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Abstract
While deep learning techniques have significantly advanced the field of shadow

removal, a considerable number of current methods depend on shadow masks,

which are often challenging to acquire accurately. This reliance on masks restricts

their ability to generalize effectively to unconstrained real-world scenarios. To ad-

dress this limitation, we introduce ReHiT, an efficient mask-free shadow removal

framework that leverages a hybrid CNN-Transformer architecture, guided by the

principles of Retinex theory. Our approach begins with a dual-branch pipeline

designed to model the reflectance and illumination components of an image sep-

arately. Each of these components is then processed and restored by our novel

Illumination-Guided Hybrid CNN-Transformer (IG-HCT) module. Furthermore,

in addition to incorporating CNN-based blocks that excel at learning residual

dense features and performing multi-scale semantic fusion, we have developed the

Illumination-Guided Histogram Transformer Block (IGHB). This specialized block

is designed to effectively handle the complexities of non-uniform illumination and

spatially intricate shadow patterns. Comprehensive experiments conducted on

several standard benchmark datasets demonstrate the superior performance of

our proposed method compared to existing mask-free techniques. Notably, our

solution achieves competitive results while boasting one of the smallest parameter

counts and fastest inference speeds among the state-of-the-art models. This high-

lights the practical applicability of our method for real-world applications where

computational resources may be constrained.
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

Shadows represent a prevalent visual phenomenon observed in natural environ-

ments, arising when a source of illumination is either partially or entirely blocked

by physical objects present within the scene. The presence of shadows can intro-

duce substantial complications and pose significant challenges for a diverse range

of high-level computer vision applications, including, but not limited to, object

tracking, object detection, and semantic segmentation [26, 13, 54]. As a direct

consequence of these challenges, the task of shadow removal has evolved into a

fundamental and critical problem within the field of image restoration.

Preceding the widespread adoption of deep learning methodologies [16, 15, 18,

21, 57], conventional techniques for shadow removal predominantly depended on

manually designed discriminative prior knowledge. These priors were utilized to

1



M.A.Sc.– Seyed Amirreza Mousavi; McMaster University– Electrical and
Computer Engineering

identify and rectify shadows by analyzing image characteristics such as edges,

intensity values, and geometric properties [30, 65]. Furthermore, physics-based

illumination models [28] were frequently employed to estimate and subsequently

compensate for the disparities in lighting conditions observed between regions af-

fected by shadows and those that were not. Nevertheless, these earlier method-

ologies often encountered limitations and performed suboptimally when applied to

complex real-world scenarios. This was largely attributable to the oversimplified

assumptions inherent in these approaches and the intrinsic difficulty associated

with modeling the intricate variations in illumination that occur in natural scenes.

In recent years, learning-based approaches [9, 24, 33, 36, 39, 49, 38, 45] have

emerged as a dominant paradigm in shadow removal. These approaches effectively

harness the considerable representational power inherent in deep neural network

architectures. Both convolutional neural network (CNN)-based techniques [45]

and methods employing Transformer architectures [20, 11] have shown notewor-

thy achievements in learning the intricate relationship between images containing

shadows and their corresponding shadow-free versions through an end-to-end learn-

ing paradigm. These deep learning strategies can be broadly classified into two

main groups: those that utilize masks [39] and those that operate without explicit

masks for shadow removal [11, 45]. Mask-based methodologies leverage paired

datasets consisting of images with shadows and their clean counterparts, in con-

junction with explicit shadow masks that are either manually labeled or produced

by pre-trained models, to direct the learning procedure. The integration of precise

shadow masks enables these models to concentrate on acquiring the complex trans-

formation between the regions affected by shadows and the clean areas, thereby

2
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achieving cutting-edge performance. Nevertheless, this enhanced performance is

accompanied by a significant drawback: these methods encounter difficulties in

obtaining accurate shadow masks, particularly in intricate real-world scenarios

where manual annotation can be laborious and automatic predictions may lack

reliability.

On the other hand, current deep learning approaches often fail to fully in-

corporate the underlying physics of illumination and shadows. Many end-to-end

models [27], though effective, struggle with generalization across diverse lighting

conditions, leading to artifacts along shadow boundaries. Similarly, physics-based

models [21, 57], despite leveraging certain illumination properties, rely on overly

simplistic assumptions such as uniform lighting within shadow regions and basic

linear transformations for illumination correction. These limitations motivate the

development of more sophisticated shadow removal methods that can effectively

handle intricate lighting variations and complex scene geometries.

Traditional Convolutional Neural Networks (CNNs) have been the cornerstone

of many image restoration tasks, demonstrating remarkable success in various ap-

plications. However, their architectural design, primarily based on local receptive

fields, inherently limits their ability to capture long-range dependencies and non-

local self-similarity within an image. These are critical characteristics, as image

restoration often necessitates understanding relationships between distant pixels

or identifying repetitive patterns across an entire image to accurately infer miss-

ing or corrupted information. The emergence of the Transformer architecture,

initially popularized in natural language processing and more recently adapted

for computer vision as Vision Transformers (ViTs), offers a compelling solution

3
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to these CNN limitations. Transformers excel at modeling long-range dependen-

cies through their self-attention mechanism, which allows each pixel (or patch) to

interact with every other pixel (or patch) in the input. This global connectivity

is theoretically ideal for capturing the non-local information crucial for advanced

image restoration.

