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Abstract
This thesis is concerned with recent progress made for the antiferromagnetic quantum critical metal

in two space dimensions.
Firstly, we develop a field-theoretic functional renormalization group formalism for the low-energy

effective field theories for non-Fermi liquids by using renormalizable field theories for metals. The
formalism is applied to the antiferromagnetic quantum critical metal in two space dimensions. In the
space of coupling functions, we identify the interacting fixed point with a vanishing nesting angle. For
theories with non-zero nesting angles, the coupling functions acquire universal momentum dependent
profiles controlled by the bare nesting angle before flowing towards a superconducting state in the
low-energy limit. The superconducting instability is inevitable because “lukewarm” electrons that
are coherent enough to be susceptible to pairing are subject to a universal attractive interaction
mediated by the critical spin fluctuations. Despite the superconducting instability being unavoidable,
theories with repulsive or weakly attractive four-fermion interaction at a UV scale must flow through
a “bottleneck” where there is a slow RG flow due to the proximity to non-Hermitian fixed points. This
bottleneck of the RG flow controls the scaling behaviour of the normal state and the “quasi-universal”
pathway to superconductivity.

Secondly, we show that momentum-dependent quantum corrections dynamically give rise to a
curved momentum-spacetimes for quasiparticles. In the antiferromagnetic quantum critical metal, the
curved momentum-spacetime geometry arises from a momentum-dependent red shift. With increasing
nesting angle, the red shift near the hot spots becomes stronger while the hot region on the Fermi
surface with the strong red shift shrinks. This creates the possibility of realizing a momentum-space
black hole horizon where electrons are perpetually slowed down as they approach the hot spots. How-
ever, the singularity in the momentum-dependent red shift is cut off at finite temperatures above the
superconducting transition temperature.

Finally, we study a magnetic impurity immersed in the antiferromagnetic quantum critical metal.
Critical spin fluctuations represented by bosonic fields compete with the conduction electrons to couple
with the impurity spin. In the low-energy limit, the electron-impurity (Kondo) coupling dominates
over the boson-impurity coupling. However, the Kondo screening is suppressed by the boson with
an increasing severity when the hot spots connected by the antiferromagnetic ordering wavevector
are better nested. The origin of this suppression of Kondo screening lies in the ultraviolet/infrared
(UV/IR) mixing: bosons that carry large momenta up to the UV cutoff actively suppress the Kondo
screening at low energies.
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Chapter 1

Introduction

One core question that defines the field of condensed matter physics is: What are the macroscopic
behaviours that can emerge in quantum matter? Answering this question involves extracting the uni-
versal long-distance physics in distinct phases of matter. In particular, quantum critical points host
novel states of matter described by strongly interacting theories with no well-defined quasiparticle
description. Understanding the nature of critical states that arise at a continuous phase transition also
provides a unified understanding of the phases that are separated by the critical point.

An important class of continuous phase transitions is the one that involves spontaneous symmetry
breaking [102, 103]. From the context of symmetry breaking, the Ginzburg-Landau theory that de-
scribes the long-distance physics in terms of the dynamical order parameter is one of the milestones
of statistical physics, and its principles are the first foundational tool upon which this thesis is built
[172, 115, 65]. The second tool we employ in this thesis is the renormalization group. Introduced by
Kadanoff [91] and Wilson [224, 225], it allows a systematic extraction of the effects of fast fluctuations
of the order parameter for slow modes by organizing physical degrees of freedom in terms of their
energy scale. Low-energy effective theories obtained from coarse graining generally include all terms
allowed by locality and symmetry, and we only need universal properties like spacetime dimension and
the symmetries of the order parameter as ingredients when constructing effective field theories. From
scale-invariant fixed points of the renormalization group flow, one can extract the universal low-energy
physics.

Many phase transitions found in nature occur in dimensions that are below the upper critical
dimension, making the low-energy effective theory strongly coupled at low energies, and thus, non-
perturbative [233, 11, 207]. The effective field theory for metals is further complicated by the presence
of the Fermi surface, where infinitely many gapless modes reside. While the low energy physics of
the conventional metals is well described by Landau’s Fermi Liquid Theory [101, 100, 163], non-Fermi
liquids that arise at quantum critical points remain poorly understood. This thesis is concerned with
the non-Fermi liquid metal realized at the antiferromagnetic quantum critical point in two space di-
mensions [78, 77, 153]. Specifically, we study the pathway of the non-Fermi liquid to superconductivity,
the cyclotron motion of electrons, and the fate of a magnetic impurity immersed in the unconventional
metal. We dedicate the rest of this chapter to a review of several key concepts used in the thesis.

1.1 Fermi Liquid Theory

The focus of this thesis is metals. Naively, studying the ground state of a metal would involve solving a
many-body Schödinger equation with the Coulomb potential in the thermodynamic limit. Thankfully,
we do not need to solve the full Schödinger equation for the purpose of understanding the low-energy
physics. For that purpose, Landau’s Fermi Liquid Theory [101, 100] is the low-energy theory of conven-
tional metals that support quasiparticles. Landau’s Fermi liquid theory is one of the two cornerstones

1
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of traditional many-body theory1. We dedicate this section to review the basic intuition and key
properties of the Fermi liquid theory.

1.1.1 Landau’s Fermi Liquid Theory

Let us begin with the non-interacting Fermi gas. In a ion lattice, conduction electrons have their
wavefunctions spread over the interstitial positions, organizing themselves in a similar periodic struc-
ture according to Bloch’s theorem [19]. A single-particle quantum state in each band is specified by

crystal momentum k⃗ and spin σ (generally along the z-axis). Because fermions obey Pauli’s exclusion
principle, the many-body energy eigenstates of the system as a whole can be specified through the
occupation number of particles nk⃗,σ = 0, 1 in each of the single-particle states. In particular, the
ground state of the system is one in which all single-particle states with momenta less than the Fermi
momentum, kF , are occupied (nk⃗,σ = 1) and all other single-particle states are empty (nk⃗,σ = 0). Ex-
cited stated can only be created by adding particles with momentum larger than kF , or by removing
particles with momentum less than kF . We call these excited states particles and holes, respectively.
At zero temperature, the occupation number has a sharp discontinuity at the Fermi surface,

ng.s.(k⃗) = Θ
(
kF −

∣∣∣⃗k
∣∣∣
)
, (1.1)

where Θ(x) is the unit step function. At finite temperature T , states with energy O(T ) below the
Fermi surface can become excited to states of energy O(T ) above the Fermi surface due to thermal
fluctuations, and the occupation number above is replaced by the Fermi-Dirac distribution,

nF−D(k⃗) =
1

e
ε(k⃗)−µ

T + 1
, (1.2)

where the Boltzmann constant kB is set to be 1, ε(k⃗) is the energy of the electron and µ is the chemical

potential which at zero temperature is equal to the Fermi energy EF = ε(k⃗F ).
Now let us consider an interacting Fermi system. Landau’s Fermi Liquid Theory (FLT) posits that

there is a one-to-one correspondence between the eigenstates of the free Fermi gas and those of the
interacting system at low energies. To be more precise, if one takes an eigenstate of Fermi gas and
adiabatically turns on the interaction between particles, one obtains a state of the interacting system.
This allows us to label the low-energy many-body eigenstates of the interacting system by using the
occupation/particle distribution n(k⃗) of the corresponding state of the Fermi gas. Consequently, the
elementary excitations of the Fermi liquid are in one-to-one correspondence with those of the Fermi gas,
but with a renormalized spectrum due to the interaction; they are called quasiparticles and quasiholes.
The distribution n(k⃗) of the Fermi gas is then promoted to the quasiparticle distribution function, or
quasiparticle occupation number in interacting Fermi liquids.

The above conclusion can only be true if the relaxation time of the quasiparticle excitations is
larger than the period of oscillation associated with its energy. Naively, one might expect the electron-
electron scattering rate to be quite high, due to the Coulomb interaction2. However, Pauli’s exclusion
principle greatly suppresses the scattering rate for particles near the Fermi surface. Let us illustrate
this point with a simple example [19], depicted in Fig. 1.1. Suppose we have electron 1 above the
Fermi surface at energy ε1 ≳ EF . Suppose it interacts with an electron 2 with energy ε2 ≲ EF .
The exclusion principle requires these two electrons to scatter to final states 3 and 4 above the Fermi
surface, i.e., ε3, ε4 ≳ EF . Additionally, energy conservation requires that

ε1 + ε2 = ε3 + ε4. (1.3)

1The other one being symmetry breaking theory.
2In fact, the Coulomb potential is as large as the Fermi energy EF in ordinary metals, and definitely larger than the

energy-level spacing near EF
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Figure 1.1: Scattering of particles around a one-dimensional Fermi surface. Here, the Fermi sea
is represented by the green disk and the solid black circle demarcating the boundary is the Fermi
surface. For the initial states with energies ε1, ε2 to get scattered to the final state with energies ε3, ε4,

all the electron momenta must lie within the shell 2
∣∣∣⃗k1 − k⃗F

∣∣∣. This is equivalent to the energy of the

particles being within the shell 2 |ε1 − EF | around EF .

At zero temperature, electrons 2, 3 and 4 should have energies within a shell of thickness 2 |ε1 − EF |
around the Fermi energy. With one energy conservation for three undetermined energies, the total
scattering rate scales as

1

τ
∼ (ε1 − EF )2. (1.4)

As the energy is reduced to that of the Fermi energy, the scattering rate is reduced quadratically.
Therefore, low-lying excitations become more stable as the energy approaches the Fermi energy.

Let us turn our focus on the physical properties of the Fermi liquid. At low temperature T , it is only
electrons within T away from the Fermi energy that contribute the most to the low-energy metallic
properties. Let us consider a distribution of quasiparticles written as a 2× 2 density matrix nσσ(k⃗) in

spin space. The total energy E is a functional of the variation δnσσ(k⃗) = nσσ(k⃗)− 2δσσnF−D(k⃗) [101]:

E[δn] =Eg.s. +
∑

σσ=↑↓

∫
d3k

(2π)3
ε
(0)
σσ (k⃗)δnσσ(k⃗)

+
1

2

∑

σσ;σ′σ′=↑↓

∫
d3kd3k′

(2π)6
fσσ;σ′σ′(k⃗; k⃗′)δnσσ(k⃗)δnσ′σ′(k⃗′) +O(δn)3.

(1.5)

The first term, Eg.s., is the energy of the ground state. In the second term, ε
(0)
σσ (k⃗) is the quasiparticle

energy relative to EF in the neighbourhood of the Fermi surface,

ε
(0)
σσ (k⃗) = ϵ(0)(k⃗)δσσ + h⃗(k⃗) · τ⃗σσ. (1.6)

ϵ(0)(k⃗) ≈ 1
m∗

(
k⃗ − k⃗F

)
· k⃗F with m∗ being the quasiparticle effective mass, which is different from the

bare electronic mass m. h⃗(k⃗) is proportional to an external magnetic field. Finally, τ⃗ = (τx, τy, τz) de-

notes the vector of Pauli matrices. In the second term of Eq. (1.5), the interaction energy fσσ;σ′σ′(k⃗; k⃗′)
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is referred to as Landau’s interaction function, and it captures the forward scattering of quasiparticles.
In the absence of spin-orbit coupling, we can write

fσσ;σ′σ′(k⃗; k⃗′) = fS(k⃗; k⃗′)δσσδσ′σ′ + fA(k⃗; k⃗′)τ⃗σσ · τ⃗σ′σ′ , (1.7)

where the fS and fA represent the density-density and spin-spin interactions, respectively. At low
energies, we are concerned only with interactions of quasiparticles that are close to the Fermi surface,
and we write

fS(k⃗; k⃗′) =

∞∑

l=0

fSl Pl(cos θ), fA(k⃗; k⃗′) =

∞∑

l=0

fAl Pl(cos θ), (1.8)

where Pl(z) are the Legendre polynomials and θ is the angle between k⃗ and k⃗′. The coefficients are
determined by

fSl =
2l + 1

2

∫ 1

−1

d(cos θ)Pl(cos θ)fS(k⃗; k⃗′), fAl =
2l + 1

2

∫ 1

−1

d(cos θ)Pl(cos θ)fA(k⃗; k⃗′). (1.9)

The coefficients fSl and fAl define the Landau parameters [100]:

FSl = N(0)fSl , FAl = N(0)fAl , (1.10)

where N(0) is the density of quasiparticle states at the Fermi surface. The Landau parameters provide
a useful dimensionless measures of the strengths of quasiparticle interactions on the Fermi surface in
each angular momentum channel. In systems with Galilean invariance, the effective mass is related to
the bare electronic mass m through the relation

m∗

m
= 1 +

FS1
3
. (1.11)

We can express thermodynamic potentials in terms of the parameter in Eqs. (1.5) and (1.10) at
the Fermi surface[24]. The specific heat at constant volume is

cV =
1

3
m∗kFT, (1.12)

which is essentially that of a Fermi gas of mass m∗. Similarly, the compressibility κ, and the spin
susceptibility χ, become

κ =
1

n2
N(0)

1 + FS0
, χ =

γ2

4

N(0)

1 + FA0
, (1.13)

respectively. Here, n is the total particle density and γ is the gyromagnetic ratio. The factors 1+FS0 and
1 + FA0 both encapsulate the effects of renormalization due to the quasiparticle interaction [101, 100].
In order to retain thermodynamic stability in the presence of the interaction, the Landau parameters
must satisfy[163]:

FSl > −(2l + 1), FAl > −(2l + 1) (1.14)

for all l. When this condition is violated, the energy can be lowered by condensing quasiparticle-
quasihole excitations near the Fermi surface, which leads to a phase separation or a symmetry breaking.

1.1.2 Fermi Liquid Theory in the Language of Effective Field Theory

Despite being a phenomenological framework, Landau’s Fermi liquid theory saw great success in de-
scribing the low-energy physics of a large class of metals. A solid theoretical foundation for the theory
was eventually found in the language of effective field theory (EFT) when the problem of many fermions
at finite density was studied from the point of view of the Renormalization group (RG) [124, 194, 40,
39, 38]. In the language of EFT and the RG, Landau’s FLT is a class of low-energy fixed points of a
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finite density of fermions subject to a short-range interaction. Below we will unpack the meaning of
the above statement.

The starting point is the microscopic action written in the d+ 1 dimensional Euclidean space as

S =
∑

σ=↑,↓

∫
dk0ddk

(2π)d+1
ψ†
σ(k0, k⃗)

(
ik0 + ε(k⃗) − EF

)
ψσ(k0, k⃗)

+

4∏

i=1


 ∑

σi=↑,↓

∫
dki,0ddki
(2π)d+1


 δ1+2,3+4λ

(σ1 σ2
σ4 σ3

)(
k⃗1 k⃗2
k⃗4 k⃗3

)ψ†
σ1

(k1,0, k⃗1)ψ†
σ2

(k2,0, k⃗2)ψσ3
(k3,0, k⃗3)ψσ4

(k4,0, k⃗4).

(1.15)

Here, k0 is the Matsubara frequency for fermions, k⃗ is the spatial d−dimensional momentum and
ψσ(k0, k⃗) is the Grassmann field variable representing the electrons, which depends on (k0, k⃗) and spin

σ =↑, ↓. The fermion dispersion energy is denoted as ε(k⃗) and the Fermi energy is defined by EF =

ε(k⃗F ). The local four-fermion interaction satisfies the energy and momentum conservation enforced

through the d+1-dimensional delta function δ1+2,3+4 = (2π)δ(k1,0 +k2,0−k3,0−k4,0)(2π)dδ(k⃗1 + k⃗2−
k⃗3 − k⃗4). λ

(σ1 σ2
σ4 σ3

)(
k⃗1 k⃗2
k⃗4 k⃗3

) are the coupling functions representing an inter-fermion interaction. The matrix

notation ( 1 2
4 3 ) in λ explicitly organizes the labelled parameter of the electron-electron interaction as

they would appear in the external legs of a four-fermion vertex, with the initial state on the bottom
row and the final state on the top row. Locality requires that λ is an analytic function of momenta.
In the presence of the SU(2) spin rotation symmetry, λ can be written as

λ
(σ1 σ2
σ4 σ3

)(
k⃗1 k⃗2
k⃗4 k⃗3

) = λD(
k⃗1 k⃗2
k⃗4 k⃗3

)δσ1σ4δσ2σ3 + λE(
k⃗1 k⃗2
k⃗4 k⃗3

)τ⃗σ1σ4 · τ⃗σ2σ3 , (1.16)

where D (E) stands for “direct” (“exchange”) and λD,E are analytic functions of momenta (See Eq.
(1.7)).

Equation (1.15) generally contains non-universal data for high-energy modes far away from the
Fermi surface, and the the Landau parameters can be understood as the fixed point profile of λ in
the forward scattering channel. Let us briefly describe the intuition of the RG that connects the
microscopic interaction and the low-energy observables such as the Landau parameters. When we
compute physical observables from the action Eq. (1.15), the result can be formally expressed as a
series of the coupling λ, where the coefficients are written as integrals over loop momenta. In general,
physical observables depend on the ultraviolet cutoff Λ. However, we can choose a set of Λ-dependent
couplings so that the physical observables become cutoff-independent at momenta much smaller than
Λ. If we can make this choice at any given order of the perturbation series, the theory is renormalizable.
Under the change of cutoff by a small factor s < 1, accompanied by a suitable change of the couplings,
low-energy physical observables remain invariant. By lowering the cutoff as Λ → Λs with s < 1, we
effectively decimate high-energy modes that contain microscopic details of the system. This defines
an RG transformation of the scale-dependent couplings, and the objective is to perform it iteratively
to extract the low energy properties. The result is a series of dynamical equations for the couplings
whose fixed points contain only universal low-energy information of the system [11]. In our particular
case, we know that the low-energy modes reside near the Fermi surface. Therefore, the EFT action for
the FL can be defined by considering the UV cutoff Λ defining a shell of thickness 2Λ ≪ kF around
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x̂

ŷ

2Λ
k⃗

x̂

ŷ

2Λ
k⃗

Λ

k⃗F

k⃗ − k⃗F

Figure 1.2: One dimensional Fermi surface (solid black circle) in a two dimensional momentum space.
The dashed circles represent the boundaries of the shell of thickness 2Λ ≪ kF enclosing the low energy
degrees of freedom.

the Fermi surface [160, 194]:

S =
∑

σ=↑,↓

∫

Λ

dk0ddk

(2π)d+1
ψ†
σ(k0, k⃗)

[
ik0 + v⃗F (k̂) ·

(
k⃗ − k⃗F (k̂)

)]
ψσ(k0, k⃗)

+

4∏

i=1


 ∑

σi=↑,↓

∫

Λ

dki,0ddki
(2π)d+1


 δ1+2,3+4λ

(σ1 σ2
σ4 σ3

)(
k̂1 k̂2
k̂4 k̂3

)ψ†
σ1

(k1,0, k⃗1)ψ†
σ2

(k2,0, k⃗2)ψσ3
(k3,0, k⃗3)ψσ4

(k4,0, k⃗4),

(1.17)

where the Fermi velocity v⃗F (k̂) = ∇⃗k⃗ε(k⃗)
∣∣∣
k=kF

and Fermi momentum k⃗F (k̂) depend only on their

angular position on the Fermi surface, encoded by the unit vector “orientation” k̂. This is depicted in
Fig. 1.2. We have linearized the dispersion energy in the direction perpendicular to the Fermi surface
as allowed by proximity to the Fermi surface. Likewise, we expand the four-fermion coupling in powers

of small k⃗ − k⃗F , keeping only the dependences on the direction of momenta as λ
(σ1 σ2
σ4 σ3

)(
k⃗1 k⃗2
k⃗4 k⃗3

) ≈ λ
(σ1 σ2
σ4 σ3

)(
k̂1 k̂2
k̂4 k̂3

).

∫
Λ

denotes the integration done over momenta satisfying
∣∣∣v⃗F (k̂) ·

(
k⃗ − k⃗F (k̂)

)∣∣∣≪ Λ ≪ kF .

Now that we have determined the EFT action (1.17), we need to address the challenge that the
nature of the Fermi surface adds to the RG. Because the Fermi surface is extended in the momentum
space, interactions at low energy are not necessarily limited to processes with small momentum trans-
fers, unlike for example, in relativistic field theory. To see this explicitly, let us consider the simple
case of a spherically symmetric Fermi surface. In this case we can use generalized spherical coordinates
in momentum space to rewrite the action; k⃗ = (k, Ω⃗d−1), where k is the magnitude of k⃗ labelling the

coordinate normal to the Fermi surface, and Ω⃗d−1 are the coordinates on the (d − 1)−sphere Sd−1
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representing the directions along the Fermi surface. The action becomes [160, 194]

S =
∑

σ=↑,↓

∫

Sd−1

dΩd−1

(2π)d−1

∫ ∞

−∞

dk0
2π

∫ Λ

−Λ

dk

2π
ψ†
σ(k0, k⃗) [ik0 + vF k]ψσ(k0, k⃗)

+

4∏

i=1


 ∑

σi=↑,↓

∫

Sd−1

dΩi,d−1

(2π)d−1

∫ ∞

−∞

dki,0
2π

∫ Λ

−Λ

dki
2π


 δ̃1+2,3+4λ̃

(σ1 σ2
σ4 σ3

)(
Ω⃗1,d−1 Ω⃗2,d−1

Ω⃗4,d−1 Ω⃗3,d−1

)

×ψ†
σ1

(k1,0, k⃗1)ψ†
σ2

(k2,0, k⃗2)ψσ3
(k3,0, k⃗3)ψσ4

(k4,0, k⃗4),

(1.18)

where we have shifted k⃗ → k⃗ + k⃗F (k̂). The integration measures in Eq. (1.18) has now become
ddk ≈ kd−1

F dkdΩd−1 with dΩd−1 being the solid angle element in Sd−1, and we have taken the extra
step to set k + kF ≈ kF on the measure due to the integration support being very close to the Fermi

surface. Additionally, we have defined ψσ(k0, k⃗) = k
d−1
2

F ψσ(k0, k+kF , Ω⃗d−1), and the delta distribution

is now given by δ̃1+2,3+4 = (2π)δ(k1,0 +k2,0−k3,0−k4,0)(2π)dδ(k̂1(Ω⃗1,d−1)+ k̂2(Ω⃗2,d−1)− k̂3(Ω⃗3,d−1)−
k̂4(Ω⃗4,d−1)). Finally, λ̃ = kd−1

F λ is the four-fermion coupling function. From the action we can see
that for electrons arbitrarily close to the Fermi surface the interaction strength only depends on the

orientation of the initial and final states. In principle, the momentum transfer
∣∣∣⃗k1 − k⃗4

∣∣∣ can be as large

as 2kF . This follows from the fact that all electrons on the Fermi surface have the same energy EF ,
so the energy cost to scatter from one point to another on the Fermi surface is essentially zero. In this
sense, the angles Ωi,d−1 are dimensionless continuous flavours that label gapless modes on the metal.
In contrast, the normal coordinate k is dimensionful in the RG sense (it scales with energy)3.

In the Wilsonian RG, the action (1.18) depends on both the cutoff and Fermi momentum implicitly.
The hierarchy Λ ≪ kF of the theory defines the low energy phase space of the system. Consider the
RG transformation Λ → Λs (s < 1). This transformation amounts to taking Λ/kF to zero, making this
ratio a dimensionless small parameter of the theory. The scale transformation amounts to continuously
shaving thin shells off the 2Λ shell. In the Λ/kF → 0 limit, the only interactions with available phase
space are on the kF -shell. The momentum conservation enforced by

k̂1(Ω⃗1,d−1) + k̂2(Ω⃗2,d−1) = k̂3(Ω⃗3,d−1) + k̂4(Ω⃗4,d−1). (1.19)

only leaves the forward scattering and the Bardeen-Cooper-Schrieffer (BCS) [22, 23] channels [160,

194, 40, 39, 38]. The forward scattering channel, is characterized by k̂1 = k̂3, k̂2 = k̂4, or k̂1 = k̂4,

k̂2 = k̂3 while the BCS channel is characterized by k̂1 = −k̂2, k̂3 = −k̂4. In both channels, there are
only two independent momenta in the zero-energy limit. In the presence of spherical symmetry, the
interaction only depends on the relative angle between initial and final particles.

With the scaling dimension of frequency and momentum set to be [k0] = [k] = 1, the scaling
dimension of the fermion field becomes [ψ] = −3/2. This scaling dimension allows us to determine the

dimension of the four-fermion coupling in Eq. (1.18) to be
[
λ̃
{σi}
{Ω⃗i,d−1}

]
= 0, where {σi} and {Ω⃗i,d−1} are

a shorthand for the matrix notation. Therefore, λ̃
{σi}
{Ω⃗i,d−1}

is marginal for both forward scattering and

BCS interactions at the tree level. This remains true for the forward scattering even in the presence
of loop corrections. For the BCS coupling, it becomes marginally irrelevant if the bare interaction is
a repulsive, and marginally relevant for attractive interaction [160, 194, 40, 39, 38]. The attractive
pairing interaction grows logarithmically in Fermi liquids, signifying a superconducting instability at
low temperatures [22, 23].

3In fact, after expanding the four-fermion coupling λ to the leading order, the mapping from action (1.17) to (1.18)
just makes explicit that the Fermi liquid problem in EFT is a (1 + 1)-dimensional problem, where the only relevant
direction (that is, the direction that involves a relevant energy cost in scattering), is the direction normal to the Fermi
surface. This problem is simplified from the (d+ 1)-dimensional problem in Eq. (1.15).
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The four-fermion interaction renormalizes the single-particle Green’s function as

GR(ω, k⃗) =
1

−ω − i0+ + v⃗F (k̂) · (k⃗ − k⃗F (k̂)) + ΣR(ω, k⃗)
. (1.20)

Here, we use the real frequency. ΣR(ω, k⃗) is the self-energy. The spectral function A(ω, k⃗) =

−2ImGR(ω, k⃗), can be written as [33]

A(ω, k⃗) =
2ImΣR(ω, k⃗)

[
−ω + v⃗F (k̂) · (k⃗ − k⃗F (k̂)) + ReΣR(ω, k⃗)

]2
+
[
ImΣR(ω, k⃗)

]2 . (1.21)

If ImΣR(ω, k⃗) is sufficiently small at low frequencies, the spectral function has a well-defined peak in
ω-space at the (renormalized) excitation energy ωk⃗:

ωk⃗ = v⃗F (k̂) · (k⃗ − k⃗F (k̂)) + ReΣR(ωk⃗, k⃗). (1.22)

Expanding around the peak ω = ωk⃗, the spectral function acquires the form

A(ω, k⃗) =
2

τk⃗

Zk⃗(
ω − ωk⃗

)2
+ 1

τ2

k⃗

, (1.23)

where Zk⃗ =
[
1 − ∂ΣR(ω,⃗k)

∂ω

]−1

ω=ω
k⃗

is the quasiparticle weight which can be interpreted as the overlap

between the bare electron and quasiparticle states. The set of points k⃗′ that satisfy ωk⃗′ = 0 define the
renormalized Fermi surface. The renormalized Fermi surface is, in general, deformed with respect to
the bare Fermi surface, but it encloses the same volume of Fermi sea as the non interacting theory;
this in known as the Luttinger theorem [124]. Zk⃗F ≲ 1 represents the magnitude of the step in the

distribution function n(k⃗) at k⃗ = k⃗F [128]4. Finally, The width of the quasiparticle peak in A(ω, k⃗) is

controlled by the imaginary part of the self-energy through τ−1

k⃗
= Zk⃗ImΣR(ωk⃗, k⃗), the decay rate of

the single particle excitations. In Fermi liquids, the decay rate goes as τ−1

k⃗
≈ ω2

k⃗
. These features of

the spectral function such as the quasiparticle weight Zk⃗, quasiparticle lifetime τk⃗, and the excitation
spectrum ωk⃗ are physical observables that can be probed through the angle-resolved photoemission
spectroscopy (ARPES).

Landau’s Fermi liquid theory has been very successful in describing conventional metals and their
instabilities. However, not all metals belong to Fermi liquids. In metals that that undergo continuous
quantum phase transitions, strong critical fluctuations of order parameters destroy the coherence of
quasiparticles. Metals without coherent quasiparticles are generally referred to as non-Fermi Liquids
(NFL). Below, we introduce one such NFL state, known as the Antiferromagnetic Quantum Critical
Metal (AFQCM), which is be the main focus of this thesis.

1.2 The Antiferromagnetic Quantum Critical Metal

In Fermi liquids, the low-energy physics is specified by the topology and geometric shape of the Fermi
surface, the Berry phase around the Fermi surface [74], the angle-dependent effective mass and the
forward scattering amplitude. As we have seen above, the effectiveness and simplicity of the low-energy
effective theory of Fermi liquids is due to the existence of well-defined quasiparticles. In non-Fermi
liquids, however, the quasiparticle picture is not valid [202, 185], and extracting dynamical information
out of effective field theories is significantly harder [84, 79, 108, 167, 109, 144, 10, 93, 150, 161, 2, 3, 1,
121, 190, 110, 148, 140, 141, 76, 4, 90, 59, 48, 203, 205, 154, 206, 169, 83, 155, 210, 54, 180, 204, 120,
230, 118, 41, 211, 26, 119]5. The simplest example of NFL is the one-dimensional system of interacting

4Here, n(k⃗) =
∫

dω
2π
A(ω, k⃗)nF−D(ω), with nF−D(ω) given by Eq. (1.2)(with ε − µ ≡ ω). Thus, Z

k⃗
is a measure of

the quasiparticle distribution’s overlap with the Fermi gas particle distribution [128].
5For recent progress in non-Fermi liquid theories with random couplings, see Refs [174, 95, 131, 228, 57].
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ϕ⃗(r⃗) ∼
〈
S⃗(r⃗)

〉
eiQ⃗AF ·r⃗

ϕ⃗(r⃗) = 0
Paramagnetic metal

ϕ⃗(r⃗) ̸= 0
Metal with AF order

QCP
ρ

Figure 1.3: A schematic diagram for the antiferromagnetic quantum (T = 0) phase transition of a
two-dimensional metal. The tuning parameter ρ drives the transition from a paramagnetic (Fermi
liquid) phase (ϕ = 0) to an antiferromagnecially ordered phase (ϕ ̸= 0). ρ can represent electron/hole
doping in cuprates. At the quantum critical point (QCP), the Fermi surface hosts a number of hot
spots, where electrons remain strongly coupled to the critical spin fluctuations Φ at all energy scales.
The red circle in critical Fermi surface represents the Fermi surface when the Brillouin zone is shifted
by Q⃗AF . In the antiferromagnetic phase, the metal undergoes a “Fermi surface reconstruction”: gaps
open at the hot spots leading to electron (green) and hole (red) pockets [172].

fermions known as the Tomonaga-Luttinger liquid [208, 125, 137, 75, 213]. In one space dimension,
the strong quantum fluctuations leads to a charge-spin separation, and the single-particle spectral
function has no well-defined quasiparticle peaks. In higher dimensions, NFL can be realized in the
vicinity of quantum critical points of continuous quantum phase transitions. Examples include high Tc
superconductors [36, 71, 18, 227, 147, 184, 78, 77, 78], iron pnictides [77], and heavy fermion compounds
[153]. Among the additional data that are needed for non-Fermi liquids in higher dimensions are the
singularity of the critical Fermi surface characterized by anomalous dimensions of fermions, dynamical
critical exponents, and scaling properties of other critical modes that are present in the system[190].
Since the momentum coordinates parallel to the Fermi surface play the role of a continuous flavour,
critical exponents (such as the scaling dimension of fermions) can depend on the momentum along the
Fermi surface.

The focus of this thesis is the antiferromagnetic quantum critical metal (AFQCM), which is poten-
tially relevant for the cuprates, iron pnictides and heavy fermion compounds mentioned above. This
theory has been intensively studied both theoretically and numerically [2, 3, 1, 76, 4, 107, 34, 35,
155, 154, 210, 130, 211, 141, 206, 204, 112, 25, 117, 179, 62, 116, 219]. The AFQCM arises at the
critical point of a antiferromagnetic quantum phase transition, driven by a spatially-modulated spin

density wave (SDW) order parameter ϕ⃗(r⃗) ∼ ⟨S⃗(r⃗)⟩eiQ⃗AF ·r⃗ (S⃗(r⃗) is the spin density), where the spatial

r⃗-modulation is given by the ordering vector Q⃗AF . Here, we focus on Q⃗AF that is commensurate with



10 CHAPTER 1. INTRODUCTION

2Q⃗F equivalent to a reciprocal lattice vector, i.e., 2Q⃗F ≡ 0. A schematic description can be found in
Fig. 1.3. The minimal description includes the antiferromagnetic critical spin fluctuations, represented
by a boson field Φσσ′ , and electrons residing near the Fermi surface. On the Fermi surface, the hot
spots play a special role. Here, the hot spots refer to points on the Fermi surface connected by the
antiferromagnetic wave vector Q⃗AF and remain strongly coupled with spin fluctuations at low energies,
as depicted in Fig. 1.4a. The hot spots have a degree of nesting measured by the nesting angle v, as
depicted in Fig. 1.4b. The bare kinetic energy of the critical spin fluctuation is written as

S0,SDW =

∫
dq0d2q

(2π)3

[
q20 + c20 |q⃗|2

]
Tr
[
Φ(q0, Q⃗AF + q⃗)Φ(−q0,−Q⃗AF − q⃗)

]
, (1.24)

where Φσσ′(q0, Q⃗AF + q⃗) ≡ ϕ⃗(q0, Q⃗AF + q⃗) · τ⃗σσ′ =
∑3
a=1 ϕ

a(q0, Q⃗AF + q⃗)τaσσ′ is written in the adjoint

representation of SU(2), q⃗ is measured relative to Q⃗AF , c0 is the bare speed of the collective mode,
and the trace is in the spin indices σ, σ′. The interaction between the boson and electrons near the
hot spots can be written as

SYuk =
8∑

N=1

∑

σσ′=↑,↓

∫

Λ

dk0d2kdk′0d2k′

(2π)6
gk⃗F (k̂N )+k⃗,⃗kF (k̂N )+k⃗′

× ψ†
σ(k0, k⃗F (k̂N ) + k⃗)Φσσ′(k0 − k′0, Q⃗AF (N → N) + k⃗ − k⃗′)ψσ′(k′0, k⃗F (k̂N ) + k⃗′)

(1.25)

where N = 1, 2, . . . , 8 labels the hot spots, N is the hot spot connected to N by an ordering vector
Q⃗AF , k⃗F (k̂N ) is the Fermi momentum oriented at hot spot N , k⃗ is the momentum measured from

the hot spot, Q⃗AF (N → N) is Q⃗AF pointing towards N from N . gk⃗F (k̂N )+k⃗,⃗kF (k̂N )+k⃗′ is the Yukawa

exchange interaction between electrons near N and N . When v = 0, patches connected by Q⃗AF
are nested. If the phase transition is continuous, the energy of the spin fluctuations with wavevector
Q⃗AF + q⃗ vanishes with vanishing q⃗. Electrons can be scattered from hot spot to hot spot connected
by Q⃗AF by emitting or absorbing a zero-energy boson Φ.

1.2.1 Theoretical Descriptions of Non-Fermi Liquids

One approach to non-Fermi liquids that has proven to be useful is the patch theory6. For the AFQCM,
the patch theory is commonly known as hot-spot theory. The goal of a patch theory is to “divide and
conquer” the full theory by considering only a minimal set of small patches of Fermi surface at a time.
The patch description is valid if large-momentum scatterings that connect different parts of Fermi
surface are negligible (for example, a scattering between a particle near hot spot 1 and hot spot 5 in
Fig. 1.4a). However, the patch theory is not enough when large-angle scatterings are important. To
capture the low-energy physics of the whole Fermi surface, the patch theory has to be extended to
a theory that includes all gapless modes around the Fermi surface. Such theories are characterized
by couplings that are functions of momentum along the Fermi surface. The universal low-energy
data should be encoded in fixed points that arise in the space of coupling functions. Ultimately, one
would like to identify the space of fixed points and extract the universal data associated with each
fixed point. The natural theoretical framework for this is the functional renormalization group (FRG)
method [162, 222] [146, 168, 170, 81, 85, 64, 63, 31, 143, 159, 232, 217, 73, 181, 88, 139, 107, 55, 218,
89, 129, 53, 54, 87, 130, 209]. The functional renormalization group flow describes how the momentum
dependent vertex function evolves as a function of an energy scale. However, the exact renormalization
group equation for the full vertex function is usually too difficult to solve for interacting theories. As a
result, some forms of truncation, which are often uncontrolled, are employed to make the flow equation
manageable. Fortunately, one does not need to know the full momentum-dependent vertex function
to characterize the universal low-energy physics. Because gapless modes are residing on Fermi surface
with a dimension lower than the space dimension, one should be able to throw away a great deal of

6See [112] for a recent review.
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Figure 1.4: Figure taken from [30]. (a) A C4-symmetric Fermi surface in two dimensions. The red dots

on the Fermi surface represent the hot spots connected by the antiferromagnetic wave vector, Q⃗AF .
The coordinate x̂ (ŷ) is chosen to be perpendicular (parallel) to Q⃗AF that ends at hot spot 1. (b)
Near hot spot 1, the Fermi surface is denoted as ky = −vkxkx, where vk is generally a function of a
component of momentum along the Fermi surface. In the hot spot theory, vk is expanded around k = 0
and only the leading order term is kept. In the small v limit, the patches of Fermi surface connected
by Q⃗AF become locally nested.

non-universal information associated with modes away from the Fermi surface. For relativistic field
theories, there exists a systematic way of achieving this: renormalizable field theory. Born out of
the locality principle and the gradient expansion, a renormalizable field theory is the minimal theory
that captures the low-energy physics shared by all theories within one universality class. They are
simple enough that one can in principle study them with pen and paper, yet powerful enough to
produce among the most accurate predictions in the physical sciences [60]. Then, it is natural to
combine the functional renormalization group formalism with the notion of renormalizable field theory
to capture the universal low-energy physics of metals. The objective of this thesis is to describe the
recent progress by the author and collaborators in achieving this goal, and the important consequences
it entails for the non-Fermi liquid that arises at the antiferromagnetic quantum critical point in two
space dimensions. Specifically, the focus will be upon three subjects: the formulation of the theory of
the full Fermi surface and the description of the superconducting instability, the consequences of the
momentum-dependent renormalization for the cyclotron motion of electron, and the fate of a magnetic
impurity immersed in the non-Fermi liquid. We know give a brief synopsis to each one of these topics.

1.2.2 The Superconducting Instability in the AFQCM

Since most non-Fermi liquids exhibit superconductivity at low temperatures, there is a natural inter-
est in understanding intrinsic superconducting fluctuations of non-Fermi liquids. However, the patch
theory that only includes the electrons near the hot spots is not sufficient for this task because su-
perconducting fluctuations generally involve large-angle scatterings between Cooper pairs across the
entire Fermi surface. Furthermore, the hot-spot theory of AFQCM is not capable of describing the
momentum-dependent universal properties of electrons on the Fermi surface and potentially important
interplay between hot (incoherent, at the hot spots) and cold (coherent, far away from the hot spots)
electrons for superconductivity [220]. The patch theory does not include the four-fermion coupling ei-
ther because it is deemed irrelevant in the scaling that leaves the patch theory invariant. However, the
four-fermion coupling should play an important role for superconductivity, which is another indication
that the patch theory is incomplete. In Chapter 2, we consider the full low-energy effective theory that
include all gapless modes around the Fermi surface and the four-fermion coupling. We then describe
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Figure 1.5: Figure taken from [30]. (a) The schematic functional renormalization (RG) group flow
depicted in the space of the complexified four-fermion coupling function (λ) and the nesting angle (v).
For each nesting angle v, there exist a pair of non-Hermitian (complex) fixed points for the RG flow
projected to the space of coupling functions with fixed v. These are called quasi-fixed points and the
pairs of non-Hermitian quasi-fixed points are related to each other through the Hermitian conjugation.
As v decreases, the non-Hermitian quasi-fixed points merge to the true Hermitian fixed point located at
v = 0. While v flows towards zero under the full RG flow, a Hermitian theory with a non-zero nesting
angle necessarily flows to the superconducting state before the nesting angle changes significantly. (b)
A schematic functional RG flow projected to the space of complex four-fermion coupling function at a
non-zero v. The proximity of the non-Hermitian quasi-fixed points to the space of Hermitian theories
creates a bottleneck region with constricted RG flow for physical theories with small nesting angles.

how the critical spin fluctuations play a central role by providing pairing glue that forms Cooper pairs
while making electrons incoherent near the hot spots (a pair -breaking effect). Finally, we describe
the non-Hermitian quasi-fixed point arising from the competitions between spin fluctuations and the
four-fermion coupling, which controls the universal pathway towards superconductivity (see Fig. 1.5).

Of particular importance of this thesis is the concept of ultraviolet/infrared (UV/IR) mixing in
metals [133, 132, 231]. In the BCS pairing channel, the four-fermion couplings with large differences in
momentum along the Fermi surface can mix with each other as Cooper pairs can be scattered around
the Fermi surface even at low energies. This is because the momentum along the Fermi surface is not
necessarily bounded by any external energy scale, and quantum corrections are generally expressed
as integrals of coupling functions along the Fermi surface. If the coupling functions do not decay
fast enough at large momenta, the contribution from large momenta along the Fermi surface can be
important. In particular, the critical boson with large momenta contributes to the mixing between
Cooper pairs with different relative momenta even in the low-energy limit. The fact that operators
defined on different parts of the Fermi surface can mix with each other is not surprising in that they
all describe gapless degrees of freedom. What is peculiar though is the fact that the mixing between
low-energy operators with large differences in momentum along the Fermi surface can be influenced
by the critical boson with large momenta. Due to this UV/IR mixing, the four-point vertex function
itself can not be extracted from the low-energy effective field theory. Although the predictability of
the low-energy effective theory seems at risk, there are still observables protected from the UV/IR
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+

Figure 1.6: Figure taken from [30]. The net two-body electron-electron interaction composed of the
one-particle irreducible (1PI) four-point function and two 1PI three-point functions connected with
the dressed boson propagator. Here, the directed solid lines represent electrons and the double wiggly
line represents the boson spin fluctuations.

∆E(k)

Figure 1.7: Figure taken from [30]. By absorbing/emitting a boson with zero energy, an electron
on the Fermi surface (black dot) is scattered into a state away from the Fermi surface if the initial
momentum is away from the hot spots. Alternatively, the electron must absorb/emit a boson with
non-zero energy to scatter onto the Fermi surface. The minimum energy that virtual particles have
to carry within a loop gives rise to a crossover energy scale below which electrons decouple from spin
fluctuations at each point on the Fermi surface. Electrons closer to the hot spots remain coupled with
spin fluctuations down to lower energy scales, which gives rise to a momentum dependent life time of
electrons that gradually vanishes as one approaches hot spots.

mixing. The ‘protected’ low-energy observable that describes the fermionic four-point function is the
net two-body electron-electron interaction given by the sum of the one-particle irreducible (1PI) four-
point vertex function and the tree graph formed by connecting two 1PI three-point function with the
boson propagator (see Fig. 1.6). The net interaction determines physical correlation functions at low
energies, and it can be determined within the low-energy effective field theory without reference to
high-energy physics. The RG flow of the net two-body interaction is insensitive to the ultra-violet
(UV) physics.

1.2.3 Cyclotron Motion of Quasiparticles

The semi-classical equation of motion of quasiparticles in solids is remarkably symmetric under the
interchange of position and momentum. The momentum-dependent quasiparticle energy is the counter
part of the position-dependent potential in real space. Moreover, the Berry curvature associated with
the Bloch wavefunctions plays the role of the magnetic field in momentum space[229]. It is then natural
to ask if the symmetry can be further extended to spacetime geometry[44, 98, 106, 20, 49]. A real-space
curvature can be created through buckling of lattices or topological defects in solids[12, 221, 157, 134,
214, 43, 223, 178, 145]. Recent studies on the semi-classical equations of motion of quasiparticles have
suggested the emergence of a curved momentum space in lattice models. In particular, it has been
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pointed out that the non-linear response of quasiparticles to the external electromagnetic field can be
captured geometrically[198, 82]. In those examples, the metric[135] is ultimately traced back to the
single-particle wavefunction fixed by the underlying lattice. In Chapter 3, we consider an intrinsic
physical mechanism by which momentum space and time is integrated into a curved momentum-
spacetime through the electron-electron interactions. While electrons at the hot spots are incoherent
in AFQCM, the Fermi surface far away from the hot spots still supports coherent quasiparticles.
Therefore, the dynamics of quasiparticles away from the hot spots can be understood semi-classically.
However, the quasiparticle dynamics acquires a strong momentum dependence due to the momentum-
dependent quantum corrections. We point out that curved momentum-spacetimes naturally arise from
anisotropic (momentum-dependent) quantum corrections in the AFQCM and even a momentum-space
black hole horizon can emerge if quantum corrections are sufficiently singular near the hot spots (see
Fig. 1.7).

1.2.4 The Kondo Effect

Collective phenomena that arises from the interplay between local magnetic moments and itinerant
electrons continue to attract considerable attention in condensed matter physics [14, 97, 151, 51, 80,
201, 113, 195, 152, 192, 193, 52, 196, 37, 61, 187, 158, 156]. The Kondo impurity model was originally
introduced to describe the behaviour of such impurities of transition metal ions in simple metals. In
the classic Kondo model, a magnetic impurity put in a Fermi liquid is screened by the conduction (or
itinerant) electrons in the metal. The result is a non-magnetic state (singlet) where the impurity’s
magnetic moment is screened by the conduction electron’s spin. This quantum phenomenon is known
as the Kondo effect [97] and it is responsible for the observed minimum of resistance of some single-
element metals with magnetic impurities [72]. It also represents one of the better known examples
of asymptotic freedom in physics, akin to what causes the confinement of quarks [17]. The Kondo
impurity model is the building block of the Kondo lattice models for heavy fermions systems [201, 195,
193, 61, 187, 156] and Kondo insulators [138, 52].

Before we discuss the problem of a magnetic impurity in the AFQCM, we first review the Kondo
effect in Fermi liquids. Well studied examples of magnetic impurities that exhibit Curie-Weiss contri-
butions to the susceptibility [80] are from the 3d transition series or 4f rare earth series in the periodic
table, like Fe in Cu [200, 175], and Ce in LaAl2 and LaB6 [58, 176]. The minimal model that describes
an impurity put in Fermi liquids is the Anderson impurity model [14]

HA =
∑

σ=↑,↓

∫
ddk

(2π)d
E(k⃗)ψ†

k⃗,σ
ψk⃗,σ +

∑

σ=↑,↓
εd d

†
σdσ

+
∑

σ=↑,↓

∫
ddk

(2π)d

[
Vk⃗d

†
σψk⃗,σ + V ∗

k⃗
ψ†
k⃗,σ
dσ

]
+ Ud d

†
↑d↑d

†
↓d↓.

(1.26)

A schematic description of the model can be found in Fig. 1.8a. Here, ψk⃗,σ is the fermion operator at

momentum k⃗ with spin σ, dσ is the fermion operator at the site of the impurity, which is assumed to
be at the origin (x⃗ = 0), E(k⃗) is the electron energy, and εd is the energy of the d level of the impurity
ion. The term that mixes ψk⃗,σ and dσ with tunnelling matrix element Vk⃗ is the hybridization that
describes the hopping between conduction band and the atomic d-level of the impurity. Finally, Ud is
the Coulomb interaction between the electrons in the impurity ion d-states.

The analysis for large Ud proceeds most naturally by performing a canonical transformation to
an effective Hamiltonian acting on the low energy subspace (à la Hubbard). To figure out what this
subspace should be, let us examine the spectrum of the d level, assuming that |εd| , Ud ≫

∣∣Vk⃗
∣∣. There
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Figure 1.8: Models of magnetic impurities. Here, the electrons ψσ are represented as the blue lattice.
(a) Set-up for the non-interacting (Ud = 0) Anderson model (1.26). Also referred to as a resonant-level
model, the conduction electrons ψσ hybridize with the d-level electrons of the impurity dσ with an
amplitude V . (b) Kondo impurity model: conduction electrons ψσ couple to a spin S⃗d with a exchange
interaction strength J .

are four possible states on the d level:

|0⟩, with energy E = 0,

d†α|0⟩, with energy E = εd,

d†↑d
†
↓|0⟩, with energy E = 2εd + Ud.

(1.27)

The first state corresponds to the state with zero occupation at the impurity level, the second cor-
responds to singly occupied states with energy εd where α =↑, ↓, and the third state corresponds to
the doubly occupied state. The impurity sites becomes magnetic when εd ≪ 0, 2εd + Ud, where the d
level is doubly-degenerate, making the d level behave effectively as a S = 1/2 spin. In the presence
of a Fermi surface, the d level interacts with conduction electrons as a S = 1/2 local magnetic mo-
ment (local moment regime). This can be made explicit by the Schrieffer-Wolff transformation on the
Hamiltonian (1.26) [32] resulting in the Kondo Hamiltonian7 [186, 80, 97]

HK =
∑

σ=↑,↓

∫
ddk

(2π)d
E(k⃗)ψ†

k⃗,σ
ψk⃗,σ +

∑

σ,σ′=↑,↓

∫
ddkddk′

(2π)2d
Jk⃗,⃗k′ S⃗d · ψ

†
k⃗,σ

τ⃗σσ′

2
ψk⃗′,σ′ . (1.28)

Here, S⃗d is an S = 1/2 spin operator acting on the two states d†α|0⟩ on the d site. A schematic
description of the model can be seen in Fig. 1.8b. The Kondo exchange interaction Jk⃗,⃗k′ is given by

Jk⃗,⃗k′ = V ∗
k⃗
Vk⃗′

(
1

Ud + εd − E(k⃗′)
+

1

E(k⃗) − εd

)
, (1.29)

and is antiferromagnetic (positive) in the local moment regime for electrons near the Fermi energy

(E(k⃗), E(k⃗′) ∼ 0).
Generating a perturbative expansion for the Hamiltonian (1.28) in powers of Jk⃗,⃗k′ is not straight-

forward because the d spins are now no longer free fermions, and there is no Wick’s theorem for the
correlations of the spin operators. However, it is still possible to treat the problem diagrammatically

7 There is also and additional potential scattering term∑
σ=↑,↓

∫
ddkddk′

(2π)2d
W

k⃗,k⃗′ψ
†
k⃗,σ

ψ
k⃗′,σ ,

where

W
k⃗,k⃗′ =

V ∗
k⃗
V
k⃗′

2

(
1

E(k⃗)− εd
−

1

Ud + εd − E(k⃗′)

)
.

We assume this term to be unimportant for now, so we drop it [80].
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0
J

Figure 1.9: Renormalization group flow of the Kondo coupling in Eq. (1.33). When the UV coupling
is ferromagnetic, i.e., J(0) < 0, the flow runs to the fixed point J(ℓ→ ∞) = 0. For antiferromagnetic
coupling, J(0) > 0, the flow goes towards strong coupling J(ℓ→ ∞) → ∞.

with the Abrikosov’s method [5]. Specifically, by performing a Schwinger fermion decomposition of the
spin operator, subject to the condition that at each impurity site there is only one pseudo-fermion,

S⃗d =
∑

σ,σ′=↑,↓
f†σ
τ⃗σσ′

2
fσ′ ,

∑

σ=↑,↓
f†σfσ = 1. (1.30)

The unit fermion constraint above can be imposed by introducing an imaginary chemical potential
−ζ on the fermions f . Here, the Grassmann variable f now represents a pseudo-fermion in the Popov-
Fedotov representation, where ζ = i π2β (β−1 = T ) enforces the unit fermion constraint

∑
σ=↑,↓ f

†
σfσ = 1

by cancelling out the contributions of the unphysical states
∑
σ=↑,↓ f

†
σfσ = 0, 2 in the partition function.

This ensures that the only pseudo-fermion operators in the Hamiltonian are projection operators in
the unit fermion subspace [164]. In practice, we are interested in the zero temperature limit (β−1 → 0)
on the diagrammatic expansion, and this constraint can be implemented by ignoring diagrams with
external f -lines that flow both forwards and backwards in time. In Hamiltonian form, this generalizes
Eq. (1.28) to [164, 173]

HK =
∑

σ=↑,↓

∫
ddk

(2π)d
E(k⃗)ψ†

k⃗,σ
ψk⃗,σ +

∑

α=↑,↓
i
π

2β
f†αfα

+
∑

σ,σ′,α,β=↑,↓

∫
ddkddk′

(2π)2d
Jk⃗,⃗k′f

†
α

τ⃗αβ
2
fβ · ψ†

k⃗,σ

τ⃗σσ′

2
ψk⃗′,σ′ .

(1.31)

The key physics of the Kondo model becomes apparent upon considering the renormalization of
the Kondo coupling to second order in J . In its simplest form, we assume a constant density of
states for itinerant electrons with bandwidth 2D. Additionally, let us assume constant J (by setting

Vk⃗ ≈ V,E(k⃗) ≈ 0) to simplify the analysis. Then, we integrate out the highest energy conduction

electrons with D − δD <
∣∣∣E(k⃗)

∣∣∣ < D. The renormalization of the exchange coupling results in

J → J + ρ(EF )
δD

D
J2, (1.32)

where ρ(EF ) is the density of states of the conduction electrons at EF . Writing δD = Dδℓ, where ℓ is
the logarithmic length scale, we obtain the “poor person” renormalization group flow equation, [13]

dJ(ℓ)

dℓ
= ρ(EF )J2(ℓ) +O(J3). (1.33)

The RG flow governed by Eq. (1.33) is shown in Fig. 1.9. A ferromagnetic coupling J(0) < 0
flows towards J(ℓ → ∞) = 0: in this case the impurity spin decouples from the conduction itinerant
electrons, and J can be treated perturbatively. For the antiferromagnetic coupling with J(0) > 0, J(ℓ)
increases logarithmically. Specifically, the integration of Eq. (1.33) yields the result:

J(ℓ) =
1

1
J(0) − ρ(EF )ℓ

. (1.34)
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This gives rise to a logarithmic contribution to the resistivity,

Rimp = R0

[
1 + 2Jρ(EF ) log

(
D

T

)]
, (1.35)

where R0 is the resistivity due to potential scattering at the impurity site. If we start from small
positive J(0), we see from this equation that the renormalized exchange reaches order 1 at scale
ℓ∗ = 1

ρ(EF )J(0) ; this defines the Kondo temperature:

TK ∼ D exp

(
− 1

ρ(EF )J(0)

)
. (1.36)

In principle, this expression is only valid perturbatively. However, using numerical RG, Wilson showed
that the J(ℓ→ ∞) → ∞ flow predicted by Eq. (1.34) is ultimately correct (qualitatively) and that the
low energy physics of the Kondo Hamiltonian (1.28) is adiabatically connected to the non-interacting
Anderson model (Ud = 0) in Eq. (1.26) [226]. Qualitatively, when J(ℓ) flows to large coupling, the

way to minimize the ground state energy of Eq. (1.28) is for the spin S⃗d to lock into a spin singlet with
an itinerant electron at the impurity site, forming a non-magnetic impurity described by an effective
Hamiltonian,

HR =
∑

σ=↑,↓

∫
ddk

(2π)d
E(k⃗)ψ†

k⃗,σ
ψk⃗,σ +

∑

σ=↑,↓

∫
ddkddk′

(2π)2d
Wk⃗,⃗k′ψ

†
k⃗,σ
ψk⃗′,σ. (1.37)

In the large Wk⃗,⃗k′ limit, other electrons are prevented from occupying the impurity site. In other words,
the impurity becomes a “rigid” scattering target at the impurity site with potential Wk⃗,⃗k′ . Due to the
lack of dynamical degrees of freedom at the impurity site, this is an effective Fermi liquid description
of the scattering states for T ≪ TK , similar to that of the non-interacting Anderson model.

