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Abstract

In this thesis we present a number of results concerning Alpert wavelet bases for L2(µ), with

µ a locally finite positive Borel measure on Rn. Alpert wavelets generalize Haar wavelets while

retaining their orthonormality, telescoping, and moment vanishing properties. We show that the

properties of such a basis are determined by the geometric structure of µ; in particular they

are the result of linear dependences in L2(µ) among the functions from which the wavelets are

constructed; this completes an investigation begun by Rahm, Sawyer, and Wick [14]. These

dependences can be efficiently detected using a Gröbner basis algorithm, which provides enough

information to determine the structure of any Alpert basis constructed on µ. We present a

generalization of the usual Alpert wavelet construction, where the degree of moment vanishing

is allowed to vary over the dyadic grid. We also show that Alpert bases in a doubling measure

on R are stable under small translations of the underlying dyadic intervals, building on work

by Wilson [19]. We conclude with a partial result toward the converse, showing that a class of

non-doubling measures cannot have this stability property.
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Chapter 1

Introduction

We begin with a preface: both our objects of study and our results are somewhat cumbersome

to define. In the interest of giving the reader a gentle introduction, this chapter will use “high-

level” but imprecise statements for all but a few simple terms. Chapter 2 defines the necessary

concepts and notation to make each of these statements precise.

1.1 Wavelet Bases

The standard dyadic grid D∗ on R is the set of all half-open intervals which, for each k ∈ Z,

have length 2k and endpoints which are consecutive multiples of 2k. The real line is thereby

decomposed into intervals of length 2k at each scale k ∈ Z. The classical Haar basis for L2(R)

consists of a mother wavelet

h[0,1)(x) = 1[0, 1
2
) − 1[ 1

2
,1)

and then for each dyadic interval I ∈ D the corresponding Haar wavelet hI is a translate and

dilate of the mother wavelet so that hI is supported on I and has L2-norm 1.

The set of all Haar wavelets forms an orthonormal basis for L2(R) with some highly desirable

properties:

� Each Haar wavelet is piecewise constant.

� Each Haar wavelet is supported on a dyadic interval.

1
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� Projection onto the Haar basis within some finite resolution simplifies via a telescoping

property.

� Each Haar wavelet is orthogonal to constants.

This final property is often referred to as a moment vanishing condition.

Haar wavelets and their study date back to 1910 with the work of Alfred Haar [10]. In the

years since, wavelets have proven to be highly useful for signal processing and its associated

applications. Of particular note is an advantage which wavelets enjoy: because each wavelet is

compactly supported, a wavelet transform can capture localized phenomena more efficiently than

a traditional Fourier transform.

For a discusson of Haar wavelets in the context of signal processing, and in part also because

we expect most readers are not fluent in Haar’s native German, we suggest the survey by Stankovic

and Falkowski [17] as an introductory article. For readers desiring a thorough treatise of Haar

wavelets and how they relate to Fourier analysis, we recommend the book by Pereyra and Ward

[13].

In practice, Haar wavelets are often not the preferred choice of wavelet for modern applica-

tions. More sophisticated constructions are able to achieve the same desireable properties of Haar

wavelets while also achieving some other goal. For example, Daubechies wavelets [5] satisfy the

same orthogonality conditions as Haar wavelets (more, in fact) while also being continuous.

A generalization of Haar wavelets was given by Alpert in 1993 [3]. Alpert’s construction is

a multiwavelet basis, where each wavelet is orthogonal to all polynomials with degree less than

some fixed k. This is achieved by making two concessions:

1. Where each Haar wavelet is piecewise constant, each Alpert wavelet is instead piecewise

polynomial of degree less than k.

2. Where the Haar basis has one wavelet per dyadic interval, an Alpert basis has k wavelets

per dyadic interval.

Moreover, Alpert showed that such a basis is underdetermined and gave an algorithm for con-

structing a basis where some of the wavelets are additionally orthogonal to some higher-order

2
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polynomials. The two above concessions are substantial for practical applications, though Alpert

showed that in some cases the computational advantage of the extra orthogonality outweighs the

increase in complexity of the basis.

1.2 Weighted Wavelet Bases

Building on Alpert’s construction, Rahm, Sawyer, and Wick [14] showed that Alpert bases

also exist in L2(µ), where µ is any locally finite positive Borel measure on Rn. Of particular

interest is the fact that such a basis retains almost all of the useful properties of Haar and Alpert

bases in Lebesgue measure. The most notable loss is that, in a measure which is not translation

invariant, the basis functions are no longer all translates and dilates of a set of mother wavelets.

Rahm, Sawyer, and Wick also observed that, in certain measures, the number of wavelets

needed for each dyadic cube is sometimes less than would be needed in Lebesgue measure. This

is discussed in [14, section 3]; in particular it is demonstrated in one dimension that an interval

I with non-zero measure can nevertheless have one or more of its associated Alpert wavelets be

identically zero. It was this observation which first motivated the research that would eventually

become this thesis.

The resulting Alpert bases have been used to prove a number of results regarding Calderón-

Zygmund operators—see for example [2] by Alexis, Sawyer, and Uriarte-Tuero, where Alpert

bases have yielded partial progress toward extending the David-Journé T1 theorem [6] from

Lebesgue measure to pairs of doubling measures. The additional moment vanishing afforded by

Alpert wavelets is used throughout that result, justifying their use over the much simpler Haar

wavelets. This use also demonstrates a drawback of Alpert wavelets; singular integrals do not in

general commute with multiplication by polynomials, which is not a problem when working with

the piecewise constant Haar wavelets.

Very recently, Alpert wavelets were used by Sawyer to prove a probabilistic analogue of the

Fourier extension conjecture [16]. Here Sawyer first deals with a major shortcoming of Alpert

wavelets, that being the discontinuity of each wavelet at the boundary of its support. Sawyer con-

structs a family of smooth Alpert ‘wavelets’, which coincide with standard Alpert wavelets except

3
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on a small halo around each discontinuity—where they are made smooth via a convolution—and

which also retain Alpert’s moment vanishing properties. The resulting functions no longer form

a basis for L2(Rn), but do form a frame (see [4] for more on frames). Both continuity and

higher-order moment vanishing are necessary for the main proof.

1.3 Stability of Haar Wavelets

In a 2017 paper [19], Wilson showed that a particular class of L2(Rn) functions were “stable”,

in the following sense: if {hj}j∈J is a family of such functions, and f is any function in L2(Rn),

then the projection of f onto {hj}j∈J is close to f itself in the L2-norm. Clearly this holds when

{hj}j∈J is an orthonormal basis, but Wilson showed that this still holds when the hj ’s in an

orthonormal basis undergo a small amount of perturbation (translation, dilation, skew, etc).

Of particular interest to us is that one-dimensional Haar bases perturbed by small translations

are among the class of functions to which Wilson’s theorem applies. This is a desireable property

for wavelet bases to have in practical applications; it ensures that small errors in computation

won’t dramatically effect the end result. Wilson extends this stability result to more general

classes of functions in Rn. In chapter 4 we extend in a different direction: we show that any

one-dimensional weighted Alpert basis is also stable provided that the measure is doubling.

Wavelet perturbations also appear in the landmark result of Nazarov, Treil, and Volberg [12]

as a key part of the proof that a set of testing criteria is sufficient to confirm boundedness of

the Hilbert transform. Here a small translation is applied uniformly to the entire dyadic grid,

then by taking an average over all such translations Nazarov et al. are able to control the “bad”

behaviour of functions near the discontinuities in a Haar wavelet. These grid translations do not

satisfy the definition of perturbation we consider in chapter 4, but are foundational to the T1

theorem results described in the previous section and so may be of interest to the reader anyway.

4



Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

1.4 Summary of Main Results

1.4.1 Chapter 3

Let µ be a locally finite positive Borel measure on Rn, let D be a dyadic grid on Rn, and let

U be a finite set of real-valued locally-integrable functions which contains the constant function

1. The associated Alpert basis for L2(µ) consists of functions which are each supported on some

cube Q ∈ D, are each in SpanU when restricted to any child of Q, and are each orthogonal to

all of U . This is a modest generalization of the bases described in the preceeding section, where

U was specifically taken to be the set of all monomials less than some fixed degree. Given such

an Alpert basis for L2(µ), the number of Alpert wavelets needed for a given cube Q depends on

both the set U and the underlying measure µ.

Theorem 3. When constructing an Alpert basis, the number of wavelets needed for a given

dyadic cube Q is the sum of the dimensions of SpanU when restricted to each child of Q, minus

the dimension of SpanU when restricted to Q. Moreover, when applying extra orthogonality

conditions to an Alpert basis, each additional condition is either achieved “for free” without

affecting the basis, or otherwise is achieved by reducing the number of wavelets satisfying that

condition by 1.

The latter case of this conclusion explains the behaviour observed by Rahm, Sawyer, and

Wick [14]. Their examples choose a measure µ and interval I where at least one child of I

either had measure zero or a single point mass. The space of linear functions on that child will

have either dimension zero or dimension one respectively, where in Lebesgue measure it would

have dimension two, and so the Alpert wavelet basis for L2(µ) will contain correspondingly fewer

wavelets supported on I.

Prompted by the possibility of different intervals (or cubes in Rn) having varying numbers of

associated Alpert wavelets in a basis, we then considered the following question: is it possible to

construct a basis which varies in this way without the variation being a direct consequence of the

measure’s geometry? The answer turns out to be yes, with a caveat:

Theorem 4. For every dyadic cube Q let UQ be a finite set of locally-integrable functions, and

suppose that these sets obey the nesting condition UP (Q) ⊆ UQ, where P (Q) denotes the parent of

5
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Q. Then an orthonormal basis for L2(µ) can be constructed from the following three components:

1. For every Q ∈ D, a set of Alpert wavelets on Q constructed from UQ.

2. For every Q ∈ D, an orthonormal basis for the orthogonal complement of SpanUP (Q) inside

SpanUQ.

3. For every dyadic top T ∈ τ(D) (defined in section 2.2), an orthonormal basis for SpanUT ,

where UT = ∩Q⊂TUQ.

This basis retains the same orthogonality properties as a standard Alpert basis.

A basis of this type allows for interpolation between the amount of orthogonality achieved and

the number of wavelets needed for each cube. While this seems to capture the best elements of

both Haar and Alpert bases, this improvement comes with the aforementioned caveat: the second

component in the above list consists of the “leftover” terms when transitioning from cubes with

more wavelets to cubes with fewer, and these leftover terms do not obey the Alpert wavelets’

orthogonality conditions.

Section 3.3 provides a further refinement of theorem 3 for Alpert bases constructed from

polynomials of bounded degree; this is the special case discussed by Rahm, Sawyer, and Wick

in [14]. This result uses concepts from algebraic geometry, defined in section 2.6.

Theorem 5. Let G be a Gröbner basis for the ideal of all polynomials on Q which vanish outside

a set of µ-measure zero. The set of all monomials on Q which are not a multiple of any leading

term in G is a maximal linearly independent set.

By Theorem 3, knowing the dimensions of these polynomial spaces is sufficient to determine

the number of Alpert wavelets needed for a given cube. This result has additional utility in that

a single Gröbner basis calculation simultaneously provides the dimensions of these polynomial

spaces for every choice of degree. This also provides a simple recipe for constructing examples

where an Alpert space has less than the full dimension; µ when restricted to a cube Q should be

supported inside the solution set to a set of polynomials with degrees no higher than the Alpert

basis.

6
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1.4.2 Chapter 4

Let µ be a locally finite positive Borel measure on Rn and B be an orthonormal basis for

L2(µ). We consider perturbations of the basis elements in B—see definition 18—and we say that

B is stable under a perturbation if ∑
b∈B

⟨f, b∗⟩b∗ ≈ f

in the L2(µ) norm, where b∗ is the perturbation of b.

Theorem 8. It suffices to test whether a series of inner products between the elements of B and

the perturbed elements of B converges to a bound controlled by the magnitude of the perturbation.

If it does, and if that bound vanishes as the magnitude of the perturbation tends to zero, then B

is stable under that perturbation.

This result adapts techniques developed by Wilson in [19] to our more general setting. While

we only use this result in the context of Alpert wavelets, the full statement is evidently much

more general. We have opted to present the more general version in case it happens to be of use

in other areas.

Theorem 10. If µ is a doubling measure on R and B is any polynomial Alpert basis for L2(µ),

then B satisfies the criterion from Theorem 8 and consequently is stable under small translations

of the underlying dyadic intervals.

We emphasize that µ is here taken to be specifically a one-dimensional doubling measure. It

turns out that the condtion in Theorem 8 is sufficient to imply stability, but not necessary. In

section 4.3.1 we show that the Haar basis in R2 does not satisfy this criterion, but is nevertheless

known to be stable through work by Wilson [19, section 3].

Our final topic considers whether the above stability result holds in the opposite direction,

or in other words whether any measure which satisfies our stability criterion must necessarily be

doubling. This question turns out to be somewhat nuanced; a given non-doubling measure may

be stable under a given perturbation for some dyadic grids and not for others. We conjecture

that a measure which is stable under small translations for all dyadic grids must be doubling.

Although we have not found a proof for this result in full, we do show that a substantial class of

non-doubling measures cannot have this stability property for all dyadic grids.

7



Chapter 2

Background

If W is a finite-dimensional vector space with dimension n, we will refer to a subspace of

dimension n− 1 as a hyperplane. We define a cube Q ∈ Rn to be specifically oriented with sides

parallel to the coordinate hyperplanes, i.e. a set of the form

Q = {x ∈ Rn : ai ≤ xi < bi, i = 1, . . . , n} =
n∏

i=1

[ai, bi)

where each ai, bi ∈ R is constant and where there is a constant l(Q) > 0 such that

b1 − a1 = b2 − a2 = · · · = bn − an = l(Q)

We call l(Q) the side length of Q. The cube mQ is the cube which has the same center as Q

and has side length m · l(Q). We will refer to an interval I rather than a cube Q when working

in dimension n = 1. In this case we will write Il and Ir to denote the left and right halves of I

respectively.

2.1 Measure Theory

This section contains a brief introduction to the concepts in measure theory which are needed

to read this work; for a more detailed treatise see [18, Chapters 1 & 2]. Our definitions here will

be given for an arbitrary set X, but in practice we will only ever take X to be some Euclidean

8
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space Rn.

Definition 1 (σ-algebra). Let X be a set. A σ-algebra A on X is a collection of subsets of X

which satisfies:

1. ∅ ∈ A.

2. A is closed under complements: Sc ∈ A for every S ∈ A.

3. A is closed under countable unions:
⋃∞

i=1 Si ∈ A whenever Si ∈ A for all i ∈ N.

As an immediate consequence of properties 2 and 3, σ-algebras are also closed under countable

intersections. The pair (X,A) is called a measurable space.

Definition 2 (Measure). Let X be a set and let A be a σ-algebra on X. A measure µ is function

µ : A→ R ∪ {∞} which satisfies:

1. µ(∅) = 0.

2. For all S ∈ A, µ(S) ≥ 0.

3. For all countable collections {Si}∞i=1 of pairwise disjoint sets in A,

µ

( ∞⋃
i=1

Si

)
=

∞∑
i=1

µ(Si).

The triple (X,A, µ) is called a measure space, and the members of A are the measurable sets

(or the µ-measurable sets, when we wish to be precise). Given a measurable set S, we will refer

to µ(S) as the measure of S. There exists a notion of signed measure, which is as above except

that sets are also allowed to have negative measure, but we do not consider signed measures in

this work.

Definition 3 (Topology). Let X be a set. A topology τ on X is a collection of subsets of X,

called open sets, which satisfies:

1. ∅ ∈ τ and X ∈ τ .

2. For any index set I, finite or infinite,
⋃

i∈I Si ∈ A whenever Si ∈ τ for all i ∈ I.

9
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3. For k ∈ N,
⋂k

i=1 Si ∈ A whenever Si ∈ τ for all i = 1, . . . , k.

The pair (X, τ) is called a topological space. A familiar example is the set of all open intervals

on R. A topology τ on X gives rise to a natural σ-algebra on X:

Lemma 1. Let (X, τ) be a topological space. There is a unique σ-algebra B on X such that

1. τ ⊆ B.

2. If A is any σ-algebra on X which contains τ , then B ⊆ A.

Proof. Define the set

B =
⋂

{A : A is a σ-algebra on X with τ ⊆ A}.

The power set P (X) is a σ-algebra on X which contains τ , so B is non-empty. Suppose that

S ∈ B, so S ∈ A for every σ-algebra A on X with τ ⊆ A. By σ-algebra properties, Sc ∈ A for

every such A and consequently Sc ∈ B. An identical argument shows that B is also closed under

countable unions, so B is a σ-algebra on X. The properties

1. τ ⊆ B.

2. If A is any σ-algebra on X which contains τ , then B ⊆ A.

follow immediately from the definition of B.

The above σ-algebra B is called the Borel σ-algebra. The elements of B are the Borel sets,

and any measure µ defined over the measurable space (X,B) is likewise called a Borel measure.

Definition 4 (Locally finite measure). Let (X, τ) be a topological space and A be a sigma-algebra

on X that contains τ . A measure µ defined on (X,A) is locally finite if for every p ∈ X there

exists an open set Sp ∈ τ such that p ∈ Sp and µ(Sp) <∞.

All measures we consider from this point on are locally finite positive Borel measures on Rn

for some n ∈ N. Because we work exclusively in this context, we will not bother to specify the

σ-algebras or topologies in our notation beyond this section.

10
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Lemma 2. Let τ be the standard topology on Rn, and let µ be a locally finite positive Borel

measure. For every cube Q ⊂ Rn, Q is µ-measurable.

Proof. Let Q =
∏n

i=1[ai, bi). Fix ϵ > 0, and we can write

Q =
n∏

i=1

[ai, bi] ∩
n∏

i=1

(ai − ϵ, bi).

The first product is the complement of an open set and the second product is an open set, so Q

is a Borel set and therefore is µ-measurable.

We will work heavily with function spaces defined over cubes; this is why we restrict ourselves

to considering Borel measures.

Definition 5 (Measurable function). Let (X1, A1) and (X2, A2) be two measurable spaces. A

function f : X1 → X2 is measurable if for every S ∈ A2 the preimage of S under f is in A1, that

is

f−1(S) = {x ∈ X : f(x) ∈ S} ∈ A1.

We will only consider functions f : Rn → R for some n ∈ N, so we will refer to µ-measurable

functions f and trust that the underlying measure space is clear from context.

The primary motivation for the above definitions is to allow us to construct the Lebesgue

integral. Recall that the Riemann integral can be loosely described as follows: given a function

f , partition the domain of integration and approximate the area under f with vertical rectangles

separated by the partition. The Lebesgue integral instead partitions the range of f , so the area

under f is approximated by horizontal rectangles. Provided that f is measurable, each of these

rectangles will have a “footprint” in the domain which is measurable.

To make the above idea precise, we define the Lebesgue integral in stages. First, let µ be a

locally finite positive Borel measure on Rn and let S ⊆ Rn be a µ-measurable set. We will write

1S to mean the indicator function on S, that is

1S(x) =


1 if x ∈ S

0 if x /∈ S

.

11



Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

Note that any preimage of 1S is either all of S, all of Sc, all of Rn, or empty. These are all

measurable sets, so 1S is a measurable function. We define the Lebesgue integral of 1S :

∫
Rn

1S(x) dµ(x) = µ(S).

This integral is allowed to take the value ∞.

