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ABSTRACT

Stress singularity is developed in standard 

eight-node isoparametric finite elements, by shifting the 

mid-side nodes on the edges radiating from the corner node 

of interest to the quarter-points nearest that node. This 

feature is invaluable for use in the analysis of structural 

bodies with crack-like discontinuities; this analysis being 

particularly important for engineering development in 

Canada's northern and offshore regions. In these regions, 

extremely cold temperatures can lead to premature and sudden 

failure in structures that contain internal cracks, such as 

those imposed by welding. Consequently, a rational, 

cost-effective technique is required for the analysis of 

this type of problem.

The modified elements are used to investigate the 

fracture behaviour of three classical cracked body problems 

for which a number of results are available: the isotropic 

rectangular plates with a central crack or with symmetric 

edge cracks, and the orthotropic square plate with a central 

crack. The strain energy release-rate approach is used to 

determine the Mode I stress intensity factor for each 

specimen, and these are compared to data available in the 

literature. Good agreement is obtained between the results



of this analysis and those of other authors, even with the 

use of a very coarse finite element mesh.

The approach is then applied to the analysis of a

standard ASTM E-399 bend bar specimen, and the results 

compared to values obtained from actual experiments on 

similar specimens. The objective of this phase is to 

investigate the possible practical application of the method 

to actual crack problems. When compared to the results 

obtained from an E-399 analysis of a high strength steel 

alloy, the finite element approach again yields good 

a g r e emen t .

The proposed approach is therefore regarded as an

appropriate analytical tool for use in the study of cracked 

body problems, in materials that exhibit plane-strain 

behav i ou r.
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CHAPTER 1

INTRODUCTION

An assessment of the fracture characteristics of 

materials has been an important factor in the design of 

bridges, ships, Arctic and offshore structures, mechanical 

equipment, etc. Nowhere is this more apparent than in 

Canada, where the development of resources in frontier 

regions is placing new and very severe demands on materials 

and fabricated components. With the trend toward larger, 

more highly stressed equipment and the introduction of 

analytical techniques that enhance design optimization, the 

potential for sudden, catastrophic brittle fractures in 

these hostile environments is significant. Consequently, it 

has become essential, for such applications, to incorporate 

fracture control into the design process and attempt to 

ensure material integrity under all expected environmental 

cond i t i ons.

Over the last decade, considerable attention has 

been focused on the use of fracture mechanics as an approach 

to the material integrity problem. Realizing that all 

structures and components have inherent discontinuities, 

such as inclusions, surface cracks, weld defects and other
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similar internal or external defects, an understanding of 

their effects on overall structural performance is essential 

to predict strength and life. Such predictions are 

dependent, however, on the knowledge of the crack tip stress 

intensity factor as a function of applied stress and 

geometry of the structure, and on the experimental 

determination of the critical stress intensity factor and 

crack growth rates for the material under consideration.

Principles of fracture mechanics have already been 

adopted by many design engineers. A number of recent 

publications Cl-51 discuss the concepts and application of 

the approach in detail, and therefore no attempt will be 

made to perform such a development. However, for the 

purposes of this study, Chapter 2 will review some of the 

fundamental concepts of linear elastic fracture mechanics 

and, specifically, the use of the finite element method in 

such problems. At this point, it is sufficient to note that 

the successful application of fracture mechanics to 

practical problems depends on the reasonably accurate 

determination of the stress intensity factor for the crack 

configuration and material properties under investigation.

The theoretical determination of a stress intensity 

factor requires the exact solution of the elasticity problem 

for the specific crack configuration, using very
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sophisticated mathematical approaches. In most practical 

cases, however, an exact solution to such a complex, real 

problem may be extremely difficult, or impossible to obtain. 

As most real situations rarely conform to idealized models, 

for which exact solutions may exist, it becomes necessary to 

adopt an approximate approach that provides consistently 

accurate crack property predictions. The finite element 

method has been shown to be such an approach, and has 

received considerable attention [6-183.

The finite element method is now a well established 

numerical technique for determining stresses in structures. 

It has also become a very reliable numerical tool to use in 

the analysis of stress singular problems. However, as the 

method typically utilizes polynomial representations of 

displacements and/or stresses, it is very difficult to 

accurately model the crack behaviour in the neighbourhood of 

the stress singularity. Two distinct approaches were 

developed in response to this problem, though neither one 

was completely satisfactory. The simplest approach utilized 

an extremely refined mesh in the region of the crack tip 

[6,71. This method, however, results in an expensive and 

demanding use of computer time and requires a very tedious 

effort of data preparation. The other basic approach to the 

problem involved the development of special crack tip 

elements [17,183, which include stress singularities. This
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technique also has some detractions however, in that the 

special elements normally lack the constant strain and rigid 

body modes [121. They also require the use of special, 

sophisticated programmes.

Recently, several authors 111,12,141 have proposed 

modifications to standard eight-node, isoparametric, 

displacement type elements. These allow the development of 

the necessary singularity in a very simple manner. This 

approach, discussed in Chapter 3, provides a simple method 

of modelling crack-tip behaviour, without the need for 

either extensive mesh refinement or special elements.

Special methods have also been proposed [263 to 

allow the degeneration of an eight-node, quadrilateral, 

isoparametric element to a six-node, triangular, 

isoparametric element. Such an approach greatly enhances 

mesh generation flexibility, and eases the transition to 

coarse mesh configurations for regions of regular stress 

distribution. This procedure is developed in Chapter 4.

In the investigation presented in this report, both 

of these features are incorporated into an existing finite 

element programme, that is based on standard eight-node, 

quadrilateral, isoparametric elements. This is then used to

evaluate the fracture characteristics of several standard
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crack models: the double-edge notched strip, the centre 

cracked strip and the orthotropic plate with a central 

crack. In Chapter 5, the results of these analyses are 

compared to those of other authors. The approach is then 

used to model specimens for which experimental data is 

available, in order to assess its potential for practical 

applications. The results are discussed in Chapter 6.

Finally, in Chapter 7, several conclusions are 

presented and discussed, specifically in relation to future

research that should be undertaken.



CHAPTER 2

FRACTURE MECHANICS: THE BASIC THEORY AND

THE USE OF FINITE ELEMENT METHODS

Fracture mechanics is now well established as a

design tool for many applications: aerospace equipment, 

off-highway equipment, pressure vessels, offshore 

structures, bridges, etc. In the future, due to trends in 

engineering design and in project requirements, even greater 

use will be made of this analytical procedure. Extensive 

literature is available on the subjects of fracture and 

fatigue, and no attempt will be made here to discuss them in 

detail. However, certain basic information, pertinent to 

the development of a finite element model for a cracked 

body, will be presented in this chapter. A review of the 

general concepts of fracture and fracture mechanics, and an 

outline of linear elastic fracture mechanics is presented. 

Finally, details of various finite element approaches to the 

problem of determining the stress intensity factors are 

discussed.

2.1 Fracture Mechanics Theory

The basic purpose of fracture mechanics is to

6
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provide a correlation between experimental data and actual 

service conditions, by developing a quantitative 

relationship between applied stress, discontinuity size and 

material toughness. It attempts therefore, to provide a 

method by which the strength and life of a cracked structure 

can be predicted with reasonable accuracy.

One of the earliest approaches to the problem was 

developed by Griffith who, in 1920 C19 3, proposed an energy 

balance argument for coplanar growth of a sharp crack. This 

concept, which is valid for brittle materials, suggests that 

a crack will begin to propagate if the energy released 

during crack growth is equal to the energy required to form 

the new crack surface. For example, when a pre-existing 

discontinuity in a brittle material, subject to an applied 

tensile stress, grows by increasing its area by dA, a small 

amount of energy, dQ, is absorbed in the process and the 

stored strain energy of the specimen is decreased by dU . 

When the rate of energy absorption equals the rate of energy 

release, ie -dU/dA = dQ/dA, it is possible for the crack to 

grow without the need for additional work to be done by the 

applied stress. Griffith associated the energy absorbed 

with the surface energy of the growing crack surface. This 

gives the following relationships for infinitely long

plates:
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CTc = <2 XE/7ra) z (plane stress) (2. 1.1.a)

orc = ( 2 KE / ( 1 - vx>na A (plane strain) (2.1.1.b)

wh ere: 0^ = fracture stress

K = surface energy of the solid

E = modulus of elasticity

a = half of the crack length

V = Poisson's ratio

Griffith's theory was essentially developed for 

glass, however, and was not particularly relevant for most 

metals. For such materials, it was postulated 1203 that 

energy, far in excess of the surface energy, is absorbed 

through plastic deformation at, or near the crack tip. 

Modifications to Equations (2.1.1.a) and (2.1.1.b) were 

proposed to accomodate this plasticity effect:

crfc = ( E Xp /IT a > * (2.1.2)

where ^P ~ energy term to account for plastic 

deformation at crack tip.

Irwin [213 also developed similar relationships,

based on the strain energy release rate, G, such that:
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ffc= (EGc/fTa)^-
(plane stress) ( 2 . 1 . 3 . a )

^= (EGC / ( 1- »x)1Ta) z (plane strain) (2.1.3.b)

whe r e Gc = critical value of G

Regarding linear elastic fracture mechanics the 1imiting

solution for the elastic state of stress around a sharp

crack is of the following form C61:

O' = (K / r^) f (0 ) (2.1.4)

where: O' = one of the stress components

r, 0 = polar coordinates (origin at the crack tip)

f = a trigonometric function of © , which

depends on the stress component considered

and the symmetry of the problem.

K = constant

In the above equation the constant, K, is dependent 

on geometry, such as crack length, and the loading.

Furthermore, since it represents the intensity of the stress 

field around the crack tip, K is also referred to as the 

stress intensity factor.

Irwin related this stress intensity factor to the
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strain energy release rate in the following manner:

G = Ka/E (plane stress) (2.1.5.a)

G = K^d-yb/E (plane strain) (2.1.5.b)

In the case of the idealized, linear elastic theory, 

it is assumed that, for a given material the behaviour of 

the crack, whether it remains stable, grows without bound or 

grows at a definite rate, depends only on the magnitude of 

the stress intensity factor. It is therefore possible to 

characterize materials by determining the value of K, as a 

function of applied stress and crack length, at which 

unstable crack growth begins to occur. This limit is 

defined as the critical stress intensity factor, Kc. Then, 

for any other structural configuration of this material, in 

a similar environment, unstable crack growth will initiate 

whenever the crack length and stress conditions combine to 

produce a stress intensity factor equal to the value of Kc .

Combining Equations (2.1.3.a) with (2. 1.5.a) and 

(2.1.3.b) with (2.1.5.b), it is shown that:

Kc= (EG^r5

Ke= (EGC / ( 1-^) )^

(plane stress) (2. 1.6.a)

(plane strain) (2.1.6.b)
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In actual practice, materials that exhibit plane 

stress behaviour have significant zones of plastic 

deformation around the crack tip, and are not realistically 

represented by Equation <2. 1.6.a). However, very high 

strength, very thick or brittle materials tend more toward 

the plane strain condition, and Equation (2.1.6.b) may be 

sufficiently accurate.

In his early papers, Irwin also concluded that 

fracture behaviour could be characterized by three basic 

modes of crack extension: Modes I, II and III. These three 

modes are illustrated in Figure 2.1.

Mode I is defined as the opening mode, with in-plane 

crack propagation. This is the most frequently analyzed 

crack mode for modelling purposes. Mode II is the sliding 

mode, characterized by a shear displacement perpendicular to 

the crack front. Mode III is the tearing mode, 

characterized by a shear displacement parallel to the crack 

f r on t .

