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Abstract

Single image reflection removal (SIRR) remains a challenging problem due to the

intricacies involved in separating layers with varying textures and intensities. While

many recent methods have focused on maximizing perceptual quality or pushing per-

formance benchmarks, their complexity and computational cost often hinder practical

deployment. In this work, we propose a dual-branch reflection removal network within

a Deep Laplacian Pyramid Network framework, which balances performance and ef-

ficiency through a structurally meaningful design. The frequency-domain branch,

DWT-FFC, exploits Discrete Wavelet Transform and Fast Fourier Convolution inside

a U-Net architecture to capture multi-scale frequency cues and suppress reflection

patterns. While the spatial-domain branch, UHDM, uses pixel unshuffling, Residual

Dense Blocks (RDB), and Scale Attention Modules (SAM) to improve the structural

consistency of image restoration and restore fine details. For cross-domain integra-

tion to be robust, a hierarchical fusion strategy is proposed that adaptively transfers

multi-scale residuals from the Laplacian-based DWT-FFC branch to guide the UHDM

decoder through cross-scale attention. Various experimental results show that our

method can eliminate reflections efficiently while holding onto sharp textures. Al-

though our method does not outperform the latest state-of-the-art solutions in terms

of quantitative metrics, we demonstrate that its structural simplicity, favorable model

iv



size, fast inference speed, and lower FLOPs make it a practical and efficient choice

for lightweight reflection removal in real-world applications.
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Chapter 1

Introduction

Due to reflections from glass surfaces and transparent barriers, image quality de-

creases, which, in turn, diminishes the performance of downstream computer vision

tasks such as object detection or segmentation. With consumer photography, au-

tonomous vehicles, and augmented reality applications becoming increasingly domi-

nant trends, it has become urgent to solve the single image reflection removal (SIRR)

challenge, which remains largely difficult in computer vision at the low level. In

essence, the basic formulation of SIRR involves recovering a clean image that is free

of reflection from a single image input containing a mixture of two layers: background

and reflections. Due to this underdetermined nature of the problem, initial solutions

[44, 29, 59, 14, 2, 28] enforced strong priors or introduced more inputs such as multiple

frames or polarizers. However, recent improvements in deep learning have resulted in

considerable advancement concerning the single-image setting.

Existing SIRR methodologies can be clustered into three main groups: classical

prior-based, deep learning spatial, and frequency domain approaches. Earlier prior-

based models[33, 47, 32, 48] depended on assumptions such as gradient sparsity,
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smoothness of reflections, or foreground edge prediction. Though simple in con-

struction, these models collapse in real-world applications. Modern methods based

on deep learning gave rise to more robust models like CEILNet[12], ERRNet[57],

and IBCLN[30], with multiple-stage refinement, edge-preserving modules, and dual-

branch reasoning. Still, these methods provide the best performance at the expense

of high computational costs, numerous parameters, and poor resource-constraint

adaptability. Recently, frequency-based methods[7, 3, 53, 36, 25] such as FFCR-

Net[36] have emerged, showing the advantage of spectral-domain learning, although

these are prone to over-smoothing and spatial detail loss. Deep Laplacian pyramid

networks[25], however, first introduced for super-resolution, are promising candidates

for the efficient, interpretable, and progressive image generation.

To address the limitations of existing methods that often struggle with either

recovering fine details or fully suppressing strong reflections, we propose a novel two-

branch neural architecture within aDeep Laplacian Pyramid Network framework

that integrates both spatial- and frequency-domain features for effective reflection re-

moval. Our model consists of two parallel branches: a Laplacian decomposition

branch (DWT-FFC) [75]and an image reconstruction branch (UHDM)[46].

The DWT-FFC branch leverages Discrete Wavelet Transforms (DWT) and Fast

Fourier Convolutions (FFC) within a U-Net[45] structure to capture multi-scale fre-

quency information, facilitating the suppression of reflection patterns across varying

scales. In parallel, the UHDM branch operates in the spatial domain and applies pixel

unshuffling for resolution-aware feature extraction, followed by Residual Dense Blocks

(RDB)[70] and Scale Attention Modules (SAM)[11] to enhance spatial constancy and

reconstruct fine details of the background image.

2
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Embedded within a Laplacian pyramid, our model progressively reconstructs the

reflection-free image from coarse to fine resolution. This hierarchical structure not

only allows early-stage inference for low-resource settings by truncating the pyramid

but also ensures effective detail restoration at higher resolutions. To enhance col-

laboration between the frequency and spatial branches, we introduce a hierarchical

cross-scale attention fusion mechanism, wherein multi-scale residuals from the

DWT-FFC branch dynamically guide the UHDM decoder.

