 2 exists within this repository. Additionally, the materials generated and used in In Xiuh Ce

Amatl are also contained in it. In the performance referenced here, we extensively use the huehuetl

samples recorded by César Juárez. Another set of items in the repository consists of the JSoLangs, which

enable us to have this layer of meaning written in Macehualcopa, where some code snippets in general

languages used in Estuary (specifically MiniTidal, Punctual, TimeNot, and CineCer0) are incorporated

within commands in the Mesoamerican language. The repository also serves as a sort of ‘historical’

record of the project's development. One can observe a snippet of code that is later transformed into a

language, which is transformed into a configuration on Estuary. Two scripts are the most significant

materials for articulating the performance. One script is textual, developed by me; it constitutes a

pseudo-academic analysis of the work Temazcal 1. The other script is aural, consisting of a series of

voice-over recordings made by Rolando, narrating the family's relationship with the temazcal.

 47

Temazcal 2 is a networked artwork because it exists materially on the internet and because the

performances and its reception do not rely on local audiences. The premiere happened simultaneously

in three locations: at the Networked Imagination Laboratory (NIL), McMaster University in Hamilton,

Ontario, at the Intercuraduria Gallery in Mexico City, and it was also transmitted on the internet by the

Factory Media Centre. This is a key aspect of the work as it forces us to consider concretely an audience

that is not limited or determined by local conditions. Thus, we had to speak to very diƯerent audiences

simultaneously, and, therefore, we could understand the impact of our work with a global totality in mind.

This aspect of the work will be analysed in-depth at later stages of this chapter. For now, let me share

some particularities regarding the conditions of this triple event premiere. The event in Mexico City was

marked by a profound lack of care and disorganization from the curatorial staƯ of the space that did not

support the event, as no profit was anticipated from such support. In general, the conditions did not

allow for a broad reception. Nevertheless, people close to Rolando, Diego, and I attended, and we

personally received feedback on the work. Rolando’s mother was present at the performance in Mexico

City, which I consider a very special reception. The NIL had better conditions; fundamentally, the global

north’s privileged access to technology like good internet connections, screens, computers, or speakers

provided almost ideal conditions for the performance, quite contrastingly with Mexico City’s experience.

FMC, a non-for-profit center and artist-run new media community arts organization that provided an

almost ideal platform to socialise the work.

One very interesting moment of this shared event was the moment for the land acknowledgment, which

has become customary in Canadian institutional spaces in the context of Truth and Reconciliation and as

a way to understand aspects of Canadian history like broken treatise and the horror of residential

 48

schools. The impression shared amongst Rolando, Diego, and I, is that land acknowledgments generate a

lot of cognitive dissonance when the context is removed from the reception of it. Some fundamental

questions emerged from this gesture: what does it mean to acknowledge the land where an event is

happening when half the audience has no relationship with such land and, more importantly, is unable to

diƯerentiate between the institutional context in which the land acknowledgment takes place, and the

knowledge that Canadian institutions work together with the Mexican government and organised crime to

dispossess people in Mexico in the most violent forms imaginable? How is land acknowledgment in

Canada related to land dispossession in Mexico? This is further complicated by the themes explored in

the documentary that refer to ongoing land and labor dispossession in the context of globalised

capitalism. In many ways, the artwork is a response to the land acknowledgment as an institutional

mechanism for Indigenous recognition. Our ensemble proposes to recognise land and labour, not only

the diƯerent indigenous territories encapsulated in so-called Canada, but that of all peoples marked by

Canadian (and all forms of) imperialism.

Before I continue with the thorough description of the documentary as inscribed in the online repository

and as unfolding as performance, one more aspect of the work needs to be addressed. This work is an

instance of class struggle that takes the form of appropriation. Temazcal 2 appropriates upwards and

seeks to undo an act of misrepresentation. I am analysing the music piece of Javier Álvarez not to

undermine his character or public persona but with the hope I can shed some light on a cultural artifact

that participates in the construction of social protection that benefits a minority at the expense of the

oppression of targeted minoritised people.

 49

Lastly, Temazcal 2 presents a world beyond the crises of care, the environment, representational politics,

and the economic crisis that the current social totality we call capitalism engenders (Fraser, 2023).

Additionally, I believe that Temazcal 2, by rigorously pushing to its last consequences the patterns, ideas,

and desires identified as part of this artwork, has achieved substantial originality as an artwork that

tackles the pervasive crisis of imagination bound to neoliberal subjectivity (Fisher, 2009). What follows is

a thorough description of the ideas and experiences that unfold and are contained in Temazcal 2.

Temazcal 2

Temazcal 2 begins with a time of crisis, more precisely, a convergence of times that marks many aspects

explored in the work. The first and most immediate time marker that can be observed is the dawn in the

Mixteca Alta (a region in southern Mexico, the exact location will remain unmentioned throughout this

text), received with a fire that implies a vigil and signals an act of attentive observation of the night sky.

The Mixteca Alta is also the locus of situated knowledge central to the documentary's narrative, as I will

elaborate throughout this section of the chapter. In the background, a schematic representation can be

observed of constellations found on Mesoamerican musical instruments, revealing a close relationship

between celestial movements, calendar notions, and the performance with percussion instruments like

the sonajas (an instrument related to the maracas) and huehuetl. These instruments are a central sound

and symbol explored in Temazcal 2. In one of the constellations traced, it is possible to read the words:

“Temazcal is an electroacoustic music piece for maracas and fixed media which have received a

lot of attention in the anglosphere. The work is inspired in the traditional 'temazcalli', particularly

the one used in the Anahuac valley in the centre of Mexico.”

 50

These 'text-shaped' constellations are a condensed version of the script I narrate throughout the piece.

However, each section of the script has been assigned a glyph, which I will explain later. Due to the dense

nature of this first scene, the glyph for it does not appear. Furthermore, not all the text here is visible, and

it is also possible to see that the other constellations are 'made of text' as well, but due to the font size,

the meaning is impossible to decipher. This text is a script that mimics the style of stale academic

writing, and its topic is a critical analysis of the work Temazcal 1. The first part of the script provides the

context of the work by Temazcal 1:

“Temazcal (maraca soloist and electronic sounds)), 1984. London, Institute of Contemporary Arts.

Work by Javier Alvarez. Original performance by Julio Toro. It has become an iconic work for the

electroacoustic music tradition. Performed regularly, the work is perhaps one of the most well

known pieces of music for instrumentalist and electronic sounds ever made by a Mexican

composer.”

The layering of 'texts' (the juxtaposition of the constellation scheme, the glyphs, the text that analyzes

Temazcal 1, and the digital mediation) resembles a palimpsest, where multiple texts are stacked upon

one another, obfuscating the previously recorded meaning. In this case, the symbols carved into musical

instruments give meaning to celestial bodies, later interpreted by scientists, which are then re-signified

by musicians like Javier Álvarez and, ultimately, re-appropriated by me, a media artist. The clash between

layers of meaning displayed here is intentionally obscure, as the surface of the performed documentary

acts as an entry point rather than a finished work. The implication is that interested audience members

can access all the materials 'abstracted' from performance conditions, either as a repository of files or as

instantly available sources to be played and manipulated in Estuary – as previously noted.

 51

The sound of the maracas marking a 13-beat metric count fades in. These sounds anticipate an

important aspect of the music composition of this documentary: a reverse count from major density to

minor, using numbers with a particular symbolic value in Mesoamerican culture—the '13 heavens'

narrated as part of the creation myth in many Nahua understanding of the cosmos. Lastly, and more

importantly, Rolando starts to narrate a particular time of crisis for his family that involves the passing

away of his grandmother (2017), a couple of (male and female) cousins, and a close nephew (2019).

Rolando finishes his intervention with the words: 'My grandmother was born in Tlaxiaco, on the 5th of

February, 1921, and my nephew passed away on the 5th of February, 2019, in Tultepec, close to Mexico

City.' This juxtaposition of events, the end and the beginning of lives in a diƯicult chronology, breaks

temporal linearity and opens a space of reflection and contemplation; the space explored in this

artwork.

Perhaps already evident in this densely coded scene, two main narratives will unfold throughout the

documentary in their particular ways: Rolando working through the time of crisis already mentioned by

activating an embodied memory, and my pseudo-essay on appropriation amid a major global and

national hegemony crisis. Temazcal 2 is highly reminiscent of polyphonic music, as the two narrative

lines create a 'counterpoint' where they are apparently disconnected but somehow complementary. One

could say that the only convergence point between them is the figure of the temazcal and the radically

diƯerent meaning it acquires depending on the two representations we created.

Taking lessons from previous works by Rolando and me (In Xiuh Ce Amatl), we decided to diƯerentiate the

two narrative lines to reflect their diƯerences. Rolando's line relies on pictures, voices, landscapes,

family portraits, gestures, family archives, and interviews that best fit with the more embodied and

 52

mnemonic ideas (referenced by Rolando in his script) constituting the narrative. In the context in which

Temazcal 2 was premiered, Rolando's narrative is illegible for people who do not speak Spanish, thereby

sheltering certain forms of knowledge and information that intentionally remain diƯicult to access.

My part relies on code, schemes, academic research, musicological analysis, music critique, score

writing, composition, and other mechanisms that may appear as abstract and historic (rather than

concrete and mnemonic). It also uses English, a language more transparent for any audience member

regardless of their native tongue. The industrial-academic complex relies on English as a lingua franca,

and as such, it naturally aligns with the pseudo-academic style I have developed for this script.

Two further layers of signification are noticeable related to language interplay: the commands given to

the computer that animate and instantiate the work's components are JSoLangs (smaller, on-the-fly

created languages enabled by Estuary) designed based on Macehualcopa, a language spoken in central

Mexico, or Macehualcopa mixed with English and a few elements in Spanish (like the name of files, etc.).

The infrastructure expressed in Macehualcopa is a modest continuation of the research done for In Xiuh

Ce Amatl by Rolando and me in collaboration with César Juárez Joyner, as previously mentioned.

As the first scene fades out and a second scene visually presents Rolando's family members to the

audience, we can see the cursor of the music performer (central panel, using the Kakilistli language)

change the pattern kakillistli-1 to kakilistli-2, which changes the meter of the music from 13 beats per

cycle to 12. It is also possible to see a second glyph originally found on the soon-to-be-explained

Mesoamerican percussion instrument that represents a constellation. Again, we see it marked by the

pseudo-academic essay in an (almost) illegible manner. The script in this scene explains what a

temazcalli is:

 53

“Temazcalli is the name given by Nahua speakers to a steam house in which ritual and medicinal

ceremonies take place. Often these rituals have to do with birth and pregnancy.”

In this segment of the script, the first piece of information will later resonate with Rolando's narrative and

the subsequent representation of Álvarez's music: the temazcal artifact is associated with birthing and

medicine. Thus, it represents a gendered technology and form of knowledge.

The central aspect explored in this scene is the memories narrated by Rolando's mother, aunts, and

uncle regarding their mother, Petrona (Rolando's grandmother) and her mother and their relationship with

the temazcal. The family’s recollections can be summarized in three main ideas: (1) when they were

young, they witnessed how their grandmothers used to provide 'temazcal baths' to women, who had just

given birth, to fortify their bodies; (2) they remember their mother healing family and community

members with her situated knowledge of the plants and herbs of the region; and (3) they remember a

variety of experiences related to the temazcal, such as a bathing technique with blankets, steam, and

herbs. The temazcal (apparently) concretely existed in Tlaxiaco (where the family lived when they were

young). The austere maraca sound plays as an accompaniment to the voices telling their family's story.

The metric count moves from 12 to 11, and the documentary transitions to the next scene.

The third scene is a presentation of Rolando’s family nucleus. A family portrait can be seen in the

background held by Clara, Rolando’s mother. Simultaneously, the third glyph can be seen holding the

text:

“In Javier Alvarez’ temazcal, we can also see the central figure of the performance, the soloist

evoking a shaman with its sacred sonaja (in this piece transformed into the more musical maraca).

 54

We can hear the cavernous womb-evoking space, the rocks crackling in the fire, the water

evaporating, the smoke and steam rising… All of the elements that are often found in these kinds

of ceremonies are captured by the electroacoustic sonic imagination. Quite a spectacle! (for

Europeans)”

One of the reasons the script is a pseudo-academic essay is the same reason that impedes me from

verifying the veracity of the analysis above: there are no commentaries by the author about the

representations of the piece settings, at least not readily available online or written down in the score of

the piece. The performer's role as a meaning-making figure remains explicitly undefined. I do not believe

this is to obfuscate any meaning of the piece related to Mesoamerican culture. The role of this set of

symbols will be explored later in this analysis. The actual meaning of the piece is the research on

electroacoustic music that is so prominent in Álvarez's career.

Rolando's narration now focuses on the site of the family's temazcal, which once stood on a lateral

terrace of the central church of the town where Rolando's mother established her retirement home. The

visual components of this second section of the scene present the church and the location where this

artifact used to be, according to Clara's memories. As implied, there are no traces of the temazcal

anymore. A new aural component emerges: an arpeggio moves slowly, refreshing the ear while marking

an important turn in the documentary.

The metre turns to 10, and the visual narrative focuses on the site for the new temazcal that Rolando and

I planned to build as the original idea for this documentary. This requires further explanation. Originally,

the main goal of Temazcal 2 was to build a new temazcal and document the process of its construction. I

travelled to Mexico, to the site we established as the place for this project and planned for a couple of

 55

days to build this structure. The idea was to build it without relying on anybody's knowledge or labour

except our own. The only indications that we had were Rolando's family memory, YouTube tutorials, and

conversations with some people who described the process to us as they understood it. We gathered the

materials and started processing them with some tools we borrowed. We tried to put up the bamboo

stick structure and failed until finally, we had something to work with: a flimsy and sort-of inadequate

structure. Then we tried to cook some clay for the bricks. After a day of trying, we finally realized that the

knowledge to rebuild the temazcal was lost and that we would have to either rely on other people's

knowledge or accept the fact that the information required is lost from Rolando's family core. In the

documentary, the site of the new temazcal can be observed with a couple of videos attempting to build

the structure. Rolando advances his narrative with an audio clip of his mother reminiscing about her

mother's knowledge of healing with plants, which should be grouped as the same kind of knowledge as

that of the temazcal artifact.

The glyph for this scene contains the text:

“Alvarez, on the one hand, utilises the exotic and orientalised perception of what Mexico is in the

European imagination and, on the other hand becomes a key figure that brings whiteness

and European progress to Mexico by consolidating the electroacoustic tradition with local

flavours. In this way, Alvarez feeds the predatory and colonial culture in which academic art in the

UK (and Western Europe) sustains itself and, at the same time, he advances tropes of progress

pervasive in Mexican modernity. He appears as foreign and exotic to Europeans at the same time

he instrumentalises his own whiteness as a sign of authority and prestige in Mexico.”

 56

This text describes a well-known pattern of behavior related to academically sanctioned artists who

study abroad. They simultaneously adopt knowledge from Eurocentric universities as canonical while

misrepresenting (and capitalising on) situated forms of knowledge. The side eƯect of this is the reification

of progress and what Chakraborty calls the “waiting room of history” (2000) in which Europeans must

experience modernity first, and the developing world can only adopt it after and as fast as possible. The

dependence on knowledge production from places like Mexico to places like the UK or Canada has been

analysed within the theoretical framework of dependency theory and the international distribution of

labour where it is argued that “under-development as experienced in Latin America and elsewhere is the

direct result of capital intervention, rather than a condition of 'lacking' development or investment

(Schmidt, 2018)”.

Scene 5 starts silently and with very few elements. We hear the voices of Rolando's family members as

they focus on the memories of the use of plants by their mother and grandmother to heal people. For

example, Uncle Tino would tell an anecdote about a big trip his mother took to heal a newborn member

of the family in Mexico City and all the eƯort and sacrifice it entailed. He talks about the eƯectiveness of

medicinal plants. In the background, pictures of the family members circulate as a way to emphasise

their voices.

From scene 6 to scene 10, there is a rupture in the formal sequence of the piece. The metric count and

the sequence of glyphs are now broken. In this segment, the audience sees the condensed script in the

shape of constellations, and the consistency of the maraca’s timbre feels unstable and sparse. Instead

of the maracas, the foreground is occupied by a huehuetl drum pattern. Here, we concentrate a lot of the

performance elements developing the narrative against the electroacoustic music piece. What we try to

 57

create is a buildup: transitioning from very quiet to very loud, from very slow to very fast, from a few

sporadic events to a more dense and compact musical structure. This section of the piece suggests a

movement, similar to that proposed by Temazcal 1, from the representation of the “pre-Hispanic” to the

“modern” world. The huehuetl and the 7/8 rhythmic figure we used for the build-up evoke the pre-

Hispanic imagined past and the generic drum n bass combined with the ukulele (reminiscent of the harp

of certain Mexican folk music) refers to an imagined modernity. This should be read in parallel with the

images of a percussionist performing Temazcal 1 and me dancing pretending to play the maracas. A

close-up of my instruments reveals a sonaja that can be brought at any generic touristic market in

Mexico. The gestures of this shamanic personae I am performing are exaggerated, mysterious and, at the

same time, humorous.

Rolando advances his narrative by talking about his aunt Flor, the one closest to herbal knowledge and

traditional medicine from that generation. Flor lived on the site of this situated knowledge, along with

Rolando's grandmother, where she witnessed how people from the community would rely on her mother

to heal children from digestive problems, evil eye, fear, and other ailments. Rolando's main idea in this

intervention is the body's autonomy from “professional” medical knowledge granted by the knowledge of

these medicinal plants.

In scene 6, a substantial part of the script is missing, perhaps the most theory-heavy part of it. Here it is:

 “The Mexican modernist project envisions a capitalist modernity that excludes Indigenous

Peopless as political subjects but assimilates their cultures via a social order reminiscent of the

Spanish caste system. This is often understood as mestizaje.

 58

Mestizaje have allowed state managed capitalism and financialised capitalism to expropriate land

and labour from Indigenous living communities, turning them into cheap labour. Mestizaje is the

process of proletarianisation of Indigenous Peopless and the formation of what Marx describes as

the worker’s reserve army (people that can be introduced to the labour market in case of shortage

or to keep the price of labour low). Furthermore, mestizaje has been key to enabling the originary

accumulation necessary for capitalism's boost towards imperialism and the accumulation by

dispossession common in late capitalism.”

Scene 7, with a metric count of 7 as well, is considered by us as the vertiginous centre of the piece. At

this point, we are trying to introduce as much instability as possible to the aural aspects of this work. In

the background, the constellations appear, sometimes more readable than before. It is possible to read:

 “Mestizaje is expressed as a cultural process in which European ontologies and epistemologies

capture Indigenous cognitive territories, transforming them. In other words, mestizaje allows the

metabolisation of anything external to whiteness by eurocentric frameworks. A mestizo speaks

Spanish but their vocabulary is filled with words from originary languages. Mestizaje tames and

depoliticises Indigenous subjectivity (reduces it to folklore and culture) and it attempts to make

indigeneity accessible without renouncing whiteness.”

The segment of the script above and the previous one trace a relationship between the analysed cultural

artifact and the ideological project it reflects: the appropriation and re-signification of Indigenous

knowledge. For example, Temazcal 1 tends to have a male figure at its center. To clarify, there is no written

instruction to have a male performer for the piece, but a quick survey on YouTube shows that multiple

performances of the piece are almost always performed by a male percussionist. Additionally, the

 59

premiere of the piece was dedicated to Julio Toro, and it was not uncommon at Mexico City's

contemporary music festivals to see the composer perform the piece himself.

The visual aspects of the work become hyperactive as the aural crescendo and accelerando advance.

The glyphs are revealed as components that, when composed together, form another layer of meaning

that I will talk about soon. Moreover, a series of flashes, accompanied by images of pre-Hispanic

instruments and schemes tracing constellations zooming in, overtake the work. As the visuals and audio

bloat the ensemble coordinates a sudden change of scene that is in many ways precise and eƯective as

an audiovisual movement.

Before I continue describing the artwork, let me take a moment to acknowledge certain performative and

technical aspects of this moment of the piece. I want to remind the reader that this documentary is being

performed live by three coders in two locations and with three very diƯerent computational and

networked conditions. This means that each of us, the performers, is experiencing the piece in three very

diƯerent ways. Furthermore, the three performers have very diƯerent relationships to coding.

The ensemble communicates mainly through the chat function provided in Estuary. Nevertheless, the

three performers have diƯerent interfaces that vary in the way they show the movements of the other

performers. In other words, each performer sees very diƯerent things as their function in the ensemble

requires. The performers also interact diƯerently with the code: from automated generation and

evaluation of snippets to almost from-scratch editing of code; from overseeing solely aural or visual

components to combining both. Also, each performer uses a diƯerent textual interface, JSoLang, with a

diƯerent underlying language underneath (CineCer0, Punctual, MiniTidal, and TimeNot).

 60

For all the aforementioned reasons, it is necessary to understand the immense ability required by the

player to develop the intuition to understand Estuary's behaviors and, perhaps more impressive, the

immanent dynamics of the performance. This ensemble-making instinct is unrelated to virtuosity or

technical proficiency with computers or technology. At the same time, it diƯers from other ensembles

where the openness and improvisatory ethos allow diƯerent performance styles and abilities to interplay

productively. Something diƯerent drives the ensemble gathered around Temazcal 2. In this case, I argue

that the time gained by the automation that algorithms and code provide was spent making sense of our

experiences related to the temazcal rather than spending time becoming 'strong coders.' Thus, the three

of us were familiarized with the archive of images and sounds, and we became fluent in its aƯordances.

We developed a form of mnemotechnia that was crucial for the performance.

Back to the description of the work, as the build-up concludes, the background freezes, and a clip of

composer Gabriela Ortiz, an established composer from International and Mexican environments,

appears in the foreground speaking. As Ortiz speaks, a ukulele sample that evokes traditional folkloric

music from the south of Mexico appears loudly. A drum’n bass pattern is suddenly introduced, first as

code and then as sound, to the ukulele melody, and the audience hears and reads the English subtitles of

Ortiz saying:

“where is the consideration for voices of composers that nourish from vernacular melodies?…

Javier Álvarez… he transcends … it is not black or white, it is something deeper, it is how to work

them and how to appropriate them to generate something very personal that, as a creator,

represents me.”

 61

Let me provide some context for this clip (Rodolfo Acosta et al., 2021). On the 21st of September 2021,

as part of the dialogue table 'Colonialism and decolonization in concert contemporary music' held online

by UNAM as part of the International Encounters of Extraordinary Lectures, five Latin-American and

Spanish composers and conductors gathered to discuss the intersection of concert music-making and

colonialism. A friend of mine described this talk as something like a gathering of bankers discussing

capitalism. Most of the discussion revolved around tropes of representation, statistics of inclusion, and

the usual institutionalised discourse. Someone, mimicking whether willingly or not Spanish far-right

forums on the internet, claimed that Spanish people prevailed over the 'colonization of Spain' by 'the

Muslims' and the eƯects of that were beneficial for Spanish culture.

There were two particularly interesting interventions. Morales-Ossio argued that the appropriation of

'aboriginal' music represents an act of usurpation on which concert music in Latin America often relies to

engage with tropes of identity. He continues to illustrate his point by describing how the Mapuche people

in Chile are dispossessed of their land for resource extraction, including wood, and outlining the

processes of original accumulation upon which Latin American nations are built. He claims that the

appropriation of folkloric musical elements is reductionist and tied to European forms of colonialism,

which is merely another manifestation of the usurpation he described earlier. Morales-Ossio's argument

is met with an unapologetic response from Ortiz, who defends the right of creators (specifically

Westernized artists) to appropriate vernacular cultural expressions.

This is what I have sampled and portrayed in the documentary. This referenced intervention allows me to

trace a direct line between Temazcal 1 and the current stance of influential voices in the composition

environment in the face of decolonialism. Interestingly, in previous interventions, Ortiz expressed

 62

concern that (white) Latin-American women are often misrepresented in Anglo-America using

stereotypical framing for their concerts or grouping them always only with other Latin-Americans. At the

same time, the composer shows a strong conviction to defend appropriation as an inherent right of art

creators. I have reflected a lot about this dialogue between established and influential composers. I

realized that this is a recurring pattern I have observed before in my experience as an ‘emerging

composer.’

It is evident at this point that this is a crucial point for Temazcal 2. The glass ceiling of progressive

neoliberal expressions should be interrogated relentlessly. Temazcal 2 inverses the relationship of

appropriation that Ortiz adamantly defends as we appropriate contemporary composers like Ortiz and

Álvarez to talk about the meaning of the temazcal obscured by Temazcal 1. A second eƯect is introduced

to Temazcal 2, a second inversion. Ortiz’s complains about the Latin-American label and her impetus to

appropriate vernacular culture does not happen within the limits of the Mexican nation-state. Ultimately,

classical music consumption in the global north, clearly categorised into diƯerent genres based on

colonial preconceptions, is organised around the expectation of people like Ortiz and Álvarez to extract

novel sounds from people ‘outside civilisation.’ Gabriela Ortiz will extract culture if centres of power are

willing to consume it. Thus, critiquing Ortiz or Álvarez is an incomplete strategy that can eventually lead

to misconceptions about development and progress. Considering the strength of the nation-state in the

imagination of people and the incapacity to observe the whole machinery of capitalism as a unit, the task

is to understand the loss of the temazcal as a global problem as much as a local one.

Again, we proceed with the script:

 63

 “Mestizaje then should be understood as the alienation from Indigenous Peoples’s traditional

livelihood in order to integrate them into the globalised capitalist frameworks as servants. As

people adopted the clock and empty time over the cosmic cycles to mark the passing of their

lives, they became alienated from life and unable to see beyond the cold reality of capitalism.

The migration from rural areas to cities and its catastrophic consequences is a good example of

this alienation: Indigenous Peoples leaving behind their lands, languages and culture to become

cheap labour. Temazcal (the music piece) is a hegemonic cultural artifact that enables such

alienation, using electroacoustic music as a technological and ideological framework.”

This part of the script reveals the intention to inscribe the artwork not only as a critique of nationalistic

ideology and its art but also to place its relevance as a cultural artifact within the broader context of the

social totality we call capitalism.

In the next section, we aim to provide a brief pause for the audience to ‘catch their breath.’ Sporadic

arrhythmic maraca hits can be heard, accompanied by various noises and glitchy sounds. Visually, my

script predominates with the following text:

“Alvarez music intervenes electroacoustic ideology in many ways: from timbric to rhythmic

imagination, from parametric notation to representation of rhythmic gesturing and cognition at the

centre of techno-scientific and artistic music research. In his thesis there is no discussion of

Temazcal. However, the piece composed after Temazcal, called Papalotl (insisting on the use of

Indigenous tropes) is discussed in technical terms. No mention of the poetic reality it evokes with

 64

the title. It would be safe to assume that Temazcal and the symbolic reality it portrays are not

engaged as (traditional or ancestral) knowledge but as an inspiration or even an object of study.”

In the background of this scene, we can see the eight glyphs used to show the script up to this point. The

separation of both the script and the glyphs is meaningful. At the center of the glyphs, it is possible to see

a representation of an ozomatli (a monkey figure with earpieces often associated with the deity of dance

and music and the constellation Ursa Minor in Nahua culture). The arrangement of the eight glyphs and

the ozomatli at the core (surrounded by a perimeter of 13 petals that are missing from this

representation) was originally found in an archaeological artifact referred to as Huehuetl Ozomatli,

located to the north of Mexico City.

What is known about this artifact has been theorized by Daniel Castañeda and Vicente T. Mendoza in the

book ‘Instrumental Precortesiano,’ (1933), supported by information gathered by Sahagún in the 7th book

of the ‘Historia General de las cosas de la Nueva España (1829).’ The general thesis of the images

analyzed here, developed in their chapter ‘Teoría de las Constelaciones Circumpolares en las Culturas

Precortesinas,’ consists of explaining how the representation of the ozomatli and the octant of glyphs

represent real stars and constellations that were fundamental in the pre-Hispanic world to "map" the

passage of time. The authors emphasize that this representation is both aesthetically imaginative and

free and functions as an objective observation of the stars that trace cosmic rhythms, merging forms of

knowledge that can be perceived as scientific and artistic. This scheme, found within a musical

instrument, emerges as a constellation connecting music, dance, design, instrument-making, calendar

precision, and cosmic rhythms.

 65

Rolando, who brought this text and these images to my attention, and I discussed the relevance and

meaning that this section might bring to Temazcal 2. Based on these conversations, I am attempting to

present, without oƯering favorable or unfavorable interpretations, how Indigenous Peoples have

developed a diƯerent conception of time-keeping that can be evoked without being appropriated in a way

that relies on dispossession.

The 11th segment of Temazcal 2 reintroduces the metric structure, with 3 beats per metre accompanied

by the sounds of birds. There is also a dramatic shift in color and texture in the visual field. The

background features pictures from Rolando's family archive, depicting the site of the knowledge held and

transmitted by his grandmothers to their aunts and mother. Similarly, Rolando's voice narrates the

relationship between the knowledge his family possesses, the land where it is situated, and the plants.

Rolando characterises these plants as animated entities that can possess a voice while remaining silent.

My script, now without constellations or glyphs shaping it, continues to reaƯirm some previously

discussed ideas:

“However, the hegemonic narration of the Mexican state allows us to speculate on a fictional link

between old indigenous temporal conceptions and Alvarez’s research on cognition, gesture, time

and movement. In this way, Alvarez appropriates, assimilates, supplants and re-tells forms of

knowledge developed by a community in which he does not participate nor belong. This pattern

has been observed before: a nostalgic re-telling of an idealised past followed by a future

envisioned as an identical repetition of such ideal past.”

 66

In the next scene, we hear a double-beat metre accompanied by the soundscape of the Mixteca Alta. The

visuals feature the plants, which were described as active family members in the previous scene.

Rolando advances his narrative by reminding us that the family temazcal and the knowledge of the plants

used in its health rituals are lost. However, he recalls some plants used for his own healing processes

when he was younger. Following Rolando's voice, we can hear his mother talking about how her mother

healed her and her siblings by applying the same plants.

Juxtaposed with this mourning for lost knowledge, my script points towards another form of

dispossession: the erasure of contemporary indigenous lives.

“Temazcal's score is a commodity that can be purchased on the composer's website:

https://temazcal.co.uk/store/

Only 55 USD.

He has built a career and a reputation feeding from the prestige of his English education and

assimilation as well as the mysticism of his Mexican identity. Simultaneously, broadening the

scope of the colonial European project and advancing a Mexican modernity in which Indigenous

Peoples are a relic of the past.”

My last intervention is a hopeless image:

“The last section of Temazcal 1 is interesting. A traditional folkloric piece for harp, making the

maraca player improvise an accompaniment, suddenly appears. The mood of the piece shifts

dramatically: from a shamanic intense experience to a festive modern environment. Perhaps

implying that the Mexican identity has its roots in rituals like the Temazcal.

 67

I imagine a restaurant in a nice tourist location. Packed with gringo, euro-gringo and whitexican

tourists with pink cheeks. Tired and satisfied, in the middle of their holidays. Eating a feast. Very

cheap too! A table being served by the locals; filled with all kinds of food and drinks. The European

descendants devouring everything, people with darker skin trying to smile, to move fast. Trying to

keep the drinks flowing. The hungry tourists laugh and enjoy the background music. The hungry

listeners demand another tune so the feast can continue, joyful and endless.”

The last section in Rolando's narrative is very interesting. Ramón, Rolando's uncle, remembers the birth

of his siblings (Rolando's aunts and uncles). He recalls that his grandmother (Rolando's great-

grandmother) assisted in the birth of all of them. In Spanish, the word for giving birth also means 'to

illuminate.' This memory is complemented by the faint light of a candle illuminating Rolando's

grandparents. The backward movement of the metric units, mapping cosmic rhythms in the maracas,

resonates with the movement of the memories traced: from Tultepec, close to Mexico City, far into the

past.

Revelations from the Loop of Practice and Theory

In conclusion, I will explain the three major points emerging from the creative process behind Temazcal 2,

which can be observed in the previous section. I will also explain how these three points connect to the

three figures of the Indigenous, the settler, and the mestizo; and I will articulate these three points via the

triple movement and the already described form of double consciousness. These points are: (a) the

irreversible erosion of the temazcal; (b) the consequences of a critique of Temazcal 1 in times of

 68

progressive neoliberalism; and (c) the necessity for new forms of subjectivity such as the one emerging

from Temazcal 2.

Firstly, the temazcal technology cannot be rebuilt – neither metaphorically nor literally – by us without

imposing relationships of extraction onto others, since the knowledge required for such an operation has

been lost from Rolando’s family core. Scene 3, as shown in the video documentation and online

repository, is dedicated to the unsuccessful search for the old temazcal. The location where the temazcal

used to be is now an extension of the town’s church. Similarly, the family members (all except Rolando’s

mother) have lost track of its presence in their memories. Scene 4 illustrates our unsuccessful attempt to

rebuild the temazcal. The repository contains several videos that serve as testimony to this eƯort. To

admit the impossibility of rebuilding the temazcal is to acknowledge the necessity of self-determination

for Indigenous Peoples and the need to move away from the tropes of appropriation common in mestizaje

narratives.

Secondly, considering the global advance towards financialisation that has occurred between Temazcal

1 (1987) and Temazcal 2 (2022), the hegemonic arrangement that sustained Álvarez’s work has been

questioned. This idea is the afterthought emerging from Scenes 6 through 10, where the thickest critique

of the electroacoustic music piece is presented sonically and visually. Here it is key to emphasise the

role of the referenced conversation on decolonialism where Ortiz defends the right of artists to

appropriate vernacular culture inherent to contemporary Western art creation.

Rolando and I radicalise this gesture in Temazcal 2 by relentlessly appropriating tropes, ideas, and

images from Temazcal 1. As we do so, and considering how this artwork is going to be received and

disseminated, we understand that Ortiz’s misreading of decolonial frameworks can give us a clue to the

 69

real dimension of the problem that goes beyond any nation-state and its relationship with culture:

namely, the market of Europeans and Anglo-Americans hungry for exotic sounds without engaging in

extractive practices by recurring to exchange with people claiming ownership of both cultures:

Indigenous and white.

Here it is important to understand the critique of Temazcal 1 through the triple movement described

above. On one hand, understanding the incompleteness of a relentless critique of the Mexican

institutional environment is key to seeing how marketisation plays a role in this conversation. On the

other hand, the negative portrayal of the Mexican environment can serve as a positive conception of the

Canadian context in the minds of Canadian (and global north) audiences. Instead, Temazcal 2 requires

articulating the two distinct forms of colonialism discussed here and understanding how they interact

within a globally interconnected context. The risk identified in the networked art context – and this

artwork – is to, willingly or not, impose the Canadian-centric (or perhaps Anglo-American-centric) settler-

colonial paradigm as the sole explanation for ongoing colonial projects in Mexico and to fill a perceived

conceptual void. Settler-colonialism, as a critique of mestizaje, acts as a form of oppressive social

protection.

Third, by acknowledging the first and second points, to avoid Temazcal 2 from falling back into forms of

subjectivity and narratives that unwillingly renew the power of an oppressive nation-state while also

striving to suppress any forms of capture by forces I identify here as progressive neoliberalism, we

delineate a figure that is neither Indigenous, nor settler, nor a product of mestizaje. This subjectivity

represents a consciousness that articulates the situated knowledge of Rolando’s family alongside

techniques of appropriation that transform a global project towards whiteness – like mestizaje – into a

 70

possibility of interconnected self-determination and a way of being in this world that builds social

relations beyond capitalism and nationalism.

This point is illustrated by, on the one hand, the productive destruction of Temazcal 1 at the hands of

Temazcal 2, along with the former’s relation to exploitation and dispossession critiqued in the last scenes

of the latter. On the other hand, the overarching theme of Rolando’s grandmother’s relationship with

plants and healing that often accompanies the erosion of the temazcal. It is crucial to understand this

knowledge of plants as a dynamic and living memory that changes with the movements of Rolando’s

family. It is important to note that the relationship with the land portrayed here cannot be described

within the tension between the settler and Indigenous.

As I have insisted throughout this chapter, I have not found the specific language to define the form of

subjectivity emerging from Temazcal 2. However, I have attempted to describe some of its attributes and

aƯordances in the more theoretical section. I conclude with the encounter of practice and theory, hoping

to emphasise that, methodologically, this is where this artwork is strongest.

 71

Chapter 2 - TimekNot: displacing drones and beats with radical

polyphony

TimekNot is a computer language that allows live coders to program heterogeneous, music-oriented

temporal relationships on-the-fly and instantiate them as triggered audio samples. TimekNot’s core is a

robust systematisation of time relations between relatively autonomous musical layers or, perhaps more

telling, timelines. Hence, it can be understood as a polytemporal language, for the etymology-

scrupulous: multi-temporal or poly-chronical, why not. For the tradition-oriented and vanguardist-at-

heart: the music this language thinks about is more or less a multi-tempo (or poly-tempo) music. Or, why

not again, tempi music. In this chapter, I will attempt to explain software as a cultural project and artwork

that seeks to intervene in the algorithmic music landscape and live coding ecology. I will try to explain the

alliances traced by the grammar utilised in the language and the experiences and observations that have

led to its current form. I will also describe its functionalities and technical aƯordances, but I won’t go into

a lot of details – a Read-Me document will be provided as part of this artefact that will explain thoroughly

its use.

Context

TimekNot emerges from multiple experiences and desires. Walking downtown in any big city will appear

as a chaos of sounds from various places whose overall texture is identifiable as a soundscape. However,

in Mexico City, you can walk through a tianguis (a market that is installed precariously and ephemerally in

 72

the street) and hear 4 or 5 diƯerent sound systems blasting music at full volume at any given moment,

appearing to compete for the airwaves. This is not a phenomenon emerging from electronic devices; one

can walk to Mexico City’s Garibaldi Square and listen to five simultaneous traditional music bands

playing diƯerent pieces with diƯerent instruments and with diƯerent noisy audiences around you.

DiƯerently from tianguis’s sound systems, the music bands cannot avoid listening to each other and,

from time to time, ‘converge’ into each other's rhythmic flow or at least, the listener will perceive in a

pronounced way that this happens. Thus, polytemporality is an abstraction that originates in material and

lived experience. What is interesting about the kind of polytemporality I am invoking is that diƯerence is

not an operation that needs to be solved toward identity. Neither does this polytemporality dismiss the

eƯects of the multiple timelines on each other. Time does not need to be collapsed into universality, but

polytemporality maintains the tension of diƯerence as a valuable cultural experience.

TimekNot finds a direct precedent in my master's major research project: TimeNot, a language to live

code tempo canons a la Nancarrow (Franco Briones & Villaseñor, 2020; Franco Briones, 2019). Tempo

canons are a series of identical melodic structures transposed in tempo and pitch played together and

share a point of convergence. The point of convergence is the instant of the music work where the

transposed melodic structures and the chronological time coincide. The tempo canon was a way for

Nancarrow to allow listeners (himself mostly) to diƯerentiate the aural eƯects of the proposed tempo

transposition. The diƯerence between the transposed melodies, when they are not at the convergence

point, is called echoic distance. This concept, echoic distance, can be defined as the chronological

interval between the same structural point of two diƯerent transpositions. As can be deduced, at the

convergence point, the echoic distance is zero. From my experience with TimeNot (notice the lack of -k), I

 73

have been able to generalise the concept of polytemporality by introducing concepts that emerge from

the specific conditions of live coding practice in particular, digital music-making in general and my

artistic research experience. Perhaps TimekNot is proposing to focus on an outsider’s temporality.

TimeNot was, in many ways, a “fancy delay” that allowed players to explore a very specific eƯect felt on

top of either a melodic idea or a sequence of samples (where the index of the sample was transposed

rather than its pitch). It relied, more or less strictly, on the concepts of convergence point, echoic

distance and transposition as conceptualised by Kyle Gann and Conlon Nancarrow (1995). TimeNot

could create tempo canons with a determined duration, and the transpositions were always smaller than

the intended total duration, allowing these programs to loop identically. While TimeNot explored nested

musical ideas and repetition, TimekNot focuses on diƯerence and openness.

Defining TimekNot

TimekNot has taken a more radical approach to polytemporality. As will be evident in the notation,

TimekNot separates completely the temporal aspects of its programs from the aural ones, and by doing

so, it allows users to create purely temporal structures and relationships. Like any clock or metronome,

these temporal structures discretise (or grammatise) the flow of time. This time, grammar can be flat and

regular, like the seconds of a stopwatch, or it can be structured and irregular, like musical form or

cinematic temporal experience. These time structures serve as a base for building musical material and

act as expressive clocks that function as reference points to create other clocks serving that same

function and so forth.

 74

Unlike TimeNot, TimekNot does not specialise in tempo canons. So, two musical structures that

converge do not have to be transposed, identical repetitions. The two converging ideas can be

heterogeneous and radically diƯerent from each other. This implies that spontaneous and non-

synchronic relationships are possible; I am not interested in mathematically complex temporal relations,

loose synchronicity that favours ethereal music textures, or chance-based or stochastic randomness; I

want to prioritise intentional and expressive temporal relations chosen by the human player for, perhaps,

no explicit reason. If the converging music structures are not identical, the convergence’s morphology is

two-fold: the point of the structure where the convergence happens and the point of the other structure

where the current one will converge. Thus, convergence points in TimekNot signal the possibility of a

convergence between diƯerent musical ideas rather than the certainty of echoic repetition. This means

that the concept of echoic distance is also redefined; rather than emerging from the tempo canon, as

was the case in TimeNot, it becomes a decision made by the player. It can intentionally involve a

transposition of tempo and pitch/timbre; it can be a transposition of pitch/timbre with a diƯerent

temporal structure altogether or something completely diƯerent. An instance of this last case may take

many forms; one could be a program where the moment a temporal structure converges with another

showcases salient parameter values (like pitch, gain, etc.) that indicate that the convergence point,

acting as an attractor, is structurally meaningful. For example, imagine a melodic figure in which pitch

intervals only ascend towards the convergence point and only descend afterward. Now, imagine that this

structure converges with another melodic figure that moves in the opposite direction: it only descends

towards the convergence point and ascends after it.

 75

TimekNot relies not only on transposition of ideas, but it also tends towards non-identical repetition by

considering a convergence point as external to a loop. If two temporal structures are looped, each new

iteration of the structure is always diƯerent because it relates to other structures uniquely. The

convergence points act as anchors from which it is possible to compare diƯerent structures. Non-looped

musical ideas have an inferred timeline useful to allow them to converge with broader structures. The

ability to infer infinite timelines from a finite structure – as well as the understanding of these rhythmic

structures as ‘clocks’ for other rhythmic structures – has been one of the major arguments for me to

consider additive rhythm rather than divisive, as I will explain in subsequent sections.

I have referred to temporal structure in a general way; however, these structures are in themselves

divided into two: polytemporal and rhythmic aspects of the temporal structure. Previously, I have referred

to the temporal structures as expressive clocks; the polytemporal and rhythmic aspects here mentioned

respond to this description: polytemporality creates (multiple) clocks while the rhythmic aspects make

them expressive. The polytemporal aspects help players to manage the alignment of the timeline with

other temporal structures and generate the clocks to synchronise sounds and the rhythmic aspects will

produce the expressive formation of onsets/oƯsets and blocks of information that respond to the

rationale of additive rhythm.

Time: Polyrhythmic? Polymetric? Polytemporal?

To better understand the temporal structures described here and the possibilities of TimekNot as a

polyphonic music technology, we need to contrast another set of concepts: polyrhythm, polymetre, and

polytempo. I define polyrhythm as the juxtaposition of diƯerent repetition speeds of musical events by

subdivision and polymetre as the juxtaposition of diƯerent repetition speeds of musical events by

 76

addition. Unlike polyrhythm or polymetre, polytempo relies on convergence points that do not depend on

the (shared or diƯerent) structural characteristics of the various musical ideas at hand. Thus,

polytemporal music, as I frame it, bypasses normative ideas of ‘harmonic rhythm,’ which are prevalent in

popular modernism, postmodern eclecticism, and vanguardist/experimental modernism, opening a field

of possibility for polyphony. In other words, polytemporality does not necessarily create complex

rhythmic relationships and structures; instead, it captures certain attributes of such complex relations.

Polytemporality, as I have expressed more generally regarding live coding music, focuses on breaking and

questioning patterns rather than harnessing them. Ultimately, polyrhythm, polymetre, and polytempo are

diƯerent ways of conceptualising the duration between events or the speed at which events occur. An

example of a polyrhythm could be a basic triplet against quarter notes in Western academic music,

juxtaposing four notes against three. An example of polymetric rhythm is found in Karnatic music. Tisra in

Chatusra is a technique that juxtaposes a metre of three within a metre of four, producing a sound very

similar to the polyrhythm previously mentioned, but it is conceptualised through the addition of rhythmic

units rather than subdivision. Thus, as a purely listening experience, there would be no diƯerence at all

between a polymetric and a polyrhythmic musical idea; what changes is the cultural context, which can

be reflected in its notation or mnemonic mechanisms for the transmission of knowledge relative to its

own cultural context, and one might even say in its political economy. It is possible to express this

polyrhythm and polymetre in a polytemporal way. For example, the musical idea mentioned above could

be notated with one voice at a tempo of 240 bpm for the quarter figure, played against another voice at

180 bpm for the quarter. Let me reiterate: the perceived sonic outcome from these three diƯerent

techniques can be quite similar; nevertheless, notating a sonic phenomenon with three diƯerent

 77

organisational schemes in mind is a relevant part of live coding, where notation – visible to the audience

as a performance – plays a foundational role.

I draw from concepts of African polyphony (Arom, 1991), Karnatic music (Reina, 2015) and ideas on

metre and groove (Abel, 2014) to diƯerentiate and negotiate notions of additive and divisive rhythms as

well as ideas of polyrhythm and poly-metre, allowing me to form a coherent and cohesive understanding

of rhythm, musical time and musical form. I am drawing extensively from Pätzold’s (2014) and Toop’s

(Toop & Ferneyhough, 1995, p. 285) analysis of temporal musical aspects found in Brian Ferneyhough’s

music, where various notions of metric and rhythmic complexity are explored thoroughly. Perhaps more

importantly, I am carefully considering the insights of Henry Cowell on his seminal work New Musical

Resources (Nicholls, 1996) and Gann’s analysis of the oeuvre of Conlon Nancarrow as well as analysis on

the work of Charles Ives as a basis for polytempic music (Thoegersen, 2022). I am drawing from Spiegel’s

pattern transformations (1981) to extend the basic organisation schemes I have implemented for this

language. I am also drawing extensively from the musical and intellectual works of Germán Romero, Iván

Naranjo (Naranjo, 2017) and Samuel Cedillo, who have a particular way of understanding polytemporality

in a structural, post-structural and post-phenomenological framework, respectively. Beyond musical

style and form, Lauren Redhead has allowed me to think of the web of rhythmic, metric and temporal

concepts as a language as they resonate with her concepts of heterochronicity and non-linear time that

rely on ‘the presence of some organising principles, some macrostructure and syntax that permits

categorical understanding of a work’s signification and its semantics (Redhead, 2022, p. 154)”. In other

words, Redhead points to notational principles that do not sit outside time but are iterations of events in-

time, which intertwine aesthesis and poiesis. In Redhead approach, this takes the form of sampling

 78

performances of the piece that later become part of the electroacoustic components; in my case, I

register all this temporal and rhythmic knowledge as a repository of code where these ideas are

instantiated, and later modified or reinforced, as notation, syntax and grammar that can be invoked to

create music rather than determine a musical pathway.

Coding Paradigms

I have been inspired extensively by concepts of Functional Reactive Programming (Krouse, 2018) to

implement certain aspects of TimekNot. While with diƯerent connotations, I draw extensively from the

concepts of behaviour, event and dynamic. At the heart of TimekNot there is the notion of a continuous

flow of time and the cultural (and scientific) understanding that, to change our cognition of time we need

to discretise it, taking samples of it in ways that reflect our intentions. Nevertheless, these concepts,

associated with computer science, convey only partially the situation in which TimekNot operates.

Algorithms and programming are central to our current historic moment, a moment when the general

conditions of production rely on software that needs to be coded by humans. Programming is at the

centre of capitalist accumulation processes. Nevertheless, with AI framework enforcement and the

automation of software creation via generative Artificial Intelligence, coding is becoming a (sort of

obsolete, post-industrial) cultural activity resonating broadly with the ideas presented by Noble as post-

modern programming (2004). Culture-oriented coding, like post-modern programing, concentrates on

the vocality of code, its double articulation and its ephemerality (Cox & McLean, 2012). Culture-oriented

coding relies on meaningful surfaces and stands in a contradictory position with culture emerging from

the dev operations of programming jobs. In Chapter 1, I elaborated on the double consciousness

emerging from the processes that Temazcal 2 reveals: the temazcal technology, on the one hand,

 79

captured by Temazcal 1 becomes bound to perform a vulgar emptying-out of what might be considered

“pre-modern” subjectivity; Temazcal 2 captures Temazcal 1 and empties it out from its whitening

function, at the same time it proposes a subjectivity capable of escaping capitalist rationality. A similar

double consciousness emerges from culture-oriented coding as well: coding activates a culture distant

from cognitive white-collar work capable of escaping capitalist rationality.

Live Coding

Live coding, as a practice, oƯers a rich set of examples of how to conceptualise musical time that have

certainly informed the process of TimekNot. The time-dependent variables in FoxDot (Kirkbride, 2016)

allow me to think of program block iteration as meaningful for parametric changes in the running

program; the notion of recursive time in Ex-tempore (Sorensen, 2018) makes use of asynchronous time

scheduling in a way that TimekNot will take advantage in future implementations; cyclical time in

TidalCycles (McLean & Wiggins, 2010) and SuperCollider’s pattern library (Harkins, 2009) allowed me to

understand pattern-oriented composition as an aƯordance of computation; and the Just-In-Time

SuperCollider library (Rohrhuber et al., 2005) as well as Punctual’s development (Queralt Molina, 2023)

of such idea have allowed me to think of programming gestures as expressive within the context of

music-making. Many notational ideas have been thought through explorations on these languages and

idioms. There are theoretical discussions that are extremely relevant for this software like Rohrhuber’s

concepts of passage and encounter as metaphors for time conceptions derived from algorithmic music

where the passage of time (from past to future) is contrasted with the encounter of events in a time that

resembles a “location without place” (Rohrhuber, 2018, p. 21). Similarly, live coding is a thinking-act that

relies on Kairotic instants – which are both, a “cut” and a “will to invent” (Cocker, 2018). Such cuts are an

 80

expression, a performance even, of human agency vis-a-vis modern computation that ultimately signals

that time in live coding is a multiplicity of possibilities that are kept from happening simultaneously by an

aesthetisised thinking-act, a time that requires agency from the subject engaged with it (Franco Briones,

2022).

One diƯicult binary that live coding navigates is the oral/written transmission and register of knowledge.

Taking this into consideration, instead of a literature review on the state of the art of live coding, let me

oƯer reflections on my participation in conversations around live coding in an Anglo-American and

transnational context.

The International Conference on Live Coding (ICLC) has been taking place since 2015, providing a

relevant intellectual arena to discuss programming, or coding, as a cultural act. It is an unusual

academic space since it usually stands between software demonstrations, theoretical (either scientific

or artistic) research, and performance art. Usually, an ICLC day would start with a series of panel

discussions, followed by workshops and in the evenings, there would be concerts and performances.

Novel software would pace the whole conference, followed by the performances. The theoretical

expressions that would be salient are those that integrate computational science with artistic practice.

Nevertheless, this ICLC seems to have moved away from such a scheme.

In the 2023 ICLC plenty of systems have emerged that recombine numerous ideas present in earlier

systems. I believe that TimekNot can be understood as part of these systems: not as the edge of

technical power but as a re-interpretation of a well-established culture. Aligned with this set of systems,

several questions arose about who has access to live coding and who participates in it. Saliently, the

notion of dissolving the audience vis-a-vis an active community that collapses the exchange, production

 81

and consumption of art was put forward. Perhaps we are witnessing a partial fulfillment of the old

promise of live coding: a language per person to express their individual artistic idiosyncrasies. Live

coding is at a point where computational systems, artistic practices and communal experiences are

being confused, problematised, redubbed and thought over. The keynotes at this conference have an

underlying theme: liveness/life/aliveness. First, the reinvigoration of notation without computational side-

eƯects as proposed by Sichio; second, Baalman’s retrospective analysis of what live coding – “as an act

of rebellion against the fixed idea software as immutable, impenetrable, but yet advertised as neutral,

systems that are humanity's future” (2023) – has achieved in the last 20 years. Lastly, the reincarnation of

Click Nilson, a personae invented by Nick Collins, was first intended to diƯerentiate himself from the

American experimentalist composer Nic Collins; but secondly, what I interpret as a critique of the

reverence for the ‘excentric genius and creator’ that the communal ethos of live coding also rebels

against.