Next, a simple function g is any finite linear combination of indicator functions

g =
m∑
i=1

ai1Si , ai ∈ R

where the Si are disjoint measurable sets. The range of a simple function is a finite set, so simple

functions are measurable by the same argument as for indicator functions. For a simple function

g =
∑m

i=1 ai1Si with ai ≥ 0 for all i = 1, . . . ,m we define the Lebesgue integral of g:

∫
Rn

g(x) dµ(x) =
m∑
i=1

aiµ(Si)

where again this sum might yield ∞. To verify that this is well-defined, suppose that

g =

m1∑
i=1

ai1Si and g =

m2∑
j=1

bj1Tj

are two different representations of g. For any x ∈ Rn, if x ∈ Si and x ∈ Tj then ai = bj . Then

fix k ∈ R; the disjoint union of all Si such that ai = k is equal to the disjoint union of all Tj such

that bj = k. Since measures are additive under disjoint unions, by letting k vary over the range

of g we conclude
m1∑
i=1

aiµ(Si) =

m2∑
j=1

bjµ(Tj)

so the Lebesgue integral of a simple function is well-defined. Likewise if T ⊂ Rn is any measurable

set, we define ∫
T
g(x) dµ(x) =

∫
Rn

(1T g)(x) dµ(x) =

m∑
i=1

aiµ(Si ∩ T ).

Now let f : Rn → [0,∞] be a non-negative measurable function. We define the Lebesgue

12
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integral of f :

∫
Rn

f(x) dµ(x) = sup
g

{∫
Rn

g(x) : 0 ≤ g ≤ f and g is simple

}
.

As usual, this supremum may take value ∞.

Finally let f : Rn → [−∞,∞] be any measurable function. Write f = f+ − f− where

f+(x) =


f(x) if f(x) > 0

0 otherwise

,

f−(x) =


−f(x) if f(x) < 0

0 otherwise

,

so both f+ and f− are non-negative measurable functions. We say the Lebesgue integral of f

exists if at least one of
∫
Rn f

+(x) dµ(x) and
∫
Rn f

−(x) dµ(x) is finite, in which case we define

∫
Rn

f(x) dµ(x) =

∫
Rn

f+(x) dµ(x)−
∫
Rn

f−(x) dµ(x).

We say that f is Lebesgue integrable if
∫
Rn |f(x)| dµ(x) < ∞. If T ⊂ Rn is a measurable set, we

define ∫
T
f(x) dµ(x) =

∫
Rn

(1T f)(x) dµ(x).

Now that we have the Lebesgue integral defined in full, we turn to the function spaces it

creates. Let µ be a locally finite positive Borel measure on Rn. The space L2(µ) is the space of

µ-measurable functions f : Rn → R such that

∫
Rn

|f(x)|2 dµ(x) <∞.

Two functions f, g ∈ L2(µ) are identified if the set {x ∈ Rn : f(x) ̸= g(x)} is measurable and

has measure zero, in which case we write f = g µ-almost everywhere. For f ∈ L2(µ) we have the

norm

∥f∥2 =
(∫

Rn

|f(x)|2 dµ(x)
) 1

2

,

13
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and for f, g ∈ L2(µ) we have the inner product

⟨f, g⟩ =
∫
Rn

f(x)g(x) dµ(x).

For any cube Q in Rn, denote by L2
Q(µ) the space {1Qf : f ∈ L2(µ)}. Also let L2

loc(µ) denote

the space of locally square-integrable functions on Rn with respect to µ. Thus L2
Q(µ) ⊆ L2

loc(µ)

for any cube Q.

Lemma 3 (Schur Test). Let (X,µ) be a measure space with µ a positive measure. Let K be a

non-negative measurable function on X ×X. Define the integral operator

Tf(x) =

∫
X
K(x, y)f(y) dµ(y), x ∈ X.

If there exists a constant M > 0 such that

∫
X
K(x, y) dµ(y) ≤M

for almost all x ∈ X, and ∫
X
K(x, y) dµ(x) ≤M

for almost all y ∈ X, then ∥T∥ ≤M in L2(X,µ).

Proof. Let f ∈ L2(X,µ). By the Cauchy-Schwarz inequality we have

|Tf(x)|2 =
∣∣∣∣∫

X
K(x, y)f(y) dµ(y)

∣∣∣∣2
≤
∣∣∣∣∫

X
K(x, y) dµ(y)

∣∣∣∣ ∣∣∣∣∫
X
K(x, y)f(y)2 dµ(y)

∣∣∣∣
≤M

∣∣∣∣∫
X
K(x, y)f(y)2 dµ(y)

∣∣∣∣ .
Integrating the above inequality with respect to x yields

∫
X
|Tf(x)|2 dµ(x) ≤M

∫
X

∣∣∣∣∫
X
K(x, y)f(y)2 dµ(y)

∣∣∣∣ dµ(x).
The lefthand side of this inequality is exactly ∥Tf∥22, and in the righthand side we can exchange

14
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the order of integration using Fubini’s Theorem [18, p. 279, Theorem 3.3]:

∥Tf∥22 ≤M

∫
X

∣∣∣∣∫
X
K(x, y)f(y)2 dµ(y)

∣∣∣∣ dµ(x)
=M

∫
X

∣∣∣∣∫
X
K(x, y)f(y)2 dµ(x)

∣∣∣∣ dµ(y)
=M

∫
X

∣∣∣∣∫
X
K(x, y) dµ(x)

∣∣∣∣ f(y)2 dµ(y)
≤M

∫
X
Mf(y)2 dµ(y)

=M2∥f∥22.

We conclude that ∥Tf∥2 ≤M∥f∥2 for any f ∈ L2(X,µ), as desired.

There exist more sophisticated formulations of the Schur test, but this is sufficient for our

purposes. In fact we will only need the special case where µ is the counting measure on a dyadic

grid.

2.2 Dyadic Grids

Definition 6 (Dyadic Grid). A dyadic grid D on Rn is a set of half-open cubes with the following

properties

1. Every cube Q ∈ D has l(Q) = 2m for some m ∈ Z.

2. Every cube Q ∈ D with l(Q) = 2m is contained in some R ∈ D with l(R) = 2m+1.

3. For every m ∈ Z, the subset of all cubes in D with length 2m forms a partition of Rn.

The standard dyadic grid D∗ on Rn is the unique dyadic grid where no cube has an interior

that overlaps a coordinate hyperplane. Given a dyadic grid D and Q ∈ D with side length 2m,

the set of children C(Q) is the set of 2n cubes in D contained within Q having length 2m−1.

Likewise the parent P (Q) of a dyadic cube Q is the unique cube in D which contains Q and has

length 2 · l(Q).

15
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Let D be a dyadic grid on Rn and Q ∈ D. We define the tower Γ(Q) as the set of all cubes

in D which contain Q. The top T of a tower Γ(Q) is defined

T =
⋃

R∈Γ(Q)

R.

As an immediate consequence of the nesting property of towers, any two towers will either have

the same top or two disjoint tops. This gives an equivalence relation on the towers in D, where

two towers Γ1 and Γ2 are equivalent if their tops coincide. Since it is the tops in which we are

primarily interested, we will simply refer to the unique set of tops arising from any choice of

representatives from each equivalence class. Let τ(D) denote the set of unique tops in S.

Example 1. The standard dyadic grid D∗ on R2 has four unique tops, corresponding to the four

quadrants in R2. In contrast, we can construct a dyadic grid D with only a single top as follows.

Choose any square Q in R2; to be part of a dyadic grid, Q can have one of four possible parents

corresponding to the four diagonal directions relative to the coordinate axes. If we construct the

tower Γ(Q) and at each level in the tower we cycle through those four diagonal directions in

sequence, then the top of Γ(Q) must extend infinitely in all directions.

More generally, the standard dyadic gridD∗ has exactly 2n tops, corresponding to the orthants

in Rn, and these tops partition Rn. While we have just seen that it is possible to have fewer than

2n tops, the partition property holds in general.

Lemma 4. For any dyadic grid D on Rn, τ(D) forms a partition of Rn with no more than 2n

elements.

Proof. Every dyadic cube has sides parallel to the coordinate hyperplanes, so every top is the

product of n infinite intervals where each interval is either unbounded or has one finite upper or

lower bound. Let T1 and T2 be two tops in τ(D) with

T1 =

n∏
i=1

Ii and T2 =

n∏
i=1

Ji.

Suppose that for each i ∈ 1, ..., n, Ii and Ji extend infinitely it the same direction. Then T1

and T2 must have non-empty intersection, and consequently T1 = T2. By the contrapositive, if

T1 ̸= T2 then there must be at least one i ∈ 1, ...n where Ii and Ji do not extend infinitely in the
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same direction, and there are at most 2n ways to make such a choice. Lastly since every x ∈ Rn

is contained in some dyadic cube, it is also contained in some top. Therefore τ(D) is a partition

of Rn with no more than 2n elements.

Informally, this proof observes that each of the 2n oriented diagonals in Rn can belong to

only one top. It is worth emphasizing that although tops are not themselves dyadic cubes, their

boundaries still run parallel to the coordinate hyperplanes. Tops can therefore be thought of as

“infinite dyadic cubes”.

Remark 1. The pattern in example 1 holds in general: any dyadic grid in Rn can be constructed

by choosing a cube Q in Rn and constructing a tower Γ(Q) above it. The choice of Q determines

the grid for all scales smaller than l(Q), and at each level in Γ(Q) the choice among the 2n possible

parents of Q determines the grid at that scale.

2.3 Haar Wavelets

Let D be a dyadic grid on R. For each I ∈ D the Haar function hI(x) is defined as:

hI(x) =
1√
l(I)

(1Il(x)− 1Ir(x)) .

This is the unique function (up to multiplication by −1) in L2(R) which has all of the following

properties:

� hI is supported on I.

� hI is constant on each child of I.

� ∥hI∥2 = 1.

�
∫
I h

I dx = 0.

Each of these individually is a convenient property to have, but of greater significance is what

this implies about the family of all Haar functions on D.

Theorem 1 (Haar Bases). The family of Haar functions {hI}I∈D has the following properties:

17
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1. {hI}I∈D is an orthonormal basis for L2(R).

2. Projection on to {hI}I∈D satisfies a telescoping property: for any f ∈ L2(R) and integers

m < n,

∑
I∈D: 2m+1≤l(I)≤2n

〈
f, hI

〉
hI(x) =

∑
I∈D: l(I)=2m

〈
f,

1

2m
1I

〉
1I(x)−

∑
I∈D: l(I)=2n

〈
f,

1

2n
1I

〉
1I(x).

3. Each hI satisfies a moment vanishing condition:

∫
I
hI(t) dt = 0.

Proof. Property 3 follows immediately from the definition of hI . For property 2, let I ∈ D and

f ∈ L2(R). We have

〈
f, hI

〉
hI(x)

=
1

l(I)

∫
I
f(t) · (1Il(t)− 1Ir(t)) dt · (1Il(x)− 1Ir(x))

=
1

l(I)

(∫
Il

f(t) dt−
∫
Ir

f(t) dt

)
· (1Il(x)− 1Ir(x))

=
1

l(I)

(∫
Il

f(t) dt ·1Il(x) +
∫
Ir

f(t) dt ·1Ir(x)−
∫
Ir

f(t) dt ·1Il(x)−
∫
Il

f(t) dt ·1Ir(x)
)
.

We also have 〈
f,

1

l(Il)
1Il

〉
1Il(x) +

〈
f,

1

l(Ir)
1Ir

〉
1Ir(x)−

〈
f,

1

l(I)
1I

〉
1I(x)

=
2

l(I)

∫
Il

f(t) dt ·1Il(x) +
2

l(I)

∫
Ir

f(t) dt ·1Ir(x)−
1

l(I)

∫
I
f(t) dt ·1I(x)

=
1

l(I)

(
2

∫
Il

f(t) dt ·1Il(x) + 2

∫
Ir

f(t) dt ·1Ir(x)−
∫
I
f(t) dt ·1I(x)

)
.

Then applying the decomposition

∫
I
f(t) dt ·1I(x) =

∫
Il

f(t) dt ·1Il(x) +
∫
Ir

f(t) dt ·1Ir(x) +
∫
Ir

f(t) dt ·1Il(x) +
∫
Il

f(t) dt ·1Ir(x),

we conclude

〈
f, hI

〉
hI(x) =

〈
f,

1

l(Il)
1Il

〉
1Il(x) +

〈
f,

1

l(Ir)
1Ir

〉
1Ir(x)−

〈
f,

1

l(I)
1I

〉
1I(x).
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Next fix m ∈ Z and let n = m + 1. Adding the above equality over every interval of length

2n gives

∑
I∈D: l(I)=2n

〈
f, hI

〉
hI(x) =

∑
I∈D: l(I)=2n−1

〈
f,

1

2n−1
1I

〉
1I(x)−

∑
I∈D: l(I)=2n

〈
f,

1

2n
1I

〉
1I(x).

Lastly we observe that when n > m+ 1 the righthand sums telescope:

n∑
i=m+1

 ∑
I∈D: l(I)=2i−1

〈
f,

1

2i−1
1I

〉
1I(x)−

∑
I∈D: l(I)=2i

〈
f,

1

2i
1I

〉
1I(x)


=

n∑
i=m+1

 ∑
I∈D: l(I)=2i−1

〈
f,

1

2i−1
1I

〉
1I(x)

−
n∑

i=m+1

 ∑
I∈D: l(I)=2i

〈
f,

1

2i
1I

〉
1I(x)


=

∑
I∈D: l(I)=2m

〈
f,

1

2m
1I

〉
1I(x) +

n∑
i=m+2

 ∑
I∈D: l(I)=2i−1

〈
f,

1

2i−1
1I

〉
1I(x)


−

n−1∑
i=m+1

 ∑
I∈D: l(I)=2i

〈
f,

1

2i
1I

〉
1I(x)

−
∑

I∈D: l(I)=2n

〈
f,

1

2n
1I

〉
1I(x)

=
∑

I∈D: l(I)=2m

〈
f,

1

2m
1I

〉
1I(x)−

∑
I∈D: l(I)=2n

〈
f,

1

2n
1I

〉
1I(x).

With this we arrive at the desired conclusion:

∑
I∈D: 2m+1≤l(I)≤2n

〈
f, hI

〉
hI(x) =

∑
I∈D: l(I)=2m

〈
f,

1

2m
1I

〉
1I(x)−

∑
I∈D: l(I)=2n

〈
f,

1

2n
1I

〉
1I(x).

For property 1, let I, J ∈ D. If I = J then we have

〈
hI , hJ

〉
=

∫
I
hI(x)2 dx =

1

l(I)

∫
I
1I(x) dx = 1.

Otherwise if I ̸= J then either hI and hJ have disjoint support, or one of hI and hJ is supported

inside a child of the other. In the former case we trivially have
〈
hI , hJ

〉
= 0, and in the latter

case we have
〈
hI , hJ

〉
= 0 as a consequence of property 3. The set of Haar functions are therefore

orthonormal.

To complete the proof it remains to show that the Haar functions are dense in L2(R). This is

somewhat involved and uses techniques which are not needed to read this work, so in the interest

of brevity we will omit it here. For those interested the full proof is given in appendix A.
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The Haar basis has an additional useful property: all Haar functions are translates and dilates

of one another. It is common to present Haar wavelets by first defining a mother wavelet, usually

h[0,1), and then defining the other Haar functions as translates and dilates of the mother wavelet.

However, unlike the three properties in Theorem 1, this relies on the translation-invariance of

Lebesgue measure, a property which is not true in general for an arbitrary locally finite positive

Borel measure.

For readers who have not worked with Haar wavelets before, we wish to address a common

question: how can a set of integral-zero functions be a basis for L2(R), which clearly contains

functions which do not have integral zero? Indeed, let f ∈ L2(R) and consider the following

erroneous computation:

∫
R
f(x) dx =

∫
R

∑
I∈D

⟨f, hI⟩hI(x) dx =
∑
I∈D

⟨f, hI⟩
∫
R
hI(x) dx = 0.

The author confesses to making precisely this error as a student. The resolution to the mystery

is that the second equality here is invalid; the integral does not commute with an infinite sum as

it would a finite sum.

Example 2. To see this resolution in action, let f = 1[0,1). We have ⟨f, hI⟩ ̸= 0 precisely when

I = [0, 2k) for k = 1, 2, 3..., and so

∑
I∈D

⟨f, hI⟩hI =
∞∑
k=1

2−k/2h[0,2
k).

Since the smallest interval in this sum is [0, 2), every Haar function contributes some positive

amount at values x ∈ [0, 1); this allows the sum to converge to the desired indicator function. By

contrast, each Haar function contributes some unwanted negative amount at x-values greater than

1 and these are canceled out by Haar functions later in the sum. In this way the error between

each finite sum and f is “pushed out” toward infinity. The result is

lim
m→∞

m∑
k=1

2−k/2h[0,2
k)(x) = 1 for x ∈ [0, 1), and

lim
m→∞

m∑
k=1

2−k/2h[0,2
k)(x) = 0 for x /∈ [0, 1).
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Figure 2.3.1: Example 2 partial sum with k = 1.
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Figure 2.3.2: Example 2 partial sum with k = 2.
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Figure 2.3.3: Example 2 partial sum with k = 3.
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2.4 Alpert Wavelets

We say a function f(x) has k-degree moment vanishing if

∫
R
f(x) · xkdx = 0.

This generalizes the moment vanishing condition satisfied by Haar functions, which have mo-

ment vanishing only for k = 0. In Alpert’s construction [3], moment vanishing conditions up to

degree k − 1 are achieved by replacing each Haar function hI with a family of k Alpert func-

tions {aIj}j=1,...,k. Where each Haar function is piecewise constant on an interval I, each Alpert

wavelet is piecewise polynomial of degree less than k. Bases where each dyadic cube has multiple

associated wavelets are called multiwavelet bases.

The resulting system of equations is underdetermined. There are
(
k
2

)
extra degrees of freedom

which can be used to impose higher-degree moment vanishing conditions. Alpert’s construction

gives a basis with a “triangular tower” of additional moment vanishing properties:

� All k functions have (k − 1)-degree moment vanishing.

� k − 1 functions have k-degree moment vanishing.

� k − 2 functions have (k + 1)-degree moment vanishing.

...

� 2 functions have (2k − 3)-degree moment vanishing.

� 1 function has (2k − 2)-degree moment vanishing.

To see this let I ∈ D and k ∈ N. The family of Alpert functions aIj (x), j = 1, . . . , k is constructed

as follows:

1. For j = 1, . . . , k define the functions f1j :

f1j (x) = xj−1 · 1Il − xj−1 · 1Ir .

2. Apply the Gram Schmidt algorithm to the set {1, x, . . . , xk−1, f11 , . . . , f
1
k}. The k−1 outputs

associated to {f11 , . . . , f1k} are each orthogonal to 1, x, . . . , xk−1; label these outputs f2j ,

j = 1, . . . , k.
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3. If there is a j ∈ {1, . . . , k} such that
〈
f2j , x

k
〉

̸= 0, reorder so that
〈
f21 , x

k
〉
̸= 0. For

j = 2, ..., k, define f3j = f2j − bj · f21 with bj ∈ R chosen so that
〈
f3j , x

k
〉
= 0.

4. Iterate the above process for xk+1, . . . , x2k−2, where in each iteration the non-orthogonal

function f i+1
i is omitted going forward. This gives k − i functions orthogonal to xk+i−1.

We obtain f21 , f
3
2 , . . . , f

k+1
k such that

〈
f j+1
j , xi

〉
= 0 for i ≤ j + k − 2.

5. Apply Gram Schmidt in order to fk+1
k , fkk−1, . . . , f

2
1 to obtain fk, . . . , f1.

6. Define aIj (x) =
1

∥fj∥2 fj(x) for j = 1, . . . , k.