Our design leverages several additional advantages of the Deep Laplacian Pyramid

architecture:

• High accuracy: Achieved through progressive residual learning and dual-

domain feature extraction, resulting in sharper and more natural restoration

without over-smoothing.

• Fast and efficient inference: Maintained by operating primarily in low-

resolution spaces and avoiding early upsampling, making the model well-suited

for real-time or mobile deployment.

• Resource-aware flexibility: Allows for intermediate-resolution outputs by

truncating the pyramid, which is beneficial in constrained environments.

• Scalable depth control: Provides a balance between accuracy and computa-

tional efficiency, enabling the model to adapt to different application require-

ments.

Our research objectives are as follows:

• To develop a hybrid Laplacian pyramid-based architecture that integrates fre-

quency and spatial information for enhanced reflection separation and detail

3
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preservation.

• To design a robust cross-branch fusion mechanism that facilitates adaptive

multi-scale collaboration between domains.

• To establish an effective training strategy utilizing multi-level supervision and

tailored loss functions for both global reconstruction and fine-grained refine-

ment.

Our main contributions are:

• A novel reflection removal framework based on a Deep Laplacian Pyramid Net-

work with dual-domain branches (DWT-FFC and UHDM), effectively capturing

both global spectral cues and local spatial structures.

• A cross-scale attention fusion mechanism that enables seamless interaction be-

tween the two branches, improving reflection suppression and background re-

covery.

• Extensive experimental results demonstrate that our method achieves fast in-

ference performance on standard benchmarks, offering a compelling balance

between visual quality, efficiency, and flexibility.

4
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Chapter 2

Related Works

2.1 Reflection Removal

Single image reflection removal (SIRR) has been a long-standing challenge in low-level

vision because of the inherent ambiguity in separating two superimposed image layers

from a single observation. Early approaches [51, 47, 33, 29] in this area employed clas-

sical image priors to guide the decomposition. For instance, gradient sparsity, edge

prediction, and hand-crafted reflection priors assumed reflections could be smoother,

with less texture, or exhibit gradient orientations that were distinct from the fore-

ground. The two broad classes of these prior-based systems are guided filter and

low-rank systems and reflection systems assuming manual annotation of reflection

regions using a foreground mask. Theoretically simple, the approaches would fail to

work in a large variety of real-world scenes due to hard assumptions.

With the rise of deep learning, data-driven methods have taken center stage.

Early CNN-based methods such as CEILNet introduced edge prediction modules

to preserve structure [12], while Zhang et al. proposed multi-stage networks that

5
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iteratively refine reflection separation [69]. More advanced models, like ERRNet [58]

and IBCLN [35], utilized dual-branch networks and recurrent refinement modules

to improve perceptual quality and enhance layer disentanglement. These models

significantly improved visual precision and benchmark performance.

However, most of these modern methods share common drawbacks: they are often

large and deeply stacked, requiring high GPU memory and long training or inference

times. Models like IBCLN use complex iterative reasoning and residual loops that

boost PSNR [35, 56, 74] but come with heavy computational cost. In practice, the

trade-off between performance and efficiency is rarely addressed — most methods

optimize solely for PSNR or SSIM [18], ignoring the demands of real-time or mobile

deployment [39, 19].

In contrast, our method adopts a structurally meaningful and computationally ef-

ficient architecture. While our performance in PSNR may not surpass the most recent

SOTA, our design — built on dual-domain collaboration (DWT-FFC + UHDM) and

a Laplacian pyramid backbone — offers clear benefits in model simplicity, inference

speed, and computational cost. Our model has significantly fewer parameters, lower

FLOPs [39], and faster inference time than large transformer-based or deeply recur-

sive architectures, making it well-suited for real-world reflection removal scenarios

where efficiency and interpretability matter more than marginal gains in pixel-level

metrics.

2.2 Frequency-Based Restoration

Frequency-domain information plays a critical role in many image restoration tasks,

including denoising, deblurring, and reflection suppression. Early frequency-based

6
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image processing leveraged classical tools such as the Fourier Transform and Wavelet

Decomposition [16, 38] to isolate image components at different scales. However, their

limited learning capacity and hand-crafted nature restricted their ability to adapt to

complex image degradation.

Recent work in deep learning has revived interest in frequency-based methods,

particularly due to the ability to learn global structures and repetitive patterns that

spatial convolutions often miss. Fast Fourier Convolution (FFC) [9] is a notable

example—it introduces a learnable frequency convolution block that operates in both

spatial and spectral domains, allowing models to capture long-range dependencies

and global textures. Zhang et al. [68] extended this idea in FFCR-Net, a reflection

removal network that uses FFC inside a dual-encoder-decoder structure to suppress

reflections by attending to global spectral features. While FFCR-Net achieves notable

improvements in some cases, its heavy reliance on frequency branches can lead to

over-smoothing and loss of spatial details, especially when reflections and background

textures overlap in frequency.

