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of this analysis and those of other authors, even with the

use of a very coarse finite element mesh.

The approach is then applied to the analysis of a
standard ASTM E-399 bend bar specimen, and the results
compared to values obtained from actual experiments on
similar specimens. The objective of this phase is to
investigate the possible practical application of the method
to actual crack problems. When compared to the results
obtained from an E-399 analysis of a high strength steel
alloy, the finite element approach again yields good

agreement.

The proposed approach is therefore regarded as an
appropriate analytical tool for use in the study of cracked
body problems, in materials that exhibit plane-strain

behaviour.
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technique also has some detractions however, in that the
special elements normally laock the constant strain and rigid
body modes [12]. They also require the use of special,

sophisticated programmes.

Recently, several authors [11,12,14] have proposed
modifications to standard eight-node, isoparametric,
displacement type elements. These allow the development of
the necessary singularity in a very simple manner. This
approach, discussed in Chapter 3, provides a simple method
of modelling crack-tip behaviour, without the need for

either extensive mesh refinement or special elements.

Special methods have also been proposed [246] to
2allow the degeneration of an eight-node, quadrilateral,
isoparametric element to a2 six-node, triangular,
isoparametric element. Such an approach greatly enhances
mesh generation flexibility, and eases the transition to
coarse mesh configurations for regions of regular stress

distribution. This procedure is developed in Chapter 4.

In the investigation presented in this report, both
of these features are incorporated into an existing finite
element programme, that is based on standard eight-node,
quadrilateral, isoparametric elements. This is then used to

evaluate the fracture characteristics of several standard



crack models: the double-edge notched strip, the centre
cracked strip and the orthotropic plate with a central
crack. In Chapter 5, the results of these analyses are
compared to those of other authors. The approach is then
used to model specimens for which experimental data is
available, in order to assess its potential for practical

applications. The results are discussed in Chapter 6.

Finally, in Chapter 7, several conclusions are
presented and discussed, specifically in relation to future

research that should be undertaken.







provide a correlation between experimental data and actual
service conditions, by developing a quantitative
relationship between applied stress, discontinuity size and
material toughness. It attempts therefore, to provide a
method by which the strength and life of a cracked structure

can be predicted with reasonable accuracy.

One of the earliest approaches to the problem was
developed by GCriffith who, in 1920 (1913, propésed an energy
balance argument for coplanar growth of a sharp crack. This
concept, which is valid for brittle materials, suggests that
a crack will begin to propagate if the energy released
during crack growth is equal to the energy required to form
the new crack surface. For example, when a pre-existing
discontinuity in a brittle material, subject to an applied
tensile stress, grows by increasing its area by dA, a small
amount of energy, dQ, is absorbed in the process and the
stored strain energy of the specimen is decreased by dU.
When the rate of energy absorption equals the rate of energy
release, ie -dU/dA = dQ/dA, it is possible for the crack to
grow without the need for additional work to be Jone by the
applied stress. Criffith associated the energy absorbed
with the surface energy of the growing crack surface. This

gives the following relationships for infinitely long

plates:










strain energy release rate in the following manner:

¢ = K*/E (plane stress) (2.1.5.a)

G = K*(1-y*/E (plane strain) (2.1.5.b)

In the case of the idealized, linear elastic theory,
it is assumed that, for a given material the behaviour of
the crack, whether it remains stable, grows without bound or
grows at a definite rate, depends only on the magnitude of
the stress intensity factor. It is therefore possible to
characterize materials by determining the value of K, as a
function of applied stress and crack length, at which
unstable crack growth begins to occur. This linmit is
defined as the critical stress intensity factor, Ko. Then,
for any other structural configuration of this material, in
a similar environment, unstable crack growth will initiate
whenever the crack length and stress conditions combine to

produce a stress intensity factor equal to the value of K..

Combining Equations (2.1.3.a) with (2.1.5.a) and

(2.1.3.b) with (2.1.5.b), it is shown that:

)
K.= (EGC)G (plane stress) (2.1.6.3a)

Ke= (EG./(1- yi))y2 (plane strain) (2.1.6.b)

10
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T, = (KIIJZt)cos(GIZ)(I-Sin(BIZ)sin(SSIZ)) -

(Kyp/ V2r)sin(O/2)(24c05(0/2)c0s5¢(308/2) + .... (2.1.7.3a)

= (Ky/ J2r)cos(B/2)(1+5in(B/2)sin(36/2)) +

(Kyp/ Y21)sin(B8/2)cos(B8/2)cos(368/2)) + .... (2.1.7.b)

= (K;//Zt)cos(B/2)sin(B/2)cos(38/2) +

(KnlJZ:)cos(GlZ)(l—sin(BlZ)(39/2)) + ... (2.1.7.¢)

where the non-singular stress terms have been dropped, and r

and B8 are the polar coordinates.

