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Abstract

Large Language Models (LLMs) have shown advanced capabilities across various fields.
However, using these models out of the box, especially in specialized domains like
chemistry, often leads to issues such as context limitations, hallucinations, difficulty
updating their parametric knowledge, and unclear sources for generated responses.
To tackle these challenges, Retrieval-Augmented Generation (RAG) enables language
models to use external knowledge sources during inference, improving factual accuracy
and allowing dynamic knowledge retrieval without costly retraining. A critical
part of any RAG system is the text embedding model, which searches for the
most relevant documents in a knowledge base given a query. However, standard
embedding models trained on general datasets perform poorly in chemistry because
of the field’s unique vocabulary, specialized terms, and complex semantics. This
thesis introduces the Chemical Text Embedding Benchmark (ChemTEB), designed
specifically to evaluate embedding models on chemical tasks. ChemTEB systematically
measures models’ performance, clearly identifying their strengths and weaknesses
when handling chemistry-related texts. Using insights from ChemTEB, we developed
ChEmbed, a family of text embedding models fine-tuned specifically for chemistry. To
achieve this, we gathered domain-specific text from chemistry research articles and
public resources. We then generated synthetic queries for these texts using LLMs,
creating realistic query-passage pairs for training. This approach effectively addresses
issues of limited data availability and improves the model’s ability to represent
chemistry-specific language. Additionally, we introduced a new domain-specific
tokenizer that efficiently integrates chemical terms into an existing pretrained model,
enhancing the accuracy of text representations. Together, ChemTEB and ChEmbed
offer the first domain-adapted solution for chemical text retrieval, overcoming the
performance limitations of general embedding models. This contributes to more
accurate and interpretable Al-based chemical research and discovery. Although the
focus here is chemistry, the methods can serve as a practical framework for adapting
embedding models to other specialized fields.

111



Acknowledgements

First and foremost, I would like to extend my sincere gratitude to my supervisor,
Dr. Hamidreza Mahyar, for their invaluable guidance, unwavering support, and
exceptional mentorship throughout my academic journey. Their thoughtful advice and
continuous encouragement have shaped my academic perspective and opened doors to
numerous research opportunities, enriching my understanding of the field.

[ am deeply thankful to Dr. Soheila Samiee from BASF Canada, whose insightful
feedback and valuable suggestions significantly contributed to shaping this research.
Their practical perspectives provided clarity and enhanced the quality of my work.

My appreciation also goes to my colleagues and fellow lab members for their stimulating
technical discussions and insightful exchanges, which continuously inspired and refined
my ideas.

I am grateful to McMaster University for fostering an excellent academic
environment that has encouraged my learning, personal growth, and research
development.

Special thanks to the Digital Research Alliance of Canada and BASF Canada
for providing essential computational resources; this research would not have been
possible without their generous support. This research was also funded by Mitacs
through grant 1'T32409.

Finally, my deepest gratitude goes to my family: my mother, father, brother, and
my partner, whose unwavering emotional support and encouragement have been
instrumental in my academic journey.

To all individuals and institutions mentioned, and others who supported this endeavour
in any way, thank you. Without your contributions, guidance, and encouragement,
this work would not have been achievable.

v



Table of Contents

Abstract iii
Acknowledgements iv
Notation and Abbreviations ix
Declaration of Authorship xiii
1 Introduction 1
2 Background and Related Work 7
2.1 Traditional Information Retrieval . . . . . . .. ... ... ... ... 7
2.2 Transformers . . . . . . . . .. ... 16
2.3 Self-Supervised Learning . . . . . . . . .. ... L. 22
2.4 Text Embedding Models . . . . . . ... ... .. ... ... 26
2.5 Retrieval Evaluation Metrics . . . . . . . .. .. ... ... .. .. .. 34
2.6 Synthetic Data Generation . . . . . . . . . ... ... ... .. .. .. 37
2.7 Retrieval-Augmented Generation . . . . ... .. ... ... ... .. 38
2.8 NLP & Text Embedding Benchmarks . . . . . . ... ... ... ... 40
2.9 Domain Specific Models in Chemistry . . . . . .. .. ... ... ... 42
2.10 Architectural Improvements . . . . . . . . ... ... L. 45
2.11 Tokenizer Domain-Adaptation . . . . . . ... .. ... .. ... ... 55
3 Chemical Text Embedding Benchmark 57
3.1 Introduction . . . . . . . . .. ... 59
3.2 ChemTEB . . . . .. . . .. 60
3.3 Results. . . . . . 64
3.4 Conclusion . . . . . . . . 72
4 Chemical Text Embedding Models 76
4.1 Introduction . . . . . . . . ... 78



4.2 Dataset Construction . . . . . . . . . . . . 79

4.3 Model Architecture and Domain Adaptation . . . . . . .. ... ... 81
4.4 Experiments & Results . . . . . . .. ... oL 84
Conclusion 91
5.1 Problem Restatement . . . . . . . . . . ... ... ... ... 91
5.2 Contributions . . . . . . . . ... 91
5.3 Key Findings . . . . . . . .. 93
5.4 Limitations . . . . . . . . e 94
5.5 Future Research Ideas . . . . . . . . . . . . . . .. ... ... .... 95

vi



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3

Bi-encoders vs cross-encoders . . .. ... 15
From vanilla encoder-decoder to attention . . . .. .. .. ... ... 17
Transformer architecture . . . . . . . . . ... ... 19
Scaled dot-product attention and multi-head attention . . . . . . .. 21
SimCLR architecture . . . . . . .. ... .. ... .. ... ...... 25
A retrieval augmented generation pipeline . . . . ... ... ... .. 40
Performance distribution by model family . . . . ... ... ... .. 69
Model efficiency overview . . . . . . . . ... .o L 70
Performance comparison of models on ChemTEB and MTEB . . . . . 72
Correlation Matrix across datasets . . . . . ... ... .. ... ... 74
Correlation Matrix over Models . . . . . . . ... ... .. ... ... 75
Overview of the ChEmbed pipeline . . . . .. ... ... ... .... 81
Efficiency of models on ChemRxiv Retrieval . . . . .. .. ... ... 86
Analysis of model checkpoints from each epoch . . . . . . . ... ... 90

Vil



List of Tables

3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
4.5
4.6

Summary of the ChemTEB datasets . . . . ... ... ... ..... 63
Embedding models used in ChemTEB . . . .. ... ... ... ... 65
Overview of model performance on ChemTEB . . . . .. ... .. .. 66
Summary of model ranks on ChemTEB . . . . .. ... ... ... .. 67
Average evaluation time per task . . . . .. .. ... 68
Summary of datasets used for training and evaluation . . . . . . . .. 79
ChemVocab vs. general tokenizer . . . . .. ... ... ... ..... 83
Performance of embedding models on ChemRxiv Retrieval task . . . 85
Retrieval performance on ChemRxiv for different tokenization strategies 87
Performance comparison on ChemTEB and MTEB . . . . ... ... 88
Retrieval results on different benchmarks . . . . . .. ... ... ... 89

Viil



Notation and Abbreviations

Al
AMP
ANN
API
AVocaDo
BEIR
BERT
BGE
BLUE
BoW
BPE
CBOW

CHEMDNER

ChEMU
ChemTEB
CLUE
CNN

CPC

Artificial Intelligence

Automatic Mixed Precision

Approximate Nearest Neighbour

Application Programming Interface

Adapt the Vocabulary to Downstream Domain
Benchmarking Information Retrieval
Bidirectional Encoder Representations From Transformers
BAAI General Embedding

Biomedical Language Understanding Evaluation
Bag-of-Words

Byte Pair Encoding

Continuous Bag-of-Words

Chemical Disease/Drug Named Entity Recognition
Chemical Information Extraction

Chemical Text Embedding Benchmark

Chinese Language Understanding Evaluation
Convolutional Neural Networks

Contrastive Predictive Coding

1X



DPR
DSSM
FFN
GloVe
GLU
GLUE
GPT
GPU
GROBID
GTE
HBM
InfoNCE
IR
IUPAC
KDE
K-NRM
LLM
LoCo
LSTMs
LTR
MAE
MAP
MLM
MLP

Dense Passage Retriever

Deep Structured Semantic Model
Feed-Forward Network

Global Vectors For Word Representation
Gated Linear Units

General Language Understanding Evaluation
Generative Pretrained Transformer
Graphics Processing Unit

GeneRation Of Blbliographic Data
General Text Embeddings
High-Bandwidth Memory

Noise Contrastive Estimation

Information Retrieval

International Union Of Pure And Applied Chemistry

Kernel Density Estimation
Kernel-based Neural Ranking Model
Large Language Model
Long-Context Benchmark

Long Short-Term Memory Networks
Learning-to-Rank

Masked Autoencoders

Mean Average Precision

Masked Language Modeling

Multi-Layer Perceptron



MoE
MRL
MRR
MSE
MTEB
nDCG
NER
NLI
NLP
NQ
NSP
NTK
NT-Xent
PDF

PI
PUG
RAG
RetroMAE
RLHF
RNN
RoPE
RRF
S20RC
SBERT

Mixture of Experts

Matryoshka Representation Learning
Mean Reciprocal Rank

Mean Squared Error

Massive Text Embedding Benchmark
Normalized Discounted Cumulative Gain
Named Entity Recognition

Natural Language Inference

Natural Language Processing

Natural Questions

Next Sentence Prediction

Neural Tangent Kernel

Normalized Temperature-scaled Cross-Entropy Loss
Portable Document Formats

Position Interpolation

Power User Gateway
Retrieval-Augmented Generation
Retrogressive Masked Auto-Encoder
Reinforcement Learning From Human Feedback
Recurrent Neural Networks

Rotary Position Embeddings

Reciprocal Rank Fusion

Semantic Scholar Open Research Corpus

Sentence-BERT

x1



SDS
SELFIES
SMILES
SRAM
SSL

STS
TF-IDF
XGLUE
XTREME
YaRN

Safety Data Sheets

Self-Referencing Embedded Strings

Simplified Molecular-Input Line-Entry System

Static Random-Access Memory

Self-Supervised Learning

Semantic Textual Similarity

Term Frequency-Inverse Document Frequency

Cross-lingual General Language Understanding Evaluation
Cross-lingual TRansfer Evaluation of Multilingual Encoders

Yet another RoPE extensioN

xii



Declaration of Authorship

I, Ali Shiraee Kasmaee, hereby declare that the work titled ” Domain-Specific Text
Embedding Models for Information Retrieval” is the result of my own efforts and
contributions.

This thesis includes material from two co-authored works that have been submitted
or published.

1. Chapter 3: A. Shirace Kasmaee, M. Khodadad, M. Arshi Saloot, N. Sherck,
S. Dokas, H. Mahyar, and S. Samiee. ChemTEB: Chemical text embedding
benchmark, an overview of embedding models performance & efficiency on a
specific domain. In Proceedings of the 4th NeurIPS Efficient Natural Language
and Speech Processing Workshop, PMLR 262:512-531, 14 Dec 2024.

2. Chapter 4: A. Shiraee Kasmaee, M. Astaraki, M. Khodadad, M. A. Saloot, N.
Sherck, H. Mahyar, and S. Samiee. Chembed: Enhancing chemical literature
search through domain-specific text embeddings. arXiv:2508.01643, 2025.

For each of these chapters, a statement of authorship and division of labour is
provided at the chapter opening. The versions here include formatting and editorial
changes.

Xlil



Chapter 1

Introduction

Natural Language Processing (NLP) is an interdisciplinary field at the
intersection of artificial intelligence, computer science, and computational linguistics,
enabling computers to process, comprehend, and generate human language. Its
core aim is to bridge the communication gap between humans and machines by
transforming unstructured linguistic data into structured information for diverse
applications. Early NLP relied on rule-based methods, where language behaviour was
encoded via handcrafted grammars and heuristics. Notable examples include ELIZA
[192], which simulated dialogue through pattern matching, and SHRDLU, which
introduced a “blocks world” interface where users manipulated objects via natural
language commands. These systems, however, relied on manually defined rules, making
them labour-intensive and poorly suited to handling real-world variability. In the 1980s
and 1990s, statistical approaches [110] emerged, driven by the growing availability
of text corpora. Models such as the IBM translation systems [20] learn linguistic
patterns from data rather than relying on explicit rules. These methods powered
tasks such as machine translation, part-of-speech tagging, and sentiment analysis;
yet, they still struggled with long-range dependencies, deep context, and semantic
nuance, treating words largely as isolated units [59]. Such limitations underscored
the need for better representations, setting the stage for neural approaches. The
deep learning revival of the early 2010s reshaped NLP. Inspired by AlexNet’s [91]

success on ImageNet [11] and advances in GPU computing, researchers applied neural
networks to language [34, 12]. Recurrent Neural Networks (RNNs) [15], particularly
Long Short-Term Memory networks (LSTMs) [67], have proven effective in modelling

text as a sequence and capturing longer dependencies than statistical models. At the
same time, distributed word representations (word embeddings) such as Word2Vec
[111] and GloVe [131], enabled dense, semantically rich encodings that surpassed
bag-of-words [153] and n-gram schemes [160]. While recurrent architectures such as
RNNs and LSTMs improved representational power, they compute one token at a time.
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Each step depends on the previous one, which prevents parallelization across time and
slows training and inference, and they still struggle with long-range dependencies [11].
These challenges ultimately motivated the search for architectures that could handle
longer context more efficiently.

Two key drawbacks of recurrent models, difficulty in modelling long-range
dependencies and the lack of parallel computation, motivated researchers to explore
alternatives. This effort led to the introduction of the Transformer architecture,
as described in Attention Is All You Need [180]. At its core, the self-attention
mechanism enables the model to focus on any part of a sequence, regardless of position,
while processing all tokens in parallel with simple feed-forward layers, rather than
recurrent units. The original Transformer, designed for machine translation, used an
encoder-decoder layout; its strong results quickly encouraged the community to adopt
and refine the idea. Encoder-only variants, most notably BERT [13] and RoBERTa
[106], excelled at classification, sentiment analysis, and named entity recognition, while
decoder-only models such as the GPT family [139, , 21] and the Llama family
[177, , 55] demonstrated powerful generative ability. Continuous improvements on
these foundations have produced the large language models that dominate modern
NLP research and applications today.

Large Language Models (LLMs) then quickly became influential artificial
intelligence tools. They are built as unidirectional, autoregressive Transformers:
at each step, the model considers only the preceding tokens and selects the next one
according to a learned probability distribution. At each step, the model estimates a
probability distribution over all possible next tokens, conditioned on the preceding
context, and selects the most likely token. [I39]. They are first pretrained on
massive text corpora, growing from GPT-1's 985 million words to GPT-2’s tens
of billions of tokens and GPT-3’s hundreds of billions, with modern models such
as LLaMA 3 trained on up to 15 trillion tokens [55]. A pivotal discovery was that
these autoregressive models could perform a wide range of tasks without explicit
fine-tuning: GPT-2 exhibited strong zero-shot abilities across diverse NLP benchmarks
[110], and GPT-3 further showcased robust few-shot learning, mastering new tasks
from just a few in-context examples and often matching fully fine-tuned systems
without requiring gradient updates [21]. As a result, LLMs now support sophisticated
classification, summarization, coding assistance [28], and complex agentic workflows
involving planning and tool use [205, 156]. This versatility enables domain-specific
applications, accelerates scientific discovery [168, , ], supports decision-making
in finance, and encourages innovation in various industries.
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Retrieval-Augmented Generation Large Language Models (LLMs), though
powerful, have built-in limitations due to their design, mainly their dependence
on “parametric memory”, where knowledge acquired during training is stored within
the model’s parameters. [110, |. This means their knowledge is limited to the data
they were trained on, making them unable to access or reason about new information
or events that happened after training without external sources. As a result, LLMs
often “hallucinate”; they produce answers that sound convincing but are wrong or
meaningless, particularly when questions go beyond what they “know”. Instead of
relying on up-to-date and reliable sources, they use their built-in parametric memory
to address queries. This presents a significant challenge in cases where it is crucial to
feed them new or completely fresh information [70]. While fine-tuning is an option, it
is often a complex and resource-intensive task for general users; for instance, training
a 175 billion version of the GPT-3 model with a single V100 NVIDIA GPU takes
approximately 288 years [120]. One effective approach to address these limitations
is Retrieval-Augmented Generation (RAG), which allows new knowledge to be
provided to the LLM as part of its input context rather than through retraining [99].
RAG enhances LLMs by enabling them to access external knowledge sources, making
them more robust, reliable, and less prone to hallucination. A RAG pipeline typically
involves using a query to search an existing external knowledge base; the most relevant
pieces of information are then retrieved and augmented with the original input query,
creating a richer, fact-grounded context for the LLM to generate its response.

Text Embedding Models One of the most essential components in a
Retrieval-Augmented Generation (RAG) pipeline is a text embedding model,
which determines how accurately the system retrieves relevant documents in response
to a query. These models convert text into dense, high-dimensional numerical
representations, allowing semantic similarity between texts to be efficiently measured
using metrics like cosine similarity [1415, 185]. Unlike encoder-based models, which
are trained with masked language modelling objectives [13], text embedding models
are typically built upon pretrained encoders and further trained using Contrastive
Learning [1206]. This training paradigm encourages the model to generate similar
embeddings for semantically related texts and distinct embeddings for unrelated ones,
effectively capturing the semantic essence of the sequences. Beyond their role in RAG
systems, text embedding models are versatile tools applicable to various search-based
tasks, including web and patent retrieval, recommendation systems, and tasks like
classification and clustering that benefit from contextual vector representations.

Domain Gap Chemical sciences feature a unique and complex language,
characterized by specialized nomenclature systems such as IUPAC, SMILES, and
SELFIES, as well as detailed descriptions of reactions and experimental conditions.
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These domain-specific terminologies and representations are rarely found in the
general or web-scale corpora typically used to train general language models. Although
attempts have been made to adapt encoder-based transformer models to chemical
data [10, 57, 31], these models are typically not trained with contrastive objectives,
and as a result, often exhibit suboptimal performance in tasks that require semantic
understanding, such as information retrieval within chemical contexts. Moreover,
there is a significant gap in open-source embedding models specifically designed
for chemical text, as well as an absence of publicly available datasets suitable for
training or fine-tuning such models. Although benchmarks like the Massive Text
Embedding Benchmark (MTEB) [118] are available to evaluate text embedding
models across general tasks and specific domains, such as medicine and law, no
specialized benchmark exists for assessing the performance of text embedding
models on chemical literature. To fill these gaps, this thesis presents ChemTEB,
a benchmark designed to evaluate text embedding models on chemical tasks [161],
and introduces the ChEmbed family of chemical-specific text embedding models
[165]. These contributions aim to provide insights into domain adaptation and
dataset construction, with methodologies that can be generalized to other specialized
disciplines.

Contributions This thesis advances the field of chemistry information retrieval
through the development and evaluation of domain-specific embedding models and
benchmarks. The key contributions of this work are as follows:

1. Evaluation Benchmarks for Chemistry: Developed a comprehensive suite
of evaluation tasks for chemistry information retrieval, including: (a) ChemTEB,
a Chemical Text Embedding Benchmark designed to assess the performance
of open-source and proprietary general text embedding models on a broad set of
chemistry-specific NLP tasks, and (b) ChemRziv Retrieval, a literature-centric
evaluation task explicitly tailored for information retrieval in chemical texts,
closely aligned with real-world use cases in scientific research.

2. Scalable Synthetic Data Generation Framework: Designed a robust and
scalable framework for generating high-quality synthetic query-passage pairs
from raw chemical paragraphs, leveraging large language models to overcome the
scarcity of annotated data necessary for training domain-specific text embedding
models.

3. ChEmbed Model: Introduced ChEmbed, the first text embedding model
specifically trained and optimized for retrieval-augmented generation (RAG)
pipelines and chemical literature retrieval, addressing the unique challenges
posed by chemical scientific language.
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4. Tokenizer Adaptation for Chemistry: Proposed and validated a

practical tokenizer adaptation approach, augmenting the model’s vocabulary
with chemistry-specific tokens, leading to enhanced capacity to capture
domain-specific nuances such as IUPAC nomenclature and chemical identifiers.

Thesis Organization This thesis is structured into six chapters as follows:

1.

Chapter 1: Introduction

Introduces the motivation, objectives, and scope of the thesis, outlining the
challenges of domain-specific information retrieval in chemistry and presenting
the main contributions of the work.

Chapter 2: Background and Related Work

This chapter begins with the general information-retrieval problem and illustrates
how early lexical methods attempted to address it. It then follows a gradual
improvement: first with weighting schemes, then with learning-to-rank ideas, and
finally with neural retrievers, which are now replaced by dense text-embedding
models. After that, the chapter introduces contrastive learning as the primary
method for training these models and briefly presents the transformer refinements
that enhance their speed and accuracy. The chapter concludes by summarizing
the primary benchmarks used to evaluate embedding quality and reporting the
most relevant language models that have already been adapted for chemical
text.

Chapter 3: ChemTEB; evaluation text embedding models in
chemistry

Presents the ChemTEB benchmark, a comprehensive suite of chemistry-specific
evaluation tasks. This chapter systematically evaluates the performance of
general-purpose text embedding models across these tasks, providing an in-depth
analysis of their strengths and limitations within the chemical domain.

Chapter 4: ChEmbed; domain-specific text embeddings model for
chemistry information retrieval

Details the development of ChEmbed, including data preparation (gathering
raw chemical text from multiple sources and preprocessing it), synthetic query
generation, model training, and tokenizer adaptation. This chapter also presents
experimental results benchmarking ChEmbed against baselines and analyzes its
performance in realistic chemical retrieval scenarios.

Chapter 5: Discussion and Conclusions
Summarizes the key findings of this work, discusses challenges, limitations,
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and lessons learned, and outlines promising directions for future research in
domain-specific text embedding models.
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Chapter 2

Background and Related Work

2.1 Traditional Information Retrieval

Information Retrieval (IR) involves finding relevant information in large datasets. Early
IR methods were based on lexical matching (using keywords and term frequencies),
while later approaches moved to semantic matching with learned representations. This
section provides a theoretical background, covering both classical IR methods to the
first generation of neural retrieval ones.

2.1.1 Definitions

In information retrieval, a document is a piece of text (such as an article) found in a
collection of documents D. A query g is the search input of one or more words that a
user provides, which describes what they are looking to find. The IR system aims to
retrieve a ranked list of documents d € D that are relevant to the query, documents
that contain the information the user is looking for. In formal terms, relevance refers
to evaluating how well a document’s content addresses the query, typically using a
binary (e.g., relevant / not relevant) or graded/ordinal (e.g., 0-3, 0-5) scale, which are
the most common forms in IR [I11]. Other formulations also appear, such as pairwise
preferences [79], listwise judgments [24], and implicit behavioural signals (e.g., clicks,
dwell time) used as noisy proxies for relevance. The process of retrieval involves
calculating a score s(d, q) for each document with respect to the query, and ordering
the documents based on these scores so that the most relevant ones appear first [111].

2.1.2 Bag-of-Words Model

The bag-of-words (BoW) model is a simple but foundational model for representing
documents in Information Retrieval. In this model, a document is seen as an unordered
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set of words, where only the frequencies of words matter and their ordering is completely
ignored. A vocabulary (dictionary) of all unique terms in a corpus is defined, and
each document is represented as a vector of term frequencies. Each component of this
vector corresponds to a term in the vocabulary, where its value is the number of times
that term has appeared in the document. In general, if two sentences have similar
BoW representations, one would expect them to be similar in content. However, that
is not always the case with BoW. For example, the sentences “Mark is smarter than
Alex” and “Alex is smarter than Mark” both have the same BoW representations,
because they have the same terms with the same frequencies, even though the word
order is different. The BoW is simple and convenient for mathematical modelling, but
it ignores context and grammar [111].

2.1.3 Term Weighting and TF-IDF Scheme

One drawback of the basic BoW model with raw word counts is that it treats every
word the same. In practice, not all words carry the same importance in conveying
what a document is about. Common words like “the” or “is”, and domain-specific
words that appear in almost every document (e.g., “compound” in a collection of
chemistry articles) have little discriminative power to distinguish one document from
another. However, a word that appears frequently in one document but rarely in
others is often a good indicator of that document’s specific topic. To handle this issue,
IR systems use term weighting methods to reduce the importance of common words
and increase the influence of less common, more informative words.

The most common weighting approach is based on term frequency and inverse
document frequency, known as the TF-IDF scheme. First, we define the document
frequency df(t) of a term as the number of documents in the collection that contain
that term. The idea is that words that appear in many documents (high df) are
common words, while words with low df are more unique. Next, we define the inverse
document frequency (idf) of term ¢ as:

idf(t) = log <%(t)>

where N is the total number of documents in the corpus. The logarithmic idf factor
is high for rare words (when df(¢) is low) and low for frequent words (when df(t) is
high). The idf reduces weight for words that appear in many documents and increases
weight for words that appear in only a few. Finally, the tf-idf weight for a term ¢ in
document d is calculated by the product of its term frequency and inverse document
frequency:

tfidf(¢, d, D) = tf(¢, D) - log(dfi(ﬂ)
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where tf(¢, d) is the term frequency of ¢ in document d, df(¢) is the document frequency
of ¢t in the corpus D, and N = |D| is the total number of documents. In other
words, tf(¢, d) shows how important term ¢ is in this particular document (by counting
occurrences), while the log(%(t)) factor shows how informative ¢ is in the entire
collection (reducing the weight of common words). The tf-idf approach thus assigns a
higher weight to:

e A term that appears often in a given document.
e A term that appears in just a few documents overall.