However, the direct application of original ViT architectures to tasks like shadow

removal presents a significant practical hurdle: computational complexity. The

self-attention mechanism in standard Transformers involves calculating attention

scores between all pairs of input tokens, leading to a computational cost that scales

quadratically with the input spatial size O((N2), where N is the number of to-

kens/pixels). For high-resolution images, this computational burden becomes pro-

hibitively expensive and memory-intensive, making it unaffordable for real-world

applications or even large-scale research.

To tackle these challenges, we introduce ReHiT, an efficient two-branch mask-

free shadow removal network based on illumination-guided hybrid CNN-Transformer

architecture. We first extend and analyze Retinex theory [28] and develop a

Retinex estimator to convert the input into two intermediate representations,

each approximating the target reflectance and illumination map [14]. Second,

we present a hybrid CNN-Transformer network, guided by Retinex information,

as the core restoration framework of our method.

Within each block of this UNet encoder-decoder architecture, we develop the

Illumination-Guided Histogram Transformer Blocks (IG-HTBs) to integrate the

illumination guidance and employ the CNN-based Dilated Residual Dense Block

4
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(DRDB) and Semantic-Aligned Scale-Aware Module (SAM) proposed in [59] multi-

scale feature fusion. Figure 1.1 shows the result of our method applied to shadowed

images.

Our contribution can be summarized as follows:

1. We introduce ReHiT, an efficient CNN-Transformer hybrid architecture for

mask-free shadow removal.

2. Guided by the principles of Retinex theory, our approach employs a dual-

branch restoration pipeline, where a hybrid CNN-Transformer network is

responsible for the restoration process in each branch.

3. We develop an illumination-guided histogram Transformer specifically to per-

ceive and recover the shadow regions within the primary restoration network.

4. Extensive experiments conducted across multiple established shadow removal

benchmark datasets demonstrate the effectiveness and superiority of our pro-

posed method

1.2 Thesis Structure

Within this thesis, Chapter 2 will provide a concise overview of established shadow

removal models and relevant scholarly contributions to the field. Subsequently,

Chapter 3 will present a detailed exposition of the architecture and operational

principles of our novel dual-branch Retinex-guided Histogram Transformer model.

Chapter 4 will be dedicated to the in-depth analysis of our proposed network and

will feature a comparative evaluation of its performance against state-of-the-art

5
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methodologies. Finally, Chapter 5 will serve as the concluding section, summariz-

ing the key findings and contributions of this research.
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Figure 1.1: Visual result of our shadow removal model
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Chapter 2

Related Works

Image shadow removal techniques generally fall into two categories: traditional

and deep learning-based methods. A detailed examination of both approaches is

presented below.

2.1 Traditional Image Shadow Removal

Early shadow removal methods [16, 15, 18, 21, 57] primarily leverage prior knowl-

edge of an image’s physical properties and the underlying principles of illumination

to differentiate between shadowed and lit regions. These approaches often model

shadow formation based on assumptions about lighting conditions, geometric re-

lationships, and inherent image characteristics like gradients and color constancy.

One notable line of research focuses on illumination modeling and region pair-

ing. Guo et al. [21] introduced a method for shadow detection and removal by

identifying and analyzing "paired regions" within an image. Their core idea was to

find corresponding shadowed and non-shadowed areas that share similar material

8
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properties, allowing them to model the illumination change caused by the shadow.

By establishing these relationships, they could then infer the intrinsic reflectance

of the scene and reconstruct the shadow-free image by effectively "relighting" the

shadowed regions. While innovative in its approach to leverage specific region

relationships, the success of such methods can be sensitive to the accurate identi-

fication of these paired regions and the complexity of real-world illumination.

Another prominent strategy, exemplified by the work of Finlayson et a l.[16, 15],

capitalizes on the principle of illumination invariance, often derived from gradient

properties. Their methods, such as the one based on entropy minimization [15],

aim to transform image data into a representation where the underlying material

properties are separated from illumination changes (shadows). This is frequently

achieved by exploiting the consistency of gradients or color ratios which are ide-

ally invariant to changes in illumination. By identifying and manipulating these

photometric cues, particularly around shadow boundaries, they seek to recover the

original scene radiance. However, a significant limitation arises when the assump-

tion of consistent gradient behavior is violated, often due to complex illumination

interactions or variations in surface properties within the shadow, which can lead

to undesirable artifacts like noticeable shadow boundary lines or color inconsisten-

cies in the resulting shadow-free image.

To address the limitations of fully automatic approaches, some traditional meth-

ods incorporate user interaction. Gong and Cosker [18], for example, aimed to

improve the robustness and accuracy of shadow removal, especially for "difficult

shadow scenes," by integrating distinct forms of user-provided input. This human

9
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guidance, such as scribbles indicating shadowed and lit regions, helps the algo-

rithm better distinguish between genuine shadows and intrinsic scene properties

(e.g., dark objects or textures), thereby enhancing the resilience of the removal pro-

cess. While improving accuracy and handling challenging cases, the requirement

for manual input can limit their applicability in large-scale or real-time scenarios

where automation is paramount.

Furthermore, a broader category of traditional methods relies on analyzing var-

ious image features. Techniques rooted in color constancy, such as that explored

by Zhao et al. [64], attempt to estimate the scene illuminant and then normalize

the image colors to remove the influence of the light source, thereby making the

colors intrinsic to the object regardless of shadow. This is based on the idea that

human perception maintains object color despite changes in illumination. Other

approaches leverage texture analysis and edge detection, as seen in the work of Wu

et al. [3] and [52] . Shadows primarily alter illumination but ideally preserve tex-

ture details. By analyzing texture patterns, algorithms can identify regions where

illumination changes (due to shadows) without significant changes in underlying

texture. Similarly, edge detection can be used to identify shadow boundaries, which

are often characterized by strong intensity gradients, and then smooth or remove

these specific gradients while preserving true object edges. However, distinguish-

ing between shadow edges and genuine object edges remains a persistent challenge

for these methods, as both can manifest as strong intensity discontinuities.

