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Abstract 

 
In data-constrained experimental domains such as nanoparticle engineering, microgel synthesis, and 

pharmaceutical formulation, researchers frequently face the challenge of modeling systems governed by 

complex and highly nonlinear relationships among variables. These applications often involve limited datasets 

due to the cost, time, and resource demands of generating new samples, making conventional trial-and-error 

approaches inefficient. As a result, there is a growing need for data-driven methodologies that can reliably 

predict product behavior and guide recipe design using minimal experimental input. This thesis presents a 

series of strategies to enhance prediction accuracy and reliability in small datasets through localized modeling, 

quantitative model reliability assessment, and guided expansion of the available dataset. The first contribution 

involves coupling Latent Variable Modeling (LVM) with clustering to create local Partial Least Squares (PLS) 

models tailored to subsets of similar samples. This combination simplifies the underlying data structure by 

reducing multicollinearity via projection into latent space and grouping structurally similar data, thereby 

improving prediction fidelity. The framework was validated using the prediction of the Volume Phase 

Transition Temperature (VPTT) of dual-responsive microgels—a property influenced by several formulation 

variables—with results that showed significantly improved prediction accuracy. Building on these advances, 

the second contribution focuses on the inverse problem of design space identification—determining input 

configurations that are most likely to yield desired output properties. To do this robustly, the Prediction 

Reliability Enhancing Parameter (PREP) is introduced, a novel metric that unifies multiple LVM alignment 

diagnostics including Hotelling T², Squared Prediction Error (SPE), and score alignment factors into a single 

predictive reliability score. PREP is calibrated in a data-driven, case-specific manner and facilitates the ranking 

of candidate formulations by their expected predictive reliability. Extensive validation on simulated datasets 

has demonstrated that PREP significantly accelerates the identification of optimal solutions, particularly under 

highly nonlinear conditions and limited data regimes. PREP was subsequently deployed across real 

experimental case studies involving the formulation of nanoparticles and microgels. In one study, a microgel 

with a tightly constrained particle size of ~100 nm was successfully designed from an initial dataset spanning 

sizes of 170–900 nm, with PREP delivering a near-target solution in minimal iterations while competing design 

approaches failed under the applied constraints. In another case, PREP enabled the identification of 

polyelectrolyte complexes with particle sizes below 200 nm and polydispersity indices under 0.2, again 

demonstrating superior efficiency and accuracy relative to conventional approaches. Overall, this work offers 

a practical and scalable pathway for predictive modeling and recipe design in settings constrained by data 

scarcity and high experimental costs. The methodologies developed—particularly the integration of local LVM 

models and the PREP-based design space identification—can be broadly applied to other high-value domains 

requiring precision formulation and optimization such as drug delivery, nanomedicine, and advanced materials 

development. 
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Lay Abstract 

In many real-world applications—from pharmaceuticals to materials science—researchers face the challenge 

of finding the right “recipe” to produce a product with desired properties. Each ingredient in a formulation 

affects the final outcome, but degree to which different ingredients affect the outcome—and how changes in 

one ingredient interact with the other ingredients—are often unknown and difficult to predict. A natural 

solution is to try to learn these patterns by experimenting with different recipes. However, testing many 

combinations is usually expensive, time-consuming, and sometimes even impossible, creating a serious 

problem of data scarcity. This thesis proposes a new approach to make the most of the limited data available. 

Instead of relying on the global datasets, the method begins by grouping existing recipes into clusters based 

on their similarities. It then carefully analyzes each group to uncover internal relationships between 

ingredients and outcomes. Building on this, the thesis introduces a new scoring system that helps determine 

when the predictions made by a model can be trusted—and when they cannot. By learning more from fewer 

experiments and making smarter suggestions for future recipes, this research offers a pathway to faster, more 

efficient product development in complex systems in which trial-and-error is not a viable option. 
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Chapter 1 

1 Introduction 

1.1 Background and Motivation 

In industrial product development, particularly in areas such as pharmaceutical formulation, 

nanomaterials, and process optimization, finding the ideal formulation or process condition is a critical 

and often complex task. Typically, what is available are a limited number of tried-and-tested options, each 

with a corresponding response or outcome. The primary challenge is to adjust the manipulable 

parameters, either to achieve a predetermined response or to enhance the consistency and reliability of the 

outcome. However, these relationships are frequently too intricate and nonlinear to be addressed 

manually. Consequently, the application of data-driven modeling approaches becomes indispensable in 

such contexts [1-6]. 

A fundamental issue in this area is the uncertainty inherent in predicting outcomes, especially when 

dealing with new, unseen data points. In most industrial settings, as the system complexity increases, a 

larger dataset is usually required to refine the model. However, collecting additional experimental data in 

such frameworks is often resource-intensive. The challenge lies in finding ways to maximize the 

efficiency of data utilization while minimizing the number of required samples. This necessitates careful 

and strategic expansion of the dataset to ensure that each new data point contributes meaningfully to the 

model’s predictive power, without overburdening resources [7-11]. 

In these circumstances, the first step is to develop a model that offers reliable predictions with a 

reasonable level of accuracy. Even if the model can identify formulations or input sets that are less likely 

to succeed, it can still offer significant value by guiding future experimentation. While this provides some 

level of insight, such models must be refined to enhance their predictive reliability. In particular, as these 
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models are used in reverse to suggest the input configurations that will generate products with desired 

properties, the reliability of these models is crucial [12-14]. The next step is to enhance the model’s 

ability to not only predict but to recommend optimal input sets with high confidence. 

It is common in many industrial applications that the number of manipulable input variables often 

exceeds the number of output variables. This discrepancy carries significant implications both in practice 

and within the modeling framework. In practice, for any given target in the response space, there is not 

just one solution, but rather several potential solutions, collectively referred to as the Design Space (DS). 

The process of identifying this Design Space is commonly known as Design Space Identification [7, 15-

18]. The ability to identify the most optimal solution is critical, as doing so can lead to considerable 

savings in terms of time, material costs, and overall resource utilization. From a modeling perspective, 

this mismatch between the number of inputs and outputs results in a scenario in which multiple input 

configurations can lead to identical predictions of the target output. This flexibility creates an opportunity 

to explore a range of input combinations but also introduces the challenge of determining which of these 

solutions is the most reliable and resource-efficient to pursue [7, 19]. This situation is akin to the "null 

space" concept, where the system’s complexity and multiple input variables result in several potential 

solutions that produce the same response. However, not all of these predictions are made with the same 

level of accuracy [20]. Some input configurations will have predictions that are more reliable than others. 

It is crucial to identify these configurations, as they can provide greater certainty in model predictions and 

help prioritize those formulations or input sets for further exploration. In this context, the ability to assess 

the uncertainty of model predictions and evaluate their reliability across different formulations is 

paramount. A model that can identify high-confidence predictions is essential, as it allows for more 

efficient experimental design and ensures that resources are directed toward the most promising 

candidates. 

Given the importance of identifying high-confidence predictions and ensuring reliable experimental 

design, it becomes evident that advanced modeling techniques are necessary to manage the complexity of 
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high-dimensional datasets. One such technique is Latent Variable Modeling (LVM) approaches such as 

Principal Component Analysis (PCA) and Partial Least Squares (PLS), which offer a powerful approach 

to handle the inherent complexity in these systems [21-23]. By identifying underlying factors that 

influence the system's behavior, LVMs reduce the dimensionality of the data and provide a more 

manageable framework for prediction. This characteristic aligns particularly well with the goals of design 

space identification, as it enables the modeling of complex systems by identifying and isolating key 

factors that influence the outcomes. LVMs facilitate the reduction of complexity by transforming the data 

from its original, highly correlated space into a latent space where variables are more independent. This 

process simplifies the modeling task, allowing the focus to shift to understanding the relationship between 

the input (X) and output (Y) variables in their more manageable, internally uncorrelated forms [24]. 

Getting back to the original purpose of using such data-driven modeling techniques, which is to extract as 

many patterns as possible from the data and then suggest new samples to expand the dataset purposefully 

toward a predetermined target, it is worth noting that compared to traditional approaches like Design of 

Experiments (DOE), which also aim to explore the Knowledge Space (KS) and identify regions that 

ensure consistent product quality, LVMs offer a distinct advantage [25, 26]. DOE methods often require 

large numbers of experimental samples to account for a wide range of input variables and process 

conditions, which can become impractical especially when experimental resources are limited [7-10, 27]. 

LVMs, on the other hand, are adept at handling multicollinearity in high-dimensional spaces, making 

them ideal for situations where the relationship between inputs and outputs is complex and not easily 

captured by simpler methods[28-31]. 

Despite their widespread use in various industries, particularly for handling complex, high-dimensional 

datasets, LVMs face a significant challenge: the lack of established and validated methods for quantifying 

prediction uncertainty, especially when applying these models to new, unseen observations [7, 8, 13, 20]. 

This gap becomes even more pronounced in datasets with limited samples, where the challenge of 

prediction reliability is critical. 
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One major approach to addressing prediction reliability in design space identification is to estimate model 

prediction uncertainty. This line of research seeks to enhance model precision and define prediction 

intervals—the range within which the actual outcome is expected to fall. Several studies have attempted 

to estimate prediction uncertainty by calculating either the variance in predicted outcomes or the variance 

in regression coefficients, which, in turn, affects the variance of predictions [20, 32]. 

Prediction uncertainty has traditionally been estimated using three main approaches: ordinary least 

squares (OLS)-based approximation techniques, linearization methods, and re-sampling strategies. OLS-

based methods estimate the prediction interval by measuring the distance between new observations and 

the center of the input space, with larger distances leading to higher estimated uncertainty and wider 

prediction intervals [20, 29, 33]. Another common approach involves linearization, in which the 

regression coefficients are approximated using a first-order Taylor series expansion to capture how 

changes in output affect the coefficients. This method can estimate the variance of model parameters 

through matrix differential calculus [20, 28, 30, 34, 35]. Additionally, re-sampling methods like 

bootstrapping and jackknifing create new datasets by perturbing the original samples or residuals, 

allowing researchers to assess the distribution of prediction intervals [36, 37]. 

Probabilistic design space characterization methods—particularly Bayesian-based approaches—have 

gained considerable attention for their ability to quantify uncertainty and define design spaces in terms of 

feasibility probabilities [9, 38-43]. These methods are particularly valued in contexts such as regulatory 

compliance and risk-sensitive optimization, in which characterizing confidence in predictions is 

critical[39, 44, 45]. However, because their core focus is on mapping feasibility across the entire design 

space through probability estimation, they often rely on feasibility thresholds that can introduce 

conservatism and exclude promising but underrepresented regions[46]. While effective in many scenarios, 

these methods are not inherently designed to guide iterative sample selection or to prioritize candidates 

for efficient dataset expansion. 
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As an alternative to probabilistic frameworks, black-box modeling approaches such as Gaussian process 

regression, neural networks, or ensemble machine learning have been widely used for experimental 

optimization[47-51]. These models emphasize predictive flexibility and can perform well in capturing 

nonlinear input–output relationships [52, 53]. However, they are typically decoupled from the structure of 

the calibration dataset and do not leverage latent-variable diagnostics such as Hotelling’s T² or SPE. As a 

result, they lack built-in mechanisms to assess prediction reliability or guide sampling in a structured way 

[54]. This can limit their practical utility in resource-constrained experimental workflows, in which 

interpretability and confidence in predictions are critical[55, 56]. 

Geometrical methods represent another class of design space identification tools, focusing on delineating 

feasible regions through constraint surface approximations in the input space[57-60]. While they provide 

a global view of where feasible solutions may reside, these methods do not prioritize which candidates 

within the feasible region should be explored first [61]. This absence of strategic ranking makes them less 

suitable for stepwise experimental design, especially when only a limited number of formulations can be 

tested. Furthermore, they often assume that the true design space lies entirely within the current 

knowledge space, without offering mechanisms for targeted exploration beyond its boundaries. 

This thesis addresses the challenge of predicting reliable outcomes in systems with complex correlations 

and limited sample datasets, focusing on enhancing model prediction accuracy and providing a robust tool 

to assess the reliability of predictions for unseen data points. The core problem lies in evaluating and 

improving data-driven models applied to such datasets, where the goal is not only to refine prediction 

accuracy but also to identify which data points are most reliable for expanding the dataset. This 

optimization of the dataset is crucial, as it ensures that resources are directed toward the most informative 

data to improve both the model’s precision and experimental efficiency. The ability to trust model 

predictions, even in resource-constrained environments, is essential for advancing predictive modeling in 

industrial applications, particularly when the dataset expansion is critical for achieving a desired outcome. 

The approach of this thesis is thus built around two key contributions: improving model precision through 
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dataset manipulation and developing a metric to quantify the level of prediction uncertainty, which 

together form the foundation for more efficient and reliable design space identification in complex 

systems. In particular, the PREP framework that represents the central contribution of this work was 

specifically developed to prioritize efficient discovery of feasible solutions by ranking candidates based 

on prediction reliability rather than mapping the entire design space, leveraging latent-variable structures 

embedded in the dataset to select samples most likely to succeed in experimental validation. Unlike 

probabilistic, black-box, or geometrical approaches, PREP is not designed to define the entire feasible 

region or maximize global uncertainty coverage; instead, its goal is to accelerate convergence to reliable 

solutions and promote intelligent expansion of the knowledge space. This distinction makes PREP 

especially valuable in cases where data are limited, experiments are costly, and targeted progress is more 

critical than exhaustive design space coverage. 

1.2 Thesis outline 

To address the problem outlined earlier, this thesis presents a structured approach across its chapters. Each 

section builds on the previous work, beginning with the development of methods to enhance prediction 

accuracy followed by tools to assess and improve the reliability of these predictions. The following 

sections provide a detailed exploration of the key contributions, methodologies, and experimental 

validations that underpin this research. 

The first contribution of this thesis (Chapter 2) focuses on improving prediction accuracy by employing a 

combination of clustering and Partial Least Squares (PLS) modeling. The underlying principle here is that 

in systems governed by highly complex rules, the behavior of the system tends to be less complicated 

when observed locally as opposed to globally. In practice, this means that complex systems can be 

divided into smaller and more manageable subsets or clusters, within which the relationships between 

input and output variables are simpler. To leverage this principle, the dataset is divided into distinct 

clusters and separate PLS models are developed for each cluster. This approach reduces the overall size of 

the calibration dataset while simultaneously increasing its consistency. By focusing on more consistent 
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data points within each cluster, the model is better able to capture underlying patterns by first identifying 

the cluster it belongs to and then applying the corresponding cluster-specific model for prediction.  

In the clustering process, two main approaches can be considered: clustering based on input (X) similarity 

and clustering based on output (Y) similarity. Clustering by X is simpler, as the input data for an unseen 

sample are always available and thus finding the appropriate cluster is straightforward. However, 

clustering based on output similarity (Y) can potentially be more effective in capturing the underlying 

patterns of the system, as it groups together samples that exhibit similar response behaviors. The 

challenge with clustering by Y, however, is that for unseen samples the output Y is not known, making it 

impossible to directly assign a cluster based on output similarity. 

To overcome this challenge, a novel clustering mechanism that incorporates both the X and Y spaces was 

introduced. This method takes into account the relationships in both the input and output spaces, allowing 

for the clustering process to be applied even to unseen data points. By utilizing both spaces, the clustering 

approach can identify similar patterns more effectively, providing a robust solution for predicting 

outcomes with limited data. 

This method was tested in the context of predicting the properties of multi-responsive microgels—

complex systems in which various parameters influence the final properties. The clustering-based 

approach demonstrated enhanced prediction accuracy in this scenario; furthermore, it revealed situations 

in which the model’s coverage within certain clusters was insufficient. This knowledge was particularly 

valuable in product design applications, as being able to identify clusters with unreliable models helps 

flag potentially inappropriate candidate formulations early in the process. Overall, this contribution 

demonstrates the effectiveness of combining clustering with PLS modeling to improve prediction 

accuracy in complex systems with limited data. The clustering mechanism not only enhances the model’s 

predictive power but also provides valuable insights into the model’s reliability, helping to guide 

experimental design and optimize resource allocation. 
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Building on the insights from the first contribution, the second contribution (Chapter 3) addresses the 

need for a more nuanced evaluation of prediction reliability, especially when local models (despite having 

high coverage) may still provide poor predictions for some new data points. This limitation highlights the 

challenge of reliably assessing model performance, even when the model's coverage appears sufficient. To 

resolve this issue, a new numerical metric was developed to quantify the reliability of predictions. This 

metric, called the Prediction Reliability Enhancing Parameter (PREP), integrates several existing metrics 

from Latent Variable Modeling (LVM), such as Hotelling’s T², Squared Prediction Error (SPE), and Score 

Alignment, into a single composite score. 

The advantage of PREP is that it addresses the issue of conflicting conclusions that might arise when 

using individual metrics. For example, one metric may suggest high reliability, while another may 

indicate uncertainty, making it difficult to make informed decisions based on model predictions. PREP 

resolves this problem by combining these parameters into a unified score, allowing for a more balanced 

evaluation of model performance. This comprehensive approach ensures that the model does not 

prematurely dismiss samples that, despite performing well on certain metrics, may still hold value for 

further exploration. Thus, PREP enhances the model's ability to assess which data points are most likely 

to contribute to the accurate identification of design spaces and which ones are necessary to improve 

model performance. 

To effectively implement PREP, the process begins by generating a list of potential design space 

members, which includes samples for which the model prediction either matches or closely approximates 

a predetermined output target. Using the PREP equation, the model assigns a composite score to each 

member, with the coefficients and powers of the equation determined based on the nature of the available 

dataset. Once this list is established, all potential solutions are ranked according to their PREP scores. 

Two distinct options emerge from this ranking: the new data point with the lowest PREP score has a high 

likelihood of accurate prediction, while the new data point with highest PREP score provides insight into 

areas where the model's predictions need refinement. In this context, the PREP-based iterative process is 
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designed to expand the dataset toward the inclusion of True Design Space (TDS) members—those input 

sets that reliably produce the desired output properties. This iterative approach optimizes the model’s 

predictive capability by continually refining the dataset with highly informative data points via a stepwise 

dataset expansion that helps guide the exploration of design spaces more efficiently. 

Comparative evaluations of PREP against other commonly used methods applied to synthetic datasets of 

varying complexity showed that PREP is significantly more resource-efficient. By identifying the right 

solutions with fewer iterations, PREP reduces the number of experimental samples needed to pinpoint 

optimal formulations. These results highlight PREP's ability to streamline the process of design space 

identification, making it an invaluable tool in situations where resources and experimental data are 

limited. 

The final contribution (Chapter 4) shifts the focus from simulated datasets to real experimental cases. In 

this phase, PREP was implemented across two highly complex and nonlinear systems—precipitation 

polymerization (to synthesize covalently crosslinked microgels) and polyelectrolyte complex formation 

(to fabricate ionically crosslinked nanoparticle coacervates). Although both case studies were 

experimental, they posed fundamentally different optimization challenges. In the first case, the objective 

was to achieve a particle size well outside the range covered by the initial dataset while adhering to strict 

hard constraints on the formulation space. These limitations significantly reduced the viable search area, 

rendering other methods incapable of even proposing experimentally feasible samples. PREP, however, 

was able to identify viable formulations and reached the target rapidly, demonstrating both efficiency and 

robustness. In the second case, constraints were again present in the formulation space but the 

optimization objective was not to achieve a fixed target value but rather to expand the output space 

coverage into previously unexplored regions. This required PREP to strategically learn from the available 

data and iteratively direct sampling toward promising areas, thereby driving dataset expansion in a 

purposeful manner toward achieving previously unachievable particle properties. Together, these case 

studies effectively validated PREP's capacity to solve real-world, constraint-heavy design problems in 
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which data scarcity and accuracy requirements coexist, confirming its value in experimental design space 

identification. 

In summary, this thesis presents a coherent framework that advances predictive modeling and design 

space identification in data-scarce, nonlinear experimental systems. Each chapter contributes a key 

element toward addressing this overarching challenge: Chapter 2 improves prediction accuracy by 

localizing the calibration dataset through clustering, Chapter 3 enhances the stability and reliability of 

localized models using a novel scoring metric, and Chapter 4 demonstrates the practical validity of these 

methods through complex experimental case studies. Notably, the proposed approach consistently 

identified feasible and high-performing solutions without relying on infeasible intermediate steps—a 

limitation that compromised the effectiveness of competing methods. Collectively, these contributions 

offer a robust and generalizable strategy for accelerating experimental discovery in constrained design 

environments. 
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Chapter 2:  

2 Predicting the Volume Phase Transition Temperature of Multi-Responsive 

Poly(N-isopropylacrylamide)-Based Microgels Using a Cluster-Based 

Partial Least Squares Modeling Approach 
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Abstract 

 

Despite the various potential applications of dual pH/temperature-responsive microgels, the multiple (and 

often interacting) physical and chemical factors that influence the volume phase transition temperature 

(VPTT) in such microgels make it challenging to directly design a microgel with a particular targeted 

swelling response. Herein, we address this challenge by designing and implementing a data-driven model 

that can predict a microgel swelling profile and subsequently VPTT based only on the microgel recipe. A 

clustering-based adaptation of partial least squares (PLS) modelling is developed and subsequently applied 

to a data library of pH 4 (fully protonated) and pH 10 (fully ionized) swelling responses of 32 

pH/temperature-responsive poly(N-isopropylacrylamide) microgels functionalized with various carboxylic 

acidfunctionalized comonomers. We demonstrate that the best-performing clustering and data arrangement 

strategies can predict the VPTT of the microgels within 1.0°C at pH 4 and 2.4°C at pH 10, an accuracy 

similar to the uncertainty estimates from the experimental transition temperature data (0.6°C at pH 4 and 

2.2°C at pH 10). Such an approach thus paves the way for faster customization of a microgel swelling 

profile as needed for a target application. 

Keywords: pH-Temperature responsive microgels , VPTT , latent variable modelling, PLS PCA 

2.1 Introduction 

Smart microgels have attracted increasing interest given their ability to reversibly swell and de-swell in 

response to multiple stimuli including temperature, pH, light, ionic strength, and magnetic fields. The 

stimulus-specific swelling response of a smart microgel is thus considered a key characteristic property 

and dictates the implementation of such materials in various applications including drug delivery, oil 
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recovery, bio-sensing, separations, smart windows, cosmetics, and others [1-5]. Poly(N-

isopropylacrylamide) (PNIPAM)-based microgels have attracted particular attention given that they 

exhibit a discontinuous volume phase transition temperature (VPTT) of 32°C in aqueous solution, close to 

physiological temperature [6, 7]. The resulting deswelling/swelling transitions observed upon 

increasing/decreasing the solution temperature, coupled with the corresponding changes in transparency, 

pore size, and interfacial hydrophobicity, directly lead to the broad applicability of these microgels [8, 9]. 

The incorporation of other functional comonomers into PNIPAM microgels can create a multi-responsive 

microgel in which the swelling/de-swelling transitions can be regulated by two or more external 

stimuli[10, 11]. The nature of the dual stimulus swelling response can be adjusted by changing the 

type/amount of comonomer used, the distribution of the comonomer within the microgel, and/or other 

polymerization conditions [10, 12-14]. Alternately, post-polymerization modification of a functionalized 

microgel can be used to introduce a functional group often not compatible with the precipitation-based 

free radical process typically used for microgel synthesis [15, 16]. 

Coupling temperature sensitivity with pH-responsiveness in microgels can unlock applications in sensing 

[17], drug delivery [18],catalysis [19-21], and tissue engineering or cell scaffolding [22]. The specific pH 

and magnitude of the pH-induced transition can be controlled by incorporating anionic or cationic 

functional comonomers with different pKa values [11, 23]. However, given that both pH-induced 

ionization and temperature-induced volume phase transitions alter the hydrophilic/hydrophobic balance of 

the microgel, the pH and temperature transitions do not occur fully independently; pH ionization 

significantly increases the temperature at which the VPTT can occur, while the thermal transition can 

significantly enhance the magnitude of pH swelling that is possible for a given pH change/microgel 

composition [24]. In this context, while the dual pH/temperature-responsive swelling responses of a 

multi-functional microgel can offer benefits in various applications (e.g. targeting drug delivery to cancer 

tumors characterized by lower pH values and higher temperatures than normal tissues [9, 25-28]), a priori 

identification of a multi-functional microgel recipe that can exhibit a targeted swelling/de-swelling profile 
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with a specific VPTT is challenging since the swelling response of the microgel to one stimulus directly 

affects its response to the second stimulus [10, 12, 26, 29]. 

One approach to predicting the VPTT in such microgels would be to utilize first principles approaches 

that leverage existing thermodynamic and kinetic frameworks. However, the significant nanoscale 

heterogeneity in both crosslinker and functional monomer distributions as well as the occurrence of 

microphase separation dependent on those local distributions makes the first principles prediction of 

microgel swelling responses much more challenging than it is for bulk hydrogels[13, 30]. Kinetic 

modelling approaches have been used to link radial functional group distributions in microgels with the 

copolymerization kinetics of the constituent comonomers [31]32, with the local compositional knowledge 

then used in conjunction with Flory-Huggins equilibrium swelling theory to predict relative swelling 

responses in multi-functional microgels [32, 33]. However, the implementation of such models requires 

either measuring or estimating a wide range of parameters including copolymerization ratios between all 

monomers/cross-linkers used, parameters that can be complex to measure (particularly as the number of 

comonomers in a microgel is increased, as is often the case in multi-responsive microgels) and often 

require dedicated experimental setups and/or equipment [31, 34, 35]. Furthermore, the occurrence of local 

microphase separation and/or the quantitative effects of pH changes on the Flory-Huggins parameter are 

challenging to experimentally assess, both of which are required for accurate prediction of phase 

transition behaviors in microgels. 

This diversity of challenges associated with the use of first-principal models has raised interest in utilizing 

purely data-driven modelling techniques for predicting microgel swelling responses. In this regard, 

principal component analysis (PCA) and partial least squares (PLS) have gained traction for tackling 

materials-based optimization problems. PCA arranges data in one block and reduces dimensionality by 

placing a higher weight on variables with higher variance. In contrast, PLS arranges data into two blocks 

and prioritizes input variables that have a major impact on the output responses. Such datadriven models 

have previously been applied to a variety of materials design challenges, including to design polyethylene 
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blown film resins with superior performance [36], develop soft sensors to predict the melt flow index of a 

polymerization reactor’s output [37], and apply ATR-FTIR-based methods to estimate the viscosity of 

polymer solutions [38]. Closer to the context of smart microgels, PLS modelling approaches have been 

applied to optimize the cloud point, molecular weight, and percentage yield of dual 

thermo/photoresponsive polymers that combine the temperature-responsiveness of PNIPAM with the 

light-responsiveness of cinnamate functional groups [39]. MacGregor et al. [40, 41] have also developed a 

variation of PLS modelling called multi-block PLS that takes parallel blocks of data (including previously 

synthesized recipes and the raw material properties) into account to accelerate the design and production 

of new industrial products. In light of the success of such previous efforts, we hypothesize that data-

driven modelling can address the challenge of predicting swelling responses and thus VPTT values for 

multi-responsive microgels. 

Herein, we develop and validate a method to predict the swelling profiles and VPTT values of multi-

responsive microgels using a partial least squares modelling technique that incorporates a clustering step 

in which the data is first clustered into groups with either like polymerization recipes or like swelling 

responses before building the PLS models. In particular, to avoid the the necessity of knowing the 

swelling profile to cluster recipes based on swelling responses, a new algorithm denoted as ‘combined 

clustering mode’ is developed. Using a validation dataset of fully protonated (pH 4) and fully ionized (pH 

10) swelling profiles for 32 different carboxylic acid-functionalized PNIPAM-based microgels, the 

resulting model is demonstrated to accurately predict both the thermal phase transition temperature as 

well as the absolute microgel particle sizes as a function of pH and/or temperature (or, at minimum, 

explicitly identify recipes that cannot be well predicted). This approach thus enables the accelerated 

design of microgel recipes that can achieve new types of swelling profiles targeted to specific applications 

without requiring lengthy trial-and-error syntheses or any specific fundamental or phenomenological 

insight into the dynamics or microstructure of microgels, both of which become prohibitively complex 

when multiple functional comonomers are added to achieve customized swelling profiles. 
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2.2 Experimental 

2.2.1 Materials 

N-isopropylacrylamide (NIPAM) (Sigma-Aldrich, 97%) was purified by recrystallization with 60:40 

toluene:hexane mixture. N-N’-methylene(bis)acrylamide (MBA) (SigmaAldrich, 99%), acrylic acid (AA) 

(Aldrich, 99%), methylacrylic acid (MAA) (Aldrich, 99%), vinylacetic acid (VAA) (Aldrich, 97%), 

fumaric acid (FA) (Sigma-Aldrich, 99%), maleic acid (MA) (Sigma-Aldrich, 99%), sodium dodecyl 

sulfate (SDS) (Sigma-Aldrich, 99%), potassium chloride (KCl) (Fisher Chemical, ACS grade), and 

ammonium persulfate (APS) (Sigma-Aldrich, 98%) were all used as received. MilliQ-grade water (>18Ω 

resistance) was used for all experiments. 