And it gives near-zero weight to terms that appear in almost every document, since
such terms lack discriminative value. To summarize:

e Term frequency: tf(¢,d) increases with the number of times term ¢ appears
in document d. A higher tf indicates that ¢ is more related to the document’s
topic.

e Document frequency: df(¢) is the number of documents that have term t.
A high df means ¢ is common in the corpus (lower importance), while a low df
means t is rare (higher importance).

e Inverse document frequency: log(%(t)) is large for rare terms and small for
common terms, reducing the weight for very common words.

o Tf-idf weight: tf(¢, D) - log(dfi(t)) balances these factors, emphasizing words

that are frequent in d but rare in the whole corpus.

2.1.4 Sparse Lexical Methods

Building on the bag-of-words representation and tf-idf weighting introduced earlier,
classical IR systems compare queries and documents in a sparse lexical space. In this
section, we will cover three flagship models that differ mainly in how they compute a
relevance score s(d, q) after converting text into tf-idf or similar weight vectors.

Vector Space Model is a foundational model introduced by Salton in 1975 [153],
in which each document d and query q are represented as high-dimensional vectors of
term weights (often using tf-idf). It is the first formal IR approach to represent text
as high-dimensional vectors, allowing algebraic similarity calculations. The relevance
score is calculated as the cosine similarity between query and document vectors.

_ d-q
1Al [|al

9

s(d, q)
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where d - q = ), tf-idf(¢, d) tf-idf(¢, ¢) is the dot product of the two weight vectors,
and ||d|| and ||g|| are their Euclidean lengths. Cosine similarity measures the angle
between the query vector and the document vector. A value of 1 means the vectors
point in the same direction (the document’s term distribution exactly matches the
query’s terms), and zero means they share no common terms. Ranking documents by
decreasing cosine similarity is a common core mechanism in IR.

BM25 One of the limitations of the previous method, primarily when used with
standard tf-idf weighting, is that the term frequency often increases linearly with
the number of terms appearing in a document, and can be skewed by documents
that have a high frequency of a particular term, even if the overall relevance is not
proportionally higher. Another influential lexical method that addresses this challenge
is Okapi BM25 [117]. BM25 scores a document by summing term contributions for
each query term ¢ € ¢. Each term’s contribution grows with its term frequency ¢ f(t, d)
in the document adjusted by a saturation parameter k; which controls how much
the contribution of a term saturates as its frequency increases. The intuition behind
this parameter is that the first few occurrences of a query term in a document are
very important. Additionally, the score is adjusted by document length normalization,
with the intuition that longer documents are naturally more likely to contain query
terms than shorter ones, even if they are not more relevant. A simplified BM25 scoring
function is:

, o6t d) (k1 + 1)
s(d,q) = idf
0 ; (t)tf(t, d) +k (1 —b+ b%)

where |D| is the length of document d, L,y is the average document length in the
corpus, and k; and b are parameters to calibrate term saturation and document length.
In simple terms, BM25 rewards repeated appearances of a query term in d but with a
saturation effect, and it penalizes very long documents using b to avoid length bias.

Limitations Despite their effectiveness and simplicity, these lexical methods expect
exact word matches, so they struggle with lexical mismatch (e.g., a document about
‘sodium chloride” might not rank for the query 'table salt’ if the term ’table salt’ isn’t
present). They also cannot understand the notion of semantic similarity or context;
each term is treated independently, ignoring word meaning and order. The vector
representations are high-dimensional and sparse (one dimension per vocabulary term,
with most entries being zero). This sparsity is computationally convenient for inverted
indexing, but it makes similarity rely entirely on exact term overlap: related texts
that use different words often receive near-zero similarity, which limits generalization.
In multilingual settings, separate vocabularies and indexes further increase storage
and maintenance costs.
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2.1.5 Distributed Embeddings

To bridge the semantic gap, IR approaches started using distributed
representations of text, following progress in neural language models. These
representations map words or documents to low-dimensional, dense vectors (also
called embeddings) such that vectors with similar meaning appear close in the vector
space. This is in contrast to sparse representations, such as one-hot encoding, where
each word is represented as an isolated dimension.

word2vec is a major advance in this category [ 11], which, by observing which words
tend to appear in the same contexts, learns embeddings that place semantically similar
terms close together in the vector space, which uses two complementary methods to
train embeddings:

e Skipgram: The Skip-gram model takes a single target word as input and
learns to predict each of its surrounding context words w1 (—c < j <¢, j #0)
independently. Its objective is to maximize the log-likelihood of the actual
context words given the target:

T
max Z Z log P(we; | w)

t=1 —c<j<e, A0

A shallow neural network with a one-hot input layer, a single hidden projection
layer (of dimension d), and a softmax output layer [I8] is trained via
backpropagation [151]. After training, the row of the projection weight matrix
corresponding to each word serves as its d-dimensional embedding.

e Continuous Bag-of-Words (CBOW): it takes the 2¢ context words
{ Wit }-c<j<c, j20 as input (their embeddings are typically averaged or summed)
and predicts the centre word w; where the training goal is:

T
max E logP(wt | Wi—ey ooy Wimt, Wi, - - wt+c>-
t=1

Like Skipgram, CBOW employs a single hidden layer whose weights become the
learned embeddings, but benefits from averaging multiple context signals, often
resulting in smoother vector estimates for rare words.

Both architectures rely on optimization tricks (e.g., negative sampling [115] or
hierarchical softmax) to avoid the computational cost of a full-vocabulary softmax
at each update. By adjusting the embedding weights to improve prediction accuracy,
these models capture rich semantic patterns.
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GloVe is a count-based approach (in contrast to the predictive nature of Word2Vec)
which builds on global co-occurrence information across the entire corpus [134]. The
core idea is that ratios of word-word co-occurrence probabilities between words can
capture semantic meaning. For example, considering the words “ice” and “steam”,
the ratio of their co-occurrence probabilities with a word like “solid” will be large.
Conversely, for a word like “gas”, this ratio will be small.’

P(solid | ice) P(gas | ice)
P(solid | steam) P(gas | steam)

These kinds of ratios are large when one word strongly signals another, small when it
does not. For training the model, GloVe first constructs a full word-word co-occurrence
matrix X, where each entry Xj;; records the frequency with which word j appears in
the context of word ¢ across the entire corpus. The model aims to learn two sets of
vectors: word vectors w; and context vectors w;, along with biases b; and b~j, such that
their dot product approximates the logarithm of their co-occurrence matrix:

The training objective is a weighted least-squares problem, where the weighting
function assigns less weight to highly frequent co-occurrences (often less informative,
such as “the” and “is”) and also ensures that zero co-occurrences do not dominate

the cost.
v

T = 3" F(Xy) (w]d;+ b+ by — log(Xy))”
ij=1
By optimizing this objective, GloVe learns word embeddings that encode relationships
between words as linear patterns in the vector space.

2.1.6 Learning-to-Rank (LTR)

As the number of hand-crafted IR features and heuristics grew, a paradigm shift
occurred: instead of manually designing ranking functions such as BM25, allow
systems to learn ranking from data. Learning-to-Rank (LTR) methods use machine
learning on labeled examples of queries and documents (with relevance judgments) to
learn a scoring function se(d, ¢) with parameters 6 [105]. This data-driven approach
can leverage many features and optimize directly for ranking performance. These
methods are typically classified into three groups based on their objective formulation:

e Pointwise LTR: Consider ranking as a regression or classification task on
single query-document pairs. For example, given a query and a document,
it predicts a relevance score or label (such as “relevant” vs. “not relevant”).
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The model is trained to output a value close to the human-judged relevance.
This approach does not consider document-to-document interactions, effectively
learning a scoring function like sy(d, q) =~ rel(d, q).

e Pairwise LTR: Transform ranking into a binary classification task on document
pairs. In this setup, the model learns to prefer a relevant document over a
non-relevant one for the same query. Training samples are document pairs
(d*,d™), with d* being more relevant than d~. The loss function encourages
se(d™,q) to be higher than s¢(d~,¢) by a margin. For instance, a common
pairwise loss is a hinge loss on the score difference:

H%in ( Z )ma’x{07 1- 89(d+7Q) + Sg(d_,Q)}-

d+.,d-

This loss is zero only when the score of every preferred document exceeds that
of any less-relevant document by at least 1, thereby optimizing the document
ranking directly [23, 22, 78].

e Listwise LTR: Takes the entire ranked list into account when learning. These
methods define a loss function on a permutation of documents, aiming to optimize
metrics such as Mean Average Precision or nDCG directly. Such methods can
use a probabilistic model over permutations or differentiate through a ranking
metric. While more complex, listwise methods can capture interactions among
all results for a query and directly target the true evaluation measure.

These approaches significantly improved ranking performance by using a wide range
of features (e.g., BM25 score, query term frequencies) and optimizing for user-centric
metrics. However, they relied on hand-engineered features. Designing and computing
features for each query-document pair was slow and error-prone, and coverage was
often incomplete, so subtle relevance signals were missed. These limitations paved
the way for neural networks to learn representations and features automatically and
directly from raw text.

2.1.7 First Neural Rankers

The next step was to leverage neural networks for ranking, going beyond static and
hand-crafted features. Neural information retrieval models can be categorized into
two categories [117]: representation-based models and interaction-based models.
Representation models encode queries and documents independently into semantic
vectors, whereas interaction models aim to directly learn detailed term-by-term
interactions between queries and documents.
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Representation-based neural rankers. The main idea is that a neural network
learns to map text into a vector space where the distance or angle between these vectors
shows how well a document matches a query. While some later models in this category
may use pretrained word embeddings, such as Word2Vec or GloVe, as a starting point
for representing words, early influential models often learned their own representations
directly from raw text input. The key is that the query and the document are
processed independently by the neural network before their final representations are
compared. An early example of this approach is the Deep Structured Semantic
Model (DSSM) [71]. DSSM uses a multi-layer perceptron (MLP) [119, 151] to
project both the query and the document into a shared low-dimensional vector space.
Notably, instead of directly using raw words, it employs letter-trigram hashing to create
features that handle large vocabularies and words not encountered during training.
These features are then fed through multiple layers of the network. The relevance
between a query and a document is then calculated simply as the cosine similarity
between their output vector representations. DSSM was trained on large amounts of
click-through data from search engines, learning to make the vectors of queries and
clicked documents more similar. After DSSM, other notable representation-focused
models emerged, such as C-DSSM [163], which used Convolutional Neural Networks
(CNNs) [51, 91, 96] to better capture word sequences, and ARC-I [69], which also
used CNNs for generating sentence representations.

Interaction-based neural rankers. These models let the query and the document
interact with each other earlier in the process. Instead of first condensing each text
into a single vector, they typically start by constructing an interaction matrix that
captures the similarities between individual terms or phrases in the query and those in
the document. Neural networks, often CNNs, are then employed to analyze this matrix
and learn meaningful matching patterns directly from these detailed term-by-term
interactions. This approach enables the model to capture subtle details that may be
overlooked when the texts are encoded independently. One of the early influential
models in this category is the Kernel-based Neural Ranking Model (K-NRM)
[201], which first calculates pairwise similarities (e.g., cosine similarity) between the
embeddings of each query term and each document term. It then applies a bank of
Gaussian (RBF) kernels to these scores to build soft-match histograms that count
term pairs at various similarity levels (exact, strong, weak). The histogram features
are then fed into a network to output a final relevance score. Another significant
model, Duet [116], combined both interaction and representation approaches: it has
a local sub-network that uses a CNN on a query-document interaction matrix to find
precise, local matching patterns, and a parallel distributed sub-network that learned to
match based on the global semantic representations of the query and document,
similar to representation-based models. Other earlier examples include ARC-II
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[69] and MatchPyramid [129]. These interaction-based methods excel at capturing
fine-grained relevance signals by directly focusing on how query terms relate to
document terms. These fundamental architectural choices, encoding inputs separately
or together, are conceptually analogous to the modern paradigms of bi-encoders and
cross-encoders, respectively, a distinction illustrated in Figure 2.1). Each has its
own advantages and drawbacks, helping advance neural IR methods. While this first

Cosine Similarity Similari‘tky Score
D]:ﬂ! EID
0 Embeddings *
Encoder Encoder Encoder
T T /N
Query Document Query Document

Figure 2.1: Bi-encoders (left) vs cross-encoders (right)

wave of neural rankers showed significant promise for information retrieval, they also
revealed several challenges. One major issue is context handling. Many early models
treated text as a bag of features, even though those features were learned. Models that
did use word embeddings, like K-NRM or the distributed part of Duet, often relied
on static embeddings, meaning that each word had a single vector representation,
regardless of its surrounding words. Another essential drawback in data efficiency and
generalization is that neural networks typically require large training datasets to learn
effectively [97, 11]. However, large datasets to train these models, often consisting of
click logs or human relevance judgments, are not always publicly available, making it
difficult for the research community to consistently build upon these models. Finally,
another practical concern is scalability. These limitations set the stage for the next
generation of IR models. In particular, the inability of early neural methods to fully
capture context and language nuances motivated the adoption of transformer-based
encoders (such as BERT-based models [13, 100]) for retrieval. Transformer models
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introduced context-aware embeddings and knowledge from pretraining on vast text
corpora, addressing many of the limitations of early neural rankers.

2.2 Transformers

In the early years of deep learning, recurrent neural networks were the primary choice
for solving problems involving sequential data, such as text, speech, and time series.
However, several limitations of these networks led to the development of more advanced
concepts, such as the attention mechanism and transformers. One major drawback of
RNNs was the difficulty in capturing long-range dependencies, primarily due to the
vanishing gradient problem [l 1, (6], where gradients diminish exponentially during
backpropagation. Additionally, in RNNs, computations in each step depend on the
previous steps, so their inherent sequential nature prevents effective parallelization,
resulting in increased training time and inefficient utilization of modern processing

hardware, such as GPUs.

2.2.1 Attention Mechanism

Over the past decade, sequence-to-sequence models powered by recurrent networks

(e.g., LSTMs [07]) transformed tasks like machine translation by learning to encode
an input sequence into a fixed-length context vector and then decode it into another
language [32, ]. However, squeezing an entire sentence into a single vector creates

a severe information bottleneck: long inputs are compressed in a lossy manner, and
gradients struggle to flow back through multiple timesteps. The attention mechanism
[8] was introduced to overcome this limitation by allowing the decoder to look back
at all encoder states, assigning each a learned weight, or attention score, based on
its relevance to the current decoding step. This simple but powerful idea not only
expanded a model’s effective memory without swelling its parameter count but also
provided a direct shortcut for gradient flow, significantly improving performance on
long or complex sequences. Figure 2.2 illustrates the difference between the vanilla
and attention-based encoder-decoder architectures. In the vanilla model (upper
diagram), the encoder processes the input sequence X = (x1,...,x7) and passes only
its last hidden state s = hp to the decoder. Every output ¥, therefore, depends on this
single, fixed-length summary. The bottom diagram illustrates additive attention,
which removes this bottleneck by providing a step-specific summary. After the encoder
has generated all hidden-states H = {hq, ..., hr} calculates a scalar relevance score,
just before generating token g;, which measures how well the current decoder state
s¢—1 matches each encoder state h;:

i = vaT tanh(Wsst_l + Whhi), (2.2.1)
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Figure 2.2: Top: vanilla encoder-decoder; Bottom: encoder-decoder with attention.
Adapted from Smerity.com.

A softmax then turns these scores into attention weights

T

exp(ex,i)

Qi = — A Z s =1, (2.2.2)
> j—1exp(er;) i=1

which results in the dynamic context vector:

T
Cp = Zat,i hi, (2.2.3)
i=1

a weighted average emphasizing the most relevant source positions. This context
augments the next decoder hidden state:

St — RNN(yt_l, St—1, Ct>7 (224)
and finally feeds the output to the softmax
Pyt | y<i, X) = softmax(W,s;). (2.2.5)

Because ¢; is recalculated at each step, the decoder can focus on different parts of the
input sentence as it is translating, so it does not have to compress all the information
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into a single vector, and the model stays small in terms of parameter count.

2.2.2 Transformer Architecture

Adding attention significantly improved recurrent networks, because the decoder could
access all encoder states rather than depending on a single fixed vector. Translation
quality improved, training with long sentences became easier, and the vanishing
gradient was decreased. However, the model still processed tokens sequentially, so
training remained slow on large corpora. Building directly on the success of attention,
Vaswani et al. [130] proposed an architecture without any recurrent units. Each layer
has only linear projections and scaled dot-product attention, allowing all tokens in a
sequence to be processed in parallel. This model, called the Transformer, keeps the
benefits of attention and eliminates the sequential bottleneck of RNNs.

Architecture. Figure 2.3 illustrates a classic encoder-decoder architecture, which
is built solely with attention and feed-forward layers, without any recurrent or
convolutional units. Both encoder and decoder are stacks of N identical layers
(N = 6 in the original variant). Every sub-layer uses a residual connection [01]
followed by layer normalization [(]. Given an input x, the sub-layer output is:

LayerNorm (z + Sublayer(z)), (2.2.6)

where Sublayer(x) denotes that layer’s transformation. To simplify residual
connections, every sub-layer and embedding layer outputs vectors of the same size,
dmodel = 512.

Encoder stack. Each encoder layer uses a multi-head self-attention module,
letting each word look at all other words in the sequence at the same time and in
parallel. The attention output then passes through a position-wise feed-forward
network. After N layers, the encoder has built a contextual representation H that
the decoder can use.
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Figure 2.3: The Transformer architecture. Reprinted from Vaswani et al. [180]
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Decoder stack. FEach decoder layer begins with a masked self-attention block that
can look only at earlier target tokens. This preserves the autoregressive property:
when generating 1;, the model cannot peek at ;.1 or beyond. A second attention block
(often called encoder-decoder attention or cross-attention) takes its queries from
the decoder and its keys and values from the encoder’s H. This lets every target
position attend to the full source sequence. Finally, a feed-forward network processes
the attended information before moving to the next layer. At inference time, the
decoder runs step by step, but within each step, all its matrix operations are fully
parallel.

Scaled dot-product attention. Figure 2.4 (left) illustrates this operation. Inside
every head the model first builds three matrices; queries Q € RTa*%  keys K € RTk*dk
and values V € RT+*% by multiplying the input matrix X with learned weights W,
WE and WY. We can think of it as an information retrieval scenario; keys act like
database indices, queries denote search strings, and values are like the records we want
to retrieve. The attention, which is a notion of relevance, is computed as:

Attention(Q, K, V) ft (QKT)V (2.2.7)
ention(Q), K, V) = softmax(——— 2.
Vdy

Where /d}, is the key/query dimensionality. If the components of ¢ and k are zero-mean
and unit-variance (as is often assumed, e.g., for normalized random vectors), then
Var(q - k) = di. Scaling by 1/+/d) keeps these dot-product values around order 1,
which prevents the softmax from producing extremely peaked or flat distributions and
helps maintain stable gradients. The resulting weights select a weighted sum of the
values, giving a context vector for each query position.

Multi-head attention. Instead of running a single attention with
dmodei-dimensional vectors, we project the queries, keys, and values h times
with learned linear maps, producing smaller dimensions dj and d,. With A = 8 in the
original model, we have dy = d, = dyoaa/h = 64, so the total cost stays the same.
The h attention outputs are concatenated and passed through a final linear layer
(Figure 2.4, right).

Multi-head attention is used in three places:

1. Encoder-decoder attention: the decoder supplies the queries, while the keys
and values originate from the encoder.

2. Encoder self-attention: all queries, keys, and values are provided by the
previous encoder layer.

3. Decoder self-attention: same as above, but masked to preserve autoregression.
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Figure 2.4: Scaled Dot-Product Attention computes attention weights by comparing
queries and keys, producing a weighted sum of the values. (left) Multi-Head
Attention applies several independent attention mechanisms in parallel, enabling the
model to capture information from multiple representation subspaces at once (right).
Reprinted from Vaswani et al. [180)]

Feed-forward layers and output. After every attention sub-layer, the information
at each sequence position runs through the same two-layer feed-forward network (FFN).
This block is applied independently to every position, so its weights are shared across
time but differ from layer to layer. The first linear map expands the hidden size
from dineqer to a larger inner dimension dyy (2048 in the original paper), a non-linear
activation (ReLU or, in newer models, GELU [64]) adds capacity, and the second linear
map projects back down to d,,.qe. Dropout is typically added after the activation layer
to prevent overfitting. A residual connection and layer normalization wrap the whole
FFN, precisely as in the attention sub-layers, so gradients can bypass the non-linearity
when helpful. Once the decoder stack has produced its final hidden state matrix
Z € RT*dmodet each row z; passes through a learned output matrix W¢ whose width
is equal to the vocabulary size. The resulting logits are turned into probabilities with
a softmax, and training minimizes cross-entropy against the reference tokens (teacher
forcing [191]). At inference time the model generates one token at a time, feeds it
back through the masked self-attention, and continues until an end-of-sentence symbol
is emitted or a length cap is reached.
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2.3 Self-Supervised Learning

The introduction of the transformer architecture marked a pivotal moment in natural
language processing, paving the way for the era of pretraining. A key concept in
this era is self-supervised learning (SSL), which, unlike supervised learning that
relies on human-annotated labels and unsupervised learning that finds patterns in
data without explicit labels, uses supervision signals directly derived from the input
data itself. This is done by designing pretext (or proxy) tasks, which may not be
inherently meaningful for any final application, but can guide the model to learn rich,
generalizable representations of the data [54, 62]. Once pretrained on such a task, the
model can then be fine-tuned to perform effectively on a variety of downstream tasks,
even when labeled data is scarce [30, 13].

Self-supervised learning approaches can be categorized into two groups:
intra-sample and inter-sample methods. Intra-sample methods obtain the
supervision signal directly from a single sample. For example, in computer vision,
this could involve predicting the relative position of patches within an image [14],
learning to colourize a grayscale image [207], or inpainting masked patches in an
image [130]. In NLP, a classic example is predicting masked words of a text based on
its surrounding context [13]. Inter-sample methods, on the other hand, get supervision
from relationships between multiple samples, such as learning to pull similar samples
closer together in an embedding space while pushing dissimilar ones apart.

2.3.1 Rise of Pretrained Language Models

Following the success of transformers, a dominant approach emerged: pretraining a
large model on a huge amount of general-domain text data and then fine-tuning it
on smaller, domain-specific datasets for particular tasks. Two of the most influential
architectures in this regard are BERT (Bidirectional Encoder Representations from
Transformers) [13] and GPT (Generative Pre-trained Transformer) [139].

BERT Introduced by Devlin et al. [13], BERT uses the encoder part of the
transformer architecture. Its primary pretraining objective is Masked Language
Modeling (MLM), where a certain percentage of tokens in the input text are
randomly masked (e.g., replaced with a special [MASK] token), and the model is
trained to predict the original tokens based on the unmasked context. With this
objective and a bidirectional nature (considering both left and right context), BERT
can learn deep contextual relations between words and the overall structure of language.
Another pretraining task used in the original BERT was Next Sentence Prediction
(NSP), where the model predicted whether two input sentences were consecutive.
However, later work found that MLM is a more effective pretraining objective than
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NSP, yielding better downstream performance [106]. Due to its strong language
understanding capabilities, a pretrained BERT model can be easily used for a wide
variety of downstream tasks, including text classification, sentiment analysis, Named
Entity Recognition (NER), and question answering, typically by adding a small
task-specific layer and fine-tuning the entire model. The success of BERT led to
many variants, such as RoBERTa [106], which optimized pretraining by using dynamic
masking and training on more data for longer, and DistilBERT [154], a smaller, faster,
and lighter version that preserves most of BERT’s performance.

GPT First introduced by Radford et al. [139], GPT uses the decoder part of the
transformer architecture. The core self-supervised objective here is Next Token
Prediction (also known as Causal Language Modeling). Given a sequence
of tokens, the model is trained to predict the next token in the sequence. This
auto-regressive process allows the model to learn how to complete text or generate
entirely new content that is coherent and contextually relevant. Scaling up these
models (e.g., GPT-2 [110], GPT-3 [21], and subsequent iterations by OpenAl) along
with integrating techniques such as instruction fine-tuning and reinforcement learning
from human feedback (RLHF') has led to the powerful Large Language Models (LLMs)
we see today [127]. These LLMs can perform many tasks in a zero-shot or few-shot
manner, meaning they can follow instructions and complete tasks that they were not
explicitly trained for, simply by being prompted appropriately.

2.3.2 Contrastive Learning

Contrastive learning is a widely used inter-sample self-supervised method. The
main idea is to learn representations by contrasting positive pairs (“similar” samples)
against negative pairs (“dissimilar” samples). The model is trained to map these
positive pairs close to each other in an embedding space, while simultaneously pushing
the representations of negative pairs further apart. This process encourages the model
to capture the important underlying features that are most relevant to the notion of
similarity defined when pairs are formed.

Contrastive Predictive Coding An early influential work in contrastive methods
is CPC [126]. The main idea is to learn rich, useful, and low-dimensional representations
by predicting future or contextual information in a sequence or high-dimensional signal,
rather than directly predicting future samples in the input space, which can be complex.
CPC frames this prediction task as a form of contrastive learning. The model first
encodes the input sequence x up to a certain time step ¢, r<;, into a context vector
¢t = Jar(T<t), using an autoregressive model g, (like an RNN; a causal CNN [179] or
a masked transformer). Then, separate encoders g are used to encode future or target
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samples xy into representations zy,x = gr(Z41x), where k means steps in the future.
The model then predicts these future vectors, 2,1, based on the context, ¢;. Rather
than directly predicting z;,r, CPC uses a density ratio method. A scoring function

P(@esk | c)

e (2.3.1)

Je(@esr, ) o<

shows how well the context ¢; predicts the future sample x;, relative to its overall
probability. This score is often modelled using a simple log-bilinear model:

Fi(@err, o) = exp(2l  Wier) (2.3.2)

Where W, is a trainable weight matrix. To learn these representations, CPC uses a
contrastive loss called InfoNCE (Noise Contrastive Estimation). Given a context ¢
and a set of N random samples {xj}évzl which has one positive sample (the actual
future sample z,,;) and N — 1 negative samples (randomly drawn from the data
distribution), the InfoNCE loss is defined as:

log

Lintonce = —Ex (2.3.3)

Je(@og, Ct) ]
Zj'vzl fk(xja ct)

Minimizing this loss is equivalent to maximizing the lower bound on the mutual
information between ¢; and ;. , and this leads fi(x;1x, ) to estimate the density
ratio in Equation 2.3.1. In simple terms, the model is trained to pick the true future
sample z;, from a set of distractors (negative samples) given the context ¢;. By
doing so, the model learns powerful representations ¢; that have information useful
for predicting future states, effectively learning about the underlying structure and
dynamics of the data.