The stress intensity factors K; and Kgyare the
symmetric and skew-symmetric components, associated with the
Mode I and Mode Il conditions respectively. Similar to the
previous discussion on the generalized stress intensity
factor, critical values of K; and K;; exist, for which there
are associated crack instabilities. These are denoted as K;
and K;ec. Kz is also frequently referred to as the fracture
toughness of a given material, because the standard material
evaluation test procedures are usually based on specimens
that exhibit Mode I behaviour. For the purposes of this
study only Mode I behaviour will be discussed. Therefore,
only the first terms in Equations (2.1.7.a), (2.1.7.b) and

(2.1.7.¢c) will be retained.












16

strain energy release rate concept to predict Ky . By this
approach, he was able to achieve an accuracy of five
percent, with a significantly less refined mesh than that of

Chan et al.

Parks' technique was essentially a2 finite element
model of the J-integral approach of Rice [24], which
considers the energy function along a2 path-independent
integral surrounding the crack tip. By this approach, Parks
was able to determine the potential energy release rate
without the need for multiple analyses for various crack

extensions, using the stiffness derivative technique.

In this study, the basic energy approach, similar to
that of Mowbray, will be used for determination of crack tip
properties. However, to eliminate the need for mesh
refinement, element modifications are incorporated, as
outlined in Chapter 3. By this method, it is possible to
achieve significant improvements without expensive

computational effort.









3.1 Node-Shifting

For the eight-node, quadrilateral, isoparametric
element, the shape functions have been formulated for the
parent (square) element in the natural coordinate system
(§,q) and subsequently mapped into a Cartesian coordinate
system (x,y). Consider the eight-node element that is
transformed from the EQ plane into the xy plane, in Figure

3.1. The transformation takes the form:

8

g =3 N; (§.,7m)&; (3.1.1.a)
&
8

y =1[N.'<§nz)y; (3.1.1.b)
=l

where the shape function corresponding to node i is:

1 2
Ni= (1+8E) (1ompd = (1=§ ) (Lammd = C1-2?) (148505774
2 B
+(1—§z)(l+qw)(l-ff)7f12

2
s C1-m®) (1488 C(1-mgr 8, /2 €3.1.2)

and (§;,q;) are the coordinates of node i in the
transformed system.
The same shape functions are also used for displacements,

such that:



8

u =} N; (¢ ,mru; (3.1.3.a)
&l
&

v =) N (§,m)v; (3.1.3.b)
]

The stiffness matrix of an element is then computed in the

following manner:
£X3 =‘[tBJT[D][B]dV (3.1.4)
v

where [Bl and [D] are defined such that:

{€) = [B1{§} (3.1.5)
T
{(§Y = Cuyvyu,v, ........ Uy Vg )
(o) = [DI{(E} (3.1.6)
N, /3= 0 ........ dNg/¥x 0
(Bl = 0 3N, Y Lo 0 ANg/dy (3.1.7)
3N, /dy ¥N,/d¥x ........ ANG/dy BNg/dx

and [D] is the elasticity matrix (plane stress or plane

strain).

However, as the shape functions are defined in the natural

coordinate system, the terms in (3.1.7) can be written as:

20
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)Ni_/BR BNI/bg
= 91" (3.1.8)
AN /Dy IN; /3
where:
3E/3%  dy/d¥
(J31 = (3.1.9)

Bxl)q By/)q

is the Jacobian matrix of transformation which can be

evaluated and inverted at any point within the element

domain.

The stiffness matriz of (3.1.4) can therefore be rewritten

as (321]:

[ |
[X3 =/ tB1  (DICBldet[J1d¥dy (3.1.10)
d Bt ]

For an investigation of crack tip behaviour, it is
important to obtain a singularity at the crack tip. To
accomplish this, consider Equation (3.1.9). From this
expression, it can be observed that a singularity condition
can be achieved by requiring the Jacobian [J] to become
singular at the crack tip. This requires that the

determinant of the Jacobian matrix, detl{J]l, vanish at the
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For the edge under study, (x=0, x=1, x=s), Equation (3.1.13)

becomes:
x = 0.5%¢1+E) + s(1-%5)
or rearranging:
(0.5-52F + 0.5+ (s-x) =0 (3.1.14)

the Tto0ots of which are:

§ = [-0.5 +/- 0.5 J/1-B(1-25)(s-x)1/(1-2s) (3.1.15)

For only the positive root:

)Elhx = 2/C J1-8(1-2s)(s-21)1 (3.1.16)

which is singular for:

1-8(1-2s5)(s-x) = 0 (3.1.17)

Therefore, for )gl)x to be singular at =z 0, s must equal
one quarter (s=1/4). Substituting for s = 1/49 into (3.1.16)

gives:

dF/dx = 2/ f1-8(1-28)(s-x21 = 1/ [x (3.1.18)






However, from present results, the prediction of X1
using a quadrilateral element, strain energy release-rate
approach yields results with acceptable variation for most
engineering applications. Further investigation of this
approach would, nevertheless, be valuable in order to
explore the full potential of this finite element approach

to fracture mechanics problems.