In an era that Nancy Fraser (2019) characterises with the Gramscian “old is dying and new cannot be

born,” the openness of live coding’s transnational community to leap into the future, allowing the new to

speak, is notable. It is also notable that, with the new, the morbid symptoms, like genius excentric

composers, are also re-born. The discussion on subjectivity earlier in this section and in Chapter 1

appears as particularly relevant: the live coder risks becoming a hollow, shamanic genius composer, or

they hold a key for a movement of programmers, artists and scholars capable of articulating their double

consciousness.

More recently, Estuary’s 8th birthday is marked by the implementation of the ExoLang pathway. Exolangs

are a mechanism in Estuary that enables people to modularly integrate their own computer languages

 82

into Estuary’s multilingual, collaborative environment aligning with the ethos of the ICLC. If the promise

of live coding is one language per-person, the promise of Estuary is an anti-Babel cyber-space-time

where all languages are understandable amongst themselves in their aural or visual eƯects. TimekNot

emerges from this context and proposes a notation that responds to its challenges and opportunities.

TimekNot’s Core Components and Intervention

TimekNot’s conception of time pays particular attention to some concepts that emerge from live coding

practice. Saliently, the instant in which the player communicates a new program to the computational

system. This instant is called evaluation time. So, additionally to polyrhythm, polymetre and programs

that are indiƯerent to evaluation time, TimekNot can produce polytemporal relationships anchored in

evaluation times to facilitate the computation of musical ideas that mix infinite with finite, and ideas that

have an explicit, intentional starting point and others that do not. Evaluation time, in TimekNot, enables

players to orient their performances towards the convergence points or any other relevant instant in their

intentions. This might seem subtle, but the proximity of intentional convergence points in the immediate

horizon of many of TimekNot’s evaluated expressions aƯects the sonic outcome and oƯers new

aƯordances to the performer engaged in the listening-editing-evaluating loop.

TimekNot’s aural expressions – designed to craft the sound of each individua event – are simple but

flexible; they are based on an indexing system that uniquely identifies an instant in the timelines created

by the temporal expressions. These indexes are assigned to a sound parameter depending on the

intentions of the performer. The values assigned can be manually written by the player, they can be

replicated from another voice, they can be transposed, or they can be changed depending on their

relationship with the convergence points. With the temporal notation and this modest aural notation, a

 83

surprisingly broad variety of sonic structures can be formed very easily. The notational independence

between the temporal and aural aspects of this software may appear counterintuitive and complicated

but it tends towards slow coding and to think of musical structures that have a longer breath. At least that

is what I have experienced in my personal practice.

TimekNot was conceived within the context of networked collaborative, multilingual live coding. It is

deployed both as a standalone and as a language in the software Estuary, meaning that special attributes

to explore collaborative and multilingual live coding are essential to its core functionalities. Even though

musical ideas favoured in TimekNot can be, to a certain extent, autonomous in terms of tempo to

external time-keeping mechanisms (it does not necessarily synchronise to external or ‘master’ tempo

sources), it has a baked-in mechanism to synchronise external tempo using the Tempi library. Using this

ability to synchronise multiple tempi (internal to TimekNot) with external tempi (external, in principle,

coming from Estuary) it will be possible to interplay easily with MiniTidal, Punctual, CinerCer0, Seis8s or

any other language that is part of Estuary’s ecology. Secondly, due to the zone system that makes the

interactions in Estuary’s ensembles, it will be possible to access information from other TimekNot

players or editors. This feature will have a particular status in the language’s development and will be

briefly explained later in this paper.

In this way I have constituted TimekNot as a fragile music-making tool quite capable of making the

performer contradict themselves logically at any given moment, where each coding embodiment

manifests its own time and time relations. TimekNot should be understood as a music technology where

there is no abstraction that functions as a master grid, disciplining and homogenising music making, but

concrete temporal sites all of which can act as a reference to any other player or musical idea.

 84

The Temporal Notation and the Computation of Time

In this section, I will describe the program's structure and the purpose of each component. I will start

with the more general characteristics and will also go into finer detail as I move along. I will first describe

the top layer of the program where the diƯerent temporal expressions are identified with a keyword, then I

will describe the polytemporal aspects of the notation, followed by the rhythmic aspects described in

detail. Later, I will describe the loop mechanisms and comment on external sources of time-keeping

assistance. Finally, I will refer to a particular implementation: acceleration, which adds a substantial

layer of complexity to the temporal aspects of this notation.

A Map

At the top of each expression, there is a way to identify the temporal idea with a string. Since the most

interesting interactions in TimekNot rely on creating temporal relationships between autonomous

musical structures the identifier is very relevant. Similarly, attaching audio side-eƯects is a separate

process from the more or less eccentric temporal notation that makes use of the identifier. The notation

for identifying a musical idea is:

identifier <- or perhaps clearer: myClock <-

The left of the arrow is where the identifier should be written. To the right of the arrow the time structure is

described. At the top of the program is a map (2-3 (balanced) search tree); these structures let me

identify diƯerent, same-type expressions and group them together without losing track of their inner

arrangement. At this layer of the program an interesting problem emerges as an eƯect of a polytemporal

conception of time where a musical idea is dependent on others. This map of temporal expressions

 85

might lead to infinite recursive loops where, for example, structure-3 converges with structure-2, which

converges with structure-1, which converges with structure-3, etc. This points to an interesting

development pathway for this software: a notation in which a form of causal loop can be notated and

instantiated as a musical idea. Casual loops are a common trope in science fiction or speculative

narratives; for example, in the science fiction Netflix show Dark, the main character travels in time to

become his grandfather. To explain this, I need to talk further about convergence points and how they

diƯerentiate one musical idea from another. Let me clarify, the causal loop idea here presented would

not mean that a causal loop can be implemented but can be represented in a similar way that science

fiction would. It is possible to understand these causal loops as speculative exercises to explore time as

a concept. What cultural and musical knowledge could emerge from such structures?

Polytemporal Notation

Polytemporality, as defined above, is a music technique where autonomous musical ideas are

juxtaposed via convergence points (an instant of the temporal structure that converges with another

instant of another temporal structure). Since I am implementing finite structures that are not exactly

ephemeral, I must implement an on-the-fly anchoring mechanism where convergence points are

calculated depending on intentional time points. So, to synchronise temporal structures together I have

developed three main mechanisms: a) evaluation time, b) referring to the external voice (the voice

emerging from Estuary’s tempo), or c) converging with another voice defined by the player. There is an

additional function to save convergence points in the cache of the program that will be explained in detail

later in this chapter.

 86

The diƯerent anchoring mechanisms are diƯerentiated by the number of arguments next to the

identifier’s arrow. One argument binds the voice to evaluation time, where the argument represents an

onset time from evaluation time. The case with two arguments will imply that the voice is bound to the

external voice, and the case with three arguments, where the first one is an identifier, means that the

voice converges with another voice made by the player. The first case is very straightforward: start of the

voice happens at evaluation time or any given seconds after evaluation time.

v0 ← atEval 240cpm

The above snippet implies that the beginning of a voice is exactly at evaluation time; the tempo of this

voice is 120 cycles per minute, and the identifier is v0.

v1 ← 3 secsAfterEval ((1/4) = 100bpm)

The program above is like the previous one, but the voice starts 3 seconds after evaluation time and has a

tempo of 100 bpm the quarter note. Note that these programs will not produce any sound but they enable

a clock.

Let me explain the other two cases in more detail. The second case (external convergence from now on)

re-conceptualises external tempo sources (Estuary’s tempo in this case) as a silent, one-event voice that

elapses forever. The Tempi library provides functions to transform evaluation time into a beat count,

which is understood in TimekNot as a looped voice silently elapsing.

v2 ← (4 afterEval) (10) 270cpm

The program above has a tempo of 270 cpm (cycles per minute). Since it has two arguments in the

convergence section, this implies that its convergence points are calculated with the external voice. The

 87

current voice converges to the external voice four events after the evaluation time. If the external voice is

near event index 2666, that means the convergence point will be at event index 2670. The current voice

(v2) will be converging from event 10, meaning that v2 will be at event 10 while the external voice will be at

event 2670 at the same time.

v3 ← (mod 4 2 roundEval) (5-0.3) (1/4 = 90bpm)

The voice v3 will have a convergence point by adding 2 indexes to the nearest multiple of 4 in the

convergenceTo and converge from the position marked by the structure index 5-0.3.

The third case (convergence from now on) is identical to the second except it creates a convergence

between two voices defined by the player. External convergence converges with an external voice and

(internal) convergence converges with an internal voice.

v4 ← v3 (17) (13) (v2 5:7)

The voice v4 will converge with voice v3. It will converge to index event 17 and converge from index event

13. The tempo will be defined by taking the tempo v2 and getting the 5:7 ratio.

The two arguments in external convergence and the last two of convergence represent very similar data

structures that have a key diƯerence: a point of the converged previously/externally defined structure

(named convergeTo) where the currently defined structure will converge and a point of the presently

defined structure (convergeFrom) that will converge with the previously/externally defined one. This might

sound too complicated (and certainly is), but it is the core of the language, and it is a good idea to

proceed slowly and patiently to understand these two concepts. These two arguments require data

structure and notation to calculate the convergence point according to desired instructions from the

 88

players. The ways to calculate them are percentage, structure and process, all of which describe a

position relative to a block or block series. It is a coordinate system that prioritises the precise position of

a block, the flow of time snapping to meaningful points indiƯerent to blocks or the flow of time based on

a precise description of the temporal structure.

The percentage represents a percentage of the elapsing structure where a convergence point will

happen. It is notated with a number between 0 and 100 (or more) followed by a %. The percentage is a

way of organising the temporal structure without considering the points of the structure where a sample

is triggered. Process is a series of indexes that moves forward from the start of the voice. If it is looped, it

will traverse each new iteration of it. Structure is a way of calculating convergence points according to a

coordinate system that can distinguish between structure iterations, position within the structure and

subdivision levels. An example of the syntax is: 2-0.3. This would mean the player refers to the third

iteration, the first event with a layer of subdivisions, and we are pointing to the fourth event within this

subdivision. Process and Structure snap into the rhythmic structure and might align perfectly with a

triggered sample or a silent event. One of these three data structures will suƯice for a convergeFrom.

However, the convergeTo argument, most of the time, has to be merged with evaluation time since it is

implied that an already running timeline is being referenced and the player needs to have some

information about its current state. There is a data structure that will manage the alignment between a

convergence point and an evaluation time. There are three ways of producing this alignment: origin, snap

and modulo.

Origin will ignore evaluation time and align the new voice with moment 0 of the converged voice. Origin

constructor can be invoked by giving only a percentage, process or structure. For example, (4-2.0) will

 89

create a convergence point of 5 iterations and the second event after the beginning of the voice. Snap will

start a count, either around or near the event, after the evaluation time. The type of the count will be

defined using percentage, process or structure data constructors. So, the expression: (13% afterEval) will

make the convergence point the next beat of the converged voice after evaluation time plus 13%. The last

aligner is called ‘mod’ and has an integer as an argument. Mod will start a count at the closest to the

event (can be either before or after) that is multiple of the integer given. The expression: (mod 4 7

roundEval) will make the convergence point when the converged voice is at a multiple of 4 near

evaluation time.

If the polytemporal aspects here described are not of interest to the player, they can be bypassed by

substituting the convergence points notation with the word diverge. Diverge, in addition to ignoring

evaluation time, will align the moment 0 of all involved voices, which means that the start of the voice

being defined is going to converge with the start of the external voice. A divergent behavior is the best

strategy to align fully with other live coding environments and music-making tools that rely on sample

triggering.

v5 ← diverge 120cpm

Assuming that Estuary’s tempo is 120cpm, v5 will be perfectly synchronised with any other language in

Estuary that relies on its tempo. The only diƯerence here would be that Estuary’s full tempo mark is 120

bpm for the quarter note, while TimekNot’s tempo mark is 120 bpm for the whole cycle (what I call cpm).

This means that every 4th sample triggered in Estuary’s Minitidal will trigger one event in this language.

 90

Conceptually, this is an array of ideas that are diƯicult to communicate and immerse oneself as a

performer. It would be naïve to think that this software is being produced to be consumed en masse or

even to be used in the little niche corners of the live coding ecology as a standard like SonicPi,

TidalCycles or FoxDot. However, and with a certain layer of irony, it responds to the notion, well

established in vanguardist composition circles, of ‘creating your own language’ for music-making and the

notion of ‘art without audience to programs without users’ that marked specific desirable ideas on live

coding scene: each live coder should develop its own set of tools according to their idiosyncrasies, and

the proliferation of such tools marks a healthy scene rather than the dependence and proliferation of

users of another given environment or language. Once that has been clarified, I also believe that

TimekNot, as a non-polytemporal music tool, is very easy to understand and use when starting to play

music. Furthermore, it is a language that eventually will allow openings for players to create their own

functions and idioms as part of their relationship with the language. The language is ready to be used,

contemplated, discussed, destroyed, hacked, pirated, copied, misinterpreted, or even a source of profit

(but hardly).

I believe the major conceptual contribution to the field of live coding that this part of the language oƯers

is the synthesis of evaluation time and polytemporality that allow a kind of synchronisation that merges

embodiment, finitude, encounter and diƯerence, as has been explained so far. Investing attention in the

moment of evaluation without losing track of infinite loops and finite structures relevant to the audio

composition can illuminate new ways of engaging in live coding. Thus, this software moves against the

Bebop principle: ‘You are either on or oƯ the train’. With this program, you can be on and oƯ the train

simultaneously.

 91

The last component of the polytemporal notation – and first of the rhythmic notation perhaps – is the

tempo argument for each voice that can be notated as a cpm (cycles per minute) mark, a cps (cycles per

second) mark, a bpm (beats per minute), a ratio interval with either the external or another voice as

reference, an acceleration pattern or a duration. The first three options are absolute measures that do not

rely on any other voice or information. The cpm and bpm tempo marks require further explanation. BPM

is a common concept in academic music-making; on the top of a score often you would find a tempo

mark that will equalise a rhythmic figure with a bpm number. This is a 19th century convention that

appeared when the metronome started to be used to describe the tempo in a music work instead of an

arbitrary approximate description. Nowadays, the rhythmic figure is often omitted and assumed to be the

quarter note the default. In TimekNot, given its attempts to extend the ways in which the player describes

the tempo, it requires the whole explicit tempo mark. The cpm is useful when a player attempts to use

the rhythmic notation (that will be explained in the next section) as the main expressive vehicle. cpm is

also the only possible tempo mark that can be drawn from an external source.

The tempo marks are notated: 120cpm, 3cps, (1/4) = 120bpm respectively. The ratio option creates

another relationship to any other existing voice, including the external one, where the tempo of the

current voice is defined proportionally with another. For example, to use the famous dissonant tempo

relationship from Nancarrow’s Study 33, the player would have to notate: 41:29. Without an identifier, it

will relate to the metric voice. There might be an identifier before the proportion: v0 41:29. In this case, if

v0 has a tempo of 120, then the current voice tempo will be determined as follows: 120 * (41/29).

The notation for acceleration patterns is provisional and only supports lineal and sinusoidal movements

within the rhythmic block. The notation would look like this: (lin 300cpm 1200cpm) or (~ 1 << 0 range:

 92

300 cpm, 2000 cpm). The last one, describing a sinusoidal pattern, has a first argument being frequency

(where 1 is one cycle per rhythmic block), phase and range.

The duration notation will allow performers to think about the overall duration of the blocks rather than

the frequency of their components. This is useful to fit extremely diƯerent programs into the same

temporal segment.

The tempo argument ambiguously stands between the construction of the rhythmic structure and the

polytemporal structure of the musical idea. It is the argument that gives character to each voice and

determines the duration and density of the rhythmic structure. Since it can be determined using

proportions taken from other voices, I have decided to group it as part of the polytemporal sub-notation

of the language.

Rhythmic Notation

Once the tempo is established, as well as the starting point of each voice and its convergence point, the

player must describe a rhythmic structure. The conceptualisation of rhythm I am applying here consists

of a binary of opposed behaviours; in the first functional version of TimekNot, these behaviours are

whether to trigger a sound or not and the notation appears as follows:

xooxooxoxoxo

This binary of triggered sounds and rests is organised as a sequence of isometric durations. This means

that the time interval between one and another onset/oƯset is always the same, except for the

acceleration tempo mark or a particular instance that will be analysed later in this section. This isometric

distance is established in the notation's tempo mark. So, if the tempo is 60 cpm, the distance between

 93

any onset/oƯset will be 1 second. If the tempo is 120 cpm, the distance will be 0.5 seconds between

each onset/oƯset. The notation I have chosen to express this idea is ‘x’ for triggered sounds and ‘o’ for

untriggered ones. I have chosen this notation (XO from now on) for multiple reasons. Firstly, it is

reminiscent of drum tablature notation often used in popular music and protest marching bands, which

invokes a very intuitive understanding of rhythm. Secondly, computer keyboards have the ‘x’ and ‘o’ keys

in a very natural position for the hands, reminiscent of a ‘drumming position’. As a performer, this allows

me to ‘feel’ the notated rhythms with my body before listening to their computarised instantiation. There

are four other variations of the rhythmic notation I would like to elaborate on in this section. The four

variations here mentioned are, in a way, shorthand notations for something that can be expressed with

standard XO notation.

Repeat Notation

The repeat notation allows players to repeat a pattern any number of times without doing it manually. This

is particularly useful in cases where a player would need to re-state a rhythmic pattern a limited number

of times rather than the choice to play it once or looped ad infinitum, as would be the more standard

option explored later in this section. This notation looks like this:

!oxoxoxxox#3

The pattern above could be re-written as:

oxoxoxxox oxoxoxxox oxoxoxxox

 94

Bjorklund Notation

The Bjorklund notation applies an Euclidean algorithm to one or two rhythmic patterns. This algorithm

will try to spread a series of impulses as evenly as possible in a finite Euclidean space. For example,

distributing 3 impulses in an eight-point space would look like this using the simplest rhythmic notation

here developed:

xooxooxo

This rhythm could be interpreted as a Cuban tresillo, but depending on the cultural framework of the

listener, it can also be interpreted in many ways. In Sub-Saharan music, this is known diƯerently. The

Bjorklund algorithm may appear as a generator of popular rhythms, as Toussaint (2005)claims.

Nevertheless, two factors need to be considered here. Firstly, a popular music rhythmic pattern is a form

of situated knowledge integrated to multiple aspects of music creation that cannot be reduced to an

onset/oƯset pattern. For example, the tresillo figure can be heard in the left hand of the piano parts in

Cuban Habaneras. But if we change the context to Son Cubano, we will find the tresillo as part of the

clave pattern, which is often bound to a timbre (or series of timbres). So, the rhythmic figure of the tresillo

is related to certain timbres depending on cultural and social contexts as well as broader ‘rhythmic

phrases’ and functions. Secondly, the pattern (3,8) - sometimes identified equivalently as tresillo – does

not hold the same status as (7,13). This is because (3,8) is ubiquitous on a planetary scale as a popular

rhythm, and (7,13) is a rather eccentric pattern with no clear cultural significance as a popular rhythm.

Thus, Bjorklund algorithms do not generate rhythmic patterns; they generate arrays of Boolean values

that sometimes resemble or are useful to generate popular or unpopular rhythms.

 95

The additive rhythm prioritised in TimekNot proposes reorientating the Bjorklund algorithms as music-

generating tools. This variation of the notion of Bjorklund algorithms stems from experiments I have made

using these algorithms as an analytic tool for popular music, specifically the music of Damaso Pérez

Prado. This Cuban musician developed key ideas around mambo music and became a fundamental part

of Mexico City's popular music scene in the 40s, 50s and 60s. The principle I am basing this slight change

of orientation relies on a continuous variation of thematic material common in many forms of folk and

popular music that is present in the instrumental solos of Pérez Prado’s music.

TimekNot allows four diƯerent notations for Bjorklund algorithms:

Simple. This notation has three arguments. The impulse value (k), the number of intervals value (n) and a

rotation value (r). It looks like this: (3,8,0), which will generate in simple XO notation: xoo xoo xo. It is

possible to omit the rotation value, and 0 will be passed by default. From now on, I will omit the rotation

value.

K. This notation has the same values as the simple one, but it has an added pattern that will be played in

the (k). It looks like this: (xx,3,8) and will generate in simple XO notation this: xxoooo xxoooo xxoo. Notice

that the spaces without impulses will have the same number of oƯsets as the pattern given as K.

Inverse K. This notation will allow players to assign a pattern to the spaces not occupied by (k). The

notation looks like this: ‘(xx,3,8) and as XO would look like this: ooxxxx ooxxxx ooxx.

Full. This notation requires two patterns to be passed to the algorithm. The notation would look like this:

(xxo,xo,3,8). As XO would look like this: xxoxoxo xxoxoxo xxoxo. Something to notice in this notation is

 96

that, because of the additive rhythmic paradigm, the two patterns have diƯerent durations (three units

and two units).

As it should be evident about the rhythmic notation so far, the responsibility to manage the duration and

alignment of two rhythmic ideas is on the side of the player. Thus, assuming two rhythmic structures have

the same tempo, a sense of polymetric relationships is favoured. In other words, each onset or oƯset will

tend to be the same duration. So, each group of onsets/oƯsets will not be adjusted to the same metric

unit creating, implicitly, longer, more long-term-oriented, cycles. However, the duration of each rhythmic

structure will always be determined by the polytemporal aspects of the temporal notation; it is important

to keep this in mind.

Subdivision Notation

The notable exception regarding the duration of each onset/oƯset is the subdivision notation that allows

players to create events embedded in a full-duration unit event. This notation is recursive, so it is capable

of providing any kind of rhythmic feeling required by the player. This is the aspect of the rhythmic notation

that opens the possibility of having a divisive rhythm, where the unit can be subdivided into any number

of events. The subdivisions can be subdivided in themselves, making it possible to create specific

rhythmic relations. The notation appears like this: [xxxx]

So, everything between square brackets will have a total duration of one tempo unit. So, in this case,

each X will have a duration of 0.25 tempo units. It is possible to do something more elaborated:

[xx[ox][xx[xx]]]

 97

This will divide one tempo unit into four units with a duration of 0.25. Subsequently the third of this will be

divided into two. So, the ox of the third beat will have a duration of 0.125 tempo units. The last beat is

divided into three beats, each with a duration of 0.083, with the last beat divided into two events of

0.0416.

The philosophical understanding of rhythm I am trying to maintain in this software tries to minimise the

equivalency of duration with a rhythm that often persists in music theory since duration should be mostly

changed with the polytemporal notation explained previously. Additionally, the rhythmic pattern

produced via this notation is not directly bound to sound but to a ‘clock’ that does not necessarily

interact with sound directly.

Numeric Notation

The numeric notation relies on additive rhythm but is not exactly based on the binary XO logic. It allows

players to declare a duration between one or another onset using integers. For example: 3,3,2

Would produce something equivalent to this: xooxooxo

This notation has a rotation value that can be invoked as follows: 3,3,2 <<5

That in standard XO looks like this: oxoxooxo

In future instances of TimekNot, the XO notation will not mean precisely onset/oƯset. The player can

assign something to either X or O. This means that both X and O could be onsets of two diƯerent sounds

or audio parameters. What would this mean for the numeric notation? I believe that this notation will only

be useful to generate onset values at the signaled moments of the rhythmic sequence. The ‘negative

 98

space’ between the signaled moments will have no meaning. Hence, it does not precisely fit the logic of

the XO rhythmic notation developed so far. The numbers that this notation takes as input can only be

integers; so, in my mind, the reasoning behind it does not fully fit to that of (free) durations neither, which

would open a far too removed conception of rhythm that I do not want to explore with TimekNot. The

rhythmic notation responds to an interesting challenge: a form of reconfiguring the texture of time (the

discretisation of that which is continuous) oriented towards sound creation but not entirely surrendered

to it.

Loop / Unloop notation

The start of the rhythmic notation is separated from the polytemporal notation by a pipeline: |. The end of

the rhythmic notation – that stands as the end of a temporal expression – is marked by either a || or :|

symbol, which is reminiscent of a musical double bar or repetition bar notation. These symbols allow a

program to be unlooped or looped accordingly. This loop/unloop possibility has a philosophical

implication that requires some explanation. Any temporal expression written by a player in TimekNot

becomes (at least conceptually) an infinite timeline; however, the possibility of instantiating it as a

computational side eƯect (in particular, as audio) is finite. If a timeline is not looped it will play only one

block of sound: the one at the head. What is relevant from this operation is to understand that the head is

not exactly the ‘first’ block of events. It is the one that establishes the proper alignment for this timeline.

Before the head, there is (at least conceptually) a series of event blocks that can be used as a reference

clock for other timelines to align. The same with event blocks after the head, they exist conceptually to

allow other timelines to align.

 99

Unix Time / Embodied Time as External References and beyond

I have developed certain ideas about time-keeping in TimekNot that favour expressions as references to

other expressions. In other words, I am mostly interested in the ability of the time expressions as other

expressions reference clocks. However, there is always the need to have a reference that is not contained

within the program; an external time reference. In the mesh of clocks I favour in TimekNot, ultimately

there must be a reference to a frequency of something beyond the language’s own markers.

For TimekNot, I have developed two diƯerent systems to provide such references. The first one is

evaluation time, which uses the player’s interaction with the software to determine a program’s

alignment. In the case of the language instance available in Estuary, the second one acquires its tempo

from Estuary’s tempo data structure. SuƯice it to point out that this tempo is ultimately used as a

reference to midnight of January 1st, 1970. This is a convention for Unix Time, which computers rely on to

keep track of time in, among other things, networked computation. The former external time reference is

the body and the player’s interactions with the computer; the latter is a widely spread standard that

allows synchronisation amongst players in Estuary and/or potentially other networked music/art

systems.

Briefly on Acceleration

Acceleration, in musical idiom, is the term I use for accelerandi and rallentandi. However, (negative or

positive) acceleration does not evoke Western/academic uses of gradual changes in speed. It is an

implementation of tempo experiments prominent in Nancarrow’s oeuvre. DiƯerently from the

acceleration tempo mark already implemented – that relies on the finitude of the block to homogenise

 100

duration – Acceleration applied to looped (infinite) voices can very quickly become unmanageable in

computational terms, reaching a speed tending to infinity sooner than later. This concept presents

challenges to map it within a stateless computational paradigm – as the one utilised to program

TimekNot – since every iteration of a block would have a diƯerent duration relying on the state of the

previous block. The challenges are not only regarding how to calculate such complexity but also how to

notate it in a consistent manner.

I have implemented a form of acceleration as an in-block feature – where the duration between events in

a rhythmic expression accelerates). This use of acceleration implies that the convergence point is not the

organising factor for acceleration but the rhythmic structure. This kind of acceleration, when looped, falls

into cyclic thinking. This kind of unlooped acceleration has many limits that will be tackled in later

iterations of TimekNot. How acceleration is currently implemented in TimekNot is notated as follows:

acc0 <- (10 afterEval) (10) (~ 1 << 0 range 400cpm, 100cpm) | xxxxxxxxxx :|

It is diƯicult to predict how these functions could aƯect the overall texture of the software and how this

kind of ‘complexity’ would enable avenues towards a techno-scientific and/or vanguardist orientation of

the program. So, I am advancing slowly.

The Aural Notation

The other main component of this software is the aural notation that I will describe in detail. The aural

notation is meant to sculpt the actual sound of the program. If the temporal notation is meant to create

the composition of the events, the aural notation is meant to produce the parameters to shape each

individual sound event. Thus, whether a sound is low or high pitch, if they have low pass filters, what

 101

sample to use, what panning, what gain, or many other characteristics allowed by TimekNot. I will follow

closely the syntax enabled by the program to structure the section. First, I will explain how to attach a

temporal expression to a set of sound attributes. I will explain the notions of Voice, Event, Onset and

Index thoroughly to clarify this process. I will explain the selection of sound parameters I have enabled in

TimekNot and the span grammar.

The aural notation has a very simple rationale. It starts with an identifier, and using the period as an

operator, it will add a parameter as follows:

v1.sound

The identifier is not an arbitrary name; it should refer to a temporal expression that was previously

written. For example, the previous snippet would have to be preceded by something like this:

v1 <- diverge | xx[xx] :|

Of course, the v1.sound example is incomplete, a computable, manually written, aural expression

requires: (a) an identifier, (b) a parameter, (c) a span, (d) a list of values. This would look as follows:

v1.sound = _-_ “bass marimba harp cello”;

The list of sounds is a particular case that requires double quotation marks; all other lists do not need

them. After the equal sign, there is a very mysterious symbol: _-_. This symbol will communicate to the

software what kind of distribution it should apply to the sounds that need to be assigned to events

derived from the rhythmic structure; from now on, this will be referred to as the span. The end of the

expression requires a semicolon in all cases. Before I explain parameters, span and the list, I need to

explain how the temporal expression generates useful information to process the aural expression.

 102

Voices, Event, Onsets and Indexes

I compound aural with temporal information via a data structure called voice. A voice is a term taken from

vocal music practice, where each diƯerent monophonic line is a diƯerent person (hence, a diƯerent

voice). In this software, a voice is not a silent manifestation of an ongoing clock: it is a block or sequence

of blocks (a layer) of monophonic sounds (or more precisely, sound samples) organised in time by a

temporal expression and arranged in audio parameters by an aural expression. Thus, a voice is the

intersection of a temporal and aural expression where the temporal arrangement provides a grid to

arrange the aural aspects.

To arrange the aural aspects, I first need to process in a particular way the temporal expression; for this I

have created the Event structure, which represents an onset and an index. The onset holds the

timestamp with the instant (in absolute terms) of when is the current event supposed to be triggered as

well as a Boolean that represents if this is an X or an O. The onset structure will allow me in future

versions of TimekNot to do interesting arrangements like assigning one set of sound parameters to Xs or

Os or create a flow of sounds to the overall structure without distinguishing singular voices. For now, I will

focus on the index structure.

The index gives a position of an event in the inner structure of the voice or in the overall ‘flow’ of events.

So, it is possible to describe the event’s position in two ways: By each individual event or by a specific

position in the rhythmic structure. An example perhaps could clarify this:

v0 <- diverge | xxx[xx] :|

 103

This will generate a series of indexes for each event that is represented as a process and as a structure as

follows, respectively:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, etc.

0-0, 0-1, 0-2, 0-3.0, 0-3.1, 1-0, 1-1, 1-2, 1-3.0, 1-3.1, etc.

 Above, you can see the representation of two blocks of sound in a looped voice. If these events were not

looped, the ‘structured index’ would stop before the first number changes to 1, and the ‘process index’

will stop at 4. Since it is looped, these counts will go on forever. This notation should look familiar as it

was explained in the convergeTo and convergeFrom explanations of the polytemporal aspects of the

temporal notation.

I have called the first set of indexes ‘process’ because I emphasise continuity regardless of the rhythmic

structure. Thus, these indexes describe an ongoing process. The other indexes are called ‘structured’

because they describe with precision the rhythmic structure passed from the temporal expression

additionally to the count of iterations of a block. The structured index starts with a number representing

the number of iterations of a block elapsed; after the slash, it will describe the events in the first layer of

subdivisions (the top of the rhythmic structure), after a period, the second layer, etc. This indexing system

is fundamental to assigning a sound to a timed event.

Potentially, this will allow players to have one-occurrence aural events or recurring in cycles proposed

intentionally and not assigned automatically by the temporal expression. In the current version of

TimekNot, this indexing system is mostly underutilised.

 104

Sound Parameters

The sound parameters are derived from Dirt, software to play audio samples with some level of accuracy,

created by Alex McLean, direct precedent to SuperDirt created by Julian Rohrhuber and others, and

WebDirt created by Jamie Beverley and David Ogborn. SuperDirt and WebDirt are sampling software for

SuperCollider and the Browser used for TidalCycles (McLean & Wiggins, 2010) and Estuary (Ogborn et al.,

2022) respectively. As TimekNot is compatible with both WebDirt and SuperDirt it is a natural fit to

manipulate sound parameters in these ways. This is a list of all sound parameters that can be changed in

this way:

Sound. Has ‘s’ as a synonym. It requires a list of strings. This parameter changes the folder of samples in

the style of TidalCycles. This is necessary to instantiate any sound at all in TimekNot.

N. This is the sample’s index within the sample folder invoked with sound. It is a list of integers.

Vowel will add a formant filter to the sample.

Gain will modify the volume of the sample. From here onwards, all parameters take a list of numbers

(either integers or decimals).

Speed will modify the speed of reproduction for the sample.

Pan will modify the sample’s panning. Mostly, it will change the position in the stereo field of the output.

Begin will change the start of playback of the sample.

End will change the end of playback of the sample.

CutoƯ will add a low pass filter to the sample.

 105

More sound parameters will be added as the software develops. There is a lack of ways to modify pitch in

this list (only speed will change pitch). This is because pitch has a category that will be explored in later

sections of this chapter. For now, I will point out that pitch will be enabled by a local system based on

Iranian and other Middle Eastern music systems, Wendy Carlos’s tuning systems, and will also have a

notation for tuning systems.

Span

An interesting aspect of this notation that needs to be explained is the span notation. As I already stated,

the span notation communicates how to distribute the sound values throughout the temporal structure

produced by the time expression bound to the current identifier. Imagine eight events, and imagine three

samples assigned to such program. The span will define how to distribute the three samples onto the

eight events.

For example, one way is via cycling: 1 2 3 1 2 3 1 2 3 1. Another is by spreading: 1 1 1 1 2 2 2 3 3 3.

This uses an indexing system previously explained. Each event is uniquely identified, meaning there is a

cyclical or repetitive representation of the events and an infinite sequence of them.

Currently there are six ways to distribute the values:

By spreading them in a block of events. Given the rhythmic structure, this will spread the sound values

as evenly as possible. If a rhythmic structure has 10 onsets/oƯsets and is assigned two sounds, it will

assign the first sound to the first five events and the second to events from five to 10.

 106

By cycling through events regardless of the rhythmic structure. This will cycle the events ignoring the

rhythmic structure.

By cycling through blocks. This will ignore the process index and everything to the right of the ``-`` in

the structured index.

By cycling through the events within the rhythmic structure. This will ignore the process index and

everything to the left of the ``-`` in the structured index. For now, this software can parse up to the first

layer of subdivisions. Further experiments are required to determine the proper way to include the

potentially infinite number of subdivisions the rhythmic structure allows.

By subdivision layers of a structured rhythm. This will assign a single value to a given nested subdivision

of the rhythmic structure.

By proximity to any existing convergence point. This span is a particular case that exceeds the logic of the

index used so far to assign sound parameters to time events. By definition, it is non-repetitive and can

only work if the time expression used to create this voice is convergent (either converges with the external

voice or to any other voice).

The notation of span appears diƯicult to follow. However, it has a simple explanation. This notation is an

eccentric interpretation of a Haskell notation. In Haskell _ means that an argument of a function should

be ignored as it is just a placeholder. In my proposed notation, I want to express that the player does not

care about the specific iteration of an event or a block of events but what kind of index or part of an

indexing system the player should consider. _-_ implies that the structured index should be minded, this

notation is assigned to (1) above. _ implies that the process index should be minded, this is the notation

 107

for (2) above. _- implies that the number of iterations (block) should be considered (3). -_ is the notation

used to express (4) when the sound values should cycle through the internal indexes of a rhythmic

structure. The notation of (5) is -, where we care about the nested subdivisions of a rhythmic structure.

Easier to listen to than to explain with words. The notation of (6) is simply . . This is more of a mnemonic

device to re-orient the attention of the player to the convergence point.

If a player does care about a concrete index, they will be able to create one-time-occurrences of sound

events by directly assigning them to the index as follows:

v0.sound = 10-2.1 “cp”;

Or, evaluation time can be considered:

v0.sound = (10-2.1 afterEval) “cp”;

You can also assign a specific segment using the right-oriented arrow to spread and the curvy-right-

oriented arrow to cycle:

v0.sound = (10-2.1 -> 14-0) “clap bass harp”

v0.sound = (10-2.1 ~> 14-0) “clap bass harp”

(Non-echoic) Transpositions

There are other ways to assign sounding values without having to manually input them, specifically two

other ways:

By simple transposition. This allows players to directly replicate an arrangement of sound parameters

from another voice. The notation looks like this: v4.sound = v0;

 108

By transposition with an operation. This allows players to transpose parameters from another voice with

the partial application of a function. The notation is still in progress.

The transposition of individual sound parameters is interesting because it implies that the temporal

structure is not necessarily identical in two voices that might use the same sound values. If a tempo

canon allows the listener to enjoy tempo diƯerences, this type of transposition invites players to

experiment with the eƯects of all kinds of time transformations in a single sound arrangement. It is not

very subtle or elegant but full of possibilities.

Higher Order Idioms and Computations

Once the temporal and aural aspects of this language are established, it is possible to think of more

compact notations to refer to patterns of programming that are already common (in my brief practice

with TimekNot) or are highly likely to become common. This is the layer of the program that can better

describe more directly what TimekNot makes possible as a music-making technology. For now I will not

describe explicitly these notations since some of them are not yet implemented or their grammar and

syntax are unstable. However, TimekNot’s future work would focus on instantiating these components.

Canonise

An idiom to describe tempo canons as the ones favoured in Nanc-In-A-Can Super Collider Library

(Franco Briones & Villaseñor de Cortina, 2019) and TimeNot will be opened. Tempo canons can converge

with other temporal expressions by convergeTo and convergeFrom. The convergeFrom will have to

indicate the canonic layer to be used as a reference. The main diƯerence between tempo canons and

 109

other more regular temporal expressions is the tempo value that, instead of receiving a tempo, it will

receive a list of tempi.

Concatenated Loop

The concatenate operator will allow players to concatenate together two or more unlooped temporal

expressions and create a loop of the new structure comprised of the two. Concatenating voices provide a

very diƯerent way to understand musical cycles. It reinforces the additive rhythmic rationale over the

sub-divisive one. Like this idea, it is possible to concatenate a temporal expression to an algorithmically

generated version of itself. The notion of a modulo should be considered as part of the possible

transformations to temporal expressions.

Razgado

The razgado (from the right hand’s guitar technique to play several strings at the same time in Spanish

popular music) is a gesture that is perceived as something between an arpeggio and a chord. Nancarrow

and Gann conceptualised this in a very diƯerent manner than I am doing for this program. These are fast

bursts of notes that are a very fast instance of a polytemporal structure. So, the most common razgado

can be felt as the onset just before the convergence point of a tempo canon, where echoic distance is

closest to 0. Thus, razgado might be imagined via echoic distance from the convergence point. The

razgado is a transversal kind of interesting structure; as I imagine it, pitch and other aural components

form a list that does not happen sequentially but across temporal structures.

 110

Angels

There is a data structure I have called Novus inspired by the poetic figure that Walter Benjamin described

in his famous ninth thesis of history (1989). This function ‘linearises’ a program by keeping a projected

point in time (usually after evaluation time) in the cache of the program, which can potentially create

sharp inflexions. Radical changes in texture or any other form of making an instant in time charged with

meaning. The notation requires a time-point expression to determine where this point will be established

and then invoke in a temporal expression as part of its polytemporal aspects.

The time-point expression has three modes (lift, move, remove) and has three measuring units (date,

seconds and beats (taken from the external tempo)). Date is a dramatic unit to use for a live coding

performance. An arena of experimentation for this expressive mechanism is the annual Euler Room

Equinox performances that make calendar dates and times meaningful enough, given the automated

stage-management tools they use. By introducing date-time formatted into the performance, history

makes its way to the stage.

The Case for Outsider’s Pitch

Computers have been used to experiment with various domains of music creation: experiments on

spatialisation and timbre have been dominant historically. Synthesis and recording methods have been

developed to compensate with (and explore beyond) the richness of instrument and voice timbre.

Creating generative and algorithmic methods to formally organise sound is also salient. Rhythm has also

been a major preoccupation of electronically/automatically produced music. Nancarrow is perhaps the

 111

prime example of experimentation with automatisation and rhythm. Pitch (perhaps more correctly,

melody and tuning) has seldom been explored methodically and substantially until recently.

Historically, one clear exception is Wendy Carlos with the α, β and 𝛾 tunning systems implemented to

perform The Beauty and the Beast. This paragraph from her might shed some light on the issue:

The arena of musical scales and tuning has certainly not been a quiet place to be for the past

three hundred years. But it might just as well have been if we judge by the results: the same 12 √2

equally Tempered scale established then as the best available tuning compromise, by J. S. Bach

and many others (Helmholtz, 1954, Apel 1972), remains to this day essentially the only scale

heard in Western music. That monopoly crosses all musical styles, from the most contemporary

of jazz and avant-garde classical, and musical master pieces from the past, to the latest

technopop rock with fancy synthesizers, and everywhere in between. Instruments of the

symphony orchestra attempt with varying degrees of success to live up to the 100-cent semitone,

even though many would find it inherently far easier to do otherwise: the strings to "lapse" into

Pythagorean tuning, the brass into several keys of just intonation (Carlos, 1987).

This is a crucial matter, given the characteristics acquired by Western electronic music. Electronic music

tends to be culturally specific to European academic or market-oriented music. A telling manifestation is

the lack of representation of tuning systems – other than the 12 equal temperament chromatic scale and

its derived modes – in electronic music instruments and production spaces. I have chosen to base the

pitch manipulation in TimekNot on Middle Eastern tuning and pitch organisation systems as default and

standard. I will support and develop a series of ideas on tuning and pitch creation based on Erv Wilson’s

work. I will start this exploration with Dastgahs, which I have become familiar with through conversations

 112

with Mehrdad Jafari Rad and Aida Khorsandi and Combinatorial Product Sets (CPS) based on the library

developed by Diego Villasenor de Cortina. I will implement a repository of scales that can possibly be

invoked as the Dastgahs are. Additionally, I have implemented the α and β scales developed by Wendy

Carlos as part of this software.

I will implement a notation that accurately represents the Dastgahs and allows players to play a synthesis

of the style of Iranian traditional music and the aƯordances of TimekNot. CPSs have various advantages

that work well with polytemporality: a CPS is a pitch set resulting from the product of factors in a set. In

simpler words, the player must produce the number of factors that can be multiplied at once and then

take the product of all these multiplications and adjust it into a period (usually the 1:2 ratio (the octave)).

For example, having a size 2 and the factors 1, 3, 5 and 7 will use the products of 1*3, 1*5, 1*7, 3*5, 3*7

and 5*7 adjusted into an octave. So, this scale will have the fifth (1*3), the third (1*5), the seventh (1*7),

another more complex seventh (3*5), a complex fourth (3*7) and a complex second (5*7). A CPS is a

pitch set that can be applied in diƯerent layers as subsets. So, it should not be understood exactly as a

scale. For example, just using the products derived from factor 3. Or the union of 3 and 5, their

intersection or any other operation related to mapping. Using subgroups, as referred to in the last

sentence, has quite an organically polyphonic logic that works very well with the temporal aspects of

TimekNot. CPS can be harmonised easily with a diatonic scale of 12 ET (in case relating with other

languages), or, in any case with many other Dastgahs.

I am experimenting with diƯerent interesting concepts I have found either in the tuning experiments

inspired by Erv Wilson and based on Diego’s research or in the Dastgah system. (1) The concept of

Moteghayyer (or ‘changeable’ note) where a note is tuned diƯerently depending on the melodic direction

 113

it might take. (2) The idea of diƯerent octaves having diƯerent interval arrangements based on the same

tuning system. (3) Subsets of tuning systems and how they may interact in canonic situations: the index

of the canonic voice determining which subset to express as pitch. My comprehension of these systems

is still unstable so I will adjust the code, syntax, notation, and functionalities according to my ongoing

research.

The CPS notation is a bit complicated. It requires a pitch expression to be written and then invoked in the

aural expressions. The pitch expression’s syntax mimics the temporal expressions, but it is surrounded by

curly brackets. These curly brackets are not necessary, but the player needs some way to diƯerentiate

cognitively between expressions. A pitch expression could look like this:

{ myPitch <- cps 2 (1 3 5 7 11) }

This expression will allow the player to invoke myPitch in an aural expression as follows:

v0.myPitch = _-_ 0 2 4 6 5 8 9;

I hope to represent the cultural disparities expressed by the multiplicity of pitch systems in the notation

of TimekNot as productive and open a space where traditional tuning systems bypass Western classical

tradition to foster the possibility of change without the mediation of the market or dominant cultural

institutions.

The Standalone and the Score Widget

Due to the complexity of the concepts explored in this software, I have decided to create a stand-alone

that relies on a piano-roll visualisation. This visualiser will also operate as an animated score widget

 114

capable of oƯering a map for an acoustic instrumental ensemble to synchronise with an Estuary (or,

more generally, cybernetic) ensemble.

The goal of the standalone is three-fold: (1) to act as a pedagogical tool for people to understand the idea

of general polytemporality I am proposing; (2) for this software to communicate a set of philosophical

principles regarding time and musical creation that can be discussed as embodied theory; and (3) to

attempt to bring down the first wall of digital music: the ability to coordinate with acoustic instruments in

a post-disciplinary and non-hierarchical manner.

The visualisation of the standalone and the score widget is an easy graphical way to understand how

time-keeping happens in TimekNot by representing time events (without any aural attributes, unless the

user wants to map them into the visualisation).

The first two purposes are simple: I want to create conditions for others to take advantage of the software

by understanding its rationality, and I want to discuss how digital music-makers conceive time relations

in a productive manner aided by an interactive representation of musical time. The third one is an attempt

to overcome a characteristic of live coding that is diƯicult to understand: the reliance of multiple binaries

that live coding relates with in a diƯicult manner: elite/vernacular, audio/visual, presence/representation,

abstract/embodied, instrumentalist/composer, artist/musician, acoustic/electronic, digital/analog, etc.

Drawing extensively from Sichio’s work on scoring systems for choreographic live coding (Sicchio, 2024)

and other experiments on non-computarised coding (Torres Núñez del Prado, 2022) I am trying to

generalise TimekNot to produce time relationships that are not exclusively for the generation of audio but

also for the generation of (real, human) movements on the existing world as well as visual signals. I want

to eventually have a TimekNot that can be completely mute – a TimekNot modality that describes a time

 115

structure that function as a score for guiding compositions or improvisations – so the fracture between

the human and the computarised can be amended by enabling the additional possibility of computers

only computing while humans make (all of the) art when necessary or when desired.

Conclusion:: TimeNotation -> TimeNot -> TimekNot -> TimeKnit

TimekNot, as a networked language in Estuary’s ecology, standalone and score widget implicitly move

against the zombiefication of electronic music that comes with AI frameworks without rejecting the

challenges and benefits of automation. I will talk further about this in the last chapter of this dissertation.

It is an incomplete programming project that assumes that others and other cognitive territories play a

role in its wholeness. It does not require artificial agents to be completed, but people, their ideas and

desires. In other words, TimekNot understands its collaborative and multilingual impetus and the

(human) joy of creating. This language is not in competition with other languages but within a relationship

of mutualism. The expectation is for almost every TimekNot performance to be a performance with Tidal,

Punctual, Seis8vos, CinerCer0, Hydra or any other language in Estuary with which it shares a niche.

TimekNot can develop into incompleteness beyond the ecology of Estuary to propose languages with

composition capabilities, languages that can aƯord concrete computational relations with other

languages. Additionally, the language acts as an instantiation of a musical time theory and as a scoring

device, it extends its life towards the realm of ‘acoustic’ music and cultural reflection without relying on

the dominion of Musicology, Music Composition and Philosophy.

TimekNot attempts to feel like a knot for the performer: tense and complicated, like a crisis perhaps. It is

supposed to feel like a suspension of normal temporality and into an anomalous time of possibilities. A

 116

space where the players can perform the undoing of a stream of information that is supposed to be

disorienting, and with no easy resolution. Thus, TimekNot, instead of facilitating the musical process, is

supposed to complicate it to thrust the players into a state where new forms of music creation can be

experimented, explored, imagined, performed, and/or rejected. TimekNot is a notation, a negation of

common time and a tense knot of temporalities.

Introducing TimeKnit

A feature of this language will be implemented that further complicates players' relationship with music

and experiments with the aƯordances of networked computation and Estuary’s performance space quite

broadly (this feature will have no consequences in the standalone version). A mode will be enabled in the

language, allowing players to access specific data structures built by other players in the context of

Estuary’s editor zones. So, if a performer creates a clock identified as mainClock, another performer can

create another clock that converges with this one or even directly use it to create an aural expression. A

key question is, can this idea be extended to support other languages to concatenate to TimekNot in a

similar way?

The ability to access other people’s expressions – and make them their own – on-the-fly will change the

dynamics of a live coding networked ensemble: from a set of individuals playing together in a positive

manner to a tense negotiation of the musical event where the new is the result of accords between

players. This means that to advance and change as a group, every member must reach tacit agreements

on when, how and where to go. Hopefully, an intuition of commonality might emerge from such

experiments that adumbrates a music-making moving towards mutual aid and communism as cultural

 117

practice and political economy. To enable the mode here described, the players will have to write at the

top of their program:

###free

 118

Chapter 3 - The Collapsed Factory: Converging Crises as Critical

Periods

In this chapter, I explore in theoretical and technical terms the audiovisual work La Fábrica Colapsada.

This artistic piece I composed and performed is the major artwork of my doctoral research. It is a 30-

minute-long operatic, networked piece made with visuals, multichannel audio, microtonal tuning,

polytemporal rhythmic structures, fixed media, reactive algorithmic music in the form of improvisational

semi-analogue synthesisers, and live coding accompanied by a website where the storytelling happens

asynchronously. The artwork is also constituted by multiple online repositories where the multimedia

materials of the opera can be accessed and various pieces of software can be repurposed for geologic

seismic data processing of the 2017 earthquake, wavetable synthesis instruments creation, and

spatialization in networked environments.

More importantly, La Fábrica Colapsada is an opera that has been created as an artefact capable of

producing new forms of knowledge and sensibility regarding crisis and time by observing – through the

lens of research creation – the earthquakes that occurred in Mexico City on September 19, 2017, as well

as on the same date but thirty-two years prior, in 1985. I claim that through this artwork, I have been able

to re-envision ‘disaster’ from a social reproduction perspective supplemented by cybernetics and

cultural critique. Emerging from this analysis as guiding concepts to navigate crisis and re-imagine what

time can be, I have coined the terms ‘toxic resilience’ as well as ‘generative’ and ‘reactive’ forms of

resistance.

 119

Building upon this re-conceptualisation of disaster, I have constituted, along with my collaborators Iván

López and Diego Villaseñor, Pirarán: a networked music ensemble rooted in care and mutual aid. A

political economy analysis of current music creation shows that many ideas on disaster around the

earthquake presented here can be extrapolated to consider the global music scene a disaster. Namely, I

propose concepts like toxic resilience and reactive and generative resistance. Nevertheless, our proposal

of a networked music ensemble demonstrates that it is possible to rearrange technological means – re-

shaping them as technologies of the non-self – to move away from disaster towards communism, as

observed during the earthquake. We have done so by rejecting ‘toxic resilience’ and embracing generative

and reactive forms of resistance found and explored as the creative process and research behind this

opera. Similarly, I have developed a concept of music that escapes vanguardism and popular modernism

by signalling towards a culture of ‘algorithmic acid communism’, a term inspired by Mark Fisher (2017)

and characterised here by its orientation towards the profound, substantial transformation potential of

people and collectives. From this analysis, it is possible to imagine network music and live coding tools

as technologies of the ‘non-self’ proposed by Gilbert (2014).

Context

 This artwork draws extensively from Temazcal 2, the live-coded documentary described in Chapter 1.

Both works utilise Estuary – the networked software for collaborative, multilingual live coding – as an

interface and stage. Both works have produced small but profound and meaningful collaboration spaces.

Both works are transnational in nature. In many ways, I have based La Fábrica Colapsada (LFC from now

on) on many techniques, concepts and notions built, explored and invented for Temazcal 2. The two

works are forms of appropriation and re-signification of well-established, hegemonic art forms and

 120

works. The most relevant aspect that characterises both works is the development of the networked

ensemble as a site of mutual aid and care, an attribute that I consciously developed for LFC. As this

chapter traces multiple converging crises, the settler-colonial impulse, and the housing crisis,

confronted by the people of Mexico City described in the theoretical section of Chapter 1 converges with

the earthquake and the disaster described in this chapter. Furthermore, the concepts of triple movement

and double consciousness developed in Chapter 1 are the subjectivities and processes that inform the

storyline of this opera.