SimCLR An influential architecture, especially in computer vision, is SImCLR. by
Chen et al. [30]. SimCLR learns representations by maximizing agreement between
two augmented views of the same sample (an image in the original variant) using a
contrastive loss. The framework has the following key steps (illustrated in Figure 2.5):

1. Data Augmentation: For each data sample x; in a mini-batch, two related
views, z; and Z;, are generated by applying some random data augmentations
(e.g., random cropping, resizing, colour jittering, Gaussian blur, sampled from
T). These two views (Z;,Z;) form a positive pair.

2. Encoder Network: A base encoder f(-) (e.g., a ResNet [01]) creates
representation vectors from each augmented samples. Let h; = f(Z;) and

hi = f(Z;).
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Maximize agreement

h;  +<— Representation —  h;

Figure 2.5: Illustration of a basic architecture for contrastive learning that enables
the model to produce effective visual embeddings. Reprinted from Chen et al. [30]

3. Projection Head: A small neural network, the projection head g(-) (typically
an MLP), maps these representations h to a lower-dimensional space where the
contrastive loss is applied. So, z; = g(h;) and z; = g(h;). The authors found that
applying the contrastive loss on z rather than h leads to better representations
h for mainstream tasks.

4. Contrastive Loss Function: Given a positive pair (z;, 2;), all other 2(N — 1)
augmented examples in the mini-batch (where N is the batch size) serve as
negative examples. The loss function is the normalized temperature-scaled
cross-entropy loss (NT-Xent):

exp(sim(z;, z;)/7)

&J‘ = — 10g N - (234)
> ks D) exp(sim(zi, 2¢) /7)
Here, sim(u,v) = m means the cosine similarity between vectors u and v, 7

is a temperature parameter that adjusts how peaked or smooth the similarity
distribution becomes, and 1, is an indicator function that ensures the positive
sample z; is not counted among an examples negatives. The final loss is computed
across all positive pairs in the mini-batch (i.e., (4,7) and (7,17)).
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2.4 Text Embedding Models

Early neural IR systems, built on word2vec and GloVe, assigned a single, context-free
vector to every word; thus, homonyms such as “bank” (financial vs. river edge)
mapped to the same point in space. Sentence or document representations were
built by aggregating word vectors (e.g., simple averaging or addition). This was
computationally attractive, yet the resulting sentence embeddings were semantically
too general and insensitive to word order. When transformer encoders like BERT were
introduced, they solved polysemy by computing contextual token embeddings, and
each word’s vector is conditioned on its entire sentence. When used in a cross-encoder
setup, BERT concatenates a query and a candidate passage in the same input, and
self-attention captures detailed interactions between the two. However, comparing one
query with many passages requires N full forward passes (O(N)), which is impractical
for large-scale retrieval. This motivated the bi-encoder paradigm: encode the query and
each document independently, store document embeddings in advance, and perform
retrieval with vector similarity search. Early naive bi-encoders that simply reused
BERT’s raw [CLS] vector (or mean pooling) performed worse than even averaged
GloVe on STS tasks [115], showing the need for task-specific training that could learn
contextual embeddings with meaningful geometry for similarity.

2.4.1 Siamese & Triplet Network - Sentence-BERT

Sentence-BERT (SBERT) [115] uses a Siamese architecture that consists of two
identical transformer encoders that share the same weights during training. At inference
time, a single encoder can convert any text (query or passage) into a fixed-size vector,
then compare it using cosine similarity or dot product. This architecture enables O(N)
retrieval: all documents can be pre-encoded and indexed, and each query requires
only a single forward pass to obtain its embedding, which is then matched against the
index. By contrast, a BERT cross-encoder must process each query-document pair
individually, resulting in O(N) passes and O(N) per query. SBERT is trained with
three interchangeable objectives:

1. Classification loss (softmax): Given a set of sentence embeddings (u,v) as
input, SBERT applies a classifier to predict their class label. It uses Natural
Language Inference (NLI) data (e.g., SNLI [16], MultiNLI [193]) where each
sentence pair is labeled as entailment, neutral, or contradiction. The two
embeddings u and v are combined (e.g., concatenation [u;v; |u — v|]) and fed
into a softmax classifier to predict the NLI label. A cross-entropy loss

Lags=— Z Ye IOg gc (241)
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encourages the model to assign high similarity to entailment pairs and low
similarity to contradictions. This classification objective teaches the model
useful semantic distinctions: entailment pairs are pulled closer in vector space,
while contradictory pairs are pushed apart.

2. Regression loss (MSE): Model is directly trained to output cosine similarities
that match human judgments. Using labeled Textual Similarity (STS) data
(e.g., STS benchmark [25]), the model encodes two sentences into embeddings u
and v and computes cos(u,v) as the predicted similarity. The training objective
minimizes the mean squared error between the predicted cosine and the true
similarity score siye(typically on a 0-5 scale): L., = (cos(u, v) — stme)Q. This
continuous regression loss aligns embedding dot-products with graded semantic
similarity, forcing the model to treat vector proximity as a fine-grained similarity
measure.

3. Triplet loss (margin ranking): In this setup, training samples are triplets
(a,p,n) where a is an anchor sentence, p is a positive sentence (semantically
similar to the anchor), and n is a negative sentence (dissimilar). The objective is
to make the distance between the anchor and positive at least a certain margin
smaller than the distance between the anchor and negative. The triplet loss is
formally written as:

Liyiplet = max {0, A +d(a,p) —d(a,n)}, (2.4.2)

where d(x,y) is a distance metric (e.g., cosine distance or Euclidean distance in
embedding space) and A is a margin hyperparameter. If the positive is already
at least A closer to the anchor than the negative, the loss is zero. Otherwise, the
model is penalized proportionally to the extent to which this margin is violated.
Sampling hard negatives (negatives that are deceptively close to the anchor)
encourages the model to learn finer-grained semantic distinctions.

SBERT is usually trained in two phases: first on a large NLI dataset using a
classification loss to learn semantic distinctions, and then optionally on STS data with
a regression loss to directly optimize similarity scores. Alternatively, NLI sentence
pairs can be converted into triplets (treating entailment pairs as anchor-positive
and contradiction as hard negatives) to train with a triplet objective. The overall
training set often combines millions of NLI pairs and STS benchmarks or other
curated paraphrase sets. When fine-tuned on SNLI and STS data, SBERT achieves
near-human performance on STS Benchmark (Spearman p ~ 0.85), whereas averaged
GloVe vectors only reach p ~ 0.58 and BERT-[CLS] barely p ~ 0.20. Beyond accuracy
gains, SBERT enables efficient retrieval. The bi-encoder maps any text to a fixed
768-dimensional vector (for BERT-base models), allowing retrieval to be performed as
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a nearest-neighbour search in this vector space. Computing m document embeddings
and n query embeddings is O(m + n), and similarity search via dot-product or cosine
can be accelerated with Approximate Nearest Neighbour indexes. In contrast, a
cross-encoder would need O(m -n) operations to compare n queries with m documents.
The original article reports that SBERT-based semantic search is more than 100
times faster than BERT cross-encoders on large corpora, with only a slight drop in
accuracy. SBERT provides efficient, scalable semantic search by training sentence
embeddings with a Siamese architecture and similarity-based losses, where vector
proximity directly reflects semantic similarity.

2.4.2 Two-Stage Contrastive Training

Recent advances show that large-scale contrastive learning on unlabelled text pairs
can result in extremely powerful embeddings. Contrastive learning aims to teach the
model which texts to bring together or push apart in vector space, often using only
weak or automatically generated pairs. Early methods, such as CPC and SimCLR,
laid the foundation by introducing the InfoNCE loss to train encoders without explicit
labels. The InfoNCE loss operates on pairs of positive examples and a set of negative
examples. In the context of text embedding models, a positive pair might be a (query,
relevant passage) or two paraphrased sentences, and negatives are unrelated texts.
Given a query (anchor) ¢; and its true p; (positive), along with m negative passages
{pi_j };n: ) for that same query, the InfoNCE objective for a batch of N examples is
defined as:

e5(ai,pi)

N
1

L nfo [, 10 -, 243

InfoNCE N ; g es(aipi) 4+ Z;nﬂ e5(ai:p;;) ( )

where s(p,q) = cos(E,, E,)/7 is a scoring function (typically the cosine similarity
between the query embedding E, and passage embedding F,, optionally scaled by a
temperature 7). Intuitively, the loss forces s(g;, p;) to be higher than s(g;,p~) for any
negative p~. This way, the model learns to tell true associations from random ones.
The InfoNCE formulation is implemented efficiently with in-batch negatives: when a
batch contains many (query, positive) pairs, each pair’s positive passage serves as a
negative for the others. A large batch size is critical and has been shown to greatly
improve representation quality by providing more negative examples for each update
30, 126].

Modern embedding models typically use a two-stage training recipe with contrastive
learning. An example is the E5 model family [185], which introduced this training
process in two stages: (1) large-scale contrastive pretraining on weak text pairs, and
(2) supervised fine-tuning on high-quality data with hard negatives. In the first stage,
a massive corpus of unlabelled text pairs ( 1.3 billion) are gathered from sources
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that naturally form “query-passage” pairs, such as (question, answer) from Reddit
or StackExchange, (article title, section text) from Wikipedia, (paper title, abstract)
from academic papers, and (article headline, content) from news or Common Crawl
web pages. Although these pairs often share a topic, they are not manually labeled
and are therefore quite noisy. To further improve data quality, a consistency-based
filtering step is applied. After initial cleaning, they train a draft bi-encoder on 1.3
billion candidate pairs. Next, for each query-document pair, they use the trained
model to score the query against its true document and a pool of one million randomly
sampled negatives. A pair is kept only if, according to the model’s similarity scores,
the true document ranks within the top 2 results for its query, meaning the model
itself is confident this association is unusually strong, even compared to a vast set of
distractors. This filtering step removes noisy pairs with weak semantic ties, reducing
the training set to approximately 270 million high-consistency pairs.

Contrastive Pretraining Using this refined corpus (called CCPairs), the first
stage of Eb5 training begins. Each text pair is treated as a positive g-p while all
other texts in the batch serve as negatives (often called in-batch negatives [30]).
The bi-encoder (initialized from a pretrained encoder model like BERT) is trained
with the InfoNCE loss described above. Notably, E5 prepends special prefix tokens
“query:” or “passage:” to each input to break symmetry and help a single encoder
distinguish between query-like and passage-like inputs, effectively encoding them
in slightly different subspaces. By the end of stage 1, the model (called E5-PT)
has learned a general-purpose embedding space from hundreds of millions of noisy
pairs. This contrastive pretraining already results in strong unsupervised embeddings,
outperforming earlier models on retrieval benchmarks like BEIR [175] (e.g., E5-PT
large scored nDCG@10=44.2%, vs. 36.0% for earlier Contriever [74]). This result
highlights how both scale and data quality in contrastive learning result in substantial
gains in retrieval effectiveness.

Contrastive Fine-tuning The second stage often involves using triplets and hard
negatives to improve the model for real-world retrieval. Training triples are drawn

from MS MARCO Passage Ranking [121], Natural Questions [94, 82], and NLI [10],
each query paired with one positive passage and up to seven hard negatives mined
by a prior retriever (e.g., SimLM [181]). Hard negatives are passages that closely

match the query but are labeled as incorrect, typically top-ranked false positives from
other systems. They serve as challenging decoys, helping the model learn fine-grained
distinctions. The bi-encoder is optimized with a two-term objective:

L = Lintonce + ALgist, A =~ 0.5, (2.4.4)
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where Lintoncg is the InfoNCE contrastive loss defined earlier, which uses a predefined
list of negatives instead of in-batch negatives, and the cross-encoder distillation term

Laiss = KL (softmax(t/7) || softmax(s/7)) (2.4.5)

matches the bi-encoder scores s; to teacher cross-encoder scores t; (with temperature
7). Many models in the literature skip this distillation step and rely solely on a
contrastive objective with hard negatives. Fine-tuning on roughly 30 million triplets
for a few epochs improves Eb-large to ~ 58 nDCG@10 on BEIR, outperforming earlier
bi-encoders like GTR and Contriever; omitting hard negatives or distillation causes
performance to plateau. Fine-tuning E5-large on approximately 30 million triplets for
a few epochs raises its BEIR nDCG@10 to about 58, outperforming earlier bi-encoders
such as GTR [122] and Contriever [74].

It is worth noting that contrastive pre-training followed by hard-negative fine-tuning
has become the prevailing approach for training text embedding models. Most leading
models adopt this two-stage approach. First, they leverage weak supervision at scale
(e.g., mining pairs from forums, wiki, news) to train a strong general-purpose initial
encoder; then they apply supervised fine-tuning on carefully curated data with hard
negatives to refine the encoder specifically for retrieval tasks.

2.4.3 Modern Encoder-Based Families

Following the foundational work in bi-encoder architectures and two-stage training,
recent research has introduced several new families of embedding models that push
the boundaries of performance and capability. These modern encoders still employ
the same core ideas but incorporate new architectural tweaks, training methods, and
significantly larger datasets.

E1 (v1 & v2) Developed by Microsoft, the E5 models were among the first to show
how two-stage training could work in practice [185]. E5 v1 was released in small,
base, and large sizes, its embeddings ranged from 768 to 1024 dimensions, and used
a single BERT encoder for both queries and documents by simply prepending “query:’
or “passage:” to each input. The next version, E5 v2, kept the same core architecture
but improved performance by training on larger, more diverse data and refining the
fine-tuning steps. The improvements in E5 v2 suggest that, even without major
architectural changes, scaling data and fine-tuning can lead to significant gains.

Y
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BGE (vl & v1.5) The BAAI General Embedding (BGE) [200] introduced a
novel pretraining technique called RetroMAE (Retrogressive Masked Auto-Encoder).
Inspired by Masked Autoencoders (MAE) [63] in computer vision, RetroMAE
first pollutes text embeddings and then trains a lightweight decoder to reconstruct
the original embeddings. After this pretraining, BGE follows the same two-stage
process of large-scale contrastive learning and instruction tuning. BGE v1.5 further
refined this approach, resulting in strong performance without altering the core model
architecture.

GTE (vl & v1.5) Alibaba’s DAMO Academy developed the GTE models with
a focus on building versatile embeddings. The original GTE used a multi-stage
contrastive learning process over various public datasets, all within a typical
BERT-style context window of 512 tokens [102]. These early versions already showed
strong results. With GTE v1.5, they introduced an encoder capable of handling
much longer inputs, up to 8,192 tokens, by adding Rotary Position Embeddings
(RoPE) [172] and Gated Linear Units (GLU) [161] in the feed-forward layers.
These enhancements make GTE v1.5 especially effective for tasks involving very long
documents [203].

Nomic (v1l, v1.5, v2) Nomic Al has initially released nomic-embed-text-vi,
which is notable for its transparency, with the code, data (235 million text
pairs), and model weights being publicly available [124]. To train their model,
they initially used a long-context BERT architecture called nomic-bert-2048,
enhanced with improvements such as RoPE, GLU, and FlashAttention, which
integrate successful elements from other models to facilitate more efficient training
on long sequences. This BERT model has a 2048 context length, which can
then be interpolated to handle up to 8192 tokens at inference. Similar to Eb5,
Nomic employs a two-stage training process and uses prefixes. Notably, their
open-source nomic-embed-text-vl has been shown to outperform some proprietary
models, such as OpenAl’s text-embedding-3-small and text-embedding-ada-002,
in certain benchmarks. Building on this success, nomic-embed-text-v1.5 integrated
Matryoshka Representation Learning (MRL) [93], which allows a single model
to output embeddings of different dimensions (e.g., from 768 down to 64) by ensuring
that shorter prefixes of the full embedding are themselves effective representations.
This offers flexibility in balancing performance and resource usage. More recently,
Nomic released nomic-embed-text-v2-moe, which is the first open-source multilingual
Mixture of Experts (MoE) embedding model [162, 76]. MoE architectures comprise
multiple expert sub-networks and a gating mechanism that determines which experts
to activate for a given input. This enables models to scale capacity efficiently, often
resulting in better performance with a similar computational cost during inference
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compared to dense models of equivalent size.

BGE M3 BAAI's BGE M3 (Multi-lingual, Multi-function, Multi-granularity)
represents a significant step towards a unified embedding model [27]. It supports over
100 languages and has a context length of up to 8192 tokens. Its main innovation is the
ability to perform dense retrieval, sparse retrieval (like SPLADE [19]), and multi-vector
retrieval (like ColBERT [21]) in one model, which is achieved through self-knowledge
distillation, where the model learns to make its different output representations
consistent with each other. BGE M3 also excels in cross-lingual retrieval capabilities,
allowing a query in one language to retrieve documents in another language.

Multilingual E5 To address the need for strong embedding models beyond English,
Multilingual E5 models were developed [187]. These models typically use a multilingual
BERT (such as XLM-R [35]) as their base backbone and are trained on large-scale,
multilingual text pairs. They demonstrate strong performance in both monolingual
retrieval across multiple languages and cross-lingual retrieval tasks, making them
valuable for multilingual search applications.

Decoder-based models Researchers have recently shown how to turn decoder-only
LLMs into efficient bi-encoders by reusing their existing weights [9]. Starting from a
causal transformer, one option is to keep the mask in place but simply take (pool)
the final <EOS> hidden state as that text’s embedding [136]. Another option is to
remove the causal (triangular) attention mask, allowing every token to attend to
every other token, and making attention bidirectional. Then, standard pooling choices
can apply, such as mean, max, first-token, or EOS, which result in a single vector.
Then a pair of towers can be fine-tuned with a contrastive InfoNCE loss and mined
hard negatives, exactly as in E5. This exact procedure lies behind models like
E5-Mistral-7B-instruct, GTE-Qwen2-7B-instruct, GTE-Qwenl.b5-7B-instruct,
and multilingual-E5-large-instruct. Despite having between 550 million and 7
billion parameters, these models now rank among the top performers on MTEB [118].
Their strength stems from the extensive causal-LM pretraining, which equips the
encoder with broad world knowledge and even basic reasoning skills. The downside is
that they are expensive: in FP16 precision, each model requires over 14 GB of GPU
memory, and only a handful of queries can be processed per second on a single A100
GPU.

Proprietary Models Several vendors offer proprietary embedding services that
can only be used via hosted APIs. OpenAl provides text-embedding-ada-002
and the newer text-embedding-3-small and text-embedding-3-large.
Amazon Bedrock serves amazon.titan-embed-text-vl and its 2025 upgrade
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amazon.titan-embed-text-v2.0. Cohere’s lineup includes embed-english-v3 and
embed-multilingual-v3. Google Vertex Al has released gemini-embedding-001
and related experimental variants. While all of these models achieve strong
zero-shot performance on public benchmarks, their internal architectures and training
procedures remain undisclosed.

Bi-encoders today range from lightweight 100-million-parameter models that can
handle tens of queries per second to multi-billion-parameter decoder hybrids that
improve benchmarks only marginally but run two orders of magnitude slower. In
practice, production systems utilize efficient, mid-sized open-source checkpoints for
first-pass retrieval and reserve a cross-encoder model for a second pass of reranking to
further improve accuracy, where extra compute is justified when dealing with a short
list of candidates.

2.4.4 Late-Interaction & Hybrid Dense-Sparse Models

ColBERT Late-interaction models aim to blend the lexical exactness of sparse
search with the contextual richness of dense encoders while preserving offline indexing.
Unlike a standard bi-encoder that pools a document into one vector, ColBERT
[84, | encodes every token in a query and a document into separate low-dimensional
vectors and scores a pair by summing token-wise maxima, for each query token vector
¢i, it computes the cosine similarity with every document token vector d;, takes
the maximum similarity max; cos(g;, d;), and then sums these maxima over all query
tokens. More formally, if ) = ¢q1,...,¢, and D = dy, ..., d, are the sets of embeddings
for the query and document, the ColBERT score is:

m
score(Q, D) = max sim(g;, d;). (2.4.6)

= 1<j<n
Because the document is still pre-encoded, retrieval scales linearly with corpus size,
yet the token-level comparison recovers nuanced matches. For example, consider the
query “dog training tips”. A ColBERT model might use one vector for “dog” to find
related words like “puppy”, and another for “training” to find words like “commands”
in the document, combining their scores. A single dense vector might not pick up on
these specific word matches. A ColBERT store remains an order of magnitude larger
than a dense index, and each query incurs dozens of dot products per token, so the
method is typically used as a second-stage re-ranker.

SPLADE A complementary method retains the familiar inverted index but utilizes
a transformer to determine which terms to include [19]. Tt utilizes the hidden states
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of a BERT model and employs its masked language model head to score every word
in the vocabulary (approximately 30,000 terms). Then, by applying L1 or FLOPS
regularization, it forces almost all scores to zero, leaving only a few active terms per
document or query, which can be indexed and scored exactly like TF-IDF. Instead
of relying on fixed query expansion, SPLADE learns to activate semantically related
terms. For example, given “smartphone battery life”, it might choose “battery”,
“longevity”, and “phone”. This learning happens by distilling knowledge from a strong
cross-encoder and by tuning separate sparsity levels for queries versus documents.
SPLADE v2 [18] adds hard negatives during training and adjusts activation weights
based on document length, reaching BEIR performance on par with dense models
while remaining fully interpretable and indexable. The primary overhead is computing
scores for every vocabulary term in each query; however, aggressive pruning and
caching make SPLADE fast enough to handle web-scale collections.

Most production systems now combine dense, sparse, and late-interaction signals.
First, a medium-sized bi-encoder (e.g., E5, GTE, etc) retrieves a few hundred
candidates via approximate nearest-neighbour search. Next, a sparse model (e.g,
BM25 or SPLADE) finds additional documents based on exact term matches. Finally,
the combined set is re-ranked using a late-interaction model, such as ColBERT or
a cross-encoder. In practice, these three views cover different weaknesses: dense
embeddings catch paraphrases, sparse scores handle out-of-vocabulary phrases, and
token-level MaxSim handles precise intent. Top systems in the BEIR challenge and
default settings in toolkits like Pyserini [104] employ this layered approach, achieving
cross-encoder accuracy while keeping latency and hardware costs manageable. As a
result, hybrid search has become the standard for large-scale retrieval, enabling the
balance of recall, precision, and speed.

2.5 Retrieval Evaluation Metrics

In this section, we introduce standard metrics for evaluating retrieval and ranking
models. Modern retrieval research relies on several rank-focused measures, each
highlighting a different aspect of system quality. Precision@K and Recall@K measure
result purity and coverage, but do not consider rank order. MAPQK and MRRQK
reward obtaining correct results early, assuming binary relevance. nDCG@QK handles
graded relevance, making it the single metric reported in large comparative studies,
such as BEIR. Below, we define each metric formally and explain how it can both
clarify and sometimes distort experimental outcomes.
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Precision @ K [t is defined as the ratio of relevant documents among the top K

results:
K

POK = % Zrel,- (2.5.1)
=1

where rel; is 1 if the i-th document is relevant and 0 otherwise.This metric is easy to
understand and aligns with how users typically view only the first few results on a
page. However, it has two main drawbacks. First, it does not care about the order
of those top K results; swapping a relevant document at rank 1 with one at rank
20 does not change PQK. Second, it ignores any documents ranked lower than K,
which means it does not reflect performance when users need to find many relevant
documents. Finally, by treating relevance as just relevant or not, it misses cases where
some documents are more useful than others.

Recall @ K It measures how many of the total relevant documents appear in the
top K results:

K
RQK = ﬁ > rel; (2.5.2)
=1

where |R| is the total number of relevant items. This metric is crucial when missing
even one relevant document is unacceptable, such as in legal discovery or literature
reviews. However, it shares Precision@K’s blind spot to ordering: swapping a relevant
result at rank 1 with one at rank K does not change RecallQK. It also relies on
knowing every relevant document in advance; if some relevant items are unjudged
(i.e., not counted in |R|) and appear below K, the score appears artificially higher.
Finally, on simple queries with only a few relevant documents, recall can reach 100%
very quickly, which makes comparing results across different datasets unreliable.

MAP @ K (Mean Average Precision) This metric finds the precision at each
position where a relevant document appears, up to rank K, and then averages
those precision values (dividing by the smaller of K or the total number of relevant
documents). Mean Average Precision (MAP@QK) is simply the average of APQK

across all queries:
K

1
APQK = ———— " PQirel; (2.5.3)
i=1
Because AP gives a reward each time a relevant document appears, MAP favors systems
that place many good documents near the top. However, MAP treats relevance as
a yes/no decision, so it ignores any differences in how relevant documents might be
on a scale of relevance. Studies also show that MAP can fluctuate significantly if
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some relevant documents are missing from the relevance set; small changes in which
documents are judged can substantially alter rankings [190, |. Finally, MAP
averages every query equally, regardless of its difficulty. That means a handful of very
difficult queries (with few relevant documents) can dominate the overall score and
hide how the system performs on more common, everyday searches.

MRR @ K (Mean Reciprocal Rank) It focuses only on the position of the very
first relevant document and assigns a score equal to the reciprocal of that document’s
rank, as long as it appears within the cutoff K.