10
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2.2 Deep Learning-based Shadow Removal

This section will begin by formally defining the problem of single-image shadow

removal. Following this, we will proceed to review and engage in a discussion of

the current landscape of existing shadow removal methodologies. We begin by

problem definition:

For a shadow image Is ∈ RH×W ×3 with H, W as height and width respectively,

we can model the process of shadow removal as:

Îsf = f(Is ; θ), (2.1)

Or:

Îsf = f(Is , M ; θ) (2.2)

where Îsf ∈ RH×W ×3 denotes the resulting shadow-free image after restoration,

and f symbolizes the shadow removal network parameterized by a set of learnable

parameters θ. To facilitate this process of shadow identification and restoration,

an optional shadow mask M ∈ RH×W can be incorporated as supplementary in-

formation. This mask serves to indicate the regions within the image that are

affected by shadows, and it can be derived either through manual annotation by a

human expert or automatically detected by a pre-trained shadow detection model.

In contrast to other image restoration tasks that typically deal with global image

11
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degradation, shadow removal presents a unique challenge as a partial corruption

problem. This necessitates not only the accurate identification of the image re-

gions affected by shadows but also their subsequent restoration to a shadow-free

state. Based on different learning strategies, we generally categorize existing im-

age shadow removal methods into supervised learning, unsupervised learning and

semi-supervised learning.

Supervised Learning (SL) In the context of shadow removal, supervised

learning involves training a model using pairs of images depicting the same scene,

one with shadows and the other without, captured under varying illumination. A

groundbreaking early work leveraging deep learning, known as DeShadowNet[40],

introduced an automated and end-to-end deep neural network designed to inte-

grate the tasks of shadow detection, classification of umbra and penumbra regions

within shadows, and the actual removal of shadows. This network directly learns

the mapping function that transforms an image containing shadows into its corre-

sponding shadow matte.

Unsupervised Learning (UL) Although supervised learning methodologies

have demonstrated significant achievements across a range of applications, they

are fundamentally dependent on the availability of substantial quantities of paired

training data. The acquisition of such paired data can be a resource-intensive and

time-consuming undertaking. Furthermore, the training of deep learning models

on paired datasets is generally tailored to address specific tasks. Consequently,

these models often encounter difficulties in generalizing and adapting effectively

to novel or out-of-distribution scenarios without undergoing retraining.

12
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Semi-Supervised Learning (SSL) In recent years, semi-supervised learning

has emerged as an approach to leverage the strengths of both supervised learning

and unsupervised learning. It leverages both paired data and unpaired data to

boost the model performance and improve generalization ability.

2.2.1 Mask-based Image Shadow Removal

Over the past few years, a significant number of deep neural network models [9,

24, 33, 36, 39, 49] have been proposed to tackle the task of shadow removal. These

methods commonly employ both supervised and unsupervised training strategies

and can be broadly classified into two categories: mask-based and mask-free ap-

proaches. Gryka et al. [19] introduced a learning-based technique for automatic

shadow removal, utilizing a supervised regression algorithm to effectively handle

both umbra and penumbra shadow types. ST-CGAN [49] presented an integrated

framework for shadow detection and removal by employing two stacked Condi-

tional Generative Adversarial Networks (CGANs). Wan et al. [48] addressed the

problem of inconsistent static styles between shadowed and shadow-free areas by

proposing a style-guided network for shadow removal. S2Net [4] focused on lever-

aging semantic guidance and refinement to preserve the overall integrity of the

image and utilized shadow masks to guide the shadow removal process, employ-

ing semantic-guided blocks to facilitate information transfer from non-shadowed to

shadowed regions. He et al. [23] developed Mask-ShadowNet, which aims to main-

tain global illumination consistency through the use of Masked Adaptive Instance

Normalization (MAdaIN) and adaptively refines features using alignment modules.

Furthermore, FusionNet [17] employed fusion weight maps and a boundary-aware

RefineNet to further minimize any residual shadow traces. However, a significant

13
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limitation of these approaches is their strong dependence on the accuracy of the

input shadow masks. The inherent complexity and diversity of real-world scenes of-

ten make it challenging to generate precise shadow masks, which can consequently

impact the overall effectiveness and reliability of these methods.

2.2.2 Mask-free Image Shadow Removal

Mask-free methods have demonstrated greater adaptability and promise across a

wider range of scenarios. CANet [7] incorporates a Contextual Patch Matching

(CPM) module to locate corresponding patches in shadowed and non-shadowed

areas and a Contextual Feature Transfer (CFT) mechanism to propagate contex-

tual information between these regions. Vasluianu et al. [45] introduced Ambient

Lighting Normalization (ALN) to improve image restoration under complex light-

ing conditions and proposed IFBlend, an advanced image enhancement frame-

work that optimizes the joint entropy of the image and its frequency components,

thereby enhancing visual quality without requiring explicit shadow localization. Le

et al. [29] utilized an illumination model in conjunction with image decomposition

techniques to effectively restore regions affected by shadows. Liu et al. presented a

shadow-aware decomposition network designed to disentangle the illumination and

reflectance components of an image, facilitating a more accurate reconstruction of

the scene’s lighting. This is further enhanced by a bilateral correction network,

which refines the consistency of the lighting and restores textural details, resulting

in a more natural and perceptually coherent output. ShadowRefiner [11] employs a

UNet architecture built upon ConvNext [37, 68, 12], utilizing multi-scale ConvNext

blocks as powerful encoders for learning robust latent feature representations.