We can use this interpretation to deduce the temperature dependent impurity spin susceptibility:

χimp =
1

4T
Φ(T/TK), (1.38)

where Φ(t) is a universal function for J ≪ D. At temperatures T ≫ TK , the perturbation of the
Kondo coupling is reliable; Φ → 1 and we obtain the Curie-Weiss susceptibility

χimp =
1

4T
, TK ≪ T ≪ Ud. (1.39)

For T ≪ TK we have Φ ∼ T/TK , and the susceptibility becomes constant:

χimp ∼ 1

TK
, T ≪ TK . (1.40)

In AFQCM, critical spin fluctuations compete with itinerant electrons to couple with the impurity
through the spin-spin interaction. The interaction between spin fluctuations and the impurity spin has
the form

Simpurity−boson = gf
∑

σσ′=↑,↓

∫

Λ

dp0
2π

dq0d2q

(2π)3
f†σ(p0 + q0)

Φσσ′(q0, Q⃗AF + q⃗)

2
fσ′(p0). (1.41)

Here, the Grassmann variable f(p0) now represents a pseudo-fermion field depending on frequency.
Through gf , the spin fluctuations dress the impurity spin, which generates an anomalous dimension of
J . As a result, the Kondo screening is weakened by the boson with an increasing T . We will discuss
how the critical spin fluctuations suppress the Kondo screening in Chapter 4.
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1.3 Structure of the Thesis

In Chapter 2, which is based on the work of Ref. [30], we present the field-theoretical functional
RG formalism applied to the AFQCM in 2+1 dimensions. In this scheme, we go beyond the patch
theory by including all gapless degrees of freedom along the Fermi surface and promoting couplings
to coupling functions of momentum along the Fermi surface. In the space of coupling functions, we
identify an interacting fixed point at a point with vanishing nesting angle. In theories deformed with
non-zero nesting angles, coupling functions acquire momentum-dependent profiles controlled by the
bare nesting angles at low energies before flowing to superconducting states in the low-energy limit.
The superconducting instability is unavoidable because lukewarm electrons that are coherent enough
to be susceptible to pairing end up being subject to a renormalized attractive interaction with its
minimum strength set by the nesting angle irrespective of the bare four-fermion coupling. Despite the
inevitable superconducting instability, theories with small bare nesting angles and bare four-fermion
couplings that are repulsive or weakly attractive must pass through the region with slow RG flow due to
the proximity to the non-Fermi liquid fixed point. This “bottleneck” region controls the quasi-universal
scaling behaviour of the normal state above the superconducting transition temperature.

In Chapter 3, based on Ref. [28], we show that the momentum-dependent quantum corrections can
give rise to curved momentum-spacetimes in metals. In the AFQCM, a curved momentum-spacetime
is demonstrated to arise as the critical spin fluctuations generate a red shift that dilates frequency of
the electron unevenly on the Fermi surface. As the shape of the Fermi surface controls the momentum-
dependent red shift, the momentum-spacetime geometry that emerges at low energies depends on the
bare nesting angle of the Fermi surface. Larger bare nesting angles reduce the region where the critical
spin fluctuations slow down an electron. At the same time, the increasing nesting angle weakens the
screening of the interactions, making the red shift stronger near the hot spots. These two effects
compete to create a non-monotonic dependence of the electron’s cyclotron frequency on the nesting
angle. The red shift that becomes more singular at the hot spots with increasing nesting angle creates
a possibility of realizing a momentum-space black hole horizon beyond a critical nesting angle: the
electron motion becomes “perpetually” slowed down as it approaches a hot spot in the same way
that the motion of a free falling object freezes near the event horizon of a black hole with respect
to an asymptotic observer. However, the analogous horizon is not fully realized because the metric
singularity at the hot spots is cut off by thermal effects present above the non-zero superconducting
transition temperature.

Finally, in Chapter 4, which is based on Ref. [29], we study a magnetic impurity immersed in
AFQCM. Critical spin fluctuations represented by bosonic fields compete with itinerant electrons to
couple with the impurity through the spin-spin interaction. At long distances, the antiferromagnetic
electron-impurity (Kondo) coupling dominates over the boson-impurity coupling. However, the Kondo
screening is weakened by the boson with an increasing severity as the hot spots connected by the
magnetic ordering wave-vector are better nested. The dramatic hampering of the Kondo screening
by the critical boson results from UV/IR mixing, where spin fluctuations of all length scales actively
suppress Kondo screening by itinerant electrons even at low energies.

We end this thesis with a few concluding remarks and an outlook on future research directions.

1.4 Notation

Throughout the the rest of this thesis the following notation will be encountered:

1. scales

� Λ : UV energy cutoff

� kF : Fermi momentum / size of Fermi surface

� µ : floating energy scale at which renormalization conditions are imposed
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2. momentum

� k⃗ = (kx, ky) : two-dimensional momentum measured with respect to the hot spot in each
patch

� k = (k0, k⃗) : three-momentum vector made of Matsubara frequency and two-dimensional
momentum

� Q⃗AF : the antiferromagnetic ordering vector

� kN : the component of k⃗ that is perpendicular to Q⃗AF

� k : abbreviation for kN used when the associated hot spot index is obvious

� k⊥ : the component of k⃗ that is parallel to Q⃗AF

� K = keℓ : rescaled momentum associated with the logarithmic length scale ℓ

3. coupling functions

� VF,k : the momentum dependent Fermi velocity parallel to the antiferromagnetic ordering
vector

� vk : the momentum dependent local nesting angle

� c : the speed of the overdamped collective spin fluctuation

� wk ≡ vk/c (w ≡ v0/c)

� gk,p : the momentum dependent fermion-boson coupling function

� λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1 k2
k4 k3

) : the momentum dependent four-fermion coupling function

� J
(N,N ′)
kN ,k′N′

: Kondo coupling function that describes the scattering of electrons through inter-

action with the impurity

� gf : the boson-impurity coupling

� ua (a = 1, 2) : quartic boson couplings
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Chapter 2

Field-theoretic functional
renormalization group formalism
for non-Fermi liquids and its
application to the antiferromagnetic
quantum critical metal in two
dimensions

2.1 Introduction

A recent study has uncovered a strongly interacting fixed point for the antiferromagnetic quantum
critical metal in two dimensions, where exact critical exponents are extracted [182]. The fixed point is
characterized by the anomalous dimension of the spin fluctuations 1, the dynamical critical exponent
z = 1 and an emergent nesting of Fermi surface near the hot spots. Due to a slow flow of the nesting
angle under the RG flow, at finite length scales one expects to see scaling behaviours controlled by
transient exponents that depend on the nesting angle[123]. A recent quantum Monte Carlo study[122]
that employs a sign problem-free lattice regularization[25, 62, 26, 179] shows scaling behaviours that
are in qualitative agreement with the predictions. However, the previous approach based on the
patch theory is insufficient for studying superconducting instabilities because Cooper pairs can be
scattered across the entire Fermi surface beyond a local patch. In order to take into account large-
angle scatterings of Cooper pairs, one has to study the full low-energy effective field theory that include
all gapless modes around the Fermi surface. In this chapter, we develop a field-theoretic functional
renormalization group formalism for the full low-energy effective field theories of non-Fermi liquids
beyond the patch theory. We apply this formalism to the non-Fermi liquid state that arises at the
antiferromagnetic quantum critical metal.

The first half of this chapter (Secs. 2.2-2.4) is dedicated to the development of the formalism, and
forms the theoretical backbone of the entire thesis. The second half of this chapter (Secs. 2.5-2.7)
is dedicated to the functional RG flow of the coupling functions. In particular, Sections 2.5.1 and
2.6.1 include the RG flows of the nesting angle, Fermi velocity and Yukawa coupling functions. These
results will be important for Chapters 3 and 4. Sections 2.6.2, 2.6.3 and 2.7 discuss the RG flow of the
four-fermion coupling and the superconducting instability.
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−1
= +

−1
+

Figure 2.1: The truncated Schwinger-Dyson equation that becomes exact in the small v limit with
v ≪ c(v) ≪ 1. The wiggly and solid lines denote the bare boson and fermion propagators, respectively.
The double wiggly line represents the dressed boson propagator.

2.2 Review of the hot spot theory

The hot spot theory that describes the gapless spin fluctuations and the electrons near the hot spots
is written as[182]

S =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dk ψ†

N,σ,j(k)
[
ik0 + eN (k⃗; v)

]
ψN,σ,j(k)

+
1

4

∫
dq

(
q20 + c20|q⃗|2

)
Tr [Φ(q)Φ(−q)]

+
g√
Nf

8∑

N=1

Nc∑

σσ′=1

Nf∑

j=1

∫
dk

∫
dq ψ†

N,σ′,j(k + q)Φσ′σ(q)ψN̄,σ,j(k).

(2.1)

Here k = (k0, k⃗) denotes the three momentum that includes the Matsubara frequency k0 and the

two-dimensional momentum k⃗, and dk ≡ dk0dkxdky
(2π)3 . We consider a C4-symmetric Fermi surface that

supports eight hot spots labeled by N = 1, 2, . . . , 8 as shown in Fig. 1.4a. ψN,σ,j(k) represents the

electron field near hot spot N with spin σ = 1, 2, . . . , Nc and flavour j = 1, 2, . . . , Nf , where k⃗ is
measured relative to hot spot N . The electron is in the fundamental representation of spin SU(Nc)
and flavour SU(Nf ) groups. The case that is most relevant to experiments is Nc = 2 and Nf = 1, but
we keep Nc and Nf general. All results discussed in this chapter hold for any Nc ≥ 2 and Nf ≥ 1.
The electron dispersion expanded to the linear order in momentum away from each hot spot is

e1(k⃗; v) = −e5(k⃗; v) =vkx + ky,

e2(k⃗; v) = −e6(k⃗; v) = − kx − vky,

e3(k⃗; v) = −e7(k⃗; v) = − kx + vky,

e4(k⃗; v) = −e8(k⃗; v) =vkx − ky.

(2.2)

The coordinate is chosen so that Q⃗AFM is parallel to ŷ at hot spot 1. The component of the Fermi
velocity along Q⃗AFM is set to be 1 through a choice of momentum scale, and v denotes the dimensionless
ratio between the component of the Fermi velocity perpendicular to Q⃗AFM and the component parallel
to Q⃗AFM. The patches of Fermi surface connected by Q⃗AFM have relative slope 2v, and v is referred
to as nesting angle (see Fig. 1.4b). The collective antiferromagnetic spin fluctuations are represented

by a bosonic field in the adjoint representation of SU(Nc), Φ(q) =
∑N2

c−1
a=1 ϕa(q)τa, where τa’s denote

the Nc × Nc generators of SU(Nc) with Tr[τaτ b] = 2δab and ϕa(q) = ϕa(−q)∗. Momentum q⃗ of the

boson is measured relative to Q⃗AFM. c0 is the bare speed of the boson. Finally, g denotes the Yukawa
coupling between the boson and electrons near the hot spots. The cubic vertex describes the processes
where an electron near hot spot N̄ is scattered to hot spot N by absorbing or emitting a boson, where
1̄ = 4, 2̄ = 7, 3̄ = 6, 4̄ = 1, 5̄ = 8, 6̄ = 3, 7̄ = 2 and 8̄ = 5.
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Under the Gaussian scaling in which the kinetic terms are kept invariant, the fields have dimension
[Ψ] = −2, [Φ] = −5/2 and the Yukawa coupling has dimension [g] = 1/2. The four-fermion coupling,
which is not included in the hot-spot theory, has dimension −1. The usual perturbative expansion in
which physical observables are expressed in powers of dimensionless coupling g/E1/2 at energy scale E
is bound to fail at low energies. Even if g is small compared to the UV cutoff, non-perturbative effects
become important at low energies. Fortunately, the theory is solvable in the limit that the nesting
angle v is small. If v is non-zero but small at a UV scale, it dynamically flows toward zero in the low
energy limit, and the solution obtained in the small v limit becomes asymptotically exact in the low
energy limit. This makes it possible to extract the exact critical exponents at the infrared fixed point
with vanishing v[182, 123, 183]1. At the fixed-point, both g and v vanish with g2/v ∼ O(1), where the
anomalous dimension of the boson is controlled by g2/v. This interacting two-dimensional fixed point
is distinct both from the Gaussian fixed point with g2/v = 0 and the one-dimensional Fermi surface
with the perfect nesting, g2/v = ∞[42].

To the leading order in v, the dynamics of the boson is generated by the infinite set of diagrams
included in Fig. 2.1. At low energies, the solution to the self-consistent Schwinger-Dyson equation is
given by[182, 183]

D(q)−1 =
2g2

πv

[
|q0| + c(v)(|qx| + |qy|)

]
, (2.3)

where

c(v) =

√
v

8NcNf
log

(
1

v

)
(2.4)

is the speed of the over-damped collective mode2. Interestingly, Eq. (2.4) is only a function of v
and independent of the bare speed of the boson (c0). This is because the renormalization generated
from gapless particle-hole excitations is more singular than the local kinetic term at low momenta and
energies. The bare kinetic term, which is irrelevant, can be dropped from Eq. (2.1) at low energies.

Without the boson kinetic term, one can rescale the boson field as Φ →
√

πv
2g2 Φ so that the dressed

boson propagator has the canonical normalization, which gives rise to anomalous dimension 1 for the
boson. After this rescaling, the Yukawa coupling becomes

√
πv
2 . Physically, this implies that the

Yukawa coupling and the nesting angle become dynamically related to each other at low energies.
While the boson is strongly dressed by particle-hole fluctuations, its feedback to electrons is weak

in the small v limit. The magnitude of a general L-loop quantum correction with E external legs and
Lf fermion loops computed with the renormalized boson propagator is bounded by

G(L,Lf , E) ≤ v
E−2

2 wL−Lf (2.5)

up to logarithms of v, where w = v/c[182]. According to Eq. (2.5), only Fig. 2.2a can potentially give
the leading order contribution to the fermion self-energy that renormalizes v. However, Eq. (2.5) is
only an upper-bound, and the actual correction to v generated by Fig. 2.2a is further suppressed in c.
This is because Fig. 2.2a depends on external momentum k⃗ only through the combination, ck⃗ as the
external momentum can be directed to flow only through the boson propagator. As a consequence, Fig.
2.2a becomes of the same order as Fig. 2.2b which saturates the inequality in Eq. (2.5), and we have

1It is in principle possible that there exist other fixed points with large nesting angle. However, alternative pertur-
bative analysis based on a dimensional regularization which is under control for any value of nesting angle near three
dimensions[206, 123] indicates that there is no other fixed point besides the z = 1 fixed point that continuously evolves
to the non-perturbative fixed point found in two dimensions[183].

2When q0 ̸= 0, |qx|+ |qy | in Eq. (2.3) should be replaced with a function f(q0, q⃗) that approaches f(q0, q⃗) ≈ |qx|+ |qy |
for |q⃗| ≫ |q0|. For a small c(v), c(v)(|qx|+ |qy |) is important only for |q⃗| ≫ |q0|. Therefore, Eq. (2.3) holds for all q⃗ and
q0 to the leading order in c(v) in the small v limit.
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(a) (b)

(c)

Figure 2.2: The leading order fermion self-energy and the vertex correction in the small v limit.

to include both Fig. 2.2a and Fig. 2.2b as the leading order correction to v. The quantum corrections
in Fig. 2.2 renormalize the nesting angle at the hot spots, and give rise to the beta function,

dv

dℓ
= −2(N2

c − 1)

π2NcNf
v2 log

(
1

v

)
, (2.6)

where ℓ is the logarithmic length scale. The solution of the beta function is written as

Ei

[
log

(
1

v(ℓ)

)]
= Ei

[
log

(
1

v(0)

)]
+

2(N2
c − 1)

π2NcNf
ℓ, (2.7)

where ℓ is the logarithmic length scale, v(0) is the value of v measured at a UV scale set by ℓ = 0 and
Ei(x) is the exponential integral function which goes as Ei(x) = ex(1/x + O(1/x2)) for x ≫ 1. For
v(0) ≪ 1, the solution becomes

v(ℓ) =
π2NcNf

2(N2
c − 1)

1

(ℓ+ ℓ0) log(ℓ+ ℓ0)
, (2.8)

where

ℓ0 =
π2NcNf

2(N2
c − 1)

1

v(0) log(1/v(0))
(2.9)

is the crossover scale associated with the bare nesting angle, v(0). For ℓ ≪ ℓ0, the flow of v can be
ignored, while v flows to zero logarithmically for ℓ≫ ℓ0.

For ℓ0 ≫ 1, there is a large window of scales, 1 < ℓ ≪ ℓ0 in which the flow of v can be ignored.
Within this window of length scales, physical observables obey approximate scaling relations that are
controlled by a set of transient critical exponents,

z = 1 +
(N2

c − 1)

2πNcNf
w, (2.10)

[Ψ] = −2 − (N2
c − 1)

4πNcNf
w, (2.11)

[Φ] = −2 +
1

2πNcNf
w log

(
1

w

)
. (2.12)
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Here w = v(ℓ)/c(ℓ) (note that c depends on ℓ through v). z is the dynamical critical exponent. [Ψ]
and [Φ] denote the scaling dimension of the fermion and boson fields in the momentum space. If v
was independent of ℓ, these exponents would control the power-law scaling of correlation functions
in the low energy limit, and the one-parameter family of theories labeled by v would form a line of
fixed points. In reality, v is not an exactly marginal parameter, and it flows to zero logarithmically for
ℓ ≫ ℓ0. Still, these transient exponents control the scaling behaviours over a finite window of length
scales 1 < ℓ≪ ℓ0 in which the flow of v can be ignored. We call the one-parameter family of theories
labeled by v quasi-fixed points as they only act as approximate fixed points in the intermediate energy
scale. If the RG flow was not cut off by an instability driven by the four-fermion coupling, the theory
would flow to the true fixed point with v = 0[182, 123, 183] at length scales bigger than ℓ0. At the
true fixed point, the critical exponents become z = 1 and [Ψ] = [Φ] = −2.3 The crossover created by
the flow of v manifests itself in physical observables. For example, the spectral function of electrons
at the hot spots (A(ω)) and the dynamical spin susceptibility at the antiferromagnetic ordering vector
(χ

′′
(ω)) take different scaling forms at high and low energies as

A(ω) ∼





ω
−
(
1− (N2

c−1)

2πNcNf
w(0)

)

for ω0 ≪ ω ≪ Λ,
ω e

2
√
N2

c−1
(log 1

ω )
1/2

log log 1
ω

(
log 1

ω

)1/2
log log 1

ω



−1

for ω ≪ ω0

,

χ
′′
(ω) ∼





ω
−
(
1− 1

πNcNf
w(0) log 1

w(0)

)

for ω0 ≪ ω ≪ Λ,[
ω e

2√
N2

c−1

√
log 1

ω

]−1

for ω ≪ ω0

.

(2.13)

Here, Λ is the UV cutoff scale and ω0 = Λe−z(0)ℓ0 is the crossover energy scale, where z(0) = 1 +
(N2

c−1)
2πNcNf

w(0) is the transient dynamical critical exponent defined at high energy. At energies higher

than ω0, the flow of v can be ignored, and the spectral function decays in a power-law controlled by
the transient exponent that depends on v(0). At low energies, the spectral function is controlled by
the true fixed point with logarithmic corrections generated from the flow of v[182, 183].

Despite the success of the hot-spot theory in explaining scaling properties of the critical spin
fluctuations and electrons at the hot spots, there are two important open issues. First, the four-
fermion coupling has not been included in the hot-spot theory. While the four-fermion couplings
have scaling dimension −1 at the fixed point with v = 0, it can not be ignored if it gives rise to
IR singularities, which, for example, are responsible for superconducting instabilities. In priori, both
hot and cold electrons can play important roles in superconducting instabilities because Cooper pairs
from hot spots can be scattered to anywhere on the Fermi surface (and vice versa). To capture such
superconducting fluctuations, it is crucial to include all gapless degrees of freedom on the equal footing.
If superconducting instabilities are indeed present, as is seen ubiquitously in many quantum critical
metals, the flow of v is cut off before the theory flows to the true fixed point located at v = 0. Second,
the hot spot theory does not capture the universal low-energy properties that vary along the Fermi
surface. The antiferromagnetic quantum critical metal hosts both Fermi liquid away from the hot spots
and non-Fermi liquid at the hot spots within one physical system. Eq. (2.13) describes the spectral
properties of the electrons right at the hot spots. The spectral function has no quasiparticle peak at
the hot spots because the gapless spin fluctuations remain coupled with electrons down to zero energy.
On the other hand, electrons away from the hot spots decouple from the low-energy spin fluctuations
at sufficiently low energies, and they should be described by the Fermi liquid theory in the low-energy
limit. As the hot spots are approached, the energy scale below which the electrons decouple from
spin fluctuations is lowered, and the quasiparticle gradually loses coherence. For the same reason, all

3It turns out that these exact critical exponents can be extracted from the interaction-driven scaling in which the
Yukawa coupling and the fermion kinetic term are kept marginal[205, 182].
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other electronic properties such as the nesting angle, Fermi velocities, the quasiparticle weight and
Landau parameters are expected to acquire singular momentum profiles near the hot spots. In order
to understand such momentum dependent critical properties of the system, we have to go beyond the
patch theory and include all gapless modes within our effective field theory.

2.3 The theory of the full Fermi surface

The full theory that includes all gapless modes and the four-fermion coupling is written as

S =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dk ψ†

N,σ,j(k)
{
ik0 + V

(N)
F,kN

eN [⃗k, v
(N)
kN

]
}
ψN,σ,j(k)

+
1√
Nf

8∑

N=1

Nc∑

σσ′=1

Nf∑

j=1

∫
dkdq g

(N)
kN+qN ,kN

ψ†
N,σ′,j(k + q)Φσ′σ(q)ψN̄,σ,j(k)

+
1

4µ

8∑

{Ni=1}

Nc∑

{σi=1}

Nf∑

{ji=1}

∫ 4∏

i=1

dki δ1+2,3+4λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1;N1

k2;N2

k4,N4
k3;N3

)

× ψ†
N1,σ1,j1

(k1)ψ†
N2,σ2,j2

(k2)ψN3,σ3,j2(k3)ψN4,σ4,j1(k4)

+
1

4µ

∫ 4∏

i=1

dki δ1+2+3+4,0

{
u1Tr [Φ(k1)Φ(k2)] Tr [Φ(k3)Φ(k4)]

+ u2Tr [Φ(k1)Φ(k2)Φ(k3)Φ(k4)]
}
.

(2.14)

Here, the Fermi surface is still divided into eight disjoint patches each of which includes one hot spot
as in the hot spot theory. However, unlike in the hot spot theory, the union of those patches cover
the entire Fermi surface and the size of each patch is order of the Fermi momentum. Therefore, the
coupling constants are promoted to general coupling functions that depend on momentum along the
Fermi surface. µ is the floating energy scale at which physical observables are related to the coupling
functions. Couplings that carry non-zero dimensions under the interaction driven scaling are expressed
in the unit of µ. δ1+2,3+4 ≡ (2π)3δ(k1 + k2 − k3 − k4) and δ1+2+3+4,0 ≡ (2π)3δ(k1 + k2 + k3 + k4).
kN denotes the component of momentum that labels the Fermi surface near hot spot N (see Fig. 1.4a
for the choice of coordinate system),

kN =

{
kx for N = 1, 4, 5, 8
ky for N = 2, 3, 6, 7

. (2.15)

Although the x̂ and ŷ directions are not perfectly parallel to the Fermi surface in general, there is
one-to-one correspondence between kN and a point on the Fermi surface near hot spot N . We call

kN momentum ‘along’ the Fermi surface near hot spot N . V
(N)
F,kN

is the momentum dependent Fermi

velocity in the direction that is parallel to Q⃗AF near hot spot N . eN [⃗k, v
(N)
kN

], which determines the
shape of the Fermi surface near each hot spot, is written as

e1 [⃗k; v
(1)
kx

] = v
(1)
kx
kx + ky, e2 [⃗k; v

(2)
ky

] = −v(2)ky ky − kx,

e3 [⃗k; v
(3)
ky

] = v
(3)
ky
ky − kx, e4 [⃗k; v

(4)
kx

] = v
(4)
kx
kx − ky,

e5 [⃗k; v
(5)
kx

] = −v(5)kx kx − ky, e6 [⃗k; v
(6)
ky

] = v
(6)
ky
ky + kx,

e7 [⃗k; v
(7)
ky

] = −v(7)ky ky + kx, e8 [⃗k; v
(8)
kx

] = −v(8)kx kx + ky,

(2.16)

where the nesting angle in Eq. (2.2) is promoted to functions. The set of points that satisfy

eN [⃗k, v
(N)
kN

] = 0 forms the Fermi surface of a general shape. u1 and u2 represent quartic couplings
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allowed channels

Group 1 [ 1 1
1 1 ]p, [ 1 4

1 4 ]p, [ 4 4
1 1 ]

Group 2 [ 1 5
1 5 ]p, [ 1 8

1 8 ]p, [ 4 8
1 5 ], [ 1 8

4 5 ]

Group 3 [ 1 2
1 2 ]p, [ 1 3

1 3 ]p, [ 1 6
1 6 ]p, [ 1 2

4 7 ], [ 1 3
4 6 ], [ 1 6

3 4 ], [ 1 7
4 2 ]

Group 4 [ 1 5
2 6 ], [ 1 5

3 7 ], [ 1 8
2 3 ]

Table 2.1: The primary and secondary channels for the four-fermion coupling, where the primary
channels are the ones generated from the spin fluctuations at the leading order and the secondary
channels are the ones generated from the primary channels through the linear mixing. The ones with
subscript p denote primary channels.

between the collective modes. For Nc = 2, the terms with u1 and u2 are not independent, and one can

set u2 = 0 without loss of generality. The momentum-dependent Yukawa coupling is denoted as g
(N)
k′,k.

Unlike ui, which are coupling constants, g
(N)
k′,k is a function that depends on two momenta along the

Fermi surface. Similarly, λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1 k2
k4 k3

) (λ
{Ni};{σi}
{ki} in short) denotes the short-range four-fermion

interactions labeled by momenta of electrons on the Fermi surface.

Due to the C4 symmetry, v
(N)
k , V

(N)
F,k and g

(N)
k′,k can be represented in terms of just three coupling

functions vk, VF,k and gk′,k as

(
v
(N)
k , V

(N)
F,k , g

(N)
k′,k

)
=

{
(vk, VF,k, gk′,k) , N = 1, 3, 4, 6
(v−k, VF,−k, g−k′,−k) , N = 2, 5, 7, 8

. (2.17)

Similarly, four-fermion coupling functions that are mapped to each other under the C4 symmetry are
related. We set the coefficient of the ik0 term in the fermion kinetic term to 1 by choosing the scaling
of the fermion fields. The relative scale between frequency and momentum is chosen to set the Fermi
velocity along Q⃗AFM to be 1 at the hot spots, and the normalization of the bosonic field is chosen so
that the Yukawa coupling at the hot spots is tied to v0,

VF,0 = 1, g0,0 =

√
πv0
2
. (2.18)

The allowed four-fermion couplings are constrained by the crystal momentum conservation because
the hot spots are located at different points in the momentum space.4 Even if the four-fermion coupling
is zero at a UV scale, the Yukawa coupling generates four-fermion couplings. To the leading order in
the Yukawa coupling, the diagrams in Fig. 2.7 generate the four-fermion couplings in channels (N M

N M )
for 1 ≤ N,M ≤ 8. Due to the C4 symmetry, we can focus on those channels with N = 1 without
loss of generality. We call those couplings that are generated from the Yukawa coupling at the leading
order primary couplings. Once the primary couplings are generated, secondary couplings are further
generated through the linear mixing shown in Fig. 2.8. Because a set of coupling functions that
forms a closed set of beta functionals has common primary couplings, it is convenient to group the
four-fermion couplings according to their primary couplings. Group 1 includes the primary couplings

4For example, the coupling function λ

(
1 5
4 8

)
;
(
σ1 σ2
σ4 σ3

)

(
k1 k2
k4 k3

) with ki ≈ 0 is allowed because a pair of electrons on hot spots

1 and 5 carry the same total momentum as the pair made of electrons on hot spots 4 and 8. On the other hand, the

coupling function λ

(
1 1
2 5

)
;
(
σ1 σ2
σ4 σ3

)

(
k1 k2
k4 k3

) with ki ≈ 0 is not allowed because of momentum mismatch.
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generated by the Yukawa coupling in (N,M) = (1, 1), (1, 4), and the secondary couplings that are
further generated from mixing. The couplings in group 2 represent the primary ones generated in
channels (N,M) = (1, 5), (1, 8) and the associated secondary couplings. Group 3 includes the primary
couplings for (N,M) = (1, 2), (1, 3), (1, 6), and their secondary couplings. Those in group 4 have no
primary couplings. The couplings in group 4 can be present only when there exists a bare short-range
four-fermion couplings at a UV scale. These couplings are listed in Table 2.1. To avoid clutter in
the table, we show only one channel among the ones that are related to each other through the C4

symmetry, permutation of two incoming particles (or two outgoing particles), and Hermitian conjugate.
Namely, each entry with the square brackets in Table 2.1 represents a group of channels obtained by the
C4 transformations, the Hermitian conjugate and the permutations between two incoming/outgoing
particles,

[
N1 N2

N4 N3

]
=





RN1N
′
1
· · ·RN4N ′

4

(
N ′

1 N
′
2

N ′
4 N

′
3

)
, RN1N

′
1
· · ·RN4N ′

4

(
N ′

4 N
′
3

N ′
1 N

′
2

)
,

RN1N
′
1
· · ·RN4N ′

4

(
N ′

2 N
′
1

N ′
4 N

′
3

)
, RN1N

′
1
· · ·RN4N ′

4

(
N ′

3 N
′
4

N ′
1 N

′
2

)

∣∣∣∣∣∣
RN ′

iNi
∈ C4



 , (2.19)

where the repeated hot spot indices are summed over and R is the 8-dimensional representation of the
C4 group that acts as permutations on hot spot indices. For example, for the π/2 rotation we have

R
π/2
NN ′ = δN,[N ′+2]8 , where [x]8 = x mod 8. ( 1 7

1 7 ) is related to ( 1 3
1 3 ) through the π/2 rotation, and it is

not separately shown in group 3. In the table, channels with subscript p denotes the ones that include
primary couplings.

The theory has the U(1) charge, the SU(Nf ) flavour and the SU(Nc) spin rotational symmetry.
Due to the spin rotational symmetry, the four-fermion coupling function can be decomposed into two

channels as λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1 k2
k4 k3

) = λ

(
N1 N2

N4 N3

)

D,
(
k1 k2
k4 k3

)δσ1σ4
δσ2σ3

+λ

(
N1 N2

N4 N3

)

E,
(
k1 k2
k4 k3

)δσ1σ3
δσ2σ4

. The action in Eq. (2.14)

is also invariant under the particle-hole (PH) transformation,

ψN,σ,j(k) −→ ψ†
N,σ,j(−k), Φ(q) −→ −Φ(q)T (2.20)

if the coupling functions satisfy

v−k = vk, VF,−k = VF,k, g−k′,−k = gk,k′ , λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1 k2
k4 k3

) = λ

(
N4 N3

N1 N2

)
;(σ4 σ3
σ1 σ2

)
(−k4 −k3
−k1 −k2

) . (2.21)

For Fermi surfaces with general shapes, the PH symmetry is absent. In this thesis, we are going to
focus on the general cases without the PH symmetry.

The theory has two cutoff scales. The first is kF that represents the size of each patch. The second
is the energy cutoff Λ. It sets the momentum cutoff of boson and the momentum of electrons in the
direction perpendicular to the Fermi surface. Naturally, kF is the largest momentum scale.

Under the interaction-driven scaling in which frequency and momentum are rescaled by a factor
b > 1, the fields are transformed as

ψ(k) = b2ψ′(k′), Φ(k) = b2Φ′(k′) (2.22)

with k = b−1k′. Under this transformation, the coupling functions are transformed as

v′k = vb−1k, V ′
F,k = VF,b−1k, g′k+q,k = gb−1(k+q),b−1k,

λ
′{Ni};{σi}
{ki} = b−1λ

{Ni};{σi}
{b−1ki} , u′n = b−1un.

(2.23)

Here k, q and ki represent the momentum along the Fermi surface. According to Eq. (2.23), both
fermionic and bosonic quartic interactions are irrelevant by power counting. Unlike the pure ϕ4 theory
in 2 + 1 dimension, the bosonic quartic coupling is irrelevant because the boson acquires a large
anomalous dimension due to the strong coupling with the fermions near the hot spots. Indeed, loop
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kF

Λ

Figure 2.3: Energy and momentum cutoffs. Λ is the energy cutoff, and kF denotes the size of the
patch near each hot spot. The full Fermi surface consists of the union of the eight disjoint patches and
the size of each patch is comparable to the Fermi momentum.

gkk′

k′k

k∗

gkk′

k′k

bk∗

Figure 2.4: Under the tree-level scaling, the momentum along the Fermi surface is rescaled, which
causes the momentum profiles of the coupling functions to be stretched out under the renormalization
group flow.
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Om+n

O2n

· · · · · ·

· · · · · ·

n

n

· · · · · ·

m

Figure 2.5: A loop correction in which an m+n-fermion operator is dressed with 2n-fermion operator
that results in an anomalous dimension of the m+ n-fermion operator.

corrections that involve un are IR finite. Therefore, we can drop the bosonic quartic coupling in the
low-energy limit.

On the contrary, one can not drop the four-fermion coupling because it can give rise to IR singular-
ities through loop corrections. The disagreement between what is expected from the power-counting
and the actual degree of IR divergence is caused by the scale associated with the size of Fermi surface.
To see this, let us consider a process in which a 2n-fermion operator fuses with another operator,
generating an anomalous dimension for the latter. To the leading order in the perturbative expansion,
this is represented by an (n − 1)-loop process (see Fig. 2.5). The scaling dimension of λ2n is 3 − 2n,
and no IR divergence is expected for n ≥ 2 from the power-counting. However, the actual degree of IR
divergence can be enhanced by the extended phase space for gapless fermions. If fermions in the loop
can stay on the Fermi surface within a manifold with dimension α2n in the space of internal momenta,
the effective coupling that contributes to the quantum correction becomes λ2nk

α2n

F because the loop
momenta within the manifold give the volume of the phase space, kα2n

F . For one-dimensional Fermi
surfaces, α2n ≤ (n − 1). The upper bound is saturated if every momentum along the Fermi surface
contributes a factor of kF , which happens when the Fermi surface is straight. For Fermi surfaces
with generic shapes, α2n becomes smaller than (n − 1) as the perfect nesting is destroyed by curva-
ture of Fermi surface. However, n = 2 is special in that the upper bound is saturated in the pairing
channel as far as the time-reversal symmetry is present. Since a pair of fermions with zero center of
mass momentum can be placed anywhere on the Fermi surface in the one-dimensional Fermi surface,
α4 = 1. This implies that the effective scaling dimension of the four-fermion coupling becomes zero,
and the four-fermion coupling should be included within the low-energy effective theory. Indeed, the
BCS scattering processes that involve the four-fermion coupling give rise to logarithmic divergences in
the low-energy limit. On the other hand, λ2n’s with n > 2 are too irrelevant to create IR singularities
even with the help of the enhancement from Fermi surface. Therefore, we only keep the four-fermion
coupling among the couplings that are irrelevant by power-counting.

Given that the action in Eq. (2.14) is local, all coupling functions can be expanded in the Taylor
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series of momentum along the Fermi surface as

vk =

∞∑

n=0

v[n]

n!
kn, VF,k =

∞∑

n=0

V
[n]
F

n!
kn,

gk+q,k =

∞∑

m,n=0

g[m,n]

m!n!
kmqn, λ

{Ni};{σi}
{ki} =

∞∑

{li}=0

λ[l1,..,l4];{Ni};{σi}

l1!l2!l3!l4!
kl11 k

l2
2 k

l3
3 k

l4
4 .

(2.24)

The interaction driven scaling fixes the scaling dimensions of the coefficients in Eq. (2.24) to [v[n]] =

[V
[n]
F ] = −n, [g[m,n]] = −(m+ n) and

[
λ[l1,..,l4];{Ni};{σi}] = −(1 + l1 + l2 + l3 + l4). Formally, allowing

the general momentum dependence in the coupling functions amounts to introducing an infinite tower
of coupling constants. Although the high-order coupling constants are highly ‘irrelevant’ in terms
of their scaling dimensions, they are necessary to characterize the whole Fermi surface. This rather
unusual role of irrelevant couplings is due to the fact that the momentum along the Fermi surface not
only acts as a scale but also as a label for the gapless electronic degrees of freedom. In particular, the
momentum dependence in coupling functions is important in understanding superconductivity that
arises through an interplay between hot and cold electrons.

In Eq. (2.24), gk+q,k denotes the strength of the interaction in which an electron is scattered
from momentum k to k + q near the Fermi surface by absorbing or emitting boson with momentum
q in magnitude. In relativistic quantum field theories, scatterings that involve high-energy particles
are not important at low energies. For this reason, one may just keep the leading order term in
the expansion in q. In the presence of Fermi surface, however, the processes in which electrons are
scattered by high-energy bosons within the Fermi surface can give rise to IR singularities. The same
mechanism is responsible for the logarithmic singularity associated with the BCS instability caused
by short-range interactions mediated by a massive boson in Fermi liquids. For this reason, we include
the Yukawa coupling with general k and q within the theory. The fact that the coupling associated
with high-energy bosons should be included within the theory raises important questions on what
constitute low-energy observables and what information the low-energy effective theory should include
to be predictive. Later, we will see that the predictions of the theory do not depend on UV physics if
we choose the right observables. For now, we proceed with the general Yukawa coupling function as
an intermediate step toward identifying the universal observables that do not depend on UV physics.

2.4 The field-theoretic functional renormalization group for-
malism

In this section we discuss the fundamentals of the field theoretic functional RG scheme that is used
throughout the thesis. For other functional RG approaches, see Refs. [162, 222, 146, 168, 170, 81, 85,
64, 63, 31, 143, 181, 88, 139, 107, 55, 159, 218, 89, 129, 53, 54, 87, 130, 171, 209].

2.4.1 Renormalizability

Explaining or predicting experiments is usually done in the following steps. One first identifies relevant
degrees of freedom and symmetry to constructs a model that generally includes a set of free parame-
ters. After physical observables are computed from the model, the parameters of the model are fixed
from existing experimental data. Once the parameters are fixed, one can make predictions for new
observables. Since there is freedom in choosing which observables are used to fix the parameters and
which ones are used as predictions, what a theory captures is the relation among physical observables.
A theory has stronger predictive power if more observables are fixed by fewer other observables.

In field theories, one aims to find relations among low-energy observables measured at energy scales
much smaller than microscopic energy scales. While individual low-energy observables can sensitively
depend on microscopic details, field theories can capture their relations that are independent of the
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microscopic details. To achieve this goal, it is most convenient to use renormalizable field theories.
A renormalizable theory contains a minimal set of couplings in terms of which all other low-energy
observables of the theory can be expressed with errors that vanish in powers of µ/Λ, where µ is the
energy scale at which observables are probed and Λ is a UV cutoff. Although microscopic systems
in general include more parameters, one can use renormalizable theories to extract universal relations
among low-energy observables. Two theories which differ by irrelevant couplings give rise to the same
relations among low-energy observables within the power-law accuracy.

In the presence of Fermi surface, a low-energy theory includes momentum-dependent coupling
functions. Once expanded around a point (say a hot spot) on the Fermi surface, the momentum-
dependent coupling functions in Eq. (2.14) can be viewed as an infinite set of coupling constants.
Under a transformation that rescales the momentum relative to the hot spots, the couplings associated
with positive powers of momentum along the Fermi surface are formally irrelevant. However, this does
not imply that those higher order terms in momentum are unimportant for all low-energy observables.
Even if the higher order terms in Eq. (2.24) may not be needed for understanding the low-energy
behaviours of electrons at the hot spots, they are still important for electrons on the Fermi surface far
away from the hot spots. The higher order terms can be important even for electrons at the hot spots
if large momentum-scatterings are not suppressed at low energies. Therefore, it is necessary to keep
the full momentum-dependent coupling functions in order to characterize the low-energy physics of the
entire system. Because the Fermi surface supports an infinite number of gapless modes, the amount
of universal low-energy data is in general infinite5.

The goal of low-energy effective theories for Fermi surface is to identify the minimal set of functions’
worth of low-energy data, in terms of which all low-energy observables can be determined. To achieve
this, we use Eq. (2.14) to compute a set of physical observables as functionals of the coupling functions.
Local counter terms are added to the action so that those physical observables become what we set
them to be as functions of momentum along the Fermi surface at an energy scale. Once the bare theory
that includes the counter terms is fixed, it gives rise to the functional Callan-Symanzik equation that
describes how the momentum dependent physical observables run as functions of energy. From the
flow equations, we identify the set of low-energy observables in terms of which all other low-energy
observables can be expressed without resorting to unknown high-energy physics. In particular, the RG
flow of the coupling functions identified as low-energy observables should be captured solely in terms
of those coupling functions themselves. Given that we don’t know in priori what constitute universal

low-energy observables, we first include all coupling functions {vk, VF,k, gk+q,k, λ{Ni};{σi}
{ki} } that can

be potentially needed in characterizing all low-energy observables. From this, we isolate the minimal
subset whose RG flow can be extracted solely from those couplings in the minimal subset without
resorting to any unknown UV physics. The two-point function of fermion on the Fermi surface, which
is related to the momentum dependent nesting angle and Fermi velocity, are low-energy observables.
While the forward cubic vertex function related to gk,k is in the minimal set of low-energy observables,
gk+q,k with a non-zero q is not because the off-diagonal Yukawa coupling function with large momentum
transfer encodes the dynamics of the high-energy boson. Remarkably, the one-particle irreducible (1PI)
four-fermion vertex function strictly defined on the Fermi surface does not belong to the minimal set

of low-energy observables either. This is because the flow of λ
{Ni};{σi}
{ki} for general ki’s can not be

determined within the low-energy effective field theory : quartic fermion operators defined on different
points on the Fermi surface can mix with each other at low energies by exchanging high-energy bosons.
Nonetheless, the RG flow of the net two-body interaction that combines the 1PI four-fermion vertex
function and the tree-diagram associated with two 1PI three-point vertex functions connected by the
renormalized boson propagator can be understood within the low-energy effective theory (see Fig. 1.6).
This will be shown explicitly in Sec. 2.6.3.

In the present theory, there are two cutoff scales, kF and Λ. Naively one might expect that

5The low-energy data, while being infinite, is still much smaller than the full information a microscopic theory can
carry. This is because the low-energy effective theory only keeps track of the momentum dependence of the coupling
functions along the Fermi surface.
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the relations between observables at one scale, µ1, and observables at another scale, µ2, should be
independent of all of those short distance scales for µ1, µ2 ≪ Λ, kF . This amounts to requiring that
divergences in any of those large momentum scales can be removed by adding local counter terms.
However, it is in general impossible to remove kF dependences in all low-energy observables6. This is
because kF is a part of the low-energy data that reflects the ‘number’ of gapless modes in the system.
As a result, the beta functionals for the four-fermion couplings may explicitly depend on kF , and kF
needs to be included in characterizing low-energy physics. On the other hand, Λ represents the energy
cutoffs, and it can be removed from low-energy observables by adding local counter terms. In field
theories of Fermi surface, the validity of the low-energy effective field theory boils down to the question
of whether one can remove Λ but not necessarily kF in the relations among low-energy observables.

2.4.2 Extended minimal subtraction scheme

To understand the low-energy physics of the theory, the quantum effective action is computed order
by order in v from the classical action in Eq. (2.14). Since the Yukawa coupling is marginal under the
interaction-driven scaling, quantum corrections to the leading-order solution of the non-perturbative
Schwinger-Dyson equation are logarithmically divergent in general. While the four-fermion coupling
is irrelevant under the interaction driven scaling, it also gives rise to IR singularities as will be shown
later. To capture how those singular corrections modify physical observables in the low-energy limit,
we express the vertex functions in terms of the coupling functions, and keep track of the RG flow of
the coupling functions as the energy scale is lowered. Since gapless electrons can be anywhere on the
extended Fermi surface, the low-energy vertex functions and the couplings are functions of momentum
along the Fermi surface and the energy scale.

The relation between the vertex functions and the coupling functions is set by a set of renormal-
ization conditions, which is enforced by adding counter terms to Eq. (2.14). The renormalization
conditions are written as

ReΓ
(2,0)
1 (k)

∣∣∣∣
k=(µ,kx,−vkxkx)

= 0, (2.25)

∂

∂ky
ReΓ

(2,0)
1 (k)

∣∣∣∣
k=(µ,kx,−vkxkx)

= VF,kx + F1,kx , (2.26)

−i ∂
∂k0

ImΓ
(2,0)
1 (k)

∣∣∣∣
k=(µ,kx,−vkxkx)

= 1 + F2,kx , (2.27)

Γ
(2,1)
1 (k′,k)

∣∣∣∣
k′ = (2µ, k′x,−vk′xk′x)

k = (µ, kx, vkxkx)

=
gk′x,kx√
Nf

+ F3,(k′x,kx), (2.28)

Γ (4,0);{Ni};{σi}({ki})

∣∣∣∣
ki=k∗

i

=
1

4µ

[
λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1 k2
k4 k3

) + F

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

4,
(
k1 k2
k4 k3

)

]
. (2.29)

Here, Γ
(2,0)
N (k) is the two-point function of electrons near hot spot N . Γ

(2,1)
N (k′,k) is the electron-

boson vertex function that describes scattering of an electron from three-momentum k near hot spot
N̄ to k′ near hot spot N . Γ (4,0);{Ni};{σi}({ki}) is the electron four-point function, where the i-th
external electron is near hot spot Ni, spin σi and three-momentum ki. Eq. (2.25) is the defining
equation for vk that specifies the renormalized Fermi surface. Near hot spot 1, the renormalized Fermi
surface at scale µ is given by the set of (kx,−vkxkx) at which the real part of the two-point function
vanishes. Eq. (2.26) defines the momentum dependent Fermi velocity, VF,k. F1,kx corresponds to a

6For example, thermodynamic quantities such as the specific heat are proportional to kF in the low temperature
limit. kF also determines the phase space of a pair of electrons with zero total momentum and energy, and controls the
mixing between quartic fermion operators in the pairing channel.
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scheme dependent function that is regular in the small µ limit. We choose the relative scale between
frequency and spatial momentum to set

VF,0 = 1 (2.30)

at the hot spots. To impose Eq. (2.30) at all µ, the relative scale between frequency and momentum
should be chosen in an energy dependent way, which gives rise to a dynamical critical exponent different
from 1 in general. The Fermi velocity away from the hot spots is in general different from that of the
hot spots. Eq. (2.27) determines the momentum dependent scaling of the fermion field : it fixes the
frequency dependent kinetic term of the fermion to be of the canonical form at all energy scales up
to a regular correction, F2,kx . Finally, Eq. (2.28) and Eq. (2.29) define the momentum dependent
Yukawa coupling function and the four-fermion coupling functions, respectively. The renormalization
condition for the four-point function is imposed at

k∗
1 = (3µ, k⃗∗1), k∗

2 = (−µ, k⃗∗2), k∗
3 = (µ, k⃗∗3), k∗

4 = (µ, k⃗∗4), (2.31)

where k⃗∗i ’s are the spatial momenta that are near the Fermi surface7 and satisfy the momentum
conservation. For generic shapes of Fermi surface, which is the main focus of this chapter, we can
focus on the forward scattering and the pairing channels. Here, the external frequencies are chosen so
that the energy that flows through the vertex function is 2µ in magnitude in all s, t, u channels.

Ideally, one would want to choose the counter terms so that they completely cancel the quantum
corrections. In this total subtraction scheme, Fi = 0, and the coupling functions at scale µ coincides
with the vertex functions measured at that energy. However, the total subtraction scheme is rather
impractical because it requires computing the full quantum corrections including finite parts. In this
thesis, we use a minimal subtraction scheme, where counter terms remove only divergent contributions
to the quantum effective action in the small µ/Λ limit. While the vertex functions do not exactly
match the coupling functions in the minimal subtraction scheme, one can in principle infer one from
the other as they are related to each other through relations that are regular in the small µ limit. For
the purpose of extracting scaling behaviours, it suffices to know the existence of such finite functions
but not their explicit forms. As far as IR singularities in all physical observables are encoded in the
coupling functions, any instability of the system can be inferred from the RG flow of the coupling
functions.

The minimal subtraction scheme is straightforward to implement for dimensionless couplings.
Counter terms are added to remove singular corrections to the two and three-point functions as in
Eqs. (2.25)-(2.28). In the minimal subtraction scheme, F1,2,3 are generally non-zero, but they stay
finite in the small µ limit. This guarantees that the dimensionless physical observables are related to
vk, VF,k, gk′,k through non-singular relations.

Implementing the minimal subtraction scheme for the four-fermion couplings is more subtle. The
four-fermion coupling is irrelevant, and Γ (4,0) has engineering scaling dimension −1. A renormaliza-
tion condition should be imposed on dimensionless quantities constructed out of Γ (4,0) and a scale.
µΓ (4,0) is one such dimensionless quantity. Naively, one may only require that µΓ (4,0) coincides with
the dimensionless coupling function λ up to any non-singular correction. If this was the case, F4 in
Eq. (2.29) could be an arbitrary finite function of momenta. However, this subtraction scheme is ‘too
minimal’ in that λ does not capture all IR singularities of physical observables. This is because dimen-
sionless observables constructed out of integrations of Γ (4,0) over momenta can exhibit singularities
even if µΓ (4,0) is finite in the small µ limit. For example, the strength of the pairing interaction at
energy scale µ is measured by eigenvalue Eµ defined through

∑

N4

∑

σ4,σ3

∫
dp Γ

(4,0)

(
N1 [N1+4]8
N4 [N4+4]8

)
;(σ1 σ2
σ4 σ3

)
(
q+k −k
p q−p

) fN4;(σ4,σ3)
p = Eµf

N1;(σ1,σ2)
k . (2.32)

7To be precise, the energy associated with each momentum should be at most order of µ.
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Here q = (2µ, 0, 0) is the three momentum of a Cooper pair. The frequencies of k and p are set

to be µ. p and k label the components of p⃗ and k⃗ along the Fermi surface. The other components

of the spatial momentum are chosen so that p⃗ and k⃗ are on the Fermi surface. f
N1;(σ1,σ2)
k is an

eigen-wavefunction of the Cooper pair. Even if F

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

4,
(
k1 k2
k4 k3

) is finite at every ki, its contribution

to the eigenvalue may diverge in the small µ limit if it has an extended support in the momentum

space. For example, F

(
N1 [N1+4]8
N4 [N4+4]8

)
;(σ1 σ2
σ4 σ3

)

4,
(
k −k
p −p

) ∼ µ√
(k−p)2+µ2

gives rise to a divergent correction to the

eigenvalue Eµ although its element is finite in the small µ limit. Without subtracting such divergent
contribution, the coupling function does not capture the IR singularity associated with the divergent
pairing interaction. To remove any singular discrepancy between the eigenvalues of the vertex function
and the coupling function, we need to impose a more stringent condition on the finite part : we require

that not only F

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

4,
(
k1 k2
k4 k3

) is finite at all momenta but also

lim
µ→0

∫

C

dk

µ

∣∣∣∣∣F
(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

4,
(
k1 k2
k4 k3

)

∣∣∣∣∣ = finite (2.33)

for any one-dimensional manifold C in the space of ki’s. With this condition, the eigenvalue of

F

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

4,
(
k1 k2
k4 k3

) is non-divergent in the small µ limit8. In this extended minimal subtraction scheme,

IR singularities of the four-point function are fully captured by λ.

2.4.3 Scale invariance and the lack of thereof

The local counter term action for Eq. (2.14) is written as

SC.T =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dk ψ†

N,σ,j(k)

{
iA
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1 (kN )k0 +A

(N)
3 (kN )V

(N)
F,kN

eN
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(N)
2 (kN )

A
(N)
3 (kN )

v
(N)
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]}
ψN,σ,j(k)

+
1√
Nf

8∑
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Nc∑
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Nf∑
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∫
dk′

∫
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(N)
4 (k′N , kN̄ )g

(N)
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+
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4µ
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Nc∑
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Nf∑
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[
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∫
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A{Ni};{σi}({ki;Ni})λ

{Ni};{σi}
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(k1)ψ†
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+MCT

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dk ψ†

N,σ,j(k)ψN,σ,j(k) +
mCT

4

∫
dk Tr [Φ(k)Φ(−k)] .

(2.34)

Here, A
(N)
i (kN ) with i = 1, 2, 3, A

(N)
4 (k′, k) and A {Ni};{σi}({ki}) are momentum-dependent local

counter terms which are functionals of the coupling functions. They are determined from the quantum

8To see this, we consider matrix, Mij = ∆k
µ

F

(
Ni [Ni+4]8
Nj [Nj+4]8

)
;

(
σi σ′

i

σj σ′
j

)

4,

(
ki −ki
kj −kj

) , where the matrix indices i, j label hot spot

index, spin and discretized momentum of a Cooper pair, and ∆k denotes the mesh size of the discrete momentum. Eq.
(2.33) implies that sum of the absolute values of elements in any row of M is finite in the small µ limit. Gershgorin’s
circle theorem implies that all eigenvalues are finite as well.
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corrections so that the renormalization conditions in Eqs. (2.25) - (2.29) are satisfied. Due to the C4

symmetry, A
(N)
i (k) with i = 1, 2, 3 and A

(N)
4 (k′, k) can be represented in terms of four counter term

functions Ai(k) with i = 1, 2, 3 and A4(k′, k) as

(
A

(N)
i (k), A

(N)
4 (k′, k)

)
=





(Ai(k), A4(k′, k)) , N = 1, 3, 4, 6

(Ai(−k), A4(−k′,−k)) , N = 2, 5, 7, 8
. (2.35)

MCT is the counter term that is needed to make sure that the hot spots are located at k = 0 in the
fully renormalized Fermi surface. mCT is the mass counter term for the boson, which is needed to
keep the system at the quantum critical point.