There are various key diƯerences as well: Temazcal 2 was a co-creation with the sound artist and curator

Rolando Hernández and it was performed by the two of us and Diego Villaseñor – musician, philosopher,

programmer, and an old and constant collaborator of mine – in a more interpretative role while LFC is

solely my composition that relies substantially on the imaginative and creative musical improvisation

skills of Diego Villaseñor and Iván López, a brilliant synthesiser performer, percussionist, composer,

scholar, and audio engineer living in Morelia, Mexico. The broader projects involved in both works have

major diƯerences: UHM – Rolando and my networked art project – was a research unit on time and

cosmovisions and Pirarán – Iván, Diego and I – form an algorithmic acid music networked ensemble.

Temazcal 2 is a documentary where interviews with key people are the core of the work. At the same

time, LFC – even though it uses real stories drawn from secondary sources – is an opera that opens a

sensual and embodied contemplative space that supersedes realism. LFC is a music work (even in its

non-sonic components, aurality is key) while Temazcal 2 was always understood as a cinematic work

whose narrative is profoundly influenced by counterpoint techniques.

 121

La Fábrica Colapsada is the site where the most intense explorations for TimekNot – the software

described in Chapter 2 – took place. Such explorations included more than 20 two-hour-long sessions

with the other parts of the ensemble playing either other live coding languages, all of us or two of us

playing TimekNot, or – more regularly – Iván and Diego playing the synthesisers with me playing

TimekNot. TimekNot aƯorded the ensemble a certain freedom from regularity and precision that other

live coding languages would not favour, particularly in latency-rich contexts like the networked ensemble.

The texture I could create with TimekNot was often described as an irregular three-dimensional sonic

space where synthesiser performers could freely focus on any melodic line and shift their focus to

another, re-orienting their performance direction. In this way, TimekNot became the basis for the

ensemble's improvisations in a way that motivated new forms of articulation and rhythmic plasticity. In

other words, Iván and Diego developed a synthesiser counterpoint practice that mimics the aƯordances

of TimekNot, and TimekNot has substantially developed its most simple core possibilities as a two, three

or four-voice radical counterpoint (or multi-monophonic) sonic machine.

The infrastructure of the opera can be broken down into multiple parts, and its vastness will be

thoroughly explained later in this chapter. Iván and Diego’s technical setup is beyond this dissertation’s

scope. However, suƯice to mention that both programmed multiple synthesisers and enabled complex

audio environments based in DAWs and all kinds of synthesiser software. The political economy of their

sound is partially open-source and free software. It is important to state that the software used to create

stream-in their synthesiser improvisations is a paid service for professional audio production, popular in

the market. It is a neo/techno-feudal technology, as it is rented, opaque, and with mostly good reviews

but for the needs of Pirarán it appears as glitchy and sometimes unreliable, at least for the price we

 122

monthly pay for it. Yet, it simplifies an otherwise diƯicult and uncertain task, especially for people

without in-depth programming knowledge. In the future, we aspire to utilise networking technology that

will allow us to overpass this issue.

For this work, I developed two major sections: the overture and the acts. The overture is highly structured

and unusually prescribed. The three acts are musical free improvisations that, taking advantage of the

concept of polytemporality, flow continually and without specific diƯerentiation. Only in the interactive

(the website) and visual components do the acts appear linearly and can be followed rationally.

I conceived this artwork in the early COVID-19 pandemic. I attempt to observe Mexico City’s experience

with earthquakes as a preamble and contrast to the lockdown suƯered globally, and personally observing

as a PhD student in Canada. Similarly, it is possible to observe that the earthquake aligns with the

COVID-19 crisis in the opera’s storyline. The COVID-19 lockdown is also the starting point of Pirarán, as

the crisis pushed musicians into an unanticipated situation of unemployment and risk. In some ways,

this crisis marked my doctoral process irrevocably, and it should be understood as a period where past

and future crises converge.

It is also important to position myself as a precariously employed, male, not-Indigenous-nor-white (as

described in Chapter 1) subject at the time of the earthquake, who used some of my time caring and

participating in mutual aid initiatives in the aftermath of the earthquake. I witnessed first-hand the

psychological, emotional, economic and physical pain and anxiety endured by people in the city. In many

ways, this dissertation has allowed me to make sense of what I experienced personally in such a crisis.

 123

I conceived this work 15 years after the collapse of the global economy during the financial crisis of 2008-

2009 that fractured progressive neoliberal hegemony (Fraser, 2019), inaugurating a major crisis; more

personally, as a result of the global crisis of 2008-2009, I experienced the loss of my family home and the

shattering and dissolution of my family core, thrusting the four of us into three diƯerent countries and

four diƯerent cities. Since then, I have been reading freely on the internet and in libraries in Mannheim,

Newcastle, Mexico City, Toronto and Hamilton trying to understand why my mother lost the home she

built with so much love, why my father had to confront the police protesting the loss of his job and

pension by financial speculation, why my brother’s children have a native language other than his father

and mother. Why am I here? How can I heal what needs to be healed, and what is it that I have already

healed and allowed to flourish?

However, this artwork's representation mechanisms are precisely not only about me, my skills, or my

cultural context; it centres people who have endured extraordinary forms of dispossession, sharply

contrasting with their unique ability to challenge the forces that attempt to destroy life. The people that

inspire this work are immigrants, women, Indigenous Peoples, queer folks, and workers. Let it be clear

that these vectors of identity are not a generic list of left-leaning figures, but the actual concrete subjects

responding to an earthquake in ways that are described in the opera as emancipatory. With this work, I

attempt to observe the ways in which others have faced dispossession and learn how to face it instead of

solely enduring or enabling it in my most immediate environments: academia and art institutions. As it

will be clear by the end of this chapter, the experiences and teachings of the earthquake can aƯect music

creation in unforeseen ways. In a more or less confusing manner – in the era of selfies – I am attempting

to erase my presence and the presence of Pirarán as a participant of a profit machine (the music

 124

industry) and hierarchies of domination (music institutions) ultimately abolishing both of this spaces so a

music practice that collapses exchange, consumption and production may flourish, turning art practice

into life abolishing work altogether.

Earthquake Facts and Ideas

There are some facts and ideas regarding the September 2017 (19-S II) earthquake that need to be

understood before developing the analysis of the artwork. On September 19th,1985 (19-S I), an

earthquake of 8.1 degrees on the Richter scale shook Mexico City for 120 seconds (Poniatowska, 1995).

The aftermath was overwhelming: 412 buildings collapsed, and 5728 were significantly damaged. The

death count remains uncertain: according to the Mexican Secretary for National Defence, 2000 people

died in the earthquake; the National Health Institute claims these numbers are more likely between 3000

and 6000, whereas some journalists count over 20,000 fatalities. The magnitude of the tragedy surpassed

the Mexican State, yet it rejected help (intervention) from the international community, except for a new

International Monetary Fund loan (Ramírez de Garay, 2023), of course. The inability of the government to

act in the aftermath of the earthquake activated a network of solidarity among citizens that became the

basis for a civil society and would become key for future political changes in the city and the country

(Leal Martínez, 2014).

Around 1 pm on September 19th, 2017, two hours after the ceremonial evacuation drill that

commemorates the 1985 earthquake, an earthquake of less intensity (7.1 degrees Richter) but with an

epicentre closer to the capital of the country shook Mexico City's people again (SHCP, 2017). Around 50

buildings collapsed, and more than 300 people lost their lives. The earthquake was not as deadly or

intense as 19-S I, but it was certainly the most destructive since then. Immediately, people started

 125

gathering around what was perceived to be the most aƯected areas of the city to help: bringing in useful

items like first response medical equipment, tools for debris removal, water and food for people working

at the sites. Facing the communication breakdown, collectives of bike riders organised to transport

information and resources from one location to another; hotels facilitated rooms for people that lost their

homes; architects designed manuals for people to check if their homes were in danger of collapsing;

audio engineers used their equipment to listen to possible survivors underneath the debris of some

buildings. From all the interesting and heartbreaking stories one can read about the earthquake, I have

omitted the ones that captured the people's interest the most, at least some weeks or months after the

earthquake. Most of these stories are characterised by an old familiar pattern: the market and state

failing to ameliorate the crisis while an emerging civil society succeeds at disaster relief relying solely on

resilience. In these narratives, civil society is an unexpected agent that, out of nowhere, saves the day.

The origin of such disaster relief storytelling in Mexico City’s context is 19-S I, when the institutions of

state-managed capitalism were giving way to the neoliberal order. Historic conditions were diametrically

diƯerent from what we have nowadays. However, 19-S II occurred in the context of neoliberalism’s

winding down and something else emerging in its place. Hence, new patterns are needed to understand

what occurred in September 2017.

I have prioritised the stories that shed light on the earthquake’s transformative potential, considering the

interplay of three major social forces: the market, the state, and civil society. Considering these three

social forces, a more precise vision of autonomy in an era of retreating states and advancing corporations

becomes evident. The role of civil society in this triangular motion can either align with the state eƯorts to

concentrate wealth and power into the hands of the owners of the market by taking functions away from

 126

the state furthering its existential crisis or re-imagine their role all together so civil society can rule over

the state and the market eƯectively re-embedding the economy into society (away from financialisation)

and transforming society’s mediations via emancipation (away from state oppressive structures).

According to the research presented, the stories I tackled in the opera appear as examples of the latter.

The first act traces the formation of the ‘Casa de los Pueblos y Comunidades Indígenas ‘Samir Flores

Soberanes’’ as an aftermath of the earthquake. This house was formerly known as the Instituto Nacional

de los Pueblos Indígenas (INPI), a state institution involved in the development and progress of

Indigenous Peoples. In an act of revelry and challenging the state and the expanding housing market of

the city, the Otomí migrant community resident in Mexico City took and transformed the building into a

space for political organising against dispossession, particularly housing-related. These organising

eƯorts are rooted in the earthquakes observed in this artwork (Vilenica et al., 2023).

The second act narrates the eƯorts to rebuild San Gregorio Atlapulco after the earthquake and all the

issues that emerged from it. Specifically, the land ownership regimes and water supply are currently

contested in the area. The act follows the earthquake’s aftermath and later role in the organisation for

the defence of water and territory against state’s attempt to change the land’s status and re-route water

supplies from the town to wealthier parts of the city (Catrip et al., 2018; Castañeda Gutiérrez et al., 2018;

SaƯon Sanín et al., 2019).

The last act revolves around a collapsed building within the textile district of Mexico City that appears

quite reminiscent of a 19-S I known story (Borzacchiello, 2017). The building had a textile factory and

oƯices owned by Argentinian-Israeli and Taiwanese-Paraguayan business owners. Both lived oƯ the

exploitation of immigrant women from Asia, Central America and other parts of Mexico (Turati, 2017;

 127

Lagunes Huerta, 2017; Ramos & Guerrero, 2017). Under the direction of business owners, the state

discouraged survivors’ rescue at this site to protect the interests of transnational capital (Villeda, 2018).

The eƯect of this attempt to suppress disaster relief mobilised feminist collectives that – fueled by the

memory of a similar incident in 19-S I – slowed down, and made visible, the state’s attempt to cover up

the factory’s ill-management and transnational capitalism’s inhuman practices (Satizábal & Melo Zurita,

2021).

Artwork and Chapter Sections and Ideas

The artwork is divided into two major sections: overture and acts. The overture is a series of strata

functioning as diƯerent lenses to observe the earthquake. A layer that aƯects the body by exposing it into

vibrations with a particular sense of danger, another layer can be understood as a form of social energy

that aƯect our sensibility of location and belonging, another layer functions as a way to gaze into the

instruments of objectivity in an attempt to distinguish the earthquake event from its social repercussions,

the next layer is the rupturing event that traverses various layers of meaning of this work, and finally, after

the rupture event, three juxtaposed acts appear where the ensemble performs music via a set of new

social relations: a desired and necessary mode of production yet-to-exist on our timeline.

Similarly to the earthquake’s disaster, music industry’s current disaster – that will be analysed better in

the last section of this chapter – has unleashed a crisis for music making that presents a similar pattern:

the synthesis of old cultures combined with new technologies alter profoundly art-making processes so

artists respond to it through resilience. However, resilience (sometimes named mutual aid) without class

struggle deepens the corporation’s power and strips the state of its capacity to mediate in favour of its

citizens. The mode of production that we are proposing as an ensemble emerges from the earthquake

 128

experience: a music that seeks to abolish art markets and the institution of art altogether by collapsing

production, consumption and exchange within our practice.

The stage, then, becomes something more than entertainment. It is a space where the aƯordances of our

proposed mode of production can be envisioned and negotiated. Against a recurring mis-conception of

Attali’s notion of noise as political economy that has made its way into live coding, where music style and

artistic thought shape production and reproduction, I will argue that a soft dialectic interplay is formed

between the stage and life where life and concrete experience is always at the starting point of any

process. Thus, traditional idealistic notions in the arts – such as vanguardism versus popular modernism,

rock versus pop, and high versus low culture – become irrelevant as long as everyone participates equally

in the market and institutions. Similarly, on-stage expressions of queerness, Blackness, decolonial

impulses, cyborg feminism, non-human agencies, and similar themes become meaningless if, oƯ-stage,

the environment is dominated by (toxic) resilience, competition, self-promotion, individualism, bullying,

and other alienating behaviors inherent to capitalism. As established in Chapter 1 through Temazcal 2,

whiteness and imperialism (alongside heteronormativity and patriarchy) are intrinsically tied to the

rationality of capitalism. To be non-white, in some way, is to engage with a life beyond capital’s scope.

From this perspective, our ensemble’s transition from groove-based music to what might be considered

avant-garde styles remains an act of agency, provided it remains faithful to the social relations grounded

in care and mutual aid that we advocate. Similarly, this work is an opera very loosely, such reference is

meant to de-stabilise the reception of this artwork, keeping-it at odds with commodification and

institutionalisation by undermining and mining (appropriating) the term.

 129

LFC operates at two diƯerent layers: as a theatre and as a factory, as live coding often does (Franco

Briones, 2022). It is a theatre because it displays an archive of images and narrative lines that tell a story

and induce emotional and intellectual dialogues with and within the ‘spectators.’ It is a factory because it

is the site of a particular set of music tools, infrastructure, skills and styles meant to be shared with the

‘spectators’ so they can create their own music. The ideas shaping the opera are received as

representation and performance. The schizoanalytic model – where desire is machinic production and

circulation rather than repression and lack – is useful to understand the basic operation that I use to

connect materials: concatenation. Concatenation allows me to put together various heterogeneous

components: social reproduction & disaster studies & cybernetics & research creation & cultural critique

& [...]

The structure of the rest of the chapter transitions from the theoretical aspects found by the research and

performance of the opera to the description of the work and its ties with theory. This is done twice: first

for the overture and the representational aspects of the work, and then for the performative aspects of

the work, mostly the three-act section. The ‘Critical Period’ section is a theoretical discussion on disaster

that stands as the interpretation of the opera’s narrative. More precisely, this first section stands as a

translation of the opera as an artwork to critical theory: both, the section and the artwork are reiterating

the same ideas but in diƯerent ‘languages.’ The section ‘La Fábrica Colapsada’ describes some of its

more relevant technical details, the opera’s narrative mechanisms, and how these are bound to the

previous theoretical section. The section ‘Art(work) in the Net(work)’ traces the way in which the

theoretical insights foregrounded in the ‘Critical Period’ section – combined with the mirroring of the

 130

performance and research of the opera described in ‘La Fábrica Colapsada’ – have shaped the practice

of Pirarán vis-à-vis the current state of the music industry and institutions.

Critical Period: Disaster as (Temporarily-)Situated Knowledge

War and colonialism are at the root of our understanding of natural disasters. Perhaps this reflects the

schism between nature and culture pervasive in Western forms of knowledge, or it appears as a

commentary regarding the alleged origins of social organisation, where social conflict is marked by

humanity trying to escape the over-determination of life by nature. But war and colonialism have created

the conditions for events like earthquakes to be excessively lethal, and the response to them remains

ineƯective, at the very least.

After World War II, the approach to natural and human-made disasters was largely shaped by strategies

derived from the knowledge acquired by the US military during their missions to bomb cities such as

Dresden, Hiroshima, and Nagasaki, among others. From an American perspective, “[…] the experience of

war became the template for our perception of the most diverse kinds of natural and man-made disaster

(Illner, 2021).”

The cybernetic principles developed for the war eƯorts became the paradigm for understanding system

responses to disruptions of meta-stability. Through the principles of command and control, the state

sought to direct and predict the behaviour of people and other components involved in rupturing events.

According to this perspective, a disaster is a sudden and transient disruption of an otherwise calm,

stable social existence. This paradigm thus emphasises a particular sense of time: normality interrupted

by a salient event.

 131

Early literature on natural disasters (Quarantelli, 1978) , while integrating a more nuanced view of

disasters beyond the command and control framework, still oversimplifies the role of the social fabric by

focusing primarily on the 'nature' that produces the salient event. As Illner (2021) notes, “[t]he eƯort to

denaturalise nature, in other words, gives rise to the naturalisation of society” (p. 4). Subsequent

approaches, relying on the concept of vulnerability, aim to challenge the centrality of the event itself and

incorporate the systemic conditions that enable it (Hewitt, 1983). Since the 1980s, a more materialistic

understanding of disaster has emerged, framing disasters as results of social actions and processes. This

perspective introduces a longer sense of time into disaster studies. The shift towards explaining disasters

through social factors has significant political implications. Approximately 75% of disasters occur in the

global south (BankoƯ et al., 2004; Scarlett, 2022), regions that have been underdeveloped and overly

exploited. Class, gender, and race are central to the vulnerability approach to disaster. This perspective

profoundly challenges the naturalisation of earthquakes, floods, superstorms, hurricanes, and other

phenomena, and this challenge is a fundamental aspect of the artwork described in the next section.

In the case of disasters in Mexican territory, the origins can be traced back to the imposition of the

colonial order, which “[...] disrupted the balance with the 'generous land' (Alcántara-Ayala, 2019)” as pre-

Hispanic relations with the land, water, and resources gave way to European rationality. The first recorded

natural disaster after the imposition of the colonial order was the flood of Mexico City in 1555. This flood

was caused by the city's construction atop a lake, radiating outward from the island where the Mexica

city of Mexico-Tenochtitlán once stood before being buried under cathedrals, banks, universities, mental

asylums, and military fortifications. Where there had once been floating, human-made islands for

harvesting the city’s food supply, there were now baroque buildings, farmland, and pasture. Seventy-five

 132

years later, the 1629 flood saw water levels rise 2 metres above ground after 40 hours of rain. For days,

survivors in Mexico City held mass atop buildings, praying for the rain to stop. This disaster led authorities

to intensify their eƯorts to drain the lake, which, after centuries of continuous eƯort, altered the soil’s

properties: it became porous and gelatinous, amplifying rather than absorbing vibrations.

Gradually, with its vertical growth, the city became vulnerable to earthquakes and ongoing flooding.

Despite significant damage from a 1950s earthquake, it wasn't until the earthquake of September 19th,

1985, that the Mexican state intervened in disaster prevention by establishing the Sistema Nacional de

Protección Civil (National System for Civil Protection, SNPC) in 1986. This system aligned with the shift in

disaster studies to understand the exposure of diƯerent populations to systemic vulnerabilities, as

proposed by Hewitt. Following the September 19th, 2017, earthquake, there have been serious attempts

to reform the SNPC, renaming it the Sistema de Gestión Integral del Riesgo de Desastres (GIRD, Integral

Administration of Disaster Risk). The reformed system aims to enhance eƯiciency, equity,

comprehensiveness, transversality, co-responsibility, and accountability (transparency and oversight). It

is intended to“constitute the axis of a transformation that allows addressing the root causes and

conditioning factors of disaster risk, with the aim that institutional eƯorts are not merely directed at

responding to emergencies or promoting fragmented reconstruction actions that do not contribute to

reducing vulnerability.”

Vulnerability studies are broadly influential in approaching disaster, both in Mexico and elsewhere.

Despite the significance of shifting towards a social conception of these events, the field remains

constrained by a philosophical understanding of time in which the rupturing event remains central.

 133

“If vulnerability scholars have conducted in-depth analysis of unequal social, political, ecological

and economic conditions, they have paradoxically limited the impact of their rich, structural

studies by always relating them back to the exposure to a momentary disaster, now called hazard.

They have thus held on to the normative idea of a more or less stable everyday state that is

impacted by a sudden disruption” (Illner, 2021, pp. 15).

Recent literature oƯers a post-materialist perspective on understanding disasters, drawing interesting

insights from this viewpoint. For example, Quarantelli’s distinction between emergency, disaster, and

catastrophe – each with diƯerent magnitudes of disruption (Quarantelli, 2006) – is re-evaluated. Zhang’s

reconceptualisation (2023) diƯerentiates catastrophe, an interstice where structural change is

negotiated through varying degrees of violence and chaos, from disaster, an event that disrupts normality

but eventually dissipates after a period of urgency and crisis. This distinction is particularly compelling.

Speculative imagination provides a rich approach to disasters. For instance, exercises in downward

counterfactuals – imagining past events occurring diƯerently or evolving into something else – serve as a

valuable philosophical experiment that oƯers a new perspective on disaster (Woo, 2023). Emerging from

financial imagination and a fascination with speculative futurity, this perspective creates a specific

temporal arrangement: one that partitions concrete human experiences from abstract time scales bound

to geology or other non-human phenomena (Bauer & Malik, 2023).

The following fragment summerises very well some post-materialist thoughts on disaster:

“The 9/11 commission report concluded that the most important failure on 9/11 was a failure of

imagination. One way of avoiding imagination failure is for strategic analysis to be more holistic

 134

and inter-disciplinary, connecting right brain with left brain; linking humanities with sciences.

Reimagining history through exploring downward counterfactuals is an inter-disciplinary research

agenda, blending psychology with physics. This agenda promotes risk awareness, and so

contributes to risk preparedness, and enhancing societal disaster resilience” (Woo, 2023, p. 113).

Nevertheless, the opera has allowed me to think diƯerently from the perspectives often favoured by

scholarship at the ‘intersection of art and science’ or that claims an inter-disciplinary status, typically

spanning the ‘humanities and sciences.’ The opera aligns more closely with a social reproduction

perspective, integrating art research, cultural critique, and cybernetics. Instead of relying on inter-

disciplinary frameworks, LFC is committed to schizoanalysis, unorthodox dialectics, and computer

science theory.

Post-material research has apparent limitations. It is worth questioning the partition between

catastrophe and disaster in a world where these concepts are closely enmeshed, as observed in the

opera's analysis. The assumption that the humanities or art automatically produce critical perspectives

on technocratic blind spots is inadequate; often, the humanities act as the handmaid of capitalism by

focusing critique on banal or irrelevant aspects, while art can produce misleading visions of technology

that obscure the social relations it engenders. Art and humanities are often instrumentalised to

humanise capitalist inhuman practices. Moreover, the reification of disaster as an event that breaks

normality and should be met with resilience serves to naturalise capital’s violence on people’s everyday

lives. I argue that, under the current mode of production, suƯering is systemic, and ruptures in ‘normality’

present opportunities for humans to experience agency. Therefore, while everyday life may be

catastrophic, earthquake disasters can reveal pathways to overcoming these conditions.

 135

Social Reproduction and Disaster

Social reproduction theory seeks to understand the conditions in which the worker is reproduced under

capitalism; it “displays an analytical irreverence to “visible facts” and privileges “process” instead”

(Bhattacharya, 2017, p. 2; Ferguson, 2020). One particularity of labour power as a commodity is its non-

capitalist form of reproduction. Labour power reproduces itself by non-capitalist means. If Marx’s Capital

concentrates on understanding how labour produces value, then social reproduction theory attempts to

understand how labour is reproduced. As understood by Fraser (2022), the site of analysis of social

reproduction theory points to the background conditions contrasting what is deemed central in Marxist

analysis: the family, unpaid work by women, or immigrants, institutions, and many forms of state support

like pensions, childcare, etc. Concentrating on the background conditions of capitalism will also lead us

to understand current forms of alienation beyond the alienation from labour that is the focus of Marx’s

Capital: alienation from our human peers and alienation from nature. Illner proposes to tackle disaster

studies from a social reproduction perspective that integrates the work of civil society as a fundamental

aspect of social reproduction for the reproduction of labour.

Aligning with Illner’s social reproduction analysis, I am posing some fundamental questions around the

idea of disaster: How can we distinguish the eƯects of an earthquake from the disaster of everyday life

under capitalism? Consequently, questions emerge around meta-stability as an applicable cybernetic

principle for understanding networked governance and contemporary forms of capitalism. How are

networked music ensembles capable of subverting the current recursive disaster hell we are forced to

inhabit? For now, the analysis of the earthquake induced by the composition and performance of the

opera continues.

 136

To supplement the perspective of disaster studies, it is necessary to consider disaster capitalism, a term

coined by Naomi Klein that describes transforming a crisis into a profit opportunity (Klein, 2007). This

often involves private contractors handling reconstruction eƯorts, altering territorial distribution or land

ownership after reconstruction, or leveraging the disorientation and shock provoked by a disaster to

impose or deepen a neoliberal order without pushback from the aƯected people. However, disaster-

caused destruction cannot always be directly linked to profit, as privatised reconstruction eƯorts are

costly and diƯicult to administer and manage. In other words, direct capital is not often involved in

disaster relief because it cannot benefit suƯiciently; instead, the state, always acting in the interest of

capital, is more closely related to disaster relief. On a diƯerent scale, disaster is often commodified as a

form of tourism (Martini & Sharma, 2022). This form of commodification is probably not an issue in the

context of earthquakes in Mexico. However, it signals a significant problem with disaster: the inclination

to banalise or romanticise it. Artworks like the one discussed here face such a risk.

The ‘shock’ proposed by Klein resembles the ‘state of exception’ described by Agamben (2005). The state

of exception describes a suspension of normality in the face of unprecedented situations, granting

governments unparalleled power and freedom to act, liberated from the limits of legality. Within this

exceptional time, it is often the case that the state provides, in the name of capital, the means to

safeguard and expand infrastructure, variable capital (people) and fixed capital (means of production),

not necessarily in any order of importance. Agamben’s ideas on exception have taken an extreme form in

the face of the COVID-19 pandemic:

“Professors who agree — as they are doing en masse — to submit to the new dictatorship of

telematics and to hold their courses only online are the perfect equivalent of the university

 137

teachers who in 1931 swore allegiance to the Fascist regime. As happened then, it is likely that

only fifteen out of a thousand will refuse, but their names will surely be remembered alongside

those of the fifteen who did not take the oath” (Agamben, 2020).

As a form of disaster relief, telematics is understood by Agamben in the context of universities,

undermining the pandemic's biological reality, to disarm critical thinking in the face of the most pervasive

capitalist rationality. In contrast, Bratton’s defence of positive biopolitics and global government, which

suspiciously echoes of nation-statehood on a diƯerent scale, stands fiercely critical of Agamben:

“Agamben’s pandemic outbursts are extreme but also exemplary of this wider failure. Philosophy

and the Humanities failed the pandemic because they are bound too tightly to an untenable set of

formulas, reflexively suspicious of purposeful quantification, and unable to account for the

epidemiological reality of mutual contagion or to articulate an ethics of an immunological

commons. Why? Partially because the available language of ethics is monopolized by emphasis

on subjective moral intentionality and a self-regarding protagonism for which “I” am the piloting

moral agent of outcomes” (Bratton, 2021).

At the COVID crossroad, intellectuals were more or less aligned with Bratton or at least rejected

Agamben’s ideas. In any case, the expansion or diminishing state was at the centre of the analysis.

Beyond old philosophers in despair and grant-recipient scholars of global government, I would argue that

the state’s role in disaster relief eƯectiveness needs to integrate the emergence of autonomously

organised civil society. Klein focuses on corporative interest and market forces while Agamben and

Bratton critique the state from negative and positive points of view.

 138

These positions, similarly to the vulnerability studies and disaster studies perspective, fall back into the

conundrum earlier described: precedence is given to rupture events, limiting profound critiques to the

systemic inequalities at the root of the issue. Although these frameworks are useful in the case explored

in the opera and in many other disasters that become the starting point of new forms of dispossession,

there is a need to expand beyond production, profit, command and control into the domain of social

reproduction.

The binary of state and market, mirrored by the frameworks of disaster capitalism and state of exception,

is missing a third attribute to properly understand the situation: civil society, mutual aid, and the

theoretical framework of social reproduction. Illner claims that we need to critically incorporate civil

society into the framework of disaster studies in the 21st century: As people are trapped between a

retreating state and advancing forces of marketisation, the figures of mutual aid and civil society are

assimilated to fulfil a necessary reproductive function. An example explored by Illner is the disaster relief

eƯorts of the Occupy movement in the wake of Hurricane Sandy (Occupy Sandy), which struck

vulnerable populations in New York. Occupy Sandy was praised by the American Department of

Homeland Security as more eƯective than state-led eƯorts. Praise, of course, accompanied by an

immense funding cut to disaster relief and a modest set of grants and NGO funding used to co-opt

Occupy activists. Not to mention that Occupy Sandy operated on a volunteer basis and charity that

amassed 1.5 million dollars. The state was ‘oƯ the hook,’ and private capital was excluded from disaster

relief altogether. In 19-S II, the political landscape did not permit for the state to be ‘oƯ the hook,’ but it

was clear that political agents capable of capitalising on narratives of solidarity and mutual aid

 139

positioned themselves to win the elections and, a couple of months later, to impose a ‘republican

austerity’ into the country.

Illner claims that civil society – with tools like mutual aid, and (situated) local knowledge – in the case of

Occupy Sandy, appear as a useful figure for reducing the significance of the state as a social institution –

allowing it to focus on surveillance and law enforcement – and to further liberate the market from

necessary labour for its reproduction. In Mexico, perhaps more familiar with disaster, a more general

political change is taking place where the state relies on narratives around mutual aid initiatives. In other

words, capitalism, via mutual-aid-based organising, is acquiring the ability to operate under profound

stress conditions by the development of resilience by its most exploited population. Subcomandante

Marco’s foresight cannot appear more sobering as he claimed that “[…] the market can get used to that

reality; it is possible for it to operate in a context of destabilisation or civil war and still be quoted on the

stock exchange” (2001)12.

From Toxic Resilience to Reactive and Generative Resistance

The movements towards resilience and co-optation of mutual aid by neoliberalism by no means indicate

they should be rejected as emancipatory strategies; they only require to be observed through a

perspective that integrates structures with processes. Similarly, we need to expand the philosophical

understanding of time that pervades early cybernetic perspectives on disaster as well as the vulnerability

12 My translation, original: “el mercado sí puede acostumbrarse a esa realidad; es posible que opere en un escenario de
desestabilización o de guerra civil y cotice en la bolsa de valores”

 140

perspective. For now, I will put in place a profound critique of the concept of resilience, re-dubbing it as

toxic resilience, and contrast it with resistance.

Resilience implies flexibility and adaptability in the face of damaging environments as it “[...] designates

the capacity of a system to withstand strain and pressure without incurring fatal damage (Illner, 2021, p.

17).” Resilience is a concept originating from ecology; here is a first clue on how vulnerability

perspectives, even though advancing towards a more anthropogenic understanding of disaster, fail to

avoid the naturalisation of human suƯering. The notion of resilience is now applied in a multitude of

contexts: from psychology to war, from computational science to art practice, from financialised markets

to disaster studies. While working on LFC, I came to understand that when resilience is not shaped by

class consciousness, it becomes toxic resilience, contrasting resilience as an ecological concept.

Whenever it is mediated by class struggle, it is understood as resistance.

In university settings, toxic resilience is praised above intellectual curiosity. In art practice, it is observed

as more valuable than aesthetic exploration. The first condition to be a scholar or an artist is to be

capable of enduring capitalist destruction similarly to people guarding themselves from a super storm

without (state) support. Choosing intellectual curiosity above toxic resilience is punished by academic

death. Choosing artistic courage in the face of extreme austerity will lead you to the torture room of

misrepresentation or indiƯerence. Such is the paradox of culture in our current condition: by surviving we

die, and what survives is un-dead, not actually living. Technocratic art and technology studies are a site in

which toxic resilience replicates; when an artist or scholar liberates time, by technical means, they often

choose to become more resilient to capitalist cannibalism, which only means that capital has multiplied

once more its resource supply. I will elaborate on this point in the last section of this chapter by analysing

 141

the political economy of music in relation to the networked music ensemble that performed the opera.

The solution is not to cultivate a dead-drive via anti-resilience or dismiss its usefulness (O’Brien, 2017).

The idea here is to develop a concept that allows us to think dynamically about social reproduction,

production and refusal. This is why it is fundamental to revisit the concept of resistance to amend

resilience.

Thus resistance, in contrast with resilience, is a dynamic process between forces of domination and

defiance, where subaltern groups not only survive but, with them, other forms of life persist as a

challenge to hegemony. Illner’s contrasts the victory of Occupy Sandy with the rise of Black Lives Matter

(BLM) in the aftermath of the George Floyd’s murder and amid the COVID-19 pandemic:

“[W]hat is remarkable about the [BLM’s] uprising is that protesters consistently connected police

brutality to Coronavirus vulnerability, as part of the same systemic exposure to premature death

that characterises everyday life for black Americans” (Illner, 2021, p. 127).

While Occupy Sandy was easily co-opted by state power, the experiences endured by black communities

during the pandemic led to an organisation eƯort that manifested strongly with powerful political

implications at the heart of fascism and empire. The three acts of the opera reinforce Illner’s argument.

Thus, Black Lives Matter’s uprising is comparable to that of the movements related to the House of the

People ‘Samir Flores Soberanes’, San Gregorio Atlapulco and the activists of Punto La Gozadera and

organisers around the collapsed factories that transformed their earthquake's involvement into

resistance avoiding altogether toxic resilience. There are plenty of examples around the earthquake that

fit the pattern of toxic resilience I am drawing here, mostly stereotypical stories that need a diƯerent kind

of analysis: from state propaganda making up soup-opera-like rescue operations, passing through the

 142

strange oxymoron of nationalistic exaltation of mutual aid to solipsistic techno-scientific contemplations

of humanless nature.

Drawing from Caygill (2013), there are two opposing ways to understand resistance: a negative resistance

from domination and a positive resistance for the reproduction of life. I will refer to the former as reactive

resistance, and the latter as generative resistance. Reactive resistance intrinsically de-naturalises

catastrophe by revealing and opposing a specific source of oppression. While Illner does not discuss in-

depth resistance as a concept, it is safe to infer that he proposes a reactive resistance, and perhaps

generative resistance is more in line with Occupy movements that he critiques. Faramelli (2020)

proposes that only generative resistance can produce an ‘ontological transformation of the world.’

Faramelli views Zapatismo as a prime example of positive, generative resistance: a philosophy capable of

producing forms of subjectivity that escape fixed (Indigenous) identity and ossified class consciousness.

According to this position, Zapatismo – as well as the movements foregrounded in LFC – focus on the

transformation of the experience of humanity to grow strength out of diƯerence and produce ‘a world

where many worlds can fit.’

I argue, based on research on earthquake events and the performance of cyber operas, that Zapatismo –

and the movements described in the opera’s story – operate in both ways: through reactive and

generative resistance. The ability to dynamically transit freely from reactive to generative moments of

resistance is perhaps a third category that the opera maps eƯectively. Faramelli’s position cannot

anticipate the actions described in the opera’s storylines: three movements in opposition to capital’s

expansion that attempt to take territory from the market and the state explicitly and directly. These

movements are represented in LFC as the three acts of the opera, implying that this artwork signals

 143

towards reactive resistance solely, which is not the case, but this will be explored in the following

sections of this chapter.

To understand how the movements articulated by the earthquake event induced also generative forms of

resistance I will need to produce a dialectical inversion of Illner’s argument: now that it is clear that the

disaster is capitalism, then it is necessary to understand what is left of the earthquake event beyond the

capitalist-induced destruction and pain misconstrued as the outcome of the earthquake. It is necessary

to, again, turn solely to the critical rupturing event.

Ways of Sensing: Cybernetics, the Internet Brain and Trauma/trauma

To move the argument forward it is necessary to invoke cybernetics once more. However, not the

cybernetics originating in military command and control, but the cybernetics stemming from psychiatry

and democratic socialism. Based on psychiatry, StaƯord Beer’s cybernetics, especially around the

Cybersin infrastructure for Allende's socialist national project of cybernetic management of state

production, uses the brain as a model. Beer’s cybernetics are performative, and its role is adaptation.

However, these cybernetics:

“[...] prioritized the long-term survival of the company over the short-term goals of any one

department. This attention to overall survival reinforced the importance of holistic management

and of Beer’s conviction that eƯective management functioned like the human nervous system.

Most companies of his time divided their operations into department that oversaw the company's

activities in assigned areas and dealt with the problems that arose in these areas. Beer believed

that this fragmented, reductionist approach could result in decisions that benefited a particular

 144

department in the short term, but that moved the company towards a greater instability in the long

term” (Medina, 2014, p. 25).

Such conception of adaptability moves Beer’s cybernetics away from toxic resilience. The main feature of

Beer’s conception of cybernetics has to do with self-regulation and down-up as well as top-down control

mechanisms. This is how communication technologies worked in the aftermath of the earthquake that

allowed the reaction of civil society and allowed it to feedback with/against state control. The brain

metaphor, as well as ideas on adaptability and self-regulation will be key to translating the earthquake’s

experience (from my position especially) into the mechanisms that govern the opera’s systems of

creation, communication, management, and control. Similarly, the metaphor of the ‘cybernetic brain’ is

key to understanding the cultural aƯordances of the ensemble discussed later, the music conception

that it engenders, and the internet as a space of possibility. However, I am falling back into systemic

processes and structure rather than tackling the seismic event as a site of analysis.

What is left after subtracting the capitalist disaster from the earthquake is also the subtraction of the

reality of capitalism that mediates our relations as human beings. In other words, the reality imposed by

capitalism crumbles like a pile of rocks and shatters like glass leaving room for something else. The

earthquake opens a psychosocial critical time-space where people can act freely. Free from work, free

from social conventions, free from alienation. Such temporality is also aƯected in its conventional

emptiness, speed, and linearity. Mexico City is a city prone to disaster, and as such, transgenerational

and personal trauma around it emerges and is negotiated in the public space – even more spectacularly

in the earthquake of 2017, which date coincided with the 1985 earthquake. The earthquake left us with

visions of mutual aid, care, and class struggle that have shown that life beyond capitalism is possible

 145

where people can freely choose to struggle for life and to help and to heal each other. These visions are

fundamental for the long-term organisation strategies that are the focus of the opera’s narrative.

As a scholar who openly challenges academia’s either dismissal or instrumentalisation of art as

research, I will give myself plenty of poetic licence to elaborate a complex and useful metaphor around

the texture and possibilities revealed by the earthquake. If a brain is a proper metaphor for social

management based on Beer’s cybernetics, then we can understand better the earthquake drawing from

neurosciences:

“[Studies] suggest that MDMA may exert its therapeutic eƯects through a well-conserved

mechanism of amygdalar serotonergic function that regulates fear-based behaviors and

contributes to the maintenance of PTSD. Perhaps by reopening an oxytocin-dependent critical

period of neuroplasticity that typically closes after adolescence15, MDMA may facilitate the

processing and release of particularly intractable, potentially developmental, fear-related

memories” (Mitchell et al., 2021, p. 1031).

What this paragraph suggests is that MDMA is useful in the treatment of PTSD by opening a critical

(mental) space where fixed, solidified habits and thought patterns can become momentarily malleable.

Thus, the patient can ‘let go’ of fixations and fear-related memories. Even though the social value implied

by this research – global north soldiers will be able to go to war, brutalise black and brown bodies and

come back and ‘let go’ their Trauma – seems extremely problematic and is out of scope from this

dissertation, the mechanism by which this drug works seems quite interesting. The key concept here is

that of the critical period: “[...] a developmental epoch during which the nervous system is expressly

 146

sensitive to specific environmental stimuli that are required for proper circuit organization and learning

(Nardou et al., 2019, p. 116).”

I draw from this little fragment of neuroscience that the earthquake, similarly, opens a critical period that

allows psychosocial neuroplasticity. People experience reality from a diƯerent perspective, develop

bonds and relationships that are not mediated by profit or domination, and—ultimately—develop a ‘way

of seeing’ that gets internalised, invades capitalist reality, and resists it. In this way, reactive resistance

can only operate in conjunction with generative resistance. The experience of people’s care induces long-

term courage for struggle.

Amid a disaster like an earthquake, people acquire new ways of sensing the world that reveal two

fundamental premises: a world beyond capitalism is possible, and the reality we suƯer under capitalism

is a disaster. What I am exploring in the opera is the way in which the momentary lucidity here described

manages to manifest as a prolonged social force in the form of active resistance against housing

insecurity, exploitation of workers, territorial expropriation, predation of resources, and as a form of

imagination that adumbrates new forms of culture sharply in contrast with what we currently have.

To understand the long-term eƯects of the earthquake’s visions, it is necessary to interrogate the

following: what is the diƯerence between a pile of debris in Mexico City and an unaƯordable empty condo

downtown Toronto? Or even more, what is the diƯerence between a collapsed building in 2017 in Mexico

City and a gentrified neighbourhood in 2025 in Mexico City? What is the diƯerence between someone in

shock after witnessing a building shattering into pieces and a person’s shattered body from police

brutality? What is the diƯerence between homelessness provoked by financialisation and homelessness

provoked by seismic activity? Gabor and Daniel Maté (2022) explore trauma as an underlying determinant

 147

of current forms of culture they deem toxic. However, trauma should not be considered solely salient

catastrophic events or radically inhuman forms of personal abuse. In turn, trauma is a great spectrum of

psychic and/or physical wounds remaining after a great variety of circumstances that can go from

cataclysmic events to everyday life. At one end of the spectrum there is Trauma – PTSD would be an

example – and at the other end there is trauma – for example, enduring bullying at school. A minimal

working definition of trauma can be synthesised as follows: “Trauma is when we are not seen and known

(Maté & Maté, 2022, p. 23; van der Kolk, 2014, p. 43)”

First thing would be to acknowledge the continuities between a collapsed building and an unaƯordable

condo-as-financial-instrument: both are expressions of the catastrophe that capitalism is and are

sources of trauma. What is diƯerent between these two is that a collapsed building can be sensed

drastically. At the same time, the condo remains subtly in the background, hiding the multiple forms of

dispossession it engenders. When a building falls, the veil of ideology is lifted, revealing the connection

between trauma, state abandonment and capitalist hoarding. First world people with their carefully

crafted reality, cannot feel their oppression, while overwhelmed with subtle forms of trauma. In an

earthquake event we look back at what refuses to see us and recognise us, revealing the continuity

between Trauma and trauma. In the earthquake I experienced, an inversion took place where power

appeared as obscenely unnatural and then, the naturalisation of human suƯering became unthinkable.

The sound of glass shattering of condos going down echoes whenever I see a condo coming up in Toronto

or Hamilton’s destroyed downtown cores.

In the course of this dissertation – specifically in chapters one and three – I have discussed in depth these

mirroring forms of disaster as two sides of the same coin: the dispossession by ‘natural’ disaster, on the

 148

one hand, and the dispossession by the novel form of capitalist settler-colonialism pervading Mexico City

currently, on the other. I have also discussed how this two-sided disaster has been met with whititude

and toxic resilience – both forms of false consciousness that reproduce capitalist resources and

rationality. It is important to understand the continuities between what is narrated in Temazcal 2 and LFC.

The double consciousness framework that I developed in Chapter 1 can also be applied to the

experiences of the people at the heart of LFC: the residents of San Gregorio Atlapulco, the immigrant

Otomí community, as well as the working-class, queer and feminist collectives responding to the

earthquake. The pattern of the triple movement that I used in Chapter 1 also appears when

understanding resistance as generative and reactive. This fold consciously traced in my dissertation

signals towards a conception of capitalism as a social totality: that partitions demarcating national

territories, academic disciplines like economics or politics, and dichotomies between social justice or

class struggle are not useful unless we make the necessary connections to explain integrated global

capitalism. The broader methodological point that can be learned from this dissertation is that patterns

applied to these two diƯerent, and apparently contrasting, crises become useful when faced by a

sequence and overlapping crises of distinctive and unique nature. The converging nature of crises is in

itself a theoretical consideration that needs to be central for tackling issues in a world shaped by

ecological, social, economic collapse as well as the collapse of care and human imagination.

The perspective of social reproduction on disaster argued by Illner – that shifts the attention away from

the transient event and into the structural attributes of our historic moment – is supplemented with this

psychosocial perspective: capitalism is the disaster that traumatises the social body, the earthquake is

then medicine capable of opening a critical period for it to see, sense, understand and heal its trauma.

 149

What I understand as an important contribution from this chapter section to disaster studies is the

proposition of a cybernetic science that reproduces this inversion: A science that aims to move us away

from meta-stability into the unfamiliar, like MDMA opening a state of neuroplasticity where we suspend

old habits to reconfigure the way we relate to the world. This insurgent cybernetic science would

correctly assume that our everyday life is a catastrophe that needs to be reshaped by radical ways of

relating with each other, our work, and the environment.

LFC sits close to the media conception of pharmakon (Stiegler, 2012), where technical means open ways

to see the world diƯerently. However, this media artwork articulates media and arts with concrete social

struggles perhaps inclining it towards what Stiegler frames as the medicinal eƯects rather than the

poisonous forms of alienation it may become. In the absence of concrete social relations, media may

become the territory of the realm of hungry ghosts, where the appetite for pharmacology’s short-term

relief dominates the lives of people trapped in our trauma-fueled culture.

This opera, by re-orienting knowledge around the earthquake experienced in 2017, is a cybernetic system

that promises to deliver neuroplasticity to the Internet’s brain making it possible to exercise certain

agency in the way we interact with our digital environments. It is also a storytelling system that has

reshaped certain narratives of what the 2017 Mexico City earthquake represents (in the opera’s narrative

is reactive resistance), and it is the most substantial attempt at algorithmic acid music, a form of

generative resistance vis-à-vis the music institutions and industry that dominates our cultural landscape

mirroring the earthquake’s experiences. The section that follows will thoroughly describe the opera,

emphasising its symbolic dimensions and the last section will discuss how the lessons learned in the

earthquake’s experience and research have allowed me to envision the music ensemble as a site of

 150

mutual aid and care capable of anticipates modes of production and regimes of representation that we

might want in our time.

La Fábrica Colapsada

Like Temazcal 2, this title indulges in a game of appropriation that de-stabilises its meaning. It is

presented as an opera in the same way that Temazcal 2 is dubbed a documentary. Lately, the titles of my

artworks signal towards a contradictory position, as did my music education and the style flourishing

from it: too un-European before the cultural turn towards progressive neoliberal de-colonialism and too

European for the context after it.

It is also an un-ironic reference to the work La Fabbrica Illuminata by the Italian composer Luigi Nono.

Nono’s intellectual and political work – perhaps strongly present in La Fabbrica Illuminata – is profoundly

marked by Gramscian Marxism (Velasco-Pufleau, 2018) and Operaismo (Wilkins, 2023) in the same way

that my current work is influenced by Marxist-Feminism, Zapatismo and Fisher’s cultural critique: three

theoretical domains that resonate loudly with Gramsci’s ideas. Moreover, with this reference I am

identifying an underlying current of thought that is urgently needed in the face of our current historic

moment and urgently requires perspectives like the one oƯered by the present artwork in the same way

the New Left moment and the Italian ‘hot summer’ engendered Nono’s intervention.

The title of the opera points to a building that fell and another one that was heavily damaged in the

earthquake of 19-S I and finally fell in 19-S II (Turati, 2017). The repetition of two very similar situations is

too poetic to be left un-mentioned. At the time of 19-S II, such a coincidence enabled a confusing

situation where people were spreading a rumour about 19-S I as unfolding. Here is the root of my

 151

argument: the civil society acting on 19-S II was also acting to remedy what happened in 19-S I. There

seems to be no distinct disasters but only one that prolongs through time and re-emerges when the earth

shakes.

The Overture

In this section I will describe the overture (first half of the artwork) as a composition and the conditions in

which the three acts of the opera (second half) rest. The first moment of the overture produces a strong

sensorial reaction in the audience. It is meant to concentrate on the fact that earthquakes are vibrational

events. I use low frequencies, acoustic beats and loud volumes to aƯect the audience in their bodies

with something that attempts to mimic earthquake waves but in an acoustic medium rather than seismic

movements. The acoustic beats appear pre-musical and purely sensorial already creating a clash

between the symbolic and the aƯective dimensions of the piece. On the screen the libretto’s

performance takes place:

“On September 19th, 1985, a factory full of textile workers collapsed as an 8.1 magnitude

earthquake hit downtown Mexico City. They said it was the earth, a divine act, its purpose only

knowable by god, its mechanisms explained solely through science. The majority of the people

working in the factory were women. Their evacuation was delayed because they were obliged to

protect the factory materials from being stolen. They were not rescued when trapped under the

collapsed factory because cheap labour is disposable. Their bodies were crushed as debris so the

industrial textile machines could be saved. After the factory collapsed, everything else did as

well...”

 152

What is being described here are the facts on the 19-S I earthquake in the Topeka Factory south of

downtown Mexico City. Numerous documentaries and papers have been written around this tragedy and

its aftermath: a union of textile workers that was key to govern labour laws and movements in Mexico City

and the rest of the country. In historic terms, this earthquake – and its aftermath – are some of the ways in

which a culture of state protectionism and state managed capitalism appeared naked to a civil society

ready to transform life in Mexico. What happened in the following 32 years is a series of co-optation or

suppression of social mobilisations: first, the words democracy and solidarity were used to accept

market competition and bribe active groups to accept land and resource dispossession. Following this,

the rise of Zapatismo was betrayed and criminalised. The epidemic of femicide was covered-up.

Movement after movement build-up pressure to end neoliberal rule while governments and market

forces attempted to diminish it.

Such a pattern becomes the idea embedded in the second moment of the overture. Where 2017 acts as

an attractor to which social movements are pulled towards, some beforehand as the Ayotzinapa protests

in 2015-16, and some afterwards like the protests against global north’s genocide of Palestinians. A

spiralling, zoom-in movement forms an overwhelming turbulence that captures the attention of the

audience anticipating a pivotal moment of the work.

This part is predominantly live coded with Estuary’s MiniTidal language. Diego and I play with the samples

while Iván explores noise and harmonic-rich synthesiser timbres. The samples are secondary sources

retrieved from Archive.org and recorded by members of the ensemble. The samples are: a) The radio

transmission of the First Declaration of the Lacandon Jungle from 1st of January,1991 to mark the military

rise of the EZLN against the Mexican and American government, b) the protest in Mexico’s City Zócalo

 153

square over the murder and forced disappearance of 43 communist rural teachers and students of

Ayotzinapa communal university, c) a mix of feminist protests on Madrid and Morelia recorded by Iván, d)

recordings of the Plaza Dignidad on the 2019-20 protests in Chile over transit fare, e) May day celebration

protests in Berlin on 2023, and (d) anti-genocide protests in Hamilton in 2024. The granulation technique

used to create the disorienting eƯect is supplemented with a spatial composition that spreads the sound

grains around the 24 channel system at the NIL and spreads them in the stereo field or the quadraphonic

field in what I have attempted to be analogous ways.

At this point it is worth noting that the three sites of the performance (McMaster’s NIL and Array Music in

Toronto, as well as Diego’s rooftop apartment in Mexico City and Iván’s studio in Morelia) all present

diƯerent conditions to transform information into audio signals. For example, the concert that took place

in the NIL in early June had 3 diƯerent versions for its reception: the stereo version in Mexico City, the

stereo version in Morelia (in theory identical to the Mexico City one), and the 24.4 version at the NIL. It

cannot be said that the version where I am – with the status of composer – is the definitive and ‘original’

one. Certain mechanisms for spatial transformation were used between versions that had signified the

piece in diƯerent ways.

As I write this chapter, I am working collaboratively with the ensemble in the version that will be released

for an Internet repository and platform, and we are understanding how sound aƯects the listener

diƯerently depending on which version was experienced in the performances. I am invested in the

diƯused spatial character of what I have experienced while Iván and Diego prioritise the clarity and

specific detailed ‘image’ favoured in their stereo version. Often, these two orientations on what the sound

signifies clash. What seems to be the way forward is the juxtaposition and merging of Ambisonic binaural

 154

techniques of the audio made by me with a clean stereo image of their synthesisers. Sometimes we

incorporate their binaural signal to favour a diƯuse rather than clear image of their sound. Regardless,

this artwork has produced an imaginary space lacking realistic attributes nor linear temporality that,

regardless of everybody’s distinct experience of it, can produce the same conceptual and aesthetic goal.

