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Abstract

Developing accurate, computationally efficient, and reliable predictive models for

small molecules’ blood-brain barrier (BBB) permeability is challenging due to the class

imbalance often found in collections of reference data. We use resampling techniques to

address class imbalance and build 24 types of machine learning models, which we de-

veloped using comprehensive hyperparameter optimizations. We evaluated our model

against those from previous studies, which provides insight into optimal classification

models and resampling techniques that are relevant beyond BBB permeability. In

addition to classifying unknown compounds on the basis of BBB permeability, the

predicted probabilities are provided to facilitate further improvements and compar-

ative benchmarking, and to report the models’ confidence in their predictions. To
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disseminate our findings, we developed B3clf, a highly efficient, user-friendly tool that

facilitates BBB permeability prediction, which can be accessed as open-source software

(https://github.com/theochem/B3clf) or as a web app

(https://huggingface.co/spaces/QCDevs/b3clf). The newly curated external dataset

for BBB is hosted at https://github.com/theochem/B3DB.

1 Introduction
The blood-brain barrier (BBB) maintains homeostasis in the central nervous system

(CNS)1,2 and protects the CNS by inhibiting the passage of toxins and pathogens from

the blood3. However, its selective permeability also poses a challenge for the delivery of

neuroactive molecules, such as drugs, into the CNS. It is estimated that approximately

100% of biomolecular pharmaceuticals (e.g., peptides and monoclonal antibodies) and 98%

of small molecule drugs are unable to penetrate the BBB4. BBB permeability is also a key

consideration when developing chimeric antigen receptor–modified T (CAR-T) cell-based

therapy for brain tumors5,6. Therefore, understanding small molecules’ BBB permeability is

crucial for prioritizing promising candidates and avoiding investment in compounds unlikely

to reach brain targets.

To overcome this challenge, various experimental approaches have been proposed to mea-

sure the penetration of BBB molecules in vivo7–11. These methods typically focus on two

types of BBB permeability data: (1) the logarithmic ratio of molecular concentration in the

brain to blood in the steady state (logBB)12; and (2) the permeability surface area product

(logPS)13. However, experimental methods for assessing the BBB permeability of small

molecules are expensive, time-consuming, labor-intensive, and low-throughput. Therefore,

computational prediction of BBB permeability has become an attractive yet challenging

problem in CNS drug discovery and development.

Various computational approaches have been proposed for predicting BBB permeability.

The most reliable approaches use molecular dynamics (MD) simulations to directly simulate
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the solubility and/or transport of molecules across the BBB. An early MD study correlated

the computed solvation free energy in water with logBB 14. More recent studies have em-

ployed steered MD15, enhanced sampling techniques13, and unbiased MD16 to provide a

detailed characterization of physical interactions between molecules and membranes and ob-

tain atomic-level insights into molecules’ (in)ability to cross the BBB. However, MD simula-

tions require substantial computational resources and expertise to set up and analyze, which

has motivated the development of cheaper and faster approaches. Data-driven methods are

appealing because BBB permeability is primarily determined by molecules’ physicochemical

properties such as topological polar surface area (tPSA), number of hydrogen bond donors

and acceptors, and pKa, which can be quantitatively represented and learned from data17,18.

This understanding has led to the development of quantitative structure-activity relation-

ship (QSAR) for BBB permeability19–23. More recently, interest in machine learning (ML)

approaches has grown. ML methods extend QSAR by incorporating "synthetic" structural

properties (e.g., molecular fingerprints) and more sophisticated mathematical models. There

are two types of ML models for BBB permeability predictions: (1) regression for logBB or

logPS; and (2) binary classification of molecules as BBB permeable (BBB+) or BBB imper-

meable (BBB-). Due to the limited size of publicly accessible datasets, there are relatively

few ML models for the regression of logBB values. Current studies have used methods in-

cluding multiple linear regression12, neural networks24–26, and support vector regression27.

In contrast, a large and diverse range of ML models for the classification of molecular BBB

permeability is available, including random forests (RF)28,29, classification and regression

trees (CART)30, binomial partial least squares (binomial-PLS)31, decision tree induction

(DTI)32, support vector machines33, and generalized linear models (GLM)34 35.