2.2.2 Microgel Synthesis 

The raw recipes used to fabricate each microgel in the dataset are shown in Supporting Information Table 

S1, while the resulting mole fractions of each monomer component of the microgels fabricated (the input 

data used to build the models) are shown in Table 2-1. For any given recipe, the required amounts of 

NIPAM, MBA, SDS and functional monomer(s) were added into a 250 mL round-bottom flask with 150 

mL of MilliQ water. The mixture was purged under nitrogen for 30 minutes at room temperature before 

being transferred to the oil bath at 70°C, with continuous nitrogen purging maintained. To initiate the 

polymerization, 0.05 g APS was mixed with 10 mL of MilliQ water and delivered to the flask via a 

syringe. The reaction was run for 4 hours at 70°C under magnetic mixing (magnet size 4cm) at 160 RPM. 

Subsequently, the reaction mixture was cooled and subjected to 6 x 6 hour cycles of dialysis to remove 

surfactant and any unreacted monomers. The resulting microgel suspension was lyophilized to dryness 

and stored at room temperature. 

Table 2-1: Mole fractions of all recipe components used to synthesize the microgel library 

Sam ID NIPAM MBA AA MAA FA MA VA SDS 

1 0.870 0.064 0.055 0 0 0 0 0.012 

2 0.875 0.064 0 0 0.049 0 0 0.012 
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3 0.731 0.054 0 0 0 0 0.206 0.010 

4 0.784 0.058 0 0 0 0 0.147 0.011 

5 0.847 0.062 0 0 0 0 0.079 0.012 

6 0.867 0.064 0 0 0 0 0.057 0.012 

7 0.889 0.065 0 0 0 0 0.033 0.012 

8 0.832 0.078 0 0 0 0 0.078 0.012 

9 0.862 0.045 0 0 0 0 0.081 0.012 

10 0.874 0.032 0 0 0 0 0.082 0.012 

11 0.886 0.019 0 0 0 0 0.083 0.012 

12 0.851 0.062 0 0 0 0 0.080 0.007 

13 0.853 0.063 0 0 0 0 0.080 0 

14 0.857 0.063 0 0 0 0 0.080 0 

15 0.834 0.061 0.093 0 0 0 0 0.012 

16 0.864 0.063 0 0 0.060 0 0 0.012 

17 0.857 0.063 0 0.080 0 0 0 0 

18 0.738 0.054 0 0 0 0 0.208 0 

19 0.866 0.070 0 0 0.059 0 0 0.005 

20 0.753 0.090 0 0 0.147 0 0 0.011 

21 0.833 0.083 0 0 0.025 0 0.047 0.008 

22 0.898 0.067 0 0 0 0 0.030 0.005 

23 0.784 0.089 0 0.051 0.071 0 0 0.005 

24 0.891 0.068 0 0 0 0 0.031 0.010 

25 0.784 0.088 0 0 0.121 0 0 0.007 

26 0.892 0.071 0 0.008 0 0 0.025 0 

27 0.888 0.070 0 0 0 0 0.033 0.009 

28 0.792 0.089 0 0 0 0 0.114 0 

29 0.732 0.054 0 0 0 0.204 0 0.010 

30 0.849 0.062 0 0.076 0 0 0 0.012 

31 0.932 0.068 0 0 0 0 0 0 

32 0.756 0.090 0 0 0.114 0 0.036 0 

 

2.2.3 Swelling Profile Measurement 

The particle sizes of each microgel as a function of pH and temperature were measured using dynamic 

light scattering (Brookhaven 90Plus) operating at a scattering angle of 90 degrees. Particle size was 

measured at 6 different temperatures (25°C, 30°C, 35°C, 40°C, 45°C, 50°C) in 10 mM KCl solutions 

adjusted using 0.1 M HCl or NaOH to either pH 4 (fully protonated state) or pH 10 (fully ionized state). 

Five independent z-average particle size measurements were collected at each pH/temperature tested, 

with the average of the repeat measurements reported as the microgel particle size. Note that all tested 
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microgels exhibited a unimodal particle size distribution at both pH values tested. Particle sizes at various 

temperatures were then used to calculate VPTT values for the synthesized microgels at each pH value by 

fitting a sigmoidal curve to the experimental data, with the mid-point of the curve identified as the volume 

phase transition temperature (see Figure S1 for an illustration of how the transition temperature was 

calculated for one of the synthesized samples). Error bars associated with the VPTT measurements were 

estimated by fitting sigmoidal curves to the top and bottom of the error bar ranges of each individual 

particle size measurement and subtracting the maximum and minimum VPTT estimate stemming from 

these fits. 

2.3 Modelling Frameworks 

The authors developed all modelling code and implemented the code in MATLAB R2021b. 

2.3.1 Principal Component Analysis (PCA) 

PCA works with only one block of data and thus does not capture any relationships between variables in 

different blocks of data. Nonetheless, it is commonly used as a pre-processing tool in which the 

correlation between the predictors among the block of data can be captured and, ultimately, the number of 

variables can be reduced to facilitate faster and more reliable modelling [42, 43]. 

The directions in which the observations are distributed among the data space play a pivotal role in 

dimensionality reduction. These directions can be captured and then explained using a linear combination 

of the original predictor variables with weighted coefficients (i.e. PCA components). Since this linear 

combination of the original predictors indicates the correlation among the predictor variables, if such 

directions are ordered based on the variance of the original block, it is possible to select the first two, 

three or more directions that explain more variance than the other directions based on the level of 

correlation among the columns of the dataset and work with them as opposed to working with the original 

predictor variables. 
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2.3.2 Partial Least Squares (PLS) 

PLS is analogous to applying two PCA analyses on two blocks (X and Y) simultaneously; as such, 

opposed to PCA, PLS aims to capture relationships between more than one block of data. Unlike with 

PCA modelling, in which explaining the maximum variance in each block is the primary goal, PLS 

modelling instead aims to arrange the data in a way that maximizes the correlation between the calculated 

scores in X and Y [44]; in other words, instead of covering the maximum variance in the X and Y spaces, 

PLS instead aims to capture the maximum variance in the Y block that can be explained by the variances 

in the X block [43, 45]. 

2.3.3 Clustering Procedure (K-means Algorithm) 

Clustering is a non-supervised classification approach that uses only the observation block of data when 

there is no label vector or response matrix available. Clustering is one of the few data mining tools that is 

applicable for data pre-processing as it does not require training and works based on two key ideas [46, 

47]: 

a) The members of one cluster must be as similar to each other as possible; and 

b) The members of one cluster must be as different from those of the other clusters as possible. 

A wide range of procedures including partitioning methods, hierarchical clustering methods, densitybased 

clustering methods, and grid-based methods have been introduced to identify the similarity or differences 

among the observations and thus enable optimal clustering of the samples [48-51]. The Lioyd algorithm is 

used in this work given that it is a partition method that can be applied easily using the K-means 

technique [47, 52], which involves the iterative application of three steps until convergence is achieved: 

1. Randomly initializing the center point of the clusters; 

2. Distributing samples among the clusters by clustering each sample to its nearest center; and 

3. Updating the centers’ position using the average values of each cluster’s members. 
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The last two steps are repeated until there are no changes in the members of each cluster [52-54]. Figure 

S2 schematically illustrates the implementation of K-means on an cluster-based dataset to determine the 

right clustering index, showing how fast the repetition of the last two stages in each iteration enables 

clustering of the data with high precision. 

2.4 Methodology Development, Results and Discussion 

2.4.1 Data Pre-Processing 

Prior to analyzing the data, the available dataset was pre-processed to identify outliers within the dataset. 

The mean-centered and scaled values of the data reported in Table 2-1 were first calculated, values that 

are compiled in Table S2; a positive value for a variable indicates a value that is higher than the average 

value of that variable among all observations while a negative value indicates the opposite. A PLS model 

was then applied on the dataset to correlate the X (recipe) block to the Y (swelling) block, after which the 

dimensionally-reduced blocks of data were used to estimate the original blocks of data and the squared 

prediction error (SPE) (the difference between each predicted observation value and its experimental 

value) was compared based on the SPE 95% confidence limit of the corresponding block calculated using 

eq. (1): 

𝑆𝑃𝐸𝑙𝑖𝑚 =
𝜈

2𝑚
𝜒

(
2𝑚2

𝜈
,0.95)

2    (𝑒𝑞. 1) 

Here, m and v are the SPE mean and variance calculated for all observations in each block and χ2 is the 

chi-square distribution with (2m
v
2 ) degrees of freedom and a significance level of 95% [55]. Observations 

with higher SPE than SPElim(either in the recipe space or in the swelling space) were classified as outliers 

given that the covariance among the outlier samples differs from rest of the dataset and would thus 

significantly skew the predictive power of the model. Four recipes (as shown in Figure S3) were 

identified as outliers following this analysis and thus were removed from subsequent analysis. 

Observations 31 and 32 are both large microgels prepared with either a very small comonomer fraction 
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(observation 31) or a high concentration of cross-linker (observation 32). Both these conditions have been 

previously noted to lead to an increased probability of microgel aggregation, a phenomenon comfirmed 

experimentally by the observation that the swollen state (25°C) particle size at pH 4 exceeds that at pH 10 

for both samples; such a trend is not physically realistic in the absence of microgel aggregation given the 

key role of functional monomer ionization in driving microgel swelling responses [1]. Alternately, 

observations 29 (prepared with the highest concentration of MA) and 30 (prepared with a high 

concentration of MAA) were both microgels containing higher concentrations of functional comonomers 

for which there are few observations in our dataset. In these two cases, the model is provided with less 

relevant "learning" data for accurately predicting the recipe formulation of these microgels; in this case, 

unlike with observations 31 and 32, adding more microgels to the dataset that include these comonomers 

at higher concentrations may lead to the ultimate inclusion of these samples within the model, although 

that is outside of the scope of the current work. The remaining 28 microgels that passed the pre-screening 

test were thus used as the dataset for all subsequent analyses. 

2.4.2 Clustering-Based PLS Modelling 

To account for potential differences in the swelling responses when different comonomers and/or different 

mole fractions of functional comonomers are used to prepare microgels, an adaptation of PLS-based 

modeling is developed to cluster the dataset prior to applying the PLS model. Three clustering policies 

were evaluated: 

a. No clustering, using the X block as the model input and the Y block as the model output directly 

(Figure 2-1(A)). 

b. Recipe-based clustering in which clustering was applied on the input (recipe) variables (X) and 

PLS was then performed on each set of observations categorized in the same cluster based on 

similar microgel recipes (Figure 2-1(B)). 

c. Swelling response-based clustering in which clustering was applied on the output (swelling) 

variables (Y) and PLS was then performed on each set of observations categorized in the same 

cluster based on the microgel swelling profiles. While this clustering approach has the obvious 
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disadvantage of requiring data specific to the swelling profiles for a given microgel recipe to be 

available to perform clustering, we will address this challenge later in this manuscript that enables 

the practical implementation of this policy (Figure 2-1(C)). 

To cluster either the X or Y block, a PCA model is first applied to the targeted block to extract the main 

trends in the dataset (including up to four first PCA scores), after which the K-means strategy was used to 

classify which observations should be in which cluster. Columns of the PCA score matrix that are the 

most 

 

Figure 2-1: Data arrangements for PLS modelling of microgel swelling: (A) no clustering is applied(one PLS model 

is applied on the whole observation set), (B) observations are clustered based on X (microgel recipe), with one PLS 

model applied per cluster, and (C) observations are clustered based on Y (microgel swelling response), with one PLS 

model applied per cluster 

discriminatory among the given blocks of data were then selected to optimize the utility of the clustering 

approach. Figure 2-2(A and B) shows that the 1st and 2nd score vectors are sufficient to provide a linearly 

separable dataset either in the recipe space (X) or in the swelling profile space (Y) among the different 

clusters; as such, only the two first scores from the PCA analysis need to be used to inform clustering in 

this work. Of note, given that the K-means final clustering index can be affected by the initial guesses of 

the centers at the first stage, each clustering process was repeated 20 times and only repeated indexing 
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patterns occurring in at least 85 percent of the runs were selected for further analysis. The number of 

clusters resulting from this analysis was managed by first setting a maximum of 10 clusters for each 

policy but coding the model such that if any cluster includes only one sample that cluster should be 

omitted, the maximum number of clusters should be reduced by one, and K-means should be re-applied 

on the targeted block. By applying this condition, the number of clusters required to discriminate 

differences in both the X and Y spaces was equal to 3 in 100 percent of cases. Figure 2-2(A and B) shows 

the distribution of these clusters in the 

corresponding score plot. 

For the recipe based clustering policy, the presence or absence of vinylacetic acid (VAA) in the recipe 

plays a pivotal role in determining the host cluster (i.e. the cluster into which a particular observation is 

classified). Cluster 3 primarily contains high VAA content microgels while Cluster 2 contains 

predominantly microgels prepared without any VAA comonomer (Figure 2-2(C)). The apparently 

different swelling profiles of the VAA-containing microgels are consistent with the unique reactivity of 

VAA among all the comonomers tested, as VAA reacts primarily as a chain transfer agent rather than a 

comonomer and is thus localized primarily at chain ends toward the outer periphery of the microgel [24]. 

However, while this correlation between VAA content and hosting cluster shows how the model can 

reflect fundamental microgel properties (e.g. the chemistry of the comonomers), other recipe components 

can change the optimal hosting cluster even for VAA copolymer microgels, particularly when lower VAA 

contents are used. Thus, while clustering based only on recipe components (i.e. whether or not VAA is 

used as a comonomer) would improve prediction quality versus not clustering at all, better predictions can 

be drawn from the recipe score plot information that takes into account all the interacting contributions of 

different recipe components on the swelling response. Better qualitative correlations can be drawn 

between the overall size of the microgel across the full range of the swelling profiles observed and the 

identified home cluster of that microgel. Specifically, if a representative Summative Size Parameter is 

computed according to eq. (2) below: 
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𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑣𝑒 𝑆𝑖𝑧𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  ∑ 𝐷𝑖      (𝑒𝑞. 2) 

where Di is the observed particle size for each sample at each measured temperature and pH value (which 

were the same for each observation to enable direct comparisons), the observations are unambiguously 

sorted into clusters based on the particle size across the full swelling profile (Figure 2-2(D)). As such, the 

cluster into which each microgel is classified can be qualitatively correlated with the microgel recipe or 

(more rigorously) the size of the microgels across the full dataset. 

2.4.3 Suggested Data Arrangements 

In addition to clustering observations with like properties together to improve predictability over a broad 

range of potential microgel recipes/swelling responses, different data arrangement strategies were also 

investigated to further improve the model predictions. In the available dataset for each sample, the X 

(recipe) block contains 8 concentration variables including N-isopropylacrylamide (NIPAM, the 

temperature responsive monomer), N,N’-methylene(bis)acrylamide (MBA, the crosslinker), sodium 

dodecyl sulfate (SDS, the surfactant used to control particle size), and five different pH-responsive 

functional monomers (acrylic acid (AA), methacrylic acid (MAA), fumaric acid (FA), maleic acid (MA), 

and vinylacetic acid (VAA) while the Y (swelling response) block includes 12 values corresponding to the 

equilibrium particle sizes at six temperatures (25°C, 30°C, 35°C, 40°C , 45°C, 50°C) at two different pH 

values (pH 4, the fully protonated state, and pH 10, the fully ionized state). A general view of both input 

(recipes) and output (swelling profile) variables in this data arrangement is shown schematically in Figure 

2-3(A). 



PhD Thesis – Seyed Saeid Tayebi; McMaster University - Chemical Engineering 

 

 

 28 

 

Figure 2-2: Data distribution among different clusters based on both microgel recipes (A) and microgel swelling 

profiles (B). Organization of microgel observations into clusters as classified based on (C) [VAA] and (D) 

Summative Size Parameter values among all cluster members. The number of clusters required to separate the 

observations in the latent variable space was determined by the model under both policies. 

Considering the Y data all in a single block (a Type 1 arrangement, as per Figure 2-3(A), neither 

temperature nor pH was explicitly included in the input or output blocks of the variables considered, 

making it impossible for the model to predict swelling responses at temperatures or pH values other than 

those represented directly within the dataset. To incorporate these variables more directly in the analysis 

and permit the explicit prediction of temperature and/or pH-responsive swelling profiles at any 

pH/temperature value and/or improve the prediction accuracy of swelling profiles at specific measured 

pH/temperature values, four additional data arrangement formats were proposed: 

• The Type 2 data arrangement divides the Y block into two sections corresponding to the two pH 

values at which the swelling profiles were recorded, with PLS modelling subsequently applied 

on each section separately (8 input variables, 6 output variables per PLS model - Figure 2-3(B). 

This data arrangement directly assesses the potential benefits of pH-based separation of the dataset 
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on prediction accuracy but does not allow for the prediction of the swelling profile of microgels at 

different pHs and temperatures beyond those directly tested. 

• The Type 3 data arrangement adds an extra column to the input block corresponding to the 

temperature at which each particle size was observed (Figure 2-3(C)). In this case, the output block 

holds only 2 values representing the particle sizes measured at pH = 4 and pH = 10 at each given 

temperature, with the number of observations correspondingly increased by a factor of six to account 

for the six measurement temperatures used. Such a data arrangement would make it possible to 

predict microgel particle size at any desired temperature (not limited to the six observation 

temperatures) but cannot predict swelling at different pH values. 

• The Type 4 data arrangement breaks the Y block of the Type 3 data arrangement into two parts based 

on the pH while keeping the X block the same (Figure 2-3(D)). In this arrangement, the input block 

includes 9 values (the 8 recipe variables plus temperature) but the number of variables in the output 

block is only 1 (the particle size at a specific temperature/pH value). The two parts are then combined 

to cover the whole original observation space (i.e. both pH values). This arrangement allows for any 

potential benefits (if any) of the pH-based separation of the Y block of the Type 3 arrangement to be 

realized but cannot predict pH swelling responses at pH values other than 4 and 10. 

• The Type 5 data arrangement expands the input block to 10 variables in which the two last columns 

include the corresponding temperature and pH values in addition to the 8 recipe variables; the Y 

block in this case thus includes only one value (the particle size at each specific pH/temperature 

value) (Figure 2-3(E)). In this case, the number of observations is increased by a factor of 12 to cover 

the entire dataset (i.e. one observation for each individual pH/temperature combination at which the 

particle size was measured). In this arrangement, if adequate experimental data is available, it would 

be possible to estimate microgel particle size at any temperature or pH value, not just those at which 

particle size was specifically measured. 
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Note that while the Type 3, 4, and 5 data arrangements can in principle predict the swelling profile at 

temperature and/or pH values other than those explicitly measured, to assess the benefits of different data 

arrangements for improving prediction accuracy we will limit our analysis only to those explicitly 

measured pH and temperature values such that comparisons with Type 1 and Type 2 data arrangements 

can be unambiguously made. Refer to the SI section 8.3 for more details on how PLS models were 

applied 

 

Figure 2-3: Five data arrangements used in this work from Type 1 to Type 5 are represented by (A) to (E) 

respectively (K represents the number of input variables and m denotes the number of output variables). using these 

different data arrangements to generate non-biased comparisons between the different data arrangement types. 

 

2.4.4 Swelling Profile Prediction 

The observed (experimental) versus fitted particle size plots shown in Figure 2-4 allow for the 

quantitative assessment of the impacts of the different clustering policies and/or data arrangements on the 

accuracy of microgel swelling predictions. Each row represents the impact of different clustering policies 

under the same data arrangement policy while each column represents the impact of different data 
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arrangement policies under the same clustering policy. As observed in the Figure 2-4, applying clustering 

significantly better concentrates the results around the bisector of the plot, meaning that the predicted 

particle size values were closer to the experimentally observed values. Moreover, Y-based clustering gives 

a slightly better prediction of particle size relative to X-based clustering under the same data arrangement 

format, as indicated both by visual observation as well as the R2 and MSE parameters for all 15 cases (also 

tabulated in each subpanel of Figure 2-4). 

 
Figure 2-4: Experimentally observed (y-axis) versus model-predicted (x-axis) values of microgel particle sizes 

across all pH temperature values tested for each observation in the dataset using different data arrangements (rows) 

and different data clustering policies (columns) 

 

Experimentally observed (y-axis) versus model-predicted (x-axis) values of microgel particle sizes across 

all pH temperature values tested for each observation in the dataset using different data arrangements 

(rows) and different data clustering policies (columns). 
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2.4.5 VPTT Prediction 

Following the demonstrated potential of the model to predict particle size at different pH/temperature 

conditions, the clustering policies and data arrangement formats were next evaluated in terms of their 

ability to predict microgel volume phase transition temperatures. Note that the optimal clustering policies 

and/or data arrangements for the VPTT prediction may be different from those identified for the particle 

size predictions given that not all particle sizes as a function of temperature are equally important for 

estimating the VPTT; in particular, the VPTT prediction model emphasizes the accuracy of the particle 

size measurements just above and just below the VPTT whereas points in the plateau regions (although 

important to predict for the swelling model) are less important. In this context, and in light of the very 

different shapes of the particle size versus temperature curves of microgels in the fully protonated regime 

at pH 4 (in which the microgels have more similar transition temperature responses and consistently show 

upper and lower temperature range plateaus corresponding to the fully swollen and fully collapsed state) 

and the fully ionized regime at pH 10 (in which some microgels exhibit no phase transition response 

whatsoever), the capability of the model to predict the transition temperature was investigated separately 

for each pH value. 

• Transition Temperature Prediction at pH=4 

Figure 2-5(A to C) show the VPTT prediction error stemming from the various clustering strategies for all 

microgels in the dataset at pH=4, using the best data arrangement format under each of the clustering 

policies as identified in Table S5. The reported ’Transition prediction parameter’ in Table S5 refers to the 

percentage of observations for which the model can accurately predict the existence of a discrete 

transition temperature rather than a more continuous or non-existent transition within the tested 

temperature range. Good estimates of the VPTT of the microgels can be achieved using Y-based 

Clustering strategy, enabling a 96 percent accuracy in predicting the presence of a discrete phase 

transition and an average VPTT prediction error of just 1.8°C; furthermore, only 4 of the 28 total 
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microgels in the dataset had a more than 4°C difference between their actual and predicted transition 

temperature values. 

While Y (swelling profile)-based clustering provided the best predictive potential, its direct 

implementation requires knowledge of the actual swelling profile values to find the right hosting cluster - 

information that is not available for a new recipe without actually synthesizing and analyzing the 

microgel. To achieve a priori predictions of VPTT without requiring the particle size data in advance, a 

combination between recipe and swelling-based clustering named Combined Clustering was developed. 

Using this strategy, the swelling profile of a new microgel is first predicted using the recipe-based 

clustering approach, enabling the initial identification of potential hosting clusters for a given new 

observation. Subsequently, a new swelling profile is predicted using swelling-based clustering and the 

hosting clusters for the already predicted swelling profile values are determined in order to ensure that the 

hosting cluster for the predicted swelling profile matches the cluster that was used to predict the swelling 

profile. If the host clusters match, the value is reported; if the host clusters do not match, a new swelling 

profile is predicted using the current hosting clusters and swelling-based PLS models and the process is 

iterated until the hosting clusters match. Figure S4 provides a schematic of how the Combined Clustering 

approach can predict the correct Y-based cluster for a new microgel observation without requiring the 

actual swelling data for a given observation. 
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Figure 2-5: Prediction error of the model for predicting the microgel volume phase transition temperature at pH=4 

for each individual microgel in the dataset using (A) no clustering, (B) recipe (X-based) clustering, (C) swelling (Y-

based) clustering, and (D) combined clustering, in each case using the best-performing data arrangement for each 

clustering policy. Observations highlighted in green are correctly predicted to either have or not have a discrete 

phase transition while observations highlighted in red are ones for which the existence of VPTT was mis-predicted; 

(E, F) comparison of VPTT prediction accuracies achieved using each clustering policy in A-D based on (E) the 

percentage of microgels for which the experimental VPTT is predicted within <3°C and (F) the average and worst-

case prediction errors observed. 

Figure 2-5(D) shows the prediction accuracy using Combined Clustering policy to predict VPTT values at 

pH 4. As shown, using this approach allows for significantly more accurate predictions of the microgel 

transition temperature than can be achieved by clustering the data directly using the swelling data. The 

average error per observation using Combined Clustering is only 1.4 °C (close to the mean ≈ 0.6C 

experimental error associated with estimating the VPTT from the fitting procedure described), with 93 
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percent of the microgels in the dataset having VPTT values predicted within an accuracy of 3.6°C; 

indeed, the worst predicted VPTT value is <5°C away from the experimental VPTT of that microgel. 

To summarize the fitting results, Figure 2-5(E) shows to the percentage of observations for which the 

VPTT is predicted as close as 3°C using each of the clustering policies in (A) to (D) while Figure 2-5(F) 

provides a visual comparison of the average VPTT prediction error and the worst case VPTT prediction 

error achieved with each clustering policy used. Combined Clustering achieves both improved average 

and worst-case prediction errors relative to the other reported clustering options; however, this clustering 

approach cannot accurately predict VPTT values for four microgels in the dataset (i.e. the VPTT 

prediction error is >3°C or the existence of a VPTT is mis-predicted). As such, for practical use of the 

model, it would be beneficial if we could at least predict whether an accurate VPTT prediction is likely to 

be possible or not with a given microgel recipe. To make this assessment, the recipe score plot of the full 

dataset indicated that samples that give good VPTT predictions (VPTT prediction error <3°C, Figure 2-6 

green dots) can be spatially distinguished from samples with poor VPTT predictions(Figure 2-6 red dots). 

In this context, we can (based only on the microgel recipe) explicitly identify whether a new recipe would 

fall within the "well-predicted area", in which the average and worst prediction errors are 1.0°C and 2.9°C 

respectively and 100 percent accuracy is expected in the Transition Prediction Parameter, or the "poorly-

predicted area", in which the model cannot be expected to provide a valid prediction. As such, while not 

every microgel VPTT can be predicted accurately depending on how similar a new recipe is to those in 

the existing dataset, we can predict with high confidence whether or not a VPTT prediction from the 

model is expected to be accurate based on the location of a new recipe within the latent variable space. 

Note that such information would be very beneficial for the next stage where a recipe is needed to be 

determined to yield a particular target profile. 
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Figure 2-6: Recipe score plot for the prediction of the volume phase transition temperature of dual pH/temperature-

responsive microgels at pH 4 using Combined clustering in which the green points represent samples for which the 

VPTT was predicted within 3°C while the red points represent samples for which VPTT was either poorly predicted 

or mis-predicted. 

 

 

Figure 2-7: 1st (A) and 2nd (B) PCA Loading vectors corresponding to the recipe score plot 
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Referring to the score plot in Figure 2-6, microgels with a high 1st score or low 2nd score are 

significantly more likely to have poorly predicted VPTT values using the Combined Clustering policy. 

Based on the first and second loading vectors of the PCA model in the recipe space (Figure 2-7(A and B)), 

these ranges correspond to samples with low VAA contents based on the large negative coefficient for 

VAA in the first loading vector and the large positive coefficient for VAA in the second loading vector. 

Correspondingly, looking at the highlighted observations in Table S4 and their recipes in Table 2-1, Table 

S1 or Table S2, each sample that is poorly predicted does not contain vinylacetic acid as a comonomer. As 

such, the score plot analysis and the qualitative assessment of the dataset yield the same overall 

conclusions about what types of microgel swelling profiles are likely to be well-predicted using the 

model. 

• Transition Temperature Prediction at pH=10 

Due to the ionization of the acid-containing pH-responsive monomer residues at pH=10, the volume 

phase transition temperature is at minimum increased or, depending on the number and distribution of the 

functional monomers present, fully suppressed. As such, not only predicting the magnitude of the VPTT 

but also whether or not a sample will show a discrete VPTT value over a defined temperature range (in 

this work, from 25°C to 50°C) is important for predicting microgel swelling responses. As shown in 

Figure 2-8(E) and Table S5, unlike at pH 4, the Transition Prediction Parameter shows that even in the 

best case (recipe-based X-clustering) the presence or absence of a discrete phase transition is predicted 82 

percent of the time; however, among the 12 samples that do show discrete VPTT values between 25°C 

and 50°C (as per Table S5), 11 of them were correctly predicted to have a discrete VPTT and 10 of those 

11 microgels had estimated VPTT values within 6°C of the measured VPTT. Note that, due to the much 

higher uncertainty associated with VPTT experimental measurements at pH 10 (estimated as ≈ 2.2C) 

owing to the much less discrete nature of the transitions in the ionized state relative to those observed at 

pH 4, prediction accuracies within 6°C are practically useful for microgel design at pH 10. In contrast, the 

Y-based clustering approach predicts no transition even though one exists in 6/12 cases (Table S5, True 
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Detection column) and fewer samples with <6°C prediction errors (Figure 2-8(E)) compared to X-based 

clustering, even when the Combined Clustering approach is used. We attribute this observation to the 

different variance structure in the pH 10 dataset relative to the pH 4 dataset, emphasizing the importance 

of considering all potential clustering/data arrangement approaches to ensure optimal predictions under 

each condition. 