14
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Transformer-based Image Restoration. Transformer-based networks, which

leverage self-attention mechanisms to capture complex relationships between dif-

ferent components, have demonstrated unparalleled efficacy in modeling long-range

dependencies [2, 1, 46, 67, 14, 10, 31, 34, 56]. Their superior ability to understand

contextual relationships has led to state-of-the-art performance in image restora-

tion, surpassing traditional architectures in both accuracy and robustness. SwinIR

[32], a widely recognized backbone for image restoration, is constructed using a

series of residual Swin Transformer [35] blocks, leveraging hierarchical feature rep-

resentation for enhanced performance. Building upon the Vision Transformer [47]

framework, DehazeFormer [42] has been introduced to address the image dehazing

task, demonstrating superior capability in atmospheric degradation removal. Guo

et al. [20] propose Shadowformer to exploit non-shadow regions to help shadow

region restoration. More recently, a lightweight transformer architecture [5] has

been proposed for low-light image enhancement, effectively capturing illumination

and reflectance characteristics to improve visual quality under challenging lighting

conditions. In [11], a Fast-Fourier attention transformer structure is used in an

encoder-decoder architecture to further refine image details and maintain color

consistency after shadows are removed. Sun et al. [43] propose a histogram self-

attention mechanism to categorize spatial elements into bins and allocate varying

attention within and across bins.

15
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Chapter 3

Research Methodology

This section details our novel approach to high-quality image shadow removal.

Achieving robust shadow removal necessitates the use of advanced deep learning ar-

chitectures capable of effectively extracting crucial features from shadowed images

and modeling the complex relationship between these inputs and their shadow-free

counterparts. The overarching architecture of our proposed method is visually rep-

resented in Figure Fig. 3.1. Our solution is built upon the foundational principles

of Retinex theory and is implemented within an Illumination-Guided Shadow Re-

moval framework. This framework features two distinct, parallel pathways [14], as

discussed in (Sec. 3.1). Each pathway is specifically designed for the independent

restoration of either the scene’s reflectance map (representing the true colors of

objects independent of illumination) or the illumination map (capturing the light

distribution across the scene, including shadows). Retinex theory plays a pivotal

role in our shadow removal process by providing a theoretical basis to disentan-

gle the intrinsic reflectance properties of objects from variations in illumination.

This fundamental separation allows our network to better understand and isolate

16
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the shadow component. The initial decomposition provided by Retinex theory

significantly aids the subsequent refinement process, which is performed by our

novel Illumination-Guided Hybrid CNN-Transformer (IG-HCT) modules Sec. 3.2.

Within each IG-HCT module, we integrate a key component: the Illumination-

Guided Histogram Transformer Block (IG-HTB). This innovative block employs

an illumination-guided, histogram-based self-attention mechanism, which allows

it to adaptively focus on relevant features while considering the illumination con-

text. The IG-HTB is strategically combined with a Convolutional Neural Network

(CNN)-based Dilated Residual Dense Block (DRDB), designed for robust fea-

ture extraction and multi-scale contextual understanding, and a Semantic-aligned

Scale-aware Module (SAM), which further refines features by aligning them with

semantic information and handling variations across different scales. This syner-

gistic combination of components within the IG-HCT modules is engineered to

significantly enhance the overall shadow removal performance and fidelity of our

proposed network Sec. 3.2.1.
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Figure 3.1: ReHiT Architecture
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3.1 Dual-branch Retinex-based Pipeline

The Retinex theory can be expressed as IGT = RGT ⊙ LGT , where IGT is an

ideal image without shadow, RGT and LGT represent the reflectance image and

illumination map, respectively. However, a shadowed image ISh captured under

non-ideal illumination conditions inevitably suffers from noise, color distortion, and

constrained contrast. Therefore, as in [14], perturbations (R̂ and L̂) are introduced

to model these shadowed images as:

ISh = (RGT + R̂) ⊙ (LGT + L̂)

= RGT ⊙ LGT + RGT ⊙ L̂ + R̂ ⊙ LGT + R̂ ⊙ L̂ (3.1)

To achieve satisfactory results, we simultaneously restore the reflectance and

illumination components. This is done by element-wise multiplying both sides of

Equation (3.1) by L̄ and R̄, respectively:

ISh ⊙ L̄ = R′ = RGT + RGT ⊙ L̂ ⊙ L̄ + R̂ + R̂ ⊙ L̂ ⊙ L̄,

ISh ⊙ R̄ = L′ = LGT + R̂ ⊙ LGT ⊙ R̄ + L̂ + R̂ ⊙ L̂ ⊙ R̄.

(3.2)

After introducing L̄ and R̄ such that L̄ ⊙ LGT = 1 and R̄ ⊙ RGT = 1 and

under the assumption that we can approximate L̄ and R̄ via Retinex estimator,
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the results can be retrieved using deep learning networks by:

(R̄, L̄, Fi) = E(ISh),

R′ = ISh ⊙ L̄, L′ = ISh ⊙ R̄,

Rout = R′ + MR(R′; Fi),

Lout = L′ + ML(L′; Fi),

Iout = Rout ⊙ Lout,

(3.3)

where MR and ML are networks utilized to predict the minus degradation in R′

and L′, and Fi serves as Retinex guidance information derived from ISh.