In one of the rehearsals, the ensemble was overcome by the chaotic, disorienting and immersive nature

of this section of the overture. As expressed at some point: “all the revolutions of the world converging” in

this imaginary space, no matter how spatialisation was operating for each of us.

At the end of this section the overture’s libretto moves forward:

“People, survivors, kept rising. Searching for the ones trapped beneath the debris. Asking for

silence to listen for movement, a sign, the minimal hope… They, the un-aƯected, still blame it on

nature. They say that the numbers, the measurements, do not lie. The plaques moved. (Our) pain is

only natural. No need to be aƯected, they claim, we just need better computers, better models,

better predictions... Now we are supposed to be a geologic force. The so-called anthropocene,

humans shaping the earth. I wonder, how are the people trapped under the debris capable of

enforcing their will onto the planet? Why would they want to? The question around which forces

shape the planet is one of wilful ignorance. Our times are marked by one predicament: extinction

or communism.”

This second intervention stands between 19-S I and 19-S II as what it described can be assigned to any of

both events. This paragraph maps certain kinds of discourse around the earthquakes: the mutual aid, the

accent on the natural aspects of these disasters, the ideological problems around the figure of the

 155

Anthropocene. Finally, it quotes Berardi’s diagnostic of 21st century circumstances invoking Luxemburg’s

famous ‘socialism or barbarism’ slogan (Luxemburg, 2004).

At the same time, a drone sound, sharply in contrast with the chaotic energy of the second section

emerges statically and characterised by a digital synthesis texture. The gaze presented by the opera

changed once more. In this section I am dealing with questions of situated knowledge and the scientific

objective gaze. I attempted to do so through a data sonification of seismic geological data retrieved from

seismic stations around Mexico City at the time of 19-S II.

This was perhaps the most challenging aspect of the artwork as it involved a lot of unfamiliar knowledge

to be acquired. It relied in correspondence with the Servicio Sismológico Nacional (National Seismic

Service, SSN) and scientists regarding the best approach to process the data in a manner that could be

meaningful as art and as a media representation valuable for scientific research. Victor Hugo Espíndola

Castro, the scientist in charge of our communications, provided firstly, a SAC file that I attempted to

process using the Seismic Analysis Code Software. After being unable to produce the wanted results with

such a niche software, Dr. Espíndola provided a CSV file I was able to process in SuperCollider, being

much more familiar with that programming environment. A lot of the meta-data of the files was

imprecise. However, I was able to retrieve the main information: 3 channels of the seismic station’s coil

moving in three diƯerent axes: North-South, East-West, and Vertical movement. I relied on the name of

the station (its geographic coordinates), and these three channels of information. I produced, for each

seismic station, three files that were later transformed using Wavelet algorithms, that then produced 4

time-series representing diƯerent resolutions of the same data. Giving a total of 12 time-series per

 156

station and an overall total of 120. The code that processes all this information can be consulted in the

repository attached to this dissertation.

There were many issues that needed to be considered at this point of the research: seismic activity’s

frequency range oscillates around 0.001 and 20 Hertz and the data points interval between samples was

that of ten facts per second (100 hertz). If these are the frequency ranges I get as data, how can I express

them as audio since the spectrum of human hearing goes from 20 to 22000 Hertz? I received information

from ten diƯerent seismic stations and a big part of the work required me to anticipate issues with phase

and noise pollution present in the data. I explored various forms of data analysis for this work, and I was

ultimately drawn to wavelet transform and discrete wavelet decomposition functions since it oƯers

better time-frequency localisation, provides multiresolution analysis, and it is a robust method to identify

and isolate particular features of an earthquake (Jun-Wei et al., 2014). I used a Ricker wavelet for this

project and produced four diƯerent resolution scales. I used a module found online that allowed me to

produce wavelet transform operations including decomposition (Schatz, n.d.). I had to write the function

for the Ricker wavelet. I believe that the Haskell software I hacked is still not robust enough to be used for

scientific purposes. Nevertheless, a whole workflow was put in place to decompose seismic data.

The most relevant insight acquired in the sonification process is its validity as a scientific tool. Given my

experience with sonification I, would say that rather than trying to understand sonification as a scientific

methodology we should understand it as a composition technique capable of producing sonic material

that may assist composers and artists, rather than providing scientists with observation tools capable of

an objective gaze. The dangers artists run while sonifying are those of invigorating positivist and neo-

positivist ideologies that privilege scientific knowledge above any other. Moreover, sonification as a

 157

composition technique might re-orient scientific gaze towards a more holistic perspective on life and

natural phenomena.

As this work relies on spatial information – the sound sources are located around the audience – a

significant portion of my work had to do with locating the sounds representing the information of each

station as an analogy of the geographic relations between the seismic stations and three representative

locations in the city that are meaningful on the opera’s story. The listener of this sonification study is

metaphorically positioned simultaneously in San Gregorio Atlapulco, The House of the People ‘Samir

Flores Soberanes,’ and the collapsed building of colonia Obrera. As the listener stands in these three

places simultaneously, they hear the seismic stations emitting sound as speakers rather than

‘microphones’ capturing nature. The listener is observing the instruments of observation put in place to

anticipate earthquakes. The gaze is on scientific knowledge, nature remains elusive to sonification and

visualisation techniques. The visuals here are more abstract and reactive to sound, they invoke a form of

turbulence that works very well with the kind of synthesis used in the sonification and with the last

section of the overture that follows.

The sonification is interrupted by sound that I describe as an irrational interruption of an otherwise

exceptionally planned artwork. This section is noisy, arbitrary, and the most personal moment of the

composition. It is a work of audio-synthesis that attempts to communicate my personal experience of

the 2017 earthquake. I do so by creating four synthesis processes that attempt to replicate the material

and psychic experience of the earthquake: a) shattering glass, b) debris rumble, c) buildings falling, and

d) panic. This section is, in a way, programmatic; it describes a sort of theatrical imaginary action. I

attempt to describe the sequence of events that I experienced at the moment of the earthquake. The

 158

audience does not have to understand the programmatic aspects of this section, the main idea I attempt

to communicate is that of a rupturing event: what I have previously described as the reality imposed by

capitalism, crumbling like a pile of rocks and shattering like glass, leaving room for something else.

Again, this rupture is not what it seems. What shatters are not the buildings in Mexico City, it is capitalist

realism and its common sense. But also, at the level of the music work presented, this rupture event

opens a critical period where the work shifts to a general texture of radical freedom to improvise. This

critical period mirrors the one explained in the last section of this chapter: the earthquake, when

removed from the catastrophe that is capitalism, opens a similar critical period. In a way, the inferred

continuity of the work, rational and schematic up to a point, is undermined by this unexpected turn. Such

a gesture is not a simple formal pivot to another style of music-making, but what I have successfully

attempted is to thrust the performance towards something that conceptually is rigorously consistent but

unexpected by any listener. Perhaps is better described by the last libretto’s intervention:

“On September 19th, 2017, an earthquake catastrophically hit Mexico City once again, just two

hours after the commemorative drill of the 1985 earthquake held annually in all public buildings

and announced through speakers all over the city. More than 40 buildings fell. Hundreds of lives

lost. Among many: a house, a piece of land and a factory collapsed not only with catastrophic

consequences but also shattering the reality that keeps us on the way towards disaster. After the

glass stopped shattering, the smell of gas dissipated, and the dust settled, a critical period opened

up, when the clock gave way to calmed, slow and multiple temporalities. The site of production

gave way to a space of reproduction: for mutual aid and class struggle.”

 159

The Three Acts

The section that comes next are the three acts of the opera. As polytemporality would allow me, the acts

are not linear but are performed continuously. The visuals that maintain the storytelling do appear one

after another, linearly. The visuals have been programmed with Punctual language taking advantage

mainly of timed functions, audio analysis functions and polar coordinates combined with an archive of

images related to the earthquake. The way I have modified and animated these images respond to certain

concepts that I relate to the storyline. The first act appears to me as a network of houses and people

spread in certain city neighbourhoods. Thus, I have tried to present images of the Otomí community as a

network. The images of act 2 are animated first, reminiscent of water and then of fire, tropes present in

the storyline of San Gregorio Atlapulco. The last moment of the third act is an image that gets distorted,

resembling a flower blooming from the debris of the collapsed building in the Obrera neighbourhood. To

understand these images better, the audience is encouraged to read the opera’s story deployed as a

website asynchronously from the opera’s performance.

I have already talked about networked and spatial conditions in relation to the second section of the

overture; the three acts are the section where this becomes a crucial aspect of the work. The acts are

where network latency, diƯerent audio and computer equipment, and acoustic circumstances produce

distinctive experiences and meaning of the artwork according to the location of the ensemble members

or the audience. Rather than thinking of this as inconsistencies that need to be corrected, I understand

this as the possibility of understanding reality itself as multiple: multiple times and multiple spaces co-

exist without collapsing into each other. More importantly, this multiplicity of time-spaces is not

metaphorical but a technical condition for networked algorithmic music-making.

 160

Paradoxically for these diƯerences to be meaningful, there should be a process to harmonise the

software being used to produce audio. For example, one substantial issue was how to have consistent

levels and be able to have diƯerent spatial configurations. This particular issue became the focus of

rehearsals for the NIL performance: how to be able to understand Iván and Diego’s perspective on levels

and how could they understand mine? We surmounted this problem by relying on audio analysis

software, constantly recording audio from diƯerent perspectives, and talking a lot about our audio

experiences. Similarly, we produced a process to aesthetically create an imaginary space for exploration

where we agreed upon a conceptual goal that would delimit and stabilise our horizon of possibilities.

In terms of tuning and polytemporal systems, these two are already an intrinsic possibility of TimekNot,

particularly the ability of creating music ideas in diƯerent tempi and articulating them organically. Tuning

research is one of the most relevant guiding concepts of Diego’s research. The conversations around

tuning systems and polytemporal textures have resulted in a mutual transformation of Diego’s and my

own practice. Nevertheless, for LFC we created a unique ‘middle ground’ for aesthetic exploration, where

the output is never quite what anybody would desire. Diego dialectically meshed my conversations on

Middle Eastern music with his research on just intonation creating an approximate version of a Shur

Dastgah that we dubbed ShurNot. I approached his research on (haptic) synthesiser’s performance of

just intonation scales into a fixed structure that inherently defined specific patterns for using a scale. In

this structure, the higher the octave, the higher the density of notes (from 3 notes in the first octave, to 12

notes in the fourth). Some notes would be tuned differently if they were to move in ascending or

descending melodic motion. The structure could be rotated, changing the ‘mode’ from ShurNot to

something more reminiscent of a minor scale. In terms of polytemporality as rhythmic principle, I had to

 161

adapt TimekNot’s research to the synthesiser performance that, for this project, was favoured by both

Iván and Diego. Iván and Diego developed a counterpoint technique that I understood as a response to

TimekNot. Beyond timbre, rhythm, and harmony, we became an ensemble preoccupied actively on

melody.

Beyond the coded infrastructure in which this work stands, the three acts described are an expression of

reactive algorithmic music, where a series of instruments have been programmed to react to the

performer’s interactions, and live coding, where code is being manipulated live. Iván has developed a

guiding practice of embodiment in performing environments as the one here discussed. Such a

technique shifts live coding’s speed, it requires calmer and more spaced interventions and a more

thoughtful listening.

This distinction matters because the diƯerent relationships to the algorithm allow performers to produce

diƯerent textures and fulfil diƯerent functions. Synthesisers can change very drastically and very fast the

type of interventions they have amongst themselves and with the live-coded part. Live coding is a slower

process that maintains a certain distance with the material produced. In our setup, the live coded

components became a kind of formal vessel, while the synthesiser’s performance inhabited it.

In terms of audio and music, what appears in the three acts is the convergence of the disaster that is

capitalism revealed by the earthquake and the disaster that is capitalism that can be observed by a basic

political economy analysis of current forms of music production. What has been described in the

storytelling of the work is now performed by the ensemble. This convergence of critical periods is a rich

space-time that connects the concrete social circumstances presented in this opera with the crisis of

 162

music-making that Pirarán faces as an ensemble. The music presented here is an attempt to transform a

crisis into a culture that rejects toxic resilience and embraces generative and reactive resistance.

In this section I have described the components of the artwork that function as infrastructure or explicitly

convey meaning regarding the earthquake storytelling. The meaning I draw from the earthquake’s

analysis has been an important event that has shaped the way in which I view the world. This is for me

now evident as I observe the path that Pirarán has taken as an ensemble. In a way, all the components

described here attempt to explain and prepare the audience to confront the radical freedom that the acts

of the opera present. A freedom even from the narrative mechanisms that the opera relied upon thus far.

This radical freedom can only be explained by understanding the political economy and the background

conditions that shaped it, which will be the task of the next section.

Art(work) in the Net(work): The Algorithmic Networked Ensemble as a Site of Care

and Mutual Aid

Music Disaster

In this subsection I will paint a persuasive picture of the music industry – and by extension music

institutionality – as a disaster that does not allow new forms of music to emerge or musicians to live in a

dignified manner. In this subsection, it is possible to understand disruption not as a rupturing event but

as an advance of a systemic dispossession towards culture workers. In the next subsection it becomes

clear that what technology disarrays is capitalist realism when approached critically.

 163

Daniel Ek, the CEO of Spotify recently claimed that the cost of music-making – ‘content creation’ in his

words – is close to zero (Ek, 2024). Spotify is a music distribution software for hosting music online and

making music recommendations to people. Thus, the major asset this company has generated is the

algorithm that sorts music and binds it to an individual user’s music taste. The company made more than

1 billion dollars of profit last year while also de-monetising any music listing streamed less than 1000

times. Additionally, Spotify is infamous for the low pay per streaming to the artists creating their ‘content.’

Of course, music influencers – who wish their work was monetised better – have relentlessly critiqued

the Swedish tech-billionaire. Such a situation encapsulates perfectly the current cultural crisis pervasive

to music-making. Now let us imagine something much worse.

The algorithms deployed by Spotify are clever and interesting technology capable of overcoming an old

issue of music markets: the stockpiling of music without any enjoyment as use-value. Algorithmic

technology has transformed the way we exchange and consume music by connecting potential listeners

to music with unprecedented precision. However, Spotify ultimately relies on music made by humans

which creates limits to its exploitation potential: the infinite consumption machine does not have an

infinite production machine. So, how can Ek, the billionaire, become Ek the trillionaire by tackling the

problem of dependency on slow and sticky human production?

The answer lies in the emerging generative Artificial Intelligence software technology that is in the

process of pervading every industry imaginable to eventually become basic infrastructure for everyday

life. As the impact of AI technology permeates all art forms, it becomes evident that this form of

automation vastly diƯers from previous ones. All previous forms of automation have aimed to minimise

variable capital (AKA human, waged labour required for a task) and maximise fixed capital (AKA the

 164

means of production: machines and technical knowledge). According to Harvey’s reading of the

Grundrisse (Harvey, 2023), the current AI situation is yet another manifestation of class struggle as

capitalist seek to minimise their dependence on workers. Machines cannot create value, but they are “a

source of relative surplus value (Harvey, 2023, p. 324).” However, the automation of tasks and the

formation of an externally objectified intellect that can be instrumentalised by workers does not imply a

suppression of capitalist relations by scientific command of work (Marx & trans. Nicolaus, 1993).

According to Marx, machines are optimised to extract surplus value from the worker’s abstract labour,

not to substitute it. Thus, capitalist accumulation ultimately requires (human) labour.

According to Dyer-Witheford, Kjøsen and SteinhoƯ (2019), Artificial Intelligence is not merely a method

for automation; instead, it represents a substantial attempt to render labour a non-human activity,

making humans redundant for the generation of surplus. In such a scenario, the horizon of the arts is one

of zombified art markets: a complete circuit of production, consumption, and exchange of art where

humans witness passively from the fringes the glory of capitalist incessant output. In this scenario,

human imagination is transformed into raw materials: the original accumulation for such mode of

production.

Limits on computational power and copyright issues within the music industry are impeding the full

development of AI for music. However, Daniel Ek is anticipating the future; this is what he is referring to

when he speaks about the ‘zero cost’ of ‘content creation:’ generative AI software expropriating the

creativity of music-makers as data to create instruments, interfaces, mastering workflows, harmony,

melody, rhythmic patterns, or quite plainly whole songs prompted by a user’s desires. This will be

perfected by extreme forms of data colonialism – a framework useful for understanding software that

 165

users rent for a service while designed to extract data from them (Couldry & Mejias, 2019). Social media

(Web 2.0) is the most paradigmatic space for data colonialism as it has eƯectively transformed life itself

into a process of data extraction. While Spotify is already appropriating large volumes of user’s

interactions data and it relies mostly on non-AI algorithms, the appropriation of immense volumes of

data of music producers and consumers could eventually feed AI machines not only to anticipate the

music options that better fit a certain user, but to create music just-in-time to maximise user’s

consumption and appropriate revenue from production. This is already in-process as Spotify already

creates music for it’s own consumption to re-absorb revenue (Castle, 2017; Klawans, 2024). Spotify’s full

potential is to reduce the music industry to an infinite music production machine plugged into an infinite

music consumption machine. If billions of dollars can be made with the impediment of human

intervention, imagine what can be achieved when we remove it from the equation.

Anticipating such an automatised economy of music, one now can understand the crisis of the

imagination and the slow cancellation of the future described by Mark Fisher as not a bug but a feature.

The general disarticulation of attention provoked by postmodern cultural hegemony, and communication

technology like social media, has turned consumers and producers of culture towards a radical form of

conservatism: characterised as easily deliverable and immediate reward prone. Artists’ precarity in the

form of lack of access to dignified housing – thus, a lack of space and time to distance from pre-existing

cultural forms and imagine new ones – as well as the dismantling of cultural institutions providing

financial support has turned art towards safety and risk-aversion. Thus, social reproduction perspective

is fundamental to understand the crisis of music making and this perspective is key to find a way out of

this crisis.

 166

Twentieth-first century music is, according to Fisher, no more than pastiche and retromania. Cultural

artefacts everywhere are remakes of a previously successful art-piece. This perfectly fits the way in which

AI can intervene in cultural industries. An infinite recombination of data that gives the illusion of novelty

but cannot, by definition, create something new. Hence, technology is not essentially problematic, but it

is entwined with capitalist culture. Such an argument, often misconstrued as technophobia or fear of

novelty, is diƯicult to communicate in a cultural context that naturalises technology’s obsolescence

rationality and conceives of time as a straight accelerating line moving forward. However, when we

acknowledge pre-existing cultural and social circumstances that shape technological and scientific

research it becomes clear that the problem is not technological. The scope of this critique is to

dialectically transform both technology and culture through the desire of escaping the nightmare of

cannibal capitalism.

Frederic Jameson (1985) claims that Jaques Attali’s groundbreaking work on the political economy of

music shows that “the music of today stands both as a promise of a new, liberating mode of production,

and as the menace of a dystopian possibility which is that mode of production’s baleful mirror image

(Jameson, 1985, p. xi).” This subsection describes the timeless disaster that music-making has become

under neoliberalism. Not only its past but also its possible nightmarish future.

Let’s move into the promise of new liberatory modes – incarnated, I propose, by the networked,

algorithmic music ensemble. A promise and a provocation that attempts to change equally our past and

our future to something away from algorithms as control and extraction mechanisms.

 167

Promise and Provocation

The crisis previously described seems inevitable and natural. However, as understood by Jameson, it is

only the dark mirror of a liberating mode of production that is equally real and possible as a global

algorithmic culture. As I have claimed earlier in this chapter, Pirarán is an algorithmic networked

ensemble capable of adumbrating such a mode of production. Pirarán – from the future conjugation of

the Spanish verb pirar, which originally means to escape, to fugue, but in current Mexican colloquial

language often means ‘to go crazy’ – has been conceived in the midst of an existential crisis bound also

to a music-making crisis and with its members experiencing at some moment of their lives the crisis-

prone existence in Mexico City, specially the earthquake that is tackled in the first section of this chapter.

Drawing extensively from such crises experience, we have developed an intuitive form of resistance

reminiscent of the one I have described earlier in this chapter and I will attempt to map it as part of our

musical practice.

Networks, Algorithms and Live Coding

This subsection requires to understand extensively the political implications of networked music and

algorithmic music. Networked music – which is music made with others in real-time via an internet

connection – has a rich history. However, after the COVID-19 lockdown it entered the everyday live since

all musicians had to adapt to the internet as a medium to experiment and deliver music. As I have

explained already in Chapter 1, my work in Estuary (Ogborn et al., 2022) and my research converged with

the unfolding situation allowing me a privileged point of view regarding networked art collaboration and

technical comprehension.

 168

Algorithmic music refers to music governed by predetermined rules, following specific algorithms and

performed automatically - historically by mechanised means and now via digital computation. Interactive

algorithmic music allows real-time modification to the algorithm by a performer. This flexibility enables

musicians to change their mind mid-performance, breaking the rules as part of the process. This concept

is often known as live coding, where writing and erasing code becomes the performance itself. Live

coding is often understood by its artists as a performance of human agency in the face of a computerised

system (Franco Briones, 2022). “Live coders” are a huge and growing community around the world, with

connections to both artistic and academic communities, and institutionalised in conventions like the

annual International Conference on Living Coding.

The human ability to make, embrace, and amend mistakes is central to live coding. No wonder, this

attribute has fostered one of the most inclusive and egalitarian electronic music movement, rooted in the

anti-capitalist principles of copyleft software and communal property. Within the live coding ethos lies a

kind of politics that are impressively dynamic and reprogrammable: imagine a political system that

allows anarchism in the summer, Marxism in the winter, and a liberal fall.

Live coding emerges as algorithmic technologies shift the main site of surplus production from large

operations (like massive record labels) to platforms like Spotify. Spotify addresses the issue of stockpiling

music by increasing the mediations between production and consumption. However, live coding explores

algorithms as tools for musical creation, capable of diminishing the distance between consumption,

exchange and production.

In the 1970s, Attali (1985) described a future music practice that would overcome contradictions like the

stockpiling of music without time to consume it. This closely resembles live coding. Attali envisioned

 169

music capable of collapsing exchange, consumption, and production by distributing musical

instruments and interfaces, allowing people to bypass traditional music institutions and industry.

Live coding allows people to create unique musical instruments and sounds, sharing them online

seamlessly. It removes the need for extensive formal training or industry contracts. Furthermore, using

techniques of networked music, it is possible to invite others into your own site for autonomous music-

making and listening. Attali’s vision of a music practice dissolving commodity fetishism and surplus

accumulation aligns with live coding, enhanced by networked music elements.

Live coding, though resistant to co-optation, remains vulnerable to rapid technological advances and

cultural slowdowns as described by Fisher. Currently, live coding is seen as a technical advantage in

productivity, enabling immense output with minimal resources as described in Marx’s foundations to

political economy as the concept of relative surplus value (Harvey, 2023; Marx & trans. Nicolaus, 1993). If

every musician is a tiny CEO and their music a small corporation, live coding oƯers relative surplus value

– a temporary advantage due to its unique technical edge over industry competitors. So, a question that

seems relevant now is: what have live coders done with the time gained by automation? Have we

collapsed exchange, production, and consumption, and finally overcome surplus accumulation? Or have

we, in a petit-bourgeois manner, amassed some form of relative surplus to advance our individualised

musical enterprises that will evaporate once programming languages cease to be a technical advantage?

Have we developed a form of toxic resilience? Coders faithful to the compulsion of perpetual production

are susceptible to new technologies that promise a new source of relative surplus value and further ways

of automation that substitute even more variable with fixed capital. This would be AI frameworks. So, in a

way, the real life of live coding starts after its death as a novelty. AI as automation will run the same fate.

 170

However, AI as a non-human labour power participating in the market and integrated to our everyday lives

as infrastructure is uncharted territory. As such, it is diƯicult to anticipate what it means to have

‘intelligence’ in the environment at the service of capital.

Pirarán: A Flight Away from Toxic Resilience and Towards Resistance

This is the background that shapes Pirarán. The disaster in music propelled even further by the COVID-19

pandemic was the starting point of our creative process. Given such conditions, our project felt for me as

a social experiment away from the artistic and technological domains that often over-determine and

over-code the music-making context. A suspension of normality shaped Pirarán’s possibilities, so to

speak.

Suddenly we had time to reflect upon our professional careers as musicians, often a lonely path that

forces us into competition rather than collaboration. The lockdown, the vulnerabilities revealed by it, and

the perspective it provided in the face of the crisis of music circuits reshaped the way I valued music-

making. Rather soon in our process of ensemble-formation, I found myself witnessing the unfolding of

the creative process of my peers and becoming invested in it. My responses to their interests and

research functioned as that of a committed audience trying hard to empathise with the vision of Iván and

Diego. All of these responses, of course, felt reciprocal and all of these was also experienced for the

creation process of Temazcal 2. What I want to emphasise here is the capacity to listen that opened

avenues of development for us not necessarily for our collaborations, but for our more general

‘professional interests’ as musicians. This is also true for our collective improvisation: we become the

commentators of our collective work as well. Pirarán’s members, in this way, found a first way to

socialise artistic creation that relieved some pressure to be a successful music enterprise. This

 171

ensemble claims to abolish audiences by absorbing such function within the ensemble We are our own

audience for our individual music-making practices, which is an idea similar to how the live coding

community functions, as discussed at the ICLC 2023 (McLean et al., 2023). If the point was to be heard

as a musician, this was already happening in our rehearsals. It is worth noting that our positionality as

three heterosexual cis-men was not particularly inclined for such a dynamic: men are not socialised to

engage in emotional and caring relations with each other. In some ways, the care we put in the process of

ensemble-making draws from queer and feminist traditions of mutual aid that were so eƯective at

forming networks of support among people that would need them.

From this point forward, Pirarán’s development relied on forms of mutual aid – that is, unconditional

direct help and circulation of resources – such as equitable redistribution of financial support especially

from the global north to the global south; knowledge-building activities in the form of tutorials, resource-

sharing and explanations; shared skill-based labour for grant-writing, coding, music production, among

other things that need to remain illegible to academia in order to be preserved as mutual aid.

While mutual aid is a driving concept for Pirarán, LFC needs to be understood in the context of my

doctoral work. Most of the work for LFC required being executed as lonely-authored composition,

programming and research for two main reasons. First, the parameters of doctoral work require this

research to be conducted individually. Second, and as a consequence of the first point, the benefits of

such work cannot be socialised as all other work conducted by the ensemble. After all, only one of us is

getting a PhD out if this ensemble13. It is key to point towards the tensions already mentioned especially

13 As of yet. However, it is in the horizon of Iván and Diego to start graduate work.

 172

around resilience in academic environments that would need to be developed further to, as well, admit

and understand the limits of mutual aid within this project.

Pirarán is also an eƯort to degrow presence of individuals in music circuits. I will discuss this point later in

this chapter more, but the first thing we understand is that capturing people’s attention in social media

should be minimised if not avoid at all costs. Moreover, algorithmic, networked technology and immense

technical flexibility allows three musicians to present their work with any budget of time and resources

and Pirarán’s setup is streamlined and centralised (often most of the setup happens in a studio while on

stage we only need to connect to the mixer). Our ensemble usually liberates allocation of sets in concerts

for more people to participate. On our last live performance Pirarán collaborated with Sarah Imrisek, Iván

and Diego were on stage while Sarah and I were at the NIL. In this concert, four people performed in 10

minutes while most of the other sets were individuals presentations and often spent time beyond the

recommended per set. Third, the three research streams of Iván, Diego and I are never sacrificed in any of

our works. This means that the half hour of LFC showcases deep research on tuning systems, synthesis

creation, live coding, spatialisation, among many other things, which is a framework that often clashes

with the academic rationality where you can only present one research topic at the time. All materials –

software, instructions, code snippets, tuning files, synth patches, etc. – are free and available for others

to use. All of Pirarán’s production potentially multiplies production for whoever might need it and know

how to operate it.

Pirarán understands capitalism as a social totality. I have attempted to argue in this dissertation that

issues of representation and strategies for redistribution – like free open source software – cannot by

themselves adumbrate a world beyond capitalism. As such, the ensemble’s practice is rooted in the

 173

impossibility to stand alone, capable of escaping capital’s social relations. However, it stands as an

incomplete and out-of-phase project almost as an archeological artefact not from the past, or even the

future, but another timeline. In this sense, the ensemble is an anticapitalist project and it mobilises art

creation towards the abolition of art institutions and markets.

We encountered various challenges in securing satisfactory technical conditions for our sessions, but

perhaps the most complicated was communication. Intra-ensemble communication during

performances in non-networked environments typically relies on visual cues, body language, and a

shared acoustic space, which was not available to us. The form of communication we developed

combines on-screen activity shared by the ensemble – such as code edits or custom time-managing

automatic conductors, facilitated by Estuary – and purely auditory elements. In our performances, we

have crafted a sound that best serves as a metaphor for a tactile, non-rational, noisy form of

communication. By minimising visual forms of communication, our music has been infused with a

unique way of hearing that can be described as psychedelic communication that undermines

individualism and favours collective agency.

All of these have become infrastructure that requires significant technical knowledge of computers,

audio, and programming. However, this knowledge is not gate-kept in higher education institutions or in

secretive corporate labs; it tends to be almost entirely free and open source.

Our rehearsals are a combination of collective software debugging, music playing, and talking/listening.

The loop of debugging, playing, listening, and talking allows us to help each other and practise a lot of

care and attention. We learn how to listen to each other's needs, desires and anxieties, and be able to

create a space for everybody to be capable of bringing to life their (audio)visions and to be committed to

 174

making each other's visions come to life. This is one of the most relevant aspects of our ensemble that

operates under the principle of care and mutual aid.

The extra-ensemble communication, what is usually considered as gathering an audience, has been the

most challenging issue for our ensemble. This aspect of the labour of music-making requires us to shift

our attention from music creation and creative work towards the work of marketing strategies and

publicity. This work eroded the care and attention already built at the base of the ensemble. At some

point, our time was getting lost in reels, stories, selfies, hashtags, etc. After this unsuccessful attempt of

due diligence as a music enterprise, we made the decision to refuse most of our activity in social media,

not only Spotify. It is diƯicult to put in words the anxiety and stress that refusing to participate in online

distribution platforms and social media has provoked in the ensemble since we do think this music is

worth listening to. However, we discovered that our radical commitment to caring for each other and the

people supporting us was more important and ultimately productive than the attention of ‘the scene’ or

the algorithmic mechanisms of control, surveillance and uneven distribution of attention and resources.

The relationship many artists develop with social media and distribution platforms can be understood as

toxic resilience, which aims to free the market from the necessary labour for its own reproduction. By

using time liberated by technology to promote their individual careers, artists relieve the market and the

state of the responsibility to provide dignified living conditions for cultural workers. Toxic resilience in

artists' environments also fosters transactional social relations. Social media and Spotify encourage a

commodified relationship with our peers while further humanising commodities, deepening our

alienation from others and from our own labour. In such circumstances, what artists consider valuable is

heavily influenced by their reliance on toxic resilience, rendering art sterile and meaningless.

 175

Refusing to participate in social media and platforms like Spotify, as a rejection of toxic resilience, aligns

with our vision of what music can be. After all, collapsing consumption, exchange, and production – as

Attali envisioned and as the live coding movement encourages – requires letting go of passive audiences

(McLean et al., 2023), which in turn seeks to abolish the institution of art and to overthrow the music

industry. If trauma is “[...] when we are not seen and known,” then social media (another infinite

consumption machine) is fueled by trauma. So, the social reproduction work guiding our ensemble has

enabled us to address trauma manifested as the ‘genocide of authenticity’ that social media entails

(Maté, 2022).

On the horizon of our possibilities is a project for an AI agent that will create ‘content’ by gathering data

from our rehearsals, formatting it, and posting it automatically on our social media. This approach aims

to address our ongoing marketing problem while undermining the relevance of social media content by

rendering it as pointless, non-human labour. While the AI agent will have an apparent mandate to

promote our ensemble, its long-term goal is to encourage people to move away from social media. We

want to invite them to reimagine the internet as a space for creation and enjoyment, rather than a

fragmented domain of production, exchange, and consumption. These are some of Pirarán’s reactive

resistance mechanisms embedded and imagined in our workflow: humans creating art while machines

handle the work, allowing us to focus more on care and mutual aid. From such priorities, art that leads us

towards new paradigms and a novel culture, free from capitalism, can be envisioned and experienced.

Such vision can be understood as the ensemble’s form of generative resistance.

 176

Algorithmic Acid Music and Algorithmic Acid Communism

The ensemble’s generative resistance is a conception of music that changes direction depending on the

creative ideas we are exploring. Thus, it is not a style, genre, or identity that we have developed as such.

Pirarán is influenced by communities that explore various aspects of tuning and time beyond

conventional Western traditions, popular Latin American modernism such as Pérez Prado, Cumbia

chichadélica and MicoRex, contemporary and experimental musicians, as well as musical genres

including free jazz, hard bop, vaporwave, hippie synth music, techno, glitch, industrial, ambient, and

noise. In Pirarán, networked and algorithmic environments converge with psychedelia and psychedelic

music to produce what we call algorithmic acid music. LFC is the work that best reflects this psychedelic

orientation.

With the renewed interest in global north countries in psychoactive drugs that threaten to commodify

psychedelic culture, there has been a novel interest in psychedelic music (Farrell, 2023). Pirarán’s sound

is psychedelic in multiple ways: It demands a reorientation of the listener (Wanke, 2021) towards a

delocalised sound capable of creating inner spaces that we navigate as performers but are clearly

communicable to the audience. The multiple ways in which we create immersive sounds for LFC –

multichannel spatialisation, tuning and tempo variations, synthesis exploration – not only explore

geographic and literal space but open a space of possibility where aesthetics remain transformative

rather than fixed.

This music is psychedelic because it emerges from multiple crises that rupture common sense and

reality, leaving the listener and us in a liminal space where things can change very quickly and into

anything imaginable. In LFC, the rupture event and critical period described in the second and first

 177

section of this chapter allows the acts to turn towards the unforeseen. For the ensemble, the crises in the

political economy of music and the COVID-19 pandemic preceded our collaboration. In my personal

experience, 19-S II ruptured psychosocial stability, allowing the unthinkable. LFC’s acts, Pirarán, and

Mexico City can only exist in a space where hegemony has fallen like a pile of rocks and glass.

But more importantly, the term psychedelics traces a historical fold between the current moment and a

cultural period from the late 1960s to the early 1970s, when psychedelic music thrived as a result of

counterculture tied to many liberation struggles: the Black Panthers, gay rights movements, second wave

feminism, decolonial struggles around the globe, movements against the Vietnam War, the rise of the

New Left, among many others. In a nutshell, it was a historic moment that revealed what could have been

instead of neoliberalism. Perhaps it also overlaps with the 1920s in Mexico City, where heterogeneous

cultural expressions reflected the rich political landscape of a country full of possibilities after an intense

social revolution (Madrid, 2008).

I am not advocating a retreat to ‘the good old days’ when ‘music was better.’ Nor should this be

misunderstood as ‘left melancholia,’ failing to imagine adaptive new forms of radical transformation.

Indeed, algorithmic acid music challenges the progressive neoliberal castle that attempts to misconstrue

leftist self-critique to purify feminism, decolonialism, and other emancipatory movements from global

class struggle.

LFC abducts its listeners and performers into a present time that is not ours but could be. The acts of LFC

come from a timeline where we have Beer and Allende’s cybernetics rather than Bezos’s Amazon, where

there is a thriving, multicultural, plurinational Palestine, or where neoliberalism was defeated by acid

communism.

 178

Acid communism, a term popularised by Mark Fisher (2017), is often associated with research and

political thought from the UK-based radical group Plan C, the historiography of the 1970s by John

Medhurst (2014) and Andy Beckett (2009), and the cultural studies work of Jeremy Gilbert (2014). The

dark mirror of acid communism is capitalist and socialist realism (Fisher, 2009), both trapped in a

dialectic where ‘reality’ undermines any opportunity for meaningful transformation. Often bound to the

counterculture, acid communism is a politically robust cultural project capable of avoiding co-optation

by capitalism and totalitarianism.

The concept of acid communism is a provocation and a promise. It is a joke of sorts, but one with

very serious purpose. It points to something that, at one point, seemed inevitable, but which now

appears impossible: the convergence of class consciousness, socialist-feminist consciousness-

raising and psychedelic consciousness, the fusion of new social movements with a communist

project, an unprecedented aestheticisation of everyday life (Fisher, 2017).

According to Fisher, music plays a particular role in acid communism by being able to puncture common

sense (Fisher, 2010). By refusing to merely entertain, music abducts the listener and exposes them to

meaningful diƯerences. Music becomes the “struggle over the means of perception[, f]ought out in the

nervous system” (Fisher, 2010, p. 559). Beyond political economy analysis and the social reproduction

perspective, acid communism enables Pirarán to transform the psycho-social field. Thus, music opens a

critical period conducive to neuroplasticity.

This strong psychedelic impetus is mediated by technologies of the non-self. These technologies are

meant to disrupt the individual as a minimal social unit and challenge the notion of private property at its

core. They are not fixed; LSD, MDMA, or psilocybin are technologies that have been re-imagined as

 179

commodities or in the service of warfare. Practices such as meditation and yoga are already associated

with consumerism and Silicon Valley’s toxic culture. Hence, there is always a level of risk in identifying

what would constitute a technology capable of dissolving the sense of self that alienates people from

communal existence. Through sound art and music, and aligning with various strategies of live coding,

algorithmic, and networked music, Pirarán has transformed cybernetics and algorithms into technology

and media of the non-self. This algorithmic acid communism oƯers both a promise and a provocation in

response to current forms of culture and communication.

 180

Conclusion

Throughout this thesis, I have analysed the works that I created as part of my larger PhD project. These

works include: Temazcal 2, TimekNot, and La Fábrica Colapsada. Each of these works explores the

intersecting relations of temporality and crisis, as well as the possibilities and emerging conditions for

care and subversive subjectivities. I have argued that the algorithmic networked music ensemble

contains within its possibilities the basis for new regimes of representation and modes of production that

re-embed people at the centre of production, reproduction, and exchange. The dimensions by which I

have described the three artworks—the two performances and the software—tend to be multiple: a

perspective on the technologies used, a reflection on their meaning as cultural artifacts and their role in

knowledge production, and a discussion of the artistic practices they engender. Similarly, these artworks

trace the flow of the proposed methodology in which hacking produces art that produces meaning that

produces technology to be hacked once more, etc.

In the first chapter, I described and expanded on Temazcal 2, a live-coded documentary artwork

developed in collaboration with Rolando Hernández, with additional support from Diego Villaseñor de

Cortina. The piece is a collection of multimedia elements – like images, audio samples, videos,

programming languages, software, among other things – meant to be activated in performance to

examine two interpretations of the temazcal: as both an electroacoustic composition and a

Mesoamerican technology used in birthing and healing practices. As the input and output of this artwork

– I engaged in a theoretical conversation regarding the tensions between indigeneity, mestizaje, and

settler colonialism as they emerge in Temazcal 2's performance and my position as a Mexican immigrant

 181

navigating a doctoral pathway in Canada. I have argued that Temazcal 2 critiques how electroacoustic

music appropriates Indigenous technologies and proposes a diƯerent subjectivity that rejects settler,

Indigenous, and mestizaje figures as structured within colonial and capitalist histories. This refusal

generates a form of double consciousness, linking situated knowledge – such as Rolando’s family history

– with critical artistic appropriation.

The second chapter described the aƯordances and limits of TimekNot: a computer language designed for

live coders to program heterogeneous, music-oriented temporal relationships on-the-fly, enabling the

triggering of audio samples across relatively autonomous musical layers. As a polytemporal language,

TimekNot conceptualizes music through multiple, coexisting tempi, oƯering a novel approach to

structuring rhythmic and temporal interactions. This chapter presented TimekNot as both a cultural

project and an artistic intervention in algorithmic music and live coding. It explored the language’s

grammar and syntax, the experiences that shaped its development, and its role within the broader live

coding ecology. There have been plenty of lessons regarding TimekNot’s aƯordances as a live coding

language that were learned in Temazcal 2’s execution as an artwork; the double consciousness

developed as part of it became a guiding intuition in the software writing and language designing process.

The aim of TimekNot’s aƯordances has been to provide a tool with which live coders could be

reconstituted as collective subjects rather than individuals.In this way, this software has refused to reify

the cultural neutrality of music-making technology.

The last chapter provided an in-depth exploration of La Fábrica Colapsada, a 30-minute operatic,

networked artwork that serves as the central piece of my doctoral research. Incorporating visuals,

multichannel audio, microtonal tuning, polytemporal rhythms, reactive algorithmic music, and live

 182

coding, the piece unfolds as a performance piece, also asynchronously on a website. It is supported by

online repositories containing multimedia materials and software reusable for seismic data processing,

wavetable synthesis, and spatialization in networked environments. In this chapter, I analysed how, more

than an artistic work, La Fábrica Colapsada is an artifact that generates new knowledge and sensibility

about crisis and time, particularly through the lens of Mexico City's earthquakes on September 19, 1985,

and 2017. Through this lens, I re-envisioned ‘disaster’ by integrating perspectives from social

reproduction theory, cybernetics, and cultural critique, coining concepts such as toxic resilience,

generative resistance, and reactive resistance as key frameworks for understanding and navigating crisis.

Building on this theoretical foundation, I additionally reflected on the formation of Pirarán, a networked

music ensemble created with my collaborators Iván López and Diego Villaseñor, which embodies a

baroque ethos of care and mutual aid. Extending the analysis of disaster to the global music scene, I

argued that artistic production, mirroring broader social crises, is trapped in a crisis of its own making.

Music-making requires to be reformulated and, while doing so, it responds to the crises it reflects. Pirarán

rejects toxic resilience in favor of generative and reactive resistance, refusing to participate in content

creation for technological enclosures like social media and Spotify and repurposing technological means

as technologies of the non-self to move beyond disaster towards communal forms of music-making.

Finally, I introduced algorithmic acid communism as the mode of production envisioned within our

practice of networked music and live coding.

Importantly, the ideas explored in Chapter 3 find many resonances with those of Chapter 1. The double

consciousness, transformed into an impetus towards communism in the TimekNot explorations,

manifests as the people protagonising the stories within the opera’s acts. While this is developed further

 183

through the concepts of reactive and generative resistance, it is anticipated in Chapter One’s section on

double consciousness and triple movements and its description of Mexico City’s relationship with

whititude and baroque ethos. TimekNot from Chapter 2 became the infrastructure for Pirarán’s

exploration, leading to the execution of La Fábrica Colapsada, from which a style of music improvisation

emerged that I have called radical polyphony: a music style rooted in the conceptual principles of the

language and the networked conditions in which we operate. Ultimately, Pirarán embodies the central

ideas explored throughout this dissertation: the social relations within a musical practice mediated by

networked, live-coding technology based on care and mutual aid capable of adumbrating unforeseen

modes of production and regimes of representation.

Faced by crises, the networked ensembles here discussed – both my collaborations with Rolando, Iván,

and Diego – opened a small space-time to suspend empty, accelerating time and to propose a slow,

constant, multiple, non-linear, texture of time. This texture of time is the outcome of focusing on social

relations above technological research and artistic creation, assuming that within such relations new

forms of art and technology can emerge. Thus, these ensembles transform crises into a critical period

where new connections can be imagined and created. In a world where crises are becoming more and

more the most frequent life experience, I have found it useful to inverse the discourse around them: the

crises are the norm, and niches and moments where redistribution of wealth and social justice emerge

are rare and valuable as well as real and concrete. The challenge related to the crisis of the imagination

mentioned at the introduction of this work has been to lift these critical periods into artistic visions and

networked infrastructure capable of harnessing crises to come into more critical periods.

 184

This dissertation reveals some interesting insights regarding live coding’s thinking-in-action. According to

Cocker, live coding’s “[…] mode of thought is less concerned with the development of theoretical

knowledge (theoria), nor solely with a mode of making or production (poiēsis), but rather its thinking-in-

action is inherently related to the enactment and exercise of a politics of action, moreover, of ethical-

political action” (Cocker, 2016, p. 106). Similarly, understanding performance as a theatre of agency – the

stage as a space where the human and the computational perform/negotiate/interrogate agency and

power (Franco Briones, 2022) – requires expanding its scope to domains outside the fields of technology

and art.

Throughout the artworks explored, I have come to understand thinking-in-action as an exercise inexorably

bound to a broader sense of life. Hence, the performative thinking-in-action and theatre of agency of live

coding is a site of tension immensely capable of theory and production rather than compulsive

actionable thinking. Throughout the three chapters of this dissertation, critical theory has acted as the

context and output of the artworks. In contrast, the artwork becomes the site of thinking-in-action and an

expanded theatre of agency. This is why it has been so relevant to talk about subjectivity, crises,

earthquakes, disasters, cities, tuning systems, polytemporality, convergence, mestizaje, resistance,

resilience, trauma, acid communism, colonialism, capitalism, Spotify, fascism, double consciousness,

technologies of the non-self, political economy, care, mutual aid, and so on.

The networked music ensembles involved in these artworks and the software developed for this project

both function as sites of politico-economic analysis and critique and as a vision of a mode of production

yet to be experienced in broader social settings. This is why it has been relevant to publicly share – with

copyleft licenses – all infrastructure related to these artworks. It has also been important to establish the

 185

ensembles and collaborations beyond programming expertise or (social-) networking opportunities -

based on conversations mediated by care and mutual aid. This is why the collective, networked live

coding discussed here anticipates shifts in the current mode of production and regimes of

representation.

A common misinterpretation of the thinking-in-action of coding-as-performance appears when Attali’s

argument on noise as a political economy is sanitised from its historic-materialist components. I call

stage fetishism the magical notion that the stage creates, ex-nihilo, conditions for the emergence of the

unforeseen, the new and the experimental: that, somehow, the actions on stage, thus artistic and

computational thought, inherently transform reality. However, performing agency and thought process

remain locked in a feed-back-and-forth dialectic loop with theory and, as Meiksins would claim, the

organisation of material life and social reproduction. This means that whatever appears on stage is a

manifestation of existing modes of production, its background conditions and regimes of representation.

These appearances act as either a critique of what we have, a reification of the status quo, a proposal of

what could be instead, or something else, perhaps.

Beyond live coding, this dissertation demonstrates that art practices, especially those bound to

technological development, are not inherently liberatory or social. Rather, art and music-making that

aspire to be emancipatory require an explicit connection to the world given by a way of thinking beyond

techno-scientific and artistic scholarship. Throughout this project, I have explored how and argued why

the arts and sciences require a mediation that can be characterised as emancipatory. Such

emancipatory mediation is not an afterthought nor a superficial layer to be appended to what is often

considered serious research, but it is the core by which such research becomes relevant to the world.

 186

This scholarship has opened several pathways for future research. The most immediate area to expand is

the development of TimekNot and its infrastructure. TimekNot remains functional at its most basic level,

demonstrating what can be done with polytemporality and radical polyphony. However, the widgets to

visualise its activity (its standalone version) and its higher order functionalities that multiply its eƯects

and economise its syntax are still to be implemented. In the not-so-distant future, Pirarán plans to play a

set with the three of us using only TimekNot once the references and the more complex ideas can be

played.

The infrastructure explored and created for Temazcal 2 and La Fábrica Colapsada remain as prototypes.

Concrete projects should be tackled to socialise software that is useful for people interested in

networked music and live coding. The concepts of latency-native ensembles should be expanded within

the paradigm of polytemporality utilising the concept of echoic distance and implemented as software.

Software designed to adapt multichannel audio to networked music should be created by tapping more

profoundly into insights on Ambisonics. Software that preserves and manages the dynamic relationship

between audio signals in diƯerent local conditions and setups would advance networked music.

Macehualcopa as a natural language target for a MiniTidal translation is still a project that could

substantially impact the inclusion of Indigenous Peoples into live coding. Better and more profound

explorations of networked instrument creation should be developed to keep entangling live coding with

haptic music creation. Intra-ensemble communication must be re-imagined through the concept of

psychedelic communication, and forms of interplay and ensemble coordination – beyond hard

synchronisation – need to be further investigated. In general, a whole framework for post-pandemic

networked music should be fully conceptualised.

 187

The networked conditions of Pirarán and my collaboration with Rolando for Temazcal 2 shed some light

on the authorship of an artwork. It is clear that an artwork that intends to be performed live in more than

one location at the same time becomes eƯectively unique in terms of authorship: not quite like diƯerent

artworks, not entirely diƯerent versions of the same artwork. In this case, the fundamental diƯerence is

the diverging aural experiences of Iván, Diego, Rolando, and me. For example, while the version of La

Fábrica Colapsada at the Networked Imagination Lab (NIL) is mine since it is shaped around my listening

experience in the NIL and its technical, social and acoustic conditions, the versions at Iván’s studio and

Estudio Piracantos belong to them, respectively. This mostly impacts the way documentation and post-

production are managed. However, as discussed and agreed upon, the benefits of any of these versions

will always be distributed equally among us. Once established that each version of a networked

performance is bound to an aural experience, consideration must be given to transmitting and

exchanging data – in the form of digital audio or code. And finally, how the data transmitted from diƯerent

locations is embodied as a performing human presence to avoid the instrumentalisation of the other.

Perhaps there needs to be further discussion around avoiding confusing human performers with artificial

agents, an unfortunate sign of the times. Questions about surplus enjoyment of performances arise as

well: while a person at the live location might receive immediate feedback - praise, criticism, as well as

the fun and frivolity of the in-person performance - from a live audience, ensemble participants who are

in distant studio conditions at the same time might be alienated from it.

Moreover, questions on transnational networked music ensembles and border regimes amidst a rising

era of retrieving globalisation, resurgent nationalism, and re-entrenching isolationism need to be

explored. Less relevant, questions of concert etiquette around mobile devices might also be important to

 188

tackle. These issues require attention as research and should be registered as specialised literature on

network music, labour studies, and international relations. Indeed, the intersection of labour studies,

networked technology, programming, and art creation is a relevant site to interrogate further matters of

proletarianisation, colonialism, and capitalist expansion described in this dissertation. Even further, this

intersection can reveal an artistic consciousness within unions capable of envisioning both the abolition

of work and (institutionalised) art, as well as how to generalise the notion of the strike beyond the union,

with perhaps a goal to enable a conscious suppression of the imagination of non-unionised, “flexible,”

creative labour so management in the service of the industry faces the horror of a realism without

mediations.

Based on the analysis of the current moment of music-making, Spotify, and AI, a broad cultural analysis

beyond the scope of this dissertation is yet to be realised. Such an analysis may portray a historical

moment in which a third culture, like the non-aligned movement of the twentieth century, emerges

globally on the horizon of what is possible. Contrastingly, an inverse renaissance describes our current

pathway, where the intersection of the arts and sciences without emancipation leads us into a neo-

feudal, techno-fascist society: not exactly a dark age, but a blinding, neon-lite age, like how I imagine the

torture rooms at Guantanamo Bay, resonating with loud music systems running all the time for all time –

a brighter world to be avoided.

 189

Bibliography

A. Gil, Y. E. (2018). Un Nosotros Sin Estado. Ediciones ONA.

Abel, M. (2014). Groove: An aesthetic of measured time. Brill.

Agamben, G. (2005). State of Exception. University of Chicago Press.

Agamben, G., & . (2020, May 23). Requiem for the Students. Diario Della Crisi. https://d-

dean.medium.com/requiem-for-the-students-giorgio-agamben-866670c11642

Aguilar Gil, Y. E. (2020). Ää Manifiestos Sobre La Diversidad Lingüística. Almadía Editoria.

Alcántara-Ayala, I. (2019). Desastres en México: Mapas y apuntes sobre una historia inconclusa.

Investigaciones Geográficas, 100. https://doi.org/10.14350/rig.60025

Arom, S. (1991). African Polyphony and Polyrhythm: Musical Structure and Methodology (M. Thom, B.

Tuckett, & R. Boyd, Trans.). Cambridge University Press; Cambridge Core.

https://doi.org/10.1017/CBO9780511518317

Attali, J., foreword Jameson, F., afterword McClary, S., & trans. Massumi, B. (1985). Noise: The political

economy of music. University of Minnesota Press.

Bankoff, G., Frerks, G., & Hilhorst, D. J. M. (2004). Mapping Vulnerability, Disasters, Development and

People. Mapping Vulnerability: Disasters, Development and People.

https://doi.org/10.4324/9781849771924.