In our approach, we combine the advantages of frequency-based feature extraction

with spatial-domain reconstruction. Our DWT-FFC branch incorporates Discrete

Wavelet Transform (DWT) to separate multi-scale frequency components and com-

bines it with Fast Fourier Convolution to enhance global feature awareness. Compared

to FFCR-Net, our frequency branch is lighter, more interpretable, and integrates

seamlessly into the Laplacian pyramid framework. More importantly, we comple-

ment it with a spatial UHDM branch that recovers local textures and fine details

that the frequency branch may overlook. This dual-branch design ensures that our

model avoids over-smoothing.

7
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Despite not pushing the frontier in absolute PSNR, our approach introduces a

better balance between accuracy and practical deployment metrics, including reduced

FLOPs [40], smaller model size, and faster inference speed, which are qualities often

overlooked by frequency-dominant designs. In lightweight applications or edge com-

puting environments, this balance is far more valuable than minor accuracy gains.

2.3 Deep Laplacian Pyramid Networks

Laplacian pyramids were first proposed by Burt and Adelson [6] as a classical signal

processing tool for image multi-scale representation. An image is decomposed into

a hierarchy of band-pass filtered images (known as residuals) and low-frequency ap-

proximations. This allows for analysis, compression, and reconstruction with respect

to multiple resolutions, thus making it an advantageous method used in conventional

image-processing pipelines.

Inspired by its interpretability and efficiency, deep learning researchers began

adapting the Laplacian pyramid into neural architectures. One of the most influential

works in this direction is LapSRN [24], which extended the classical Laplacian pyra-

mid into a trainable deep neural network for single image super-resolution. LapSRN

learns to predict residuals at each scale level and progressively refines the reconstruc-

tion from coarse to fine. This coarse-to-fine learning strategy aligns well with the

human visual perception system and brings several practical advantages. First, it

enables effective multi-level supervision during training [27], allowing the network to

focus on learning finer details incrementally. Second, by concentrating most com-

putations in the lower-resolution stages, the model achieves better computational

efficiency [46]. Third, its structural flexibility allows the network to be truncated or

8
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expanded at different pyramid levels, providing a natural way to trade off between

speed and accuracy [26]. Finally, the ability to generate multi-resolution outputs

makes this architecture particularly suitable for deployment on resource-constrained

platforms such as mobile and embedded systems [15, 21].

These properties make deep Laplacian pyramid networks not only effective but also

highly adaptable for tasks that benefit from structural decomposition and progressive

reconstruction.

In our work, we draw inspiration from this deep Laplacian architecture and extend

it to the task of reflection removal, which—like super-resolution—benefits significantly

from multi-scale processing. Rather than using the Laplacian pyramid for upscaling,

we repurpose its hierarchical structure to guide the design of a two-branch model

that performs reflection suppression and image reconstruction at progressively finer

scales. Specifically, we propose a dual-branch framework aligned with the Laplacian

philosophy. Our design demonstrates how principled architectural choices can yield

models that strike a practical balance between performance, clarity, and real-world

usability.

9
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Chapter 3

Method

In this section, we present our proposed reflection removal method in detail. As

illustrated in Figure 3.1, our framework is constructed based on a Deep Laplacian

Pyramid architecture [24] that enables progressive multi-scale restoration. The overall

model comprises two complementary branches: a frequency-domain decomposition

branch based on Discrete Wavelet Transform and Fast Fourier Convolution (DWT-

FFC) [38, 9], and a spatial-domain reconstruction branch (UHDM) featuring pixel

unshuffling [46], Residual Dense Blocks (RDB) [70], and Scale Attention Modules

(SAM) [60]. At each hierarchical level of the pyramid, these two branches work

in parallel, and the extracted frequency-domain residuals are fused into the UHDM

decoder via cross-scale attention to guide detail reconstruction. In Section 3.1, we

first introduce the overall network architecture and its Laplacian-inspired design.

Section 3.2 3.3 details the construction of the DWT-FFC and UHDM branches,

along with the hierarchical fusion mechanism between them. Afterwords, section 3.4

depicts the cascaded design of the framework. Finally, Section 3.5 outlines the loss

functions employed to supervise the reconstruction at multiple scales.

10
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3.1 Overall Architecture

Figure 3.1: Overall Framework.