3.2 Illumination-Guided Hybrid CNN-Transformers

(IG-HCT) Module

Our developed IG-HCT module is an encoder decoder architecture and serves as

the MR or ML in Eq. 3.3. This module consists of three down-sampling and

up-sampling levels. At each decoder level, the network produces intermediate re-

sults through a convolution layer and a pixelshuffle up-sampling operation, which

are also supervised by the ground-truth, serving the purpose of deep supervision

to facilitate training. Specifically, each encoder or decoder block, IG-HCTB (top

right in Fig. 3.1), contains a Dilated Residual Dense Block (DRDB) [59] for re-

fining the input features, an Illumination Guided Histogram Transformer Block

(IG-HTB, introduced in the next subsection) to better capture dynamically dis-

tributed shadow-induced degradation, and a Semantic-aligned multi-scale module

(SAM) [59] for extracting and dynamically fusing multi-scale features at the same
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semantic level.

Dilated Residual Dense Block (DRDB) For each level i ∈ {1, 2, 3, 4, 5, 6}

(i.e., three encoder levels and three decoder levels), the input feature Fi is initially

processed by a convolutional block. This convolutional block, specifically a dilated

residual dense block, is designed to refine the input features. It integrates the

structure of the residual dense block (RDB) [62, 25, 22] and incorporates dilated

convolution layers [58] to effectively process the input features and produce refined

output features. The refined feature representation is then fed to IG-HTB. More

formally, if we denote the input feature to the i − th level encoder or decoder as

F 0
i , the sequence of cascaded local features generated from each layer within this

block can be mathematically formulated as follows:

F l
i = C l([F 0

i , F 1
i , . . . , F l−1

i ]), (l = 1, 2, . . . , L), (3.4)

where [F 0
i , F 1

i , . . . , F l−1
i ] denotes the concatenation of all intermediate features

inside the block before layer l, and C l is the operator to process the concatenated

features, consisting of a 3 × 3 convolution with dilation rate dl, followed by a

ReLU activation function. Subsequently, a 1 × 1 convolution is applied to ensure

the output channel number matches that of the initial input feature F 0
i . Finally,

we utilize a residual connection to produce the refined feature representation F r
i ,

which can be formulated as:

F r
i = F 0

i + W ([F 0
i , F 1

i , . . . , F k
i ]), (3.5)
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where W (·) represents the 1 × 1 convolutional layer applied to the concatenated

features. The refined feature representation F r
i is then fed to our Illumination-

Guided Histogram Transformer Block (IG-HTB).

3.2.1 Illumination-Guided Histogram Transformer Block

(IG-HTB)

As the core element of our IG-HCT module, IG-HTB consists of two essential

mechanisms: IG-HSA and FFN. These components are structured to engage with

layer normalization and can be expressed as the following.

Fi = Fi−1 + IG-HSA(LN(Fi−1)),

Fi = Fi + FFN(LN(Fi)),
(3.6)

where LN(·) denotes layer normalization and Fi represents the feature at i-th level.

Illumination-guided Histogram Self-Attention To more effectively capture

shadow-induced degradation that varies dynamically, we develop an illumination-

guided Histogram Self-Attention (IG-HSA) mechanism. This layer incorporates

a dynamic-range convolution process, which reorganizes the spatial arrangement

of fractional features, along with a histogram self-attention mechanism that inte-

grates both global and local dynamic feature aggregation. Traditional convolution,

which primarily focuses on local information, does not naturally complement the

self-attention mechanism’s capability to model long-range dependencies. To ad-

dress this limitation, we use a dynamic-range convolution approach that restruc-

tures input features before applying standard convolution operations. Moreover,
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the illumination information extracted in Sec. 3.1 is integrated to modulate the

attention calculation process.

Contrary to most existing vision Transformers [6, 50, 53, 60, 63], which leverage

fixed range of attention which restricts the self-attention to span adaptively long

range to associate desired features, we have noticed that shadow-induced degra-

dation had better be assigned with various extent of attention. We thus propose a

histogram self-attention mechanism to categorize spatial elements into bins and al-

locate varying attention within and across bins. For the sake of parallel computing,

we set each bin contains identical number of pixels during implementation.

Semantic-aligned Multi-scale (SAM) Block The transformed feature rep-

resentations generated from IG-HTB is given to the SAM [59] block to extract

multi-scale features within the same semantic level i and allow them to interact

and be dynamically fused, significantly improving the model’s ability to handle

shadow induced patterns. SAM encompasses two major modules pyramid context

extraction and cross-scale dynamic fusion. To extract features at multiple scales,

we employ a pyramid context extraction method. Starting with an initial feature

map Fr ∈ RH×W ×C , we generate a series of pyramid input features at progressively

lower resolutions: Fr, Fr↓ ∈ RH
2 × W

2 ×C , and Fr↓↓ ∈ RH
4 × W

4 ×C . These downsampled

features are created using bilinear interpolation.

Each of these pyramid input features is then processed by a dedicated convo-

lutional branch, each consisting of five convolutional layers. This process yields

three corresponding pyramid outputs: Y0, Y1, and Y2. This can be represented as:
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Y0 = E0(Fr),

Y1 = E1(Fr↓),

Y2 = E2(Fr↓↓).

(3.7)

Here, E0, E1, and E2 are constructed using a dilated dense block followed by a

1 × 1 convolutional layer. To ensure that all three outputs have the same spatial

dimensions as the original feature map (H × W × C), up-sampling operations are

incorporated within E1 and E2.