Similar to pH=4, in this case (pH=10), there are also 6 observations for which the existence of a discrete 

transition temperature either was mis-predicted or an actual VPTT was poorly predicted (i.e. the VPTT 

prediction error was >6°C) using the best-performing clustering policy (X-based). To assess if these 

samples could be explicitly identified by the model, the score plot for the VPTT prediction at pH 10 is 

shown in Figure 2-9; properly predicted samples are highlighted in green and poorly predicted samples 

are highlighted in red. 
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Figure 2-8: Prediction error of the model for the microgel volume phase transition temperature at pH10 using (A) no 

clustering, (B) recipe (X-based) clustering, (C) swelling (Y-based) clustering, and (D) combined clustering, in each 

case using the best-performing data arrangement for each clustering policy. Observations highlighted in green are 

correctly predicted to either have or not have a discrete phase transition while observations highlighted in red are 

ones for which the existence of VPTT was mis-predicted; (E, F) comparison of VPTT prediction accuracies 

achieved using each clustering policy in A-D based on (E) the percentage of microgels for which the experimental 

VPTT is predicted within <6°C and the Transition Prediction Parameter and (F) the average and worst-case 

prediction errors observed. 

Although the space in which the recipe-based clustering model is expected to accurately predict the 

transition temperature is quite wide, microgel recipes exhibiting very low 1st scores and/or very low 2nd 

scores tend to be more poorly predicted. Based on the loading vector values in Figure 2-7(A and B), the 

parameters for NIPAM, AA, and SDS are all both negative in both loading vectors, implying that the 
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swelling properties of less functionalized and smaller microgels are not predicted as accurately at pH 10. 

Correspondingly, the majority of the poorly predicted samples were microgels with moderate-high 

functional monomer contents prepared using higher SDS concentrations that result in microgels with 

smaller particle sizes. Note that the SDS content cannot alone predict a poorer model prediction; for 

example, despite having the exact high identical amount of SDS in their recipes, samples 5, 6, 7, 8 and 9 

all showed good VPTT predictions corresponding with their position in the well-predicted region in the 

score plot. The relatively low number of microgels with similar recipes in the training data set is likely the 

cause of the less accurate predictions for such microgels and could be resolved by further expanding the 

training data set using more recipes with similar compositions. However, given that all well-predicted 

samples are in one quadrant and all (and only) the poorly-predicted samples are in the other quadrants, a 

Transition Prediction Parameter of 100 percent and average and worst-case VPTT prediction errors equal 

to 2.3°C and 5.8°C respectively can be achieved within the well-predicted range. In this context, at pH 10, 

the statistical analysis can not only well-predict the VPTT behavior of most microgels but also 

unambiguously identify whether or not a model VPTT prediction is likely to be accurate. 

Overall, the performance of the model in predicting the volume phase transition properties of dual 

pH/temperature microgels is summarized in Table 2-2. While the data-driven modelling approaches 

developed herein cannot unambiguously predict the swelling profile or VPTT value for any new microgel 

tested, the existence of a discrete phase transition for an observation (97 percent at pH 4 and 82 percent at 

pH 10) and the resulting volume phase transition temperature (100 percent within 5°C at pH 4 and 83 

percent within 6°C at pH 10) can be accurately predicted for the vast majority of microgel recipes tested. 

Moreover, if the predictive power of the best-performing models (Combined Clustering for pH 4 and 

recipe-based clustering for pH 10) are considered only over their well-predicted areas as identified by 

PLS analysis, the existence of a discrete phase transition for an observation can be predicted with 100 

percent accuracy at both pH values and VPTT prediction errors of <3°C at pH 4 and <6°C at pH 10 can 

be achieved. As such, even for samples that cannot be well-predicted, PCA score plot analysis can 
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explicitly categorize whether or not a reliable VPTT prediction can be expected based only on the 

microgel recipe, allowing for immediate flagging of potentially inaccurate particle size or VPTT estimates 

within the context of a microgel design framework. Expanding the "training set" of available microgel 

data in areas in which few observations were present in the current dataset (e.g. higher monomer loadings 

of MAA, MA, or FA and/or higher SDS contents) would likely further increase the ratio of samples that 

appear in the well-predicted area relative to the poorly predicted area, albeit with the drawback of 

requiring significant additional microgel synthesis and characterization work that statistical modelling 

approaches like this typically aim to avoid. The capacity of the model presented to make functional 

predictions as well as flag potential poor predictions based only on the recipe used to prepare the microgel 

should also in principle (upon inversion) enable the identification of a microgel recipe with a specific 

targeted swelling profile as long as that profile is within the "well-predicted" solution space of the model. 

This capacity offers the potential to significantly accelerate the rate of microgel development for target 

applications that require precise and specific swelling/deswelling profiles at multiple pH values. 

 

Figure 2-9: Recipe score plot for the prediction of the volume phase transition temperature of dual pH/temperature-

responsive microgels at pH 10 using X (recipe-based) clustering in which the green points represent samples for 

which the VPTT was predicted within 6°C while the red points represent samples for which VPTT was either poorly 

predicted or mis-predicted 
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Table 2-2: VPTT prediction quality within the well-predicted area for both pH=4 and pH=10 

 
Clustering Policy Type 

Transition Prediction 

Parameter 

[0-3] Error Interval pH4 

[0-6] Error Interval pH10 

Average 

Error 

The Worst 

Error 

pH 4 Combined Clustering Mode Type 1 100% 100% 1.0 2.9 

pH 10 Recipe Clustering Type 1 100% 100% 2.4 5.8 

 

2.4.6 Predicting the Properties of New Microgels 

Finally, to assess whether the model can predict the swelling response of a microgel it has not previously 

seen, we synthesized two new microgels (New Obs 1 and New Obs 2) using recipes incorporating mid-

high mole fractions of three functional monomers (AA, FA, and VAA) into a single microgel; the model 

had not been trained with any microgels prepared with this combination of comonomers (see Table S3 for 

the new microgel recipe information). Figure 2-10(A and B) show the observed versus predicted particle 

size versus temperature plots at both pH 4 and pH 10 for both microgels using the optimum clustering and 

data arrangement policies identified at both pH values (combined clustering for pH 4, recipe-based 

clustering at pH 10). The high correlation between the actual and predicted particle sizes confirming that 

the model can accurately predict the swelling results for a microgel recipe distinct from those trained by 

the model. Correspondingly, the score plots Figure 2-10(C and D) show that both new microgels lie 

within the well-predicted range that would suggest a good prediction is possible. The samples did not 

exhibit any VPTT at pH 10 in the temperature range of 25°C to 50°C, as the model correctly predicted; at 

pH 4, the predicted VPTT values lied within 0.6 °C and 0.4 °C of the actual measured VPTT values for 

New Obs 1 and New Obs 2 respectively. As such, the model can accurately predict both the swelling 

profile and the VPTT value of a new microgel not used to derive the model. 

While we demonstrate that our data-driven technique can predict the particle size versus temperature 

swelling responses of a diverse range of microgels (or at minimum identify that a particular prediction is 

likely to be poor), the developed technique also has some limitations. In particular, model predictions in 

any data-driven model are only as good as the data used to train the model. Ideally, all new recipes would 

be included in the model’s training dataset (as we have done herein using our jackknife training 
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approach); only after this requirement is satisfied can the location of the new recipes in the recipe score 

plot be confidently interpreted as a measure of predictability. That being said, the two new microgels 

synthesized to test our model prediction were not processed in this way and still gave good predictions, 

which would be expected provided the recipes were not radically different than those already in the 

training set. Expanding the training set over a broader range of microgel compositions (e.g. the mid/high 

AA content/high SDS content microgels that were poorly predicted at pH 10) would reduce the need to 

perform such re-training for each sample and expand the well-predicted range. In addition, while the 

current methodology can be used on any new microgel dataset that has been synthesised under various 

reaction conditions, the model will not necessarily hold true for samples that were produced under 

different reaction conditions beyond the base temperature, stirring speed, and reaction time used 

consistently across our training data set. Although the model can easily be modified to include variables 

like temperature and mixing as additional X (process) parameters, a sufficient number of samples must be 

synthesised under various conditions to allow the model to be adequately trained to give good predictions. 
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Figure 2-10: (A,B) Microgel swelling and VPTT prediction quality of two new microgels (New Obs 1, A and New 

Obs 2, B) using the optimal data processing approaches identified at each pH: (A) pH = 4 using the combined 

clustering mode and (B) pH = 10 using recipe-based clustering; (C,D) Score plots for pH 4 (C) and pH 10 (D) 

showing that both microgels lie within the well-predicted range consistent with the good correlation between actual 

vs. measured sizes and VPTT values. 

2.5 Conclusions 

In this work, a coupling of partial least squares modelling technique with data clustering was introduced 

and developed to predict the swelling responses and volume phase transition temperature of dual 

pH/temperature-responsive microgels at both pH 4 (fully protonated state) and at pH 10 (fully ionized 

state). By first clustering data either in the recipe space or in the swelling profile space followed by 

developing PLS based models for each individual cluster, improved predictions of the VPTT can be 

achieved. Specifically, clustering based on the swelling profile provides better predictions of transition 

temperatures at pH 4 while clustering based on the microgel recipe provides better predictions at pH 10. A 

new version of swelling-based clustering called Combined Clustering was also developed that enables the 

implementation of swelling profile-based clustering without the prior need to know the swelling response 



PhD Thesis – Seyed Saeid Tayebi; McMaster University - Chemical Engineering 

 

 

 45 

of the microgel, leading to improved property predictions at pH 4. The optimized cluster-based PLS 

technique developed successfully predicts the microgels’ transition temperature within an mean prediction 

error of 1.0°C at pH=4 and 2.3°C at pH=10, values that are close to the error bars of experimentally 

measured transition temperatures (0.6°C and 2.2°C at pH 4 and pH 10, respectively). Furthermore, 

although not every microgel swelling response in the dataset can be accurately predicted, it is possible to 

a priori predict whether an accurate VPTT prediction can be made for a new microgel recipe using PCA 

score plot analysis. This ability to predict microgel swelling profiles (and assess how accurate any 

prediction is likely to be) has the potential to eliminate the need for using the slow trial-and-error 

approach now used to design a microgel with a specific pH or temperature swelling profile, significantly 

accelerating the design of new functional multi-responsive microgels with targeted swelling responses for 

specific applications. 

Supporting Information 

"Training dataset recipes and summary of the models’ performance, PCA and PLS modelling 

supplementary discussion, Methods and implementation clarification, and Swelling Profile prediction 

quality for all dataset 

(PDF)” 
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2.7 Supporting Information 

2.7.1 Training Dataset Formulations, Summary of the Models’ Performance and supplementary 

Figures 

Table S1 and Table S2 show the raw (in grams) and scaled value recipe formulations of each of the 

microgels used to build the training dataset for all the models. The four microgels excluded based on the 

pre-screening analysis described in the manuscript are highlighted in rows 29 to 32. Table S4 also 

provides quality of VPTT prediction at pH 4 (High = <1.5°C error, Moderate = 1.5°C <VPPT error < 3°C 

; Poor = >3°C error) and pH 10 (High = <3°C error, Moderate = 3°C < VPTT error < 6°C ; Poor = >6°C 

error) as well as their hosting cluster based on either their recipes or swelling profiles. Finally, the VPTT 

prediction quality at both pH values among all policies for all samples is tabulated in Table S5 with the 

best-performing data arrangements under each clustering policy highlighted. The true detection column in 

Table S5, refers to the portion of observations for which there was a discrete VPTT and the model has 

correctly guessed identified such (this value does not include those portion of observations for which 

there was not an actual VPTT and the model correctly guessed that). For reference, Figure S1 provides a 

visual representation into how the VPTT was calculated based on the available swelling data and the 

corresponding error estimates made from the uncertainties in the experimental particle size 

measurements. Figure S2, Figure S3, and Figure S4 also provide supporting information pertaining to 

section 3.3, section 4.1, and section 4.5.1 respectively. 

Table S1: Raw formulation (in grams) of all recipes prior to any pre-processing 

Sam ID NIPAM MBA AA MAA FA MA VAA SDS 

1 1.600 0.160 0.064 0 0 0 0 0.056 

2 1.600 0.159 0 0 0.092 0 0 0.056 

3 1.600 0.161 0 0 0 0 0.343 0.056 

4 1.600 0.161 0 0 0 0 0.228 0.057 

5 1.600 0.160 0 0 0 0 0.114 0.058 

6 1.600 0.161 0 0 0 0 0.080 0.056 

7 1.600 0.159 0 0 0 0 0.045 0.055 

8 1.600 0.204 0 0 0 0 0.114 0.059 

9 1.600 0.114 0 0 0 0 0.114 0.057 
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10 1.600 0.080 0 0 0 0 0.114 0.056 

11 1.600 0.047 0 0 0 0 0.114 0.055 

12 1.600 0.159 0 0 0 0 0.114 0.034 

13 1.600 0.161 0 0 0 0 0.114 0.024 

14 1.600 0.160 0 0 0 0 0.114 0 

15 1.600 0.159 0.114 0 0 0 0 0.059 

16 1.600 0.159 0 0 0.114 0 0 0.057 

17 1.600 0.160 0 0.114 0 0 0 0 

18 1.600 0.160 0 0 0 0 0.343 0 

19 1.600 0.176 0 0 0.112 0 0 0.024 

20 1.600 0.261 0 0 0.320 0 0 0.060 

21 1.600 0.217 0 0 0.049 0.006 0.069 0.039 

22 1.600 0.163 0 0 0 0 0.041 0.023 

23 1.600 0.247 0 0.079 0.149 0 0 0.026 

24 1.600 0.166 0 0 0 0 0.042 0.046 

25 1.600 0.245 0 0 0.253 0 0 0.036 

26 1.600 0.174 0 0.011 0 0 0.034 0.023 

27 1.600 0.172 0 0 0 0 0.045 0.041 

28 1.600 0.245 0 0 0 0 0.175 0.026 

29 1.600 0.161 0 0 0 0.457 0 0.056 

30 1.600 0.159 0 0.109 0 0 0 0.058 

31 1.600 0.159 0 0 0 0 0 0 

32 1.600 0.259 0 0 0.248 0 0.058 0.025 

 

 

Table S2: Mean-centered and scaled values of the dataset for all 32 samples prior to any pre-processing 

 

Sam ID NIPAM MBA AA MAA FA MA VAA SDS 

1 0.587 -0.074 2.450 -0.281 -0.486 -0.189 -0.956 0.916 

2 0.698 -0.049 -0.263 -0.281 0.759 -0.189 -0.956 0.933 

3 -2.273 -0.711 -0.263 -0.281 -0.486 -0.189 2.538 0.444 

4 -1.166 -0.464 -0.263 -0.281 -0.486 -0.189 1.544 0.627 

5 0.116 -0.179 -0.263 -0.281 -0.486 -0.189 0.393 0.838 

6 0.542 -0.084 -0.263 -0.281 -0.486 -0.189 0.011 0.909 

7 0.988 0.015 -0.263 -0.281 -0.486 -0.189 -0.389 0.982 

8 -0.187 0.843 -0.263 -0.281 -0.486 -0.189 0.370 0.787 

9 0.431 -1.238 -0.263 -0.281 -0.486 -0.189 0.418 0.889 

10 0.675 -2.058 -0.263 -0.281 -0.486 -0.189 0.437 0.931 

11 0.925 -2.901 -0.263 -0.281 -0.486 -0.189 0.456 0.972 

12 0.199 -0.160 -0.263 -0.281 -0.486 -0.189 0.400 
-

0.307 

13 0.241 -0.151 -0.263 -0.281 -0.486 -0.189 0.403 
-

0.883 
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14 0.325 -0.133 -0.263 -0.281 -0.486 -0.189 0.410 
-

2.043 

15 -0.149 -0.238 4.382 -0.281 -0.486 -0.189 -0.956 0.795 

16 0.481 -0.098 -0.263 -0.281 1.051 -0.189 -0.956 0.899 

17 0.325 -0.133 -0.263 4.272 -0.486 -0.189 -0.956 
-

2.043 

18 -2.117 -0.676 -0.263 -0.281 -0.486 -0.189 2.574 
-

2.043 

19 0.515 0.293 -0.263 -0.281 1.028 -0.189 -0.956 
-

0.804 

20 -1.816 1.556 -0.263 -0.281 3.269 -0.189 -0.956 0.516 

21 -0.172 1.151 -0.263 -0.281 0.164 5.103 -0.149 
-

0.161 

22 1.163 0.115 -0.263 -0.281 -0.486 -0.189 -0.439 
-

0.764 

23 -1.172 1.488 -0.263 2.600 1.332 -0.189 -0.956 
-

0.776 

24 1.026 0.208 -0.263 -0.281 -0.486 -0.189 -0.434 0.419 

25 -1.180 1.464 -0.263 -0.281 2.610 -0.189 -0.956 
-

0.372 

26 1.039 0.378 -0.263 0.146 -0.486 -0.189 -0.525 
-

0.919 

27 0.962 0.343 -0.263 -0.281 -0.486 -0.189 -0.400 0.170 

28 -1.007 1.491 -0.263 -0.281 -0.486 -0.189 0.989 
-

0.911 

29 -2.239 -0.703 -0.263 -0.281 -0.486 321.782 -0.956 0.449 

30 0.171 -0.166 -0.263 4.052 -0.486 -0.189 -0.956 0.848 

31 1.867 0.211 -0.263 -0.281 -0.486 -0.189 -0.956 
-

2.043 

32 -1.761 1.550 -0.263 -0.281 2.439 -0.189 -0.348 
-

0.912 

 

Table S3: New (test) microgel recipes 

 Sam ID NIPAM MBA AA MAA FA MA VAA SDS 

Mole Fraction 

New Obs 1 0.7961 0.0477 0.0522 0 0.0136 0 0.0775 0.0129 

New Obs 2 0.8454 0.0638 0.0307 0 0.0465 0 0.0056 0.0080 

in gram 

New Obs 1 1.6 0.13 0.07 0 0.03 0 0.12 0.07 

New Obs 2 1.6 0.16 0.04 0 0.09 0 0.01 0.04 

Centered-Scaled 

New Obs 1 0.090 -0.069 1.263 -0.281 0.702 -0.189 -0.861 -0.104 

New Obs 2 -0.925 -1.077 2.331 -0.281 -0.139 -0.189 0.361 1.098 
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2.7.2 PCA and PLS Modelling Supplementary Discussion 

• PCA 

PCA aims to identify the directions in which the observations are distributed and order these directions 

based on the variance of the original block of data that each of these directions covers. These directions 

can be explained using a linear combination of the original variables with weighted coefficients. The 

directions are referred to as the PCA components or score matrix (denoted by t) and the weighted 

coefficients used to calculated them are referred to as the PCA loading matrix (denoted by p,Figure S5). 

In PCA, if only the first direction (which explains the most variation within the original block) is chosen 

for dimensionality reduction, it means that in the new space there is only one variable for each 

observation (i.e. the 1st score) that has been calculated through eq. (S1); if the two directions with the 

highest variance are chosen, there are two variables representing each observation in the new space called 

the 1st and 2nd scores (and so on). The general structure of PCA modelling is shown in Figure S5. 

The scores are computed as follows: 

𝑡1𝑠𝑡
𝑖 = 𝑋𝑖 × 𝑝1𝑠𝑡    (𝑒𝑞. 𝑆1) 

where Xi and p1st represent the ith observation and the first direction with highest variance respectively. 

Moving backward from score space to the original space will give Xˆ (eq. (S2)) which may not equal the 

original X if the number of selected directions is less than the number of original predictor variables. The 

distance between the actual and the estimated values is calculated using eq. (S3). It should be noted that in 

eq. (S2), T and P are used to refer to the loading and score matrices; as such, tith and pith in eq. (S1) 

represent 

Table S4:Quality of VPTT prediction at pH 4 (High = <1.5°C error, Moderate = 1.5°C <VPTT error <3°C ; Poor = 

>3°C error or mis-predicted) and pH 10 (High = <3°C error, Moderate = 3°C <VPTT error <6°C ; Poor = >6°C error 

or mis-predicted) as well as their hosting cluster based on either X (recipe-based) or Y (swelling profiles) clustering 

policies 
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Sam ID 
VPTT Prediction Quality 

[pH4] 

VPTT Prediction Quality 

[pH10] 

Hosting Cluster 

Recipe-Based 

Hosting Cluster 

Swelling-Based 

1 High Poor 1 2 

2 High Poor 1 1 

3 High High 3 2 

4 High High 3 1 

5 High High 1 1 

6 Moderate Moderate 1 1 

7 High High 1 1 

8 High High 1 1 

9 High High 1 1 

10 High Poor 1 1 

11 High Poor 1 1 

12 Moderate High 1 2 

13 High High 1 2 

14 High High 3 3 

15 Poor Poor 1 2 

16 High Poor 1 2 

17 Poor High 2 3 

18 High High 3 3 

19 Poor High 2 3 

20 Poor Moderate 2 2 

21 Moderate High 2 2 

22 Moderate High 1 1 

23 High Moderate 2 3 

24 High High 1 1 

25 High Moderate 2 3 

26 Moderate High 1 2 

27 High High 1 1 

28 Moderate High 3 2 

New Obs 1 High High 1 1 

New Obs 2 High High 1 1 

 

Table S5: Summary of the VPTT prediction quality using different clustering policies and data arrangement 

strategies 

 Type 
Transition Prediction 

Parameter 

[0-3] Interval Error pH4 

[0-6] Interval Error pH10 

True 

detection 
R2 

Average 

Error 

The 

Worst 

Error 

pH 4 
No 

Clustering 

1 96% 71% 96% 93% 1.9 6.1 

2 100% 70% 100% 92% 2.2 6.2 
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3 75% 64% 75% 96% 1.3 3.6 

4 75% 64% 75% 96% 1.3 3.7 

5 43% 32% 43% 95% 1.6 4.3 

Recipe 

Clustering 

1 96% 68% 96% 94% 2.0 6.1 

2 96% 71% 96% 94% 1.9 5.7 

3 71% 54% 71% 94% 2.1 5.2 

4 75% 54% 75% 94% 2.1 5.2 

5 43% 32% 43% 95% 1.6 3.7 

Swelling 

Clustering 

1 89% 71% 89% 95% 1.5 6.1 

2 96% 68% 96% 95% 1.8 6.4 

3 89% 57% 89% 92% 2.8 9.1 

4 71% 54% 71% 93% 2.4 8.4 

5 50% 32% 50% 93% 2.5 7.2 

Combined 

Clustering 

Mode 

1 96% 86% 96% 96% 1.4 5.0 

2 100% 75% 100% 95% 1.8 5.3 

3 75% 46% 75% 90% 3.3 10.3 

4 71% 29% 71% 89% 3.8 9.9 

5 36% 11% 36% 89% 3.5 10.0 

pH 10 

No 

Clustering 

1 64% 64% 75% 94% 2.3 5.9 

2 71% 64% 75% 92% 2.70 7.1 

3 57%  0%  0.0 0.0 

4 57%  0%  0.0 0.0 

5 57%  0%  0.0 0.0 

Recipe 

Clustering 

1 82% 79% 92% 93% 2.80 8.4 

2 71% 68% 83% 92% 3.1 8.3 

3 54% 54% 0%  0.0 0.0 

4 57% 57% 0%  0.0 0.0 

5 54% 54% 0%  0.0 0.0 

Swelling 

Clustering 

1 61% 61% 67% 96% 1.7 6.0 

2 64% 64% 67% 97% 1.1 4.7 

3 54% 43% 50% 85% 5.7 10.9 

4 75% 71% 50% 91% 3.2 10.1 

5 71% 67% 50% 96% 3.1 10.2 

Combined 

Clustering 

Mode 

1 57% 50% 58% 95% 1.9 6.0 

2 61% 53% 67% 95% 1.8 6.1 

3 46% 35% 25% 81% 7.2 6.9 

4 53% 39% 42% 81% 6.9 11.1 

5 71% 57% 83% 87% 4.8 10.6 
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Figure S1: Method for estimating VPTT values from experimental swelling profiles D3/D0
3 , where D denotes the 

measured z-average microgel diameter at the specific temperature tested and D0 denotes the particle size diameter at 

25°C (fully swollen state), by fitting a sigmoidal curve to the data (black line). Error bars on the experimental 

VPTT data were estimated based on the difference in the VPTT values measured according to the blue curve (fit 

based on the upper boundary of error bars of each observation point) and the red curve (fit based on the lower 

boundary of the error bars of each observation point the  

 

ith columns of the corresponding matrices. 

𝑋̂ = 𝑇 × 𝑃𝑇    (𝑒𝑞. 𝑆2) 

𝐸 = 𝑋 − 𝑋̂   (𝑒𝑞. 𝑆3) 

The R2 coverage of an applied PCA is calculated through eq. (S4), with the equation reflecting that using 

more directions (components) will promote broader coverage of the original dataset while at the same 

time increasing the chance of over-fitting the data. 
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Figure S2: A K-means clustering example spanning from the first iteration (A) (randomly selected centers) to the 

last iteration (F) (fully clustered data) 

 

 

Figure S3: Squared prediction error (SPE) for all observations in (A) the X (recipe) and (B) the Y 

(swelling) space. The solid black line represents the SPElim (threshold) in each block, with the red-crossed samples 

showing the excluded observations as a result of the pre-screening algorithm. 

 

𝑅2 = 1 −
𝑣𝑎𝑟(𝐸)

𝑣𝑎𝑟(𝑋)
   (𝑒𝑞. 𝑆4) 

• PCA NIPALS Algorithm 

Non-linear Iterative PArtial Least Squares (NIPALS) is one of the most powerful algorithms utilized for 

calculating the PCA loading (P) and score (T) matrices. This method calculates the components of PCA 
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one by one based on their importance in representing the original X matrix [1, 2]. To calculate each 

component, only the part of data that has not been described using the previous components is used. The 

NIPALS algorithm is quite flexible and also easy to apply on any data space, particularly when some of 

the measurements are missing [2, 3]. This algorithm includes the following steps for each component [1, 

4]: 

a) Mean-centering and unit-scaling the data in each column (based on predictors) 

b) Choosing an arbitrary column for the tith score (this randomly selected column can be any vector yet 

at least one element of this vector needs to be not equal to zero. The most commonly used vector in 

this step is a randomly selected column of X(i−1)th). 

c) Regressing each column of X(i−1)th onto tith 

d) Assigning the best-fit slope as the ith element of pith 

e) Normalizing the pith to unit value 

f) Regressing all rows of X(i−1)th onto pith to update each element of tith(new) 

g) Repeating steps 3 to 6 until there are no subsequent changes in the calculated tith 

h) Recording pith and tith in the ith column of the P and T matrices respectively. 

i) Deflating the X(i−1)th matrix (i.e. the E calculated through eq. (S3) is replaced as X(i)th and the new 

components are calculated for the new X) 

Step (i) practically means that E corresponds to the variance that has not been described with the already 

calculated components, such that for the following component only this part of data should be processed. 

A general summary of regressions and how the NIPALS algorithm deals with finding loading and score 

vectors is depicted in Figure S6. A note should be made in Figure S6 that in each iteration normalizing 

Pith′ is performed after part (A) and prior to part (B). 