Our proposed reflection removal network, RefLap, is a dual-branch architecture that

integrates classical insights from Laplacian pyramids into a modern deep learning

framework. Inspired by the Deep Laplacian Pyramid Networks [24], which demon-

strated the power of progressive residual learning and multi-scale decomposition for

super-resolution tasks, we adopt a hierarchical encoder-decoder design. Our model

leverages this framework not to super-resolve images, but to perform structural de-

composition and feature fusion for the targeted task of reflection removal.

The architecture is composed of two coordinated branches: (1) a DWT-FFC

branch for extracting frequency-domain features [38, 9], and (2) a UHDM branch

for spatial reconstruction. As illustrated in Figure 3.1, the input image is simulta-

neously processed by both branches across multiple scales. The DWT-FFC branch

11
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decomposes the input into hierarchical frequency components, capturing reflection

cues and high-frequency artifacts. These features are then transferred to the UHDM

branch, which reconstructs the background scene using adaptive attention-based fu-

sion [60]. This modular design promotes interpretability, computational efficiency,

and effective multi-scale interaction.

3.2 DWT-FFC Branch

Inspired by [75], we construct our DWT-FFC frequency branch as an encoder-decoder

network to learn the feature mapping between reflection-contaminated and reflection-

free images, leveraging dense skip connections at each feature scale. In addition

to conventional convolutional operations, we introduce Discrete Wavelet Transform

(DWT) for hierarchical feature decomposition. DWT enables the separation of low-

frequency and high-frequency components, facilitating multi-scale feature learning.

Low-frequency features are concatenated with convolutional outputs, while high-

frequency components are forwarded to the upsampling module to enhance detail

recovery. To further enrich the frequency-based representation, we embed Fast Fourier

Convolution (FFC) residual blocks, as illustrated in Figure 3.1, which effectively fuse

spatial and spectral cues to guide reflection suppression. However, using only the

DWT-FFC frequency branch leads to suboptimal performance in challenging, non-

homogeneous settings, largely due to data scarcity. Hence, we complement this with

a second spatial branch (Section 3.3) that leverages pretrained modules for stronger

prior learning.

12
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3.2.1 Discrete Wavelet Transform (DWT)

2D DWT decomposes an input feature map using one low-pass filter (fLL) and three

high-pass filters (fLH , fHL, fHH), all with fixed kernel parameters and stride 2 [38,

17, 31]. In our model, we adopt Haar wavelets [17], defined as:

fLL =

1 1

1 1

 , fLH =

−1 −1

1 1

 , fHL =

−1 1

−1 1

 , fHH =

 1 −1

−1 1


Applying these filters to the input feature map yields four sub-bands: xLL, xLH , xHL,

and xHH . For instance, xLL is computed as:

xLL(i, j) = x(2i− 1, 2j − 1) + x(2i− 1, 2j)

+ x(2i, 2j − 1) + x(2i, 2j)

(3.2.1)

At each resolution level, we concatenate xLL with the outputs from standard convo-

lutional layers to jointly encode spatial and frequency-domain features [31, 10].

3.2.2 Fast Fourier Convolution (FFC)

Fast Fourier Convolution (FFC) enhances global context understanding by decom-

posing input features into local and global branches [9, 72]. The local branch employs

two standard convolutional layers, while the global branch uses spectral transforms

based on channel-wise 2D FFT operations. The spectral processing follows three key

steps:

13
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(a) Forward FFT and Conversion to Real Domain:

Real FFT2D: RH×W×C → CH×W
2
×C , ComplexToReal: CH×W

2
×C → RH×W

2
×2C

(b) Feature Transformation in Frequency Domain:

ReLU ∪ BN ∪ Conv1×1 : RH×W
2
×2C → RH×W

2
×2C

(c) Inverse FFT and Fusion:

RealToComplex : RH×W
2
×2C → CH×W

2
×C , Inverse Real FFT2D: CH×W

2
×C → RH×W×C

The outputs from both branches are fused via concatenation and further processed

by a 1 × 1 convolution. Two FFC units are stacked to form a residual FFC block,

and we include three such residual blocks in our model to leverage global semantics

and spatial precision for effective reflection removal.

3.3 UHDM Branch

To enhance spatial feature representation and address the limitations of frequency-

domain methods alone, we integrate a strong spatial branch inspired by the Efficient

and Scale-Robust Demoiréing Network (ESDNet) [65]. This branch, referred to as

UHDM, consists of an encoder-decoder architecture with skip connections, equipped

with dilated residual dense blocks (RDBs) and semantic-aligned scale-aware modules

(SAMs) for multi-scale feature refinement. This design enables our model to effec-

tively capture spatial patterns and adaptively suppress reflection artifacts of various

14
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scales and complexities.