RRQK = 1/rankgg; (2.5.4)

This makes MRR especially useful for tasks like factoid question answering or
conversational agents, where users usually stop after finding the first satisfactory
answer; an increase in MRR directly means answers are appearing earlier. However,
MRR ignores any additional relevant items, offering no reward for returning a second
or third correct document, and it treats relevance as a strictly binary concept. Due to
its reciprocal formula, even slight shifts in rank can have a significant impact. For
example, moving the first hit from position 2 to 3 reduces its contribution by half,
allowing MRR scores to fluctuate significantly despite minimal perceptual differences
for users.

nDCG @ K (Normalized Discounted Cumulative Gain) This metric adds up
graded relevance scores but penalizes results that appear deeper in the list. Formally:

K

2re1i -1
DCGAK =)
=1

log, (i + 1) (255)
Here, the exponential term (27¢% — 1) lets us handle multi-level relevance judgments
(for example, “highly relevant” versus “somewhat relevant”), and dividing by log, (i +1)
reflects the fact that users focus more on top-ranked items. To make comparisons
fair, we divide DCG@QK by the maximum possible DCGQK (the ideal ranking) to
get normalized DCG (nDCG). Normalization enables us to compare different queries
and systems on a standard scale. One useful property of nDCG, which is consistent
distinguishability, is that, under broad conditions, its ordering of two systems tends
to match human preferences. In other words, if people consistently like system A
more than B, nDCG will usually rank A above B—even though nDCG values move
closer to 1 as K increases [190]. Because nDCG combines sensitivity to both rank
position and graded relevance, many benchmarks (such as BEIR) use nDCG@10 as
their primary metric. However, nDCG has its own limitations: it requires knowing
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the best possible ranking in advance so that any unjudged relevant documents can
inflate scores. Also, choosing a different discount function (for example, % instead of
bg2(++1) changes absolute values, making it hard to compare results unless everyone
follows the same formula.

In summary, each metric highlights a different aspect of performance: purity,
completeness, speed of finding results, or graded usefulness. A thorough evaluation,
therefore, encompasses all these measures, allowing readers to judge from multiple
angles instead of relying on a single number that might be misleading.

2.6 Synthetic Data Generation

Large Language Models are now used not just for performing tasks but also as data
generators, helping to overcome issues like scarce or imbalanced datasets. For instance,
NVIDIA’s Nemotron-4 framework [2] relied on over 98% synthetic examples
to fine-tune its instruction-following abilities. Such synthetic corpora can rephrase
real text, produce labeled examples, or fill gaps in underrepresented domains. By
automating prompt creation, response generation, and rigorous filtering, NVIDIA’s
pipeline produces high-quality training and preference modelling data without the
expense of human annotation. This trend, where powerful LLMs generate data to train
other models, represents a significant shift in NLP, enabling rapid and cost-effective
expansion into new domains.

One particularly successful application of synthetic data is information retrieval,
particularly in training neural rankers and retrievers, where large collections of
labeled query-document pairs are scarce. Recent methods use LLMs to generate
realistic queries for existing documents, yielding pseudo-labeled pairs without any
human annotation. InPars [11] is a notable example; it prompts GPT-3 with a few
demonstration examples to produce relevant queries for a given passage, creating
enough synthetic pairs to train a dual encoder or reranker without any human-labeled
queries. Building on this idea, InPars-v2 [77] switches to open-source LLMs and
filters the generated pairs through a strong reranker, resulting in higher-quality data
and state-of-the-art zero-shot retrieval on BEIR. Promptagator [35] takes a similar
approach with as few as eight examples and task-specific prompts to elicit queries from
an LLM, then applies a round of consistency checks to discard low-quality queries.
Researchers have also extended this strategy to multilingual and cross-domain settings
[176]; they demonstrate that a “summarize-then-ask” strategy (first having an LLM
summarize a document, then generating queries for the summary) yields rich training
sets in dozens of languages. LLM-generated query-document pairs provide abundant,

37


http://www.mcmaster.ca/
https://cse.mcmaster.ca/

Master Thesis — Ali Shiraee Kasmaee;
McMaster University — School of Computational Science and Engineering

high-quality training samples that rival traditional supervised data in training neural
ranking models.

Synthetic data has also become a powerful tool for training text embedding models
used in semantic search. For instance, Wang et al. [136] show that you can train a
general-purpose encoder almost entirely on LLM-generated pairs. The recipe is simple:
first prompt a large LLM to produce diverse sentence pairs and related snippets across
multiple tasks and languages. Then, use those synthetic pairs to fine-tune a smaller
transformer with a contrastive loss. Despite using only synthetic data, the resulting
embedding model achieves competitive performance on standard semantic textual
similarity and retrieval benchmarks. Adding even a small amount of real labeled
data on top pushes it to state-of-the-art on benchmarks such as BEIR and MTEB.
The real advantage lies in the variety and difficulty of the generated examples, which
effectively form an automatic curriculum that would be impractical to build by hand.
By controlling the design of prompts, researchers can tailor the tone, complexity, and
domain of the synthetic data, ensuring that the final embeddings are both robust and
well-matched to their intended applications.

Recent studies highlight a clear message: Large Language Models can now produce
diverse, high-quality training pairs at a scale that manual annotation cannot match.
This generated data provides a practical and low-cost alternative source of supervision.
This complements the neural ranking and contrastive learning techniques discussed
earlier, and it is likely to become even more critical for building robust text embedding
and retrieval systems in data-scarce or rapidly changing domains.

2.7 Retrieval-Augmented (eneration

Large pretrained language models (LLMs) implicitly store knowledge in their
parameters, but this parametric memory is static and cannot be easily updated or
inspected [137, . As a result, LLMs may struggle with queries about new or
niche information and can confidently “hallucinate”: generate outputs that sound
plausible but are factually incorrect. One way to introduce new knowledge is by
fine-tuning or retraining the model on updated data; however, updating the model’s
weights is often costly and impractical, especially for very large or closed-source
language models [112]. Retrieval-Augmented Generation (RAG) has been introduced
as a more practical alternative that allows LLMs to access external knowledge
at generation time without changing their weights [100]. In RAG, the model is
equipped with a retriever that fetches relevant text from an external knowledge base
at inference time, and this retrieved context is provided to the model alongside the
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query. By grounding every response in external documents, the model can incorporate
up-to-date or domain-specific information on the fly. This approach has been shown
to improve the factual accuracy of generated answers and reduce hallucinations, as the
language model can rely on retrieved evidence rather than guessing from parametric
memory. For example, Shuster et al. [160] report a 30-35% drop in fabricated answers
when using RAG for open-domain tasks. Moreover, integrating external knowledge
can make smaller models as effective as much larger ones; a 7-billion-parameter
retrieval-augmented model can match the performance of a 175B model on knowledge
benchmarks by accessing a large text index at runtime [15]. RAG proceeds in two
stages:

1. Retrieval: An embedding model maps the query ¢ to a vector E(q) and each
document d to E(d). The retriever then finds the top-k documents dy, ds, . . ., dj
whose embeddings have the highest similarity (cosine or dot) to E(q), formally

we have:
i = argmax sim(E(q), E(d)) (2.7.1)
€
for i = 1,...,k, where C is the document corpus and sim(-,-) is a similarity

function. The set of retrieved passages D = dy, ..., d; is then appended to the
original query as extra context.

2. Generation: The language model G (e.g. a pretrained transformer decoder
or seq2seq model) processes the query along with the retrieved documents to
generate a final answer y. Essentially, the model now generates text conditioned
on external knowledge, modelling the probability of an output y given the query
and retrieved content, P(y | ¢, D).

Figure 2.6 illustrates the Retrieval-Augmented Generation (RAG) architecture, which
consists of two primary stages. In the first stage, documents are processed for
indexing. They are typically segmented into smaller text chunks to accommodate
the limited context windows of embedding models. For instance, the context window
for standard BERT models is 512 tokens. These chunks are then converted into
fixed-size numerical vectors by an embedding model. Finally, the resulting vectors
are stored in a vector database [30], a data structure optimized for efficient similarity
search in high-dimensional spaces. The second stage occurs at inference time. An
incoming query is converted into a vector using the same embedding model. A
similarity metric, in conjunction with an efficient search algorithm like Approximate
Nearest Neighbours [109], is employed to retrieve the top-k most relevant document
vectors from the database. The text chunks corresponding to these vectors are
then used as supplementary context. This context is concatenated with the original
query and provided as a single input to a large language model, which generates a
response that is grounded in the retrieved information and returns it to the user.
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Figure 2.6: A retrieval-augmented generation pipeline

This retrieve-and-generate approach extends earlier “open-book” QA systems that
used information retrieval with a reader model [20], and it builds on advances
in integrating differentiable retrieval into neural networks [58]. In particular, the
original RAG implementation fine-tunes a BART seq2seq model with a Dense Passage
Retriever (DPR) backend [100], enabling end-to-end learning of both retrieval and
generation. Overall, Retrieval-Augmented Generation provides a practical approach to
incorporating up-to-date, non-parametric knowledge into LLMs, and it has become a
foundational technique for knowledge-intensive tasks in NLP, where purely parametric
models were previously prone to factual errors.

2.8 NLP & Text Embedding Benchmarks

2.8.1 General Encoder-Based NLP Benchmarks

General natural language understanding benchmarks, such as GLUE (General
Language Understanding Evaluation) [181] and SuperGLUE [152], are widely used to
evaluate encoder-based models. GLUE combines nine sentence-level or sentence-pair
tasks, spanning sentiment analysis, linguistic acceptability, paraphrase detection,
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natural language inference (NLI), and semantic textual similarity into a single score
that measures overall natural language understanding ability. SuperGLUE builds on
GLUE with a more challenging suite of tasks (e.g., commonsense reasoning, coreference
resolution in Winograd schemas, multi-sentence inference), an updated private test set,
and a leaderboard for more difficult language understanding problems. Additionally,
multilingual extensions have been introduced. The XTREME [I167] benchmark
(Cross-lingual TRansfer Evaluation of Multilingual Encoders) covers 9 tasks across 40
languages to evaluate how well representations transfer between languages. XGLUE
[103] offers 11 cross-lingual tasks across 19 languages, covering both understanding
and generation. For Chinese, CLUE (Chinese Language Understanding Evaluation)
[203] brings together 9 diverse single-sentence and sentence-pair classification tasks
as a Chinese counterpart to GLUE. Classic task-specific evaluations are also used;
for example, the TREC question classification dataset [37] (6,000 questions labeled
with coarse and fine-grained categories) continues to serve as a benchmark for
assessing sentence-level classification models. All being said, these benchmarks focus
on classification, entailment, and sentence comprehension, and provide a standard
framework for evaluating encoder models” understanding and transfer learning.

2.8.2 Text Embedding Evaluation Benchmarks

Beyond general natural language understanding, several benchmarks have been
designed specifically to evaluate sentence or text embeddings and the quality of vector
representations. One fundamental benchmark is the Semantic Textual Similarity
Benchmark (STS) [25], which evaluates how well embeddings capture semantic
similarity by comparing model-derived similarity scores with human judgments
on sentence pairs. SentEval [25] is another famous evaluation framework that
tests sentence embeddings on a variety of downstream tasks such as sentiment
analysis, question-type classification, and NLI by feeding the embeddings into
simple classifiers. One of the recent and most critical large-scale benchmarks is
the Massive Text Embedding Benchmark (MTEB) [118], which includes eight
task categories: classification, pair classification, clustering, retrieval, reranking, STS,
and summarization, covering +100 tasks and +1000 languages as of mid 2025. MTEB
provides a comprehensive picture of embedding performance across diverse scenarios,
with results showing that no single model outperforms all tasks. In information
retrieval, the BEIR benchmark [175] (Benchmarking Information Retrieval) includes
18 heterogeneous retrieval datasets (spanning web search, QA, fact checking, etc.) to
evaluate different types of retrievers such as lexical, dense, sparse, late-interaction, and
cross-encoder. There are also specialized benchmarks, such as LoCo (Long-Context
Benchmark) [152], that focus on evaluating the retrieval capabilities of embedding
models on long documents, particularly in law and finance domains, which require
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handling thousands of tokens.

2.8.3 Domain-Specific Benchmarks

In specialized domains such as chemistry and biomedicine, evaluation efforts have
focused on the end-to-end task performance of fine-tuned encoder models rather than
on the intrinsic quality of their embeddings. The BioCreative [(5] challenge series
organized a biochemical text-mining evaluation, including the CHEMDNER tasks
(Chemical Disease/Drug Named Entity Recognition) [90] in BioCreative IV/V, which
involved automatic recognition of chemical names in PubMed abstracts. Similarly,
the BioNLP Shared Task [35] has provided benchmarks for extracting complex
biomedical events (such as protein-protein interactions and gene/protein regulation)
from research articles, representing the first large-scale, community-wide effort in
fine-grained biomedical information extraction. In the chemistry domain, the ChEMU
labs introduced information extraction challenges on chemical patents [60]. For
example, ChEMU 2020 defined tasks on chemical reaction text: (1) chemical named
entity recognition (identifying compounds, reagents, etc., and their roles) and (2)
event extraction for steps in reaction procedures, resulting in a rich annotated
corpora for cheminformatics. In the biomedical domain, a dedicated benchmark
called BLUE (Biomedical Language Understanding Evaluation) [133] assembled five
task types with ten datasets (covering clinical named entity tagging, relation extraction,
QA etc.) to evaluate language models on biomedicine, leading to models such as
BioBERT [98]. Despite these successes, there remains no dedicated benchmark for
assessing chemical text embeddings themselves; existing domain challenges emphasize
downstream accuracy on classification, extraction, and QA tasks with fine-tuned
models, leaving the intrinsic evaluation of domain-specific embeddings as an open area
for research.

2.9 Domain Specific Models in Chemistry

General-purpose language models, such as BERT and GPT, excel on many tasks;
however, they struggle when a domain’s vocabulary, syntax, and reasoning differ
significantly from everyday language. Chemistry is a notable example; its literature
is filled with technical jargon, fixed phrase patterns, and compact notations such as
SMILES and SELFIES that represent molecular structures as text. To address this
gap, researchers have finetuned existing transformer architectures or trained new ones
using chemistry-focused data. The result is a set of models whose representations
reflect chemical meaning in ways that generic language models cannot. The rest
of this section reviews these specialized models, beginning with those fine-tuned
on natural-language chemistry sources, then examining models trained directly on
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chemical representations, and finally exploring decoder-only LLMs that combine both
text and chemical representations for generation and dialogue.

2.9.1 Models Trained on Natural Language Texts

SciBERT is a BERT-based model trained on 1.14 million scientific papers (over
3.1 billion tokens) from Semantic Scholar [10, 5, 89]. Its custom “scivocab” captures
scientific terms, making it well-suited to understand chemistry papers and abstracts.
Given any sentence or token in scientific text, SciBERT produces contextual
embeddings that can be utilized for tasks such as classification or information extraction
in the chemistry literature.

MatSciBERT (Materials Science BERT) is fine-tuned on SciBERT with 2.4
million sentences from materials science publications, including research on alloys,
glasses, and concrete [57]. By focusing on materials and chemistry vocabulary, it
generates embeddings that better reflect domain context, which helps downstream
applications such as named-entity recognition of chemical terms or extracting material
properties from text.

Chemical BERT starts from a SciBERT checkpoint and continues training on over
40,000 chemical industry documents (safety data sheets, product information) plus
13,000 Wikipedia chemistry articles [I44]. It produces embeddings finely tuned to
chemical nomenclature and regulatory language, making it ideal for tasks like chemical
document classification, question answering, and compliance analysis in the chemical
sector.

2.9.2 Models Trained on Chemical Language Representations

ChemBERTa An encoder model with a RoBERTa architecture, but is trained
entirely on chemical language such as SMILES strings (and in some variants, SELFIES)
instead of ordinary English [31]. For instance, one ChemBERTa model was pretrained
on 10 million PubChem SMILES, learning the syntax of molecular representations. The
input is simply a SMILES string, and the output embedding encodes key structural
features that prove helpful for downstream tasks, such as toxicity or bioactivity
prediction. An improved version, ChemBERTa-2 [1], added a multi-task training
objective by predicting molecular properties along with the MLM objective during
pretraining, which further enhances its utility as a chemical foundation model.

MolBERT takes a similar path, uses a BERT-style encoder for SMILES, but
supplements the standard masked-language modelling objective with chemistry-specific
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tasks: it learns to recognize equivalent SMILES (different strings for the same molecule)
and to predict molecular descriptors during pretraining [101, 47]. Trained on roughly
4 million ChEMBL [53] and ZINC [72] molecules, MoIBERT’s multi-task regime yields
richer embeddings that better capture chemical properties.

MoLFormer This family, developed by IBM [150], scales this idea to an extreme:
pretraining on over 1 billion SMILES from ZINC and PubChem, it uses enhanced rotary
position embeddings [172] and efficient attention mechanisms [$3, 189] to handle very
long SMILES sequences. MoLFormer-XL embeddings have even outperformed some
graph-based models on solubility, bioactivity, and other property benchmarks, showing
that large-scale text-only training can rival 3D structural approaches [202, ].

Other models, SMILES-BERT [158], ChemFormer [73], and similar models,
treat chemical formulas as an actual language. Trained on 19 million ZINC SMILES and
100 million sequences, respectively, these transformers output vector representations
that are useful in applications from virtual screening and similarity search to clustering
in chemical space. By viewing SMILES and SELFIES as a formalized vocabulary,
they unlock the power of modern NLP in cheminformatics.

2.9.3 Decoder-Based Models

ChemLLM A T7-billion-parameter, decoder-only model built specifically for
chemistry dialogues [200]. It was trained and instruction-tuned on a custom
“ChemData” corpus that converts structured chemical knowledge (e.g., formulas,
reactions, safety rules) into conversational examples. You can prompt ChemLLM
with a question or request that mixes natural language and chemical notation (names,
SMILES, equations), and it responds with detailed, chemistry-aware text. It handles
tasks such as converting IUPAC names into SMILES, describing molecular structures
in plain English, and predicting reaction products. In benchmarks, ChemLLM
matches or beats GPT-3.5 and even approaches GPT-4 on core chemistry problems,
making it a practical chat-style expert for molecule Q&A, protocol design, or concept
explanation.

MolGPT An early, smaller decoder-only transformer (around 6 million parameters)
[7] trained on SMILES strings to generate new molecules. Using a left-to-right language
modelling objective, it learns SMILES syntax and can auto-complete or sample novel
strings from a given scaffold or start token. Most outputs follow chemical grammar,
so they represent valid compounds. In generative benchmarks like MOSES [138] and
GuacaMol [19], MolGPT outperforms earlier VAE-based generators, showing that
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even a modest GPT-style model can drive molecular design by proposing diverse,
property-tuned candidates.

ChemGPT A family of GPT-style models, such as ChemGPT-1.2B [50] built on
GPT-Neo’s 1.2 billion parameter backbone, aimed at free-form molecule generation.
Trained on millions of PubChem SMILES, these models take a text prompt (empty, a
partial scaffold, or a property tag) and sample complete SMILES strings, effectively
imagining new compounds. They excel in virtual screening and lead optimization: by
conditioning on desired features, ChemGPT can propose analogs or novel candidates.
The flexibility of a decoder-only design makes it easy to guide generation with simple
text hints.

Beyond these dedicated models, researchers have fine-tuned general LLMs like GPT-3
for chemistry (e.g., GPTChem, a 175 billion-parameter variant) [75] or adapted
LLaMA for scientific content (such as PMC-LLaMA on PubMed data) [195]. These
models support chemistry Q&A, protocol writing, and even code generation for
data analysis. However, they rely heavily on prompt engineering or task-specific
fine-tuning to handle chemical notation, and in many cases, chemistry-trained LLMs
like ChemLLM outperform them on specialized tasks. Decoder-only chemical LLMs
thus serve both generative and assistive roles, turning SMILES, equations, or plain-text
queries into actionable insights in the lab.

2.10 Architectural Improvements

The transformer architecture [180] uses multi-head self-attention and feed-forward
layers to do effective sequence modelling with parallelization. In the standard
transformer, each token is mapped to Query (@), Key (K), and Value (V') vectors,
and self-attention is computed as a scaled dot product:

T
e

where d, is the dimensionality of keys. This design allows each token to attend to
all others; however, it also has quadratic complexity in sequence length for both
computation and memory. For a sequence of length N, the QKT multiplication
outputs an N x N attention matrix, making self-attention O(N?) in time and space.
Such quadratic scaling severely limits the application of transformers to long texts
(e.g., full-length chemical patents or literature). For example, extending at transformer
context from 512 to 5000 tokens increases attention memory by nearly a hundred times,
making training on long domain-specific corpora impractical. Another limitation of

Attention(Q, K, V') = softmax( )1
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the original transformer is its reliance on absolute positional encodings. The baseline
model adds a fixed positional vector to token embeddings (e.g., sinusoidal waves with
period 10,000) to inject word-order information. These absolute position encodings
do not generalize well beyond the sequence length seen in training. If we feed a longer
text than the model was trained on, the positional signals become out-of-distribution
and can cause attention weights to explode or behave unpredictably [29]. In other
words, absolute position embeddings lack any built-in sense of relative distance beyond
the training window. This is especially problematic in domains where documents often
span thousands of tokens: the model either cannot capture long-range dependencies
or must be fully retrained on longer inputs.

In summary, while the vanilla transformer is a powerful foundation, it faces two
major limitations for embedding domain-specific texts like chemical literature: (1)
its self-attention mechanism scales quadratically with sequence length, and (2) its
absolute positional encodings do not generalize to longer contexts. The following
sections review architectural and training innovations that address these issues.

2.10.1 Efficient Attention: FlashAttention

Beyond the quadratic arithmetic cost, the real performance issue lies in memory
traffic. Even on modern, fast GPUs, much of the attention computation time can be
dominated by memory read/write overhead rather than arithmetic operations. Each
attention layer must load the keys and queries, write the large attention matrix to
memory, then reload them to multiply by V. Studies have shown that on modern
GPUs, memory access is often the true bottleneck, as compute speed outpaces memory
speed [39]. Thus, simply reducing theoretical FLOPs (e.g., approximate attention
methods) may not result in real speedups if memory traffic remains high. The real
challenge is to redesign attention to be more I/O-aware and minimize unnecessary
data movement.

FlashAttention is an exact attention algorithm that directly addresses 1/0O
limitations by redesigning the self-attention mechanism to use tiling and fused
GPU kernels to minimize memory reads/writes. GPUs use a memory hierarchy
where SRAM is a small, extremely fast memory located directly on the processing
chip. In contrast, HBM (High-Bandwidth Memory) is the much larger, but slower,
main memory pool that resides off-chip. The standard attention computes and stores
the full N x NV score matrix in off-chip memory (HBM), then reads it back to multiply
by the value vectors. FlashAttention breaks the computation into smaller tiles that
fit in fast on-chip memory (SRAM). It fuses all the steps (matrix multiply, masking,
softmax, and value weighting) into a single GPU kernel, so each query, key, and
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value tensor is read only once, and the final output is also written just once. By
avoiding the full N x N write-read cycle, FlashAttention reduces memory traffic and
turns attention from memory-bound into compute-bound. End-to-end training is
reported to be improved by 15% for BERT-large (512 tokens) and a 3x speedup for
GPT-2 (1000 tokens). Because it only requires extra space proportional to N (for
a fixed tile size) instead of N2, FlashAttention enables the training of transformers
on much longer inputs within the same hardware budget. On very long documents
(4000-16, 000 tokens), FlashAttention not only runs faster but also enables training on
tasks such as the 16, 000-token Path-X challenge, which standard attention simply
cannot handle. As a result, it has quickly become a standard building block for
long-context transformer models. For example, the Nomic family of text embedding
models uses FlashAttention to process up to 8192 tokens efficiently.

2.10.2 Positional Encoding and Long-Context

The original transformer adds a fixed sinusoidal vector to each token embedding based
on its position index. While this works well for moderate lengths, it causes two main
issues for long texts. First, absolute position embeddings treat position ¢ in one
sequence as entirely different from position ¢ in another, lacking a notion of relative
distance. This means the model has to learn from scratch how to handle shifts in
input order. In tasks like chemical text analysis, where the relevant information might
be spread across a document (e.g., multiple mentions of a compound over pages), an
absolute scheme offers no built-in translational invariance; the model might struggle to
relate a concept at position 100 to one at position 1000 unless it saw similar distances
during training. Second, absolute position embeddings do not generalize beyond the
maximum length seen in training. If a model is trained on sequences up to 512 tokens,
feeding it 1024 tokens forces it to guess positional values outside its familiar range.
Although sinusoidal functions can mathematically generate values beyond the training
range and for any index, in practice, attention scores for untrained positions often
explode or oscillate unpredictably. The resulting softmax can collapse to near one-hot
or uniform distributions, which reduces the model’s ability to reliably handle longer
documents.