Informally, the procedure in step 3 “throws out” one function to achieve an extra degree of

moment vanishing in the remaining functions. Although we will focus on moment vanishing, the

same procedure could also be used to impose other conditions: continuity, differentiability, etc.

Alpert showed that this basis satisfies the same orthonormality, telescoping, and moment

vanishing conditions as the Haar basis. We will delay the proof of this claim until the following

section, where we prove the more general statement in Theorem 2.

Example 3. Let I = [0, 1) and k = 3. We want to construct the set {aI1, aI2, aI3} where

〈
aIj , x

m
〉
= 0, j ∈ {1, 2, 3},m ∈ {0, 1, 2}.

Because Alpert’s algorithm uses Gram Schmidt, writing out explicit formulas for the functions

becomes tedious very quickly. We will therefore not do so beyond the first step, but an example

in full detail is given in section 3.3.2.

1. We begin with

f11 (x) = 1Il − 1Ir ,

f12 (x) = x · 1Il − x · 1Ir ,

f13 (x) = x2 · 1Il − x2 · 1Ir .

2. Apply the Gram Schmidt algorithm to the set {1, x, x2, f11 , f12 , f13 } in that order. Label the

final three outputs f21 , f
2
2 , f

2
3 ; each of these functions is piecewise quadratic on [0, 12) and

[12 , 1), and each is orthogonal to 1, x, and x2.
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3. Define

f32 = f22 − b2f
2
1 and f33 = f23 − b3f

2
1

with b2, b3 ∈ R chosen so that
〈
f32 , x

3
〉
= 0 and

〈
f33 , x

3
〉
= 0. Both f32 and f33 are piecewise

quadratic, and they are each orthogonal to 1, x, x2, and x3.

4. Define

f43 = f33 − c3f
3
2

with c3 ∈ R chosen so that
〈
f43 , x

4
〉
= 0. So f43 is piecewise quadratic, and is orthogonal to

1, x, x2, x3, and x4.

5. We now have {f43 , f32 , f21 }; apply Gram Schmidt in that order and label the outputs f3, f2,

f1. Because {f43 , f32 , f21 } are arranged from the most moment vanishing conditions to the

least f2 will possess the same moment vanishing properties as f32 , and likewise for f2 and

f32 .

6. The functions f1, f2, and f3 are orthogonal and possess all the desired moment vanishing

properties, so all that remains is to normalize:

aI1(x) =
1

∥f1∥2
f1(x), a

I
2(x) =

1

∥f2∥2
f2(x), and aI3(x) =

1

∥f3∥2
f3(x).

We have arrived at the orthonormal set {aI1, aI2, aI3}, where all three functions are orthogonal to

1, x, x2; aI2 and aI3 are additionally orthogonal to x3, and aI3 is also orthogonal to x4.

2.5 Weighted Alpert Wavelets

Sections 2.3 and 2.4 gave the basic constructions of Haar and Alpert wavelets on R in Lebesgue

measure. These constructions can be generalized in three directions: by considering functions

on Rn instead of R, by replacing Lebesgue measure with an arbitrary measure, and by replacing

the low-order polynomials in Alpert wavelets with arbitrary collections of L2
loc functions. For the

sake of expediency, we will give all three generalizations together and invite the interested reader

to reverse-engineer the intermediate steps as special cases.

Definition 7 (Component space). Let µ be a locally finite positive Borel measure on Rn, Q ∈ D,
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and U ⊂ L2
loc(µ). The component space PQ,U (µ) = Span{1Q · p}p∈U is the subspace of L2

Q(µ)

generated by the restrictions of U to Q.

Let Eµ
Q,U denote orthogonal projection onto PQ,U (µ). With a slight abuse of notation we will

allow a dyadic top T ∈ τ(D) in place of the dyadic cube Q, so PT,U (µ) is the space of restrictions

of U to T and Eµ
T,U is the associated projection. Note that for many choices of µ, U , and T , the

space PT,U (µ) will be trivial since locally integrable functions may not have a finite integral when

restricted to T .

Example 4. Let µ be Lebesgue measure on R, Q = [0, 1), and U = {1, x}. Then PQ,U (µ) =

Span(1[0,1),1[0,1)x). Here 1[0,1) and 1[0,1)x form a basis for PQ,U (µ), but this basis is not or-

thonormal. An example orthonormal basis is B = {1[0,1),1[0,1)(2
√
3x −

√
3)}. Then for any

f ∈ L2(µ),

Eµ
Q,U = ⟨f,1[0,1)⟩1[0,1) +

〈
f,1[0,1)(2

√
3x−

√
3)
〉
· 1[0,1)(2

√
3x−

√
3).

Example 5. In the previous example the elements of U were a basis for PQ,U (µ), but this is not

always the case even when the elements of U are linearly independent in L2(µ). To see how this

can happen, let Q = [0, 1) and U = {1, x} as before. Let µ assign Lebesgue measure for x < 0, but

assign no mass for x ≥ 0 except for a point mass at x = 1
2 with µ({1

2}) = 1. Now the functions

1[0,1), 1[0,1)x are linearly dependent—in fact 1[0,1) = 2·1[0,1)x—so PQ,U (µ) is the one-dimensional

space spanned by 1[0,1).

Component spaces are of interest primarily because they are used to construct Alpert spaces,

which are our primary object of study.

Definition 8 (Alpert space). Let µ be a locally finite positive Borel measure on Rn, Q ∈ D,

and U, V ⊂ L2
loc(µ). The Alpert space L2

Q,U,V (µ) is the subspace of functions in L2
Q(µ) whose

restrictions to each child Q′ ∈ C(Q) are in 1Q′U and which are orthogonal to each function in

V . Namely:

L2
Q,U,V (µ) =

f =
∑

Q′∈C(Q)

1Q′p :

∫
Q
f(x) · q(x) dµ(x) = 0 for all q(x) ∈ V


where each function p is in U .
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Let △µ
Q,U,V denote orthogonal projection onto L2

Q,U,V (µ). The term “moment vanishing con-

ditions” is technically inaccurate when U is not a set of polynomials. We will however continue

to use it to maintain consistency with earlier material, and hope that we have not offended the

reader’s moral sensibilities. Loosely speaking, Alpert spaces on a cubeQ are the finite-dimensional

vector spaces in which Alpert wavelets on Q live.

Example 6. Let µ be Lebesgue measure on R, Q = [0, 1), and U = V = {1, x}. We have

L2
Q,U,∅(µ) = Span(1[0, 1

2
),1[0, 1

2
)x,1[ 1

2
,1),1[ 1

2
,1)x),

and equivalently

L2
Q,U,∅(µ) = P[0, 1

2
),U (µ)⊕ P[ 1

2
,1),U (µ).

In particular, the component space PQ,U (µ) ⊂ L2
Q,U,∅(µ). The Alpert space L2

Q,U,V (µ) is the or-

thogonal complement of PQ,U (µ) inside L
2
Q,U,∅(µ), so it has dimension 4−2 = 2. The calculations

to produce an explicit orthonormal basis for L2
Q,U,V (µ) are sufficiently cumbersome that we will

not perform then here, but a complete example is presented in section 3.3.2.

Much of our work in chapter 3 broadly follows this example, decomposing an Alpert space into

component spaces which can be evaluated individually. Rahm, Sawyer, and Wick [14] showed

that Alpert’s construction produces a basis for L2(µ) with the same orthonormality, telescoping,

and moment vanishing properties as in Lebesgue measure.

Theorem 2 (Weighted Alpert Bases). Let µ be a locally finite positive Borel measure on Rn, D

be a dyadic grid, and U ⊆ L2
loc(µ) with 1 ∈ U . Then

{
Eµ
T,U

}
T∈τ(D)

∪
{
△µ

Q,U,U

}
Q∈D

is a complete set of orthogonal projections in L2(µ) and

f =
∑

T∈τ(D)

Eµ
T,Uf +

∑
Q∈D

△µ
Q,U,Uf, for all f ∈ L2(µ)

where convergence holds both in L2(µ) and pointwise µ-almost everywhere. Moreover we have

26



Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

orthogonality

〈
Eµ
T,Uf,△

µ
Q,U,Uf

〉
= 0 =

〈
△µ

R,U,Uf,△
µ
Q,U,Uf

〉
for all Q ̸= R ∈ D,

telescoping identities

1Q
∑

P :Q⫋R⊆S

△µ
R,U,U = Eµ

Q,U − 1QEµ
S,U for all Q ⫋ S ∈ D,

and moment vanishing conditions

∫
Rn

△µ
Q,U,Uf(x) · p(x) dµ(x) = 0, for all Q ∈ D and p ∈ U.

Proof. Let P,Q ∈ D with P ̸= Q, and let f ∈ L2
P,U,U (µ), g ∈ L2

Q,U,U (µ) be a pair of Alpert

functions. If P and Q are disjoint, then ⟨f, g⟩ = 0 as f and g have disjoint support. Suppose

instead that P ⊊ Q; then the restriction of g to P is equal to some function in 1PU , and we

get ⟨f, g⟩ = 0 from the moment vanishing properties of L2
P,U,U (µ). The same reasoning holds for

Q ⊊ P , so we conclude that the Alpert spaces L2
P,U,U (µ) and L

2
Q,U,U (µ) are orthogonal whenever

P ̸= Q.

Now fix a cube P ∈ D and let T ∈ τ(D) be the top containing P . For R ∈ D with P ⊊ R we

have

L2
P,{1},{1}(µ) ⊆ Span

{
1RU,

{
L2
Q,U,U (µ)

}
Q∈D: Q⊆R and l(P )≤l(Q)≤l(R)

}
.

Letting R tend to infinity, we conclude

L2
P,{1},{1}(µ) ⊆ Span

{
1TU,

{
L2
Q,U,U (µ)

}
Q∈D: Q⊂T and l(P )≤l(Q)

}
. (2.5.1)

The Haar spaces L2
Q,{1},{1}(µ) and 1T form a direct sum decomposition of L2(µ), i.e.

L2(µ) = {1T }T∈τ(D) ⊕

⊕
Q∈D

L2
Q,{1},{1}(µ)

 .
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We can now apply 2.5.1 to each Alpert space in this decomposition and we have

L2(µ) = {1TU}T∈τ(D) ⊕

⊕
Q∈D

L2
Q,U,U (µ)

 .

Lastly we observe that the moment vanishing conditions follow from the definition of L2
Q,U,U (µ),

and the telecoping identities are an immediate consequence. This completes the proof.

Remark 2. It might seem strange that we have separated the sets U and V in our definition of

L2
Q,U,V (µ), only to immediately take U = V for the main theorem. The separation will become

useful when we want to consider applying extra moment vanishing conditions to some of the Alpert

functions, i.e. requiring that some Alpert functions belong to L2
Q,U,V (µ) for U ⊆ V .

To emphasize a point that can get lost in the notation: the projections on a given dyadic top

T in Theorem 2 are needed only when at least one function in U has a finite integral over T . In

the particular case where U contains only polynomial functions, this condition is met if and only

if T has finite µ-measure. This observation is due to Alexis, Sawyer, and Uriarte-Tuero [1].

2.6 Algebraic Geometry

Section 3.3 will investigate the special case of Alpert wavelet bases L2
Q,U,U (µ) where U is taken

to be the set of all monomials up to some fixed degree. The additional structure afforded by this

choice allows for stronger conclusions than in the general case we explore in section 3.1. These

results are found by applying tools from the field of algebraic geometry, which we summarize

here.

For polynomials p and q, we will say p is a multiple of q—or equivalently that p is divisible by

q—if there is some polynomial r such that p = rq. Denote by R[x] the ring of real polynomials

in n variables, where n will be understood from context.

Definition 9 (Algebraic Set). Let S be a set of polynomials in R[x]. The zero locus Z(S) ⊆ Rn

is the set of common roots to every p ∈ S. An (affine) algebraic set V in Rn is any subset of Rn

which is the zero locus of some S.
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In the event that S contains a single function p we will write Z(p) as an abbreviation for

Z({p}).

Lemma 5. Let S1, S2 be two finite sets of polynomials in R[x]. If V1 = Z(S1) and V2 = Z(S2)

are two algebraic sets in Rn, then V1 ∩ V2 and V1 ∪ V2 are also algebraic sets.

Proof. V1 ∩ V2 is exactly the set of points which are common roots to S1 and S2, so we have

V1 ∩ V2 = Z(S1 ∪ S2).

For V1 ∪ V2, first define

S1 × S2 := {pq : p ∈ S1, q ∈ S2}.

For any x ∈ V1 we have x ∈ Z(S1 ×S2) since every element in S1 ×S2 has x as a root. The same

holds for x ∈ V2 and so V1 ∪ V2 ⊆ Z(S1 × S2).

Conversely, if x ∈ Z(S1 ×S2) then x is a root of every polynomial pq with p ∈ S1 and q ∈ S2.

Suppose that there is some p0 ∈ S1 such that x is not a root of p. Then since x is a root of p0q for

every q ∈ S2, it follows that x is a root of every q ∈ S2 and so x ∈ V2. By an identical argument,

if x is not a root of some q0 ∈ S2 then x must be in V1. Therefore Z(S1 × S2) ⊆ V1 ∪ V2 and

consequently V1 ∪ V2 = Z(S1 × S2).

This is sufficient for our purposes, but we will add a little expository background. The

construction of V1 ∩ V2 above clearly holds for arbitrary intersections, so this gives rise to a

natural topology where the closed sets are precisely the algebraic sets. This topology is named

the Zariski topology. An algebraic set V is called an affine variety if it cannot be expressed as

the proper union of two algebraic subsets. Consequently any algebraic set can be expressed as a

union of affine varieties.

Definition 10 (Monomial Order). A monomial order M on R[x] is a well-ordering on the set of

all (monic) monomials in n variables which respects multiplication. That is, for any monomials

u, v, w we have u < v implies uw < vw. A monomial order is graded if xα < xβ implies |α| ≤ |β|

for any α, β ∈ Nn.

For this work we will only use degree lexicographic order, in which monomials are ordered first

by total degree, then by degree of x1, then by degree of x2, etc. This choice is for expositional
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simplicity; in practice there will often be some other choice of monomial order which achieves the

same results but yields greater computational efficiency.

Definition 11 (Leading Term). Let M be a monomial order on Rn. For a polynomial p ∈ R[x],

the leading term LT (p) is the greatest monomial in p with respect to M . Similarly for any set S

of polynomials, LT (S) is the set of leading terms {LT (p)}p∈S.

Given an ideal I ∈ R[x], the leading term ideal of I is the ideal ⟨LT (I)⟩ generated by the

leading terms of I. Note that the set of leading terms LT (I) is not itself an ideal, since the sum

of two distinct monomials is generally not a monomial.

Definition 12 (Gröbner Basis). Let M be a monomial order on Rn and let I be an ideal in R[x].

A Gröbner basis G for I is a generating set for I such that for any polynomial p ∈ I, LT (p)

is divisible by LT (q) for some q ∈ G. A Gröbner basis is called reduced if no monomial in any

p ∈ G is in LT (G \ {p}) and every p ∈ G is monic.

An equivalent definition is: a Gröbner basis G is a generating set for I such that ⟨LT (I)⟩ =

⟨LT (G)⟩. While Gröbner bases depend on the choice of monomial order and in general are not

unique, they are guaranteed to exist for polynomial rings over a field in finitely many variables.

Moreover, for a given monomial order there is a unique reduced Gröbner basis.

Gröbner bases are efficiently computable for any choice of monomial basis, although the details

of such computations are not important for our results. For the interested reader we provide one

such algorithm in appendix B.

Definition 13 (Hilbert Dimension). Let I be an ideal in R[x]. The Hilbert dimension of I is the

maximal size of a subset S of variables in x such that no leading monomial in I can be expressed

entirely using variables in S.

Observe that Hilbert dimension can be easily computed using a Gröbner basis; given an ideal I

with Gröbner basis G, the set of leading terms LT (I) is equal to LT (G). So the size of a maximal

set of variables which produces none of the elements in LT (G) gives the Hilbert dimension of I.
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Chapter 3

Structure of Weighted Alpert

Wavelets

3.1 Dimensions of Alpert Spaces

In this section we study the structure of individual Alpert spaces L2
Q,U,V (µ). Our goal is to

concretely describe a method for finding the dimensions of such spaces.

Recall the informal definition of L2
Q,U,V (µ): this is the space of functions which are piecewise

sums of functions in 1Q′U , with Q′ varying over the children of Q, subject to moment vanishing

conditions given by 1QV . This leads to a natural first guess; perhaps the dimension of L2
Q,U,V (µ)

is simply the sum of the dimensions of each Span(1Q′U) minus the dimension of Span(1QV ).

This calculation does give the correct dimension for the Lebesgue Haar and Alpert wavelet bases

described in sections 2.3 and 2.4. Alas, the pattern does not hold in general.

Example 7. Take µ to be Lebesgue measure on R, and D to be a dyadic grid containing the

interval I = [−1, 1). If we take U = V0 = {1} then L2
I,U,V0

(µ) is the usual one-dimensional

Haar space spanned by 1Il − 1Ir . If we now expand the set of moment vanishing conditions

to V1 = {1, x}, we see that L2
I,U,V0

(µ) contains no non-trivial functions orthogonal to x and so

L2
I,U,V1

(µ) has dimension zero. This is the behaviour our naive guess expected; adding an extra

moment vanishing condition reduced the dimension of the Alpert space by one.

To break the pattern, instead take V2 = {1, x2}. Now we see that the Haar functions in
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L2
I,U,V0

(µ) are already orthogonal to x2—indeed they are orthogonal to every even function on R.

Therefore L2
I,U,V0

(µ) and L2
I,U,V2

(µ) are the same space and have the same dimension, despite the

additional moment vanishing condition.

This shows that considering the various parameters in isolation is insufficient to produce an

answer in the general case. Instead we consider the effect of adding a single new moment vanishing

condition to an Alpert space.

Theorem 3. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, Q ∈ D,

U, V ⊆ L2
loc(µ) be finite sets, and f ∈ L2

loc(µ) be a function such that f /∈ V . Then either

dimL2
Q,U,V ∪{f}(µ) = dimL2

Q,U,V (µ), if f is orthogonal to all of L2
Q,U,V (µ), or dimL2

Q,U,V ∪{f}(µ) =

dimL2
Q,U,V (µ)− 1.

Proof. If f is orthogonal to all of L2
Q,U,V (µ) then L2

Q,U,V ∪{f}(µ) and L2
Q,U,V (µ) are the same

space and trivially have the same dimension. Suppose instead that f is not orthogonal to all of

L2
Q,U,V (µ). Let {b1, ..., bk} be a basis for L2

Q,U,V (µ) and suppose without loss of generality that f

is not orthogonal to b1.

Now for i = 2, ..., k, define the constant ci ∈ R as

ci = −
∫
Q bi(x)f(x) dµ(x)∫
Q b1(x)f(x) dµ(x)

.

This gives

⟨bi + cib1, f⟩ =
∫
Q
bi(x)f(x) dµ(x)−

∫
Q bi(x)f(x) dµ(x)∫
Q b1(x)f(x) dµ(x)

∫
Q
b1(x)f(x) dµ(x) = 0

so bi + cib1 is orthogonal to f . Now suppose that {bi + cib1}i=2,...,k contains a linear dependence.