3.3.1 Residual Dense Blocks (RDBs)

Each level i ∈ {1, 2, 3} in the encoder and decoder consists of a convolutional unit

followed by a dilated residual dense block to refine feature representations. The RDB

is built upon dense connectivity [70] and integrates dilated convolutions to expand

the receptive field without increasing the number of parameters. Given input feature

F 0
i at level i, the l-th feature inside the block is computed as:

F l
i = C l([F 0

i , F
1
i , . . . , F

l−1
i ]), l = 1, 2, . . . , L, (3.3.1)

where C l denotes a 3×3 convolution with dilation rate dl, followed by ReLU activation,

and [·] is the concatenation operator. A 1× 1 convolution is then used to match the

original channel dimensions, and a residual connection yields the refined output:

F r
i = F 0

i + Conv1×1(F
L
i ). (3.3.2)

3.3.2 Semantic-Aligned Scale-Aware Module (SAM)

To enhance scale adaptability, the Semantic-Aligned Module (SAM) extracts and

dynamically fuses multi-scale features at the same semantic level. Given an input

feature map F r ∈ RH×W×C , we generate pyramid features via bilinear downsampling:

F r
↓ = Down(F r), F r

↓↓ = Down(F r
↓ ). (3.3.3)

15
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Each scale is processed through shared convolutional blocks E0, E1, and E2, producing

Y0, Y1, and Y2 respectively:

Y0 = E0(F
r), Y1 = Up(E1(F

r
↓ )), Y2 = Up(E2(F

r
↓↓)). (3.3.4)

Here, Up denotes bilinear upsampling to match the spatial size of F r.

To perform cross-scale dynamic fusion, we first compute global descriptors via

global average pooling:

vi =
1

H ×W

H∑
s=1

W∑
t=1

Yi(s, t), i = 0, 1, 2. (3.3.5)

Concatenating v0, v1, and v2, we estimate fusion weights through an MLP:

[w0, w1, w2] = MLP([v0, v1, v2]). (3.3.6)

The final output of SAM is computed by adaptive weighted fusion:

F out = F r + w0 ⊙ Y0 + w1 ⊙ Y1 + w2 ⊙ Y2, (3.3.7)

where ⊙ denotes channel-wise multiplication. The result F out is passed to the next

decoder level for progressive image reconstruction.

In comparison to other multi-scale fusion designs [66, 71], SAM operates within

the same semantic stage, ensuring semantic alignment across scales. This approach

improves both efficiency and accuracy, acting as an implicit classifier without requiring

manually defined scale attributes.

16
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3.4 Cascaded Design with Cross-Branch Supervi-

sion

To enhance the connection between the two branches of our network, we adopt a

cascaded design inspired by the Deep Laplacian Pyramid Networks [24] in which

the frequency-domain DWT-FFC branch explicitly guides the spatial-domain UHDM

branch. Rather than treating each sub-network as an independent processing stream,

we connect them hierarchically, allowing information to flow from one to the other

across each scale level. Specifically, at each resolution scale, the output features from

the DWT-FFC branch are forwarded to the UHDM decoder branch via channel-

wise concatenation. These features include both low-frequency and high-frequency

residuals extracted through discrete wavelet transforms [38] and refined using Fast

Fourier Convolution blocks [9]. When concatenated with the corresponding decoder

features in UHDM, they serve as priors that help suppress residual reflections and

enhance structural fidelity.

This cascaded setup introduces a form of deep supervision across branches: the

DWT-FFC branch is not only optimized through its own reconstruction loss but

also indirectly supervised via its impact on the UHDM branch’s output. Each de-

coder stage in UHDM is responsible for progressively reconstructing the background

image using its own local information, enriched with global spectral guidance from

DWT-FFC. The fused features are processed through residual dense blocks [70] and

semantic-aligned scale-aware modules [65], which selectively refine the signal using

cross-scale attention.

Hierarchical alignment guarantees that the decoder in each stage is given frequency
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priors at the right spatial resolution, remaining consistent with the decomposition of

the Laplacian pyramid. This ensures efficient feature reuse for scale-aware restoration

and promotes generalization to complex reflection patterns. Hence, the cascading of

branches not only lends interpretability to the model but in fact improves performance

while keeping the architecture largely simple.

3.5 Loss Function

To enhance the optimization process, we adopt a deep supervision strategy, which has

been shown effective in prior work [67]. Our network produces hierarchical outputs Î1,

Î2, and Î3 at different decoder levels. Each of these predictions is directly supervised

by the corresponding ground truth image, promoting convergence and improving

gradient flow during training.