Importantly, the internal architectures of E0, E1, and E2 are identical, allowing

their learnable parameters to be shared. This parameter sharing significantly

reduces the total number of parameters, making the model more efficient. The

performance gains observed are primarily attributable to the multi-scale pyramid

architecture itself, rather than an increase in the number of learnable parameters.

After extracting pyramid features (Y0, Y1, Y2), the cross-scale dynamic fusion

module takes over to combine them. This module is designed to produce a fused,

multi-scale feature representation for subsequent processing stages. The core idea

behind this dynamic approach is that the scale of shadow patterns can differ signif-

icantly from image to image. Consequently, the importance of features extracted

at various scales will also vary across different images. To address this, our module

dynamically adjusts and adapts the fusion process for each individual image.

Specifically, we learn dynamic weights to intelligently fuse Y0, Y1, and Y2. Given

each pyramid feature Yi ∈ RH×W ×C (where i = 0, 1, 2), we first apply global
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average pooling across the spatial dimensions of each feature map. This step

yields a 1D global feature vi ∈ RC for each scale, as shown in Eq. 3.8:

vi = 1
H × W

H∑
s=1

W∑
t=1

Yi(s, t) (3.8)

Next, these global features are concatenated along the channel dimension. A

Multi-Layer Perceptron (MLP) module then learns the dynamic weights from this

concatenated vector. The MLP consists of three fully connected layers and outputs

w0, w1, w2 ∈ RC , which are the dynamic weights used to fuse Y0, Y1, and Y2. This

process is described in Equation 5:

[w0, w1, w2] = MLP([v0, v1, v2]) (3.9)

Finally, these input-adaptive fusion weights are used to channel-wise multiply

and combine the pyramid features. The initial input feature Fr is then added to

this fused representation to produce the final output of the Scale-Aware Module

(SAM), denoted as F out. This is shown in Eq. 3.10:

F out = F r + w0 ⊙ Y0 + w1 ⊙ Y1 + w2 ⊙ Y2 (3.10)

Here, ⊙ represents channel-wise multiplication. This F out then proceeds to the

next level (from level i to i + 1) for further feature extraction and, ultimately,

image reconstruction.
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Figure 3.2: The architecture of SAM module [59]

3.3 Loss Function

Here we adopt a combination of Charbonnier loss, multi-scale SSIM loss and Per-

ceptual loss.

Charbonnier Loss We employ the Charbonnier loss, which is mathematically

defined as follows:

Lcharbonnier = 1
n

n∑
i=1

√∥∥∥I(i)
gt − I(i)

c

∥∥∥2
+ ϵ2, (3.11)
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where Igt and Ic represent the ground truth and shadow-free images generated from

our networks, respectively. In addition, ϵ is a small constant (e.g., 10−5) used for

stable and robust convergence, and n represents the total number of input images

in a single iteration.

MS-SSIM Loss. Let D and C denote two windows of common size centered at

pixel i in the shadowed image and the shadow-free image, respectively.The SSIM

for pixel i can be computed by applying a Gaussian filter to D and C, and compute

the resulting means µD, µC, standard deviations σD, σC and covariance σDC.

SSIM(i) = (2µDµC + T1)(2σDC + T2)
(µ2

D + µ2
C + T1)(σ2

D + σ2
C + T2)

= l(i) · s(i) (3.12)

C1, C2 are two constants used to stabilize the division when the denominators

are weak.

The MS-SSIM loss is computed using M levels of SSIM. Specifically, we have:

LMS-SSIM = 1 − MS-SSIM (3.13)

where

MS-SSIM = lM(i)α ·
M∏

m=1
csm(i)βm (3.14)

with α and βm being default parameters.
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Perceptual Loss. We use the perceptual loss to optimize the visual effect. As

illustrated in Eq. 3.15, Cl, Hl and Wl are the number of channels, height and width

of the l-th feature map of the corresponding image, ϕl is the activation of the l-th

layer. Igt is the ground truth image and Ic is the shadow removed image.

Lp =
3∑

l=1

∥∥∥∥ 1
ClHlWl

(ϕl(Igt) − ϕl(Ic))
∥∥∥∥2

2
(3.15)

We employ a pre-trained VGG16 [41] network as our loss network, specifically

utilizing the features extracted from its first, second, and third convolutional layers

to compute the perceptual loss.
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Chapter 4

Experiments

4.1 Datasets

Our proposed method is evaluated using three established benchmark datasets.

The first is the ISTD [49] dataset. The second is the Adjusted ISTD (ISTD+)

dataset [29], which has undergone processing to minimize inconsistencies in illu-

mination between the shadowed and shadow-free image pairs present in the original

ISTD dataset. Lastly, we utilize the WSRD+ dataset [44], from which 1000 image

pairs are used for training our model, and an additional 100 pairs are reserved for

the purpose of validation.

4.2 Implementation details

In this section we provide the implementation details of our method. To enhance

the robustness and generalization capability of our model, we employ several data

augmentation techniques during training. These include random rotations by an-

gles of 90◦, 180◦, or 270◦, as well as flipping the input images both vertically and
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horizontally with a certain probability. The spatial dimensions of the image crops

used during training are set to 384×384 pixels, and the batch size for each training

iteration is set to 4. The optimization of the model’s trainable parameters is per-

formed using the Adam optimization algorithm with its default hyper-parameter

settings (β1 = 0.9, β2 = 0.999). The initial learning rate is set to 1 × 10−4, and it

is progressively decreased over the course of training to a final value of 6.25 × 10−6

using a predefined learning rate schedule, a systematic rule or function that auto-

matically adjusts the learning rate at specific intervals or after a certain number of

training epochs. In addition to the commonly used L1 loss and multi-scale Struc-

tural Similarity Index Measure (SSIM) loss [66], we incorporate a structure loss

[65] and additional constraints [14] to provide further guidance and supervision

during the optimization process. The training is carried out on a NVIDIA GeForce

RTX 3090Ti.