While more data is available for BBB classification than for regression, model general-

izability to unseen data remains limited because the chemical space covered by the avail-

able data is insufficient to build a sensible decision boundary.36 Consequently, QSAR and

ML models are prone to overfitting. This explains the counterintuitive observation that
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decision-boundary-based algorithms, such as support vector machines, often perform bet-

ter on smaller datasets (e.g., 1593 molecules) than larger datasets (e.g., 1990 molecules) for

BBB classification33. Moreover, class imbalance in available BBB datasets also compromises

model performance. The BBB prevents most chemicals from entering the brain, meaning

that most molecules are BBB-. However, experimental datasets tend to overrepresent BBB+

samples, making them the majority class. This creates a rather unusual situation where the

imbalance in nature (strongly skewed toward BBB-) and the scientific literature (somewhat

skewed toward BBB+) are opposed.

Different methods have been proposed to correct for the biases that imbalanced data can

introduce in ML classification models, including methods at the algorithmic level (e.g., biased

minimax probability machine (BMPM)) and resampling strategies (e.g., synthetic minority

oversampling technique (SMOTE)37). There are three main types of resampling strategies:

(1) undersampling on the majority class; (2) oversampling over the minority class to gen-

erate synthetic data points; and (3) hybrid models38,39. Undersampling can help increase

the sensitivity of a classifier to the minority class37,40, but tends to ignore information from

the majority class. In contrast, oversampling techniques can improve minority class repre-

sentation without data loss. Among these, some of the most widely used methods belong

to the SMOTE family. SMOTE generates new synthetic data points for each minority class

instance by interpolating existing data points37. Inspired by the success of SMOTE, many

variants have been proposed,41 including Borderline SMOTE42, k-means SMOTE43, adap-

tive synthetic sampling (ADASYN)44, and density-based SMOTE (DBSMOTE)45. Border-

line SMOTE, an adaptive SMOTE variant, generates artificial data points near the decision

boundary to improve the classification performance. This approach is based on the assump-

tion that minority class examples located near the decision boundary are most susceptible

to misclassification42. k-means SMOTE is designed to reduce noise in the data and better

represent the decision boundary43. ADASYN generates synthetic minority class samples in

an adaptive pattern by focusing on entries that are hard to learn, thus reducing the bias of
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the classifier44.

Given the difficulty of experimental measurements, it is infeasible to address the data

imbalance problem by generating additional minority class (BBB-) instances at high through-

put. This motivates the use of resampling methods for BBB classification46. Wang et al.

used support vector machines as the base algorithm and applied SMOTE to a dataset of 2358

molecules, giving a model with a specificity of 0.83347. Using the same dataset, a recurrent

neural network (RNN) was proposed in combination with SMOTE, which achieved strong

performance on the training data; however, this study did not utilize a training/testing pro-

tocol48. More recently, SMOTE was integrated with extreme gradient boosting (XGBoost)49

and evaluated using a 0.75:0.25 train/test split on the same dataset50. Good precision and

recall (sensitivity) with an F1 score of 0.91 was achieved, but specificity was not reported.

Another similar study using the same dataset applied SMOTE followed by a feed-forward ar-

tificial neural network (ANN) to generate feature vectors, which were then input into kernel

principal component analysis (KPCA). This model achieved an overall accuracy of 97.11%,

specificity of 98.42%, and sensitivity of 97.35% on the testing set25.

In this study, we address the challenges of limited generalizability caused by small, imbal-

anced datasets by developing predictive models for BBB permeability using machine learning

classification algorithms combined with resampling techniques. The training dataset was cu-

rated from 50 literature and publicly available sources, as described by Meng et al.51, and

is illustrated in Figure 1 (A). We employed four classification algorithms (decision trees, k-

nearest neighbors (kNN), logistic regression, and XGBoost) in combination with six sampling

strategies: SMOTE, Borderline SMOTE, k-means SMOTE, ADASYN, random undersam-

pling, and a baseline with no resampling ("common"), as shown in Figure 1 (B). Model

performance was systematically evaluated using a comprehensive set of metrics, including

accuracy, sensitivity, specificity, precision, F1, MCC, GEOM, BACC, ROC_AUC, and AP.

The trained models were further benchmarked against state-of-the-art approaches using a

newly curated external test set comprising of 175 compounds (171 BBB+ and 4 BBB-),
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provided as Supporting Information Table SI. 1. We also implemented a Hugging Face web

server to improve reproducibility and make it easier for non-computational researchers to

access BBB prediction models for drug discovery.