Bauer, D., & Malik, S. (2023). Xenotemporality and Time-Complexes. In Catastrophe Time! (pp. 210–225).

Strange Attractor Press.

Becket, A. (2009). When the lights went out: Britain in the seventies. Faber and Faber.

Benjamin, W. (1989). Theses on the Philosophy of History.

https://api.semanticscholar.org/CorpusID:141079626

 190

Bhattacharya, T., & Vogel, L. (2017). Introduction. In T. Bhattacharya (Ed.), Social Reproduction Theory (pp.

1–20). Pluto Press; JSTOR. https://doi.org/10.2307/j.ctt1vz494j.5

Blackwell, A. F., Cocker, E., Cox, G., McLean, A., & Magnusson, T. (Eds.). (2022a). Notation. In Live Coding:

A User’s Manual (pp. 125–158). The MIT Press. https://doi.org/10.7551/mitpress/13770.003.0012

Blackwell, A. F., Cocker, E., Cox, G., McLean, A., & Magnusson, T. (Eds.). (2022b). What Does Live Coding

Want? In Live Coding: A User’s Manual (p. 0). The MIT Press.

https://doi.org/10.7551/mitpress/13770.003.0012

Borzacchiello, E. (2017). MEMORIA A PARTIR DE UN SISMO: LA FÁBRICA DE CHIMALPOPOCA.

Memoria: Revista de Crítica Militante. https://revistamemoria.mx/?p=1839

Bratton, B. (2021). The Revenge of the Real: Politics for a Post-Pandemic World. Verso Books.

Carlos, W. (1987). Tuning: At the Crossroads. Computer Music Journal, 11(1), 29–43. JSTOR.

https://doi.org/10.2307/3680176

Castañeda, D., & Mendoza, V. T. (1933). Instrumental precortesiano: Instrumentos de percusión. Imprenta del

Museo Nacional de Arqueología, Historia y Etnografía.

https://books.google.ca/books?id=5DVXmwEACAAJ

Castañeda Gutiérrez, I. G., Mendoza Cruz, E. I., Carrillo Valderrama, S. L., Portillo López, G. L., Gutiérrez

Gutiérrez, D., Harriss Clare, C. J., & González Muñiz, E. (2018). Los daños de un edificio de interés

histórico-comunitario en San Gregorio Atlapulco, Xochimilco. Rutas de Campo, SEGUNDA ÉPOCA,

NÚM. 3(Enero-Junio), 114–121.

Castellanos, M. B. (2017). Introduction. American Quarterly, 69(4), 777–781. JSTOR.

Castle, C. (2017). Spotify’s “Fake Artist” Issue and Other Problems at Scale. Music Tech Solutions.

https://musictech.solutions/2017/07/09/spotifys-fake-artist-issue-and-other-problems-at-scale/

 191

Catrip, K., De Aguinaga Padilla, F., Breña, F., & Santiago, R. (2018). LOS EFECTOS DEL SISMO DE 19 DE

SEPTIEMBRE EN UNA COLONIA PERIFÉRICA POBRE DE LA CIUDAD DE MÉXICO: EL CASO

DE SAN GREGORIO ATLAPULCO.

Caygill, H. (2013). On Resistance: A Philosophy of Defiance. Bloomsbury Academic.

Chakrabarty, D. (2000). INTRODUCTION: In Provincializing Europe (pp. 3–23). Princeton University Press;

JSTOR. http://www.jstor.org/stable/j.ctt7rsx9.5

Chapman, O., & Sawchuk, K. (2015). Creation-as-Research: Critical Making in Complex Environments.

RACAR: Revue d’art Canadienne / Canadian Art Review, 40(1), 49–52. JSTOR.

Cocker, E. (2016). Performing thinking in action: The meletē of live coding. International Journal of

Performance Arts and Digital Media, 12(2), 102–116. https://doi.org/10.1080/14794713.2016.1227597

Cocker, E. (2018). What now, what next—Kairotic coding and the unfolding future seized. Digital Creativity,

29(1), 82–95. https://doi.org/10.1080/14626268.2017.1419978

Couldry, N., & Mejias, U. A. (2019). Data Colonialism: Rethinking Big Data’s Relation to the Contemporary

Subject. Television & New Media, 20(4), 336–349. https://doi.org/10.1177/1527476418796632

Coulthard, G. S. (2014a). Conclusion. Lessons from Iddle No More: The Future of Indigenous Activism. In Red

Skin White Masks: Reject the Colonial Politics of Recognition (p. 220). University of Minnesota Press.

Coulthard, G. S. (2014b). Introduction: Subjects of Empire. In Red Skin White Masks: Reject the Colonial

Politics of Recognition (p. 220). University of Minnesota Press.

Cox, G., & McLean, A. (2012). Vocable Code. In Speaking Code: Coding as Aesthetic and Political

Expression. MIT Press. https://doi.org/10.7551/mitpress/8193.003.0006

Disasters: Theory and research (Quarantelli, E. L.). (1978). Sage.

Du Bois, W. E. B. (1997). The Souls of Black Folk (David W. Blight and Robert Gooding-Williams). Bedford

Books.

 192

Dyer-Witheford, N., Kjøsen, A. M., & Steinhoff, J. (2019). Inhuman Power. Pluto Press; JSTOR.

https://doi.org/10.2307/j.ctvj4sxc6

Echeverría, B. (1998). La Modernidad de lo Barroco. Ediciones Era.

Ek, D. (2024). [X post]. https://x.com/eldsjal/status/1795871513293320204?lang=es

Fanon, F., 1925-1961, author. (2008). Black skin, white masks. First edition, New edition. New Yorkௗ: Grove

Press, 2008. ©2008. https://search.library.wisc.edu/catalog/9910388221802121

Faramelli, A. (2020). Resistance, Revolution and Fascism: Zapatismo and Assemblage Politics. Bloomsbury

Publishing.

Farrell, G. L. (2023). Introduction. In Musical Psychedelia: Research at the Intersection of Music and

Psychedelic Experience (Farrell, G.L. (Ed.)). Routledge.

Federici, S. (2004). Caliban and the Witch: Women, The Body, and Primitive Accumulation. Autonomedia.

Federici, S. (2018). Witches, Witch-Hunting, and Women. BTL.

Ferguson, S. (2020). Women and Work. Between The Lines; JSTOR. https://doi.org/10.2307/j.ctvs09qm0

Fisher, M. (2009). Capitalist Realism: Is There No Alternative? Zero Books.

Fisher, M. (2010). Militant Tendencies Feed Music. In K-Punk: The collected and unpublished writings of Mark

Fisher (2004-2016) (ed. Ambrose, Daniel, pp. 555–561). Zero Books.

Fisher, M. (2014). The Slow Cancellation of the Future. In Ghosts of my life: Writings on depression,

hauntology and lost futures. Zero books.

Fisher, M. (2017). Acid Communism [Book Introduction]. https://my-blackout.com/2019/04/25/mark-fisher-

acid-communism-unfinished-introduction/

Forssell Méndez, A. (2020). Una interpretación materialista del mestizaje. Común.

https://revistacomun.com/blog/una-interpretacion-materialista-del-mestizaje/

 193

Franco Briones, A. (2019). TIMENOT: A Computational Notation for Time-Oriented Live Coding [Major

Research Project]. McMaster University.

Franco Briones, A. (2022). Live Coding as a Theatre of Agency and a Factory of Time. In Music and Time:

Psychology, Philosophy, Practice (M. Phillips&M. Sergeant, pp. 112–126). Boydell & Brewer.

Franco Briones, A., & Villaseñor, D. (2020). Poly-temporality: Towards an ecology of time-oriented live

coding. Proceedings of the Fifth International Conference on Live Coding. International Conference on

Live Coding, Limerick, Ireland. https://doi.org/10.5281/zenodo.3939527

Franco Briones, A., & Villaseñor de Cortina, D. (2019). Nanc-in-a-Can Canon Generator. SuperCollider code

capable of generating and visualizing temporal canons critically and algorithmically. Proceedings of the

Fourth International Conference on Live Coding. Proceedings of the Fourth International Conference on

Live Coding, Madrid. https://doi.org/10.5281/zenodo.3946192

Fraser, N. (2019). The Old Is Dying and the New Cannot Be Born. Verso.

Fraser, N. (2020). Fortunes of Feminism: From State-Managed Capitalism to Neoliberal Crisis. Verso Books.

https://books.google.ca/books?id=LACREAAAQBAJ

Fraser, N. (2022). Cannibal Capitalism: How our System is Devouring Democracy, Care, and the Planet and

What We Can Do A bout It. Verso Books.

Gann, K. (1995). The Music of Conlon Nancarrow. Cambridge University Press.

Gilbert, J. (2014). Common Ground: Democracy and Collectivity in an Age of Individualism. Pluto Press.

https://doi.org/10.2307/j.ctt183p7m6

Harkins, J. (2009). A Practical Guide to Patterns. chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://opencourses.ionio.gr/modules/document/file.php/

DAVA257/Harkins_A_Practical_Guide_to_Patterns.pdf

 194

Harvey, D. (2004). The “New” Imperialism: Accumulation by Dispossession. Socialist Register, Vol. 40:

Socialist Register 2004: The New Imperial Challenge.

Harvey, D. (2005). ch. 4 Accumulation by Dispossession. In The New Imperialism. Oxford University Press.

Harvey, D. (2023). A Companion to Marx’s Grundrisse. Verso Books.

Hewitt, K. (1983). The Idea of Calamity in a Technocratic Age. In Interpretation of Calamity From the

Viewpoint of Human Ecology. Geographical Review.

Illner, P. (2021). Disasters and Social Reproduction: Crisis Response between the State and Community. Pluto

Press. https://doi.org/10.2307/j.ctv19m6198

Juárez Joyner, C. I. (2021). Los límites narrativos y formales en la práctica del cine documental como

posibilidad de representación en la creación de un documental con el pueblo pa ipai [MAESTRO EN

CINE DOCUMENTAL]. UNAM.

Jun-Wei, B., Zuo-Ju, W., Zhi-Jia, W., Fang, O., & Yuan, C. (2014). Wavelet Transform and Its Application in

Earthquake Engineering. Fifth International Conference on Intelligent Systems Design and Engineering

Applications, Hunan, China, 1126–1128. https://doi.org/10.1109/ISDEA.2014.250.

Kirkbride, R. (2016). FoxDot: Live Coding with Python and SuperCollider. International Conference on Live

Interfaces. International Conference on Live Interfaces, Sussex.

Klawans, J. (2024). Spotify has an issue with “fake artists.” The Week. https://theweek.com/tech/spotify-fake-

bands

Klein, N. (2007). The Shock Doctrine: The rise of disaster capitalism. Metropolitan Books/Henry Holt and

Company.

Krouse, S. (2018). Explicitly Comprehensible Functional Reactive Programming. REBLS.

Lagunes Huerta, L. (2017, October 5). Continúan contradicciones en información sobre predio de

Chimalpopoca. Cimac Noticias. http://www.cimacnoticias.com.mx/etiqueta/predio-chimalpopoca

 195

Leal Martínez, A. (2014). De pueblo a sociedad civil: El discurso político después del sismo de 1985. Revista

mexicana de sociología, 76(3), 441–469.

Loingsigh, A. N. (2019). Coevalness. In C. Forsdick, Z. Kinsley, & K. Walchester (Eds.), Keywords for Travel

Writing Studies: A Critical Glossary (pp. 45–47). Anthem Press; Cambridge Core.

https://www.cambridge.org/core/product/C7D1DB64D3A52CA005BD3F26F0582D6E

Lowman, E. B., & Barker, A. J. (2015). Settler: Identity and Colonialism in 21st Century Canada. Fernwood

Publishing.

Luxemburg, R. (2003). The Accumulation of Capital. Routledge.

Luxemburg, R. (2004). The Junius Pamphlet. In The Rosa Luxemburg Reader (Hudis, Peter; Anderson, Kevin

B., pp. 312–341). Monthly Review Press.

Madrid, A. L. (2008). Sounds of a Modern Nation: Music, Culture, and Ideas in Post-revolutionary Mexico.

Temple University Press.

Manovich, L. (2009). On Totalitarian Interactivity (Notes from the Enemy of the People).

https://manovich.net/index.php/projects/on-totalitarian-interactivity

Martini, A., & Sharma, N. (2022). Framing the sublime as affect in post-disaster tourism. Annals of Tourism

Research, 97. https://doi.org/10.1016/j.annals.2022.103473

Marx, K., & trans. Nicolaus, M. (1993). Grundrisse: Foundations of the Critique of Political Economy.

Penguin.

Maté, G. (Director). (2022). DAHLIA YoutTube Channel [Broadcast]. In Dr. Gabor Maté tells Dahlia social

media rewards people for being fake: A Genocide of Authenticity.

https://www.youtube.com/watch?v=PIdgaSX7ZEg

Maté, G., & Maté, D. (2022). The Myth of Normal: Trauma, Illness, & Healing in a Toxic Culture. Avery.

 196

McLean, A., Rohrhuber, J., & Wieser, R. (2023). The Meaning of Live: From Art Without Audience to

Programs Without Users. International Conference on Live Coding. International Conference on Live

Coding (ICLC2023), Utrecht, Netherlands. https://doi.org/10.5281/zenodo.7843567

McLean, A., & Wiggins, G. (2010). Tidal—Pattern Language for the Live Coding of Music. Proceedings of the

7th Sound and Music Computing Conference 2010. Sound and Music Computing conference 2010,

Barcelona. https://doi.org/10.5281/zenodo.849841

Medhurst, J. (2014). That Option No Longer Exists: Britain 1974-76. Zero Books.

https://books.google.ca/books?id=tbG-oAEACAAJ

Medina, E. (2014). Cybernetic Revolutionaries: Technology and Politics in Allende’s Chile. MIT Press.

Meiksins Wood, E. (1995). History or Technological Determinism. In Democracy Against Capitalism.

Cambridge University Press.

Mitchell, J. M., Bogenshutz, M., Lilienstein, A., Harrison, C., Kleiman, S., Parker-Guilbert, K., Ot’alora G., M.,

Garas, W., Paleos, C., Gorman, I., Nicholas, C., Mithoefer, M., Carlin, S., Poulter, B., Mithoefer, A.,

Quevedo, S., Wells, G., Klaire, S. S., van der Kolk, B., … Doblin, R. (2021). MDMA-assisted therapy

for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nature Medicine, 27,

1025–1033. https://doi.org/10.1038/s41591-021-01336-3

Naranjo, I. (2017). ASSEMBLAGE, RECURSION, AND FLEXIBLE STRUCTURES IN THREE RECENT

PIECES [DOCTOR OF MUSICAL ARTS]. Stanford University.

Nardou, R., Eastman M., L., Rothhaas, R., Xu, R., Yang, A., Boyden, E., & Dölen, G. (2019). Oxytocin-

dependent reopening of a social reward learning critical period with MDMA. Nature, 569, 116–120.

https://doi.org/10.1038/s41586-019-1075-9

Navarrete Linares, F. (2016). México racista: Una denuncia (Primera edición). Grijalbo; WorldCat.

 197

Nemchenko, L. (2017). Montage as the Meaning-generative Principle of Avant-garde: From Montage in

Cinema to Montage in Theatre (Soviet and Post-Soviet Theatre and Cinema). Convention 2017

“Modernization and Multiple Modernities” (ISPS Convention 2017). ISPS Convention 2017, Dubai.

Nicholls, D. (1996). Henry Cowell’s “New Musical Resources.” In H. Cowell (Ed.), New Musical Resources

(pp. 153–174). Cambridge University Press; Cambridge Core.

https://doi.org/10.1017/CBO9780511597329.018

Noble, J., & Biddle, R. (2004). Notes on notes on postmodern programming. SIGPLAN Not., 39(12), 40–56.

https://doi.org/10.1145/1052883.1052890

O’Brien, S. (2017). Resilience Stories: Narratives of Adaptation, Refusal, and Compromise. Resilience: A

Journal of the Environmental Humanities, 4(2–3), 43–65. https://doi.org/10.5250/resilience.4.2-3.0043

Ogborn, D., Beverley, J., Brown-Hernandez, N., Franco Briones, A., Gray, B., MacLean, A., N. del Angel, L.,

Oduro, K., Park, S., Roberts, A., Rodríguez, J., Sicchio, K., Stewart, D. A., Testa, C., & Tsabary, E.

(2022). Estuary 0.3: Collaborative audio-visual live coding with a multilingual browser-based platform.

Web Audio Conference 2022 (WAC2022). Web Audio Conference 2022, Cannes, France.

https://doi.org/10.5281/zenodo.6767377

Pätzold, C. (2014). Aspects of Temporal Organization in Brian Ferneyhough’s ’Carceri d’Invenzione III.

Journal for New Music and Culture, 8. http://www.searchnewmusic.org/paetzold.pdf

Polanyi, K. (2001). The Great Transformation: The Political and Economic Origins of Our Time. Beacon Press.

Queralt Molina, J. (2023). The complete guide to live-coding visuals in Punctual. Algorithmic Pattern Salon.

Algorithmic Pattern Salon. https://doi.org/10.21428/108765d1.397b6e6b

Ramírez de Garay, I. (2023). El sismo de 1985 y la deuda externa. Economía política y moral de un desastre.

Historia mexicana, 73(2), 831–877. https://doi.org/10.24201/hm.v73i2.4683

 198

Ramos, A. C., & Guerrero, C. (2017, September 25). ¿Quiénes son los muertos de Chimalpopoca? Pie de

Página. http://piedepagina.mx/quienes-son-los-muertos-de-chimalpopoca.php

Redhead, L. (2022). Nothing Really Changes’: Material Processes in and as Timein hearmleoþ-gieddunga. In

Music and Time: Psychology, Philosophy, Practice (M. Phillips&M. Sergeant). Boydell & Brewer.

Reina, R. (2015). Applying Karnatic Rhythmical Techniques to Western Music. Routledge.

https://doi.org/10.4324/9781315567402

Robinson, C. J. (2019). On racial capitalism, Black internationalism, and cultures of resistance. Pluto Press.

Rodolfo Acosta, José Luis Castillo, Gabriela Ortiz, & Cristian Morales-Ossio (Directors). (2021). Cátedra

Márquez | Mesa de diálogo Colonialismo y descolonización en la música contemporánea [Video

recording]. https://www.youtube.com/watch?v=N5CL-zAuM34

Rohrhuber, J. (2018). Algorithmic Music and the Philosophy of Time. In A. McLean & R. T. Dean (Eds.), The

Oxford Handbook of Algorithmic Music. Oxford University Press.

Rohrhuber, J., Campo, A. de, & Wieser, R. (2005). Algorithms Today: Notes on Language Design for Just in

Time Programming. International Conference on Mathematics and Computing.

https://api.semanticscholar.org/CorpusID:559371

Saffon Sanín, M. P., Vera, J., Gómez, P., Mora, M., Ortiz, M., & Félix, A. P. (2019). Capítulo quinto:

AFECTACIONES EN SAN GREGORIO ATLAPULCO, XOCHIMILCO. In Contra el desamparo del

Estado: Violaciones a los derechos de las personas damnificadas por el sismo 19S. UNAM, IIJ.

Sahagún, Bernardino de. (1829). Historia general de las cosas de Nueva España. Tomo Segundo: Libros V - IX

(Carlos María de Bustamante). Impr. del ciudadano A. Valdés.

Satizábal, P., & Melo Zurita, M. de L. (2021). Bodies-holding-bodies: The trembling of women’s territorio-

cuerpo-tierra and the feminist responses to the earthquakes in Mexico City. Third World Thematics: A

TWQ Journal, 6(4–6), 267–289. https://doi.org/10.1080/23802014.2022.2123953

 199

Scarlett, J. P. (2022). The harmful legacy of colonialism in natural hazard risk. Nat Commun, 13(6945).

https://doi.org/10.1038/s41467-022-34792-7

Schatz, V. (n.d.). Wavelet transform in Haskell [Computer software].

https://www.volkerschatz.com/science/haswavelet.html

Schmidt, S. (2018). Latin American Dependency Theory. Global South Studies.

Sicchio, K. (2024). Live Notation for Patterns of Movement. The Drama Review, 68(1), 104–116.

Sorensen, A. (2018). Extempore: The design, implementation and application of a cyber-physical programming

language [PHD]. 10.25911/5d67b75c3aaf0

Speed, S. (2017). Structures of Settler Capitalism in Abya Yala. American Quarterly, 69(4), 783–790. JSTOR.

Spiegel, L. (1981). Manipulations of Musical Patterns (p. 22).

Stiegler, B. (2012). RELATIONAL ECOLOGY AND THE DIGITAL PHARMAKON. Culture Machine, 13.

www.culturemachine.net

Subcomandante Marcos. (2001, March 10). Subcomandante Marcos, entrevista con Julio Scherer (J. Scherer,

Interviewer) [TV]. https://enlacezapatista.ezln.org.mx/2001/03/10/subcamandante-marcos-entrevista-

con-julio-scherer/

Thoegersen, P. A. (2022). The Progenitor: Charles Ives’s Universe Symphony and Its Legacy: Polytempic

Polymicrotonal Art Music. In Polytempic Polymicrotonal Music. Routledge.

Toop, R., & Ferneyhough, B. (1995). Ferneyhough, interview with Richard Toop. In Collected Writings.

Harwood Academic Publishers.

Torres Núñez del Prado, P. (2022). The Sonified Textiles within the Text(il)ura Performance: Cross-cultural

Tangible Interfaces as Phenomenological Artifacts VIS. Nordic Journal for Artistic Research.

 200

Toussaint, G. (2005). The Euclidean Algorithm Generates Traditional Musical Rhythms. Proceedings of

BRIDGES: Mathematical Connections in Art, Music and Science. Proceedings of BRIDGES:

Mathematical Connections in Art, Music and Science, Banff, Canada.

Turati, M. (2017, September 26). La fábrica caída en Chimalpopoca, vieja conocida del gobierno. Proceso.

https://www.proceso.com.mx/reportajes/2017/9/26/la-fabrica-caida-en-chimalpopoca-vieja-conocida-

del-gobierno-192099.html

van der Kolk, B. (2014). The Body Keeps the Score: Brain, Mind and Body in the Healing of Trauma. Penguin.

Vasconcelos, J. (1948). La raza cósmica. https://api.semanticscholar.org/CorpusID:60479621

Velasco-Pufleau, L. (2018). On Luigi Nono’s Political Thought: Emancipation Struggles, Socialist Hegemony

and the Ethic Behind the Composition of Für Paul Dessau. Music & Politics, XII(2).

https://doi.org/10.3998/mp.9460447.0012.205

Vilenica, A., Guerra Arjona, F., & Otomí community occupying the offices of the INPI in Mexico City. (2023).

This house belongs to everyone: Otomí community occupation of the National Indigenous Peoples’

Institute (INPI) in Mexico City as a struggle for dignified housing and the right to the city. Radical

Housing Journal, 5(1), 251–263. https://doi.org/10.54825/CSWW4265

Villeda, K. (2018). Tu nombre es el mío. In Pies en la tierra. Crónicas de septiembre. México. Huidobro S.,

Silva Graciela S., y Sánchez Jiménez Raquel.

Vizenor, G. R. (1999). Manifest Manners: Narratives on Postindian Survivance.

https://api.semanticscholar.org/CorpusID:142065962

Wanke, R. D. (2021). Sound in the Ecstatic-Materialist Perspective on Experimental Music. Routledge.

Whitener, B. (2021). Rosa Luxemburg in Mexico: On the Return of Primitive Accumulation. Critical

Sociology, 48, 089692052199244. https://doi.org/10.1177/0896920521992444

 201

Wilkins, J. (2023). The Italian Communist Composer Who Wrote Revolutionary Music for the Working Class.

Jacobin. https://jacobin.com/2023/06/luigi-nono-italy-fabbrica-illuminata-workers-music

Wolfe, P. (2006). Settler colonialism and the elimination of the native. Journal of Genocide Research, 8(4),

387–409. https://doi.org/10.1080/14623520601056240

Woo, G. (2023). If Things Have Turned for the Worst: A Catastrophist’s Diary. In Catastrophe Time! (pp. 92–

113). Strange Attractor Press.

Zhang, G. Z. (2023). Catastrophe Time! In Catastrophe Time! (pp. 92–113). Strange Attractor Press.

Appendices

A.1 Temazcal 2 Support Materials

A.1.1. Temazcal 2 video documentation online: https://www.youtube.com/watch?v=RhIQPzgPZhw&t=6s

A.1.2. Temazcal 2 repository online: https://github.com/afrancob/temazcal2

A.2 La Fábrica Colapsada Support Materials

A.2.1. Arraymusic presentation 2023: https://youtu.be/RQ8adQk9y7Y?t=3563

A.2.2. Website with the audio documentation and storytelling: https://lfc.piraran.com/

A.2.3. Repository 1: https://github.com/AFrancoB/2017

A.2.4. Repository 2: https://github.com/AFrancoB/la-fabrica-colapsada-visuales

A.2.5. Repository 3: https://github.com/AFrancoB/la-fabrica-colapsada

 202

A.3 TimekNot Support Materials

First performance documented with TimekNot: https://www.youtube.com/watch?v=EgWf3Qql-lo

A.4 TimekNot Source Code

The source code presented here is the first version, the one in which the Chapter 2 is based. More recent

versions can be explored in the following repo (especially branch ‘shedingCode’ where I am currently

working). The repository can be found here: https://github.com/afrancob/timeknot

A.4.1 The Main Module

module Main where

import Prelude
import Data.Either
import Data.Maybe
import Effect
import Effect.Now
import Effect.Ref
import Effect.Class
import Effect.Console (log)
import Data.Tempo
import Effect.Ref (new,write)
import Data.Traversable

import Data.Rational
import Data.List.Lazy hiding (many,Pattern)
import Data.Array as A

import Data.List as L

import Data.Map as M
import Data.Tuple

import Foreign

import Partial.Unsafe
import Data.Enum

 203

import Data.DateTime (DateTime(..))

import Data.Newtype

-- import Halogen as H
-- import Halogen.Aff as HA
-- import Halogen.HTML as HH
-- import Halogen.HTML.Properties as HP
-- import Halogen.HTML.Events as HE
-- import Halogen.VDom.Driver (runUI)

-- import Visualisation
-- import Svg.Parser

import AST
import TimePacketOps
import Parser
import Parser
import Novus

import Parsing

launch:: {} -> Effect TimekNot
launch _ = do
 log "timekNot: launch"
 ast <- new $ L.fromFoldable [TimeExpression M.empty]
 tempo <- newTempo (1 % 1) >>= new
 eval <- nowDateTime >>= new
 vantageMap <- new $ (M.empty)
 pure { ast, tempo, eval, vantageMap}

-- { zone :: Int, time :: Number, text :: String }
define :: TimekNot -> { zone :: Int, time :: Number, text :: String } -> Effect {
success :: Boolean, error :: String }
define tk args = do
 log "timekNot: evaluate"
 -- program <- read tk.ast -- this does not do anything, can be erased...?
 currentVM <- read tk.vantageMap
 log $ "currentVM" <> show currentVM
 tempo <- read tk.tempo
 eval <- nowDateTime
 let pr = check' currentVM $ runParser args.text parseProgram
 case pr of
 Left error -> pure $ { success: false, error }
 Right p -> do
 write eval tk.eval
 write p tk.ast
 write (processVantage (getVantageMap p) currentVM eval tempo) $ tk.vantageMap
 pure $ { success: true, error: "bad syntax" }

 204

check':: VantageMap -> Either ParseError Program -> Either String Program
check' vm (Left error) = Left $ parseErrorMessage error
check' vm (Right aProgram) = case check vm aProgram of
 true -> Right aProgram
 false -> Left "failed the check, time bites it's own
tail"

-- { zone :: Int, windowStartTime :: Number, windowEndTime :: Number }
render:: TimekNot -> {zone :: Int, windowStartTime :: Number, windowEndTime ::
Number} -> forall opts. Effect (Array Foreign)
render tk args = do
 let ws = numToDateTime (args.windowStartTime * 1000.0000) -- haskell comes in
milliseconds, purescript needs seconds
 let we = numToDateTime (args.windowEndTime * 1000.0000)
 program <- read tk.ast
 vantageMap <- read tk.vantageMap
 -- log $ "vm: " <> show vantageMap
 t <- read tk.tempo
 eval <- read tk.eval
 let tp = assambleTimePacket ws we eval t vantageMap
 -- log $ show program
 -- log $ show ws
 -- log $ show ws
 -- log $ show t
 programToForeign program tp

 -- events <- programToWaste program tp
 -- log $ show events
 -- pure $ map unsafeToForeign events

setTempo :: TimekNot -> ForeignTempo -> Effect Unit
setTempo tk t = do
 -- log $ "setTempo is called" <> show (fromForeignTempo t)
 write (fromForeignTempo t) tk.tempo

A.4.2 Voices

module Voices (programToForeign) where

import Preludeimport Effect (Effect)
import Effect.Console
import Data.Map as M
import Data.Array (filter,fromFoldable,(!!), zipWith, replicate, concat, (..), (:),
init, tail, last,head,reverse,zip, cons, snoc, length, singleton, splitAt)
import Data.TraversableWithIndex
import Foreign
import Data.Tempo

import AST

 205

import Parser -- getTemporalMap
import Aural -- getPitchXMap --- this two functions do not seem to belong in there
import TestOpsAndDefs
import TemporalSpecs
import AuralSpecs

-- glosario:
---- Voice is an ongoing or finished or yet-to-be-played musical idea enabled by
---- Block is a rhythmic pattern of onsets
---- Onset a moment in time when a sound is instantiated
---- An Event is an Onset with an Index
---- Index is a mark that allows me to identify the position of the onset so sounds
and sound characteristics can be attached to it
---- process-oriented index: an int identifier for each onset on a flow of onsets.
---- eventIndex is the way I will refer to process oriented indexes
---- structure-oriented index: an int identifier for each segment on a voice and an
array to identifier internal events in a voice: The head is the 'natural'
subdivisions of the voice, each new element in the array is a new subdivision
---- a structure oriented index has a voice index and a structure index. A voice
index is an Int while the Structure Index is an Array Int. The notation I have made
for the structure oriented index is: 3-0.2.4 to the left of the (-) is the voice
index and to the right of it is the event position in the rhythmic idea. The head of
the array is the top level of the nested subdivisions and the last is the deepest
level of the subdivisions.

programToForeign:: Program -> TimePacket -> Effect (Array Foreign)
programToForeign program timePacket = concat <$> calculatedVoices -- waste
 where voices' = programToVoice program -- Voices
 xenoPitches = getXPitchMap program -- Map String XenoPitch
 calculatedVoices = fromFoldable <$> M.values <$> calculateVoices
(getTemporalMap program) voices' xenoPitches timePacket

programToVoice:: Program -> Voices
programToVoice program = M.intersectionWith (\x y -> Voice x y) tempoMap auralMap
 where tempoMap = getTemporalMap program
 auralMap = getAuralMap program

calculateVoices:: M.Map String Temporal -> Voices -> M.Map String XenoPitch ->
TimePacket -> Effect (M.Map String (Array Foreign)) -- (M.Map String (Array
AlmostWaste))
calculateVoices tempoMap voiceMap xenopitches tp = traverseWithIndex (calculateVoice
tempoMap voiceMap xenopitches tp) voiceMap -- to get rid of Effect, change
traverseWithIndex to mapWithIndex

calculateVoice:: M.Map String Temporal -> Voices -> M.Map String XenoPitch->
TimePacket -> String -> Voice -> Effect (Array Foreign)-- (Array AlmostWaste)
calculateVoice tempoMap voiceMap xenopitches tp aKey (Voice temporal aurals) = do
 let events = calculateTemporal tempoMap tp aKey temporal -- Array Event
 let rhythmic = getRhythmic tempoMap temporal
 events >>= (auralSpecs voiceMap rhythmic aurals xenopitches)

 206

A.4.3 TimePacketOps

module TimePacketOps (assambleTimePacket,secsFromOriginAtVantage, secsFromOriginAtWS,
secsFromOriginAtWE, secsFromOriginAtEval,metricFromOriginAtWS, metricFromOriginAtWE,
metricFromOriginAtEval, voiceFromOriginToEval, fromDateTimeToPosix,
fromDateTimeToPosixMaybe, numToDateTime) where

import Prelude
import Data.Maybe
import Data.Newtype
import Data.Tempo
import AST
import DurationAndIndex
import Data.Rational (Rational(..), (%), fromInt, toNumber)
import Data.DateTime
import Data.DateTime.Instant
import Data.Time.Duration
import Data.Map (Map, lookup)

assambleTimePacket:: DateTime -> DateTime -> DateTime -> Tempo -> VantageMap ->
TimePacket
assambleTimePacket ws we eval t v = {ws: ws, we: we, eval: eval, origin: origin t,
tempo: t, vantageMap: v}

numToDateTime:: Number -> DateTime
numToDateTime x =
 let asMaybeInstant = instant $ Milliseconds x -- Maybe Instant
 asInstant = unsafeMaybeMilliseconds asMaybeInstant
 in toDateTime asInstant

unsafeMaybeMilliseconds:: Maybe Instant -> Instant
unsafeMaybeMilliseconds (Just x) = x
unsafeMaybeMilliseconds Nothing = unsafeMaybeMilliseconds $ instant $ Milliseconds
0.0

secsFromOriginAtVantage:: TimePacket -> String -> Number
secsFromOriginAtVantage tp k = vPosix - oPosix
 where oPosix = fromDateTimeToPosix tp.origin
 v = fromMaybe tp.tempo.time $ lookup k tp.vantageMap
 vPosix = fromDateTimeToPosix v

 vPosix = fromDateTimeToPosix v
secsFromOriginAtWS tp = ws - oPosix
 where oPosix = fromDateTimeToPosix tp.origin
 ws = fromDateTimeToPosix tp.ws

 ws = fromDateTimeToPosix tp.ws
secsFromOriginAtWE tp = we - oPosix
 where oPosix = fromDateTimeToPosix tp.origin
 we = fromDateTimeToPosix tp.we

 207

secsFromOriginAtEval:: TimePacket -> Number
secsFromOriginAtEval tp = eval - oPosix
 where oPosix = fromDateTimeToPosix tp.origin
 eval = fromDateTimeToPosix tp.eval

metricFromOriginAtWS:: TimePacket -> Number -- is this needed anyway?
metricFromOriginAtWS tp = originSecsAtWS / voiceDur
 where originSecsAtWS = secsFromOriginAtWS tp -- :: Number
 vTempo = toNumber $ tp.tempo.freq * (60%1) -- hz to bpm
 voiceDur = durInSecs 1.0 vTempo

metricFromOriginAtWE:: TimePacket -> Number
metricFromOriginAtWE tp = originSecsAtWE / voiceDur
 where originSecsAtWE = secsFromOriginAtWE tp -- :: Number
 vTempo = toNumber $ tp.tempo.freq * (60%1) -- htz to bpm
 voiceDur = durInSecs 1.0 vTempo

metricFromOriginAtEval:: TimePacket -> Number -- equivalent (in theory) to
timeToCount ???
metricFromOriginAtEval tp = originSecsAtEval / voiceDur
 where originSecsAtEval = secsFromOriginAtEval tp -- :: Number
 vTempo = toNumber $ tp.tempo.freq * (60%1) -- htz to bpm :: Number
 voiceDur = durInSecs 1.0 vTempo

voiceFromOriginToEval:: TimePacket -> Number -> Number -> Number
voiceFromOriginToEval tp vTempo vUnits = originSecsAtEval / voiceDur
 where originSecsAtEval = secsFromOriginAtEval tp -- :: Number
 voiceDur = durInSecs vUnits vTempo

fromDateTimeToPosix:: DateTime -> Number
fromDateTimeToPosix x = (unwrap $ unInstant $ fromDateTime x)/1000.0000

fromDateTimeToPosixMaybe:: Maybe DateTime -> Maybe Number
fromDateTimeToPosixMaybe (Just x) = Just $ (unwrap $ unInstant $ fromDateTime
x)/1000.0000
fromDateTimeToPosixMaybe Nothing = Nothing

A.4.4 Parser

module Parser(temporal, check, parseProgram, replica, getTemporalMap, getAuralMap,
test, testP,xPitchExpression, expression, getVantageMap, parseDate, utcA) where

import Prelude

import Data.Identity
import Data.List (List(..), head, tail, elem, (:), concat, (..), range)
import Data.List (fromFoldable, filter) as L
import Data.Array (fromFoldable) as A

 208

import Data.Either
import Data.Int
import Data.String (take, length)
import Data.Tuple (Tuple(..), fst, snd)
import Data.Map (Map(..), filter, lookup, keys, singleton, fromFoldable,
toUnfoldable, member, unions, empty)
import Data.Maybe (Maybe(..), fromMaybe)
import Data.Set as Set
import Data.Maybe
import Data.Rational (Rational(..), toRational, fromInt, (%))

import Data.DateTime (exactDate, Year(..), Month(..), Day(..))

import Data.FunctorWithIndex (mapWithIndex)

import Data.String.CodeUnits (fromCharArray)
import Data.String (split, Pattern)

import Data.Formatter.DateTime (Formatter, parseFormatString, unformat)
import Data.Formatter.Number (Formatter, parseFormatString, unformat) as N

import Data.DateTime
import Data.DateTime.Instant
import Data.Time.Duration

import Parsing
import Parsing.String
import Parsing.String.Basic
import Parsing.Combinators
import Parsing.Combinators.Array (many)
import Parsing.Language (haskellStyle)
import Parsing.Token (makeTokenParser)

import AST
import Rhythm
import Aural

type P = ParserT String Identity

testP str = runParser str parseProgram

-- ISSUES
---- range of Numbers is absolutely broken. DO NOT USE
---- Make all tests: start testing all the checks: tempoCheck, idCheck
replicaCheck!!!

-- TO DO LIST October 17th:
---- refactor Aural and Value
---- finish refactor of transposeWith

---- implement keyword last DONE

 209

---- implement copy of temporals: v1 <- v0 DONE
---- implement many aurals for one temporal DONE
---- implement weight

-- minor goals:

-- for now: pitch from the middle east DONE partially:structParser
-- refactor show of my data types. They mostly suck.

-- implementaciones siguientes:
 -- xenopitch -- PATHWAY OPENED. CPS ARE IMPLEMENTED

 -- refer to the most recent version of tempi-purs DONE (instead of pulling it from
the internet I copied the code from the repo) DONE

 -- events specific to concrete indexes: 2-0.1 "cp" -- should generate a cp sound
only at 2-0.1

 -- implement unleash parser

 -- razgado -- doable after concat
-- r <- razgado 0.2 5 -- donde 0.2 es dur en secs y 5 es numero de notas
-- r.sound = "grandpiano" .speed = _-_ 1 1.1 1.2 1.3 1.4 1.5;

---- doable after razgado
 -- canonise (tms) cp rhythmic <<- vantage (id index (_-4 means every fourth event
in block))
-- v0 <- diverge | xxxx :|
-- c <- canonise cpm(100,200,300,400,500) cp: 5 | xxxxx || <<- v0 _-4

 -- concat temporals -- Doable soon
-- v0 <- (2 afterEval) (3) | xxox ||
-- v1 <- (2 afterEval) (1) (v0 3:5) | xxx[xx]ox ||
-- w <- v0 <> v1 :|

 -- refactor auralSpecs!!!!!!

 -- acceleration in unlooped events (how to represent this? and calculate the
durations of the events??)

 -- Start with post-evaluation CPstry utcA,
-- Vantage.build = "first" (100 secsFromEval)
-- Vantage.build = "second" (100 xBeatsFromEval)
-- Vantage.move = "first" (100 secsFromEval)
-- Vantage.move = "second" (100 xBeatsFromEval)
-- Vantage.move = "first" (3 fromCurrentPosition)
-- Vantage.remove = "first"

-- v <- first cFrom tm | xxxx :|

 210

 -- grand project:
 -- Monoid programs:: Map ZoneIndex Voices
 ----- each zone has its eval time. Every zone accesses temporals and aurals
 ----- trans-zone relationships:
 -- two zones cannot name equally a temporal
 -- priority given to referencing (rather than referenced) zones
 -- what are the implications of this in an ensemble?

parseProgram:: P Program
parseProgram = do
 whitespace
 xs <- many expression
 eof
 pure $ L.fromFoldable xs

expression:: P Expression
expression = do
 _ <- pure 1
 choice [try timeExpression, try aural, try vantageExpression, xPitchExpression]

xPitchExpression:: P Expression
xPitchExpression = do
 _ <- pure 1
 x <- braces $ many $ xPitch
 pure $ XenoPitchExpression $ unions x

xPitch:: P (Map String XenoPitch)
xPitch = do
 _ <- pure 1
 id <- identifier
 _ <- reserved "<-"
 x <- choice [try cpSet] --, try mos, try edo]
 _ <- reserved ";"
 pure $ singleton id x

cpSet:: P XenoPitch
cpSet = do
 _ <- pure 1
 _ <- reserved "cps"
 sz <- natural
 factors <- parens $ many natural
 subsets' <- subsets <|> pure Nothing
 pure $ CPSet sz factors subsets'

subsets:: P (Maybe (Array Subset))
subsets = do
 _ <- pure 1
 _ <- reserved "|"
 xs <- chooseSubset `sepBy` comma
 pure (Just $ A.fromFoldable xs)

 211

chooseSubset:: P Subset
chooseSubset = choice [try intersection, try difference, try union, includes]

includes:: P Subset
includes = do
 _ <- pure 1
 n <- natural
 pure $ Subset n

union:: P Subset
union = do
 _ <- pure 1
 ns <- natural `sepBy` (reservedOp "u")
 pure $ Unions $ A.fromFoldable ns

intersection:: P Subset
intersection = do
 _ <- pure 1
 a <- natural
 _ <- reservedOp "n"
 b <- natural
 pure $ Intersection a b

difference:: P Subset
difference = do
 _ <- pure 1
 a <- natural
 _ <- reservedOp "c"
 b <- natural
 pure $ Difference a b

--
vantageExpression:: P Expression
vantageExpression = do
 _ <- pure 1
 x <- vantage
 pure $ VantagePointExpression x

vantage:: P (Map String Vantage)
vantage = do
 _ <- pure 1
 id <- identifier
 x <- choice [buildA, moveA, removeA]
 _ <- charWS ';'
 pure $ singleton id x

-- MyID.lift = 20 beats from eval;
buildA:: P Vantage
buildA = do
 _ <- pure 1
 _ <- reserved ".lift"

 212

 _ <- reservedOp "="
 x <- choice [try beatA, try secsA, utcA]
 pure $ Build x

utcA:: P TimePoint
utcA = do
 _ <- pure 1
 d <- date
 t <- choice [parens timeOfDay, timeOfDay]
 local <- (parens $ local) <|> (reserved "so-called utc") *> pure 0
 tiempo <- liftEither $ parseDate (d <> " " <> t)
 result <- liftMaybe (_ -> "Not a local time") $ adjust (Hours $ toNumber local)
tiempo
 pure $ UTC result

date:: P String
date = do
 _ <- pure 1
 y <- natural
 m <- identifier
 d <- natural
 pure (show y <> "-" <> m <> "-" <> show d)

timeOfDay:: P String
timeOfDay = do
 _ <- pure 1
 h <- natural
 _ <- reservedOp ":"
 m <- natural
 _ <- reservedOp ":"
 s <- natural
 pure ((padHour h) <> ":" <> show m <> ":" <> show s)

local:: P Int
local = do
 _ <- pure 1
 _ <- reserved "so-called utc"
 op <- choice [reservedOp "-" *> pure 1, reservedOp "+" *> pure (-1)]
 n <- natural
 pure (n * op)

padHour:: Int -> String
padHour n = if (length iAsStr) > 1 then iAsStr else "0" <> iAsStr
 where iAsStr = show n

parseFormatter:: Either String Formatter
parseFormatter = parseFormatString "YYYY-MMMM-DD HH:m:s"

parseDate:: String -> Either String DateTime
parseDate s = case parseFormatter of
 Left x -> Left x
 Right x -> unformat x s

 213

beatA:: P TimePoint
beatA = do
 num <- naturalOrFloat
 _ <- reserved "beats from eval"
 pure $ Beat $ toRat (toNumber' num)

secsA:: P TimePoint
secsA = do
 num <- naturalOrFloat
 _ <- reserved "secs from eval"
 pure $ Secs $ toRat (toNumber' num)

-- MyID.move = 20 beats from eval;
moveA:: P Vantage
moveA = do
 _ <- pure 1
 _ <- reserved ".move"
 _ <- reservedOp "="
 x <- choice [try beatMoveA, secsMoveA]
 pure $ Move x

beatMoveA:: P (Either Rational Rational)
beatMoveA = do
 num <- naturalOrFloat
 _ <- reserved "beats from current"
 pure $ Left $ toRat (toNumber' num)

secsMoveA:: P (Either Rational Rational)
secsMoveA = do
 num <- naturalOrFloat
 _ <- reserved "secs from current"
 pure $ Right $ toRat (toNumber' num)

removeA:: P Vantage
removeA = do
 _ <- pure 1
 _ <- reserved ".remove"
 pure $ Remove

timeExpression:: P Expression
timeExpression = do
 _ <- pure 1
 x <- temporal
 pure $ TimeExpression x

temporal:: P (Map String Temporal)
temporal = do
 _ <- pure 1
 choice [try replica, try polytemporalRelation]

-- inACan:: P (Map String Temporal)

 214

-- inACan = do
-- _ <- pure 1
-- id <- voiceId
-- _ <- reserved "<-"
-- voice <- voiceId
-- cTo <- choice [try cToLast, try $ parens parsePercenTo, try $ parens
parseProcessTo, parens parseStructureTo]
-- cFrom <- choice [try cFromLast, try $ parens cFromPercen, try $ parens
cFromProcess, parens cFromStructure]
-- tm <- brackets $ many tempoMark <|> pure XTempo -- the alternative should be
same as estuary tempo
-- _ <- charWS '|'
-- r <- rhythmic
-- l <- choice [(strWS "||" *> pure false), (strWS ":|" *> pure true)]
 -- pure $ singleton (fst p) $ Temporal (snd p) r l

-- polytemporalList:: String -> ConvergeTo -> ConvergeFrom -> List TempoMark -> Map
String Polytemporal
-- polytemporalList id cTo cFrom tms =
-- let newIDs = map (\index -> id <> "-" <> (show index)) $ range 0 $ length tms
-- in newIDs

replica:: P (Map String Temporal)
replica = do
 _ <- pure 1
 id <- voiceId
 _ <- reserved "<-"
 id2 <- voiceId
 _ <- semi
 pure $ singleton id $ Replica id2

polytemporalRelation:: P (Map String Temporal)
polytemporalRelation = do
 _ <- pure 1
 p <- choice [try kairos, try metric, try converge]
 _ <- charWS '|'
 r <- rhythmic
 l <- choice [(strWS "||" *> pure false), (strWS ":|" *> pure true)]
 pure $ singleton (fst p) $ Temporal (snd p) r l

kairos:: P (Tuple String Polytemporal)
kairos = do
 _ <- pure 1
 id <- voiceId
 _ <- reserved "<-"
 n <- choice [secsFromEval, atEval]
 tm <- parens tempoMark <|> pure XTempo
 pure $ Tuple id $ Kairos n tm

secsFromEval:: P Number
secsFromEval = do

 215

 _ <- pure 1
 n <- naturalOrFloat
 _ <- reserved "secsAfterEval"
 pure $ toNumber' n

atEval:: P Number
atEval = do
 _ <- pure 1
 _ <- reserved "atEval"
 pure 0.01

metric:: P (Tuple String Polytemporal)
metric = do
 _ <- pure 1
 id <- voiceId
 _ <- reserved "<-"
 polytemporal <- choice [try divergingMetric, convergingMetric]
 pure $ Tuple id polytemporal

divergingMetric:: P Polytemporal
divergingMetric = do
 _ <- pure 1
 _ <- reserved "diverge"
 tm <- parens tempoMark <|> pure XTempo -- the alternative should be same as estuary
tempo
 pure $ Metric (ProcessTo 0 Origin) (Process 0) tm

convergingMetric:: P Polytemporal
convergingMetric = do
 _ <- pure 1
 cTo <- choice [try $ parens parsePercenTo, try $ parens parseProcessTo, parens
parseStructureTo] <|> (pure $ ProcessTo 0 Snap)
 cFrom <- choice [try $ parens cFromPercen, try $ parens cFromProcess, parens
cFromStructure]
 tm <- parens tempoMark <|> pure XTempo -- the alternative should be same as estuary
tempo
 pure $ Metric cTo cFrom tm

converge:: P (Tuple String Polytemporal)
converge = do
 _ <- pure 1
 id <- voiceId
 _ <- reserved "<-"
 polytemporal <- choice [try diverging, try converging, novus]
 pure $ Tuple id polytemporal

diverging:: P Polytemporal
diverging = do
 _ <- pure 1
 _ <- whitespace
 voice <- voiceId
 _ <- reserved "diverge"

 216

 tm <- parens tempoMark <|> pure XTempo -- the alternative should be same as estuary
tempo
 pure $ Converge voice (ProcessTo 0 Origin) (Process 0) tm

converging:: P Polytemporal
converging = do
 _ <- pure 1
 _ <- whitespace
 voice <- voiceId -- choice between metricVoice or arbitrary name of a voice
 cTo <- choice [try cToLast, try $ parens parsePercenTo, try $ parens
parseProcessTo, parens parseStructureTo]
 cFrom <- choice [try cFromLast, try $ parens cFromPercen, try $ parens
cFromProcess, parens cFromStructure]
 tm <- parens tempoMark <|> pure XTempo -- the alternative should be same as estuary
tempo
 pure $ Converge voice cTo cFrom tm

novus:: P Polytemporal
novus = do
 _ <- pure 1
 _ <- whitespace
 _ <- reserved "Novus"
 _ <- reservedOp "."
 vantID <- voiceId
 cFrom <- choice [try cFromLast, try $ parens $ cFromPercen, try $ parens $
cFromProcess, parens cFromStructure]
 tm <- parens tempoMark <|> pure XTempo
 pure $ Novus vantID cFrom tm

cFromLast:: P ConvergeFrom
cFromLast = do
 _ <- pure 1
 _ <- strWS "last"
 pure $ Last

cFromPercen:: P ConvergeFrom
cFromPercen = do
 _ <- pure 1
 p <- naturalOrFloat
 _ <- charWS '%'
 pure $ Percen (toNumber' p)

cFromProcess:: P ConvergeFrom
cFromProcess = do
 _ <- pure 1
 e <- natural
 pure $ Process e

cFromStructure:: P ConvergeFrom
cFromStructure = do
 _ <- pure 1
 v <- natural

 217

 _ <- string "-"
 st <- structParser
 pure $ Structure v st

--
cToLast:: P ConvergeTo
cToLast = do
 _ <- pure 1
 last <- choice [try lastMod, lastSnap, lastOrigin]
 pure last

lastOrigin:: P ConvergeTo
lastOrigin = do
 _ <- pure 1
 _ <- strWS "last"
 pure $ LastTo Origin

lastSnap:: P ConvergeTo
lastSnap = do
 _ <- pure 1
 _ <- strWS "last"
 _ <- reserved "afterEval"
 pure $ LastTo Snap

lastMod:: P ConvergeTo
lastMod = do
 _ <- pure 1
 _ <- reserved "mod"
 m <- natural
 _ <- strWS "last"
 _ <- reserved "afterEval"
 pure $ LastTo (Mod m)

parsePercenTo:: P ConvergeTo
parsePercenTo = do
 _ <- pure 1
 p <- choice [try percenMod, try percenSnap, percenOrigin]
 pure p

parseProcessTo:: P ConvergeTo
parseProcessTo = do
 _ <- pure 1
 c <- choice [try processMod, try processSnap, processOrigin]
 pure c

parseStructureTo:: P ConvergeTo
parseStructureTo = do
 _ <- pure 1
 c <- choice [try structureMod, try structureSnap, structureOrigin]
 pure c

percenOrigin:: P ConvergeTo

 218

percenOrigin = do
 _ <- pure 1
 n <- naturalOrFloat
 _ <- charWS '%'
 pure $ PercenTo (toNumber' n) Origin

percenSnap:: P ConvergeTo
percenSnap = do
 _ <- pure 1
 n <- naturalOrFloat
 _ <- charWS '%'
 _ <- reserved "afterEval"
 pure $ PercenTo (toNumber' n) Snap

percenMod:: P ConvergeTo
percenMod = do
 _ <- pure 1
 _ <- reserved "mod"
 m <- natural
 n <- naturalOrFloat
 _ <- charWS '%'
 _ <- reserved "afterEval"
 pure $ PercenTo (toNumber' n) (Mod m)

processOrigin:: P ConvergeTo
processOrigin = do
 _ <- pure 1
 n <- natural
 pure $ ProcessTo n Origin

processSnap:: P ConvergeTo
processSnap = do
 _ <- pure 1
 n <- natural
 _ <- reserved "afterEval"
 pure $ ProcessTo n Snap

processMod:: P ConvergeTo
processMod = do
 _ <- pure 1
 _ <- reserved "mod"
 m <- natural
 n <- natural
 _ <- reserved "afterEval"
 pure $ ProcessTo n (Mod m)

structureOrigin:: P ConvergeTo
structureOrigin = do
 _ <- pure 1
 st <- forStructure
 pure $ StructureTo (fst st) (snd st) Origin