Then we would have
k∑

i=2

ai(bi + cib1) = 0

for some constants ai ∈ R, i = 2, ...k not all zero. Rearranging gives

(
k∑

i=2

aici

)
b1 +

k∑
i=2

aibi = 0

which is impossible as {b1, ..., bk} is a basis for L2
Q,U,V (µ). Consequently {bi+cib1}i=2,...,k is linearly
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independent and forms a basis for L2
Q,U,V ∪{f}(µ), and we conclude that dimL2

Q,U,V ∪{f}(µ) =

dimL2
Q,U,V (µ)− 1

The key insight here is that L2
Q,U,∅(µ) is a finite-dimensional vector space, and that any

L2
Q,U,V (µ) is a subspace of L2

Q,U,∅(µ). In particular, suppose that V = {v1, ...vk} is a finite set of

functions none of which are orthogonal to L2
Q,U,∅(µ). Then by Theorem 3, each L2

Q,U,{vi}(µ) is a

hyperplane inside L2
Q,U,∅(µ), and

L2
Q,U,V (µ) =

⋂
i=1,...,k

L2
Q,U,{vi}(µ).

We know from elementary linear algebra that k hyperplanes can intersect in a subspace which

has dimension anywhere from 1 to k less than the ambient space, and in light of this cases like

Example 7 are unsurprising.

Corollary 1. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, Q ∈ D,

and U, V ⊆ L2
loc(µ) be finite sets. Then

∑
Q′∈C(Q)

dimPQ′,U (µ)− dimPQ,V (µ) ≤ dimL2
Q,U,V (µ) ≤

∑
Q′∈C(Q)

dimPQ′,U (µ).

Proof. Let V0 ⊆ V be a maximal subset such that 1QV0 is linearly independent. Suppose that

f ∈ L2
loc(µ) is a function which can be expressed as a linear combination of the elements in V0.

Since L2
Q,U,V0

(µ) is orthogonal to all of V0, it is also orthogonal to f . Then by applying the first

conclusion of Theorem 3 to each f ∈ V \ V0, we conclude that L2
Q,U,V (µ) and L

2
Q,U,V0

(µ) are the

same space.

Now since dimPQ,V (µ) = dimPQ,V0(µ) = #V0, applying Theorem 3 to each element in V0

gives

dimL2
Q,U,∅(µ)−#V0 ≤ dimL2

Q,U,V0
(µ) ≤ dimL2

Q,U,∅(µ)

and consequently

∑
Q′∈C(Q)

dimPQ′,U (µ)− dimPQ,V (µ) ≤ dimL2
Q,U,V (µ) ≤

∑
Q′∈C(Q)

dimPQ′,U (µ)

as desired.

33



Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

Theorem 3 is, in a sense, a double-edged sword. On the one hand, it does not give a simple

closed form for finding dimL2
Q,U,V (µ). Without investigating the underlying geometry in a given

case, we cannot conclude more about an Alpert space’s dimension than the inequality given in

Corollary 1.

On the other hand, when it comes to construction of a particular Alpert basis, this is not

a serious problem. The algorithm for constructing Alpert bases—given in Section 2.4—already

requires finding a non-orthogonal basis function for each orthogonality condition to be introduced.

Any “freebies” among the set of moment vanishing conditions will be discovered in the course

of performing the algorithm, and Theorem 3 guarantees that there are no other kinds of bad

behaviour to be concerned about.

Lastly, we emphasize that these considerations are only a concern when the additional moment

vanishing properties allowed by Alpert bases are of interest; this is equivalent to asking that a

basis for L2
Q,U,U (µ) additionally have some elements belonging to L2

Q,U,V (µ) for some V ⊇ U . If

any basis for L2
Q,U,U (µ) will suffice, the situation is much simpler.

Corollary 2. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, Q ∈ D,

and U, V ⊆ L2
loc(µ) be finite sets such that V ⊆ U . Then

dimL2
Q,U,V (µ) =

∑
Q′∈C(Q)

dimPQ′,U (µ)− dimPQ,V (µ).

Proof. Since V ⊆ U , we have PQ,V ⊆ L2
Q,U,∅(µ). PQ,V is therefore the orthogonal complement of

L2
Q,U,V (µ) inside L

2
Q,U,∅(µ) as finite-dimensional vector spaces, and the result follows immediately.

So the problem of finding dimensions and bases for Alpert spaces L2
Q,U,U (µ) reduces to the

equivalent problem for component spaces PQ,U (µ). A maximal set of linearly independent func-

tions in U gives a basis for PQ,U (µ), so given Q, U , and µ it suffices to find such a set. A brute

force algorithm could proceed as follows: begin with the entire set U and iteratively apply the

Gram Schmidt process to identify and eliminate dependent functions until a basis is found. This

is rather inefficient, so in section 3.3 we will give a more sophisticated algorithm when working

with polynomial Alpert bases.
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3.2 Variable Alpert Bases

The standard construction of an Alpert basis chooses some set of orthogonality conditions to

be applied to the basis functions on each dyadic cube. In this section we show that this can be

relaxed: each cube Q can be given a differing set of orthogonality conditions, and with a small

modification the resulting functions still form an orthonormal basis for L2(µ).

Let D be a dyadic grid on Rn and Q ∈ D. We define the tower Γ(Q) as the set of all cubes in

D which contain Q. The top T of a tower Γ(Q) is defined as the countable union of all cubes in

the tower. As an immediate consequence of the nesting property of towers, any two towers will

either have the same top or two disjoint tops. This gives an equivalence relation on the towers in

D, where Γ1 and Γ2 are equivalent if their tops coincide. Let τ(D) denote the set of unique tops

arising from any choice of representatives from each equivalence class.

Alexis, Sawyer, and Uriarte-Tuero in [1] observed that, besides bases for each L2
Q,U,U , a

standard Alpert basis may also require the restrictions to some dyadic tops of functions in U .

Specifically, for every f ∈ U and T ∈ τ(D), if 1T f has finite L2(µ)-norm then it must be included

in the Alpert basis. This remains true for our generalization.

Let Eµ
Q,U denote orthogonal projection onto PQ,U (µ). With a slight abuse of notation we will

allow a dyadic top T ∈ τ(D) in place of the dyadic cube Q, so PT,U (µ) is the space of restrictions of

U to T and Eµ
T,U is the associated projection. Let △µ

Q,U,V similarly denote orthogonal projection

onto L2
Q,U,V (µ).

For sets of functions U ⊆ V we will also need to consider the orthogonal complement

of PQ,U (µ) inside PQ,V (µ). As our notation is already somewhat cumbersome, we will write

PQ,V (µ) ⊖ PQ,U (µ) to denote such a subspace and Eµ
Q,V − Eµ

Q,U to denote the corresponding

projection. Lastly, recall that P (Q) denotes the parent of Q.

Theorem 4. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, and

{UQ}Q∈D be a collection of finite sets in L2
loc(µ) and having the following properties:

1. 1 ∈ UQ for every Q ∈ D.

2. UQ ⊆ UQ′ for every Q ∈ D and every Q′ ∈ C(Q).
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For each dyadic top T ∈ τ(D), let UT = ∩Q⊂TUQ. Then

{
△µ

Q,UQ,UQ

}
Q∈D

∪
{
Eµ
Q,UQ

− Eµ
Q,UP (Q)

}
Q∈D

∪
{
Eµ
T,UT

}
T∈τ(D)

is a complete set of orthogonal projections in L2(µ) and

f =
∑
Q∈D

△µ
Q,UQ,UQ

f +
∑
Q∈D

(
Eµ
Q,UQ

− Eµ
Q,UP (Q)

)
f +

∑
T∈τ(D)

Eµ
T,UT

f, f ∈ L2(µ)

where convergence holds both in L2(µ) and pointwise µ-almost everywhere. Moreover we have

telescoping identities,

1Q
∑

P :Q⫋P⊆R

△µ
P,UP ,UP

= Eµ
Q,UQ

− 1QEµ
R,UR

for all Q ⫋ R ∈ D with UQ = UR,

and moment vanishing conditions

∫
Rn

△µ
Q,UQ,UQ

f(x)p(x) dµ(x) = 0, for all Q ∈ D, p ∈ UQ.

Here the △µ
Q,UQ,UQ

are the usual Alpert projections, and the Eµ
T,UT

are the aforementioned

projections on the tops of D. The Eµ
Q,UQ

− Eµ
Q,UP (Q)

are the necessary addition which allows the

basis to retain completeness while varying UQ, which we prove now. Besides this consideration,

we otherwise follow the strategy used by Rahm, Sawyer, and Wick in [14, Theorem 1] to show

the equavialent result for polynomial Alpert bases.

Proof. Fix Q ∈ D. By construction we have

L2
Q,UQ,UQ

(µ)⊕ PQ,UQ
(µ) = L2

Q,UQ,∅(µ). (3.2.1)

Applying this to each child Q′ ∈ C(Q) we have

⊕
Q′∈C(Q)

PQ′,UQ′ (µ)⊕
⊕

Q′∈C(Q)

L2
Q′,UQ′ ,UQ′ (µ) =

⊕
Q′∈C(Q)

L2
Q′,UQ′ ,∅(µ).
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The leftmost sum in this expression can be rewritten as

⊕
Q′∈C(Q)

PQ′,UQ′ (µ) = L2
Q,UQ,UQ

(µ)⊕ PQ,UQ
(µ)⊕

⊕
Q′∈C(Q)

(
PQ′,UQ′ ⊖ PQ′,UQ

(µ)
)
.

The nesting property UQ ⊆ UQ′ guarantees that this construction is valid.

Next consider the tower Γ(Q) and choose some S ∈ Γ(Q). Let X be the set of all cubes R

contained in S and with side lengths l(Q) < l(R) ≤ l(S). Applying the above argument iteratively

to every P ∈ X yields

⊕
Q′⊂S

l(Q′)=l(Q)

L2
Q′,UQ′ ,∅(µ) =

⊕
R∈X

L2
R,UR,UR

(µ)⊕ PS,US
(µ)⊕

⊕
R∈X

(
PR,UR

⊖ PR,UP (R)(µ)
)
.

In particular, this sum contains the Haar space L2
Q,{1},{1}(µ) since 1 ∈ UQ.

Now take the limit of this construction as S tends to infinity. Let T be the top of Γ(Q); in

the limit, PS,US
(µ) becomes PT,UT

(µ). Thus for any Q ∈ D we have

L2
Q,{1},{1}(µ) ⊆

⊕
Q∈D

L2
Q,UQ,UQ

(µ)⊕
⊕

T∈τ(D)

PT,UT
(µ)⊕

⊕
Q∈D

(
PQ,UQ

⊖ PQ,UP (Q)(µ)
)
.

We know that the Haar spaces L2
Q,{1},{1}(µ), Q ∈ D, together with projections on the tops

PT,{1}(µ), T ∈ τ(D), form a direct sum decomposition of L2(µ). We also have PT,{1}(µ) ⊆

PT,UT
(µ) since 1 ∈ UQ for every Q ∈ D, so we conclude

L2(µ) =
⊕
Q∈D

L2
Q,UQ,UQ

(µ)⊕
⊕

T∈τ(D)

PT,UT
(µ)⊕

⊕
Q∈D

(
PQ,UQ

⊖ PQ,UP (Q)(µ)
)
.

The moment vanishing conditions are satisfied by construction: the nesting property UQ ⊆ UQ′

ensures that any △µ
Q,UQ,UQ

f is orthogonal to every p ∈ UR for any R ∈ D containing Q. Lastly

the telescoping property follows by chaining together instances of (1), exactly as in the standard

Alpert construction.

This construction partially alleviates one of the drawbacks of Alpert bases, namely that extra

orthogonality is achieved only by making the basis much larger than its Haar counterpart. This

might be of interest in applications where the additional orthogonality is only needed locally,
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or only beyond a particular level of resolution. We end with a pair of remarks concerning the

structure of the resulting basis.

Remark 3. The telescoping identity in Theorem 4 is weaker than in a standard Alpert basis

where all UQ are equal. However since we still have UR ⊆ UQ for Q ⊆ R, multiple instances of

this weaker identity can be chained together to produce an expression that is still “good”. At each

level in the chain one subtracts projections only onto the functions which are in UP ′ but not in

UP , for P
′ ∈ C(P ).

Remark 4. The projections at the tops can be interpreted as a special case of the projections

Eµ
Q,UQ

− Eµ
Q,UP (Q)

. If we think of a top T as being a kind of dyadic cube and define UP (T ) = ∅,

as tops do not have parents, then Eµ
Q,UP (T )

is trivial and we recover the usual projection on T .

In this sense our generalization only extends an existing complexity in Alpert bases, rather than

introducing a new one.

Figure 3.2.1 on the following page summarizates the relations between the various types of

Haar and Alpert wavelet basis we have seen in this work. For each type of basis we show the

corresponding decomposition of L2 into Alpert spaces, as well as references for each.

3.3 Structure Theorem for Polynomial Alpert Bases

In section 3.1, we saw that the dimension of an Alpert space L2
Q,U,V (µ) depended non-trivially

on the underlying geometry of both the measure µ and the set of functions U, V in question. We

now turn our attention to the specific case of polynomial Alpert bases; the additional structure

this affords will allow us to draw more precise conclusions. We consider spaces L2
Q,U,U (µ) where

U is taken to be the set of all monomials in n variables up to some fixed degree. Since we will

use such sets heavily in this section it is useful to have the following notation.

Definition 14. Given k, n ∈ N, define Fn
k to be the set of all monomials in n variables with

degree less than k.

Lemma 6. Given k, n ∈ N, the number of monomials in n variables with degree less than k is

#Fn
k =

(
n+k−1

n

)
.
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1-dimensional Haar⊕
Q∈D

L2
Q,{1},{1}(R)

Section 2.3
Haar [10]

1-dimensional Alpert⊕
Q∈D

L2
Q,U,V (R)

Section 2.4
Alpert [3]

Multidimensional Haar⊕
Q∈D

L2
Q,{1},{1}(R

n)

Multidimensional Alpert⊕
Q∈D

L2
Q,U,V (Rn)

Alpert [3]

Weighted Haar⊕
Q∈D

L2
Q,{1},{1}(µ)⊕

⊕
Γ∈τ(D)

PΓ,{1}(µ)

Weighted Alpert⊕
Q∈D

L2
Q,U,V (µ)⊕

⊕
Γ∈τ(D)

PΓ,U (µ)

Section 2.5
Rahm, Sawyer, and Wick [14]

Variable Weighted Alpert⊕
Q∈D

L2
Q,UQ,VQ

(µ)⊕
⊕

Γ∈τ(D)

PΓ,U (µ)

Section 3.2

Figure 3.2.1: Relations among classes of wavelet basis
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Proof. Consider a string containing k − 1 copies of the symbol ⋆ and n copies of the symbol |,

arranged in some arbitrary order. Such a string is a graphical representation of the partitioning

of the integer k − 1 into a sum of n + 1 non-negative integers; the elements of the sum are the

numbers of consecutive ⋆’s. Alternatively, the same string can also be interpreted as partitioning

an integer i, 0 ≤ i ≤ k−1 into n non-negative integers by discarding the final | and any following

⋆’s.

Let xα be a monomial in n variables with degree less than k. The exponent α is precisely an

n-tuple of non-negative integers whose sum is at most k − 1 (and at least 0). Therefore we have

a one-to-one correspondence between the set of monomials in n variables with degree less than k

and the set of partitions of all integers i, 0 ≤ i ≤ k − 1. From above, these partitions also have

a one-to-one correspondence with the set of strings containing k − 1 ⋆’s and n |’s, and there are(
n+k−1

n

)
such strings. We conclude that #Fn

k =
(
n+k−1

n

)
.

Example 8. To illustrate the above counting argument, let n = 4, k = 9, and consider the

monomial xα = x31 · x2 · x24. The analogous string is:

⋆ ⋆ ⋆| ⋆ || ⋆ ⋆| ⋆ ⋆.

The two consecutive |’s indicate that x3 has an exponent of 0, and the final two ⋆’s are discarded

so that we have a monomial of degree 6 (from the maximum allowed degree of 8). The number of

strings containing 8 ⋆’s and 4 |’s is

(
4 + 8

4

)
=

(
12

4

)
= 495

so there are 495 unique monomials in 4 variables with degree less than 9.

In [14], Rahm, Sawyer, and Wick observed that polynomial Alpert spaces over certain mea-

sures had lower dimension than the corresponding spaces would have over Lebesgue measure—

indeed, it was that observation which first motivated this thesis. From Corollary 2 we have

dimL2
Q,Fn

k ,Fn
k
(µ) =

∑
Q′∈C(Q)

dimPQ′,Fn
k
(µ)− dimPQ,Fn

k
(µ).

This behaviour is therefore explained by observing that, unlike in Lebesgue measure, the mono-
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mials in Fn
k are not guaranteed to be linearly independent and consequently that dimPQ,Fn

k
(µ)

might be less than #Fn
k .

This reduces the question of finding dimL2
Q,Fn

k ,Fn
k
(µ) to the question of finding dimPQ,Fn

k
(µ)

for arbitrary Q. It is not immediately obvious that this can be done easily; even if some subset

of Fn
k is linearly independent in L2(µ), it might be linearly dependent in L2

Q(µ) for some Q. As

a simple example, all monomials (and indeed all functions) are linearly dependent in L2
Q(µ) if µ

assigns weight to only a single point mass inside Q.

Definition 15. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, and

Q ∈ D. Define AQ to be the intersection of all algebraic sets A such that µ(Q \A) = 0

Definition 16. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, and

Q ∈ D. Define IQ to be the ideal of all polynomials in R[x] which vanish on AQ.

Informally, AQ and IQ give a canonical representation of all the linear dependences among

Fn
k in L2

Q(µ). Computing a generating set for IQ given AQ is a difficult problem, in the sense

that there is no general algorithm for producing such sets and individual cases must be attacked

heuristically. However, provided that we can find a generating set for IQ, we can then leverage a

Gröbner basis to compute a basis for PQ,Fn
k
(µ).

Theorem 5. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, Q ∈ D,

and k ∈ N. Also let M be a graded monomial order and G be the reduced Gröbner basis for IQ.

Define depk(G) to be the set of all monomials u ∈ Fn
k which are divisible by some monomial

v ∈ LT (G), and define indk(G) to be the complement of depk(G) in F
n
k . Then indk(G) is a basis

for PQ,Fn
k
(µ), and consquently dimPQ,Fn

k
(µ) = #Fn

k −#depk(G).

Proof. Suppose indk(G) contains a linear dependence in L2
Q(µ), given by some polynomial p(x) =

0. Then p ∈ IQ, so LT (p) ∈ LT (G) and LT (p) /∈ indk(G). This is a contradiction, so indk(G) is

linearly independent in L2
Q(µ) and it remains to show that indk(G) is maximal.

Let u0 ∈ depk(G) and consider the set T := {u0} ∪ indk(G). Since u0 ∈ LT (G), there is

some monomial v0 ∈ Fn
k and some polynomial p0 ∈ G such that u0 = LT (v0p0). Then since the

monomial order M is graded and LT (v0p0) has degree less than k, all monomials in v0p0 must

have degree less than k and so v0p0 is a linear dependence in Fn
k . It now suffices to show that

v0p0 can be expressed using only monomials in T .
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Let u1 /∈ T be a non-leading monomial occurring in v0p0. Since u1 ∈ depk(G) there is some

monomial v1 ∈ Fn
k and some polynomial p1 ∈ G such that u1 = LT (v1p1). The non-leading

monomials in v1p1 all have order less than u1, so we can replace u1 in v0p0 with lower order

monomials. Since depk(G) is finite, iterating this process a sufficient number of times yields a

representation for v0p0 using only monomials in T . Consequently T is linearly dependent in L2
Q(µ)

for any choice of u0 ∈ depk(G), so we conclude that indk(G) must be a basis for PQ,Fn
k
(µ).

We can now justify our restriction to the case of Fn
k , rather than arbitrary collections of

monomials: these sets have the special property that any monomial not in Fn
k is greater than any

monomial in Fn
k with respect to the graded monomial order M . If we take an arbitrary set of

monomials U which does not have this property, then even if an element of U is divisible by some

element of LT (G) the corresponding linear dependence may involve monomials which are not in

U . Since a monomial order must respect multiplication, most sets U will not allow a choice of

monomial order which avoids this problem.