Figure 1 Chemical diversity and computational framework for BBB prediction. (A). Chem-
ical diversity of B3DB dataset with non-linear dimension reduction method, UMAP52. (B).
General pipeline for constructing classification models for BBB permeability. The linking
lines denote combinations of classification algorithms and resampling strategies.

2 Methods and Materials

2.1 Dataset Preparation

The dataset used in this study is the B3DB database51. B3DB contains 4956 BBB+ and

2851 BBB- molecules (7807 total). This presents an imbalanced classification problem with

an imbalance ratio (IR) of 1.73, where IR = Nmajority
Nminority

53. After filtering out charged molecules

and structures for which RDKit could not generate a valid 3D representation, the dataset

was reduced to 4855 BBB+ and 2552 BBB- molecules (7407 total). The dataset preparation

workflow is shown in Figure SI. 1 (A).

We used UMAP (nonlinear manifold projection)52 to visually assess the molecular diver-

sity of B3DB. The difficulty of BBB classification is clear from the extensive overlap between

the clouds of BBB+ and BBB- data, as shown previously in Figure 1 (A).

6



2.2 External Dataset Curation

The external dataset was curated from multiple sources: (1) CNS drugs (BBB+) from

DrugBank using the WHO Anatomical Therapeutic Chemical (ATC) Classification 1; (2)

H1-antihistamines, including both first- and second-generation H1-antagonists54–56; (3) com-

pounds that entered clinical trials but were discontinued due to poor BBB permeability57–61.

Molecules that overlapped with the training dataset (B3DB)51, as well as single-atom species,

were excluded. After filtering, the external dataset contained 171 BBB+ and 4 BBB- com-

pounds. The SMILES strings and labels of the external dataset are given in Table SI. 1.

Geometry optimization and feature generation procedures were consistent with those used

for B3DB. This newly curated data has been added to the B3DB dataset51.

2.3 3D Coordinate Generation and Geometry Optimization

When the PubChem CID is available for a molecule, the 3D coordinates are down-

loaded from PubChem web server using PubChemPy62; otherwise, the 2D coordinates are

retrieved. For database entries without a valid CID, 3D coordinates are generated from

the isomeric Simplified Molecular Input Line Entry System (SMILES) using OpenBabel63.

Hydrogen atoms are added if necessary, and molecular geometries are then optimized us-

ing the MMFF94s force field64 as implemented in OpenBabel63. Default parameters were

used, except that we allow up to 10,000 iterations. Molecules for which no satisfactory 3D

coordinates could be generated or whose geometry optimization failed were eliminated.

2.4 Molecular Feature Generation

Chemical descriptors were chosen to encode the molecules, not only for their computa-

tional efficiency but also motivated by recent studies suggesting their advantage over graph

neural networks65. We used PaDEL to compute 1875 descriptors, including 1D, 2D and

3D features66. Five molecules were removed because they were incompatible with PaDEL:

1Downloaded from https://pubchem.ncbi.nlm.nih.gov/classification
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H2O, CH4, HN2O, N2H4 and H4NO2. As a result, each molecule is represented by 1875

descriptors, of which 431 are 3D features.

2.5 Molecular Feature Selection

To build a robust model, feature selection (also known as variable elimination)67–69 is

essential. A simple pipeline was used for feature selection, as shown in Figure SI. 1 (B).

Similar to previous classifiers for BBB permeability, we filtered features based on their nu-

merical and statistical properties47,48,50,70. Specifically, features with infinite values (−∞

and ∞), NaN values, or extremely large magnitude (> 105) were removed from the fea-

ture matrix. Constant features were discarded, and highly correlated (or duplicate) features

were eliminated using a Pearson correlation threshold of 0.8. This process left 475 features.

Eliminating linearly correlated features helps remove redundant information from the feature

matrix, as shown in Figure SI. 1 (C) and (D). While the performance gains from this step

are not critical for this study, it will be beneficial when applying our model to large-scale

database screenings.

2.6 Cross-Validation and Hyperparameter Optimization

The general workflow for building classification models is shown in Figure 1 (B) and in-

cludes dataset pre-processing, feature engineering (feature generation and selection), strati-

fied 10-fold cross-validation, and hyperparameter optimization. Given the imbalanced nature

of our dataset, we combined 4 basic classification algorithms (decision trees, k-nearest neigh-

bours, logistic regression, and XGBoost) with 4 oversampling methods (SMOTE, Borderline

SMOTE, k-means SMOTE, and adaptive synthetic (ADASYN)), 1 undersampling approach

(random undersampling). As a control, we also considered the performance of the 4 al-

gorithms without any resampling, denoted as common. In total, we constructed 4 × 6 = 24

classification models, as indicated in Figure 1. The figures and tables are labeled accordingly.