4.2.1 Evaluation Metrics

To evaluate the performance of different shadow removal techniques, we utilize a set

of three quantitative evaluation metrics. These metrics include the Peak Signal-

to-Noise Ratio (PSNR), which quantifies the pixel-level fidelity of the restored

images; the Structural Similarity Index (SSIM) (SSIM) [51], designed to measure

the perceived structural similarity between the restored and ground-truth images;

and the Learned Perceptual Image Patch Similarity (LPIPS) [61], a metric that

assesses the perceptual quality of the results by considering higher-level image

features learned by a deep neural network. Together, these metrics provide a

holistic assessment, considering both the pixel-wise accuracy and the subjective

visual quality of the shadow removal outcomes.
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Table 4.1: The ablation results on the WRSD+ dataset demon-
strate that each component of our method contributes to the overall
effectiveness in shadow removal.

Configurations PSNR↑ SSIM↑ LPIPS↓
Full Model 26.15 0.826 0.0860

w/o dual-branch pipeline 25.86 0.818 0.0893
w/o IG-HTB 25.74 0.816 0.0915

w/o illumination in IG-HTB 25.97 0.821 0.0872

4.3 Ablation Study

In this section, we delve into a series of ablation studies performed on the WSRD+

dataset.

Importance of Dual-branch Retinex-based Pipeline To investigate the

specific contribution of the dual-branch Retinex-based pipeline, as detailed in Sec-

tion 3, we conducted an ablation study where this pipeline was removed from

our complete method. To assess its impact on the overall performance Tab. 4.2,

we directly applied our developed hybrid CNN-Transformer module to learn the

mapping from shadowed input images to their corresponding clean, shadow-free

versions. The quantitative results of this ablation experiment are presented in

Tab. 4.1. Evidently, from the reported metrics the removal of the dual-branch

Retinex-based pipeline results in a noticeable degradation of performance across all

evaluation metrics. This significant drop in quantitative scores clearly highlights

the importance of the dual-branch Retinex-based pipeline in achieving satisfactory

shadow removal performance with our proposed method.
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Contributions of IG-HTB and the Illumination Guidance To further

demonstrate the effectiveness of our proposed Illumination-Guided Histogram Trans-

former Block (IG-HTB) and the utility of the illumination guidance mechanism

within it, we conducted additional ablation experiments. By comparing the re-

sults presented in row 3 and row 4 of Tab. 4.1 against the performance of our

complete model, we can observe the individual impact of these components. The

quantitative improvements seen when the IG-HTB is incorporated and when the

illumination guidance is effectively utilized within it strongly suggest that both

the design of the IG-HTB and the integration of illumination guidance contribute

to achieving a more favorable shadow removal performance.

4.4 Comparison to State-of-the-Art Methods

We evaluated the performance of our proposed method by comparing it against

several existing state-of-the-art (SOTA) algorithms in the field. Our comparative

analysis includes both mask-free methods, which do not rely on explicit shadow

masks during inference, such as Refusion [38], DCShadowNet [27], ShadowRefiner

[11], and IFBlend [45], as well as mask-based approaches, which utilize shadow

masks, including ShadowFormer [20] and SADC [55]. This comprehensive com-

parison allows us to assess the effectiveness of our method relative to the current

leading techniques in both categories of shadow removal.

4.4.1 Quantitative Results

As clearly shown in Tab.4.2, our proposed approach demonstrates superior per-

formance among mask-free shadow removal methods across the three benchmark
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Table 4.2: Quantitative comparisons with SOTA methods. Our
ReHiT secures comparable performances to ShadowRefiner [11]
and IFBlend [45], which incorporate large-scale pre-trained Con-
vNeXt [37] for transfer learning. Compared to mask-based meth-
ods, our ReHiT achieves comparable or even better performance
(WSRD+ dataset). [Key: Best performance among mask-free mod-
els, Second-best performance among mask-free models, Best per-
formance among mask-based methods, *: re-trained with of-
ficially released code.]

Methods Mask-free
ISTD [49] ISTD+ [29] WSRD+ [44]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DHAN [8] No 24.86 0.919 0.0535 27.88 0.917 0.0529 22.39 0.796 0.1049

BMNet [69] No 29.02 0.923 0.0529 31.85 0.932 0.0432 24.75 0.816 0.0948
FusionNet [17] No 25.84 0.712 0.3196 27.61 0.725 0.3123 21.66 0.752 0.1227

SADC [55] No 29.22 0.928 0.0403 — — — — — —
ShadowFormer [20] No 30.47 0.928 0.0418 32.78 0.934 0.0385 25.44 0.820 0.0898
DCShadowNet [27] Yes 24.02 0.677 0.4423 25.50 0.694 0.4237 21.62 0.593 0.4744

Refusion [38] Yes 25.13 0.871 0.0571 26.28 0.887 0.0437 22.32 0.738 0.0937
IFBlend* [45] Yes 28.55 0.906 0.0558 30.87 0.916 0.0476 25.79 0.809 0.0905