Given that moiré patterns often corrupt image structure by introducing unnatural

stripe-like textures, we incorporate a feature-based perceptual loss [22] in addition to

the standard pixel-wise loss. Specifically, our final loss function is composed of three

terms: an ℓ1 loss to encourage pixel-level fidelity, a perceptual loss Lp to enforce

feature similarity in deep VGG space, and a structural similarity (SSIM) loss [56] to

preserve overall image structure. The total loss is defined as:

Ltotal =
3∑

i=1

L1(Ii, Îi) + 0.001 · Lp(Ii, Îi) + 0.4 · Lssim(Ii, Îi) (3.5.1)

For the perceptual loss Lp, we extract features from the conv3 3 layer (after ReLU

activation) of a pre-trained VGG16 network and compute the ℓ1 distance between the

predicted and ground truth features. We empirically set the perceptual loss weight
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to 0.001 and the SSIM loss weight to 0.4 to balance its influence during training.

This hybrid loss formulation allows our model to better distinguish and suppress

moiré artifacts while preserving both fine details and high-level structural cues across

scales.
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Chapter 4

Experiments

This project is part of the NTIRE2025 Single Image Reflection Removal in the Wild

Challenge, in which the goal is to develop a method that will robustly and efficiently

remove reflections in real-world images. Herein, we present a thorough evaluation of

our proposed method for reflection removal. Section 4.1 introduces the NTIRE2025

Single Image Reflection Removal in the Wild Challenge, describing the evaluation

protocol and real-world constraints of the benchmark. The train and test datasets

used in all experiments are described in Section 4.2. Section 4.3 details the imple-

mentation settings, including optimizers, training schedules, and inference settings.

Section 4.4 gives quantitative and qualitative evidence on the performance of our

method. Section 4.5 describes ablation studies to show the effects of the individual

components of the network.
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4.1 Challenge Details

The Single Image Reflection Removal (SIRR) in the Wild Challenge is one of the offi-

cial competitions associated with NTIRE 2025, held in conjunction with CVPR [63].

This challenge aims to advance the development of reflection removal methods that

generalize well to real-world conditions by providing a benchmark composed of real-

world images and ground-truth references, evaluated using both objective metrics

(e.g., PSNR, SSIM [56]) and human-based subjective scores [5]. Participants are

tasked with designing algorithms that take a single reflection-contaminated image as

input and output a reflection-free version. To ensure fairness, all submitted methods

must be reproducible, and each team is limited to one final submission. The goal is

to promote robust, generalizable approaches and bridge the gap between academic

research and industrial deployment in practical reflection removal applications.

4.2 Datasets

In this challenge, the dataset used for training and evaluation is the OpenRR-1k, a

novel real-world benchmark specifically curated for the task of single image reflection

removal [63, 8]. Unlike previous datasets that rely on artificial setups—such as remov-

ing glass or using black cloth to capture reflection-free images—OpenRR-1k employs

an AI-assisted and human-refined data collection protocol to ensure high-quality and

naturally aligned transmission-reflection pairs. Initially, reflection-free transmission

images are generated using AI-based reflection removal tools built into OPPO smart-

phones [8]. These results are then refined using professional image editing software
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like Photoshop [1] and MeituPic [61] to eliminate residual artifacts, producing visu-

ally clean ground-truths. The final dataset consists of 1,000 real-world image pairs,

split into 800 training samples, 100 validation samples (OpenRR-1k val), and 100

test samples (OpenRR-1k test). The dataset captures diverse real-world conditions,

with a rich distribution of image subjects—such as landscapes, animals, and trans-

portation—and varying lighting conditions, including daytime, nighttime, and indoor

scenarios. Compared to synthetic or constrained real-world datasets, OpenRR-1k

offers a more practical and challenging benchmark for evaluating reflection removal

methods in authentic environments.

Figure 4.1: Example training pairs from the subset of the NTIRE 2025 SIRR
challenge dataset.
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4.3 Implementation Details

We implemented our reflection removal model using the PyTorch framework [43] and

trained it exclusively on the official NTIRE25-SIRR dataset following the competition

guidelines [63]. The dataset consists of 2,000 paired images for training and valida-

tion, with high-resolution inputs exhibiting diverse reflection artifacts captured in the

wild. No external or synthetic datasets were introduced during training to ensure fair

comparison under the challenge rules.

For training, we adopted a patch-based strategy where image patches of size 352×

352 were randomly sampled and augmented with geometric transformations including

horizontal flips and random rotations to improve generalization. Each training batch

contained 12 image pairs. The network was trained for 150,000 iterations with a

base learning rate of 2 × 10−4, decayed following the cosine annealing schedule [37],

decreasing to 1 × 10−6 over two full cycles for stable convergence. This scheduling

strategy follows the optimization practice introduced in DWT-FFC [75].