For example, the label "xgb-borderline_SMOTE" refers to a model that uses XBGoost as a

base classification algorithm, trained on data oversampled with Borderline_SMOTE.
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For each model, a modified stratified 10-fold cross-validation was employed for model

selection, which ensures the proportions of BBB+ and BBB- molecules remained fixed. In

each fold, 90% data points were held out as the training set and the remaining 10% was

split equally into testing and validation subsets in a stratified manner. The training subset

was processed with resampling strategies to generate synthetic data, which was then fed into

the hyperparameter optimization module together with the validation subset. Hence, each

instance of 10-fold cross-validation generates 10 sets of hyperparameters. To identify the

optimal hyperparameters, we performed another round of stratified 10-fold cross-validation,

evaluating the error for each of the 10 hyperparameter sets. In this second step, 90% of

the data was used for training, and the remaining 10% was used to assess the model’s

performance. The hyperparameter set that resulted in the lowest error was then selected for

further analysis, as shown in Figure SI. 2.

The hyperparameters were optimized with Hyperopt71 using the tree of Parzen estimators

(TPE)72,73 algorithm, which is a Sequential Model-Based Global Optimization (SMBO)

algorithm.

2.7 Performance Evaluations

We assessed the models’ performance with a set of extensive evaluation metrics, which

can be categorized into threshold metrics (e.g., accuracy), ranking metrics (e.g., AUC), and

probabilistic metrics. Since our focus is on imbalanced classification problems, we primarily

used threshold metrics. Specifically, we considered sensitivity (also known as recall, hit rate,

or true positive rate), specificity (also known as selectivity or true negative rate), precision

(also known as positive predictive value), accuracy, F1 score, Matthews correlation coefficient

(MCC), geometric mean score (GEOM), and balanced accuracy score (BACC), as defined in

Equation 1 to Equation 574,75. These evaluation metrics are computed with confusion matrix

elements, true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
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sensitivity = TP

TP +FN
(1)

specificity = TN

FP +TN
(2)

precision = TP

TP +FP
(3)

accuracy = TP +TN

TP +TN +FP +FN
(4)

F1 = 2 · precision · sensitivity

precision+ sensitivity
(5)

MCC = TP ·TN −FP ·FN√
(TP +FP ) · (TP +FN) · (TN +FP ) · (TN +FN)

(6)

GEOM =
√

sensitivity · specificity (7)

BACC = sensitivity+specificity
2 (8)

We also used the ROC-AUC to explore the relationship between true positives and false

positives across different probability thresholds as a ranking metric. The shape of the ROC

curve and the area under the curve (AUC) provide useful insights into classifier performance.

Random classifiers yield an AUC of 0.5, which serves as a baseline for model ranking. The

precision-recall curve demonstrates the relationship between precision and recall and is more

informative than ROC, especially for binary imbalanced problems76. The average precision
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(AP ) score is commonly used in information retrieval77, defined as

AP =
∑
n

(Rn −Rn−1)Pn (9)

where Rn and Pn are the precision and recall at the n-th threshold. Higher values of AP

indicate better models.

3 Results and Discussions

3.1 Choice of Classification Algorithm

The performance of all 24 classifiers for 10 groups of hyperparameters is reported in

Figure SI. 3 - Figure SI. 6. Notably, all sets of hyperparameters yield similar results, despite

being computed using different validation data. Performance across different data samples is

also consistent, with small standard deviations (cf. Table SI. 2)), supporting the robustness

and generalizability of our models.

We first compare the performance of different classification models in predicting BBB

permeability. Cross-validation results show that the statistical variance of the algorithms,

from lowest to highest, follows the order: XGBoost < kNN < logistical regression < decision

trees (Figure 2, Figure SI. 7 and Figure SI. 8). Similarly, the average ROC_AUC scores

follow the same ranking, with XGBoost achieving the highest performance, followed by

kNN, logistic regression, and decision trees. Overall, XGBoost shows the highest accuracy

and consistency, making it the most reliable model.