 



58 

PhD Thesis – Seyed Saeid Tayebi; McMaster University - Chemical Engineering 

 

 

 

 

Figure S4: Schematic of the heuristic used to classify a new microgel observation into the correct 

Y-based swelling cluster based only on the microgel recipe using the developed Combined Clustering policy 
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Figure S5: PCA general structure 

 

• PLS 

PLS NIPALS Algorithm 

 

Figure S6: A schematic depiction of the NIPALS algorithm to calculate the loading and score vectors in PCA. The 

orange arrow shows the direction of the regression.  
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The general concept of PLS was described in section 3.2. The NIPALS algorithm is also one of the most 

practical options for performing PLS [5, 6] and calculating its all blocks. Figure S7 shows a standard 

scheme of a NIPALS-PLS structure for calculating the ith component where t and u are score vectors and c 

and p are the loading vectors corresponding to the X and Y blocks respectively. In addition to already 

mentioned vectors, PLS includes another vector (denoted by w) that plays a pivotal role in relating the Y 

block variance to that of X block. The advantages of using NIPALS for PLS modelling are similar to 

those discussed for PCA; however, the steps through which it works are different [7]. The NIPALS 

algorithm for PLS modelling is implemented as follows: 

a) Mean-centering and unit-scaling data in both the X and Y blocks based on their columns. 

b) Choosing an arbitrary column for u or simply setting u equal to randomly selected column of Y. 

c) Regressing columns of X onto u and assigning the resulting slopes as the elements of the w vector 

d) Normalizing the w vector to unit-scale 

e) Regressing rows of X onto w to update the elements of the t vector 

f) Regressing columns of Y onto t and assigning the resulting slopes as the elements of the c vector 

g) Updating the u vector by regressing rows of Y onto c 

h) Checking if convergence (i.e. no changes in the recently calculated u with the u from previous 

iteration) is reached. If yes, proceed to step (i); if no, go back to (c) to iterate. 

i) Calculating the loading vector of X (p) by regressing the columns of X onto t 

j) Deflating the already described parts of both X and Y blocks using eq. (S5) and eq. (S6) 

𝐸 = 𝑋 − 𝑡 × 𝑝𝑇    (𝑒𝑞. 𝑆5) 

𝐹 = 𝑌 − 𝑡 × 𝑐𝑡    (𝑒𝑞. 𝑆6) 

k) Recording the t, u, c, w, p vectors as the corresponding columns of T, U, C, W, P matrices 
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l) Setting the new X and Y equal to E and F and repeating all steps to calculate the next component 

(this process should be iterated as many as the number of required components) 

In PLS, blocks of data are assigned to either the X or Y section based on which block’s information is 

available (or more likely to be available in the future) and which block’s information is needed in the 

future [7]. In addition, while the X block has two loading vectors (p and w), the w vector is used to 

calculate the corresponding t vector while the p vector is used to calculate Xˆ matrix (for more 

information, refer to [5, 8]). 

PLS and PCA both need to be trained using an available dataset to develop loading and score matrices. 

For PLS, once it is trained, these matrices are used to estimate the corresponding responses for a new 

observation. To do so, the new observation should first be mean-centered and unit-scaled using the X 

block’s average and standard deviation (Std) values; following, eqs. (S7) to (S9) can be utilized to predict 

the corresponding yfit values. The predicted yfit values must then be de-normalized using the training Y 

block’s average and Std values [5, 8]. 

𝑡𝑛𝑒𝑤 = 𝑥𝑛𝑒𝑤 × 𝑊∗   (𝑒𝑞. 𝑆7) 

𝑦𝑓𝑖𝑡 = 𝑡𝑛𝑒𝑤 × 𝐶𝑇    (𝑒𝑞. 𝑆8) 

where W∗ is: 

𝑊∗ =
𝑊

(𝑃𝑇 × 𝑊)
   (𝑒𝑞. 𝑆9) 

A schematic of how the PLS model was applied in this work is shown in Figure S7. 
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Figure S7: PLS model components showing two PCA applied on two blocks simultaneously 

 

2.7.3 Methods and Implementation 

Based on the provided information, there were 15 possible dataset IDs (i.e. five possible data 

arrangements under three possible clustering policies) that needed to be evaluated to determine the best 

approach to achieve the maximum predictive power for the available dataset. 

In this work, the Non-linear Iterative Partial Least-Squares (NIPALS) algorithm was employed to apply 

PLS on all introduced datasets. The NIPALS algorithm is a very flexible and straightforward way of 

applying PLS, as it calculates the PLS components one by one and thus makes it possible to set the 

number of required components (i.e. linear combinations of variables) to cover the whole X and Y space 

during the modelling process. 

The number of components in this paper was not pre-determined but rather was identified based on the 

NIPALS algorithm for each case analyzed, allowing for flexibility as the number of observations and 

number of variables was changed using different arrangements and clustering policies and thus 

minimizing the risk that the model was over-fit in different scenarios. Since the NIPALS algorithm 

calculates the components in order, the eigenvalue-greater-than-one rule [9] was used to increase the 

number of components considered only if the variance explained with the recently calculated t is greater 

than one; as such, if a specific component does not improve predictions, it is excluded from the model. In 
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this context, comparisons of the outcomes of different models are significantly less biased and over-fitting 

of the models is either avoided or at least much significantly less likely to happen. 

To be able to rigorously compare the output results of all 15 cases mentioned above, a systematic 

procedure unbiased by the clustering policies, data arrangement formats, or even the selection of the 

training and testing observations was required. Comparisons among all suggested data arrangements 

through evaluating R2, MSE, or other error parameters are highly influenced by the number of output and 

input variables; as such, the modelling outputs under all introduced data arrangements and clustering 

policies were unfolded to the original format (8 inputs and 12 outputs) and then calculated and reported 

accordingly. In addition, considering the limited number of available observations (i.e. microgel recipes) 

in the dataset, comparisons of results under different clustering policies and/or data arrangements can be 

affected by how the observations were grouped in either the testing or training dataset. More specifically, 

if a certain group of observations is excluded for testing and the rest for training from the beginning, the 

final comparison between different arrangements and clustering policies can be biased given that some 

observations may be well-covered by certain arrangement formats and/or clustering policies but not 

others; in such a case, the model’s final coverage will show a non-realistic privilege for some dataset 

arrangements over the others. To further avoid any bias in the comparisons between modelling 

frameworks, we employed a Jackknife approach in which we repeated the process of applying PLS 

models on the training data (and its evaluation) as many times as the number of observations under each 

case. In each iteration, one observation from the dataset was excluded from the “training” data and used 

as a “test” data point – at the end of the process, each individual microgel has been used as the “test” data 

at least once. This approach allows all the microgel swelling responses/VPTT values to be predicted by 

the corresponding models without seeing the observations ahead of time. Figure S8 provides a graphical 

representation of our procedure on how these steps were consistently used in this work. 

a. Taking the original dataset in its original format (8 input variables, 12 output variables) 
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b. Applying pre-processing on the data to exclude samples that are not physically realistic (based on 

the 

heuristics described in the manuscript) 

c. Determining the applied clustering policy (no clustering, X-based clustering, or Y-based clustering) 

d. Excluding observation 1 as the testing observation and using the rest of the observations as the 

training dataset 

e. Creating all 5 introduced data arrangement types of both the training and testing observations for 

PLS modelling. 

f. Applying K-means clustering on the right block of data based on the selected policy in step (c) 

g. Applying the PLS model (or models, depending on the clustering policy) on each of the data arrange- 

ments and recording the model predictions for the training dataset 

h. Applying the corresponding testing dataset to the corresponding PLS model (or models) and 

recording the model predictions for the testing observation 

i. Unfolding the predicted values for the output to the original format (12 values for each observation) 

and calculating the model predictive power for different data arrangements (R2, MSE, predicted 

values, etc.) for both the training dataset and testing observations 

j. Returning to step (d), choosing the next observation as the testing observation (assigning the rest of 

the observations to the training dataset), and repeating steps (e) to (i). 

k. Returning to step (c) to change the clustering policy mode and repeating steps (d) to (j). 

l. Visualizing the models’ outcomes for all cases and making conclusions about the relative 

performance 

of the different modelling approaches. 
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2.7.4 Swelling Profile Prediction Quality 

Figure S9, depicts the observed versus actual temperature-induced deswelling profiles at pH 4 (fully 

protonated state) and pH 10 (fully ionized state) for each microgel used in the training dataset, including 

relevant quality of fit metrics for the overall model predictability of each of the swelling profiles. The 

best-fit curves shown are calculated based on the best result among all three clustering policies and five 

data arrangements tested. Figure S10 shows the frequency at which each clustering (A) and data 

arrangement policy (B) yields the best fit to the experimental data. 
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Figure S8: Summary of the heuristic used in this work to evaluate and compare all potential models incorporating 

different data arrangement and clustering policies 
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Figure S9: Observed temperature-induced deswelling profiles versus the best predicted deswelling profile for each 

observation among all clustering policies and data arrangements tested at both pH 4 (fully protonated state) and pH 

10 (fully ionized state) 

 

 

 

Figure S10: The number of observations for which each (A) clustering policy (B) data arrangement policy provides 

the most accurate prediction of the swelling profiles 
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Abstract 

 

In industrial product development, latent variable modeling tools are widely used to address challenges like 

multicollinearity and small sample sizes. However, these methods are often limited by prediction 

uncertainty, particularly when identifying optimal operating conditions or formulations to achieve desired 

product characteristics. This study introduces a methodology that leverages latent variable modeling 

alignment metrics, including partial least squares and principal components analysis Hotelling T², Sum of 

Squared Prediction Errors (SPE), and score alignment metrics (hPLS and hPCA), to quantify and enhance 

prediction reliability. These metrics are integrated into a Prediction Reliability Enhancing Parameter 

(PREP), a quantitative measure designed to identify recipes with higher reliability relative to the general 

model uncertainty. Using an iterative optimization-based algorithm, the methodology expands the 

Knowledge Space (KS) to efficiently determine the True Design Space (TDS), even when the TDS lies 

outside the KS. Validation with simulated nonlinear datasets demonstrates that the PREP approach achieves 

desired targets with significantly fewer iterations compared to conventional methods, particularly in cases 

in which the data are highly non-linear. The PREP approach thus provides a practical and effective solution 

for improving prediction reliability in complex, data-driven product design, offering enhanced accuracy 

and flexibility in identifying optimal formulations or operating conditions. 

Keywords: Design space identification, Accelerated product design, Prediction uncertainty, Reliability 

assessment, Model validation, Latent variable modeling 
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3.1 Introduction  

Predicting reliable outcomes in product development and formulation optimization is a crucial challenge, 

especially pertinent for most cases in which a first principles model may be difficult to build and/or 

maintain and data-driven modeling approaches are required. A major issue in such models is the 

uncertainty in predictions for new unseen data points, which can hinder the identification of optimal 

solutions and design spaces. In particular, standard error metrics like the Standard Error of Prediction 

(SEP) and Standard Error of Calibration (SEC) often fail to accurately reflect the reliability of predictions, 

as they are calculated based on samples the model has already encountered [1]. This lack of reliability 

assessment makes it difficult to confidently trust model predictions when trying to determine critical 

design spaces for desired outputs e.g. the regions within the input space that are expected to yield 

consistent quality in the final product properties. This concept plays a crucial role in the Quality by 

Design (QbD) framework, as outlined by the ICH Q8 guideline [2] that defines the design space as “the 

multidimensional combination and interaction of input variables (e.g., material attributes) and process 

parameters that have been demonstrated to provide assurance of quality” [2, 3]. 

The fundamental principle of latent variable models (LVMs) such as Principal Component Analysis 

(PCA) and Partial Least Squares (PLS)—that the number of underlying factors influencing a system is 

much smaller than the number of measurements taken—aligns well with the goals of design space 

determination and has led to the widespread application of LVMs in this field. Relative to Design of 

Experiments (DOE) methods that can also be useful in exploring the KS and identifying regions that 

ensure desired quality control, LVMs avoid the limitations of DOE methods in dealing with a large 

number of input variables or process conditions that often result in the need for an impractically high 

number of experimental samples [1, 3-5]. However, despite the use of latent variable modeling techniques 

in a range of industries based on their ability to handle multicollinearity, there is no established and 

validated method for assessing prediction uncertainty for new observations within the latent variable 

modeling framework [1, 3, 6, 7].  
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One major approach to addressing prediction reliability in design space identification focuses on 

estimating model prediction uncertainty. Researchers focusing on prediction uncertainty estimation aim to 

improve model precision and delineate prediction intervals, the range within which the actual outcome is 

expected to fall. Equation 1 shows the general format of a linear modeling approach in which model 

prediction uncertainty estimation methods attempt to calculate either the variance in 𝑦̂ directly or the 

variance in the regression coefficients (β) that subsequently leads to a variance in 𝑦̂. 

𝑦̂ = 𝛽. 𝑥 (𝑒𝑞. 1) 

where, 𝛽 [𝐼 × 𝐿]ℝ is the regression coefficients, x[𝑁 × 𝐼]ℝ is the predictor variable, and 𝑦̂ [𝑁 × 𝐾]ℝis the 

response prediction for 𝑦. In this notation, N refers to the number of data points, I represents the number 

of predictor variables, and K indicates the number of response variables. Although it is generally assumed 

that the variance in prediction accuracy is a function of the t-statistic, a critical aspect of this approach 

involves estimating the standard deviation of the prediction error (S) for new observations, as shown in 

Equation 2.  

𝐶𝐼 =  𝑦0̂  ±  𝑡𝛼
2,𝑁−𝑑𝑓

. 𝑆 (𝑒𝑞. 2) 

where 𝑦0̂ is the prediction for a new observation, N is the number of data points in the calibration dataset, 

df is the degrees of freedom used by the model, and α is the significance level for the interval (i.e. 100(1- 

α)% is the confidence interval) [7, 8].  

Estimations of this prediction error are typically conducted using one of three main approaches: 

approximation techniques based on Ordinary Least Squares (OLS) expressions, methods involving 

linearization, and re-sampling strategies [7]. OLS-type expressions primarily rely on the distance of a new 

observation from the center of the input space used to train the model as an indicator for estimating the 

prediction interval; the greater this distance, the higher the estimated uncertainty and the wider the 

prediction interval. Prediction uncertainty has also been attributed to three primary factors: variability in 

the estimated model parameters, the unexplained variance in the response variable y, and inaccuracies in 
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the measurements of the predictor variables [9, 10]. Linearization-based methods, in contrast, recognize 

that the regression coefficients (β) depend nonlinearly on the outputs (y) by applying a first-order Taylor 

series expansion to β with respect to y around the current model output 𝑦0. The resulting approximation is 

𝛽 ≈ 𝛽(𝑦0) + 𝐽(𝑦 − 𝑦0), where J is the Jacobian matrix that captures how changes in y affect β. The 

variance of the model parameters can then be estimated using this Jacobian using methods like matrix 

differential calculus or inductive algorithms [7, 11-14]. Re-sampling methods, with bootstrapping and 

jackknifing being the most common, involve creating new datasets from the existing dataset by applying 

perturbations to either the samples or their residuals, thus providing a general expectation of the 

distribution of the prediction interval across the input space. Various adaptations of this technique have 

been developed to assess uncertainty in the model parameters that are then used to estimate the prediction 

interval [15, 16].  

Probabilistic design space characterization methods [17-19], such as Bayesian-based approaches[20], also 

offer a structured strategy to quantify uncertainty and define design spaces in terms of feasibility 

probability, making them particularly valuable in scenarios in which risk assessment and regulatory 

compliance are key considerations. While these methods have demonstrated strong performance 

(especially in low-dimensional problems) and have been shown to be competitive with flexibility-based 

optimization techniques, they typically rely on extensive sampling strategies such as Monte Carlo 

methods; additionally, while probabilistic approaches provide a valuable means of defining design spaces 

under uncertainty, their reliance on feasibility probability thresholds may introduce conservatism, 

potentially limiting operational flexibility. As a result of these limitations, none of the existing 

probabilistic design space characterization methods can be robustly implemented across diverse datasets 

of interest [7], highlighting the need for alternative strategies for efficient and adaptable design space 

identification. 

A common scenario in design space determination arises when the number of input variables exceeds the 

number of output variables that must be kept within an acceptable range. In such cases, there exists a 
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region within the input space, known as the null space, in which adjustments can be made with minimal 

or no impact on the output variables [1, 21-23]. The primary objective in design space determination is to 

find this null space, which provides the flexibility to make changes without affecting the desired output 

values. Numerous studies have sought to calculate this null space by accounting for prediction uncertainty 

and propagating these uncertainties back to the input space [1, 8, 19, 21-29]. Despite these efforts, the 

result has typically been the identification of a region with a high probability of containing the True 

Design Space (TDS). However, even within this region, there are multiple candidate areas and further 

prioritization is needed to efficiently pinpoint the exact design space. 

Tomba [1] introduced a framework comprising four major scenarios for design space determination, each 

addressing different situations: (1) unconstrained inputs with specific targeted output values; (2) 

unconstrained inputs with a targeted output ranges; (3) constrained inputs with specific targeted output 

values; and (4) constrained inputs with a targeted output ranges. Various optimization algorithms were 

then tailored to each case that emphasized the importance of maintaining low Hotelling's T² and SPE 

(Squared Prediction Error) for all potential formulations or recipes. While these frameworks can address 

challenges around design space determination when the design space is within the range of the training 

dataset or closely resembles the calibration data points, they also have certain limitations. Biases within 

the algorithms often make it challenging to deviate from the already defined Knowledge Space (KS), 

which can slow or hinder the effective expansion of the KS. Active adjustments are required to the 

weights of soft and hard constraints to ensure that subsequent iterations yield solutions that differ from 

previous ones or from existing observations in the calibration dataset used for the PLS-regression model. 

Furthermore, the validity of this approach relies on the assumption that the design space to be identified 

must resemble the calibration data points, despite there being no explicit or standardized definition of the 

degree of similarity required to justify initiating the search for a new target sample within the same 

Knowledge Space [1, 26, 27]. Finally, none of these methods addresses scenarios in which the actual 

Design Space is entirely separate from and does not overlap with the established Knowledge Space. The 
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present manuscript presents a technique to address real-world experimental scenarios, where researchers 

often begin with an existing dataset of randomly distributed samples. In Latent Variable Modeling (LVM), 

the KS is typically defined based on the existing dataset and is determined using a 95% confidence region 

around the variation of the original data points in the latent space. This confidence region extends beyond 

the observed data, but it does not necessarily encompass all potential viable solutions. In some cases, the 

true Design Space lies beyond this predefined KS, meaning that models trained on the available data 

remain valid only within the KS and may not reliably predict outcomes outside of it. Therefore, in such 

cases, it is essential to guide the expansion of the KS in the correct direction to ensure that it eventually 

includes the true DS. Importantly, this expansion should be achieved in as few iterations as possible to 

optimize resource efficiency and minimize experimental costs. 

Our proposed method to address this challenge aims to enhance prediction reliability in latent variable 

modeling via a more efficient identification of the design space, thus optimizing experimental resource 

use by minimizing the number of samples required to reach the target. PREP iteratively expands the 

dataset in a rational manner, significantly reducing the number of experimental iterations compared to 

conventional methods and ultimately lowering material and time consumption. Rather than depending 

solely on individual LVM alignment metrics (e.g., Hotelling T² and SPE), we introduce a composite 

parameter referred to as the Prediction Reliability Enhancing Parameter (PREP) that combines multiple 

monitoring metrics including not only Hotelling T² and SPE but also other relevant parameters. The 

covariance similarity between these metrics in the calibration data points and new unseen data points 

serves as a robust indicator for accepting or rejecting model predictions. Our approach iteratively refines 

the Potential Design Space (PDS) by focusing on subsets of data in each iteration, selecting candidates 

that closely resemble well-predicted samples to ensure higher prediction accuracy and improving model 

performance over time to offer a more consistent estimation of prediction uncertainty across various 

observations. The proposed method is illustrated through simulations on multiple types of nonlinear 

datasets, showing superior performance and fewer iterations compared to other available methods. 
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It should be noted that the choice of Tomba’s framework for benchmarking design space identification in 

this work was made based on the similarity of Tomba’s method and our method in terms of relying on 

first identifying a member of the Design Space (DS) and then expanding upon that foundation to define 

the region spanned by the DS. We acknowledge that alternative approaches exist, including geometrical 

methods that explicitly define the entire DS region by approximating constraint boundaries, probabilistic 

methods that determine DS feasibility by estimating probability distributions within the input space, and 

black-box methods that identify the DS through iterative exploration and function optimization. However, 

once a geometrical or probabilistic method defines the DS region, an additional step is still required 

to select specific candidates for synthesis. PREP could thus serve as a tool for ranking these candidates 

based on prediction reliability. Conversely, black-box approaches do not leverage dataset-inherent 

structure and often rely on global function optimization rather than structured latent-variable-driven 

exploration, in contrast to our (and Tomba’s) method. Since our method is fundamentally aligned with 

approaches that prioritize dataset-driven sample selection and refinement, we chose to benchmark it 

against Tomba et al.'s framework that shares this data-driven philosophy, ensuring a more meaningful and 

relevant comparison. 

The remainder of this article is organized as follows. In Section 2, preliminary information is provided. 

This includes an overview of the PLS (Partial Least Squares) and PCA (Principal Component Analysis) 

frameworks, as well as a discussion of the available model alignment metrics like Hotelling T², SPE 

(Squared Prediction Error), and latent variable score alignment metrics (hPLS, hPCA), and their relevance in 

assessing model prediction reliability. Section 3 introduces the proposed methodology, detailing how the 

Prediction Reliability Enhancing Parameter (PREP) is used to identify candidates for which model 

predictions are expected to be more reliable. In Section 4, we describe the generation of a simulated 

dataset and the assessment of its degree of nonlinearity, followed by an examination of two different 

datasets with four different target outcomes to be achieved using our method and the above-mentioned 
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scenarios using Tomba's work. Section 5 presents the results and compares the performance of different 

methods, and finally, Section 6 draws the conclusions. 

3.2 Preliminaries 

3.2.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) reduces a dataset's dimensionality by identifying principal 

components—linear combinations of the original variables (P [𝐼 × 𝐴]ℝ) Here, A represents the number of 

principal components or the dimensionality of the latent space used to approximate the original I-

dimensional space—that capture key variance in the data. These principal components are uncorrelated, 

enabling efficient analysis of interdependent data while retaining all essential information. The resulting 

reduced representation (T  [𝑁 × 𝐴]ℝ) simplifies the dataset and preserves the main structure by capturing 

the most critical variance. The main mathematical equations of PCA are given in Equation 3, while its 

data blocking configuration is illustrated in Figure 3-1(a). 

XOriginal data = 𝑇. 𝑃𝑇 + 𝐸  (𝑒𝑞. 3) 

where the E [𝑁 × 𝐼]ℝ is the residual between X and its representation using the already trained PCA. 

3.2.2 Partial Least Square-Projection to Latent Structure (PLS) 

Partial Least Squares (PLS) is a predictive modeling method that analyzes the relationships between two 

data blocks, typically input (X) and output (Y), and maximizes the correlation between independent 

components derived from both blocks to highlight how variations in X drive changes in Y. PLS strategies 

generate T scores for the input data (X) and U [𝑁 × 𝐴]ℝ scores for the output data (Y). Using the 

coefficients P, the data can be projected from the original X space to the score space (T). Conversely, W*  

[𝐼 × 𝐴]ℝ coefficients allow the data to be projected back from the score space to the original X space, 

effectively capturing and reconstructing the key relationships and interdependencies between the input 
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and output datasets [30-32]. The key equations used to describe a PLS model are given in Equation 4, 

with the schematic of a PLS model with its blocking configuration shown in Figure 3-1(b). 

𝑋Original data = 𝑇. 𝑃𝑇 + 𝐸 

𝑌Original data = 𝑇. 𝑄𝑇 + 𝐹   

𝑇 = 𝑋. 𝑊∗                                                             (𝑒𝑞. 4) 

𝑡new = 𝑥new . 𝑊∗ →  𝑦new = 𝑡new . 𝑄𝑇  

𝛽pls = 𝑊∗. 𝑄𝑇;  𝑦new = 𝑥new. 𝛽pls  

 

Figure 3-1: PCA (a) and PLS (b) blocking configurations 

3.2.3 Latent Variable Model Inversion (LVMI) 

PCA or PLS models are predictive tools that use input data (X) to estimate outputs (Y). In product design 

the inverse use of these models is often needed, by which a product designer would start with a desired 

output (Ydesirable) and would seek to determine the input values that can achieve it. Three scenarios arise 

based on the number of components (A) and the number of output variables (K): 

1. If A < K: No exact input produces Ydesirable, but the model inversion finds an input where Ypredicted 

is closest to Ydesirable. 

2. If A = K: There is a single solution where Ypredicted equals Ydesirable that can be identified by the 

model inversion. 

3. If A > K (most common): Multiple inputs yield Ypredicted = Ydesirable, with the Null Space (NS) 

offering infinite input solutions without altering the output prediction.  

Equations 5 to 7 outline how potential input solutions can be determined in each case based on the PLS 

model blocks [1, 21-23, 26]. 
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(A<k): τdes=(QT.Q)-1.QT.ydes    (eq.5) 

(A=k): τdes=QT.ydes    (eq.6) 

(A>k): τdes=(QT.(QT.Q)-1.ydes )+ΔτNS  (eq.7) 

where 𝜏𝑑𝑒𝑠  [1 × 𝐴]ℝ represents the 𝑡𝑝𝑙𝑠−𝑠𝑐𝑜𝑟𝑒𝑠  of the potential input set yielding Ydesirable [1 × 𝐾]ℝ  and 

Δ𝜏𝑁𝑆   [𝑙 × 𝐴]ℝ represents an infinite number of l points within the  null-space where the variation in 

latent space has no effect on YPredicted. 

To proceed, it is essential to distinguish between the Design Space (DS), Knowledge Space (KS), and 

Null Space (NS). The KS represents the portion of the input space that has been explored and utilized for 

model development, while the DS consists of input combinations that yield acceptable product outcomes 

based on predefined quality criteria. In some cases, the DS is a subset of the KS; in others, the DS is 

located entirely or partially outside the KS due to limitations in initial sampling or modeling constraints, 

requiring rational KS expansion to ensure the DS is properly identified. Finally, the NS refers to input 

variations that do not affect the output, providing flexibility within the DS without altering the desired 

system response [33-38]. DS can exist without NS if there is a range of acceptable outputs (Y) 

encompassing inputs that meet this range. However, if both an acceptable output range and NS are 

present, DS becomes multidimensional in that it incorporates NS across all acceptable Y values. In 

manufacturing, aligning calculated NS with actual DS enables greater flexibility in input adjustments 

without changing product properties. This alignment is straightforward in linear systems but requires 

iterative expansion in nonlinear systems to cover regions likely containing the DS, ensuring the calculated 

NS matches the actual DS. Direct model inversion may not always be efficient to achieve this goal, 

particularly with constraints on inputs (X) or the presence of NS that allow multiple input solutions to 

achieve the same Y target. Exploring solutions along the NS may reveal more efficient or flexible options. 

Tomba’s framework introduced four scenarios for identifying potential solutions [1]. The first scenario 

assumes no constraints on the X variables, with the targeted output thus fully determined and direct model 
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inversion being appropriate. In the second scenario, there are no constraints on X but the output is 

acceptable within a range, requiring exploration of the solution space. Scenarios three and four introduce 

constraints on some of the X variables in which Y is either fully or partially defined, making direct model 

inversion less practical and necessitating iterative approaches to find feasible solutions within the 

constrained design space. We specifically focus on the first scenario, as it is expected to yield the best 

result when there are no constraints, and the fourth scenario, which addresses a more general situation. In 

this fourth scenario, once the region with a high likelihood of containing the design space is identified, the 

optimization framework described in Equation 8 is suggested to find the most optimal solution based on 

existing data to be experimentally tested and added to the dataset for the next iteration (provided the 

target has not already been achieved). 

min
xnew

{g1 (ŷnew-ydes)Γ(ŷnew-ydes)
T

+g2 Hoteling Tpls
2 +g3 SPExnew  +g4 d(τ,T)

-1  }     eq.8 

s.t.
ŷnew=τ.QT

x̂new=τ.PT

τ=xnew.W*

d(τ,T)
-1 =

1

min[(τ-τn)T.Λ-1.(τ-τn)] +Const
 ∀n∈{1,2,…,n} 

 

 

where Γ is a  [𝐾 × 𝐾]ℝ diagonal matrix containing the weights assigned to each output variable 

(emphasizing their relative importance) and gi represents the weight of each term. It should be noted that 

any hard constraints can be applied to the suggested 𝑥𝑛𝑒𝑤 , its corresponding 𝑦̂𝑛𝑒𝑤, or its calculated PLS 

SPE and Hotelling T², allowing for acceptance or rejection of any 𝑥𝑛𝑒𝑤  from the outset. The last term in 

Equation 8 introduces a penalty if the new iteration's suggestion is too close to either an existing dataset 

member or a previously suggested solution from earlier iterations. This approach, adapted from [28], aims 

to prevent the optimization process from becoming trapped in local minima and repeatedly suggesting 

solutions similar to prior iterations or existing calibration samples. The weight of this penalty is 
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dynamically adjusted based on the proximity of the existing sample to the target value, such that as the 

suggestion approaches the target the importance of avoiding similarity to existing data diminishes. The 

goal is to find candidates that not only satisfy the desired output values (the first term of Equation 8) but 

also minimize the expected prediction uncertainty (the second and third terms of Equation 8), using PLS 

Hotelling T² and PLS SPE (Squared Prediction Error) as metrics to assess the validity of a trained model 

for new input data. PLS Hotelling T² (Equation 9) measures the extent to which a new observation lies 

within the statistical boundaries of the original data used to calibrate the model (providing a measure of 

how 'in line' the new data is with the model's existing data structure) while, PLS SPE (Equation 10) 

calculates the residual error of a new observation relative to the model (indicating how well the new data 

point can be represented by the model); in Equations 9 and 10, 𝑡𝑎,𝑖 is the ath score value of the ith 

observation and 𝑆𝑎 is the standard deviation of the ath column of 𝑇𝑝𝑙𝑠 . As such, lower values of Hotelling 

T² and SPE indicate that the new data align well with the model’s calibration set and the prediction is 

likely to be more reliable.  