Optimization was carried out using the Adam optimizer [23] with β1 = 0.9 and

β2 = 0.999. To stabilize training, we applied gradient clipping with a threshold of

0.1 [42] and enabled data prefetching to accelerate I/O during batch loading. To en-

sure reproducibility and adaptive checkpointing, we saved the model states at regular

intervals and selected the best-performing checkpoint based on validation PSNR.

Our loss function consisted of three components: (1) the Charbonnier loss for

pixel-level accuracy [76], (2) a perceptual loss computed from VGG-19 feature layers

(weighted at 0.01) [22], and (3) a multi-scale structural similarity loss (MS-SSIM)

weighted at 0.4 [55]. This composite loss function balances low-level fidelity and

perceptual quality for effective reflection removal.
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For testing, we followed the NTIRE25-SIRR challenge protocol by directly pro-

cessing entire high-resolution images without cropping. We also employed a simple

test-time augmentation (TTA) strategy involving horizontal and vertical flips as well

as 90-degree rotations. The final output was obtained by averaging the outputs from

all augmented variants.

All experiments were conducted on a single NVIDIA RTX 3090 GPU. The total

model size is 12.2M parameters, and the inference time for a 352 × 352 image is

approximately 0.1 seconds. Our implementation strikes a balance between structural

design efficiency, fast inference, and perceptual quality.

Input Training Time Epochs Extra data Diffusion Attention Quantization # Params. (M) Runtime GPU

(352, 352, 3) 25h 225 No No No No 12.2 0.1s on GPU RTX3090

Table 4.1: Training Configuration

4.4 Results

Figure 4.2: Sample Qualitative Results of the challenge dataset.
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Our proposed method was evaluated on the NTIRE25 Single Image Reflection Re-

moval (SIRR) in the Wild Challenge test set [63]. We report the PSNR and SSIM

metrics—standard indicators of image restoration performance [56, 18]. Our model

achieves a PSNR of 29.09 and an SSIM of 0.9493 on the benchmark dataset.

Team name PSNR ↑ SSIM↑

X-Reflection 33.7606 0.9685

AIIA 32.4062 0.9611

Okkk 33.5411 0.9674

MVP Lab 33.3140 0.9682

KLETech-CEVI 31.7977 0.9601

ACVLab 32.6355 0.9662

i am a bug 32.4648 0.9603

Reflep(ours) 29.09 0.9493

Table 4.2: PSNR and SSIM performance of different teams

While it may not lead to absolute PSNR or SSIM values compared to some over-

parameterized models, it strikes a strong balance between efficiency, structure, and

visual quality. Built with only 12.2 million parameters, the model processes a 352×352

image patch in just 0.1 seconds on an RTX3090 GPU, making it highly suitable for

real-time or resource-constrained deployments [40, 43].
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Baseline Model Time (s) #Params

RDNet 0.44 243M

RAGNet 0.33 130M

DSRNet 0.36 137.6M

ERRNet 0.14 80M

Ours 0.10 12.2M

Table 4.3: Comparison of inference time and model size with other teams’ baseline
models

Qualitatively, our model demonstrates robust reflection suppression and percep-

tual sharpness across diverse input conditions. By leveraging the dual-branch DWT-

FFC for frequency-domain decomposition [38, 9] and UHDM for progressive spatial

reconstruction—the model effectively disentangles reflection layers while preserving

natural details. Visual examples show that RefLap generates clean, visually appealing

outputs even in challenging scenes with non-uniform reflections.
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Figure 4.3: Qualitative results comparisons with other methods in the Challenge.

4.5 Ablation Study

To better understand the contribution of different components in our RefLap frame-

work, we conduct ablation experiments on the NTIRE25-SIRR validation set [63]. We

evaluate two key design choices: (1) the role of the multi-scale SSIM loss in guiding

perceptual reconstruction [56, 73], and (2) the importance of the DWT-FFC branch

in enhancing frequency-aware feature learning [38, 9]. The evaluation metrics include

PSNR and SSIM, and all models are trained with the same hyperparameter settings

for a fair comparison.
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4.5.1 Effect of Removing SSIM Loss

To assess the contribution of the multi-scale SSIM (MS-SSIM) loss in training, we

trained a variant of RefLap with only the Charbonnier and VGG perceptual loss,

excluding the SSIM loss term. As shown in Table 4.2, removing the SSIM loss results

in a noticeable drop in both PSNR and SSIM. Although the model still preserves

global structures, it produces outputs with weaker local contrast and slightly more

residual reflection, especially around textured regions.

These results suggest that the SSIM loss plays a crucial role in improving local

structural consistency, especially in regions with complex reflections. Its removal

leads to perceptual degradation, validating the necessity of incorporating MS-SSIM

for high-quality reflection removal.