3.2 Choice of Sampling Strategy

The impact of sampling strategies was analyzed by comparing them to their counter-

parts without resampling (i.e., “common” models), as shown in Figure 2, Figure SI. 7 and

Figure SI. 9. Undersampling tends to give inferior performance, as shown by lower perfor-

mance scores. This is unsurprising, since our dataset is relatively small and the imbalance
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Figure 2 Area under the curve (AUC) for ROC curves of 24 predictive models by combin-
ing XGBoost, kNN, logistic regression, and decision trees with various sampling strategies,
respectively

between the majority (BBB+) and minority (BBB-) classes is not extreme, so that the loss

of information from undersampling outweighs its potential benefits. Although XGBoost with

undersampling achieved the highest specificity due to its low false positive rate, this came at

the cost of sensitivity, as the model had a tendency to produce false negatives. In addition,

undersampling with kNN tends to give similar performance to traditional kNN, probably

because kNN captures the pairwise similarity of input molecules and is less sensitive to the

effects of undersampling.

In comparison, oversampling improves the model performance as expected (Figure 3).

Among the four oversampling methods evaluated, Borderline SMOTE and ADASYN out-

perform classic SMOTE and k-means SMOTE when applied to decision trees and kNN

(Figure SI. 9). k-means SMOTE is the best-performing variant for logistic regression. All

oversampling strategies achieve similar performance on XGBoost based models, suggesting

that XGBoost does not greatly benefit from oversampling strategies. This is likely because

the class imbalance in our dataset is moderate, and also because XGBoost is already a robust

ensemble learning method.

A summary of the best-performing resampling strategy for each base ML model is shown

in Table 1, and the corresponding ROC_AUC results are in Figure 4. The predictive perfor-
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Figure 3 Model performances for top XGBoost models with oversampling strategies, includ-
ing the raw form of XGBoost (denoted as common).

mance of the top models in each category, as demonstrated by the ROC and precision-recall

curves, aligns with the model comparisons discussed earlier in Section 3.1.
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Table 1 Performance summary of best resampling strategy for each base ML model.

model_name ROC_AUC sensitivity specificity precision accuracy F1 MCC GEOM BACC AP

dtree-kmeans_SMOTE 0.9000
±0.0094

0.8814
±0.0158

0.7472
±0.0289

0.8692
±0.0120

0.8352
±0.0101

0.8751
±0.0079

0.6332
±0.0227

0.8113
±0.0136

0.8143
±0.0124

0.9300
±0.0100

knn-classic_SMOTE 0.9436
±0.0062

0.9067
±0.0098

0.8248
±0.0237

0.9079
±0.0114

0.8785
±0.0112

0.9073
±0.0084

0.7312
±0.0254

0.8647
±0.0141

0.8658
±0.0136

0.9649
±0.0063

logreg-classic_SMOTE 0.9190
±0.0120

0.8622
±0.0192

0.8225
±0.0315

0.9026
±0.0163

0.8485
±0.0168

0.8818
±0.0135

0.6730
±0.0363

0.8419
±0.0187

0.8424
±0.0186

0.9491
±0.0105

xgb-classic_ADASYN 0.9585
±0.0048

0.9275
±0.0121

0.8233
±0.0180

0.9090
±0.0080

0.8916
±0.0083

0.9181
±0.0065

0.7583
±0.0184

0.8737
±0.0094

0.8754
±0.0091

0.9770
±0.0040

Figure 4 ROC curves and precision-recall curves for each classification algorithm with 10-
fold cross-validation.

3.3 Combined Model Performance

Based on a comprehensive analysis of all performance metrics, especially ROC_AUC and

AP, we can identify xgb-classic_ADASYN, xgb-borderline_SMOTE and xgb-classic_SMOTE

as the top 3 model-sampling strategy combinations, as shown in Figure 2, Figure SI. 7, Fig-

ure SI. 10 and Figure SI. 11. The averaged performance metrics of xgb-borderline_SMOTE

and xgb-classic_ADASYN are almost identical. However, xgb-classic_ADASYN is more ro-

bust, as indicated by slightly smaller variation across the 10-fold splits (cf., the last column

in Figure SI. 9). The sensitivity of xgb-kmeans_SMOTE and raw XGBoost is slightly bet-

ter than that of xgb-classic_ADASYN, xgb-borderline_SMOTE, and xgb-classic_SMOTE,
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which is caused by the higher rate of false negatives over true positives of xgb-kmeans_SMOTE

and raw XGBoost models, as indicated in Figure 3.