Fortunately, this result is sufficient to construct the desired basis for L2
Q,Fn

k ,Fn
k
(µ). Theorem

5 finds a monomial basis for PQ,Fn
k
(µ) and every PQ′,Fn

k
(µ) with Q′ ∈ C(Q). Then Alpert’s

projection technique from section 2.4 imposes the necessary orthogonality on the basis elements.

As a final step, an orthonormal basis can be achieved by applying Gram-Schmidt in reverse order,

beginning with the basis function with the most additional moment vanishing and ending with

the least.

3.3.1 Suuplemental Results

In addition to our main result from the previous section, we have collected a scattering of

more minor observations regarding polynomial Alpert bases. We present them here.

Lemma 7. Let I be an ideal in R[x] with Hilbert dimension d. Then there exists k ∈ N such that

xα ∈ LT (I) for all α ∈ Nn with more than d entries greater than k.

Proof. Suppose toward a contradiction that there is no such k. Then for every k ∈ N we can

associate an xαk /∈ LT (I) where at least d + 1 entries in αk are greater than k. This yields the

sequence of monomials {xαk}k∈N. Since there are only finitely many variables to choose from,
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there must be a set S = {xi1 , xi2 , . . . , xid+1
} of d + 1 distinct variables such that for any l ∈ N

the product xli1 · x
l
i2
· · ·xlid+1

divides some monomial in {xαk}k∈N. Since no xαk is in LT (I), we

conclude that xli1 · x
l
i2
· · ·xlid+1

/∈ LT (I) for all l ∈ N.

Now we see that any product of the variables in S divides xli1 ·x
l
i2
· · ·xlid+1

for some sufficiently

large choice of l, and consequently any product of these variables produces a monomial not in

LT (I). Therefore S shows that I must have Hilbert dimension at least d+1. This completes the

contradiction, so such a k must exist.

Building on this idea, we have the following intuition: by theorem 5, the leading terms of

a Gröbner basis for IQ determine the linearly dependent monomials that need to be excluded

to form a basis for PQ,Fn
k
(µ). After making all of these exclusions, what remains should grow

like a Lebesgue polynomial function space. While this doesn’t allow us to compute dimPQ,Fn
k
(µ)

directly, it does characterize the growth rate of this dimension as k increases. Here we use big O

notation in its usual meaning: f(x) = O(g(x)) if for some constant C > 0 and some x0 we have

|f(x)| ≤ C · g(x) for all x > x0.

Theorem 6. Let µ be a locally finite positive Borel measure on Rn, D be a dyadic grid, Q ∈ D,

and k ∈ N. Suppose that IQ has Hilbert dimension d. Then dimPQ,Fn
k
(µ) = O(kd).

Proof. If d = n we are immediately done, so suppose that d < n. For any set S′ of d + 1

variables, consider all monomials that can be expressed using only variables in S′. At least one

such monomial must be a leading monomial within IQ, otherwise this set would give IQ a Hilbert

dimension of at least d+1. Thus we cannot have an independent monomial containing arbitrarily

high powers of all d+1 variables in S′. For any choice of variable to have a bounded power, there

are O(kd) such monomials. As there are only finitely many variables to choose, the total number

of independent monomials using only variables in S′ is at most O(kd).

Now we generalize this argument to any set of more than d variables. By lemma 7, the

largest number of variables which can all have arbitrarily large powers and still multiply to an

independent monomial is d. For any choice of d variables the remaining n− d variables must all

have bounded powers, and the total number of such monomials is O(kd). There are finitely many

ways to choose d variables, so even if every such monomial were independent and each choice of

d variables yielded a disjoint set of independent monomials, we would have at most O(kd).
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While this theorem tells us that the growth rate of dimPQ,Fn
k
(µ) (as a function of k) is

polynomial of degree d, it is not possible to give an upper bound on the leading coefficient of that

polynomial. To see this, take the ideal generated by xtn−d · xtn−d+1 · · ·xtn for some t ∈ N. This

ideal has Hilbert dimension d for any choice of t, but the number of monomials outside this ideal

grows with t.

There remains the question of imposing additional moment vanishing conditions on a basis

for L2
Q,Fn

k ,Fn
k
(µ). We saw in example 7 that it is possible for an Alpert basis to satisfy extra

orthogonality conditions beyond those directly imposed by the construction of the basis. However,

in that example the basis Haar functions were piecewise constant and the accidental condition

satisfied was orthogonality to x2. In this section, we have restricted ourselves to considering

monomials subject to a graded monomial order; this would disqualify the above example as

the next monomial to be considered would be x, rather than x2. We might hope that this

extra restriction would cause accidental moment vanishing to not occur, and therefore allow the

exact number of available orthognality conditions to be found by considering only the individual

monomial spaces.

Sadly, in two or more dimenions this is still not the case. The following example shows that

even with the additional restriction of a graded monomial order, it is possible for a Haar basis to

contain accidental orthogonality.

Example 9. Let µ be the measure with point masses located at the four points (0.1, 0.1), (0.4, 0.3),

(0.2, 0.7), and (0.3, 0.8), each having mass 1
4 and which has no mass elsewhere. Also let D∗ be

the standard dyadic grid, Q ∈ D∗ be the unit square, and Q1 through Q4 be the children of Q

ordered counterclockwise from the upper right. Then the Haar space L2
Q,{1},{1}(µ) has dimension

one and hQ(x) = 1Q2(x)− 1Q3(x) is a Haar function for Q. This gives

∫
Q
hQ(x) · x dµ(x) =

∫
Q
1Q2(x) · x dµ(x)−

∫
Q
1Q3(x) · x dµ(x)

=
1

4

(
x
∣∣
(0.2,0.7)

+ x
∣∣
(0.3,0.8)

− x
∣∣
(0.1,0.1)

− x
∣∣
(0.4,0.3)

)
=

1

4
(0.5− 0.5)

= 0.

So hQ(x) is orthogonal to x despite this not being imposed by the construction of the Haar basis.
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Figure 3.3.1: A point mass measure yielding accidental orthogonality in R2

The four point masses in this example were chosen to emphasize that µ need not contain any

obvious geometric structure; as long as the x-coordinates of the point masses in each child sum

to the same total hQ(x) will be orthogonal to x. This example also showcases that the extra

orthogonality is possible even though 1 and x are linearly independent on each of Q, Q2, and Q3.

Interestingly, this behaviour is not replicated in one dimension. It turns out that in example

7, the choice of x2 rather than x was crucial; a Haar basis in one dimension can never achieve

orthogonality against x. We show this now.

Theorem 7. Let µ be a locally finite positive Borel measure on R, D be a dyadic grid, and I ∈ D

be an interval such that the Haar space L2
I,{1},{1}(µ) is not trivial. Then the Haar function hI(x)

on I is not orthogonal to x.

Proof. A Haar function for I is given by:

hI(x) =
1√
µ(I)

(√
µ(Ir)

µ(Il)
1Il(x)−

√
µ(Il)

µ(Ir)
1Ir(x)

)
.
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Suppose toward a contradiction that hI(x) is orthogonal to x. Then we would have

∫
I
hI(x) · x dµ(x) =

1√
µ(I)

∫
I

(√
µ(Ir)

µ(Il)
1Il(x)−

√
µ(Il)

µ(Ir)
1Ir(x)

)
· x dµ(x)

=
1√
µ(I)

(√
µ(Ir)

µ(Il)

∫
Il

x dµ(x)−

√
µ(Il)

µ(Ir)

∫
Ir

x dµ(x)

)
= 0

and consequently
1

µ(Il)

∫
Il

x dµ(x) =
1

µ(Ir)

∫
Ir

x dµ(x) .

Now suppose that we alter µ by scaling the measure of all measurable subsets of Il by some

positive constant k. Both µ(Il) and
∫
Il
x dµ(x) experience the same scaling factor, and so the

lefthand side of the above equality remains unchanged. The same argument also applies to

the righthand side, so without loss of generality we can make the simplifying assumption that

µ(Il) = µ(Ir) = 1. We now have

∫
Il

x dµ(x) =

∫
Ir

x dµ(x)

where Il and Ir are non-overlapping intervals of equal measure. This is impossible; since x is a

monotone function the righthand integral must be larger than the lefthand. We have arrived at

our contradiction, and we conclude that hI(x) cannot be orthogonal to x.

3.3.2 Demonstrative Examples

At this point we have amassed a significant number of results regarding the properties of

polynomial Alpert wavelets. In this section we demonstrate the application of these results to

construct explicit bases for two example measures. The first is a point mass measure in one

dimension, and the second is a twisted cubic in three dimensions. In each case we will use the

standard dyadic grid.
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Point Mass Measure in R

Let I = [0, 1) and suppose that µ assigns a mass of 1 to the points x = 0, 14 ,
1
2 ,

3
4 and zero

elsewhere. We will generate a basis for L2
I,F 1

2 ,F
1
2
(µ) with one basis element satisfying an additional

quadratic orthogonality condition. Each of Il and Ir contains two distinct point masses so PIl,F
1
2
,

PIr,F 1
2
and PI,F 1

2
each have dimension 2—this is equivalent to saying that 1 and x are linearly

independent on each of Il, Ir, and I. Then by corollary 2 we have dimL2
I,F 1

2 ,F
1
2
(µ) = 2+2−2 = 2.

Take {1Il ,1Ilx,1Ir ,1Irx} to be a starting basis for L2
I,F 1

2 ,∅
(µ). Using Gram-Schmidt to or-

thonormalize this basis, we arrive at B = {b1, b2, b3, b4} given by

b1 =

√
2

2
1Il

b2 =

√
2

2
1Il − 4

√
2 · 1Ilx

b3 =

√
2

2
1Ir

b4 =
5
√
2

2
1Ir − 4

√
2 · 1Irx.

Notice that {b1, b2} is an orthonormal basis for PIl,F
1
2
(µ), and similarly that {b3, b4} is an or-

thonormal basis for PIr,F 1
2
(µ). Next we express the desired orthogonal functions in terms of

B:

1I =
√
2 · b1 +

√
2 · b3

1Ix =

√
2

8
b1 −

√
2

8
b2 +

5
√
2

8
b3 −

√
2

8
b4

1Ix
2 =

√
2

32
b1 −

√
2

32
b2 +

13
√
2

32
b3 −

5
√
2

32
b4.

Here we are taking advantage of the fact that 1Ix
2 ∈ L2

I,F 1
2 ,∅

(µ). This will simplify future

calculations, but we emphasize that this is a feature of this particular example and that additional

orthogonality conditions cannot always be expressed this way.
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Now to compute a basis for the orthogonal complement of PI,F 1
2
(µ) inside L2

I,F 1
2 ,∅

(µ), we have:

PI,F 1
2
(µ)⊥ = Null


√
2 0

√
2 0

√
2
8 −

√
2
8

5
√
2

8 −
√
2
8


B

= Span
{
(1,−4,−1, 0)T , (0, 1, 0,−1)T

}
B
.

(3.3.1)

Since 1Ix
2 ∈ L2

I,F 1
2 ,∅

(µ) we can similarly apply the additional quadratic orthogonality condi-

tion by finding the orthogonal complement of PI,F 1
3
(µ) inside L2

I,F 1
2 ,∅

(µ):

PI,F 1
3
(µ)⊥ = Null


√
2 0

√
2 0

√
2
8 −

√
2
8

5
√
2

8 −
√
2
8

√
2

32 −
√
2

32
13

√
2

32 −5
√
2

32


B

= Span
{
(1,−2,−1,−2)T

}
B
.

(3.3.2)

To construct a basis for L2
I,F 1

2 ,F
1
2
(µ) it suffices to select the unique basis element from 3.3.2

and any linearly independent basis element from 3.3.1—here either will suffice. For convenience

we will select the basis given by
{
(1,−2,−1,−2)T , (0, 1, 0,−1)T

}
B

as these elements happen to

already be orthogonal. Normalizing, we arrive at an Alpert basis {a1, a2} for L2
I,F 1

2 ,F
1
2
(µ) given

by

a1 =

(√
5

10
− 8

√
5

5
x

)
1Il +

(
11

√
5

10
− 8

√
5

5
x

)
1Ir

a2 =

(
1

2
− 4x

)
1Il +

(
−5

2
+ 4x

)
1Ir

where a1 is additionally orthogonal to x2.

Twisted Cubic in R3

Suppose that µ assigns arclength along the curve in R3 parameterized by

T =
{
(t, t2, t3) : t ∈ R

}
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Figure 3.3.2: The twisted cubic in R3

and zero mass elsewhere. This curve is commonly called the twisted cubic. We see that T is the

zero locus of S = {x2 − y, x3 − z} so T is an algebraic set. Note that for any Q ∈ D∗, either T

intersects Q in an arc or on a set of measure 0. Let Q ∈ D∗ such that T ∩Q is an arc. Then we

have AQ = T and IQ = ⟨x2 − y, x3 − z⟩.

Since −x(x2−y)+(x3−z) = xy−z ∈ IQ but xy /∈ ⟨x2, x3⟩ we see that S is not a Gröbner basis

for IQ. Similarly y(x2− y)−x(xy− z) = xz− y2 ∈ IQ and z(xy− z)− y(xz− y2) = y3− z2 ∈ IQ,

so x2, xy, xz, and y3 must all be in the leading term ideal of IQ. We also see x3− z is extraneous

as it can be written as a combination of x2 − y and xy − z, and x2 − y already contributes x3 to

the leading term ideal.

We now have G = {x2 − y, xy− z, xz− y2, y3 − z2} as a candidate Gröbner basis. To confirm
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that is indeed a Gröbner basis, we compute the 6 S-polynomials in G (defined in Appendix B):

S(x2 − y, xy − z) = xz − y2

S(x2 − y, xz − y2) = xy2 − yz = y(xy − z)

S(x2 − y, y3 − z2) = x2z2 − y4 = (xz + y2)(xz − y2)

S(xy − z, xz − y2) = y3 − z2

S(xy − z, y3 − z2) = xz2 − y2z = z(xz − y2)

S(xz − y2, y3 − z2) = y5 − xz3 = y2(y3 − z2)− z2(xz − y2)

(3.3.3)

and we see that every S-polynomial reduces to 0 under multivariate division by G. Therefore

G satisfies Buchberger’s criterion and is a Gröbner basis for IQ. Moreover, we will see that no

monomial in G is divisible by another leading term in G, so G is the unique reduced Gröbner

basis for IQ (under degree lexicographic order). Then by theorem 5, a maximal set of independent

monomials is given by precisely the monomials which are not multiples of any element of LT (G):

Total degree Independent monomials Dependent monomials

0 1 -

1 x, y, z -

2 y2, yz, z2 x2, xy, xz

3 y2z, yz2, z3 x3, x2y, x2z, xy2, xyz, xz2, y3

4 y2z2, yz3, z4 x4, x3y, x3z, x2y2, x2yz, x2z2,

xy3, xy2z, xyz2, xz3, y4, y3z

...
...

...

So for k ∈ N we have dimPQ,Fn
k
(µ) = 3k− 2, and the dimension of L2

Q,Fn
k ,∅(µ) is 3k− 2 times

the number of children Q′of Q such that Q′ ∩ T has positive measure.

This also verifies the growth rate given by theorem 6. From G = {x2−y, xy−z, xz−y2, y3−z2}

we see that S = {z} satisfies the criteria for Hilbert dimension 1, and that no set of two variables

does. So the ideal associated with the twisted cubic has Hilbert dimension 1—as we would
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expect from its geometry—and the number of independent monomials grows linearly with the

total degree.

It is worth mentioning that this example may be slightly misleading in one respect: we were

able to write down a linear function which gave dimPQ,Fn
k
(µ) for all k, but this is not possible

in general. We know from Theorem 6 that this dimension can be expressed as a polynomial for

sufficiently large k, but the low order terms will not always follow this pattern. This didn’t arise

in the above example because the degrees in the Gröbner basis were small, and so the independent

monomials settled into their eventual behaviour very quickly.
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Chapter 4

Stability of Weighted Alpert

Wavelets

In [19], Wilson shows that the Lebesgue Haar basis is stable in the following sense: if the

elements of a Haar basis undergo small translations and dilations and an L2 function f is then

projected onto the resulting functions, the result is still close to f in the L2 norm. In this section,

we adapt this result to the setting of weighted Alpert wavelets on R. We leave open the extension

of these ideas to Rn due to difficulties which we will explain at the end of section 4.3.

4.1 Doubling Measures

Definition 17. Let µ be a locally finite positive Borel measure on Rn. We say µ is doubling if

there exists a constant Cµ > 0 such that for any cube Q in Rn we have µ(2Q) ≤ Cµµ(Q), where

2Q is the cube with the same center as Q and double the side length.

This is not the only definition for a doubling measure; it is also common to use balls instead

of cubes. By considering the largest inscribed cube inside a ball and vice versa it can been seen

that, other than a change in the constant Cµ, these definitions are equivalent. Lebesgue measure

in Rn is, for instance, a doubling measure with doubling constant 2n. Doubling measures can

nevertheless exhibit unintuitively “bad” behaviour. For example:
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� There exist doubling measures on R which are singular with respect to Lebesgue measure.

[11]

� There exists a doubling measure on R2 which charges a rectifiable curve. [9]

In this chapter we are primarily interested in the convergence properties of wavelet bases when

small perturbations are applied. While the above definition of a doubling measure is geometrically

simple, it operates on a “large scale” which is poorly suited to this particular problem. Sawyer

shows in [15, Lemma 4] that this definition can be translated into a “small scale” definition which

looks at the annular halo around the boundary of a cube. Recall that for k > 0, k ·Q is the cube

with the same center as Q and with side length k · l(Q).

Lemma 8. Suppose µ is a doubling measure on Rn and that Q is a cube in Rn. Then for

0 < δ < 1 we have

µ ((Q \ (1− δ)Q) ≤
C2
µ

log2
1
δ

µ(Q), and

µ ((1 + δ)Q \Q) ≤
C2
µ

log2
1
δ

µ(Q).

Proof. Let δ = 2−m and let R ∈ C(m)(Q) denote the set of mth-level dyadic grandchildren, so

each R ∈ C(m)(Q) has side length l(R) = δ · l(Q). Define the collections

G(m)(Q) =
{
R ∈ C(m)(Q) : R ⊂ Q and ∂R ∩ ∂Q ̸= ∅

}
H(m)(Q) =

{
R ∈ C(m)(Q) : 3R ⊂ Q and ∂R ∩ ∂(3Q) ̸= ∅

}
Then

Q \ (1− δ)Q = G(m)(Q) and (1− δ)Q =
m⋃
k=2

H(k)(Q).
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From the doubling condition we have µ(3R) ≤ C2
µµ(R) for all cubes R, so for 2 ≤ k < m we have

µ
(
H(k)(Q)

)
=

∑
R∈H(k)(Q)

µ(R)

≥
∑

R∈H(k)(Q)

1

C2
µ

µ(3R)

=
1

C2
µ

∫
Q

 ∑
R∈H(k)(Q)

13R

 dµ

≥ 1

C2
µ

∫
Q

 ∑
R∈H(k)(Q)

1R

 dµ

=
1

C2
µ

µ
(
G(k)(Q)

)
≥ 1

C2
µ

µ
(
G(m)(Q)

)
=

1

C2
µ

µ(Q \ (1− δ)Q).