In the case of plane stress or plane strain, where 

the material contains a straight crack, subject to in-plane 

stresses, only Modes I and II are pertinent. For these 

cases, non-zero stress components are mathematically 

infinite at the crack tip, and the stress state in the

neighbourhood of the crack can be expressed as:



12

T„= <KZ//Tr)cos(0/2)(1-sin(0/2)sin(30/2)) -

<K„/ JzT )sin(912) (2 + cos(0/2)cos(30/2> + ....

= <Kt / TTr ) cos ( 9/2 ) ( 1 +s inO/2 ) 5 in ( 30/2 ) > +

(KXI/ /Tr ) s in( 0 / 2 ) cos (0/2 ) cos ( 30/2 ) ) + ....

= (K-/ m>cos(0/2>sin(©/2>cos(30/2) +

(KXI/ /2r ) cos (0 / 2 > ( 1 - s in(0 / 2 ) ( 30/2 ) ) +

( 2 . 1 . 7 . a )

( 2 . 1 . 7 . b )

(2.1.7.c)

where the non-singular stress terms have been dropped, and r

and © are the polar coordinates.

The stress intensity factors Kx and Klxare the 

symmetric and skew-symmetric components, associated with the 

Mode I and Mode II conditions respectively. Similar to the 

previous discussion on the generalized stress intensity 

factor, critical values of K- and KXIezist, for which there 

are associated crack instabilities. These are denoted as KIC 

and KjIc. Krc is also frequently referred to as the fracture 

toughness of a given material, because the standard material 

evaluation test procedures are usually based on specimens 

that exhibit Mode I behaviour. For the purposes of this 

study only Mode I behaviour will be discussed. Therefore, 

only the first terms in Equations (2.1.7.a), (2.1.7.b) and

(2.1.7.C) will be retained.
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Finally, considering Equations (2.1.6.a) and 

(2.1.6.b), it is important to note that:

Klc= <EGIC)^ (plane stress) <2. 1.8.a)

KJC= (EG^/( 1-ya) A (plane strain) (2.1.8.b)

Onoe determined, KZc can then be used to predict the 

allowable defect size for a given applied stress, or 

conversely the allowable stress for the largest anticipated 

d i s c on t inu i t y.

2.2 The Application of the Finite Element Method to 

Linear Elastic Fracture Mechanics

The determination of the crack tip stress intensity 

factor is essential to the solution of any fracture problem. 

This requires the exact solution of the elasticity problem 

formulated for the cracked body however, and in most cases 

this is almost impossible to accomplish. For a number of 

basic crack profiles, very sophisticated mathematical 

solutions have been derived, and tables of stress intensity 

factors prepared [223. In most practical cases however, 

such rigorous solutions are very difficult or impossible to 

achieve. Other approximate solution techniques must be

adopted therefore: the alternating method, the
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boundary-integra 1 equation method, the line-spring model, 

the finite element method, etc. C231. Of these, the finite 

element method has been particularly successful and has 

received considerable attention in recent years.

Two basic approaches predominate: the direct 

approach which uses special crack tip elements with an 

inherent singularity, and the indirect approach that uses 

standard polynomial functions for finite elements. The 

latter attempts to define crack tip behaviour in terms of 

the solution distant from the crack tip.

Using special elements, Tong and Atluri C173 

achieved Kx results within 1 to 2 percent, while Mau and 

Yang [181 were able to reduce their error to below 1 

percent. The use of such an approach however, can lead to 

extensive and sophisticated programming changes. 

Furthermore, their flexibility with respect to changing 

crack direction is not well understood.

With the indirect approach, the general tendency has 

been to develop extremely refined meshes around the crack 

tip. It is possible, therefore, to determine with some 

degree of accuracy the behaviour at some distance from the 

crack tip and use this to predict the approximate conditions

at the tip. Two basic philosophies have evolved around this
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subject. The first approach involves the extrapolation of a 

field parameter near the crack tip using calculated 

displacement or stress fields. The other technique 

considers the potential energy release rate due to crack 

extension, from which it is possible to determine the 

required fracture properties.

Chan, Tuba and Wilson [71 typify the extrapolation 

approach. They develop a graphical relationship between 

stress components and distances along a ray emanating from 

the crack tip, and then extrapolate back to the tip. Stress 

intensity factors can then be determined from the basic 

stress equations, (2.1.7.a) through ( 2 . 1 . 7 . c ) . Similar 

techniques could also be applied to the relationship of 

displacement and distance from the crack tip. In their 

paper, these authors reported solutions within 5 percent of 

the accepted exact values for Kx . However, extremely 

refined mesh configurations were required. This implies 

very expensive solutions, both in terms of computer cost and 

data preparation.

A number of energy methods have been proposed, but 

the standard approach used by Mowbray [8] and the J-integral 

analogue proposed by Parks CIO], appear to be the two most 

practical techniques. Mowbray analysed the same basic

specimen for various crack extensions, and then used the
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strain energy release rate concept to predict Kj . By this 

approach, he was able to achieve an accuracy of five 

percent, with a significantly less refined mesh than that of 

Chan e t al.

Parks' technique was essentially a finite element 

model of the J-integral approach of Rice C24J, which 

considers the energy function along a path-independent 

integral surrounding the crack tip. By this approach, Parks 

was able to determine the potential energy release rate 

without the need for multiple analyses for various crack 

extensions, using the stiffness derivative technique.

In this study, the basic energy approach, similar to 

that of Mowbray, will be used for determination of crack tip 

properties. However, to eliminate the need for mesh 

refinement, element modifications are incorporated, as 

outlined in Chapter 3. By this method, it is possible to 

achieve significant improvements without expensive 

computational effort.
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FIGURE 2.1: Three Primary Modes of Fracture



CHAPTER 3

DEVELOPMENT OF THE THEORY OF NODE SHIFTING

A significant problem with the use of the standard 

displacement finite element method in fracture analysis is 

the difficulty encountered in attempting to model the stress 

singularity at the crack tip. As previously stated, early 

techniques incorporated special crack tip elements or very 

refined mesh configurations, but both methods are less than 

sat isfactory.

Recently however, several authors til,12,141, have 

proposed a technique for use with eight—node, quadrilateral, 

isoparametric elements that eliminates the need for either 

special elements or meshes. As a result, the technique 

provides a cost-effective method of solving crack 

propagation problems using a standard, eight-node, 

isoparametric finite element programme. The technique 

involves the use of standard, eight—node, disp1 acement — type , 

isoparametric elements where the mid-side nodes on the edges 

adjacent to the crack tip are displaced to the quarter point 

position nearer to the tip. This simple modification 

introduces the required singularity for modelling the crack 

tip behav i our .

18
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3 . 1 Node-Shi f t ing

For the eight-node, quadrilateral, isoparametric 

element, the shape functions have been formulated for the 

parent (square) element in the natural coordinate system 

(^,^) and subsequently mapped into a Cartesian coordinate 

system (x,y). Consider the eight-node element that is 

transformed from the ^ plane into the xy plane, in Figure 

3.1. The transformation takes the form:

S
8 = £n- (^ ,^)x^ (3.1.1.a)

y = EN< <?/Vy; o . i . i .b>

where the shape function corresponding to node i is:

N£ = < i + ^P < i-^?- <i - !z > ( 1 + ^;)- < 1- ^ ) ( l+^^ri^^ 4 

+ (1-$ ) (1+7V (i-f; >*7* / 2

+ ( 1-^X) ( 1+f^) ( l-^)fSz (3.1.2)

and (^i,^) are the coordinates of node i in the 

transformed system.

The same shape functions are also used for displacements,

such that:
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8
u = EN; (^ .^)u£ ( 3 . 1 . 3 . a )

( 3.1 . 3 . b )

The stiffness matrix of an element is then computed in the

following manner:

CK] = / CB] CD]CB]dV (3.1.4)

where CB] and CD] are defined such that:

strain) .

CB ]

(£) = CBHSJ (3.1.5)

C £ )T = < u, v, ux v^......... us v0 >

(CT) = CD](£) (3.1.6)

^Nj/ix 0 .........  *N8/>x 0

= 0 >N, /iy ......... 0 ^Ns/^y (3.1.7)

iN,/^y ^N./^x .........  ^Ne/^y ^N^/^x

and CD] is the elasticity matrix (plane stress or plane

However, as the shape functions are defined in the natural

coordinate system, the terms in (3.1.7) can be written as:
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wh ere:

iN^/^x

^N^^y

Ut / ^

^nl / ^

(3.1.8)

^xZ^ ^y / ^

(3.1.9)

is the Jacobian matrix of 

evaluated and inverted at 

domai n.

The stiffness matrix of (3 

as C 32 ] :

transformation which can be

any point within the element

.1.4) can therefore be rewritten

CK3 = JJ CB3TCD]CBldetCJ 1 d^d^ (3.1.10)

For an investigation of crack tip behaviour, it is 

important to obtain a singularity at the crack tip. To 

accomplish this, consider Equation (3.1.9). From this 

expression, it can be observed that a singularity condition 

can be achieved by requiring the Jacobian CJ] to become 

singular at the crack tip. This requires that the 

determinant of the Jacobian matrix, detCJJ, vanish at the
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crack tip, where:

det[J] = ^( x,y) /^(^,^) (3.1.11)

Of course, this will lead to singular values for x 

and y, and hence, the strains and stresses will also become 

singular as required.

To investigate the singularity requirement, consider 

Figure 3.2. For the edge n =-l, the non-zero shape 

f unc t i ons are:

N, = -?(1-!> ,Z (3. 1.12.a)

NZ= f ( 1+V / 2 (3 . 1 . 12 . b)

Ns = ‘i-^ (3.1.12.C)

and therefore the transformation of Equation (3. 1.3.a) takes 

the form:

x = L N^ xc

= -0 . 5$( l-^)x, +0.51< l+^)x2+( l-fSx^ (3.1.13)
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For the edge under study, (x»0, x = l, x = s), Equation (3.1.13) 

bee ome s:

x = 0.5^<1+^) + s(1-^Z)

or rearranging:

(0.5-s)f2+ 0.5^ + (s-x) = 0 (3.1.14)

the roots of which are:

£ = C-0.5 +/- 0 . 5 /l-8(l-2s)(s-x) 3 / ( 1 - 2 s ) (3.1.15)

For only the positive root:

^?/^x = 2 / C /l-8(l-2s)(s-x)3 (3.1.16)

which is singular for:

l-8( l-2s)(s-x) = 0 (3.1.17)

Therefore, for ^/^x to be singular at x = 0, s must equal 

one quarter ( s = 1 / 4 ) . Substituting for s = 1/4 into (3.1.16) 

gives:

1 / /x^f/^x = 2/t Jl-8(l-2s)(s-x)3 = (3.1.18)
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Considering only the u displacements along the edge 'n = -1:

u = - 0.5^(1-^)u, +0.5j(1+^)u^ + (1-^)u5 (3.1.19)

and, in general:

E^'iu/V = (iu/^ ) (^/^x)

sp^N^^ )(u-/ /x") (3.1.20)

Similarly fxx and *xy strains can also be shown to vary as

(1//k). The strain singularity along the line ^ = -1 is

therefore of the form (1//F), i.e. the singularity required

for the elastic analysis of crack tip behaviour.

From this analysis, it is therefore evident that the 

distorted, eight-node, quadrilateral, isoparametric 

elements, with the mid-side nodes shifted to the

quarter-points, introduce the necessary singularity into the 

solution technique. Further refinements are possible, C121, 

where triangular crack tip elements, degenerated from 

regular quadrilateral isoparametric elements, are developed.