The kNN based models give ROC_AUC between 0.9387 and 0.9436. Notably, knn-

kmeans_SMOTE (AP = 0.9502) and knn-common (AP = 0.9547) give the highest AP

scores, implying their superior performance at picking BBB+ molecules (true positive sam-

ples). However, a substantial drop in sensitivity is observed for both knn-borderline_SMOTE

model and knn-classical_ADASYN, compared to xgb-classical_ADASYN (sensitivity =

0.9275), suggesting that the former two kNN models are suboptimal for detecting BBB+

molecules. For a more detailed assessment of model performance, please see Figure SI. 7 and

Table SI. 2.

3.4 Evaluation Model Generalizability with External Dataset

To evaluate the generalizability of our models, we used the newly curated external evalu-

ation dataset of 175 compounds (171 BBB+ and 4 BBB-) described in Section 2.2. We then

compared the performances of our models with six previously published models78–82. The

performance metrics are summarized in Table 2. We used the Area Under the Precision-

Recall Curve (AP) as the primary performance metric, because our prediction dataset was

highly imbalanced (BBB permeable to impermeable compounds > 40:1). In such extremely

skewed datasets, AP provides a more reliable measure of model performance. Model rankings

based on ROC_AUC are generally consistent with AP-based trends, while rankings based

on other metrics, such as MCC, may differ. This is likely due to the extreme class imbalance

in the prediction dataset, which contains very few BBB- compounds. Unlike AP, MCC is

threshold-dependent and more sensitive to skewed class distributions.

Our results show that many of our models outperform existing benchmarks in terms of

AP scores, indicating improved predictive performance. Notably, models based on XGBoost

and decision trees, when combined with resampling techniques including borderline-SMOTE

and ADASYN, achieve the highest AP scores. This may be attributed to the ability of XG-
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Boost and decision tree models to handle imbalanced data effectively and capture non-linear

relationships. Additionally, resampling methods like borderline-SMOTE and ADASYN im-

prove performance by focusing on minority samples near the decision boundary and those

that are more difficult to classify. This is consistent with the general model performance as

discussed in Section 3.2 and Section 3.3, which highlight XGBoost’s superior performance.

Interestingly, one decision tree model also performed well in our benchmarking. This might

be because XGBoost is already robust to class imbalance and gains less from resampling,

while decision trees benefit more from such techniques.

Comparing the performance of our models to that of other published works, it is impor-

tant to note that all benchmark models were trained on datasets that included approximately

40–60 of the total 175 compounds used in the prediction dataset. In contrast, our models

were trained on B3DB, which does not overlap with the prediction dataset. Therefore, the

reported performance of previous models may be inflated due to data leakage, while our

evaluation provides a more realistic generalization capability. Despite this disadvantage,

our models consistently demonstrate performance that is comparable to, and often exceeds,

that of models found in the literature. This underscores our models’ exceptional predictive

capability.

We also present SHAP analysis results for two of our models, XGBoost-borderline_SMOTE

and dtree-borderline_SMOTE, on the prediction dataset, as shown in Figure 5. Descriptors

related to the molecule’s electronic topological state, hydrogen bonding potential, and auto-

correlation consistently rank among the most important. Key descriptors include ETA_Shape_Y,

nHAvin, SHsOH, and AATSC6e, suggesting that BBB permeability is strongly influenced

by molecular shape, polarizability, and hydrophobicity. This is consistent with the known

behavior of blood-brain barrier transport, which favors smaller, less polar molecules capable

of diffusing across the barrier83,84.
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Table 2 Comparison of the predictive performance of our models with earlier works. Abbreviations used in this table: AutoML-
HSL, Automated Machine Learning using Hyperopt-sklearn; DNN, Deep Neural Network; GNN, Graph Neural Network;
Mixed DL, Mixed Deep Learning.