ShadowRefiner [11] Yes 28.75 0.916 0.0521 31.03 0.928 0.0426 26.04 0.827 0.0854
Ours (ReHiT) Yes 28.81 0.914 0.0533 31.16 0.925 0.0442 26.15 0.826 0.0860

datasets: ISTD [49], ISTD+ [29], and WSRD+ [44]. Specifically, our method

achieves higher PSNR values and comparable SSIM and LPIPS scores when com-

pared to ShadowRefiner [11], which was the winning solution in the NTIRE 2024

Image Shadow Removal Challenge. It is noteworthy that while mask-based mod-

els often exhibit an inherent advantage due to their utilization of explicit shadow

masks, our method attains comparable accuracy on both the ISTD and ISTD+

datasets without requiring any mask input during inference. Furthermore, on the

WSRD+ dataset, where only estimated shadow masks are accessible, our method

outperforms the best-performing mask-based model, ShadowFormer [20]. This

result underscores the robust generalization capability of our approach when ap-

plied to more complex, real-world scenarios where perfect shadow masks may not
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be available.

4.4.2 Qualitative Comparisons

Visual comparisons on ISTD dataset, ISTD+ dataset and WSRD+ dataset are re-

ported in Fig. 4.1, 4.2, and 4.3, respectively. In Fig. 4.1 While DCShadow exhibits

a strength in preserving image textures, it often fails completely removing shad-

ows, leaving behind noticeable residual artifacts and discontinuities along shadow

boundaries. In contrast, our proposed method, similar to ShadowRefiner, demon-

strates a capability to effectively eliminate shadows without introducing such arti-

facts. Furthermore, our approach yields shadow removal results that appear more

uniform and natural, successfully addressing both soft and hard shadows present

in the input images while concurrently maintaining the integrity of the underlying

textural details.

In Fig. 4.2, the presented results highlight that DCShadow, while achieving

partial shadow removal, tends to leave behind discernible residual shadows and

inconsistencies in illumination, particularly evident along the edges of shadow

regions. Conversely, both ShadowRefiner and our proposed method demonstrate

a greater ability to effectively eliminate shadows while introducing minimal visual

artifacts, resulting in outputs that exhibit a higher degree of visual fidelity to

the ground truth images. It is particularly noteworthy that our method achieves

comparable performance to ShadowRefiner while utilizing only approximately 5%

of the parameters of the ShadowRefiner model, indicating a significantly more

parameter-efficient approach.
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Figure 4.1: Qualitative comparisons on the ISTD dataset [49].

In Fig. 4.3 our proposed method exhibits a strong capability in effectively re-

moving both subtle soft shadows and more distinct hard shadows from images.

Crucially, this shadow removal is achieved while preserving the intricate structural

and textural details present in the original scene. Notably, the image regions that

were initially obscured by shadows are relit with a high degree of fidelity, and

this relighting process does not introduce any visually discernible artifacts. The

resulting shadow-free images demonstrate a consistent and natural illumination

across the entire scene, with seamless transitions observed between the areas that

were previously shadowed and those that were not. These qualitative observations
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Figure 4.2: Qualitative comparisons on the ISTD+ dataset [29].
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Figure 4.3: Our method delivers promising performance on the
WSRD+ validation set [44].
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Figure 4.4: Comparison of computational cost of different meth-
ods. The x-axis and y-axis denote FLOPs (G) and PSNR (dB),
respectively. The area of each circle represents the number of pa-
rameters.

underscore the robustness and strong generalization ability of our approach when

applied to the complexities inherent in real-world shadow removal scenarios.

4.4.3 Computational cost

As shown in Fig. 4.4, our method strikes a sweet point of balancing the param-

eter number, computation cost, and shadow removal performance. Our method

requires fewer parameters and FLOPs at inference, making it highly efficient. Com-

bined with its competitive quantitative performance and the vivid, high-quality

results restored by ReHiT in Fig.4.1, 4.2, and 4.3, this demonstrates that our
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method delivers comparable or even better results with substantially lower com-

putational overhead, indicating its practical value in real-world scenarios. This effi-

ciency, coupled with its robust performance across diverse datasets, underscores its

potential for deployment in resource-constrained environments while maintaining

high-fidelity shadow removal.
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Chapter 5

Conclusion

This thesis successfully developed a novel, lightweight, and mask-free framework

for robust shadow removal, representing an advancement in image processing. Our

approach integrates the strengths of Convolutional Neural Networks (CNNs) and

Transformers, guided by the fundamental principles of Retinex theory, to effec-

tively decompose images into their reflectance and illumination components. This

decomposition is crucial for accurately modeling and correcting illumination in-

consistencies caused by shadows.

A key innovation of our work is the Illumination-Guided Histogram Trans-

former, which proved instrumental in significantly enhancing the network’s abil-

ity to intelligently handle complex shadow artifacts. This component directly

addresses the nuances of scene-specific illumination variations, enabling a more

precise and adaptive compensation process.
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Extensive experimental validation across diverse benchmark datasets consis-

tently demonstrated that our method achieves strong shadow removal perfor-

mance, comparable to or surpassing existing state-of-the-art techniques. Critically,

this high performance is attained while maintaining substantially lower model com-

plexity and computational overhead. This efficiency makes our framework highly

practical and suitable for real-world applications where resource constraints are a

major consideration.

In essence, this thesis contributes a robust, efficient, and intelligent framework

that pushes the boundaries of shadow removal. By offering a practical, mask-

free, and computationally efficient solution, it paves the way for more resilient and

adaptable computer vision systems across various domains, including autonomous

driving, surveillance, and digital photography.
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