As shown by both Barsoum and Heymann, the triangular element 

should provide more accurate results than the rectangular 

element, owing to a superior bounding on total strain

energy .
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However, from present results, the prediction of Kx 

using a quadrilateral element, strain energy release-rate 

approach yields results with acceptable variation for most 

engineering applications. Further investigation of this 

approach would, nevertheless, be valuable in order to 

explore the full potential of this finite element approach 

to fracture mechanics problems.

In the present analysis, distorted elements are used 

wherever a node of that element coincides with the crack 

tip. Also, all edges parallel to rays emanating from the 

crack tip are also subjected to the node-shifting operation. 

All other elements and edges are unchanged. It is obvious 

therefore, that only minimal effort is required to 

accomodate the presence of cracks for a linear elastic 

fracture analysis.
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(-1,1) (1,1)

(-1,-1) (1,-1)

FIGURE 3-1: Eight Node Transformation
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FIGURE 3.2: Location Shift for (X5) to Induce Stress Singularity 
at (x^



CHAPTER 4

THEORY OF EIGHT-NODE TO SIX-NODE ELEMENT 

DEGENERATION

The most efficient procedure for generating finite 

element meshes employs small elements in regions of large 

stress gradients and larger elements where stress 

distributions are relatively uniform. With quadrilateral 

elements however, this condition is difficult to achieve, 

and it may require a relatively complex mesh. To accomodate 

large variations in a finite element mesh it is generally 

easier to use triangular elements. This is because 

dimensional changes can be readily accomodated in such a 

mesh configuration.

Very distorted quadrilateral elements, as shown in 

Figure 4.1, have been used by some authors [121. However, 

even this approach might not provide the level of refinement 

desired in certain regions. Other authors £253 have 

combined the use of triangular and quadrilateral elements.

Instead of using two different ways to derive the 

quadrilateral and triangular elements, the degeneration 

technique reported in t 2 6 3 has been used. This involves the

28
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degeneration of a regular, eight-node, quadrilateral, 

isoparametric element into a triangular, six-node, 

isoparametric element. By the introduction of very 

straightforward modifications to the shape functions, 

six-node, triangular, isoparametric elements can be 

accomodated in a standard eight-node, quadrilateral finite 

element computer programme. Very flexible mesh 

configuration options are provided as a result, and it 

becomes considerably easier to construct a more 

computationally efficient mesh.

4 . 1 Element Degeneration

The basic procedure for degenerating an eight-node 

quadrilateral element into a six-node triangular element is 

simply to collapse the three nodes along one of the edges 

into a single node, Figure 4.2. This element would then be 

identified in the computer programme as a pseudo-eight-node 

element, where three nodes have identical coordinates. For 

this specific application, the node identification for the 

triangular element, Figure 4.3(b), would be:

3:5:14:14:4:10:14:9

where the procedure is to identify the corner nodes first,

starting with the 1 ower,1eft-hand corner and proceeding in a
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counter-clockwise order, followed by the mid-side nodes.

For the standard quadrilateral element, Figure 4.3(a) the

node identification would have been:

3:5:16:14:4:10:15:9.

The analysis routine therefore regards the element

as a quadrilateral, eight-node element with three coincident

nodes.

The resultant element, however, may not provide the 

necessary spatial isotropy. As discussed by Bathe, lower 

order quadrilateral elements automatically yield a spatially 

isotropic triangular element through such a degeneration 

procedure. Typical elements would be of the four node type. 

However, for higher order elements, such as the eight—node 

quadrilateral, degeneration to a six-node triangular element 

destroys the geometrical invariance of the original element. 

In this situation, corrections must be applied to the 

element shape functions in order to restore the spatial 

isotropy .

For the element in Figure 4.4, it is desirable for

the internal displacements, u and v to vary identically for

each nodal displacement, corner and mid-side. Howe ver, by

simply collapsing one side into a single node, the resultant
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shape functions are not compatible with the requirement that 

the element could be renumbered without any change to the 

displacement assumptions. The corrections! proposed by 

Bathe, allow the element to develop the necessary isotropy. 

The shape factors for the two elements, the standard 

eight-node element and the modified six-node element, are 

listed below. On comparison of the two arrays, it is of 

interest to note that the modified AN(3) value is a 

summation of the original AN(3), AN(4) and AN(7 ) factors, 

while the AN(1), AN ( 2 ) and AN ( 5 ) factors are modified to 

ensure isotropy. The development of the modified AN(3) 

shape factor is given in Appendix 1.

The modifications described were incorporated into

the standard eight-node element coding, and triggered into

use whenever a degenerated element was utilized.
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Isoparametric element shape functions:

a) eight-no de

AN ( 1 ) = l/4(l-s)(l-t)(l+s+t) 

AN(2) = -l/4(l+s)(l-t)(l-s+t) 

ANO) = -l/4(l+s)(l+t)(l-s-t) 

AN(4) = -1 / 4( 1-s) ( 1 + t) (1+s-t) 

AN(5 ) = 1 / 2( l-sz ) ( 1-t)

AN ( 6 ) = 1 / 2 ( 1 -t2 ) ( 1 + s ) 

AN( 7 ) = 1 / 2< l-sz) (1 + t) 

AN( 8 ) = 1 / 2 C 1-t1 ) ( 1-s)

b) s i x-node

AN(1) = -l/4(l-s)(l-t)(l+s+t) + Q

AN(2) = -1/4(1-s) ( 1-t ) (1-s + t) + Q

ANO) = l/2(l+t) - 1/2(1-t2)

AN(5) = 1 / 2(1-s2 ) ( 1-t) - 2Q

AN(6) = 1 / 2( 1-t2 ) ( 1 + s)

AN(8) = 1/2(1-t2)(l-s)

Q = 1 / 8 ( 1-s2 ) ( 1-t1 )
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FIGURE 4.1: Distorted Quadrilateral Elements (Reference 12)
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FIGURE 4.2: Collapsing Three Nodes into One Nodal Location
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a) Standard Eight Node Quadrilateral Elements

b) Eight Node and Degenerated Six Node Elements

FIGURE 4.3: Basic Eight Node and Degenerated Six Node Element
Mesh Configurations
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FIGURE 4.4: Typical Node Identification Theory



CHAPTER 5

APPLICATION OF FINITE ELEMENT METHOD 

TO FRACTURE METHODS

To verify the method developed in Chapters 3 and 4, 

and to ascertain its accuracy, several examples with known 

results have been investigated. Critical stress intensity 

factors are calculated for several crack length conditions 

in a centre-cracked strip (CCS) specimen and in a 

double-edge-notched strip (DENS) specimen, under tensile 

loads. These are then compared with results obtained by 

other researchers. Also, the problem of an orthotropic 

square plate with a centre crack is analysed, for several 

modular ratios, and compared with results available in the 

literature. It is readily apparent that the method 

described here is an accurate method for assessing crack 

character ist ics.

5 . 1 Isotropic Rectangular Plates with a Central

Crack, or with Symmetric Edge Cracks.

The two plane strain problems, for which there are 

considerable analytical results available in the literature 

are shown in Figures 5.1 and 5.2. Recognizing the inherent

37
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double symmetry of the specimens, only one quarter of the 

plate needs to be modelled, thus resulting in significant 

savings in computational costs. The section of the specimen 

to be investigated is therefore shown as the shaded area in 

Figures 5.1 and 5.2, along with the appropriate boundary 

cond i t i ons.

As the only difference between the CCS and the DENS 

problems is in the definition of the boundary conditions, 

the same mesh is used for both, as illustrated in Figure 

5.3. This mesh utilizes a combination of standard and 

modified eight-node isoparametric elements, and six-node 

elements degenerated from the eight-node type. For the two 

elements that straddle the crack tip, the node-shift 

distortion, discussed in Chapter 3, is introduced. By 

moving the mid-side nodes on the three edges radiating from 

the crack tip to the quarter point positions nearest the 

tip, the required singularity condition is introduced. For 

the other elements in the crack region and for a distance 

from the crack that is sufficient to damp out major stress 

variations, standard elements are used. Then, in order to 

al low for mesh coarsening in the remainder of the specimen, 

a transition zone of six—node triangular elements is added. 

Finally, a zone of large, eight-node elements is used to 

represent the more regular sector of the specimen that is

beyond the influence of the crack tip singularity.
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For both the CCS and DENS problems, the energy 

release-rate approach is used to determine the stress 

intensity factor. In each case the stored strain energy is 

calculated for the body with the original crack, and then 

for three conditions of crack extension. The crack 

extension, in each case, represents an incremental growth of 

two percent of the original crack length. The difference 

between the strain energy values for each successive crack 

configuration, divided by the crack surface area increment, 

represents the strain energy released, AU, per unit of crack 

advance, Aa. In other words, this is the strain energy 

release rate: ( △U / Aa ). As discussed in Chapter 2, this can 

be represented as:

Gj = -Au/Aa (5.1.1)

The calculated energy release rate is then used to 

determine the stress intensity factor for each 

configuration, according to Equation (2.1.8.b), which takes 

the following form for computation of Kj under plane strain 

condit ions:

Kx = (EGX / (l-v1))1

= [(£/(!-?))( -Au/Aa) 3 (5.1.2)

The results of the CCS and DENS investigations are
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given in Tables 5.1 and 5.2 respectively. By analyzing each 

specimen for four crack configurations, the consistency of 

the method is established and some indications of the 
♦ 

relationship between crack 1 ength/specimen width ratio and 

stress intensity factor are provided. The nearly exact Kj 

values, defined by Mirza and Olson [131 and based on the 

original work of Bowie [27], and Bowie and Neal [283, are 

also provided, for comparison purposes. It can be observed 

that the finite element technique in this report provides a 

very accurate approach to the linear elastic, isotropic 

cracked body problem. Furthermore, there is only slight 

divergence from the exact data with increasing crack length, 

as expected. Errors of less than 1 percent for the CCS, and 

approximately 2 percent for the DENS are achieved, which are 

excellent considering the coarseness of the finite element 

mesh. More accurate results can be expected with further 

mesh refinement and smaller crack advance increments.

5 . 2 Orthotropic Square Plate with a Central Crack

The plane stress, orthotropic square plate with a 

central crack is shown in Figure 5.4. As for the 

investigations of the isotropic specimens in section 5.1, 

the double symmetry of the problem again requires only one 

quarter of the plate to be analysed. The finite element 

configuration for this specimen, along with the appropriate
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boundary conditions, is indicated in Figure 5.5.

As before, a combination of standard and modified 

eight-node elements and degenerated six-node elements is 

used to model the cracked plate. Again, the strain energy 

release-rate method is adopted. However, owing to the 

anisotropy of the body, a slightly different strain energy 

re1ease-rate/stress intensity factor relationship is 

required .

In the case of a crack propagating in its own plane, 

in an orthotropic body, the relationship between G and K is 

g i v en by 12 1:

Gx = ttKx < 2ExEy 7* C ( Ex /Ey )^ + ( 2 ( -V^/Ex ) + < 1 1^ ) 7(2 / Ex)3 <5.2.1)

where Ex and Ey are the principal elastic mo du 1 i , y^y is the 

shear modulus in the x-y plane, andVy^is Poisson's ratio for 

strain in y due to stress in x direction.

In describing results from the analysis, the 

approach due to Bowie and-Freese [291 is employed. In their 

paper, they define two factors, y3, and y3* , that characterize 

the response of a cracked orthotropic plate. These factors

are defined such that:
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AA‘ ^^^y^ (5.2.2)

and

^,+/3a = /2C (Ex/Ey £ + (Ex/2/ux/)-^x)'^ (5.2.3)

For purposes of this study, the y3( factor is 

maintained as unity, while /3* is assumed to vary. Also, the 

value of the shear modulus is kept as unity. The values of V 

and ^ are then selected such that Equation (5.2.3) is 

satisfied. A summary of the properties chosen is given in 

Table 5.3

The analysis involves calculating the strain energy 

release rate for a given crack advance, according to 

Equation (5.1.1) and then determining the stress intensity 

factor from Equation (5.2.1). Table 5.4 summarizes the 

results for the five different values of ^2 selected. The 

results of Bowie and Freese, for similar conditions, are 

also provided, for comparison purposes. From this 

comparison, it can be observed that there is very good 

agreement between the results of the present study and those 

of Bowie and Freese C291. Errors range from 1.46 percent to 

7.27 percent, which is very good considering the coarseness 

of the finite element mesh. Again, more accurate results

can be achieved by using a more refined mesh.