Adding Eqs. (2.34) and (2.14) yields the renormalized action

SRen =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dkB ψB†

N,σ,j(k
B)
{
ikB0 + V

B(N)

F,kBN
eN

[
k⃗B; v

B(N)

kBN

]}
ψB
N,σ,j(k

B)

+
1√
Nf

8∑

N=1

Nc∑

σσ′=1

Nf∑

j=1

∫
dk

′B
∫

dkB g
B(N)

k′BN ,k
B
N̄

ψB†
N,σ′,j(k

′B)ΦB
σ′σ(k

′B − kB)ψB
N̄,σ,j(k

B)

+
1

4

8∑

{Ni=1}

Nc∑

{σi=1}

Nf∑

{ji=1}

[
4∏

i=1

∫
dkB

i

]{
λ
B{Ni};{σi}
{kBi;Ni

} δ1B+2B ,3B+4B

ψB†
N1,σ1,j1

(kB
1 )ψB†

N2,σ2,j2
(kB

2 )ψB
N3,σ3,j2(kB

3 )ψB
N4,σ4,j1(kB

4 )
}

+MB
8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dkB ψB†

N,σ,j(k
B)ψB

N,σ,j(k
B) +

mB

4

∫
dkB Tr

[
ΦB(kB)ΦB(−kB)

]
,

(2.36)

where δ1B+2B ,3B+4B ≡ (2π)3δ(kB
1 + kB

2 − kB
3 − kB

4 ), and

kB0 = Zτk0, k⃗B = k⃗, kBF = µk̃F , ΛB = µΛ̃,

ψB
N,σ,j(k

B) =
√
Z(ψ,N)(kN )ψN,σ,j(k), ΦB

σ′σ(qB) =
√
Z(Φ)Φσ′σ(q),

v
B(N)

kB
=
Z

(N)
2 (k)

Z
(N)
3 (k)

v
(N)
k , V

B(N)

F,kB
= Zτ

Z
(N)
3 (k)

Z
(N)
1 (k)

V
(N)
F,k ,

g
B(N)

k′B,kB
=

Z1(0)

Z4(0, 0)

√
Z2(0)

Z3(0)

Z
(N)
4 (k′, k)√

Z
(N)
1 (k′)Z(N̄)

1 (k)

g
(N)
k′,k,

λ
B{Ni};{σi}
{kBi }

= µ−1Z−3
τ

[
4∏

i=1

Z(ψ,Ni)(ki)

]− 1
2

Z{Ni};{σi}({ki})λ
{Ni};{σi}
{ki}

(2.37)

with

Z(ψ,N)(k) =
Z

(N)
1 (k)

Z2
τ

, Z(Φ) =
Z2
4 (0, 0)Z3(0)

Z2
1 (0)Z2(0)

, Zτ =
Z1(0)

Z3(0)
. (2.38)

Z
(N)
i (k) ≡ 1 + A

(N)
i (k) with i = 1, 2, 3, Z

(N)
4 (k′, k) ≡ 1 + A

(N)
4 (k′, k) and Z{Ni};{σi}({ki}) ≡ 1 +

A{Ni};{σi}({ki}) are the momentum-dependent multiplicative renormalization factors. Zi(0) = Z
(N)
i (0)

for any N due to the C4 symmetry. The field renormalization of the electron depends on momentum
because gapless electronic modes are labeled by the momentum along the Fermi surface. On the
contrary, the bosonic field is rescaled in a momentum-independent way because the boson has zero
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energy only at one point in the momentum space. The frequency is also rescaled with the momentum-
independent scaling factor, Zτ . If we keep only the momentum independent pieces in the Taylor series
of the coupling functions, these expressions reduce to those for the hot spot theory[182]. k̃F and Λ̃
represent the dimensionless size of Fermi surface and the UV energy cutoff measured in the unit of µ,
respectively.

We denote the renormalized vertex function for 2m fermions at hot spots {Ni} and n bosons as

Γ (2m,n);{Nj}
(
ki;
[
v, g, VF, λ

{Mi};{σi}
]

; k̃F , Λ̃;µ
)
. (2.39)

The vertex function depends on all external three-momenta, {ki}. It is also a functional of the coupling

functions, vk, VF,k, gk′,k, λ
{Mi};{σi}
{ki} . In general, the vertex function at a set of external momenta can

depend on coupling functions at different momenta. The vertex function can also depend on Λ̃ and k̃F .
Although Λ̃ does not play any important role at low energies, for now both Λ̃ and k̃F are kept in Eq.
(2.39) to contrast their different roles. It also depends on scale µ at which the coupling functions are
defined in terms of the vertex functions. Using the facts that the bare vertex function is independent
of µ and the vertex function has the scaling dimension (3 − 2m − n) at the tree-level, we obtain the
RG equation,



(2m+ n− 1)z − 2 + nη(Φ) +

2m∑

j=1

η
(ψ,Nj)
kNj

+

2m+n−1∑

j=1

[
zkj;0

∂

∂kj;0
+ k⃗j ·

∂

∂k⃗j

]

− βk̃F
∂

∂k̃F
− βΛ̃

∂

∂Λ̃
−
∫

dp

([
p
∂vp
∂p

+ β(v)
p

]
δ

δvp
+

[
p
∂VF,p
∂p

+ β(VF)
p

]
δ

δVF,p

)

−
∫

dp1dp2

(
p1
∂gp1,p2
∂p1

+ p2
∂gp1,p2
∂p2

+ β(g)
p1,p2

)
δ

δgp1,p2

−
∑

{Mi}

∑

{σi}

∑

{ji}

∫
dp1dp2dp3


∑

{pi}
pi
∂λ

{Mi};{σi}
{pi}
∂pi

+ β
(λ);{Mi};{σi}
{pi}


 δ

δλ
{Mi};{σi}
{pi}





× Γ (2m,n);{Nj}({ki}; [VF, v, g, λ]; k̃F , Λ̃;µ) = 0.

(2.40)

δ/δA denotes the functional derivative with respect to A with A denoting the momentum-dependent
coupling functions. The dynamical critical exponent, the anomalous scaling dimensions, the beta
functionals of the coupling functions, and the ‘beta functions’ for k̃F and Λ̃ are defined by

z =1 +
d logZτ
d logµ

, β(k̃F ) =
dk̃F

d logµ
, β(Λ̃) =

dΛ̃

d logµ
,

η
(ψ,N)
k =

1

2

d logZ(ψ,N)(k)

d logµ
, η(Φ) =

1

2

d logZ(Φ)

d logµ
, β

(v)
k =

dvk
d logµ

,

β
(VF)
k =

dVF,k
d logµ

, β
(g)
k1,k2

=
dgk1,k2
d logµ

, β
(λ);{Ni};{σi}
{ki} =

dλ
{Ni};{σi}
{ki}
d logµ

,

(2.41)

where the bare parameters are fixed in the derivatives. It is noted that due to the C4 symmetry, we
only need to keep track of one coupling function for each of the nesting angle, Fermi velocity and
the Yukawa coupling as is shown in Eq. (2.17). Furthermore, the fermion anomalous dimensions at
different hot spots can be written in terms of one function as

η
(ψ,N)
k =





η
(ψ)
k , N = 1, 3, 4, 6

η
(ψ)
−k , N = 2, 5, 7, 8

. (2.42)
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From Eq. (2.37), one can express the beta functionals in terms of the counter terms as

β
(v)
k = vk

(
d logZ3(k)

d logµ
− d logZ2(k)

d logµ

)
, (2.43)

β
(VF)
k = VF,k

(
d logZ1(k)

d logµ
− d logZ3(k)

d logµ
− d logZ1(0)

d logµ
+

d logZ3(0)

d logµ

)
, (2.44)

β
(g)
k′,k =gk′,k

([
d logZ4(0, 0)

d logµ
− d logZ1(0)

d logµ
− 1

2

d logZ2(0)

d logµ
+

1

2

d logZ3(0)

d logµ

]

−d logZ4(k′, k)

d logµ
+

1

2

d logZ1(k′)
d logµ

+
1

2

d logZ1(k)

d logµ

)
,

(2.45)

β
(λ);{Ni};{σi}
{ki} =

λ
{Ni};{σi}
{ki}


1 − d logZ1(0)

d logµ
+

d logZ3(0)

d logµ
+

1

2

∑

j

d logZ1(kj)

d logµ
− d logZ{Ni};{σi}({ki})

d logµ


 ,

(2.46)

β(k̃F ) = −k̃F , β(Λ̃) = −Λ̃, (2.47)

and the dynamical critical exponent and the anomalous dimensions as

z =1 +
d logZ1(0)

d logµ
− d logZ3(0)

d logµ
, (2.48)

η
(ψ)
k =

1

2

d logZ1(k)

d logµ
− d logZ1(0)

d logµ
+

d logZ3(0)

d logµ
, (2.49)

η(Φ) =
d logZ4(0, 0)

d logµ
− d logZ1(0)

d logµ
+

1

2

d logZ3(0)

d logµ
− 1

2

d logZ2(0)

d logµ
. (2.50)

The beta functionals and the anomalous dimensions are obtained by replacing dZi(k)
d log µ with

dZi(k)

d logµ
=
∂Ai(k)

∂ log µ
+

∫
dp
δAi(k)

δvp
β(v)
p +

∫
dp
δAi(k)

δVF,p
β(VF )
p +

∫
dp′dp

δAi(k)

δgp′,p
β
(g)
p′,p

+

∫
dp1dp2dp3

1

µ

δAi(k)

δλ̄
{Ni};{σi}
{pi}

∣∣∣∣∣∣
λ̄=λµ−1

(
−λ{Ni};{σi}

{pi} + β
(λ);{Ni};{σi}
{ki}

) (2.51)

in Eqs. (2.43) - (2.50), and solve the resulting integro-differential equations for the beta functionals
and the anomalous dimensions.

The beta functionals in Eqs. (2.43)-(2.47) describe the flow of the momentum-dependent coupling
functions with increasing energy scale µ at fixed external momenta. In Eq. (2.40), the beta functionals
appear along with the momentum dilation. This is due to the fact that the scale transformation rescales
momentum in all directions. The momentum along the Fermi surface needs to be scaled together with
the momentum perpendicular to the Fermi surface because change of momentum along the Fermi
surface in non-forward scatterings is proportional to the momentum of the boson that carries a non-
zero dimension. The momentum along the Fermi surface plays a dual role[205]. On the one hand, it
labels gapless modes on the Fermi surface, and the momentum-dependent coupling functions encode
how low-energy vertex functions vary along the Fermi surface. On the other hand, the momentum acts
as a scale and is rescaled under the scale transformation. z represents the dynamical critical exponent
that determines how the frequency is scaled relative to spatial momentum to keep Eq. (2.30).

Eq. (2.40) relates the vertex function of a theory at one set of frequencies and momenta with
the vertex function of another theory with generally different couplings at rescaled frequencies and



2.4. THE FIELD-THEORETIC FUNCTIONAL RENORMALIZATION GROUP FORMALISM 39

momenta as

Γ (2m,n);{Nj}({ki}; [v̂, ĝ, V̂F]; k̃F , Λ̃)

= exp





ℓ∫

0

dℓ′


(2m+ n− 1)z(ℓ′) − 2 + nη(Φ)(ℓ′) +

2m∑

j=1

η̂
(ψ,Nj)

kNj
(ℓ′)(ℓ

′)







× Γ (2m,n);{Nj}
(
{ki,0(ℓ), k⃗i(ℓ)};

[
v̂(ℓ), ĝ(ℓ), V̂F(ℓ), λ̂{Ni};{σi}(ℓ)

]
; k̃F (ℓ), Λ̃(ℓ)

)
.

(2.52)

Here,

k0(ℓ) ≡ e

ℓ∫
0

z(ℓ′)dℓ′

k0, k⃗(ℓ) ≡ eℓk⃗. (2.53)

ℓ is the logarithmic length scale. The scale-dependent coupling functions obey

∂v̂K(ℓ)

∂ℓ
= −β(v)

K (ℓ) −K
∂v̂K(ℓ)

∂K
, (2.54)

∂V̂F,K(ℓ)

∂ℓ
= −β(VF)

K (ℓ) −K
∂V̂F,K(ℓ)

∂K
, (2.55)

∂ĝK′,K(ℓ)

∂ℓ
= −β(g)

K′,K(ℓ) −K ′ ∂ĝK′,K(ℓ)

∂K ′ −K
∂ĝK′,K(ℓ)

∂K
, (2.56)

∂λ̂
{Ni};{σi}
{Ki} (ℓ)

∂ℓ
= −β(λ);{Ni};{σi}

{Ki} (ℓ) −
4∑

j=1

Kj

∂λ̂
{Ni};{σi}
{Ki} (ℓ)

∂Kj
, (2.57)

∂k̃F (ℓ)

∂ℓ
= k̃F (ℓ),

∂Λ̃(ℓ)

∂ℓ
= Λ̃(ℓ) (2.58)

with the initial conditions, v̂K(0) = v̂K , V̂F,K(0) = V̂F,K , ĝK′,K(0) = ĝK′,K , λ̂
{Ni};{σi}
{Ki} (0) = λ̂

{Ni};{σi}
{Ki} ,

k̃F (0) = k̃F and Λ̃(0) = Λ̃. η̂
(ψ,N)

keℓ
(ℓ) denotes the anomalous dimension of the fermion measured

at momentum keℓ and energy scale Λ in the theory with coupling functions, {v̂(ℓ), ĝ(ℓ), V̂F(ℓ),

λ̂{Ni};{σi}(ℓ)}. Eq. (2.52) relates a physical observable measured at {ki,0, k⃗i} in the theory with

Fermi surface size µk̃F , UV cutoff µΛ̃ and couplings {v̂, ĝ, V̂F, λ{Ni};{σi}} to the observable measured

at {e
ℓ∫
0

z(ℓ′)dℓ′

ki,0, e
ℓk⃗i} in the theory with Fermi surface size eℓµk̃F , UV cutoff eℓµΛ̃ and couplings

{v̂(ℓ), ĝ(ℓ), V̂F(ℓ), λ̂{Ni};{σi}(ℓ)}. It is noted that the RG equation relates observables in two theories
not just with different UV cutoffs but with different sizes of Fermi surface, that is, with different
numbers of IR degrees of freedom. Fixed points are characterized by coupling functions {v̂∗, ĝ∗ V̂ ∗

F ,

λ̂{Ni};{σi}∗} at which the beta functionals in Eqs. (2.54)-(2.57) vanish, and Λ̃∗ = ∞, k̃∗F = ∞. If
the physical observables can be expressed as regular functions of the renormalized couplings in the
large Λ limit, we can set Λ∗ = ∞ at the fixed point as is usually done in the continuum limit. On
the other hand, kF is an IR parameter of the theory that encapsulates the number of gapless modes
in the system. Since there is no guarantee that all low-energy physical observables are well defined
in the large kF limit, we can not simply ignore the dependence on kF as we do for Λ. This has an
obvious consequence: theories with Fermi surfaces do not have the usual sense of scale invariance that
relates observables defined at different scales within one theory even in the continuum limit. Conse-
quently, Eq. (2.52) does not fully determine how physical observables actually scale with energy and
momentum in a theory with a fixed kF . Only for those vertex functions that are regular in the large

kF limit,
[
(2m+ n− 1)z∗ − 2 + nη(Φ)∗ +

∑2m
j=1 η̂

(ψ)∗
kNj

]
in Eq. (2.52) determines the actual dependence

on energy and momentum. For those observables that are singular in the large kF limit, the scaling
behaviour is modified from what is expected from the predicted scaling dimensions9. There is even no

9For example, the response functions to spatially uniform thermal/electromagnetic perturbations are sensitive to kF .
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guarantee that general low-energy observables depend on energy and momentum in power laws at a
fixed point[133, 132]. Without knowing how general observables depend on kF in priori, one has to
keep kF as a running coupling within the theory.

It is noted that the four-fermion couplings has dimension −1 at the tree-level. This causes the four-
fermion couplings to decrease in amplitude under the RG flow. On the other hand, the momentum
along the Fermi surface is rescaled, and the size of the Fermi surface measured in the unit of the running
energy scale increases. This effectively promotes the four-fermion couplings to marginal couplings in
the channels in which quantum corrections become proportional to the phase space. For example, this
enhancement of the effective scaling dimension occurs in the pairing channel in which the phase space
for low-energy Cooper pairs is extensive.

In keeping track of the momentum dependent coupling functions along the Fermi surface, it is
sometimes convenient to define coupling functions at a fixed physical location on the Fermi surface as

vk(ℓ) ≡ v̂k(ℓ)(ℓ), VF,k(ℓ) ≡ V̂F,k(ℓ)(ℓ), η
(ψ)
k (ℓ) ≡ η̂

(ψ)
k(ℓ)(ℓ),

gk′,k(ℓ) ≡ ĝk′(ℓ),k(ℓ)(ℓ), λ
{Ni};{σi}
{ki} (ℓ) ≡ λ̂

{Ni};{σi}
{ki(ℓ)} (ℓ).

(2.59)

vk(ℓ), VF,k(ℓ), gk′,k(ℓ) and λ
{Ni};{σi}
{ki} (ℓ) satisfy the beta functionals that do not have the momentum

dilatation,

∂

∂ℓ
vk(ℓ) = −β(v)

k (ℓ), (2.60)

∂

∂ℓ
VF,k(ℓ) = −β(VF )

k (ℓ), (2.61)

∂

∂ℓ
gk′,k(ℓ) = −β(g)

k′,k(ℓ), (2.62)

∂

∂ℓ
λ
{Ni};{σi}
{ki} (ℓ) = −β(λ);{Ni};{σi}

{ki} (ℓ). (2.63)

Eqs. (2.60) to (2.63) track the renormalization of the coupling functions with increasing logarithmic
length scale ℓ at fixed momenta along the Fermi surface. It will be useful to go back and forth between
Eqs. (2.54)-(2.57) and Eqs. (2.60)- (2.63)for different purposes. The ultimate fate of the system in the

low-energy limit is determined by the RG flow of the full coupling functions,
{
vk(ℓ), VF,k(ℓ), gk′,k(ℓ),

λ
{Ni};{σi}
{ki} (ℓ)

}
.

2.4.4 Quantum effective action

The full quantum effective action is written as

Γ =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dk ψ†

N,σ,j(k)
{
ik0 + V

(N)
F,kN

eN [⃗k; v
(N)
kN

] + ΣN (k)
}
ψN,σ,j(k)

+
1

4

∫
dk D−1(k)Tr [Φ(k)Φ(−k)]

+

8∑

N=1

Nc∑

σσ′=1

Nf∑

j=1

∫
dk′dk

{
1√
Nf

g
(N)
k′N ,kN

+ δΓ
(2,1)
N (k′,k)

}
ψ†
N,σ′,j(k

′)Φσ′σ(k′ − k)ψN̄,σ,j(k)

+

8∑

{Ni=1}

Nc∑

{σi=1}

Nf∑

{ji=1}

∫ 4∏

i=1

dkiδ1+2,3+4

{
1

4µ
λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1;N1

k2;N2

k4,N4
k3;N3

)

+ δΓ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
({ki;Ni})

}
ψ†
N1,σ1,j1

(k1)ψ†
N2,σ2,j2

(k2)ψN3,σ3,j2(k3)ψN4,σ4,j1(k4) + ...,

(2.64)
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where ... represents higher order terms in the fields. Here D−1(k) is the boson self-energy. Since the
bare kinetic term of the boson is irrelevant, the self-energy determines the entire boson propagator at

low energies. ΣN (k) is the fermion self-energy. δΓ
(2,1)
N (k′,k) is the quantum correction to the Yukawa

vertex. Finally, δΓ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
({ki;Ni

}) represents the quantum correction to the four-fermion
coupling function.

In the present theory, the computation of the quantum effective action is organized in terms of
the small parameter v ∼ g2. At the zeroth order in v, only D−1(k) is important among all quantum
corrections. The infinite set of diagrams that contribute to the boson self-energy to the leading order in
v can be summed through the Schwinger-Dyson equation in Fig. 2.1[182]. Other quantum corrections

are at most order of g
2

c log(1/v) ∼
√
v log(1/v) in the small v limit, and can be computed perturbatively

as functionals of the coupling functions. The four-fermion couplings that is generated from the Yukawa
coupling through Fig. 2.7 is order of g4/c, where the phase space enhancement factor of 1/c arises
because the largest speed of particles in the loop is c in one momentum direction. The interaction
energy of two particles, given by the eigenvalues of the quartic vertex as in Eq. (2.32), goes as g4/c2,
where there is an additional factor of 1/c because the typical momentum transfer of particle goes as µ/c
at energy scale µ10. Since g4/c2 ∼ v/ log(1/v) in the small v limit, the electron-electron interaction
is dominated by the interaction mediated by the gapless spin fluctuations whose strength is order
of g2/c ∼

√
v/ log(1/v). We will see that there exists a large window of energy scale in which the

four-fermion coupling remains smaller than g2/c before it becomes dominant due to superconducting
instabilities at low energies. Within this window, the feedback of the four-fermion coupling to the
self-energies and the cubic vertex can be ignored. Our goal is to extract the universal normal state
properties and the evolution of superconducting fluctuations that emerge within this range of energy
scale.

Two faces of the four-fermion coupling

Under the interaction driven scaling, the Yukawa coupling is marginal, and quantum corrections that
include the Yukawa coupling are logarithmically divergent, as expected. On the contrary, the four-
fermion coupling has dimension −1. Naively, one would not expect infrared divergences associated with
the four-fermion coupling. However, the actual degrees of IR divergence vary in different diagrams. In
most diagrams that include the four-fermion coupling, there is indeed no IR divergence as expected from
power-counting. Some diagrams, however, exhibit logarithmic IR divergences, defying the expectation
based on the scaling dimension.

This disagreement arises because the momentum along the Fermi surface plays different roles in
different scattering processes. In diagrams that involve patches of Fermi surface that are not nested, a
loop momentum that is parallel to the Fermi surface in one patch is not parallel to the Fermi surface
in another patch. Consequently, all components of momentum need to be small in order for virtual
fermions to stay close to the Fermi surface. In this case, all components of momenta act as scale in
the loop, and the power counting correctly captures the absence of IR divergence. On the contrary, in
diagrams that include only those patches that are nested, the component of momentum parallel to the
patches act as a continuous flavour. For example, the four-fermion interaction in the pairing channel
involves opposite sides of Fermi surface which are perfectly nested in the particle-particle channel.
Because all virtual particles can stay close to the Fermi surface irrespective of the momentum along
the Fermi surface, actual IR divergences are controlled by the one-dimensional scaling under which the
four-fermion coupling is marginal. In other words, the integration of the momentum along the nested
patches gives rise to a volume of the low-energy phase space, and the scale associated with the volume
of the phase space effectively promotes the four-fermion couplings to marginal couplings, resulting in
logarithmic IR divergences.

10For example, the eigenvalue of the four-fermion coupling function in the BCS channel involves an integral over
relative momentum of a Cooper pair, and it is enhanced by 1/c due to the slow decay of the coupling function at large
momentum in the small c limit. This will be shown through explicit calculations in Appendix B.
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Quantum corrections

We start with the propagator of the collective mode. To the leading order in v, the dressed boson
propagator D(q) satisfies the Schwinger-Dyson equation with the momentum dependent coupling
functions,

D−1(k) =mCT + 2

8∑

N=1

∫
dq g

(N)
q,q+kg

(N̄)
q+k,qGN (q)GN̄ (q + k)

− 4

NcNf

8∑

N=1

∫
dqdp g

(N̄)
p,p+kg

(N)
p+k,p+q+kg

(N̄)
p+q+k,p+qg

(N)
p+q,p

×GN (p + q)GN̄ (p)GN (p + k)GN̄ (p + q + k)D(q),

(2.65)

where mCT is the mass counter term that tunes the renormalized mass of the boson to zero. GN (k)
is the bare fermionic Green’s function for hot spot N ,

GN (k) =
1

ik0 + V
(N)
F,k eN [⃗k; v

(N)
k ]

. (2.66)

It is noted that GN (k) depends on momentum not only through the explicit momentum dependence in

the dispersion but also through V
(N)
F,k and v

(N)
k that depend on the momentum along the Fermi surface.

Here and henceforth, we drop the patch index N in kN for the momentum along the Fermi surface
when there is no danger of confusion. For λ≪ g2/c, the contribution of the short-ranged four-fermion
coupling to the boson self-energy is sub-leading in the small v limit. Since the bare kinetic term of
the boson is irrelevant under the interaction driven scaling, we don’t need to add any counter term for
the boson except for the mass counter term. In other diagrams, we use the non-perturbatively dressed
boson propagator.

M1,k + q N,kN,k

M2,p

M3,p− q

(a)

N,kN,k

M3,
k + p

M1,
k + q

M2,
k + p + q

q

p

(b)

N,kN,k M3,
k + p

M1,
k + q

M2,
k + p + q

p

q

(c)

Figure 2.6: Contributions of the four-fermion coupling, represented by the zigzag lines, to the fermion
self-energy.

To the leading order in v, the fermion self-energy is written as the sum of two terms as ΣN (k) =
Σ1L
N (k) + Σ2L

N (k) where

Σ1L
N (k) = −2(N2

c − 1)

NcNf

∫
dq g

(N)
k,k+qg

(N̄)
k+q,kGN̄ (k + q)D(q), (2.67)

Σ2L
N (k) =

4(N2
c − 1)

N2
cN

2
f

∫
dq

∫
dp g

(N)
k,k+qg

(N̄)
k+q,k+p+qg

(N)
k+p+q,k+pg

(N̄)
k+p,k

×D(p)D(q)GN̄ (k + p)GN (k + q + p)GN̄ (k + q).

(2.68)

Eq. (2.67) and Eq. (2.68) represent the one-loop and two-loop fermion self-energies generated from
the Yukawa couplings as is shown in Fig. 2.2a and Fig. 2.2b respectively. To the leading order in v,
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Figure 2.7: Quantum corrections to the four-fermion couplings that are independent of λ.

these are the only diagrams that are important11. The one-loop vertex correction shown in Fig. 2.2c
is given by

δΓ
(2,1)
1 (k′,k) = − 2

NcN
3
2

f

∫
dq g

(N)
k′,k′+qg

(N̄)
k′+q,k+qg

(N)
k+q,k D(q)GN̄ (k′ + q)GN (k + q). (2.70)

The contribution of the short-range four-fermion couplings to δΓ(2,1)(k′,k) is sub-leading compared
to Eq. (2.70).

The one-loop vertex correction to the four-fermion coupling is written as δΓ{Ni};{σi} =
∑2
a=0 Γ

{Ni};{σi}
(a) ,

where Γ
{Ni};{σi}
(a) denotes the vertex correction that is of the a-th power of λ. The four-fermion vertex

that is independent of λ is further divided into two parts as Γ
{Ni};{σi}
(0) = Γ

{Ni};{σi}
(0)PP +Γ

{Ni};{σi}
(0)PH , where

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(0)PP

(
k+l p−l
k p

)
= − 1

2N2
f

∫
dq g

(N1)
k+l,k+qg

(N̄4)
k+q,kg

(N2)
p−l,p−qg

(N3)
p−q,p

×D(q)D(l− q)GN1
(k + q)GN2

(p− q)δN1N4
δN2N3

Tσ1σ2

αβ Tαβσ4σ3

(2.71)

is the four-fermion vertex generated from the Yukawa coupling in the particle-particle channel (Fig.
2.7a), and

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(0)PH

(
k+l p−l
k p

)
= − 1

2N2
f

∫
dq g

(N1)
k+l,k+qg

(N4)
k+q,kg

(N2)
p−l,p−l+qg

(N3)
p−l+q,p×

D(q)D(l− q)GN1
(k + q)GN2

(p− l + q)δN1N4
δN2N3

Tβσ2
σ4αT

σ1α
βσ3

(2.72)

11The contribution of the four-fermion coupling to the fermion-self energy from Fig. 2.6 can be written as

Σ
′2L
N (k) =

1

4µ2

∫
dq

∫
dp

Nfλ

(
M1 M3
N M2

)
;
(
α1 α3
σ α2

)

(
k+q p−q
k p

) λ

(
N M2
M1 M3

)
;
(

σ α2
α1 α3

)

(
k p

k+q p−q

) GM1
(k+ q)GM2

(p)GM3
(p+ q)

− λ

(
M1 M3
N M2

)
;
(
α1 α3
σ α2

)

(
k+q k+p
k k+q+p

) λ

(
M2 N
M1 M3

)
;
(
α2 σ
α1 α3

)

(
k+q+p k
k+q k+p

) GM1
(k+ q)GM2

(k+ q+ p)GM3
(k+ p)

−λ

(
M1 N
N M3

)
;
(
α1 σ
σ α3

)

(
k+q k
k k+q

) λ

(
M2 M3
M1 M2

)
;
(
α2 α3
α1 α2

)

(
k+q+p k+q
k+q k+p+q

) GM1
(k+ q)GM2

(k+ q+ p)GM3
(k+ q)

 .
(2.69)

For λ≪ g2/c, this is sub-leading compared to Σ1L
N (k) and Σ2L

N (k).
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Figure 2.8: Quantum corrections to the four-fermion couplings linear in λ.

is the four-fermion vertex generated from the Yukawa coupling in the particle-hole channel (Fig. 2.7b).
Tσ1σ2
σ4σ3

is the spin structure factor for the interaction mediated by the critical spin fluctuations between
incoming electrons with spin σ4, σ3 and outgoing electrons with spin σ1, σ2,

Tσ1σ2
σ4σ3

=

N2
c−1∑

a=1

τaσ1σ4
τaσ2σ3

= 2

(
δσ1σ3

δσ2σ4
− 1

Nc
δσ1σ4

δσ2σ3

)
. (2.73)

The four-fermion vertex that is linear in λ can be also divided into the one in which the vertex
correction is in the particle-particle (PP) channel and the one in which the vertex correction is in

the particle-hole (PH) channel, Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(1) = Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(1)PP +Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(1)PH . The vertex
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correction in the PP channel (Figs. 2.8a and 2.8b) is

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(1)PP

(
k+l p−l
k p

)

=
1

4µNf

∫
dq g

(N4)
k+q,kg

(N3)
p−q,pD(q)GN4

(k + q)GN3
(p− q)λ

(
N1 N2

N4 N3

)
;
(σ1 σ2

α β

)

(
k+l p−l
k+q p−q

) Tαβσ4σ3

+
1

4µNf

∫
dq g

(N1)
k+l,k+l+qg

(N2)
p−l,p−l−qD(q)GN1

(k + l + q)GN2
(p− l− q)Tσ1σ2

αβ λ

(
N1 N2

N4 N3

)
;
(
α β
σ4 σ3

)

(
k+l+q p−l−q
k p

) ,

(2.74)
and the vertex correction in the PH channel (Figs. 2.8c - 2.8f) is

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(1)PH

(
k+l p−l
k p

)

=
1

4µNf

∫
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(N4)
k+q,kg
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(k + l + q)GN4
(k + q)Tασ1
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λ
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N4 N3
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)
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k+q p

)

+
1

4µNf

∫
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)
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1
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∫
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)
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(2.75)

The four-fermion vertex that is quadratic in λ is given by Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(2) = Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(2)PP +

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(2)PH , where the vertex correction in the PP channel (Fig. 2.9a) is

Γ
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∫
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)

(2.76)
and the vertex correction in the PH channel (Fig. 2.9b) is

Γ
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(2.77)

2.4.5 Space of IR singularity

The renormalization of the coupling functions is determined from quantum corrections that depend
on momenta along the Fermi surface. In each diagram, the momentum dependence of the quantum
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Figure 2.9: Quantum corrections to the four-fermion couplings quadratic in λ.
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Figure 2.10: Schematic diagram of a momentum dependent crossover scale defined in the space of ex-
ternal momenta of a diagram. The set of external momenta at which the crossover scale vanishes forms
the space of IR singularity for the diagram. Away from the space of IR singularity, the crossover scale
becomes non-zero, causing a crossover from the high-energy region in which the quantum correction is
significant to the low-energy region in which the quantum correction turns off.

correction is controlled by two crucial pieces of information. The first is the space of IR singularity,
the set of external momenta at which a diagram is singular in the zero energy limit. The second is
the momentum dependent crossover scale that cuts off the IR singularity when external momenta are
away from the space of IR singularity.

Suppose there is a diagram that contributes to the vertex function, where all external electrons
are on the Fermi surface. In the space of external momenta allowed by the momentum conservation,
there exists a subset of external momenta in which the diagram exhibits an IR singularity in the limit
that all external frequencies become zero. This subset is referred to as the space of IR singularity
for the diagram, and its dimension is denoted as ds. If external momenta lie within the space of
IR singularity, the quantum correction exhibits IR divergence with a strength determined from the
kinematics of virtual particles created within the loop12. If external momenta are outside of the
space of IR singularity, a non-zero energy scale cuts off the IR divergence. The crossover energy
scale is determined from the minimum energy that internal particles have to carry for given external
momenta. At energies above the crossover energy scale, the quantum correction renormalizes the
coupling functions even if the external momenta are outside the space of IR singularity. At energies
below the crossover scale, the quantum correction becomes essentially independent of the energy scale,

12In an L-loop diagram, the space of internal three-momenta is 3L-dimensional. If there exists a sub-manifold of
co-dimension y in which x internal particles can have zero energy simultaneously, the diagram exhibits an IR singularity
with degree y−x. If y = x (x > y), a logarithmic (power-law) IR divergence can arise. If x < y, there is no IR singularity.
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and the coupling functions stop receiving renormalization from the diagram. This is illustrated in Fig.
2.10. In this subsection, we discuss the space of IR singularity for each quantum correction in more
detail.

Fermion self-energy

An electron has zero energy anywhere on the one-dimensional Fermi surface. The space of IR singularity
for a fermion self-energy diagram is a subset of the one-dimensional Fermi surface in which the diagram
is singular in the low-energy limit. To the leading order in v, only the diagrams in Figs. 2.2a and
2.2b are important. To be concrete, we consider the self-energy of electron at hot spot 1. With the
frequency of the external electron set to be zero, we would like to figure out the set of kx at which
∂Σ1(k)
∂kρ

∣∣∣
k=(0,kx,−vkxkx)

is IR divergent. Let us first consider the one-loop self-energy in Eq. (2.67).

If the external electron is at the hot spot 1, the electron can be scattered right onto the hot spot 4
by emitting a boson with zero energy. Because all internal particles can have zero energy at a loop
momentum, a logarithmic singularity arises. If the external electron is away from the hot spots, there
is no choice of loop momentum at which both electron and boson have zero energy in the loop, which
removes the logarithmic singularity. The same conclusion holds for the two-loop self-energy diagrams.
Therefore, the space of IR singularity for the fermion self-energy is the set of hot spots with dimension
ds = 0. Away from the hot spots, the IR singularity is cut off by a momentum dependent scale that
is proportional to kx

13. This means that electrons away from the hot spots are eventually decoupled
from spin fluctuations at sufficiently low energies.

Electron-boson vertex correction

Next, let us consider the cubic vertex where an electron at momentum (kx,−vkxkx) in hot spot 1
is scattered to (k′x, vk′xk

′
x) in hot spot 4 (Fig. 2.2c). In Eq. (2.70), the energies of the boson and

two internal electrons in the loop are given by c (|qx| + |qy|), VF,kx+qx (vkx+qx(kx + qx) − qy + vkxkx),
and VF,k′x+qx

(
vk′x+qx(k′x + qx) + qy + vk′xk

′
x

)
, respectively. As is the case for the self-energy, all internal

particles can have zero energy at q⃗ = 0 if kx = k′x = 0. This gives rise to the logarithmic IR singularity.
14 For non-zero kx, k

′
x, it is impossible to put all internal particles at zero energy, and the logarithmic

singularity disappears. The expressions for the IR energy cutoff scales are derived in Sec. 2.5 and
Appendix A. Since the vertex correction is singular at zero energy only when both the incoming and
outgoing electrons are at the hot spots, we have ds = 0. Away from the hot spots, the quantum
corrections ‘turn off’ below the crossover energy scale.

Four-fermion vertex correction

At the one-loop order, there are three types of quantum corrections that contribute to the beta func-
tional of the four-fermion couplings. The first is the quantum correction generated from the Yukawa
coupling as is shown in Fig. 2.7. These give rise to contributions that are independent of λ in the
beta functional, and act as the sources for the four-fermion coupling. The second, shown in Fig. 2.8,
is the one that describes mixing among four-fermion couplings in different channels. Finally, diagrams
in Fig. 2.9 describe the BCS-like scatterings. Here, we examine the spaces of IR singularity in these
quantum corrections.

The primary couplings Through Eqs. (2.71) and (2.72), the primary four-fermion couplings are
generated in channel (N M

N M ) for any N and M . Without loss of generality, we can focus on the case
with N = 1 because all other channels are related to the one with N = 1 through the C4 symmetry.
Let us start with the primary couplings with (N,M) = (1, 1) and (1, 5) in Table 2.1. In these channels,

13We will derive the crossover scale in Sec. 2.5 and Appendix A.
14This is because the product of the three propagators have IR singularity with dimension −3 at q = 0, which is a

subspace of co-dimension 3 in the space of internal energy-momentum.
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Figure 2.11: The momentum dependent four-fermion coupling function. q denotes the center of mo-
mentum in the particle-particle (PP) channel. p− k and p+ k denote the center of mass momenta in
two particle-hole (PH) channels. The gapless spin fluctuations generate singular four-fermion couplings
in the PP plane with q = 0 and the PH plane with p− k = 0.

the Fermi velocities of the two internal fermions of Fig. 2.7 are parallel or anti-parallel to each other
at the hot spots. As a result, there exist channels in which a pair of fermions within the loop can
be far away from the hot spots while staying arbitrarily close to the Fermi surface. Contributions
from states far away from the hot spots are only suppressed by the energy cost of the boson. Since
the speed of the boson is c, the phase space of the low-energy states becomes proportional to 1/c.
Consequently, the quantum correction is enhanced from g4 to g4/c. For (N,M) = (1, 4) and (1, 8), the
patches of Fermi surface are not perfectly nested, and the virtual electronic excitations in the loop can
not stay on the Fermi surface at large momentum. Nonetheless, the main energy penalty for creating
virtual excitations far away from the hot spots still comes from the boson because the nesting angle
v is smaller than c in the small v limit as is shown in Eq. (2.4). Since the phase space of low-energy
states is still controlled by the speed of the boson, the diagrams are still enhanced by 1/c. For the
primary couplings in group 3 in Table 2.1, the Fermi velocities of the two internal fermions are almost
perpendicular to each other. In this case, the Fermi velocity, which is order of 1, controls the phase
space of virtual electronic excitations, and the quantum corrections are simply order of g4. Therefore,
we can ignore the couplings in group 3 to the leading order in v. The couplings in group 4 are not
generated from spin fluctuations.

When all external fermions are at the hot spots in Fig. 2.7, there exists a choice of the loop
momentum at which all four internal particles (two fermions and two bosons) have zero energy. Because
four internal particles have zero three-momentum at the origin (the manifold of co-dimension three)
in the space of loop energy-momentum, it exhibits an IR singularity with degree −1. However, this
power-law IR divergence is cut off as soon as any of the external momenta becomes non-zero. If an
external electron is away from the hot spots, the electron has to absorb or emit a boson with non-zero
momentum to scatter onto the Fermi surface inside the loop. Alternatively absorbing or emitting a
boson with zero momentum (relative to Q⃗AF ), a virtual electron has to be away from the Fermi surface.
Since the power-law divergence is removed for any external momentum away from the hot spots, the
space of IR singularity with degree −1 is only zero-dimensional (ds = 0). Under the extended minimal
subtraction scheme, no counter term is needed for the IR divergence with degree −1 localized within
a zero-dimensional manifold of external momenta because Eq. (2.33) remains finite in the small µ
limit. Although the IR singularity with degree −1 is localized within the zero-dimensional manifold
of external momenta, IR singularities with degree 0 (logarithmic divergence) can arise in an extended
space. These are the quantum corrections for which counter terms are needed. Below, we identify the
channels in groups 1 and 2 for which logarithmic IR singularities arise in spaces with ds ≥ 1.

In the ( 1 4
1 4 ) channel, there is no space of IR singularity with ds > 0. A logarithmic IR divergence

can arise only if there exists a choice of internal momentum at which both electrons and at least one
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Figure 2.12: (a) The forward scattering between an electron at a hot spot and an electron away from
the hot spot. Irrespective of the shape of the Fermi surface, the forward scattering receives singular
quantum corrections. (b) The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) scattering where a pair of
electrons are scattered in and out of a hot spot. The FFLO scattering remains singular at low energies
only if the Fermi surface has the particle-hole symmetry, for example, if the Fermi surface is straight.
In general, two electrons from a hot spot can not scatter onto the Fermi surface due to the curvature
of Fermi surface.

boson in the loop have zero energy in Fig. 2.715. This forces a pair of external momenta in hot spots
1 and 4 to be zero. The fact that the patches at hot spots 1 and 4 are not nested with each other16,
combined with the constraint that external electrons are on the Fermi surface, further forces the other
two external momenta to be zero as well. This shows that there is no extended space of IR singularity
in the ( 1 4

1 4 ) channel. The exact same argument applies to the ( 1 8
1 8 ) channel.

In contrast, the quartic coupling in the ( 1 1
1 1 ) channel supports an extended space of IR singularity.

Fig. 2.7b is logarithmically divergent in the ( 1 1
1 1 ) channel as far as a pair of external electron and

hole are at the hot spots even if the other pair are away from the hot spots. Because there exists a
choice of loop momentum at which two fermions and one boson in the loop have zero energy when one
external electron-hole pair are at the hot spot, it gives rise to the logarithmic singularity. The space
of IR singularity is one-dimensional (ds = 1) because the other external momenta are arbitrary. The
four-fermion couplings in the one-dimensional space of IR singularity is parameterized as

{
λ

( 1 1
1 1 )(
0 k
k 0

), λ
( 1 1
1 1 )(
k 0
0 k

)
}
. (2.78)

This coupling describes the forward scattering between an electron at the hot spot and an electron at
a general momentum on the Fermi surface (Fig. 2.12a).

The space of IR singularity is even bigger for the ( 1 5
1 5 ) channel in group 2. As far as the center

of mass momentum of the electron pair is zero in Fig. 2.7a, the quantum correction is logarithmically
divergent irrespective of the relative momentum of the incoming and outgoing pairs. When the total
momentum of the electron pair is zero, two internal electrons in the loop can stay close to the Fermi
surface irrespective of the relative momentum along the Fermi surface. Since the two internal fermions
can have zero energy within the manifold of internal energy-momentum with co-dimension 2, it gives

15The case in which two bosons and only one electron have zero energy does not give rise to an IR singularity because
the electron propagator is odd under k → −k.

16It is important to consider a small but non-zero v.
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Figure 2.13: (a) The Bardeen-Cooper-Schrieffer (BCS) scattering between a pair of electrons with
zero center of mass momentum. Irrespective of the shape of the Fermi surface, the BCS scattering
receives singular quantum corrections. (b) The 2kF particle-hole scattering associated with a pair of
particle and hole on the anti-podal patches of Fermi surface. The 2kF particle-hole scattering remains
singular at low energies only if the Fermi surface has the particle-hole symmetry. In general, a non-zero
curvature of Fermi surface prevents particle-hole pairs with fixed momentum from staying on the Fermi
surface.

rise to the logarithmic IR singularity. It is noted that this IR singularity is generated purely from
gapless fermions, and whether the boson is gapless or not does not matter. Since the relative momentum
of incoming and outgoing fermion pairs can be arbitrary, ds = 2. The four-fermion couplings in the
two-dimensional space of IR singularity is parameterized as

{
λ

( 1 5
1 5 )(
p −p
k −k

)

}
. (2.79)

This coupling describes the BCS pairing interaction for pairs of electrons with zero total momentum
(Fig. 2.13a).

In summary, Fig. 2.7 generates primary four-fermion couplings within extended spaces of external
momenta with ds > 0 in groups 1 and 2 to the leading order in v. In the following, we consider the
couplings that are further generated from the primary couplings through operator mixing.

The secondary couplings Once the Yukawa coupling generates the primary four-fermion cou-
plings in the ( 1 1

1 1 ) and ( 1 5
1 5 ) channels, the vertex corrections in Fig. 2.8 generate secondary couplings

by scattering a pair of electrons in the PP and PH channels, respectively. For example, a pair of

indices in λ

(
N1 N2

N4 N3

)

(
k1 k2
k4 k3

) can change from (Na, Nb) to (Na, N b) through the one-loop mixing as is shown in

Fig. 2.14. The resulting operators can generate yet another set of operators through mixing. This in
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Na
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N b
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Figure 2.14: The quantum correction that linearly mixes four-fermion couplings with different hot spot
indices to the lowest order in v. A pair of fermions can change their hot spot indices from (Na, Nb) to
(Na, N b) by exchanging a boson.

ds Primary couplings Secondary couplings

Group 1 1 λ
( 1 1
1 1 )(
0 k
k 0

), λ
( 1 1
1 1 )(
k 0
0 k

) λ
( 4 1
1 4 )(
0 k
k 0

), λ
( 1 4
4 1 )(
k 0
0 k

)

Group 2 2 λ
( 1 5
1 5 )(
p −p
k −k

), λ
( 4 8
4 8 )(
p −p
k −k

) λ
( 4 5
1 8 )(
p −p
k −k

), λ
( 1 8
4 5 )(
p −p
k −k

)

Table 2.2: The primary four-fermion couplings generated from the Yukawa coupling and the secondary
couplings further generated through the linear mixings in the spaces of IR singularity with dimensions
ds ≥ 1.
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general creates a network of operators described by a mixing matrix in the space of hot spot indices,
spin indices and momentum. However, we only need to focus on those channels in which operator
mixings are present within the space of IR singularity with ds > 0. We don’t need to add counter
terms for the mixings that are present in zero-dimensional space of IR singularity. The secondary
couplings that are generated within the extended spaces of IR singularity are summarized in Table 2.2.

In the ( 1 1
1 1 ) channel, the quantum correction is IR singular only when the external legs that are

associated with the vertex correction carry zero momenta. Each of λ
( 1 1
1 1 )(
0 k
k 0

) and λ
( 1 1
1 1 )(
k 0
0 k

) mixes with

λ
( 4 1
1 4 )(
0 k
k 0

) and λ
( 1 4
4 1 )(
k 0
0 k

), respectively. The linear mixing is generated from Figs. 2.8e and 2.8f. In the ( 1 5
1 5 )

channel, the vertex correction is IR singular within a two-dimensional manifold in which a particle-

particle pair in hot spots 1 and 5 carry net zero momenta. As a result, λ
( 1 5
1 5 )(
p −p
k −k

) mixes with λ
( 4 8
1 5 )(
p′ −p′
k −k

),

λ
( 1 5
4 8 )( p −p
k′ −k′

) through Figs. 2.8a and 2.8b.

At the quadratic order in λ, the standard BCS diagram give rise to the logarithmic divergence for
the coupling in group 2 within the two-dimensional manifold of external momenta in which the center
of mass momentum of Cooper pair is zero.

Additional channels that become singular in the presence of the particle-hole symmetry
In the presence of the PH symmetry, vk = v−k. In this case, the phase space of low-energy scatterings
is further enlarged due to an enhanced nesting, and additional couplings receive singular quantum
corrections in extended spaces of IR singularity. Although we focus on the generic case in which the
PH symmetry is absent, here we list those additional couplings for completeness.

With vk = v−k, a pair of electrons with momenta k and −k can simultaneously stay on the Fermi
surface near one hot spot. As a result, Fig. 2.7a is also logarithmically divergent in the ( 1 1

1 1 ) channel.
The coupling function that receives IR singular quantum corrections is parameterized as

{
λ

( 1 1
1 1 )(
0 0
k −k

), λ
( 1 1
1 1 )(
k −k
0 0

)
}
. (2.80)

This coupling describes the processes where a pair of electrons with total momentum 2kF scatter in and
out of the hot spots in the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) pairing channel (Fig. 2.12b).
In group 2, Fig. 2.7b is also IR singularity for

{
λ

( 1 5
1 5 )(
p k
k p

)

}
. (2.81)

These couplings are defined in the two-dimensional space with zero center of mass momentum in the
PH channel. Eq. (2.81) describes scatterings of particle-hole pairs with momentum 2kF (Fig. 2.13b).
In the presence of the PH symmetry, this plane of the IR singularity intersects with Eq. (2.79) at a
line with zero center of mass momentum both in the PP and PH channels.

Once those additional primary couplings are generated, additional secondary couplings are gener-

ated. In group 1, λ
( 1 1
1 1 )(
0 0
k −k

), λ
( 1 1
1 1 )(
k −k
0 0

), mixes with λ
( 4 4
1 1 )(
0 0
k −k

), λ
( 1 1
4 4 )(
k −k
0 0

) through Figs. 2.8a and 2.8b. In

group 2, λ
( 1 5
1 5 )(
k p
p k

) mixes with λ
( 4 5
1 8 )(
k′ p
p k′

) and λ
( 1 8
4 5 )(
k p′

p′ k

) through Figs. 2.8e and 2.8f.

2.4.6 Adiabaticity

Now we turn our attention to the computation of the quantum effective action expressed as integra-
tions of loop momenta in Sec. 2.4.4. The salient feature of theories with continuously many gapless
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degrees of freedom is that quantum corrections are functionals of coupling functions. Even if the
coupling functions are independent of momentum at one scale, they in general acquire non-trivial
momentum dependences at low energies unless protected by symmetry. This makes it necessary to
compute quantum corrections in the presence of general momentum dependent coupling functions.
A simplification arises for quantum corrections generated from small angle scatterings in which loop
momentum is bounded by the external energy. Thanks to the locality in real space, the rate at which
coupling functions vary in momentum is controlled by the energy scale at which the coupling functions
are defined. If the momentum carried by virtual particles in a loop is limited by a momentum that is
proportional to external frequencies, quantum corrections can be computed approximately by treating
the coupling functions as constants as far as the coupling functions do not vary significantly over that
momentum scale. This motivates us to introduce the notion of adiabaticity in the momentum space.
We say that coupling functions are adiabatic in a diagram if no coupling functions change apprecia-
bly within the range of loop momenta from which IR divergent contributions arise. Below, we make
this precise and examine how adiabaticity is invoked to efficiently compute quantum corrections for
non-nested diagrams.

We start with the Schwinger-Dyson equation for the boson propagator in Eq. (2.65). At energy
scale µ, we need to know the boson propagator up to momentum µ/c, where c is the speed of the
boson. After the mass renormalization is subtracted, Eq. (2.65) is finite in the limit that kF and Λ
are large. With all momentum cutoffs set to be infinite, the external momentum is the only scale in
the integration, and it plays the role of a soft UV energy cutoff for the loop integration. When the
external momentum is µ/c, the upper bound for the soft UV energy cutoff is VF,0µ/c. This is because
the singular renormalization of the collective mode arises from electrons near the hot spots, and VF,0
is the largest component of velocity near the hot spots. This energy cutoff is translated into the upper
bound for the momentum cutoff,

Πµ =
1

VF,0v0

VF,0µ

c
=

µ

cv0
, (2.82)

where we use the fact that VF,0v0 is the smallest component of velocity17. We say the coupling functions
satisfy adiabaticity at energy scale µ if the relative variation of vk, VF,k and gk′,k is small within the
range of momentum Πµ, that is,

ϵµ ≡ max
|k′i−ki|<Πµ

{∣∣∣∣
VF,k′1 − VF,k1

VF,k1

∣∣∣∣ ,
∣∣∣∣
vk′1 − vk1
vk1

∣∣∣∣ ,
∣∣∣∣
gk′1,k′2 − gk1,k2

gk1,k2

∣∣∣∣

}
≪ 1, (2.83)

where all couplings are defined at energy µ. Here, we don’t expect the four-fermion coupling function
satisfies adiabaticity at general momenta because the four-fermion coupling function, being irrelevant,
has stronger momentum dependence than the marginal coupling functions. In Sec. 2.6, we will show
that if ϵΛ ≪ 118, ϵµ ≪ 1 at all µ ≤ Λ. For now, we assume that the adiabaticity is satisfied at all energy
scales and show how it simplifies the computation of quantum corrections. With Eq. (2.83), one can
ignore the variation of the coupling functions within the loop, and Eq. (2.65) can be approximated as

D−1(k) = mCT + 2g20,0

8∑

N=1

∫
dq GN (q|0)GN (q + k|0)

− 4

NcNf
g40,0

8∑

N=1

∫
dqdp GN (p + q|0)GN (p|0)GN (p + k|0)GN (p + q + k|0)D(q),

(2.84)

where the coupling functions are evaluated at the hot spots, and

GN (k|k′) =
1

ik0 + V
(N)
F,k′ eN [⃗k; v

(N)
k′ ]

(2.85)

17For example, with energy VF,0µ/c, electron-hole pairs can be created near hot spots 1 and 4 up to momentum
kx ∼ µ

v0c
away from the hot spots.

18This is a reasonable starting point in that bare coupling functions are smooth functions of momentum
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is the fermion propagator at k in which the coupling functions inside the propagator are evaluated at
k′. As in Eq. (2.4), the self-consistent equation in Eq. (2.84) gives

c(v0) =

√
v0

8NcNf
log

(
1

v0

)
, (2.86)

where v0 denotes the nesting angle at the hot spots. Provided that Eq. (2.83) is satisfied at energy
scale µ, Eq. (2.3) is the valid expression up to momentum µ/c with the boson velocity given by Eq.
(2.86).

Now, let us consider other vertex functions. Unlike the boson propagator, other diagrams that
contribute to the counter terms in Eq. (2.34) are in general UV divergent logarithmically in Λ, kF or
both. This implies that internal momenta in those diagrams can be much bigger than µ, and we can
not use adiabaticity to compute the quantum corrections. However, what we need is the derivative
of the counter terms with respect to logµ not the counter terms themselves. The derivatives capture
the contributions generated from the fast modes within an infinitesimal window of energy scales, and
determine the beta functionals. Because Λ is the UV energy cutoff, the derivative of the counter terms
are finite in the large Λ limit. However, they are not necessarily finite in the large kF limit as there
are gapless fermionic modes with large momenta.

