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. A DNA intercalating dye propidium iodide (PI), binds to the

DNA of dead cells after membrane degradation.

. In addition, FITC conjugated active caspase-3 antibody;

caspase-3 is a protein which is activated in apoptotic cells.

Data for a dose response curve were collected for two radiation qualities
(280keV neutrons and B1cs gamma radiation) over a range of acute doses (0, 0.25,
0.5, 1, 2 and 5 Gy). Kinetic studies were done to compare the time course of the
apoptosis process by comparing the induction after exposure to either 280keV
neutrons and *’Cs gamma radiation at different timepoints over 96 hours. Radiation-
induced apoptosis increased with dose, and apoptosis levels peaked between 48 hours
and 72 hours depending on the assay which was related to the stage of apoptosis at the
time of measurement. For five independent experiments, the two radiation qualities

induced similar levels of apoptosis per unit dose.

The purpose of this research was to develop and test different assays to
measure apoptosis in human lymphocytes. The specific aim was to compare different
radiation qualities and assign an RBE value for low energy fast-neutrons. The overall
objective was to determine the sensitivity and feasibility of the different techniques for
emergency, accidental, or clinical biological dosimetry. The caspase-3 flow
cytometry assay had very good sensitivity at low doses (less than 0.25 Gy). There
was a statistically significant difference between the level of apoptosis induced in
unirradiated samples and lymphocytes which received 0.25 Gy of neutron or gamma
radiation. However, the caspase-3 assay, when compared to other flow cytometry

assays, was more time consuming and labour intensive. For speed and simplicity, the
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annexin V-FITC and 7-AAD assay was preferable. Both Annexin-V and 7-AAD had
good dose response at low doses (0 — 0.25 Gy) but was not as statistically significant
as caspase-3 at low doses. Economically, the DiOC¢ assay was most feasible;
however DiOC¢ did not seem very sensitive and had the largest interdonor variation.
For sensitivity, simplicity and labour requirements the Annexin V-FITC and 7-AAD
assay was the most economical. Overall the comet assay, while technologically being
the simplest, was the most labour intensive, as each cell must be scored visually and

therefore the most prone to human error.
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1 INTRODUCTION

1.1 Apoptosis and Radiation

In recent years, concern about the biological effects of neutrons has grown due
to occupational exposures from increased high-altitude travel, longer space missions
and the production of neutrons in nuclear power plants. In addition, international acts
of terrorism could potentially expose humans and biota to neutrons. In general,
people may be exposed to wide range of neutron energies, from low thermal energies

(a few eV) to high MeV energies.

One of the major challenges facing biological dosimetry is the ability to
measure accurately the biological damage and the subsequent risks associated with
radiation exposure. It has previously been reported that programmed cell death or
apoptosis, of white blood cells may be a useful biological indicator of radiation
exposure (Menz ef a., 1997; Boreham et al, 1996) as apoptosis is a form of cell death
that has distinctive morphological and biochemical characteristics (Steller, 1995).
Apoptosis (interphase cell death or programmed cell death) is the primary mode of
radiation-induced cell killing in human lymphocytes. Other forms of cell death
include necrosis, mitotic catastrophe and clongenic death; all are very distinctive

compared to apoptosis.

Apoptosis is morphologically characterized by increased cytoplasmic
granularity, cell shrinkage, chromatin condensation, membrane blebbing and loss of

plasma membrane asymmetry (Kerr et al, 1972; Wyllie, 1995; Willingham, 1999;
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Strasser et al, 2000). A cartoon diagram of the morphological changes which a cell
undergoes, as it becomes apoptotic is shown in Figure 1-1 (Saini and Walker, 1998).
lonizing radiation is a DNA damaging agent which induces apoptosis in some cell
types, including human lymphocytes. Biochemically, cells undergoing apoptosis are
characterized by depolarization of the mitochondrial membrane electrochemical
gradient, loss of plasma membrane symmetry which results in externalization of
phosphatidylserine residues on outer surface of plasma membrane, and finally DNA
cleavage followed by rupture of the plasma membrane (Schultz and Harrington, 2003;
Kroemer and Reed, 2000; Budihardjo et a/ 1999; Cryns and Yuan, 1998). (See Figure

1-1)

N~
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(CD95L) to CD95 induces receptor clustering and formation of a
death-inducing complex, Fas-associated death domain protein (FADD).
FADD recruits multiple procaspase-8 molecules, causing caspase-8
activation. Caspase activation may be blocked by c-FLIP. The
mitochondrial pathway (blue) is a response to insults such as DNA
damage. The mitochondrial pathway is regulated through activation of
the Bcl-2 family proteins. Pro- and anti-apoptotic Bc¢l-2 family
members converge on the surface of the mitochondria, where they
compete to regulate cytochrome c release from the mitochondria. If the
pro-apoptotic proteins dominate, an array of molecules is released from
the mitochondrial compartment, including cytochrome ¢. Cytochrome
¢ associates with Apaf-1 and then procaspase-9 to form the
apoptosome. The death receptor and mitochondrial pathways converge
at caspase-3 activation. Caspase-3 activation may be antagonized by
inhibitor of apoptosis proteins (IAP); however [APs themselves are
disrupted by SMAC/DIABLO protein which is released by the
mitochondria. After Caspase-3, the apoptotic program branches into
multiple sub-programmes, resulting in the ordered dismantling and
removal of the cell from the population of lymphocytes. Early
apoptosis is marked by loss of membrane asymmetry which results in

the exposure of phosphatidylserine on the outer leaflet (red, Figure

[-3).