Table 5.1: Stress intensity factors from the finite element

2a △ a △ U ( 1 / 4 ) GI *1 K- /or/a Error

(%)

10.0

0.2 1 . 020658 20.4132 4.7363 2.107 0.07

10.2

0 . 2 1 . 058078 21.1616 4.8223 2.1249 0.74

10.4

0 . 2 1 .09 7229 21 .94 46 4.9107 2.1432 1.61

10.6

Exactt Kj/tf/a : ref C 131 2.1092

analysis of the centre-cracked specimen (Figure 5.1)

<5



Table 5.2: Stress intensity factors from the finite element

2a △ a AU (1/4 ) GI KI Kj la ^ Error

(%)

10.0

0 . 2 0.98922 19.7844 4.6627 2.0749 2 . 99

10.2

0 . 2 1.01787 20.3574 4.7298 2.0842 2 . 55

10.4

0 . 2 1.04762 20.9524 4.7984 2.0942 2 . 09

10.6

Ex ac t K la /a" r e f [ 1 3 ] 2.1388

analysis of the doub 1 e-edge-notched specimen 

(Figure 5.2>.

-t
XT
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x= E X / Ey Ex Er
2 

- B.'Al Z1*/ vy«

0 3 1 . 5 5 . 0 1 . 0 0 . 1

0 7 2.1667 3 . 09 523 1 . 0 0.2333

1 0 2.6667 2 . 66 67 1 . 0 0.3333

1 5 3.1667 2 . 1111 1 . 0 0.3333

4 5 6.1667 1 . 37 04 1 . 0 0.3333

Table 5.3: Material properties used for the determination

of the stress intensity factor for an orthotropic

square plate with a centre crack.
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fl 2. “ e ^ e y KI /o'/a Exact K- /O' Ja" Error

re f . C 29 J (%)

0 . 3 1.39 1.37 1.46

0 . 7 1.23 1.26 2.44

1 . 0 1.17 1.22 4.27

1 . 5 1.10 1.18 7.27

4.5 1.07 1.12 4.67

Table 5.4: Stress intensity factors from the finite

element analysis of the square orthotropic

plate with a centre crack (Figure 5.4>
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= 1.0

= 0.3

= 5.0

= 10.0

= 1.0

= 28.0

= 1.0

FIGURE 5.1: Rectangular Plate with a Central Crack
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FIGURE 5.2: Rectangular Plate with Symmetric Edge Cracks
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FIGURE 5.3: Finite Element Mesh for Rectangular Plate with Central Crack, 
or with Symmetric Edge Cracks



50

a =1.0 o
h/b =1.0

a/b =0.4

a = 1.2

b =3.0

h =3.0

2b

FIGURE 5.4: Orthotropic Square Plate with a Central Crack
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FIGURE 5-5: Finite Element Mesh for Orthotropic Square
Plate with Central Crack



CHAPTER 6

EXTENSION OF FINITE ELEMENT METHOD TO CRACKED 

BODY PROBLEMS

As mentioned in section 2.1, the basic purpose of 

fracture mechanics is to provide a correlation between 

experimental data and actual service conditions, through 

quantitative relationships between applied stress, 

discontinuity size and material toughness. Such a 

relationship would make it possible to determine the 

condition of stress intensity factor for any set of 

geometric discontinuity and applied stress. Material 

adequacy could then be established by ensuring that the 

critical stress intensity factor for the selected material 

exceeds this computed factor for the application. In 

practice, this would result in the prediction of critical 

defect sizes for the anticipated stress conditions for a 

specific material, or conversely, the allowable stress that 

could be applied to a specific material with inherent 

discontinuities. In either case, fracture mechanics 

analysis would allow the establishment of the criteria for 

material selection and inspection.

The basic applicability and accuracy of the

52
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particular finite element approach presented earlier were 

investigated for classical crack configurations. It is 

necessary however, to develop confidence in the use of the 

approach for more general geometric configurations, and for 

use with real materials. Such confidence can only be 

established by modelling specific cracked bodies for which 

experimental results are available. The results from both 

the analysis and the experiments can then be compared and 

assessed.

To this end, the standard single-edge-notch, 

three-point-bend (SENB-3) specimen is modelled analytically, 

and the results compared with experimental data for 

high-strength steels. The results of this investigation 

clearly define the limitations and practical uses of the 

finite element approach presented.

6.1 The Single-Edge-Notch, Three-Point-Bend 

(SENB-3) Specimen

The SENB-3 test, or bend bar test, is one of the 

most frequently used procedures for the experimental 

determination of the fracture toughness of metallic 

materials. The basic methodology of the procedure is 

contained in the ASTM E—379 specification [30] , and

discussed in detail in Rolfe's introductory text on fracture
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mechanics £41. The compact tension specimen (CTS) test* 

also covered by E-399, is the other most frequently used 

procedure. It is however, owing to its geometry, slightly 

more difficult to model by finite elements.

The principal limitation of the test is that it is 

only valid for materials that exhibit predominantly 

plane-strain behaviour. This limitation is primarily a 

result of the difficulty encountered in accommodating the 

significant plastic zone associated with plane stress 

behaviour. Consequently, the procedure is generally limited 

to relatively high strength steels, thick-section steel 

specimens, investigations of steels at very low 

temperatures, or non-ferrous materials that exhibit little 

crack zone plasticity, or brittleness. However, for the 

purpose of this present study, the limitations of the E-399 

test procedure reflect the basic material assumptions of the 

finite element model and are thus of significant benefit. 

Any other type of material behaviour would probably 

necessitate the use of a three-dimensional finite element 

analysis, with inherent capabilities for modelling 

elastic-plastic behaviour.

While it is unnecessary to discuss the test 

procedures, some basic aspects are of interest at this time. 

The primary procedure is to develop a history of load versus
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displacement for the specimen. The configuration is 

described in Figure 6.1. Then, on the resulting curve, such 

as that illustrated in Figure 6.2, a second line is drawn 

from the origin at a 5% offset to the tangent to the initial 

straight line portion of the trace. The point of 

intersection with the trace is given the load designation Py. 

The load Pq is then defined as follows: if the load at every 

point on the record which precedes P5 is lower than Py then 

Pq is P5 . If, however, there is a maximum load preceding 

Py which exceeds it, then this maximum load is PQ. The 

ratio of Pmax /P« is calculated next, where Pmax is the 

maximum load that the specimen was able to sustain. If the 

ratio does not exceed 1.10, the following procedure is used 

to calculate Kq:

K Q = Pq S 7 < BW )^ f < a / W )
<6.1.1)

where B is the specimen thickness, S is the span length, W 

is the depth of specimen, a is the crack length, fCa/W) is a 

function of a 7 W.

f < a/W) <2.9 ( a/W)^-4.6( a/V)^ + 21 . 8 ( a/W)^

-37.6 ( a/W)^ + 38.7 (a / W)^ )

If the ratio exceeds 1.10, then the test is not

valid for K_cdetermination, since it is possible that K©
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bears no relation to KIc .

The next step is to calculate:

2.5(KQ/crys) (6.1.2)

where Oyj = yield strength in tension

If both the specimen thickness (B) and crack length 

(a) are greater than the value of (6.1.2), then KQ is K^c* 

As discussed in Section 2.1, this value can then be assumed 

to represent a basic property of the material under study, 

and can be used to assess its susceptibility to unstable 

crack propagation in any other structural configuration, in 

a similar environment.

6.2 Finite Element Model of SENB-3 Specimen

The basic structural analogy of the specimen is 

illustrated in Figure 6.3. Due to symmetry, only one half 

of the specimen need be modelled, and this is illustrated as 

the shaded area in Figure 6.3, along with the appropriate 

boundary conditions. As for the problems in Chapter 5, a 

combination of standard and modified eight—node 

isoparametric elements and degenerated six-node elements is 

used to model the specimen. The mesh is illustrated in
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Figure 6.4. Again, the energy release-rate approach is 

employed, and the strain energy re I ease-rates computed for 

four crack extensions. The stress intensity factors are 

then computed, using Equation (5.1.2).

The results of the investigation are presented in 

Table 6.1. These are then compared with the results of an 

E-399 investigation on the fracture characteristics of an 

1 8Ni-Maraging Steel < 250 Grade) C313 , Table 6.2. In order 

to properly compare these data sets, the stress intensity 

factors from the finite element analysis are normalized by 

the applied stress and /a, while the critical stress 

intensity factors for the 18Ni-250 steel are normalized by a 

factor of the applied load, Pq . This value is calculated 

using Equation (6.1.1).

For the finite element data the average normalized

value is:

Kx< ave . )/cr/a = 14.697 (6.2.1)

For the experimental data, the normalized values,

based on the averages of the various orientations, is:

Klc' P /a" = 15.075 (6.2.2)
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where p c Fq / 2 (the factor of 1/2 being used to ensure 

equivalence with the finite element solution).

From the above, the considerable accuracy of the 

finite element approach is clearly established. For 

materials which exhibit primarily plane strain, or brittle, 

behaviour in the presence of an internal discontinuity, the 

method therefore becomes a reasonable predictor of tolerable 

str eng t h.

6.3 Discussion of the Results

In evaluating the use and reliability of the finite 

element method in fracture mechanics problems, it is 

important to note the essential differences between 

Equations (6.2.1) and (6.2.2). In the case of the former, 

the finite element method is used to estimate the stress 

intensity factor resulting from the presence of a crack-like 

discontinuity. It is thus, primarily, a function of 

geometry and applied stress, except for the fact that 

material deformation is assumed to be one of plane-strain. 

For Equation (6.2.2) however, the purpose is to calculate 

the critical stress intensity factor for a particular 

material of interest. It is therefore a basic, inherent

characteristic of the material.
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Consequently, the finite element method should 

provide a lower bound for the fracture behaviour of a given 

material. In other words, the fracture toughness (KK) of 

most metallic materials is above the plane-strain threshold 

value. Thus, this limit should only be approached as 

materials start to approximate this type of behaviour.

In practice therefore, once the stress intensity 

factor for any given geometric configuration has been 

computed, it is only necessary to select a material that 

exhibits a KIC property above this level.

For the particular material under study, the

18Ni-Maraging steel, the proximity of the fracture toughness 

characteristic to the computed plane strain stress intensity 

factor suggests that there is negligible plastic deformation 

at the crack tip for the environment of the test, and that 

the deformation was essentially one of p1ane-stra in. The 

finite element programme could be used therefore, to 

investigate any proposed configuration, and provided that 

the calculated stress intensity factor was less than the 

experimentally determined Kjc, service should be acceptable.

For other materials, particularly those that exhibit

reasonable plastic behaviour at the crack tip care wou1d

have to be exercised. While the finite element method would
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still provide a safe lower bound, the margin of safety 

introduced may be excessive. As a result, cost 

effectiveness may be less than satisfactory. Similarly, 

significant reductions in thickness may reduce some of the 

constraint that induced plane strain behaviour in the test 

specimen. Therefore, lighter sections may also be evaluated 

in an overly conservative manner by direct application of 

the finite element procedure. For these reasons, the finite 

element approach of this study is most cost effective when 

applied to materials that can be expected to exhibit plane 

strain behaviour in the proposed application environment.