Therefore, we are led to consider two types of UV divergent quantum corrections separately. The
quantum corrections of the first type are those whose derivative with respect to logµ are finite in the
large kF limit. Quantum corrections that are generated by small-angle scatterings belong to this type.
For example, in diagrams that involve only the Yukawa couplings, spin fluctuations scatter electrons
between patches that are not nested with each other for v ̸= 0. Consequently, internal fermions can not
be scattered far away from external momenta modulo Q⃗AF . In the derivative of quantum corrections,
all components of internal momenta become dynamically bounded by the external energy, and its
contribution to the beta functional is finite even in the large kF limit. Their contributions to the beta
functional can be computed by treating the coupling functions inside loops as constants as far as the
adiabaticity condition is satisfied. The quantum corrections of the second type are the ones whose
derivative with respect to log µ are not finite in the large kF limit while being finite in the large Λ
limit. The second type of quantum corrections arise from large-angle scatterings in the channels in
which fermions can stay close to the Fermi surface over an extended phase space that is not bounded
by energy. For example, Cooper pairs with zero net momentum can be created far away from the hot
spots without electronic energy penalty, and the phase space for virtual low-energy excitations is not
limited by the external energy. In those cases, even the derivative of the counter terms remain sensitive
to the size of the Fermi surface, and we can not ignore the momentum profiles of the coupling functions
within loops. For the second type, the beta functionals should be expressed as integrations over the
momenta along the Fermi surface. We will come back to the second type of quantum corrections
when we explicitly compute quantum corrections that include the four-fermion couplings in the nested
channels in Sec. 2.5.2. In the rest of the section, we discuss how adiabaticity is invoked to simplify
the computation of quantum corrections of the first type.

Let us start with the contributions of A(i)(k) with i = 1, 2, 3 to the beta functionals. Let Σ1(k) be

the exact fermion-self energy in Eq. (2.67) at hot spot 1. While ∂Σ1(k)
∂kρ

is UV divergent logarithmi-

cally, ∂
∂ log µ

∂Σ1(k)
∂kρ

∣∣∣
k=(µ,kx,−vkxkx)

is UV finite. Since external fermions are on the Fermi surface with

frequencies that are O(µ), the soft UV cutoff for the loop momentum is µ for the UV finite integral.
Since there is no loop that is purely made of fermions in this case, one necessarily creates bosonic
virtual particle in the loop whose energy increases as c|qx|+c|qy|, where q⃗ is the loop momentum. This
makes the momentum cutoff for the internal loop to be µ/c. Therefore, the adiabaticity is satisfied if
the variation of the coupling functions can be ignored over µ/c. If Eq. (2.83) is satisfied, this condition
is automatically satisfied. Because the integrand is peaked at q = 0, we can replace gk+q,kgk,k+q, vk+q
and VF,k+q with those evaluated at q = 0 in Eq. (2.67) to the leading order in ϵµ. The derivative of
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the counter term for the fermion kinetic term can be written as

∂

∂ log µ

∂Σ1(k)

∂kρ

∣∣∣∣
k=(µ,kx,−vkxkx)

=
∂

∂ log µ

∂Σ1(k)

∂kρ

∣∣∣∣
k=(µ,kx,−vkxkx)

+ . . . , (2.87)

where Σ1(k) is the self-energy computed in the adiabatic limit,

Σ1(k) = −g2k,k
2(N2

c − 1)

NcNf

∫
dq G4(k + q|k)D(q), (2.88)

and ... represents corrections that are further suppressed by ϵµ. In Sec. 2.6, it will be shown that
ϵµ ∼ √

v. Therefore, the terms that are ignored in the adiabatic approximation are sub-leading in
the small v limit. In Eq. (2.87), the momentum dependent coupling functions are evaluated at the
external momentum, kx because the integrand is peaked at q = 0 with the soft UV cutoff that is
order of µ/c. It is noted that external fermions can be far away from the hot spots, and momentum
dependent coupling functions can not be replaced with those evaluated at the hot spots in general.
However, one can still invoke adiabaticity locally in the momentum space at any point on the Fermi
surface. Even if a coupling function at k is significantly different from its value at the hot spots, the
coupling functions are still adiabatic if their variation is slow locally at that momentum. Since the
derivative of the coupling functions is largest near the hot spots as will be shown in Sec. 2.6, the
adiabatic condition is most stringent near the hot spots. Namely, Eq. (2.83) is satisfied for general
ki’s on the Fermi surface, if it is satisfied near the hot spots.

Similarly, the contribution of the vertex correction in Fig. 2.2c to the beta functional of the Yukawa
coupling is given by

∂A(4)(k′x, kx)

∂ log µ

=
2

NcN
3
2

f

∂

∂ log µ

∫
dq gk′,k′+qgk′+q,k+qgk+q,kD(q)G4(k′ + q)G1(k + q)

∣∣∣∣∣∣ k′ = (2µ, k′x,−vk′
x
k′x)

k = (µ, kx, vkxkx)
.

(2.89)
The degree of divergence of A(4) is 0, and its derivative with respect to µ is UV finite. Consequently,
the singular part of Eq. (2.89) can be computed as

∂A(4)(k′x, kx)

∂ log µ

=
2

NcN
3
2

f

gk′,k′gk′,kgk,k
∂

∂ log µ

∫
dq D(q)G4(k′ + q|k′)G1(k + q|k)

∣∣∣∣∣∣ k′ = (2µ, k′x,−vk′
x
k′x)

k = (µ, kx, vkxkx)

+ . . .

(2.90)
to the leading order in v.

2.5 Beta functionals

In this section, we compute the beta functionals for the nesting angle, Fermi velocity, electron-boson
coupling and four-fermion coupling functions.
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2.5.1 Nesting angle, Fermi velocity and electron-boson coupling

To the leading order in v, the counter terms to the fermion kinetic term and the cubic coupling are
given by (see Appendix A for derivation)

A(1)(k) = −h(1)k log

(
Λ

H1(µ, 2vkck)

)
+A(1)

reg(k),

A(2)(k) =
2

π
h
(1)
k

c

VF,k
log

(
VF,k
c

)
log

(
Λ

H1(µ, 2vkck)

)
+ 3h

(2)
k log

(
Λ

H1(µ, 4VF,kvkk)

)
+A(2)

reg(k),

A(3)(k) = − 2

π
h
(1)
k

c

VF,k
log

(
VF,k
c

)
log

(
Λ

H1(µ, 2vkck)

)
− h

(2)
k log

(
Λ

H1(µ, 4VF,kvkk)

)
+A(3)

reg(k),

A(4)(k′, k) = −h(1)k′,k log

(
Λ

H3(µ, 2vkck, 2vk′ck′,Rk′,k)

)
+A(4)

reg(k
′, k),

(2.91)
where

h
(1)
k =

N2
c − 1

π2NcNf

g2k
cVF,k

, (2.92)

h
(1)
k′,k =

2gkgk′

π2cNcNf (VF,k + VF,k′)
log

(
c(V −1

F,k + V −1
F,k′)

vk + vk′

)
, (2.93)

h
(2)
k =

N2
c − 1

2π4N2
cN

2
f

g4k
c2V 2

F,k

log2

(
VF,kvk
c

)
(2.94)

with gk ≡ gk,k and Rk′,k = 4(vk′k
′ + vkk)/(V −1

F,k′ + V −1
F,k). Hi(x1, k2, .., xi+1)’s represent smooth

crossover functions that satisfy

Hi(x1, x2, .., xi+1) ≈ |xj | if |xj | ≫ |x1|, .., |xj−1|, |xj+1|, .., |xi+1| . (2.95)

The form of the crossover functions depend on the subtraction scheme. The specific form of Hi is
not important for us as far as the counter term removes all IR divergences in physical observables.
Choosing different Hi amounts to modifying the finite parts, Fi in Eqs. (2.26)-(2.29) and imposing a
different set of renormalization conditions. Each counter term is proportional to

log

[
Λ

Hi(µ,∆1, ..,∆i)

]
, (2.96)

where µ is the energy scale at which the RG condition is imposed, and ∆i represents crossover energy
scales that depend on external momenta. Physically, these energy scales correspond to the energies
that virtual particles have to carry within loops for given external momenta. If µ is much larger than all

∆i’s, Eq. (2.96) becomes log
(

Λ
µ

)
, and the quantum correction gives rise to the logarithmic flow of the

coupling functions as the energy is lowered. If µ becomes much smaller than any of ∆i, the quantum
correction becomes independent of µ, and no longer contributes to the flow of coupling functions.
Roughly speaking, the contribution to the beta function turns off below the energy scale which is
given by the largest of ∆i’s. Since quantum corrections turn off at different energy scales at different
points on the Fermi surface, the renormalized coupling functions acquire momentum dependence at
low energies even if one starts with momentum independent coupling functions at the UV cutoff scale.

A
(i)
reg. represent terms that are regular in the limit that log Λ

Hi
is large. In our minimal subtraction

scheme, we can set A
(i)
reg. = 0 for i = 1, 4. One still needs to include A

(2)
reg. and A

(2)
reg. to enforce the

RG condition in Eq. (2.25) because the finite parts of the fermion self-energy affect the shape of the
renormalized Fermi surface. However, the contribution of the regular counter terms to the flow of the
coupling function diminishes in the small µ limit.
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A(i)(k) for i = 1, 2, 3 are the counter terms for the kinetic term of the electron at momentum k
away from the hot spot 1 along the Fermi surface. A(4)(k′, k) is the counter term for the cubic vertex
that describes the scattering of electron from momentum k near hot spot 4 to momentum k′ near hot

spot 1. In general, the quantum corrections are functionals of the coupling functions. However, h
(1)
k

and h
(2)
k depend only on the coupling functions at momentum k. Similarly, A(4)(k′, k) depends only on

the coupling functions that are defined at k and k′ due to adiabaticity. Through explicit calculations,
we will show that the coupling functions that satisfy the adiabaticity at a UV scale continue to satisfy
the adiabaticity below the UV scale.

The counter terms that include h
(1)
k are the contributions of the one-loop fermion self-energy in Fig.

2.2a. Besides the factor of g2k, there are factors of 1/VF,k and 1/c inside h
(1)
k because the phase space

of the loop momentum is controlled by the Fermi velocity in one direction and the boson velocity
in another direction. For A(2)(k) and A(3)(k), there is an additional factor of c/VF,k because the
quantum correction that renormalizes the Fermi velocity is controlled by the boson velocity19. Inside
H1, 2vkck denotes the crossover energy scale determined from the kinematics of the virtual particles
in the loop. For the external fermion at momentum (kx,−vkxkx) on the Fermi surface near hot spot
1, the energies of the intermediate boson and electron in the loop can be written as c (|qx| + |qy|) and
VF,kx+qx (vkx+qx(kx + qx) − qy + vkxkx), respectively, where q⃗ is the momentum carried by the internal

boson. For k⃗ = 0, the electron can be scattered right onto the hot spot 4 by emitting or absorbing a
boson with zero energy. In this case, all virtual particles have zero energy at q⃗ = 0, and an infrared
divergence arises in the low-energy limit. If the external electron is away from the hot spot (k ̸= 0), it
is impossible for the electron to be scattered onto the Fermi surface with a zero-energy boson. If it is
to be scattered onto the Fermi surface in hot spot 4, it must create a boson with energy that is order
of 2cvkxkx. On the other hand, if the virtual boson carries zero energy, the internal electron should be
created away from the Fermi surface with energy that is order of VF,kxvkxkx as is illustrated in Fig.
1.7. Since the boson is slower than fermion (c≪ VF ) in the small v limit, it is energetically ‘cheaper’ to
create a bosonic excitation while keeping virtual fermions on the Fermi surface. The crossover scale is
given by the minimum energy that virtual particles have to carry among all possible choices of internal
momentum, and the crossover scale for the one-loop self-energy becomes

E
(1L)
k = 2vkc|k|. (2.97)

Below the crossover energy scale, the energy cost for creating virtual excitations becomes bigger than
µ, and the one-loop quantum correction is dynamically turned off.

The counter terms that are proportional to h
(2)
k are from the two-loop fermion self-energy shown

in Fig. 2.2b. In the two-loop diagram, the crossover energy scale is different from that of the one-loop
diagram. The energies of the two internal bosons and three internal fermions created in the loops can
be written as E1 = c (|qx| + |qy|), E2 = c (|px| + |py|), E3 = VF,kx+qx (vkx+qx(kx + qx) − qy + vkxkx),
E4 = VF,kx+px (vkx+px(kx + px) − py + vkxkx), E5 = VF,kx+qx+px (vkx+px+qx(kx + px + qx) − vkxkx +
py + qy), as functions of internal momenta q⃗ and p⃗. For k ̸= 0, it is kinematically impossible to put all
virtual particles at zero energy. If all internal fermions are to be on the Fermi surface, at least one boson
has to carry energy that is order of ckx. Alternatively, zero-energy bosons with q⃗ = p⃗ = 0 put internal
fermions away from the Fermi surface with energy that is order of VF vk. Since c≫ VF v in the small v
limit, it is energetically favourable to create fermions away from the Fermi surface while keeping bosons
at zero energy. The crossover energy scale, obtained by minimizing max{|E1|, |E2|, |E3|, |E4|, |E5|} over
difference choices of q⃗ and p⃗, becomes

E
(2L)
k = 4VF,kvk|k|. (2.98)

Since E
(2L)
k > E

(1L)
k for k ̸= 0, electrons away from the hot spots disengage with the two-loop quantum

correction at higher energy scales than the one-loop correction.

19The one-loop self-energy diagram depends on the external momentum only through the combination of ck⃗.
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The counter term that is proportional to h
(1)
k′,k is from the vertex correction in Fig. 2.2c. When

the electron at momentum k near hot spot 1 is scattered to momentum k′ near hot spot 4, the virtual
particles are created with energies, E1 = c (|qx| + |qy|), E2 = VF,kx+qx (vkx+qx(kx + qx) − qy + vkxkx)
and E3 = VF,k′x+qx

(
vk′x+qx(k′x + qx) + qy + vk′xk

′
x

)
, where q⃗ is the momentum of the internal boson.

The crossover energy scale is given by minimizing max{|E1|, |E2|, |E3|} over q⃗. To have a rough
estimation of the crossover scale, one can first set the energy of one of the internal fermions (say E2) to
zero by choosing qy = vkx+qx(kx + qx) + vkxkx. With difference choices of qx, one can tilt the balance
between E1 and E3. Since c≫ v, it is energetically favourable to minimize the energy of boson at the
expense of the energy of fermion : with qx = 0, we have E1 = 2cvkxkx and E3 = 2VF,k′x

(
vk′xk

′
x + vkxkx

)
.

The bigger between these two determines the crossover scale. An explicit calculation (Appendix A

A.2) shows that the crossover scale is symmetric between k and k′, and can be written as max{E(1L)
k ,

E
(1L)
k′ , E

(1L)
k′,k }, where

E
(1L)
k′,k =

4vkk + 4vk′k
′

V −1
F,k + V −1

F,k′
. (2.99)

From Eqs. (2.43) - (2.45), one obtains the beta functionals for vk, VF,k and gk′,k, and the anomalous

dimension of fermion η
(ψ)
k . To the leading order in v, solving the beta functionals from the quantum

corrections can be greatly simplified as one can use

dZi(k)

d logµ
=
∂Ai(k)

∂ log µ
(2.100)

in Eqs. (2.43) - (2.47) and Eqs. (2.48)-(2.50). The rest of the terms in Eq. (2.51) are of higher order
in v. At low energies, one can drop the contributions from the finite counter terms. The resulting beta
functionals and the anomalous dimension are given by

β
(v)
k = vk

[
4

π
h
(1)
k

c

VF,k
log

(
VF,k
c

)
θ1(µ,E

(1L)
k ) + 4h

(2)
k θ1(µ,E

(2L)
k )

]
, (2.101)

β
(VF )
k =VF,k

[
− 2

π
h
(1)
k

c

VF,k
log

(
VF,k
c

)
θ1(µ,E

(1L)
k ) + h

(1)
k θ1(µ,E

(1L)
k ) +

2

π
h
(1)
0 c log

(
1

c

)
− h

(1)
0

+ h
(2)
0 − h

(2)
k θ1(µ,E

(2L)
k )

]
,

(2.102)

β
(g)
k′,k =gk′,k

[
h
(1)
0,0 − h

(1)
k′,kθ3(µ,E

(1L)
k , E

(1L)
k′ , E

(1L)
k′,k ) − h

(1)
0

+
h
(1)
k θ1(µ,E

(1L)
k ) + h

(1)
k′ θ1(µ,E

(1L)
k′ )

2
+ 2h

(2)
0 +

2

π
h
(1)
0 c log

1

c

]
,

(2.103)

η
(ψ)
k =

h
(1)
k

2
θ1(µ,E

(1L)
k ) − (z − 1), (2.104)

where h
(1)
k , h

(1)
k′,k and h

(2)
k are defined in Eqs. (2.92)-(2.94), and

θi(µ,∆1, ..,∆i) =
∂ log Hi(µ,∆1, ..,∆i)

∂ log µ
(2.105)

is the derivative of the crossover function with respect to the energy scale. It controls whether each
term in the beta functional is turned on or off depending on whether µ is greater or less than the
momentum dependent the crossover energy scales.
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2.5.2 Four-fermion coupling

In this section, we compute the beta functional for the four-fermion coupling. To the lowest order in
v, Eq. (2.46) can be written as

β
(λ);{Ni};{σi}
{ki} =


1 + 3(z − 1) +

4∑

j=1

η
(ψ,Nj)
kj


λ

{Ni};{σi}
{ki} − 4µ

∂Γ̃
{Ni};{σi}
CT ({ki})

∂ log µ
, (2.106)

where Γ̃
{Ni};{σi}
CT ({ki,Ni

}) represents the local counter terms that are needed to remove the singular
parts of the vertex correction. On the right hand side of Eq. (2.106), the first term represents the fact
that the four-fermion couplings have scaling dimension −1 at the tree-level. The next two terms are
the contributions from the anomalous dimension of frequency (z − 1) and the momentum-dependent

anomalous dimension of the fermion field (η
(ψ,N)
k ), respectively. These are common in all channels.

What is channel dependent is the last term that represents the vertex corrections. To the leading order,
there are three distinct vertex corrections. The first is the one in which four-fermion couplings are
generated from the spin fluctuations. This gives rise to a term in the beta function that is independent
of the four-fermion couplings. The diagrams that source the four-fermion coupling at the lowest order
in v are shown in Fig. 2.7. The second type of the vertex correction describes the processes in which
spin fluctuations mix quartic fermion operators in different channels and momenta. The leading order
diagrams that describe the linear mixing are shown in Fig. 2.8. It generates a term that is linear in
the four-fermion couplings but off-diagonal in the space of channel and momentum. Finally, quantum
corrections that are quadratic in the four-fermion couplings are shown in Fig. 2.9. This is the process
that drives the pairing instability (or particle-hole instability if there is a nesting) in the presence of
attractive interactions in Fermi liquids.

For general Fermi surface without the PH symmetry, we only need to consider the forward scattering
channel in group 1 and the BCS channel in group 2. For the derivation of the counter terms that lead
to the beta functional through Eq. (2.106), see Appendix B. In Appendix D, we discuss the additional
channels that need to be considered in the presence of the PH symmetry.

Group 1 : small-angle scatterings

Before we show the result of explicit calculation, let us first describe the physics that determines the
beta functionals. In group 1, the critical spin fluctuations generate the source term in the ( 1 1

1 1 ) channel.
In the small v limit, only the ladder diagrams shown in Fig. 2.7 give the leading order contribution.
It is noted that tree-diagrams do not contribute to the 1PI vertex function. In the ladder diagrams,
a pair of electron and hole near hot spot 1 are scattered to intermediate states near hot spot 4 before
they are scattered back to the region near hot spot 1 by exchanging critical bosons. In the absence
of the PH symmetry, there is no IR singularity for the diagram in the PP channel due to a lack of
nesting. The coupling in the forward scattering channel that is potentially IR singular can be written

as λ
( 1 1
1 1 )(
p k
k p

). On the dimensional ground, one expects to encounter a logarithmic divergence for general

k and p because both fermions in the loop of Fig. 2.7 can stay on the Fermi surface irrespective of the
relative momentum along the Fermi surface 20. However, the actual IR singularity arises only for

λ
( 1 1
1 1 )(
0 k
k 0

), λ
( 1 1
1 1 )(
k 0
0 k

), (2.107)

where at least one electron-hole pair are at the hot spot. This is because the Pauli exclusion principle
suppresses the low-energy phase space for particle-hole pairs created on one side of the Fermi surface.

20Even if both k and p are non-zero, a boson that carries a non-zero momentum can scatter external fermions to virtual
states on the Fermi surface. One naively expects a logarithmic divergence as two fermions can have zero three-momentum
in the space of internal three-momentum with co-dimension 2.
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Figure 2.15: When an electron with momentum k near hot spot 1 on the Fermi surface is scattered to
momentum p near hot spot 4 on the Fermi surface by exchanging a boson with energy µ, the interaction
is largest in the shaded region in which both k and p are less than µ/(vc) and their difference is less
then µ/c in magnitude. Outside the shaded region, the interaction decays in a power-law.

For example, the phase space that is available for an electron-hole pair with total momentum q⃗ vanishes
in the zero q⃗ limit. As a result, the diagram exhibits a logarithmic singularity only with the help of the
critical boson. When a pair of external electron-hole pair are at the hot spot 1, they can be scattered
right onto the hot spot 4 through the boson with zero energy. Since two fermions and one boson can
simultaneously have zero three-momentum, a logarithmic divergence arises. Once the spin fluctuations
generate the source term in the ( 1 1

1 1 ) channel, it spreads to other channels through linear mixing (Fig.
2.8). The same reasoning that determines the IR singularity of the source term shows that the mixing
terms exhibit IR singularity only for external momenta shown in Eq. (2.107). In the ( 1 1

1 1 ) channel,
the diagrams in Fig. 2.9 do not have IR singularity because the critical boson is not involved in those
processes.

The fact that the coupling function receives singular vertex correction only for Eq. (2.107) can be

checked from the full expression of the beta functional for λ
( 1 1
1 1 )(
p k
k p

) at general k and p

β
(λ);( 1 1

1 1 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

−
∫

dρ(q)

{
Dµ(k; q)2

2πNfg2q,k
λ

( 1 4
4 1 );

(σ1 α
β σ3

)

( p qq p )
Tβσ2
σ4α +

Dµ(p; q)2

2πNfg2p,q
Tσ1α
βσ3

λ
( 4 1
1 4 );

(
β σ2
σ4 α

)

(
q k
k q

)

− Dµ(p; q)Dµ(q; k)

πN2
f

Tβσ2
σ4αT

σ1α
βσ3

(
Dµ(q; k)

g2q,k
+

Dµ(p; q)

g2p,q

)}
.

(2.108)

Here all repeated spin indices are understood to be summed over. Tσ1σ2
σ4σ3

is defined in Eq. (2.73).∫
dρ(q) =

∫
dq

2πµVF,q
represents integration along the Fermi surface with the measure normalized by
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energy scale µ and the Fermi velocity.

Dµ(q; k) =g2q,k
µ

µ+ c
(
|q − k|µ + |vqq + vkk|µ

) (2.109)

with |k|µ =
√
k2 + µ2 represents the contribution of the gapless spin fluctuations that renormalizes the

short-range four-fermion coupling at energy scale µ. This arises from local counter terms that remove
IR singularities of the loop correction in the small µ limit. For |q−k| ≫ µ, Dµ(q; k) coincides with the
interaction mediated by the collective mode with spatial momentum (q − k, vqq + vkk) at energy µ,
where (q−k, vqq+vkk) denotes the momentum that is needed to scatter an electron from (k,−vkk) near
hot spot 1 to (q, vqq) near hot spot 4 on the Fermi surface. In the limit that q and k are small, Dµ(q; k)
smoothly saturates to a constant and represents a local interaction in the real space. The main support
of Dµ(q; k) in the space of q and k is given by SD = {(q, k)||q− k| < µ/c, |q| < µ/(vc), |k| < µ/(vc)} as

is illustrated in Fig. 2.15. η
(ψ)
k is the momentum dependent anomalous dimension of fermion defined

in Eq. (2.104). To the leading order in v, η
(ψ)
k is given by

η
(ψ)
k =

N2
c − 1

2π2NcNf

g2k
cVF,k

µ

µ+ 2cvk|k|µ
− (z − 1). (2.110)

The first line in Eq. (2.108) is the contribution of the tree-level scaling dimension and the anomalous
dimensions of frequency and the fermion fields. The second line represents the mixings between

λ
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

) and

{
λ

( 1 4
4 1 );

(σ1 α
β σ3

)

( p qq p )
, λ

( 4 1
1 4 );

(
β σ2
σ4 α

)

(
q k
k q

)

}
. Since the momentum along the Fermi surface

acts as a continuous flavour, the mixing with coupling functions at different momenta is represented
as the integration over q. The last line is the contribution of the ladder diagrams that source the
four-fermion coupling. It is essentially the convolution of two boson propagators that are needed to
scatter an electron from momentum k to the intermediate momentum q and finally to momentum p.

The additional factor
(

Dµ(q;k)

g2k,q
+

Dµ(q;p)
g2p,q

)
arises from the derivative of Dµ(q; k) with respect to log µ to

the leading order in v limit21. It is noted that the full vertex correction is written as integrations over
the momentum along the Fermi surface in Eq. (2.108).

If both p and k are away from the hot spots, the vertex corrections vanish in the small µ limit. On
the other hand, the phase space in which both k and p are near the hot spot is negligible. Therefore,
we focus on the forward scattering between an electron near the hot spot and an electron away from
the hot spot. For k ≈ 0 and |p| ≫ µ/(vc), λ( p qq p ) and Dµ(q; p) as functions of q vary much more slowly

compared to Dµ(k; q)2 which is sharply peaked at q = k22. Then, we can use
∫
dq Dµ(k; q)2f(q; p) ≈

f(k; p)
∫
dq Dµ(k; q)2 for f(q; p) = λ( p qq p ) or Dµ(q; p) to simplify the beta functional as23

β
(λ);( 1 1

1 1 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

−
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 1 4
4 1 );

(σ1 α
β σ3

)

(
p k
k p

) Tβσ2
σ4α − g2p,p

2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1α
βσ3

λ
( 4 1
1 4 );

(
β σ2
σ4 α

)

(
p k
k p

)

+ Tβσ2
σ4αT

σ1α
βσ3

Dµ(p; k)

π2cN2
f

[
µg2k,k

VF,k(µ+ 2vkc|k|µ)
+

µg2p,p
VF,p(µ+ 2vpc|p|µ)

]

(2.111)

21Because the beta functional is given by the derivative of the quantum correction with respect to logµ, and the gapless
fermions alone do not exhibit IR singularity in the small µ limit, the derivative only acts on the boson propagator.

22The profile of λ will be confirmed from the solution of the beta functional in Sec. 2.6.
23We can also use

∫
dq Dµ(p; q)2f(q; k) ≈ f(p; k)

∫
dq Dµ(p; q)2 because both sides vanish in the small µ limit for

k ≈ 0 and |p| ≫ µ/(vc).
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in the small µ limit. Here,
g2k,k

2π2cNfVF,k

µ
µ+2vc|k|µ corresponds to the momentum dependent mixing

matrix element. For k = 0 and p ̸= 0 (k ̸= 0 and p = 0), λ
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

) mixes only with λ
( 1 4
4 1 );

(σ1 α
β σ3

)

(
p k
k p

)

(
λ

( 4 1
1 4 );

(
β σ2
σ4 α

)

(
p k
k p

)

)
in the small µ limit. This implies that the forward scattering amplitude is mainly

renormalized through the electrons at the hot spots as is indicated in Table. 2.2.

Since the beta functional for λ( 1 1
1 1 ) depend on λ( 1 4

4 1 ), λ( 4 1
1 4 ), and their beta functionals depend

on λ( 4 4
4 4 ), we need to compute the beta functionals for those couplings to have a closed set of beta

functionals. The beta functionals for the other couplings are obtained to be

β
(λ);( 1 4

4 1 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 4
4 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

−
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 1 1
1 1 );

(σ1 α
β σ3

)

(
p k
k p

) Tβσ2
σ4α − g2p,p

2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1α
βσ3

λ
( 4 4
4 4 );

(
β σ2
σ4 α

)

(
p k
k p

) ,

(2.112)

β
(λ);( 4 1

1 4 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 4 1
1 4 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

−
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 4 4
4 4 );

(σ1 α
β σ3

)

(
p k
k p

) Tβσ2
σ4α − g2p,p

2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1α
βσ3

λ
( 1 1
1 1 );

(
β σ2
σ4 α

)

(
p k
k p

) ,

(2.113)

β
(λ);( 4 4

4 4 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 4 4
4 4 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

−
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 4 1
1 4 );

(σ1 α
β σ3

)

(
p k
k p

) Tβσ2
σ4α − g2p,p

2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1α
βσ3

λ
( 1 4
4 1 );

(
β σ2
σ4 α

)

(
p k
k p

)

+ Tβσ2
σ4αT

σ1α
βσ3

Dµ(p; k)

π2cN2
f

[
µg2k,k

VF,k(µ+ 2vkc|k|µ)
+

µg2p,p
VF,p(µ+ 2vpc|p|µ)

]
.

(2.114)

The beta functional for λ
( 4 4
4 4 );(σ1 σ2

σ4 σ3
)(

p k
k p

) takes the same form as that of λ
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

) because those two

are related to each other through the C4 symmetry. On the other hand, there is no source term for

λ
( 1 4
4 1 );(σ1 σ2

σ4 σ3
)(

p k
k p

) and λ
( 4 1
1 4 );(σ1 σ2

σ4 σ3
)(

p k
k p

) to the leading order in v as is shown in Eqs. (2.111) and (2.114).

Group 2 : BCS pairing

In group 2, the ladder diagrams in Fig. 2.7 generate λ( 1 5
1 5 ). It then mixes with λ( 4 8

1 5 ), λ( 1 5
4 8 ) through

diagrams in Fig. 2.8. In terms of how couplings are mixed in the space of hot spots, the structure of the
beta functionals is similar to the ( 1 1

1 1 ) channel except that the mixing occurs in the particle-particle
channel for general k and p in group 2. There are more important differences in how operators with
different momenta mix in this channel compared to the ( 1 1

1 1 ) channel. The difference arises from the
fact that the couplings in the ( 1 5

1 5 ) channel describe scatterings of fermions on the opposite sides of
the Fermi surface, and the phase space of a pair of fermions in antipodal patches is not suppressed
by the Pauli exclusion principle. Namely, a Cooper pair with zero center of mass momentum can be
placed anywhere above but arbitrarily close to the Fermi surface. As a result, IR divergences arise
within a two-dimensional space of external momenta irrespective of the relative momenta of electrons
within incoming and outgoing Cooper pairs.
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The beta functional for λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) at generic k and p is given by

β
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+

∫
dρ(q)

{
−Dµ(p; q)

2πNf
Tσ1σ2

αβ λ
( 4 8
1 5 );

(
α β
σ4 σ3

)

(
q −q
k −k

) − Dµ(q; k)

2πNf
λ

( 1 5
4 8 );

(σ1 σ2

α β

)

(
p −p
q −q

) Tαβσ4σ3

+
1
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(2.115)

λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) describes the interaction in which a pair of electrons with zero center of mass momentum

are scattered in antipodal hot patches. The first line in Eq. (2.115) is the contribution from the
tree-level scaling dimension and the anomalous dimensions. The second line represents the linear

mixing between λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) and

{
λ

( 4 8
1 5 );

(
α β
σ4 σ3

)

(
q −q
k −k

) , λ
( 1 5
4 8 );

(σ1 σ2

α β

)

(
p −p
q −q

)

}
. Unlike in Eq. (2.108), the mixing

between coupling functions at different momenta decays only in a single power of Dµ, and there is no
additional suppression even when both p and k are way from the hot spots. This is because the vertex
correction is IR divergent for any p and k. For example, the first term in the second line describes
the process in which a pair of electrons at momenta k and −k near hot spots 1 and 5 are scattered to
momenta q and −q near hot spots 4 and 8 through the short-range four-fermion interaction and then
to momenta p and −p near hot spots 1 and 5 by exchanging a boson. The next term can be understood
similarly. In this process, the internal fermions can simultaneously stay outside but close to the Fermi
surface for any q. This gives rise to a logarithmic IR singularity that is not tied to the criticality of the
boson. In the beta functional that is given by the integration over q, the amplitude of mixing is simply
controlled by the interaction mediated by the boson that carries the momentum needed to scatter the
pair of electrons within the Fermi surface. Since the mixing amplitude scales as Dµ(q, k) ∼ g2q,k/|q−k|
at large momenta, the contributions from large-angle scatterings are not strongly suppressed.

If the coupling functions are weakly dependent on momentum, the slow decay of the mixing matrix
gives rise to a logarithmic divergence log Λ′/µ, where Λ′ is a scale at which the large momentum is
cut off24. The explicit dependence of the beta functional on a UV scale is a manifestation of the
fact that the quantum correction itself exhibits a log2 divergence, where one logarithm is from the
BCS scatterings of the gapless fermions and the other logarithm is from the criticality of the boson.
In the functional RG formalism, the physical origins of these two logarithms are naturally resolved,
and they manifest themselves in different ways : µ in the fermionic log acts as an IR energy cutoff
that controls the ‘distance’ away from the Fermi surface and µ in the bosonic log acts as an IR cutoff
that regulates how operators with different momentum along the Fermi surface mix. Interestingly, the
mixing between operators with momenta q and k along the Fermi surface is controlled by Dµ(q, k).
The fact that the mixing between low-energy operators with large q − k is determined from the
dynamics of the high-energy boson implies that the four-fermion coupling function is not a low-energy
observable that can be predicted within the low-energy effective field theory. While the 1PI quartic
vertex function, represented by the four-fermion coupling function, can not be predicted within the
low-energy effective field theory, the theory is still predictive for a different low-energy observable that
captures the strength of two-body interaction. In Sec. 2.6, this will be discussed in full details. For
now, let us set this issue aside and complete the rest of the beta functionals. Once the full beta
functionals are completed, we will be in the better position to address the issue of UV/IR mixing more

24For example, the scale associated with the irrelevant kinetic term of the boson can act as a large momentum cutoff.
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systematically. The term in the third line is the source that is generated from the spin fluctuations.
Because there exists the fermionic logarithmic singularity associated with the virtual fermions that are
on the antipodal patches of the Fermi surface, the contribution to the beta function is simply given by
a convolution of two boson propagators without an additional suppression as in Eq. (D.7). Finally,
the last line is the usual term that drives the BCS instability in the presence of attractive four-fermion
couplings in Fermi liquids. Its contribution is expressed as a convolution of two four-fermion coupling
functions.25

Together with the beta functional for λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(
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) , the beta functionals for λ
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) ,

λ
( 4 8
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σ4 σ3
)(
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k −k

) form a closed set of flow equations at generic momenta in the two-dimensional plane of

IR singularity. The beta functionals for the remaining coupling functions are written as

β
(λ);( 4 8

1 5 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 4 8
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+

∫
dρ(q)

{
− 1

2πNf

[
Dµ(p; q)Tσ1σ2

αβ λ
( 1 5
1 5 );

(
α β
σ4 σ3

)

(
q −q
k −k

) + Dµ(q; k)λ
( 4 8
4 8 );

(σ1 σ2

α β

)

(
p −p
q −q

) Tαβσ4σ3

]

+
1

4π

(
λ

( 4 8
1 5 );

(σ1 σ2

β α

)

(
p −p
q −q

) λ
( 1 5
1 5 );

(
β α
σ4 σ3

)

(
q −q
k −k

) + λ
( 4 8
4 8 );

(σ1 σ2

β α

)

(
p −p
q −q

) λ
( 4 8
1 5 );

(
β α
σ4 σ3

)

(
q −q
k −k

)

)}
,
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(2.118)

Eq. (2.118) is related to Eq. (2.115) through the C4 symmetry. Similarly, Eq. (2.117) is related to Eq.
(2.116) through the symmetry. It is noted that there is no λ-independent source term for Eq. (2.116)
and Eq. (2.117).

25Here, we focus on the four-fermion couplings that are generated from the critical spin fluctuations to the leading

order in v. In the presence of a bare four-fermion coupling, more channels such as λ

(
1 5
2 6

)
λ

(
2 6
1 5

)
and λ

(
1 5
3 7

)
λ

(
3 7
1 5

)

should be included in the BCS term.
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2.5.3 The true fixed point

The full beta functionals that describe the flow of the coupling functions under the lowering of the
energy scale and the dilatation of momentum along the Fermi surface are Eqs. (2.54)-(2.57), where

β
(v)
k , β

(VF )
k , β

(g)
k′k and β

(λ)
{ki} are given by Eqs. (2.101)- (2.104), Eqs. (2.111) -(2.114), Eqs. (2.115)

-(2.118) 26. In the space of the coupling functions, a fixed point arises at

vk = 0, VF,k = 1, gk′k = 0, λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k+l p−l
k p

) = 0, (2.119)

with
g2
k′k
vk

= π
2 . Since the coupling functions in Eq. (2.119) are independent of momentum, β

(v)
k , β

(VF )
k ,

β
(g)
k′k and β

(λ)
{ki} also vanish at the fixed point. In the space of coupling functions, Eq. (2.119) is a

singular point, and the theory with gk′k = 0 and vk = 0 is well defined only after the ratio between
the Yukawa coupling and the nesting angle is specified as the singular point is approached. Since the
leading-order quantum corrections for the renormalized boson propagator are proportional to g2/v,
the ratio determines the anomalous dimension of the boson. For the non-interacting Gaussian theory,
g2
k′k
vk′′ = 0. With

g2
k′k
vk′′ = π

2 , there are infinitely many diagrams that renormalize the boson propagator

non-perturbatively. These are included in Schwinger-Dyson equation in Eq. (2.3), which gives rise to
anomalous dimension 1 for the boson. On the other hand, the anomalous dimension of the fermion

is proportional to g2/c (Eq. (2.104)). At the interacting fixed point with
g2
k′k
vk′′ = π

2 , g2k′k/c vanishes

because vk and c are related to each other through Eq. (2.4). Consequently, the fermion has no
anomalous dimension, and the dynamical critical exponent is 1 at the fixed point.

It turns out that Eq. (2.119) is an unstable fixed point as a generic perturbation added to the
fixed point drives the theory toward a superconducting state at low energies. We establish this by
solving the full beta functionals of theories that are tuned away from the fixed point. To be concrete,
we consider a UV theory with

vk = v0 ≪ 1, VF,k = 1,

gk′,k =

√
π

2
v0, λ

{Ni};{σi}
{ki} = 0

(2.120)

at a UV energy scale Λ. Here, we consider a small but non-zero nesting angle. The UV theory has
momentum independent nesting angle, Fermi velocity and Yukawa coupling with zero four-fermion
coupling. Considering this particular UV theory is not a strong constraint for the following reasons.
First, although the bare four-fermion coupling is zero at a UV scale in Eq. (2.120), non-zero four-
fermion couplings are generated from the spin fluctuations at low energies. Conclusions drawn for the
UV theory in Eq. (2.120) also apply to theories in which the bare four-fermion coupling is weaker
than the four-fermion coupling generated from the spin fluctuations. Second, even if the bare coupling
functions are chosen to be momentum-independent in Eq. (2.120), renormalized coupling functions
acquire non-trivial momentum dependence at low energies. We will see that the universal momentum
profiles of the coupling functions become singular near the hot spots in the low energy limit27. If a
UV theory has momentum dependent bare coupling functions, which must be smooth as functions of
momentum due to locality, the renormalized coupling functions acquire the same universal singularities
near the hot spots on top of the smooth profile of coupling functions. Third, the value of the Yukawa
coupling is merely a convention. It can be chosen to be any O(1) number in the absence of the bare
boson kinetic term that can be dropped at low energies in the vicinity of the interacting fixed point.
Finally, the simple momentum independent coupling functions chosen in Eq. (2.120) happens to possess
the PH symmetry. In this case, the four-fermion couplings also receive singular quantum corrections

26It is reminded that β
(v)
k , β

(VF )
k , β

(g)
k′k and β

(λ)
{ki}

describe the flow of the coupling functions with increasing energy

at fixed momenta without momentum dilatation.
27Below the superconducting transition temperature scale, the singularity is cut off.
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in the 2kF scattering channels in which the external momenta take values shown in Eq. (2.80) and
Eq. (2.81). The full beta functionals that include the 2kF scattering channels are derived in Appendix
D. However, at low energies, one can ignore the contributions from those additional couplings to the
flow of the couplings in the BCS pairing channel that drives the superconducting instability. This is
because the volume of the phase space in which the 2kF scattering channels overlap with the BCS
pairing channels vanishes in the low energy limit. For details, see Appendix D.

As it is the case for the hot spot theory, we organize quantum corrections in terms of v ∼ g2

to understand the full functional RG flow in the vicinity of the fixed point. g2/c ∼
√
v/ log(1/v)

controls the strength of the quantum corrections associated with the Yukawa coupling beyond the
non-perturbative quantum corrections that is included through Eq. (2.3). The four-fermion coupling
generated from the critical spin fluctuations is order of g4/c. Since the four-fermion coupling generated
from the loop corrections is smaller than the tree-level interaction mediated by the spin fluctuations,
one can understand the RG flow of v, VF and g without including the feedback of the four-fermion
coupling until the four-fermion coupling become large due to superconducting instability in the low-
energy limit. We will see that in the small v limit there is a large window of energy scale in which the
feedback of the four-fermion coupling can be ignored. In the low-energy limit in which the four-fermion
coupling becomes stronger than the interaction mediated by the spin fluctuations, the four-fermion
coupling dominates the physics and the spin fluctuations become largely unimportant.

2.6 Quasi-fixed points

In this section, we study the RG flow of the UV theory that are tuned away from the fixed point as
in Eq. (2.120). Because the feedback of the four-fermion coupling to the nesting angle, Fermi velocity
and the Yukawa coupling is negligible over a large window of length scale, we can first focus on the
flow equations of v, VF and g. Then, we discuss the beta functional for the four-fermion coupling.
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2.6.1 Fermi velocity and electron-boson coupling

From Eqs. (2.101)- (2.104), the beta functionals for vk, VF,k and gk′,k are written as
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Here ℓ is the logarithmic length scale, ℓ = log Λ/µ. Θi(ℓ, ℓ1, .., ℓi) = θi(Λe
−ℓ,Λe−ℓ1 , ..,Λe−ℓi) are

crossover functions written in terms of the logarithmic length scale, where θi is defined in Eq. (2.105).
At short (long) distance scales with ℓ≪ mini{ℓi} (ℓ≫ mini{ℓi}), Θi(ℓ1, .., ℓi, ℓ) ≈ 1 (Θi(ℓ1, .., ℓi, ℓ) ≈
0), and the corresponding term in the beta function is turned on (off). L(2L)(k′; ℓ), L(1L)(k′; ℓ) and
L(1L)(k′, k; ℓ) are the logarithmic length scales that mark three crossovers,

L(2L)(k; ℓ) = log

(
Λ

E
(2L)
k

)
, L(1L)(k; ℓ) = log

(
Λ

E
(1L)
k

)
, L(1L)(k′, k; ℓ) = log

(
Λ

E
(1L)
k′,k

)
, (2.124)

where L(2L)(k; ℓ), L(1L)(k; ℓ) and L(1L)(k′, k; ℓ) are implicit functions of ℓ through vk(ℓ), VF,k(ℓ) and
c(ℓ) that enter in Eqs. (2.97)- (2.99). Crossovers occur when ℓ crosses one or more of these length
scales defined by the self-consistent equations28,

ℓ
(2L)
k =L(2L)(k; ℓ

(2L)
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ℓ
(1L)
k =L(1L)(k; ℓ

(1L)
k ),

ℓ
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k′,k = min

{
L(1L)(k; ℓ

(1L)
k′,k ), L(1L)(k′; ℓ(1L)k′,k ), L(1L)(k′, k; ℓ

(1L)
k′,k )

}
.

(2.125)

28It is noted that E
(1L)
k , E

(1L)
k′,k and E

(2L)
k are functions of ℓ because the coupling functions in Eqs. (2.97)-(2.99)

depend on ℓ.
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Figure 2.16: Crossover energy scales associated with the two-loop fermion self-energy (E
(2L)
k ) and

the one-loop fermion self-energy (E
(1L)
k ), respectively. Since the flow of the couplings between E

(2L)
k

and E
(1L)
k is negligible, one can consider only one crossover, say E

(2L)
k . At energy scale Λe−ℓ, the

momentum space is divided into three regions. In the hot region (k < kh), electrons receive quantum
correction from the UV scale all the way down to the current energy scale Λe−ℓ. In the lukewarm
region (kh < k < kc), electrons received some quantum correction at high energies but are decoupled
from spin fluctuations at the current energy scale. In the cold region (k > kc), electrons do not receive
any quantum correction. Below the energy scale Λe−ℓ0 , the flow of v cannot be ignored for k < k∗

(Ch. 3).

The solutions to Eq. (2.125) are given by (see Appendices C.1.2)

ℓ
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(2.126)

Here ℓ0 is the length scale that parameterizes the bare nesting angle at ℓ = 0 as defined in Eq. (2.9).
Since the RG flow equations for vk, VF,k, gk do not depend on the off-diagonal Yukawa coupling

gk′,k, we first solve the beta functions for vk(ℓ), VF,k(ℓ), gk(ℓ) ≡ gkk(ℓ). For k′ = k, ℓ
(1L)
k′,k = ℓ

(2L)
k . The

beta functionals in Eq. (2.103) take different forms in each of the three windows of length scale : (i)

ℓ < ℓ
(2L)
k , (ii) ℓ

(2L)
k < ℓ < ℓ

(1L)
k , and (iii) ℓ

(1L)
k < ℓ. These regions are depicted in Fig. 2.16. In region

i), electrons receive renormalization from all quantum corrections generated by spin fluctuations to
the leading order in v. In region ii), the two-loop correction is turned off, but the one-loop quantum
corrections are still present. In region iii), electrons are decoupled from spin fluctuations. To have the

global solution, we solve the beta functions to obtain J
(i)
k (ℓ), J

(ii)
k (ℓ), J

(iii)
k (ℓ) for Jk = vk, VF,k, gk in

each energy window, and the coupling functions are matched at the boundary to ensure continuity.
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In the small v limit, h
(1)
k , h

(2)
k , h

(1)
k′k scale as w = v/c ∼

√
v/ log(1/v). As a result, the beta

functionals for Jk = vk, VF,k, gk are bounded by 1
J
∂J
∂ℓ ∼ w ≪ 1. Since ℓ

(1L)
k − ℓ
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k ∼ log 1/c, the net

change of the couplings that occur in ℓ
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k is only

|J(ℓ(1L)
k )−J(ℓ(2L)

k )|
J(ℓ

(2L)
k )

∼ w log(1/c) ≪ 1 in

the small v limit. Since the flow of couplings can be ignored in region (ii), we can use J
(iii)
k in both

regions (ii) and (iii). In this case, we only need to consider one crossover scale E
(2)
k besides the UV

cutoff scale Λ. At a given length scale ℓ, the Fermi surface can be divided into hot, lukewarm and cold
regions separated by two momentum scales kh(ℓ) and kc(ℓ) defined by

ℓ
(2L)
kh(ℓ)

= ℓ, ℓ
(2L)
kc(ℓ)

= 0. (2.127)

Below, we summarize the solution to the RG equation in each region. The derivation can be found in
Appendix C.

� Hot region : In 0 ≤ |k| ≤ kh(ℓ), the momentum dependent IR cutoffs are smaller than the energy
scale (Λe−ℓ), and electrons remains strongly coupled with spin fluctuations. Accordingly, vk,

VF,k and gk flow in the same way as in the hot spots : vk(ℓ) =
π2NcNf

2(N2
c−1)

1
(ℓ+ℓ0) log(ℓ+ℓ0)

, VF,k(ℓ) = 1

and gk(ℓ) =
√

πv0(ℓ)
2 as in Eq. (2.18). Here VF,k(ℓ) at the hot spot is chosen to be 1 as the

reference speed with respect to which all other speeds are measured.

� Lukewarm region : In kh(ℓ) ≤ |k| ≤ kc(ℓ), the momentum dependent IR cutoff is larger than
the floating energy scale, µ = Λe−ℓ, but smaller than the UV cut off, Λ. Electrons in this range

of momentum receive quantum corrections within a window of energy scale given by Λe−ℓ
(2L)
k <

E < Λ before they decouple below Λe−ℓ
(2L)
k . Once electrons are decoupled, the coupling with

spin fluctuations decreases with increasing ℓ while vk(ℓ) freezes out. Since spin fluctuations no
longer slow electrons down, VF,k(ℓ) increases relative to VF,0(ℓ). The momentum profiles of the
coupling functions are determined from the momentum dependent IR cutoff. Since electrons
farther away from the hot spots decouple from spin fluctuations at higher energies, gk(ℓ) decays
while vk(ℓ) and VF,k(ℓ) increases with increasing momentum. It is noted that the division of the
hot and lukewarm regions depends on the energy scale. As the energy is lowered, the hot region
shrinks while the lukewarm region grows as more electrons on the Fermi surface are decoupled
from spin fluctuations.

� Cold region : In |k| ≥ kc(ℓ), electrons are too far away from the hot spots to receive any significant
renormalization from spin fluctuations at energies below Λ. In this region, vk(ℓ) does not run,
while gk(ℓ) (VF,k(ℓ)) constantly decreases (increases) with increasing ℓ.

At a given scale ℓ, the momentum dependent coupling functions are obtained to be

vk(ℓ) =





v0(ℓ) k < kh(ℓ)

v0(ℓ
(2L)
k ) kh(ℓ) < k < kc(ℓ)

v0(0) kc(ℓ) < k

(2.128)

gk(ℓ) =





√
πv0(ℓ)/2 k < kh(ℓ)√
π
2 v0(ℓ

(2L)
k ) E0(ℓ; ℓ

(2L)
k ) kh(ℓ) < k < kc(ℓ)√

πv0(0)/2 E0(ℓ; 0) kc(ℓ) < k

, (2.129)

VF,k(ℓ) =





1 k < kh(ℓ)

E1(ℓ; ℓ
(2L)
k ) kh(ℓ) < k < kc(ℓ)

E1(ℓ; 0) kc(ℓ) < k

, (2.130)
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(a) (b)

(c) (d)

Figure 2.17: (a) vk(ℓ), (b) VF,k(ℓ), (c) gk(ℓ) ≡ gkk(ℓ) and (d) gk′k(ℓ) plotted as functions of momentum
along the Fermi surface for the theory with a constant bare nesting angle, v0(0) = 0.1. For plots in
(a)-(c), the coupling functions are shown for ℓ = 1, 2, 3, where µℓ = Λe−ℓ denotes the energy scale
associated with ℓ = 1, 2, 3. In the hot region near k = 0, the coupling functions are essentially
independent of momentum, taking the values of the coupling constants of the hot spot theory. The
coupling functions are also constants in the cold region as electrons far away from the hot spots are not
normalized. In the lukewarm region that interpolates the hot and cold regions, the coupling functions
acquire non-trivial momentum dependence. As the energy is lowered, the size of the hot region near
the hot spot decreases as more electrons become decoupled from spin fluctuations. At a fixed energy,
vk and VF,k decreases with decreasing k because spin fluctuations remain coupled with electrons down
to lower energies (VF,k is measured in the unit of the hot spot velocity which is set to be 1). On the
contrary, the Yukawa coupling increases with decreasing k. The kinks in the plots are the artifact of
not keeping the precise crossover functions between the regions. For the off-diagonal Yukawa coupling
in (d), ℓ = 3 is chosen.

where

v0(ℓ) =
π2NcNf

2(N2
c − 1)

1

(ℓ+ ℓ0) log(ℓ+ ℓ0)
, (2.131)

E0(X,Y ) ≡ exp

(
−
√
X + ℓ0 −

√
Y + ℓ0√

N2
c − 1

)
, (2.132)

E1(X,Y ) ≡ exp
(√

N2
c − 1

(
Ei(log

√
X + ℓ0) − Ei(log

√
Y + ℓ0)

))
. (2.133)
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For the general Yukawa coupling, the solution of the beta functional is given by

gk,k′(ℓ) =

{√
π
2 v0(ℓ) ℓ ≤ ℓ

(1L)
k′,k√

π
2 v0(ℓ

(1L)
k′,k )E0(ℓ, ℓ

(1L)
k′,k ) ℓ ≥ ℓ

(1L)
k′,k .

(2.134)

Eq. (2.134) can be understood in the following way. The RG flow of gk′,k is controlled by the vertex
correction and the self-energy corrections to the electrons at momenta k and k′. In the small v limit, the
vertex correction is the dominant factor, and the momentum dependence of the renormalized Yukawa
coupling is largely determined by the crossover scale at which the vertex correction turns off. At the
hot spots, the vertex correction is present at all energy scales. The vertex correction tends to enhances
the Yukawa coupling at low energies due to the anti-screening effect associated with the non-Abelian
nature of the SU(Nc) group[204]. Once this vertex correction is absorbed by the field renormalization
of the boson, the Yukawa coupling between the boson and electrons near the hot spots is kept to be
the order of

√
v0 at all energy scales, while the boson is endowed with the large anomalous dimension.

For electrons away from hot spots, the vertex correction turns off for ℓ > ℓ
(1L)
k′,k . At low energies, the

Yukawa coupling decays because the boson that remains strongly renormalized by electrons near the
hot spots is too ‘heavy’ to stay coupled with electrons away from hot spots without the help of the
anti-screening vertex correction : the large scaling dimension of the boson caused by hot electrons
makes the boson to decouple from lukewarm electrons at low energies. The momentum dependent
coupling functions are shown in Fig. 2.17.