Several methods have been developed to detect apoptosis in cells as a result of
exposure to ionizing radiation. Generally methods are based on either morphological
or biochemical changes. These assays which provide quantitative information on
apoptosis include; DNA laddering (Overbeeke et al 1998), in situ nick translation
(Loo and Rillema, 1998; Sgonc and Grubber, 1998), terminal deoxynucleotydyl

transferase mediated dUTP nick end labelling (TUNEL) (Sgonc ef al, 1994), terminal
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deoxynucleotydy! transferase (TdT) assay (Gorczyca et al, 1993) and fluorescence
analysis of DNA unwinding (FADU) (Cregan er al, 1994). Most of these methods are
time consuming and labour intensive, consequently improved techniques have been
developed. Due to high throughput capability, flow cytometry has become a rapid and
a useful method for detecting apoptosis. As flow cytometry is able to analyze several
parameters simultaneously it is capable of detecting both morphological and
biochemical changes in cells. For example, it can detect a change in cell size and
granularity while measuring the binding of fluorescently conjugated antibodies or
fluorescent stains which are targeted to DNA or proteins unique to apoptotic cells.
Flow cytometry has the ability to provide a fast, efficient and cost effective method of
measuring apoptosis and therefore useful in determining the magnitude of the

biological effect or the relative risk associated with radiation exposure.

A variety of flow cytometry assays which allow sensitive and rapid detection
of apoptotic cells have been reported. During early stages of apoptosis there is the
formation of mitochondria megachannels (permeability transition pores) in the outer
membrane leaflet. When these megachannels open, the asymmetric distribution of
protons on both sides of the inner mitochondrial membrane is lost. This is known as
transition of the mitochondrial transmembrane potential (TMP) (Vermes et al, 2000;
Martinou, 1999). In living cells the inner side of the inner mitochondrial membrane is
negatively charged; this allows cationic lipophilic fluorochromes to accumulate in the
mitochondria. Therefore, an early sign of apoptosis is the inability of a cell to
accumulate a lipophilic fluorochrome such as dihexyloxacarbocyanine iodide
(DiOCs). By combining DiOCe with a DNA intercalating dye, such as propidium

iodide (PI), apoptotic and necrotic cells can be distinguished (Vermes er al., 2000).
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1.1.1 Relative Biological Effectiveness

It has been reported that neutrons are more efficient per unit dose compared to
X- or gamma-radiation at causing cell damage in human lymphocytes (Schmid et al,
2003, 2002, and 2000; Prasanna et al, 1997; Fabry et al, 1985; Bauchinger et al,
1984). In those studies the radiation-induced cell damage was assessed using
cytogenetic analysis. This increased efficiency is known as the relative biological
effectiveness (RBE), and is defined as the ratio of the dose from some standard photon
beam (usually 250keV X-rays) divided by the dose of the test exposure that is

necessary to produce the same level of biological effect (Figure 1-4).

RQ 2
RQ1

g Effect at Z for dose of RQ 1 = 3
2 Effect at Z for dose of RQ2 =1
L

ki RBE= RQ 1

En RQ 2

2

o

Dose (Gy)

Figure 1-4. Calculation of relative biological effectiveness (RBE). RQ 1 is the
dose response curve for reference radiation (usually 250 keV X-rays).
RQ 2 is the dose response curve for the test radiation quality. Z is the
point where the biological effect of the two radiation qualities is the
same. In this example the dose of RQ 2 is three times lower than the
dose of RQ 1 for the same effect. Therefore the RBE for radiation
quality equals three.
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Table 1-1. A Summary of recently published high LET RBE studies.
Radiation .
X End Point | Cell Type RBE Author | Year
Quality
62.5MeV . mouse Warenius
neutrons apoptosis thymocytes 62.5 & Down 1995
14.5MeV . human
neutrons apoptosis lymphocytes 1 Vraletal | 1998
14 - 600MeV . intestinal crypt Hendry et
neutrons apoptosis cells 3-4 al 1995
32 - 45MeV . human Meijer et
nitrogen ions apoptosis lymphocytes 1.3-3.0 al 1998
65keV chromosome human 24 Prasanna 1997
neutrons aberrations lymphocytes . et al
36.6 - 14.6keV . . human 16.6 - Schmid et
neutrons dicentrics lymphocytes 234 al 2003

11
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2.1.3 ¥’Cs Gammna Irradiation

Exposure to gamma radiation was by '*’Cs gamma cell with an exposure rate
of 0.35 Roentgen per minute, which corresponded to a dose rate of 2.06Gyh™ in water.
Samples were irradiated at a source to sample distance of 92cm in the centre of the
collimated beam. The dosimetry was performed by using a pre-calibrated Farmer
dosimeter with a 0.6 cm® chamber. The chamber calibration could be traced to the
primary standard laboratory at the National Research Council of Canada (Figure 2-2).