 219

structureSnap:: P ConvergeTo
structureSnap = do
 _ <- pure 1
 st <- forStructure
 _ <- reserved "afterEval"
 pure $ StructureTo (fst st) (snd st) Snap

structureMod:: P ConvergeTo
structureMod = do
 _ <- pure 1
 _ <- reserved "mod"
 m <- natural
 st <- forStructure
 _ <- reserved "afterEval"
 pure $ StructureTo (fst st) (snd st) (Mod m)

forStructure:: P (Tuple Int (Array Int))
forStructure = do
 _ <- pure 1
 v <- natural
 _ <- string "-"
 st <- structParser
 pure $ Tuple v st

structParser:: P (Array Int)
structParser = do
 _ <- pure 1
 xs <- natural `sepBy` string "."
 pure $ A.fromFoldable xs

voiceId:: P String
voiceId = do
 _ <- pure 1
 x <- identifier -- many $ noneOf ['\\','<',' ']
 pure x

tempoMark:: P TempoMark
tempoMark = do
 _ <- pure 1
 x <- choice [try cpm, try bpm, try cps, try ratio, acceleration]
 pure x

acceleration:: P TempoMark -- (~ 1 << 0 range 100cpm, 1000cpm)
acceleration = do
 _ <- pure 1
 _ <- reserved "~"
 freq <- toNumber' <$> naturalOrFloat
 _ <- reserved "<<"
 ph <- toNumber' <$> naturalOrFloat
 _ <- reservedOp "range"
 max <- choice [try cpm, try bpm, try cps, try ratio]
 _ <- reservedOp ","

 220

 min <- choice [try cpm, try bpm, try cps, try ratio]
 pure $ Sin {osc: toRat freq, min: min, max: max, phase: toRat ph}

cpm:: P TempoMark
cpm = do
 _ <- pure 1
 x <- toNumber' <$> naturalOrFloat
 _ <- reserved "cpm"
 pure $ CPM (toRat x)

bpm:: P TempoMark
bpm = do
 _ <- pure 1
 fig <- figure
 _ <- charWS '='
 x <- toNumber' <$> naturalOrFloat
 _ <- reserved "bpm"

 pure $ BPM (toRat x) fig

figure:: P Rational
figure = do
 n <- natural
 _ <- charWS '/'
 d <- natural
 pure $ toRational n d

cps:: P TempoMark
cps = do
 _ <- pure 1
 x <- toNumber' <$> naturalOrFloat
 _ <- reserved "cps"
 pure $ CPS (toRat x)

ratio:: P TempoMark
ratio = do
 _ <- pure 1
 id <- voiceId
 x <- natural
 _ <- reservedOp ":"
 y <- natural
 pure $ Prop id x y

--
test :: VantageMap -> String -> Either String Program
test vm x =
 case runParser x parseProgram of
 Left (ParseError err _) -> Left err
 Right prog -> case check vm prog of
 true -> Right prog
 false -> Left "failed the check"

 221

getTemporalMap:: Program -> Map String Temporal
getTemporalMap program = unions $ map unexpressTempo $ L.filter (\ expression ->
isTemporal expression) program
 where isTemporal (TimeExpression _) = true
 isTemporal _ = false

unexpressTempo:: Expression -> Map String Temporal
unexpressTempo (TimeExpression x) = x
unexpressTempo _ = empty

getAuralMap:: Program -> Map String (List Aural)
getAuralMap program = toListAurals $ map unexpressAural $ L.filter (\ expression ->
isAural expression) program
 where isAural (AuralExpression _) = true
 isAural _ = false

toListAurals:: List (Map String Aural) -> Map String (List Aural)
toListAurals mapas = unions $ map (\k -> toAurals k vals) $ map fst vals
 where vals = concat $ map toUnfoldable mapas
 toAurals key vals = singleton key $ map snd $ L.filter (\v -> (fst v) == key)
vals

unexpressAural:: Expression -> Map String Aural
unexpressAural (AuralExpression x) = x
unexpressAural _ = empty

--
getVantageMap:: Program -> Map String Vantage
getVantageMap program = unions $ map unexpressVantage $ L.filter (\ expression ->
isVantage expression) program
 where isVantage (VantagePointExpression _) = true
 isVantage _ = false

unexpressVantage:: Expression -> Map String Vantage
unexpressVantage (VantagePointExpression x) = x
unexpressVantage _ = empty

-- test' :: String -> Either String (Map String Temporal)
-- test' x =
-- case getTemporalMap <$> runParser x parseProgram of
-- Left (ParseError err _) -> Left err
-- Right aMap -> Right $ check aMap

check :: VantageMap -> Program -> Boolean
check vm program = checkedTempoAspects && checkedPitch
 where checkedTempoAspects = checkT vm (getVantageMap program) $ getTemporalMap
program
 checkedPitch = checkXPitch program

checkT :: VantageMap -> Map String Vantage -> Map String Temporal -> Boolean
checkT vm vMNew aMap' = checkID && checkTempoMark

 222

 where aReplicaMap = filter isReplica aMap'
 aMap = filter (not isReplica) aMap'
 checkID = not $ elem false $ mapWithIndex (check2 vm vMNew aMap' Nil) aMap'
 checkTempoMark = not $ elem false $ mapWithIndex (checkTempi aMap Nil) aMap

isReplica:: Temporal -> Boolean
isReplica (Replica _) = true
isReplica _ = false

getReplicaKey:: Temporal -> String
getReplicaKey (Replica id) = id
getReplicaKey _ = "2666"

check2 :: VantageMap -> Map String Vantage -> Map String Temporal -> List String ->
String -> Temporal -> Boolean
check2 _ _ aMap alreadyRefd aKey (Temporal (Kairos _ _) _ _) = true
check2 _ _ aMap alreadyRefd aKey (Temporal (Metric _ _ _) _ _) = true
check2 vm vMNew aMap alreadyRefd aKey (Temporal (Converge anotherKey _ _ _) _ _) =
 case lookup anotherKey aMap of
 Nothing -> false
 Just anotherValue -> case elem aKey alreadyRefd of
 true -> false
 false -> check2 vm vMNew aMap (aKey : alreadyRefd)
anotherKey anotherValue

check2 vm vMNew aMap alreadyRefd aKey (Temporal (Novus vantageKey _ _) _ _) =
 case lookup vantageKey vMNew of
 (Just x) -> if isRemove x then false else true
 Nothing -> case lookup vantageKey vm of
 (Just _) -> true
 Nothing -> false

-- in case of replica
check2 vm vMNew aMap alreadyRefd aKey (Replica id)
 | aKey == id = false
 | otherwise =
 case lookup id aMap of
 Nothing -> false
 Just nVal -> case elem id alreadyRefd of
 true -> false
 false -> check2 vm vMNew aMap (aKey : alreadyRefd) id nVal

isRemove Remove = true
isRemove _ = false

checkTempi:: Map String Temporal -> List String -> String -> Temporal -> Boolean
checkTempi aMap alreadyRefd aKey temporal =
 if (getTempoRef temporal) == Nothing then true
 else case lookup anotherKey aMap of
 Nothing -> false
 Just anotherValue -> case elem aKey alreadyRefd of
 true -> false

 223

 false -> checkTempi aMap (aKey : alreadyRefd) anotherKey
anotherValue
 where anotherKey = fromMaybe "" $ getTempoRef temporal

getTempoRef:: Temporal -> Maybe String
getTempoRef (Temporal (Kairos _ tm) _ _) = isTempoRefd tm
getTempoRef (Temporal (Metric _ _ tm) _ _) = isTempoRefd tm
getTempoRef (Temporal (Converge _ _ _ tm) _ _) = isTempoRefd tm
getTempoRef (Temporal (Novus _ _ tm) _ _) = isTempoRefd tm
getTempoRef (Replica _) = Nothing

isTempoRefd:: TempoMark -> Maybe String
isTempoRefd (Prop id _ _) = Just id
isTempoRefd _ = Nothing

--- negative Numbers
parseNumber:: P Number
parseNumber = choice [
 try $ parens (toNumber' <$> naturalOrFloat),
 try (toNumber' <$> naturalOrFloat),
 negNum
]

negNum:: P Number
negNum = do
 _ <- charWS '-'
 x <- naturalOrFloat
 pure ((-1.0) * toNumber' x)

tokenParser = makeTokenParser haskellStyle
parens = tokenParser.parens
braces = tokenParser.braces
identifier = tokenParser.identifier
reserved = tokenParser.reserved
naturalOrFloat = tokenParser.naturalOrFloat
natural = tokenParser.natural
float = tokenParser.float
whitespace = tokenParser.whiteSpace
colon = tokenParser.colon
brackets = tokenParser.brackets
comma = tokenParser.comma
semi = tokenParser.semi
integer = tokenParser.integer
stringLiteral = tokenParser.stringLiteral
reservedOp = tokenParser.reservedOp

toNumber':: Either Int Number -> Number
toNumber' (Left x) = toNumber x
toNumber' (Right x) = x

charWS:: Char -> P Char
charWS x = do

 224

 _ <- pure 1
 x <- char x
 whitespace
 pure x

strWS:: String -> P String
strWS x = do
 _ <- pure 1
 x <- string x
 whitespace
 pure x

toRat:: Number -> Rational
toRat x =
 let pFact = 1000000
 floored = floor x -- 12
 fract = x - (toNumber floored) -- 12.5 - 12.0 = 0.5
 fract' = round $ fract * (toNumber pFact) -- 500000
 in (floored%1) + (fract'%pFact) -- 12 + (500000%1000000)

------ this is an attempt to create a Number range using Formatter
-- getProperDigits:: String -> String -> Either String N.Formatter
-- getProperDigits a b =
-- case (length a' <= 2) && (length b' <= 2) of
-- false -> "not really a number"
-- true -> if a'!0 > b'!0 then
-- where a' = split (Pattern ".") a
-- b' = split (Pattern ".") b

-- compareAB:: Maybe Int -> Maybe Int -> String
-- compareAB (Just a) (Just b) = if a>=b then a "0" else b
-- compareAB Nothing (Just b) = b
-- compareAB (Just a) Nothing = a
-- compareAB Nothing Nothing = 0

-- parseNumFormatter:: Either String N.Formatter
-- parseNumFormatter = N.parseFormatString "0.000"

-- parseNum:: String -> Either String Number
-- parseNum s = case parseNumFormatter of
-- Left x -> Left x
-- Right x -> N.unformat x s

A.4.5 Rhythm

module Rhythm(rhythmic) where

 225

import Prelude

import Data.Either
import Data.Identity
import Data.List hiding (many,take)
import Data.List.Lazy (replicate,repeat,take)
import Data.Foldable (foldl)
import Data.Int
import Data.Tuple
import Data.String (singleton, joinWith)
import Data.Maybe hiding (optional)
import Data.Functor
import Control.Monad
import Data.List.NonEmpty (toList)
import Data.Map as M
import Data.String as Str

import Effect (Effect)
import Effect.Console (log)

import Parsing
import Parsing.String
import Parsing.String.Basic
import Parsing.Combinators
import Parsing.Language (haskellStyle)
import Parsing.Token (makeTokenParser)

import AST

type P = ParserT String Identity

-- to do: implement int parser as follows:
-- | <4 4 3> :| -- this should generate: xoooxoooxoo
-- | <4 4 3 , 0> :| -- this should generate: xoooxoooxoo , separates the pattern from
a rotation value
-- | <4 4 3 , 0, xx> :| -- this should generate: xxooooooxxooooooxxoooo, instead of
assuming a pattern (X) the player gives one to the program
-- this should be added to Rhythmic as a constructor:
-- Numeric Rhythmic (Array Int) Int

rhythmic:: P Rhythmic
rhythmic = do
 _ <- pure 1
 x <- choice [try parseRhythmList, try parseSD, try parseRepeat, try parseBjorklund,
parseXO]
 pure x

parseRhythms:: P Rhythmic
parseRhythms = do
 _ <- pure 1

 226

 choice [try parseRhythmList, try parseSD, try parseBjorklund, try parseRepeat,
parseXO]

parseRhythmList:: P Rhythmic
parseRhythmList = do
 _ <- pure 1
 x <- parseXOorSDorReporBjork
 xs <- toList <$> many1 parseXOorSDorReporBjork
 pure $ Rhythmics $ x:xs

parseXOorSDorReporBjork:: P Rhythmic
parseXOorSDorReporBjork = do
 _ <- pure 1
 choice [try parseSD, try parseRepeat, try parseBjorklund, parseXO]

parseSD:: P Rhythmic
parseSD = do
 _ <- pure 1
 _ <- charWS '['
 x <- parseRhythms
 _ <- charWS ']'
 pure $ Sd x

parseRepeat:: P Rhythmic
parseRepeat = do
 _ <- pure 1
 _ <- charWS '!'
 x <- parseRhythms
 _ <- charWS '#'
 y <- integer
 pure $ Repeat x y

parseBjorklund:: P Rhythmic
parseBjorklund = do
 _ <- pure 1
 x <- choice [try $ parens parseFull, try $ parens parseK, try $ parens
parseSimpleBl, parseInv]
 pure x

parseFull:: P Rhythmic
parseFull = do
 _ <- pure 1
 kPatt <- parseRhythms
 _ <- comma
 invPatt <- parseRhythms
 _ <- comma
 k <- natural
 _ <- comma
 n <- natural
 _ <- optional comma
 o <- natural <|> pure 0
 pure $ Bjorklund (Full kPatt invPatt) k n o

 227

parseSimpleBl:: P Rhythmic
parseSimpleBl = do
 _ <- pure 1
 k <- natural
 _ <- comma
 n <- natural
 _ <- optional comma
 o <- natural <|> pure 0
 pure $ Bjorklund Simple k n o

parseK:: P Rhythmic
parseK = do
 _ <- pure 1
 p <- bPattern
 pure $ Bjorklund (K p.patt) p.k p.n p.rotate

parseInv:: P Rhythmic
parseInv = do
 _ <- pure 1
 _ <- string "'("
 p <- bPattern
 _ <- string ")"
 pure $ Bjorklund (InvK p.patt) p.k p.n p.rotate

bPattern:: P {patt:: Rhythmic, k:: Int, n:: Int, rotate:: Int}
bPattern = do
 _ <- pure 1
 patt <- parseRhythms
 _ <- comma
 k <- natural
 _ <- comma
 n <- natural
 _ <- optional comma
 o <- natural <|> pure 0
 pure {patt: patt, k: k, n: n, rotate: o}

parseXO:: P Rhythmic
parseXO = do
 _ <- pure 1
 x <- choice [charWS 'x' *> pure X, charWS 'o' *> pure O]
 pure x

charWS:: Char -> P Char
charWS x = do
 _ <- pure 1
 x <- char x
 whitespace
 pure x

strWS:: String -> P String

 228

strWS x = do
 _ <- pure 1
 x <- string x
 whitespace
 pure x

tokenParser = makeTokenParser haskellStyle
parens = tokenParser.parens
braces = tokenParser.braces
identifier = tokenParser.identifier
reserved = tokenParser.reserved
naturalOrFloat = tokenParser.naturalOrFloat
natural = tokenParser.natural
float = tokenParser.float
whitespace = tokenParser.whiteSpace
colon = tokenParser.colon
brackets = tokenParser.brackets
comma = tokenParser.comma
semi = tokenParser.semi
integer = tokenParser.integer
stringLit = tokenParser.stringLiteral

A.4.6 Aural

module Aural(aural,variationsStr, checkXPitch, getXPitchMap, prog) where

import Prelude

import Data.Identity
import Data.List (List(..), head, tail, elem, (:), filter, fromFoldable, (..),
length, zip, concat, mapMaybe)
import Data.Array (fromFoldable, length) as A
import Data.Either
import Data.Int
import Data.Tuple (Tuple(..), fst, snd)
import Data.Map (Map(..), lookup, keys, singleton, toUnfoldable, member, values,
unions)
import Data.Map (fromFoldable) as M
import Data.Maybe (Maybe(..), fromMaybe)
-- import Data.Set as Set
import Data.String as Str

import Data.FunctorWithIndex (mapWithIndex)

import Data.String.CodeUnits (fromCharArray)

import Parsing
import Parsing.String

 229

import Parsing.String.Basic
import Parsing.Combinators
import Parsing.Combinators.Array (many)
import Parsing.Language (haskellStyle)
import Parsing.Token (makeTokenParser)

import AST
import Rhythm

type P = ParserT String Identity

aural:: P Expression
aural = do
 _ <- pure 1
 x <- parseValues
 _ <- reserved ";" -- this need to be fixed!
 pure $ AuralExpression x -- (Map Strg Aural)

parseValues:: P (Map String Aural)
parseValues = do
 _ <- pure 1
 id <- voiceId
 xs <- many value
 pure $ singleton id (fromFoldable xs)

value:: P Value
value = do
 _ <- pure 1
 _ <- reservedOp "."
 valType <- choice [try sound,try n, try gain, try pan, try speed, try begin, try
end, try vowel, try cutoff, try cutoffh, try inter, try maxw, try minw, try legato,
try orbit, try mayeh, try prog, try xeNotes, xeno]
 pure valType

prog:: P Value
prog = do
 _ <- pure 1
 _ <- choice [reserved "prog"]
 _ <- reservedOp "="
 sp <- parseSpan
 xs <- many idOfPitch
 pure $ Prog sp $ fromFoldable xs

idOfPitch:: P (Tuple String (Maybe Int))
idOfPitch = do
 id <- identifier
 n <- (Just <$> brackets natural) <|> pure Nothing
 pure $ Tuple id n

xeNotes:: P Value
xeNotes = do
 _ <- pure 1

 230

 _ <- choice [reserved "xnotes"]
 _ <- reservedOp "="
 sp <- parseSpan
 l <- choice [try (fromFoldable <$> parseRangeInt), fromFoldable <$> many natural]
 vars <- variationsInt <|> pure Nil
 pure $ XNotes sp l vars

xeno:: P Value
xeno = do
 _ <- pure 1
 xID <- choice [try shurNot, try shurNot8, xeno']
 _ <- reservedOp "="
 sp <- parseSpan
 xnL <- choice [try (A.fromFoldable <$> parseRangeInt), many natural]
 pure $ Xeno xID sp $ fromFoldable xnL

shurNot8:: P (Tuple String (Maybe Int))
shurNot8 = do
 _ <- pure 1
 _ <- reserved "shurNot8"
 pure $ Tuple "shurNot8" Nothing

shurNot:: P (Tuple String (Maybe Int))
shurNot = do
 _ <- pure 1
 _ <- reserved "shurNot"
 pure $ Tuple "shurNot" Nothing

xeno':: P (Tuple String (Maybe Int))
xeno' = do
 _ <- pure 1
 id <- identifier
 n <- (Just <$> brackets natural) <|> pure Nothing
 pure $ Tuple id n

-- Dastgah

-- Intervals: Bozorg 182; Kuchak 114; Tanini 204; Baghie 90.

-- shur: D Eqb F G Aqb Bb C
-- normalised to 24ET: 0 150 300 500 650 800
1000 1200
-- using intervals: 0 182 114 (296) 204 (500) - 182 (682)- 114 (796) - 204
(1000) - 1200
-- name of interfvals: 0 - Bozorg - Kuchak - Tanini - Bozorg - Kuchak -
Tanini ??? how to get to the Octave?

-- corrected by Mehdad: 0 1.82 2.96 5.0 7.04 7.94 9.98 12.0

mayeh:: P Value
mayeh = do
 _ <- pure 1

 231

 choice [try shur]

shur:: P Value
shur = do
 _ <- pure 1
 _ <- choice [reserved "shur"]
 _ <- reservedOp "="
 shur <- makeShur
 pure shur

-- Dastgah Span Dastgah

makeShur:: P Value
makeShur = do
 _ <- pure 1
 sp <- parseSpan
 shurList <- choice [try (A.fromFoldable <$> parseRangeInt), many natural]
 pure $ Dastgah sp (Shur $ fromFoldable shurList)

orbit:: P Value
orbit = do
 _ <- pure 1
 _ <- choice [reserved "orbit"]
 _ <- reservedOp "="
 m <- choice [try makeOrbit, transposeOrbit]
 pure m

transposeOrbit:: P Value
transposeOrbit = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedOrbit id n

makeOrbit:: P Value
makeOrbit = do
 _ <- pure 1
 sp <- parseSpan
 nList <- choice [try (A.fromFoldable <$> parseRangeInt), many natural]
 vars <- variationsInt <|> pure Nil
 pure $ Orbit sp (fromFoldable nList) vars

legato:: P Value
legato = do
 _ <- pure 1
 _ <- choice [reserved "legato"]
 _ <- reservedOp "="
 m <- choice [try makeLegato, transposeLegato]
 pure m

transposeLegato:: P Value
transposeLegato = do

 232

 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedLegato id n

makeLegato:: P Value
makeLegato = do
 _ <- pure 1
 sp <- parseSpan
 coLs <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ Legato sp (fromFoldable coLs) vars

--
inter:: P Value
inter = do
 _ <- pure 1
 _ <- choice [reserved "inter"]
 _ <- reservedOp "="
 m <- choice [try makeInter, transposeInter]
 pure m

transposeInter:: P Value
transposeInter = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedInter id n

makeInter:: P Value
makeInter = do
 _ <- pure 1
 sp <- parseSpan
 coLs <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ Inter sp (fromFoldable coLs) vars

--
minw:: P Value
minw = do
 _ <- pure 1
 _ <- choice [reserved "minw"]
 _ <- reservedOp "="
 m <- choice [try makeMinw, transposeMinw]
 pure m

transposeMinw:: P Value
transposeMinw = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedMinW id n

makeMinw:: P Value
makeMinw = do

 233

 _ <- pure 1
 sp <- parseSpan
 coLs <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ MinW sp (fromFoldable coLs) vars

--
maxw:: P Value
maxw = do
 _ <- pure 1
 _ <- choice [reserved "maxw"]
 _ <- reservedOp "="
 m <- choice [try makeMaxw, transposeMaxw]
 pure m

transposeMaxw:: P Value
transposeMaxw = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedMaxW id n

makeMaxw:: P Value
makeMaxw = do
 _ <- pure 1
 sp <- parseSpan
 coLs <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ MaxW sp (fromFoldable coLs) vars

--
cutoffh:: P Value
cutoffh = do
 _ <- pure 1
 _ <- choice [reserved "hcutoff"]
 _ <- reservedOp "="
 cutoffh <- choice [try makeCutOffH, transposeCutOffH]
 pure cutoffh

transposeCutOffH:: P Value
transposeCutOffH = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedCutOffH id n

makeCutOffH:: P Value
makeCutOffH = do
 _ <- pure 1
 sp <- parseSpan
 coLs <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ CutOffH sp (fromFoldable coLs) vars

 234

cutoff:: P Value
cutoff = do
 _ <- pure 1
 _ <- choice [reserved "cutoff"]
 _ <- reservedOp "="
 cutoff <- choice [try makeCutOff, transposeCutOff]
 pure cutoff

transposeCutOff:: P Value
transposeCutOff = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedCutOff id n

makeCutOff:: P Value
makeCutOff = do
 _ <- pure 1
 sp <- parseSpan
 coLs <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ CutOff sp (fromFoldable coLs) vars

vowel:: P Value
vowel = do
 _ <- pure 1
 _ <- choice [reserved "vowel"]
 _ <- reservedOp "="
 vowel <- choice [try makeVowel, transposeVowel]
 pure vowel

transposeVowel:: P Value
transposeVowel = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedVowel id n

makeVowel:: P Value
makeVowel = do
 _ <- pure 1
 sp <- parseSpan
 vLs <- choice [many parseVowel]
 vars <- variationsVow <|> pure Nil
 pure $ Vowel sp (fromFoldable vLs) vars

variationsVow:: P (List (Variation String))
variationsVow = do
 _ <- pure 1
 _ <- reserved "&"
 xs <- everyVow `sepBy` (reserved "&")
 pure xs

everyVow:: P (Variation String)

 235

everyVow = do
 _ <- pure 1
 _ <- reserved "every"
 n <- integer
 sp <- parseSpan
 xs <- choice [many parseVowel]
 pure $ Every n sp $ fromFoldable xs

parseVowel:: P String
parseVowel = do
 _ <- pure 1
 x <- choice [charWS 'a' *> pure "a", charWS 'e' *> pure "e", charWS 'i' *> pure
"i", charWS 'o' *> pure "o", charWS 'u' *> pure "u"]
 pure x

end:: P Value
end = do
 _ <- pure 1
 _ <- choice [reserved "end"]
 _ <- reservedOp "="
 end <- choice [try makeEnd, transposeEnd]
 pure end

-- transposeEndWith:: P Value
-- transposeEndWith = do
-- id <- voiceId
-- with <- parens transNumVal
-- pure $ TransposedEndWith id with

transposeEnd:: P Value
transposeEnd = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedEnd id n

makeEnd:: P Value
makeEnd = do
 _ <- pure 1
 sp <- parseSpan
 spdList <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ End sp (fromFoldable spdList) vars

begin:: P Value
begin = do
 _ <- pure 1
 _ <- choice [try $ reserved "begin",reserved "begin"]
 _ <- reservedOp "="
 b <- choice [try makeBegin, transposeBegin]
 pure b

-- transposeBeginWith:: P Value

 236

-- transposeBeginWith = do
-- id <- voiceId
-- with <- parens transNumVal
-- pure $ TransposedBeginWith id with

transposeBegin:: P Value
transposeBegin = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedBegin id n

makeBegin:: P Value
makeBegin = do
 _ <- pure 1
 sp <- parseSpan
 panList <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ Begin sp (fromFoldable panList) vars

speed:: P Value
speed = do
 _ <- pure 1
 _ <- choice [reserved "speed"]
 _ <- reservedOp "="
 n <- choice [try makeSpeed, transposeSpeed]
 pure n

-- transposeSpeedWith:: P Value
-- transposeSpeedWith = do
-- id <- voiceId
-- with <- parens transNumVal
-- pure $ TransposedSpeedWith id with

transposeSpeed:: P Value
transposeSpeed = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedSpeed id n

makeSpeed:: P Value
makeSpeed = do
 _ <- pure 1
 sp <- parseSpan
 spdList <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ Speed sp (fromFoldable spdList) vars

pan:: P Value
pan = do
 _ <- pure 1
 _ <- choice [try $ reserved "pan",reserved "p"]
 _ <- reservedOp "="

 237

 p <- choice [try makePan, transposePan]
 pure p

-- transposePanWith:: P Value
-- transposePanWith = do
-- id <- voiceId
-- with <- parens transNumVal
-- pure $ TransposedPanWith id with

transposePan:: P Value
transposePan = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedPan id n

makePan:: P Value
makePan = do
 _ <- pure 1
 sp <- parseSpan
 panList <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ Pan sp (fromFoldable panList) vars

gain:: P Value
gain = do
 _ <- pure 1
 _ <- choice [reserved "gain"]
 _ <- reservedOp "="
 g <- choice [try makeGain, transposeGain]
 pure g

-- transposeGainWith:: P Value
-- transposeGainWith = do
-- id <- voiceId
-- with <- parens transNumVal
-- pure $ TransposedGainWith id with

transNumVal:: P (List (Number -> Number))
transNumVal = do
 _ <- pure 1
 op <- choice [reservedOp "+" *> pure add, reservedOp "*" *> pure mul]
 numList <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 pure $ map op $ fromFoldable numList

transposeGain:: P Value
transposeGain = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedGain id n

makeGain:: P Value
makeGain = do

 238

 _ <- pure 1
 sp <- parseSpan
 gainList <- choice [try (A.fromFoldable <$> parseRangeNum), many parseNumber]
 vars <- variationsNum <|> pure Nil
 pure $ Gain sp (fromFoldable gainList) vars

n:: P Value
n = do
 _ <- pure 1
 _ <- choice [reserved "n"]
 _ <- reservedOp "="
 n <- choice [try makeN, {-try transposeNWith,-} transposeN]
 pure n

-- transposeNWith:: P Value
-- transposeNWith = do
-- id <- voiceId
-- n <- brackets natural <|> pure 0
-- with <- transIntVal
-- pure $ TransposedNWith id n with

transposeN:: P Value
transposeN = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedN id n

makeN:: P Value
makeN = do
 _ <- pure 1
 sp <- parseSpan
 nList <- choice [try (A.fromFoldable <$> parseRangeInt), many natural]
 vars <- variationsInt <|> pure Nil
 pure $ N sp (fromFoldable nList) vars

sound:: P Value
sound = do
 _ <- pure 1
 _ <- choice [try $ reserved "sound",reserved "s"]
 _ <- reservedOp "="
 sound <- choice [try makeSound, transposeSound]
 pure sound

transposeSound:: P Value
transposeSound = do
 id <- voiceId
 n <- brackets natural <|> pure 0
 pure $ TransposedSound id n

makeSound:: P Value
makeSound = do
 _ <- pure 1

 239

 sp <- parseSpan
 strList <- sampleParser
 vars <- variationsStr <|> pure Nil
 pure $ Sound sp strList vars

--
variationsStr:: P (List (Variation String))
variationsStr = do
 _ <- pure 1
 _ <- reserved "&"
 xs <- everyStr `sepBy` (reserved "&")
 pure xs

everyStr:: P (Variation String)
everyStr = do
 _ <- pure 1
 _ <- reserved "every"
 n <- integer
 sp <- parseSpan
 xs <- sampleParser
 pure $ Every n sp xs

variationsInt:: P (List (Variation Int))
variationsInt = do
 _ <- pure 1
 _ <- reserved "&"
 xs <- everyInt `sepBy` (reserved "&")
 pure xs

everyInt:: P (Variation Int)
everyInt = do
 _ <- pure 1
 _ <- reserved "every"
 n <- integer
 sp <- parseSpan
 xs <- choice [try parseRangeInt, fromFoldable <$> many natural]
 pure $ Every n sp xs

variationsNum:: P (List (Variation Number))
variationsNum = do
 _ <- pure 1
 _ <- reserved "&"
 xs <- everyNum `sepBy` (reserved "&")
 pure xs

everyNum:: P (Variation Number)
everyNum = do
 _ <- pure 1
 _ <- reserved "every"
 n <- integer
 sp <- parseSpan
 xs <- choice [try parseRangeNum, fromFoldable <$> many parseNumber]

 240

 pure $ Every n sp xs

--
parseSpan:: P Span
parseSpan = do
 _ <- pure 1
 x <- choice [
 reserved "-_" *> pure CycleInBlock
 , try $ reserved "_-" *> pure CycleBlock
 , try $ reserved "_-_" *> pure SpreadBlock
 , reserved "_" *> pure CycleEvent
]
 pure x

sampleParser:: P (List String)
sampleParser = do
 sampleNames <- stringLit
 pure $ stringToSamples sampleNames

stringToSamples:: String -> List String -- what to do with commas??
stringToSamples s = fromFoldable $ Str.split (Str.Pattern " ") $ Str.trim s

voiceId:: P String
voiceId = do
 _ <- pure 1
 x <- identifier
 pure x

--

toNumber':: Either Int Number -> Number
toNumber' (Left x) = toNumber x
toNumber' (Right x) = x

charWS:: Char -> P Char
charWS x = do
 _ <- pure 1
 x <- char x
 whitespace
 pure x

strWS:: String -> P String
strWS x = do
 _ <- pure 1
 x <- string x
 whitespace
 pure x

--
parseRangeInt:: P (List Int)

 241

parseRangeInt = do
 x <- natural
 _ <- reservedOp ".."
 y <- natural
 pure (x..y)

parseRangeNum:: P (List Number)
parseRangeNum = do
 x <- parseSpecialNum
 _ <- reservedOp ".."
 y <- parseSpecialNum
 pure $ specialRange x y

specialRange:: Tuple Int Int -> Tuple Int Int -> List Number
specialRange (Tuple i1 d1) (Tuple i2 d2) = map (\rangeInt -> (toNumber rangeInt) /
10.0) rangeInts
 where n1 = ((toNumber i1) * 10.0) + (toNumber d1) -- Tuple 2 3 will become 23
 n2 = ((toNumber i2) * 10.0) + (toNumber d2) -- Tuple 3 6 will become 36
 rangeInts = ((floor n1)..(floor n2))

parseSpecialNum:: P (Tuple Int Int)
parseSpecialNum = choice [try parseSpecialNum', toSpecial <$> natural]

toSpecial:: Int -> Tuple Int Int
toSpecial n = Tuple n 0

parseSpecialNum':: P (Tuple Int Int)
parseSpecialNum' = do
 x <- natural
 _ <- charWS '.'
 y <- natural
 pure $ Tuple x y

--- negative Numbers
parseNumber:: P Number
parseNumber = choice [
 try $ parens (toNumber' <$> naturalOrFloat),
 try (toNumber' <$> naturalOrFloat),
 negNum
]

negNum:: P Number
negNum = do
 _ <- charWS '-'
 x <- naturalOrFloat
 pure ((-1.0) * toNumber' x)

-- tests

-- test' x =

 242

-- case runParser x parseProgram of
-- Left (ParseError err _) -> Left err
-- Right aMap -> Right $ check aMap

checkXPitch:: List Expression -> Boolean
checkXPitch exs = (checkXPitch' exs) && (checkProg exs)

checkProg :: List Expression -> Boolean
checkProg expressions = not $ elem false $ map (\kn -> func aXenoPitchMap kn)
listOfPitchID
 where aXenoPitchMap = getXPitchMap expressions
 listOfPitchID = getProgIDs $ getAuralMap expressions

getProgIDs:: Map String (List Aural) -> List (Tuple String (Maybe Int))
getProgIDs aurals = noteIDs
 where noteIDs = concat $ mapMaybe keepProg $ concat $ concat $ values aurals

keepProg:: Value -> Maybe (List (Tuple String (Maybe Int)))
keepProg (Prog _ lista) = Just lista
keepProg _ = Nothing

checkXPitch' :: List Expression -> Boolean
checkXPitch' expressions = not $ elem false $ map (\kn -> func aXenoPitchMap kn)
listOfPitchID
 where aXenoPitchMap = getXPitchMap expressions
 listOfPitchID = getXenoIDs $ getAuralMap expressions

func:: Map String XenoPitch -> Tuple String (Maybe Int) -> Boolean
func mapa (Tuple "shurNot8" Nothing) = true
func mapa (Tuple "shurNot" Nothing) = true
func mapa (Tuple k Nothing) = case lookup k mapa of
 Nothing -> false
 Just xn -> true
func mapa (Tuple k (Just n)) = case lookup k mapa of
 Nothing -> false
 Just xn -> f xn n

f:: XenoPitch -> Int -> Boolean
f (CPSet s f (Just subs)) indx = indx <= A.length subs
f ShurNot8 _ = true
f ShurNot _ = true
f _ _ = false

getXenoIDs:: Map String (List Aural) -> List (Tuple String (Maybe Int))
getXenoIDs aurals = noteIDs
 where noteIDs = mapMaybe keepXeno $ concat $ concat $ values aurals

keepXeno:: Value -> Maybe (Tuple String (Maybe Int))
keepXeno (Xeno id _ _) = Just id
keepXeno _ = Nothing

getAuralMap:: Program -> Map String (List Aural)

 243

getAuralMap program = toListAurals $ map unexpressAural $ filter (\ expression ->
isAural expression) program
 where isAural (AuralExpression _) = true
 isAural _ = false

toListAurals:: List (Map String Aural) -> Map String (List Aural)
toListAurals mapas = unions $ map (\k -> toAurals k vals) $ map fst vals
 where vals = concat $ map toUnfoldable mapas
 toAurals key vals = singleton key $ map snd $ filter (\v -> (fst v) == key)
vals

unexpressAural:: Expression -> Map String Aural
unexpressAural (AuralExpression x) = x
unexpressAural _ = empty

getXPitchMap:: Program -> Map String XenoPitch
getXPitchMap program = unions $ map unexpressPitch $ filter (\ expression -> isXPitch
expression) program
 where isXPitch (XenoPitchExpression _) = true
 isXPitch _ = false

unexpressPitch:: Expression -> Map String XenoPitch
unexpressPitch (XenoPitchExpression x) = x
unexpressPitch _ = empty

-- there are three layers that need to be identified: the string that identifies the
bounded temporal, the Int that identifies the index of the aural, and then I need a
way to identify its type of Value:if it is a sound, gain, speed, etc. For this I
could use the constructor of Value...?

-- checkTransposition:: Voices -> Boolean
-- checkTransposition aMap = not $ elem false $ mapWithIndex (checkTransposition1
aMap Nil) anAuralMap
-- where anAuralMap = mapMaybe (\(Voice _ a) -> Just a) aMap

-- checkTransposition1:: Voices -> List (Tuple String Int) -> String -> List Aural ->
Boolean
-- checkTransposition1 aMap refd id aurals = not $ elem false $ mapped
-- where zipped = zip aurals (0..(length aurals))
-- mapped = map (checkTransposition2 aMap refd id) zipped

-- checkTransposition2 :: Voices -> List (Tuple String Int) -> String -> Tuple (List
Value) Int -> Boolean
-- checkTransposition2 aMap refd id aurals =

tokenParser = makeTokenParser haskellStyle

 244

parens = tokenParser.parens
braces = tokenParser.braces
identifier = tokenParser.identifier
reserved = tokenParser.reserved
naturalOrFloat = tokenParser.naturalOrFloat
natural = tokenParser.natural
float = tokenParser.float
whitespace = tokenParser.whiteSpace
colon = tokenParser.colon
brackets = tokenParser.brackets
comma = tokenParser.comma
semi = tokenParser.semi
integer = tokenParser.integer
stringLiteral = tokenParser.stringLiteral
reservedOp = tokenParser.reservedOp
stringLit = tokenParser.stringLiteral

A.4.7 Novus

module Novus(processVantage) where

import Prelude
import Data.Maybe
import Data.Maybe
import Data.Map
import Data.Rational

import Data.Rational
import Data.DateTime.Instant
import Data.Time.Duration

import Data.Tempo

import AST

processVantage:: Map String Vantage -> VantageMap -> DateTime -> Tempo -> VantageMap
processVantage novus vm eval t = difference (unions
[processed,unprocessed,remainFromBuild]) remove
 where unprocessed = difference vm novus -- remain the ones that are not altered
 isBuild (Build _) = true
 isBuild _ = false
 builds = filter (\v -> isBuild v) novus
 builds = filter (\v -> isBuild v) novus
 toBuild = difference builds vm -- List String
 isMove (Move _) = true
 isMove _ = false
 moves = filter (\v -> isMove v) novus
 toMove1 = intersection moves vm
 toMove2 = intersection moves toBuild
 isRemove Remove = true

 245

 isRemove _ = false
 remove = intersection (filter (\v -> isRemove v) novus) vm
 processed = mapMaybeWithKey (\k v -> transformVtoMaybeDT k v eval t vm) $
unions [toBuild, toMove1, toMove2]

transformVtoMaybeDT:: String -> Vantage -> DateTime -> Tempo -> VantageMap -> Maybe
DateTime
transformVtoMaybeDT _ (Build x) eval t _ = result
 where result = case x of
 Secs secs -> adjust (Seconds $ toNumber secs) eval
 Beat beat -> adjust (Seconds $ toNumber (beat * t.freq)) eval
 UTC dt -> Just dt
transformVtoMaybeDT k (Move x) eval t vm = current >>= adjust (Seconds x')
 where x' = case x of
 Right secs -> toNumber secs
 Left beat -> toNumber (beat * t.freq)
 current = lookup k vm -- Maybe DateTime
transformVtoMaybeDT _ Remove _ _ _ = Nothing

A.4.8 Duration Ad Index

module
DurationAndIndex(onsetDurations,durFromRhythmic,rhythmicToVoiceDuration,rhythmicToOns
ets, getIndexes, rhythmicStructIndex, getVoiceIndex, getBlocks, durInSecs,
onsetsFromBlocks, bjorklund) where

import Prelude
import Effect (Effect)
import Effect.Console

import Data.Tuple
import Data.Tuple
import Data.Either
import Data.Foldable (sum)
import Data.Int
-- import Data.FunctorWithIndex (mapWithIndex)
import Data.Array (filter,fromFoldable,(!!), zipWith, replicate, concat, (..), (:),
init, tail, last,head,reverse,zip, cons, snoc, length, singleton, splitAt)

import Data.List
import Data.Traversable (scanl)
import Data.List (fromFoldable,concat,zip,zipWith,length,init) as L
import Data.Map (Map(..)) as M

import Control.Applicative

import Data.Newtype

import Data.Tempo

 246

import AST
import Parser
import Parser

import Data.Rational (Rational(..), (%), fromInt)
import Data.Rational (toNumber) as R
import Data.DateTime
import Data.DateTime.Instant
import Data.Time.Duration

import Data.TraversableWithIndex

-- for testin

import Data.Enum
import Partial.Unsafe

-- get durations

durFromRhythmic:: Rhythmic -> Number -> Number
durFromRhythmic:: Rhythmic -> Number -> Number
durFromRhythmic O tempo = durInSecs 1.0 tempo
durFromRhythmic (Sd rhy) tempo = durInSecs 1.0 tempo
durFromRhythmic (Repeat rhy n) tempo = (durFromRhythmic rhy tempo) * (toNumber n)
durFromRhythmic (Rhythmics xs) tempo = sum $ map (\x -> durFromRhythmic x tempo) xs
durFromRhythmic (Bjorklund eu k n r) tempo = durFromRhythmic (simplifyBjorklund eu k
n r) tempo

rhythmicToVoiceDuration:: Rhythmic -> Number -- does not need Tempo...?
rhythmicToVoiceDuration X = 1.0
rhythmicToVoiceDuration X = 1.0
rhythmicToVoiceDuration (Sd xs) = 1.0
rhythmicToVoiceDuration (Repeat xs n) = foldl (+) 0.0 x
 where x = replicate n $ rhythmicToVoiceDuration xs
rhythmicToVoiceDuration (Bjorklund eu k n r) = rhythmicToVoiceDuration $
simplifyBjorklund eu k n r
rhythmicToVoiceDuration (Rhythmics xs) = foldl (+) 0.0 x
 where x = map (\x -> rhythmicToVoiceDuration x) xs

rhythmicToOnsets:: Rhythmic -> List Onset
rhythmicToOnsets rhy =
 let voiceDur = rhythmicToVoiceDuration rhy
 rhythmicSegments = onsetDurations 1.0 rhy
 durInPercentOfEvents = Cons 0.0 $ (fromMaybe (L.fromFoldable []) $ L.init $
scanl (+) 0.0 $ map (\x -> x/voiceDur) $ getDur <$> rhythmicSegments) -- List Number
 in L.zipWith (\x y -> Onset x y) (getBool <$> rhythmicSegments)
durInPercentOfEvents -- we need to keep the XO -- THIS gives percentage position
within voice,

onsetDurations:: Number -> Rhythmic -> List Onset
onsetDurations dur X = L.fromFoldable [Onset true dur]

 247

onsetDurations dur O = L.fromFoldable [Onset false dur]
onsetDurations dur (Sd xs) = onsetDurations' dur xs
onsetDurations dur (Repeat xs n) = L.concat $ map (\x -> onsetDurations dur x) $
L.fromFoldable $ replicate n xs
onsetDurations dur (Bjorklund eu k n r) = onsetDurations dur (simplifyBjorklund eu k
n r)
onsetDurations dur (Rhythmics xs) = L.concat $ map (\x-> onsetDurations dur x) xs

onsetDurations':: Number -> Rhythmic -> List Onset
onsetDurations' dur X = L.fromFoldable [Onset true dur]
onsetDurations' dur O = L.fromFoldable [Onset false dur]
onsetDurations' dur (Sd xs) = onsetDurations' dur xs
onsetDurations' dur (Repeat xs n) = L.concat $ map (\x -> onsetDurations' newDur x) $
L.fromFoldable $ replicate n xs
 where newDur = dur / (toNumber n)
onsetDurations' dur (Bjorklund eu k n r) = onsetDurations dur (simplifyBjorklund eu k
n r)
onsetDurations' dur (Rhythmics xs) = L.concat $ map (\x-> onsetDurations' newDur x)
xs
 where newDur = dur / (toNumber $ L.length xs)

getDur:: Onset -> Number
getDur (Onset _ x) = x

getBool:: Onset -> Boolean
getBool (Onset x _) = x

----- index calculations -----

getIndexes:: Rhythmic -> Number -> Number -> Number -> Number -> Array Index
getIndexes rhythmic xws we x1 dur =
 let lenOnset = L.length $ rhythmicToOnsets rhythmic
 voiceIndexes = getVoiceIndex xws we x1 dur
 structIndexes = rhythmicStructIndex rhythmic [0]
 eventIndexesPerVoice = (0..(lenOnset-1))
 eventIndexes = funquilla voiceIndexes eventIndexesPerVoice lenOnset -- Array
(Array Int)
 in assambleIndex voiceIndexes structIndexes eventIndexes

assambleIndex:: Array Int -> Array (Array Int) -> Array (Array Int) -> Array Index
assambleIndex vs st es = concat $ zipWith f vs xs
 where xs = map (\e -> zip st e) es
 f:: Int -> Array (Tuple (Array Int) Int) -> Array Index
 f v xs = map (\x -> Index v (fst x) (snd x)) xs

funquilla:: Array Int -> Array Int -> Int -> Array (Array Int)
funquilla voicesIndexes onsetIndexes lenOnsets = map (\voiceIndex -> funquilla'
onsetIndexes lenOnsets voiceIndex) voicesIndexes
 where funquilla' onsetIndexes lenOnsets voiceIndex = map (\onsetIndex ->
(voiceIndex*lenOnsets)+onsetIndex) onsetIndexes

 248

rhythmicStructIndex:: Rhythmic -> Array Int -> Array (Array Int)
rhythmicStructIndex X i = [i]
rhythmicStructIndex O i = [i]
rhythmicStructIndex (Rhythmics xs) i = concat $ map (\(Tuple x i') ->
rhythmicStructIndex x [i']) zipped
 where zipped = zip (fromFoldable xs) (0..((L.length xs)-1))
rhythmicStructIndex (Repeat rhy n) i = rhythmicStructIndex (simplifyRepeat rhy n) i
rhythmicStructIndex (Sd rhy) i = rhythmicStructIndex' rhy i
rhythmicStructIndex (Bjorklund eu k n rot) i = rhythmicStructIndex (simplifyBjorklund
eu k n rot) i

rhythmicStructIndex':: Rhythmic -> Array Int -> Array (Array Int)
rhythmicStructIndex' X i = [i]
rhythmicStructIndex' X i = [i]
rhythmicStructIndex' (Rhythmics xs) i = concat $ map (\(Tuple x i') ->
rhythmicStructIndex' x (snoc i i')) zipped
 where zipped = zip (fromFoldable xs) (0..((L.length xs)-1))
rhythmicStructIndex' (Sd rhy) i = rhythmicStructIndex' rhy i
rhythmicStructIndex' (Repeat rhy n) i = rhythmicStructIndex' (simplifyRepeat rhy n) i
rhythmicStructIndex' (Bjorklund eu k n rot) i = rhythmicStructIndex'
(simplifyBjorklund eu k n rot) i

-- simplifyRhythmic:: Rhythmic -> Rhythmic
-- simplifyRhythmic (Repeat rhy x) = replicateRhythmic rhy x
-- simplifyRhythmic (Bjorklund eu k n rot) = bjorklundRhythmic eu k n rot
-- simplifyRhythmic rhy = rhy

type STEP a = Tuple (Tuple Int Int) (Tuple (Array (Array a)) (Array (Array a)))

simplifyBjorklund:: Euclidean -> Int -> Int -> Int -> Rhythmic
simplifyBjorklund (Simple) k n rot = Rhythmics xs
 where xs = L.fromFoldable $ map (\r -> if r == true then X else O) $ blRotated rot
$ bjorklund (Tuple k n)
simplifyBjorklund (K patt) k n rot = Rhythmics xs
 where xs = L.fromFoldable $ map (\r -> if r == true then patt else patto) $
blRotated rot $ bjorklund (Tuple k n)
 patto = Rhythmics $ L.fromFoldable $ replicate (L.length $ rhythmicToOnsets
patt) O
simplifyBjorklund (InvK patt) k n rot = Rhythmics xs
 where xs = L.fromFoldable $ map (\r -> if r == true then patto else patt) $
blRotated rot $ bjorklund (Tuple k n)
 patto = Rhythmics $ L.fromFoldable $ replicate (L.length $ rhythmicToOnsets
patt) O
simplifyBjorklund (Full pK pN) k n rot = Rhythmics xs
 where xs = L.fromFoldable $ map (\r -> if r == true then pK else pN) $ blRotated
rot $ bjorklund (Tuple k n)

blRotated:: Int -> Array Boolean -> Array Boolean
blRotated rot patt = x.after <> x.before
 where x = splitAt rot patt

bjorklund:: Tuple Int Int -> Array Boolean

 249

bjorklund (Tuple i j') = (concat x') <> (concat y')
 where j = j' - i
 x = replicate i [true]
 y = replicate j [false]
 (Tuple _ (Tuple x' y')) = bjorklund' (Tuple (Tuple i j) (Tuple x y))

bjorklund':: forall a. STEP a -> STEP a
bjorklund' (Tuple n x) =
 let (Tuple i j) = n
 in if min i j <= 1
 then Tuple n x
 else bjorklund' (if i > j then left (Tuple n x) else right (Tuple n x))

right:: forall a. STEP a -> STEP a
right (Tuple (Tuple i j) (Tuple xs ys)) = Tuple (Tuple i (j-i)) (Tuple (zipWith (<>)
xs ys') ys'')
 where splitted = splitAt i ys
 ys' = splitted.before
 ys' = splitted.before

left:: forall a. STEP a -> STEP a
left (Tuple (Tuple i j) (Tuple xs ys)) = Tuple (Tuple j (i-j)) (Tuple (zipWith (<>)
xs' ys) xs'')
 where splitted = splitAt j xs
 xs' = splitted.before
 xs'' = splitted.after

-- the output is always Rhythmics constructor
simplifyRepeat:: Rhythmic -> Int -> Rhythmic
simplifyRepeat (X) n = Rhythmics $ L.fromFoldable $ replicate n X
simplifyRepeat (X) n = Rhythmics $ L.fromFoldable $ replicate n X
simplifyRepeat (Sd rhy) n = Rhythmics $ map (\r -> Sd r) $ L.fromFoldable $ replicate
n rhy
simplifyRepeat (Repeat rhy n2) n1 = simplifyRepeat rhy n
 where n = round ((toNumber n1) * (toNumber n2))
simplifyRepeat (Bjorklund eu k n' rot) n = simplifyRepeat (simplifyBjorklund eu k n'
rot) n
simplifyRepeat (Rhythmics xs) n = Rhythmics $ L.fromFoldable $ concat $ replicate n $
fromFoldable xs

getVoiceIndex:: Number -> Number -> Number -> Number -> Array Int -- Index for Voice
getVoiceIndex xws we x1 dur =
 let nOfFstBlock = nFirstBlock xws x1 dur -- :: Int
 nOfLstBlock = nLastBlock we x1 dur -- Maybe Int
 nOfBlocks = case nOfLstBlock of
 Nothing -> []
 (Just n) -> (nOfFstBlock..n) -- [Int]
 in nOfBlocks

-- start times of blocks in expanded window, in seconds since origin
getBlocks:: Number -> Number -> Number -> Number -> Array Number

 250

getBlocks xws we x1 dur =
 let nOfFstBlock = nFirstBlock xws x1 dur -- :: Int
 nOfLstBlock = nLastBlock we x1 dur -- Maybe Int
 nsOfBlocks = case nOfLstBlock of
 Nothing -> [] --(nOfFstBlock..(nOfFstBlock + 1))
 (Just n) -> (nOfFstBlock..n) -- [Int]
 in (blockToPos nsOfBlocks x1 dur)

blockToPos:: Array Int -> Number -> Number -> Array Number
blockToPos is x1 dur = map (\i -> x1 + ((toNumber i) * dur)) is