Rotary Positional Embedding (RoPE) It replaces fixed positional vectors with
a rotation applied to each query-key pair, so positions enter the attention computation
as relative offsets rather than absolute indices [172]. In RoPE, each query/key vector
is split into d/2 two-dimensional pairs, and each 2-D pair is rotated by an angle
proportional to its token position. Formally, for position m, and a given frequency

band in the embedding, RoPE defines a 2-D rotation per pair: (qgi),qgiﬂ)) is
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transformed to /
U, 2i _ [ cos Hm,i —sin Qm,i Gm,2i
(q;’n,%—&—l) N (Sin Omi  COSOp; ) (C]m,2¢+1> (2.10.1)

with a similar rotation for keys. This angle is defined based on the token’s position
and the dimension’s index using a fixed sinusoidal frequency. For a token at position
m and dimension pair ¢, the angle is calculated as:

m
gm,i = W

(2.10.2)
where d is the feature dimension of the vector, i € [0,1,...,d/2 — 1] is the index for
the dimension pair, and b is a large constant base (typically 10,000). This formulation
creates a spectrum of rotational speeds across the dimensions, from low frequencies
that capture long-range relative positions to high frequencies that capture fine-grained
local ones. Since these rotations depend only on the difference (m — n), the dot
product @, - K,, naturally encodes relative distance. Unlike absolute encodings, RoPE
can be evaluated at arbitrary positions m at inference time; however, models may
degrade beyond their training lengthZ. In practice, models using RoPE (e.g., the
LLaMA family) have shown better stability for moderate extrapolation and often yield
smoother distance-aware attention patterns. This is especially valuable in chemistry
texts, where key information (for instance, a compound and its properties) may be
scattered throughout a lengthy document. However, pushing far beyond the training
length can cause the so-called Neural Tangent Kernel (NTK) instability [132]:
high-frequency rotations make attention weights numerically unstable on unseen
lengths. Empirical studies show that once inputs exceed the training cutoff L, RoPE’s
attention scores either scatter unpredictably or collapse into overly sharp peaks,
causing perplexity to explode and attention to effectively break [183]. To address
these failures, researchers have developed several long-context strategies:

1. Position Interpolation (PI): It tackles RoPE’s extrapolation limits by
compressing the position numbers of a longer input to fit the model’s original
range [29]. For example, if a model trained on L = 2048 tokens needs to
handle L = 4096 tokens, we map positions 0-4095 onto 0-2048 before applying
RoPE which will effectively scale positions by s = L'/L . This simple tweak
prevents the severe attention failures seen when RoPE is used beyond its training
length. Although PI slightly reduces resolution (distant tokens may share similar
rotation angles), fine-tuning on a small long-text dataset is often done to adapt
the model. In practice, PI is very effective: LLaMA models fine-tuned with PI
for a 32K -token context run stably on long texts and show only minor drops
on shorter tasks. With approximately 1,000 fine-tuning steps, PI can extend
context windows by eight times or more at a modest computational cost.
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2. NTK-Aware Frequency Rescaling: Another approach is to modify RoPE’s
rotation frequencies for longer contexts [16]. In RoPE, high-frequency
components correspond to rapid phase changes that become problematic at
long range. By observing that neural networks learn low-frequency patterns
more easily than high-frequency ones, NTK-aware scaling, we scale each RoPE
angle 6 by:

/

0 =06« (%)a (2.10.3)

By choosing o < 1, this stretches out the rotations, and high-frequency
dimensions are interpolated less or not at all, while low-frequency ones can
still cover the extended range. The result is that attention varies more gently
at long distances. Empirically, NTK-aware RoPE (with a tuned «) improves
perplexity for longer sequences compared to naive extrapolation. It does involve
a trade-off: a fixed « that helps at 16K length might slightly hurt at very short
lengths (because we altered the geometry of position space). Still, it can enable
zero-shot extension; using the model at double or quadruple length without any
fine-tuning, with only minimal loss in accuracy at normal lengths.

3. Dynamic NTK Scaling: It adjusts the RoPE scaling factor on the fly based
on the current sequence length [16]. Up to the original training length L, it
keeps the base angle # unchanged, but beyond L, it smoothly increases scaling
toward the NTK-aware factor 6’ = 0(%)0‘, where L' is the extended context and
a < 1. We can set

0 =0x((axl/L)— (a—1)) (2.10.4)

so that ¢/ = 0 when ¢ = L and 0’ — 9(%)“ as ¢ — L'. This method preserves
exact RoPE performance on short inputs while applying stronger NTK scaling
only at extreme lengths. Peng et al. (2023) incorporated Dynamic NTK into their
YaRN framework, doubling the usable context window without any fine-tuning
and maintaining stable accuracy from short to very long sequences.

4. YaRN (Yet another RoPE extensiolN): It is a method that combines several
of the above ideas into a unified and effective long-context solution [132]. Tt
improves RoPE’s scalability by applying a frequency-aware interpolation scheme:
low-frequency components of the position embedding are fully interpolated (like
in Position Interpolation), high-frequency components are left unchanged to
avoid instability, and mid-range frequencies are partially interpolated using a
smooth transition. This interpolation is guided by two thresholds, o and S,
which control the extent to which each frequency band is scaled based on the
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sequence length. Formally we have:

s if \; < a (High frequencies)
S = ’\Bi_’;(l —s)+s if a <\ < (Mid-range frequencies) (2.10.5)
1 if \; > 8 (Low frequencies)

where s = L'/L (extension ratio). Additionally, YaRN modifies the attention
mechanism by introducing a temperature hyperparameter into the softmax
function. This rescaling stabilizes attention scores over long inputs, helping
to maintain low perplexity even as context length increases significantly. At
inference time, YaRN can also be combined with dynamic scaling, allowing
models to generalize to longer sequences (e.g., 2 times the training length or
more) without retraining. YaRN has proved to be highly efficient in practice.
LLaMA models adapted with YaRN achieved context lengths up to 128K tokens
while maintaining strong performance, using only 10 less training data and 2.5
times fewer training steps than earlier long-context methods.

Positional encoding enhancements, such as RoPE and its subsequent methods, are
essential for long-context embedding models. Fixed absolute encodings would collapse
on long documents, but RoPE, combined with position interpolation, smoothly maps
any longer sequence back into the model’s familiar range. For example, the open-source
Nomic embedding family [124] applies both interpolation and frequency rescaling
to support an 8192-token context window. This enables it to convert full research
articles into useful vectors without requiring retraining for longer inputs. By layering
in NTK-aware scaling and techniques such as YaRN, modern transformers treat
length extension as a gradual adjustment rather than a hard failure, and can keep
attention stable even as sequence lengths are pushed to longer lengths. When paired
with efficient attention algorithms, these positional-encoding tricks break through the
original transformer’s context limits, which is especially valuable in chemistry NLP,
where key information may span very long documents or complex reaction chains.

2.10.3 Feed-Forward Block Upgrades

Each transformer layer consists of the multi-head attention followed by a feed-forward
network (FFN), which is a simple two-layer MLP that uses a ReLU activation function
[180, 3]. Formally we have [101]:

FFN(I’, Wl, WQ, bl, bg) = max((), le -+ bl)Wg + bz (2106)
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And in some variants such as T5 [111] there is no bias:
FFN(JZ,WI,WQ) = max(O,le)Wg (2107)

One limitation of this approach is that ReLU is a unilateral activation function,
meaning it outputs zero for negative inputs, which might limit the expressiveness
of the FFN [128]. Furthermore, the FFN has to learn an element-wise nonlinearity
purely via ReLU, which has no trainable parameters or adaptive behaviour. In recent
years, researchers have found that adding a learned, input-dependent gate inside the
FFN can significantly enhance model quality and training convergence [161].

Gated Linear Units (GLUs) A GLU layer splits the input into two parts: one is
passed through a linear transformation (xV + ¢), and the other through a linear and
a sigmoid gate (element-wise filter) [10]. Formally:

GLU(x, W,V b,c) = o(zW 4+ b) @ (zV + ¢) (2.10.8)

where xV and zW are two affine transforms of the input, ¢ is sigmoid and ®
is element-wise product. Essentially, the network can learn to route information
selectively: the gate can attenuate or pass through components of £V based on the

input. GLU provides a learnable dynamic activation instead of a fixed function like
ReLU.

GeGLU and SwiGLU Building on GLUs, variants like GeGLU (which uses GELU
[64] for the gate) and SwiGLU (which uses the Swish function [112]) have been

proposed [161]. Formally for the entire FFN we have:
FFNSwiSh(I7 W, V, WQ) = (SWIShl (ZEW) X CL’V)WQ (21010)

where GELU(z) = z®(z) with & the standard normal CDF (an equivalent tanh
approximation is often used in practice), Swishg(x) = zo(8z) and the bias is removed.
Similarly, SwWiGLU uses the Swish activation. All these gated designs still use three
weight matrices (two to generate the gated inputs and one for the final projection).
Still, they can keep the same total number of parameters as the original ReLU network
by slightly reducing the hidden size. The key benefit is a multiplicative interaction
that ReLLU alone cannot provide, allowing the FFN to approximate more complex,
data-dependent piecewise functions [10]. As a result, many modern language models
now use SwiGLU instead of ReLU (for example, Meta’s LLaMA [177, 178, 55] and
Google’s PaLM [33]). Additionally, the first version of Nomic embedding models [124]
adopted SwiGLU with FlashAttention, achieving not only higher accuracy but also
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a 25% speedup over its GEGLU setup. In summary, replacing the standard ReLU
in a feed-forward network with a gated variant (GLU, GeGLU, or SwiGLU) is a
straightforward, zero-cost change that yields richer representations, faster convergence,
and improved performance across various NLP tasks.

2.10.4 Memory and Training Efficiency

Training state-of-the-art text embedding models, especially those using contrastive
learning, can be both compute and memory-intensive. A key challenge is the need for
very large batch sizes. Early work in contrastive learning [126, 30] demonstrates that
having many in-batch negatives strengthens the training signal, enabling the model to
learn more discriminative embeddings. However, simply scaling up batch size quickly
hits GPU memory limits. In this section, we will cover two techniques to overcome
memory limitations.

GradCache (Gradient Caching) is a technique introduced to scale contrastive
learning to very large batch sizes under limited memory [52]. In contrastive
learning, having a large batch with many negative examples significantly improves
representations. However, naively increasing batch size N also increases memory
usage (storing N embeddings, and backpropagating gradients through N items
simultaneously). One approach that comes to mind is gradient accumulation, which
is used to simulate a large batch by processing small micro-batches, calculating and
accumulating gradients for each, and updating the model only at the end, once all of
them have been processed. For this to work, the loss calculation for each micro-batch
must be identical for all the other micro-batches, which is not the case in InfoNCE
loss. Consider a slightly altered variant of the equation 2.4.3, where both the positive
and negative cases are merged into a summation in the denominator, for a sample ¢
we have:

e Eq; - Ep;
Li = —log W (21011)

On the other hand, we know that in a network with two encoder towers (bi-encoder)
with shared parameters 6 and batch size N we have:

L <~ 0L 0B,
90~ 0B, 09"

(2.10.12)

AL <~ 0L OE,
00 ~ < 0E, 00

=

(2.10.13)
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Taking the partial derivative of equation 2.10.11 with respect to query (E,,) and
passage (E),,) embeddings, we have:

oL 1 N
==~ | B — i Ep, | 2.10.14
OL 1 N
JE, N (51 B ;%‘ qu-> ) (2.10.15)
¢ Fai - Ev;
Oij = SN B B, 2.10.16
T BB ( )

Where o;; denote the softmax probability of passage p; among the N candidates for
query ¢; The ¢; term in equation 2.10.15 ensures that the strong pull force is only
applied by the true positive pair. It is formally defined as:

E, , if passage p; is the positive for query g¢;,
g = { B ’ ’ (2.10.17)

0, otherwise.

The key idea lies in how the gradients are used to update model parameters. The
gradient ‘g—g splits into two parts based on chain rule:

oL
OE,, y
only on the final embedding vectors for the entire batch, and can be computed

without any knowledge of the encoder’s internal graph or activations.

1. The Representation Gradient, such as and a%_i.' These gradients depend

2. The Encoder Gradient, such as 859"1' and aggj. This is the typical

back-propagation through the encoder for a single example, which requires
the example’s computation graph and stored activations.

Because the representation gradient for any one sample relies on all other samples in
the batch, we cannot simply accumulate gradients in the usual way. GradCache
overcomes this by separating the two factors based on the following steps:

1. Graph-less forward pass: Run the encoder over the whole batch to get every
embedding E,, and E, , but do not build or store any computation graphs.
This will result in a set of embeddings required to calculate the representation

gradient.

2. Representation gradient caching: Using the embeddings from Step 1 to
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oL oL
oE, and OBy,

compute for each sample, and store these gradient vectors in a

cache.

3. Sub-batch backpropagation: Split the batch into small chunks. For each
chunk, perform a normal forward pass, creating the compute graph, then perform
the back-propagation [151] using the cached gradients from step 2 for those

samples. The resulting parameter gradients (g—L) are accumulated.

0

4. Optimizer Step: After processing all chunks, the accumulated gradient is used
to perform a single optimizer step.

Importantly, this procedure is exact, not an approximation. It results in the same
‘?)—g as a single forward /backward pass over the whole batch. By never holding the
full batch’s activations in memory at once, GradCache reduces peak memory use to
the size of one micro-batch, enabling effectively unlimited batch sizes (bounded only
by compute time and the space needed to store cached embeddings and gradients).
GradCache makes it feasible to train state-of-the-art contrastive embedding models

with massive batches, without requiring prohibitive GPU memory.

Mixed-Precision Training Using 16-bit formats (Floating-point 16 or Brain
Floating-point 16) has become the standard practice for scaling transformer training.
By halving the bit-width of most weights and activations relative to FP32, we roughly
halve memory use and inter-GPU communication, while taking advantage of specialized
hardware units (Tensor Cores on NVIDIA GPUs or matrix units on TPUs [125]) that
run 16-bit operations faster than 32-bit. However, standard FP16 suffers from a
narrow exponent range (1-bit sign / 5-bit exponent / 10-bit mantissa; normal values
~ 6.1 x 107 to 6.5 x 10%), which can cause gradients to underflow or overflow during
back-propagation. BFloat16 (BF16) addresses this by keeping the same 8-bit exponent
as FP32 but reducing the mantissa to 7 bits (BF16 layout 1-bit sign/ 8-bit exponent
/7-bit mantissa; while FP32 is 1-bit sign/ 8-bit exponent / 23-bit mantissa). This
preserves the ability to represent very large and very small values without normal-range
saturation, at the cost of modestly lower precision. In practice, we keep critical tensors
such as the copy of the model weights and specific accumulation buffers in full 32-bit

precision, while switching all other computations to BF16 [1 13]. Because BF16 does not
require manual loss-scaling tricks to avoid numerical issues, it delivers stable training
almost out of the box. Empirical studies [31] show that, with some enhancements

like stochastic rounding or compensated summation, BF16 training can match FP32
accuracy across a range of tasks. In terms of hardware efficiency, BF16 units can
offer better power efficiency and lower latency compared to FP32 units. Modern
frameworks automate this via Automatic Mixed Precision (AMP), which runs
most operations in BF'16 while preserving FP32 where necessary. The result is about
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a 1.5-2x reduction in memory footprint overall (since master weights and optimizer
state often remain FP32), enabling larger batch sizes or bigger models on the same
hardware. Nearly all recent open-source LLMs (such as BLOOM [95]) rely on mixed
precision for this reason.

2.11 Tokenizer Domain-Adaptation

Modern transformer models, such as BERT, rely on subword tokenizers to split text
into smaller, manageable units. BERT specifically uses a tokenizer called WordPiece
[158, |. The process of building a WordPiece vocabulary begins by collecting
all unique characters in the training dataset. Then, it gradually combines pairs of
these subwords into larger tokens. The pairs chosen for merging are those that most
significantly improve the likelihood of representing the training data, calculated by:

freq(pair)
= 2.11.1
seore freq(A) x freq(B) ( )

This method ensures that tokens represent meaningful and frequent combinations.
When applying the tokenizer to new text, WordPiece selects the longest matching
subword from its vocabulary, segmenting words piece by piece. This effectively handles
rare or unknown words by breaking them down into known, smaller parts, thereby
addressing the out-of-vocabulary issue. Other common tokenization strategies include
Byte Pair Encoding (BPE) [159] and SentencePiece [92]. BPE builds vocabulary
by repeatedly merging the most frequently occurring pairs of characters or subwords.
SentencePiece uses a probabilistic method (Unigram model) to choose tokens that best
represent the data. Both techniques aim to keep the tokens semantically meaningful
and maintain manageable overall sequence lengths. Researchers have developed various
methods to adapt tokenizers, especially BERT tokenizer, to specific fields or tasks.
Below, we provide a brief summary of some approaches from the literature.

SciBERT retrains BERT specifically on a large scientific dataset (about 1.14 million
journal articles) to create a specialized vocabulary called SciVocab[!10]. This was done
because BERT’s general vocabulary often fragments or misses specialized scientific
terms. SciBERT has the same vocabulary size as the original BERT (approximately
30,000 tokens), but shares only about 42% of the tokens. This domain-specific
vocabulary slightly improved performance in scientific NLP tasks, confirming that
domain-specific vocabularies facilitate a better understanding of scientific language.

exBERT is a modular vocabulary extension with an adapter that enhances a
pretrained BERT model by adding an extension module to handle additional vocabulary
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[174]. Instead of changing BERT’s original weights, exBERT freezes the base
model and learns a small set of new parameters: specifically, new embeddings for
domain-specific tokens and an adapter module to integrate these new embeddings.
The motivation is to adapt efficiently to new domains when computational resources
or data are limited. Experiments in the biomedical domain have shown that exBERT
can outperform complete retraining approaches in limited-resource situations while
maintaining compatibility with BERT’s original structure. AVocaDo (Adapt the
Vocabulary to Downstream Domain) is a fine-tuning method that expands and adjusts
the tokenizer specifically for a downstream task domain [08]. In this approach, the
model identifies important domain-specific words directly from the task dataset itself
(without a separate large pretraining corpus) and adds them to the vocabulary. During
fine-tuning, new token embeddings are normalized using an auxiliary mechanism,
an extra module that maps input tokens with the expanded vocabulary back to the
original tokenizer’s embedding space. This essentially allows the model to use new
tokens during fine-tuning without significantly altering the pretrained model. AVocaDo
showed substantial improvements in domain-specific classification benchmarks (e.g.,
+8-13 {1 points in scientific and review domains). However, it modestly increases
complexity, adding an extra forward step and roughly doubling memory usage during
fine-tuning due to handling both tokenizations, but it avoids retraining the base
transformer.

CancerBERT extends BERT’s existing vocabulary by utilizing reserved [UNUSED]
token slots for new domain-specific terms [210]. Designed explicitly for oncology, it
incorporated cancer-related terms (such as medical terminology and drug names) into
these slots. It continued pretraining on about 3 million clinical notes and pathology
reports of cancer patients. By reusing these reserved slots, CancerBERT maintained
compatibility with BERT’s architecture while integrating new domain knowledge.
This targeted vocabulary extension improved accuracy in extracting cancer-specific
information from clinical records.
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Chapter 3

Chemical Text Embedding
Benchmark

Recent developments in language models have opened a new chapter in high-performing
information retrieval and content creation, with embedding models playing a central
role in improving how data is represented and handled. Standardized benchmarks, such
as the Massive Text Embedding Benchmark (MTEB), have made it easier to evaluate
embedding models across general domains; however, there remains a lack of tailored
tools for specialized fields like chemistry, which pose their own unique challenges.
This chapter presents the Chemical Text Embedding Benchmark (ChemTEB), a
new benchmark built specifically for the chemical sciences. ChemTEB is designed
to address the particular linguistic and semantic challenges of chemical texts and
data, providing an extensive set of tasks based on chemistry-specific material. By
testing 34 different open-source and proprietary models with ChemTEB, we highlight
where current approaches succeed and where they fall short in processing chemical
information. Our goal is to provide researchers with a unified, domain-specific
evaluation tool that supports the development of more accurate and effective NLP
models for chemistry applications. Additionally, ChemTEB provides insight into how
general-purpose models perform when applied to a specialized domain. ChemTEB
comes with open-source code ' and data 2, contributing further to its accessibility and
utility.

Thttps://doi.org/10.5281/zenodo.16896163
Zhttps:/ /huggingface.co/BASF-AT
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3.1 Introduction

Recent advances in deep learning and natural language processing have greatly
improved the field, making it clear that effective text representation is essential
for understanding semantic similarity. This capability plays a significant role in
text mining, search, retrieval, and related tasks. Over the past decade, a variety of
promising models have been created to address this need. Early examples, such as
GloVe [134] and Word2vec [111], introduced word embeddings but did not account
for context. Newer models have shifted to using transformer architectures, which
make it possible to include context in token embeddings [180]. Each new model
brings its own set of architectural features, parameter sizes, maximum context lengths,
and pretraining strategies. One of the first to use this approach was BERT, which
combined transformer layers and self-supervised learning for embeddings [180, 12].
After BERT, several variations were developed to further boost performance, such
as ROBERTA [106], and others focused on adapting to specific scientific fields, like
SciBERT [10]. Initially, pooling methods such as averaging the output layer or
utilizing the first special token (e.g., BERT’s [CLS])[13] were commonly employed
to obtain a single embedding for a text; however, these approaches proved less
effective in capturing deeper semantic meaning. Sentence-BERT [115] improved
on this by using a Siamese bi-encoder architecture and triplet loss [157], resulting
in strong performance for semantic representation and making it well-suited for
embedding tasks. More recently, models such as E5 [185] and Nomic embed [121]
have introduced contrastive learning into the pretraining stage, enabling models to
distinguish between similar and dissimilar samples and making them more efficient in
practice. The BGE family [200] is notable for its use of a pretraining method inspired
by MAE [199], along with contrastive learning, which leverages large batch sizes
to further improve embedding quality. M3-embedding [119] emphasizes versatility,
supporting multiple functions, granularities, and languages to enhance performance.
Additionally, companies such as OpenAl, Cohere, and Amazon have launched their
own proprietary embedding models, providing users with even more options. The
growth in NLP has also had an impact on various scientific disciplines, including
biology, medicine, and physics, allowing researchers to analyze and interpret large
volumes of text more accurately and efficiently than before. Embedding models
are now essential for handling complex problems across these areas. They work by
converting high-dimensional data into compact vector spaces that preserve semantic
meaning, which is particularly important for tasks such as mining chemical literature
or predicting molecular properties. Retrieval-Augmented Generation (RAG) [100]
has emerged as a powerful approach by combining language models with external
retrieval systems, providing applications with access to domain-specific knowledge in
real-time and making them more effective for tasks that require both deep learning
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and up-to-date information. As these techniques become more widely used, there is a
growing need for highly efficient embedding models in industry. Although general NLP
benchmarks, such as the Massive Text Embedding Benchmark (MTEB) [118], have
helped standardize model evaluation across different tasks, they are not well-suited
for chemistry-related problems. The subtle language and complex meanings found
in chemical literature are often overlooked by models trained only on general data.
This highlights the importance of a specialized benchmark for chemistry, where both
accuracy and proper context are crucial. Enhanced NLP models could transform
various areas of chemistry, including automated literature surveys, synthesis planning,
patent analysis, and the advancement of Autonomous Agents in Chemistry [17, 113]. To
address this need, we introduce the Chemical Text Embedding Benchmark (ChemTEB),
a new benchmark created for the chemical sciences. ChemTEB encompasses a diverse
range of tasks, including classifying chemical texts and mining parallel texts between
natural language and SMILES representations. Our benchmark is designed to be a
strong, domain-specific evaluation tool that supports the development of more accurate
and efficient NLP models for chemistry. With its open-source code and datasets,
ChemTEB enables easy testing of different models and the addition of new tasks and
datasets as needed.

3.2 ChemTEB

In this chapter, we utilize a wide range of datasets to evaluate general text embedding
models on various chemistry-related tasks, including classification, Pair Classification,
Clustering, Retrieval, and Bitext Mining. The main data sources include PubChem
[88], English Wikipedia, BelR [175], CoconutDB [171], and Safety Data Sheets [130].
Each source brings different and unique types of information, which are essential for a
thorough evaluation of NLP models in the chemistry domain. All datasets and tasks
were reviewed by domain experts to ensure their relevance and accuracy for chemical
applications.

3.2.1 Data Sources

PubChem [37] is an open and freely available database that contains detailed
information on chemical molecules, including names, descriptions, chemical formulas,
properties, SMILES notations, and 3D molecular structures. In our work, we used
PubChem to construct datasets for pair classification and bitext mining tasks. For
example, we paired SMILES strings (both isomeric and canonical) with their associated
titles and descriptions, and also matched descriptions or paraphrases of entities from
different sources to build pair classification tasks.
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Wikipedia offers a broad collection of articles covering both general knowledge and
scientific topics, including chemistry. For this project, we built the corpus by traversing
Wikipedia’s category graph rooted at Category:Chemistry, following subcategories
breadth-first to depth five, and collecting all main-namespace pages belonging to
any visited category (pages were included if any ancestor category descends from
Category:Chemistry). From this corpus, we constructed datasets for classification
and clustering tasks. These datasets vary in difficulty and the number of classes, with
all labels assigned by chemistry domain experts.

BelR (Benchmarking Information Retrieval) [175] is a benchmark suite that includes
datasets such as HotpotQA [201] and Natural Questions (NQ) [94], which are
designed for complex question-answering scenarios. In our research, we filtered these
datasets for chemistry-related content and used them to build retrieval tasks, where
the objective is to find relevant documents or text passages in response to specific
queries.

CoconutDB [171] is a specialized database for natural products, providing extensive
data on molecular structures and properties. This resource is especially useful for
analyzing natural compounds. In this study, we relied on CoconutDB for bitext mining
and pair classification, specifically pairing compound formulas with their corresponding
SMILES representations.

Safety Data Sheets were obtained from Kaggle [135], which gathered more
than 200,000 SDS documents through web scraping. After collecting the data, we
performed rigorous cleaning and annotation to improve its quality and relevance.
We created two specific label categories from this data: Gloves_Required and
Eyes_Protection_Required. Since most SDS records specify whether gloves or eye
protection are needed, we developed a method that combines large language models
(LLMs) and regular expressions to extract this information efficiently. This allowed us
to convert the unstructured text into a structured, Boolean format, indicating whether
each type of protection is required.