SPEpls,x = 𝑒𝑖𝑒𝑖
𝑇  𝑤ℎ𝑒𝑟𝑒 𝑒𝑖 = 𝑥𝑖 − 𝜏𝑖 . Ppls (𝑒𝑞. 9) 

Hoteling Tpls
2 = ∑(

𝑡pls,a,i

𝑠𝑎
)2

𝐴

𝑎=1

 (𝑒𝑞. 10) 

3.3 Proposed Methodology 

While PLS Hotelling T² and SPE provide useful insights into how new observations align with an existing 

model, they focus more on the compatibility of the data with the model rather than offering a direct 

pathway for optimizing towards specific desired outputs. To address this limitation, we propose a novel 

methodology that not only considers prediction alignment but also provides a systematic approach to 

refining the design space and enhancing the prediction accuracy for desired outcomes. In our proposed 

method, we define an experimental space where the TDS is expected to reside, generate candidate recipes 

with predicted outputs matching the desired target, and rank them using a new metric to prioritize which 
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recipes are most likely to expand the dataset toward the TDS, a process summarized schematically in 

Figure 3-2.  

 

Figure 3-2: Schematic representation of the proposed PREP method. Blue boxes denote the training/validation data 

for which the actual Y values are known and used for optimizing the PREP equation. Orange boxes represent the 

dataset of potential candidates for which only X values are available, and the candidates must be ranked, with the 

candidates selected via the PREP method to be experimentally tested. 

This process is repeated iteratively to refine the design space and achieve the target with a predetermined 

level of accuracy. Our approach keeps the rules used in traditional methods that emphasize keeping low 

Hotelling's T² and SPE values while iteratively generating new datapoints by focusing on the covariance 

similarity between different model alignment metrics of the well-predicted samples among the calibration 

(or validation) dataset and that of potential future solutions. 

3.3.1 Involved Model Alignment Parameters and Initial Blocks Creation 

To implement this process, a standard PLS model is first developed using the k-nearest neighbors of the 

calibration dataset corresponding to the targeted Ydesirable (Step 1 in Figure 3-2). This approach reduces the 

dataset size while increasing the likelihood of capturing a locally linear (or at least more linear) structure 

near the area of interest. Typically, k is set between 5 and 10 samples, but in cases with a higher number 

of input variables, selecting more neighbors may be necessary to maintain model reliability. Additionally, 

the number of nearest neighbors chosen should not limit the number of PLS components required to 

adequately explain the model, which is chosen based on the effectiveness of regenerating the X data; this 

is particularly crucial since the model will be inverted to generate potential X values from targeted Y 

outputs [1, 21]. Next, two additional pieces of information are required: (1) a matrix of available model 
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alignment parameters (calculated using only the X data and the trained model) from either the training or 

validation dataset that we call the Monitoring Metrics Matrix; and (2) a metric that assesses the prediction 

accuracy of the model on these datasets (Step 2 in Figure 3-2). In our method, we utilize the following 

model alignment parameters, all of which assess model accuracy from a different perspective: 

• PLS Hotelling T2 

• Concept: As previously mentioned, the PLS Hotelling T2 score is a multivariate metric that 

assesses how far a new data point is from the center (mean) of the PLS model’s distribution of 

data in the latent space.  

• Importance: It captures whether a new data point is "typical" or too extreme relative to the 

training set in terms of its position in the latent variable space. 

• PLS SPE 

• Concept: The PLS SPE score measures how much variation in the new data point is not captured 

by the PLS model. While PLS seeks to explain the maximum covariance between X and Y, SPE 

quantifies how much of the original X data is not accounted for by the model. 

• Importance: it shows how well the PLS model represents the new data point. 

• PCA Hotelling T2 

• Concept: Like PLS Hotelling T², PCA Hotelling T² measures how far a new data point is from the 

center of the data’s distribution in the PCA space. In this case, PCA does not consider the 

relationship between X and Y but simply reduces the dimensionality based on variance in X 

(Equation 11). 

Hoteling Tpca
2 = ∑(

𝑡pca,𝑎,𝑖

𝑠𝑎
)2

𝐴

𝑎=1

 (𝑒𝑞. 11) 

where 𝑡𝑝𝑐𝑎,𝑎,𝑖 is the ath score value of the ith observation and 𝑆𝑎 is the standard deviation of the ath 

column of 𝑇pca 
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• Importance: It helps assess whether the new data point is consistent with the variance structure 

found in the training X data.  

• PCA SPE 

• Concept: Like PLS SPE, PCA SPE is the squared error of the reconstruction of the new data point 

in the PCA model, measuring how much of the variance in the new data point cannot be captured 

by the principal components found in the training data (Equation 12) 

𝑆𝑃𝐸𝑝𝑐𝑎,𝑥 = 𝑒𝑖𝑒𝑖
𝑇  𝑤ℎ𝑒𝑟𝑒 𝑒𝑖 = 𝑥𝑖 − 𝜏𝑝𝑐𝑎,𝑖 . Ppca  𝑤ℎ𝑒𝑟𝑒 𝜏pca,𝑖 = 𝑥𝑖 . Ppca

T   (𝑒𝑞. 12) 

• Importance: If PCA SPE is high, it suggests that the new data point is atypical compared to the 

training data in terms of its X features, potentially indicating poor model performance. 

• PLS Alignment Score (hPLS) 

• Concept: The hPLS statistic is a quadratic form of the new data’s score vector (tpls,new) transformed 

by the PLS score covariance matrix. This metric evaluates how well the new data’s latent 

variables fit within the structure of the existing PLS model (Equation 13). 

hPLS,xnew
= tplsxnew

(𝑇𝑝𝑙𝑠𝑇𝑝𝑙𝑠
𝑇 )−1 tplsxnew

T (𝑒𝑞. 13) 

• Importance: It captures the alignment between the new data and the established PLS latent space. 

A high hPLS value suggests that the new data are unusual or do not align well with the trained PLS 

model, signaling a potential reliability issue with predictions. 

• PCA Alignment Score (hPCA) 

• Concept: Like hPLS but calculated in the PCA space, the hPCA value reflects how well the new data 

fits the principal components found in the training X data (i.e. how close the new data is to the 

principal subspace of the training data) (Equation 14). 

hPCA,xnew
= tpcaxnew

(TpcaTpca
T )-1 tpcaxnew

T (𝑒𝑞. 14) 
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• Importance: hPCA indicates whether the new data align with the training data’s variance structure, 

helping to identify outliers that might not be well-represented by the PCA model. 

The hPLS parameter thus evaluates new data based on the relationship between X and Y (i.e. how well the 

new data align with the model’s explanation of the covariance between X and Y) while hPCA only looks at 

the structure in X without any regard to the response variable Y. It should be emphasized that the score 

alignment metrics (h) and the Hotelling T2 capture different aspects related to potential variability in a 

particular dataset. Hotelling T² focuses on how far the point is from typical data while hPLS/hPCA focus on 

the alignment of the new sample with the latent structure; stated in a different way, Hotelling T² functions 

as a geometric measure akin to the Mahalanobis distance while hPLS and hPCA evaluate the fit and 

projection consistency within the model’s latent space. As such, each chosen parameter evaluates the data 

from a different perspective: PLS Hotelling T² and SPE assess the consistency of the X and Y 

relationship, PCA Hotelling T² and SPE check the variance structure of X, and hPLS and hPCA provide a 

more detailed assessment of fit within the defined latent spaces. Together, these metrics offer a 

comprehensive evaluation to ensure all aspects of the data are thoroughly considered both for well-

predicted samples and for a new unseen observation. 

The final step in preparing this block of model alignment matrices involves normalization to ensure that 

subsequent steps are not influenced by differences in the magnitude of each data column. To achieve this, 

the 95% confidence limits for both the PLS and PCA SPE and Hotelling T² are calculated for the first four 

columns of data. The data are then divided by these values, allowing samples exceeding these limits to be 

considered with a higher chance of lower prediction accuracy. For the alignment factors hPLS and hPCA, 

each column's maximum value is determined, and all data points in that column are scaled by dividing 

them by this maximum. This normalization prepares the dataset for subsequent analysis steps. After 

preparing the initial data as described above, a numerical metric was developed to represent the prediction 

accuracy for each member of the validation dataset and thus assess the prediction quality of a new sample 

recipe. To achieve this, Equation 15 is utilized: 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 =
∑ 𝑤𝑖𝑟𝑙

𝐿
𝑙

𝐿
 

𝑟𝑙 = 1 −
𝑒𝑙

normalizerl
=

|𝑦𝑙, − 𝑦̂𝑙|

𝑌𝑙 − min(𝑌𝑙)
𝑁

               (𝑒𝑞. 15)  

Here, L represents the number of output variables, N denotes the number of samples in the calibration 

dataset, l signifies the lth output variable, and Yi refers to the lth column of the output data used for model 

training. The weighting factor wi allows for the prioritization of specific output variables as desired. 

Instead of normalizing the Y values initially, we use a normalization factor to ensure that prediction 

accuracy is minimally affected by the scale of the ith column of Y. This approach allows the discrepancy 

between the actual and predicted values to be reported relative to the scale of each variable independently; 

in contrast, normalizing the data upfront could introduce biases, as errors for values near zero would be 

disproportionately higher compared to those near one. This metric provides a single prediction accuracy 

value for Y data with multiple columns and can yield negative values for poor predictions, with the range 

of the prediction accuracy metric spanning from −∞ (poorest prediction) to 1 (perfect prediction). 

To gather these required blocks of data, there are two possible scenarios: 

1. When the dataset is sufficiently large: In this case, the data can be partitioned into two sets: one 

for developing the PLS model and the other for validation. For the validation set, all the 

aforementioned model alignment parameters are calculated and correlated with their prediction 

accuracy using the actual Y values and Equation (15). 

2. When the dataset is small: If the dataset is too small to set aside a portion for validation from the 

outset, the final results can be highly sensitive to the choice of validation data. In such cases, a 

jackknife approach is recommended in which one observation is left out at a time, the trained 

model is used to predict its Y value, and the prediction accuracy is determined. Ultimately, a PLS 

model trained on the full dataset (with k-nearest neighbors) would be used in this case to generate 

potential candidates. 
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3.3.2 Optimization Framework 

Next, a correlation structure must be developed to elucidate the relationship between all model alignment 

values and their respective prediction accuracies (Step 3 in Figure 3-2). Identifying this structure requires 

the use of an optimization algorithm to determine the optimal coefficients and powers for the PREP, as 

specified in Equation 16. The objective is to configure the algorithm such that samples with high 

prediction accuracy are assigned lower PREP scores whereas samples with lower prediction accuracy are 

assigned higher PREP scores. The optimization framework is presented in Equation 17, with the 

schematic for the ideal case depicted in Figure 3-3. 

𝑃𝑅𝐸𝑃 = c1hotelingT2pls
p1

+c2SPEx,pls
p2

+c3hotelingT2pca
p3

+c4SPEpca
p4

+c5hpls
p5

+c6hpca
p6

        (𝑒𝑞. 16) 

min
𝑐𝑖𝑝𝑖

(𝐷𝑎𝑡𝑎 𝐿𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒𝑠 + 𝑃𝑅𝐸𝑀 𝑅𝑎𝑛𝑔𝑒 𝐹𝑜𝑟𝑐𝑒𝑟)      (𝑒𝑞. 17) 

𝑠. 𝑡.
𝑐𝑖 ∈ (0, 𝛼 = 1]

𝑝𝑖 ∈ (0, 𝛽 = 1]
 

In Equation 17, the cost function of the optimization framework consists of several components that can 

be grouped into two categories: 

1. Data Linear Distribution Forcers: 

These terms aim to align the PREP scores with the predictive accuracy of the model, aiming to 

ensure that samples with higher predictive reliability (i.e., those better captured by the model) are 

assigned lower PREP scores while less reliable predictions receive higher PREP scores. This 

alignment ensures that PREP scores reflect how well the model captures each sample’s behavior, 

reinforcing the correlation between the PREP coefficient and the underlying predictive accuracy. 

2. PREP Range Forcers: 

These components ensure that the PREP scores remain within a standardized range (0 to 1) across 

the dataset, maintaining consistency between the training and validation phases and ensuring 



88 

PhD Thesis – Seyed Saeid Tayebi; McMaster University - Chemical Engineering 

 

 

 

comparability of PREP scores across different datasets and iterations. Ideally, the optimal sample 

should have a PREP score near 0 (indicating high reliability) while predictions with higher 

uncertainty should have PREP scores closer to 1.  

The ranges for the parameters c and p are defined to ensure they yield only positive values (in this work 

they are selected in the range of 0 to 1), aligning with the expectation that higher values of the model 

alignment metrics correspond to poorer predictions. Figure 3-3 provides a schematic representation of the 

ideal results from the optimized PREP equation, illustrating the considerations taken during the 

optimization process. 

 

Figure 3-3: A schematic of an ideal PREP equation optimization showing what is valued within the optimization 

algorithm for the cost function. 

Considering the nature of the optimization process, a population-based algorithm was also needed to 

generate a list of to-be-optimized parameters and manipulate them iteration to iteration to find the best 

possible values. Among the two of the most practical algorithms in this field - Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO) - we chose to use the PSO approach because it offers results 

comparable to GA but was simpler and significantly faster to implement. In the PSO algorithm, a 

"particle" (potential solution) adjusts its position within the search space by considering three factors: (1) 

the best position it has ever been (its personal best), (2) the best position any particle in the group has 

been (the global best), and (3) its current direction of movement. With each iteration, the particle adjusts 
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its velocity and position based on these three criteria, hoping to balance exploration (finding new areas of 

the search space) with exploitation (refining known good areas). Over time, these particles "explore" the 

solution space and converge toward the best solution, assuming that their collective behavior will lead to 

an optimal or near-optimal result. 

For new candidate samples, PREP scores may sometimes exceed 1 since certain alignment metrics (such 

as Hotelling T²) can be significantly higher for future observations compared to the normalized range 

established during the initial model training. It is essential to emphasize that the PREP method 

intentionally selects two samples at each iteration: one with the lowest PREP score (L-PREP) and one 

with the highest PREP score (H-PREP). This dual selection serves complementary purposes. L-PREP is 

chosen for its expected high prediction accuracy, as it closely aligns with key monitoring metrics; in 

contrast, H-PREP plays a crucial role in expanding the Knowledge Space (KS) by exposing the model to 

conditions it has yet to encounter, improving the model’s ability to achieve the target output. Additionally, 

in certain cases—particularly when the target lies far outside the range of available data or even the 

closest samples—PLS models may struggle to achieve reliable prediction accuracy, with the even best 

accuracy among the validation dataset being low. In such scenarios, the risk of PREP failure is higher, 

making it even more crucial to select H-PREP samples to promote KS expansion and increase the 

likelihood of reaching or moving closer to the target value. Overall, the PREP approach is designed to 

enhance the model’s generalization and adaptability while at the same time expediting the process to 

achieve a faster identification of the design space. 

3.3.3 PREP Implementation for Design Space Candidates 

 Following the optimization step, a PREP equation will be developed with coefficients and powers 

specifically tailored to the dataset of interest. This equation undergoes validation during the optimization 

process, using validation datapoints from the training dataset. As a result, the PREP score provides a 

reliable indication of the expected accuracy for samples not directly included in the calibration of the PLS 

model. In the subsequent step, it is necessary to define the region most likely to encompass TDS, which 
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can be represented as a theoretical null space where Ypredicted=Ydesirable excluding any prediction uncertainty 

(Step 4 in Figure 3-2). When such a null space exists, it theoretically allows for the generation of an 

infinite number of samples depending on the step size used to move from one candidate to the next. To 

make this step practical, we generate a limited list of N candidates, with N set to 200 when the null space 

lies within the bounds of the X data and to 20 when it falls outside the bounds and thus requires 

optimization to generate feasible candidates. The goal of this optimization is to ensure that Ypredicted is as 

close as possible to Ydesirable while maintaining sufficient differentiation among the candidates. Once this 

region or list of candidates is established, the trained PLS model can be employed to calculate all relevant 

model alignment metrics for these candidates (Step 5 in Figure 3-2). Using the optimized PREP equation, 

the PREP scores for each candidate are calculated and the candidates are ranked based on these scores; 

candidate recipes corresponding to the L- PREP and H-PREP scores are then selected for synthesis to 

initiate the iterative process (Steps 7 and 8 in Figure 3-2). 

3.3.4 Refinement of Design Space Candidates 

In our methodology, we ensure that the model alignment parameters of potential candidates are similar to 

those of the validation dataset. While previously methods merely check if candidate recipes fit within the 

same structure as the validation dataset—as assessed by SPE and Hotelling T²—we perform Principal 

Component Analysis (PCA) on the various model alignment metrics from the training/validation dataset 

and use the resulting model to calculate the SPE for new candidates based on their corresponding model 

alignment metrics (Step 6 in Figure 3-2). We apply absolute center scaling to the SPE values of all 

candidates and retain only those with a scaled SPE value less than 1, enabling overly aggressive 

candidates to be filtered out while ensuring that the statistical structure of the candidates aligns with that 

of the validation dataset. Candidate recipes within this range are considered more representative of 

normal X candidates for the given target, reducing the risk of selecting candidates with potentially 

misleading PREP scores that could skew the iterative process in an undesirable direction.  
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3.3.5 Iterative Execution of PREP Methodology  

To summarize the proposed PREP methodology, the following steps outline the iterative usage of PREP to 

achieve optimized model alignment and accurate predictions:  

1. Select k-nearest neighbors to the target and train PLS and PCA models. 

2. Calculate monitoring metrics and prediction accuracies for validation/training data points  

3. Optimize PREP equations using alignment metrics and prediction accuracies. 

4. Generate Potential Design Space (PDS) candidates with valid X and close proximity between 

Ypredicted and Ydesirable. 

5. Calculate Monitoring Metrics for all PDS candidates. 

6. Refine PDS based on the metric alignment. 

7. Rank the refined PDS candidates based on PREP scores. 

8. Select H-PREP and L-PREP samples corresponding to the highest and lowest PREP scores from 

the ranking. 

9. Synthesize and characterize the selected samples 

10. If the target is unmet, update the k-nearest neighbors and iterate until a solution is identified. 

The authors developed and implemented all modeling codes using MATLAB R2024b. The simulations 

were executed on a system with an 11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80GHz processor and 16 

GB RAM. Each iteration, involving a PSO-based optimization (500 iterations, 100 initial particles, 

repeated five times), required ~30 seconds; as such, the method's computational cost is moderate 

consistent with its primary objective being experimental efficiency rather than purely computational 

speed. While higher data dimensionality may require more nearest neighbors in the optimization process, 

the number of decision variables in the PREP equation remains fixed, thus limiting the scalability impact 

in higher dimensions. 
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3.4 Model Assessment 

To robustly evaluate the effectiveness of our method, we developed a series of simulated datasets with a 

tunable level of nonlinearity in which the underlying data structure was known, allowing us to iterate 

towards a predetermined target while monitoring performance. Specifically, since the aim of the simulated 

dataset analysis was to assess how quickly our method could identify a member of TDS, we required both 

a relatively complex dataset and the equation that generated it; this setup enabled us to define the 

complete set of potential process outputs, establish rational target selection, and provide insight on the 

actual outcomes of the method’s suggestions, guiding it towards the correct direction in the TDS.  

Five datasets of varying complexities were generated to evaluate the new PREP method. The two datasets 

presented in the main body of the paper were chosen to represent different levels of nonlinearity, with the 

first dataset exhibiting a lower level of nonlinearity generated using trigonometric functions applied to the 

input variables, and the second dataset introducing a higher level of nonlinearity through the combination 

of trigonometric functions and complex power-law expressions featuring interdependent exponents. The 

remaining datasets, discussed in the Supplementary Information, include a third dataset that employs 

nested power-law terms with variable-dependent exponents, resulting in a significantly higher degree of 

nonlinearity; a fourth dataset that incorporates trigonometric, exponential, and power-law functions, 

adding periodicity, oscillations, and greater complexity through interdependencies between input 

variables; and a fifth dataset that combines sinusoidal, logarithmic, and square-root terms, introducing 

moderate nonlinearity while maintaining a simpler structure compared to the other datasets. Together, 

these datasets ensure a comprehensive representation of the PREP method’s applicability across a range 

of complexities. 

For dataset creation, we imposed limitations on the X data to better mimic real-world scenarios and 

provide a realistic range for system outputs. The numbers of input and output variables were set to 3 and 

2, respectively, to enable visual representation of model performance during each iteration, more clearly 

demonstrate the method's ability to handle the multivariate nature of the system, and (by selecting more 
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inputs than outputs) increase the likelihood of a null space being present to allow for the creation of a 

theoretical design space that can be rationally assessed without relying solely on potential solution 

candidates. 

It is worth noting that, although the entire dataset is calculated for visualization purposes, only 30 samples 

were randomly generated in each case to reflect real-world scenarios in which sample preparation is often 

either expensive or time-consuming. For the present case, the number of input variables is 3, limiting the 

maximum number of PLS components to 3. To allow for model computation during the iteration (while 

leaving out one data point for validation), at least five data points are needed to be kept as nearest 

neighbors.  From the initial 30 samples, we therefore selected k=5 nearest neighbors to the targeted output 

for model development and identifying the design space corresponding to predefined targets. After each 

iteration, the set of 5 nearest neighbors is updated. If the newly synthesized sample is among the 5 nearest 

neighbors, it is automatically selected for the next iteration; however, if it performs worse than the others, 

the new sample is added to the 5 neighbor set and one of the previous members is randomly excluded. 

This approach ensures that iterations do not get stuck in a loop, continuing to explore alternative solutions 

if the previous suggestion was suboptimal. Figure 3-4 provides a schematic overview of how this 

simulated dataset was utilized during the iterations to achieve the final target. 

 

Figure 3-4: Schematic representation of the simulated dataset implementation for TDS identification and comparison 

of previously reported optimization techniques relative to PREP. 
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It is important to note that interactions between variables are inherently captured through the PLS 

modeling framework, which identifies latent variables that explain the maximum variance in both the X 

and Y data. As PREP is implemented iteratively, PLS continuously refines the mapping between input and 

output variables, effectively adapting to variable dependencies in the data structure. This enables PREP to 

capture complex nonlinear relationships within the iterative modeling approach without requiring explicit 

interaction terms. 

To comprehensively assess the performance of the PREP method, each of the datasets is utilized and three 

different targets are selected for each dataset; the effectiveness of the PREP method relative to 

conventional model inversion (MI) as well as the method reported by Tomba (scenario 4) is then 

evaluated based on the number of iterations each method requires to reach the desired target, defined 

herein as PA > 95%. It is important to note that all datasets impose a constraint on the X values to remain 

within the range of 0 to 2, making the direct application of the original model inversion impractical; 

however, to maintain the utility of this method for comparison, for all targets and at every iteration any 

suggested X value below 0 is set to 0 and any value above 2 is set to 2. 

It is important to emphasize that, unlike the MI and Tomba approaches, the PREP method selects two 

samples at each iteration: L-PREP (which is associated with high expected prediction accuracy) and H-

PREP (which presents a significant level of uncertainty in proximity to the target). This uncertainty may 

facilitate the model's ability to identify critical areas for enhancement. In addition, a potential advantage 

arises if, during the final iteration, both L-PREP and H-PREP samples demonstrate comparably high 

accuracy, an outcome that could signify that the TDS has been comprehensively captured by the PDS in 

the final iteration. Such a scenario would not only affirm the model’s robust predictive capabilities in 

relation to the target output but also create opportunities for further optimization of solutions by 

incorporating secondary considerations such as time, energy, or cost-effectiveness into the recipe 

identification process. However, to ascertain that the TDS is entirely represented, it may be necessary to 

synthesize samples with PREP scores that more closely align with the average of the distribution. This 
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supplementary step would serve to validate whether the existing candidates adequately encompass the 

entire design space or if additional exploration is warranted. 

3.4.1 First Simulated Dataset 

The first dataset used in this study was generated using the following equation:  

For X data: 

Xraw = 𝑟𝑎𝑛𝑑(𝑁, 3)[0 2] = [𝑋1, 𝑋2, 𝑋3] 

For Y data: 

𝑌1 = sin (
𝜋

6
𝑋1) ∗ sin (

𝜋

6
𝑋2) ∗ sin (

𝜋

6
𝑋3) 

𝑌2 = cos (
𝜋

6
𝑋1) ∗ cos (

𝜋

6
𝑋2) ∗ cos (

𝜋

6
𝑋3) 

𝑌 = [𝑌1, 𝑌2] 

From this function, a training dataset of 30 randomly generated samples was created and three selected 

target points were selected with a focus on regions that are underrepresented (T1 and T2) and one that lies 

completely outside the range (T3) (Figure 3-5(a)). These specific areas are of particular interest because 

they align with the primary objective of the PREP method: to address regions where the model has less 

coverage by leveraging covariance similarities between the monitoring metrics of PDS candidates and the 

calibration dataset. To ensure consistency and eliminate sources of random uncertainty, the same dataset 

and target points were used across all three methods tested (Original Model Inversion (MI), Tomba, and 

PREP).  

Table 3-1 presents the PLS XR
2 and YR

2 values for the entire dataset together with the results for the three 

separate PLS models developed using the five nearest neighbors to each target. A significant increase in 

YR
2 is observed when using the five nearest samples compared to the PLS model trained on the full set of 

30 samples, consistent with a smaller number of samples that are closer to each other being easier to 
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describe with a linear model compared to the entire dataset that presents higher degrees of variation. 

Figure 3-5(b to d) present the TDS (all combinations of X data columns for which the actual Y falls 

within a 95% accuracy range of the targeted Y) in the original X space, providing a quantitative overview 

of how closely each target’s TDS aligns with the calibration dataset and the acceptable X space range 

(between 0 and 2); Figure 3-5(e) displays the projection of this TDS in the PLS latent space utilizing the 

entire dataset to more clearly indicate that T2 and T3 are near the 95% confidence limit of the PLS model 

or entirely outside of it. Collectively, Figure 3-5(b to e) show that the distribution of TDS and its 

projection resemble a curve rather than a straight line, confirming the nonlinearity present in this dataset. 

 

Figure 3-5: Distributions of the first simulated dataset and targets: (a) Selected targets 1 (T1), 2 (T2), and 3 (T3) 

along with corresponding nearest neighbors for each target; (b-d) TDS for T1 (b), T2 (c), and T3 (d) in the original 

space; (e) Projection of each TDS from the second row into the latent space. 

Table 3-1: R² values from PLS conducted on the entire dataset compared to using the 5 nearest neighbors 

corresponding to each target for the first simulated dataset. 

PLS Num 

Components 

Entire Dataset T1 Neighbors T2 Neighbors T3 Neighbors 

R2X (%) R2Y (%) R2X (%) R2Y (%) R2X (%) R2Y (%) R2X (%) R2Y (%) 

1 26 82 20 85 49 40 49 40 

2 58 86 53 94 95 54 95 54 

3 10 88 100 95 100 99 100 99 
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The results for all targets across all methods are presented in Figure 3-6. For target 1, which was 

anticipated to be the easiest among the three targets to achieve based on its TDS projection into the latent 

space, the Original MI and Tomba methods reached 95% closeness to the targeted values in 5 and 4 

iterations respectively while the PREP method also achieved the same level of closeness in 4 iterations. 

However, for targets T2 and T3 that were expected to more clearly benefit from dataset expansion 

considering the projection of their corresponding TDS in the latent space, the Original MI failed to 

approach the target and Tomba method made only minimal progress toward the target over 13 iterations 

for T2 and 17 iterations for T3. This slow progress is consistent with the heavy reliance of these methods 

on the calibration dataset and these models’ more conservative approach regarding dataset expansion. In 

contrast, the PREP method effectively considered the similarity of all PDS candidates to well-predicted 

validation samples, enabling it to quickly move toward dataset expansion and thus hit the targeted 

formulations in 4 steps for T2 and 2 steps for T3. Interestingly, PREP reached the more challenging T3 

target even faster than T2; we attribute this result to the closeness of the calibration dataset to the targeted 

values in T2 that caused the generated PDS to be more similar to the existing data, potentially introducing 

bias in the lower PREP scores assigned to samples closely resembling the calibration dataset that was not 

present in T3 given its distance from the entire training dataset. 
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Figure 3-6: Performance of different methods in reaching (a) T1, (b) T2, and (c) T3 using the first simulated dataset. 