Table 6.1: Stress intensity factors from finite element analysis of 
the SENB-3 specimen (Figure 6.5).

a
( in? )

Aa
( in? )

AU ( 1/2 ) 
(in.-kips)

GX 
(in.-ks i . )

Ki
( ks i /Tn )

Kj/or/a

0.999

1.000

0.001 3.1609 x 10 3.1609 x 10 14.223 14.227

1.001

0.001 3.4826 x 10 3.4826 x 1 0 14.929 14.925

1.002

0.001 3.4927 x 10 3.4927 x 1 0 14.951 14.939
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Spec imen Or ientat ion Kxc PQ : (6.1.1)

1

2

Sur face-Transverse

II II

59.0

6 1.0

Av g 6 0.0 7.960

3 Midplane-Transverse 69.1 9.167

4

5

Surface-Longi tudinal

II II

72.2

69 . 6

Avg 70.9 9.406

6

7

Midplane-Longitudinal

II II

70.9

74.9

Avg 72.9 9.672

Specimens were selected from both the surface and midplane 
locations of the source billet. The transverse and 
longitudinal orientationrefers to the specimen, thus the 
notch would be perpendicular to this direction.

Table 6.2: Experimentally determined critical stress 
intensity values for an 18Ni-Maraging Steel 
( 250 Grade ) .



FIGURE 6.1: Standard Bend Bar Specimen Configuration
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FIGURE 6.2: Typical P-A Curve for Kjg Determination
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FIGURE 6.3: Structural Analogy of Bend Bar Specimen
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FIGURE 6.4: Finite Element Mesh for Bend Bar Specimen



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

It has been shown that, via a few minor 

modifications, a standard eight-node isoparametric finite 

element programme can be used to describe, accurately and 

economically, stress behaviour in the presence of a sharp, 

crack-like discontinuity in structural materials. For the 

cases of isotropic cracked strip specimens, and for an 

orthotropic cracked plate specimen, accurate results are 

achieved, using a coarse finite element mesh.

The principal modification, consisting of the 

shifting of the mid-side node on edges adjacent to the tip 

of the discontinuity, is shown to induce the required 1 //r” 

stress singularity at the crack tip. This singularity 

condition occurs at the element corner node, when the 

mid—side nodes on the two adjacent sides are relocated to 

the quarter—point positions nearest the corner coincident 

with the crack tip.

In the investigation presented, only the 

quadrilateral elements are used in the crack-tip region, 

though it has been suggested t12] that degenerated

67



68

triangular elements, with relocated mid-side nodes, would 

improve the accuracy of the solution. Therefore, it is 

recommended that further work along these lines might prove 

beneficial in the development of a more refined and accurate 

finite element model.

The other significant modification incorporated in 

this analysis, though it has no direct effect on the 

fracture analysis, is the option to utilize a six-node 

element degenerated from a standard eight-node isoparametric 

element. This modification, which significantly enhances 

the flexibility of mesh configuration, can be easily 

implemented without any effect on neighbouring eight-node 

element regions. Certain interpolation function changes 

[261 are also incorporated, to ensure spatial isotropy 

within the degenerated element.

With the above modifications, and using relatively 

coarse mesh models, stress intensity factors for the 

isotropic, cracked strip specimens are determined to within 

3 percent of the exact values. Slightly less accurate, but 

still satisfactory results are achieved for the analysis of 

the cracked orthotropic plate. In this case, results 

varying between 1.5 percent and 7.25 percent of the values 

reported in the literature are obtained. For most

engineering applications, particularly for situations
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concerning defects in structural materials accuracies of

this order are quite acceptable.

The finite element model presented in this report is 

also used for the analysis of a standard bend bar specimen 

[30], and the results compared to data obtained from actual 

experiments with such specimens. This analysis not only 

further defines the level of accuracy to be expected from 

the specific finite element approach, but also illustrates 

the practical use of the method in design and manufacture. 

The experimental data used, was developed from an 

investigation of 18Ni-Maraging steel (250 Grade), utilized 

in the construction of various jet fighter aircraft. The 

finite element solution, for the theoretical plane strain 

condition, lies within 2.5 percent of the experimental data. 

This extremely close result suggests almost complete 

plane-strain deformation for the material; an extremely 

undesirable feature for a structural component in such a 

high priority application. In actual fact, this material 

has been removed from service in such applications, and 

replaced by a steel that exhibits significantly better 

ductility in the actual operating conditions.

With respect to practical applications of the finite

element approach in engineering design, it can be observed

that this specific model can be used to predict accurately
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the stress intensification behaviour around crack-like 

discontinuities in materials that exhibit essentially 

plane-strain behaviour. As a result, for any geometric 

configuration and applied stress condition, the stress 

intensity around a sharp discontinuity can be estimated. 

Material selection criteria, with respect to inherent notch 

ductility, will then depend on ensuring that the proposed 

material possesses a basic fracture toughness, KIC, in excess 

of the analytically determined stress intensity factor. 

Conversely, for a given material, for which the fracture 

toughness has been determined, and crack configuration, the 

finite element method can be used to predict the safe 

operating stress.

In both these cases, fracture mechanics can be used 

either to set inspection criteria, or material selection 

criteria based on inspection capabilities; that is, based on 

a given material and applied stess, critical defect sizes 

can be estimated. Inspection criteria can then be 

introduced such that similar defects are detected, with a 

high degree of reliability. On the other hand, if the 

practical limitations of the non-destructive testing 

equipment are known, then materials can be selected such 

that, for the proposed applied stress, the critical defect 

size will be greater than the detectable defect.
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However, the inherent limitations of the present 

approach are readily apparent, in that reliable results can 

only be expected for materials which exhibit essentially 

plane — strain behaviour. With considerable plastic 

deformation in the vacinity of the crack tip, very 

conservative predictions of stress intensity factors are 

developed. Consequently, while the use of the finite 

element approach will generally lead to safe design 

assumptions, cost effectiveness may be adversely affected to 

a significant degree.

Unfortunately, for most metallic materials, in 

engineering applications, plane-strain behaviour occurs 

infrequently, such as with very thick sections or at low 

temperatures. Generally, considerable plastic deformation 

accompanies crack propagation, and thus significantly 

varying deformation modes are encountered across the crack 

front and around the crack.

Therefore, it is recommended that further attention 

be given to the development of practical finite element 

analysis methods for crack problems in the non —p1 ane — strain 

regime. In addition a more detailed investigation into the 

practical use of plane-strain analysis programmes for 

non-p1ane-stra in problems is recommended. For many 

applications, particularly with respect to the use of high
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strength low alloy (HSLA) steels in off-highway equipment, 

bridges, offshore structures and Arctic vessels, the 

operating environment may be such that otherwise ductile 

materials tend toward a plane-strain type of behaviour. In 

such cases, the analytical stress intensity factor obtained 

from the plane-strain finite element analysis may, with the 

proper application of qualitative engineering judgement, be 

used to adequately predict acceptable performance criteria. 

With the growing importance of such applications, further 

research into the practical application of the finite 

element method is strongly recommended and clearly

wa r r an t ed.



Appendix 1 '-

Derivation of AN(3) Shape Factor for Degenerated Six-Node Isoparametric 

Element.

AN (3) modified = (AN (3)+AN (4) + AN(7)) original

= -Ml+s) (1+t) (1-s-t) Ad-s) (1+t) (1+s-t) 

+S(l-s2) (1+t)

= A (1+s) (1+t) (l-tj+^sd+s) (l+t)A(l-s) (1+t) (1-t) 

Asd-s) (1+t)+®5 (1—s2) (1+t)

= -’a (1+s) (l-t2)A(l-s) (l-t^+^sd+s) (l+tj-^sd-s) (1+t) 

+M1-S2) (1+t)

= -^(1-t2)fl+s+l-s] +%(l+t) [s+s2-s+s2+2-2s2]

= Jj (1+t)->5 (1-t2)
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APPENDIX 2

PROGRAMME LISTINGS
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FTN 4.8+577 83/1PRAM TST 73/173 TS TRACE—————————————------- -------------------------------------

I

PROGRAM TST(INPUT,OUTPUT,TA PE 5 = INPUT,TAPE6=0UTPUT,TAPE 1) 
DIMENSION LJ(16),X(8),Y(8),S(16,16),FL(16),U(16),V(3,16),D(3,3),  

1AN(8),ANS(8),ANT(8),A (35000 ), 3 (400 ),XX( 200), YT ( 200), IX(400), 
2JX(400),C0N(10),IC0N(10),BB(400),XL0AD(4D0),CpLN(3,3)

DIMENSION IC0(56,ll)
WRITE(6,1 )

—3- read (5,2 ) - - n p pob-,i p s, ig r, m F,-tm THICK? or-------------------------------------------------- 
IF(EOF(5).EQ.l.C) GO TO 999 
READ(5,4) NEL,NNOD,NVAR,NNOD£L 
IF(IPS.EQ.O) WRITE(6,25) 
IF(IPS.EQ.l) WRITE(6,26) 
IF(IPS.EQ.2) hRITE(6,25) 
IF(IPS.EQ.3) WRITE(6,26) 
WRITE(6,27) MT,NS,IGR,THICK,GR

-------- NVEL-NVAK♦NNODEL--------------------------------------------------------------------------------------------------------------
CALL LAYOUT(XX,YY,ICG, IX,J X,NEL,NN3D,NVAR,NMAT,NNET,NNODEL) 
CALL BANDWH(ICO,JX,LJ,NEL,NVAR,LBAND,NNODEL)  •
NB3-LBAND+1 
NVA«N83*NNET 
WRITE(6,5) NPROB,NNET,LBAND,NVA 
CALL PRESET(S,NVEL,NVEL) '
CALL PRESET(D,3,3) 

---------CAt1^PRtSET (CPLN, 3, 0)--------------------------------------------------------------------------------------------------
CALL PSET(A,NVA) 
CALL 'PSET(B,NNET) 
CALL PSET(BB,NNET) 
CALL PSET(XLOAD,NNET) 
READ(5,6) E,ANU,NC0N 
IF(IPS.GE.Z) GO TO 500 
WRITE(6,7) E,ANU,NCON 

--------- IF (IP S .~E Q rO)- GO - TO- 08--------------------------------------------------------------------------------------------------
E » E/(1•00—ANU*ANU) 
ANU«ANU/(1.CO-ANU) 

18 D(1,1)-E/(1.OO-ANU*ANU)
D(1,2)»ANU*D(1,1)
D(2,2)*0(1,1)
D(2,l)-D(l,2)
D(3,3)-E/(2.00*(1.00+ANU) ) --------Gq-Tq- 503-----------------------------------------------------------------------------------------------------------------------------  

500 READ(5,504) EY,ANUZY,GXY
EX»E
ANUYX-ANU
XN-EX/EY
ANUXY-ANUYX/XN
WRITE(6,501) EX,ANUXY,EY,ANUYX,GXY,ANUZY  •
IFCIPS.EQ.3) GO TO 502

--------- D(iri-r»-Ex/( i.oo-xN*AtwxY**2)----------------------------------------------------------------------------------  
D(1,2)-D(1,1)*ANUXY 
D(2,l)-D(l,2) 
D(2,2 -D(1,1)/XN 
0(3,3 > « GXY 
CPLN(1,1)-1.OOO/EX 
CPLN(1,2)■—XN*ANUXYZEX 
CPLNJ2,1|*CPLN(1,2 )

--------- CPt N ( 2 , ^1* X N7TX---------------------------------------------------------------------------------------------------------------- 
CPLN(3,3)-1.000/GXY 
GO TO 503
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S«AM_TST____________73/173 IS TRACE__________________________________FTN 4.8 + 577____________8 3/14;