Table 4.4: Ablation study results (PSNR and SSIM).

Configuration PSNR ↑ SSIM ↑

w/o SSIM loss 27.67 0.863

w/o DWTFFC 26.33 0.849

Full Model 29.09 0.949

4.5.2 Effect of Removing the DWT-FFC Branch

To evaluate the significance of the frequency-domain DWT-FFC branch, we train

another variant of RefLap where the DWT-FFC branch is removed entirely. The

remaining UHDM-only pipeline is still capable of generating reasonable outputs, but

performance degrades both quantitatively and qualitatively. As summarized in table
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4.2, this variant achieves lower PSNR and SSIM, particularly struggling with low-

frequency ghosting artifacts and fine edge preservation.

Qualitative analysis further reveals that the absence of the DWT-FFC module

limits the model’s ability to distinguish reflection layers from high-frequency back-

ground details. This affirms that the fusion of frequency and spatial representations is

essential for robust reflection removal, especially under challenging illumination and

texture conditions.
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Chapter 5

Future Improvements

While RefLap demonstrates a compelling balance between efficiency and performance,

several avenues remain to further enhance its generalizability, robustness, and deploy-

ment readiness. We outline three key areas for future improvement:

5.1 Enhancing Real-World Generalization through

Diverse Data

Our current training process relies entirely on the NTIRE25-SIRR dataset; this, de-

spite being high in quality, contains mostly synthetic image pairs. Such synthetic

reflections usually do not possess the complexity and diversity determined by real-

world conditions, such as distortions by curved glass, uneven lighting, or layered

reflections [52, 64]. For better generalization, future studies can work toward in-

cluding more diverse datasets, particularly real-world reflection benchmarks [35, 68].

In addition, domain adaptation [49] or semi-supervised learning techniques [4] could
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be employed to allow the model to learn more robust and invariant representations,

enabling it to perform well on a greater variety of natural scenes of interest.

5.2 Layer Decomposition for Physically-Grounded

Learning

Currently, RefLap reconstructs the clean image directly from the corrupted input

without modeling the underlying image formation process. While this end-to-end

learning has practical simplicity, it may limit the interpretability and precision in

challenging cases. A future version of our framework could incorporate a reflection-

background layer decomposition module — either via explicit alpha matte estima-

tion [13] or by leveraging auxiliary supervision to disentangle reflection layers [58, 34].

Such physically-grounded modeling can help the network focus more precisely on

reflection-specific regions, improving both restoration quality and visual consistency.

Furthermore, coupling this with attention-based mechanisms [50] can help guide the

decoder to focus more on highly reflective or semi-transparent areas.

5.3 Temporal Consistency and Video Extension

While RefLap is targeted at reflection removal for a single image, numerous real-world

applications involve sequential frames with utmost importance being given to tempo-

ral coherence [20]. Accordingly, it is required to put on the video input the present

method and consider frame-wise flickering and temporal consistency between outputs.

This can be introduced by bringing about temporal attention modules [62], optical
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flow-based feature warping [41], or recurrent architectures [54]. On the other hand,

the reflection patterns vary gradually with time; modeling such temporal dynamics

may also serve as a context for a steady and more precise reflection removal in video

sequences.
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Chapter 6

Conclusion

In this work, we presented RefLap, an efficient dual-branch reflection removal network

that combines frequency-domain and spatial-domain cues within a Deep Laplacian

Pyramid framework. While our method does not surpass the latest state-of-the-art

approaches in terms of quantitative performance metrics, it demonstrates clear ad-

vantages in terms of model simplicity, computational efficiency, and inference speed.

By integrating the DWT-FFC branch for frequency-aware feature extraction and the

UHDM branch for fine-grained spatial reconstruction, our approach achieves a strong

balance between performance and resource usage. These characteristics make RefLap

a practical solution for real-world deployment scenarios where efficiency and respon-

siveness are critical. Future work will explore enhancing generalization, integrating

explicit layer separation, and extending the model to handle video data with temporal

consistency.
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[76] F. Ähnelt and Authors. Guided frequency loss for image restoration. arXiv

preprint arXiv:2309.15563, 2023.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Related Works
	Reflection Removal
	Frequency-Based Restoration
	Deep Laplacian Pyramid Networks

	Method
	Overall Architecture
	DWT-FFC Branch
	UHDM Branch
	Cascaded Design with Cross-Branch Supervision
	Loss Function

	Experiments
	Challenge Details
	Datasets
	Implementation Details
	Results
	Ablation Study

	Future Improvements
	Enhancing Real-World Generalization through Diverse Data
	Layer Decomposition for Physically-Grounded Learning
	Temporal Consistency and Video Extension

	Conclusion