-- n of first block at or after ws, regardless of how far in the future
nFirstBlock:: Number -> Number -> Number -> Int
nFirstBlock _ _ 0.0 = 0
nFirstBlock ws x1 dur = nOfNxBlock
 where xwsB = (ws - x1)/dur -- number of block elapsed at xws
 nOfNxBlock
 | xwsB <= 0.0 = 0
 | otherwise = ceil xwsB

nLastBlock:: Number -> Number -> Number -> Maybe Int
nLastBlock we x1 dur = nOfLastBlock
 where wEndBlocks = (we - x1)/dur -- number of blocks elapsed at we
 nOfLastBlock
 | wEndBlocks < 0.0 = Nothing
 | otherwise = Just $ floor wEndBlocks

-- posix needs to be removed
onsetsFromBlocks:: Array Number -> Array Onset -> Number -> Array Onset
onsetsFromBlocks blocks onsets dur = concat $ map (\block -> onsetsFromBlock onsets
block dur) blocks

onsetsFromBlock:: Array Onset -> Number -> Number -> Array Onset
onsetsFromBlock onsets block dur = map (\(Onset bool pos) -> Onset bool (block +
(pos*dur))) onsets

durInSecs:: Number -> Number -> Number
durInSecs dur bpm = dur * (bpmToDur bpm)

bpmToFreq bpm = bpm / 60.0 -- bpmToCPS

freqToDur freq = 1.0 / freq

bpmToDur bpm = 1.0 / bpmToFreq bpm

countInFreqToSecs:: Rational -> Rational -> Rational
countInFreqToSecs freq x = x / freq

toRat:: Number -> Rational
toRat x =
 let pFact = 1000000

 251

 floored = floor x -- 12
 fract = x - (toNumber floored) -- 12.5 - 12.0 = 0.5
 fract = x - (toNumber floored) -- 12.5 - 12.0 = 0.5
 in (floored%1) + (fract'%pFact) -- 12 + (500000%1000000)

A.4.9 Temporal Specifications

module TemporalSpecs (calculateTemporal) where

import Preludeimport Effect (Effect)
import Effect.Console
import Data.Tuple
import Data.Tuple
import Data.Either
import Data.Map as M
import Data.Foldable (sum)
import Data.Int
import Data.Array (filter,fromFoldable,(!!), zipWith, replicate, concat, (..), (:),
init, tail, last,head,reverse,zip, cons, snoc, length, singleton, splitAt)
import Data.List (List(..))

import Data.Tempo

import AST
import Acceleration
import TestOpsAndDefs
import DurationAndIndex
import TimePacketOps

import Data.Rational (Rational(..), (%), fromInt)
import Data.Rational (toNumber) as R -- still need to convert all Number calcs into
Rational!!

calculateTemporal:: M.Map String Temporal -> TimePacket -> String -> Temporal ->
Effect (Array Event)
calculateTemporal mapa tp aKey (Replica id) = do
 let replicatedTemporal = fromMaybe defTemporal $ M.lookup id mapa
 result <- calculateTemporal mapa tp aKey replicatedTemporal
 pure result

calculateTemporal m tp aKey (Temporal (Kairos asap tm) rhythmic loop) = do
 let dur = establishDur tm tp.tempo m rhythmic
 -- tempo = processTempoMark tempoMark tp.tempo mapa
 posixAtOrigin = fromDateTimeToPosix (origin tp.tempo)
 eval = secsFromOriginAtEval tp
 ws = secsFromOriginAtWS tp
 ws = secsFromOriginAtWS tp
 -- dur = durFromRhythmic rhythmic tempo -- number
 -- dur = durInSecs (sum $ rhythmicToLinDur rhythmic) tempo -- acc experiment

 252

 x1 = eval + asap -- always the start of the program
 blocks = getBlocks (ws - dur) we x1 dur -- Array Number
 -- onsets = onsetsFromBlocks blocks (fromFoldable $ rhythmicToOnsetsAcc
rhythmic) dur -- Array Onset --- absolute position
 onsets = onsetsFromBlocks blocks (fromFoldable $ rhythmicToOnsets' tm tp.tempo
m rhythmic) dur -- Array Onset --- absolute position
 indexes = getIndexes rhythmic (ws - dur) we x1 dur -- Array Index
 events = zipWith Event onsets indexes
 posFromEvent (Event (Onset _ p) _) = p
 looped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) events
 unlooped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) <= we) $ unloopEvents events
 pure if loop then looped else unlooped

calculateTemporal mapa tp aKey (Temporal (Metric cTo' cFrom' tm) rhythmic loop) = do
 let dur = establishDur tm tp.tempo mapa rhythmic
 -- let dur = durFromRhythmic rhythmic $ processTempoMark tm tp.tempo mapa --
correct (change tempo naming to other name)
 -- log ("durCalcTempoMetricTemporal " <> show dur)
 let lengthRhythm = (length $ fromFoldable $ rhythmicToOnsets rhythmic)-1
 let simCTo = simplifyCTo lengthRhythm cTo'
 let simCFrom = simplifyCFrom lengthRhythm cFrom'
 x1 <- x1MetricVoice tp tm simCTo simCFrom rhythmic mapa
 -- log ("x1 IN metricTemporal " <> show x1)
 let posixAtOrigin = fromDateTimeToPosix (origin tp.tempo)
 -- let eval = secsFromOriginAtEval tp
 let ws = secsFromOriginAtWS tp
 let ws = secsFromOriginAtWS tp
 let blocks = getBlocks (ws - dur) we x1 dur -- to check
 -- log ("blocksMetricTemporal: " <> show blocks)
 let onsetPercent = fromFoldable $ rhythmicToOnsets' tm tp.tempo mapa rhythmic --
Array Onsets --- Position in Percentage
 let onsets = onsetsFromBlocks blocks onsetPercent dur -- Array Onset --- absolute
position
 let indexes = getIndexes rhythmic (ws - dur) we x1 dur -- Array Index
 let events = zipWith Event onsets indexes
 let posFromEvent:: Event -> Number
 posFromEvent (Event (Onset _ p) _) = p
 let looped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) events
 let unlooped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) $ unloopEvents events
 pure $ if loop then looped else unlooped
 -- v2 --v1
calculateTemporal mapa tp aKey (Temporal (Converge cKey cTo' cFrom' tm) rhythmic
loop) = do
 -- let dur = durFromRhythmic rhythmic $ processTempoMark tm tp.tempo mapa
 let dur = establishDur tm tp.tempo mapa rhythmic
 let lengthRhythm = (length $ fromFoldable $ rhythmicToOnsets rhythmic)-1
 let simCTo = simplifyCTo lengthRhythm cTo'
 let simCFrom = simplifyCFrom lengthRhythm cFrom'

 253

 x1 <- x1ConvergeVoice tp tm cKey simCTo simCFrom rhythmic mapa -- v1
 let posixAtOrigin = fromDateTimeToPosix (origin tp.tempo)
 let ws = secsFromOriginAtWS tp
 let ws = secsFromOriginAtWS tp
 let blocks = getBlocks (ws - dur) we x1 dur -- to check
 let onsetPercent = fromFoldable $ rhythmicToOnsets' tm tp.tempo mapa rhythmic --
[Onsets] Pos in Percentage
 let onsets = onsetsFromBlocks blocks onsetPercent dur --[Onsets] absolute position
 let indexes = getIndexes rhythmic (ws - dur) we x1 dur -- Array Index
 let events = zipWith Event onsets indexes
 let posFromEvent:: Event -> Number
 posFromEvent (Event (Onset _ p) _) = p
 let looped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) events
 let unlooped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) $ unloopEvents events
 pure $ if loop then looped else unlooped
----- CALCULATE NOVUS!!!!!!!!!!!!!
calculateTemporal mapa tp aKey (Temporal (Novus vKey cFrom' tm) rhythmic loop) = do
 let dur = establishDur tm tp.tempo mapa rhythmic
 -- let dur = durFromRhythmic rhythmic $ processTempoMark tm tp.tempo mapa
 let lengthRhythm = (length $ fromFoldable $ rhythmicToOnsets' tm tp.tempo mapa
rhythmic)-1
 let simCFrom = simplifyCFrom lengthRhythm cFrom'
 let cp = secsFromOriginAtVantage tp vKey
 -- log ("cp novus: " <> show cp)
 x1 <- x1NovusVoice tp tm cp simCFrom rhythmic mapa -- v1

 let posixAtOrigin = fromDateTimeToPosix (origin tp.tempo)
 let ws = secsFromOriginAtWS tp
 let ws = secsFromOriginAtWS tp
 let blocks = getBlocks (ws - dur) we x1 dur -- to check
 let onsetPercent = fromFoldable $ rhythmicToOnsets' tm tp.tempo mapa rhythmic
 let onsets = onsetsFromBlocks blocks onsetPercent dur --[Onsets] absolute position
 let indexes = getIndexes rhythmic (ws - dur) we x1 dur -- Array Index
 let events = zipWith Event onsets indexes
 let posFromEvent:: Event -> Number
 posFromEvent (Event (Onset _ p) _) = p
 let looped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) events
 let unlooped = addPosixOriginToCalculation posixAtOrigin $ filter (\e ->
(posFromEvent e) >= ws && (posFromEvent e) < we) $ unloopEvents events
 pure $ if loop then looped else unlooped

x1NovusVoice:: TimePacket -> TempoMark -> Number -> ConvergeFrom -> Rhythmic -> M.Map
String Temporal -> Effect Number
x1NovusVoice tp tm cp cFrom' rhythmic mapa = do
 -- let tempo = processTempoMark tm tp.tempo mapa
 let cFrom = calculateCFrom cFrom' rhythmic
 let dur = establishDur tm tp.tempo mapa rhythmic
 -- let dur = durFromRhythmic rhythmic tempo
 let x1 = cp - (cFrom * dur)

 254

 pure x1

unloopEvents:: Array Event -> Array Event
unloopEvents es = filter (\(Event _ (Index b _ _)) -> b == 0) es

addPosixOriginToCalculation:: Number -> Array Event -> Array Event
addPosixOriginToCalculation posix es = map (\(Event (Onset bool pos) i) -> Event
(Onset bool (pos + posix)) i) es

simplifyCTo:: Int -> ConvergeTo -> ConvergeTo
simplifyCTo n (LastTo a) = ProcessTo n a
simplifyCTo n cTo = cTo

simplifyCFrom:: Int -> ConvergeFrom -> ConvergeFrom
simplifyCFrom n Last = Process n
simplifyCFrom n cfrom = cfrom

-- find x1 and dur of referenceVoice for convergent temporal
x1ConvergeVoice:: TimePacket -> TempoMark -> String -> ConvergeTo -> ConvergeFrom ->
Rhythmic -> M.Map String Temporal -> Effect Number
x1ConvergeVoice tp tm cKey cTo' cFrom' rhythmic mapa = do
 let refTemporal = fromMaybe defTemporal $ M.lookup cKey mapa
 let refRhythmic = getRhythmic mapa refTemporal
 -- let refTempo = processTempoMark (tempoMark mapa refTemporal) tp.tempo mapa --
::Number -- cpm
 let refDur = establishDur (tempoMark mapa refTemporal) tp.tempo mapa refRhythmic
 -- let refDur = durFromRhythmic refRhythmic refTempo
 -- let refDur = (\(Temporal p rhy _) -> durFromRhythmic rhy $ processTempoMark
(getTempoMark p) tp.tempo mapa) refTemporal
 refX1 <- findReferencedX1 tp refTemporal mapa
 refVoiceAtEval <- elapsedVoiceAtEval tp refX1 refDur -- not secs but cycles
 -- log ("refVoiceAtEval top " <> show refVoiceAtEval)
 let innerPos = innerPosCTo refRhythmic cTo'
 let cTo = calculateCToNEW innerPos refVoiceAtEval cTo'
 -- let processedTempoMark = processTempoMark tm tp.tempo mapa
 let cFrom = calculateCFrom cFrom' rhythmic
 let dur = establishDur tm tp.tempo mapa rhythmic
 -- let dur = durFromRhythmic rhythmic processedTempoMark
 let x1 = calculateStartConvergent refDur cTo dur cFrom -- result in secs
 -- log ("x1 converge voice top " <> show (refX1 + x1))
 -- cuando empieza la voz en secs, cuanto dura cada bloque en secs, donde esta la
voz en eval
 pure (refX1 + x1)

findReferencedX1::TimePacket -> Temporal -> M.Map String Temporal -> Effect Number
findReferencedX1 tp (Replica id) mapa = do
 let replicatedTemporal = fromMaybe defTemporal $ M.lookup id mapa
 result <- findReferencedX1 tp replicatedTemporal mapa
 pure result
findReferencedX1 tp (Temporal (Kairos asap tm) rhy _) mapa = do
 let eval = secsFromOriginAtEval tp
 let x1 = eval + asap

 255

 -- log ("x1 kairos voice " <> show x1)
 pure x1
findReferencedX1 tp (Temporal (Metric cTo cFrom tm) rhy _) mapa = do
 x1 <- x1MetricVoice tp tm cTo cFrom rhy mapa
 -- log ("x1 metric voice " <> show x1)
 pure x1 -- v1 --v0
findReferencedX1 tp (Temporal (Converge cKey cTo cFrom tm) rhy l) mapa = do
 let way = keysForReferencePath cKey mapa (Nil) -- Array String
 -- log ("key " <> show cKey)
 -- log ("way: " <> show way) -- v1 --v0
 recursiveX1 <- recursiveRefX1 tp (Temporal (Converge cKey cTo cFrom tm) rhy l) mapa
Nothing way -- v1's x1
 -- log ("x1 converge voice" <> show recursiveX1)
 pure recursiveX1
 ---- calculate NOVUS!!!!!!!!!!!!!!!!!!!!!!!!
findReferencedX1 tp (Temporal (Novus vKey cFrom tm) rhy l) mapa = pure 0.0

recursiveRefX1:: TimePacket -> Temporal -> M.Map String Temporal -> Maybe (Tuple
String Number) -> List String -> Effect Number -- v2
-- incoming with [] is v1
recursiveRefX1 tp temporal mapa incomingKeyX1' (Nil) = do
 let cKey = getKey mapa temporal
 let (Tuple cTo' cFrom') = convergences mapa temporal
 -- let (Tuple cTo' cFrom') = (\(Temporal p _ _) -> getConvergences p) temporal
 let rhythmic = getRhythmic mapa temporal

--- HERE WORK ON implementing establishDur function for acceleration and function

 -- let processedTM = processTempoMark (tempoMark mapa temporal) tp.tempo mapa
 -- let processedTM = (\(Temporal p _ _) -> processTempoMark (getTempoMark p)
tp.tempo mapa) temporal
 -- let dur = durFromRhythmic rhythmic processedTM
 let dur = establishDur (tempoMark mapa temporal) tp.tempo mapa rhythmic
 let cFrom = calculateCFrom cFrom' rhythmic

 let temporalHack = fromMaybe defTemporal $ M.lookup cKey mapa
 incomingKeyX1 <- if incomingKeyX1' == Nothing then
 Just <$> (Tuple cKey <$> (findReferencedX1 tp temporalHack mapa)) else
pure incomingKeyX1'

 -- log ("incomingKeyX1 " <> show incomingKeyX1)

 let (Tuple refKey refX1) = fromMaybe (Tuple "error" 2.666) incomingKeyX1
 -- log ("refX1 " <> show refX1)
 let refTemporal = fromMaybe defTemporal $ M.lookup refKey mapa

 let refRhythmic = getRhythmic mapa refTemporal
 -- let refTM = processTempoMark (tempoMark mapa refTemporal) tp.tempo mapa
 -- let refTM = (\(Temporal p _ _) -> processTempoMark (getTempoMark p) tp.tempo
mapa) refTemporal
 -- let refDur = durFromRhythmic refRhythmic refTM

 256

 let refDur = establishDur (tempoMark mapa refTemporal) tp.tempo mapa refRhythmic
 refVoiceAtEval <- elapsedVoiceAtEval tp refX1 refDur -- not secs but cycles
 let innerPos = innerPosCTo refRhythmic cTo'
 let cTo = calculateCToNEW innerPos refVoiceAtEval cTo'

 let x1 = calculateStartConvergent refDur cTo dur cFrom
 let x1 = calculateStartConvergent refDur cTo dur cFrom
 pure (refX1 + x1)

recursiveRefX1 tp temporal mapa incomingKeyX1 (Cons x xs) = do
 let refTemporal = fromMaybe defTemporal $ M.lookup x mapa -- v0
 let (Tuple cTo' cFrom') = convergences mapa refTemporal
 let refRhythmic = getRhythmic mapa refTemporal
 -- let refProcessedTM = processTempoMark (tempoMark mapa refTemporal) tp.tempo mapa
 -- let refRhythmic = (\(Temporal _ r _) -> r) refTemporal
 -- let refProcessedTM = (\(Temporal p _ _) -> processTempoMark (getTempoMark p)
tp.tempo mapa) refTemporal
 let refDur = establishDur (tempoMark mapa refTemporal) tp.tempo mapa refRhythmic
 -- let refDur = durFromRhythmic refRhythmic refProcessedTM
 let cFrom = calculateCFrom cFrom' refRhythmic
 refX1 <- case incomingKeyX1 of
 Nothing -> findReferencedX1 tp refTemporal mapa -- result: v0's block1's
start point (x1)
 Just prevKeyX1 -> do
 let prevTemporal = fromMaybe defTemporal $ M.lookup (fst prevKeyX1)
mapa
 let prevRhythmic = getRhythmic mapa prevTemporal
 -- let prevTM = processTempoMark (tempoMark mapa prevTemporal)
tp.tempo mapa
 -- let prevDur = durFromRhythmic prevRhythmic prevTM
 let prevDur = establishDur (tempoMark mapa prevTemporal) tp.tempo
mapa prevRhythmic
 prevVoiceAtEval <- elapsedVoiceAtEval tp (snd prevKeyX1) prevDur --
not secs but cycles
 let innerPos = innerPosCTo prevRhythmic cTo'
 let cTo = calculateCToNEW innerPos prevVoiceAtEval cTo'
 let refX1 = calculateStartConvergent prevDur cTo refDur cFrom
 pure ((snd prevKeyX1) + refX1)
 result <- recursiveRefX1 tp temporal mapa (Just (Tuple x refX1)) xs
 -- log ("result recursiveRef " <> show result)
 pure result

convergences:: M.Map String Temporal -> Temporal -> Tuple ConvergeTo ConvergeFrom
convergences _ (Temporal p _ _) = getConvergences p
convergences _ (Temporal p _ _) = getConvergences p
 Nothing -> Tuple defConvergeTo defConvergeFrom
 Just t -> convergences m t

getConvergences:: Polytemporal -> Tuple ConvergeTo ConvergeFrom
getConvergences (Converge _ cTo cFrom _) = Tuple cTo cFrom
getConvergences _ = Tuple defConvergeTo defConvergeFrom

 257

keysForReferencePath:: String -> M.Map String Temporal -> List String -> List String
keysForReferencePath aKey {-v0-} mapa listOfReferences
 | isNotConvergent aKey mapa = (Nil)
 | otherwise = -- v0
 if (isNotConvergent nextCheck mapa)
 then (Cons nextCheck listOfReferences)
 else keysForReferencePath nextCheck mapa (Cons nextCheck listOfReferences)
 where nextCheck = getKey mapa $ fromMaybe defTemporal $ M.lookup aKey mapa

getKey _ (Temporal (Converge aKey _ _ _) _ _) = aKey
getKey _ (Temporal _ _ _) = "2666"
getKey m (Replica id) =
getKey m (Replica id) =
 Nothing -> "2666"
 Just t -> getKey m t

isNotConvergent aKey mapa = f' mapa $ fromMaybe defTemporal $ M.lookup aKey mapa

f' m (Temporal (Converge _ _ _ _) _ _) = false
f' m (Temporal _ _ _) = true
f' m (Replica id) = case M.lookup id m of
f' m (Replica id) = case M.lookup id m of
 Just t -> f' m t

elapsedVoiceAtEval:: TimePacket -> Number -> Number -> Effect Number
elapsedVoiceAtEval tp x1 dur = do
 let eval = secsFromOriginAtEval tp
 atEval = (eval - x1) / dur
 pure atEval

---- finding x1 for Metric
x1MetricVoice:: TimePacket -> TempoMark -> ConvergeTo -> ConvergeFrom -> Rhythmic ->
M.Map String Temporal -> Effect Number
x1MetricVoice tp tm cTo' cFrom' rhythmic mapa = do
x1MetricVoice tp tm cTo' cFrom' rhythmic mapa = do
 -- log ("tempo-X1Metric " <> show tempo)
 let eval = secsFromOriginAtEval tp
 let externalVoiceSecs = 1.0 / (R.toNumber tp.tempo.freq)
 -- log ("externalVoiceSecs-X1Metric " <> show externalVoiceSecs)
 let cyclesAtEval = R.toNumber $ timeToCount tp.tempo tp.eval
 -- log ("cyclesAtEva-X1Metric " <> show cyclesAtEval)
 let cTo = calculateCToMetric cyclesAtEval cTo' -- cycles of compared voice
 -- log ("cTo-X1Metric " <> show cTo)
 let cFrom = calculateCFrom cFrom' rhythmic -- ignore for now, test with 0
 let dur = establishDur tm tp.tempo mapa rhythmic
 -- let dur = durFromRhythmic rhythmic tempo -- correct (change tempo naming to
other name)
 -- log ("dur-X1Metric " <> show dur)
 let x1 = calculateStartConvergent externalVoiceSecs cTo dur cFrom -- result in
secs
 -- log ("x1 (result of X1 Metric)" <> show x1)
 pure x1

 258

----- this funca!! <3 <3 <3
calculateStartConvergent:: Number -> Number -> Number -> Number -> Number
calculateStartConvergent durConverged convergeTo durVoice convergeFrom =
startOfVoiceInSecs
 where cTo = convergeTo * durConverged
 where cTo = convergeTo * durConverged
 startOfVoiceInSecs = cTo - cFrom

-- calculating convergence points
calculateCToMetric:: Number -> ConvergeTo -> Number
calculateCToMetric cyclesAtEval (StructureTo b st a) = (toNumber b) + aligned
 where aligned = aligner cyclesAtEval a
calculateCToMetric cyclesAtEval (ProcessTo i a) = (toNumber i) + aligned
 where aligned = aligner cyclesAtEval a
calculateCToMetric cyclesAtEval (PercenTo p a) = (p / 100.0) + aligned
 where aligned = aligner cyclesAtEval a
calculateCToMetric cyclesAtEval _ = 0.0

calculateCToNEW:: Number -> Number -> ConvergeTo -> Number
calculateCToNEW innerPos cyclesAtEval (StructureTo b st a) = innerPos + aligned
 where aligned = aligner cyclesAtEval a
calculateCToNEW innerPos cyclesAtEval (ProcessTo i a) = innerPos + aligned
 where aligned = aligner cyclesAtEval a
calculateCToNEW innerPos cyclesAtEval (PercenTo p a) = (p / 100.0) + aligned
 where aligned = aligner cyclesAtEval a
calculateCToNEW innerPos cyclesAtEval _ = 0.0

aligner:: Number -> CPAlign -> Number -- in cycles of external metre
aligner cyclesAtEval Origin = 0.0
aligner cyclesAtEval Snap = (toNumber $ ceil cyclesAtEval)
aligner cyclesAtEval (Mod m) = ceiledModInMetre * (toNumber m)
 where modInMetre = cyclesAtEval / (toNumber m)
 ceiledModInMetre = toNumber $ ceil modInMetre

innerPosCTo:: Rhythmic -> ConvergeTo -> Number
innerPosCTo rhythmic cTo = percentPos
 where onsetPercent = fromFoldable $ rhythmicToOnsets rhythmic -- Array Onsets ---
Position in Percentage
 lenOnset = length onsetPercent
 structIndexes = rhythmicStructIndex rhythmic [0] -- Array (Array Int)
 eventIndexesPerVoice = (0..(lenOnset-1)) -- Array Int
 structAndPos = zip structIndexes $ map (\(Onset b p) -> p) onsetPercent
 eventsAndPos = zip eventIndexesPerVoice $ map (\(Onset b p) -> p)
onsetPercent
 percentPos = filterEventToPosTo cTo structAndPos eventsAndPos lenOnset

calculateCFrom:: ConvergeFrom -> Rhythmic -> Number
calculateCFrom cp rhythmic = percentPos
 where onsetPercent = fromFoldable $ rhythmicToOnsets rhythmic -- Array Onsets ---
Position in Percentage
 lenOnset = length onsetPercent

 259

 structIndexes = rhythmicStructIndex rhythmic [0] -- Array (Array Int)
 eventIndexesPerVoice = (0..(lenOnset-1)) -- Array Int
 structAndPos = zip structIndexes $ map (\(Onset b p) -> p) onsetPercent
 eventsAndPos = zip eventIndexesPerVoice $ map (\(Onset b p) -> p)
onsetPercent
 percentPos = filterEventToPosFrom cp structAndPos eventsAndPos lenOnset

filterEventToPosTo:: ConvergeTo -> Array (Tuple (Array Int) Number) -> Array (Tuple
Int Number) -> Int -> Number
filterEventToPosTo cp structAndPos eventsAndPos lenOnset = result
 where result = case cp of
 (StructureTo v st a) -> fromMaybe 0.0 $ head $ map (\x -> cpPos
(Left v) (snd x) lenOnset) $ filter (\x -> fst x == st) structAndPos
 (ProcessTo e a) -> fromMaybe 0.0 $ head $ map (\x -> cpPos (Right
e) (snd x) lenOnset) $ filter (\x -> fst x == (e`mod`lenOnset)) eventsAndPos
 (PercenTo p a) -> p / 100.0
 _ -> 0.0

filterEventToPosFrom:: ConvergeFrom -> Array (Tuple (Array Int) Number) -> Array
(Tuple Int Number) -> Int -> Number
filterEventToPosFrom cp structAndPos eventsAndPos lenOnset = result
 where result = case cp of
 (Structure v st) -> fromMaybe 0.0 $ head $ map (\x -> cpPos (Left
v) (snd x) lenOnset) $ filter (\x -> fst x == st) structAndPos
 (Process e) -> fromMaybe 0.0 $ head $ map (\x -> cpPos (Right e)
(snd x) lenOnset) $ filter (\x -> fst x == (e`mod`lenOnset)) eventsAndPos
 (Percen p) -> p / 100.0
 _ -> 0.0

cpPos:: Either Int Int -> Number -> Int -> Number
cpPos (Left v) x lenOnset = v' + x
 where v' = (toNumber v)
cpPos (Right n) x lenOnset = (toNumber $ floor n') + x
 where n' = (toNumber n)/(toNumber lenOnset)

-- dur
establishDur:: TempoMark -> Tempo -> M.Map String Temporal -> Rhythmic -> Number
establishDur (Dur n) xT m rhy = R.toNumber n
establishDur (Sin sin) xT m rhy = durInSecs (sum $ rhythmicToSinDur rhy (R.toNumber
sin.osc) min max (R.toNumber sin.phase)) min
 where min = processTempoMark sin.min xT m
 where min = processTempoMark sin.min xT m
establishDur (Prop id x y) xT m rhy = durProp m xT otherTempoMark otherRhy prop
 where prop = (toNumber x / toNumber y)
 otherTemporal = fromMaybe defTemporal $ M.lookup id m
 otherTempoMark = tempoMark m otherTemporal
 otherRhy = getRhythmic m otherTemporal
establishDur tm xT m rhy = durFromRhythmic rhy $ processTempoMark tm xT m

durProp:: M.Map String Temporal -> Tempo -> TempoMark -> Rhythmic -> Number -> Number
durProp m xT (Sin sin) r prop = durOther / prop
 where min = processTempoMark sin.min xT m

 260

 where min = processTempoMark sin.min xT m
 durOther = durInSecs (sum $ rhythmicToSinDur r (R.toNumber sin.osc) min max
(R.toNumber sin.phase)) min

durProp m xT (Dur d) r prop = (R.toNumber d) / prop
durProp m xT (Prop id x y) _ prop = durProp m xT otherTM otherRhy otherProp
 where otherProp = (toNumber x / toNumber y) * prop
 otherTemporal = fromMaybe defTemporal $ M.lookup id m
 otherTM = tempoMark m otherTemporal
 otherRhy = getRhythmic m otherTemporal
durProp m xT another r prop = (durFromRhythmic r $ processTempoMark another xT m) /
prop

rhythmicToOnsets':: TempoMark -> Tempo -> M.Map String Temporal -> Rhythmic -> List
Onset
rhythmicToOnsets' (Sin s) xT m rhy = rhythmicToOnsetsSin rhy (R.toNumber s.osc) min
max (R.toNumber s.phase)
 where min = processTempoMark s.min xT m
 where min = processTempoMark s.min xT m
rhythmicToOnsets' tm xT m rhy = case tm of
 (Prop id x y) -> rhythmicToOnsets' otherTM xT m rhy
 where otherTemporal = fromMaybe defTemporal $
M.lookup id m
 otherTM = tempoMark m otherTemporal
 otherRhy = getRhythmic m otherTemporal
 _ -> rhythmicToOnsets rhy

processTempoMark:: TempoMark -> Tempo -> M.Map String Temporal -> Number
processTempoMark (CPM cpm) _ _ = R.toNumber (cpm / (4%1))
processTempoMark (BPM bpm figure) _ _ = R.toNumber ((bpm / (4%1)) / figure)
processTempoMark (CPS cps) _ _ = R.toNumber (cps * (60%1))
processTempoMark XTempo t _ = (R.toNumber (t.freq * (60%1) * (4%1)))
processTempoMark (Prop id x y) t mapa = fromMaybe 120.0 otherTempo
 where prop = (toNumber x / toNumber y)
 otherTempo = (\temporal -> calculateRTempo mapa t (tempoMark mapa temporal)
prop) <$> M.lookup id mapa
processTempoMark other t mapa = 0.0

calculateRTempo:: M.Map String Temporal -> Tempo -> TempoMark -> Number -> Number
calculateRTempo m t (CPM cpm) prop = (R.toNumber (cpm / (4%1))) * prop
calculateRTempo m t (BPM bpm figure) prop = (R.toNumber ((bpm / (4%1)) / figure)) *
prop
calculateRTempo m t (CPS cps) prop = R.toNumber (cps * (60%1)) * prop
calculateRTempo m t XTempo prop = (R.toNumber (t.freq * (60%1) * (4%1))) * prop
calculateRTempo m t (Prop id x y) prop = calculateRTempo m t newTM newProp
 where newProp = (toNumber x / toNumber y) * prop
 newTM = fromMaybe (CPM (fromInt 120)) $ (\temporal -> tempoMark m temporal)
<$> M.lookup id m
calculateRTempo m t other prop = 0.0

 261

A.4.10 Acceleration

module Acceleration (rhythmicToSinDur,sinusoidalAcceleration,rhythmicToOnsetsSin)
where

import Prelude
import Effect (Effect)
import Effect.Console (log)

import Data.Int (toNumber)
import Data.Number
import Data.Array
import Data.Array (fromFoldable)
import Data.List (List(..))
import Data.List (fromFoldable, (:)) as L
import Data.Foldable (sum)
import Data.Tuple
import Data.Maybe (fromMaybe)

import AST
import DurationAndIndex

rhythmicToOnsetsSin:: Rhythmic -> Number -> Number -> Number -> Number -> List Onset
rhythmicToOnsetsSin rhy osc min max ph = L.fromFoldable $ zipWith Onset onsets pos
 where onsets = map (\(Onset b p) -> b) $ fromFoldable $ rhythmicToOnsets rhy
 rhyDur = rhythmicToSinDur rhy osc min max ph
 folded' = fromMaybe {init: [], last: 2.666} $ unsnoc $ (scanl (+) 0.0
rhyDur)
 pos = map (\fo -> fo / (sum rhyDur)) $ (0.0 : folded'.init)

acceleration :: Number -> Number -> Number -> Number -> Number -> Number
acceleration startTime finalTime startSpeed endSpeed currentTime =
 let
 deltaTime = finalTime - startTime
 deltaSpeed = endSpeed - startSpeed
 acceleration = deltaSpeed / deltaTime
 initialSpeed = startSpeed
 in
 initialSpeed + acceleration * currentTime

rhythmicToLinDur:: Rhythmic -> Array Number
rhythmicToLinDur rhythmic = map (\(Tuple dur acc) -> (dur / (0.5 + acc))) zipped
 where onsetDur = map (\(Onset b p) -> p) $ fromFoldable $ onsetDurations 1.0
rhythmic
 onsetPos = map (\(Onset b p) -> p) $ rhythmicToOnsets rhythmic
 onsetAcc = fromFoldable $ map (\pos -> acceleration 0.0 1.0 1.0 2.0 pos)
onsetPos
 zipped = zip onsetDur onsetAcc

sinusoidalAcceleration :: Number -> Number -> Number -> Number -> Number
sinusoidalAcceleration frequency currentTime amplitude phase =

 262

 amplitude * sin (2.0 * pi * frequency * currentTime + phase)
 -- amplitude * sin (2.0 * pi * frequency * currentTime + phase)

-- freq is actually cycles per block. 1 means one whole oscilation per block
-- amplitud will determine the range. If amplitude 1 it will go from 0 to 1 and -1

rhythmicToSinDur:: Rhythmic -> Number -> Number -> Number -> Number -> Array Number
rhythmicToSinDur rhythmic freq min' max' ph = map (\(Tuple dur acc) -> dur / (min +
((amp) + acc))) zipped
 where min = 1.0
 max = max' / min'
 amp = (max - min) / 2.0
 phase = if ph == 0.0 then 0.0 else pi / ph
 onsetDur = map (\(Onset b p) -> p) $ fromFoldable $ onsetDurations 1.0
rhythmic
 onsetPos = map (\(Onset b p) -> p) $ rhythmicToOnsets rhythmic
 onsetAcc = fromFoldable $ map (\pos -> sinusoidalAcceleration freq pos amp
phase) onsetPos
 zipped = zip onsetDur onsetAcc

-- trapezoidalRule:: (Number -> Number) -> Number -> Number -> Number
-- trapezoidalRule f a b =
-- let
-- n = 1000
-- h = (b - a) / toNumber n
-- sum = foldl (\acc i -> acc + f (a + toNumber i * h)) 0.0 $ 1..(n-1)
-- in
-- h / 2.0 * (f a + 2.0 * sum + f b)

-- areaUnderCurveSin:: Number -> Number -> Number
-- areaUnderCurveSin start end = trapezoidalRule sin ((start*2.0) * pi) ((end*2.0) *
pi)

-- areaUnderCurveLineal:: Number -> Number -> Number
-- areaUnderCurveLineal start end = trapezoidalRule linearAcc start end
-- where
-- linearAcc:: Number -> Number
-- linearAcc t = 2.0 * t

-- -- rhythmicToSinDur:: Rhythmic -> Array Number
-- rhythmicToSinDur rhythmic = map (\(Tuple dur acc) -> 1.0/(dur * (1.0 + acc)))
zipped
-- where onsetDur = map (\(Onset b p) -> p) $ fromFoldable $ onsetDurations 1.0
rhythmic
-- onsetPos = map (\(Onset b p) -> p) $ rhythmicToOnsets rhythmic
-- onsetAcc = fromFoldable $ map (\pos -> areaUnderCurveSin 0.0 pos)
onsetPos
-- zipped = zip onsetDur onsetAcc

 263

-- rhythmicToLinDur rhythmic = map (\(Tuple dur acc) -> 1.0/(dur * (1.0 + acc)))
zipped
-- where onsetDur = map (\(Onset b p) -> p) $ fromFoldable $ onsetDurations 1.0
rhythmic
-- onsetPos = map (\(Onset b p) -> p) $ rhythmicToOnsets rhythmic
-- onsetAcc = fromFoldable $ map (\pos -> areaUnderCurveLineal 0.0 pos)
onsetPos
-- zipped = zip onsetDur onsetAcc

A.4.11 Aural Specifications

module AuralSpecs (auralSpecs) where

import Prelude

import Effect (Effect)
import Effect.Console (log)

import Data.Tuple
import Data.Maybe
import Data.Maybe.First
import Data.Either
import Data.Map as M
import Data.Foldable (sum)
import Data.Int
import Data.FunctorWithIndex (mapWithIndex)
import Data.Array (filter,fromFoldable,(!!), zipWith, replicate, concat, (..), (:),
init, tail, last,head,reverse,zip, cons, uncons, snoc, length, singleton)
import Data.List
import Data.List (fromFoldable,concat,zip,zipWith,length,init) as L
import Data.Traversable (scanl,traverseDefault,sequence)

import Data.Newtype
import Foreign

import Data.Tempo

import AST
import DurationAndIndex
import Parser
import Rhythm
import TestOpsAndDefs
import AssambleWebdirt
import XenoPitch
import Dastgah

import Data.Rational (Rational(..), (%), fromInt)
import Data.Rational (toNumber) as R
import Data.DateTime

 264

import Data.DateTime.Instant
import Data.Time.Duration

-- aural specs maps on the list of aurals. One aural attribute at the time to process
auralSpecs:: Voices -> Rhythmic -> List Aural -> M.Map String XenoPitch -> Array
Event -> Effect (Array Foreign)
auralSpecs v r aurals x es' = map concat <$> traverseDefault (\a -> auralSpecs' v r a
x es) $ fromFoldable aurals
 where es = filter checkOnset es' -- here O get removed!

auralSpecs':: Voices -> Rhythmic -> Aural -> M.Map String XenoPitch -> Array Event ->
Effect (Array Foreign)
auralSpecs' voices rhy aural xenopitch events
 | (checkForSound aural) = pure []
 | otherwise = traverseDefault (processEvent voices rhy aural xenopitch) events

checkForSound:: List Value -> Boolean
checkForSound aural = not $ elem true $ map isSound aural

checkOnset:: Event -> Boolean
checkOnset (Event o i) = (\(Onset b p) -> b) o

processEvent:: Voices -> Rhythmic -> List Value -> M.Map String XenoPitch -> Event ->
Effect Foreign
processEvent v r vals xp ev = do
 let when = processWhen ev
 let s = processSound v r (getS vals) ev
 let n = processN v r (getN vals) ev
 let gain = processGain v r (getG vals) ev
 let pan = processPan v r (getP vals) ev
 let speed = processSpeed v r (getSpeed vals) ev
 let begin = processBegin v r (getBegin vals) ev
 let end = processEnd v r (getEnd vals) ev
 let vowel = processVowel v r (getVowel vals) ev
 let cutoff = processCutOff v r (getCutOff vals) ev
 let cutoffh = processCutOffH v r (getCutOffH vals) ev
 let maxw = processMaxW v r (getMaxW vals) ev
 let minw = processMinW v r (getMinW vals) ev
 let inter = processInter v r (getInter vals) ev
 let legato = processLegato v r (getLegato vals) ev
 let orbit = processOrbit v r (getOrbit vals) ev
 let note = processNote v xp r (getNote vals) (getXNote vals) ev
 makeWebDirtEvent when s n gain pan speed begin end vowel cutoff cutoffh maxw minw
inter legato orbit note

makeWebDirtEvent:: Number -> String -> Int -> Maybe Number -> Maybe Number -> Maybe
Number -> Maybe Number -> Maybe Number -> Maybe String -> Maybe Number -> Maybe
Number -> Maybe Number -> Maybe Number -> Maybe Number -> Maybe Number -> Maybe Int -
> Maybe Number -> Effect Foreign
makeWebDirtEvent when s n gain pan speed begin end vowel cutoff cutoffh maxw minw
inter legato orbit note = do
 oEvent <- objectWithWhenSN when s n

 265

 oG <- optVNum oEvent gain addGain
 oP <- optVNum oG pan addPan
 oSp <- optVNum oP speed addSpeed
 oB <- optVNum oSp begin addBegin
 oE <- optVNum oB end addEnd
 oCOff <- optVNum oE cutoff addCutOff
 oCOffH <- optVNum oCOff cutoffh addCutOffH
 oMax <- optVNum oCOffH maxw addMaxW
 oMin <- optVNum oMax minw addMinW
 oInter <- optVNum oMin inter addInter
 oLeg <- optVNum oInter legato addLegato
 oOrbit <- optVInt oLeg orbit addOrbit
 oV <- optVStr oOrbit vowel addVowel
 oN <- optVNum oV note addNote
 pure oN

optVNum:: Foreign -> Maybe Number -> (Foreign -> Number -> Effect Foreign) -> Effect
Foreign
optVNum o Nothing _ = pure o
optVNum o (Just x) f = f o x

optVStr:: Foreign -> Maybe String -> (Foreign -> String -> Effect Foreign) -> Effect
Foreign
optVStr o Nothing _ = pure o
optVStr o (Just x) f = f o x

optVInt:: Foreign -> Maybe Int -> (Foreign -> Int -> Effect Foreign) -> Effect
Foreign
optVInt o Nothing _ = pure o
optVInt o (Just x) f = f o x

processNote:: Voices -> M.Map String XenoPitch -> Rhythmic -> Maybe Value -> Maybe
Value -> Event -> Maybe Number
processNote _ xp r Nothing xNotes e = Nothing
processNote m xp r (Just (TransposedPitch id n)) xn e = findRefdNote m xp r e (Tuple
id n) xn
processNote _ xp r (Just (Prog span lista)) xNotes e = mergeProgWithNote xp r (Prog
span lista) xNotes e
processNote _ xp r (Just (Dastgah span d)) _ e = spanMaybe span newList e r
 where newList = getMIDIInterval $ analysisDastgahPattern span r $ fromFoldable
(getDastgahList d)
processNote _ xp r (Just (Xeno id span lista)) xn e = spanMaybe span (fromFoldable
midiIntervals) e r
 where target = getXPTarget (fst id) xp
 -- target = fromMaybe (EDO 0.0 0) $ M.lookup (fst id) xp
 midiIntervals = xenoPitchAsAuralPattern (Tuple target (snd id)) (fromFoldable
lista) span r
processNote _ _ _ _ _ _ = Nothing

getXPTarget:: String -> M.Map String XenoPitch -> XenoPitch
getXPTarget "shurNot8" _ = ShurNot8

 266

getXPTarget "shurNot" _ = ShurNot
getXPTarget id xp = fromMaybe (EDO 0.0 0) $ M.lookup id xp

findRefdNote:: Voices -> M.Map String XenoPitch -> Rhythmic -> Event -> Tuple String
Int -> Maybe Value -> Maybe Number
findRefdNote m xp r e (Tuple id n) xn = processNote m xp r newVal xn e
 where newVal = cycleAurals n (M.lookup id m) getNote

mergeProgWithNote:: M.Map String XenoPitch -> Rhythmic -> Value -> Maybe Value ->
Event -> Maybe Number
mergeProgWithNote xp r prog xnote ev = pitchSystemNoteToMIDI xp prog' <$> xnote'
 where prog' = processProg r prog ev
 xnote' = processXNotes r xnote ev

pitchSystemNoteToMIDI:: M.Map String XenoPitch -> (Tuple String (Maybe Int)) -> Int -
> Number
pitchSystemNoteToMIDI mapa (Tuple id subset) nota = xenoPitchAsMIDINum (Tuple xn
subset) nota
 where xn = fromMaybe (EDO 0.0 0) $ M.lookup id mapa

processProg:: Rhythmic -> Value -> Event -> Tuple String (Maybe Int)
processProg r (Prog span xs) ev = fromMaybe (Tuple "error" Nothing) $ spanMaybe span
(fromFoldable xs) ev r
processProg r _ ev = Tuple "error" Nothing

processXNotes:: Rhythmic -> Maybe Value -> Event -> Maybe Int
processXNotes r (Just (XNotes sp xs vars)) ev = processVarsMaybe vars sp xs ev r
processXNotes r _ ev = Nothing

--
processOrbit:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Int
processOrbit vs r Nothing ev = Nothing
processOrbit vs r (Just (TransposedOrbit id n)) ev = findRefdOrbit r ev (Tuple id n)
vs
processOrbit _ r (Just (Orbit sp xList vars)) ev = processVarsMaybe vars sp xList ev
r
processOrbit _ _ _ _ = Nothing

findRefdOrbit:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Int
findRefdOrbit r ws (Tuple id n) mapa = processOrbit mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getOrbit

--
processLegato:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processLegato vs r Nothing ev = Nothing
processLegato vs r (Just (TransposedLegato id n)) ev = findRefdLegato r ev (Tuple id
n) vs
processLegato _ r (Just (Legato sp xList vars)) ev = processVarsMaybe vars sp xList
ev r
processLegato _ _ _ _ = Nothing

findRefdLegato:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number

 267

findRefdLegato r ws (Tuple id n) mapa = processLegato mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getLegato

--
processInter:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processInter vs r Nothing ev = Nothing
processInter vs r (Just (TransposedInter id n)) ev = findRefdInter r ev (Tuple id n)
vs
processInter _ r (Just (Inter sp xList vars)) ev = processVarsMaybe vars sp xList ev
r
processInter _ _ _ _ = Nothing

findRefdInter:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdInter r ws (Tuple id n) mapa = processInter mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getInter

--
processMinW:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processMinW vs r Nothing ev = Nothing
processMinW vs r (Just (TransposedMinW id n)) ev = findRefdMinW r ev (Tuple id n) vs
processMinW _ r (Just (MinW sp xList vars)) ev = processVarsMaybe vars sp xList ev r
processMinW _ _ _ _ = Nothing

findRefdMinW:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdMinW r ws (Tuple id n) mapa = processMinW mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getMinW

--
processMaxW:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processMaxW vs r Nothing ev = Nothing
processMaxW vs r (Just (TransposedMaxW id n)) ev = findRefdMaxW r ev (Tuple id n) vs
processMaxW _ r (Just (MaxW sp xList vars)) ev = processVarsMaybe vars sp xList ev r
processMaxW _ _ _ _ = Nothing

findRefdMaxW:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdMaxW r ws (Tuple id n) mapa = processMaxW mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getMaxW

--
processCutOffH:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processCutOffH vs r Nothing ev = Nothing
processCutOffH vs r (Just (TransposedCutOffH id n)) ev = findRefdCutOffH r ev (Tuple
id n) vs
processCutOffH _ r (Just (CutOffH sp xList vars)) ev = processVarsMaybe vars sp
xList ev r
processCutOffH _ _ _ _ = Nothing

findRefdCutOffH:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdCutOffH r ws (Tuple id n) mapa = processCutOffH mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getCutOffH

--

 268

processCutOff:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processCutOff vs r Nothing ev = Nothing
processCutOff vs r (Just (TransposedCutOff id n)) ev = findRefdCutOff r ev (Tuple id
n) vs
processCutOff _ r (Just (CutOff sp xList vars)) ev = processVarsMaybe vars sp xList
ev r
processCutOff _ _ _ _ = Nothing

findRefdCutOff:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdCutOff r ws (Tuple id n) mapa = processCutOff mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getCutOff

--
processVowel:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe String
processVowel vs r Nothing ev = Nothing
processVowel vs r (Just (TransposedVowel id n)) ev = findRefdVowel r ev (Tuple id n)
vs
processVowel _ r (Just (Vowel sp xList vars)) ev = processVarsMaybe vars sp xList ev
r
processVowel _ _ _ _ = Nothing

findRefdVowel:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe String
findRefdVowel r ws (Tuple id n) mapa = processVowel mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getVowel

--
processEnd:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processEnd vs r Nothing ev = Nothing
processEnd vs r (Just (TransposedEnd id n)) ev = findRefdEnd r ev (Tuple id n) vs
processEnd _ r (Just (End sp xList vars)) ev = processVarsMaybe vars sp xList ev r
processEnd _ _ _ _ = Nothing

findRefdEnd:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdEnd r ws (Tuple id n) mapa = processEnd mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getEnd

--
processBegin:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processBegin vs r Nothing ev = Nothing
processBegin vs r (Just (TransposedBegin id n)) ev = findRefdBegin r ev (Tuple id n)
vs
processBegin _ r (Just (Begin sp xList vars)) ev = processVarsMaybe vars sp xList ev
r
processBegin _ _ _ _ = Nothing

findRefdBegin:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdBegin r ws (Tuple id n) mapa = processBegin mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getBegin

--
processSpeed:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processSpeed vs r Nothing ev = Nothing

 269

processSpeed vs r (Just (TransposedSpeed id n)) ev = findRefdSpeed r ev (Tuple id n)
vs
processSpeed _ r (Just (Speed sp xList vars)) ev = processVarsMaybe vars sp xList ev
r
processSpeed _ _ _ _ = Nothing

findRefdSpeed:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdSpeed r ws (Tuple id n) mapa = processSpeed mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getSpeed

--
processPan:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processPan vs r Nothing ev = Nothing
processPan vs r (Just (TransposedPan id n)) ev = findRefdP r ev (Tuple id n) vs
processPan _ r (Just (Pan sp xList vars)) ev = processVarsMaybe vars sp xList ev r
processPan _ _ _ _ = Nothing

findRefdP:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdP r ws (Tuple id n) mapa = processPan mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getP
--
processGain:: Voices -> Rhythmic -> Maybe Value -> Event -> Maybe Number
processGain vs r Nothing ev = Nothing
processGain vs r (Just (TransposedGain id n)) ev = findRefdG r ev (Tuple id n) vs
processGain _ r (Just (Gain sp xList vars)) ev = processVarsMaybe vars sp xList ev r
processGain _ _ _ _ = Nothing

findRefdG:: Rhythmic -> Event -> Tuple String Int -> Voices -> Maybe Number
findRefdG r ws (Tuple id n) mapa = processGain mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getG
--
processN:: Voices -> Rhythmic -> Maybe Value -> Event -> Int
processN vs r Nothing ev = 0
processN vs r (Just (TransposedN id n)) ev = findRefdN r ev (Tuple id n) vs
processN _ r (Just (N span nList vars)) ev = processVarsInt vars span nList ev r
processN _ _ _ _ = 2666

findRefdN:: Rhythmic -> Event -> Tuple String Int -> Voices -> Int
findRefdN r ws (Tuple id n) mapa = processN mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getN
--
processSound:: Voices -> Rhythmic -> Maybe Value -> Event -> String
processSound vs r Nothing ev = "no sound value even with check!"
processSound vs r (Just (TransposedSound id n)) ev = findRefdSound r ev (Tuple id n)
vs
processSound _ r (Just (Sound span sList vars)) ev = processVarsStr vars span sList
ev r
processSound _ _ _ _ = "processSound failed at pattern matching"

--
processVarsStr:: List (Variation String) -> Span -> List String -> Event -> Rhythmic
-> String

 270

processVarsStr Nil sp xs ev r = spanStr sp (fromFoldable xs) ev r
processVarsStr (Cons v vs) sp xs ev r =
 if isVar v ev
 then spanStr vSpan (fromFoldable vList) ev r
 else processVarsStr vs sp xs ev r
 where vSpan = getVSpan v
 vList = getVListStr v

processVarsInt:: List (Variation Int) -> Span -> List Int -> Event -> Rhythmic -> Int
processVarsInt Nil sp xs ev r = spanInt sp (fromFoldable xs) ev r
processVarsInt (Cons v vs) sp xs ev r =
 if isVar v ev
 then spanInt vSpan (fromFoldable vList) ev r
 else processVarsInt vs sp xs ev r
 where vSpan = getVSpan v
 vList = getVListInt v

---- work here with the maybes!!!!
processVarsMaybe:: forall a. List (Variation a) -> Span -> List a -> Event ->
Rhythmic -> Maybe a
processVarsMaybe Nil sp xs ev r = spanMaybe sp (fromFoldable xs) ev r
processVarsMaybe (Cons v vs) sp xs ev r =
 if isVar v ev
 then spanMaybe vSpan (fromFoldable vList) ev r
 else processVarsMaybe vs sp xs ev r
 where vSpan = getVSpan v
 vList = getVList v

getVSpan:: forall a. Variation a -> Span
getVSpan (Every _ sp _) = sp

getVListStr:: Variation String -> List String
getVListStr (Every _ _ xs) = xs

getVListInt:: Variation Int -> List Int
getVListInt (Every _ _ ns) = ns

getVList:: forall a. Variation a -> List a
getVList (Every _ _ xs) = xs

isVar (Every n _ _) ev = ((getBlockIndex ev)`mod`n) == 0
isVar _ _ = false

findRefdSound:: Rhythmic -> Event -> Tuple String Int -> Voices -> String
findRefdSound r ws (Tuple id n) mapa = processSound mapa r newVal ws
 where newVal = cycleAurals n (M.lookup id mapa) getS