It is noted that v0(ℓ) flows to zero in the large ℓ limit. Therefore, only v0 = 0 is a true fixed
point. However, for ℓ0 ≫ 1 there exists a large window of scale 0 < ℓ ≪ ℓ0 within which vk(ℓ) does
not change appreciably as a function of k and ℓ. Within this window of length scale, vk(ℓ) is well
approximated by v0(0), and physical observables obey scaling relations controlled by exponents that
depend on v0(0). Therefore, we can consider an one-parameter family of quasi-fixed points labeled by
v0. To characterize those quasi-fixed points, let us first extract the scaling behaviour of the coupling
functions. Eqs. (2.130)-(2.134) describes how the coupling functions at a fixed physical momentum
evolve as the energy scale is lowered. The coupling functions will exhibit scale invariance if the
momentum along the Fermi surface is simultaneously scaled as the energy scale is lowered. To find a
scale invariant fixed point, we consider the coupling functions defined in Eq. (2.59),

v̂K = vk, V̂F,K = VF,k, ĝK,K′ = gk,k′ , (2.135)

where K = keℓ, K ′ = k′eℓ are the rescaled momenta. For fixed K and K ′, the hatted coupling
functions in Eq. (2.135) become independent of ℓ to the leading order in ℓ/ℓ0,

v̂K = v0(0), (2.136)

V̂F,K =





1 |K| < Kh(
|K|
Kh

)α1(0)

Kh < |K| < Kc
(
Kc

Kh

)α1(0)

Kc < |K|
, (2.137)

ĝK =





√
π
2 v0(0) |K| < Kh

√
π
2 v0(0)

(
Kh

|K|

)α0(0)

Kh < |K| < Kc
(
Kh

Kc

)α0(0)

Kc < |K|
, (2.138)

ĝK,K′ =





√
π
2 v0(0) max{ |K+K′|

2 , c|K|
2 , c|K

′|
2 } < Kh

√
π
2 v0(0)

(
Kh

max{ |K+K′|
2 ,

c|K|
2 ,

c|K′|
2 }

)α0(0)

Kh < max{ |K+K′|
2 , c|K|

2 , c|K
′|

2 } < Kc

√
π
2 v0(0)

(
Kh

Kc

)α0(0)

Kc < max{ |K+K′|
2 , c|K|

2 , c|K
′|

2 }

, (2.139)
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where Kh = eℓkh(ℓ) = Λ
4v0(0)

and Kc = eℓkc(ℓ) = Λeℓ

4v0(0)
represent the rescaled crossover momenta

from hot to lukewarm, and from lukewarm to cold region, respectively, and

α1(ℓ) =

√
N2
c − 1√

ℓ0 + ℓ log(ℓ0 + ℓ)
,

α0(ℓ) =
1

2
√
N2
c − 1

√
ℓ0 + ℓ

(2.140)

are the critical exponents that govern the universal power-law decays of the coupling functions in the
momentum space. The exponents only depend on the nesting angle within the line of quasi-fixed
points. It is noted that V̂F,K and ĝK′,K depend on momentum more strongly than v̂K . As a result, the
momentum dependence of the former two can not be ignored even if the latter is regarded as constant
to the leading order in ℓ/ℓ0. Across the lukewarm region, each of the coupling functions changes by

v̂Kc

v̂Kh
≈ 1 + ℓ

ℓ0
,
V̂F,Kc

V̂F,Kh

≈ e

√
N2

c−1 ℓ√
ℓ0 log ℓ0 , and

ĝKc

ĝKh
≈ e

− 1

2

√
N2

c−1

ℓ√
ℓ0 . For ℓ/ℓ0 ≪ 1,

v̂Kc

v̂Kh
≈ 1. However,

the variations of the Fermi velocity and the Yukawa coupling are not negligible if ℓ/
√
ℓ0 ≥ 1.

Although the coupling functions acquire non-trivial momentum profiles at low energies, they do not
vary much over momentum scales that are proportional to the energy scale µ. From the momentum
profiles of the coupling functions in Eqs. (2.136)- (2.139), we can now check the validity of the
adiabaticity in Eq. (2.83). The relative variation of the couplings within the range of Πµ = µ

vc is given
by

ϵµ ∼ α0 log
1

vc
(2.141)

in the small v limit. Up to a logarithmic correction, ϵµ ∼ √
v ≪ 1 and Eq. (2.83) is satisfied at all

energy scales.
ĝK′,K in Eq. (2.139) decays in a power law as a function of momenta in all directions in the space

of K ′ and K. The power-law decay of the off-diagonal elements of ĝK′,K signifies the importance of the
non-forward scatterings. Consequently, the number of electrons at each momentum is not conserved.
There is still a sense in which a large symmetry emerges at low energies without the four-fermion
coupling[56]. In the space of rescaled momentum, kF runs to infinity in the low-energy limit. Because
the range of the off-diagonal elements are fixed and the size of Fermi surface blows up under the RG
flow, the number of electrons within a finite fraction of the total system becomes better conserved
as the energy is lowered. This can be also understood by examining the coupling function in the
space of physical momenta, k = Ke−ℓ, k′ = K ′e−ℓ. If the large ℓ limit is taken for fixed k and
k′, the Yukawa coupling function vanishes for k and k′ away from the hot spots. The four-fermion
coupling functions generated from the Yukawa coupling give rise to stronger large-angle scatterings
that invalidate the patch description more severely. In the following two sections, we examine the RG
flow of the four-fermion coupling function projected to the space of a fixed nesting angle.

2.6.2 Four-fermion coupling in group 1 : the singular Landau function

We now turn our attention to the four-fermion coupling functions. The couplings in group 1 describes
the forward scattering whose beta functional is written as

∂

∂ℓ
λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
p k
k p

) = −
(

1 + 3(z − 1) + 2η
(ψ)
k + 2η(ψ)p

)
λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
p k
k p

) − Sk,p
N2
f

Tβσ2
σ4αT

σ1α
βσ3

δN1

N4
δN2

N3

+
Bk

2Nf
λ

(
N1 N̄2

N̄4 N3

)
;
(σ1 α
β σ3

)

(
p k
k p

) Tβσ2
σ4α +

Bp
2Nf

Tσ1β
ασ3

λ̂

(
N̄1 N2

N4 N̄3

)
;
( α σ2

σ4 β

)

(
p k
k p

) .

(2.142)
Here

(
N1 N2

N4 N3

)
is one of the elements in the set of

HPH
1111 =

{
( 1 1
1 1 ), ( 1 4

4 1 ), ( 4 1
1 4 ), ( 4 4

4 4 )
}
, (2.143)
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and

Bk =
g2k

π2cVF,k

µ

µ+ 2vkc|k|µ
, Sk,p = Dµ(k; p)(Bk +Bp) (2.144)

represent the momentum dependent vertex correction and the source term generated from the spin
fluctuations, respectively. Since the coupling measured in the unit of the Fermi velocity represents the
physical strength of interaction29, we define

λ
V ;
(
N1 N2

N4 N3

)
;
(
α β
γ δ

)

1PH
(
p k
k p

) =
1√

VF,pVF,k
λ

(
N1 N2

N4 N3

)
;
(
α β
γ δ

)

1PH
(
p k
k p

) , (2.145)

where the coupling is divided by
√
VF,pVF,k to keep λV symmetric. Its beta functional reads

∂

∂ℓ
λ
V ;
(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

1PH
(
p k
k p

) = − (1 + ηk + ηp)λ
V ;
(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

1PH
(
p k
k p

) −
SVk,p
N2
f

Tβσ2
σ4αT

σ1α
βσ3

δN1

N4
δN2

N3

+
Bk

2Nf
λ
V ;

(
N1 N̄2

N̄4 N3

)
;
(σ1 α
β σ3

)

1PH
(
p k
k p

) Tβσ2
σ4α +

Bp
2Nf

Tσ1β
ασ3

λ̂
V ;

(
N̄1 N2

N4 N̄3

)
;
( α σ2

σ4 β

)

1PH
(
p k
k p

) ,

(2.146)

where

ηk =
(N2

c − 1)g2k
2π2NcNfcVF,k

µ

µ+ 2cvk |k|µ
, (2.147)

SVk,p =
1√

VF,pVF,k
Dµ(k; p)(Bk +Bp). (2.148)

Just as the Fermi velocity and the Yukawa coupling functions acquire momentum profiles that are
solely determined from the nesting angle at the quasi-fixed point, the forward scattering amplitude
acquires a singular momentum profile near the hot spots. To extract the universal momentum profile
of the forward scattering amplitude that is scale invariant at the quasi-fixed point, we consider the
beta functional for the four-fermion coupling functions defined in the space of rescaled momentum,

λ̂

(
N1 N2

N3 N4

)
;(σ1 σ2
σ4 σ3

)

1PH;
(
K1 K2

K4 K3

) = λ
V ;
(
N1 N2

N3 N4

)
;(σ1 σ2
σ4 σ3

)

1PH;
(
k1 k2
k4 k3

) , where Ki = eℓki. The beta functionals for the four-fermion

coupling functions defined in the space of rescaled momentum is written as

[
∂

∂ℓ
+K

∂

∂K
+ P

∂

∂P

]
λ̂

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

1PH;( P K
K P )

= − (1 + η̂K + η̂P ) λ̂

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

1PH;( P K
K P )

+
B̂K
2Nf

λ̂

(
N1 N̄2

N̄4 N3

)
;
(σ1 α
β σ3

)

1PH;( P K
K P )

Tβσ2
σ4α +

B̂P
2Nf

Tσ1β
ασ3

λ̂

(
N̄1 N2

N4 N̄3

)
;
( α σ2

σ4 β

)

1PH;( P K
K P )

− ŜK,P
N2
f

Tβσ2
σ4αT

σ1α
βσ3

δN1

N4
δN2

N3
,

(2.149)

where η̂K = ηKe−ℓ , B̂K = BKe−ℓ and ŜK,P = SVKe−ℓ,Pe−ℓ . We combine the four coupling functions
into a matrix as

λ̂
(σ1 σ2
σ4 σ3

)
1PH( P K

K P )
=



λ̂

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

( P K
K P )

λ̂
( 1 4
4 1 );(σ1 σ2

σ4 σ3
)

( P K
K P )

λ̂
( 4 1
1 4 );(σ1 σ2

σ4 σ3
)

( P K
K P )

λ̂
( 4 4
4 4 );(σ1 σ2

σ4 σ3
)

( P K
K P )


 (2.150)

29For example, the perturbation series in the four-fermion coupling is organized in terms of the ratio between the
four-fermion coupling and the Fermi velocity.
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to write the set of beta functionals as a matrix differential equation,
[
∂

∂ℓ
+K

∂

∂K
+ P

∂

∂P

]
λ̂

(σ1 σ2
σ4 σ3

)
1PH( P K

K P )
= − (1 + η̂K + η̂P ) λ̂

(σ1 σ2
σ4 σ3

)
1PH( P K

K P )

+
B̂K
2Nf

λ̂

(σ1 α
β σ3

)

1PH( P K
K P )

Tβσ2
σ4α


0 1

1 0


+

B̂P
2Nf

Tσ1β
ασ3


0 1

1 0


 λ̂

( α σ2

σ4 β

)

1PH( P K
K P )

− ŜK,P
N2
f

Tβσ2
σ4αT

σ1α
βσ3


1 0

0 1


 .

(2.151)
In the PH channel, the spin tensor of the interaction can be decomposed as

Tαβγδ = Y
(t)
PH Iαβγδ + Y

(a)
PHχ

αβ
γδ . (2.152)

Here

Iσ1σ2
σ4σ3

=
1

Nc
δσ1σ3δσ2σ4 , χσ1σ2

σ4σ3
=

(
δσ1σ4δσ2σ3 −

1

Nc
δσ1σ3δσ2σ4

)
(2.153)

project a spin state of a pair of particle and hole into the trivial representation and the adjoint
representation of the SU(Nc) group, respectively, and

Y
(t)
PH = 2

(
Nc −

1

Nc

)
, Y

(a)
PH = − 2

Nc
(2.154)

denotes the eigenvalue of Tαβγδ in each channel. Similarly, the matrix that controls the mixing in the
space of hot spots can be decomposed as


0 1

1 0


 = 1sPs + 1dPd, (2.155)

where

Ps =
1

2


1 1

1 1


 , Pd =

1

2


 1 −1

−1 1


 (2.156)

project the four-fermion couplings into the s-wave and d-wave channels, respectively, and

1s = 1, 1d = −1 (2.157)

are the associated eigenvalues. Naturally, the coupling function is decomposed into four different
channels as

λ̂
(σ1 σ2
σ4 σ3

)
1PH{Ki} = λ̂

(t)(s)
1PH{Ki}I

σ1σ2
σ4σ3

Ps+ λ̂
(t)(d)
1PH{Ki}I

σ1σ2
σ4σ3

Pd+ λ̂
(a)(s)
1PH{Ki}χ

σ1σ2
σ4σ3

Ps+ λ̂
(a)(d)
1PH{Ki}χ

σ1σ2
σ4σ3

Pd. (2.158)

The beta functional for the coupling function in each channel becomes
[
∂

∂ℓ
+K

∂

∂K
+ P

∂

∂P

]
λ̂

( ta ),( sd )
1PH( P K

K P )

= −


1 + η̂K + η̂P − 1( sd )Y

( ta )
PH

2Nf

[
B̂K + B̂P

]

 λ̂

( ta ),( sd )
1PH( P K

K P )
−
(
Y

( ta )
PH

)2
ŜK,P
N2
f

.

(2.159)

Due to the momentum dilatation, the coupling functions at different momenta mix under the RG
flow. However, only the overall magnitude of external momenta is rescaled, and the relative magnitudes
do not change. To integrate the beta functional, it is convenient to introduce a polar coordinate for
the space of external momenta,

(K,P ) = XΩ̂, (2.160)
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where X =
√
K2 + P 2 represents the overall magnitude, and Ω̂ = (ΩK ,ΩP ) represents the unit vector

that specifies direction in the space of external momenta. At the fixed point, the coupling function
satisfies

X
∂

∂X
λ̂
∗( ta ),( sd )
1PH,X,Ω̂

+


1 + η̂XΩK

+ η̂XΩP
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2Nf
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]
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+
1

N2
f

(
Y

( ta )
PH

)2

ŜX,Ω̂ = 0.

(2.161)

The fixed point solution is readily obtained to be

λ̂
∗( ta ),( sd )
1PH,X,Ω̂

= ψ( sd )(X)



λ̂

( ta ),( sd )
1PH,Λ0,Ω̂

ψ( sd )(Λ0)
− 1

N2
f

Y
( ta )
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2 ∫ X
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X ′
1

ψ( sd )(X ′)
ŜX′,Ω̂


 , (2.162)

where

ψ( sd )(X) = Exp


−

∫ X

Λ

dX ′

X ′


1 + η̂X′ΩK

+ η̂X′ΩP
− 1( sd )Y

( ta )
PH

2Nf
(B̂X′ΩK

+ B̂X′ΩP
)




 (2.163)

and Λ0 is a reference scale at which the boundary condition is imposed for λ̂
∗( ta ),( sd )
1PH,X,Ω̂

. Since ψ( sd )(X)

diverges in the small X limit, the solution that is regular at the hot spot is obtained by choosing
Λ0 = 030,

λ̂
∗( ta ),( sd )
1PH,X,Ω̂

= − 1

N2
f

Y
( ta )
PH

2

ψ( sd )(X)

∫ X

0

dX ′

X ′
1

ψ( sd )(X ′)
ŜX′,Ω̂. (2.164)

In the small v limit, ψ( sd )(X) is well approximated by Λ/X, and the anomalous dimension and the
B̂ terms are sub-leading. At the fixed point, the coupling function takes the scale invariant form given
by

λ̂
∗( ta ),( sd )
1PH( P K
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ĝ2P,K Y
( ta )
PH

2

π2cN2
f

√
V̂F,K V̂F,P


 ĝ
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)
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V̂F,P

Λ log
(
c|v̂KK+v̂PP |Λ+c|K−P |Λ+Λ

2v̂P c|P |Λ+Λ

)
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


(2.165)

to the leading order in v31. Just as other coupling functions discussed in the previous section, the
forward scattering amplitude becomes independent of ℓ when the rescaled momenta K and P are
fixed. This implies that the scale invariance emerges when the forward scattering amplitude is probed
at momenta increasingly closer to the hot spots as the energy is lowered. If one of the electron is in
the hot region and the other is at momentum p far away from the hot region, the forward scattering
amplitude decays as 1/p with a logarithmic correction as

1

4µ
λ
V ;( ta ),( sd )

1PH
(
p 0
0 p

) = − g2p,0g
2
0 Y

( ta )
PH

2

4π2c2N2
f

√
VF,p

1

|p| log

(
c|p|
µ

)
, (2.166)

where p = Pe−ℓ represents the physical momentum. The momentum profile of the forward scattering
amplitude is shown in Fig. 2.18.

30The coupling functions are regular at all momenta including the hot spots at any non-zero energy scale.
31In the small v limit, we ignored the momentum dependence of the coupling functions and use the approximation

Λ + c|K|Λ ≈ Λ + c|K| in ŜK,P .
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Figure 2.18: The forward scattering amplitude λ̂
∗( ta ),( sd )
1PH(P 0

0 P )
in Eq. (2.165) plotted in units of

(
g40,0 Y

( ta )
PH

2

/c

)
as a function of P/Λ at K = 0 for ℓ0 = 50 (equivalently, 1/(v0c) ≈ 907). The

width of the shaded region is 2/(v0c).

2.6.3 Four-fermion coupling in group 2

UV/IR mixing

In group 2, λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) , λ
( 4 8
4 8 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) , λ
( 1 5
4 8 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) , λ
( 4 8
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) form a closed set of beta

functionals given by Eqs. (2.115)- (2.118). The beta functionals are expressed as integrations over
q because of the significant mixing between operators that carry different momenta along the Fermi
surface. To simplify the system of beta functionals, we combine the four coupling functions into one
matrix,

λ
(σ1 σ2
σ4 σ3

)
2PP

(
p −p
k −k

) =




λ
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σ4 σ3
)(

p −p
k −k

) λ
( 1 5
4 8 );(σ1 σ2

σ4 σ3
)(

p −p
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)

λ
( 4 8
1 5 );(σ1 σ2

σ4 σ3
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p −p
k −k

) λ
( 4 8
4 8 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)




(2.167)
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to rewrite Eqs. (2.115)- (2.118) as

∂

∂ℓ
λ

(σ1 σ2
σ4 σ3

)
2PP

(
p −p
k −k

) = −
(

1 + 3(z − 1) + 2η
(ψ)
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
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1 0
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
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×


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) − 2Tβασ4σ3

Nf
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
0 1

1 0




 .

(2.168)

As in Eq. (2.145), we symmetrically normalize the four-fermion coupling in the unit of the Fermi
velocity by defining

λ
V ;
(
α β
γ δ

)

2PP
(
p −p
k −k

) =
1√

VF,pVF,k
λ

(
α β
γ δ

)

2PP
(
p −p
k −k

). (2.169)

Its beta functional is given by

∂

∂ℓ
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σ4 σ3
)

2PP
(
p −p
k −k
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
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1 0




 ,

(2.170)

where ηk is defined in Eq. (2.147).
In the space of spin wavefunctions for two electrons, the four-fermion coupling can be decomposed

into the symmetric and anti-symmetric channels of SU(Nc). For Nc = 2, the symmetric and anti-
symmetric representations correspond to the spin triplet and spin singlet representations, respectively.
Combined with the wavefunction defined in the space of hot spot indices, the four-fermion coupling can
be decomposed into spin-symmetric s-wave (+, s), spin-symmetric d-wave (+, d), spin-anti-symmetric
s-wave (−, s) and spin-anti-symmetric d-wave (−, d) channels as

λ
V ;(σ1 σ2

σ4 σ3
)

2PP{ki} = λ
V ;(+)(s)
2PP{ki}S

σ1σ2
σ4σ3

Ps + λ
V ;(+)(d)
2PP{ki}S

σ1σ2
σ4σ3

Pd + λ
V ;(−)(s)
2PP{ki}A

σ1σ2
σ4σ3

Ps + λ
V ;(−)(d)
2PP{ki}A

σ1σ2
σ4σ3

Pd. (2.171)

Here Ps and Pd are defined in Eq. (2.156).

Sσ1σ2
σ4σ3

=
1

2
(δσ1σ4

δσ2σ3
+ δσ1σ3

δσ2σ4
) , Aσ1σ2

σ4σ3
=

1

2
(δσ1σ4

δσ2σ3
− δσ1σ3

δσ2σ4
) (2.172)

project a spin state of two particles into the SU(Nc) symmetric and anti-symmetric representations.
The spin dependence in the interaction mediated by the spin fluctuations can be resolved into

Tαβγδ = Y
(+)
PP Sαβγδ + Y

(−)
PP Aαβγδ (2.173)

with

Y
(+)
PP = 2

(
1 − 1

Nc

)
, Y

(−)
PP = −2

(
1 +

1

Nc

)
. (2.174)
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The beta functional for the coupling function in each channel is written as

∂

∂ℓ
λ
V ;(±),( sd )
2PP

(
p −p
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) = − (1 + ηk + ηp)λ
V ;(±),( sd )
2PP
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∫
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q −q
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×
[
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(
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) − 2

Nf
Y

(±)
PP 1( sd ) Dµ(q; k)√

VF,qVF,k

]
,

(2.175)

where 1( sd ) is defined in Eq. (2.157).
What is interesting for the beta functionals in group 2 is the fact that the strength of mixing between

two low-energy operators defined near the Fermi surface but with a large difference in momentum is

controlled by high-energy bosons. Since Dµ(q; k) decays as
g2qk

c|q−k| at large |q−k|, the contribution from

q far away from k can be important. The potential UV divergence associated with the q integration in
Eq. (2.175) is cut off by either the momentum profile of the Yukawa coupling included in Dµ(q; k) at
large |q−k| in Eq. (2.109) or the irrelevant boson kinetic term32. The trouble is that whichever cuts off
the UV divergence is related to the dynamics of boson at large energy/momentum, which is not a part
of the universal low-energy data. This implies that the four-fermion coupling can not be determined
without including the high-energy physics. Namely, the one-particle irreducible (1PI) quartic vertex
function is not an observable that can be determined solely in terms of other low-energy observables.
What is then the low-energy observable that measures the strength of the two-body interaction?
To identify the right low-energy observable, we note that the four-point functions, which determine
physical susceptibilities, are determined by the sum of the 1PI four-point function and the tree-diagram
that involves the 1PI three-point functions and the boson propagator (see Fig. 1.6). Therefore, we
consider the net two-body interaction that combines the contributions of the four-fermion coupling
and the interaction mediated by the spin fluctuations,

λ
′(±),( sd )
2PP

(
p −p
k −k

) = λ
V ;(±),( sd )
2PP

(
p −p
k −k

) − 2

Nf
Y

(±)
PP 1( sd ) Dµ(p; k)√

VF,pVF,k
. (2.176)

The net two-body interaction is what determines the pairing interaction as is shown in the complete
square term in Eq. (2.175)33. The RG flow equation for the net two-body interaction reads

∂
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′(±),( sd )
2PP

(
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) = − (1 + ηk + ηp)λ
′(±),( sd )
2PP
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∫
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)λ
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(
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− 2

Nf
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(±)
PP 1( sd )r(p, k),

(2.177)

where

r(k, p) =

(
−µ ∂

∂µ
+ 1 + ηk + ηp

)
Dµ(p; k)√
VF,pVF,k

(2.178)

corresponds to the contribution of the spin fluctuations that arises between energy µ and µ− dµ. The
spin fluctuations generate attractive interactions in the spin anti-symmetric d-wave channel and the
spin symmetric s-wave channel. Its magnitude is strongest near the hot spots. To the leading order

in v, r(k, p) =
g2k,p√
VF,kVF,p

µ2

(µ+c|k−p|+c|vkk+vpp|)2 . Because r(k, p) is the low-energy contribution to the

net two-body interaction, it decays as 1/|k − p|2 at large momentum, and its contribution becomes

32For instance, the scale associated with the crossover from high-energy ‘Gaussian physics’ to low-energy ‘critical
physics’ can act as a cutoff momentum for q integration.

33The Wilsonian RG scheme is also naturally formulated in terms of the net two-body interaction[142].
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negligible at momentum much larger than µ/(vc). Due to the fast decay of r(k, p) at large momenta,
the flow of the net two-body interaction is no longer sensitive to UV scales. Once the net two-body
interaction is known at a scale, within a power-law accuracy its value at a lower energy scale can be
determined from Eq. (2.177) without having to resort to UV physics.

Absence of Hermitian quasi-fixed point at non-zero nesting angle

To find a fixed point of the beta functional, we have to examine the flow equation for the four-fermion
coupling function defined in the space of rescaled momentum,

λ̃
(±),( sd )
2PP

(
P −P
K −K

) = λ
′(±),( sd )
2PP

(
p −p
k −k

), (2.179)

where K = eℓk, P = eℓp. The beta functionals for λ̃ becomes
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∂ℓ
λ̃
(±),( sd )
2PP

(
P −P
K −K

) = −
(

1 +K
∂

∂K
+ P

∂

∂P
+ η̂K + η̂P

)
λ̃
(±),( sd )
2PP

(
P −P
K −K

)

− 1
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Q −Q
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Nf
Y

(±)
PP 1( sd )R̂(P,K),

(2.180)

where

R̂(K,P ) =
ĝ2K,P√
V̂F,K V̂F,P

Λ2

(Λ + c |K − P | + c |v̂KK + v̂PP |)2
,

η̂K =
(N2

c − 1)ĝ2K
2π2cNcNf V̂F,K

Λ

Λ + 2cv̂K |K| .
(2.181)

Here, the attractive interaction R̂(K,P ) generated from the spin fluctuations tends to drive the sys-
tem to a superconducting state. On the other hand, η̂K , that represents the momentum dependent
anomalous dimension, tends to suppress growth of the four-fermion coupling by making electrons in-
coherent. The fate of the theory is determined by the competition between the attractive interaction
that favours superconductivity and the pair-breaking effect caused by incoherence. If the pairing effect
dominates, the theory flows to a superconducting state, and quasi-fixed points arise only outside the
space of Hermitian theories. On the other hand, if the pair-breaking effect dominates, there can be
Hermitian quasi-fixed points. Once the theory is attracted to the quasi-fixed point with a non-zero v,
the theory would gradually flow to the true fixed point at v = 0 under the full RG flow. In the latter
case, a stable non-Fermi liquid state would be realized at zero temperature. This scenario is realized
near three space dimensions where the co-dimension of the Fermi surface is close to 2[123, 183]. Our
goal is to understand the fate of the system that results as an outcome of this competition in two space
dimensions.

In principle, there can be multiple quasi-fixed points. Here we focus on the one-parameter families
of quasi-fixed points that are continuously connected to the true fixed point at v = 0. It is difficult to
write down the momentum dependent coupling function explicitly at the quasi-fixed points. However,
we can understand the asymptotic form of λ̃ at large momenta. To the leading order in v, the last

term in Eq. (2.180) decays in a power-law as R̂(K,P ) ∼ Λ2

(c|K−P |+c|v̂KK+v̂PP |)2 at large |K| and |P |.
Since

(
1 +K ∂

∂K + P ∂
∂P

)
R̂(K,P ) ≈ −R̂(K,P ), at large momenta the coupling function at the quasi

fixed-point can be determined from balancing the first and the last terms of the beta functional as

λ̃
∗(σ1 σ2
σ4 σ3

)
2PP

(
P −P
K −K

) ≈ 2

Nf
R̂(K,P )Tσ1σ2

σ4σ3
(Ps − Pd). (2.182)

Here λ̃2 term and η̂λ̃ term can be ignored in the small v limit. This is a special solution of the fixed
point equation which can be augmented with a homogeneous solution of (1 +K∂K +P∂P )λ̃ = 0. The
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homogeneous solution also vanishes as 1/K or 1/P at large momenta. This shows that λ̃
(±),( sd )
2PP

(
P −P
K −K

)

has to vanish in the limit that either K or P , or both are large at the quasi-fixed points.
We now prove that the quasi-fixed points have to be non-Hermitian at v ̸= 0. To show this, we

rewrite Eq. (2.180) as a matrix equation,

∂

∂ℓ
λ̃(n) = −λ̃(n) − Lλ̃(n) − λ̃(n)L† −Hλ̃(n) − λ̃(n)H − 1

4π
λ̃(n)λ̃(n) + α(n)R. (2.183)

Here, λ̃
(n)
QK = λ̃

(n)

2PP
(
Q −Q
K −K

) with n = (+, s), (+, d), (−, s), (−, d) represent the four-fermion coupling

functions written as matrices in the space of momentum. LPK = 2πΛP∂P δ(P − K), HPK =

2πΛη̂P δ(P − K), RPK = R̂(P,K) are also viewed as matrices, where the multiplication of matri-
ces is defined as (AB)PK =

∫
dQ
2πΛAPQBQK . α(n) denotes the parameter that determines the sign and

the strength of interaction in each channel,
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(
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1
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)
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(
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1
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)
.

(2.184)

The beta functionals can be written in the complete square form as

∂

∂ℓ
λ̃(n) = − 1

4π

[
λ̃(n) + 4π

(
I

2
+ L+H

)][
λ̃(n) + 4π

(
I

2
+ L† +H

)]
+ D(n), (2.185)

where D(n) is the discriminant matrix given by

D(n) = α(n)R+ 4π

(
I

2
+ L+H

)(
I

2
+ L† +H

)
. (2.186)

I is the identity matrix with IPK = 2πΛδ(P − K). At the fixed point, the four-fermion coupling
function should satisfy

[
λ̃(n) + 4π

(
I

2
+ L+H

)][
λ̃(n) + 4π

(
I

2
+ L† +H

)]
− 4πD(n) = 0. (2.187)

It is noted that D(n) and H are Hermitian matrices, but L is not. Even if
[
λ̃(n) + 4π

(
I
2 + L† +H

)]
is

not Hermitian, the polar decomposition theorem guarantees that there exists a unitary matrix U that

makes U
[
λ̃(n) + 4π

(
I
2 + L† +H

)]
Hermitian. The solution to Eq. (2.187) is then written as

λ̃(n) = −4π

(
I

2
+ L† +H

)
+ (4π)1/2U†E(n), (2.188)

where E(n) represents a matrix that satisfies [E(n)]2 = D(n)34.
To show that λ̃(n) is non-Hermitian at the quasi-fixed point with v ̸= 0, we consider a vector of the

form,

fK =

(
Λ

|K|

)1/2

e
∫ |K|
Λ′

dK′
K′ ϵ̂K′ (2.189)

34For an N × N Hermitian matrix D(n), there are 2(N−N0) distinct solution for [E(n)]2 = D(n), where N0 is the
number of zero eigenvalues.
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with a real function ϵ̂K and a scale Λ′. For fK to be square integrable, ϵ̂K has to be positive (negative)
in the limit that |K| is small (large). The expectation value of the both sides of Eq. (2.187) for fK is
written as

∫
dK

2πΛ
f̃

′∗
K f̃K − 4πα(n)

∫
dKdP

(2πΛ)2
f∗KRKP fP − (4π)2

∫
dK

2πΛ
(η̂K − ϵ̂K)2|fK |2 = 0, (2.190)

where f̃K =
∫

dP
2πΛ λ̃

(n)
KP fP + 4π(η̂K − ϵ̂K)fK and f̃ ′K =

∫
dP
2πΛ λ̃

(n)†
KP fP + 4π(η̂K − ϵ̂K)fK . If λ̃ is

Hermitian, f̃ ′K = f̃K , and the first term in Eq. (2.190) is non-negative. The second term is strictly
positive for n = (−, d) and (+, s) because α(n) is negative for these channels (see Eq. (2.184)), and
RKP , fK , fP are positive for all K and P . The third term is negative, but we can make it arbitrarily
small by tuning ϵ̂K and Λ′ as far as η̂K goes to zero in the large K limit. Let us choose ϵ̂K to be

ϵ̂K =





η̂K for |K| < Λ′,

−δ for |K| > Λ′
(2.191)

with δ > 0. Since η̂K approaches zero in the large K limit, for any non-zero δ, there exists a sufficiently
large Λ′ such that |η̂K | ≪ δ for |K| > Λ′. In this case,

∫
dK

2πΛ
(η̂K − ϵ̂K)2|fK |2 ≈ 2δ2

∫ ∞

Λ′

dK

2πK

(
Λ′

K

)2δ

=
δ

2π
. (2.192)

This can be made arbitrarily small by choosing δ that is nonzero but small enough. On the other hand,
the second term in Eq. (2.190) remains strictly positive even in the limit in which δ is small and Λ′

is large. This implies that there exist normalizable vectors for which the left hand side of Eq. (2.190)
is positive definite if λ̃ was Hermitian. This proves that λ̃ can not be Hermitian, and the quasi-fixed
point must be non-Hermitian for v ̸= 0[69].

Because the beta functionals have real coefficients, non-Hermitian quasi-fixed points arise in pairs
that are related to each other through the Hermitian conjugation. On the other hand, the true
Hermitian fixed point in Eq. (2.119) is at λ̃ = 0 in the v → 0 limit. As v approaches zero, a pair of
non-Hermitian quasi-fixed points should merge into the true Hermitian-fixed point due to continuity.
This implies that at least one pair of non-Hermitian fixed points are close to the space of Hermitian
theories for a small v. This is illustrated in Fig. 1.5.

Collision of projected quasi-fixed points

Given that the RG flow is defined in the infinite dimensional space of coupling functions, it is not
easy to visualize it. However, one can have a glimpse of the RG flow by projecting it onto a finite
dimensional subspace of coupling functions. For this, we view the space of coupling functions as a
vector space and decompose the four-fermion coupling function as an infinite sum of orthonormal
basis,

λ̃
(n)
QK(ℓ) =

∞∑

j=0

cn,j(ℓ)λ̃
[j]
QK . (2.193)

Here λ̃
[j]
QK represents the j-th basis of the coupling function that obeys the orthonormality condition,∫

dKdP
(2πΛ)2 λ̃

[i]
KP λ̃

[j]
PK = δij . cn,j(ℓ) denotes the strength of the coupling function projected to the j-th

basis function in channel n. The space of coupling function is viewed as the infinite dimensional space
of the coupling constants, {cn,j(ℓ)}, and the full beta functional can be written as a coupled differential
equations for cn,j(ℓ). Within the infinite dimensional space of coupling constants, let us consider a
subspace spanned by one basis coupling,

λ̃
[0]
KP (ℓ) = fKf

∗
P , (2.194)
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Figure 2.19: The full RG flow defined in the infinite dimensional space of coupling functions can be
projected onto a finite dimensional subspace by restricting the flow vector to the tangent space of the
subspace.

where fK denotes a wavefunction defined in the space of relative momentum of a Cooper pair with
zero center of mass momentum. The corresponding coupling, denoted as cn,0(ℓ) = t(ℓ), measures the
strength of the interaction in that specific pairing channel. For Hermitian theories, t(ℓ) is real, but here
we allow it to be complex to accommodate non-Hermitian quasi-fixed points. We choose the Cooper
pair wavefunction to be of the form,

fK = A

√
Λ

|K|Θ(|K| − ε)Θ(∆ − |K|), (2.195)

where A =
[
1
π log

(
∆
ε

)]− 1
2 is the normalization constant 35. Here ε and ∆ correspond to the small

and large momentum cutoffs for the wavefunction, respectively. Since the norm of the wavefunction
diverges both in the small ε and the large ∆ limits, one has to consider finite ∆/ε. With decreasing ε,
the wavefunction has more weight for electrons near the hot spots. In contrast, a larger ∆ puts more
weight on cold electrons away from the hot spots. The nature of the projected RG flow depends on
the relative weight between hot and cold electrons.

Even if one starts with a theory within the subspace in Eq. (2.194), the theory in general flows out
of the subspace because the beta functions for other coupling constants are not generally zero within
the subspace. Here, we consider the RG flow that is projected onto the subspace (see Fig. 2.19). The
projected beta function[111] is defined as

∂t(ℓ)

∂ℓ
=

∫
dKdP

(2πΛ)2

[
∂λ̃

(n)
KP (ℓ)

∂ℓ

]

cn,0=t, cn,j ̸=0=0

λ̃
[0]
PK . (2.196)

35The rest of the basis coupling functions can be chosen to be orthogonal to Eq. (2.195).
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From Eqs. (2.183) and (2.194), the projected beta function can be written as

∂t(ℓ)

∂ℓ
= −

{∫
dPdK

(2πΛ)2
f∗P

(
1 +K

∂

∂K
+ P

∂

∂P
+ η̂K + η̂P

)
λ̃
(n)
PKfK

+
1

4π

∫
dPdQdK

(2πΛ)3
f∗P λ̃

(n)
PQλ̃

(n)
QKfK − α(n)

∫
dPdK

(2πΛ)2
f∗PR(P,K)fK

}
,

(2.197)

where the momentum dilatation on the first line only act on λ̃
(n)
PK . The resulting projected beta

function is written as a differential equation for t only,

∂t(ℓ)

∂ℓ
= −

[
1

4π
t(ℓ)2 + 2⟨f |η̂|f⟩t(ℓ) − α(n)⟨f |R|f⟩

]
, (2.198)

where ⟨f |T |f⟩ ≡
∫

dPdK
(2πΛ)2 f

∗
KTKP fP . The fixed points of the projected beta function arise at

t⋆ = −4π⟨f |η|f⟩ ± 2π
√
d⋆, (2.199)

where d⋆ ≡ 4⟨f |η|f⟩2+ α(n)

π ⟨f |R|f⟩ is the discriminant. ⟨f |η|f⟩ is the contribution from the anomalous
dimension of electrons, and ⟨f |R|f⟩ is from the interaction generated from the spin fluctuations. The
anomalous dimension makes electrons incoherent and tends to suppress pairing instability. On the
other hand, the attractive interaction promotes superconductivity in the channels with α(n) < 0.
While ⟨f |η|f⟩ contributes to the discriminant with the higher power than ⟨f |R|f⟩, for a non-zero w,
the discriminant can be dominated by either one of the two depending on the choice of ε and ∆. In
channels in which the pair breaking effect (attractive interaction) dominates over the other, d⋆ > 0
(d⋆ < 0) and the quasi-fixed points are Hermitian (non-Hermitian).

Let us examine the discriminant in the limit that ε/Λ ≪ 1/c and ∆/Λ ≫ 1/(vc). In this case,
⟨f |η|f⟩ and ⟨f |R|f⟩ can be computed analytically,

⟨f |η̂|f⟩ =
(N2

c − 1)

4πNcNf
w

log
(

Λ
2vcε

)

log
(
∆
ε

) , ⟨f |R|f⟩ =
1

2
w log

(
2

v

)
1

log
(
∆
ε

) . (2.200)

Here, K∂KfK = − 1
2fK + A

√
εΛ sgn(K)δ(|K| − ε) − A

√
∆Λ sgn(K)δ(∆ − |K|) is used and w ≡ v/c

with v = v0 and c = c(v0). In the spin anti-symmetric d-wave channel, the discriminant becomes

d⋆ =
1

log
(
∆
ε

)
[

(N2
c − 1)2

4π2N2
cN

2
f

w2 log2
(

Λ
2vcε

)

log
(
∆
ε

) − 2

πNf

(
1 +

1

Nc

)
w log

(
2

v

)]
. (2.201)

The relative magnitude between the two terms in Eq. (2.201) is controlled by
log2( Λ

2vcε )
log(∆

ε )
. If we take

the small ε/Λ limit for a fixed ∆/Λ, the wavefunction has a large weight for incoherent electrons close
to the hot spots. While the attractive interaction is also strong near the hot spots, the interaction
is not singular enough to overcome the pair breaking effect. In those channels with small ε/Λ, the
discriminant is positive and the projected RG flow supports two fixed points on the real axis of the
coupling. One is a stable fixed point and the other is an unstable fixed point. Near the stable fixed
point, the pairing interaction does not grow due to the pair breaking effect. Alternatively, if we take the
large ∆/Λ limit for a fixed ε/Λ, the wavefunction has a large weight for cold electrons. Since electrons
away from the hot spots are largely coherent, they are more susceptible to pairing instability. While
the attractive interaction is also weak away from the hot spots, the pairing effect prevails over the pair
breaking effect in these channels because ⟨f |η|f⟩2 goes to zero faster than ⟨f |R|f⟩ with increasing ∆/Λ.
As a result, the discriminant is negative in the channels with large ∆/Λ36, and the fixed points arise

36However, d⋆ eventually approaches zero in the ∆/Λ → ∞ limit because the attractive interaction becomes vanishingly
small for electrons that are very far from the hot spots. Therefore, there exists an optimal choice of ε and ∆ at which
the discriminant is most negative.
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Figure 2.20: The RG flow projected onto the subspace of one complex four-fermion coupling in the
spin anti-symmetric d-wave pairing channel with Cooper-pair wave function given in Eq. (2.195) for
v = 0.000476257, Nc = 2 and Nf = 1. Here ∆/Λ = 1000/(vc) ≈ 1.39 × 108 and ε/Λ is chosen to
be exp (−10a) with a = 6, 4, 3.8, 3.73, 3.721826341, 3.71, 3.7, 3.6 and 3.4 from the top left panel to
the bottom right. The quasi-fixed points are marked as (red) stars. For small values of ε/Λ, the pair
breaking effect for hot electrons dominates, resulting in the quasi-fixed points on the real axis. At
the (approximate) critical value ε/Λ = exp(−103.721826341), the stable and unstable quasi-fixed points
collide. For larger values of ε/Λ, the pair forming effect dominates, and the quasi-fixed points move
away from the real axis, resulting in a runaway flow for Hermitian theories on the real axis.

away from the real axis. This corresponds to a non-Hermitian fixed point for the projected RG flow.
On the real axis, the couplings in those channels exhibit run-away flows toward the strong coupling
regime with large attractive interactions, signifying a superconducting instability. These two different
behaviours are separated by critical wavefunctions at which the discriminant vanishes and two fixed
points collide on the real axis[92]. Here, the collision of fixed points arises within one theory as the
plane onto which the RG flow is projected is rotated in the space of coupling functions. The evolution
of the projected RG flow with different values of ε/Λ and ∆/Λ is shown in Fig. 2.20.

A small perturbation around the projected quasi-fixed point evolves under the linearized beta
function given by

∂δt(ℓ)

∂ℓ
= ∓

√
d⋆ δt(ℓ), (2.202)

where δt(ℓ) = t(ℓ) − t⋆. The eigenvalues ∓
√
d⋆ are real at the Hermitian fixed points and purely

imaginary at the non-Hermitian quasi-fixed points. The RG flow in the vicinity of the real quasi-fixed
points exhibits the usual converging or diverging behaviour depending on whether the fixed point
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Figure 2.21: The RG flow projected onto the subspace of one complex four-fermion coupling in the
spin anti-symmetric d-wave pairing channel with Cooper-pair wave function given in Eq. (2.195) for
Nc = 2, Nf = 1, ∆/Λ = 108 and ε/Λ = 10−10 with ℓ0 = 103, 104, 105, 106 from top left to bottom
right. With increasing ℓ0 (decreasing v0(0)), the pair of complex quasi-fixed points approach to the
real axis, creating a bottleneck region in the real axis.

is stable or unstable, respectively. Near the non-Hermitian fixed points, the RG flow is rotational,
exhibiting limit cycles[212, 67, 105, 66, 45].

The existence of channels in which the quasi-fixed points arise away from the real axis suggests
that a Hermitian theory eventually flows toward a superconducting fixed point at low energies. When
the nesting angle is small, we expect a weaker superconducting instability as the pairing interaction
generated from the spin fluctuations is weak. Indeed, the non-Hermitian quasi-fixed points get closer
to the space of Hermitian theories as v decreases. In Fig. 2.21, we plot the projected RG flow around
the non-Hermitian quasi fixed point in the spin anti-symmetric d-wave channel for different values of
v. With decreasing v, the quasi-fixed points approach the real axis, creating a bottleneck in the RG
flow of Hermitian theories. The bottleneck creates a large window of length scale in which the theory
exhibits an approximate scale invariance before the system eventually becomes superconducting in the
low energy limit.

Our next task is to understand how Hermitian theories undergo superconducting instabilities at low
energies. We can not use Eq. (2.198) to describe the actual superconducting instability because the
full RG flow does not stay within the one-dimensional subspace spanned by Eq. (2.194). The RG flow
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that is projected to a fixed channel does not capture how the Cooper pair wavefunction evolves under
the RG flow. In particular, the dilatation term in the beta functional continuously push electrons from
the hot region to the cold region under the RG flow, which broadens the width of the pair wavefunction
relative to the width of the hot spot region37. Therefore, we go back to the full beta functional to
address superconducting instability.

2.7 Superconducting instability

In this section, we study superconducting instability by solving the beta functional for the four-fermion
coupling function in the pairing channel with a fixed nesting angle. This is justified because the theory
undergoes a superconducting instability before the nesting angle changes appreciably in the small v
limit, as will be shown later. Since we already know that there is no Hermitian fixed point with v ̸= 0,
for the purpose of understanding superconductivity, it is simpler to use the beta functional for the
coupling function defined in the space of physical momentum. The way superconductivity emerges at
low energies can be understood from the solution of the beta functional for the four-fermion coupling

function. Since λ
V ;(±),( sd )
2PP

(
p −p
k −k

) is sensitive to the boson propagator at large momenta, only the net two-

body interaction function defined in Eq. (2.176) can be determined within the low-energy effective
field theory. Nonetheless, we can still understand superconducting instabilities by solving Eq. (2.175)

for λ
V ;(±),( sd )
2PP

(
p −p
k −k

), assuming that the boson propagator takes the form of Eq. (2.109) at all momenta.

Although Dµ(q; k) in Eq. (2.109) and λ
V ;(±),( sd )
2PP

(
p −p
k −k

) obtained from Eq. (2.175) are not individually

reliable at large momenta, the combination in Eq. (2.176) is insensitive to the unknown UV physics.
In particular, if the net two-body interaction diverges due to a superconducting instability, so does

λ
V ;(±),( sd )
2PP

(
p −p
k −k

) because Eq. (2.109) is regular. Therefore, we directly solve the beta functional in Eq.

(2.175). The manner superconductivity arises crucially depends on whether the bare coupling function
has any channel with attractive interaction which is stronger than the interaction mediated by the
spin fluctuations or not [96]. Therefore, discussion on superconductivity is divided into two parts.

2.7.1 Attractive bare interaction

If the bare interaction is attractive in any channel with its strength greater than w = v/c, Eq. (2.175)
is dominated by the BCS term that is quadratic in the four-fermion coupling. In this case, Eq. (2.175)
is well approximated by

∂

∂ℓ
λ
V ;(±),( sd )
2PP

(
p −p
k −k

) = −λV ;(±),( sd )
2PP

(
p −p
k −k

) − 1

4π

∫
dq

2πµ
λ
V ;(±),( sd )
2PP

(
p −p
q −q

)λ
V ;(±),( sd )
2PP

(
q −q
k −k

). (2.203)

The first term on the right hand side reflects the fact that the four-fermion coupling is irrelevant by
power-counting under the scaling in which all components of momentum are scaled. The flip side of
the scaling is the scale dependent measure dq

2πµ in the second term. It describes the BCS process in
which Cooper pairs are scattered to intermediate states on the Fermi surface. The volume of the phase
space for virtual Cooper pairs measured in the unit of the running energy scale µ = Λe−ℓ increases
with decreasing energy. The enhancement from the phase space volume compensates the suppression
from the power-counting, effectively promoting the four-fermion coupling to a marginal coupling as
expected. This can be easily seen by absorbing a factor of eℓ into the coupling to write the beta

37This reflects the fact that more and more electrons are decoupled from spin fluctuations as the low-energy limit is
taken.
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functional as

∂

∂ℓ

(
eℓλ

V ;(±),( sd )
2PP

(
p −p
k −k

)

)
= − 1

4π

∫
dq

2πΛ

(
eℓλ

V ;(±),( sd )
2PP

(
p −p
q −q

)

)(
eℓλ

V ;(±),( sd )
2PP

(
q −q
k −k

)

)
. (2.204)

Its solution is given by

λV ;(±),( sd )(ℓ) = e−ℓλV ;(±),( sd )(0)

[
1 +

ℓ

4π
λV ;(±),( sd )(0)

]−1

. (2.205)

Here λV ;(±),( sd ) is viewed as a matrix defined in the space of momentum. In this expression, the matrix
multiplications are defined with the measure (AB)p,k =

∫
dq
2πΛApqBqk. If λV (0) has any channel with

negative eigenvalue, the four-fermion coupling blows up around scale ℓc ∼ 4π
|E| , where E < 0 is the

most negative eigenvalue of the bare coupling[165]. For |E| > w, ℓc < 1/w ≪ ℓ0, and the flow of
v is negligible between ℓ = 0 and ℓc. When the bare interaction is attractive and stronger than w,
the superconducting transition temperature and the pairing wavefunction are sensitive to the bare
four-fermion coupling. In this case, gapless spin fluctuations have little effect on superconductivity,
and the manner in which superconductivity emerges is not universal.

2.7.2 Repulsive bare interaction

Theories in which the bare coupling is not strongly attractive in any channel are more interesting in
that the emergence of superconductivity is governed by the universal physics associated with the nearby
non-Fermi liquid fixed point. This is because those theories necessarily flow through the bottleneck
region where the RG flow is constricted. To see this, we view λV2PP in Eq. (2.169) as a matrix and
decompose it as λV2PP =

∑
i λi|i⟩⟨i|. Here, the channel indices ((±), ( sd )) are dropped to avoid clutter

in notation. |i⟩’s (⟨i|’s) represent normalized column (row) eigenvectors that diagonalize the four
fermion coupling function, and λi’s represent the eigenvalues. Eigenvalues and eigenvectors obey the
flow equations given by

∂

∂ℓ
λi = − λi − 2⟨i|η|i⟩µλi −

1

4π
⟨i|(λ′)2|i⟩µ,

∂|i⟩
∂ℓ

= −
∑

j ̸=i

(λi + λj)
(
⟨j|η|i⟩µ − α(n)

4π ⟨j|DV |i⟩µ
)

+ (α(n))2

4π ⟨j|
(
DV
)2 |i⟩µ

λi − λj
|j⟩.

(2.206)

Here, ⟨i|C|j⟩µ ≡
∫

dkdp
(2πµ)2 f

∗
i,kCkpfj,p with fi,k representing the i-th eigenvector written in the momen-

tum space. η is a diagonal matrix with ηp,k = 2πµδ(p− k)ηp. λ
′(±),( sd )(
p −p
q −q

) is defined in Eq. (2.176) and

DV
p,k ≡ Dµ(p;k)√

VF,pVF,k

. Since η and (λ′)2 are non-negative matrices, dλi

dℓ ≤ 0 for λi ≥ 0. This means that

theories with repulsive couplings flow toward λi = 0 at low energies. In the small v limit, theories
with bare repulsive couplings flow to the fixed point at λi = 0. For v ̸= 0, λi = 0 is no longer a fixed
point. Since ∂λi

∂ℓ < 0 for λi ≥ 0, all theories with v ̸= 0 develop at least one channel with attractive
interactions at sufficiently low energies38. Although λ = 0 is not a fixed point, it still acts as an
approximate focal point in the space of theories because at λ = 0 the beta functional is proportional
to D2

µ whose eigenvalues are order of w2. In the small v limit, the slow RG speed near λ = 0 creates a
bottleneck region in which a theory spends a long RG ‘time’. Consequently, bare theories with O(1)
repulsive interactions are naturally attracted to the region with |λi| ≤ w at scale ℓ∗ ∼ w−1 before they
become negative. For v ̸= 0, there is no perfect focusing of the RG flow. Nonetheless, theories spend
longer RG time in the bottleneck region as v decreases. This makes the theory within the bottleneck an

38This is expected from the absence of Hermitian quasi-fixed points with v ̸= 0.
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approximate attractor of UV theories[234, 216]. Once theories are attracted to the bottleneck region,
the superconducting transition temperature is determined by the RG time that is needed for theories
to pass through it. In this section, we examine how superconductivity emerges in a theory that is
within the bottleneck region with λ ≈ 0 at a scale ℓ∗.

To remove the explicit scale dependence in the measure of the momentum integration of the beta
functional, we consider

λ̄
V ;(±),( sd )
2PP

(
p −p
k −k

) = eℓλ
V ;(±),( sd )
2PP

(
p −p
k −k

). (2.207)

Its beta functional reads

∂

∂ℓ
λ̄
V ;(±),( sd )
2PP

(
p −p
k −k

) = − (ηk + ηp) λ̄
V ;(±),( sd )
2PP

(
p −p
k −k

)

− 1

4π

∫
dq

2πΛ

[
λ̄
V ;(±),( sd )
2PP

(
p −p
q −q

) − 2

Nf
Y

(±)
PP 1( sd ) e

ℓDΛe−ℓ(p; q)√
VF,pVF,q

]

×
[
λ̄
V ;(±),( sd )
2PP

(
q −q
k −k

) − 2

Nf
Y

(±)
PP 1( sd ) e

ℓDΛe−ℓ(q; k)√
VF,qVF,k

]
.

(2.208)

Here, Dµ(q; k) is defined in Eq. (2.109). A theory that is at the bottleneck point at scale ℓ∗ corresponds
to the ‘initial’ condition

λ̄
V ;(±),( sd )
2PP

(
p −p
k −k

)(ℓ∗) = 0. (2.209)

In the following, we focus on the d-wave and spin anti-symmetric sector in which the attractive in-
teraction is strongest[177, 165]. At energy scales that are not too smaller than Λ∗ = Λe−ℓ

∗
, we can

ignore λ̄V2PP on the right hand side of Eq. (2.208). As the energy scale is lowered, the spin fluctua-
tions generate attractive interaction which, in turn, accelerates the flow of λ̄V2PP

39. At sufficiently low

energies, the magnitude of λ̄V2PP surpasses that of − 2
Nf
Y

(±)
PP 1( sd ) e

ℓD
Λe−ℓ (p;q)√
VF,pVF,q

in Eq. (2.208). As the

four-fermion coupling becomes stronger than the attractive interaction generated by spin fluctuations
at low energies, the further growth of the four-fermion coupling is dominated by the BCS process. We
denote this crossover scale as ℓ1. Since the beta function is dominated by different terms below and
above the crossover scales, we write the approximate solution of the beta functional as

λ̄V2PP =





λ̄I for ℓ < ℓ1

λ̄II for ℓ > ℓ1
. (2.210)

For ℓ < ℓ1, the RG flow is approximated by

∂

∂ℓ
λ̄
(−),( d )

I,
(
p −p
k −k

) ≈ − 1

4π

(
2Y

(−)
PP

Nf

)2 ∫
dq

2πΛ

eℓDΛe−ℓ(p; q)√
VF,pVF,q

eℓDΛe−ℓ(q; k)√
VF,qVF,k

. (2.211)

It describes the process in which the four-fermion coupling is generated from gapless spin fluctuations.
The contribution of the anomalous dimension can be also ignored because λV2PP is small. The solution
of Eq. (2.211) is written as

λ̄
(−),( d )

I,
(
p −p
k −k

)(ℓ) = − 1

4π

(
2Y

(−)
PP

Nf

)2 ∫ ℓ

ℓ∗
dℓ′

1√
VF,pVF,k

×
∫

dq

2πVF,q

g2p,qg
2
q,kΛ[

µ′ + c |p− q|µ′ + c |vpp+ vqq|µ′

] [
µ′ + c |q − k|µ′ + c |vqq + vkk|µ′

] ,
(2.212)

39This follows from the fact that the largest eigenvalue of Dµ is positive and Y
(−)
PP 1( d ) = 2

(
1 + 1

Nc

)
> 0.
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where µ′ = Λe−ℓ
′
, and all coupling functions on the right hand side of the equation are evaluated at

scale ℓ′. Let us denote the most negative eigenvalue and the associated eigenvector of λ̄I(ℓ) as E0(ℓ)
and Fk(ℓ), respectively. The crossover scale ℓ1 is determined from the condition that E0(ℓ) becomes
comparable to the spin fluctuation-induced interaction projected onto Fk(ℓ),

E0(ℓ1) ∼ 2

Nf
Y

(−)
PP

〈
eℓ1DΛe−ℓ1 (p; k)√

VF,pVF,k

〉

F

, (2.213)

where

〈
eℓ1D

Λe−ℓ1
(p;k)√

VF,pVF,k

〉

F

=
∫

dpdk
(2πΛ)2

eℓ1D
Λe−ℓ1

(p;k)√
VF,pVF,k

F ∗
p (ℓ1)Fk(ℓ1). To the leading order in v, the four-

fermion coupling function generated by the Yukawa coupling in Eq. (2.212) decays as 1/|p − k| at
large momenta up to a logarithmic correction. The slow decay of the large-angle scatterings give rise
to inter-patch couplings that invalidates the patch description.