The first row displays the results from the Original Model Inversion, the second row displays the results from the 

Tomba method, and the third row illustrates the results from the proposed PREP method. 

Figure 3-7 provides more insight into how the PREP method expanded the dataset to include T2. The top 

row shows how well the validation dataset aligns with the line over all four iterations required to hit the 

T2 coupled with the range of PREP scores for the PDS in each iteration, while the second row displays 

the projections of the PDS and TDS into the latent space highlighting how these projections changed over 

the iterations (only the first and second PLS scores are plotted here for clearer visualization, with the third 

score omitted for simplicity). Note that while the number of TDS samples remains constant throughout 

the iterations, the occupied area of these samples in the latent space may initially be smaller if the model 

is far from accurately representing these samples; over the course of the iterations, the area spanned by 

the TDS samples in the latent space is significantly increased, consistent with the PREP method 

systematically approaching this space. The third and fourth rows in Figure 3-7 present the actual Y values 

of the PDS plotted against their prediction accuracy, sorted based on their PREP scores (third row) and 

the actual Y values of the PDS versus T2 sorted based on their PREP scores (fourth row). The primary 

objective of PREP is to achieve good performance in the third row, where Ypredicted is expected to closely 
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match Yactual. In cases in which there is a null space, the last two rows are expected to show similar results 

for all candidates, with Ypredicted =T2. However, in situations where samples with Ypredicted =T2 do not 

satisfy the constraints on X, the PDS consists of samples whose X values are within the limits and whose 

Ypredicted values are as close as possible to T2, a direct result of the optimization algorithm used for which 

the cost function is based on the proximity of Ypredicted to T2 to ensure that the solutions differ from those 

already suggested. 

As shown in the first iteration, the pls model  in the first iteration is entirely invalid regarding Ydesirable, 

with an average Yactual versus Ydesirable accuracy being less than 0.4. However, by the last iteration, nearly 

all PDS samples fall within the TDS of the targeted output, demonstrating the effectiveness of the dataset 

expansion enabled by PREP and its validity in the area of interest. The general trend in the fourth row 

demonstrates a decrease in prediction accuracy (PA) as PREP scores increase, confirming that PREP 

effectively captures the underlying characteristics of the data to enable effective ranking of samples based 

on their prediction accuracy.  

 

Figure 3-7: PREP iteration results from first to last iteration for T2 using the first simulated dataset. (a)  the outcome 

of the PREP optimization and its alignment in each iteration; (b) the projections of the TDS and PDS into the PLS 

latent space in each iteration, focusing only on the first and second scores (the third score is excluded for simplicity); 
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(c) comparison of actual Y values, predicted Y values, and T2 values for all PDS samples sorted by PREP scores: 

(top row) actual Y vs. predicted Y; (bottom row) actual Y versus T2. 

 

To assess the robustness of our method against varying initial datasets, we generated the simulated dataset 

30 times, aiming to reach the same targets. For each case, we measured the number of iterations required 

for each method to achieve the targets (T1, T2, T3, as shown in Figure 3-5). Figure 3-8 presents a 

comparison of the number of iterations taken by each method to reach the same targets, highlighting the 

strong robustness of the PREP method with differing initial datasets. 

 

Figure 3-8: Comparison of the performance of different methods (original model inversion, Tomba, and PREP) in 

achieving the same targets shown in Figure 3-5 using various calibration datasets for the first simulated dataset. 

3.4.2 Second Simulated Dataset 

For the second dataset, which introduces slightly more complexity, the same X equation is used along 

with the following equation for Y data generation: 

part1 = sin (
𝜋

6
𝑋1) ∗ sin (

𝜋

6
𝑋2) ∗ sin (

𝜋

6
𝑋3) 

part2 = cos (
𝜋

6
𝑋1) ∗ cos (

𝜋

6
𝑋2) ∗ cos (

𝜋

6
𝑋3) 

𝑝𝑎𝑟𝑡3 = (0.4𝑋1 + 0.5𝑋2)𝛼𝑋3
𝛽

+ (0.3𝑋1 + 0.7𝑋3)𝛼𝑋2
𝛽

+ (2.7𝑋2 + 3.3𝑋3)𝛼𝑋1
𝛽

      𝑒𝑞. 20 

𝑝𝑎𝑟𝑡4 = (0.2𝑋1 + 0.8𝑋2)𝛽𝑋3
𝛼

+ (0.6𝑋1 + 0.4𝑋3)𝛽𝑋2
𝛼

+ (3.2𝑋2 + 2.8𝑋3)𝛽𝑋1
𝛼
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𝑌𝑓𝑖𝑛𝑎𝑙 = [𝑝𝑎𝑟𝑡3  ,
𝑝𝑎𝑟𝑡4

𝑝𝑎𝑟𝑡1. 𝑝𝑎𝑟𝑡2
] 

where 𝛼 = 4 and 𝛽 = 0.2. 

For this dataset, which was designed to exhibit a higher degree of nonlinearity due to the inclusion of 

highly complex mathematical relationships such as combinations of trigonometric functions and power-

law expressions with interdependent exponents, similar results were observed. Figure 3-9 illustrates the 

three targets along with their TDS and projections in the latent space, providing a sense of the difficulty 

associated with each target and (based on the distribution of the TDS) illustrating the expected 

nonlinearity of the dataset. Table 3-2 again shows the benefit of considering only the five nearest 

neighbors for each target rather than the full dataset to enhance the accuracy of the PLS model by better 

capturing the variance of the data in the vicinity of the targets. 

 

Figure 3-9: Distributions of the second simulated dataset and targets: (a) Selected targets 1 (T1), 2 (T2), and 3 (T3) 

along with corresponding nearest neighbors for each target; (b-d) TDS for T1 (b), T2 (c), and T3 (d) in the original 

space; (e) Projection of each TDS from the second row into the latent space. 

Table 3-2: R² values from PLS conducted on the entire dataset compared to using the 5 nearest neighbors 

corresponding to each target for the second simulated dataset. 
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PLS Num 

Components 

Entire Dataset T1 Neighbors T2 Neighbors T3 Neighbors 

R2X (%) R2Y (%) R2X (%) R2Y 

(%) 

R2X (%) R2Y 

(%) 

R2X (%) R2Y 

(%) 

1 40.0 61.1 78.0 35.1 71.2 66.6 51.4 69.7 

2 72.5 62.0 93.8 79.5 99.6 90.1 94.2 89.9 

3 100.0 62.1 100.0 99.4 100.0 96.0 100.0 99.7 

 

The results for each of the three targets are presented in Figure 3-10. As with the first dataset, PREP 

reaches each target within half or less of the number of iterations required with the Original MI and 

Tomba methods. Of particular note, for T2 the PREP method hit the target within 4 iterations while the 

Original MI required 10 iterations and the Tomba method required 15 iterations. Several notable 

observations can however be made about the differences in the performance of each method in this 

second simulated dataset compared to the first simulated dataset. Notably, for T3 that was significantly 

outside the range of the original training dataset, the Original Model Inversion (MI) ultimately reached 

the target in 10 iterations even though it failed to reach the target in the first simulated dataset that was 

more linear. This discrepancy arises because the average values for the TDS for T3 in the first simulated 

dataset were [1.75, 1.75, 1.75] while the same values for T3 in the second simulated dataset were [1.94, 

1.99, 2]. We manually set the Original MI suggestions to the (0-2) boundaries whenever the suggestions 

exceeded those limits, as we wanted to keep this method applicable in examples for which there are 

constraints on X. This manual adjustment ultimately benefited the Original MI in certain cases in which 

TDS approached the boundaries, enabling the Original MI to reach T3 in the second simulated dataset 

faster based on its ability to reset suggestions closer to the target values. In contrast, the other two 

methods (Tomba and PREP) are constrained to search and generate PDS within the range of 0 to 2, 

offering them no guidance or bias toward the edges of these limits. Another noteworthy point is that 

Tomba’s method exhibits a more conservative trajectory in approaching the target compared to PREP, 

consistent with the smaller increments in prediction accuracy (PA) achieved by Tomba’s method relative 

to PREP. This fundamental difference allows PREP to take a more ambitious approach, enabling it to 

progress toward the target at a faster pace.  
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Figure 3-10: Performance of different methods in reaching (a) T1, (b) T2, and (c) T3 using the second simulated 

dataset. The first row displays the results from the Original Model Inversion, the second row displays the results 

from the Tomba method, and the third row illustrates the results from the proposed PREP method. 

Figure 3-11 provides an overview of how the suggestions made by the PREP method to achieve target T2 

facilitated the expansion of the dataset from the first iteration, during which the model predictions were 

largely invalid around the desired area, to the last iteration, at which point almost all PDS were members 

of the TDS; achieving such performance with such a non-linear model represents a significant success for 

the PREP method.  Another noteworthy point is that unlike with the first dataset, the strategy of 

organizing PDS samples by their PREP scores illustrates a advantage of the PREP iterations- at each 

iteration, the method suggests samples that are either closer to the target, or through explorations, improve 

the model accuracy. In some instances, the suggestions intended to improved model accuracy also end up 

moving closer to the desired target. For example, while the second, fourth, and final iterations 

demonstrated the expected trend of declining PA with rising PREP scores, in the third iteration the PA 

actually improved with higher PREP scores Thus, in this context, the H-PREP emerged as the optimal 

choice, underscoring the advantages of considering both outer limits of the PREP algorithm predictions 

for future iterations.  
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Figure 3-11: PREP iteration results from first to last iteration for T2 using the second simulated dataset: (a) the 

outcome of the PREP optimization and its alignment; (b) the projections of the TDS and PDS into the PLS latent 

space in each iteration, focusing PREP iteration results from first to last iteration for T2 using the second simulated 

dataset: (a) the outcome of the PREP optimization and its alignment; (b) the projections of the TDS and PDS into the 

PLS latent space in each iteration, focusing only on the first and second scores (the third score is excluded for 

simplicity); (c) comparison of actual Y values, predicted Y values, and T2 values for all PDS samples sorted by 

PREP scores: (top row) actual Y vs. predicted Y; (bottom row) actual Y versus T2. 

To assess the robustness of the PREP approach, we again randomly generated 30 different datasets from 

the second simulated dataset and re-ran each method to assess how many iterations were required to 

achieve the desired target, with the results presented in Figure 3-12. The PREP method again 

demonstrated greater robustness and a faster identification of the Design Space compared to the other two 

methods with all three targets, again confirming the ability of PREP to accelerate optimal recipe 

identification over a range of different initial datasets. 
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Figure 3-12: Comparison of the performance of different methods (original model inversion, Tomba, and PREP) in 

achieving the same targets shown in Figure 3-9 using various calibration datasets for the second simulated dataset. 

The Supplementary Information highlights the similarly improved performance of the PREP method 

across three additional simulated datasets designed to represent varying levels of nonlinearity and 

complexity and thus challenge the robustness of the methods: (1) a highly nonlinear dataset involving 

nested power-law terms with interdependent exponents (Equations S1, Figures S1–S3); (2) a dataset 

combining trigonometric, exponential, and power-law terms with interdependencies among variables 

(Equations S2, Figures S4–S7); and (3) a moderately complex dataset featuring sinusoidal, logarithmic, 

and square-root functions (Equations S3, Figures S8–S9). PREP consistently required significantly fewer 

iterations compared to Original MI and Tomba, achieving targets in an average of 3 to 11 iterations 

whereas Tomba required 10 to 25 iterations and Original MI required 16 to 30 iterations. Furthermore, 

PREP demonstrated greater robustness, as evidenced by its lower variability in iteration counts across all 

analyses. These results highlight the efficiency and reliability of PREP in identifying target recipes across 

datasets with diverse complexities. 

Collectively, the results from all simulations suggest that PREP demonstrates superior performance 

compared to previously reported methods due to its ability to adaptively prioritize solutions that align 

closely with the desired target properties. However, a potential downside of the PREP method's 

aggressive approach is that there is a larger risk of moving further away from the target when the optimal 

solution lies close to existing datapoints. While none of the case studies explored in this study (including 
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those with datapoints near the target) showed reduced performance due to this risk, this factor should 

remain a consideration for future applications. It should also be noted that the PREP method requires 

making two samples (L-PREP and H-PREP) per iteration whereas the other methods require only one 

sample be made per iteration. However, in most cases, making two samples in parallel is significantly 

faster than performing multiple iterative cycles that require individual synthesis-modeling steps; 

furthermore, even if the performance of PREP was assessed based on the number of samples instead of 

the number of cycles, it would still significantly outperform the other methods in most cases.  

In practical applications, PREP could be particularly valuable for industrial challenges in which efficient 

formulation optimization and product design require targeted dataset expansion, such as pharmaceutical 

development, drug formulation, and complex chemical processes in which highly nonlinear relationships 

and limited fundamental understanding make traditional modeling approaches impractical. By guiding 

dataset expansion toward capturing the actual design space via resource-efficient data collection, PREP 

enhances experimental efficiency while ensuring reliable identification of optimal operating conditions. 

The number of input dimensions that PREP can handle is in principle unrestricted, as its nearest-neighbor 

selection is based on the number of latent variables plus two; however, the method’s effectiveness in very 

high-dimensional datasets remains an open area for future experimental validation. Moreover, PREP is 

especially valuable in scenarios in which sample preparation is either costly or time-consuming and the 

number of available datapoints is thus very limited. In such cases, PREP has the potential to expand the 

dataset iteratively starting with as few as five samples (as shown in all the case studies presented in this 

paper) with a minimal number of additional samples, guiding the process rationally toward regions of the 

design space that encompass the desired target properties.  

3.5 Conclusion 

The proposed PREP method represents a new approach to identify samples for which model predictions 

are expected to be more reliable than those of alternative candidates, specifically aimed at accelerating the 

identification of the Design Space. By applying this approach iteratively, we achieved significantly faster 
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convergence to the actual solution compared to existing methods. The method’s efficiency was 

particularly advantageous in scenarios in which rapid DS identification is critical and/or sample 

preparation incurs significant cost and/or time constraints. The primary benefit of PREP is the potential to 

optimize the use of experimental resources by reducing the number of required iterations, thereby 

minimizing material and operational costs. The method is theoretically applicable to datasets with any 

number of dimensions, as its nearest-neighbor selection is based on the number of latent variables plus 

two. However, further experimental validation in higher-dimensional spaces will be necessary to fully 

assess its scalability. In particular, the PREP approach effectively tracked the TDS with fewer iterations, 

effectively identifying relevant samples within fewer cycles. Moreover, it provides a valuable mechanism 

for discerning whether all potential DS (PDS) candidates truly belong to the actual DS by preparing and 

analyzing both lowest-score and highest-score PREP parameter samples, enabling improved estimates of 

how close the process is to identifying actual design space members. Tested across several highly 

nonlinear datasets, our method outperformed two widely used competing approaches, achieving target 

results across each dataset/target evaluated in fewer iterations and, for harder-to-achieve targets, typically 

half or less the number of iterations the other methods require. These findings underscore the PREP 

method’s potential as a reliable and efficient tool for real-world applications with complex underlying 

data structures. 
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3.7 Supporting Information 

In addition to the dataset discussed in the main manuscript, three additional highly nonlinear and complex 

datasets were generated to further evaluate the robustness of the PREP method under diverse conditions. 

Below, we provide the equations, target values, and summarized results for each dataset. These datasets 

were selected to introduce varying mathematical complexities and nonlinearities, challenging the methods 

to perform effectively under a range of conditions. While the outcomes align closely with those presented 

in the main text, only key findings are discussed here for context, along with accompanying plots.  

3.7.1 Third Simulated Dataset 

This dataset introduces nested power-law terms with variable-dependent exponents (α=4 and β=0.2), 

creating a highly nonlinear relationship between X and Y. The complexity is further amplified by the 

weighted combinations of the input variables in the power-law terms, making this dataset particularly 

challenging. 

𝑌1 = (0.4𝑋1 + 0.5𝑋2)𝛼𝑋3
𝛽

+ (0.3𝑋1 + 0.7𝑋3)𝛼𝑋2
𝛽

+ (2.7𝑋2 + 3.3𝑋3)𝛼𝑋1
𝛽

      𝑒𝑞.  𝑠1 

𝑌2 = (0.2𝑋1 + 0.8𝑋2)𝛽𝑋3
𝛼

+ (0.6𝑋1 + 0.4𝑋3)𝛽𝑋2
𝛼

+ (3.2𝑋2 + 2.8𝑋3)𝛽𝑋1
𝛼
 

• Third Simulated Dataset Results Summary 

PREP outperformed both Tomba and Original MI methods in all targets, requiring an average of 3 to 3.3 

iterations across targets, compared to 11–16 for Original MI and 5–6.3 for Tomba. PREP also 

demonstrated greater robustness, as evidenced by its lowest variability in iteration counts across different 

sample sets. 
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Figure S1. Distributions of the third simulated dataset and targets: (a) Selected targets 1 (T1), 2 (T2), and 3 (T3) 

along with corresponding nearest neighbors for each target; (b-d) TDS for T1 (b), T2 (c), and T3 (d) in the original 

space; (e) Projection of each TDS from the second row into the latent space. 

 

Table S1. R² values from PLS conducted on the entire dataset compared to using the 5 nearest neighbors 

corresponding to each target for the third simulated dataset. 

PLS Num 

Components 

Entire Dataset T1 Neighbors T2 Neighbors T3 Neighbors 

R2X (%) R2Y (%) R2X (%) 
R2Y 

(%) 
R2X (%) R2Y (%) R2X (%) 

R2Y 

(%) 

1 42.1 74.1 37.9 75.7 64.0 77.1 53.7 77.2 

2 71.7 78.4 97.1 83.2 95.3 86.3 82.7 92.4 

3 100.0 78.4 100.0 84.7 100.0 100.0 100.0 99.9 
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Figure S2. Performance of different methods in reaching (a) T1, (b) T2, and (c) T3 using the third simulated 

dataset. The first row displays the results from the Original Model Inversion, the second row displays the results 

from the Tomba method, and the third row illustrates the results from the proposed PREP method.  

 

Figure S3. Comparison of the performance of different methods (original model inversion, Tomba, and PREP) in 

achieving the same targets shown in Figure S1 using various calibration datasets for the third simulated dataset 

 

 

3.7.2 Fourth Simulated Dataset 

This dataset incorporates a mix of trigonometric, exponential, and power-law functions, increasing 

complexity by introducing periodicity, rapid oscillations, and nonlinearity. The interdependence between 

input variables adds another layer of difficulty. 



113 

PhD Thesis – Seyed Saeid Tayebi; McMaster University - Chemical Engineering 

 

 

 

𝑌1 = (𝑋2 . 𝑋1) ∗ cos ( 
𝜋

6
𝑋1) + (𝑋2 . 𝑋1) ∗ exp ( 

𝜋

6
𝑋3) + cos ( 

𝜋

2
𝑋2)    𝑒𝑞. 𝑠2 

𝑌2 = + (𝑋3
𝑋2) ∗ cos ( 

𝜋

2
𝑋2) + (𝑋1

𝑋3) ∗ cos( 𝜋𝑋2) + (𝑋3
𝑋2) ∗ cos( 𝜋𝑋1)

+ sin ( 
𝜋

3
𝑋1) +  (𝑋2 . 𝑋1) ∗ cos( 2𝜋𝑋3) +  𝑋3 

 

• Fourth Simulated Dataset Results Summary 

PREP consistently required fewer iterations to reach the target, with averages ranging from 5 to 11 

iterations across the three targets compared to 12–30 for Original MI and 12–25 for Tomba. Its robustness 

was also again evident from the lower variability in iteration counts observed with different initial 

datasets. 

 

 

Figure S4. Distributions of the fourth simulated dataset and targets: (a) Selected targets 1 (T1), 2 (T2), and 3 (T3) 

along with corresponding nearest neighbors for each target; (b-d) TDS for T1 (b), T2 (c), and T3 (d) in the original 

space; (e) Projection of each TDS from the second row into the latent space. 
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Table S2. R² values from PLS conducted on the entire dataset compared to using the 5 nearest neighbors 

corresponding to each target for the fourth simulated dataset. 

PLS Num 

Components 

Entire Dataset T1 Neighbors T2 Neighbors T3 Neighbors 

R2X (%) R2Y (%) R2X (%) R2Y 

(%) 

R2X (%) R2Y 

(%) 

R2X (%) R2Y 

(%) 

1 37.3 26.2 79.7 53.2 44.5 46.1 52.5 62.6 

2 69.4 32.8 99.5 62.2 72.9 92.3 68.3 85.4 

3 100.0 35.3 100.0 64.1 100.0 95.3 100.0 86.1 

 

 

 

Figure S5. Performance of different methods in reaching (a) T1, (b) T2, and (c) T3 using the fourth simulated 

dataset. The first row displays the results from the Original Model Inversion, the second row displays the results 

from the Tomba method, and the third row illustrates the results from the proposed PREP method. 
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Figure S6. Comparison of the performance of different methods (original model inversion, Tomba, and PREP) in 

achieving the same targets shown in Figure S4 using various calibration datasets for the fourth simulated dataset 

 

3.7.3 Fifth Simulated Dataset 

This dataset combines sinusoidal, logarithmic, and square-root terms, creating moderate nonlinearity 

while maintaining a simpler structure compared to the other datasets. It serves as a contrasting example to 

evaluate the method’s performance in less complex scenarios. 

𝑌1 = sin( 𝜋𝑋1) + log(𝑋2 + 1) + √𝑋3   𝑒𝑞. 𝑠3 

𝑌2 = (𝑋1
2 + 𝑋2)0.3 + exp (

𝑋3

2
) 

 

• Fifth Simulated Dataset Results Summary 

PREP again demonstrated superior performance, achieving targets in an average of 2 to 7 iterations 

compared to 5–20 for Original MI and 5–10 for Tomba. Its robustness was particularly notable, with the 

lowest standard deviations in iteration counts. 
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Figure S7. Distributions of the fifth simulated dataset and targets: (a) Selected targets 1 (T1), 2 (T2), and 3 (T3) 

along with corresponding nearest neighbors for each target; (b-d) TDS for T1 (b), T2 (c), and T3 (d) in the original 

space; (e) Projection of each TDS from the second row into the latent space. 

 

Table S3. R² values from PLS conducted on the entire dataset compared to using the 5 nearest neighbors 

corresponding to each target for the fifth simulated dataset. 

PLS Num 

Components 

Entire Dataset T1 Neighbors T2 Neighbors T3 Neighbors 

R2X (%) R2Y (%) R2X (%) R2Y 

(%) 

R2X (%) R2Y 

(%) 

R2X (%) R2Y 

(%) 

1 8.3 50.5 65.2 85.7 53.8 42.5 45.3 57.5 

2 67.0 82.3 96.6 91.5 94.2 76.4 93.9 72.8 

3 100.0 83.3 100.0 93.4 100.0 81.3 100.0 88.2 
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Figure S8. Performance of different methods in reaching (a) T1, (b) T2, and (c) T3 using the fifth simulated dataset. 

The first row displays the results from the Original Model Inversion, the second row displays the results from the 

Tomba method, and the third row illustrates the results from the proposed PREP method. 

 

Figure S9. Comparison of the performance of different methods (original model inversion, Tomba, and PREP) in 

achieving the same targets shown in Figure S7 using various calibration datasets for the fifth simulated dataset 

 

These results emphasize the robustness and efficiency of the PREP method across datasets with diverse 

levels of complexity and nonlinearity, making it a reliable tool for challenging design problems. 
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Abstract 

 

The particle size of a nanoparticle plays a crucial role in regulating its biodistribution, cellular uptake, and 

transport mechanisms and thus its therapeutic efficacy. However, experimental methods for achieving a 

desired nanoparticle size and size distribution often require numerous iterations s that are both time-

consuming and costly. In this study, we address the critical challenge of achieving nanoparticle size control 

by implementing the Prediction Reliability Enhancing Parameter (PREP), a recently developed data-driven 

modeling-based product design approach that significantly reduces the number of experimental iterations 

needed to meet specific design goals. We applied PREP to effectively predict and control particle sizes of 

two distinct nanoparticle types with different target particle size properties: (1) thermoresponsive 

covalently-crosslinked microgels fabricated via precipitation polymerization with targeted temperature-

dependent size properties and (2) physical polyelectrolyte complexes fabricated via charge-driven self-

assembly with particle sizes and colloidal stabilities suitable for effective circulation. In both cases, PREP 

enabled efficient and precise size control, achieving target outcomes in only two iterations in each case. 

These results provide motivation to further utilize PREP in streamlining experimental workflows in various 

biomaterials optimization challenges. 

Keywords: nanoparticles, microgels, self-assembled nanoparticles, particle size, data-driven modeling, 

PREP method 
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4.1 Introduction 

Polymer-based nanoparticles have attracted increasing interest in drug delivery and other biomedical 

applications due to their capacity to encapsulate therapeutic agents, facilitate long-term circulation, 

traverse tissue barriers, interact with cell surface receptors, and facilitate the delivery of drugs directly 

into target cells [1]. These features have been leveraged for a range of therapeutic applications including 

transporting chemotherapeutics to both primary and metastatic cancer sites [2, 3], delivering imaging 

agents specifically to cells or tissues to aid in accurate disease diagnosis [4, 5], facilitating gene delivery 

[4, 6], and providing preventative treatments for infectious diseases [7, 8].   

The success of each of these applications depends strongly on the size of the nanoparticle [9], which 

regulates both the convective transport of nanoparticles due to blood shear and variations in interstitial 

pressure as well as the potential for nanoparticles to interact with active and passive transport pathways 

that enable intracellular transport and/or transport across biological barriers such as the blood-brain 

barrier [6, 10-16]. In response, significant effort has been invested in developing strategies to synthesize 

nanoparticles with precise and uniform sizes across different particle size ranges suitable for different 

biomedical transport tasks [1, 2, 10, 14, 17, 18]. Such efforts can be broadly classified into two 

categories: (1) the assembly of pre-fabricated polymers into particles and (2) the direct synthesis of 

nanoparticles from monomeric building blocks. In the former case, techniques such as self-assembly, 

triggered precipitation, and template-assisted synthesis are commonly employed due to their ability to 

produce nanoparticles with well-defined characteristics [19-23]. Self-assembly, for instance, relies on the 

spontaneous organization of polymeric building blocks through secondary intermolecular interactions like 

hydrophobic interactions, hydrogen bonding, electrostatic forces, and π–π stacking, with particle size 

control enabled by rational tuning of the composition of the building blocks and the solution conditions 

used [19, 20]. However, the inherent dispersity in size and composition among the typical polymeric 

building blocks for self-assembled nanoparticles can lead to broad particle size distributions, multiple 

particle populations, and/or the potential for aggregation. In the latter case, emulsion, precipitation, and/or 
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suspension polymerization methods can all be applied to achieve particle size control, with the 

combination of such templating methods with controlled free radical polymerization strategies (e.g. atom 

transfer radical polymerization in emulsion polymerization) particularly beneficial to produce 

nanoparticles with tunable sizes [17, 18]. However, factors such as the variability of the local shear field, 

variable particle aggregation/nucleation, variability in surfactant or other surface stabilizer performance 

under different environmental/solvent conditions, and/or localized temperature gradients can result in 

poor control over nanoparticle size and polydispersity, particularly for methods that do not rely on more 

complex polymerization pathways and are thus more amenable to practical translation.  

Solving these size and stability challenges is challenging based on the frequent interdependence of the 

key factors that regulate such properties; for example, adjusting one parameter such as monomer 

concentration, surfactant type/concentration, or reaction temperature can affect polymerization and/or 

assembly kinetics, the stability of the nanoparticle/solvent interface, and/or particle nucleation kinetics in 

sometimes unanticipated ways. This interconnectedness makes relying solely on experimental techniques 

for nanoparticle size optimization both time-consuming and costly, especially without a strategic 

framework to guide the process [24-27]. In this context, incorporating model-based design techniques that 

can capture underlying patterns and relationships within the synthesis process offer significant promise to 

accelerate nanoparticle design. By leveraging model-based computational tools, researchers can plan 

experimental iterations more efficiently, reducing resource consumption and expediting the development 

of nanoparticles with desired characteristics. 