-- Potential here for crazyness: delay, anticipate, swing, contratiempo, microrhythm,
snap...
processWhen:: Event -> Number
processWhen (Event o i) = (\(Onset b p) -> p) o

 271

---- span functions, three flavours: String, Int, Num
spanMaybe:: forall a. Span -> Array a -> Event -> Rhythmic -> Maybe a
spanMaybe CycleEvent xs event _ = xs !! (getEventIndex event `mod` length xs)
spanMaybe CycleBlock xs event _ = xs !! (getBlockIndex event `mod` length xs)
spanMaybe CycleInBlock xs event _ = xs !! (getStructureIndex event `mod` length xs)
spanMaybe SpreadBlock xs event rhythmic = spreadInBlock xs event rhythmic
spanMaybe _ _ _ _ = Nothing

spanStr:: Span -> Array String -> Event -> Rhythmic -> String
spanStr CycleEvent xs event _ = strMaybe $ xs !! (getEventIndex event `mod` length
xs)
spanStr CycleBlock xs event _ = strMaybe $ xs !! (getBlockIndex event `mod` length
xs)
spanStr CycleInBlock xs event _ = strMaybe $ xs !! (getStructureIndex event `mod`
length xs)
spanStr SpreadBlock xs event rhythmic = strMaybe $ spreadInBlock xs event rhythmic
spanStr _ _ _ _ = "error at spanStr, invalid span constructor"

spanInt:: Span -> Array Int -> Event -> Rhythmic -> Int
spanInt CycleEvent xs event _ = intMaybe $ xs !! (getEventIndex event `mod` length
xs)
spanInt CycleBlock xs event _ = intMaybe $ xs !! (getBlockIndex event `mod` length
xs)
spanInt CycleInBlock xs event _ = intMaybe $ xs !! (getStructureIndex event `mod`
length xs)
spanInt SpreadBlock xs event rhythmic = intMaybe $ spreadInBlock xs event rhythmic
spanInt _ _ _ _ = 2666

-- spread functions are now general for all values!!! Bliss
spreadInBlock:: forall a. Array a -> Event -> Rhythmic -> Maybe a
spreadInBlock xs event rhythmic = spreadWrap percenPos xsLimits
 where percenPositions = map (\(Onset b p) -> p) $ rhythmicToOnsets rhythmic
 modIndex = (getEventIndex event) `mod` (length $ fromFoldable
percenPositions)
 percenPos = fromMaybe 0.0 $ (fromFoldable percenPositions) !! modIndex
 segment = 1.0 / toNumber (length xs)
 limitsFst = cons 0.0 (scanl (+) 0.0 $ replicate ((length xs) - 1) segment)
 limitsSnd = snoc (scanl (+) 0.0 $ replicate ((length xs) - 1) segment) 1.0
 xsLimits = zip xs $ zip limitsFst limitsSnd

spreadWrap:: forall a. Number -> Array (Tuple a (Tuple Number Number)) -> Maybe a
spreadWrap percenPos asWithlimits = fromMaybe Nothing $ head $ filter isJust $ map
(\(Tuple as limits) -> spread percenPos as limits) asWithlimits

spread:: forall a. Number -> a -> (Tuple Number Number) -> Maybe a
spread percenPos a limits = if (percenPos >= fst limits) && (percenPos < snd limits)
then (Just a) else Nothing

---- helpers
strMaybe:: Maybe String -> String
strMaybe x = fromMaybe "error" x

 272

intMaybe:: Maybe Int -> Int
intMaybe x = fromMaybe 2666 x

numMaybe:: Maybe Number -> Number
numMaybe x = fromMaybe 2.666 x

cycleAurals:: Int -> Maybe Voice -> (List Value -> Maybe Value) -> Maybe Value
cycleAurals n mVoice f = do
 voice <- mVoice
 let aurals = (\(Voice t aurals) -> aurals) voice
 let len = L.length aurals
 newVal <- (fromFoldable aurals) !! (n`mod`len)
 f newVal

-- getters
----- structure index is weird, think of nested levels
getStructureIndex:: Event -> Int
getStructureIndex (Event _ (Index _ xs _)) = fromMaybe 0 $ head $ xs

getBlockIndex:: Event -> Int
getBlockIndex (Event _ (Index n _ _)) = n

getEventIndex:: Event -> Int
getEventIndex (Event _ (Index _ _ n)) = n

getXNote:: List Value -> Maybe Value
getXNote aural = head $ filter isXNote $ fromFoldable aural

isXNote:: Value -> Boolean
isXNote (XNotes _ _ _) = true
isXNote _ = false

getNote:: List Value -> Maybe Value
getNote aural = head $ filter isNote $ fromFoldable aural

isNote:: Value -> Boolean
isNote (Dastgah _ _) = true
isNote (Xeno _ _ _) = true
isNote (Prog _ _) = true
isNote _ = false

getDastgahList:: Dastgah -> List Int
getDastgahList (Shur ns) = ns
getDastgahList _ = Nil

getMaxW:: List Value -> Maybe Value
getMaxW aural = head $ filter isMaxW $ fromFoldable aural

isMaxW:: Value -> Boolean
isMaxW (MaxW _ _ _) = true

 273

isMaxW (TransposedMaxW _ _) = true
isMaxW _ = false

getMinW:: List Value -> Maybe Value
getMinW aural = head $ filter isMinW $ fromFoldable aural

isMinW:: Value -> Boolean
isMinW (MinW _ _ _) = true
isMinW (TransposedMinW _ _) = true
isMinW _ = false

getOrbit:: List Value -> Maybe Value
getOrbit aural = head $ filter isOrbit $ fromFoldable aural

isOrbit:: Value -> Boolean
isOrbit (Orbit _ _ _) = true
isOrbit (TransposedOrbit _ _) = true
isOrbit _ = false

getLegato:: List Value -> Maybe Value
getLegato aural = head $ filter isLegato $ fromFoldable aural

isLegato:: Value -> Boolean
isLegato (Legato _ _ _) = true
isLegato (TransposedLegato _ _) = true
isLegato _ = false

getInter:: List Value -> Maybe Value
getInter aural = head $ filter isInter $ fromFoldable aural

isInter:: Value -> Boolean
isInter (Inter _ _ _) = true
isInter (TransposedInter _ _) = true
isInter _ = false

getCutOffH:: List Value -> Maybe Value
getCutOffH aural = head $ filter isCutOffH $ fromFoldable aural

isCutOffH:: Value -> Boolean
isCutOffH (CutOffH _ _ _) = true
isCutOffH (TransposedCutOffH _ _) = true
isCutOffH _ = false

getCutOff:: List Value -> Maybe Value
getCutOff aural = head $ filter isCutOff $ fromFoldable aural

isCutOff:: Value -> Boolean
isCutOff (CutOff _ _ _) = true
isCutOff (TransposedCutOff _ _) = true
isCutOff _ = false

getVowel:: List Value -> Maybe Value

 274

getVowel aural = head $ filter isVowel $ fromFoldable aural

isVowel:: Value -> Boolean
isVowel (Vowel _ _ _) = true
isVowel (TransposedVowel _ _) = true
isVowel _ = false

getEnd:: List Value -> Maybe Value
getEnd aural = head $ filter isEnd $ fromFoldable aural

isEnd:: Value -> Boolean
isEnd (End _ _ _) = true
isEnd (TransposedEnd _ _) = true
isEnd _ = false

getBegin:: List Value -> Maybe Value
getBegin aural = head $ filter isBegin $ fromFoldable aural

isBegin:: Value -> Boolean
isBegin (Begin _ _ _) = true
isBegin (TransposedBegin _ _) = true
isBegin _ = false

getSpeed:: List Value -> Maybe Value
getSpeed aural = head $ filter isSpeed $ fromFoldable aural

isSpeed:: Value -> Boolean
isSpeed (Speed _ _ _) = true
isSpeed (TransposedSpeed _ _) = true
isSpeed _ = false

getP:: List Value -> Maybe Value
getP aural = head $ filter isP $ fromFoldable aural

isP:: Value -> Boolean
isP (Pan _ _ _) = true
isP (TransposedPan _ _) = true
isP _ = false

getG:: List Value -> Maybe Value
getG aural = head $ filter isG $ fromFoldable aural

isG:: Value -> Boolean
isG (Gain _ _ _) = true
isG (TransposedGain _ _) = true
isG _ = false

getN:: List Value -> Maybe Value
getN aural = head $ filter isN $ fromFoldable aural

isN:: Value -> Boolean
isN (N _ _ _) = true

 275

isN (TransposedN _ _) = true
isN _ = false

getS:: List Value -> Maybe Value
getS aural = head $ filter isSound $ fromFoldable aural

isSound:: Value -> Boolean
isSound (Sound _ _ _) = true
isSound (TransposedSound _ _) = true
isSound _ = false

A.4.12 Assemble WebDirt

module AssambleWebdirt (objectWithWhenSN, addGain, addPan, addSpeed, addBegin,
addEnd, addVowel, addMaxW, addMinW, addInter, addLegato, addOrbit, addCutOff,
addCutOffH, addNote) where

import Prelude
import Effect (Effect)
import Foreign

-- foreign
foreign import objectWithWhenSN :: Number -> String -> Int -> Effect Foreign
-- export objectWithWhenSN = when => s => n => () => { return { when: when, s: s, n:
n }; }

foreign import addGain :: Foreign -> Number -> Effect Foreign
-- export addGain = o => gain => () => { o.gain = gain; return o; }

foreign import addPan :: Foreign -> Number -> Effect Foreign
-- export addPan = o => pan => () => { o.pan = pan; return o; }

foreign import addSpeed :: Foreign -> Number -> Effect Foreign
-- export addSpeed = o => speed => () => { o.speed = speed; return o; }

foreign import addBegin :: Foreign -> Number -> Effect Foreign
-- export addBegin = o => begin => () => { o.begin = begin; return o; }

foreign import addEnd :: Foreign -> Number -> Effect Foreign
-- export addEnd = o => end => () => { o.end = end; return o; }

foreign import addVowel :: Foreign -> String -> Effect Foreign
-- export addVowel = o => vowel => () => { o.vowel = vowel; return o; }

foreign import addCutOff :: Foreign -> Number -> Effect Foreign
-- export addCutoff = o => cutoff => () => { o.cutoff = cutoff; return o; }

foreign import addCutOffH :: Foreign -> Number -> Effect Foreign
-- export addCutoffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

 276

foreign import addMaxW :: Foreign -> Number -> Effect Foreign
-- export addCutoffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

foreign import addMinW :: Foreign -> Number -> Effect Foreign
-- export addCutoffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

foreign import addInter :: Foreign -> Number -> Effect Foreign
-- export addCutoffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

foreign import addLegato :: Foreign -> Number -> Effect Foreign
-- export addCutoffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

foreign import addOrbit :: Foreign -> Int -> Effect Foreign
-- export addCutoffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

foreign import addNote :: Foreign -> Number -> Effect Foreign
-- export const addNote = o => note => () => { o.note = note; return o; }

A.4.13 Assemble WebDirt JS

"use strict";

export const objectWithWhenSN = when => s => n => () => { return { whenPosix: when,
s: s, n: n }; }

export const addGain = o => gain => () => { o.gain = gain; return o; }

export const addPan = o => pan => () => { o.pan = pan; return o; }

export const addSpeed = o => speed => () => { o.speed = speed; return o; }

export const addBegin = o => begin => () => { o.begin = begin; return o; }

export const addEnd = o => end => () => { o.end = end; return o; }

export const addVowel = o => vowel => () => { o.vowel = vowel; return o; }

export const addCutOff = o => cutoff => () => { o.cutoff = cutoff; return o; }

export const addCutOffH = o => cutoffh => () => { o.hcutoff = cutoffh; return o; }

export const addMaxW = o => maxw => () => { o.maxw = maxw; return o; }

export const addMinW = o => minw => () => { o.minw = minw; return o; }

export const addInter = o => inter => () => { o.inter = inter; return o; }

export const addLegato = o => legato => () => { o.legato = legato; return o; }

 277

export const addOrbit = o => orbit => () => { o.orbit = orbit; return o; }

export const addNote = o => note => () => { o.note = note; return o; }

A.4.14 Erv

module Erv where

import AST (XenoNote)

foreign import ratioToCents :: Number -> Number

foreign import makeCPSScale :: Int -> Array Int -> Array XenoNote

-- foreign import pruebilla :: Int -> Int -> Int

--- objeto resultante de cps.make , typear..?
-- {
-- meta: {
-- scale: 'cps',
-- period: 2,
-- size: 2,
-- factors: [1, 3, 5, 7],
-- 'normalized-by': 1,
-- type: '2)4'
-- },
-- scale: [
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 35,
-- 'bounded-ratio': 1.09375,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 5,
-- 'bounded-ratio': 1.25,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],

 278

-- ratio: 21,
-- 'bounded-ratio': 1.3125,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 3,
-- 'bounded-ratio': 1.5,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 7,
-- 'bounded-ratio': 1.75,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 15,
-- 'bounded-ratio': 1.875,
-- 'bounding-period': 2
-- }
--],
-- nodes: [
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 3,
-- 'bounded-ratio': 1.5,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 5,
-- 'bounded-ratio': 1.25,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 7,
-- 'bounded-ratio': 1.75,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 15,

 279

-- 'bounded-ratio': 1.875,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 21,
-- 'bounded-ratio': 1.3125,
-- 'bounding-period': 2
-- },
-- {
-- set: [Array],
-- 'archi-set': [Array],
-- ratio: 35,
-- 'bounded-ratio': 1.09375,
-- 'bounding-period': 2
-- }
--],
-- graphs: {
-- full: {
-- '{:set #{1 3}, :archi-set #{:a :b}, :ratio 3, :bounded-ratio 1.5, :bounding-
period 2}': [Array],
-- '{:set #{1 5}, :archi-set #{:a :c}, :ratio 5, :bounded-ratio 1.25,
:bounding-period 2}': [Array],
-- '{:set #{1 7}, :archi-set #{:a :d}, :ratio 7, :bounded-ratio 1.75,
:bounding-period 2}': [Array],
-- '{:set #{3 5}, :archi-set #{:b :c}, :ratio 15, :bounded-ratio 1.875,
:bounding-period 2}': [Array],
-- '{:set #{3 7}, :archi-set #{:b :d}, :ratio 21, :bounded-ratio 1.3125,
:bounding-period 2}': [Array],
-- '{:set #{5 7}, :archi-set #{:c :d}, :ratio 35, :bounded-ratio 1.09375,
:bounding-period 2}': [Array]
-- },
-- simple: {
-- '#{1 3}': [Array],
-- '#{1 5}': [Array],
-- '#{1 7}': [Array],
-- '#{3 5}': [Array],
-- '#{3 7}': [Array],
-- '#{5 7}': [Array]
-- }
-- }
-- }

A.4.15 Erv JS

import * as Erv from "@diegovdc/erv";

export const ratioToCents = Erv.default.utils.ratioToCents;

 280

export const makeCPSScale = (size) => (factor) =>
Erv.default.cps.make(size,factor).scale;

A.4.16 Dastgah

module Dastgah (analysisDastgahPattern, getMIDIInterval) where

import Prelude
import Data.Int (toNumber)
import Data.Array (filter,fromFoldable,(!!), zipWith, replicate, concat, (..), (:),
init, tail, last,head,reverse,zip, cons, uncons, snoc, length, singleton)
import Data.List
import Data.List (fromFoldable,concat,zip,zipWith,length,init,uncons) as L
import Data.Maybe
import Data.Tuple

import AST
import DurationAndIndex

getMIDIInterval:: Array DastgahNote -> Array Number
getMIDIInterval xs = map (\x -> x.midiInterval) xs

analysisDastgahPattern::Span -> Rhythmic -> Array Int -> Array DastgahNote
analysisDastgahPattern CycleEvent _ ns = map assambleDastgahNote zipped
 where first = ns
 s = fromMaybe {head: 0, tail: []} $ uncons ns
 second = snoc s.tail s.head
 zipped = zip first second
analysisDastgahPattern CycleBlock _ ns = map assambleDastgahNote zipped
 where first = ns
 s = fromMaybe {head: 0, tail: []} $ uncons ns
 second = snoc s.tail s.head
 zipped = zip first second
analysisDastgahPattern CycleInBlock r ns = map assambleDastgahNote zipped
 where structure = map (\x -> (x `mod` (length ns))) $ map (\x -> fromMaybe 0 $ head
x) $ rhythmicStructIndex r [0]
 seque = map (\x -> fromMaybe 0 (ns !! x)) structure
 first = seque
 s = fromMaybe {head: 0, tail: []} $ uncons seque
 second = snoc s.tail s.head
 zipped = zip first second
analysisDastgahPattern SpreadBlock r ns = map assambleDastgahNote zipped
 where percenPositions = map (\(Onset b p) -> p) $ rhythmicToOnsets r -- xxx[xx] : 0
0.25 0.5 0.75 0.875
 segment = 1.0 / toNumber (length ns) -- 1 3 5 : 0.333333
 limitsFst = cons 0.0 (scanl (+) 0.0 $ replicate ((length ns) - 1) segment) --
[0, 0.333, 0.666]

 281

 limitsSnd = snoc (scanl (+) 0.0 $ replicate ((length ns) - 1) segment) 1.0 --
[0.333, 0.666, 1]
 limits = zip limitsFst limitsSnd -- [(0,0.333), (0.333,0.666), (0.666,1)]
 noteLimits = zip ns limits -- [(1,(0,0.333)),(3,(0.333,0.666)),(5,(0.666,1))]
 funka:: Array (Tuple Int (Tuple Number Number)) -> Number -> Array Int
 funka noteLimits percenPos = map fst $ filter (\(Tuple _ limit) -> (percenPos
>= (fst limit)) && (percenPos < (snd limit))) noteLimits
 realNS = concat $ map (\percenPos -> funka noteLimits percenPos) $
fromFoldable percenPositions
 first = realNS
 s = fromMaybe {head: 0, tail: []} $ uncons realNS
 second = snoc s.tail s.head
 zipped = zip first second

assambleDastgahNote:: Tuple Int Int -> DastgahNote
assambleDastgahNote (Tuple x y) = {function: fu, movement: mov, midiInterval:
checkedMidiInt}
 where (Tuple midiInter fu) = shurIntToFuncAndMIDIInt x
 mov = getMovement x y
 checkedMidiInt = if x == 6 then checkSixth mov midiInter else midiInter

checkSixth:: Interval -> Number -> Number
checkSixth UpJump midiInter = midiInter + 0.92
checkSixth UpNext midiInter = midiInter + 0.92
checkSixth _ midiInter = midiInter

getMovement:: Int -> Int -> Interval
getMovement note target
 | (note < target) && (target == (note+1)) = UpNext
 | (note < target) && (target /= (note+1)) = UpJump
 | (note > target) && (target == (note-1)) = DownNext
 | (note > target) && (target /= (note-1)) = DownJump
 | note == target = Unison
 | otherwise = Unison

---- need octaves!!! -- start from 0 to 6
shurIntToFuncAndMIDIInt:: Int -> Tuple Number String
shurIntToFuncAndMIDIInt n = case (n-1)`mod`8 of
 0 -> Tuple 0.0 "unknown"
 1 -> Tuple 1.82 "unknown"
 2 -> Tuple 2.96 "unknown"
 3 -> Tuple 5.0 "unknown"
 4 -> Tuple 7.04 "unknown"
 5 -> Tuple 7.94 "unknown" -- upwards move 8.86
 6 -> Tuple 9.98 "unknown"
 7 -> Tuple 12.0 "unknown"
 _ -> Tuple 0.0 "unknown"

-- 0 1.82 2.96 5.0 7.04 7.94 9.98 12.0
-- data Dastgah = Shur (List Int)

 282

dToList:: Dastgah -> List Number
dToList (Shur ns) = map f ns
 where f n = case (n-1)`mod`8 of
 0 -> 0.0
 1 -> 1.82
 2 -> 2.96
 3 -> 5.0
 4 -> 7.04
 5 -> 7.94
 6 -> 9.98
 7 -> 12.0
 _ -> 0.0
dToList _ = Nil

A.4.17 Tuning Systems

module XenoPitch (xenoPitchAsAuralPattern, xenoPitchToMIDIInterval, testXN,
xenoPitchAsMIDINum) where

import Prelude

import Partial.Unsafe

import Data.Array ((:), elem, filter,unsafeIndex, length, sortWith, zip, (!!),
fromFoldable, cons, uncons, snoc, init, tail, last,head,reverse, replicate, concat)

import Data.List (scanl)

import Data.Tuple
import Data.Int (toNumber, floor)
import Data.Number (floor) as N
import Data.Maybe

import Data.Set (Set(..))
import Data.Set as Set

import Erv (makeCPSScale,ratioToCents)
import AST
import DurationAndIndex

---- this top is the list processed in AuralSpecs along with span and Value
-- top:: XenoPitch -> Array Number

-- lista: [0,1,2,3]
-- xnAsMIDI: [0, 2.5, 3.3, 5.5, 7.7, 8.8, 10.1]

-- data XenoPitch = CPSet Int (Array Int) (Array Int) | MOS Int Int | EDO Number Int
testXP = CPSet 2 [1,3,5,7] (Just $ [Unions [1,3]])
testXN = xenoPitchAsAuralPattern (Tuple testXP $ Just 1) [0,1,2,3]

 283

--- new fucntion that receives tuning system / note and index and can produce the
midiInterval required

xenoPitchAsMIDINum:: Tuple XenoPitch (Maybe Int) -> Int -> Number
xenoPitchAsMIDINum (Tuple xn (Just i)) nota = asMIDI
 where scaleAsMIDISubsets = xenoPitchToMIDIInterval xn -- Array Array Num
 subset = fromMaybe [0.0] $ scaleAsMIDISubsets !! i
 lengthOfSet = length subset
 (Tuple index octave) = cycleAndOctavesOfPatternInSet' nota lengthOfSet
 asMIDI = (fromMaybe (0.0) $ subset !! index) + octave
xenoPitchAsMIDINum (Tuple xn Nothing) nota = asMIDI
 where scaleAsMIDISubsets = xenoPitchToMIDIInterval xn -- Array Array Num
 subset = fromMaybe [2.666] $ scaleAsMIDISubsets !! 0
 lengthOfSet = length subset
 (Tuple index octave) = cycleAndOctavesOfPatternInSet' nota lengthOfSet
 asMIDI = (fromMaybe (0.0) $ subset !! index) + octave

cycleAndOctavesOfPatternInSet':: Int -> Int -> Tuple Int Number
cycleAndOctavesOfPatternInSet' n setLen = Tuple cycledNote isOctave
 where cycledNote = n `mod` setLen
 isOctave = toNumber $ (floor $ (toNumber n) / (toNumber setLen))*12

xenoPitchAsAuralPattern:: Tuple XenoPitch (Maybe Int) -> Array Int -> Span ->
Rhythmic -> Array Number
xenoPitchAsAuralPattern (Tuple ShurNot Nothing) lista sp r = map (\n-> n.midiInterval
+ (386.3137138648348*0.01)) $ map assambleShurNot shurNot
 where shurNot = analysisShurNotPattern sp r lista
xenoPitchAsAuralPattern (Tuple ShurNot8 Nothing) lista sp r = map (\n->
n.midiInterval) $ map assambleShurNot8 shurNot8
 where shurNot8 = analysisShurNotPattern sp r lista
xenoPitchAsAuralPattern (Tuple xn (Just i)) lista _ _ = asMIDI
 where scaleAsMIDISubsets = xenoPitchToMIDIInterval xn -- Array Array Num
 subset = fromMaybe [0.0] $ scaleAsMIDISubsets !! i
 lengthOfSet = length subset
 cyclesAndOctave = cycleAndOctavesOfPatternInSet lista lengthOfSet
 asMIDI = map (\(Tuple index octave) -> (fromMaybe (0.0) $ subset !!
index) + octave) cyclesAndOctave
xenoPitchAsAuralPattern (Tuple xn Nothing) lista _ _ = asMIDI
 where scaleAsMIDISubsets = xenoPitchToMIDIInterval xn -- Array Array Num
 subset = fromMaybe [2.666] $ scaleAsMIDISubsets !! 0
 lengthOfSet = length subset
 cyclesAndOctave = cycleAndOctavesOfPatternInSet lista lengthOfSet
 asMIDI = map (\(Tuple index octave) -> (fromMaybe (0.0) $ subset !!
index) + octave) cyclesAndOctave

cycleAndOctavesOfPatternInSet:: Array Int -> Int -> Array (Tuple Int Number)
cycleAndOctavesOfPatternInSet ns setLen = zip cycledList isOctave
 where cycledList = map (\n -> n `mod` setLen) ns
 isOctave = map (\n -> toNumber $ (floor $ (toNumber n) / (toNumber
setLen))*12) ns

 284

addOctave:: Int -> Number
addOctave n = 12.0 * (N.floor $ (toNumber n) / 12.0)

centaura:: Int -> Number
centaura n = case n`mod`12 of
 0 -> 0.0
 1 -> 53.27294323014412*0.01
 2 -> 203.91000173077484*0.01
 3 -> 266.8709056037379*0.01
 4 -> 386.3137138648348*0.01
 5 -> 498.04499913461217*0.01
 6 -> 551.3179423647567*0.01
 7 -> 701.9550008653874*0.01
 8 -> 764.9159047383506*0.01
 9 -> 884.3587129994477*0.01
 10 -> 968.8259064691249*0.01
 11 -> 1088.2687147302222*0.01
 _ -> 0.0

analysisShurNotPattern:: Span -> Rhythmic -> Array Int -> Array (Tuple Int Int)
analysisShurNotPattern CycleEvent _ ns = zipped
 where first = ns
 s = fromMaybe {head: 0, tail: []} $ uncons ns
 second = snoc s.tail s.head
 zipped = zip first second
analysisShurNotPattern CycleBlock _ ns = zipped
 where first = ns
 s = fromMaybe {head: 0, tail: []} $ uncons ns
 second = snoc s.tail s.head
 zipped = zip first second
analysisShurNotPattern CycleInBlock r ns = zipped
 where structure = map (\x -> (x `mod` (length ns))) $ map (\x -> fromMaybe 0 $ head
x) $ rhythmicStructIndex r [0]
 seque = map (\x -> fromMaybe 0 (ns !! x)) structure
 first = seque
 s = fromMaybe {head: 0, tail: []} $ uncons seque
 second = snoc s.tail s.head
 zipped = zip first second
analysisShurNotPattern SpreadBlock r ns = zipped
 where percenPositions = map (\(Onset b p) -> p) $ rhythmicToOnsets r -- xxx[xx] : 0
0.25 0.5 0.75 0.875
 segment = 1.0 / toNumber (length ns) -- 1 3 5 : 0.333333
 limitsFst = cons 0.0 (scanl (+) 0.0 $ replicate ((length ns) - 1) segment) --
[0, 0.333, 0.666]
 limitsSnd = snoc (scanl (+) 0.0 $ replicate ((length ns) - 1) segment) 1.0 --
[0.333, 0.666, 1]
 limits = zip limitsFst limitsSnd -- [(0,0.333), (0.333,0.666), (0.666,1)]
 noteLimits = zip ns limits -- [(1,(0,0.333)),(3,(0.333,0.666)),(5,(0.666,1))]
 funka:: Array (Tuple Int (Tuple Number Number)) -> Number -> Array Int
 funka noteLimits percenPos = map fst $ filter (\(Tuple _ limit) -> (percenPos
>= (fst limit)) && (percenPos < (snd limit))) noteLimits

 285

 realNS = concat $ map (\percenPos -> funka noteLimits percenPos) $
fromFoldable percenPositions
 first = realNS
 s = fromMaybe {head: 0, tail: []} $ uncons realNS
 second = snoc s.tail s.head
 zipped = zip first second

assambleShurNot8:: Tuple Int Int -> ShurNot
assambleShurNot8 (Tuple x y) = {movement: mov, midiInterval: checkedMidiInt}
 where midiInter = shur8IntToMIDIInt x
 mov = getMovement x y
 checkedMidiInt = midiInter

 --- this tuple is the interval to analyse
assambleShurNot:: Tuple Int Int -> ShurNot
assambleShurNot (Tuple x y) = {movement: mov, midiInterval: checkedMidiInt}
 where midiInter = shurIntToMIDIInt x
 mov = getMovement x y
 secondChecked = if x == 8 then checkSec mov midiInter else midiInter
 sixthChecked = if x == 12 then checkSixth mov midiInter else secondChecked
 checkedMidiInt = sixthChecked

checkSec:: Interval -> Number -> Number
checkSec DownJump midiInter = midiInter + ((165.00422849992202 * 0.01) -
(111.73128526977847 * 0.01) - midiInter)
checkSec DownNext midiInter = midiInter + ((165.00422849992202 * 0.01) -
(111.73128526977847 * 0.01) - midiInter)
checkSec _ midiInter = midiInter

checkSixth:: Interval -> Number -> Number
checkSixth UpJump midiInter = midiInter + (866.9592293653092 * 0.01) -
(813.6862861351652 * 0.01)
checkSixth UpNext midiInter = midiInter + (866.9592293653092 * 0.01) -
(813.6862861351652 * 0.01)
checkSixth _ midiInter = midiInter

getMovement:: Int -> Int -> Interval
getMovement note target
 | (note < target) && (target == (note+1)) = UpNext
 | (note < target) && (target /= (note+1)) = UpJump
 | (note > target) && (target == (note-1)) = DownNext
 | (note > target) && (target /= (note-1)) = DownJump
 | note == target = Unison
 | otherwise = Unison

shur8IntToMIDIInt:: Int -> Number
shur8IntToMIDIInt n = case n`mod`26 of
 0 -> 0.0 - 24.0
 1 -> (701.955000865387 * 0.01) - 24.0
 2 -> 0.0 - 12.0

 286

 3 -> (266.8709056037379*0.01) - 12.0
 4 -> (498.04499913461217*0.01) - 12.0
 5 -> (701.9550008653874*0.01) - 12.0
 6 -> (968.8259064691249*0.01) - 12.0
 7 -> 0.0
 8 -> 203.91000173077484 * 0.01 -- desciende con
111.73128526977847
 9 -> 266.8709056037379 * 0.01
 10 -> 498.04499913461217 * 0.01
 11 -> 701.9550008653874 * 0.01
 12 -> 884.3587129994477 * 0.01 -- asciende con
866.9592293653092
 13 -> 968.8259064691249 * 0.01
 14 -> 12.0
 15 -> 12.0 + (53.27294323014412 * 0.01)
 16 -> 12.0 + (203.91000173077484 * 0.01)
 17 -> 12.0 + (266.8709056037379 * 0.01)
 18 -> 12.0 + (386.3137138648348 * 0.01)
 19 -> 12.0 + (498.04499913461217 * 0.01)
 20 -> 12.0 + (551.3179423647567 * 0.01)
 21 -> 12.0 + (701.9550008653874 * 0.01)
 22 -> 12.0 + (764.9159047383506 * 0.01)
 23 -> 12.0 + (884.358712999447 * 0.01)
 24 -> 12.0 + (968.8259064691249 * 0.01)
 25 -> 12.0 + (1088.2687147302222 * 0.01)
 _ -> 0.0

-- [0
-- (0.0 *
-- 53.27294323014412
-- 203.91000173077484 *
-- 266.8709056037379 *
-- 386.3137138648348
-- 498.04499913461217 *
-- 551.3179423647567
-- 701.9550008653874 *
-- 764.9159047383506
-- 884.3587129994477 *
-- 968.8259064691249 *
-- 1088.2687147302222)]

shurIntToMIDIInt:: Int -> Number
shurIntToMIDIInt n = case n`mod`26 of
 0 -> 0.0 - 24.0
 1 -> (701.9550008653874 * 0.01) - 24.0
 2 -> 0.0 - 12.0
 3 -> (165.00422849992202*0.01) - 12.0
 4 -> (315.64128700055255*0.01) - 12.0
 5 -> (582.51219260429*0.01) - 12.0
 6 -> (813.6862861351652*0.01) - 12.0
 7 -> 0.0

 287

 8 -> 165.00422849992202 * 0.01 -- desciende con
111.73128526977847
 9 -> 315.64128700055255 * 0.01
 10 -> 498.04499913461217 * 0.01
 11 -> 701.9550008653874 * 0.01
 12 -> 813.6862861351652 * 0.01 -- asciende con
866.9592293653092
 13 -> 1017.5962878659401 * 0.01
 14 -> 12.0
 15 -> 12.0 + (111.73128526977847 * 0.01)
 16 -> 12.0 + (165.00422849992202 * 0.01)
 17 -> 12.0 + (315.64128700055255 * 0.01)
 18 -> 12.0 + (378.6021908735147 * 0.01)
 19 -> 12.0 + (498.04499913461217 * 0.01)
 20 -> 12.0 + (582.51219260429 * 0.01)
 21 -> 12.0 + (701.9550008653874 * 0.01)
 22 -> 12.0 + (813.6862861351652 * 0.01)
 23 -> 12.0 + (866.9592293653092 * 0.01)
 24 -> 12.0 + (1017.5962878659401 * 0.01)
 25 -> 12.0 + (1080.557191738903 * 0.01)
 _ -> 0.0

type ShurNot = {
 movement:: Interval,
 midiInterval:: Number
}

-- [4
-- (0.0 * e
-- 111.73128526977847
-- 165.00422849992202 * ft
-- 315.64128700055255 * g
-- 378.6021908735147
-- 498.04499913461217 *
-- 582.51219260429 bb
-- 701.9550008653874 *
-- 813.6862861351652 * c descendente
-- 866.9592293653092 * ascendente
-- 1017.5962878659401 *
-- 1080.557191738903)]

---- the ordering of subsets is still buggy, figure it out!! Jan 2024
xenoPitchToMIDIInterval:: XenoPitch -> Array (Array Number)
xenoPitchToMIDIInterval (CPSet size factors Nothing) = map (addSampleRoot <<<
toMIDIInterval) [scale]
 where scale = makeCPSScale size factors -- Array XenoNote
xenoPitchToMIDIInterval (CPSet size factors (Just subsets)) = map (addSampleRoot <<<
toMIDIInterval) (scale : subs)
 where scale = makeCPSScale size factors -- Array XenoNote
 subs = map (orderSetofXNotes <<< getSubSet scale) subsets
xenoPitchToMIDIInterval _ = []

 288

getSubSet:: Array XenoNote -> Subset -> Array XenoNote
getSubSet xn subset = fromFoldable $ getSubset' xn subset

------ this function might not be working properly.... also check the ordering func
above
getSubset':: Array XenoNote -> Subset -> Set XenoNote
getSubset' xn (Subset isInSet) = Set.fromFoldable $ filter (\x -> elem isInSet x.set
) xn
getSubset' xn (Unions ns) = Set.unions $ map f ns
 where f isInSet = Set.fromFoldable $ filter (\x -> elem isInSet x.set) xn
getSubset' xn (Intersection a b) = Set.intersection a' b'
 where a' = Set.fromFoldable $ filter (\x -> elem a x.set) xn
 b' = Set.fromFoldable $ filter (\x -> elem b x.set) xn
getSubset' xn (Difference a b) = Set.difference a' b'
 where a' = Set.fromFoldable $ filter (\x -> elem a x.set) xn
 b' = Set.fromFoldable $ filter (\x -> elem b x.set) xn
getSubset' _ _ = Set.fromFoldable []

orderSetofXNotes:: Array XenoNote -> Array XenoNote
orderSetofXNotes s = sortWith (_."bounded-ratio") s

-- sortWith (_.age) [{name: "Alice", age: 42}, {name: "Bob", age: 21}]
-- = [{name: "Bob", age: 21}, {name: "Alice", age: 42}]

toMIDIInterval:: Array XenoNote -> Array Number
toMIDIInterval xns = map toMIDIInterval' xns

toMIDIInterval':: XenoNote -> Number
toMIDIInterval' xn = (ratioToCents xn."bounded-ratio") / 100.0

addSampleRoot:: Array Number -> Array Number
addSampleRoot xs = 0.0 : xs

-- parseo:
-- v0.myCPS[0] = _ 0 1 2 3 4 5 6;

-- {
-- myCPS <- cps 2 (1,3,5,7) | setsWith 3, setsWith 5, setsWith 7;

-- myMOS <- mos 12 7 0;

-- }

-- where myCPS is an array and index 0 is the set, index 1 is setsWith 3, index 2 is
setsWith 5, etc...
-- third arg of mos is rotation

 289

A.4.18 Abstract Syntax Tree

module AST(TimekNot(..),Vantage(..), TimePoint(..), VantageMap(..), Voices(..),
Voice(..),Program(..),Expression(..),Aural(..),Value(..),
Variation(..),Dastgah(..),Span(..),Temporal(..),Polytemporal(..),Rhythmic(..),
Euclidean(..), Event(..), TimePacket(..), Onset(..), Index(..), TempoMark(..),
Sinusoidal(..), ConvergeTo(..), ConvergeFrom(..), CPAlign(..), XenoPitch(..),
XenoNote(..), DastgahNote(..), Interval(..), Subset(..), showEventIndex,
showStructureIndex) where

import Prelude
import Effect.Ref
import Data.List
import Data.String as Str
import Data.Tempo
import Data.DateTime
import Data.Rational
import Data.Map
import Data.Tuple
import Data.Either
import Data.Maybe

type TimekNot = {
 ast :: Ref Program,
 tempo :: Ref Tempo,
 eval :: Ref DateTime,
 vantageMap :: Ref (Map String DateTime)
 }

type Program = List Expression

data Expression = TimeExpression (Map String Temporal) | AuralExpression (Map String
Aural) | VantagePointExpression (Map String Vantage) | XenoPitchExpression (Map
String XenoPitch)

instance expressionShow :: Show Expression where
 show (TimeExpression x) = show x
 show (AuralExpression x) = show x
 show (XenoPitchExpression x) = show x
 show (VantagePointExpression x) = show x

-- Temporal values is short for TemporalRelationship and Aural is short for Aural
Values. Polytemporal stands for TempoRelationship, Rhythmic stands shor for Rhythmic
values

type Voices = Map String Voice

-- aural:: List Value // Temporal, which type has:: Polytemporal Rhythmic Loop
data Voice = Voice Temporal (List Aural)

instance voiceShow :: Show Voice where

 290

 show (Voice t a) = show t <> " " <> show a

type Aural = List Value -- aural is a list of aural attributes for a given time
layer. tend to be 1 sound, 1 n, 1 gain, 1 pan, etc.

-- :: List Aural is a non-monophonic time layer. Each event will trigger multiple
samples with different aural attributes

type VantageMap = Map String DateTime

data Vantage = Build TimePoint | Move (Either Rational Rational) | Remove

instance vantageShow :: Show Vantage where
 show (Build x) = "established " <> show x
 show (Move num) = " moved by " <> show x -- fornow secs but enable xBeats
 where x = case num of
 (Left beat) -> show beat <> " beats"
 (Right secs) -> show secs <> " secs"
 show Remove = " removed"

data TimePoint = Beat Rational | Secs Rational | UTC DateTime

instance timePoint :: Show TimePoint where
 show (Beat beat) = show beat <> " beats from eval"
 show (Secs secs) = show secs <> " secs from eval"
 show (UTC utc) = show utc

-- future additions to Value: OSound | OTransposedSound | Full Sound OSound
-- for now only X generates sounds, O should be allowed to invoke sound as well. Full
will allow to invoke sound for X and O as pairs

data Variation a = Every Int Span (List a)

instance showVariation :: Show a => Show (Variation a) where
 show :: Variation a -> String
 show (Every n sp xs) = "every " <> show n <> " " <> show sp <> " " <> show xs

data Value =
 Sound Span (List String) (List (Variation String)) | TransposedSound String Int |
 N Span (List Int) (List (Variation Int)) | TransposedN String Int |
 Gain Span (List Number) (List (Variation Number)) | TransposedGain String Int |
 Pan Span (List Number) (List (Variation Number)) | TransposedPan String Int |
 Speed Span (List Number) (List (Variation Number)) | TransposedSpeed String Int |
 Begin Span (List Number) (List (Variation Number)) | TransposedBegin String Int |
 End Span (List Number) (List (Variation Number)) | TransposedEnd String Int |
 Vowel Span (List String) (List (Variation String)) | TransposedVowel String Int |
 CutOff Span (List Number) (List (Variation Number)) | TransposedCutOff String Int |
 CutOffH Span (List Number) (List (Variation Number)) | TransposedCutOffH String Int
|
 MaxW Span (List Number) (List (Variation Number)) | TransposedMaxW String Int |
 MinW Span (List Number) (List (Variation Number)) | TransposedMinW String Int |
 Inter Span (List Number) (List (Variation Number)) | TransposedInter String Int |

 291

 Legato Span (List Number) (List (Variation Number)) | TransposedLegato String Int |
 Orbit Span (List Int) (List (Variation Int)) | TransposedOrbit String Int |
 Dastgah Span Dastgah | Xeno (Tuple String (Maybe Int)) Span (List Int) |
 Prog Span (List (Tuple String (Maybe Int))) | XNotes Span (List Int) (List
(Variation Int)) | TransposedPitch String Int

instance valueShow :: Show Value where
 -- show (Soundy sp xs every) = show sp <> " " <> show xs <> show " " <> show every
 show (Sound x l v) = show x <> " " <> show l <> " " <> show v
 show (TransposedSound voice n) = "s transposed from " <> voice
 show (N x l v) = show x <> " " <> show l <> " " <> show v
 show (TransposedN voice n) = "n transposed from " <> voice
 -- show (TransposedNWith voice n l) = show l <> "n transposedWith from " <> voice
 show (Gain x l v) = show x <> " " <> show l
 show (TransposedGain voice n) = "gain transposed from " <> voice
 -- show (TransposedGainWith voice n l) = "gain transposedWith from " <> voice
 show (Pan x l v) = show x <> " " <> show l
 show (TransposedPan voice n) = "pan transposed from " <> voice
 -- show (TransposedPanWith voice n l) = "pan transposedWith from " <> voice
 show (Speed x l v) = show x <> " " <> show l
 show (TransposedSpeed voice n) = "speed transposed from " <> voice
 -- show (TransposedSpeedWith voice n l) = "speed transposedWith from " <> voice
 show (Begin x l v) = show x <> " " <> show l
 show (TransposedBegin voice n) = "begin transposed from " <> voice
 -- show (TransposedBeginWith voice n l) = "begin transposedWith from " <> voice
 show (End x l v) = show x <> " " <> show l
 show (TransposedEnd voice n) = "end transposed from " <> voice
 -- show (TransposedEndWith voice n l) = "end transposedWith from " <> voice
 show (Vowel x l v) = show x <> " " <> show l
 show (TransposedVowel voice n) = "vowel transposed from " <> voice
 show (CutOff x l v) = show x <> " " <> show l
 show (TransposedCutOff voice n) = "cutoff transposed from " <> voice
 show (CutOffH x l v) = show x <> " " <> show l
 show (TransposedCutOffH voice n) = "hcutoff transposed from " <> voice
 show (MaxW x l v) = show x <> " " <> show l
 show (TransposedMaxW voice n) = "maxw transposed from " <> voice
 show (MinW x l v) = show x <> " " <> show l
 show (TransposedMinW voice n) = "minw transposed from " <> voice
 show (Inter x l v) = show x <> " " <> show l
 show (TransposedInter voice n) = "w interpolation transposed from " <> voice
 show (Legato x l v) = show x <> " " <> show l
 show (TransposedLegato voice n) = "legato transposed from " <> voice
 show (Orbit x l v) = show x <> " " <> show l
 show (TransposedOrbit voice n) = "orbit transposed from " <> voice
 show (Dastgah span d) = show d
 show (Xeno id span l) = show l
 show (Prog span l) = "prog" <> show l
 show (XNotes span l v) = "xnotes " <> show l
 show (TransposedPitch voice n) = "pitch transposed from " <> voice

data Span = CycleEvent | CycleBlock | CycleInBlock | SpreadBlock -- | Weight

 292

instance spanShow :: Show Span where
 show CycleEvent = "_"
 show CycleBlock = "_-"
 show CycleInBlock = "-_"
 show SpreadBlock = "_-_"
 -- show BySubdivision = "-"
 -- show Weight = "-_-"

data Dastgah = Shur (List Int) -- 1 to 8 then it cycles back

instance showDatsgah :: Show Dastgah where
 show (Shur l) = "shur " <> show l

data Temporal = Temporal Polytemporal Rhythmic Boolean | Replica String -- this will
require a check and the recursive implementation now very familiar

instance temporalShow :: Show Temporal where
 show (Temporal x y z) = show x <> " " <> show y <> (if z then " looped" else "
unlooped")
 show (Replica id) = "replicated from " <> show id

data Polytemporal =
 Kairos Number TempoMark | -- last arg is tempo -- Arg: universal time unit
(miliseconds and datetime in purs)
 -- Kairos starts a program at evaluation time (or as soon as possible), no
underlying grid
 Metric ConvergeTo ConvergeFrom TempoMark | -- starts a program attached to a
default underlying voice (a tempo grid basically) first number is the point to where
the new voice will converge, second number is the point from which it converges.
 Converge String ConvergeTo ConvergeFrom TempoMark | -- Args: String is the voice
identifier, convergAt (where this voice converges with the identified voice) and
convergedFrom (the point of this voice that converges with the identified voice) --
Converge starts a program in relationship with another voice
 Novus String ConvergeFrom TempoMark -- |
 -- InACan (List Polytemporal)

instance polytemporalShowInstance :: Show Polytemporal where
 show (Kairos asap t) = "kairos: " <> show asap <> " tempo mark: " <> show t
 show (Metric cTo cFrom t) = "(cTo "<>show cTo<>") (cFrom "<>show cFrom <> ") (tempo
mark: " <> show t <> ")"
 show (Converge voice cTo cFrom t) = "toVoice "<>show voice<>" (cTo "<>show cTo<>")
(cFrom "<>show cFrom <> ") (tempo mark: " <> show t <> ")"
 show (Novus vantageId cFrom t) = "vantagePoint "<>show vantageId<>" (cFrom "<>show
cFrom <> ") (tempo mark: " <> show t <> ")"
 -- show (InACan xs) = "InACan "<> show xs

data Rhythmic = -- whenPosix, thats it
 X | -- x
 O |
 Sd Rhythmic | -- [x]
 Repeat Rhythmic Int |
 Bjorklund Euclidean Int Int Int |

 293

 Rhythmics (List Rhythmic) -- xoxo

instance Show Rhythmic where
 show X = "x"
 show O = "o"
 show (Sd xs) = "[" <> show xs <> "]"
 show (Repeat xs n) = "!" <> show xs <> "#" <> show n
 show (Bjorklund eu k n r) = "("<>show k<>","<>show n<>") "<>show eu
 show (Rhythmics xs) = show xs

data Euclidean = Full Rhythmic Rhythmic | K Rhythmic | InvK Rhythmic | Simple -- add
simple inverse

instance euclideanShowInstance :: Show Euclidean where
 show (Full x y) = "full: " <> (show x) <> " " <> (show y)
 show (K x) = show x
 show (InvK x) = show x
 show (Simple) = "simple"

-- CPAlign will provide a convergence point in relation to a part of the program.
-- mod 4 will align a cp with the next voice start multiple of 4. The convergenceTo
value with 'mod 4' will converge to the other voice at the next voice muliplte of 4.
If this would be the convergenceFrom, the voice will align to the other voice from
its next voice multiple of 4.

-- data Align = Mod Number Number | Mod' Number | Snap Number | Snap' Number | Origin
Number -- this is the goal

data CPAlign = Mod Int | Snap | Origin -- this is the first stage

instance Show CPAlign where
 show (Mod m) = "cp after first multiple of " <> show m <> " ahead"
 show Snap = "closest to eval"
 show Origin = "diverge at origin"

-- Aligners:
---- Mod Multiple Offset (next start of voice/event multiple of N with an offset
number becomes voice 0)
---- Mod' Multiple Offset (closest multiple, can be in the past already)
---- Snap cp happens at closest voice or event.
---- Origin will align the cp at 0 (1st of January, 1970: 12:00 am)

data ConvergeFrom = Structure Int (Array Int) | Process Int | Percen Number | Last

instance Show ConvergeFrom where
 show (Structure x xs) = show x <>"-"<> result <> " "
 where subdivisions = foldl (<>) "" $ map (\x -> show x <> ".") xs
 result = Str.take (Str.length subdivisions - 1) subdivisions
 show (Process e) = show e
 show (Percen p) = show p <> "%"
 show Last = "last"

 294

data ConvergeTo = StructureTo Int (Array Int) CPAlign | ProcessTo Int CPAlign |
PercenTo Number CPAlign | LastTo CPAlign

instance Show ConvergeTo where
 show (StructureTo x xs a) = show x <>"-"<> result <> " " <> show a
 where subdivisions = foldl (<>) "" $ map (\x -> show x <> ".") xs
 result = Str.take (Str.length subdivisions - 1) subdivisions
 show (ProcessTo e a) = show e <> " " <> show a
 show (PercenTo p a) = show p <> "% " <> show a
 show (LastTo a) = "last"

-- perhaps this is the output of processTempoMark, this will allow users to declare a
total duration of a block (reverting more or less the additive logic to divisive)

-- data TimeSignature = Duration Rational | TM TempoMark | Sin Sinusoidal
-- type Sinusoidal = {tempoMark:: TempoMark, freq:: Rational, amp:: Rational}

data TempoMark = XTempo | CPM Rational | BPM Rational Rational | CPS Rational | Prop
String Int Int | Sin Sinusoidal | Dur Rational

instance Show TempoMark where
 show XTempo = "external"
 show (CPM cpm) = show cpm <> "cpm"
 show (BPM bpm figure) = show bpm <> "bpm the " <> show figure
 show (CPS cps) = show cps <> "cps"
 show (Prop id x y) = "from voice: " <> id <> " " <> show x <> ":" <> show y
 show (Sin acc) = show acc
 show (Dur n) = "dur " <> show n

type Sinusoidal = {
 min:: TempoMark,
 max:: TempoMark,
 osc:: Rational,
 phase:: Rational
}

type TimePacket = {
 ws:: DateTime,
 we:: DateTime,
 eval:: DateTime,
 origin:: DateTime,
 tempo:: Tempo,
 vantageMap:: VantageMap
}

data Event = Event Onset Index

instance Show Event where
 show (Event o i) = show o <> " " <> show i

showEventIndex (Index _ _ n) = show n

 295

showStructureIndex (Index x xs _) = show x <>"-"<> result
 where subdivisions = foldl (<>) "" $ map (\x -> show x <> ".") xs
 result = Str.take (Str.length subdivisions - 1) subdivisions

data Onset = Onset Boolean Number

instance Show Onset where
 show (Onset true n) = "(X" <> " psx:" <>(Str.drop 0 $ show n) <>")"
 show (Onset false n) = "(O" <> " psx:" <>(Str.drop 0 $ show n) <>")"

instance Ord Onset where
 compare (Onset bool1 pos1) (Onset bool2 pos2) = pos1 `compare` pos2

instance Eq Onset where
 eq (Onset bool1 pos1) (Onset bool2 pos2) = pos1 == pos2

data Index = Index Int (Array Int) Int

instance indexShow :: Show Index where
 show (Index x xs n) = show x <>"-"<> result <> " (" <> (Str.take 8 $ show n) <>
")"
 where subdivisions = foldl (<>) "" $ map (\x -> show x <> ".") xs
 result = Str.take (Str.length subdivisions - 1) subdivisions

-- Dastgah

type DastgahNote = {
 function:: String,
 movement:: Interval,
 midiInterval:: Number
}

-- xenopPitch

data Subset = Subset Int | Unions (Array Int) | Intersection Int Int | Difference Int
Int | Nested Subset

instance subsetShow :: Show Subset where
 show _ = "subset"

data XenoPitch = CPSet Int (Array Int) (Maybe (Array Subset)) | MOS Int Int | EDO
Number Int | ShurNot8 | ShurNot

instance xenoShow :: Show XenoPitch where
 show (CPSet s f subs) = "cps " <> show s <> " " <> show f <> " " <> show subs
 show (MOS k n) = "mos " <> show k <> " " <> show n
 show (EDO p d) = "edo " <> show p <> " " <> show d
 show ShurNot8 = "ShurNot8"
 show ShurNot = "ShurNot"

type XenoNote = {

 296

 set:: Array Int,
 "archi-set":: Array String,
 ratio:: Int,
 "bounded-ratio":: Number,
 "bounding-period":: Int
}

data Interval = UpJump | UpNext | DownJump | DownNext | Unison

instance intervalShow :: Show Interval where
 show UpJump = "UpJump"
 show UpNext = "UpNext"
 show DownJump = "DownJump"
 show DownNext = "DownNext"
 show Unison = "Unison"