In the present analysis, distorted elements are used
wherever a2 node of that element coincides with the crack
tip. Also, all edges parallel to rays emanating from the
crack tip are also subjected to the node-shifting operation.
All other elements and edges are unchanged. It is obvious
therefore, that only minimal effort is required to
accomodate the presence of cracks for a linear elastic

fracture analysis.

25
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shape functions are not compatible with the requirement that
the element could be renumbered without any change to the
displacement assumptions. The corrections, proposed by
Bathe, allow the element to develop the necessary isotropy.
The shape factors for the two elements, the standard
eight-node element and the modified sigx-node element, are
listed below. On comparison of the two arrays, it is of
interest to note that the modified AN(3) value is a
summation of the original AN(3), AN(4) and AN(7) factors,
while the AN(1), AN(2) and AN(S5) factors are modified to
ensure isotropy. The development of the modified AN(3)

shape factor is given in Appendix 1.

The modifications described were incorporated into
the standard eight-node element coding, and triggered into

use whenever a degenerated element was utilized.




Isoparametric element shape functions:

a) eight-node

ANCL) = 1/4(¢1-s)(1-t)(14+s5+t)
AN(2) = -1/4(1+s)(1-t)(l-5+t)
ANC(3) = -1/4C1+s)(1+t)(1-5-1t)
AN(4) = -1/4(1-s)(1+t)(1+s-1t)
ANC5) = 1/2C1-s*)(1-%)
ANC6) = 1/72C1-t2)C1+s)
ANC?7) = 1/72C¢1-82)(C1+t)
ANC8) = 1/2(1-t*)(1-5s)

b) six-node

ANC1) = -1/4(C1-s)(1-t)(1l+s+t) + Q
AN(C2) = -1/4(1-s)(1-t)(1-s+t) + Q
ANC3) = 1/72¢1+t) - 1/2C1-t%)
AN(S) = 1/2C¢1-s*)¢1-t) - 2Q
ANCE) = 1/2C1-t*)(1+s)

ANCB) = 1/2(1-t*)>(1-5)

Q = 1/8¢(1-s*)(1-t*)

32




FIGURE 4.1:

Distorted Quadrilateral Elements {(Reference 12)
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FIGURE 4.2:

Collapsing Three Nodes into One Nodal Location
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a) Standard Eight Node Quadrilateral Elements

12 13 14 15 16
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b) Eight Node and Degenerated Six Node Elements

FIGURE 4.3: Basic Eight Node and Degenerated Six Node Element
Mesh Configurations













For both the CCS and DENS problems, the energy
release-rate approach is used to determine the stress
intensity factor. In each case the stored strain energy is
calculated for the body with the original crack, and then
for three conditions of crack extension. The crack
extension, in each case, represents an incremental growth of
two percent of the original crack length. The difference
between the strain energy values for each successive crack
configuration, divided by the crack surface area increment,
represents the strain energy released, AU, per unit of crack
advance, Aa. In other words, this is the strain energy
releas; rate: (AU/Aa). As discussed in Chapter 2, this can

be represented as:
G; = ~AulAa (S5.1.1)

The calculated energy release rate is then used to
determine the stress intensity factor for each
configuration, according to Equation (2.1.8.b), which takes
the following form for computation of KI under plane strain

conditions:

s
(EGy / ¢1-y2) )2

ol
|

LCE/(1-v*))(-Aulpadl (5.1.2)

The results of the CCS and DENS investigations are

39












2a Aa Av <1/4) G, Ky K;/o/@ | Error
(%)
10.0
0.2 [ 1.020658 20.4132 4.7363 2.107 0.07
10.2
0.2 | 1.058078 21.1616 4.8223 2.1249 | 0.74
10.4
0.2 1.097229 21.944¢6 4.9107 2.1432 1.61
10.6
Exact K;/o/a ref [(13) = 2.1092

Table 5.1: Stress intensity factors from the finite element

analysis of the centre-cracked specimen (Figure 5.1)

€




T
Za Aa AU (1/74) Gy Ky Ky lofa Error
(%)

10.0

0.2 0.98922 19.7844 q9.6627 2.074¢% 2.99
10.2

0.2 1.01787 20.3574 4.7298 2.0842 2.55
10.4

0.2 1.04762 20.9524 4.7984 2.0942 2.09
10 .6
Exact K /of/a : ref [131 = 2.1388

Table 5.2: Stress intensity factors from the finite element

analysis of the double-edge-notched specimen

(Figure 5.2).

th
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2_ E 2
B.= Ex/Ey Ex Ey= Ex/f,; HMxy Vyz
0.3 1.5 5.0 1.0 0.1
0.7 2.1667 3.09523 1.0 0.2333
1.0 2.6667 2.6667 1.0 0.3333
1.5 3.1667 2.1111 1.0 0.3333
4.5 6.1667 1.3704 1.0 0.3333
Table 5.3: Material properties used for the determination

of the stress

intensity factor

for an orthotropic

square plate with a centre crack.
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FIGURE 5.4: Orthotropic Square Plate with a Central Crack
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FIGURE 5.5:

Finite Element Mesh for Orthotropic Square
Plate with Central Crack







































































































