502 CONTINUE
CPLN(1,1)-(1.00-(ANUYX**2)*EY/EX)/EX
CPLNd, 2) =-ANUYX* d.OO+ANUZY) / EX
CPLN(2,l)-CPLN(b2)
CPLN(2,2)*d•00-ANUZY**2)/EY
C PLN(3,3J-1.CC0/GXY

D(l,l)-(1.00-ANUZY**2)*D0D
Dd,2)=ANUYX*d.00+ANUZY)*DDD/XN
D(2,l)-D(1,2)
D(2,2)»(1.00-ANUYX**2/XN)*DDD/XN
D(3,3)-GXY

503 CONTINUE
IFCNCON.EQ.O) GO TO 13

-------r e a d < 5,14) t r con d r, i=i, r<coN)-----------------------------------------------------------------------
READ(5,15) (CON(I),I»1,NCON)
WRITE(6,16) dCONd), I«1,NCON)
WRITE(6,17) (CON(I),I»l,NC0N)

13 REWIND 1
DO 8 IEL-1,NEL
DO 9 I«1,NNODEL
ICOO-ICOtIEL,I)

---------X-( I )«XX (ICOO)--------------------------------------------------------------------------------------------------------
9 Y(I ) »YY(ICOO)

IS«ICO(IEL,NNODEL+1)
IB«ICO(IEL,NN0DEL+2)
ITRI«IC 0(IE L > NNODEL + 3)
CALL ISOPAR(X,Y,S,FL,V,D,AN,ANS,ANT,THICK,GR,IS,IGR,ITRI )
CALL BONDRY(FL,X,Y,AN,ANS,ANT,THICK,IS,13,IEL,ITRI)
DO 10 J-1,NNODEL

---------J±^tJ-±l»NVAR---------------------------------------------------------------------- ;---------------------------------
J2»NVAR*( ICO(IEL,J)-l)
DO 10 I-1,NVAR

10 LJ(I+J1)»JX(J2+I)
CALL SETUP(A,B,S,FL,NVEL, LJ,NVAR,LBAND)
WRITE(l) (X( I),I»1,NNODEL),(Y(I),I«1,NNODEL),(LJ(I),I»1,NVEL ), 

1 ( IT RI)
8 CONTINUE

------- it tNm.Ecm-w^'mi-------------------------------------------------------------------------------------
CALL PLACEZ(B,A,CON,ICON,NCON,NNET,LBAND)

11 DET«l.E-8

XLOADCI)-B(I) 
WRITE(6,102) I,B(I),XLQAD(I) 

100 CONTINUE 
101 F0RMAT(7, TXi,'I" ,17X, "B( I) " , 3OXr"~X t 0 A D d )w, / /) 
102 FORMATC5X,I5,5X,F25.14,5X,F25.14)

CALL BAND(A,B,NNET,NB3,1,DET)
IF(DET.LE.O.OO) GO TO 998
WRITE(6,12) DET
CALL EXPAND(BB,NMAT,B,JX, NNOD,NVAR) 
WRITEIo,103)
DO 104 I-1,NNET

104 CONTINUE
103 FORMAT(/,7X,"I",7X,"B(I)",//)
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SRAM TST 73/173 TS TRACE FIN 4.8+577 83/12;

105

120

130

FORMAT(5X,I5,5X,F25.19)
SSE-0.0 
DO 120 I«1,NNET
SSE-SSE+XLOADCI)*BCI)*0.5
WRITEC6,130) SSE
FORMATC//,5X,"STORED STRAIN ENERGY
REWIND“T------------------------------------------------------
WRITEC6,29)
DO 19 IEL«1,NEL
READ(l) CXCI),I»1,NNODEL),CY ( I),I•1,NNUDEL),CLJCI),I-1,NVEL ), 

KITRI)
DO 20 J«1,NVEL
IKK-LJ(J)
IFCIKK) 21,22,21

32 Trt TKO.UO---------------------------------------------------------------------------------------------------------------

21
20

19

998

GO TO 20
U(J)»B(IKK)
CONTINUE
WRITEC6,23) IEL
CALL SIGISOCX,Y,V,D,U,AN,ANS,ANT,MT,NS, ITRI)
CONTINUE
WRITE(6,996)
GO-TO-3------------------------------------------------------------------------------

999

WRITEC6,997) DET
GO TO 3
STOP

1 FORMAK"1",1OX,"♦♦♦♦♦♦♦♦♦♦ PLANE ELASTICITY EIGHT NODE ISOPARAMET 
1RIC ELEMENT ♦♦♦♦♦♦♦♦♦♦«,///)

2 FORMATC515,2F10.0)
4 F0RMATC9I5)

1DTH",15,10X,"MATRIX SIZE",18,/)
6 F0RMATC2F15.0,I5)
7 FORMATC/,5X,"MODULUS OF ELASTICITY »",F15.1,10X,"POISSONS RATIO 
1,F8.9,//,5X,"NUMBER OF CONSTRAINTS »",I6,/)

12 
19 
15 
16 
17 
23
29

FORMAK/, 5X, "DETERMINANT IS 
FORMAK 2019) 
F0RMATC8F10.0)
FORMAK/,5X,"CONSTRAINTS ON
FORMAK/,5X,"C0NSTR. VALUES

",E20.8,/)

D0F*i8I10)—
. -............... „_________ _______ ARE", 8F10.9)
FORMATC/,5X,"♦♦♦♦♦♦♦♦ STRESSES IN ELEMENT NUMBER",15,"♦♦♦♦♦♦♦♦")

--FORMATC//,9X,"N",9X,"M",12X,"XX",12X,"YY",8X,"RADIUS",9X,"THETA",6 1X,"SIGMA-XX",6X,*SIGMA-YY",6X,"SI GMA-XY", //)
25 FORMATC//,35X,"♦♦*♦♦ PLANE STRESS CASE ♦♦♦♦♦",//)
26 FORMAT(//,35X,"♦♦♦♦♦ PLANE STRAIN CASE ♦♦♦♦♦",//)
27 FORMATU/,5X,"NUMBER OF STRESS CALCULATIONS IN T-DIRECTIQN - MT «"

?*(({5X* IGR - ",15,15X,"THICKNESS » ",F13•5,15X,"DENS ITY - ",F10.5 
3, // )

996 FORMATC//,5X,"♦♦♦♦♦♦♦♦♦♦ END ♦♦♦♦♦♦♦♦♦♦",/)
997 • EnoHiPrDEFINITE",5X,"DET «",E20.8) 
501! rBRI?yl!'i^'cS^^L^u^ASTICITY <X1 ’ "» P15.1,1OX, "POISSONS RAT

Z’5H,^aPUl;L,S 0F ELASTICITY (Y) - ", F15.1,1 OX, "PO
-------Ws!o5VSSt£x z?>- ^’eX5-^5^- modulus un • -.fls^iox^

509 FORMATC3F15.0) »
END
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FINE LAYOUT 73/173 TS TRACE FTN 4.3+577 83/11

SUBROUT INE LAY0UT(X,Y,ICD,IX,JX,NE,NN,NV4R,NMAT,N0EG,NNODEL) 
DI MENS ION X(1),Y(1),ICO(NE,1),IX(1),JX(1) 
NNN-NNODEL+3 
WRITE(6,41) NE,NN,NVAR,NNODEL 
wRITE(6,42) 

' DO 10 1=1,NN
I2-NVAR*!
11=12-NVAR+l
READ<5,43) X(I),Y(I),(1X(J),J«I1,I2)
WRITE(6,44) I,X(I),Y(I),(IX(J),J=I1,I2)

10 CONTINUE
WRITE(6,47)
DO 11 1=1,NE _ _ ____________ ________

------REACTS,45 ) '( IC 0 ( UTT^T, NNNF"
11

3
81

80
82

1

2

WRITE(6,46) I,(ICOCI,J),J=1,NNN) 
NNAT-NVAR+NN
NDEG=O
DO 12 I-1,NMAT
IF( IX( I ) ) 1,2,3
IFCIX(I)-l) 80,80,81
NDEG=NOEG + IX (I )
GO-TCT-82----------------------------------------------------
NDEG=NDEG+1
JX(I)«NDEG
GO TO 12
ND EG-NO EG*1 X (I ) +1
JX(I ) = NDEG
GO TO 12
J X (I ) - 0 • 

— IT CONTINUE——————
41 FORMAT(//,4X,"TOTAL NO. OF ELEMENTS -,I 5,5X,"NO .OF NODES",15,5X, 

1"VARIABLES PER NODE",15,3X,"NO. OF NODES PER ELEM.",15,/)
42 FORMAT(/,4X,"NO DE ", 6X," X-CORD",6X,"Y-CGRD",7X," U",3X,"V",/)
43 F0RMAT12F10.0,613)
44 FORM AT(IX,I 5,5X,F10.6,2X,F10.6,5X,614)
45 F0RMAT(16I3) w

-----£M§RffAT(7>5V"ELEK^ E~N-UTT B~TR-S^/8X7^1 S"”, 3T, ^13^,-  

15X,"ITRI",//)
RETURN 
END

INPCI. INPCR. OUTCI. QUTC R > TAPE 5 »______ IA?_EA*

ELS —

ID 
F
F

175B
116B
252B
266B

.2

.12 
• 44 
.80

D 
F

2068
211B
255B
165B

• 3 
.41 
.45 
.81

F 
F

1538
2263
2613
1573
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TINE SETUP______ 73/173 TS TRACE _______ ______________FTN 4*3+577____________ 8 3/

10

9
13

SUBROUTINE SETUP(A,B,S,FL,NVEL,LJ,NVAR,LBAND) 
DIMENSION A(1),B(1),S(NVEL,1),FL(1),LJ(1)
DO 12 I-1,NVEL
LJR=LJ( I)
IF(LJR.EO.O) GO TO 12 
B(LJR)=B(LJR)+FL(I) 
d cr 11 -J»I, NVEV~------------------------------------------------------------------
LJC’LJ (J )
IF(LJC.EQ.O) GO TO 11
IF(LJR-LJC) 9,IC,10
K«(L JC-1) *LBAND+LJR
GO TO 13
K-(LJR-1)*LBAND+LJC 
A(K)-A(K)+S(I,J)

“tl—cotmrw^
12 CONTINUE 

RETURN 
END

42B
47B

.10 34B .11 D 57B

R A 08 1 B R A 03 1
R A OB 1 I I 1G1B
I 1058 K I 1028
I A OB--- ^—A-^-a------ -- - • LJ I A OB 11 U 3 L J K I 1048"
I A OB NVEL I A 03
R A OB VAR-DIM SETUP 72B ENTRY

m-UNlT LENGTH 19 SYMBOLS

□ RAGE USED___________ .186 SECONDS
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TINE BANDWH 73/173 TS TRACE FTN 4.8+577 8 3/12;

SUBROUT INE BANDWH(IC 0,J X,LJ,NE,NVAR,LBAND,NNOD ) 
DIMENSION IC 0(NE,1),J X(1),LJ(1)
LBAND-0
NV2-2*NVAR
DO 3 1*1,NE
DO 4 J-1,NVAR

-------Dcr^rK-r, nnod-------------------------------- -----------------------------
KI-(K-l)*NVAR
LJ(J+Kl)»JX(NVAR*ICO(I,K)-NVAR+J)

4 CONTINUE
MAX-0
MIN-1000
NV3»NVAR*NN0D
DO 8 J»1,NV3

--------IF tt?J ( IT. PT. or GO -TO ^8-----------------------------------------------
5
6
7
8

IF(LJ(JJ-MAX) 6,6,5
MAX-LJ(J)
IF(LJ(J)-MIN> 7,8,8
MIN-LJ(J)
CONTINUE
NB1-MAX—MIN
IF(NBl.GT.LBAND) L3AND-NB1

3C0NTINUE 
RETURN 
END

D 103B
67B

• 4 
• 8

ID
D

OB 
72B

5 603

I 
I 
I 
I

A

I A

I

112B ENTRY
OB
OB

1308
OB

1243-------------
OB
OB

122B

VAR-DIM
I
K 
LBAND 
MAX 
NB1 ' 
NNOD 
NV2

I A
I

I A 
I

1263
127B
1233

08
125B
1318 - 

OB
1213

m-UNIT LENGTH 23 SYMBOLS

TOR A GE-US E O
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I INE EXPAND_______ 73/173 TS TRACE FTN 4.8+577 83/1?