The uncertainty of dose measurement was less than 5% at the 95% confidence level.
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2.5 Dose Response

Whole blood samples were exposed to doses of 0, 0.25, 0.5, 1, 2 and 5 Gy of
either gamma or 280keV neutron radiation. Samples were maintained in culture for

48 hours and then assayed using the three flow cytometry assays and the comet assay.

2.6 Gamma and 280kev Neutron Radiation Comparison

For the dose response curve, the effects of 137Cs gamma and 280keV neutron
irradiation were compared in blood samples from all three male individuals, of which
one donor was repeated in triplicate. Samples were irradiated and assayed in parallel.
Lymphocytes were then isolated, placed in supplemented medium at 4 x 10° cells m!”!
and incubated for 48 hours. After 48 hours samples were analyzed for apoptosis using

the three flow cytometry assays and the comet assay.

2.7 Statistics

Mean values represent data from a minimum of five independent experiments
(unless noted otherwise). Error bars were calculated as the standard error of the mean.

P-values were calculated using the student’s paired #-test.
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3 RESULTS

3.1 Flow Cytometry

Results for flow cytometry experiments were gathered as described above (in
section 2.3). DiOCs positive events were gated based on the unirradiated samples
while PI positive gate was set according to a 2 Gy exposed sample (Figure 3-1).
Annexin V-FITC positive and PI positive gates on the histogram plot were set based
on the 2 Gy exposure sample (Figure 3-2). Similarly the caspase-3 positive gate on

the histogram was set based on the 2 Gy exposures (Figure 3-3).

36
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3.2 Kinetics of Radiation-Induced Apoptosis

Unirradiated lymphocyte samples assayed immediately after isolation had a
spontaneous apoptotic frequency of 0.9% + 0.4% by active caspase-3 analysis and
0.1% = 0.1% by comet. Samples were incubated for up to 96 hours. Subsequent
incubation in tissue culture caused a gradual increase in apoptosis of unirradiated
control samples from 2.4% £ 0.5% at 24 hours to 2.5% % 1.5% at 96 hours, as
measured by Caspase-3 (Figure 3-4). The comet assay showed variation in apoptotic
levels in control cultures from 5.6% + 1.4% at 24 hours to 4.5% = 2.33% at 72 hours.
Levels of apoptosis in lymphocytes irradiated with 1 Gy ¥7Cs or 280keV neutrons,
increased with incubation. There was a significant difference between apoptotic
levels of irradiated and unirradiated cells at 48 hours, this increasing trend continued
with time and peaked at 72 hours post-irradiation for caspase-3 assay (Figure 3-4) but
the comet assay peaked at 48 hours (Figure 3-5). Irradiated lymphocytes assayed

using comet, 7-AAD and PI showed similar radiation-induced apoptosis kinetics.
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apoptosis. The first blood sample taken immediately before the patient undergoes
whole body low dose irradiation and second sample is taken immediately following
the procedure. These samples would be divided into two further sets, with one group
being exposed to a further gamma dose in vitro. If an adaptive response is triggered
the blood sample which got an in vivo priming dose would be expected to have fewer
chromosome aberrations and may have an increased apoptotic response as apoptotic

mechanisms become more efficient.

A study of chromosome aberration induced by radiation would be beneficial;
to confirm that high-LET neutrons are inducing chromosomal aberrations with an
RBE, which is in agreement with literature. It would be interesting to continue this
work looking at how the RBE for human lymphocytes (for both the inducement of
chromosome aberrations and apoptosis) is affected when the cells are exposed to
different radiation qualities, such as alpha particles and varying neutron energies.

This would require monoenergetic neutrons which could be accomplished using thin

lithium targets.
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The level of non-specific binding did not vary significantly with concentration
of labelled peptide. Thus an average value of non-specific binding was subtracted
from the fluorescence per cell, F, when determining the number of receptor — ligand
complexes. The total number of N-formyl peptide receptors, Ryq, and the equilibrium
dissociation constant, Ky, were evaluated by minimising the squared residual of the
equilibrium solution using a one-site binding model, as described on the equation
below. Figure A-7-3 shows the line of best fit for the experimental data collected

form the flow cytometer which was used to calculate Ry, and Ky. The values of R,

and K4 for each donor were solved simultaneously.

R[L]
LR=T0+x,
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subpopulations, in this study it was seen that the compounds fMLF(SAAC)G and
fMLF[(SAAC — Re(CO)3)']G preferentially bind to neutrophils, rather than just
granulocytes as a whole. This screening project showed that the novel compounds
fMLF(SAAC)G and fMLF[(SAAC — Re(CO);)']G bind to the granulocytes with
affinities greater than the parent fMLF peptide, which was used as the reference
peptide. This study indicated that fMLF(SAAC)G is a promising agent for targeting

%mT¢ to FPR receptors.

A.4 Conclusion

Flow cytometry can be used as a powerful screening tool, which affords the
opportunity to identify rapidly compounds that are capable of selectively targeting

specific types of granulocytes.
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