3.2.2 Tasks

We present a variety of benchmarks designed to evaluate different aspects of natural
language and chemical data processing. Each benchmark focuses on a specific task. In
this section, we provide an overview of the task, the data sources used for its collection,
and the evaluation process. These benchmarks offer a comprehensive set of evaluation
tasks utilizing diverse datasets tailored to various modelling approaches. Table 3.1
offers a summary of datasets and statistics associated with them.
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Classification In this task, each dataset contains a text field paired with labels. We
apply a logistic regression classifier on top of the embeddings generated by the model,
first training on the training set and then evaluating results on the test set using
the F1 score. The primary sources for these datasets are chemistry-focused English
Wikipedia articles, which are labeled according to different chemistry subfields, and
Safety Data Sheets (SDS) [136], which are comprehensive documents detailing the
properties and hazards of chemicals for user safety and regulatory compliance.

Clustering tasks require the grouping of related text samples into clusters that
reflect meaningful relationships in the data, based on their embeddings. As with
classification, the clustering datasets come from chemistry-related English Wikipedia
articles, where sections are grouped into chemistry subfields. We use a mini-batch
k-means algorithm with a batch size of 32 for training on these texts. Performance is
measured using the V-measure metric [118].

Pair classification involves deciding if two pieces of text are related, assigning
a binary label to each pair. In the context of chemistry, this could mean verifying
whether both texts refer to the same chemical entity, or whether compound names
or descriptions accurately match their SMILES representations. Here, each text
pair is embedded using the model, distances are calculated (using metrics such as
cosine similarity, Euclidean, Manhattan, or dot product), and the optimal threshold
is selected for each. The f1 score is computed for all metrics, and the highest value is
used as the main measure of performance. Datasets for pair classification are built
from resources such as PubChem [38] and COCONUT [171].

Bitext Mining aims to find pairs of texts that are translations or semantically
equivalent, using semantic similarity searches between query embeddings and corpus
embeddings. We draw on data from sources like PubChem [38] and COCONUT
[171], matching SMILES strings for chemical entities with their corresponding titles,
descriptions, and formulas. Model performance in this task is measured by the F1
score.

Retrieval where the focus is on how well the model can find relevant documents
given a query. Datasets in this category consist of queries and a set of documents, along
with information mapping which documents are relevant to which queries. All texts
are embedded using an embedding model, and documents are retrieved based on cosine
similarity between embeddings. For evaluation, we use chemistry-specific subsets of
the Natural Questions [91] and HotpotQA [201] datasets, with nDCG@10 as
the main metric for assessing performance.
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Table 3.1: Summary of datasets. This table outlines the datasets used for different
tasks, including their Hugging Face dataset names, the original data sources, and the
sample size distribution. The distribution is reported using the 5th percentile,
median, and 95th percentile values for the number of tokens

Sequence Lengths (tokens )

Task HuggingFace Name Data Source #Samples 5th Percentile Median 95th Percentile
1 WikipediaEasy 1(]Cldsblhcdtloll Wikipedia 2105 42 178 612.4
2 WikipediaEasy5 fic Wikipedia 1164 43 1715 547.85
3 WikipediaMedium5 Wikipedia 617 39 137 563.6
4 WikipediaMedium2Crystallography VsChromatography TitrationpHClassification ~ Wikipedia 1451 41.5 175 658.5
5  WikipediaMedium2BioluminescenceVsNeurochemistryClassification Wikipedia 486 42 158 574.25
6 WikipediaEZ2Classification Wikipedia 58921 41 164 590
7 WikipediaHard2BioluminescenceVsLuminesce: Wikipedia 410 41 148.5 579.3
Classification 8  WikipediaEasy2GeneExpressionVsMetallurgy Classification Wikipedia 5741 42 175 630
9 sy2GreenhouseVsEnantiopureClassification Wikipedia 1136 34 139.5 513
10 i i Wikipedia 43146 41 165 582
11 Wikipedia 491 38.5 141 4475
12 Wikipedia 2216 42 151 532
13 sts! Wikipedia 1101 38 155 639
14 sxunPlodu(thuLl(mFlsslonclaasiﬁcaLion Wikipedia 417 43.8 209 706.4
15 sification Wikipedia 1312 35.55 133 465
16 res! Safety Data Sheets 8000 498 1071 1871
17 SDSEyeProtectionClassification Safety Data Sheets 8000 492 1060 1876
18  CoconutSMILES2FormulaBM CoconutDB 8000 6 11 150
BitextMinine 19 PubChemSMILESISoTitleBM PubChem 14140 4 22 93
° 20 PubChemSMILESISoDescBM PubChem 14140 12 45 134
21 PubChemSMILESCanonTitleBM PubChem 30914 3 12 43
22 PubChemSMILESCanonDescBM PubChem 30914 8 24 109
Retrieval 23 ChemHotpotQARetrieval HotpotQA 10275 19 71 183
o 24  ChemNQRetrieval Natural Questions 22960 13 81 231
Clustering 25 WikipediaMedium5Clustering Wikipedia 617 39 137 563.6
26 WikipediaBasy10Clustering Wikipedia 2105 42 178 612.4
27 WikipediaAIParagraphsParaphrasePC Wikipedia 5408 28 104 354
28  CoconutSMILES2FormulaPC CoconutDB 8000 6 11 108
29 PubChemAlSentenceParaphrasePC PubChem 4096 9 20 59
30 PubChemSMILESCanonTitlePC PubChem 4096 4 16 30
PairClassification 31 PubChemSynonymPC PubChem 4096 3 8 38
32 PubChemSMILESCanonDescPC PubChem 4096 12 23 105
33  PubChemSMILESIsoDescPC PubChem 4096 12 48 125
34 PubChemSMILESIsoTitlePC PubChem 4096 4 35 70
35 PubChemWikiParagraphsPC PubChem 4096 8 66 235

3.2.3

Embedding Models

We evaluate a total of 34 different embedding models using the ChemTEB benchmark,
comprising 27 open-source models and 7 proprietary ones. Many of these models have
already been discussed in detail in Section 2.4.3. Table 3.2 provides a comparative
overview, highlighting various characteristics such as model size, parameter count,
maximum context length, and embedding dimensionality.

3.2.4 Ranking Process for Model Performance

Model rankings are determined by their performance on datasets from each task
category. First, we calculate the arithmetic mean of the evaluation metrics for each
task, which summarizes the model’s effectiveness across the individual benchmarks.
Next, an overall score for each model is obtained using the Reciprocal Rank Fusion
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(RRF) method [30], calculated as:

1
RRFyeoro(m) = B (3.2.1)
dED%;sets - Td(m)

where 74(m) is the position of model m in the ranking for dataset d. The constant k
controls how fast the weight drops as the rank gets larger and limits how much any
single dataset can add: at most 1/(k+1) for rank 1. Using 1/(k+r) instead of 1/r
reduces the effect of a single top rank and keeps lower ranks non-zero, so the final
score rewards models that do well on many datasets. We set k=10 because each list
is short (34 models). A smaller k£ gives a bit more separation among the top ranks
while still favouring consistent results across datasets (rank 1: 1/11 ~ 0.091; rank 10:
1/20 = 0.050). For very long lists, many IR setups use ka60; the original RRF study
fixed k=60 and noted the exact value was not critical, so we choose 10 for our shorter
lists [36].

3.3 Results

3.3.1 Model Performance

Table 3.3 presents the average results of each embedding model across all task
categories, along with their overall RRFy . (for details on this ranking method,
refer to Section 3.2.4). When comparing the models, it is clear that no single model
dominates in every category. However, general proprietary models generally achieve
higher scores than open-source alternatives. The OpenAl-text embedding 3-large model
delivered the best performance in three out of five task categories, placing it at the top
of the overall rankings. Among the open-source models, Nomic Embedding v1.5 and
Nomic Embedding vl achieved the highest aggregate scores, coming in just behind the
leading proprietary model. For a comprehensive breakdown, Table 3.4 provides the
detailed rankings for all evaluated models within each specific task category. These
rankings are calculated based on the average performance for every defined task in
each category, providing a clear view of model strengths and weaknesses in various
scenarios. In addition to accuracy and ranking, processing efficiency is also a key
consideration. Table 3.5 reports the processing times for all tasks, measured on an
Nvidia V100 GPU instance. This comparison allows for a practical assessment of
both performance and computational requirements across models. Together, these
tables offer a complete overview of the evaluated models, including their average and
task-specific performance, rankings across various benchmarks, and inference speed
under consistent hardware conditions.
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Table 3.2: Embedding model summary. This table lists each model along with its
HuggingFace or proprietary identifier, disk size, parameter count, maximum
supported context length, and default embedding dimension. Models are organized
into open-source and proprietary categories for straightforward comparison

Model Name

HuggingFace Model / Model ID (Proprietary)

Model Size

# Parameters

Context length

Embedding size

Open-Source Models

1 BERT google-bert /bert-base-uncased 440 MB 109.4 M 512 768
2 SciBERT allenai/scibert_scivocab_uncased 442 MB 109.9 M 512 768
3 MatSciBERT m3rg-iitd /matscibert 440 MB 109.9 M 512 768
4 Chemical BERT recobo/chemical-bert-uncased 440 MB 109.9 M 512 768
5  Nomic BERT nomic-ai/nomic-bert-2048 549 MB 136.7 M 2048 768
6 Nomic Embedding v1 nomic-ai/nomic-embed-text-v1 547 MB 136.7 M 8192 768
7 Nomic Embedding v1.5 nomic-ai/nomic-embed-text-v1.5 547 MB 136.7 M 8192 768
8  SBERT - all Mini LM L6.v2 sentence-transformers /all-MiniLM-L6-v2 90.9 MB 22.7M 512 384
9  SBERT - all Mini LM L12.v2 sentence-transformers /all-MiniLM-L12-v2 133 MB 333 M 512 384
10 SBERT - all MPNET-base.v2 sentence-transformers/all-mpnet-base-v2 438 MB 109.4 M 514 768
11 SBERT - multi-qa-mpnet-base.v1 sentence-transformers/multi-qa-mpnet-base-dot-vl 438 MB 109.4 M 512 768
12 E5 - small intfloat/e5-small 133 MB 33.3 M 512 384
13 E5 - base intfloat/eb-base 438 MB 109.4 M 512 768
14 E5 - large intfloat/e5-large 1.34 GB 3351 M 512 1024
15 E5 - small v2 intfloat /e5-small-v2 133 MB 33.6 M 512 384
16 E5 - base v2 intfloat /e5-base-v2 438 MB 109.4 M 512 768
17 E5 - large v2 intfloat/e5-large-v2 1.34 GB 335.1 M 512 1024
18 E5 - Multilingual small intfloat /multilingual-e5-small 471 MB 117.6 M 512 384
19 E5 - Multilingual base intfloat/multilingual-e5-base 1.11 GB 278 M 514 768
20 E5 - Multilingual large intfloat /multilingual-e5-large 2.24 GB 559.8 M 514 1024
21 BGE - small en BAAI/bge-small-en 133 MB 33.3 M 512 384
22 BGE - base en BAAI/bge-base-en 438 MB 109.4 M 512 768
23 BGE - large en BAAI/bge-large-en 1.34 GB 335.1 M 512 1024
24 BGE - small en v1.5 BAAI/bge-small-en-v1.5 133 MB 33.3 M 512 384
25 BGE - base en v1.5 BAAI/bge-base-en-v1.5 438 MB 109.4 M 512 768
26 BGE - large en v1.5 BAAI/bge-large-en-v1.5 1.34 GB 3351 M 512 1024
27 BGE - Multilingual - M3 BAAI/bge-m3 2.27 GB 576.7 M 8192 1024
Proprietary Models
28 OpenAl - Text embedding 3 - small  text-embedding-3-small N/A N/A 8191 1536
29  OpenAl - Text embedding 3 - large text-embedding-3-large N/A N/A 8191 3072
30 OpenAl - Text embedding - Ada - 02 text-embedding-ada-002 N/A N/A 8191 1536
31 Amazon - Titan Text Embedding v2  amazon.titan-embed-text-v2:0 N/A N/A 8191 1536
32 Amazon - Titan Embedding G1 Text amazon.titan-embed-text-v1 N/A N/A 8191 1536
33  Cohere - Embed English V3 cohere.embed-english-v3 N/A N/A 512 1024
34 Cohere - Embed Multilingual V3 cohere.embed-multilingual-v3 N/A N/A 512 1024

From the perspective of different task categories, models tended to achieve the
highest scores on classification tasks. At the same time, bitext mining presented the
greatest challenge, resulting in the lowest overall performance, approaching near-zero.
As discussed earlier in Section 3.2.2, bitext mining tasks focus on translating between
SMILES representations of chemical compounds and their corresponding titles or
descriptions, which introduces additional complexity. The low scores observed in this
task are primarily because general-purpose models have not been trained on data types
such as SMILES code. Consequently, they are unable to fully understand the semantic
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Table 3.3: Overview of model performance. This table offers a detailed comparison of
all models across key evaluation tasks, including text classification (reported as macro
Fl-score), bitext mining (F1-score), text retrieval (nDCG@10), clustering (F1-score),
pair classification (maximum F1-score), and the final aggregate (Reciprocal Rank
Fusion). For clarity, models are categorized into two groups: open-source and
proprietary. The top-performing model in each group is underlined, and the
highest-scoring model overall is shown in bold

Classification ~ Bitext Mining Retrieval Clustering Pair Classification Final Score
(Macro F1)  (F1) (nDCG@10)  (V-measure) (Max F1) (RRF)
BERT 0.7240.04 0.0+0.0 0.284+0.02 0.2£0.03 0.41£0.05 0.122
SciBERT 0.714+0.04 0.0002 £ 0.0 0.24+0.03 0.18+0.02  0.434+0.05 0.122
MatSciBERT 0.7+0.04 0.0003 + 0.0001 0.114+0.02 0.21+£0.03 0.41£0.05 0.122
Chemical BERT 0.68 4 0.04 0.0003 £ 0.0 0.174+0.01  0.13+£0.02 0.42+0.05 0.120
Nomic BERT 0.67 4 0.04 0.0001 £ 0.0 0.05+0.0 0.224+0.03  0.38+0.04 0.118
Nomic Embedding v1 0.77 £0.04 0.0023 % 0.0002 0.72+0.02 046+0.03 0.55 4 0.06 0.285
Nomic Embedding v1.5 0.78 £0.04 0.0026 = 0.0002 0.754+0.02 0.5+£0.04 0.55 + 0.06 0.339
SBERT - all Mini LM L6.v2 0.78 +0.03 0.0015 + 0.0002 0.614+0.01 0.36+£0.02 0.54+0.06 0.232
SBERT - all Mini LM L12.v2 0.77+0.04 0.0013 £ 0.0001 0.58 £ 0.0 0.344+0.01  0.54 4+ 0.06 0.201
SBERT - all MPNET-base.v2 0.78 £ 0.04 0.001 £ 0.0001 0.56 £ 0.0 0.5+ 0.03 0.54 £+ 0.06 0.239
SBERT - multi-qa-mpnet-base.v1 0.74 4+ 0.04 0.0009 + 0.0001 0.56+0.01 042+0.04 0.54+0.06 0.185
E5 - small 0.7540.03 0.0015 + 0.0001 0.694+0.02 0.12+£0.02 0.48+0.05 0.166
E5 - base 0.76 4 0.04 0.0019 + 0.0001 0.684+0.01  0.34+£0.05 0.49+0.05 0.192
E5 - large 0.77 4+ 0.04 0.0029 + 0.0002 0.740.01 0.514+0.04 0.540.05 0.290
E5 - small v2 0.76 +0.03 0.0012 £ 0.0001 0.694+0.01 0.19+£0.03 0.46+0.05 0.165
E5 - base v2 0.76 +0.04 0.0016 + 0.0001 0.68+0.01  0.38+£0.05 0.47+0.05 0.178
E5 - large v2 0.76 +0.04 0.0022 + 0.0002 0.73+0.01  0.33+£0.05 0.48+0.05 0.214
E5 - Multilingual small 0.74 4+ 0.04 0.0018 + 0.0001 0.76 £ 0.01 0.17+£0.01 0.47£0.05 0.207
E5 - Multilingual base 0.7540.04 0.0022 + 0.0001 0.68 £ 0.0 0.484+0.03  0.47+0.05 0.196
E5 - Multilingual large 0.74 £0.04 0.0026 = 0.0002 0.67+0.0 0.340.05 0.48 +0.05 0.187
BGE - small en 0.78 £0.04 0.0012 £ 0.0001 0.524+0.04 0.27+£0.03 0.48+0.05 0.160
BGE - base en 0.774+0.04 0.0019 + 0.0001 0.594+0.03 044+£0.05 0.48+0.05 0.186
BGE - large en 0.78 +£0.04 0.0016 + 0.0001 0.444+0.06 045+£0.05 0.49+0.05 0.191
BGE - small en v1.5 0.78 +0.03 0.0013 £ 0.0001 0.63+0.03 0.25+£0.04 0.48+0.05 0.180
BGE - base en v1.5 0.77 £ 0.04 0.0018 £ 0.0001 0.69+0.02 047+£0.05 0.49+0.05 0.219
BGE - large en v1.5 0.78 +0.04 0.0019 + 0.0001 0.67+0.02 0.39+£0.06 0.540.05 0.224
BGE - Multilingual - M3 0.76 £ 0.03 0.0012 % 0.0002 0.684+0.02 045+£0.05 0.47+0.06 0.176
OpenAl - Text embedding 3 - small ~ 0.78 +0.04 0.0027 £ 0.0003 0.65+0.01 049+0.05 0.5+0.05 0.273
OpenAlI - Text embedding 3 - large 0.8 +0.04 0.0062 4 0.0006 0.71+0.01 0.6 £0.03 0.53+0.05 0.384
OpenAl - Text embedding - Ada - 02 0.78 £0.04 0.0035 + 0.0002 0.66+0.02 0.52+£0.04 0.49+0.05 0.279
Amazon - Titan Text Embedding v2  0.77 £ 0.03 0.0024 % 0.0002 0.62£0.0 0.49+£0.04 0.49+£0.05 0.224
Amazon - Titan Embedding G1 Text 0.81 40.03  0.0032 £ 0.0003 0.6 £0.02 0.45+0.06  0.49 4+ 0.05 0.285
Cohere - Embed English V3 0.81 £0.03 0.0012 £ 0.0 049+0.04 0.55+£0.02  0.53 4+ 0.06 0.278
Cohere - Embed Multilingual V3 0.8+ 0.03 0.0024 + 0.0001 0.494+0.04 0.53+£0.03 0.53+0.06 0.281
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Table 3.4: Summary of model ranks

Classification Bitext Mining Retrieval Clustering Pair Classification RRF_Score(k=10)

Nomic BERT 34 33 34 27 34 0.118
Chemical BERT 33 30 32 33 31 0.120
MatSciBERT 32 31 33 28 32 0.122
BERT 30 34 30 29 33 0.122
SciBERT 31 32 31 31 30 0.122
BGE - small en 12 27 26 25 22 0.160
E5 - small v2 23 25 8 30 29 0.165
E5 - small 25 21 9 34 24 0.166
BGE - Multilingual - M3 21 26 10 15 28 0.176
E5 - base v2 22 18 11 19 25 0.178
BGE - small en v1.5 9 23 18 26 20 0.180
SBERT - multi-qa-mpnet-base.v1 28 29 24 17 5 0.185
BGE - base en 16 13 22 16 19 0.186
E5 - Multilingual large 27 7 14 24 23 0.187
BGE - large en 10 19 29 13 17 0.191
E5 - base 20 14 12 22 15 0.192
E5 - Multilingual base 26 11 13 10 27 0.196
SBERT - all Mini LM L12.v2 18 22 23 21 4 0.201
E5 - Multilingual small 29 16 1 32 26 0.207
E5 - large v2 24 12 3 23 21 0.214
BGE - base en v1.5 15 17 7 11 18 0.219
BGE - large en v1.5 6 15 15 18 12 0.224
Amazon - Titan Text Embedding v2 17 8 19 8 14 0.224
SBERT - all Mini LM L6.v2 8 20 20 20 3 0.232
SBERT - all MPNET-base.v2 7 28 25 6 6 0.239
OpenAl - Text embedding 3 - small 5 5 17 9 10 0.273
Cohere - Embed English V3 2 24 28 2 8 0.278
OpenAl - Text embedding - Ada - 02 11 2 16 4 16 0.279
Cohere - Embed Multilingual V3 4 9 27 3 9 0.281
Nomic Embedding v1 19 10 4 12 2 0.285
Amazon - Titan Embedding G1 Text 1 3 21 14 13 0.285
E5 - large 14 4 6 5 11 0.290
Nomic Embedding v1.5 13 6 2 7 1 0.339
OpenAl - Text embedding 3 - large 3 1 5 1 7 0.384

connections between various SMILES strings, which results in weaker performance for
this particular task. In comparison, retrieval, clustering, and pair classification tasks
were somewhat less challenging, ranking second, third, and fourth in terms of both
difficulty and overall model performance.

The models analyzed in this benchmark often share architectural and training
similarities. To better understand how these shared characteristics influence
performance in each task category, we organized the models into eight families:
(i) BERT Family, (ii) Nomic embedding family, (iii) SBERT family, (iv) E5 family,
(v) BGE family, (vi) OpenAl family, (vii) Amazon family, and (viii) Cohere family.
To visualize and compare the performance of each model family across all datasets
and task types, we used Kernel Density Estimation (KDE), as shown in Figure 3.1.
KDE is a non-parametric technique for estimating the probability density function
of a variable, without assuming an underlying distribution for the data. It works by
smoothing individual data points using kernels, often Gaussian, placed at each point.
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Table 3.5: Average time (seconds) to run a benchmark for each task in each category
on an Nvidia V100 32GB GPU instance.

Classification Bitext Mining  Retrieval Clustering Pair Classification

BERT 13.78 £3.47 23.24+1.92 56.6 & 0.69 5.92 +0.57 6.9440.84
SciBERT 11.37 £ 2.57 2242 +£1.8 54.19 £0.63 5.83 £0.54 4.76 +£0.39
MatSciBERT 11.05 £ 2.56 2229 £1.74 54.37 £ 0.61 5.81 £0.54 4.9240.42
Chemical BERT 11.47 4+ 2.59 2225 +£1.75 54.73 £0.57 5.85 £ 0.54 4.9240.42
Nomic BERT 15.14 £+ 3.62 29.26 £2.24 76.75 £ 0.91 8.16 £0.78 6.97 £0.64
Nomic Embedding v1 23.13+5.03 31.05+24 79.45+0.88 12.01+£1.24 5.914+0.41
Nomic Embedding v1.5 22.82£4.93 28.39 £2.12 79.66 £ 0.91 12.09+1.24 5.23£0.35
SBERT - all Mini LM L6.v2 2.36 +0.52 9.014+0.89 12.83+0.3 1.13+£0.11 1.73+0.14
SBERT - all Mini LM L12.v2 2.82£0.57 11.73+1.08 16.26 +0.39 1.17+0.1 1.99 +0.09
SBERT - all MPNET-base.v2 11.36 £ 2.73 24.49 +1.87 61.51 £0.76 6.26 + 0.6 4.43+0.29
SBERT - multi-qa-mpnet-base.v1l 13.29 £ 3.09 24.06 +1.92 62.06 + 0.67 7.13+0.69 4.42+0.3
E5 - small 4.98 £ 1.06 12.55 £ 1.11 21.79 £0.29 2.36 £0.22 2.54£0.2
E5 - base 11.24 +2.67 23.93 £1.97 58.84 £0.75 6.28 0.6 5.28 £0.46
E5 - large 37.37£9.5 62.4 £4.78 191.41 £+ 2.06 20.46 £1.99 14.83 +1.43
E5 - small v2 5.34 +1.08 12.63 £ 1.12 22.15+0.25 2454+0.23 2.394+0.21
E5 - base v2 11.21 4+ 2.66 24.27 £2.02 59.45+£0.73 6.34 0.6 4.83+0.49
E5 - large v2 36.87 +9.28 64.27 £+ 4.96 193.9 +2.14 20.54 £1.97 14.49 +1.47
E5 - Multilingual small 52+1.11 11.96 £+ 1.06 21.68 £0.28 2.37+£0.23 229+0.2
E5 - Multilingual base 12.51 +£2.99 23.96 +1.97 62.13 £ 0.65 6.82 £+ 0.67 4.744+0.48
E5 - Multilingual large 40.26 £10.31 60.97 £4.51 209.69 £ 0.52 22.01£2.18 13.8+1.43
BGE - small en 5.23 £1.05 1246 £ 1.1 21.64 £0.29 2.32+£0.22 2.82£0.19
BGE - base en 11.14 +2.64 23.99 £1.98 58.64 £0.72 6.29+0.6 5.32+£0.48
BGE - large en 37.04 £9.33 62.27 £4.79 191.56 £ 2.06 20.44 £1.97 14.89 +1.44
BGE - small en v1.5 5.28+1.05 12.37+£1.07 21.83+0.25 2.394+0.23 2.68+0.19
BGE - base en v1.5 11.14 +2.63 23.82£1.99 59.08 £0.8 6.27 £ 0.59 5.27 £0.46
BGE - large en v1.5 36.57 £ 9.12 62.24 4.8 191.63 £ 2.14 2041 £1.97 14.85 £ 1.43
BGE - Multilingual - M3 1139.9 £ 251.82 707.86 £48.87  3031.81 +£22.43 640.67 £75.54 31.82+8.61

OpenAl - Text embedding 3 - small ~ 37.17 £ 6.89 37297 £36.14 51872+ 12.57  27.74£2.46 63.49 £2.91
OpenAl - Text embedding 3 - large 62.18 £ 11.8 730.16 £70.34  1006.01 £27.68 49.39 + 4.65 123.33 £5.89
OpenAl - Text embedding - Ada - 02 35.57 £6.77 372.55 £36.18 518.73+12.83 30.77£1.88 64.41 +2.94
Amazon - Titan Text Embedding v2  128.01 £35.05  1178.06 £99.02 1595.24 +34.49 84.65 + 7.8 244.12 + 3.41
Amazon - Titan Embedding G1 Text 142.23 £37.78 1174.83+£97.29 1627.31 £40.39 89.03 £ 8.38 243.45 + 3.53
Cohere - Embed English V3 21.21 £5.64 83.08 £ 5.98 134.29 £+ 2.48 13.27+1.25 16.65 £+ 0.89
Cohere - Embed Multilingual V3 22.32 £6.07 80.27 £ 5.86 138.74 £ 2.51 14.08+1.3 18.07+1.29

By summing these kernels, KDE provides a continuous estimate of the underlying
distribution. The smoothness of the KDE curve is controlled by the bandwidth
parameter: a smaller bandwidth reveals finer details, while a larger bandwidth
produces a smoother, more general distribution. This approach is particularly useful
for visualizing the spread and concentration of model performances in different families,
making it easier to interpret and compare their effectiveness across various tasks.