SUBROUTINE EXPAND(AMO DE,NAM,VV,JX,NDS,NVAR) 
DIMENSION VV(1),AMUDE(1),JX(1) 
DO 5 I«1,NAM 
AMODE(I)-0.0 
IF(JXtI).EQ.O) GO TO 5 
AMODEtI )»VV(JXtI))

---- 3“ CON TIN Vf----------------------------------------------------- --------------------------- --------
WRITE(6,40)
DO 10 I»1,NDS
I2-NVAR+I
Il-I2-NVAR+l
WRITE(6,41) I,(AMODEtJ), J = I1,I2)

10 CONTINUE
40 FORMAT t///,5X,"NODE",9X,"U-DISPL.",11X,"V-DISPL.",/) 

- «- FORMAT! 17,8^-, El2.“ b, 5X, £1 2.6 )-------------------------------- ------------------
RETURN 
END

□UTCI. OUTCR. TAPE6I

fits---- • — ----- --- ---  --- - --

D 21B .10 ID 08 .40 F 658

R A 
I

08 1 EXPAND - 61B ENTRY
107B II I 1118
hob - — " ' j- r 11 ZB

I A 
I A•m
••

OB 1 NAM I A OB
OB _ NVAR I A 03

eternal. OUTCR. - EXTERNAL.
EXTERNAL. VV R A OB 1

MI-UNIT LENGTH ____ 18 SYMBOLS

□RAGE USED .123 SECONDS
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11^ PLACEZ 73/173 TS TRACE FIX 4.8*577 83/1

10

9
16
17
18

SUBROUTINE PLACEZ(PP,C,CON, IC ON,NCON,NN,L8 AND) 
DIMENSION C(1),CON(1),PP(1),ICON(1) 
DO 18 I«1,NCON 
11-I CON(I) 
I2«LBAN0*(11-1)+11 
LC1-I1-L8AND 
IHLC1.LE.01 tCl»l - - - - "
LC2-I1+LBANO 
IF(LC2.GT.NN) LC2-NN 
DO 17 J-LC1,LC2 
IF(Il-J) 9,10,10 
IJ-LBAND*(J-l ) + Il 
GO TO 16 
IJ-LBAND* (Il-D+J 
PRC J) = PPtJ)—C<I J)*CON<I> -   ---------
C(I J)-0.00 
CONTINUE •
DO 25 I-1,NCON 
I1=ICON (I ) 
I2»LBAND*(I1-1)*I1 .
C(I2)«1.EC8 
PP(I1) -1. E08 + C0M I)

RETURN 
END

ELS

D
44B
67B

.10

. 25 ID
36B 

OB
16 513

R A OB 1 CON R A 03 1
I 126B • ICON I A 08 1
I 1308 II I 1318
I 1278_  A Q------- ---------- J I 1338
f A VO LC1" " I ' ' 125B
I 132B NCON I A OB
I A OB PLACEZ 120B ENTRY
R A OB 1

IM-UNIT LENGTH 21 SYMBOLS

IORAGE used .296 SECONDS
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INE BAND 73/173 TS TRACE FTN 4.6*577 a 3/1 ?

SUBROUTINE BAND (A,3,N,H, LT, D = T ) BND?
DIMENSION A(1),B(1)

BNDMM*M-1
NN-N+M BN Ct
N M1 = NM —MM BN Dr

_ IF (LT.NE.l) GO TO 55 BND;
HP*H+l . - -
KK*2 bnd:

' FAC*DET BND'
A(1)*1./SQRT(A(1)) BND?
BIGL-A(1) BND
SNL*A(1) BNDi
A ( 2 ) * A ( 2 ) ♦ A ( 1) BND'
A(NP)*1./SQRT(A(MP)-A(2)*A(2)) BND

" " I F ( A ( IP ) . GT . BIG L) B IGL = A ( MP ) BND
IF(A(MP).LT.SML)SML*A(MP) BND‘
MP*MP+M BND;
DO 62 J*MP,NM1,M bND
JP-J-MM BND
MZC*O BND:
IF(KK.GE.M) GO TO 1 END-
KK*KK*1 BND
II«1 BND
JC-1 8NC
GO TO 2 BNC

1 KK-KK+M BNC
II*KK-NM BND
JC-KK-NN BND

2 DO 65 I-KK,JP,MM BND
IE < ACI> .EQ.O.)GO TO 64 BNC
GO TO 66 B NC

64 JC-JC+M BNC
65 MZC-MZCU BNC

ASUMI-O. ENC
GO TO 61 BN [

66 HNZOMM + MZC BNC
II-II+MZC BNC
KM*KK+MMZC BNC
A ( K H ) * A(Kn)*A(JC ) ' BNC
IF(KM.GE•JP)GO - TO 6 • BNC
KJ-KM+MM BNC
DO 5- I-KJ,JP,MM BNC
ASUM2-O. BNC
IH-I-MM BNC
II-II+1 BNC
KI-II+MMZC BNC
DO 7 K*KH>Ininn BNC
ASUM2*ASUM2+A(KI)♦A(K) BNC

7 KI-KI+HM BNC5 A(I)-(A(I)-ASUM2)*A(KI) BN[6 CONTINUE BNCASUMI-O.
DO 4 K-KM>JP,MM BN

4 «W.U*^flltA,K,**1K’ bn:
IF ( S • LT *0 • ) DE T* S ' ' BN

BN. 
BN(IF ( S • E Q• 0• ) D ET* 0«
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INE BAND 73/173 TS TRACE_______ ___________________ FTN 4.8+577 83/12

IF(S.GT.O. )G0 TO 63 BNDF
NROW-(J+MM)/M o NU r 

BNDF 
BNDF 
BNDF99

WRITE(6,99) NRDW .
FORMAT(35H0ERR0R CONDITION ENCOUNTcRtD IM 
RETURN

ROW,16)

63 A(J )=1./SQRT(S) BNDF
-1F t-wrr&T ."BT^t )81Gt- Al JT B 'J r

62
IF(A(J) .LT.SML ) SML = A(J) BNDF
CONTINUE ■ ^nd f
IF(SML.LE.FAC+BIGL)G0 TO 54 BNDF
GO TO 53 BNDF

54 DET-O. BNOi
RETURN E N D F 

BND53 DET-SML/BIGL
55 B ( 1) » B C1) * A C1)

KK-1 BND1
Kl-1 BNDF
J-l BND
DO 8 L-2,N BND
BSUM1-0. BND:
LM-L-1 BND.
J-J+M BND!
IF(KK.GE.M)GO TO 12 - - BND
KK-KK+1 BND
GO TO 13 BND

12 KK-KK+M BND
Kl-Kl+1 BND

13 JK-KK BND
DO 9 K-K1,LM BND
BSUM1=8 SU Ml + A(JK)♦8(K) BND
JK^JK^nn BND

9 CONTINUE BND
8 B(L )-(8(L )-BSUM 1)♦A(J) BNDB(N)-B(N)*A(NM1) BSDNMM=NM1 BNDNN-N-1 BNDND-N 

DO 10 L-1>NN BND 
BND

D OUn U • ----------- BiroNL-N-L , BNDNL1-N-L+1 
NMM-NMM-M 
nji-nmm 
IF(L.GE.M)ND-ND-1

BND 
BND 
8ND 
BND 
BNCDO 11 K-NLUND

NJ1-NJ1+1 BN [OiUnc.’ujunc.TRinui|TO(^j ■ ---------------- -—
CONTINUE BirtX X 

10 B(NL ) ■(8(NL)-BSUM2)*A(NMM) 
RETURN

BN C 
BNC

END BNC
BNC
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i:ne pset 73/173 TS TRACE FTN 4.8*577 83/1E

SUBROUTINE PSET(A,M)
DIMENSION ACl) 
DO 1 I«1,M

1 A(I)«0.00
RETURN

_________ lend

LS —

ID OB

RR A OB 1
TTA------------- -QB-----------------------------

I I 223
PSET----------- -- ------------------16B“ENTPY - ~

-UNIT LENGTH

RAGE USED

5 SYMBOLS

.043 SECONDS
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JTINE PRESET 73/173 TS TRACE FTN 4.3+577 8 3/12

SUBROUTINE PR 
DIMENSION ACM 
DO 1 I«l, M 
DO 2 J = 1,N

2 A(I,J)-0.00
1 CONTINUE

ESET(A,M,N)
>1)

t

IE:LS—

ID
■ *•

RETURN-------------  
END

OB • 2 ID OB

R A

I A

OB 
378

OB

VAR-DIM I 
M 
PRESET

I
I A

36B 
OB

26B ENTRY

M-UNIT LENGTH 8 SYMBOLS •
□ RAGE UjtU *«vOv ^uLUnUo
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^ I^JLUljj. 73/173 TS TRACE FTN 4.8+577 83/ 12

ELS

C 
C 
C

3
2

SUBROUTINE MULT1(X>Y>S>Z>M1>N2,M3)
MULTIPLIES THE MATRICES Y (TRANSPOSE) ♦ X ♦ Y

DIMENSION X(M1,1),Y(M1,1),Z(M3,1),S(M2,1) 
DO 1 1*1,Ml 
DO 2 K-liM?- - - - _ .
XX*0.00
DO 3 J-1,M1 
XX*XX+X(I,J)*Y(J,K) 
Z(I,K)-XX 
CONTINUE 
DO 4 I-1,M2 
DO 5 K*I,M2

-xx-o.oo -
6

5
4

DO 6 J*1,M1 
XX»XX+Y(J,I)*Z(J,K) 
S(I,K)-XX 
SCK/D-XX 
CONTINUE 
RETURN 
END

ID 
ID

08 
OB

2 
6

ID 
ID

08 
OB

3 ID 03

M-UNIT LENGTH 18 SYMBOLS

IORAGE USED' .264 SECONDS

I 
I

127B
1318 MULTI

I 1308
HOB ENTRY

I A 08 M2 I A 08
I A 08 S R A 08 VAR-C
R A OB VAR-DIM XX R 1328
R A 08 VAR-DIM Z R A OB VAR-C
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III NE ISOPAR 73/173 TSTRACE FTN 4.8+577 83/12.