Modeling approaches for optimizing nanoparticle size can be broadly classified into deterministic and 

data-driven models. Deterministic models leverage fundamental principles to describe system behavior, 

offering detailed insights into mechanisms like particle growth and nucleation. Studies have demonstrated 

the utility of deterministic models in solving reaction-diffusion equations and predicting size distributions 

under varying conditions [28-34]. However, these models require extensive computational resources, 

detailed mechanistic knowledge (including measurement of several often hard-to-measure or estimate rate 
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or interaction parameters), and costly validation, making them less practical for complex systems. In 

contrast, data-driven models bypass the need for detailed mechanistic understanding by uncovering 

patterns directly from experimental data. These models have been widely used to predict nanoparticle 

properties such as size and morphology by correlating recipe parameters with outcomes [24, 26, 35] and 

have been particularly leveraged in polymerization-based processes to establish correlations between 

recipe parameters and final nanoparticle size, facilitating predictive particle size control while accounting 

for radical polymerization kinetics, diffusion rates, and interaction dynamics [1, 27, 29, 33, 35-37].  

Among various data-driven modeling techniques such as neural networks and advanced nonlinear 

regression models [24, 25, 27, 33], latent variable models (LVM) such as Principal Component Analysis 

(PCA) and Partial Least Square-Projection to Latent Structure (PLS) have garnered significant attention 

for their ability to identify a reduced set of latent variables—underlying patterns or structures—that 

explain most of the system's variability [38-41]. While effective, these methods also pose drawbacks in 

the context of nanoparticle size optimization given their typical need for large datasets and prediction 

uncertainty when applied to new data points. Existing literature has proposed uncertainty metrics 

including Hotelling's T² and Squared Prediction Errors (SPE) to address these limitations [42-49]. While 

these metrics assess the alignment of new data points with the calibration dataset, their interpretations can 

vary depending on the specific metric used. Recently, we introduced the Prediction Reliability Enhancing 

Parameter (PREP), a unified metric that enhances predictive reliability by combining multiple model 

alignment metrics, to address this prediction uncertainty challenge. The PREP method was validated on 

synthetic datasets and shown to outperform existing methods to identify optimum inputs to achieve target 

outputs, particularly in cases in which the optimal solution is outside the design space of the original 

dataset [50]. However, to-date the method has not been validated on an experimental use case.  

Herein, we apply the PREP method to optimize nanoparticle size and nanoparticle size distributions in 

one polymerization-based nanoparticle synthesis use case (the synthesis of dual temperature/pH 

responsive microgels based on poly(N-isopropylacrylamide) (PNIPAM) via precipitation polymerization) 
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and in one self-assembly-based nanoparticle synthesis use case (the fabrication of doxorubicin-loaded 

polyelectrolyte complexes based on sulfated yeast beta glucan and cationic dextran). The first case builds 

on previous literature from our group and our previous data-driven modeling efforts to optimize the size 

and colloidal stability of acid-functionalized PNIPAM microgels that have broad utility for drug delivery 

given their potential for environmentally-responsive reversible swelling responses, their capacity to 

deform and thus enhance penetration through biological barriers, and their highly hydrated surface 

properties that can suppress immune system recognition [39, 51-53]. The specific target was to match the 

crosslinking density and the acid content (4-8 mol%) to microgels in the existing dataset while achieving 

smaller particle sizes that remain stable over time. Specifically, while the pre-existing data set did not 

include a microgel with a size less than 170 nm that met the crosslink density and acid content criteria, a 

size of 100 nm was targeted to better exploit the biological penetration properties of the compressible 

microgels for drug delivery applications. The second case targeted a key challenge around the ionic 

strength tolerance of polyelectrolyte complexes, which are typically fabricated in water or low ionic 

strength buffers but often lose colloidal stability when then transferred to the physiological ionic strength 

conditions typically required for practical clinical use. The specific target was to achieve nanoparticles 

with diameter <200 nm (target = 170 nm) and a polydispersity index (PDI) as low as possible (target = 

0.15), properties most suitable for long-term circulation, that remained colloidally stable under 

physiological ionic strength. We demonstrate that in both cases the PREP method can achieve the target 

properties with minimal historical data following only two iterations, opening the potential to apply PREP 

more broadly to address nanoparticle design challenges. 

4.2 Preliminaries  

4.2.1 Latent Variable Models (LVM) 

Ordinary least squares (OLS) regression assumes that system outputs are independent; however, this 

assumption frequently breaks down in real-world industrial applications—such as nanoparticle size 

control—where variables are inherently interdependent, often resulting in poor model performance. In 
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contrast, latent variable modeling (LVM), while also a linear modeling approach, is well-suited for 

capturing complex interdependencies by isolating the core independent structures within the dataset. By 

identifying and operating within an uncorrelated latent space, LVM establishes meaningful connections 

between system inputs and outputs, particularly in scenarios where data is limited but intervariable 

dependencies are critical to capture. 

Specifically, LVM can either (1) extract correlations within a single block of data—via Principal 

Component Analysis (PCA)—and project the original correlated data into a latent uncorrelated space 

(referred to as scores) or (2) define relationships between input variables (X) and output variables (Y) by 

jointly mapping them onto a latent space. In both cases, the resulting scores are represented as linear 

combinations of the original variables that are orthogonal to one another. The general structure of LVM is 

illustrated in Figure 4-1; for detailed mathematical formulations, and data-blocking configurations, the 

reader is referred to our prior manuscript [50]. 

 

Figure 4-1: General latent variable modeling framework. 
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4.2.2 Latent Variable Model Inversion (LVMI) 

The primary objective of modeling is typically to identify a suitable set of input values that lead to a 

predetermined set of desired output properties, referred to as Ydesirable. This process is known as model 

inversion, and within the framework of LVM it is termed latent variable modeling inversion (LVMI). The 

outcomes of model inversion depend on the relationship between the number of underlying independent 

latent factors in the input space (A)—the number of underlying independent factors (or latent variables) 

driving the input space, rather than merely the number of independent input variables —and the number 

of output variables (K): 

1.  If A<K, there is no input set X for which Ypredicted=Ydesirable. In this case, model inversion identifies an 

input X where its Ypredicted  is as close as possible to Ydesirable. 

2. If A = K, there is a single solution for which its Ypredicted = Ydesirable that can be identified by model 

inversion. 

3. If A > K (the most common case in practice), there are an infinite number of input sets X for which 

Ypredicted=Ydesirable. In this context, these solutions form a continuous set known as the Null Space (NS) that 

represents various input combinations that leave the output prediction unchanged. 

Solutions derived from LVMI can either match the targeted predetermined value (as in the second and 

third scenarios) or come as close as possible to the predetermined value (as in the first scenario). While 

the prediction accuracy for these solutions varies across different samples, the degree of accuracy cannot 

be confirmed until all the solutions are experimentally tested, which can be a costly and time-consuming 

process. To address this issue, specific modeling alignment metrics can be computed solely from the input 

data (X), metrics that are generally classified into three categories: 

a) Hotelling's T² metrics measure the distance of a new data point’s projection to the latent space 

from the center of the latent space, indicating how far the new data point deviates from the 

calibration set. 
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b) Squared Prediction Error (SPE) metrics assess how well the new data point can be reconstructed 

or regenerated by the model. 

c) Score Alignment (HPLS & HPCA) metrics evaluate the similarity of the score structure of the new 

data point to that of the calibration data, indicating how closely the new sample aligns with the 

model’s learned structure. 

Figure 4-1 also provides a conceptual summary of the Hotelling T² and SPE metrics in which the SPE 

corresponds to the distance between the 𝑋𝑛𝑒𝑤
𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

 and 𝑋𝑛𝑒𝑤 in the input space (reflecting how well 

the model can reconstruct the new sample) and the Hotelling T² metric reflects the distance between the 

latent projection of the new sample and the center of the latent space (capturing how far the sample 

deviates from the distribution of the calibration set). For the Score Alignment metric (H), when a new 

sample is projected into a less populated region of the latent space, it reflects a lower resemblance to the 

calibration data point score structure, resulting in a higher H score (and vice versa). 

4.3 Proposed Methodology  

Although each of the above-mentioned metrics has its own general threshold beyond which model 

predictions are unlikely to be accurate, there is no single threshold across all metrics that can define a 

universally reliable range for predictions and thus determine when model predictions can be trusted. 

Additionally, different expectations may arise depending on which metric is being considered. To address 

this limitation, the PREP parameter is defined as a linear combination of the metrics, weighted by 

different coefficients and powers, that are optimized using a validation dataset in which both actual and 

predicted Y values are available for comparison. The parameters are optimized such that samples with 

low prediction accuracy are assigned a higher PREP value while samples with higher prediction accuracy 

are assigned a lower PREP value, allowing the list of potential candidates coming from LVMI to be 

ranked based on their likelihood of accurate predictions and thus enabling prioritization of those samples 

that either have the highest chance of success in meeting the target properties or will provide the model 
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with the most new information possible for further model refinement. The general equation for PREP is 

presented in Equation 1[50], in which the values of 𝑐𝑖 ∈  (0,1] and 𝑝𝑖 ∈  (0,1] are determined specifically 

for each dataset through an optimization algorithm. 

PREP=c1hotelingT2pls
p1

+c2SPEx,pls
p2

+c3hotelingT2pca
p3

+c4SPEpca
p4

+c5hpls
p5

+c6hpca
p6

        (eq.1) 

To implement the PREP method, an initial dataset and a desired target output set are chosen and the k-

nearest neighbors (with k being a tuning parameter) to the target output in the output space are identified 

and used to train both a PLS and a PCA model. The PLS model generates a list of potential design space 

(PDS) candidates comprised of candidate recipes expected to meet the target output. Model alignment 

metrics are subsequently calculated for the training data alongside the prediction accuracy, using a 

jackknife approach in which the PLS model is developed using a subset of the samples and the predicted 

output is compared to the actual value(s) of the excluded sample(s). The alignment metrics and prediction 

accuracy of the training dataset are then used to optimize the coefficients and powers of the PREP 

equation (C and P in Equation 1), enabling the ranking of PDS samples by assigning a score to each 

candidate based on its likelihood of accurate prediction. Candidates with the lowest PREP score 

(indicating high prediction confidence) and the highest PREP score (representing high uncertainty, which 

can aid model refinement near the target output) are selected for synthesis. If the synthesized samples do 

not achieve the target, they are added to the dataset, the list of k-nearest neighbors is updated, and the 

process is repeated iteratively until the desired outcome is obtained. Figure 4-2 illustrates the general 

scheme of the method, with further details available in the original paper [50].  
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Figure 4-2: Schematic illustration of the proposed PREP method. The green box represents the desired target output 

set. Blue boxes indicate the training and validation data in which actual Y values are known and used for optimizing 

the PREP equation. Orange boxes depict the dataset of potential candidates, for which only X values are available. 

Candidates selected through the PREP method are prioritized for experimental testing. 

The PREP method has two key advantages relative to previous methods for assessing prediction accuracy: 

(1) only a single parameter needs to be evaluated to compare samples, reducing uncertainty and bias in 

prediction assessment; and (2) the method does not require a large number of data points for practical 

implementation, with as few as A+2 data points needed in which A represents the number of independent 

principal components of the system input. Note that while Bayesian and Gaussian process-based 

approaches can also be applied effectively to similar optimization challenges, they tend to rely on more 

sample-intensive strategies (e.g., Monte Carlo sampling) and thus often require significantly more data to 

achieve convergence relative to the PREP method, particularly in complex or high-dimensional settings 

[50]. Relative to non-linear modeling approaches such as support vector regression, decision trees, and 

Gaussian process regression that have also performed well for predicting materials properties using 

relatively smaller sample sizes, PREP offers a key advantage in that it is fundamentally a linear latent 

variable-based framework, thus reducing the risk of overfitting, making interpretability simpler, and 

facilitating more robust extrapolation along well-defined latent variable directions (the latter of which is 

particularly beneficial for inverse design).  
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4.4 Experimental Case Studies 

To validate the performance of the PREP method for optimizing and controlling nanoparticle sizes and 

size distributions, two case studies were performed. 

 

4.4.1 Case Study 1: Multi-Responsive Microgels 

Smart microgels that respond to external stimuli such as pH and temperature are typically fabricated via a 

free radical precipitation polymerization by combining a temperature-sensitive monomer (most typically 

N-isopropylacrylamide, NIPAM), and a pH-responsive comonomer selected among acrylic acid, 

methacrylic acid, fumaric acid, maleic acid, or vinyl acetic acid [39]. Achieving precise control over 

microgel size thus requires balancing of the different copolymerization kinetics of the multiple 

comonomers incorporated, the different water solubilities/hydrophilicities of the different comonomers, 

and the interactions between any included surfactant with the monomers and the growing copolymers. 

Our target was to fabricate three microgels with the same crosslinking density and an acid monomer 

content between 4–8 mol% (sufficient for inducing pH-responsive effects or enabling ligand grafting 

without compromising the desirable complementary temperature responsiveness [54]) but with as high as 

possible range in particle size at pH 7.4 and 37°C. The pre-existing microgel dataset for this project is 

presented in Table 4-1. While the dataset already included samples with moderate (~300 nm, Sample 15) 

and large (~950 nm, Sample 12) sizes that met the design criteria, the smallest microgel that met all the 

criteria was Sample 4 (diameter ~175 nm), which was relatively close to the moderate size microgel and 

significantly higher than the ~100 nm particle size previously reported to bypass reticuloendothelial 

system clearance and pass through the liver sinusoidal fenestrae to promote long-term particle circulation 

[55]. As such, the optimization objective was to synthesize a 100 nm microgel that would meet this 

criteria while maintaining the same MBA content as Samples 12 and 15 (160 mg) and an acid content 

remained within the targeted 4-8 mol% range.  
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• Experimental Details 

Materials 

N-isopropylacrylamide (NIPAM) (Sigma-Aldrich, 97%) was purified by recrystallization with 60:40 

toluene/hexane mixture. N−N′-methylene(bis)acrylamide (MBA) (Sigma-Aldrich, 99%), vinylacetic acid 

(VAA) (Aldrich, 97%), sodium dodecyl sulfate (SDS) (Sigma-Aldrich, 99%), potassium chloride (KCl) 

(Fisher Chemical, ACS grade), and ammonium persulfate (APS) (Sigma-Aldrich, 98%) were all used as 

received. MilliQ-grade water (>18Ω resistance) was used for all experiments. 

 

Microgel Synthesis 

The initial dataset used in this study is summarized in Table 4-1. For each synthesis recipe, specified 

amounts of NIPAM, MBA, SDS, and VAA were combined in a 250 mL round-bottom flask containing 

150 mL of MilliQ water. The solution was deoxygenated by purging with nitrogen gas for 30 minutes at 

room temperature before being transferred to an oil bath preheated to 70 °C, with nitrogen purging 

continued throughout the process. Polymerization was initiated by dissolving 0.05 g of APS in 10 mL 

MilliQ water and introducing it to the flask using a syringe. The reaction proceeded under magnetic 

stirring at 160 rpm for 4 hours at 70 °C. Upon completion, the reaction mixture was cooled to room 

temperature and dialyzed for six cycles, each lasting 6 hours, to remove residual surfactant and unreacted 

monomers. The resulting microgel suspension was then lyophilized and stored at ambient conditions. 

Particle Size Measurements 

The particle sizes of the microgels were determined using dynamic light scattering (Brookhaven 90Plus) 

operating at a fixed scattering angle of 90°. Measurements were performed at 37 °C in 10 mM KCl 

solutions, with the pH adjusted to 7.4 using 0.1 M HCl or NaOH. For each sample, five independent z-

average particle size measurements were taken, and the average value of the intensity-weighted effective 

diameter was reported as the particle size. All microgels displayed a unimodal particle size distribution 

during analysis, such that the effective diameter is representative of the full particle size distribution. 
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Table 4-1: Pre-existing microgel formulations and corresponding particle size data. Bolded columns represent the 

data used as the input (MBA, VAA, SDS) and output (size) variables for the PREP optimization process 

Sample ID 

NIPAM 

(g) 

MBA 

(mg) 

VAA 

(mg) 

SDS 

(mg) 

APS 

(mg) 

Size* 

(nm) 

1 1.6 160 342 57 50 426 

2 1.6 160 114 57 50 283 

3 1.6 160 80 57 50 177 

4** 1.6 160 46 57 50 176 

5 1.6 205 114 57 50 298 

6 1.6 114 114 57 50 269 

7 1.6 80 114 57 50 299 

8 1.6 46 114 57 50 319 

9 1.6 160 114 34 50 396 

10 1.6 160 114 23 50 444 

11 1.6 160 114 0 50 657 

12** 1.6 160 342 0 50 954 

13 1.6 173 45 42 50 190 

14 1.6 244 176 24 50 332 

15** 1.6 160 228 57 50 300 

   *Sizes correspond to the intensity-averaged effective diameter measured at pH=7.4 and 37°C 

  **represents the best available candidates based on the existing dataset to meet the design criteria of creating a set of microgels with the same crosslinking 

density/acid content but as different as possible particle sizes 

 

Modeling Preparation, Integration, and Iterations 

Since the amounts of NIPAM and APS remained constant across the initial dataset, they were not 

considered in the model and only the three variables that do change (MBA, VAA, and SDS) were 

retained. Considering that each of these key variables can affect the kinetics of the polymerization, the 

nucleation mechanism of new polymer chains, and the maximum size to which the precipitation 

polymerization proceeds, from a modeling perspective microgel formation is a highly non-linear process 

and non-linear modeling approaches represent an attractive option. While Artificial Neural Networks 

(ANNs) are particularly appealing in this context given that they can capture intricate non-linear 
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relationships in the data, ANNs require large amounts of training data to achieve reliable results, a key 

challenge in product design in which generating new data points is costly and time-consuming. Instead, 

we implemented an approach of combining a conventional LVMI with an optimization algorithm called 

Inversion by Optimization (IbO) that utilizes a PLS model to identify solutions in which the predicted 

outputs (Ypredicted) closely match the desired targets (Ydesirable) while minimizing certain soft constraints 

that help ensure statistical validity. The optimization framework enforces key conditions (e.g., MBA = 

160 mg and VAA mol% within the specified range) while minimizing PLS Hotelling’s T² and SPE values. 

The complete framework is presented in Equation 2. 

min
xnew

{w1 (ŷnew-ydes)Γ(ŷnew-ydes)
T

+w2 Hoteling Tpls
2 +w3 SPExnew   }     eq.2 

s.t. 

ŷnew = τQT 

x̂new = τPT 

τ = xnewW∗ 

 

 where Γ is a [L*L] diagonal matrix containing the weights assigned to each output variable (emphasizing 

their relative importance). Given that particle size is the only output variable in this scenario, this term 

was simplified to w1 (ŷnew − ydes) in which wi represents the weight of each term. 

The number of PLS components in such cases is typically determined using data-driven approaches such 

as cross-validation [56] the eigenvalue-less-than-one rule [57], or based on experimental knowledge of 

the dependencies among input variables. In this microgel dataset, the selection was guided by 

experimental knowledge, as all three input variables—MBA, VAA, and SDS—could be independently 

manipulated within feasible ranges to synthesize new microgels. Consequently, three PLS components 

were chosen to sufficiently capture the relationships between the inputs and the output. Using this PLS 

model, the optimization framework in Equation 2 was applied, resulting in the recipe outlined in Table 
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4-2 (IbO 1st itr). The particle size obtained from this recipe (170 nm) was very close to the smallest 

microgel already available in the dataset. This new recipe was subsequently incorporated into the dataset, 

and the optimization algorithm was executed again for the next iteration. However, the synthesis of the 

suggested solution in the second iteration (IbO 2nd itr in Table 4-2) resulted in aggregation. It is worth 

noting that the direct model inversion solution was not applicable in this case, as it provided a single 

answer that failed to meet the required conditions around the VAA content (reaching as low as 2.4 mol%). 

As such, a more conventional approach did not achieve the targeted particle size, motivating the 

implementation of the PREP method, which was applied next to overcome these constraints. 

The PREP method was implemented by first identifying the list of nearest neighbors; with three latent 

space components and a single output variable, a minimum of A+2 = 5 nearest neighbors was required. To 

ensure clarity and avoid any perception that PREP was enhanced by the IbO method and the similarity of 

the IbO 1st itr sample to a pre-existing datapoint (Sample 4), the IbO 1st itr sample generated in the initial 

attempt was excluded from the list of neighbors to ensure that PREP started with the same dataset 

originally provided to IbO method. Figure 4-3 depicts all available datapoints and five nearest neighbors 

to the target in both the input (a) and output (b) spaces. 
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Figure 4-3: Visualization of all available datapoints alongside the five nearest neighbors to the target in both the 

input (a) and output (b) spaces derived from the pre-existing dataset (Table 4-1). 

Subsequently, PLS and PCA models were constructed using the selected neighbors followed by the 

creation of the Potential Design Space (PDS). In this case, the number of PLS components exceeded the 

number of output variables by two, resulting in a two-dimensional null space (i.e. for any given Ydesirable, 

there exists a two-dimensional surface in the input and latent spaces where all points satisfy Ypredicted  = 

Ydesirable). However, given the imposition of the constraint fixing the MBA content at 160 mg to match the 

crosslink density of the target microgel with the existing microgels in the series, the number of degrees of 

freedom was reduced to collapse the null space to a single dimension (i.e. a line within the original two-

dimensional space), as shown in Figure 4-4(i). Further analysis of the points along the blue line revealed 

that none of the candidates met the 4-8 mol% acid content requirement, necessitating the creation of the 

Potential Design Space (PDS) using an optimization-based algorithm. The algorithm generated a list of 50 

candidates whose predicted outputs (Ypredicted) were as close as possible to the desired target (Ydesirable) 

while still satisfying all specified constraints. It is important to emphasize that the list generated through 

this optimization process fundamentally differs from the results obtained via IbO approach; while the 
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PREP optimization algorithm produces a list of candidates by considering only the input range 

requirements, IbO yields a single solution by incorporating modeling alignment metrics such as 

Hotelling's T² and Squared Prediction Error (SPE). The new list generated by the implemented 

optimization algorithm (the PDS) is also shown Figure 4-4(i). 

To identify the most relevant candidates for synthesis within the Potential Design Space (PDS), model 

alignment metrics were calculated for both the nearest neighbor samples and the PDS members and then 

used together with the prediction accuracy of the nearest neighbor samples to optimize the PREP equation 

parameters (C and P in Equation 1). The resulting optimized PREP equation was then applied to rank all 

PDS candidates, from which two samples corresponding to the lowest (L-PREP) and highest (H-PREP) 

PREP scores were selected for experimental synthesis. The results of the PREP optimization and the 

ranking of Potential Design Space (PDS) samples for iteration 1 are presented in Figure 4-4 where panel 

(ii) illustrates the relationship between the prediction accuracy and the PREP score for the validation data 

points used in optimizing the PREP equation and panel (iii) shows the PDS candidates ranked by their 

PREP scores; the two selected formulations for synthesis, corresponding to the highest ranked (L-PREP) 

and lowest ranked (H-PREP) ranked candidates, are also clearly highlighted. As expected, lower 

prediction accuracy is associated with higher PREP scores, confirming the metric’s effectiveness in 

assessing prediction reliability. The measured particle sizes of the L-PREP and H-PREP recipes, as shown 

in Table 4-2, demonstrated that the samples suggested by the PREP method outperformed all existing 

datapoints in the dataset as well as those proposed by IbO approach. However, since the particle sizes of 

these samples still did not meet the ~100 nm target size, the newly synthesized samples from this first 

iteration were added to the dataset, the list of nearest neighbors was updated, and the PREP method was 

reapplied to generate new synthesis recipes. Note that including the two recipes from the first iteration 

(and thus removing the two samples from the five nearest neighbors from the first iteration) results in a 

40% change in the dataset for the second iteration compared to the first iteration, a key advantage of using 

a smaller number of samples such that each sample carries disproportionately high weight in reframing 
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the model (i.e. adding or replacing even a few samples can substantially alter the dataset, the model 

parameters, and thus the second iteration predictions).  

 

Figure 4-4: Results from iteration 1 of the PREP implementation on microgel optimization. Sub-panel (i) represents 

the visualization of the Potential Design Space (PDS) in the latent space, (ii) shows the outcome of the PREP 

equation optimization demonstrating Results from iteration 1 of the PREP implementation on microgel optimization. 

Sub-panel (i) represents the visualization of the Potential Design Space (PDS) in the latent space, (ii) shows the 

outcome of the PREP equation optimization demonstrating the alignment of validation data points along the 

optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) shows the ranked 

PDS samples based on their PREP scores with the selected candidates for synthesis (L-PREP - highest expected 

reliability and H-PREP - highest uncertainty used to enhance model refinement) highlighted. 

The updated latent space based on the revised dataset are shown in Figure 4-5(i). Note that enforcing all 

design constraints—particularly the specified acid content range of 4–8 mol%—did not yield a sufficient 

number of solutions within the actual null space (NS); consequently, the Potential Design Space (PDS) for 

the second iteration was expanded using the same optimization-based approach as in the first iteration, 

ensuring that all constraints were satisfied while generating at least 50 candidate datapoints within the 

PDS.  The PREP equation parameters (C and P) were then re-optimized and the resulting equation was re-

applied to rank all PDS candidates, with the resulting H-PREP and L-PREP samples identified in Figure 

4-5(iii) subsequently synthesized. As shown in Table 4-2, the L-PREP sample demonstrates exceptional 
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proximity to the target particle size, achieving a size of 104 nm. Correspondingly, as shown in Figure 4-5 

panel (ii), the PLS model developed for the second iteration demonstrates significantly improved 

accuracy near the target output of 100 nm. Even the lowest-performing validation sample achieved over 

97% accuracy—an improvement from 88% in the first iteration—indicating that the PREP method 

effectively guided the dataset expansion toward the desired region and enhanced model precision around 

the target. 

 

Figure 4-5: Results from iteration 2 of the PREP implementation on microgel optimization. Sub-panel (i) represents 

the visualization of the Potential Design Space (PDS) in the latent space, (ii) shows the outcome of the PREP 

equation optimization demonstrating the alignment of validation data points along the optimized line (with higher 

PREP scores corresponding to lower prediction accuracy), and (iii) shows the ranked PDS samples based on their 

PREP scores with the selected candidates for synthesis (L-PREP - highest expected reliability and H-PREP - highest 

uncertainty used to enhance model refinement) highlighted. 

Table 4-2 provides a summary of the particle sizes of the synthesized samples suggested by both the 

PREP and optimization-based methods. The microgel recipes proposed by the PREP method 

outperformed not only those generated by the optimization-based approach but also all samples in the 

initial dataset in terms of closeness to the target. The L-PREP and H-PREP samples from the first iteration 

achieved 75% and 78% accuracy relative to the target (particle sizes = 151 nm and 144 nm, respectively), 
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while the second iteration recipes achieved accuracies of 92% and 98% (118 nm and 104 nm) that 

surpassed the predefined acceptable threshold of 95% closeness to the target. The PREP method’s 

capacity to deliver an optimized solution within just two iterations underscores the method's ability to 

handle dataset expansion rationally, rapidly refine predictions, and adapt to challenging design constraints 

in a highly non-linear system.   

Table 4-2: Measured microgel particle sizes from optimized recipes generated by both the Inversion by Optimization 

(IbO) method and the PREP method relative to the direct model inversion solution (target size = 100 nm). Bolded 

columns represent the data used as the input (MBA, VAA, and SDS) and output (Size) variables for the PREP 

optimization process. 