Source Model AP Accuracy Sensitivity Specificity Precision F1 MCC GEOM BACC ROC_AUC
Present study dtree-borderline_SMOTE 0.9997 0.8114 0.8070 1.0000 1.0000 0.8932 0.2954 0.8983 0.9035 0.9934
Present study xgb-classic_ADASYN 0.9993 0.9086 0.9064 1.0000 1.0000 0.9509 0.4258 0.9521 0.9532 0.9708
Present study xgb-borderline_SMOTE 0.9991 0.8457 0.8421 1.0000 1.0000 0.9143 0.3296 0.9177 0.9211 0.9605
Present study xgb-classic_RandUndersampling 0.9991 0.7943 0.7895 1.0000 1.0000 0.8824 0.2810 0.8885 0.8947 0.9635
Present study knn-classic_RandUndersampling 0.9988 0.8743 0.8772 0.7500 0.9934 0.9317 0.2725 0.8111 0.8136 0.9518
Present study xgb-classic_SMOTE 0.9988 0.8629 0.8596 1.0000 1.0000 0.9245 0.3504 0.9272 0.9298 0.9488
Swanson et al. (2024)78 GNN 0.9988 0.9200 0.9298 0.5000 0.9876 0.9578 0.2368 0.6818 0.7149 0.9518
Present study knn-classic_SMOTE 0.9986 0.8343 0.8304 1.0000 1.0000 0.9073 0.3173 0.9113 0.9152 0.9444
Present study knn-common 0.9986 0.9257 0.9357 0.5000 0.9877 0.9610 0.2483 0.6840 0.7178 0.9444
Present study xgb-common 0.9985 0.8743 0.8713 1.0000 1.0000 0.9313 0.3661 0.9335 0.9357 0.9386
Present study dtree-common 0.9982 0.8743 0.8772 0.7500 0.9934 0.9317 0.2725 0.8111 0.8136 0.9313
Present study logreg-classic_RandUndersampling 0.9981 0.8857 0.8889 0.7500 0.9935 0.9383 0.2880 0.8165 0.8194 0.9225
Present study dtree-kmeans_SMOTE 0.9980 0.8686 0.8713 0.7500 0.9933 0.9283 0.2654 0.8084 0.8107 0.9247
Present study knn-kmeans_SMOTE 0.9980 0.8914 0.9006 0.5000 0.9872 0.9419 0.1924 0.6710 0.7003 0.9167
Present study knn-borderline_SMOTE 0.9979 0.7200 0.7135 1.0000 1.0000 0.8328 0.2320 0.8447 0.8567 0.9152
Present study logreg-classic_ADASYN 0.9979 0.8343 0.8304 1.0000 1.0000 0.9073 0.3173 0.9113 0.9152 0.9137
Present study xgb-kmeans_SMOTE 0.9979 0.8629 0.8596 1.0000 1.0000 0.9245 0.3504 0.9272 0.9298 0.9137
Present study knn-classic_ADASYN 0.9977 0.7029 0.6959 1.0000 1.0000 0.8207 0.2230 0.8342 0.8480 0.9079
Present study logreg-borderline_SMOTE 0.9977 0.8457 0.8421 1.0000 1.0000 0.9143 0.3296 0.9177 0.9211 0.9050
Present study logreg-common 0.9977 0.8914 0.9006 0.5000 0.9872 0.9419 0.1924 0.6710 0.7003 0.9064
Present study logreg-kmeans_SMOTE 0.9975 0.8857 0.8947 0.5000 0.9871 0.9387 0.1854 0.6689 0.6974 0.8977
Present study logreg-classic_SMOTE 0.9968 0.8571 0.8713 0.2500 0.9803 0.9226 0.0537 0.4667 0.5607 0.8713
Parakkal et al. (2022)79 Mixed DL (10-fold CV) 0.9964 0.8514 0.8538 0.7500 0.9932 0.9182 0.2461 0.8002 0.8019 0.8757
Parakkal et al. (2022)79 Mixed DL 0.9958 0.9200 0.9240 0.7500 0.9937 0.9576 0.3495 0.8325 0.8370 0.8582
Kumar et al. (2022)80 DNN 0.9957 0.7829 0.7836 0.7500 0.9926 0.8758 0.1899 0.7666 0.7668 0.8567
Han et al. (2025)81 AutoML-HSL 0.9923 0.9200 0.9298 0.5000 0.9876 0.9578 0.2368 0.6818 0.7149 0.8180
Present study dtree-classic_ADASYN 0.9922 0.6800 0.6784 0.7500 0.9915 0.8056 0.1360 0.7133 0.7142 0.7412
Present study dtree-classic_RandUndersampling 0.9841 0.7771 0.7778 0.7500 0.9925 0.8721 0.1862 0.7638 0.7639 0.7186
Present study dtree-classic_SMOTE 0.9820 0.7371 0.7544 0.0000 0.9699 0.8487 -0.0859 0.0000 0.3772 0.4620
Tang et al. (2022)82 Multi-model 0.8343 0.8343 1.0000 0.9097 0.0000
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(A) (B)

Figure 5 SHAP (SHapley Additive exPlanations) summary plots for (A) XGBoost-
borderline_SMOTE and (B) dtree-borderline_SMOTE.