Therefore

µ(Q) ≥
m∑
k=2

µ
(
H(k)(Q)

)
≥ m− 1

C2
µ

µ(Q \ (1− δ)Q)

which completes the proof for the first inequality. The outer halo (1 + δ)Q \Q is just the inner

halo for the cube (1 + δ)Q (with a slightly different choice of δ) so the second inequality follows

immediately.

Conversely, if the annular halo around a cube is bounded in this way then µ is necessarily

doubling.

Lemma 9. Suppose µ is a locally finite positive Borel measure on Rn, and suppose that C > 0

and 0 < δ < 1 are constants such that for any cube Q we have

µ ((1 + δ)Q \Q) ≤ Cµ(Q)

Then µ is doubling.

Proof. We have (1 + δ)Q = Q ∪ ((1 + δ)Q \Q), so by Lemma 8 we have

µ ((1 + δ)Q) ≤ µ(Q) + Cµ(Q) = (1 + δ)µ(Q).
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Since (1 + δ)Q is also a cube, we can iteratively apply Lemma 8 to it. In particular we have

2Q ⊆ (1 + δ)log(1+δ) 2Q, so after log(1+δ) 2 applications of Lemma 8 we get

µ(2Q) ≤ (1 + C)log(1+δ) 2 µ(Q).

Therefore µ is doubling with doubling constant at most (1 + C)log(1+δ) 2.

Informally, this halo condition ensures that a small translation or dilation of a cube can only

produce a correspondingly small change in the cube’s measure. The perturbations we consider in

section 4.3 are defined using precisely these small translations.

4.2 Stability and Almost-Orthogonality

In [19, Section 2], Wilson shows stability (to be precisely defined momentarily) of one-

dimensional Haar wavelets on R under small translations and dilations of the individual wavelets.

Our goal in this section is to present that result and a generalized notion of perturbation in

the more general context of arbitrary bases for L2(µ), in preparation for proving the stability of

Alpert bases in section 4.3.

Definition 18 (Perturbation). Let µ be a locally finite positive Borel measure on Rn and B be

an orthonormal basis for L2(µ). A perturbation Pη on B is a set of functions {pb(η) : R+ →

L2(µ)}b∈B satisfying the conditions

lim
η→0

∥b− pb(η)∥2 = 0

and

lim
η→0

|b(x)− pb(η)(x)| = 0 for a.e. x ∈ Rn

for every b ∈ B.

Here η is the perturbation parameter of Pη. For a given value of η > 0, Pη gives a set of

L2(µ) functions Bη = {pb(η)}b∈B. We refer to this set as the perturbation of B under Pη, or

just the perturbation of B by η when Pη is clear from context. We will write bη to refer to the

perturbation of a particular element b ∈ B.
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Remark 5. In this definition, the magnitude of a perturbation is given by a single parameter η.

One might also be interested in perturbations which are intuitively defined by multiple parameters;

for example, a perturbation could include both a translation and a dilation of the elements in B.

Such cases can be handled by taking η to be the maximum among all parameters.

Definition 19 (Stability). Let µ be a locally finite positive Borel measure on Rn, B be an or-

thonormal basis for L2(µ), and P be a perturbation on B. We say that B is stable under pertur-

bation by P if there exists a positive function φ(η) : R+ → R+ with limη→0 φ(η) = 0 such that

for any f ∈ L2(µ) and any η > 0 we have

∥f − fη∥2 ≤ φ(η)∥f∥2,

where fη is the projection of f onto Bη.

We emphasize that for stability, it is only the limiting behavior of the perturbation as η

tends to zero that is important. For that reason we will generally assume that η is between zero

and some fixed upper bound. Wilson showed that this notion of stability is closely related to

almost-orthogonality.

Definition 20 (Almost-Orthogonal Set). A set {ψγ}γ∈Γ ⊂ L2(µ) is almost-orthogonal if there

exists a constant 0 ≤ C <∞ such that for all finite subsets F ⊂ Γ and constants {λγ}γ∈F ⊂ R,

∥∥∥∥∑
γ∈F

λγψγ

∥∥∥∥
2

≤ C

(∑
γ∈F

|λγ |2
)1/2

.

The almost-orthogonality constant for {ψγ}γ∈Γ is the smallest constant C for which this inequality

holds.

By duality, {ψγ}γ∈Γ is almost-orthogonal with constant C if and only if for all f ∈ L2(µ),

(∑
γ∈Γ

|⟨f, ψγ⟩|2
)1/2

≤ C∥f∥2

and C is the smallest constant for which this holds. This second formulation may be familiar to

the reader by the name Bessel sequence.

Given a non-empty set Γ we can turn the collection of almost-orthogonal families indexed
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over Γ into a vector space AO(Γ) by defining

{ψγ}γ∈Γ + {ϕγ}γ∈Γ = {ψγ + ϕγ}γ∈Γ, and

α{ψγ}γ∈Γ = {αψγ}γ∈Γ.

Then the norm ∥{ψγ}γ∈Γ∥AO(Γ) is defined to be the almost-orthogonality constant of {ψγ}γ∈Γ. An

orthonormal basis for L2(µ) is stable under perturbations which are AO(Γ)-small in the following

sense:

Lemma 10. Let δ > 0 and {ψγ}γ∈Γ ⊂ L2(µ) be a complete orthonormal set. Suppose that

{ψ̃γ}γ∈Γ ⊂ L2(µ) and {ψ̃∗
γ}γ∈Γ ⊂ L2(µ) are two families such that

∥∥{ψγ − ψ̃γ}γ∈Γ
∥∥
AO(Γ)

and∥∥{ψγ − ψ̃∗
γ}γ∈Γ

∥∥
AO(Γ)

are both less than δ. For f ∈ L2(µ), the series

∑
γ∈Γ

⟨f, ψ̃γ⟩ψ̃∗
γ

converges to some f̃ ∈ L2(µ), and ∥f − f̃∥2 ≤ δ(2 + δ)∥f∥2.

Proof. First we observe that
∥∥{ψγ}γ∈Γ

∥∥
AO(Γ)

= 1 by the Pythagorean theorem, as {ψγ}γ∈Γ is

orthonormal. Then by the triangle inequality we have

∥∥{ψ̃γ}γ∈Γ
∥∥
AO(Γ)

=
∥∥{ψ̃γ − ψγ + ψγ}γ∈Γ

∥∥
AO(Γ)

≤
∥∥{ψγ}γ∈Γ

∥∥
AO(Γ)

+
∥∥{ψ̃γ − ψγ}

∥∥
AO(Γ)

≤ 1 + δ.

The same holds for {ψ̃∗
γ}γ∈Γ. Now we produce an error bound for f̃ .

∥f − f̃∥2 =
∥∥∥∑
γ∈Γ

⟨f, ψγ⟩ψγ − ⟨f, ψ̃γ⟩ψ̃∗
γ

∥∥∥
2

=
∥∥∥∑
γ∈Γ

⟨f, ψγ⟩ψγ − ⟨f, ψγ⟩ψ̃∗
γ + ⟨f, ψγ⟩ψ̃∗

γ − ⟨f, ψ̃γ⟩ψ̃∗
γ

∥∥∥
2

=
∥∥∥∑
γ∈Γ

⟨f, ψγ⟩(ψγ − ψ̃∗
γ) + (⟨f, ψγ⟩ − ⟨f, ψ̃γ⟩)ψ̃∗

γ

∥∥∥
2

=
∥∥∥∑
γ∈Γ

⟨f, ψγ⟩(ψγ − ψ̃∗
γ) + ⟨f, ψγ − ψ̃γ⟩ψ̃∗

γ

∥∥∥
2

≤
∥∥∥∑
γ∈Γ

⟨f, ψγ⟩(ψγ − ψ̃∗
γ)
∥∥∥
2
+
∥∥∥∑
γ∈Γ

⟨f, ψγ − ψ̃γ⟩ψ̃∗
γ

∥∥∥
2
.

57



Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

Here the last line is again by the triangle inequality. Now we can bound each of these norms

using the almost-orthogonality constants derived above. For the first we have

∥∥∥∑
γ∈Γ

⟨f, ψγ⟩(ψγ − ψ̃∗
γ)
∥∥∥
2
≤ δ
(∑

γ∈Γ
⟨f, ψγ⟩

)1/2
≤ δ · 1∥f∥2

= δ∥f∥2.

And for the second we have∥∥∥∑
γ∈Γ

⟨f, ψγ − ψ̃γ⟩ψ̃∗
γ

∥∥∥
2
≤ (1 + δ)

(∑
γ∈Γ

⟨f, ψγ − ψ̃γ⟩
)1/2

≤ (1 + δ) · δ∥f∥2

= (δ + δ2)∥f∥2.

Combining these three calculations gives the desired result

∥f − f̃∥2 ≤ δ∥f∥2 + (δ + δ2)∥f∥2 = δ(2 + δ)∥f∥2.

Lastly, the almost-orthogonality condition reduces to a set of explicit integral calculations.

This is the Schur test argument that Wilson gives in [19, Theorem 1].

Theorem 8. Let µ be a locally finite positive Borel measure on Rn. Also let B be an orthonormal

basis for L2(µ) and Pη be a perturbation on B. Suppose that there exists a function φ(η) : R+ →

R+ with limη→0 φ(η) = 0 such that for every bi ∈ B we have

∑
bj∈B

|⟨bi − bηi , bj⟩| ≤ φ(η)

and for every bj ∈ B ∑
bi∈B

|⟨bi − bηi , bj⟩| ≤ φ(η).

Then B is stable under pertubation by Pη.
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Proof. Consider τ : ℓ2(B) → ℓ2(B) defined initially for finite sums F by

τ
(
{λb}b∈B

)
:=

∑
bi∈F

λb ⟨bi − bηi , bj⟩


bj∈B

.

By the Schur test, τ extends to a bounded operator with norm at most φ(η) on all of ℓ2(B).

Since {bj}bj∈B is an orthonormal basis for L2(µ) we get

∥∥∥∥∥∥
∑
bi∈F

λbi(bi − bηi )

∥∥∥∥∥∥
2

=

∑
bj∈B

∣∣∣∣∣∣
〈∑

bi∈F
λbi(bi − bηi ), bj

〉∣∣∣∣∣∣
21/2

=

∑
bj∈B

∣∣∣∣∣∣
∑
bi∈F

λbi⟨bi − bηi , bj⟩

∣∣∣∣∣∣
21/2

= ∥τ({λbi}bi∈F )∥ℓ2(B)

≤ φ(η)

∑
bi∈F

|λbi |
2

1/2

.

So we have
∥∥∑

bi∈F λbi(bi − bηi )
∥∥
2
≤ φ(η)

(∑
bi∈F |λbi |2

)1/2
, and the family of functions {bi −

bηi }bi∈B is almost-orthogonal in L2(µ) with AO-constant at most φ(η).By Lemma 10, B is stable

under perturbation by Pη.

This result reduces the question of stability to a set of relatively straightforward integral

calculations. In particular these are easily checked for the Haar basis on R under small translations

and dilations; each inner product ⟨bi − bηi , bj⟩ simplifies to the integral of a constant.

We note that the material in this section applies to any measure µ on Rn and any orthonormal

basis for L2(µ), though as we will see in section 4.3 this method has an important limitation.

While these almost-orthogonality conditions are sufficient to guarantee stability of a basis, there

do exist bases which are stable under certain perturbations but for which the sums in Theorem

8 do not converge.
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4.3 Stability of Alpert Wavelets

The goal of this section is to prove that Alpert wavelet bases are stable under η-small trans-

lations when µ is a doubling measure. It will turn out that our technique is only sufficient for the

task in one dimension, however most of the intermediate results we use hold in any dimension so

we will give all but the final statement in full generality.

In this section we consider only Alpert spaces L2
Q,Fn

k ,Fn
k
(µ), where each Alpert wavelet is

composed piecewise of polynomials of degree less than k. Since there is no potential ambiguity,

we will abbreviate this notation to L2
Q,k,k(µ) for the sake of readability.

Definition 21. A polynomial p(x) in Rn is Q-normalized if

∥1Qp∥∞ = sup
x∈Q

|p(x)| = 1.

For a Q-normalized polynomial p(x) we clearly have ∥1Qp∥2 ≤ µ(Q). In [15] Sawyer shows

that in a doubling measure µ a Q-normalized polynomial p(x) cannot have an L2(µ)-norm that

is very small relative to µ(Q).

Lemma 11. Let µ be a locally finite positive Borel measure on Rn. If µ is doubling, then for

every k ∈ N there exists a positive constant Ck such that

µ(Q) ≤ Ck

∫
Q
|p(x)|2 dµ(x)

for all cubes Q in Rn and for all Q-normalized polynomials of degree less than k.

In fact the converse is also true: if the conclusion of Lemma 11 holds then µ is necessarily a

doubling measure. The proof of this lemma is somewhat technical and not necessary to follow

our work so we will omit it here, but the details can be found in [15, p. 16, lemma 20]. This

result allows us to bound the ∞-norm of normalized functions in L2
Q,k,0(µ).

Lemma 12. Let µ be a locally finite positive Borel measure on Rn. If µ is doubling, then for any

integer k ≥ 1 there is a constant Ck > 0 such that for any cube Q in Rn and any f ∈ L2
Q,k,0(µ)

then
∥f∥∞

∥f∥L2(µ)
≤

√
Ck

µ(Q)
.
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Proof. Let Q′ ∈ C(Q), f ∈ L2
Q,k,0(µ), and consider 1Q′f . This is a polynomial on Q′, so by

Lemma 11 we have

Ck

∥1Q′f∥2L2(µ)

∥1Q′f∥2∞
= Ck

∫
Q′

∣∣∣∣ 1

∥1Q′f∥∞
1Q′f

∣∣∣∣2 dµ(x) ≥ µ(Q′) > µ(Q).

Rearranging gives

∥1Q′f∥∞
∥1Q′f∥L2(µ)

≤

√
Ck

µ(Q)

for each Q′ ∈ C(Q). This holds for every Q′ ∈ C(Q), and for at least one Q′ ∈ C(Q) we must

have ∥1Q′f∥∞ = ∥f∥∞. Lastly we have ∥1Q′f∥L2(µ) ≤ ∥f∥L2(µ), which gives

∥f∥∞
∥f∥L2(µ)

≤
∥1Q′f∥∞

∥1Q′f∥L2(µ)
≤

√
Ck

µ(Q)
.

As an immediate consequence, every function in an Alpert basis for L2
Q,k,k(µ) has ∞-norm at

most
√

Ck
µ(Q) . Recall that Haar wavelets are defined with a normalization factor 1√

µ(Q)
, and since

Haar functions are piecewise constant this factor directly determines the ∞-norm of the wavelet.

The above result shows that this principle holds in general for higher-degree Alpert wavelets as

well, with only the extra constant factor
√
Ck.

The next component we need is the continuity of the Gram-Schmidt algorithm. For two

n-tuples of vectors U,U ′ define the distance between them as

∥∥U − U ′∥∥
µ
:=

n∑
i=1

∥∥ui − u′
i

∥∥
L2(µ)

.

Lemma 13. Suppose that V , V ′ are two n-tuples of linearly independent functions in L2(µ), and

that W,W ′ are the two outputs of applying the Gram-Schmidt algorithm to V, V ′. Let V̂ , V̂ ′, Ŵ ,

and Ŵ ′ denote the corresponding tuples where each entry has been normalized with respect to the

L2(µ)-norm. Then there is a continuous function ν : [0,∞) → [0,∞) with ν(0) = 0 such that

∥∥∥Ŵ − Ŵ ′
∥∥∥
µ
≤ ν

(∥∥∥V̂ − V̂ ′
∥∥∥
µ

)
.

Proof. First we recall that the output of the Gram-Schmidt process does not depend on when the
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vectors are normalized, so without loss of generality assume that V , V ′ are sets of unit vectors.

Given m < n suppose that ∥Ŵ − Ŵ ′∥µ ≤ νm(∥V̂ − V̂ ′∥µ) holds for any m-tuples V , V ′ and some

continuous function νm : [0,∞) → [0,∞) with νm(0) = 0. Let vm+1,v
′
m+1 ∈ L2(µ) be functions

with unit L2(µ)-norm which are not contained in SpanV , SpanV ′ respectively.

Consider Gram-Schmidt applied to V appended with vm+1, and to V ′ appended with v′
m+1.

We get outputs

wm+1 = vm+1 −
m∑
i=1

projvi
(vm+1)

w′
m+1 = v′

m+1 −
m∑
i=1

projv′
i
(v′

m+1)

and we have ∥∥∥Ŵ ∪ {ŵm+1} − Ŵ ′ ∪ {ŵ′
m+1}

∥∥∥
µ

=
∥∥∥Ŵ − Ŵ ′

∥∥∥
µ
+
∥∥ŵm+1 − ŵ′

m+1

∥∥
L2(µ)

≤ νm

(∥∥∥V̂ − V̂ ′
∥∥∥
µ

)
+
∥∥ŵm+1 − ŵ′

m+1

∥∥
L2(µ)

≤ νm

(∥∥∥V̂ − V̂ ′
∥∥∥
µ

)
+

m+1∑
i=1

∥∥v̂i − v̂′
i

∥∥
L2(µ)

= νm

(∥∥∥V̂ − V̂ ′
∥∥∥
µ

)
+
∥∥∥V̂ ∪ {v̂m+1} − V̂ ′ ∪ {v̂m+1}

∥∥∥
µ

where in the penultimate line we have used ⟨v̂i, v̂m+1⟩ ≤ 1 for all i = 1, ...,m. The result then

follows by induction on the lengths of V, V ′.

Lastly we need to show that the normalized monomials on Q and Qη are close together, where

Q ∈ D is a dyadic cube in Rn and Qη is a small translation of Q.

Theorem 9. Let µ be a doubling measure on Rn with doubling constant Cµ. Let Q ∈ D be a

dyadic cube, k ≥ 1 be an integer, and xα be a monomial of degree less than k. Also let 0 ≤ η < 1
2 ,

and d ≥ 2 be an integer such that 2−d < η ≤ 21−d. Define Qη to be the translation of Q by some

vector with magnitude at most η. Finally let g(x) := x̂αQ − x̂αQη , where x̂αQ is the normalization of

1Qx
α. Then

∥g∥L2(µ) ≤ 3

√
CkC2

µ

ln 1
η
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where Ck > 0 is the constant determined in Lemma 12 which depends only on µ and k.

Proof. We will proceed by decomposing Q∪Qη into Q∩Qη, Q \Qη, Qη \Q, and considering the

restriction of g to each in turn. Beginning with Q ∩Qη, we have

∥1Q∩Qηg∥L2(µ) =

∥∥∥∥∥
(

1

∥1Qxα∥L2(µ)
− 1

∥1Qηxα∥L2(µ)

)
1Q∩Qηxα

∥∥∥∥∥
L2(µ)

=

∣∣∣∣∣∥1Q∩Qηxα∥L2(µ)

∥1Qxα∥L2(µ)
−

∥1Q∩Qηxα∥L2(µ)

∥1Qηxα∥L2(µ)

∣∣∣∣∣
=

∣∣∣∣∣∥1Qxα∥L2(µ) − ∥1Q\Qηxα∥L2(µ)

∥1Qxα∥L2(µ)
−

∥1Qηxα∥L2(µ) − ∥1Qη\Qx
α∥L2(µ)

∥1Qηxα∥L2(µ)

∣∣∣∣∣
=

∣∣∣∣∣∥1Q\Qηxα∥L2(µ)

∥1Qxα∥L2(µ)
−

∥1Qη\Qx
α∥L2(µ)

∥1Qηxα∥L2(µ)

∣∣∣∣∣ .
≤ max

(
∥1Q\Qηxα∥L2(µ)

∥1Qxα∥L2(µ)
,
∥1Qη\Qx

α∥L2(µ)

∥1Qηxα∥L2(µ)

)
.