Sample ID 

MBA 

(mg) 

VAA 

(mg) 

SDS 

(mg) 

Size 

(nm) 

Comments 

Direct Model 

Inversion 

158 33 57 - 

MBA and acid 

content both too 

low 

IbO 1st itr 160 62 65 170  

IbO 2nd itr 160 108 74 - 

Sample showed 

large-scale 

aggregation 

PREP 1st itr (L1) 160 92 91 144  

PREP 1st itr (H1) 160 70 80 151  

PREP 2nd itr (L2) 160 84 134 104  

PREP 2nd itr (H2) 160 101 133 118  

 

4.4.2 Case Study 2: Salt-Stable Polyelectrolyte Complexes 

Polyelectrolyte complexation presents several advantages over other nanoparticle fabrication techniques 

including as rapid self-assembly, relatively simple experimental setup, and the potential to eliminate the 

use of organic solvents [58-60]. Polyelectrolyte complexes (PECs) are particularly beneficial for 

delivering ionic therapeutics, which can either be used directly as a building block for nanoparticle 

assembly (e.g. DNA polyplexes [61, 62]) or as an additive with tunable release based on the ionic 
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interactions between the charged drug and its counterion polymer [63, 64]. However, PECs are 

particularly sensitive to the high ionic strength of physiological fluids due to their reliance on electrostatic 

interactions for both intraparticle stabilization and colloidal stability, both of which can be disrupted at 

high salt concentrations due to charge screening. Thus, identifying PEC formulations with improved 

stability at high ionic strength without compromising either their favorable size for effective circulation (< 

200 nm to avoid splenic filtration [1]) or their capacity to load clinically-relevant concentrations of drug is 

of interest. Given the multiple variables that can influence the size and stability of PECs including the 

molecular weight and charge ratios of the polyelectrolytes, the pH, the ionic strength, and the drug 

concentration [58, 65], identifying a formulation that meets both size and stability requirements typically 

necessitates the fabrication of an extensive library of formulations that lends itself ideally to the 

implementation of optimization models. The specific case study selected involves the combination of 

sulfated yeast beta-glucan (GS, anion, a carbohydrate with known immunomodulatory potential to 

reprogram macrophages away from a pro-fibrotic state toward a pro-inflammatory state [66]) with 

quaternized dextran (Dex, cation) and the cationic chemotherapeutic drug doxorubicin (DOX), with the 

combination of the DOX chemotherapeutic loading plus the immunomodulatory properties of GS offering 

potential benefits for cancer immunotherapy. The target was to achieve initial particle sizes as small as 

possible and a polydispersity index (PDI) below 0.1 following fabrication in low ionic strength buffer and 

a final particle size <200 nm (model target: 170 nm) and PDI <0.2 (model target: 0.15) upon transfer of 

the formed PECs to phosphate buffered saline matching physiological pH and ionic strength. 

• Experimental Details 

 

Materials 

Sulfated yeast beta glucan (glucan sulfate, GS) from S. cerevisiae was prepared as described by Williams 

et al. [67] (Mn = 13.5 kDa, Ð = 5.5, sulfur degree of substitution = 0.33, charge density = 1.54 ± 0.06 

µeq/mg). Cationic dextran (Dex-GTAC) was prepared via functionalization with 
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glycidyltrimethylammonium chloride in the presence of NaOH according to previous methods [68, 69] 

(Mn = 3.7 kDa, Ð = 1.05, nitrogen degree of substitution = 0.50, charge density = 2.09 ± 0.1 µeq/mg). 

Doxorubicin hydrochloride (DOX, 97.8%) was obtained from Millipore Sigma and used as received. 

MilliQ-grade water (>18Ω resistance) was used for all experiments. PBS stocks were prepared from PBS 

tablets (Millipore Sigma) and adjusted to pH 6.5 prior to nanoparticle fabrication. Full-strength PBS (150 

mM ionic strength, 10 mM phosphate ions) was denoted as “1× PBS”, with all other concentrations used 

expressed as a fraction of the full-strength concentration.  

Polyelectrolyte Complex (PEC) Fabrication 

Polyelectrolyte complexes were prepared using a flash nanoprecipitation method, with the recipes 

comprising the initial dataset used for optimization summarized in Table 4-3. GS, Dex-GTAC, and DOX 

were dissolved in PBS prepared at the ionic strength identified in Table 4-3, after which 3 mL of the GS 

solution was loaded into a 6 mL syringe and 3 mL of a 1:1 volume ratio of the Dex-GTAC and DOX 

solutions was loaded into a second 6 mL syringe. The syringes were loaded onto a confined impinging jet 

mixer and co-jetted over ~2-2.5 seconds into a fresh scintillation vial using a pneumatic plunger. The 

resulting PEC suspension was left to stir for 10-15 minutes prior to analysis. Note that all formulations 

followed the same general composition of GS mass ratio > Dex-GTAC mass ratio > DOX mass ratio, 

maintaining a sulfur:nitrogen ratio greater than 1 in each case.   

PEC Characterization 

PECs were characterized for their size and PDI as a function of time and ionic strength using dynamic 

light scattering (Brookhaven NanoBrook 90Plus; Long Island, NY, USA; temperature = 25 °C, N = 5 

technical replicates). Freshly prepared PECs were 0.2 µm syringe filtered into a polystyrene cuvette prior 

to analysis. To assess the formulation’s stability in physiologically relevant ionic strength, the PECs were 

diluted (1:1 v/v) in concentrated PBS to a final ionic strength corresponding to 1× PBS (~ 150 mM ionic 

strength) and analyzed again via DLS. The intensity-averaged effective diameter and PDI were reported 
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as the average of 5 technical replicates.  

 

Table 4-3: Initial dataset of PEC formulations. Bolded columns represent the data used as the input variables 

(assembly solvent as a fraction of full-strength PBS, total precursor concentration added, GS:DOX ratio, and Dex-

GTAC:DOX ratio) and output variables (Size and PDI in 1× PBS) for the PREP optimization process. 

Sample 

ID 

Assembly 

Solvent 

[× PBS] 

Total  

Precursor 

Conc. 

[mg/mL] 

Pre-

Assembly 

GS Conc. 

[mg/mL] 

Pre-

Assembly 

Dex-GTAC 

Conc. 

[mg/mL] 

Pre-

Assembly 

DOX 

Conc. 

[mg/mL] 

GS: 

DOX 

Ratio 

Dex-

GTAC: 

DOX 

Ratio 

Assembly 

Solvent 

1× PBS 

      
  Size 

[nm] 

PDI Size 

[nm] 

PDI 

1 0.5 0.5 0.750 0.200 0.050 15.0 4.0 156 0.11 208 0.11 

2 0.1 0.5 0.750 0.200 0.050 15.0 4.0 109 0.13 362 0.04 

3 0.5 0.75 1.125 0.300 0.075 15.0 4.0 147 0.14 229 0.09 

4 0.1 0.75 1.125 0.300 0.075 15.0 4.0 110 0.14 357 0.08 

5 0.5 1 1.500 0.400 0.100 15.0 4.0 161 0.15 260 0.06 

6 0.1 0.25 0.375 0.100 0.025 15.0 4.0 133 0.18 326 0.11 

7 0.5 0.5 0.750 0.188 0.063 12.0 3.0 146 0.09 217 0.11 

8 0.1 0.5 0.750 0.188 0.063 12.0 3.0 124 0.16 298 0.08 

9 0.1 0.75 1.125 0.281 0.094 12.0 3.0 123 0.19 313 0.05 

10 0.5 1 1.500 0.375 0.125 12.0 3.0 164 0.10 243 0.05 

11 0.1 1 1.500 0.375 0.125 12.0 3.0 124 0.20 744 0.25 

12 0.5 0.5 0.750 0.125 0.125 6.0 1.0 141 0.10 170 0.21 

13 0.5 0.5 0.727 0.182 0.091 8.0 2.0 153 0.03 409 0.12 

14 0.26 0.72 1.119 0.255 0.067 16.7 3.8 113 0.08 142 0.28 

15 0.17 0.83 1.275 0.311 0.074 17.2 4.2 112 0.07 150 0.26 

16 0.2 0.82 1.269 0.292 0.079 16.1 3.7 113 0.11 137 0.21 

17 0.16 0.78 1.206 0.279 0.075 16.0 3.7 116 0.08 141 0.23 

18 0.17 0.53 0.875 0.116 0.068 12.8 1.7 117 0.22 142 0.31 

19 0.1 0.54 0.882 0.130 0.068 12.9 1.9 144 0.23 171 0.21 
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Modeling Preparation, Integration and Iterations 

In the available dataset, the PBS ionic strength (expressed as a ratio of the physiological PBS ionic 

strength), the total polymer concentration, and the GS and Dex-GTAC mass ratios were selected as the 

system's manipulatable parameters. DOX was not included among the manipulatable variables given that 

all GS and Dex-GTAC ratios were defined relative to DOX (DOX = 1) in the key input variables used for 

modeling; as such, the DOX concentration was represented as a normalized variable across all samples. 

Since the objective was to achieve final particle sizes <200 nm and PDI values <0.2 after exposure to 

physiological ionic strength solutions, the 1× PBS column from Table 4-3 was used as the model output. 

Figure 4-6 illustrates how well this target aligns with the existing dataset. While some samples met the 

size requirement, no sample achieved sufficiently low polydispersity; alternately, other samples met the 

polydispersity requirement but failed to achieve the target particle size. As such, the optimization 

approach aimed to identify formulations that satisfied both criteria simultaneously. 

Although four input variables were available for manipulation, an additional constraint was imposed to 

require that samples have a higher GS concentration relative to Dex-GTAC concentration such that the 

nanoparticle surface is GS-rich (to promote nanoparticle/macrophage interactions) and the final net 

charge in the PEC is anionic, key to minimize interactions with proteins in physiological fluids and 

representing a common design criteria for PECs [70-72]. As a result, the number of truly independent 

variables was reduced to three, and the number of PLS components was set to three, and the number of 

nearest neighbors to activate the PREP analysis was A (=3)+2 = 5. Figure 4-6 illustrates all available data 

points and highlights the five nearest neighbors to the target in both the input space (a) and the output 

space (b), with panel (c) representing a zoomed-in version of the area around the target in panel (b). 
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Figure 4-6: Visualization of all available data points along with the five nearest neighbors to the target in the input 

space (a) and output spaces showing all samples (b) and only the nearest neighbors (c) as derived from the pre-

existing dataset summarized in Table 4-3. 

Next, the PREP method was iteratively applied to the dataset following the same structured sequence of 

steps described in Case Study 1 for each iteration: developing PLS and PCA models, generating the PDS, 

optimizing the PREP equation, ranking the PDS, selecting the L-PREP and H-PREP candidates, 

synthesizing the L-PREP and H-PREP recipes, evaluating whether the target was met, and (if necessary) 

updating the list of nearest neighbors before repeating the process until satisfactory experimental results 

were achieved. Given the number of measurable variables and the number of PLS components, the 

dataset had a one-dimensional null space, i.e. there exists a line in the three-dimensional latent space 

along which variations do not affect the predicted Y. All points on this line, provided they satisfy the 

constraint GS mass > Dex-GTAC mass, constitute the PDS and were ranked based on their PREP score. 

The outcomes of PREP implementation for the first two iterations are presented in Figure 4-7. In each 

sub-figure, panel (i) illustrates the limited portion of the null space (NS) that is spanned by the Potential 

Design Space (PDS) within the latent space, panel (ii) displays the results of the PREP equation 

optimization, highlighting the alignment of the validation data points along the optimized trend line 
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according to the calculated PREP scores, and panel (iii) shows the PDS candidates for each iteration 

ranked by their PREP scores; the two selected candidates for experimental synthesis denoted as L-PREP 

(low PREP score, high reliability) and H-PREP (high PREP score, high uncertainty) are clearly indicated 

in the graph and consistently labeled as Lx or Hx where x is the iteration number. The first iteration of the 

model exhibited relatively poor predictive performance near the target output (Figure 4-7(a)), with two of 

the validation data points yielding prediction accuracy values as low as 60%. However, in the second 

iteration (Figure 4-7(b)), model accuracy improved substantially, with the lowest prediction accuracy 

among the validation data points showing a prediction accuracy of 85%. Table 4-4 confirms that the 

optimization objectives were successfully achieved within just two iterations, yielding a particle with a 

size of 171 nm (target <200 nm) and a polydispersity index of 0.19 (target <0.2). Nonetheless, two 

additional iterations (Figure 4-8(a) and 8(b)) were conducted to explore the possibility of further 

improving the dispersity, leading to the synthesis of a more narrowly dispersed PEC with a particle size of 

182 nm and a PDI of 0.15 (Table 4-4) that precisely matched the model’s targeted dispersity value. Note 

that by the fourth iteration (Figure 4-8(b)) even the least accurate validation sample achieved a prediction 

accuracy above 93%, showing the relevance of the PREP method to improve model outputs in minimal 

iterations. It is important to note that conducting the PREP algorithm over another two iterations (Table 

4-4) did not yield further improvements over the best sample obtained in iteration 4 (Sample L4), 

consistent with the high accuracy of the model already achieved at iteration 4 such that additional 

iterations did not offer significant further benefits in model prediction accuracy (Figures S1(a) and S1(b)). 

This behavior is consistent with the probabilistic nature of the PREP algorithm, which while generally 

effective in guiding dataset expansion does not guarantee monotonic performance improvement across 

iterations. As shown in our prior work, the sample rankings based on PREP scores do not always 

correspond directly to prediction accuracy, and in some iterations high PREP score candidates may 

unexpectedly yield better results than low PREP ones (presumably by exploring less explored parts of the 

design space that have higher prediction errors but yield superior performance). This highlights the value 

of PREP’s dual-candidate strategy (L-PREP and H-PREP) while also illustrating the convergence limits 
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of the model once optimal regions of the design space have been sufficiently explored. Collectively, these 

results illustrate PREP’s capacity to efficiently converge on an optimal solution within a constrained 

design space while requiring minimal experimental effort. 

 

Figure 4-7: Results from iteration 1 (a) and iteration 2 (b) of the PREP implementation on PEC optimization. In each 

sub-panel, (i) represents the visualization of the Potential Design Space (PDS) in the latent space, (ii) shows the 

outcome of the PREP equation Results from iteration 1 (a) and iteration 2 (b) of the PREP implementation on PEC 

optimization. In each sub-panel, (i) represents the visualization of the Potential Design Space (PDS) in the latent 
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space, (ii) shows the outcome of the PREP equation optimization demonstrating the alignment of validation data 

points along the optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) 

shows the ranked PDS samples based on their PREP scores with the selected candidates for synthesis (L-PREP - 

highest expected reliability and H-PREP - highest uncertainty used to enhance model refinement) highlighted. 

 

 

 

Figure 4-8: Results from iteration 3 (a) and iteration 4 (b) of the PREP implementation on PEC optimization. In each 

sub-panel, (i) represents the visualization of the Potential Design Space (PDS) in the latent space, (ii) shows the 

outcome of the PREP equation optimization demonstrating the alignment of validation data points along the 

optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) shows the ranked 
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PDS samples based on their PREP scores with the selected candidates for synthesis (L-PREP - highest expected 

reliability and H-PREP - highest uncertainty used to enhance model refinement) highlighted. 

 

 

 

Table 4-4: PEC recipes and particle size results from the iterations generated by PREP model. The sample names 

correspond to either the H-PREP (H) or L-PREP (L) samples synthesized in each iteration (the number) of the PREP 

algorithm.  Bolded columns represent the data used as the input variables (assembly solvent as a fraction of full-

strength PBS, total precursor concentration added, GS:DOX ratio, and Dex-GTAC:DOX ratio) and output variables 

(Size and PDI in 1× PBS) for the PREP optimization process. 

Sample 

ID 

Assembly 

Solvent 

[× PBS] 

Total 

Precursor 

Conc. 

[mg/mL] 

Pre-

Assembly 

GS Conc. 

[mg/mL] 

Pre-

Assembly 

Dex-

GTAC 

Conc. 

[mg/mL] 

Pre-

Assembly 

DOX 

Conc. 

[mg/mL] 

GS: 

DOX 

Ratio 

Dex-

GTAC: 

DOX 

Ratio 

Assembly 

Solvent 

1× PBS 

        

Size 

[nm] 

PDI 

Size 

[nm] 

PDI 

L1 0.18 0.40 0.625 0.102 0.073 8.6 1.4 121 0.23 178 0.34 

H1 0.13 0.86 1.341 0.309 0.070 19.1 4.4 105 0.14 126 0.23 

L2** 0.50 0.88 1.257 0.274 0.229 5.5 1.2 97 0.21 171 0.19 

H2 0.46 0.88 1.178 0.447 0.135 8.7 3.3 96 0.06 131 0.24 

L3 0.30 0.83 1.273 0.306 0.081 15.8 3.8 94 0.02 125 0.27 

H3 0.76 0.66 0.924 0.066 0.330 2.8 0.2 108 0.25 118 0.4 

L4** 0.10 0.80 1.060 0.353 0.186 5.7 1.9 111 0.02 182 0.15 

H4 0.13 0.94 1.436 0.368 0.075 19.1 4.9 93 0.09 126 0.23 

L5 0.10 0.65 1.000 0.250 0.050 20.0 5.0 106 0.10 131 0.25 

H5 0.10 0.71 1.061 0.300 0.060 17.7 5.0 126 0.11 166 0.20 

L6 0.59 0.65 1.128 0.120 0.052 21.6 2.3 108 0.25 105 0.39 

H6 0.33 0.51 0.862 0.128 0.030 29.0 4.3 81 0.18 104 0.51 

** Best performing samples 
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Figure 4-9 illustrates the outcomes of each iteration alongside the initial nearest neighbors from the pre-

existing dataset in the output space, highlighting the proximity of each iteration result to the target. 

Notably, while the L2 (second iteration L-PREP) sample significantly outperformed all other samples in 

the dataset (i.e. was positioned closer to the target within the output space), the third iteration H-PREP 

and L-PREP samples both significantly underperformed the initial nearest neighbor samples; however, 

extending the iterations for one more cycle resulted in the L4 formulation that improved on the 

performance of L2. This example shows that the aggressiveness of the PREP method in terms of revising 

the number of nearest neighbor and thus “historical” samples in each iteration can lead to some significant 

iteration-to-iteration variability but ultimately converges faster on a recipe with target properties. Of note, 

the optimized L4 recipe resulted in a DOX encapsulation efficiency and loading capacity of 31% and 2.3 

wt%, respectively; while this result represents a modest encapsulation efficiency, the loading capacity is 

significant and the potent nature of DOX (IC50 values in the micromolar/nanomolar range [73, 74]) is 

relevant for practical chemotherapeutic use. Furthermore, if additional optimization of the DOX content 

within these PECs is desirable, the PREP method may be applied to the same system while adding DOX 

loading as an additional target property.  
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Figure 4-9: Assessment of iteration results relative to the target particle size and polydispersity expressed relative to 

(a) the actual output space and (b) the proximity of each datapoint to the target size. 

Relative to the first case study, this case presented additional challenges associated with a greater number 

of output variables, a lower degree of freedom in the null space (1D compared to 2D in the first case 

study), and the need to optimize properties that were not intrinsic to the initially synthesized particles but 

instead emerged after their introduction into a higher ionic strength solution. The successful 

implementation of PREP in this complex scenario further underscores its potential for handling high-

dimensional systems with greater complexity. 

4.5 Discussion 

The implementation of the PREP method for nanoparticle size control demonstrates its strong potential as 

a data-driven optimization tool in scenarios in which existing datasets are limited in their coverage of the 

desired output space. One of the most notable strengths of PREP observed in this work is its ability to 

extrapolate beyond the bounds of the original dataset while preserving the fundamental correlations 

inherent to the system. This capability is especially valuable in nanoparticle design, in which the 

empirical design space defined by available experimental data may not sufficiently explore the parameter 
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space associated with more challenging design targets. For example, in Case Study 1, despite no sample 

in the initial dataset having a size below 170 nm within the targeted crosslinker/acid concentrations, PREP 

successfully leveraged the underlying statistical structure of the data to suggest a formulation that resulted 

in a microgel significantly smaller than any previously observed sample. A similar advantage was 

observed in Case Study 2, in which the initial dataset included samples that met one of the low particle 

size or low polydispersity index design criteria but not both; PREP was able to identify and prioritize 

formulations that bridged this gap, producing nanoparticles that simultaneously satisfied both the size and 

polydispersity targets in only two iterations. As such, the PREP method has clear utility not just in 

optimizing within known boundaries but also in directing the evolution of the dataset toward previously 

unexplored but desirable regions of the output space. In particular, while previously published work has 

focused primarily on forward modeling approaches (i.e. developing models to predict particle size or 

other properties based on known input variables), the PREP method offers improved predictive 

performance when inverting the problem (i.e. suggesting new formulations dissimilar to the training data 

but that can yield specific desired outputs), particularly under data-limited conditions. 

The iterative feedback structure of PREP is also highly advantageous in that it allows the PREP method to 

rapidly incorporate new data and revise its predictions, offering an efficient means of dataset expansion 

with each iteration contributing meaningful directional insight. These results suggest that PREP is 

particularly well-suited to systems in which the relationships among input variables are complex, the 

output space is multidimensional, and the design goals are not fully represented in the initial data. More 

specifically, the second case study presented additional challenges due to a higher number of output 

variables, reduced flexibility in the null space, and the need to optimize properties that emerged only after 

the particles were introduced into physiological conditions, all challenges that were successfully 

navigated by the PREP algorithm. 

The success of PREP in these studies highlights its potential as a transformative tool for nanoparticle 

design and optimization. By leveraging data-driven modeling, PREP offers a systematic approach to 
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refining synthesis protocols, reducing resource-intensive trial-and-error processes, and ensuring precise 

control over key material properties. Note that while the case studies described here in focus only on 

particle size optimization for two types of systems (covalently-crosslinked microgels and polyelectrolyte 

complexes), we expect the underlying PREP framework to be broadly applicable optimizing the size or 

other property of other types of nanoparticle systems in which the experimental design variables (inputs) 

and measured properties (outputs) can be organized into well-defined multivariate X and Y blocks 

respectively. Moving forward, the application of PREP to datasets with an even higher degree of input 

and output complexity remains an open avenue for exploration, presenting opportunities to further extend 

its impact across a broader range of nanoparticle engineering challenges. 

4.6 Conclusions 

The Prediction Reliability Enhancing Parameter (PREP) method was successfully applied to streamline 

the synthesis and optimization of nanoparticles with precise size and size distribution characteristics. 

Across two distinct case studies involving very different types of nanoparticles and nanoparticle 

fabrication methods (precipitation polymerization of dual pH- and temperature-responsive microgels and 

physical self-assembly of polyelectrolyte complex nanoparticles), PREP effectively achieved target size 

and/or polydispersity properties in just two iterations while achieving highly accurate results under 

complex design constraints, overcoming the limitations of traditional approaches that consistently failed 

to reach the desired size. As such, the application of PREP offers significant potential to address other 

types of nanoparticle optimization challenges and other complex materials design challenges, leveraging 

its demonstrated reliability in high-dimensional optimization problems. 
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4.8 Supporting information of last chapter 

The following figure provides the PREP optimization results for Iterations 5 and 6 of the second case 

study (PEC formulation), which are referenced in the main text but have been included here for 

completeness and to support the discussion of convergence behavior in later iterations. 
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Figure S1. Results from iteration 5 (a) and iteration 6 (b) of the PREP implementation on PEC optimization. In 

each sub-panel, (i) represents the visualization of the Potential Design Space (PDS) in the latent space, (ii) shows 

the outcome of the PREP equation optimization demonstrating the alignment of validation data points along the 

optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) shows the ranked 

PDS samples based on their PREP scores with the selected candidates for synthesis (L-PREP - highest expected 

reliability and H-PREP - highest uncertainty used to enhance model refinement) highlighted. 
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Chapter 5 

5 Conclusions and Recommendations for Future Works  

 

The main focus of this thesis was to address the challenges associated with model development over 

limited-sample datasets that exhibit high complexity and intricate relationships among variables. Solving 

these challenges has direct applications in formulation optimization, product design, and any batch dataset 

scenario for which historical data is available and the goal is either to understand how the system works 

or achieve a targeted final outcome. Specifically, this thesis aimed to enhance model prediction accuracy 

for small datasets and introduced a novel metric that consolidates multiple evaluation parameters into a 

single, unified score. This score helps in decision-making and guides dataset expansion towards 

identifying the optimal solution. In this chapter, we will summarize the key contributions of the thesis, 

highlighting the methodologies and experimental validations, and propose potential future research 

directions. 

5.1 Conclusions 

In Chapter 2, a novel approach was developed by coupling Partial Least Squares (PLS) modeling with 

data clustering to enhance the consistency of the LVM calibration dataset and, in turn, improve model 

predictions. The clustering of samples based on their similarities in input variables (X), output variables 

(Y), or a combination of both was explored. The results showed that this clustering approach offered 

advantages over traditional non-clustered PLS models. When applied to a real experimental case—

predicting the properties of dual-responsive microgels—two new experimental samples were synthesized 

whose formulation recipes fell within the reliable prediction zone (green region) defined by the clustered 

model. The predicted swelling profiles for these samples were in strong agreement with the measured 

experimental outcomes, providing clear evidence that the model was both predictive and reliable for 

practical design scenarios. This clustering-based approach thus holds potential to replace the time-
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consuming trial-and-error methods currently used in product design, offering a more efficient pathway to 

achieving specific target properties. 

In Chapter 3, a new methodology called the Prediction Reliability Enhancing Parameter (PREP) was 

introduced to improve the identification of samples that yield more reliable predictions compared to 

alternative candidates by expediting the process of identifying the Design Space (DS). By applying PREP 

iteratively, we were able to achieve much faster convergence toward the optimal solution compared to 

conventional methods based on simulated and highly non-linear data sets. The efficiency of this approach 

proved especially beneficial in scenarios in which quick DS identification is essential and/or sample 

preparation is costly and time-consuming. A key advantage of PREP lies in its ability to optimize the 

allocation of experimental resources by reducing the number of required iterations, thus minimizing 

material and operational expenses. This method is versatile and can be applied to datasets of any 

dimensionality. 

Finally in Chapter 4, the PREP method was effectively employed to optimize the synthesis of 

nanoparticles with precise control over particle size and size distribution. The approach was tested in two 

distinct case studies, each involving different nanoparticle types and fabrication techniques: the 

precipitation polymerization of dual-responsive microgels and the physical self-assembly of 

polyelectrolyte complex nanoparticles. In both cases, PREP successfully achieved the desired particle size 

and polydispersity characteristics within just two iterations, delivering highly accurate results under 

challenging design constraints that led to traditional methods failing to achieve the target size. The 

successful application of PREP in these nanoparticle design scenarios demonstrates its strong potential for 

addressing a wide range of complex optimization problems in materials design, particularly in high-

dimensional spaces. 
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5.2 Future Works 

The findings of this research open several avenues for future investigation.  

• One promising direction for future research is the integration of fuzzy clustering with PLS 

models. In some cases, general rules may apply within specific clusters while other rules might 

hold true across all clusters. Fuzzy clustering allows for the relative inclusion of information from 

multiple clusters, offering potential advantages over traditional methods that disregard such 

relationships. There are two possible approaches for implementing fuzzy clustering within the 

PLS framework. The simpler approach involves developing PLS models based on the already 

introduced cluster-based PLS method in Chapter 2 and using fuzzy clustering to determine the 

degree of membership of a new observation. The model prediction for the new data point would 

then be weighted according to its membership in each cluster. Alternatively, a more complex 

approach could involve developing PLS models for each cluster using all available data, weighted 

by their respective membership values. This approach allows each cluster’s model to incorporate 

broader information, enhancing its expertise within its specific domain and potentially improving 

overall prediction accuracy. 

• Another promising avenue for future work involves integrating propensity models with 

conventional PLS approaches, such as Bayesian PLS, to account for model parameter uncertainty. 

Incorporating this uncertainty into the existing PREP equation could further enhance decision-

making by providing a more comprehensive evaluation of prediction reliability. This approach 

would require the development of multiple PREP equations, each corresponding to different 

levels of model parameter variance. By applying these varied PREP equations to the members of 

the potential design space, it would be possible to identify the samples with both lower PREP 

scores and more robust uncertainty estimates, thereby enabling more informed and reliable 

choices for experimental exploration. 
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• An additional avenue for future research involves the incorporation of nonlinear and kernel-based 

techniques, such as Kernel PLS and Kernel PCA, into the PREP methodology. These techniques 

are particularly well-suited for systems characterized by higher complexity or higher-dimensional 

datasets. Traditional PLS, as a linear regression-based model, often struggles to capture inherent 

nonlinear patterns present in the data. By integrating nonlinear methods at the core of the PREP 

framework, it may become possible to reveal and model these complex relationships more 

effectively. This extension would expand the applicability of the PREP method, enabling its use 

in a broader range of systems in which nonlinearities play a crucial role. Furthermore, this 

approach could improve the accuracy and robustness of predictions in high-dimensional settings, 

potentially opening new avenues for the application of PREP in diverse industries such as 

materials science, biotechnology, and beyond. 

• The last promising avenue for future work is the extension of the PREP methodology to 

incorporate a three-block data structure that includes not only the traditional blocks of input 

variables (X) and response variables (Y) but also a third block representing the system's state, 

such as initial conditions. This structure is particularly relevant in many fields such as 

personalized medicine in which the state of the system (e.g. a patient's initial condition) plays a 

critical role in determining the optimal intervention. For example, in pharmaceutical applications, 

patient-specific data (S) can be used to determine the most appropriate drug dosage (X) needed to 

achieve the desired therapeutic outcome (Y). By adapting the PREP method to handle this three-

block structure, PREP could then evaluate not only how the system responds to changes in input 

variables but also how the initial state conditions impact the outcome. Such an advancement 

would expand the utility of PREP in personalized healthcare, enabling more accurate and tailored 

drug dosage recommendations that could improve patient treatment plans and enhance overall 

therapeutic efficacy. 
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