3.3.2 Model Efficiency

The models assessed in this benchmark differ in terms of architecture, training data
volume, model size, computational speed, and overall effectiveness, among other key
attributes. Depending on the application, a particular model may be preferable;
however, a comprehensive comparison across several characteristics is necessary to
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Figure 3.1: Distribution plots are shown for all five task categories. In these KDE
visualizations, the x-axis displays the range of predicted values, reflecting the
performance spread for each task category and model family, while the y-axis shows
the estimated probability density. Each model family is represented by a distinct
coloured line, allowing for straightforward comparison of how their performance
values are distributed.

make an informed selection. To support this, Figure 3.2 presents a visual comparison
of each model’s speed (measured on the pair classification task), model size, embedding
dimension, and RRF score. Note that for proprietary models, information about
model size was not provided. This visualization illustrates the diverse range of
model performances, highlighting each model’s strengths and limitations. A clear
pattern emerges: models with slower inference speeds are typically larger, produce
higher-dimensional embeddings, and tend to achieve better overall performance. For
instance, OpenAl - Text Embedding 3 - Large scored the highest on the RRF metric but
was among the slowest models. In contrast, SBERT - All Mini LM L6.v2 was notable
for being both the smallest and fastest, though its performance lagged. BERT-based
models stood out for their lower RRF scores and relatively slower inference times,
marking a distinct separation from other model types. Among open-source models,
Nomic Embedding v1.5 offered an effective compromise between speed and strong
results.
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Figure 3.2: Overview of model efficiency. The efficiency of all evaluated models is
depicted using (i) circles for open-source models, where the circle’s size reflects the
number of parameters, and (ii) stars for proprietary models. Model color indicates
the embedding size. The x-axis represents average inference speed (in embedded
samples per second), computed across seven pair classification tasks (tasks 29 to 35 in
Table 3.1) using a V100 GPU.

3.3.3 Domain Adaptation

To our knowledge, the only models that have been explicitly tailored for the chemical
domain are MatSciBERT [57] and Chemical BERT (from Recobo*). SciBERT [10)],
while broadly trained on scientific literature, is also more suitable for chemistry-related
tasks than general-purpose models. Within the BERT model family, these

4recobo/chemical-bert-uncased
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domain-specialized variants surpassed BERT-base on bitext mining, which is the
most complex task involving a certain level of SMILES code understanding. However,
apart from SciBERT’s strong results in pair classification, no consistent and substantial
gains were observed for the other tasks.

On the other hand, when looking beyond the BERT family, these domain-adapted
models tended to underperform in most task categories. This is further supported
by their consistently low RRF scores in the overall ranking (see Table 3.4 for the
complete task-by-task comparison). One possible reason for this is that these models
are based on the original BERT architecture, which relies solely on Masked Language
Modeling (MLM) for pretraining. The evaluation suggests that improvements, such as
contrastive learning objectives and post-BERT architectural changes, play a greater
role in enhancing performance for specific domains than simply adapting earlier
architectures to new domains. These results suggest that rather than depending on
older, domain-adapted models, future progress in the field will come from designing
domain-specific models using more recent and efficient architectures and training
paradigms.

Figure 3.3 compares how different models perform across ChemTEB and MTEB
benchmarks, grouped by task type. To facilitate direct comparison, the same metrics
used on the MTEB leaderboard were employed. In pair classification tasks, which are
specifically designed for chemical language, there is a noticeable drop in the average
performance for ChemTEB tasks relative to MTEB. This indicates that the models
evaluated generally lack domain-specific expertise. When it comes to clustering, the
ChemTEB benchmark stands out for offering datasets that better distinguish model
performance, as seen in the wider spread of scores. For retrieval, results also show
greater variability in ChemTEB, likely due to the more specialized chemical context,
though many models still perform better on ChemTEB retrieval tasks than on those
in MTEB. Classification tasks in ChemTEB exhibit higher average model performance
with less variability in results, suggesting that these may be more straightforward than
their MTEB counterparts. This may be explained by the use of general Wikipedia
articles in ChemTEB’s classification datasets. Overall, these findings demonstrate the
significant impact of domain adaptation on model effectiveness and reinforce the need
for tailored chemistry-focused evaluation strategies.
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Figure 3.3: Performance comparison of models on ChemTEB and MTEB benchmarks
across a range of tasks. Each marker represents a model included both in this
benchmark and on the MTEB leaderboard at the time of evaluation. The plot

illustrates differences in task difficulty and highlights how domain relevance influences

results.

3.3.4 Correlation between models’ performances and tasks

Figures 3.4 and 3.5 show correlation matrices for both datasets and models, where color
intensity indicates the degree of correlation. In Figure 3.4, we see that datasets within
classification, bitext mining, and retrieval tasks generally display positive correlations,
except for the SDS datasets in the classification category, which do not follow this
trend. For clustering and pair classification tasks, the pattern is less clear, and in pair
classification, some datasets are even negatively correlated.

3.4 Conclusion

This chapter addresses an important gap in the evaluation of text embedding models by
introducing ChemTEB, an open-source, purpose-built benchmark specifically tailored
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to the demands of chemical texts and data. ChemTEB provides a standardized and
extensible framework for evaluating general open and proprietary embedding models in
chemistry, allowing researchers to compare model performance across a diverse set of
tasks systematically. While ChemTEB offers a robust starting point for benchmarking,
it is also designed to be adaptable and expandable as new, more specialized tasks and
datasets emerge. For specialized or emerging use cases, additional task development
and dataset curation may be necessary to ensure that evaluation remains aligned with
the unique demands of each application. Its model-agnostic framework means that it
can easily be extended to assess any model or include new data, making it a valuable
resource in the open-source benchmarking ecosystem. The findings of this study make
clear the urgent need for robust, domain-adapted models to better represent and
retrieve chemistry-specific information. In addition to providing a practical tool for the
research community, this work highlights the need for ongoing progress in designing
and optimizing models for specialized scientific domains.

In contrast, Figure 3.5 highlights a clear separation of models into two main groups:
the first group includes all BERT-based models, and the second consists of all other
evaluated models. The main distinction between these groups lies in the use of
contrastive learning after pretraining; a step absent in the BERT-based models,
which also tend to perform the worst across nearly all task categories. This finding
underscores the impact of contrastive learning on performance. Within the second
group, some model families are more closely related in terms of their results, likely
due to similar architectures or training strategies. For example, the Nomic embedding
family is most closely correlated with the SBERT family, while Cohere models show
the strongest correlation with SBERT, followed by the Amazon family.

73


http://www.mcmaster.ca/
https://cse.mcmaster.ca/

Master Thesis — Ali Shirace Kasmaee;
McMaster University — School of Computational Science and Engineering

Wikivdiatasylocsscaion M
Whpeautasscisicatin ﬂ
[T .
=
[ E—_——— ﬂ
wpesoczcasstcaion -0.20 0.17 0.23 038 0.15

[P ——— m
Wiipecatas2saneprssoitealyCssation .
[ ——————— ﬂ
[Er——— ﬂ

VORISR .| 07
0.50
‘sDSGlovesClassification .. 013 . 0.35 0.17 0.35 0.23 0.31 . 0.34 0.37 . 0.39 . ~0.25
soseyeprotecuonCiassiication ~0.08 0.09 -0.05 0.14 0.13 0.07 0.07 . 16 0.10 0.18 0.04 0.05 0.21 0.09
s [ o2 T .02 8 o 0 Y] “os0
— D
SR -0z
U ..
-0.50
S| 07 . ors
ChemnQRetrieval \/-1:10.34 0.20 0.33 0.12 ﬁ.ﬁ
WikipediaMediumSClustering -1.00

WiipedaEasylociustering

CoconutsmLEszrormui

puscremstescasonmiserc - 0,36 0.28 0.14 0.36 0.24 0.16 0.25 0.02 0.24 0.38 0.37. .33 -0.08|

racmnessone {051|043 0.15 050 0:43 0.25 045 017 0.40 03911 044 0.00 3

Pubchemswgsisomerc ~0,07 0.06 -0.13 0.13 0.07 0.03 -0.10 0.12 0.04 0.12 0.01 0.08 -0.04 0.25 0.17 0.21 0.17 0.22 0.01 0.02 0.20 0.16 0.01 -0.28-0.06 0.01 0.26 0.06 0.00 . 0.31

s 0 51 0.52 % 04 [ 027 (X 8T 0.7 -+ 0.65]0.05]0.63] : 71037 039 0.41-0.03
[ —— -- 0.35 . 19-0.21 0.17 0.24 0.33 0.18 0.23 0.33 0.29 ﬂo.se 012 017 -0.13 0.04
H

: i
K

WiipedaMedium2ComputatonaVsSpectroscopistsClassfication
Chemnanrieval -
PubChemSymomymeC —

[PT——— E

ChempatporaaReteval -

[
[os——
[N——
P—
[r—
(SO
..mk.
[ro——

2
R
Mwmwmuma

Wikipediaasy1oCiassit
WikipedatiedumsCisstication
[ —
SostyeprotectonChasscaton
PubChemSHILESCanonTisesM —
iipedisnParoarophsFaraphrasePC -
PubChemassantencePsraphrasePC

Easy2GeneEapressonviMetaturgyClasiication —

WiipedaEasy2SolastateveCol

Wikipedaasy2GrssnhouseVsEnantiopureCl
Wiipediaarazsatavssemiconductoraterasclassficaton

WiipedaMedium28ioiuminescencevsNeurochemistyCl:

Vikipeiard2lsotopesysFissionProductucearsionClasscaton —

Figure 3.4: Correlation matrix between datasets. Each row and column represents a
different dataset evaluated in the ChemTEB benchmark, with the cell values and
color indicating how strongly model performance aligns between each dataset pair
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Chapter 4

Chemical Text Embedding Models

Retrieval-Augmented Generation (RAG) systems in chemistry require highly accurate
and relevant retrieval of chemical literature. However, general-purpose text embedding
models often struggle to accurately represent complex chemical terms, resulting in lower
retrieval performance. To date, no embedding models have been specifically designed
for chemical literature retrieval, resulting in a significant performance gap in this
area. To address this, this chapter introduces ChEmbed, a family of domain-adapted
text embedding models that are fine-tuned on chemistry-focused text collected from
PubChem, Semantic Scholar, and ChemRxiv. For model training, we generate
about 1.7 million high-quality query-passage pairs using large language models to
create synthetic queries. To better handle chemical terminology, we also extend
the tokenizer by adding 900 new chemistry-specific tokens to available unused slots,
which helps reduce the fragmentation of chemical entities, such as [IUPAC names.
ChEmbed also supports a 2048-token context length, allowing for the efficient retrieval
of longer passages without splitting them into smaller parts. In evaluations using
the newly developed ChemRxiv Retrieval benchmark, ChEmbed outperforms leading
general embedding models, improving nDCG@10 from 0.82 to 0.91. Overall, ChEmbed
provides a practical, lightweight, and reproducible embedding solution that enhances

retrieval in chemical RAG pipelines. All code and training scripts are openly available
1

Thttps://doi.org/10.5281/zenodo.16897929
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4.1 Introduction

Retrieval-Augmented Generation (RAG) enables large language models to use external
knowledge sources during inference, which improves factual accuracy, particularly
when the subject matter differs substantially from what the model encountered
during pretraining. Chemistry is a perfect example of this difference: its specialized
language, formulas, and reaction contexts are rarely included in general-purpose
datasets, leading standard LLMs to hallucinate information or misunderstand essential

concepts [131, 1, 50, ]. Since the quality of a RAG pipeline depends mainly on the
effectiveness of its retriever (search component), having strong, domain-specific text
embeddings is crucial [124]. Despite rapid progress in universal embedding models,

a consistent performance gap remains in chemistry. Current scientific models have
trouble with detailed chemical vocabulary, and two main challenges slow progress: (i)
data scarcity, as contrastive learning requires curated query-passage pairs that are
difficult and expensive to collect in specialized areas (although recent studies suggest

synthetic data generation as a possible solution [2, 14, 77]); and (ii) benchmark
mismatch, since most public retrieval benchmarks focus on encyclopedic text and do
not reflect the complexity of primary chemical literature [164]. In addition, generic

sub-word tokenizers often split chemical names and molecular descriptors in ways
that harm the semantic integrity of the text before it even reaches the encoder [13].
This chapter addresses these issues by introducing ChEmbed, a text embedding
model specialized for chemistry, fine-tuned on 1.7 million synthetic query-passage pairs
created from chemical articles and resources. ChEmbed also uses a tokenizer tailored
for chemical terms and is evaluated using a new retrieval benchmark constructed from
actual chemical literature. The main contributions of this chapter are:

1. Synthetic data for domain adaptation: We show that generating large
amounts of synthetic query-passage data with LLMs is an effective way to train
retrieval models in chemistry.

2. Domain-adaptive tokenizer: We apply a lightweight method for adding
chemistry-specific vocabulary to an existing WordPiece tokenizer [158, ]
without retraining the full tokenizer or model.

3. Literature-driven benchmark: We release a retrieval evaluation task that
is built from chemical literature, rather than relying on general encyclopedic
sources.

4. ChEmbed models: Our best model, which is publicly available, achieves a 9%
absolute improvement in nDCG@10 over the general-purpose base model when
tested on the new chemistry-specific benchmark.
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Table 4.1: Summary of chemistry-related datasets used for training and evaluation

Idx Dataset Description # Samples Usage LLM used for query synthesis
1 PubChem compounds Title, [IUPAC, SMILES, synonyms 2,087,164  Tokenizer N/A
2 PubChem descriptions Compound descriptions 393,321 Training gpt-4o-mini
3 S20RC chemistry Filtered chemistry paragraphs 1,187,726 Training gpt-4.1-nano
4 ChemRxiv paragraphs Extracted ChemRxiv paragraphs (CC-BY) 139,057 Training 03-mini
5  ChemRxiv paragraphs Extracted ChemRxiv paragraphs (CC-BY-NC) 69,457 Evaluation Claude Sonnet 3.7
6  ChemRxiv metadata Title and abstract ChemRxiv preprints 30,378 Training N/A

These developments help reduce the domain gap for RAG systems in chemistry,
supporting the creation of more dependable Al tools to advance chemical research
and discovery.

4.2 Dataset Construction

Training bi-encoder text embedding models effectively usually depends on having
structured data in the form of (query, passage) pairs or triplets (such as query,
positive passage, and negatives), especially when using contrastive learning objectives
[102, , , ]. However, in specialized fields like chemistry, such structured
datasets are often hard to find and are not readily available. To train an embedding
model tailored to chemistry, we begin by collecting paragraphs from scientific literature
that focus on chemistry. After assembling these domain-specific passages, we prompt
a Large Language Model (LLM) to generate related queries for each paragraph in a
way that mimics a user’s query in a real information retrieval scenario. This approach
allows us to build the necessary paired data for contrastive training in the chemistry
domain. The datasets prepared and used in this work are listed in Table 4.1.

4.2.1 Data Sources and Preprocessing

We collected chemistry-related paragraphs from the following main sources:

1. PubChem is a large chemical database containing details for over 100 million
compounds, including names, SMILES, IUPAC names, synonyms, molecular
formulas, and descriptions. Using its programmatic interface (PUG-View) [30],
we retrieved information for around 2 million compounds, many of which have
missing descriptions. After preprocessing, which removed entries that were not
real descriptions (for example, cross-references like “see also ...”) and texts
shorter than five words, we obtained about 393,321 usable descriptions. To
increase the dataset size, we used paraphrasing. For descriptions with at least
two sentences, an LLM generated two short questions about different aspects
of the description and produced one paraphrase; we paired one question with
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the original text and the other with the paraphrase, which raised the number of
training samples to 480,227.

2. S20RC is a massive dataset comprising over 81 million academic papers, with
8.1 million containing structured full text [107, |. This corpus encompasses a
wide range of disciplines and features rich metadata, detailed citation information,
and comprehensive full-text annotations. For our work, we selected the subset
of papers available under the public domain or Creative Commons BY licenses,
totalling 6.2 million papers. We filtered these for the chemistry subject, split
the relevant 118,000 documents into paragraphs, and then removed conclusion
sections, table or figure captions, and segments that were too short or lacked
information. After preprocessing, we were left with approximately 1.18 million
high-quality paragraphs.

3. ChemRxiv is an open-access preprint server dedicated to chemistry and related
areas, allowing researchers to share their early findings. We used its public API
to gather metadata and PDFs from approximately 30,000 chemistry manuscripts.
Texts were processed and split into paragraphs using GROBID, a tool for
extracting structured content from scientific papers. To ensure quality, we
employed a similar approach to that used in the S20RC dataset [107, ],
removing paragraphs with an average unigram log probability below -20 or with
fewer than 50 words. After completing these steps, we obtained approximately
209,000 high-quality paragraphs.

4.2.2 Synthetic Query Generation via LLMs

To produce high-quality (query, passage) pairs for contrastive training, we used Large
Language Models (LLMs) to generate synthetic queries based on chemistry paragraphs.
We aimed to closely simulate real-world information retrieval scenarios, such as when
a user submits a specific chemistry-related query to find a relevant passage containing
the answer. For this purpose, we crafted LLM prompts that directed the model to
create a single, clear, and meaningful chemistry question that could be answered
using the provided paragraph. We iteratively designed and tested the prompts,
trying zero-shot and few-shot variants on small samples. A short few-shot template
(3-4 chemistry examples) worked best; we pared the examples down to the most
essential ones to maximize answerability and specificity. The data-gathering scripts
and the exact prompt templates are available in our Zenodo record.? The instructions
specifically prohibited simple yes/no questions and references to the paragraph itself
(such as “according to this paragraph”). For generating synthetic queries, we used a

Zhttps://doi.org/10.5281 /zenodo.16895962
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Figure 4.1: Overview of the ChEmbed workflow. Chemistry-related paragraphs are
collected from multiple sources and matched with synthetic queries generated by
prompting large language models (LLMs). Around 69,000 paragraphs are set aside as
an evaluation set, and separate LLMs are used for generating queries for training and
evaluation. Meanwhile, a ChemVocab tokenizer is built from 2 million [IUPAC names,
with 900 unique tokens added into the unused slots of the bert-base-uncased
tokenizer. The base model (nomic-embed-text-v1) is then fine-tuned using these
query-passage pairs, resulting in the final ChEmbed model series.

set of LLMs from the OpenAl platform (03-mini, gpt-4.1-nano, and gpt-4o-mini),
selecting models that strike a balance between scale, cost, and data complexity. For
the retrieval evaluation set, we relied on a separate model and provider, Antrhopic
Claude Sonnet 3.7 Thinking, which was applied to a held-out set of ChemRxiv
paragraphs that were not included in training. Following this approach, we retained
only those query-passage pairs that fully met our criteria. The LLMs declined to
generate queries for around 29,000 paragraphs, thus filtering them out of the dataset.
After manually reviewing a sample of these rejected cases, we found that the LLM
consistently skipped paragraphs that were either not relevant, too short, or lacked
meaningful scientific content, such as funding acknowledgements, broad conclusions,
or short, uninformative sections.

4.3 Model Architecture and Domain Adaptation

A primary challenge in developing domain-specific embedding models is selecting a
base architecture that offers strong performance and facilitates easy adaptation. In
this work, we chose the Nomic embedding family [124], which is among the most
effective and lightweight open-source text embedding models, supporting long contexts
of up to 8192 tokens. Unlike many closed or partially open alternatives, Nomic models
provide complete transparency with access to intermediate weights and pretraining
data, which helps ensure reproducibility and enables in-depth analysis. In terms of
architecture, Nomic is based on BERT but features essential upgrades such as rotary
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positional embeddings, FlashAttention for efficient handling of longer sequences, and
SwiGLU activations [161], all of which contribute to better accuracy and scalability.
Notably, in the previous chapter, we saw that Nomic was the highest-performing
open-source model on chemistry-specific tasks in ChemTEB [164]. Because of these
factors, Nomic models are a strong choice for adapting to chemistry-focused tasks. An
overview of the data and model pipeline is shown in Figure 4.1.

4.3.1 Domain Adaptation Strategies

To adapt the Nomic models for chemistry retrieval tasks, we investigated
multiple fine-tuning approaches using both supervised and unsupervised objectives.
We worked with two key variants, both initially trained by the Nomic team:
nomic-embed-text-vl-unsupervised, which was trained on 235 million unsupervised
text pairs with a maximum learning rate of 2 x 107*, and nomic-embed-text-v1,
which received further fine-tuning on 1.6 million supervised hard-negative triplets
using a lower learning rate of 2 x 107°. For model training, we tried two data formats:
(1) using query-passage pairs directly, and (2) constructing triplets consisting of a
query, a positive document, and negative samples with hard-negative mining. Both
methods can use the same contrastive InfoNCE loss [120]:

L= _iibg exp (s(gi, d)/7)

— exp (s(g;, d)/7) + Z exp (s(gi,d™)/7)

d~eN(q)

(4.3.1)

where, s(q, d) is the cosine similarity scaled by a temperature parameter 7, d; is the
correct passage for query ¢;, and N (g;) refers to the negative samples for that query.
In the “pairs” setup, all other passages in the batch are used as in-batch negatives;
in the “triplets” setup, we use a fixed set of H pre-selected negatives per query. We
followed the Nomic protocol and paired seven negatives per query, since Nussbaum et
al. (2024) [124] reported that adding more did not improve performance. We evaluated
three schemes (7 hard, 7 random, and a mix of 3 hard + 4 random negatives). Our
results showed that fine-tuning with in-batch negatives alone performed better than
the triplet-based approach on our synthetic chemistry dataset, likely because our
“hard” negatives were generated by the model and not labeled by humans, so they
did not have much supervision signal compared to pairs. Most hyperparameters were
kept consistent with the original Nomic configuration, with the main changes being
a different learning rate of 2 x 107°, a linear warmup over 5% of total steps, and a
maximum context length of 2048 tokens for training. All models were trained using
4x NVIDIA A100 40GB GPUs with GradCache [52] and mixed-precision training
[113], which enabled us to use a large total batch size of 16, 384 for efficient contrastive
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Term ChemVocab (ours) bert-base-uncased
chlorofluorocarbon chloro/fluoro/carbon  ch/lor/of/lu/oro/carbon
acetaminophen acet/amino/phen ace/tam/ino/phen
secbutylamine sec/butyl/amine secbutylamine

nitrophenylphosphate nitrophenyl/phosphate ni/tro/ph/en/yl/ph/os/phate

Table 4.2: Example tokenizations with our ChemVocab vs. the general
bert-base-uncased tokenizer. Tokens are WordPiece units; continuation markers
(e.g., “##”) are omitted for readability.

learning. A summary of the full data and model pipeline is illustrated in Figure 4.1

4.3.2 Tokenizer Adaptation

One ongoing challenge when adapting language models to chemistry is the inefficient
tokenization of complex terms, such as [IUPAC names. Similar to other open-source
text embedding models based on BERT [13], the initial version of the Nomic embedding
models uses the default bert-base-uncased tokenizer, which contains 30, 522 tokens
in its vocabulary. Importantly, this tokenizer has exactly 994 [UNUSED] tokens, which
are placeholders not mapped to any actual word or subword in the original vocabulary.
If fewer than 994 new tokens need to be added, these unused slots can be reassigned
for domain-specific vocabulary, offering a straightforward way to expand the tokenizer.
This method maintains the original tokenizer’s structure and compatibility while
directly enhancing its ability to handle specialized chemical language. To build a
tokenizer better suited for chemistry, we trained a WordPiece tokenizer [198] on
2,083,502 unique IUPAC names from PubChem compounds. Any tokens that were
already part of the bert-base-uncased vocabulary were excluded, and we selected
the top 900 remaining chemistry-specific tokens to add into the available [UNUSED]
slots, resulting in our adapted tokenizer, ChemVocab. The embeddings for these new
tokens were initialized from a normal distribution with a mean of 0 and a standard
deviation of 0.2. This approach allowed the model to better encode detailed chemical
terminology without significant changes to the overall architecture. As a concrete
illustration of the domain gap, Table ?? provides four representative examples showing
how standard tokenization fragments chemical terms. At the same time, the adapted
tokenizer (ChemVocab) results in more compact and meaningful representations.
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4.4 Experiments & Results

Experimental Setup We fine-tuned nomic-embed-text-v1 specifically for the
chemical retrieval task. This fine-tuning process was done both with and without
adding new tokens to the tokenizer. For the cases where new tokens were added, we
explored three different methods to optimize token addition, which are described in
more detail in Section 4.4.2. We then evaluated effectiveness using retrieval tasks from
three benchmark suites: ChemRxiv Retrieval, MTEB (English v2), and ChemTEB.
The ChemRxiv Retrieval benchmark is a new task developed for this work, having
a collection of 69,457 paragraphs from ChemRxiv, paired with 5,000 synthetic queries
generated by an LLM (Anthropic’s Claude 3.7 Sonnet) other than those used for
training to reduce any potential bias from data generation. MTEB (English v2)
[118] is a well-known retrieval benchmark that covers 41 English tasks across seven
areas, including classification, clustering, and retrieval. However, it is a general-purpose
benchmark and does not focus specifically on chemistry-related tasks. ChemTEB
[164] is a chemistry-specific benchmark built on top of MTEB, containing two retrieval
tasks based mainly on encyclopedic sources, and is used to assess how well embedding
models generalize to chemical content.