3.5 B3clf: An Open-Source Python Package for BBB Predictions

We are disseminating the models proposed in this study as an open-source package,

B3clf, distributed and hosted by the QC-Devs software consortium85. This free and simple

command-line tool facilitates early-stage evaluation of molecular permeability in the CNS

drug design and development pipeline. It accepts a text file containing SDF filenames or

SMILES strings as input. The tool then generates 3D coordinates, optimizes the geometry,

and computes molecular descriptors as described in Figure 6. B3clf then selects features and

applies the pre-trained predictive models to predict whether a molecule is BBB-permeable.

The entire workflow can be executed with a single line of bash code and typically takes

about 4 seconds per molecule (c.f. Figure SI. 12):

18



b 3 c l f −mol input_molecules . sd f −c l f xgb −sampling classic_SMOTE −

out BBB_pred_results . x l sx −verbose 1

Predictions generated by B3clf are stored in a CSV file containing the molecule name,

predicted probability of crossing the BBB, and the assigned BBB permeability classification

(BBB+ or BBB-). The probability score represents the model’s confidence in each prediction

and can be directly used to generate ROC and precision–recall curves. This makes B3clf a

practical and reproducible benchmark for future comparative studies. Moreover, we imple-

mented a web server in Hugging Face (https://huggingface.co/spaces/QCDevs/b3clf)

with a graphical user interface, lowering the programming requirements for accessing these

BBB predictive ML models.

Figure 6 Architecture of B3clf computational package.

4 Conclusions
The blood-brain barrier (BBB) functions as a protective boundary for the central nervous

system (CNS), maintaining homeostasis and safeguarding it from potentially harmful exter-

nal agents1–3. However, BBB presents significant obstacles in the effective delivery of drug

molecules to the CNS, which often leads to failures in clinical trials for CNS drug discovery

initiatives4–6. Consequently, the prediction of BBB permeability has emerged as a vital

consideration in the design and development of CNS-targeted therapeutics. In recent years,

predictive models utilizing machine learning (ML) algorithms have attracted considerable
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attention12,17–27,35. However, a persistent challenge remains: class imbalance. This term

refers to the unequal distribution of BBB-permeable versus impermeable molecules within

training datasets. Such an imbalance may adversely impact the performance of the models

and restrict the generalizability of the ML methodologies in this domain.

In this study, we developed ML models by applying resampling strategies to the B3DB

dataset51. Specifically, we used four classification models (decision trees, kNN, logistic regres-

sion, and XGBoost) and six sampling techniques to address the class imbalance problem.

The sampling strategies include four oversampling methods (SMOTE, k-means SMOTE,

Borderline SMOTE, and ADASYN), one undersampling method (random undersampling),

and the original data (no resampling). In total, this yielded 24 models (4 classification

algorithms × 6 data configurations). We curated an external dataset of 175 molecules to

evaluate the generalizability of our models by using it as an independent test set. We com-

pared our models’ predictive performance on this dataset against six other ML models from

the literature. The results show that our models consistently achieve comparable or better

performance, indicating their strong generalization ability.

To disseminate our methods and ensure the reproducibility of our results, we built a

free and open-source Python package B3clf whereby users can predict a compound’s BBB

permeability on the command line or (more advanced) as a Python script. Moreover, we also

implemented an easy-to-use web server, hosted by Hugging Face, allowing users to predict the

BBB permeability in their browser. Our predictive tool B3clf provides both the predictive

labels and the corresponding probability, which can be used as a baseline for benchmarking

for future BBB predictive models.

While our models provide promising results for BBB permeability predictions, several

factors should be considered. Firstly, the reported models may not generalize well to specific

experimental measurements of the BBB. This is because (1) the training dataset B3DB

does not differentiate between different experimental methods or conditions, and there may

be quite limited data for a specific measurement type; (2) the noise in the data should be
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considered because data were collected from different experiments. Secondly, addressing the

noise can help further improve the model’s generalizability, which is not covered by this

study. Lastly, the threshold probability is not optimized for predicting BBB labels. This is

beyond the scope of this study, and one can refer to Ref. [86] for more information.

Data and Software Availability
The B3clf model, including all source code and installation instructions, is available at

https://github.com/theochem/B3clf. A web interface ready for direct use is freely and

publicly accessible at https://huggingface.co/spaces/QCDevs/b3clf.
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