Since it is difficult to analytically compute the eigenvector of λ̄
(−),( d )

I,
(
p −p
k −k

)(ℓ), we first estimate the

crossover scale using a simple Ansatz. At energy scale Λ∗, electrons within the range of momentum
|k| < Λ∗/(vc) are strongly coupled with spin fluctuations. Therefore, we consider a Cooper pair
wavefunction whose width is order of Λ∗/(vc) in the momentum space,

fk =

(
2πvc

Λ∗

)1/2

Θ

(
1

2
− vc |k|

Λ∗

)
. (2.214)

The expectation value of
eℓDµ√
VF

√
VF

for this Ansatz is written as

〈
eℓDµ√
VF

√
VF

〉
=

∫
dkdp

(2πΛ)2
gkp(ℓ)

2

√
VF,k(ℓ)VF,p(ℓ)

Λ

Λe−ℓ + c |k − p| + cv |k + p|f
∗
k (ℓ)fp(ℓ), (2.215)

where

gk,p(ℓ) = gk,p(0)

(
µ

max{µ, 2v |k + p| , 2vc |k| , 2vc |p|}

)α0(ℓ0)

, VF,k(ℓ) =

(
µ

max{µ, 4v|k|}

)α1(ℓ0)/2

(2.216)
with µ = Λe−ℓ and α0, α1 defined in Eq. (2.140). To simplify the computation of Eq. (2.215), we first
use a few assumptions, and later justify them from the solution. First, we assume that the Yukawa
coupling function does not change significantly as a function of ℓ for ℓ∗ < ℓ < ℓ1 :

gk,p(ℓ1)

gk,p(ℓ∗)
∼ 1, (2.217)

where ℓ∗ is the scale at which the theory is in the bottleneck region and ℓ1 is the crossover scale. If Eq.
(2.217) is satisfied, the scale dependence of VF,k(ℓ) can be also ignored in ℓ∗ < ℓ < ℓ1 because α1 ≪ α0

in the small v limit. Second, we assume that the coupling functions are almost constant within the
support of fk :

VF,k(ℓ) ≈ 1, gk,p(ℓ) ≈ g0(ℓ) (2.218)

for |k| < Λ∗/(vc) and ℓ∗ < ℓ < ℓ1. Finally, we assume that the crossover occurs at an energy that is
much smaller than Λ∗,

ℓ1 ≫ ℓ∗. (2.219)

These assumptions allow us to approximate (2.215) as

〈
eℓDµ√
VF

√
VF

〉
≈ g0(ℓ∗)2

∫
dkdp

(2πΛ)2
Λ

c |k − p| + cv |k + p|f
∗
k (ℓ)fp(ℓ) (2.220)



2.7. SUPERCONDUCTING INSTABILITY 91

for ℓ∗ < ℓ < ℓ1. The direct integrations over the momenta gives
〈

eℓDµ√
VF

√
VF

〉
≈ g0(ℓ∗)2

πc
log

(
1

v

)
=
w0(ℓ∗)

2
log

(
1

v

)
. (2.221)

Eq. (2.221) is largely independent of ℓ40. On the other hand, E0(ℓ) grows linearly in ℓ as

E0(ℓ) ∼ − 1

4πN2
f

(
Y

(−)
PP

)2
(ℓ− ℓ∗)

〈
eℓDµ√
VF

√
VF

〉2

f

∼ − 1

4πN2
f

(
Y

(−)
PP

)2
(ℓ− ℓ∗)w2 log2

(
1

v

)
. (2.222)

Inserting Eqs. (2.221)-(2.222) to Eq. (2.213), we obtain the crossover scale to be

ℓ1 ∼ ℓ∗ +
2πNf(
1 + 1

Nc

) 1

w log(1/v)
, (2.223)

and the strength of the four-fermion coupling at the crossover scale is

E0(ℓ1) ∼ − 2

Nf

(
1 +

1

Nc

)
w log

(
1

v

)
. (2.224)

The consistency of the assumptions used in Eqs. (2.217) -(2.219) can be checked41.
We confirm this estimation of the crossover scale by numerically diagonalizing Eq. (2.212). Fig.

2.22a shows the numerical results for the most negative eigenvalue of λ̄
(−),( d )

I,
(
p −p
k −k

)(ℓ) and the expectation

value of
eℓ1D

Λe−ℓ1
(p;k)√

VF,pVF,k

evaluated for the corresponding eigenvector. While the magnitude of the former

increases more or less linearly in ℓ − ℓ∗, the expectation value of the latter is largely constant, as
expected. This results in the crossover at a scale ℓ1. At the crossover scale, the eigenvector shown
in Fig. 2.22b is peaked at the hot spot but its support is extended to Λ∗/(vc). As is expected, the
crossover scale increases with decreasing v (or increasing ℓ0) as is shown in Fig. 2.22c.

For ℓ > ℓ1, the magnitude of λ̄V exceeds the contribution of 2
Nf
Y

(±)
PP 1( sd ) e

ℓD
Λe−ℓ (q;k)√
VF,qVF,k

in Eq. (2.208)

at least in the channel with the most negative eigenvalue. The growth of the eigenvalue in that channel
is then mostly driven by λ̄V itself. This marks the start of the second stage. In the small v limit,
E0(ℓ1) ≫

∫
dk
2πΛηk|fk(ℓ1)|2, and we can further ignore the contribution of the anomalous dimension in

Eq. (2.208) to write the beta functional as

∂

∂ℓ
λ̄
(−),( d )

II,
(
p −p
k −k

)(ℓ) ≈ − 1

4π

∫
dq

2πΛ
λ̄
(−),( d )

II,
(
p −p
q −q

)λ̄(−),( d )

II,
(
q −q
k −k

) (2.225)

with the matching condition, λ̄
(−),( d )

II,
(
p −p
k −k

)(ℓ1) = λ̄
(−),( d )

I,
(
p −p
k −k

)(ℓ1). The solution to Eq. (2.225) is given by

λ̄
(−),( d )
II (ℓ) =

λ̄
(−),(d )
I (ℓ1)

1+ 1
4π (ℓ−ℓ1)λ̄(−),(d )

I (ℓ1)
, and the renormalized four-fermion coupling blows up around the

scale, ℓc ∼ ℓ1 + 4π
|E0(ℓ1)| = ℓ∗ +

4πNf

(1+ 1
Nc

)w log( 1
v )

. The superconducting transition temperature is given by

Tc ∼ Λ∗e
− 4πNf

(1+ 1
Nc )w log( 1

v ) . (2.226)

40While
eℓD

Λe−ℓ (p;k)√
VF,pVF,k

at the hot spot (p = k = 0) increases without a bound with increasing ℓ, its eigenvalues remain

bounded at all ℓ. In particular,
∫ kF
−kF

dp
2πΛ

∫ kF
−kF

dk
2πΛ

f∗p
Λ

c|k−p|+cv0|k+p| fk is finite for all square integrable functions fk.

41Eq. (2.219) directly follows from Eq. (2.223). With α0 and c expressed in terms of v as α0(v) =

√
v log(1/v)√
2π

√
NcNf

,

c(v) =
√

v
8NcNf

log
(
1
v

)
, Eq. (2.217) becomes

gk,p(ℓ1)

gk,p(ℓ
∗) ∼ e−α0(ℓ0)(ℓ1−ℓ∗) ∼ e

− 1
2(Nc+1) ∼ 1. For Nc = 2, Nf = 1,

g(ℓ1)/g(ℓ∗) ≈ 0.846482. Eq. (2.218) for the diagonal Yukawa coupling can be checked from
gΛ∗

vc

(ℓ1)

g0(ℓ1)
∼
(

Λe−ℓ1

Λ∗

)α0
=

e−α0(ℓ1−ℓ∗) ∼ 1. Similarly, Eq. (2.218) for the off-diagonal Yukawa coupling and VF,k follow.
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Figure 2.22: Numerical results for the crossover scale and the Cooper pair wavefunction. (a) The solid
and dashed lines denote the most negative eigenvalue of Eq. (2.212) (E0(ℓ)) and the expectation value
of Dµ(k, p) in Eq. (2.215) for the associated eigenvector, respectively, plotted as functions of ℓ− ℓ∗ for
ℓ0 = 100, Nc = 2 and Nf = 1. The eigenvalue and the expectation value cross at scale ℓ ≈ ℓ∗ + 0.6.
(b) The normalized eigenvector associated with the most negative eigenvalue of Eq. (2.212) at the
crossover scale. (c) The ℓ0 dependence of the crossover scale. The solid line represents the analytic
estimation for the crossover scale obtained in Eq. (2.223) with a multiplicative factor determined from
a fit of the numerical crossover scales denoted as dots. The uncertainty in the numerical data is due
to the grid size of ℓ− ℓ∗, which is taken to be 0.05.

In the second stage of the RG flow, the eigenvector with the most negative eigenvalue is more or

less frozen, and the eigenvectors of λ̄
(−),( d )

I,
(
p −p
k −k

)(ℓ1) (Fig. 2.22b) determines the channel that becomes

superconducting. It is noted that the pairing wavefunction is extended far beyond the hot spot region
defined at scale ℓc. This shows the importance of large-angle scatterings beyond the hot spot region.
Therefore, the hot spot theory can not capture the superconducting instability properly. Since ℓc−ℓ∗ ∼
1/ (w log(1/v)) ≪ 1/v in the small v limit, the nesting angle does not change much between the scale
where the theory is in the bottleneck and the scale at which the superconductivity sets in. This justifies
our analysis in which the flow of the nesting angle is ignored.

For the superconductivity, the physics of non-Fermi liquid and the Fermi liquid play important
roles in different length scales. When the theory is within the bottleneck region say at energy scale
Λ∗, the gapless spin fluctuations generate an attractive interaction for electrons within the range
of momentum |k| < Λ∗

vc from the hot spots. The spin fluctuations also make those same electrons
incoherent, causing a ‘pair-breaking’ effect. At lower energy scale, the momentum region where the
spin fluctuations generate attractive interaction becomes increasingly localized near the hot spots as
more and more electrons are decoupled from spin fluctuations. At the same time, the pair breaking
effect caused by the spin fluctuations subsides except for the small region near the hot spots. At low
energies, what remains away from the hot spots is the heavy but largely coherent electrons that are
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subject to the attractive four-fermion interaction that has been accumulated at high energies. The spin
fluctuations continue to add more attractive interaction near the hot spots. But, once the accumulated
four-fermion coupling becomes comparable to the interaction mediated by the spin fluctuations, the
further growth of the four-fermion coupling is mainly driven by those more abundant cold electrons
through the BCS scatterings42. The RG time that is needed to reach the crossover scale (ℓ1 − ℓ∗) is
comparable to the RG time that is further needed for the BCS process to finally drive the instability
from the crossover (ℓc−ℓ1). Interestingly, the residual attractive interaction that is left for the coherent
electrons at low energies is only dependent on the bare nesting angle and so is the superconducting
transition temperature.

2.8 Summary

In this chapter, a field-theoretic functional renormalization group formalism is developed for full low-
energy effective field theories of non-Fermi liquids that include all gapless modes around the Fermi
surface. The formalism, which is beyond the traditional patch description, captures the universal low-
energy physics of the entire Fermi surface in the minimal way through renormalizable field theories.
Due to the Fermi momentum that does not generally decouple from the low-energy physics, the usual
notions of renormalizable field theories and scale invariance need to be generalized. We use this
functional renormalization group formalism to understand the non-Fermi liquid state realized at the
2+1 dimensional antiferromagnetic quantum critical point and the pathway from the non-Fermi liquid
to superconductivity.

The low-energy effective field theory of the antiferromagnetic quantum critical metal is charac-
terized by couplings that are functions of momentum along the Fermi surface. The full functional
renormalization group flow, which is controlled in the limit that the bare nesting angle is small allows
us to identify the non-Fermi liquid fixed point in the space of coupling functions and extract universal
low-energy physics controlled by the fixed point. At low energies, the renormalized coupling functions
acquire universal profiles as functions of momentum along the Fermi surface. Those coupling func-
tions, in turn, fix physical observables that depend on momentum along the Fermi surface such as
the shape of the renormalized Fermi surface, the Fermi velocity, the quasiparticle weight, the single-
electron decay rate and the superconducting instability. When the bare four-fermion coupling is weak,
the superconducting instability is controlled by the universal attractive interaction generated by the
gapless spin fluctuations. Below the superconducting transition temperature, which is exponentially
suppressed in the limit that the nesting angle is small, the non-Fermi liquid state becomes unstable
against the spin-singlet d-wave pairing instability. The pairing wavefunction includes significant weight
of electrons away from the hot spot region defined at the scale of the superconducting transition tem-
perature. Therefore, the hot spot theory cannot capture the superconducting instability that involves
large-angle scatterings.

42This is in contrast to the cases in which the Fermi surface is coupled with a critical bosonic mode centered at zero
momentum. In those cases, the entire Fermi surface remains strongly renormalized down to the zero energy, and the
pairing must arise out of hot fermions.
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Chapter 3

Emergence of Curved
Momentum-Spacetime and its
Effect on Cyclotron Motion in the
Antiferromagnetic Quantum
Critical metal

3.1 Introduction

The semi-classical equations of motion of electrons in a metal present a position-momentum dual-
ity similar to that of the electric-magnetic duality of Maxwell’s equations [86]. In this analogy, the
momentum-dependent quasiparticle energy and the Berry curvature associated with the Bloch wave-
functions play the roles of the position-dependent potential in real space and magnetic field in momen-
tum space, respectively [229]. Can this symmetry be further expended to spacetime geometry [44, 98,
106, 20, 49]? Examples of both real space curvature and momentum space curvature in lattices have
been explored in the past [12, 221, 157, 134, 214, 43, 223, 178, 145, 198, 82]. However, in both types of
examples, the origin of the momentum space curvature can be traced to the underlying lattice [135].
In this work, we point out that curved momentum-spacetimes can also arise from anisotropic quantum
corrections and even a momentum-space black hole horizon can emerge if quantum corrections are
strongly singular in momentum space.

In Chapter 2, we saw that strongly momentum-dependent quantum corrections arise in metals close
to quantum critical points associated with order parameters carrying non-zero momenta. At spin or
charge density-wave critical points, electrons residing on hot manifolds, sub-manifolds of Fermi surface
that can be connected by the ordering wave vectors, are more strongly scattered by critical fluctuations
than electrons away from the hot manifolds. This leads to a momentum-dependent renormalization of
electron. In particular, the Fermi velocity can acquire a strong dependence on momentum along the
Fermi surface as electrons become significantly heavier near the hot manifold. Interestingly, a strongly
momentum-dependent Fermi velocity arises as a consequence of momentum-dependent red shift even
without a direct renormalization of the band dispersion energy. Namely, the Fermi velocity can acquire
momentum-dependence through a momentum-dependent dilatation of frequency. This momentum-
dependent red shift is indeed the primary mechanism by which the Fermi velocity acquires a strong
momentum dependence in the antiferromagnetic quantum critical metal in two space dimensions (Sec.
2.6.1).

Here is the outline of the chapter. In Sec. 3.2, we cast the theory of the fully renormalized
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Figure 3.1: For simplicity, we have omitted the superscript B in all the quantities in this figure. (a)
The full Fermi surface divided into eight segments (separated by the red bars.) Segment 1 is bounded
by ki and kf , and other segments are related to it through the C4 and reflection symmetries. Each
segment contains one hot spot denoted as red dots on the Fermi surface. The hot spots are connected
by the antiferromagnetic ordering wave vector, Q⃗AF . x̂ (ŷ) is chosen to be perpendicular (parallel) to

Q⃗AF at hot spot 1. (b) The Fermi surface in segment 1 is at vkxkx + ky = 0. Here, vkxkx represents
the displacement of the Fermi surface from what the perfectly nested Fermi surface would have been.

quasiparticles away from the hot spots into a theory of spinors propagating in a curved momentum-
spacetime. In Sec. 3.3, we compute the cyclotron period of electron and the attribute its non-trivial
dependence on the bare nesting angle of the Fermi surface to a curved momentum-spacetime geometry
generated by the critical spin fluctuations. We conclude with a summary in Sec. 3.4.

3.2 Emergence of a curved momentum-spacetime

Before we start, let us list up the necessary ingredients to carry out the calculations of this chapter.
First, focusing on the renormalized shape of the Fermi surface and the Fermi velocity that control the
dynamics of low-energy quasiparticles, we consider the renormalized low-energy effective field theory
from Eq. (2.36) that includes all gapless modes on the Fermi surface,

S =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dkB ψB†

N,σ,j(k
B)
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(3.1)

Here, we consider a Fermi surface with the C4 and reflection symmetries that supports eight hot spots
labelled by N = 1, 2, . . . , 8 as is shown in Fig. 3.1a. The Fermi surface is divided into eight disjoint



3.2. EMERGENCE OF A CURVED MOMENTUM-SPACETIME 97

segments whose union covers the entire Fermi surface. All quantities with superscript B are bare ones
in terms of which the microscopic theory is written (see Eq. (2.37)). The full Fermi velocity vector in

term of V
B;(N)

F,kBN
and v

B;(N)

kBN
is given by

v⃗BF (kBx ) = V
B;(1)
F,kBx


∂v

B;(1)
kBx

∂kBx
kBx + v

B;(1)
kBx


 x̂+ V

B;(1)
F,kBx

ŷ, (3.2)

where N = 1 (See Fig. 3.1b).

Our second ingredient is the crossover scale is given by (see Eq. (2.126)) E
(2L)
k ≡ Λe−ℓ

(2L)
k where

ℓ
(2L)
k = log

(
Λ

4VF,kvk |k|

)
(3.3)

denotes the logarithmic length scale associated with the crossover. Let us recall that this crossover
occurs because electrons away from hot spots can not interact with with critical spin fluctuations with
zero energy while staying on the Fermi surface due to a lack of the perfect nesting for vk ̸= 0. Here, we
emphasize that vk is small but non-zero in the non-perturbative solution. This momentum-dependent

crossover creates two momentum scales, kc(ℓ) and kh(ℓ) determined from ℓ
(2L)
kc

= 0 and ℓ
(2L)
kh

= ℓ,
respectively. They divide the momentum space into three regions at a finite length scale ℓ. To the

leading order in vk, these momentum scales can be approximated as kc ≈ Λ
4v0(0)

and kh ≈ Λe−ℓ

4v0(0)
. In the

‘cold’ region with k > kc, electrons are too far away from the hot spot to receive significant quantum
correction at energies below Λ. In the ‘lukewarm’ region with kh(ℓ) < k < kc, electrons receive non-

trivial quantum corrections between Λ and E
(2L)
k . But, the electrons in the lukewarm region are largely

decoupled from spin fluctuations at energy scale ℓ. In the ‘hot’ region with k < kh(ℓ), electrons remain
strongly coupled with critical spin fluctuations at scale ℓ. This gives rise to the following momentum
profiles for the renormalized nesting angle vk and Fermi velocity VF,k at scale ℓ (Eqs. (2.128) and
(2.130)),

vk =





ℓ0 log(ℓ0)
(ℓ+ℓ0) log(ℓ+ℓ0)

v0(0) 0 ≤ k < kh
ℓ0 log(ℓ0)

(ℓ
(2L)
k +ℓ0) log(ℓ

(2L)
k +ℓ0)

v0(0) kh ≤ k < kc
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, (3.4)

VF,k =
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


1 0 ≤ k < kh

exp
(√

N2
c − 1
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Ei(log

√
ℓ+ ℓ0) − Ei(log
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k + ℓ0)
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kh ≤ k < kc

exp
(√

N2
c − 1

(
Ei(log

√
ℓ+ ℓ0) − Ei(log

√
ℓ0)
))

kc ≤ k

. (3.5)

Here, Ei(x) is the exponential integral function and

ℓ0 =
π2NcNf

2(N2
c − 1)

1

v0(0) log(1/v0(0))
(3.6)

represents the logarithmic length scale below which the flow of the nesting angle is negligible. The
nesting angle is unchanged for k ≥ kc because the Fermi surface is not renormalized far away from the
hot spots.

As ℓ increases, the size of hot region shrinks as more electrons become decoupled from spin fluctua-
tions. In the strict zero temperature limit, the theory develops superconducting instabilities due to the
run-away flow of the four-fermion coupling function (Sec. 2.6.3). However, the normal state remains
stable down to an energy scale that is exponentially small in 1/

√
v0(0) in the limit that v0(0) is small

and the bare four-fermion coupling is weak. Here, we study the dynamics of electrons at energies low
enough that electrons are decoupled from the critical spin fluctuations almost everywhere on the Fermi
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surface except for the immediate vicinity of the hot spots but high enough that the superconducting
instability is absent. As a first step, we consider the dynamics of quasiparticles at zero temperature,
ignoring the superconducting instability. Later, we consider the thermal effect that arises above the
superconducting transition temperature.

At zero energy (ℓ = ∞) the Fermi velocity away from the hot spots becomes infinite. This represents
the fact that electrons at the hot spots becomes infinitely slower than the rest of electrons. While the
choice of the renormalized frequency is convenient for describing the scaling behaviour of electrons
at the hot spots and the critical spin fluctuations[182], it is not useful for describing the dynamics of
electrons away from the hot spots. What really happens is that electrons in the the hot region are
slowed down by spin fluctuations while electrons in the cold region are not. For electrons away from
hot spots, it is more convenient to use the bare clock with respect to which the velocity of the cold
electrons is fixed to be 1. We can go back to the bare unit of frequency by undoing the rescaling the
frequency as

k0 =

(
V

(N)
F,kc

V
(N)
F,0

)
ω, ψN,σ,j(k) =

(
V

(N)
F,kc

V
(N)
F,0

)−1

ψ̃N,σ,j(ω, k⃗), (3.7)

where we use ω ≡ kB0 for simplicity of notation, and the normalization of the field is chosen to keep
the canonical form of the quantum effective action,

Γkin =

8∑

N=1

Nc∑

σ=1

Nf∑

j=1

∫
dωd2k⃗

(2π)3
ψ̃†
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{
iω + V(N)

F,kN
eN

[
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(N)
kN

]}
ψ̃N,σ,j(ω, k⃗). (3.8)

For the rest of the chapter, we will use the bare frequency. Here, V(N)
F,kN

=

(
V

(N)
F,0

V
(N)
F,kc

)
V

(N)
F,kN

denotes the

Fermi velocity measured in the bare time.
In the low-energy limit, kh approaches zero and the hot region shrinks to points. This implies that

quasiparticles are well defined everywhere on the Fermi surface except at the hot spots. The dynamics
of the fully renormalized quasiparticles is described by the quadratic action1 in Eq. (3.8) with nesting

angle vk and Fermi velocity (along Q⃗AF ) VF,k given by

vk =





π2NcNf

2(N2
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k +ℓ0) log(ℓ

(2L)
k +ℓ0)

0 ≤ k < k∗
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,

and
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e

√
N2

c−1

(
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,

(3.9)

respectively, where k∗ = Λe−ℓ0

4v0(0)
is the momentum scale below which the flow of the nesting angle is

appreciable and is determined from ℓ0 = ℓ
(2L)
k∗ (see Fig. 2.16). It is noted that the renormalized nesting

angle in Eq. (3.4) can be well approximated to be v0(0) for k > k∗ in the limit that v0(0) is small
(equivalently ℓ0 ≫ 1 ).

α1 =

√
Nc − 1√
ℓ0 log ℓ0

(3.10)

is the critical exponent of the Fermi velocity. As expected in Eq. (3.9), VF,k = 1 for k > kc and
vanishes at the hot spots. There are two noteworthy features in Eq. (3.9). First, in k∗ < k < kc,

1Besides the quadratic action, there also exists the four-fermion coupling that has been generated by the critical spin
fluctuations. However, their effects on the quasiparticle motion is sub-leading compared to the quantum corrections that
have been already incorporated into vk and VF,k in the limit that the nesting angle is small.
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Figure 3.2: The spinor composed of the electrons in segments 1 and 5 is defined in the hybrid spacetime
(t, r, k), where t is time, r is space conjugate to ky and k = kx. At fixed k, electrons at hot spots 1
and 5 have the same dynamics due to the time-reversal symmetry, and can be naturally described by
the two-component spinor Ψ in Eq. (3.11).

VF,k scales with k algebraically while vk is almost constant. This is because the quantum correction
that renormalizes VF,k is stronger than what renormalizes vk (Sec. 2.5.1). As a result, vk is almost
momentum-independent except in the vicinity of the hot spot within k < k∗, as expressed in Eq. (3.9)
for vk. Second, with virtually k-independent vk in k > k∗, both x and y components of Fermi velocity
are renormalized in the same fashion although there is no symmetry that protects the direction of
the Fermi velocity. This peculiarity arises because the dominant renormalization of Fermi velocity is
from the quantum correction to the frequency-dependent (ik0) term of the action in Eq. (3.1). In
other words, the momentum dependence of VF,k arises because the strength of the quantum correction
that dilates frequency depends on momentum along the Fermi surface. In the scheme that uses
one global clock for the entire system, we are forced to transfer the momentum dependence of the
quantum correction to the field renormalization and Fermi velocity. While this is a perfectly legitimate
picture, what the theory is really suggesting is to view the momentum-dependent Fermi velocity as a
consequence of non-uniform temporal metric on the Fermi surface. Here, we adopt this perspective
in which electrons have momentum-independent Fermi velocity in k∗ < k < kc once the velocity is
measured with a proper time defined with respect to a momentum-dependent metric.

We formulate this geometric description by casting Eq. (3.8) into a theory of quasiparticles prop-
agating in a curved spacetime that incorporates the momentum-dependent metric. For a brief review
of the fermionic action defined in curved spacetime, see Appendix E. For our particular case, we view
the Fermi surface as a collection of 1 + 1-dimensional Dirac fermions stacked along the direction of
Fermi surface, and combine a pair of chiral fermions at anti-podal points of the Fermi surface into a
two-component Dirac spinor[48]. Let us focus on segments 1 and 5 in this representation. Electrons in
these anti-podal hot spots can be naturally paired since they have the same dynamics (See Fig. 3.1.)
The two-component spinor is given by the Fourier transform

Ψσ,j(t, r, kx) ≡
∫

dωdky
(2π)2

ei(ωt+kyr)


 ψ1,σ,j(ω, kx, ky)

ψ∗
5,σ,j(−ω,−kx,−ky)


 . (3.11)

Here, the hot spot index is dropped as we focus on N = 1 and 5 (it is straightforward to write down
the theory for other segments.) The theory is written in the hybrid spacetime of (t, r, k)[205], where t
is time, r is the conjugate variable of ky, and k = kx labels points on the Fermi surface in segments
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Figure 3.3: The vielbein e0t(k) that depends on momentum along the Fermi surface determines the
rate at which the proper time lapses at momentum k per unit proper time of cold electrons far away
from the hot spots. The vielbein that vanishes at the hot spots represents the fact that the motion
of electrons at the hot spots become infinitely slowed down compared to cold electrons. (Left) The
momentum-dependent vielbein e0t for (a) α1 ≈ 0.663, (b) α1 ≈ 1 and (c) α1 ≈ 2.169. The choice
in (b) corresponds to the critical nesting angle at which the cyclotron period exhibits a logarithmic
dependence on momentum (see Eq. (3.19)). (Right) The t− k slice of the hybrid spacetime for fixed
r. For the purpose of illustrating the momentum-dependence of the vielbein, the temporal coordinate
has been compactified so that the size of the circumference at each k represents the proper time lapsed
at that momentum for every unit proper time of cold electrons. The circumference pinches off at the
hot spots due to the infinitely large red shift at those points.

1 and 5 (See Fig. 3.2.) From Eq. (3.11), it is straightforward to write the action in Eq. (3.8) for
segments 1 and 5 in the hybrid space of t, r, kx. The resulting action in terms of the spinors is

Γ
(1,5)
kin =

Nc∑

σ=1

Nf∑

j=1

∫
dk

2π

∫
dtdr|e| Ψ̄σ,j(t, r, k)

{
γ0e t0 Dt + γ1e r1 Dr

}
Ψσ,j(t, r, k), (3.12)

where Ψ̄ = Ψ†γ0, where γ0 = σy, γ1 = σx, γ2 = σz denote 2 × 2 gamma matrices that furnish
the two-dimensional spinor representation. e µa is the inverse of the vielbein eaµ with a = 0, 1, 2
and µ = t, r, k. The vielbein determines the metric in the 2 + 1-dimensional spacetime through
gµν =

∑2
a=0 e

a
µe
a
ν . In general, the vielbein is a function of t, r, k, but in our case it depends only on

k : e0t(k) = VF,k, e1r(k) = e2k(k) = 1 with all other elements being zero. |e| is the determinant of eaµ.

Dµ = ∂µ + i
2ωµ,abΣ

ab + iAµ denotes the covariant derivative, where ωµ,ab is the spin connection with

Σab = i
4 [γa, γb] and Aµ is the U(1) gauge field. Eq. (3.12) becomes equivalent to Eq. (3.8) for the

trivial spin connection ωµ,ab = 0 and the gauge field given by At = 0, Ar = vkk, Ak = 0. The gauge
field Ar gives a kx-dependent shift of momentum in the r direction so that quasiparticles have zero
energy at ky = −vkxkx.

Eq. (3.12) describes quasiparticles moving in a curved hybrid spacetime with a non-trivial torsion.

It expresses the fact that the Fermi velocity along the direction of Q⃗AF is 1 everywhere on the Fermi
surface if the momentum-dependent proper time interval dτ = e0t(k)dt is used in measuring velocity
at momentum k. The ‘apparent’ variation of Fermi velocity along the Fermi surface arises only when
one chooses to probe the dynamics of quasiparticles in one fixed clock. For an external lab observer
whose clock ticks once for every unit proper time defined in k > kc, quasiparticles appear to slow down
near hot spots due to the momentum-dependent red-shift in the same way that a free falling object
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Figure 3.4: The non-zero component of torsion shown as a function of momentum along the Fermi
surface near the hot spots. The torsion, as a gauge-invariant geometric quantity, represents how much
the momentum-spacetime in which quasiparticles propagate has been distorted from the flat one that

arises in the absence of momentum-dependent quantum corrections. The plot is obtained from 1
e0t

de0t
dk

by substituting Eq. (3.9) into e0t, and with the help of Eqs. (3.3), (3.6), and (3.10). The solid
blue, dashed red and dotted black curves correspond to v0(0) ≈ 0.04, v0(0) ≈ 0.13 and v0(0) ≈ 1.13,
respectively. This shows that the spacetime is more strongly distorted near the hot spots and for larger
bare nesting angles.

appears to undergo a slower time evolution near the surface of a massive object with respect to the
far observer due to the gravitational red shift.

The t-k slice of the momentum-spacetime is illustrated in Fig. 3.3 for the case in which the temporal
direction is compact. In k ≫ kc, the proper length of the temporal direction remains equal to the
periodicity of t since e0t = 1. In k∗ < k < kc, the proper length scales with k algebraically with
exponent α1 (e0t ∼ kα1). Hence, the proper time lapses slower as the hot spot is approached. In
k < k∗, the power-law decay is replaced with a slower decay due to a flow of the nesting angle as is
shown in Eq.(3.9).

With the vielbein and spin connection fully fixed by the renormalized coupling functions, Cartan’s

structure equation determines the torsion of the spacetime to be T t = 1
e0t

de0t
dk dk ∧ dt, T r = T k = 0.

The torsion measures the failure of closure when each of two vector is parallel transported along the
other vector. The non-zero component of the torsion indicates a non-trivial structure of the hybrid
spacetime. For the present hybrid spacetime, the torsion diverges in the k → 0 limit as is shown in
Fig. 3.4. In principle, the torsion can be measured from the rate at which the red shift varies along
the Fermi surface. However, it is not clear how the momentum-dependent torsion can be directly
measured from an experimental probe that is local in momentum space. Here, we consider a physical
observable that probes the global aspect of the distorted momentum-spacetime, which is sensitive to
the torsion yet much easier to measure experimentally.
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Figure 3.5: Initial setup of the quasiparticle wavepacket. The initial wavepacket of a quasiparticle is
placed at the boundary between segments 1 and 8 (ki). In the presence of magnetic field applied in
the z direction, the wavepacket moves along the Fermi surface towards hot spot 1. As it approaches
hot spot 1, it slows down due to the momentum-dependent red shift.

3.3 Cyclotron motion of quasiparticles in the curved momentum-
spacetime

In this section, we examine how the curved momentum-spacetime affects the dynamics of quasiparticles
by computing the cyclotron period of electron in the presence of magnetic field[199, 191]. Due to the C4

symmetry and the reflection symmetry around the boundary between segments, the cyclotron period
at bare nesting angle v0

2 is eight times the time it takes for a quasiparticle to traverse segment 1 :
T (v0) = 8 [T (ki, 0; v0) + T (0, kf ; v0)], where T (ki, 0; v0) denotes the time that it takes for a quasiparticle
to traverse from the boundary between segments 1 and 8 to hot spot 1, and T (0, kf ; v0), from hot spot
1 to the Brillouin zone boundary between segments 1 and 6 (see Fig. 3.1). The setup is depicted in Fig.
3.5. For simplicity, we assume T (0, kf ; v0) = T (ki, 0; v0) and focus on the computation of T (ki, 0; v0)
here3.

In the zero temperature limit, well-defined quasiparticles exist away from the hot spots and we
can use the semi-classical description of their dynamics. Strictly speaking, electrons right at the hot
spots are not described by quasiparticle even at zero temperature. However, the hot spots are a set of
measure zero on the Fermi surface and do not affect the cyclotron period. For a quasiparticle localized
at momentum k⃗, its time evolution is entirely determined by the kinetic action at that momentum.
According to Eq. (3.12), the quasiparticle has Fermi velocity given by

v⃗F (k) =

(
k
∂vk
∂k

+ vk

)
x̂+ ŷ (3.13)

when the Fermi velocity is measured with respect to the proper time τ defined at that momentum
through dτ = e0tdt, where t represents the time associated with the bare frequency ω. Since the
equation of quasiparticle at momentum k is entirely determined from the Fermi velocity and the proper
time defined at that momentum, the equation of motion for the the wavepacket of a quasiparticle is
given by the standard equation of motion[19],

dr⃗

dτ
= v⃗F (k),

dk⃗

dτ
= −e v⃗F (k) × B⃗, (3.14)

2In this section, we use v0 and v0(0) interchangeably for the momentum-independent bare nesting angle.
3In general, T (0, kf ; v0) ̸= T (ki, 0; v0) because there is no reflection symmetry around the hot spots. However, the

computation of T (0, kf ; v0) is exactly parallel to that of T (ki, 0; v0). This is because the singular part of the quantum
corrections are symmetric around the hot spots[30].
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Figure 3.6: The time that it takes for a quasiparticle to traverse from kc to k∗ plotted in the unit of
ki/(eB0) as a function of the bare nesting angle from v0 ≈ 0.04 to v0 ≈ 11 for the choice ki/Λ = 6.
The solid vertical line denotes the nesting angle (v0 ≈ 1.13) at which α1 = 1. The dashed lines mark
the minimum of T (kc, ki; v0). The non-monotonic behaviour of T (kc, ki; v0) arises from the interplay
between two effects : with increasing nesting angle, the size of the lukewarm region shrinks but the
intensity of the red shift induced by quantum corrections is increased.

when written in terms of the local proper time coordinate τ , where B⃗ = B0ẑ is the magnetic field
applied along the ẑ direction. B0 is assumed to be weak so that it does not affect the renormalized
coupling functions. To measure the cyclotron period in the lab frame, however, we need to recast the
equations of motion in the bare time t,

1

e0t

dr⃗

dt
=

(
k
∂vk
∂k

+ vk

)
x̂+ ŷ,

1

e0t

dk⃗

dt
= −eB0

[
x̂−

(
k
∂vk
∂k

+ vk

)
ŷ

]
, (3.15)

where the effects of the curved spacetime are captured by the vielbein e0t. We consider quasiparticles
on the Fermi surface, which allows us to focus on the equation of motion for the momentum along the
Fermi surface.

Now let us proceed with the solutions. For kc < ki (ki >
Λ
4v0

), there exists a region of Fermi surface
near the zone boundary where the renormalization from spin fluctuations is negligible at energies
below UV cutoff Λ. In this case, T (ki, 0; v0) can be written as the sum of three intervals, T (ki, 0; v0) =
T (ki, kc; v0)+T (kc, k

∗; v0)+T (k∗, 0; v0). T (ki, kc; v0) denotes the time that the quasiparticle spends in
the region where the quantum correction from spin fluctuations is negligible and the hybrid spacetime is
almost flat. T (kc, k

∗; v0) arises from the region with algebraically decaying e0t(k). Finally, T (k∗, 0; v0)
denotes the time that the quasiparticle spends in the very vicinity of the hot spot where the flow of the
nesting angle modifies the spacetime geometry from the algebraic form. In the following, we compute
each time interval one by one.

In the cold region with kc < k < ki, e0t ≈ 1 (see the third line for VF,k in Eq. (3.9)). From
dr⃗
dt = v0(0)x̂+ ŷ, dk⃗

dt = −eB0 (x̂− v0(0)ŷ), one readily obtains

T (ki, kc; v0) =
ki − kc
eB0

. (3.16)

In k∗ < k < kc, the nesting angle can be still regarded as momentum-independent while the vielbein
decays as e0t = (k/kc)

α1 , following the second line in Eq. (3.9), where the exponent α1 is determined
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from the bare nesting angle through Eqs. (3.6) and (3.10). The equations of motion become

dr⃗

dt
=

(
k(t)

kc

)α1

(v0(0)x̂+ ŷ) ,
dk⃗

dt
= −eB0

(
k(t)

kc

)α1

(x̂− v0(0)ŷ) , (3.17)

where k(t) denotes the x-component of k⃗(t). Integrating dk(t)
dt = −eB0

(
k(t)
kc

)α1

from kc to k∗, we

obtain

T (kc, k
∗; v0) =

kα1
c

eB0

∫ kc

k∗

dk′

k′α1
=

kc
(1 − α1)eB0

[
1 −

(
k∗

kc

)1−α1
]
. (3.18)

T (kc, k
∗; v0) is plotted as a function of v0(0) in Fig. 3.6. This plot is obtained by substituting

the expressions in Eqs. (3.10) and (3.6) in Eq. (3.18). For small nesting angle, T (kc, k
∗; v0) rapidly

decreases with increasing v0(0). This is because the range of lukewarm region decreases with increasing
nesting angle for a fixed Λ (see Eqs. (2.97), (2.98) and Fig. 2.16). Furthermore, at larger nesting angles,
even those electrons in the lukewarm region decouple from spin fluctuations at higher energy scales.
Remarkably, T (kc, k

∗; v0) bounces back as v0(0) increases further. This non-monotonic behaviour is
due to a competing effect that an increasing nesting angle has. At larger nesting angles, a reduction in
the density of states of low-energy particle-hole excitations weakens the screening of interaction[182].
This makes the quantum-correction-induced red shift stronger for electrons close to the hot spots.

As the nesting angle increases, the portion of Fermi surface affected by spin fluctuations shrinks
while electrons close to the hot spots are more significantly renormalized. The disparity in the strength
of quantum correction in different parts of Fermi surface causes a more strongly curved spacetime at a
large nesting angle. This is also reflected in the torsion that increases with increasing nesting angle as
is shown in Fig. 3.4. The metric that becomes more singular at the hot spots with increasing nesting
angle creates a possibility of realizing an analogous black hole horizon in momentum space. As α1

approaches 1, the prefactor kc
(1−α1)eB0

in Eq. (3.18) diverges and T (kc, k
∗; v0) becomes

lim
α1→1

T (kc, k
∗; v0) =

kc
eB0

log

(
kc
k∗

)
. (3.19)

The leading small-angle expansion predicts that α1 becomes 1 at v0 ≈ 1.13 for Nc = 2 and Nf = 1.
Even though the small v0 expansion is not valid for theories with v0 ∼ 1, here we proceed with the
assumption that the qualitative feature of the theory remains unchanged even at nesting angles that
are not so small[122]. In this case, there may well be a critical nesting angle at which α1 becomes 1
even if the actual critical value of v0 differs from what is predicted from the small-v0 expansion. The
way the time interval depends on k∗ in Eq. (3.19) is reminiscent of the logarithmic divergence in the
time needed for a free-falling object to reach the horizon of the Schwarzschild black hole as measured
by an asymptotic observer. This behaviour is analogous; nevertheless, it is not a coincidence. It is a
consequence of the fact that at α1 = 1 the metric of a t and k slice of the hybrid spacetime in k > k∗ is
conformally equivalent to that of the Schwazschild black hole outside the horizon. For a review of the
Schwarzchild metric and the time needed for a free-falling object to reach the horizon, see Appendix F.
If k∗ was zero, the cyclotron period would diverge and a quasiparticle would not be able to go through
the hot spot for α1 ≥ 1. In our case, the divergence is cut off by k∗ because the momentum-spacetime
geometry is modified from that of the Schwarschild horizon for k < k∗ due to the flow of the nesting
angle 4.

For 0 < k < k∗, the electrons stay coupled with spin fluctuations at energy scales that are low
enough that one has to consider the flow of the nesting angle. This modifies the temporal viel-
bein from the algebraic form to a ‘super-logarithmic’ form5 in the first line of Eq. (3.9), e0t ≈

4For this reason, the geometry that emerges in the α1 = 1 limit is more a fuzzball[136] or a firewall[9] than a horizon
with no ‘drama’. The fact that the horizon is a special place is also seen from the fact that the torsion diverges at the
hot spots (see Fig. 3.4). Another difference from the Schwarzschild horizon is that there is no interior of the black hole
in our analogous horizon.

5For this, we use Ei (X) ≈ eX

X
for X ≫ 1.
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Figure 3.7: The solid curve represents T (k∗, 0; v0) plotted as a function of v0(0). Two dashed lines that
sandwich the solid curve are upper and lower bounds whose expressions can be obtained analytically
(see text), which shows that T (k∗, 0; v0) is finite at all values of v0(0). The vertical line marks the
nesting angle at which α1 = 1.

1
ν(ℓ0)

exp

(
−
√
N2
c − 1

√
ℓ
(2L)
k +ℓ0

log

√
ℓ
(2L)
k +ℓ0

)
, where ν(ℓ0) = exp

(
−
√
N2
c − 1 Ei

(
log

√
ℓ0
))

. Because the nest-

ing angle decreases in the vicinity of the hot spot, the quantum correction becomes weaker. As k ap-

proaches 0, e0t decreases to zero only as e−
√

log 1/k, which is slower than any power-law. This results in

the time interval that remains finite even for α1 ≥ 1, T (k∗, 0; v0) = ν(ℓ0)
eB0

∫ k∗
0

exp

(
√
N2
c − 1

√
ℓ
(2L)

k′ +ℓ0

log
√
ℓ
(2L)

k′ +ℓ0

)
dk′.

Substitution s =

√
ℓ
(2L)
k′ + ℓ0 yields

T (k∗, 0; v0) =
Λ

2v0(0)

ν(ℓ0)eℓ0

eB0

∫ ∞

√
2ℓ0

s exp

(
−s2 +

√
N2
c − 1

s

log s

)
ds. (3.20)

It is hard to evaluate Eq. (3.20) exactly. But, we can bound it as T (l)(k∗, 0; v0) < T (k∗, 0; v0) <
T (u)(k∗, 0; v0), where the lower bound is obtained by dropping s/ log s in the exponent on the integrand
of Eq. (3.20),

T (l)(k∗, 0; v0) =
ν(ℓ0)

eB0
k∗, (3.21)

and the upper bound is obtained by using log s ≈ log
√

2ℓ0,

T (u)(k∗, 0; v0) =
ν(ℓ0)

eB0
k∗


e

√
N2

c−1

√
2ℓ0

log
√

2ℓ0 +

√
π(N2

c − 1)

4
e

N2
c−1

4 log2
√

2ℓ0
+2ℓ0

1 + erf

( √
N2

c−1

2 log
√
2ℓ0

−
√

2ℓ0

)

log
√

2ℓ0


 .

(3.22)

Here, erf(z) = 2√
π

∫ z
0
e−t

2

dt is the error function. Fig. 3.7 shows T (k∗, 0; v0), T (u)(k∗, 0; v0) and

T (l)(k∗, 0; v0) as functions of v0(0). The upper and lower bounds are direct plots of Eqs. (3.21) and
(3.22). The solid line is obtained by numerically evaluating Eq. (3.20). This shows that T (k∗, 0, v0)
is finite even for v0 with α1 ≥ 1. T (k∗, 0, v0) decreases with decreasing nesting angle. Especially,

the sharp drop of T (k∗, 0, v0) in the small v0 limit is due to the decrease of k∗ = Λe−ℓ0

4v0(0)
with de-

creasing v0 (see Eq. (3.6)). The cyclotron period given by the sum of time lapse in each segment,
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Figure 3.8: The cyclotron period T (v0) plotted as a function of the bare nesting angle for ki/Λ = 6.
This plot is obtained by adding the times computed for Figs. 3.6 and 3.7. The solid vertical line
denotes the nesting angle with α1 = 1, and the dashed lines mark the minimum of T (v0).

T (v0) = 16 [T (ki, kc; v0) + T (kc, k
∗; v0) + T (k∗, 0; v0)]. T (v0) is plotted in Fig. 3.8. The non-monotonic

behaviour of T (v0) as a function of v0 is attributed to the non-monotonicity of T (kc, k
∗; v0) created

by the increasing disparity in the strength of red shift across the Fermi surface with increasing v0.
So far, we have consider the zero-temperature limit in which the entire Fermi surface supports co-

herent quasiparticles except at the hot spots. Since electrons are decoupled from spin fluctuations away
from the hot spots and all quantum effects that renormalize electrons have been fully incorporated into
the renormalized couplings, the semi-classical description is valid at zero temperature. The hot spots,
which is a set of measure zero, does not affect the cyclotron period of electrons. At non-zero tem-
peratures, the hot spots become hot regions with a non-zero width proportional to temperature (Sec.
2.6.1), and the contribution from the incoherent electrons can not be completely ignored. Nonetheless,
at low temperatures, their contribution remains sub-leading for the cyclotron period compared to the
contribution away from the segments of Fermi surface outside the hot regions. In particular, our con-
clusion on the non-monotonic behaviour of the cyclotron period as a function of the bare nesting angle,
which originates from outside the hot region, remains robust as far as the size of hot regions remain
much smaller than the remaining segments of Fermi surface. However, for completeness, we consider
the effect of finite temperatures below based on the scaling analysis. We defer the more detailed study
of the finite temperature correction from incoherent electrons to a future work.

In reality, the superconducting instability is inevitable in theories with non-zero bare nesting angle
(Secs. 2.6.3, 2.7), and we have to consider a non-zero temperature to be in the normal state. In order to
understand the transport in the hot region, one can not use the quasiparticle picture. At temperature
T (we have changed the notation of the temperature here in order to avoid confusion with the period T )
that is higher than the energy scale below which the nesting angle flows (T > Λe−ℓ0)6, the expression
for the cyclotron period should be revised to T (v0) = 16

[
T (ki, kc; v0) + T (kc, k

#; v0) + T (k#, 0; v0)
]
.

Here T (ki, kc; v0) in Eq. (3.16) is unchanged because we are still too far away from the hot spot (k > kc.)
T (kc, k

#; v0) is still given by Eq. (3.18) except that k# ∼ T /v now represents the momentum cut-
off scale associated with temperature T (T /4v0 > Λe−ℓ0/4v0 = k∗.) Finally, T (k#, 0; v0) represents
the time that it takes for an incoherent electron pass through the hot region. In the small v0 limit,
the quasiparticle is only marginally destroyed and T (k#, 0; v0) can be estimated to be T (k#, 0; v0) ∼

6In the small v0 limit, the superconducting temperature is given by Tc ∼ Λe
− a√

v0 log 1/v0 which is is higher than the

energy scale below which the nesting angle flows significantly, Λe
− b

v0 log(1/v0) , where a and b are constants independent
of v0 (Eq. (2.226)).
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k#

eB0(k#/kc)
α1 . Here, the Fermi velocity has the form (k#/kc)

α1 because the dynamics of the hot region

at temperature T now replaces the zero-temperarture dynamics that previously contained the nesting
angle profile (k# > k∗.)

In the zero-temperature superconducting state, one has to include the effect of the pair condensate
to describe the dynamics of the Bogoliubov quasiparticles. Suppose that the ground state has the
d-wave pairing[177] with a momentum-dependent pairing wavefunction ∆k. For the physical case with
Nc = 2 and Nf = 1, we need to add the following action for quasiparticles in segments 1 and 5,

S′1,5 =
∑

σ,σ′=↑,↓

∫
dωd2k

(2π)3

{
ψ∗
1,σ(ω, k⃗)∆σσ′

k ψ∗
5,σ′(−ω,−k⃗) + ψ5,σ(−ω,−k⃗) ∆†

k

σσ′

ψ1,σ′(ω, k⃗)

}
, (3.23)

where ∆σσ′
k = ∆kϵ

σσ′
with ϵ =


 0 1

−1 0


. The derivation of this equation can be found in Appendix

G. Eqs. (3.8) and (3.23) can be combined into an action of a spinor field that represents Bogoliubov
quasiparticles in the superconducting state,

S1,5
kin + S′1,5 =

∫
dωd2k

(2π)3
Ψ̄(ω, k⃗)

{
iωΓ0 + iVF,k(vkkx + ky)Γ1 − i∆kΓ2

}
Ψ(ω, k⃗), (3.24)

where S1,5
kin are the terms of the kinematic action corresponding to electrons in hot spots 1 and 5, and

ΨT (ω, k⃗) =
(
ψ1,↑(ω, k⃗), ψ1,↓(ω, k⃗), ψ∗

5,↓(−ω,−k⃗),−ψ∗
5,↑(−ω,−k⃗)

)
is a 4-component spinor. Ψ̄(ω, k⃗) =

Ψ†(ω, k⃗)Γ0 with Γ0 = σy⊗12, Γ1 = σx⊗12, Γ2 = σz⊗12 being 4×4 gamma matrices, where the first
Pauli matrices act on the Nambu spinor basis and the second Pauli matrices act on the spin space.
Using the same transform as in Eq. (3.11) for the Dirac spinor Ψ in the hybrid momentum-spacetime
(t, r, k), Eq. (3.24) can be written as

S1,5
kin + S′1,5 =

∫
dk

2π

∫
dtdr |e| Ψ̄(t, r, k)

{
Γ0e t0 Dt + Γ1e r1 Dr

}
Ψ(t, r, k). (3.25)

Here, the vielbein and the U(1) gauge field are unchanged, but the pairing term gives rise to a complex
spin connection, ωt,02 = 4i∆k. It will be of interest to find geometric interpretation of physical
observables in the superconducting state.

3.4 Summary

In this chapter, we show that the momentum-dependent quantum correction that dilates frequency
of electron anisotropically on the Fermi surface gives rise to a curved momentum-spacetime for low-
energy quasiparticles in the 2+1 dimensional antiferromagnetic quantum critical metal. The non-trivial
dependence of the emergent geometry on the shape of the Fermi surface causes a non-monotonic
dependence of the cyclotron frequency on the bare nesting angle of the Fermi surface. With increasing
nesting angle, the stronger disparity in the strength of quantum correction in different parts of Fermi
surface makes the momentum-dependent red shift more singular at the hot spots. This creates a
possibility of realizing an analogous black hole horizon at the hot spots where the motion of the
quasiparticle tend to freeze beyond a critical bare nesting angle of the Fermi surface. However, an
analogous horizon is not fully realized because the metric in the vicinity of the hot spots is modified by
thermal effects above the superconducting transition temperature. Our prediction can be in principle
tested through a measurement of the cyclotron frequency as a function of the nesting angle near the
hot spots.
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Chapter 4

Ultraviolet-Infrared Mixing-Driven
Suppression of Kondo Screening in
the Antiferromagnetic Quantum
Critical Metal

4.1 Introduction

The interaction between local magnetic moments and conduction electrons continue to attract consid-
erable attention in condensed matter physics [14, 97, 151, 51, 80, 201, 113, 195, 152, 192, 193, 52, 196,
37, 61, 187, 158, 156]. In the classic Kondo problem, a magnetic impurity put in Fermi liquid metals
is screened into a spin singlet due to the quantum effect that is akin to what causes the confinement of
quarks [97, 17]. Recent discoveries of correlated compounds that can be tuned across quantum phase
transitions have opened opportunities for exploring new cooperative magnetism facilitated by critical
fluctuations [104, 126, 127, 8, 149, 46]. However, the current theoretical understanding remains limited
because quantum critical metals are usually described by strongly interacting theories [112].

In this chapter, we study a single magnetic impurity immersed in the two-dimensional AFQCM
[3, 141] based on the non-perturbative understanding of the strongly coupled theory in Chapter 2
[182]. This problem has been studied in Ref. [127], but we find that strong coupling effects make a
qualitative difference for the behaviour of the impurity. In AFQCM, itinerant electrons and critical
spin fluctuations compete to get entangled with the impurity spin. One may naively expect that critical
fluctuations, described by bosonic fields, is no match for itinerant electrons with an extensive Fermi
surface. However, critical spin fluctuations turn out to be almost on the par with the Fermi surface in
the competition. Through the strong electron-boson coupling, the boson ‘recruits’ low-energy particle-
hole excitations with a wide range of momenta to enhance its density of states and suppress Kondo
screening at low energies. While Kondo coupling still becomes strong at long distances, it only happens
at a much larger distance scale compared to Fermi liquids when the Fermi surface connected by the
antiferromagnetic wavevector is close to nesting.
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Figure 4.1: In AFQCM, the hot spots (red dots) connected by the antiferromagnetic wave-vector Q⃗AF
are strongly coupled with the boson that represents critical spin fluctuations. v0, which represents the
nesting angle between the pairs of hot spots connected by Q⃗AF , determines the low-energy dynamics
of the clean AFQCM.