4.4.1 Domain-Specific Retrieval Performance

Quantitative Performance Comparison Table 4.3 shows the results of various
models evaluated on the ChemRxiv Retrieval task. All ChEmbed variants consistently
outperform not only the original nomic-embed-text-v1 baseline but also every other
notable open-source and proprietary embedding model tested so far. Interestingly,
even the basic ChEmbed.nina model, which relies on the unmodified BERT
tokenizer without any domain-specific tokenizer enhancements, achieves an nDCG@10
of 0.884. The best result is achieved by the progressive tokenizer adaptation
strategy (ChEmbedp,og), which reaches an nDCG@10 of 0.911, representing a
total gain of 9.0 percentage points over the base model. Every ChEmbed variant,
including the weakest, also surpasses the top-performing open-source alternative model,
Qwen3-Embedding-8B, which achieves an nDCG@10 of only 0.865, despite having
about 55x as many parameters.

Speed-Performance Trade-off Analysis Figure 4.2 illustrates how different
embedding models balance speed and performance on the ChemRxiv retrieval task.
Models are positioned by their retrieval speed (samples processed per second) along
the horizontal axis and their nDCG@10 scores on the vertical axis. The size of
each marker represents the number of model parameters, while colour indicates
the model’s maximum embedding dimension. When tested on an NVIDIA A10
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Table 4.3: Performance of embedding models on the ChemRxiv Retrieval
benchmark. “N/A” indicates that the model’s publisher did not provide the
parameter count. The highest score for each metric is highlighted in bold.

Model Name Emb. size #Params (M) MAPQ@10 MRR@10 NDCG@10
Open-Source Models

chemical-bert-uncased 768 109.9 0.096 0.096 0.110
matscibert 768 109.9 0.117 0.117 0.137
nomic-bert-2048 768 136.7 0.019 0.019 0.025
ModernBERT-base 768 149.0 0.048 0.048 0.056
ModernBERT-large 1024 394.8 0.049 0.049 0.058
scibert_scivocab_uncased 768 109.9 0.101 0.101 0.119
bert-base-uncased 768 109.5 0.099 0.099 0.117
all-MiniLM-L12-v2 384 334 0.556 0.556 0.603
all-MiniLM-L6-v2 384 22.7 0.626 0.626 0.674
all-mpnet-base-v2 768 109.5 0.618 0.618 0.670
multi-qa-mpnet-base-dot-vi 768 109.5 0.697 0.697 0.741
e5-small 384 33.0 0.682 0.682 0.726
eb-base 768 109.0 0.728 0.728 0.770
eb-large 1024 335.0 0.765 0.765 0.806
eb-small-v2 384 33.0 0.715 0.715 0.756
eb-base-v2 768 109.0 0.717 0.718 0.761
eb-large-v2 1024 335.0 0.781 0.781 0.821
multilingual-e5-small 384 118.0 0.736 0.736 0.778
multilingual-e5-base 768 278.0 0.758 0.757 0.798
multilingual-e5-large 1024 560.0 0.753 0.753 0.794
gte-small 384 33.4 0.687 0.687 0.735
gte-base 768 109.5 0.700 0.700 0.748
gte-large 1024 335.1 0.722 0.722 0.768
gte-multilingual-base 1024 305.0 0.712 0.712 0.761
bge-small-en 384 33.4 0.589 0.589 0.638
bge-base-en 768 109.5 0.604 0.604 0.655
bge-large-en 1024 335.1 0.584 0.584 0.635
bge-small-en-v1.5 384 33.4 0.672 0.672 0.719
bge-base-en-v1.5 768 109.5 0.698 0.698 0.744
bge-large-en-v1.5 1024 335.1 0.717 0.717 0.763
bge-m3 4096 568.0 0.758 0.758 0.798
nomic-embed-text-vi-unsupervised 768 136.7 0.773 0.774 0.814
nomic-embed-text-vi 768 136.7 0.782 0.782 0.821
nomic-embed-text-vi.5 768 137.0 0.739 0.739 0.783
nomic-embed-text-v2-moe 768 475.3 0.781 0.781 0.820
modernbert-embed-base 768 149.0 0.772 0.772 0.813
stella_en_1.5B_v5 8960 1540.0 0.760 0.760 0.802
jina-embeddings-v3 1024 572.0 0.715 0.715 0.760
Quen3-Embedding-0.6Bf 1024 596.0 0.779 0.779 0.819
Quen3-Embedding-4Bf 2560 4020.0 0.826 0.826 0.861
Qwen3-Embedding-8Bf 4096 7570.0 0.831 0.831 0.865
ChEmbedyaniiia 768 136.7 0.878 0.878 0.902
ChEmbedprogressive 768 136.7 0.889 0.889 0.911
Proprietary Models

text-embedding-ada-002 1536 N/A 0.725 0.726 0.770
text-embedding-3-small 1536 N/A 0.721 0.721 0.767
text-embedding-3-large 3072 N/A 0.728 0.729 0.775
amazon-titan-embed-text-vi 1536 N/A 0.611 0.611 0.665
amazon-titan-embed-text-v2 1024 N/A 0.763 0.763 0.805
cohere-embed-english-v3 1024 N/A 0.737 0.737 0.781
cohere-embed-multilingual-v3 1024 N/A 0.747 0.747 0.789

 Loaded with 8-bit quantisation to fit into GPU VRAM; no major performance drop observed.
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Figure 4.2: Efficiency of models on ChemRxiv Retrieval: horizontal axis shows speed,

vertical axis shows nDCG@10, and the size of each circle is proportional to the
number of parameters

24GB GPU, the ChEmbed models achieve an average throughput of 189 samples
per second. In contrast, the top open-source competitors, Qwen3-Embedding-4B
and Qwen3-Embedding-8B, manage only 13 and 10 samples per second, respectively.
Despite being over 30 and 55 times larger than ChEmbed, the Qwen3 models not only
process data more slowly but also perform worse in retrieval accuracy, where their
best variant (Qwen3-Embedding-8B) reaches just 0.865 nDCG@10, whereas ChEmbed
attains 0.911. This highlights that ChEmbed delivers state-of-the-art performance for
chemical literature retrieval while being significantly faster and more resource-efficient
than the larger alternatives.

4.4.2 Tokenizer Adaptation Analysis

We fine-tuned nomic-embed-text-v1 under four different tokenizer setups, keeping
the remainder of the training process unchanged:
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1. ChEmbed, ;1. uses the standard bert-base-uncased tokenizer with no
additional vocabulary.

2. ChEmbedg,; uses the ChemVocab tokenizer, allowing all embedding parameters
to be updated during training.

3. ChEmbedy,g also employs the ChemVocab tokenizer, but only the embeddings
for the new chemistry-specific tokens are updated in the word embedding layer,
while the original BERT token embeddings remain frozen; all other parts of the
model are trainable.

4. ChEmbed,s follows a progressive schedule, beginning with a phase where
only the new token embeddings are trained (with all other weights frozen),
followed by unfreezing and training the entire network for additional epochs.

Table 4.4 summarizes the improvements in retrieval quality resulting from each
tokenizer configuration compared to the baseline. The results clearly demonstrate that
each step of vocabulary adaptation yields noticeable benefits for chemistry-specific
retrieval. The progressive adaptation strategy, where training begins by updating
only the new token embeddings before unfreezing the entire network, yields the
highest overall performance. This suggests that a carefully staged integration of
domain-specific vocabulary can maximize the benefits of adaptation while preserving
robustness to general-domain language.

Table 4.4: Effect of various tokenizer adaptation methods on retrieval performance for

ChemRxiv
Variant nDCGQ10 A vs. baseline
nomic-embed-text-v1 (baseline) 0.821 -
ChEmbedvanil]_a 0.902 +8.1 %
ChEmbedsy1; 0.895 +7.4 %
ChEmbed,ug 0.903 +8.2 %
ChEmbedpyrogressive 0.911 +9.0 %

4.4.3 Evaluation on General Benchmarks

The primary training objective of our embedding models was fine-tuning on
retrieval-oriented query-passage pairs, which comprised approximately 99% of the
training set. Additionally, the fine-tuning data consisted almost entirely of specialized
chemical literature. In contrast, publicly available benchmarks such as MTEB
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Table 4.5: Performance comparison on ChemTEB and MTEB across shared
non-retrieval task types. Metrics reported are accuracy for Classification, V-measure
for Clustering, and average precision (AP) for Pair Classification. Mean (Task)
represents the average score across all tasks, while Mean (Task Type) is calculated
by averaging within each task type, followed by the mean of these category averages

ChemTEB MTEB
Model Cls  Clust Pair Mean (T) Mean (T-type) Cls  Clust Pair Mean (T) Mean (T-type)
nomic-embed-text-v1-unsupervised 0.824 0.567 0.635 0.763 0.675 0.754 0.444 0.836 0.637 0.678
nomic-embed-text-v1 0.837 0.570 0.594 0.764 0.667 0.774 0.466 0.853  0.657 0.698
ChEmbedyaniiila 0.795 0.526  0.594 0.731 0.638 0.766  0.427 0.843 0.635 0.678
ChEmbed¢yy1 0.813 0.546 0.547 0.735 0.635 0.773  0.436  0.849 0.643 0.686
ChEmbedp)yg 0.796 0.583 0.564 0.730 0.648 0.767 0.425 0.842 0.635 0.678
ChEmbedprog 0.801 0.490 0.566 0.726 0.619 0.769 0.426 0.845 0.637 0.680

English v2 and ChemTEB were created to assess text embedding models on a
broader range of tasks and across more general domains. As a result, these broader
benchmarks may not capture real improvements in retrieval performance for specialized
fields and might even give an inaccurate picture of the model’s true capabilities. This
makes it essential to carefully consider two main sources of mismatch between the
training and evaluation benchmarks: task mismatch and domain mismatch.

Task Adaptation To investigate task mismatch, we assessed how our models
perform on non-retrieval tasks that are present in both ChemTEB and MTEB.
Specifically, we included Classification, Clustering, and Pair Classification, reporting
both the average score across all tasks and the average within each task category
(and then across categories). As anticipated, the general-purpose embedding model,
nomic-embed-text-v1, consistently outperformed our retrieval-specialized models,
achieving mean scores of 0.764 on ChemTEB and 0.657 on MTEB across all tasks.
Among the ChEmbed models, only ChEmbed;,, distinguishes itself, obtaining the
highest Clustering score on ChemTEB (0.583) across all evaluated models. For the
remaining non-retrieval tasks, either the baseline model or its unsupervised version
outperforms the ChEmbed variants. These results underscore that optimizing a model
solely for retrieval does not automatically enhance its performance on other task types;
therefore, evaluations should focus on the intended real-world use case rather than
relying exclusively on general benchmarks.

Domain Adaptation To better understand the impact of domain mismatch, we
compared how the models performed on retrieval tasks across ChemRxiv Retrieval,
ChemTEB Retrieval, and MTEB Retrieval. For a fair comparison, we summarized
key dataset properties for each benchmark, including the average number of queries
and corpus size. The ChemRxiv Retrieval benchmark is highly specialized and
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Table 4.6: Retrieval results (nDCG@10, higher is better) with corresponding dataset
statistics. Benchmarks are presented from most domain-specific to most general

Dataset statistics ‘ nDCGQ@10
Dataset Domain-Specific Encyclopedic #Tasks Avg Queries Avg Corpus ‘ nomic-embed-text-vl ChEmbedianizza ChEmbedyrog
ChemRxiv Retrieval v X 1 5000 69,457 0.821 0.902 0.911
ChemTEB Retrieval X 4 2 116 16, 501 0.763 0.706 0.718
MTEB Retrieval X v 10 1482 109, 645 0.544 0.458 0.462

closely matches our training domain, featuring 5,000 queries and a collection of 69,000
documents. In contrast, ChemTEB Retrieval, although focused on chemistry, draws its
tasks from general encyclopedic sources such as HotpotQA [204] and Natural Questions
[94]. Specifically, ChemHotpotQARetrieval contains only 206 queries with 10,069
documents, whereas ChemNQRetrieval includes just 27 queries over 22,933 documents,
with approximately 117 queries and 16,501 documents per retrieval task on average.
Similarly, MTEB Retrieval covers a much broader, general domain, with an average
of 1,482 queries and a corpus size of 109,645 documents per task. These significant
differences in the number of queries and corpus size highlight ChemTEB’s limited
relevance as an evaluation benchmark for specialized chemical retrieval scenarios. This
limitation is further illustrated by our analysis of model checkpoints in Figure 4.3.
Here, we track the retrieval performance of ChEmbed,ani112 model snapshots saved after
each epoch of fine-tuning across training epochs. The results show that as training
progresses, performance on ChemRxiv Retrieval steadily improves, with several peaks
and fluctuations, while performance on ChemTEB Retrieval declines over time. This
clear divergence suggests that the queries and passages in ChemTEB differ significantly
from those found in the specialized chemical literature used for training, resulting in a
domain gap and lower evaluation reliability on ChemTEB as the model becomes more
specialized.

Taken together, our analysis highlights significant shortcomings in existing
benchmarks for accurately evaluating embedding models fine-tuned for retrieval tasks
in specific scientific areas. Results on non-retrieval tasks indicate that evaluation
should closely align with the training objective, as focusing solely on retrieval can
compromise effectiveness on tasks unrelated to retrieval. Likewise, the trends observed
in retrieval performance and training indicate that strong domain alignment between
the training set and the evaluation benchmark is essential. Based on these findings,
we believe that effective evaluation of chemistry retrieval embedding models requires
alignment in both the retrieval task and the domain of literature, underscoring the
need for a new, dedicated retrieval benchmark.
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Figure 4.3: Evaluation of model checkpoints from each epoch on ChemRxiv retrieval
(left) and ChemTEB retrieval (right) sets

Conclusions

In this chapter, we presented ChEmbed, an embedding model specifically adapted
for retrieving chemical literature. Through a progressive approach to tokenizer
augmentation and by training on large batches of synthetically generated query-passage
pairs, ChEmbed achieved marked improvements in retrieval accuracy. On the
ChemRxiv benchmark, our model achieved a substantial 9% gain in nDCG@10 over
a general-purpose embedding model, outperforming even much larger proprietary
models, while remaining efficient, fast, and supporting context windows of up to
2048 tokens. Our findings highlight several key aspects of domain adaptation. Most
notably, using synthetic contrastive training helps overcome the frequent problem
of limited data in specialized fields, such as chemistry. Furthermore, our efficient
vocabulary augmentation method provided nearly as much improvement as fully
retraining a tokenizer, but with significantly less complexity and resource utilization.
We also demonstrated the importance of evaluating models on tasks closely aligned
with their target domain; for example, ChemRxiv data proved more suitable than
general-purpose benchmarks such as ChemTEB or MTEB. Although our study focused
on chemistry, the techniques we developed, especially tokenizer augmentation and
synthetic query-based contrastive training, are also applicable to other technical or
scientific domains. Ultimately, ChEmbed offers clear benefits for chemical information
retrieval, making literature searches and discovery processes more accurate, efficient,
and practical for researchers.

90


http://www.mcmaster.ca/
https://cse.mcmaster.ca/

Chapter 5

Conclusion

In this chapter, we will review the main problem addressed in this thesis, explain the
solutions and techniques developed, discuss the lessons learned and the limitations,
and suggest some directions for future research.

5.1 Problem Restatement

One of the main challenges in retrieval-augmented generation (RAG) systems is
the quality of the retriever. In recent systems, this is usually a text embedding
model, which converts text (or even other types of data such as images) into vectors,
numerical representations that make it possible to search quickly and accurately
through a knowledge base. This approach allows large language models (LLMs) to
use external knowledge without changing their own parametric memory through extra
training or fine-tuning. Most of the existing text embedding models are trained on
large, general-purpose web-scale datasets. While these models work well for many
tasks, they often underperform when used in specialized domains, like chemistry, which
have their own technical language and vocabulary. This is a problem since the lack of
domain adaptation can hurt the performance of retrieval systems, making it harder to
find the most relevant documents in a RAG pipeline.

5.2 Contributions

The main goal of this thesis is to address the existing gap in domain-specific adaptation
of text embedding models for chemistry information retrieval. The approach to
this problem was developed in two main stages. First, the standard Massive Text
Embedding Benchmark (MTEB), which is widely recognized for evaluating text
embedding models, was extended by introducing a dedicated chemistry-focused
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evaluation suite. This new benchmark enabled a thorough assessment of both
open-source and proprietary embedding models on a range of chemistry-specific
retrieval tasks, allowing for direct comparison and the identification of the most
promising open-source model as a foundation for further development. Building upon
this evaluation, the second stage focused on adapting the selected model for the
chemistry domain. Key contributions of this thesis are as follows:

1.

ChemTEB, comprehensive Chemical Text Embedding Benchmark:
Developed a 34-task benchmark that enables researchers to evaluate retrieval,
classification, clustering, and bitext-mining in realistic chemical language. This
benchmark addresses the shortcomings of general NLP evaluations and is fully
open-source and is integrated into the MTEB Python package®, encouraging
broad community adoption.

ChemRxiv Retrieval task for real-world literature search: Curated a
paragraph-level retrieval benchmark based on academic articles, allowing models
to be tested on the kind of dense and technical prose commonly encountered by
chemists in practice.

. Scalable LLM-based pipeline for synthetic query generation: Designed

and validated an automated workflow that generated 1.7 million queries for
chemistry-related paragraphs, demonstrating that high-quality contrastive
pretraining is achievable even when manual labelling is limited or absent.

ChEmbed; a domain-adapted embedding family that sets new
state-of-the-art: Fine-tuned a bi-encoder pretrained model on the synthetic
dataset, achieving a mnotable improvement on the ChemRxiv benchmark
compared to the base model, while maintaining efficiency.

Light-weight tokenizer adaptation with chemical tokens: Trained a
tokenizer on a collection of IUPAC names and augmented the unused token
slots of a general-domain tokenizer with the resulting chemistry-specific tokens,
effectively improving retrieval accuracy without requiring a full retraining of the
tokenizer.

Open resources for the community: Released all training and evaluation
data, synthetic pair generation scripts, trained model checkpoints, and evaluation
code under permissive licenses, facilitating follow-up research and lowering the
barrier to entry for other scientific fields.

https://github.com/embeddings-benchmark/mteb
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5.3 Key Findings

The ChemTEB benchmark showed very clearly that no single embedding model wins
across all task categories, because each model’s pretraining and data shape where it
shines. For example, the proprietary OpenAl text-embedding-3-large model leads
overall, outperforming in three of the five task categories, but it still loses to other
models on specific tasks. Among the open-source models, nomic-embed-text-v1.5
and its predecessor nomic-embed-text-vl showed best performance respectively;
with the latter being the only one whose code, weights, and training data are fully
public, which makes it uniquely transparent and reproducible. Tasks that mostly
use general-purpose text, like classification which is mostly Wikipedia-derived, are
the easiest ones, because most models have already seen similar content during
pretraining. In contrast, the bitext mining tasks, where models must align a sentence
in natural language with another in a specialized chemical notation score almost zero
for most models, since they have not learned to bridge natural language and chemical
representations like SMIELS and SELFIES. We also found that BERT-based models
simply fine-tuned with masked language modelling on chemical text lag behind newer,
contrastively trained architectures: they may pick up a little chemistry knowledge, but
they do not learn powerful semantic representations, showing that modern training
methods are far more effective than a plain domain fine-tune with MLM. In developing
ChEmbed, we started with the nomic-embed-text-v1 backbone as the base model
and showed that with the right domain adaptation, a compact model can outperform
much larger ones. To get the appropriate data to train the model, we generated
millions of synthetic queries for paragraphs from PubChem, Semantic Scholar articles,
and ChemRxiv preprints, which let us build both training and evaluation datasets at
scale. We tried adding mined hard negatives and random negatives to our contrastive
pipeline, but they did not improve performance much over the default in-batch
negatives, probably because those hard examples do not actually carry stronger
supervision than our positive pairs. For tokenizer adaptation, we added 900 unique
chemistry-related tokens via training a WordPiece tokenizer on chemical compound
IUPAC names and tested several adaptation strategies; we found that a two-stage
method; first updating only the new tokens, then fine-tuning the whole model, worked
best, improving retrieval quality more than other approaches. Using this method,
ChEmbed outperformed the nomic-embed-text-v1 base model by approximately 9%
on a ChemRxiv literature retrieval task and also surpassed all the open-source and
well-known proprietary models we tested. Overall, this approach, combining synthetic
query generation, targeted tokenizer adaptation, and staged fine-tuning, provides a
practical and reproducible recipe for building specialized embeddings for any scientific
or technical field, not just chemistry.
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5.4 Limitations

ChemTEB While ChemTEB is specifically designed with a chemistry focus, it
nevertheless retains an inherent bias towards general-purpose data, particularly evident
in tasks involving classification, clustering, and retrieval. This bias arises primarily due
to the use of datasets partially sourced from general-domain repositories, which may not
entirely reflect the nuanced complexity and specialized language of chemistry literature.
It was the main reason we extended it with an additional ChemRxiv retrieval task
that was more representative of our training data. Additionally, ChemTEB currently
lacks tasks explicitly designed for multi-hop reasoning or detailed reranking evaluation,
which limits its capacity to assess models’ abilities to handle complex, chained retrieval
scenarios common in real-world chemical research. Lastly, the benchmark exclusively
focuses on English-language resources, thus overlooking the substantial volume of
chemical knowledge available in other languages, which restricts its applicability in
global contexts.

ChemTEB While ChemTEB is specifically designed with a chemistry focus, it
nevertheless retains an inherent bias towards general-purpose data (about 20/35 tasks
use general-domain sources, vs. 15/35 from chemistry-native sources), particularly
evident in tasks involving classification, clustering, and retrieval. This bias arises
primarily due to the use of datasets partially sourced from general-domain repositories,
which may not entirely reflect the nuanced complexity and specialized language of
chemistry literature. This was a key reason we added, in Chapter 4, a separate
ChemRxiv retrieval task built from primary literature to complement ChemTEB’s
encyclopedic sets. Additionally, ChemTEB currently lacks tasks explicitly designed for
multi-hop reasoning or detailed reranking evaluation, which limits its capacity to assess
models’ abilities to handle complex, chained retrieval scenarios common in real-world
chemical research. Lastly, the benchmark exclusively focuses on English-language
resources, thus overlooking the large body of chemical literature in other languages,
which limits applicability outside English-language contexts.

ChEmbed A primary limitation of ChEmbed is its monolingual nature; being
trained exclusively on English-language chemical data significantly restricts its practical
applicability, especially in multilingual environments or for patent databases containing
extensive non-English chemical literature. Exploring the use of multilingual base
models, such as the recently introduced nomic-embed-text-v2-moe [123], could also
potentially address this gap. Moreover, ChEmbed was intentionally fine-tuned for
retrieval tasks to enhance performance specifically in retrieval-augmented generation
pipelines for chemistry. Consequently, when deployed for other tasks such as
classification or clustering, the model may not perform optimally. Addressing this
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issue would require further efforts to create specialized training datasets tailored for
these additional tasks. Lastly, while tokenization improvements were noteworthy, the
automated process for selecting tokens from a large corpus of [IUPAC names could be
further refined. Collaborating with domain experts in chemistry and linguistics might
enable a more selective and impactful tokenization strategy.

5.5 Future Research Ideas

Based on the key findings and limitations of the ChEmbed, we propose the following
paths towards building better domain-specific embedding models:

1. Chemical Cross-Encoder: Train a chemistry reranker and use it in a
two-stage retrieval pipeline. A fast bi-encoder first fetches the top-k passages; a
cross-encoder then reads each query-passage pair together, scores relevance, and
reorders the list. During training, the re-ranker can also supply hard negatives
and target scores to improve the retriever.

2. Adapt Decoder-Based Language Models for Embeddings: Most early
embedding models use pretrained encoder-based architectures as backbones, but
employing decoder-style large language models (LLMs) is a promising direction.
Pretrained generative models possess strong reasoning abilities that could be
distilled into effective embeddings. Recent work has shown that fine-tuning
large decoder models for embedding tasks can yield state-of-the-art results [209].
Future research could focus on domain-adapting these decoder-based models for
chemical texts, while addressing efficiency and scalability challenges due to their
size.

3. Multimodal Embedding Models: Many applications in chemistry involve
not just chemistry-related natural language, but also molecular representations
and even images such as spectra or molecular structures. An important extension
would be to train joint embedding models across multiple modalities, which can
map text, SMILES, molecular graphs, and images into a joint semantic space.

4. Multilingual Embedding Models: Chemical knowledge is global, yet most
domain embedding models are limited to English. A key research direction is
to develop multilingual embeddings for cross-lingual retrieval, enabling queries
in one language to find documents in another. This could be achieved by
synthesizing data in different languages and selecting multilingual embedding
models as the base model for further processing.

5. Joint Retriever-Generator Optimization: Embedding models are often
used in retrieval-augmented generation. Future work could involve co-training
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the retriever alongside a generative LLM designed for chemistry tasks such as
question answering or summarization.

. Diverse Synthetic Queries: Use multiple LLM families and different prompt
styles (patent, safety, clinician, student) to reduce generator bias in training and
evaluation.

. Expert-Guided Chemistry Vocabulary: Work with chemistry experts
to pick and verify candidate tokens, rather than relying only on algorithms
(WordPiece/BPE). Add a token only when experts confirm it is meaningful
and useful. This aims to cut over-segmentation and capture full chemical spans
beyond IUPAC names.
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