We claim that each of these ratios tends to 0 as η → 0. By Lemma 12 we have

∥1Qxα∥L2(µ)

∥1Qxα∥∞
≥

√
µ(Q)

Ck
.

The ratio of L2(µ)-norm to ∞-norm is maximized when xα is constant, in which case the L2(µ)-

norm is simply
√
µ(Q) times the ∞-norm. Combined with the above this gives

√
µ(Q)

Ck
≤

∥1Qxα∥L2(µ)

∥1Qxα∥∞
≤
√
µ(Q).

and therefore

∥1Q\Qηxα∥L2(µ)

∥1Qxα∥L2(µ)
≤

∥1Q\Qηxα∥L2(µ)

∥1Q\Qηxα∥∞
∥1Qxα∥L2(µ)

∥1Qxα∥∞

≤

√
Ckµ(Q \Qη)

µ(Q)
.

We now want to give an upper bound on the ratio µ(Q\Qη)
µ(Q) in terms of Cµ and η. Q \ Qη is
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contained inside the interior halo of Q with width η · l(Q), so by Lemma 8 we have

µ(Q \Qη) ≤
C2
µ

ln 1
η

µ(Q).

This same argument applies with Q and Qη reversed, with Q \Qη contained inside the exterior

halo of Q. We therefore conclude

∥1Q∩Qηg∥L2(µ) ≤
√
CkC2

µ

ln 1
η

.

We now consider the restriction of g to Q\Qη. Here g is simply part of a normalized monomial

on Q, so by Lemma 12 we have ∥1Q\Qηg∥∞ ≤
√

Ck
µ(Q) . Then

∥∥1Q\Qηg
∥∥
L2(µ)

≤
∥∥1Q\Qηg

∥∥
∞ ·
√
µ(Q \Qη)

≤

√
Ckµ(Q \Qη)

µ(Q)

which is the same upper bound we computed previously for ∥1Q\Qηg∥L2(µ). By symmetry we can

use this same estimate for Qη \Q, and combining the three estimates we get

∥g∥L2(µ) ≤ 3

√
CkC2

µ

ln 1
η

.

Let us pause and take stock of our primary motivation: we want to apply Theorem 8 to show

that an Alpert basis is stable under, for example, small translations. Because µ is in general not

translation-invariant, translating the basis functions directly will result in functions which don’t

have the nice orthogonality properties of Alpert wavelets. One solution is to instead translate

the underlying dyadic cubes, and then define the perturbed basis functions to simply be Alpert

basis functions on the perturbed cube. This fixes the aforementioned problem, but introduces a

new one: a given Alpert space has many possible bases, and we need specifically a basis on Qη

where each basis element is associated with and close to a basis element on Q. We can achieve

this by selecting a canonical basis for L2
Q,k,k(µ).
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Let D be a dyadic grid on Rn, 0 ≤ η < 1
2 , and {ηQ}Q∈D be a set of vectors in Rn with

0 ≤ ∥ηQ∥∞ ≤ η. Define the set of perturbed cubes {Qη}Q∈D to be the set of dyadic cubes each

translated by ηQ · l(Q) where l(Q) is the side length of Q. Recall that each Q ∈ D has 2n children,

and that for fixed k there are Nk :=
(
n+k−1
k−1

)
monomials of degree less than k. Choose a canonical

order on each of these two finite sets; let Q1, ..., Q2n denote the children of Q for arbitrary Q ∈ D

and let xα1 , ..., xαNk denote the monomials of degree less than k, each according to the chosen

order.

Take S to be the ordered tuple containing the restrictions of the monomials xα1 , ..., xαNk first

to Q, then to Q1, then to Q2, and so on until Q2n . S has the following key properties:

� S has (2n + 1)Nk entries, and each entry is the restriction of a monomial to a dyadic cube.

� S forms a spanning set (but not a basis) for the Alpert space L2
Q,k,0(µ).

� The first Nk entries in S form a basis for the component space PQ,k(µ).

Now apply the Gram-Schmidt algorithm to S and let Ŝ denote the output tuple. The first Nk

entries of Ŝ still span PQ,k(µ), and the final Nk entries are all zero as the monomials on any one

child can be written as sums of monomials on Q and the monomials on each other child. The

remaining (2n − 1)Nk := m middle entires are mutually orthogonal inside L2
Q,k,0(µ) and are all

orthogonal to the subspace PQ,k(µ) inside L2
Q,k,0(µ); in other words they form an orthonormal

basis for L2
Q,k,k(µ), the Alpert space of order k on Q. We let these entries in Ŝ be the canonical

choice of basis for L2
Q,k,k(µ), and we denote them aQ1 , ..., a

Q
m.

To a degree this is artificial; the Alpert space L2
Q,k,k(µ) is the primary object of interest and

clearly does not depend on the choice of basis. However this is also just a generalization of a

detail that is often glossed over when discussing Haar wavelets. The Haar basis on R is not

uniquely defined; the basis can be constructed with each wavelet either negative or positive on

the left half. If we take a dyadic interval I and its Haar function hI , then allow the perturbed hηI

to be a Haar wavelet constructed with the opposite orientation, then limη→0 hI − hηI ̸= 0 and we

see that our construction is not a valid perturbation.

Recall that we are trying to find estimates for all |⟨gQi , aRj ⟩| with Q,R ∈ D and 1 ≤ i, j ≤ m.

We now have an estimate for the case where Q = R, so it remains to find estimates when Q ̸= R.
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By the orthogonality of Alpert bases, for Q ̸= R we have

∣∣∣⟨gQi , aRj ⟩∣∣∣ = ∣∣∣⟨aQi − hQ
η

i , aRj ⟩
∣∣∣

=
∣∣∣⟨aQi , aRj ⟩ − ⟨aQ

η

i , aRj ⟩
∣∣∣

=
∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ .

We can therefore reverse the roles of Q and R by viewing R as the perturbation of some dyadic

cube Rη inside a different dyadic grid Dη. If l(Q) < l(R), then the resulting perturbation by

ηQ · l(Q) is less than the maximum allowable η · l(R), and so is a valid perturbation.

Without loss of generality suppose that l(Q) ≥ l(R). Let m ≥ 0 be the integer such that

2−ml(Q) < l(R) ≤ 21−ml(Q). There are two cases to consider: either R and Q are disjoint, or R

is contained in a child of Q. In the former case, by Lemma 6 we have

∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ ≤ ∥aQ

η

i ∥∞∥hRj ∥∞ · µ(Qη ∩R)

≤

√
Ck

µ(Qη)

√
Ck

µ(R)
· µ(Qη ∩R)

≤ Ckµ(Q
η ∩R)√

µ(Qη)µ(R)
.

Now instead suppose that R is contained inside Q. As an Alpert wavelet, aRj is orthogonal to

polymials of degree less than k, so our inner product is only nonzero if R overlaps the boundary

of some child Q′ of Qη. The restriction 1Q′aQ
η

i is a polynomial of degree less than k, so if we were

to extend its domain to include all of Q′ ∪R then it would be orthogonal to aRj . Consequently

∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ ≤ ∥aQ

η

i ∥∞∥aRj ∥∞ · µ(R \Q′)

≤

√
Ck

µ(Qη)

√
Ck

µ(R)
· µ(R \Q′)

≤ Ckµ(R \Q′)√
µ(Qη)µ(R)

.

We need to bound these ratios in two different ways. We have µ(R \ Q′) ≤ µ(R), which gives

a good bound when R is small relative to Q. We also have µ(R \ Q′) ≤ C2
µ

ln 1
η

µ(Qη) by Lemma
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8, which gives a good bound when R and Q are similar in size. These of course also apply to

µ(Qη \R). Using the first inequality we get

∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ ≤ Ck

√
µ(R)

µ(Qη)

and using the second we get ∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ ≤ CkC

2
µ

ln 1
η

√
µ(Qη)

µ(R)
.

Lastly we note that Qη always contains at least one of the children of Q and is always contained

in 2Q, so we restate these inequalities in terms of µ(Q):

∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ ≤ CkCµ√

C2
µ − 2n + 1

√
µ(R)

µ(Q)
,

∣∣∣⟨aQη

i , aRj ⟩
∣∣∣ ≤ CkC

5/2
µ

ln 1
η

√
µ(Q)

µ(R)
.

To use Theorem 8, we need to show that for every R ∈ D and every 1 ≤ j ≤ m

∑
Q∈D

∑
1≤i≤m

∣∣∣⟨gQi , aRj ⟩∣∣∣ ≤ φ(η)

and for every Q ∈ D and 1 ≤ i ≤ m

∑
R∈D

∑
1≤j≤m

∣∣∣⟨gQi , aRj ⟩∣∣∣ ≤ φ(η)

where m := (2n − 1)Nk is the dimension of L2
Q,k,k(µ). However as these inner products reduce to

⟨aQ
η

i , aRj ⟩ whenever Q ̸= R, every sum of the second kind can be interpreted as a sum of the first

kind with a different underlying dyadic grid. It will therefore suffice to produce an estimate for

the first sum. For Q = R, Theorem 9 gives

∥x̂αQ − x̂αQη∥L2(µ) ≤ 3

√
CkC2

µ

ln 1
η

.

The canonical basis for L2
Q,k,k(µ) is the output of Gram-Schmidt applied to Nk monomials on
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each of Q and all but one of Q’s 2n children. So by the Cauchy-Schwarz inequality and Theorem

9, we have

∑
1≤i≤m

∣∣∣⟨gQi , aQj ⟩∣∣∣ ≤ ∑
1≤i≤m

∥∥∥gQi ∥∥∥
L2(µ)

·
∥∥∥aQj ∥∥∥

L2(µ)

≤ m · ν

(
3

√
CkC2

µ

ln 1
η

)
.

Now suppose that Q ̸= R and 2tl(Q) = l(R) for some integer t ≥ 0. The only cubes Q ̸= R

which can result in a non-zero inner product are those which share at least one boundary point

with a child of R; let Ω denote the set of all such Q. We want to split the following sum at some

index T (η) to use each of our two estimates. This gives

∑
t≥0

∑
Q∈Ω

2tl(Q)=l(R)

∑
1≤i≤m

∣∣∣⟨gQi , hRj ⟩∣∣∣
≤

∑
0≤t<T (η)

∑
Q∈Ω

2tl(Q)=l(R)

m
∣∣∣⟨gQi , hRj ⟩∣∣∣+ ∑

t≥T (η)

∑
Q∈Ω

2tl(Q)=l(R)

m
∣∣∣⟨gQi , hRj ⟩∣∣∣

≤
∑

0≤t<T (η)

∑
Q∈Ω

2tl(Q)=l(R)

mCkC
5/2
µ

ln 1
η

√
µ(R)

µ(Q)
+
∑

t≥T (η)

∑
Q∈Ω

2tl(Q)=l(R)

mCkCµ√
C2
µ − 2n + 1

√
µ(Q)

µ(R)

=
mCkC

5/2
µ

ln 1
η

∑
0≤t<T (η)

∑
Q∈Ω

2tl(Q)=l(R)

√
µ(R)

µ(Q)
+

mCkCµ√
C2
µ − 2n + 1

∑
t≥T (η)

∑
Q∈Ω

2tl(Q)=l(R)

√
µ(Q)

µ(R)
.

We will refer to the two double sums in this expression as (I) and (II) respectively. Note that for

a fixed choice of t ≥ 0, the union of all Q ∈ Ω is presicely the union of the interior and exterior

halos of width 2−tl(R) of each child of R. To see why this splitting was necessary, recall that we

are trying to construct an upper bound in terms of η that will vanish as η → 0. The estimate in

(I) alone is insufficient; because R is fixed and Q varies over all cubes smaller than R, even the

individual terms
√

µ(R)
µ(Q) will diverge. On the other hand, while the estimate in (II) does avoid

this problem it does not actually depend on η and therefore does not give the vanishing that we

need. The solution is to construct T (η) so that terms from (II) are slowly absorbed into (I) as η

decreases.
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As was foretold, this is the point at which the proof fails in higher dimensions. While the

individual terms
√

µ(Q)
µ(R) do approach zero as the size of Q decreases, the number of cubes Q in the

halo around R also grows in any dimension higher than 1. The full details require some setup and

we are close to the end of our current task, so we will finish proving stability of Alpert wavelets

in one dimension and then present the failure in higher dimenions in section 4.3.1.

In addition to what came before, now assume that µ is a doubling measure on R. Instead of

referring to cubes Q,R ∈ D we will use intervals I, J ∈ D to emphasize the distinction. Next we

must give the construction of T : (0, 12) → N, the breakpoint between the two above double sums.

Note that for fixed values of T (η), (I) is finite and so tends to 0 as η → 0. For a ∈ N let f(a, η)

denote the value of (I) that arises from fixing T (η) = a. Each f(a, η) is therefore a function that

tends to 0 as η → 0. Define T (η) to be the largest index a such that f(a, η) < 2−a, to a minimum

of 1 if no index satisfies this condition. Since each f(a, η) decreases to 0 we have T (η) → ∞ as

η → 0, and so by construction we have (I) → 0 as η → 0. Then since each I ∈ Ω can appear in

only one of (I) and (II), and every I appears in (I) for T (η) sufficiently large, it follows that (II)

also tends to 0 as η → 0.

Now instead suppose that 2tl(I) = l(J) for some integer t < 0. There are at most 2 intervals

I of length 2−tl(J) which will yield non-zero inner products; let Ω be the set containing all such

I. As before we sum over all t < 0 and split at a value T (η) so that both parts of the sum vanish

as η → 0.

∑
t<0

∑
I∈Ω

2tl(I)=l(J)

∑
1≤i≤m

∣∣⟨gIi , aJj ⟩∣∣
≤

∑
T (η)≤t<0

∑
I∈Ω

2tl(I)=l(J)

m
∣∣⟨gIi , aJj ⟩∣∣+ ∑

t<T (η)

∑
Q∈Ω

2tl(I)=l(J)

m
∣∣⟨gIi , aJj ⟩∣∣

≤
∑

T (η)≤t<0

∑
I∈Ω

2tl(I)=l(J)

mCkC
5/2
µ

ln 1
η

√
µ(I)

µ(J)
+
∑

t<T (η)

∑
I∈Ω

2tl(I)=l(J)

mCkCµ√
C2
µ − 2n + 1

√
µ(J)

µ(I)

As Ω contains no more intervals than in the previous case, we can reuse the construction of T (η)

to force both sums to vanish as η → 0. We therefore have a monotone function φ(η) : [0, 12) → R+
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with limη→0 φ(η) = 0 such that for every J ∈ D and every 1 ≤ j ≤ m

∑
J∈D

∑
1≤i≤m

∣∣⟨gIi , aJj ⟩∣∣ ≤ φ(η)

and for every Q ∈ D and 1 ≤ i ≤ m

∑
I∈D

∑
1≤j≤m

∣∣⟨gIi , aJj ⟩∣∣ ≤ φ(η)

so by direct application of Theorem 8 we arrive at the desired stability theorem.

Theorem 10. Let µ be a doubling measure on R, D be a dyadic grid, and B be the canonical

Alpert basis constructed over D. Also let P be a perturbation applied to B defined as follows:

for each interval I ∈ D and each wavelet b ∈ B associated with I, the perturbation of b by η is

defined to be the equivalent canonical Alpert wavelet on Iη, where Iη is a translation of I by at

most η · l(I). Then B is stable under the perturbation P .

4.3.1 Stability in Higher Dimensions

A natural thought is to try to extend the above result to any Alpert basis on an n-dimensional

doubling measure, since all but the final computation were presented in an arbitrary dimension.

Alas, as we alluded to earlier this is not possible. This observation appears in [19, appendix 1],

but it is sufficiently important that we present our own explanation here.

The rather dense notation in the preceding result obscures the problem, so let us instead

consider the much simpler case of a 2-dimensional Haar basis in Lebegue measure. As before, let

D be a dyadic grid on R2 and let B be a Haar basis for L2(R2) defined on D. Choose a cube

Q ∈ D and define D̃ to be the subset of all cubes which are smaller than Q, disjoint from Q, and

which have a boundary face contained in ∂Q. Let Pη be the perturbation which takes every cube

R ∈ D̃ and translates it along an axis direction by η · l(R) in the direction of Q. Assuming that

η < 1
2 , each of the perturbed cubes Rη now overlaps Q and the area of the overlap is precisely

η · µ(R).

Now for every dyadic cube there are three associated Haar functions in R2; choose one of the

Haar functions on Q to be hQ. Similarly for each R ∈ D̃ there are three Haar functions on Rη; we
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claim at least one of them must be not orthogonal to hQ. To see this, note that the restriction of

hQ to Rη is constant, and that two of the children of Rη are still disjoint from Q. We know that

L2
Rη ,1,1(R2) contains, for example, a Haar function which is positive on the two children which

overlap Q and negative on the two that don’t. This Haar function is not orthogonal to hQ, so

even if it is not one of the Haar functions selected for the basis B there must be at least one Haar

function in B which is not orthogonal to hQ. Let this basis function be hηR; since we are working

in Lebesgue measure, hηR is just the translation of the equivalent Haar function hR by η · l(R) in

the direction of Q.

To use the Schur test argument from Theorem 8, it is necessary (though not sufficient) that

the following sum converges to a finite value controlled by η:

∑
R∈D̃

∣∣⟨hηR, hQ⟩∣∣ .
Since we are working in Lebesgue measure, each hηR has ∞-norm 1√

µ(Rη)
= 1√

µ(R)
. Similarly

∥hQ∥∞ = 1√
µ(Q)

. Both hQ and hηR are constant on Q ∩ Rη and we know the area of Q ∩ Rη, so

we have 〈
hηR, hQ

〉
=

1√
µ(R)

· 1√
µ(Q)

· ηµ(R) = η ·

√
µ(R)

µ(Q)
.

Therefore ∑
R∈D̃

∣∣⟨hηR, hQ⟩∣∣ = η ·
∑
R∈D̃

√
µ(Rη)

µ(Q)
.

Now k ≥ 1 be an integer and consider all the cubes R ∈ D̃ which have length 1
2k
. There are 4·2k

such cubes; 2k along each of the four sides of Q. Also for such cubes we have µ(Rη) = 1
22k
µ(Q).
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We can use this to decompose our sum by cube size:

∑
R∈D̃

∣∣⟨hηR, hQ⟩∣∣ = η ·
∑
R∈D̃

√
µ(R)

µ(Q)

=

∞∑
k=1

4 · 2k · η

√
1

22k
µ(Q)

µ(Q)

= 4η ·
∞∑
k=1

2k
√

1

22k

= 4η
∞∑
k=1

1.

So even just considering one of the three basis elements for each dyadic cube, the sums needed for

Theorem 8 already diverge. This does not mean that the Haar basis is unstable under translations

in R2—Wilson proved otherwise in [19]—but it means that the technique we used to prove 8 is

insufficient to handle the higher-dimensional cases directly.

4.4 Instability in Non-Doubling Measures

Our result from section 4.3 leads to a natural question: if the doubling property is sufficient

to ensure that Alpert bases are stable, then is doubling also necessary for stability? Or could it

be that some non-doubling measures also enjoy a similar stability property?

To approach this question, we first need to emphasize a point that has so far been largely

ignored: in non-doubling measures, whether an Alpert basis is stable under a given perturbation

may depend on the underlying choice of dyadic grid.

Example 10. Let µ be the measure on R which assigns point masses of weight 1 at points x = 1
4

and x = 3
4 , and zero mass elsewhere. Let D∗ be the standard dyadic grid. Then L2(µ) is a

2-dimensional vector space, and a Haar basis over D∗ is given by the constant function 1 and the

Haar wavelet h[0,1).