4.2 Kondo Interaction in the AFQCM

We start with the low-energy theory for the clean AFQCM in two space dimensions in Eq. (2.14),
restricted to Nc = 2, Nf = 1,

S0 =

8∑

N=1

∑

σ=↑,↓

∫
dk ψ†

N,σ(k)
{
ik0 + V

(N)
F,kN

eN

[
k⃗; v

(N)
kN

]}
ψN,σ(k)

+

8∑

N=1

∫
dkdq g

(N)
kN+qN ,kN̄

ψ†
N,σ′(k + q)τ⃗σ′σψN,σ(k) · ϕ⃗(q)

+
1

4µ

∑

{Ni}

∑

{σi}

∫ 3∏

i=1

dki λ
{Ni};{σi}
{ki;Ni

} ψ†
N1,σ1

(k1)ψ†
N2,σ2

(k2)ψN3,σ3
(k3)ψN4,σ4

(k1 + k2 − k3).

(4.1)

For Nc = 2, Nf = 1, O(3) symmetric critical spin fluctuations are described by a three-component

bosonic field ϕ⃗(q). In each segment, the momentum component kN perpendicular to Q⃗AF is used to
label points on the Fermi surface within −(kF − δkF ) ≤ kN < kF + δkF , where 2kF is the linear size
of a segment, as depicted in Fig. 4.1. We choose the scale of frequency so that VF,0 = 1, just as in
Chapter 2.

Now, we add a magnetic impurity to this critical metal. We represent the impurity spin as S⃗imp =∑
α,β f

†
α
τ⃗α,β

2 fβ , where fα is a pseudo-fermion field with spin α. The dynamics of the impurity is
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Figure 4.2: (a) The electron-impurity coupling (J) and boson-impurity coupling (gf ) cause the impurity
spin to flip by creating a particle-hole excitation and a boson, respectively, while the latter two are
strongly mixed through the electron-boson coupling (g). (b) The Kondo temperature vanishes in the
small v0 limit due to the dressing of the impurity by the critical spin fluctuations subject to strong
UV/IR mixing.

described by

S1 =
∑

α=↑,↓

∫
dp0
2π

(
ip0 + i

π

2β

)
f†α(p0)fα(p0)

+
∑

αβ=↑,↓

∑

σσ′=↑,↓

∫
dq

(∫
dp0
2π

f†α(p0)
τ⃗αβ
2
fβ(p0 + q0)

)

·




8∑

N,N ′=1

∫
dk
J
(N,N ′)
(k+q)N ,kN′

µ
ψ†
N,σ(k + q)

τ⃗σσ′

2
ψN ′,σ′(k) + gf ϕ⃗(−q)


 .

(4.2)

The imaginary chemical potential projects out states with f†αfα = 0, 2, where β = 1/T becomes infinity

at zero temperature [164]. J
(N,N ′)
kN ,k′N′

is the Kondo coupling function that describes the scattering of

electrons from (N ′, k′N ′) to (N, kN ) through interaction with the impurity. gf represents the boson-
impurity coupling (see Fig. 4.2a). At the impurity-free fixed point, the fields have scaling dimensions

[Ψ(k)] = [ϕ⃗(k)] = −2 with respect to the transformation that rescales both components of momentum
with dimension [k] = 1. Under this scale transformation, the dimensionless size of Fermi surface (kF ),
measured in the unit of the floating energy scale (µ) that is sent to zero in the low-energy limit, grows,
playing the role of a relevant parameter [30, 99]. gf and J have dimensions 0 and −1, respectively.
Accordingly, the power of µ has been factored out in each coupling. It is noted that gf is marginal due
to the large anomalous dimension of the boson generated at the strongly coupled clean fixed point.
Without it, gf would be strictly relevant [127].
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4.3 Suppression of the Kondo screening in the AFQCM

While the Kondo coupling has the negative scaling dimension, we have to keep it within the low-energy
theory, as it gives rise to a logarithmic divergence. Due to scatterings that involve large momentum
transfer, quantum corrections are proportional to kF , which alters the relevancy of a coupling from
what is expected from its scaling dimension. Kondo coupling is particularly prone to this large-
momentum/low-energy (in short, UV/IR) mixing [133, 231, 30, 99] because the phase space available
for low-energy electrons becomes even greater without the momentum conservation1. To understand
this, let us first consider the beta functional of the Kondo coupling in the absence of critical boson:

dJ
(N,N ′)
k,k′

dℓ
= −J (N,N ′)

k,k′ +

8∑

M=1

1

2π

∫ kF

−kF

dq

2πµVF,q
J
(N,M)
k,q J

(M,N ′)
q,k′ . (4.3)

The interaction that scatters an electron from k′ to k is renormalized by a virtual electron that can
be placed anywhere on the Fermi surface (hence, q and M are integrated and summed over). As
the volume of the phase space is controlled by the relevant parameter kF , the expansion is actually
controlled by a dimensionless parameter J̃ ∼

∫
dqJ ∼ kFJ , which is marginally relevant for J > 0 [97].

In the AFQCM, the beta function is modified by critical spin fluctuations, and is augmented with
the beta function for the boson-impurity coupling. To the leading order in v, J and gf , the beta
functions become (see Appendices H and I for details)

dJ
(N,N ′)
k,k′

dℓ
= − (2 − z + ηf ) J

(N,N ′)
k,k′ +

∑

M

1

2π

∫
dq

2πµVF,q
J
(N,M)
k,q J

(M,N ′)
q,k′ , (4.4)

∂gf
∂ℓ

= −
(
ηf + η(Φ)

)
gf , (4.5)

where z = 1 + 3
4π

v0
c is the dynamical critical exponent corrected from 1 by the non-zero nesting angle

and ηf =
g̃f
π3 ℓ with g̃f ≡ g2f

c2 . Both gf and J have the common component of anomalous dimension
ηf , which arises from the self-energy and vertex correction of pseudo-fermion. The flow of gf is also
affected by the finite v-correction to the anomalous dimension of the boson, η(Φ) = 1

4π
v0
c log c

v0
[182].

Acting on top of the anomalous dimension 1 of the boson at the v = 0 fixed point, η(Φ) makes the
boson-impurity coupling slightly irrelevant at a small but non-zero nesting angle. The self-energy and
vertex correction for itinerant electrons would generate additional contributions to the beta functional
of J . However, those corrections have been dropped. They are not important at low energies because
critical spin fluctuations renormalize itinerant electrons only within patches of size µ/(v0c) around the
hot spots at energy scale µ [30]. This can be understood as follows. An electron on the Fermi surface at
momentum kN away from hot spot N must interact with a boson with minimum momentum q ∼ v0kN
(and energy ∼ cv0kN ) to be scattered onto the Fermi surface in segment N̄ due to an imperfect nesting
for v0 ̸= 0. So, electrons with kN ≫ µ/(v0c) decouple from spin fluctuations at energies lower than µ.

Since the size of the ‘hot patches’ shrinks linearly in µ, those quantum corrections do not affect J
(N,N ′)
k,k′

for most k, k′. Therefore, quantum corrections to those hot electrons are suppressed by µ/kF for the
s-wave Kondo coupling. On the contrary, the pseudo-fermion self-energy and the vertex correction for

the impurity-boson coupling gives rise to the anomalous dimension ηf for J
(N,N ′)
k,k′ regardless of k and

k′. Remarkably, ηf = g̃f ℓ/π
3 depends on ℓ = log Λ/µ explicitly. This unusual sensitivity on the UV

cutoff is traced back to the propagator of the boson at the impurity site,

D̄(q0) =

∫
dqxdqy
(2π)2

D(q)

=
1

π2c2

{
2Λ log

(
1 +

Λ

Λ + |q0|

)
+ |q0|

[
log

(
1 +

Λ

Λ + |q0|

)
− log

(
1 +

Λ

|q0|

)]}
.

(4.6)

1Another such coupling is the four-fermion coupling
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The UV divergence in the term − |q0| log
(

1 + Λ
|q0|

)
∼ − |q0| log

(
Λ
|q0|

)
, which is non-analytic in q0,

implies that short-wavelength bosons significantly contribute to the long-time correlation. Namely,
short-wavelength spin textures whose wave-vectors deviate significantly from Q⃗AF still fluctuate slowly
temporally. This is caused by the strong mixing of the boson with low-energy particle-hole excitations
that carry large momenta. The low-energy spectral weight enhanced by large-momentum modes also
gives rise to a logarithmically divergent specific heat coefficient from the boson[182]. This UV/IR
mixing plays the crucial role in determining the fate of the Kondo coupling at low energies. Eqs. (4.4)
and (4.5) are valid for ℓ > ℓi ∼ O(1) where this UV/IR-driven contribution is dominant over terms
that are O(ℓ0) in ηf .

To simplify the task of solving the beta functional, we focus on the ‘s-wave’ channel of the form

J
(N,N ′)
k,k′ =

π2

4

µ

kF

√
V

(N)
F,k V

(N ′)
F,k′ J̃

V , (4.7)

where J
(N,N ′)
k,k′ is momentum-independent modulo the factor of Fermi velocity. Fermi velocity outside

the hot patches increases as
∂VF,k

∂ℓ = (z − 1)VF,k relative to VF,0, which is set to be 1, because only
electrons within the hot patches are renormalized by spin fluctuations (Sec. 2.6.1). The s-wave Kondo
coupling J̃V , which includes the effect of growing phase space kF /µ, satisfies a simple beta function,

∂J̃V (ℓ)

∂ℓ
= −ηf (ℓ)J̃V (ℓ) +

(
J̃V (ℓ)

)2
, (4.8)

where ηf =
g̃f
π3 ℓ. In this problem, there are three parameters that are marginal up to logarithmic

corrections: the nesting angle at the hot spots (v0), Kondo coupling (J̃V ), and the boson-impurity
coupling (gf ). Let v0,i ∼ 1/(ℓ0 log ℓ0), J̃Vi and gf,i denote the nesting angle, Kondo coupling and
boson-impurity coupling, respectively, defined at short-distance cutoff scale ℓi ∼ O(1). Our main
goal is to understand how the critical spin fluctuations affect the behaviour of Kondo coupling. In
particular, we would like to extract how the Kondo scale, the scale at which J̃V (ℓ) becomes large,
depends on v0,i and g̃f,i in the small J̃Vi limit. Our calculation is controlled in the limit that v0,i, J̃

V

and g̃f are small without a particular order among them.

We first solve Eq. (4.5). Since η
(Φ)
i and g̃f,iℓ set the rates at which gf decays with increasing ℓ,

we define the following characteristic scales: 1/η
(Φ)
i ∼

√
ℓ0 and ℓ1 ∼ 1/

√
g̃f,i. Naturally, the RG flow

exhibits different behaviours, depending on the relative magnitude of 1/ℓ0 and g̃f,i.
If g̃f,i ≪ 1/ℓ0, the effect of the boson-impurity coupling is weak compared to the quantum correction

that arises from a non-zero nesting angle. Since η(Φ) plays the dominant role over g̃f in determining
the flow of g̃f , one can ignore g̃f in Eq. (4.5) to obtain

gf (ℓ) = e
−

√
ℓ+ℓ0−

√
ℓ0+ℓi√

3 gf,i. (4.9)

In this case, the boson-impurity coupling decays to zero exponentially at large ℓ due to the relatively
large correction to the anomalous dimension of the boson, and g̃f remains negligible for the flow of gf
at all scales. With small g̃f , one essentially recovers the Kondo effect in Fermi liquids: ℓK ∼ 1/J̃Vi
with a small correction.

A qualitatively new behaviour emerges for g̃f,i ≫ 1/ℓ0. In this case, the bare boson-impurity
coupling is strong enough that η(Φ) is negligible in Eq. (4.5) at short distance scales. The g̃f -dominated
flow gives

g̃f (ℓ) =
3π3g̃f,i(ℓ+ ℓ0)

3π3(ℓ0 + ℓi) + g̃f,i [2ℓ3 + 3ℓ2ℓ0 − ℓ2i (3ℓ0 + 2ℓi)]
. (4.10)

This slowly decaying g̃f gives rise to a relatively large anomalous dimension, which suppresses the
Kondo coupling significantly. To understand this quantitatively (see Appendix J for details), we note

that g̃f ℓ/π
3 ≈ 1/ℓ within length scale ℓ1 ≪ ℓ ≪ ℓ0, and Eq. (4.8) becomes ∂J̃V

∂ℓ = −J̃V /ℓ + (J̃V )2.
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Figure 4.3: Logarithmic Kondo scale of the AFQCM relative to that of the Fermi liquid with the
same electronic density of state and bare Kondo coupling plotted as a function of the bare boson-
impurity coupling, gf,i for three different bare nesting angles v0,i. The dashed lines represent the

numerical solutions of Eqs. (4.5) and (4.8) obtained with J̃Vi = 10−8, and the solid lines are ℓAFQCM

ℓFL =

A
gf,i

v0,i log(1/v0,i)
with A = 8e3/4

3
√
π

.

Its solution is given by J̃V (ℓ)−1 ≈ ℓ
[

1
J̃V (ℓ1)ℓ1

− log ℓ
ℓ1

]
. According to this, Kondo coupling only

grows as a logarithm of ℓ, and the Kondo scale becomes ℓK = ℓ1e
1

J̃V (ℓ1)ℓ1 . This implies that the
Kondo temperature TK = Λe−ℓK is suppressed by an exponential of an exponential of 1/J̃V (ℓ1). In a
sense, the critical boson demotes Kondo coupling from a marginally relevant coupling to a ‘marginally
marginally relevant’ coupling. However, this rapid increase of ℓK with decreasing J̃Vi is cut off once ℓK
becomes large enough that one can not drop η(Φ) in Eq. (4.5) anymore. Because ηf = g̃f ℓ/π

3 ∼ 1/ℓ
decays faster than η(Φ) ∼ 1/(ℓ + ℓ0)1/2, gf exhibits a crossover from the g̃f -dominated flow to the
η(Φ)-dominated flow around ℓf ∼

√
ℓ0. For ℓ > ℓf , the flow of gf is dominated by η(Φ) and decays

exponentially. As the anomalous dimension for J̃V becomes exponentially small for ℓ > ℓf , the flow
of Kondo coupling is reduced to that of the Fermi liquids. Consequently, the Kondo scale is given

by ℓK ∼ ℓf + 1
J̃V (ℓf )

, where J̃V (ℓf ) ∼ J̃Vi
v0,i log 1/v0,i

gf,i
is the Kondo coupling at scale ℓf . In the small

J̃Vi limit, 1
J̃V (ℓf )

≫ ℓf and the Kondo scale becomes ℓK ∼ 1
J̃V
i

gf,i
v0,i log 1/v0,i

to the leading order in

J̃Vi . At small v0,i, ℓK is enhanced by the factor of
gf,i

v0,i log 1/v0,i
compared to that of Fermi liquid

(ℓFLK ∼ 1/J̃Vi ) with the same density of state (see Fig. 4.2b). This is confirmed through solving the
beta functions numerically as is shown in Fig. 4.3. Given that the superconducting instability arises
at ℓSC ∼ 1/

√
v0,i log 1/v0,i [30], Kondo screening won’t be observable in AFQCM at sufficiently small
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nesting angles.

4.4 Summary

In summary, the Kondo screening is greatly suppressed in AFQCM through a UV/IR mixing when
the hot spots on the Fermi surface are well nested. Our analysis fully takes into account the strong
electron-boson coupling in the limit that the nesting angle is small. In the future, it is of great interest
to understand the regime with the strong Kondo coupling non-perturbatively[226, 15, 16, 6, 7].
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Chapter 5

Conclusion

In this thesis, we studied the functional renormalization group flow of the four-fermion coupling for un-
derstanding the superconducting instability, the emergence of singular momentum-spacetime geometry
on the Fermi surface, and the anomalous suppression of the Kondo screening in the 2+1 dimensional
antiferromagnetic quantum critical metal.

In Chapter 2, we present the field-theoretic functional renormalization group formalism for non-
Fermi liquids. We apply it to the low-energy effective field theory for the non-Fermi liquid realized
at the onset of an antiferromagnetic quantum phase transition in two space dimensions. We find that
the notions of renormalizable field theory and scale invariance must be generalized by incorporating
the existence of the Fermi momentum. This generalized formalism is a necessity in the theoretical
treatment of metals that is born out the fact that the Fermi momentum is an intrinsic scale of the
system. With the implementation of the functional renormalization group formalism, we identify
the non-Fermi liquid fixed point in the space of coupling functions and extract the universal low-
energy physics from the critical point. Crucially, we are able to uncover the dual role that critical
spin fluctuations play for superconductivity: while spin fluctuations make electrons incoherent at the
hot spots, they also provide the “glue” for Cooper pairing. Despite the inevitable superconducting
instability, systems with small bare nesting angles must pass through a region of slow RG flow when
the bare four-fermion interaction is repulsive or weakly attractive due to the proximity of the theory
to the fixed point. This “bottleneck” region controls the scaling behaviours of the normal state and
the quasi-universal pathway from the non-Fermi liquid to superconductivity.

In Chapter 3, we show that a curved momentum-spacetime arises at the antiferromagnetic quantum
critical metal as the critical spin fluctuations generate red shift that dilates frequency of electron
unevenly on the Fermi surface. The momentum-spacetime geometry that emerges at low energies
depends on the bare nesting angle of the Fermi surface and is encoded in the Fermi velocity. With
increasing nesting angle, the region in which electron motion is slowed down by critical spin fluctuations
shrinks. On the other hand, the increasing nesting angle makes the red shift stronger near the hot
spots due to the weakened screening of the interaction. These competing effects result in a non-
monotonic dependence of the cyclotron frequency of electron on the nesting angle of the Fermi surface.
This geometric approach can expose interesting alternative picture on the origin of cyclotron mass
enhancement in strongly correlated materials where electrons become incoherent in hot manifolds of
the Fermi surface [166, 47, 189, 188, 114, 68, 50, 197, 21, 70, 94].

In Chapter 4, we present the effects of an isolated magnetic impurity added to the antiferromag-
netic quantum critical metal. Since critical spin fluctuations are present in the low energy theory, the
impurity not only interacts with the itinerant electrons, but also with the collective mode through the
spin-spin interactions. We use the beta functions of both interactions to describe how the itinerant
electrons compete with the spin fluctuations to couple with the impurity. Naively, one would expect
the bosonic spin fluctuation to be no match of the extensive Fermi surface that supports infinitely
many gapless modes. However, critical spin fluctuations turn out to be almost on the par with the
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Fermi surface in the competition. Through the strong electron-boson coupling, the boson ‘recruits’
low-energy particle-hole excitations with a wide range of momenta to enhance its density of states
and suppress Kondo screening at low energies. While Kondo coupling still becomes strong at long
distances, it only happens at a much larger distance scale compared to Fermi liquids when the Fermi
surface connected by the antiferromagnetic wavevector is close to nesting.

We conclude with some outlook, future directions and open questions.

� Beyond the small nesting angle: We can not exclude the possibility of new strongly interacting
fixed points in the region where the nesting angle is not small. It will be of great interest to
understand the fate of the theories with general nesting angles in more detail. In particular, the
results for the cyclotron period show the metric becomes more singular when the nesting angle
becomes O(1).

� Momentum-spacetime geometry near cold spots: In the Ising-nematic quantum critical metal
in two dimensions, the Fermi surface has cold spots at which the Yukawa coupling vanishes.
Therefore, the entire Fermi surface is ‘hot’ except for a discrete set of cold spots. It would be
interesting to understand the dynamics of incoherent electrons in the Ising-nematic quantum
critical metal in terms of the emergent momentum-space geometry. One expects to have an
enhanced blue-shift of electrons near the cold spots where quantum corrections vanish.

� Stable non-Fermi liquids: In AFQCM, critical spin fluctuations create a strong pair-breaking
effect on electrons at the hot spots by making them in coherent. Nonetheless, superconducting
instabilities are unavoidable due to the lukewarm electrons that are subject to strong pairing
interaction yet coherent enough to be susceptible to pairing instability. It will also be of great
interest to examine a possibility in which the pair breaking effect due to incoherence prevents
superconductivity even at zero temperature for hot Fermi surfaces. Recent progress in the study
of effective field theories of hot Fermi surfaces has revealed metallic fixed points to be defined only
modulo a rescaling of Fermi momentum [99]. In this study it was revealed that near the upper
critical dimension, two exactly marginal coupling functions span the space of stable projective
fixed points: one specifies the shape of the Fermi surface and the other sets the angle-dependent
Fermi velocity.

� Non-perturbative Kondo coupling: The Kondo problem in this thesis was solved in the limit
where the impurity-boson and the impurity-electron couplings are weak. In the future, it is of
great interest to extend the study to the non-perturbative regime [226, 15, 16, 6, 7].

� Kondo lattice and heavy fermions: Another interesting direction of extending the result of Chap-
ter 4 is to consider the Kondo lattice problem in the presence of critical spin fluctuations [51, 80,
201, 113, 195, 152, 192, 193, 52, 196, 37, 61, 187, 158, 156]. It is of great interest to tackle the
quantum critical points associated with Fermi surface reconstruction through the field-theoretic
functional renormalization group scheme.



Appendix A

Quantum corrections for the two
and three-point functions

In this appendix, we compute the quantum corrections for the fermion two-point function and the
Yukawa vertex. In this computation, we assume that all coupling functions satisfy the adiabaticity
condition in Eq. (2.83). In this case, the singular parts of the quantum corrections for the two and
three-point functions can be computed by replacing the coupling functions with the values at which
the integrand is peaked. Later we will verify that the coupling functions that arise from the beta
functionals obtained under the assumption of adiabaticity at a UV energy scale satisfy the adiabaticity
at all energy scales.

A.1 Fermion self-energy

A.1.1 One-loop

The real and imaginary part of the one-loop self-energy in Eq. (2.67) reads

Im
[
Σ1L
N (k)

]
=

2g
(N)
k g

(N̄)
k (N2

c − 1)

NcNf

∫
dq


 (k0 + q0)

(k0 + q0)2 + (V
(N̄)
F,k )2eN̄ [⃗k + q⃗; v

(N̄)
k ]2

1

|q0| + |cqx| + |cqy|


 ,

(A.1)

Re
[
Σ1L
N (k)

]
= −2g

(N)
k g

(N̄)
k (N2

c − 1)

NcNf

∫
dq


 V

(N̄)
F,k eN̄ [⃗k + q⃗; v

(N̄)
k ]

(k0 + q0)2 + (V
(N̄)
F,k )2eN̄ [⃗k + q⃗; v

(N̄)
k ]2

1

|q0| + |cqx| + |cqy|


 .

(A.2)

Without loss of generality, we can consider the quantum correction for N = 1. The self-energy at other
hot spots can be obtained from this through a C4-transformation.

Imaginary part Im
[
Σ1L
N (k)

]

We first compute the imaginary part,

Im
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)

NcNf

∫
dq

[
(k0 + q0)

(k0 + q0)2 + V 2
F,k(vkqx − qy + e4 [⃗k, vk])2

1

|q0| + |cqx| + |cqy|

]
, (A.3)

where Eq. (2.17) is used to express coupling functions in terms of the generic coupling functions. We

shift the internal momentum as qy → qy + vkqx + e4 [⃗k, vk] so that the internal fermion has zero energy
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at qy = 0. The integration over qy is convergent even if we drop the cqy term in the boson propagator

in the small v limit. We further simply the expression by replacing |cqx| + |cvkqx + ce4 [⃗k, vk]| with

c|qx| + |ce4 [⃗k, vk]| in the small v limit,

Im
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)

NcNf

∫
dq

[
(k0 + q0)

(k0 + q0)2 + V 2
F,kq

2
y

1

|q0| + |cqx| + |∆̄(k⃗; vk)|

]
, (A.4)

where ∆̄(k⃗; vk) = ce4 [⃗k, vk]. The integration over qy leads to

Im
[
Σ1L

1 (k)
]

=
g2k(N2

c − 1)

VF,kNcNf

∫

R

dq0
2π

∫ Λ/c

−Λ/c

dqx
2π

[
sgn(k0 + q0)

|q0| + |cqx| + |∆̄(k⃗; vk)|

]
. (A.5)

Here Λ is a UV energy cutoff, which is translated to the momentum cutoff for the boson, Λ/c. The
subsequent integrations over q0 and qx yield

Im
[
Σ1L

1 (k)
]

=
g2k(N2

c − 1)

VF,kNcNf

1

π2c
k0 log

(
Λ

|∆̄(k⃗; vk)| + |k0|

)
+ reg., (A.6)

where reg. represents terms that are regular in the large Λ limit. To remove the singular part of
∂Im[Σ1L

1 (k)]
∂k0

∣∣∣∣
k=(µ,kx,−vkkx)

in the small µ limit, the counter-term is chosen to be

A(1);1L(k) = − N2
c − 1

π2NcNf

g2k
cVF,k

log

(
Λ

µ+ 2vkc|k|

)
, (A.7)

where we use ∆̄(k⃗; vk) = 2vkck when the external fermion is on the Fermi surface.

Real part Re
[
Σ1L
N (k)

]

We rewrite the real part of the self-energy in Eq. (A.2) by shifting qy to qy + e4 [⃗k, vk] + vkqx,

Re
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)

NcNf

∫
dq

[
VF,kqy

(k0 + q0)2 + V 2
F,kq

2
y

][
1

|q0| + |cqx| + |cqy + ∆̄(k⃗; vk) + cvkqx|

]
,

(A.8)

where ∆̄(k⃗; vk) = ce4 [⃗k, vk]. As in the calculation of the imaginary part, we can neglect cvkqx in the
boson propagator since the leading qx dependence comes from |cqx|. However, cqy can not be ignored
as the integration vanishes without it. Therefore, we consider

Re
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)

NcNf

∫
dq

[
VF,kqy

(k0 + q0)2 + V 2
F,kq

2
y

][
1

|q0| + |cqx| + |cqy + ∆̄(k⃗; vk)|

]
. (A.9)

For the imaginary part of the self-energy, the full self-energy has been obtained at general frequency
and momentum. For the real part, we focus on the asymptotic limits: (i) |k0| ≫ |∆̄(k⃗; vk)| and (ii)

|k0| ≪ |∆̄(k⃗; vk)|.
For |k0| ≫ |∆̄(k⃗; vk)|, we rescale the internal momentum as q0 → k0q0 and q⃗ → k0q⃗/c to rewrite

Eq. (A.9) as

Re
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)k0
cVF,kNcNf

∫
dq

[
qy

c2k(1 + q0)2 + q2y

] [
1

|q0| + |qx| + |qy + h(k; vk)|

]
, (A.10)
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where h(k; vk) = ∆̄(k⃗; vk)/k0 and ck ≡ c/VF,k. One has to be careful in taking the small c and small
h(k; vk) limits in this expression. On the one hand, the integration over qy vanishes if h(k; vk) = 0. On
the other hand, setting ck = 0 inside the integrand makes the integration logarithmically divergent.
These imply that the quantum correction is proportional to h(k, vk) and diverges logarithmically in
ck ≪ 1. After the integration over qy is done for general ck and h(k; vk), the leading order contribution
in h(k; vk) is given by

Re
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)∆̄(k⃗; vk)

πcVF,kNcNf

∫

R

dq0
(2π)

∫

R

dqx
(2π)

(
c2k(1 + q0)2 + (|q0| + |qx|)2 − πck|q0 + 1|(|qx| + |q0|)

[c2k(1 + q0)2 + (|q0| + |qx|)2]2

+
1

2

c2k(1 + q0)2 − (|q0| + |qx|)2
[c2k(1 + q0)2 + (|q0| + |qx|)2]2

log

(
(|q0| + |qx|)2
c2k(1 + q0)2

))
.

(A.11)
The integration over qx can be done exactly and is given by

Re
[
Σ1L

1 (k)
]

=
2g2k(N2

c − 1)∆̄(k⃗; vk)

πcVF,kNcNf

Λ/|k0|∫

−Λ/|k0|

dq0
(2π)

|q0| log(c2k(1 + q0)2/q20) − πck|1 + q0|
2π(q20 + c2k(1 + q0)2)

, (A.12)

where the cutoff for the rescaled frequency becomes Λ/|k0|. The frequency integration gives

Re
[
Σ1L

1 (k)
]

= −2g2k(N2
c − 1)∆̄(k⃗; vk)

π3cVF,kNcNf
log

VF,k
c

log
Λ

|k0|
+ reg., (A.13)

where reg. represents terms that are regular in the large Λ/k0 limit. For |∆̄(k⃗; vk)| ≫ |k0|, ∆̄(k⃗; vk)
cuts off the IR singularity, and the self-energy becomes

Re
[
Σ1L

1 (k)
]

= − 2g2k(N2
c − 1)

π3cVF,kNcNf
log

(
VF,k
c

)
∆̄(k⃗; vk) log

(
Λ

|∆̄(k⃗; vk)|

)
+ reg., (A.14)

where reg. represents terms that are regular in the large Λ/∆̄ limit. Using Eqs. (A.13) and (A.14),
we can write the real part of the one-loop fermion self-energy as

Re
[
Σ1L

1 (k)
]

= − 2g2k(N2
c − 1)

π3VF,kNcNf
log

(
VF,k
c

)
e4 [⃗k; vk] log

(
Λ

H1(k0, ce4 [⃗k; vk])

)
+ reg.. (A.15)

Here, H1(x, y) is a crossover function that satisfies H1(x, y) ∼ max(|x|, |y|) if |x| ≫ |y| or |y| ≫ |x|.
Counter terms that remove IR divergent parts of

∂Re[Σ1L
1 (k)]

∂kx

∣∣∣∣
k=(µ,kx,−vkkx)

and
∂Re[Σ1L

1 (k)]
∂ky

∣∣∣∣
k=(µ,kx,−vkkx)

in the small µ limit are given by

A(2);1L(k) =
2g2k(N2

c − 1)

π3V 2
F,kNcNf

log

(
VF,k
c

)
log

(
Λ

H1(µ, 2vkck)

)
+A(2);1L

reg (k), (A.16)

A(3);1L(k) = − 2g2k(N2
c − 1)

π3V 2
F,kNcNf

log

(
VF,k
c

)
log

(
Λ

H1(µ, 2vkck)

)
+A(3);1L

reg (k), (A.17)

where A
(2);1L
reg (k) and A

(3);1L
reg (k) represent terms that are regular in the large Λ

H2(µ,2vkck)
limit.
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A.1.2 Two-loop

The two-loop fermion self-energy reads

Σ2L
N (k) =

4(g
(N)
k )2(g

(N̄)
k )2(N2

c − 1)

N2
cN

2
f

∫
dq

∫
dpD(p)D(q)GN̄ (k+p)GN (k+p+q)GN̄ (k+q). (A.18)

With the shifts qy → qy + vkqx + e4 [⃗k; vk] and py → py + vkpx + e4 [⃗k; vk], Eq. (A.18) for N = 1 is
written as

Σ2L
1 (k) =

4g4k(N2
c − 1)

N2
cN

2
f

∫
dq

∫
dp

{
1

|q0| + c|qx| + |cqy + vkcqx + ∆̄(k⃗; vk)|

× 1

|p0| + c|px| + |cpy + vkcpx + ∆̄(k⃗; vk)|

[
1

i(k0 + p0) − VF,kpy

1

i(k0 + q0) − VF,kqy

× 1

i(k0 + p0 + q0) + (VF,kpy + VF,kqy + VF,kγ(k⃗; vk) + 2vkVF,k(px + qx))

]}
,

(A.19)

where ∆̄(k⃗; vk) = ce4 [⃗k; vk] and γ(k⃗; vk) = 2e4 [⃗k; vk] + e1 [⃗k; vk]. In the small v limit, the cqy and cpy
terms can be dropped in the boson propagators as the integrations of qy and py are convergent without
them. Furthermore, we drop vkcqx and vkcpx as the IR singular term is unaffected by them to the
leading order in v. With the rescaling of internal momentum as (px, qx) → (px/c, qx/c), the integration
over py and qy yields

Σ2L
1 (k)

= − 4g4k(N2
c − 1)

c2V 2
F,kN

2
cN

2
f

∫

R

dq0
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R

dpx
(2π)

{
[Θ(p0 + 2q0 + 2k0) − Θ(−k0 − p0)]
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(3k0 + 2p0 + 2q0)2 + [2w̃k(px + qx) + γ̃(k⃗; vk)]2

}
,

(A.20)

where wk = vk/c, w̃k = VF,kwk, γ̃(k⃗, vk) = VF,kγ(k⃗; vk) and Θ(x) denotes the Heaviside function. Since
only the real part of the two-loop self-energy is of the same order as the one-loop self-energy[182], we
only compute the real part of the self-energy.

The real part of the two-loop fermion self-energy reads

Re
[
Σ2L

1 (k)
]

= − 4g4k(N2
c − 1)

c2V 2
F,kN

2
cN

2
f

∫
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dq0
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dqx
(2π)

∫

R
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[2w̃k(px + qx) + γ̃(k⃗; vk)]

(3k0 + 2p0 + 2q0)2 + [2w̃k(px + qx) + γ̃(k⃗; vk)]2

}
.

(A.21)
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Let us make a change of variables as a = (px + qx)/2 and b = (px− qx)/2. The integration over b gives

Re
[
Σ2L

1 (k)
]

= − 4g4k(N2
c − 1)

πc2V 2
F,kN

2
cN

2
f

∫

R
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(2π)

∫

R
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(2π)

∫

R
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{
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×



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



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(A.22)

where Θ(k0; p0, q0) = [Θ(p0 + 2q0 + 2k0) − Θ(−k0 − p0)] [Θ(p0 + q0 + k0) − Θ(−k0 − q0)]. Besides k0,

γ̃(k⃗; vk) and ∆̄(k⃗; vk) enter as additional energy scales associated with the external momentum k⃗. If the

external fermion is close to the Fermi surface, |γ̃(k⃗; vk)| ∼ 4VF,kvk|kx| ≫ |∆̄(k⃗; vk)| ∼ 2vkc|kx|. There-

fore, the crossover is determined by the competition between k0 and γ̃(k⃗; vk). In the |γ̃(k⃗; vk)/k0| ≪ 1
limit, the integration over a, q0 and p0 gives

Re
[
Σ2L

1 (k)
]

= −4g4k(N2
c − 1)γ̃(k⃗, vk)

πc2V 2
F,kN

2
cN

2
f

log2 w̃k
8π3

log
Λ

k0
. (A.23)

In the opposite limit with |k0/γ̃(k⃗, vk)| ≪ 1, the IR divergence is cutoff by γ̃(k⃗, vk) instead of k0,

Re
[
Σ2L

1 (k)
]

= −4g4k(N2
c − 1)γ̃(k⃗, vk)

πc2V 2
F,kN

2
cN

2
f

log2 w̃k
8π3

log
Λ

γ̃(k⃗, vk)
. (A.24)

Collecting the results of Eq. (A.23) and Eq. (A.24), we conclude that the logarithmically divergent
contribution to the real part of the two-loop fermion self-energy is given by

Re
[
Σ2L

1 (k)
]

= − g4k(N2
c − 1)

2π4c2V 2
F,kN

2
cN

2
f

VF,k

[
e1 [⃗k; vk] + 2e4 [⃗k; vk]

]

× log2

(
VF,kvk
c

)
log

(
Λ

H1(k0, VF,k(2e4 [⃗k, vk] + e1 [⃗k, vk]))

)
.

(A.25)

The two-loop counterterms are given by

A(2);2L(k) =
3g4k(N2

c − 1)

2π4c2V 2
F,kN

2
cN

2
f

log2

(
VF,kvk
c

)
log

(
Λ

H1(µ, 4VF,kvkk)

)
+A(2);2L

reg (k), (A.26)

A(3);2L(k) = − g4k(N2
c − 1)

2π4c2V 2
F,kN

2
cN

2
f

log2

(
VF,kvk
c

)
log

(
Λ

H1(µ, 4VF,kvkk)

)
+A(3);2L

reg (k), (A.27)

where A
(2);2L
reg (k) and A

(3);2L
reg (k) represent the terms that are regular in the large Λ

H2(µ,4VF,kvkk)
limit.

A.2 Fermion-boson vertex correction

The one-loop vertex function is given by:

Γ
(2,1),1L
N (k′,k) = − 2

NcN
3
2

f

g
(N)
k′ g

(N̄)
k,k′g

(N)
k

∫
dqD(q)GN̄ (k′ + q)GN (k + q). (A.28)
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Without loss of generality, we consider the contribution to interaction vertex for the N = 1 hot spot,

Γ
(2,1),1L
1 (k′,k)

= −2gkgk′gk′,k

NcN
3
2

f

∫
dq0
2π

dqx
2π

dqy
2π

1

|q0| + |cqx| + |cqy|
1

i(k′0 + q0) + VF,k′(e4 [⃗k′, vk′ ] + vk′qx − qy)

× 1

i(k0 + q0) + VF,k(e1 [⃗k, vk] + vkqx + qy)
.

(A.29)

Let us integrate over qy using a contour integration. To do this, we use |cqy| = c
√
q2y + 0+ with

the branch cuts located at |Im qy| > 0+. Across the branch cut, the square root is discontinuous :

c
√
q2y + 0+ = c sgn(Re(qy))qy. To ensure a symmetric expression, we close the contours in both the

upper and lower-half planes and taking the average of these two expressions. In each case, we will
consider a semicircular contour with a dip along the imaginary axis that avoids the branch cuts. The
contour integral of Eq. (A.29) results in

Γ
(2,1),1L
1 (k′,k) =

igkgk′gk′,k

NcN
3
2

f c(VF,k + VF,k′)

∫
dq0
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3
2

f

∫
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∫ ∞

−∞
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|x|
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× 1
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1

i(k0 + q0) + VF,k(e1(k, vk) + vkqx + ix)
,

(A.30)

where M = (V −1
F,k′k

′
0 + V −1

F,kk0)/(V −1
F,k′ + V −1

F,k), Rk′,k = 2(e4(k⃗′, vk′) + e1(k⃗, vk))/(V −1
F,k′ + V −1

F,k) and

W = (vk + vk′)/(cV
−1
F,k′ + cV −1

F,k). The first term is the contribution from the residues of the poles of
the fermion propagators. The second term comes from the branch cut. In the small v limit, the first
contribution dominates. The remaining integrand over q0 and qx leads to

Γ
(2,1),1L
1 (k′,k)

∣∣∣∣ k′ = (2µ, k′x,−vk′k′x)
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(A.31)

to the leading order in c. H2(x, y, z) is a crossover function that satisfies H2(x, y, z) ∼ max(|x|, |y|, |z|)
if |x| ≫ |y|, |z|, |y| ≫ |x|, |z| or |z| ≫ |x|, |y|1. Because c ≪ 1,

∣∣∣∣
4vk′k′+4vkk

V −1

F,k′+V
−1
F,k

∣∣∣∣ ≫ 2cvk|k|, 2cvk′ |k′| for

most k and k′.

∣∣∣∣
4vk′k′+4vkk

V −1

F,k′+V
−1
F,k

∣∣∣∣ becomes smaller than 2cvk|k| or 2cvk′ |k′| only in a small wedge near

1For the future convenience, Rk′,k is chosen as the crossover scale although Rk′,k/2 is what appears in Eq. (A.30).
This is a freedom associated with the choice of the crossover function that only affects the finite part of the counter
term.
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vk′k
′ + vkk = 0. Since |vk′k′| ≈ |vkk| within the wedge, we can combine the two crossover functions

into one as

log




Λ

H2

[
µ, 4vk′k′+4vkk

V −1

F,k′+V
−1
F,k

, 2cvkk

]


+ log




Λ

H2

[
µ, 4vk′k′+4vkk

V −1

F,k′+V
−1
F,k

, 2cvk′k′
]




= 2 log




Λ

H3

[
µ, 4vk′k′+4vkk

V −1

F,k′+V
−1
F,k

, 2cvkk, 2cvk′k′
]


 ,

(A.32)

where H3(w, x, y, z) is a crossover function that satisfies H3(w, x, y, z) ∼ max(|w|, |x|, |y|, |z|). There-
fore, we write the counter term as

A(4)(k′, k) = − 2gkgk′

π2c(VF,k + VF,k′)NcNf

× log

(
c(V −1

F,k + V −1
F,k′)

vk + vk′

)
log




Λ

H3

[
µ, 4vk′k′+4vkk

V −1

F,k′+V
−1
F,k

, 2cvkk, 2cvk′k′
]


 .

(A.33)
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Appendix B

Quantum corrections for the
four-point function

In this appendix, we compute the quantum corrections for the four-fermion vertex. We denote the
fermionic four-point vertex function evaluated at external momenta on the Fermi surface as

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
k1 k2
k4 k3

) ≡ Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)( k1 k2

k4 k3

)∣∣∣∣
ki=k∗

i

. (B.1)

Here the external frequencies are chosen as in Eq. (2.31). ki labels the component of k⃗i that is
parallel to the Fermi surface near hot spot Ni in the small v limit. The other component of the spatial
momentum is chosen so that external electrons are on the Fermi surface.

B.1 Generation of the primary couplings from spin fluctua-
tions

We first consider the quantum corrections through which the primary four-fermion coupling are gen-
erated.

B.1.1 Group 1

In group 1, the diagram in Fig. 2.7a exhibits an IR singularity only when all external fermions are
at the hot spots. In our minimal subtraction scheme, we don’t need to add a counter term for it.
Therefore, we focus on the diagram in Fig. 2.7b. Its contribution to the quantum effective action is
given by Eq. (2.72),

Γ
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

(0)PH

(
k+l p−l
k p

)
= −

Tβσ2
σ4αT

σ1α
βσ3

2N2
f

∫
dq

g
(1)
k+l,k+qg

(4)
k+q,kg

(1)
p−l,p−l+qg

(4)
p−l+q,p

(|q0| + c|qx| + c|qy|) (|q0 − l0| + c|qx − lx| + c|qy − ly|)
×

1

i(k0 + q0) + V
(4)
F,k+qe4 [⃗k + q⃗; v

(4)
k+q]

1

i(p0 − l0 + q0) + V
(4)
F,p−l+qe4[p⃗− l⃗ + q⃗; v

(4)
p−l+q]

.

(B.2)

Since it is possible to put all external fermions on the Fermi surface for k⃗ + l⃗ = p⃗, we focus on the
quantum correction in the vicinity of the plane with k⃗ + l⃗ = p⃗. Near the plane, we can replace k + l

127
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with p inside coupling functions. Shifting qy → qy + vk+qqx + ∆1,{1,1}/c, we obtain

Γ
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

(0)PH

(
k+l p−l
k p

)
= −

Tβσ2
σ4αT

σ1α
βσ3

2N2
f

∫
dq

V 2
F,k+q

g2k+l,k+qg
2
k+q,k(

|q0| + c|qx| + c|qy + vk+qqx + ∆1,{1,1}/c|
)×

1(
|q0 − l0| + c|qx − lx| + c|qy − ly + vk+qqx + ∆1,{1,1}/c|

)×

1

i(k0 + q0)/VF,k+q − qy + ∆2,{1,1}

1

i(p0 − l0 + q0)/VF,k+q − qy − ∆2,{1,1}
,

(B.3)

where ∆1,{1,1} ≡ ∆1,{1,1}(q; k, p−l; v) = c(e4 [⃗k; v
(4)
k+q]+e4[p⃗−l⃗; v(4)p−l+q])/2 and ∆2,{1,1} ≡ ∆2,{1,1}(q; k, p−

l; v) = (e4 [⃗k; v
(4)
k+q]− e4[p⃗− l⃗; v

(4)
p−l+q])/2. We can drop cqy from the two boson propagators in the small

v limit because the integration is convergent without it. Using the RG condition for the frequencies
(k0 = µ, p0 = µ, l0 = 2µ) and doing the qy integration, we obtain

Γ
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

(0)PH;
(
k+l p−l
k p

) = −
Tβσ2
σ4αT

σ1α
βσ3

2N2
f

∫
dq0dqx

8π2VF,k+q

g2k+l,k+qg
2
k+q,k(

|q0| + c|qx| + c|vk+qqx + ∆1,{1,1}/c|
)×

1(
|q0 − 2µ| + c|qx − lx| + c| − ly + vk+qqx + ∆1,{1,1}/c|

) i(sgn(q0 + µ) − sgn(q0 − µ))

2Vk+q∆2,{1,1} + 2iµ
.

(B.4)
We now construct a local counter term for this quantum correction. There are two crucial conditions
that counter terms must satisfy : 1) counter terms must remove the IR divergence of quantum cor-
rections in the small µ limit, and 2) counter terms should be analytic in external momenta as they
are parts of the local action. Eq. (B.4) can not be directly used for the counter term because it is a
non-analytic function of external momentum. We can construct analytic counter terms by making the
momentum dependence smooth around k = 0 and p = 0 with energy scale µ. This smearing can be
implemented by replacing

|x|µ ≡
√
x2 + µ2 (B.5)

for momentum x. 1. The modification only introduces a finite correction. The counter term can be
further simplified by replacing |q0| and |q0 − 2µ| with µ inside the boson propagators in Eq. (B.4).
The latter procedure only affects the finite part of the quantum correction because q0-integration is
bounded by −µ and µ. The resulting counter term at energy scale µ is written as

Γ̃
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

CT ;(0)PH;
(
k+l p−l
k p

) =
Tβσ2
σ4αT

σ1α
βσ3

2N2
f

∫
dq0dqx

8π2VF,k+q

g2k+l,k+qg
2
k+q,k(

µ+ c|qx|µ + c|vk+qqx + ∆1,{1,1}/c|µ
)×

1(
µ+ c|qx − lx|µ + c| − ly + vk+qqx + ∆1,{1,1}/c|µ

) i(sgn(q0 + µ) − sgn(q0 − µ))

2Vk+q∆2,{1,1} + 2iµ
.

(B.6)

As expected, the counter term removes the IR singularity of the quantum correction in the plane
p⃗ = k⃗ + l⃗2. The logµ derivative of the counter term that determines the beta functional is given by

1Such smearing naturally would arise in the exact boson propagator evaluated at a finite frequency µ.
2The sum of the quantum correction and the counter term in the region away from the hot-spot

(
|k|, |p| ≫ µ

vc

)
is

given by

Γ

(
1 1
1 1

)
;
(
σ1 σ2
σ4 σ3

)

(0)PH;

(
p k
k p

) + Γ̃

(
1 1
1 1

)
;
(
σ1 σ2
σ4 σ3

)

CT ;(0)PH;

(
p k
k p

) ∼
Tβσ2
σ4αT

σ1α
βσ3

2N2
f

1

8π2

g2p,kg
2
k,k

cVF,k

[
−

2µ log
(

(c|kx−px|+cv|kx|)(c|kx−px|+cv|px|)
c2v2|kx||px|

)
c2(|kx − px|+ v|kx|+ v|px|)2

−
2µ(|kx|+ |px|)

c2v|kx||px|(|kx − px|+ v|kx|+ v|px|)

]
(B.7)

In order to arrive at the above expression, we use momentum independent nesting angle.
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4µ
∂

∂ log µ
Γ̃

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

CT ;(0)PH;
(
k+l p−l
k p

)

= −
Tβσ2
σ4αT

σ1α
βσ3

πN2
f

∫
dqx

2πµVF,k+q

iµ

iµ+ VF,k+q∆2,{1,1}

[
− VF,k+q∆2,{1,1}

(iµ+ VF,k+q∆2,{1,1})

×
g2k+q,k µ(

µ+ c|qx|µ + c|vk+qqx + ∆1,{1,1}/c|µ
) g2k+l,k+q µ(
µ+ c|qx − lx|µ + c| − ly + vk+qqx + ∆1,{1,1}/c|µ

)

+
g2k+q,k µ(

µ+ c|qx|µ + c|vk+qqx + ∆1,{1,1}/c|µ
) g2k+l,k+q µ

2

(
µ+ c|qx − lx|µ + c| − ly + vk+qqx + ∆1,{1,1}/c|µ

)2

+
g2k+q,k µ

2

(
µ+ c|qx|µ + c|vk+qqx + ∆1,{1,1}/c|µ

)2
g2k+l,k+q µ(

µ+ c|qx − lx|µ + c| − ly + vk+qqx + ∆1,{1,1}/c|µ
)
]
.

(B.8)

In the plane with p⃗ = k⃗ + l⃗, we have ∆1,{1,1} = ce4 [⃗k; v
(4)
k+q] and ∆2,{1,1} = 0. Denoting qx, px and kx

as q, p and k, respectively, Eq. (B.8) is written as

4µ
∂

∂ log µ
Γ̃

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

CT ;(0)PH;
(
p k
k p

) = −
Tβσ2
σ4αT

σ1α
βσ3

πN2
f

∫
dρ(q)

[
Dµ(q; k)

Dµ(p; q)2

g2p,q
+ Dµ(p; q)

Dµ(q; k)2

g2q,k

]
, (B.9)

where q is shifted to q − k and

Dµ(p; k) = g2k,p
µ

µ+ c
(
|p− k|µ + |vpp+ vkk|µ

) , dρ(q) =
dq

2πµVF,q
(B.10)

represent the interaction mediated by gapless spin fluctuations and the phase space integration mea-
sure, respectively.

B.1.2 Group 2

In group 2, the diagram in Fig. 2.7a gives rise to a singular quantum correction to the couplings given
by Eq. (2.79) in which the total momentum of the electron pair is zero. Eq. (2.71) for the quantum
correction reads

Γ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

(0)PP

(
k+l p−l
k p

)
= −

Tσ1σ2

αβ Tαβσ4σ3

2N2
f

∫
dq

1

i(k0 + q0) + V
(4)
F,k+qe4 [⃗k + q⃗; v

(4)
k+q]

1

i(p0 − q0) + V
(8)
F,p−qe8[p⃗− q⃗; v

(8)
p−q]

×

g
(4)
k+q,kg

(8)
p−q,pg

(1)
k+l,k+qg

(5)
p−l,p−q

(|q0| + c|qx| + c|qy|) (|q0 − l0| + c|qx − lx| + c|qy − ly|)
.

(B.11)

In the vicinity of the plane with p⃗ + k⃗ = 0⃗, we can replace px with −kx in the coupling functions.
Shifting qy → qy + vk+qqx + ∆1,{1,5}/c, we obtain

Γ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

(0)PP

(
k+l p−l
k p

)
= −

Tσ1σ2

αβ Tαβσ4σ3

2N2
f

∫
dq

V 2
F,k+q

g2k+l,k+qg
2
k+q,k(

|q0| + c|qx| + c|qy + vk+qqx + ∆1,{1,5}/c|
)×

1(
|q0 − l0| + c|qx − lx| + c|qy − ly + vk+qqx + ∆1,{1,5}/c|

)×

1

i(k0 + q0)/VF,k+q − qy + ∆2,{1,5}

1

i(p0 − q0)/VF,k+q − qy − ∆2,{1,5}
,

(B.12)
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where ∆1,{1,5} ≡ ∆1,{1,5}(q; k, p; v) = c(e4 [⃗k; v
(4)
k+q] + e8[p⃗; v

(8)
p−q])/2 and ∆2,{1,5} ≡ ∆2,{1,5}(q; k, p; v) =

(e4 [⃗k; v
(4)
k+q]−e8[p⃗; v

(8)
p−q])/2. To the leading order in v, one can perform the qy integration with dropping

cqy in the boson propagator to obtain

Γ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

(0)PP ;
(
k+l p−l
k p

) = −
Tσ1σ2

αβ Tαβσ4σ3

2N2
f

∫
dq0dqx

8π2VF,k+q

sgn(q0 + µ) + sgn(q0 − µ)

2(q0 − iVF,k+q∆2,{1,5})
×

g2k+q,kg
2
k+l,k+q(

|q0| + c|qx| + c|vk+qqx + ∆1,{1,5}/c|
) (

|q0 − 2µ| + c|qx − lx| + c| − ly + vk+qqx + ∆1,{1,5}/c|
) .

(B.13)
Since the support of q0-integration is (−∞,−µ)

⋃
(µ,∞), the IR divergent part of the quantum correc-

tion is not affected by dropping 2µ from |q0 − 2µ| in the second boson propagator. We further smear
the non-analyticity in external momenta to write the counter term as

Γ̃
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

CT ;(0)PP ;
(
k+l p−l
k p

) =
Tσ1σ2

αβ Tαβσ4σ3

2N2
f

∫
dq0dqx

8π2VF,k+q

sgn(q0 + µ) + sgn(q0 − µ)

2(q0 − iVF,k+q∆2,{1,5})
×

g2k+q,kg
2
k+l,k+q(

|q0| + c|qx|µ + c|vk+qqx + ∆1,{1,5}/c|µ
) (

|q0| + c|qx − lx|µ + c| − ly + vk+qqx + ∆1,{1,5}/c|µ
) .

(B.14)

The counter term removes the IR singularity of the quantum correction in the p⃗ = −k⃗ plane3. Inte-
grating q0 and taking the logµ derivative of the counter term, we obtain

4µ
∂

∂ log µ
Γ̃

( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

CT ;(0)PP ;
(
k+l p−l
k p

) = −
Tσ1σ2

αβ Tαβσ4σ3

πN2
f

∫
dqx

2πµVF,k+q

µ2

(µ2 + V 2
F,k+q∆

2
2,{1,5})

×

g2k+q,k µ(
µ+ c|qx|µ + c|vk+qqx + ∆1,{1,5}/c|µ

) g2k+l,k+q µ(
µ+ c|qx − lx|µ + c| − ly + vk+qqx + ∆1,{1,5}/c|µ

) .
(B.16)

Away from the plane with p⃗ + k⃗ ̸= 0, ∆2,{1,5} ̸= 0 and the counter term vanishes in the low-energy
limit. Non-vanishing contribution to the beta functional arises only for ∆2,{1,5} ≪ µ. Within the space
of IR singularity, Eq. (B.16) becomes

4µ
∂

∂ log µ
Γ̃

( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

CT ;(0)PP ;
(
k+l −k−l
k −k

) = −
Tσ1σ2

αβ Tαβσ4σ3

πN2
f

∫
dρ(q) Dµ(q; k)Dµ(k + l; q), (B.17)

where Dµ(p; k) and dρ(q) are defined in Eq. (B.10).