SUBROUTINE ISOPAR(XzYzSTzFLzBzDzANzANSzA^TzHzGRzISzIGRzITRI)
DIMENSION X(l)zY(l)zST(15zl)zFL(l)z3(3zl)zD(3zl)/AN(l)zANS(l)z 

lANT(l)zW(3) zXK 3) z AK (16 z 16 ) zC ( 3 z 1 6 ) / A J ( 2/ 2)/AI (2/2)
DATA W/O.55555555555556/0.88688888898889/0.55555555555556/
DATA X I/-O.77459666924148z O.Oz0.77459666924143/
IF(IS.EQ.O) GO TO 1000

CALL PRESET(B/3/16)
CALL PSET(FL/16)
DO 26 I«l/3
DO 27 J-l/3
S-XI (I)
T-XI(J)
CALL SHAPE(AN/ANS/ANT/S/Tz IGR/ITRI) 

---- CALL~GMATRX( ANSyANTz XvTzBvWz-A17 DtT T "
CALL HULTKDzBz AKzCz3zl6z3) 
DET-H*DET 
DO 3 K-lzl6 
DO 4 L«lzl6

4 ST(KzL)-ST(KzL)♦(W(I)*W(J)*AK(KzL )*DET) 
3 CONTINUE

IF(IGR.EQ.O) GO TO 27
—0 ET = OR+DET--------------------------------------------------------------

DO 5 K-lz 8
L»2*K

5
27
26

FL(L)-FL(L)+(DET*W(I)*W(J)*AN(K) )
CONTINUE 
CONTINUE

1000 RETURN 
END

BMATRX MULTI PRESET PSET SHAPE

ELS —

ID  OB
D ------ iw--------------

.4 ID
- .1000-------

OB
------ 14 68

___________ .5__ _ 1^__________03

g 226B 4
g . 241B 256

g A ---------- OB-------------------------3---------
g 641B 48
o a 234BT A , OB
I A 7250
I A 0BI A . 0B

—__72 7B

AJ R 7213 4
AN R A OB i
ANT RA OB 1

------------------------ BMATRX--------- R------------------------- SU OR OUT! Nf-------------
D R A OB 3
FL R A OB 1
H RA 08
IGR I A 03
ISOPAR - 1513 ENTRY
J I 2328
L I 2338
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#1INE BONDRY 73/173 TS TRACE FTN 4.8+577 83/12.

SUBROUTINE BONDRY(FL,X,Y,AN,ANS,ANT,H,IS,13,IEL,ITRI) 
DIMENSION FL(1),X(1),Y(1),AN(1),ANS(1), ANT(1),4(3) , XI ( 3) , 

1PX(3),PY(3),JE(3)
DATA W/O.55555555555556,0.86888888888889,0.55555555555556/
DATA XI/-O.77459666924148,0.0,0,77459666924148/ 
IFCIS.EQ.O) GO TO 1000

-----CAIL PSETrFt,!fr)---------------------------------------------------------------------------- --------------  
IF(IB.EQ.O) GO TO 1000 
DO 1 L»1,IB 
READ(5,2) IE,(JE(I ),I»1,3),COR

2 FORMAT(415,F10.0)
READ(5,3) PX(1),PY(1),PX(2),PY(2),PX(3),PY(3)

3 FORMAT(6F10.0) 
JL-JE(l)

-----JTME-C-21------------------------------------------------------------------------------------------------------------  
JN»JE(3)
DO 4 1-1,3
IF(IE.NE.l) GO TO 5
T-COR
S-XI (I )
CALL SHAPEtAN,ANS,ANT,S,T,1,ITRI) 
OXS«ANS(JL)*X(JL)+ANS(JM)*X(JM)+ANS(JN)*X(JN)

DL-SQRT(DXS*DXS+DYS*DYS) 
GO TO 6 

5 S-COR 
T-XI(I) 
CALL SHAPE(AN,ANS,ANT,S,T,1,I TRI) 
DXT■ANT(JL)*X(JL)+ANT(JM)♦X(JM)+ANT(JN)*X( JN) 
DYT■ANT(JL)♦Y(JL)♦ANT(JM)♦Y(JM)+ANT(JN)♦Y(JN)

—Dt^QfrrttrxT+axTrarT+i^^---------------------------------------------  
6 DO 7 J-1,3

J2-2*JE(J ) 
J1-J2-1 
ZZ-0.00 
XX-0.00

XX-XX+OL*AN(JE(J))*(AN(JE(K)))*H*PX(K)*W(I) 
8~Z Z ’ Z Z + D L+AN t J E t J I ) * ( A Nt# E tKTT 1+H ♦ m K~) * W111----

4 
1

FL(J1)-FL(J1)+XX
FL(J 2)aFL(J 2 )+ZZ
CONTINUE
CONTINUE
CONTINUE
WRITE(6,499) IEL r
WRITE(6,500) (FL( I),1-1,16)

499 FORMAT(//,5X,"LOAD VECTOR FOR ELEMENT NUMBER - ",I5,2X, IS ,/) 
500 F0RMATC8F15.7)

END



90

HNE SHAPE_________73/ 173 TS T RACE FTN A.8*577 8 3/12-

SUBROUTINE SHAPE(AN,ANS,ANT,S,T,N,ITR I)
DIMENSION AN(1),ANS(1),ANT(1)
IF(N.EQ.O) GO TO 1
AN(1)«-(1.00-S)*(1.0C-T)+(1.00+S+T)/A.00
AN(2)■-(!.00+S)*(1.00-T)+(1.00-S+T)/A.00
AN(3)=-(!.00+S)♦(1.00+T)*(1.00-S-T)M.00 

------ AN1A)«-tr.OCr-S)*C1.00+T )*( 1 .OO + S-T) /A .OCT “
AN(5)»(1.00-S+S)♦(1.00-TJ/2.00
AN(6)»(1.00-T*T)*(1.00+S)/2.00
AN(7 ) - (1.OO-S+S)*(1.00+T)/2.00
AN(8)»(1.00-T*T)+(1.00-S)/2.00

1 ANS(1 
ANS (2
ANS(3

ANS(5 
ANS (6 
ANS (7 
ANS (8
ANT 
ANT

1
2

ANT (3 
------- ANTt A

ANT( 
ANT ( 
ANT( 
ANT(

5
6

8

«(1.00-T)*(2.00*S+T)/4.00
»(1.00-T)*(2.00*S-T)/4.00
«(1.00+T)*(2.00*S+T)/4.00

—S*(1.00-T) 
«(1.00-T*T)/2.00 
■-S*(1.00+T ) 
*-(1.00-T*T)/2.00 
- (1.00-S )♦(S+2. 00*T) /A. 0 0 
*(1.00+S)*(2.0C*T-S)/A. 00 
-(1.00+S)♦(2.C0*T+S)/A.00 
^( IvOC~S7*C2.OO+T-S) /A.00 
—(1.00-S*S)/2.00 
=-T*(l.CO+S )
-(1.00-S+S)/2.00 
«-T+(1.00-S)

IF(ITRI.EQ.O) GO TO 2
DELH-(l.OC-S+S)♦(1.OQ-T+T)/8.00
DELHS--2.00+S*(1.C0-T*T)/8.00
0EtKT«-2. OO+T + (1.00-S*S ) /8.0Cr-------
IF(N.EQ.O) GO TO 3
AN ( 3 ) a AN ( 3 ) ♦ AN ( A ) + AN ( 7 )
AN(1)-AN(1)+DELH
AN(2)* AN(2)+DELH
AN(5)■AN(5)-2•0*DELH
AN(A)»0.00
AN(7)-0.00

3 CON INUE
ANS(3)«ANS(3)+ANS(A)+ANS(7)
ANS 1) - ANS(1J + DELHS
ANS(2)-ANS(2)+DELHS
ANS 5)«ANS(5)-2.0+DELHS
ANS(^)-0.00
ANS 7)«0.00
ANT(3)-ANT(3)+ANT(A)+ANT(7)
AHTVH^NTfiy+DEtHT---------------
ANT 2)-ANT(2)+DELHT
ANT(5)-ANT(5)-2.0+DELHT
ANT 
ANT

2 RETURN 
END

AHO.00 
7)«0.00'
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sHNE BMATRX 73/173 TS TRACE FTN 4.8 + 577 8 3/12.

SUBROUTINE BMATRX(ANS,ANT,X,Y,B,A J,AI,DET) 
DIMENSION ANS(1),ANT(1),X(1),Y(l),B(3,1),AJ(2,2),AI(2,2) 
CALL PRESET(AJ,2,2) 
DO 1 K-1,8 
AJ(1,1)-AJ(1,1)+ANS(K)*X(K) 
AJ(1,2)-AJ(1,2)+ANS(K)*Y(K)

— AJ(2,1)«AJ(2,IT+ ANTt KT* X(KT--------------------------------------------------------------  
1 AJ(2,2)-AJ(2,2)+ANT(K)*Y(K)

DET-AJ(1,1) *A J(2,2 )-AJ(1,2)*A J(2,1) '
IF(DET.EQ.O) DET-1.E-8
AI(1,1)-AJ(2,2)/DET
AI (1,2)—AJ(1,2)/DET
AI(2,1)—AJ(2,1)/DET
AI(2,2)-AJ(1,1)/DET

K1»2*K-1
B(1,K1)-A I(1,1)*ANS(K ) ♦A I(1,2)♦ANT(K) 
B(3,K1)»AI(2,1)*ANS(K)+AI(2,2)*ANT(K) 
B(2,K1+1)-B(3,K1)

2 B(3,K1+1)-B(1,K1)
3 RETURN

END

PRESET

::LS —

ID OB .2 ID OB .3 14 OB_______

R A
R A 
R A
R A

~R-X—

03 4 AJ R A OB 4
OR 1 ANT R A OB 1
OR 3 BMATRX - 143B ENTRY

KI 157B
1608 PRESET R a SUBROUTINE

------“08-------------------------- t------- ------- r ‘ R s------ 03 1

W-UNIT LENGTH 15 SYMBOLS

®RAGE USED .459 SECONDS
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SUNE SIGISO 73/173 TS TRACE FTN 4.8 + 577 83/12.

nT^^H{!E SIGISOCX,Y,B,D,U,AN,ANS,ANT,M,N,ITRI)

i^^^f ŝYBI;^B5?l?^y(1’'4^
CALL PRESET(B,3,16)
AA-N-1
B3-M-1

-----DO-W^tyN--------------------------------------------------------------------------------------------------------
CC-J-1
S--1.00+CC*2.C0/AA
DO 51 I-1,M
DD-I-1
T— 1.00 + DD*2.00/BB
IF(ITRI.EO.l) GO TO 100
CALL SHAPE(AN,ANS,ANT,S,T,1,ITRI)

-----C-ALL 8MATRX^H^ANTrXyTrBy-A\hr*tyDW---------------------------------------------------
IF(DET.EQ.O) GO TO 55
XX-0.00
YY-0.00
DO 4 K-1,8
XX-XX+X(K)*AN(K)

4 YY»YY+Y(K)*AN(K)
XX-XX+l.E-8

---- RATIO*YY/XX---------------------------------------------------------------------------------------------------------
THE TA-A TAN(RATIO)*180.00/3.1415926
RADIUS»SQRT(XX*XX+YY*YY)
DO 5 K-1,3
ZZ-0.00
DO 6 L-1,16

6 ZZ-ZZ+B(K,L)*U(L)
5 STRAINCKJ-ZZ

8

55

TW 
101

51
50

52
53

DO- T K -1,3----------------------------- -------------------------------------------------------------
ZZ-0.00 
DO 8 L-1,3 
ZZ-ZZ+D(K,L)*STRAIN(L )
STRESS(K)»ZZ
GO TO 101
WRITE(6,54) J,I
GO TO 51
mm6/5 3)----------------------------------------------------------------------------------------  
CONTINUE
UR I TEC 6,52) J,1,XX,YY,RADIUS,THETA, (STRESS(K),K«1,3) 
CONTINUE 
CONTINUE
RETURN
F0RMAT(2I10,7E14.5)
F0RMAT(///,5X,"ELEMENT IS TRIANGULAR TRANSITIONAL ELEMENT 

t^STRESS CONDITIONS",-H-----~-------------------------------__ 1----- - --~
IGNGR

54 FORMAT(2I1O,5X,"DETERMINATE IS O.O, IGNORE STRESS CONDITIONS")
END

ATAN BMATRX OUTCI. OUTCR. PRESET SHAPE SORT TAP
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