Let I be a translation of [0, 1) by some η ∈ R. Clearly the constant function is unchanged

under this perturbation. The perturbed Haar wavelet hI is exactly equal to h[0,1) if 1
4 ∈ Il and

3
4 ∈ Ir, and is identically zero otherwise. These two inclusions are satisfied if and only if |η| < 1

4 .
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Since the Haar basis over D∗ is entirely unchanged for perturbations |η| < 1
4 , it satisfies our

definition of stability.

Now take D to be a translation of D∗ by 1
4 . A Haar basis over D is given by the constant

function 1 and the Haar wavelet h[
1
4
, 5
4
). Take I to be a translation of [14 ,

5
4) by any η > 0. Since

we have µ(Ir) = 0, the resulting Haar wavelet for I is identically zero. As this holds for any

η > 0, the Haar basis over D does not satisfy our definition of stability.

So even highly non-doubling measures can be stable for the right choice of dyadic grid. This

shows that precise formulation of the question should be: for a given measure µ, are Alpert bases

stable for every dyadic grid?

Conjecture 1. Let µ be a locally finite positive Borel measure on Rn. Suppose that µ has the

property that, for any dyadic grid D and for any Alpert basis A defined on D, A is stable under

small translations in the same sense as in theorem 10. Then µ must be a doubling measure.

This result, if true, would give a characterization of doubling measures as precisely those in

which Alpert bases are stable under small translations. To illustrate the difficulty in approaching

the problem, suppose we take a non-doubling measure µ on R. To be non-doubling means that,

for any constants C, η > 0, there is some region somewhere in R where translating some interval

I by a factor of η causes the measure of I to change by at least a factor of C. To use our approach

from section 4.3, we would try to show that a corresponding Alpert wavelet on I must experience

a similarly large change in L2-norm.

The difficulty is that, for small η, the non-doubling assumption only provides information

about the exterior regions of I, namely those regions which either enter or leave I during the

translation. Alpert wavelets, in contrast, depend heavily on the structure of µ in the interior of

I.

Despite this difficulty, we present a partial result which leans in the direction of 1 being true.

In the following theorem we assume that the measure charges an infinite amount of mass toward

both positive infinity and negative infinity, so that our bases do not need to include functions

on the dyadic tops. This eliminates some trivial cases like a single point mass measure, which is

technically stable for all dyadic grids under our definitions but only for the uninteresting reason

that all Haar functions in such a measure are the zero function.
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Theorem 11. Let µ be a locally finite positive Borel measure on R such that
∫ 0
−∞ dµx =∫∞

0 dµx = ∞ and suppose that µ contains a point mass at x0 ∈ R. Then there exist dyadic

grids D for which a Haar basis B defined on D is unstable under translations.

Proof. Let I be some finite interval which has x0 as its right endpoint, and such that the interior

of Il has positive measure; by the assumption on µ such an I is guaranteed to exist. Let Iη

denote the translation of I to the right by η · l(I) for a perturbation parameter 0 < η < 1
2 ; note

that x0 ∈ Iη. Let B be the Haar basis for some dyadic grid containing I, and let Bη be the

perturbed Haar basis containing all the same functions as B, except the Haar function on I has

been replaced by the Haar function on Iη. Lastly, let f be the indicator function on I.

Recall that, if B is stable under this perturbation, then we must have

∥f − fη∥2 ≤ φ(η)∥f∥2

where fη denotes projection onto Bη and φ(η) is some positive function that vanishes as η → 0.

From this construction, we have the following:

1. ∥f∥2 =
√
µ(I)

2. ⟨f, hI⟩ = 0 by the moment vanishing of hI .

Since B and Bη differ only at I, we can compute

∥f − fη∥2 = ∥⟨f, hI⟩hI − ⟨f, hIη⟩hIη∥2

= ∥0− ⟨f, hIη⟩hIη∥2

= |⟨f, hIη⟩|∥hIη∥2

= |⟨f, hIη⟩|.

Now if we were to extend f to be an indicator on all of I ∪Iη then f and hI
η
would be orthogonal

by the moment vanishing of hI
η
. That means

∫
I
hI

η
dµ(x) +

∫
Iη\I

hI
η
dµ(x) = 0

74



Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

and so

|⟨f, hIη⟩| =

∣∣∣∣∣
∫
Iη\I

hI
η
dµ(x)

∣∣∣∣∣ .
Since hI

η
is constant on Iη \ I, we can simplify this futher. Recall that hI

η
has formula

hI
η
(x) =

1√
µ(Iη)

√µ(Iηr )

µ(Iηl )
1Iηl

(x)−

√
µ(Iηl )

µ(Iηr )
1Iηr (x)


which gives ∣∣∣∣∣

∫
Iη\I

hI
η
dµ(x)

∣∣∣∣∣ = µ(Iη \ I) ·

√
µ(Iηl )

µ(Iη)µ(Iηr )
.

We now need to argue that this quantity cannot vanish as η → 0. Clearly µ(Iη \ I) is non-

vanishing since µ(Iη \ I) ≥ µ(x) > 0. The denominator µ(Iη)µ(Iηr ) cannot grow arbitrarily large

since µ is locally finite. All that remains is µ(Iηl ), which clearly cannot vanish as η → 0 if there

is any mass in the interior of Il. We initially chose I specifically to satisfy this criterion, and

therefore ∥f − fη∥2 cannot vanish as η → 0. We conclude that any dyadic grid containing I will

have a Haar basis that is unstable under translations.
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Chapter 5

Conclusion

In this thesis we presented two main contributions to the field of wavelet analysis. The first

is our work in chapter 3, which gives a thorough description of how the dimensions of Alpert

spaces are determined by the geometry of the measure. In the particular case of Alpert bases

constructed from polynomials we found that, via a Gröbner basis technique, information about

the geometry of the measure is sufficient to determine the size of Alpert bases of any degree.

Our second primary contribution is the work in section 4.3, culminating in theorem 10. Specif-

ically we showed that Alpert bases are stable under small translations of the underlying dyadic

intervals in a doubling measure on R. This result was achieved by adapting techniques developed

by Wilson [19] to the measure-theoretic setting.

This work also presents a concise introduction to the topic of weighted Haar and Alpert

wavelets. The material in chapter 2 can be read with only a standard analysis background and

some introductory measure theory, which we hope renders the subject accessible to readers who

do not themselves have a background in wavelet analysis.

5.1 Further Questions

In chapter 3 we described the geometric structure of Alpert wavelet bases over arbitrary

measures, and this project is now largely complete. One potential avenue for improvement is in

the statement of theorem 3, in which each additional moment vanishing condition applied to a
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basis reduces the overall dimension of the Alpert space either by 0 or by 1. We were not able to

identify a technique for determining in advance (i.e. using only the structure of the measure) which

result a particular moment vanishing condition will yield, and we gave an example demonstrating

that “similar looking” measures can yield different results. Nevertheless, it remains possible that

such a technique does exist and merely eluded us.

Likely of more interest are the moment vanishing conditions themselves. As was mentioned

in section 2.4, Alpert bases are generally underdetermined. We used the extra degrees of freedom

to impose additional moment vanishing conditions on some of the basis elements, following the

construction described by Alpert in [3][section 1.1], but this freedom could also be used to impose

other conditions. For example, consider the Alpert space L2
[0,1),2,2(R) which has dimension 2

and contains piecewise-linear functions which are orthogonal to linear functions. Rather than

imposing quadratic orthogonality on one basis element, we could instead use Alpert’s projection

technique to remove the discontinuity from the interior of one of the basis elements. Further

investigation in this area would lie more in the realm of application than in the immediate scope

of our project; we include it here for the sake of completeness.

Chapter 4, by contrast, should be considered only a first step in the investigation of measure-

theoretic stability. We showed in section 4.3 that any Alpert basis in a one dimensional doubling

measure is stable under small translations. However we also showed that the technique we used

is insufficient to prove stability even for Haar wavelets in R2. Given that the Haar basis is known

to be stable in L2(Rd), shown through other means by Wilson in [19], we conjecture that our

stability result for Alpert bases remains true in higher dimensions. Also, while we were interested

only in Alpert bases, the material in section 4.2 applies equally to any orthonormal basis for L2(µ)

and to any measure µ on Rn. It is possible that interesting results could be found by applying

this technique in other contexts.

We also provided some initial investigation into the question of whether the doubling condition

is necessary for stability. We showed that a measure on R cannot contain any point masses

without causing some Haar bases to become unstable under small translations, however there

are non-doubling measures which do not have this feature. Given that the doubling condition is

closely related to small translations of dyadic intervals it seems a natural conjecture that the two
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conditions are equivalent, but we have been so far unable to locate a proof.
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Appendix A

Completeness of Haar Wavelets

In this appendix we show that the Haar functions are complete in L2(R), and consequently

that they form a basis. This completes the proof of theorem 1 from section 2.3. Recall that we

have

hI(x) =
1√
l(I)

(1Il(x)− 1Ir(x))

and that we have already showed

1. {hI}I∈D is an orthonormal set in L2(R).

2. Projection on to {hI}I∈D satisfies a telescoping property: for any f ∈ L2(R) and integers

m < n,

∑
I∈D: 2m+1≤l(I)≤2n

〈
f, hI

〉
hI(x) =

∑
I∈D: l(I)=2m

〈
f,

1

2m
1I

〉
1I(x)−

∑
I∈D: l(I)=2n

〈
f,

1

2n
1I

〉
1I(x).

3. Each hI satisfies a moment vanishing condition:

∫
I
hI(x) dx = 0.

Before we proceed further, we define the expectation functions

Ekf(x) =
∑

I∈D: l(I)=2k

〈
f,

1

2k
1I

〉
1I(x), x ∈ R, k ∈ Z.
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This allows us to restate the telescoping property in the more compact form:

∑
I∈D: 2m+1≤l(I)≤2n

〈
f, hI

〉
hI(x) = Emf(x)− Enf(x), m < n.

Remark 6. An observant reader will have noticed that we are reusing the E symbol, which also

appeared in the definition of weighted Alpert wavelets. In that setting Eµ
Q,U was a projection onto

the space spanned by the functions in U on a single dyadic cube Q. In this setting, Ek is instead

projection onto all dyadic intervals of length 2k, rather than just a single interval. The notation

could be made consistent by replacing each Ek here with
∑

I EI , k, but it would render this section

much less pleasant to read.

Lemma 14. For every f ∈ L2(R) and every k ∈ Z, ∥Ekf∥2 ≤ ∥f∥2.

Proof. Fix x ∈ R and let I ∈ D be the unique dyadic interval with l(I) = 2k and x ∈ I. Then

|Ekf(x)|2 =
∣∣∣∣〈f, 1

2k
1I

〉
1I(x)

∣∣∣∣2
=

1

22k

∣∣∣∣∫
I
f(t) dt

∣∣∣∣2
≤ 1

22k

∫
I
|f(t)|2 dt ·

∫
I
1 dt

=
1

22k

∫
I
|f(t)|2 dt ·2k

=
1

2k

∫
I
|f(t)|2 dt

by the Cauchy-Schwarz inequality. Since Ekf is constant on dyadic intervals, we get∫
R
|Ekf(x)|2 dx =

∑
J∈D: l(J)=2k

∫
J
|Ekf(x)|2 dx

≤
∑

J∈D: l(J)=2k

2k · 1

2k

∫
J
|f(t)|2 dt

=
∑

J∈D: l(J)=2k

∫
J
|f(t)|2 dt

=

∫
R
|f(t)|2 dt

= ∥f∥22.

Therefore ∥Ekf∥2 ≤ ∥f∥2 as desired.
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Next, we observe that for f ∈ L2(R) and k ∈ Z we have

Ekf(x)− Ek+1f(x) =
∑

I∈D: l(I)=2k

⟨f, hI⟩hI(x).

Then by the telescoping proprerty of the Haar functions we have

∑
I∈D

⟨f, hI⟩hI(x) = lim
M→−∞

EMf(x)− lim
N→∞

ENf(x).

If we can show that this difference of limits converges to f(x) with respect to the L2-norm, we

will have proved completeness of the Haar functions.

To proceed, we will use the well-known but somewhat technical result that continuous,

compactly-supported functions are dense in L2(R) (see [8, Proposition 7.9]). Let f ∈ L2(R)

and ϵ > 0; using this density, decompose f as f = g1 + g2 where g1 ∈ L2(R) is continuous and

supported inside a compact interval, and g2 ∈ L2(R) has norm ∥g2∥2 < ϵ
2 . Since g1 is continuous

we have Ekg1(x) → g1(x) as k → −∞ for every x ∈ R, and since g1 is compactly supported we

can conclude ∥g1 − Ekg1∥2 → 0 as k → −∞. We also have

∣∣∣∣〈f, 1

l(I)
1I

〉∣∣∣∣ = ∣∣∣∣ 1

l(I)

∫
I
f(x) dx

∣∣∣∣ ≤ ( 1

l(I)

∫
I
|f(x)|2 dx

) 1
2

=
1√
l(I)

∥f∥2,

so Ekf(x) → 0 as k → ∞ for every x ∈ R.

Finally by lemma 14 and several applications of the triangle inequality we have
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∥∥∥∥∥f −
∑
I∈D

⟨f, hI⟩hI
∥∥∥∥∥
2

=

∥∥∥∥f −
(

lim
M→−∞

EMf − lim
N→∞

ENf

)∥∥∥∥
2

≤
∥∥∥∥f − lim

M→−∞
EMf

∥∥∥∥
2

+

∥∥∥∥ lim
N→∞

ENf

∥∥∥∥
2

≤
∥∥∥∥g1 + g2 − lim

M→−∞
EM (g1 + g2)

∥∥∥∥
2

+ 0

≤
∥∥∥∥g1 − lim

M→−∞
EMg1

∥∥∥∥
2

+

∥∥∥∥g2 − lim
M→−∞

EMg2

∥∥∥∥
2

≤ 0 + ∥g2∥2 + ∥g2∥2

<
ϵ

2
+
ϵ

2

= ϵ.

Therefore f =
∑

I∈D⟨f, hI⟩hI in L2(R), and we conclude that the Haar functions are complete

in L2(R).
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Appendix B

Buchberger’s Algorithm

Here we give one example of an algorithm for computing Gröbner bases. The running time

of such algorithms can vary heavily depending on the choice of monomial order and on various

choices made during computation; practical implementations will use algorithms more complex

than the one presented here. Recall that a Gröbner basis depends on the choice of monomial

order M .

Theorem 12. Let G = {g1, . . . , gk} ⊂ R[x] be a finite set of polynomials. Then every f ∈ R[x]

can be expressed as f = q1g1 + · · ·+ qkgk + r where qi, r ∈ R[x] and either r = 0 or r is a linear

combination of monomials not divisible by any LT (gi).

This theorem follows immediately from the multivariate division algorithm, which generates

appropriate choices of qi, r given f,G:

1. Let q1 = · · · = qk = r = 0.

2. If LT (gi) divides LT (f) for some i ∈ {1, . . . , k}: replace f by f − LT (f)
LT (gi)

gi, add
LT (f)
LT (gi)

to qi,

and restart step 2. If LT (gi) does not divide LT (f) for any i, continue to step 3.

3. Add LT (f) to r, then replace f by f − LT (f). If now f = 0, stop. Otherwise return to

step 2.

Since the leading term of f is always reduced (with respect to M) in step 2, this algorithm is

guaranteed to terminate. We note that this algorithm does not produce a unique decomposition,
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as the output can depend on choices of i in step 2 of the algorithm. Despite this lack of uniqueness,

the divisibility condition on r preserves the intuitive notion that the remainder ought to be

“smaller” in some sense than the divisors.

Definition 22 (S-polynomial). Given two polynomials f, g ∈ R[x], let a = lcm(LT (f), LT (g)).

Define the S-polynomial of f and g to be S(f, g) := a
LT (f)f − a

LT (g)g.

By construction the leading terms of a
LT (f)f and a

LT (g)g are equal, so they cancel when com-

puting S. This definition is motivated by the following:

Theorem 13 (Buchberger’s Criterion). Let G = {f1, ..., f2} be a generating set of polynomials

for I. Then G is a Gröbner basis for I if and only if every S-polynomial S(fi, fj), i ̸= j yields a

remainder of 0 when divided by the elements of G in some order.

A proof of this result can be found in [7, p. 324]. If we take G to be an arbitrary generating

set for I, we then have Buchberger’s algorithm:

1. Choose two polynomials fi, fj ∈ G, i ̸= j and compute the S-polynomial S(fi, fj).

2. Divide S(fi, fj) by G. If the resulting remainder r is non-zero, add r to G.

3. Repeat steps 1 and 2 until all possible pairs have been considered, including all polynomials

added in step 2.

4. Output G.

The output set G satisfies the condition in Theorem 13. In step 2 the addition of new elements

to G strictly increases LT (G) and as R[x] is Noetherian this process must eventually terminate.

Loosely speaking, the process of computing remainders of S-polynomials within G produces any

“hidden” polynomials in I which are linear combinations of the generators.

84



Bibliography

[1] Alexis, M., Sawyer, E., and Uriarte-Tuero, I. Tops of dyadic grids and T1 theorems.

https://arxiv.org/abs/2201.02897, 2022.

[2] Alexis, M., Sawyer, E. T., and Uriarte-Tuero, I. A T1 theorem for general smooth

Calderón-Zygmund operators with doubling weights, and optimal cancellation conditions,

II. J. Funct. Anal. 285, 11 (2023), Paper No. 110139, 52.

[3] Alpert, B. K. A class of bases in L2 for the sparse representation of integral operators.

SIAM J. Math. Anal. 24, 1 (1993), 246–262.

[4] Christensen, O. An Introduction to Frames and Riesz Bases. Applied and Numerical

Harmonic Analysis. Springer International Publishing, 2016.

[5] Daubechies, I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl.

Math. 41, 7 (1988), 909–996.

[6] David, G., and Journe, J.-L. A boundedness criterion for generalized calderon-zygmund

operators. Annals of Mathematics 120, 2 (1984), 371–397.

[7] Dummit, D., and Foote, R. Abstract Algebra, 3 ed. Wiley, 2003.

[8] Folland, G. Real Analysis: Modern Techniques and Their Applications. Pure and Applied

Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2013.

[9] Garnett, J., Killip, R., and Schul, R. A doubling measure on Rd can charge a

rectifiable curve. Proc. Amer. Math. Soc. 138, 5 (2010), 1673–1679.

85

https://arxiv.org/abs/2201.02897


Doctor of Philosophy - F. Gates McMaster University - Mathematics and Statistics

[10] Haar, A. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 69, 1

(1910), 331–371.

[11] Kovalev, L., Maldonado, D., and Wu, J.-M. Doubling measures, monotonicity, and

quasiconformality. Math. Z. 257, 3 (2007), 525–545.

[12] Nazarov, F., Treil, S., and Volberg, A. Two weight estimate for the Hilbert transform

and corona decomposition for non-doubling measures. https://arxiv.org/abs/1003.1596,

2010.

[13] Pereyra, M., and Ward, L. Harmonic Analysis: From Fourier to Wavelets. IAS/Park

city mathematical subseries. American Mathematical Society, 2012.

[14] Rahm, R., Sawyer, E. T., and Wick, B. D. Weighted Alpert wavelets. J. Fourier Anal.

Appl. 27, 1 (2021), Paper No. 1, 41.

[15] Sawyer, E. T. T1 testing implies Tp polynomial testing: optimal cancellation conditions

for CZO’s. https://arxiv.org/abs/1907.10734, 2019.

[16] Sawyer, E. T. A probabilistic analogue of the fourier extension conjecture. https://

arxiv.org/abs/2311.03145, 2024.
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