B.2 Linear mixing

Once the primary couplings are generated from the spin fluctuations, the secondary couplings are
further generated through the linear mixing. When external fermions are on the Fermi surface, Eqs.
(2.74) and (2.75) that describe mixing of the four-fermion couplings can be written as the sum of

3The sum of the quantum correction and the counter term in the region away from the hot-spot
(
|k|, |k + l| ≫ µ

vc

)
is

given by

Γ

(
1 5
1 5

)
;
(
σ1 σ2
σ4 σ3

)

(0)PP ;
(
k+l −k−l
k −k

) + Γ̃

(
1 5
1 5

)
;
(
σ1 σ2
σ4 σ3

)

CT ;(0)PP ;
(
k+l −k−l
k −k

) ∼
Tσ1σ2
αβ Tαβ

σ4σ3

2N2
f

1

8π2

g2k,kg
2
k+l,k

cVF,k

4µ

cv|kx + lx|(cv|kx|+ c|lx|)
(B.15)

where we use momentum independent nesting angle for the estimation.
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contributions from different parts of the Fermi surface as

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

(1)PP ;
(
k+l p−l
k p

) =
1

4µNf

∫
dq

2π

[
g
(N̄4)
k+q,kg

(N̄3)
p−q,p K(PP )

N4,N3
(q;µ, µ, k, p)λ

(
N1 N2

N̄4 N̄3

)
;
(σ1 σ2

α β

)

(
k+l p−l
k+q p−q

) Tαβσ4σ3

+ g
(N1)
k+l,k+l+qg

(N2)
p−l,p−l−q K(PP )

N1,N2
(q; 3µ,−µ, k + l, p− l)Tσ1σ2

αβ λ

(
N̄1 N̄2

N4 N3

)
;
(
α β
σ4 σ3

)

(
k+l+q p−l−q
k p

)

] (B.18)

and

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

(1)PH;
(
k+l p−l
k p

) =
1

4µNf

∫
dq

2π

[
g
(N̄4)
k+q,kg

(N1)
k+l,k+l+q K(PH)

N1,N4
(q; 3µ, µ, k + l, k)Tασ1

σ4β
λ

(
N̄1 N2

N̄4 N3

)
;
(
β σ2
α σ3

)

(
k+l+q p−l
k+q p

)

+ g
(N̄3)
p+q,pg

(N2)
p−l,p−l+q K(PH)

N2,N3
(q;−µ, µ, p− l, p)Tασ2

σ3β
λ

(
N1 N̄2

N4 N̄3

)
;
(
σ1 β
σ4 α

)

(
k+l p−l+q
k p+q

)

+ g
(N̄4)
k+q,kg

(N2)
p−l,p−l+q K(PH)

N2,N4
(q;−µ, µ, p− l, k)Tασ2

σ4β
λ

(
N1 N̄2

N̄4 N3

)
;
(
σ1 β
α σ3

)

(
k+l p−l+q
k+q p

)

+ g
(N̄3)
p+q,pg

(N1)
k+l,k+l+q K(PH)

N1,N3
(q; 3µ, µ, k + l, p)Tασ1

σ3β
λ

(
N̄1 N2

N4 N̄3

)
;
(
β σ2
σ4 α

)

(
k+l+q p−l
k p+q

)

]
.

(B.19)
Here,

K(PP )
Na,Nb

(q; ka,0, kb,0, ka, kb) =

∫
dq⊥dq0
(2π)2

D(q)GN̄a
(ka + q)GN̄b

(kb − q) (B.20)

is the kernel that determines the strength of mixing between a particle-particle pair with momenta
(ka, kb) in hot spots (Na, Nb) with a particle-particle pair with momenta (ka + q, kb − q) in hot spots
(N̄a, N̄b). ka and kb are the external momenta along the Fermi surface. ka,0 and kb,0 are the external
frequencies. q (q⊥) denotes the internal momentum that becomes parallel (perpendicular) to the Fermi
surface in the small v limit. Similarly,

K(PH)
Na,Nb

(q; ka,0, kb,0, ka, kb) =

∫
dq⊥dq0
(2π)2

D(q)GN̄a
(ka + q)GN̄b

(kb + q) (B.21)

determines the strength of mixing between a particle-hole pair with momenta (ka, kb) in hot spots
(Na, Nb) with a particle-hole pair with momenta (ka + q, kb + q) in hot spots (N̄a, N̄b).

B.2.1 Group 1

In group 1, the primary couplings generated from the spin fluctuations takes the form of Eq. (2.78).
The vertex correction that generates the secondary couplings exhibits IR singularity within the ex-
tended space of IR singularity only in the PH channel. In particular, only the last two terms in Eq.

(B.19) exhibit IR singularity for

{
λ

( 1 1
1 1 )(
0 k
k 0

), λ
( 1 1
1 1 )(
k 0
0 k

)
}

at general k. This is because the primary coupling

has zero total momentum only in two of the four PH channels at general k. While we only need

K(PH)
1,1 (q; ka,0, kb,0, k, p) at p = k for the last two terms in Eq. (B.19), let us compute it for general k

and p to see how the vertex correction dies out at low energies when k deviates from p. In this case,
q = qx and q⊥ = qy. The kernel associated with a particle-hole pair at momenta k and p reads (see
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Figs. 2.8c-2.8f)

K(PH)
1,1 (q; 3µ, µ, k, p) =

∫
dq0dq⊥
(2π)2

1

|q0| + c(|q| + |q⊥|)
1

i(q0 + 3µ) + V
(4)
F,k+q(v

(4)
k+qq − q⊥ + e4 [⃗k; v

(4)
k+q])

× 1

i(q0 + µ) + V
(4)
F,p+q(v

(4)
p+qq − q⊥ + e4[p⃗; v

(4)
p+q])

.

(B.22)

From Eq. (2.17), we can write V
(4)
F,p = VF,p and v

(4)
p = vp. Since we are interested in the kernel near

the space of IR singularity with p = k, we set VF,k+q = VF,p+q and vk+q = vp+q in the integrand. We

shift the internal momenta as q0 → q0 − 2µ, q⊥ → q⊥ + vk+qq + 1
2

(
e4 [⃗k; v

(4)
k+q] + e4[p⃗; v

(4)
p+q]

)
and drop

cq⊥ from the boson propagator. The q⊥ integration gives

K(PH)
1,1 (q; 3µ, µ, k, p) =

∫
dq0
2π

1

4VF,k+q

sgn(q0 + µ) − sgn(q0 − µ)

|q0 − 2µ| + c |q| +
∣∣cvk+qq + ∆1,{1,1}

∣∣
1

µ− iVF,k+q∆2,{1,1}
,

(B.23)
where

∆1,{1,1}(q; k, p; v) =
c

2

(
e4 [⃗k; v

(4)
k+q] + e4[p⃗; v

(4)
p+q]

)
, ∆2,{1,1}(q; k, p; v) =

1

2

(
e4 [⃗k; v

(4)
k+q] − e4[p⃗; v

(4)
p+q]

)
.

(B.24)

The integration over the frequency results in

K(PH)
1,1 (q; 3µ, µ, k, p) =

log

(
1 + 2µ

µ+c|q|+|cvk+qq+∆1,{1,1}|

)

4πVF,k+q
(
µ− iVF,k+q∆2,{1,1}

) . (B.25)

The subsequent integration over momentum q along the Fermi surface would give rise to a logarithmic
IR divergence at k = p = 0. A simple local counter term that removes the IR divergent part of the
quantum correction can be obtained by regulating the non-analyticity in the external momenta and
replacing q0 with µ inside the boson propagator in Eq. (B.23) as

K̃(PH)
1,1 (q; k, p) =

1

2πVF,k+q

µ

µ− iVF,k+q∆2,{1,1}

1

µ+ c |q|µ + c
∣∣vk+qq + 1

c∆1,{1,1}
∣∣
µ

, (B.26)

where |q|µ =
√
q2 + µ2 smears the non-analyticity of the boson propagator. One can explicitly check

that Eq. (B.26) removes all IR singularity of the quantum correction 4. The contribution to the beta
functional is given by the derivative of Eq. (B.26) with respect to logµ5,

∂K̃(PH)
1,1 (q; k, p)

∂ log µ
= − 1

2πVF,k+q

µ
[
µ2 + i∆2,{1,1}VF,k+q

(
c |q|µ + c

∣∣vk+qq + 1
c∆1,{1,1}

∣∣
µ

)]

(
µ− i∆2,{1,1}VF,k+q

)2 (
µ+ c |q|µ + c

∣∣vk+qq + 1
c∆1,{1,1}

∣∣
µ

)2 . (B.28)

Eq. (B.28) vanishes in the small µ limit unless q, ∆2,{1,1} and ∆1,{1,1} all vanish. This implies that
(1) the vertex correction is non-zero only when the pair of external fermions scattered by the critical

4To the leading order in the small v limit, the difference between Eq. (B.25) and Eq. (B.26) is given by

∫
dq

2π

(
K(PH)

1,1 (q; 3µ, µ, k, p)− K̃(PH)
1,1 (q; k, p)

)
=

µ− (3µ+
∣∣∆1,{1,1}

∣∣)arctanh( µ

2µ+|∆1,{1,1}|

)
2cπ2VF,k

(
µ− i∆2,{1,1}VF,k

) , (B.27)

where the momentum dependence of the coupling functions are ignored, and cvkq is dropped in the boson propagator.
5In principle, the log µ derivative affects the |q|µ terms, but these result in sub leading contributions, which we ignore.
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boson through quantum fluctuations are at the hot spots and (2) the non-zero vertex correction arises
from the boson with small momenta near q = 0. We can use Eqs. (B.27) and (B.28) for the counter
terms that cancel singular parts of quantum corrections with different choices of frequencies that are
order of µ in Eq. (B.19).

The vertex correction in the particle-hole channel in Fig. 2.8 is given by the last two terms of Eq.
(B.19). From Eq. (B.26), we can directly write the counter term,

Γ̃
( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

CT ;(1)PH;
(
k+l k
k k+l

) = − 1

8πNf

∫
dρ(q)

[
Dµ(k; q)

µ
Tασ2

σ4β
λ

( 1 4
4 1 );

(
σ1 β
α σ3

)

(
k+l q
q k+l

) +
Dµ(k + l; q)

µ
Tσ1α
βσ3

λ
( 4 1
1 4 );

(
β σ2
σ4 α

)

(
q k
k q

)

]
,

(B.29)
where we have shifted qx → qx − kx and qx → qx − kx − lx, respectively. The contribution to the beta
functional is given by the logµ derivative of the counter term6,

4µ
∂

∂ log µ
Γ̃

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)

CT ;(1)PH;
(
k+l k
k k+l

) =
1

2πNf

∫
dρ(q)

[
Dµ(k; q)2

g2q,k
Tασ2

σ4β
λ

( 1 4
4 1 );

(
σ1 β
α σ3

)

(
k+l q
q k+l

) +
Dµ(k + l; q)2

g2k+l,q
Tσ1α
βσ3

λ
( 4 1
1 4 );

(
β σ2
σ4 α

)

(
q k
k q

)

]
.

(B.30)

B.2.2 Group 2

In group 2, the primary couplings generated from the spin fluctuations are given by Eq. (2.79). The
vertex correction that is linear in the four-fermion coupling further generates the secondary couplings
in the PP channel through Figs. 2.8a- 2.8b. The relevant expression for the quantum correction is in
Eq. (B.18). The kernel that goes into the quantum correction in the PP channel is written as

K(PP )
1,5 (q; 3µ,−µ, k, p) =

∫
dq0dq⊥
(2π)2

1

|q0| + c(|q| + |q⊥|)
1

i(q0 + 3µ) + V
(4)
F,k+q(v

(4)
k+qq − q⊥ + e4 [⃗k; v

(4)
k+q])

×

1

i(−q0 − µ) + V
(8)
F,p−q(v

(8)
p−qq − q⊥ + e8[p⃗; v

(8)
p−q])

.

(B.31)
Shifting q0 by −2µ and q⊥ by vk+qq + ∆1{1,5}(q; k, p; v)/c, and dropping cq⊥ in the boson propagator
in the small c limit leads to

K(PP )
1,5 (q; 3µ,−µ, k, p) =

∫
dq0dq⊥
(2π)2

1

|q0 − 2µ| + c |q| +
∣∣cvk+qq + ∆1,{1,5}

∣∣
1

i(q0 + µ) + VF,k+q(−q⊥ + ∆2,{1,5})
×

1

i(−q0 + µ) + VF,−p+q((v−p+q − vk+q)q − q⊥ − ∆2,{1,5})
,

(B.32)
where

∆1,{1,5}(q; k, p; v) =
c

2

(
e4 [⃗k; v

(4)
k+q] + e8[p⃗; v

(8)
p−q]

)
, ∆2,{1,5}(q; k, p; v) =

1

2

(
e4 [⃗k; v

(4)
k+q] − e8[p⃗; v

(8)
p−q]

)
.

(B.33)
Integrating q⊥ gives

K(PP )
1,5 (q; 3µ,−µ, k, p) =

∫
dq0
2π

1

|q0 − 2µ| + c |q| +
∣∣cvk+qq + ∆1,{1,5}

∣∣×

1
2 (sgn(q0 + µ) + sgn(q0 − µ))

(VF,k+q + VF,−p+q)q0 − (VF,k+q − VF,−p+q)µ− iVF,k+qVF,−p+q((vk+q − v−p+q)q + 2∆2,{1,5})
.

(B.34)

Near the space of IR singularity with k = −p, we can set VF,k+q = VF,−p+q and vk+q = v−p+q to
simplify the above expression. To construct a simple local and analytic counter term that removes

6To the leading order, fixing λB is equivalent to fixing λ/µ under the logµ derivative.
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the IR divergence, we can drop 2µ in the boson propagator and regularize the non-analyticity in the
external momenta as

K̃(PP )
1,5 (q; k, p) =

∫
dq0
2π

1

|q0| + c |q|µ + c
∣∣vk+qq + 1

c∆1,{1,5}
∣∣
µ

1
2 (sgn(q0 + µ) + sgn(q0 − µ))

2VF,k+qq0 − 2iV 2
F,k+q∆2,{1,5}

. (B.35)

Since K̃(pp)
1,5 differs from K(pp)

1,5 only by non-singular terms7, we can use Eq. (B.35) in the counter term.
After q0 integration, the kernel becomes

K̃(PP )
1,5 (q; k, p) =





2∆2;{1,5}VF,k+q arctan

(
∆2;{1,5}VF,k+q

µ

)

−
(
c
∣∣vk+qqx + ∆1,{1,5}/c

∣∣
µ

+ c |qx|µ
)

log




µ2 +
(
∆2;{1,5}VF,k+q

)2
(
c
∣∣vk+qqx + ∆1;{1,5}/c

∣∣
µ

+ c |qx|µ + µ
)2








4πVF,k+q

[(
c |q|µ + c

∣∣vk+qq + ∆1,{1,5}/c
∣∣
µ

)2
+
(
∆2;{1,5}VF,k+q

)2
] .

(B.38)
The contribution to the beta functional is given by the derivative of the kernel with respect to log µ,

∂K̃(PP )
1,5 (q; k, p)

∂ log µ
= − 1

2πVF,k+q

µ2

(
∆2,{1,5}VF,k+q

)2
+ µ2

1

µ+ c |q|µ + c
∣∣vk+qq + ∆1,{1,5}/c

∣∣
µ

. (B.39)

In the small µ limit, Eq. (B.39) remains non-zero as far as ∆2,{1,5} = 0. This implies that (1) the
vertex corrections in the pairing channel remains important at low energies irrespective of the relative
momentum of Cooper pairs, and (2) the singular vertex correction arises from bosons with all momenta.
In particular, even a high-energy boson creates a singular vertex correction by scatterings Cooper pairs
along the Fermi surface with large momentum transfers.

Using Eq. (B.38), we can directly write the counter term for the quantum correction in Eq. (B.18).
From (B.39), the contribution to the beta functional is obtained to be

4µ
∂

∂ log µ
Γ̃

( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

CT ;(1)PP ;
(
k+l −k−l
k −k

) =
1

2πNf

∫
dρ(q)

[
Dµ(k + l; q)Tσ1σ2

αβ λ
( 4 8
1 5 ),

(
α β
σ4 σ3

)

(
q −q
k −k

) + Dµ(q; k)λ
( 1 5
4 8 ),

(σ1 σ2

α β

)

(
k+l −k−l
q −q

) Tαβσ4σ3

]
,

(B.40)
where we have shifted qx → qx − kx − lx and qx → qx − kx in the respective terms.

7To the leading order in v, the difference is given by

(K(PP )
1,5 (q; 3µ,−µ, k, p)− K̃(PP )

1,5 (q; k, p))

=

∫
dq0

2π

1
2
(|q0| − |q0 − 2µ|) (sgn(q0 + µ) + sgn(q0 − µ)){ [

(VF,k+q + VF,−p+q)q0 − 2iVF,k+qVF,−p+q∆2,{1,5}
]

×(|q0 − 2µ|+ c |q|+
∣∣cvk+qq +∆1,{1,5}

∣∣)(|q0|+ c |q|+
∣∣cvk+qq +∆1,{1,5}

∣∣)
} . (B.36)

Here ∆2 only makes the magnitude of the integrand strictly larger, thus we can set ∆2 = 0. For coupling functions that
are weakly momentum dependent, one can perform the q integration by dropping cvk+qq for v ≪ c≪ 1 to obtain

∫
dq

2π
(K(PP )

1,5 (q; 3µ,−µ, k, p)− K̃(PP )
1,5 (q; k, p)) =


1−log 4

π2c(VF,k+VF,−p)
µ

|∆1,{1,5}|
+O(µ2) for ∆1 ̸= 0,∆2 = 0

π2−3(2 log2(2)+Li2(1/4))
12cπ2(VF,k+VF,−p)

for ∆1 = 0,∆2 = 0
.

(B.37)
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B.3 BCS processes

The vertex corrections quadratic in the four-fermion coupling (Eqs. (2.76) - (2.77) for Fig. 2.9) can
be written as

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

(2)PP ;
(
k+l p−l
k p

) = − 1

8µ2

∫
dq

2π
Q(PP )
M1M2

(q;µ, µ, k, p)λ

(
N1 N2

M1 M2

)
;
(σ1 σ2

β α

)

(
k+l p−l
k+q p−q

) λ

(
M1 M2

N4 N3

)
;
(
β α
σ4 σ3

)

(
k+q p−q
k p

) , (B.41)

and

Γ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)

(2)PH;
(
k+l p−l
k p

) = − 1

8µ2

∫
dq

2π

[
Q(PH)
M1M2

(q;−2µ, 0,−l, 0)

(
−Nfλ

(
N1 M1

N4 M2

)
;
(σ1 α
σ4 β

)

(
k+l q−l
k q

) λ

(
M2 N2

M1 N3

)
;
(
β σ2
α σ3

)

(
q p−l
q−l p

)

+ λ

(
N1 M1

N4 M2

)
;
(σ1 α
σ4 β

)

(
k+l q−l
k q

) λ

(
M2 N2

N3 M1

)
;
(
β σ2
σ3 α

)

(
q p−l
p q−l

) + λ

(
N1 M1

M2 N4

)
;
(σ1 α
β σ4

)

(
k+l q−l
q k

) λ

(
M2 N2

M1 N3

)
;
(
β σ2
α σ3

)

(
q p−l
q−l p

)

)

+ Q(PH)
M1M2

(q;−2µ, 0, p− l − k, 0)λ

(
N1 M1

M2 N3

)
;
(σ1 α
β σ3

)

(
k+l q+p−l−k
q p

) λ

(
M2 N2

N4 M1

)
;
(
β σ2
σ4 α

)

(
q p−l
k q+p−l−k

)

]
,

(B.42)
where

Q(PP )
N1N2

(q; ka,0, kb,0, ka, kb) =

∫
dq0dq⊥
(2π)2

GN1
(ka + q)GN2

(kb − q), (B.43a)

Q(PH)
N1N2

(q; ka,0, kb,0, ka, kb) =

∫
dq0dq⊥
(2π)2

GN1
(ka + q)GN2

(kb + q) (B.43b)

are the kernels that determine the strength of the operator mixing in which two four-fermion oper-
ators ’fuse’ into one four-fermion operator as a function of momentum along the Fermi surface and
frequencies. For a generic shape of Fermi surface, the only kernel that produces an IR singularity in
an extended space of external momenta is in the PP channel,

Q(PP )
15 (q;µ, µ, k, p)

=

∫
1[

i(µ+ q0) + V
(1)
F,k+qe1 [⃗k + q⃗; v

(1)
k+q]

][
i(µ− q0) + V

(5)
F,p−qe5[p⃗− q⃗; v

(5)
p−q]

] dq⊥
2π

dq0
2π

. (B.44)

This is singular when the center of mass momentum is zero. For p⃗ = −k⃗, the kernel becomes

Q(PP )
15 (q;µ, µ, k,−k) =

1

2πVF,k+q
log

Λ

µ
. (B.45)

It is noted that this is IR divergent irrespective of k as far as p = −k.
Using the expressions above, we write down the quantum corrections that are quadratic in λ

explicitly. With the help of Eq. (B.45) we obtain the counter term,

Γ̃
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

CT ;(2)PP ;
(
k+l −k−l
k −k

) =
1

8µ2

∫
dq

2π

1

2πVF,q
log

(
Λ

µ

)[
λ

( 1 5
1 5 );

(σ1 σ2

β α

)

(
k+l −k−l
q −q

) λ
( 1 5
1 5 );

(
β α
σ4 σ3

)

(
q −q
k −k

)

+λ
( 1 5
4 8 );

(σ1 σ2

β α

)

(
k+l −k−l
q −q

) λ
( 4 8
1 5 );

(
β α
σ4 σ3

)

(
q −q
k −k

)

]
,

(B.46)

where the internal momentum is shifted by −k. The contribution to the beta functional becomes

4µ
∂

∂ log µ
Γ̃

( 1 5
1 5 );(σ1 σ2

σ4 σ3
)

CT ;(2)PP ;
(
k+l −k−l
k −k

) = − 1

4π

∫
dρ(q)

[
λ

( 1 5
1 5 );

(σ1 σ2

β α

)

(
k+l −k−l
q −q

) λ
( 1 5
1 5 );

(
β α
σ4 σ3

)

(
q −q
k −k

)

+λ
( 1 5
4 8 );

(σ1 σ2

β α

)

(
k+l −k−l
q −q

) λ
( 4 8
1 5 );

(
β α
σ4 σ3

)

(
q −q
k −k

)

]
.

(B.47)
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Appendix C

RG Flow of the nesting angle,
Fermi velocity and Yukawa coupling
functions

C.1 Diagonal Coupling functions

We can solve the beta functionals for the diagonal couplings, {vk, VF,k, gk ≡ gk,k} because Eqs. (2.101)-
(2.103) do not depend on the off-diagonal elements of gk,k′ with k′ ̸= k. The momentum dependent

flow of the diagonal coupling functions is controlled by three length scales ℓ
(2L)
k , ℓ

(1L)
k , ℓ

(1L)
k,k . defined

through Eq. (2.125). The length scales satisfy ℓ
(2L)
k = ℓ

(1L)
k,k < ℓ

(1L)
k . Since these logarithmic length

scales depend on the scale dependent coupling functions, they need to be solved along with the beta
functionals. To be concrete, we consider a UV theory which has momentum dependent coupling
functions at scale Λ as is shown in Eq. (2.120).

137



138 APPENDIX C. RG FLOW OF SINGLE-PARTICLE COUPLINGS

C.1.1 Short-distance Regime

At length scales shorter than all crossover scales (ℓ < ℓ
(2L)
k , ℓ

(1L)
k , ℓ

(1L)
k,k ), the beta functionals become

∂vk(ℓ)

∂ℓ
= vk(ℓ)

[
−4(N2

c − 1)

π3NcNf

gk(ℓ)2

VF,k(ℓ)2
log

(
VF,k(ℓ)

c(ℓ)

)

− 2(N2
c − 1)

π4N2
cN

2
f

gk(ℓ)4

c(ℓ)2VF,k(ℓ)2
log2

(
VF,k(ℓ)vk(ℓ)

c(ℓ)

)]
,

(C.1)

∂VF,k(ℓ)

∂ℓ
= VF,k(ℓ)

[
2(N2

c − 1)

π3NcNf

gk(ℓ)2

VF,k(ℓ)2
log

(
VF,k(ℓ)

c(ℓ)

)
− N2

c − 1

π2NcNf

gk(ℓ)2

c(ℓ)VF,k(ℓ)

− 3

2

N2
c − 1

π2NcNf
v0(ℓ) log

(
1

c(ℓ)

)
+

N2
c − 1

2πNcNF
w0(ℓ)

+
(N2

c − 1)

2π4N2
cN

2
f

gk(ℓ)4

c(ℓ)2VF,k(ℓ)2
log2

(
VF,k(ℓ)vk(ℓ)

c(ℓ)

)]
,

(C.2)

∂gk(ℓ)

∂ℓ
= gk(ℓ)

[
− 1

2πNcNf
w0(ℓ) log

(
1

w0(ℓ)

)
+

N2
c − 1

2πNcNf
w0(ℓ) − N2

c − 1

π2NcNf
v0(ℓ) log

(
1

v0(ℓ)

)

− (N2
c − 1)gk(ℓ)2

π2NcNfc(ℓ)VF,k(ℓ)
+

gk(ℓ)2

π2NcNfVF,k(ℓ)c(ℓ)
log

(
c(ℓ)

VF,k(ℓ)vk(ℓ)

)]
.

(C.3)

The solution to the beta functional reproduces the results of the hot spot theory[182],

vk(ℓ) =
π2NcNf

2(N2
c − 1)

1

(ℓ+ ℓ0) log(ℓ+ ℓ0)
, (C.4)

VF,k(ℓ) = 1, (C.5)

gk(ℓ) =

√
π3NcNf

4(N2
c − 1)

1

(ℓ+ ℓ0) log(ℓ+ ℓ0)
. (C.6)

The speed of the collective mode is given by Eq. (2.4),

c(ℓ) =
π

4
√
N2
c − 1

1√
ℓ+ ℓ0

. (C.7)

Here ℓ0 is the parameter that sets the nesting angle at the UV scale ℓ = 0. In the limit that the nesting
angle is small, ℓ0 ≫ 1.

C.1.2 The crossover scales

As the length scale increases, the theory encounters the first crossover at ℓ
(2L)
k . Eq. (2.125) that

determines the crossover scale reads

ℓ
(2L)
k = log

(
Λ

4v0(ℓ
(2L)
k )k

)
. (C.8)

For ℓ0 ≫ 1, log 1/v0(ℓ) ≈ log(ℓ+ ℓ0), and Eq. (C.8) can be written as

ℓ
(2L)
k = log

(
Λ

4v0(0)k

)
+ log

(
ℓ0 + ℓ

(2L)
k

ℓ0

)
. (C.9)
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To the leading order in the small v limit, its solution is obtained to be

ℓ
(2L)
k = log

(
Λ

4v0(0)k

)
+ log



ℓ0 + log

(
Λ

4v0(0)k

)

ℓ0


 . (C.10)

As ℓ increases further, the theory encounters the second crossover length scale at

ℓ
(1L)
k = log

Λ

2vk(ℓ
(1L)
k )c(ℓ

(1L)
k )k

. (C.11)

It turns out that ℓ
(1L)
k − ℓ(2L)k is not large enough to generate any significant flow of coupling functions

within this window of length scales. To see this, let us first assume that the logarithmic change of the
coupling functions is negligible between the two length scales,

|δ(J)k | ≡ | log J(ℓ
(1L)
k ) − log J(ℓ

(2L)
k )| ≪ 1 (C.12)

for all couplings J = {gk, vk, VF,k}. The self-consistent equation in Eq. (C.11) can be written as

ℓ
(1L)
k − ℓ

(2L)
k = − log c(ℓ

(2L)
k ) − δ

(vk)
k − δ

(c)
k + log 2 ≈ log

2

c(ℓ
(2L)
k )

(C.13)

for c≪ 1. Since all beta functionals goes to zero in powers of w as
∣∣∣∣

1

vk(ℓ)

∂vk(ℓ)

∂ℓ

∣∣∣∣ ≲ O( v log(1/c) ),

∣∣∣∣
1

VF,k(ℓ)

∂VF,k(ℓ)

∂ℓ

∣∣∣∣ ≲ O(w ),

∣∣∣∣
1

gk,k(ℓ)

∂gk,k′(ℓ)

∂ℓ

∣∣∣∣ ≲ O(w log(1/w) ),

(C.14)

the change of the coupling that occurs in ℓ
(2L)
k < ℓ < ℓ

(1L)
k is at most

∣∣∣∣∣
J(ℓ

(1L)
k ) − J(ℓ

(2L)
k )

J(ℓ
(2L)
k )

∣∣∣∣∣ ∼ O(w log(1/w) log(1/c) ) ≪ 1 (C.15)

for all couplings. This justifies the assumption made in Eq. (C.12). Therefore, the change of couplings

is negligible between ℓ
(2L)
k and ℓ

(1L)
k , and we can set

Jk(ℓ) = J(k; ℓ
(2L)
k ) for ℓ

(2L)
k ≤ ℓ ≤ ℓ

(1L)
k . (C.16)

C.1.3 Low Energy Regime

In the long distance limit with ℓ > ℓ
(1L)
k , the beta functionals become

∂vk(ℓ)

∂ℓ

∣∣∣∣
ℓ≥ℓ(1L)

k

= 0 (C.17)

∂VF,k(ℓ)

∂ℓ

∣∣∣∣
ℓ≥ℓ(1L)

k

= VF,k(ℓ)

[
N2
c − 1

2πNcNF
w0(ℓ)

]
, (C.18)

∂gk(ℓ)

∂ℓ

∣∣∣∣
ℓ≥ℓ(1L)

k

= gk(ℓ)

[
− 1

2πNcNf
w0(ℓ) log (FR1w0(ℓ))

]
(C.19)

to the leading order in v. With the quantum corrections turned off, the flow of vk freezes out. VF,k
that represents the Fermi velocity measured in the unit of the Fermi velocity at the hot spots increases
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with increasing length scale. This is because the dynamical critical exponent is chosen to keep VF,0 = 1
at the hot spot. Cold electrons which are decoupled from spin fluctuations at low energies appear to
be moving increasingly faster when the speed is measured with the sluggish clock that is tuned to keep
the speed of hot electrons to be 1. Since the deviation of the dynamical critical exponent from 1 is
order of w, the flow of VF,k is controlled by w. On the contrary, the Yukawa coupling decays to zero
away from the hot spots in the low energy limit. This is because the vertex correction, which tends
to strengthen the coupling through the anti-screening effect, turns off at low energies. With the anti-
screening effect gone, the large anomalous dimension of the boson, which is 1 + O(w log 1/w), forces
the Yukawa coupling to decrease rapidly. Since the Yukawa coupling is marginal when the anomalous
dimension is 1, the flow of the Yukawa coupling is proportional to w log 1/w. From w0(ℓ) = v0(ℓ)/c(ℓ),
the solutions are readily obtained to be

vk(ℓ ≥ ℓ
(1L)
k ) =

π2NcNf
2(N2

c − 1)

1

(ℓ
(1L)
k + ℓ0) log(ℓ

(1L)
k + ℓ0)

,

VF,k(ℓ ≥ ℓ
(1L)
k ) = E1(ℓ, ℓ

(1L)
k ),

gk(ℓ ≥ ℓ
(1L)
k ) =

√
π

2
v0(ℓ

(1L)
k )E0(ℓ, ℓ

(1L)
k ),

(C.20)

where

E0(X,Y ) ≡ exp

(
−
√
X + ℓ0 −

√
Y + ℓ0√

N2
c − 1

)
, (C.21)

E1(X,Y ) ≡ exp
(√

N2
c − 1

(
Ei(log

√
X + ℓ0) − Ei(log

√
Y + ℓ0)

))
. (C.22)

Because vk(ℓ
(1L)
k ) ≈ vk(ℓ

(2L)
k ), E0(ℓ

(1L)
k , ℓ

(2L)
k ) ≈ 1, E1(ℓ

(1L)
k , ℓ

(2L)
k ) ≈ 1, the scale dependent diagonal

couplings can be written in terms of only one crossover as

vk(ℓ) =

{
v0(ℓ) ℓ ≤ ℓ

(2L)
k

v0(ℓ
(2L)
k ) ℓ ≥ ℓ

(2L)
k

VF,k(ℓ) =

{
1 ℓ ≤ ℓ

(2L)
k

E1(ℓ, ℓ
(2L)
k ) ℓ ≥ ℓ

(2L)
k

gk(ℓ) =

{√
πv0(ℓ)/2 ℓ ≤ ℓ

(2L)
k√

π
2 v0(ℓ

(2L)
k )E0(ℓ, ℓ

(2L)
k ) ℓ ≥ ℓ

(2L)
k

.

(C.23)

C.2 Off-diagonal Yukawa Coupling

The crossover scale for the off-diagonal Yukawa vertex correction is given by

ℓ
(1L)
k,k′ = min

(
ℓ
(ver)
k′,k , ℓ

(1L)
k , ℓ

(1L)
k′

)
, (C.24)

where ℓ
(ver)
k′,k = L(1L)(k, k′; ℓ(ver)k′,k ) is the crossover scale associated with the vertex correction. Inside

Eq. (C.24), we can use the expression for ℓ
(ver)
k′,k that is valid for ℓ

(ver)
k′,k ≤ ℓ

(1L)
k , ℓ

(1L)
k′

1. Therefore, we

can set VF,k = VF,k′ = 1 and vk(ℓ
(ver)
k′,k ), vk′(ℓ

(ver)
k′,k ) = v0(ℓ

(ver)
k′,k ) to estimate ℓ

(ver)
k′,k . In this case, ℓ

(ver)
k′,k

satisfies ℓ
(ver)
k′,k = log

(
Λ

2v0(ℓ
(ver)

k′,k )|k+k′|

)
. Since this is of the same form as Eq. (C.8) for ℓ

(2L)
k except

1If ℓ
(ver)
k′,k is greater than ℓ

(1L)
k or ℓ

(1L)
k′ , ℓ

(ver)
k′,k drops out from Eq. (C.24) anyway.
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that k is replaced with |k+ k′|/2, ℓ
(ver)
k′,k = ℓ

(2L)
(k+k′)/2. From this, we can write the crossover scale for the

off-diagonal Yukawa coupling as

ℓ
(1L)
k′,k = min(ℓ

(2L)
(k+k′)/2, ℓ

(1L)
k , ℓ

(1L)
k′ ). (C.25)

For ℓ ≤ ℓ
(1L)
k′,k , Eq. (2.103) takes the same form as the beta functional for the diagonal Yukawa coupling

at high energy in Eq. (C.3), and the solution is given by

gk,k′(ℓ) =

√
π

2
v0(ℓ). (C.26)

For ℓ > ℓ
(1L)
k′,k , the off-diagonal Yukawa coupling decreases as

∂gk′,k(ℓ)

∂ℓ
= gk′,k(ℓ)

[
− 1

2πNcNf
w0(ℓ) log

(
1

w0(ℓ)

)]
. (C.27)

All other terms in the beta function are sub-leading. Integrating this differential equation, we obtain

g(k′, k; ℓ) =

√
π

2
v0(ℓ

(1L)
k′,k )E0(ℓ, ℓ

(1L)
k′,k ) (C.28)

for ℓ > ℓ
(1L)
k′,k . Combining Eqs. (C.26) and (C.28) we arrive at

gk,k′(ℓ) =

{√
π
2 v0(ℓ) ℓ ≤ ℓ

(1L)
k′,k√

π
2 v0(ℓ

(1L)
k′,k )E0(ℓ, ℓ

(1L)
k′,k ) ℓ ≥ ℓ

(1L)
k′,k .

(C.29)
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Appendix D

Additional beta functionals in the
presence of the particle-hole
symmetry

If the PH symmetry is present, there exists a perfect nesting for the 2kF scatterings both in the PP
and PH channels1. In this case, there are additional channels with extended spaces of IR singularity.
In group 1, one needs to include the interaction that describes pairings between electrons with total
momentum 2kF as is shown in Eq. (2.80). In group 2, the 2kF scatterings of particle-hole pairs in
Eq. (2.81) should be included. Below, we derive the beta functionals for those additional coupling
functions and discuss they affect the flow of the couplings considered in the main text. In the presence

of the PH symmetry, the coupling functions obey Eq. (2.21). Therefore, we can simply write v
(N)
k =

vk, V
(N)
F,k = VF,k and g

(N)
k′,k = gk′,k, where vk = v−k and VF,k = VF,−k. This implies that the fermion

propagator satisfies
GN (q) = −GN (−q). (D.1)

From this, we can derive relations between the vertex corrections in the PP and PH channels. The ver-
tex correction that is independent of the four-fermion coupling in Eqs. (2.71) and (2.72) is determined
by the kernels,

γ
(PP )
N1,N2

(q; k0, p0, l0, k, p, l) =

∫
dq0dq⊥
(2π)2

D(q)D(l− q)GN̄1
(k + q)GN̄2

(p− q), (D.2)

γ
(PH)
N1,N2

(q; k0, p0, l0, k, p, l) =

∫
dq0dq⊥
(2π)2

D(q)D(l− q)GN̄1
(k + q)GN̄2

(p− l + q). (D.3)

Due to Eq. (D.1), γ
(PP )
N1,N2

and γ
(PH)
N1,N2

obey

γ
(PH)
N1,N2

(q; k0, p0, l0, k, p, l) = −γ(PP )
N1,N2

(q; k0,−p0 + l0, l0, k,−p+ l, l). (D.4)

Similarly, the kernels that determines the linear mixing in Eqs. (B.20) and (B.21) satisfy

K(PH)
Na,Nb

(q; ka,0, kb,0, ka, kb) = −K(PP )
Na,Nb

(q; ka,0,−kb,0, ka,−kb). (D.5)

1The time-reversal and parity symmetries guarantee that V
(NT )
F,−k eNT

[−k⃗; v(NT )
−k ] = V

(N)
F,k eN [⃗k; v

(N)
k ] forNT = [N+4]8.

This makes it possible to put two electrons with zero center of mass momentum on the Fermi surface in antipodal patches

irrespective of their relative momentum. In the presence of the PH symmetry, we also have V
(N)
F,−keN [−k⃗; v(N)

−k ] =

−V (N)
F,k eN [⃗k; v

(N)
k ]. This further makes it possible for a pair of electrons or an electron-hole pair with total momentum

2k⃗F to stay on the Fermi surface irrespective of their relative momentum.
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Finally, the kernels for the quantum corrections quadratic in the four fermion coupling in Eqs. (B.43a)
and (B.43b) are related to each other through

Q
(PH)
Ma,Mb

(q; ka,0, kb,0, ka, kb) = −Q(PP )
Ma,Mb

(q; ka,0,−kb,0, ka,−kb). (D.6)

From these relations, we can readily compute the beta functions for the 2kF scatterings using Eq.
(2.106).

D.1 Group 1

D.1.1 Beta functional for the 2kF pairing

Let us first consider λ
( 1 1
1 1 )(
p −p
k −k

), where the total momentum of two electrons is 2kF (0 when measured

with respect to the momentum of two electrons located at hot spot 1) in the PP channel. The beta
functional for the coupling is

β
(λ);( 1 1

1 1 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+

∫
dρ(q)

{
Dµ(q; k)2

2πNfg2k,q
λ

( 1 1
4 4 );

(σ1 σ2

α β

)

(
p −p
q −q

) Tαβσ4σ3
+

Dµ(p; q)2

2πNfg2p,q
Tσ1σ2

αβ λ
( 4 4
1 1 );

(
α β
σ4 σ3

)

(
q −q
k −k

)

− Dµ(p; q)Dµ(q; k)

πN2
f

Tσ1σ2

αβ Tαβσ4σ3

(
Dµ(q; k)

g2q,k
+

Dµ(p; q)

g2p,q

)}
.

(D.7)

Performing the q integration in the adiabatic limit, we obtain

β
(λ);( 1 1

1 1 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+
g2k,k

2π2cNfVF,k

µ

µ+ 2vc|k|µ
λ

( 1 1
4 4 );

(σ1 σ2

α β

)

(
p −p
k −k

) Tαβσ4σ3
+

g2p,p
2π2cNfVF,p

µ

µ+ 2vc|p|µ
Tσ1σ2

αβ λ
( 4 4
1 1 );

(
α β
σ4 σ3

)

(
p −p
k −k

)

− Tσ1σ2

αβ Tαβσ4σ3

Dµ(p; k)

π2cN2
f

[
µg2k,k

VF,k(µ+ 2vkc|k|µ)
+

µg2p,p
VF,p(µ+ 2vpc|p|µ)

]
.

(D.8)

Since the coupling λ( 1 1
1 1 ) mixes with λ( 4 4

1 1 ), λ( 1 1
4 4 ), λ( 4 4

4 4 ), we need to compute the beta functionals
for those couplings as well to have a closed set of beta functionals. The beta functionals for the rest
of the couplings are obtained to be

β
(λ);( 4 4

1 1 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 4 4
1 1 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 4 4
4 4 );

(σ1 σ2

α β

)

(
p −p
k −k

) Tαβσ4σ3
+

g2p,p
2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1σ2

αβ λ
( 1 1
1 1 );

(
α β
σ4 σ3

)

(
p −p
k −k

) ,

(D.9)

β
(λ);( 1 1

4 4 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 1
4 4 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 1 1
1 1 );

(σ1 σ2

α β

)

(
p −p
k −k

) Tαβσ4σ3
+

g2p,p
2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1σ2

αβ λ
( 4 4
4 4 );

(
α β
σ4 σ3

)

(
p −p
k −k

) ,

(D.10)
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β
(λ);( 4 4

4 4 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 4 4
4 4 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

+
g2k,k

2π2cNfVF,k

µ

µ+ 2vkc|k|µ
λ

( 4 4
1 1 );

(σ1 σ2

α β

)

(
p −p
k −k

) Tαβσ4σ3
+

g2p,p
2π2cNfVF,p

µ

µ+ 2vpc|p|µ
Tσ1σ2

αβ λ
( 1 1
4 4 );

(
α β
σ4 σ3

)

(
p −p
k −k

)

− Tσ1σ2

αβ Tαβσ4σ3

Dµ(p; k)

π2cN2
f

[
µg2k,k

VF,k(µ+ 2vkc|k|µ)
+

µg2p,p
VF,p(µ+ 2vpc|p|µ)

]
.

(D.11)

For λ( 4 4
1 1 ) and λ( 1 1

4 4 ), there is no source term to the leading order in v.

D.1.2 Solution of the beta functional for the 2kF pairing

In the space of the rescaled momentum, the set of four beta functionals in Eqs. (D.8)- (D.11) can be
written as

[
∂

∂ℓ
+K

∂

∂K
+ P

∂

∂P

]
λ̂

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
P −P
K −K

) = − (1 + η̂K + η̂P ) λ̂

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(
P −P
K −K

)

− B̂K
2Nf

λ̂

(
N1 N2

N̄4 N̄3

)
;
(σ1 σ2

α β

)

(
P −P
K −K

) Tαβσ4σ3
− B̂P

2Nf
Tσ1σ2

αβ λ̂

(
N̄1 N̄2

N4 N3

)
;
(
α β
σ4 σ3

)

(
P −P
K −K

) +
ŜK,P
N2
f

Tσ1σ2

αβ Tαβσ4σ3
δN1

N4
δN2

N3
, (D.12)

where λ̂

(
N1 N2

N4 N3

)
;
(
α β
γ δ

)

(
P −P
K −K

) = 1√
VF,pVF,k

λ

(
N1 N2

N4 N3

)
;
(
α β
γ δ

)

1PH
(
p −p
k −k

) with K = keℓ, P = peℓ for
(
N1 N2

N4 N3

)
in

HPP
1111 =

{
( 1 1
1 1 ), ( 1 1

4 4 ), ( 4 4
1 1 ), ( 4 4

4 4 )
}
. (D.13)

B̂K and ŜK,P are defined in Eq. (2.144) and Eq. (2.148). We combine the four coupling functions
into a matrix as

λ̂
(σ1 σ2
σ4 σ3

)
1PP

(
P −P
K −K

) =



λ̂

( 1 1
1 1 );(σ1 σ2

σ4 σ3
)(

P −P
K −K

) λ̂
( 1 1
4 4 );(σ1 σ2

σ4 σ3
)(

P −P
K −K

)

λ̂
( 4 4
1 1 );(σ1 σ2

σ4 σ3
)(

P −P
K −K

) λ̂
( 4 4
4 4 );(σ1 σ2

σ4 σ3
)(

P −P
K −K

)


 (D.14)

to write the set of beta functionals in a compact form as

[
∂

∂ℓ
+K

∂

∂K
+ P

∂

∂P

]
λ̂

(σ1 σ2
σ4 σ3

)
1PP

(
P −P
K −K

) = − (1 + η̂K + η̂P ) λ̂
(σ1 σ2
σ4 σ3

)
1PP

(
P −P
K −K

)

− B̂K
2Nf

λ̂

(σ1 σ2

α β

)

1PP
(
P −P
K −K

)Tαβσ4σ3


0 1

1 0


− B̂P

2Nf
Tσ1σ2

αβ


0 1

1 0


 λ̂

(
α β
σ4 σ3

)

1PP
(
P −P
K −K

) +
ŜK,P
N2
f

Tσ1σ2

αβ Tαβσ4σ3


1 0

0 1


 .

(D.15)
The matrix coupling function can be decomposed into the spin-symmetric s-wave (+, s), spin-symmetric
d-wave (+, d), spin-anti-symmetric s-wave (−, s) and spin-anti-symmetric d-wave (−, d) channels as

λ̂
(σ1 σ2
σ4 σ3

)
1PP

(
P −P
K −K

) = λ̂
(+)(s)

1PP
(
P −P
K −K

)Sσ1σ2
σ4σ3

Ps+λ̂
(+)(d)

1PP
(
P −P
K −K

)Sσ1σ2
σ4σ3

Pd+λ̂
(−)(s)

1PP
(
P −P
K −K

)Aσ1σ2
σ4σ3

Ps+λ̂
(−)(d)

1PP
(
P −P
K −K

)Aσ1σ2
σ4σ3

Pd.

(D.16)
where S and A defined in Eq. (2.172) represent the operators that project spin wavefunctions to
the symmetric and anti-symmetric channels, respectively. Ps and Pd defined in Eq. (2.156) are the
operators that project hot spot wavefunctions to the s and d wave channels, respectively. In each
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channel, the beta functional becomes
[
∂

∂ℓ
+K

∂

∂K
+ P

∂

∂P

]
λ̂
(±)( sd )
1PP

(
P −P
K −K

)

= −
(

1 + η̂K + η̂P +
1( sd )Y

(±)
PP

2Nf

[
B̂K + B̂P

])
λ̂
(±)( sd )
1PP

(
P −P
K −K

) + Y
(±)2

PP

ŜK,P
N2
f

.

(D.17)

At the quasi-fixed points, the coupling function is given by

λ̂
∗(±)( sd )
1PP

(
P −P
K −K

)

∣∣∣∣∣
w≪1

=
ĝ2P,K Y

(±)
PP

2

π2cN2
f

√
V̂F,K V̂F,P


 ĝ

2
K,K

V̂F,K

Λ log
(
c|v̂KK+v̂PP |Λ+c|K−P |Λ+Λ

2v̂Kc|K|Λ+Λ

)

c(|v̂KK + v̂PP |Λ + |K − P |Λ − 2v̂K |K|Λ)

+
ĝ2P,P

V̂F,P

Λ log
(
c|v̂KK+v̂PP |Λ+c|K−P |Λ+Λ

2v̂P c|P |Λ+Λ

)

c(|v̂KK + v̂PP |Λ + |K − P |Λ − 2v̂P |P |Λ)


 .

(D.18)

D.2 Group 2

In group 2, the space of IR singularity consists of two intersecting manifolds in the presence of the PH
symmetry. The first manifold is the PP-plane in which the center of mass momentum of two incoming
particles is zero. The second manifold is the PH-plane in which a particle-hole pair with momentum
2kF is formed across anti-podal patches. (when the momentum is measured with respect to each hot
spot the particle-hole pair has zero center of mass momentum). This space can be divided into three
disjoint manifolds. The first is the PP-plane that excludes the intersecting line with the PH-plane.
The second is the PH-plane that excludes the intersecting line with the PP-plane. The third is the

intersecting line. Written as a function of three general external momenta as λ
( 1 5
1 5 )(
p+q/2 −p+q/2
k+q/2 −k+q/2

), the

space of IR singularity can be divided into four disjoint sub-spaces as (see Fig. D.1)

1) q = 0, p+ k ̸= 0, 2) q ̸= 0, p+ k = 0, 3) q = 0, p+ k = 0. (D.19)

The beta functional in the PP-plane is computed in Sec. 2.5.2. In this section, we present the beta
functionals for the couplings in the PH-plane and the intersecting line.

D.2.1 Beta functional for the 2kF PH interaction

Within the PH plane, the coupling function describes the processes in which a pair of electron and hole
fluctuate between different antipodal patches (1, 5 and 4, 8 patches) and different relative momenta.
The derivation of the beta functional is parallel to the ones for the PP channel. The beta functional

for λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

) in the PH plane but away from the intersecting line is obtained to be

β
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

+

∫
dρ(q)

{
Dµ(q; k)

2πNf
λ

( 1 8
4 5 );

(σ1 α
β σ3

)

( p qq p )
Tβσ2
σ4α +

Dµ(p; q)

2πNf
λ

( 4 5
1 8 );

( α σ2

σ4 β

)

(
q k
k q

) Tσ1β
ασ3

− 1

πN2
f

Tβσ2
σ4αT

σ1α
βσ3

Dµ(p; q)Dµ(q; k)

− 1

4π

(
λ

( 1 5
1 5 );

(σ1 α
β σ3

)

( p qq p )
λ

( 1 5
1 5 );

(
β σ2
σ4 α

)

(
q k
k q

) + λ
( 1 8
4 5 );

(σ1 α
β σ3

)

( p qq p )
λ

( 4 5
1 8 );

(
β σ2
σ4 α

)

(
q k
k q

)

)}
.

(D.20)
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p

kq

q = 0 (I)

q = 0; p+ k = 0 (III)

p = k = q = 0 (IV)

p+ k = 0 (II)

Figure D.1: The space of IR singularity for λ
( 1 5
1 5 )(
p+q/2 −p+q/2
k+q/2 −k+q/2

). Plane I (plane II) represents the set

of external momenta at which the vertex correction is singular in the PP (PH) channel. On line III,
where the two planes intersect, the vertex corrections from both channels contribute. As one deviates
from the intersecting line but staying within plane I (II), the quantum corrections from plane II (I)
dynamically turn off as the deviation of the momentum from the intersecting line is greater than µ/v.
Since the volume of the intersecting ‘line’ vanishes in the small µ limit, one can ignore the contribution
of the couplings in the intersecting line to the flow of the couplings within plane I or II far away from
the intersecting line.

Here λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

) describes the interaction in which an electron with momentum k in hot spot 1

and a hole with −k in hot spot 5 are scattered to electron with p in hot spot 1 and hole with −p in
hot spot 5. Since the momentum is measured with respect to the hot spots, the pair of electron and
hole in this channel actually carry a non-zero momentum, 2k⃗F . The physical origin of each term in
Eq. (D.20) can be understood in the same way as in Eq. (2.115). The beta functionals for the other
couplings that form a closed set of flow equations in the PH-plane are given by

β
(λ);( 4 5

1 8 );(σ1 σ2
σ4 σ3

)(
p k
k p

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ

( 4 5
1 8 );(σ1 σ2

σ4 σ3
)(

p k
k p

)

+

∫
dρ(q)

{
1

2πNf
Dµ(q; k)λ

( 4 8
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(σ1 α
β σ3

)

( p qq p )
Tβσ2
σ4α +

1

2πNf
Dµ(p; q)λ
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1 5 );

( α σ2

σ4 β

)

(
q k
k q

) Tσ1β
ασ3

− 1

4π

(
λ

( 4 5
1 8 );

(σ1 α
β σ3

)

( p qq p )
λ

( 1 5
1 5 );

(
β σ2
σ4 α

)

(
q k
k q

) + λ
( 4 8
4 8 );

(σ1 α
β σ3

)

( p qq p )
λ

( 4 5
1 8 );

(
β σ2
σ4 α

)

(
q k
k q

)

)}
,

(D.21)
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β
(λ);( 1 8

4 5 );(σ1 σ2
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+
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β σ3

)

( p qq p )
λ
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β
(λ);( 4 8
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+
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) Tσ1β
ασ3

− 1

πN2
f

Tβσ2
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λ
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(σ1 α
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λ
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4 5 );

(
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)

(
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k q
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( 4 8
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(
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(
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D.2.2 Beta functional in the intersection between the PP and PH planes

Within the PP-plane with k + p ̸= 0, an operator mixes with other operators only within the plane.
Similarly, an operator at generic momenta within the PH-plane only mixes with other operators within
the PH-plane. However, an operator at the intersection of the two planes can mix with operators in
both planes. Within the one-dimensional manifold in which the PP and PH planes meet, the coupling

function is parameterized by one variable as λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(−k k

k −k
) . While the beta functional takes a more

complicated form in the line, the underlying physics of each term is not different from the ones that
determine the beta functionals in each of the PP and PH planes. The beta functional for the couplings
at a generic momentum point (k ̸= 0) on this line is

β
(λ);

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(−k k
k −k

) =
(

1 + 3(z − 1) + η
(ψ,N1)
−k + η

(ψ,N2)
k + η

(ψ,N3)
−k + η

(ψ,N4)
k

)
λ

(
N1 N2

N4 N3

)
;(σ1 σ2
σ4 σ3

)
(−k k
k −k

)

+

∫
dρ(q)



−Dµ(−k; q)

2πNf


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αβ λ

(
N̄1 N̄2

N4 N3

)
;
(
α β
σ4 σ3
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(
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)
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(
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k q
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
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+
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(
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Here

(
N1 N2

N4 N3

)
represents any of the elements in the set of

h
(1)
1515 =

{
( 1 5
1 5 ), ( 1 5

4 8 ), ( 4 8
1 5 ), ( 4 8

4 8 ), ( 1 8
4 5 ), ( 4 5

1 8 )
}
. (D.25)

M and M ′ are summed over hot spot indices for which the four-fermion couplings are in h
(1)
1515. If

k = 0, the four-fermion operator mixes with an even larger set of operators. However, we don’t
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need to introduce counter terms for the operators right at the hot spots because the IR singularity is
localized within the measure zero set in the low-energy limit.

How does Eq. (D.24) change to Eqs. (2.115)- (2.118) or Eqs. (D.20)- (D.23) as one moves away
from the intersecting line staying either within the PP or PH plane? To answer this question, let us

examine how the contribution of the PP diagram to λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

) decays as p+ k becomes non-zero

away from the intersecting line. Away from the intersecting line but within the PH plane, the total
momentum of the electron pair is non-zero, which makes it impossible to put both internal electrons
on the Fermi surface within the loop: if a pair of electrons with momenta k and p on the Fermi surface
near hot spots 1 and 5 are scattered to hot spots 4 and 8, the minimum energy that the virtual electron
pair must carry is order of vpp + vkk. This cuts off the IR divergence in the PP diagram in the low

energy limit. Therefore, the contribution of the PP diagram to λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

) becomes negligible for

µ ≪ |vpp + vkk|. This is confirmed through an explicit calculation in Appendix B. Similarly, the

contribution of the PH diagram to λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) becomes negligible for µ≪ |vpp+ vkk|. This implies

that Eq. (D.24) crossovers to Eqs. (2.115)- (2.118) or Eqs. (D.20)- (D.23) as the momentum deviates
more than µ/v away from the intersecting line in each plane.

D.2.3 Decoupling between the PP and PH-planes

The full beta functionals that describe the coupling functions defined in this space are given by Eqs.
(2.115)-(2.118), Eqs. (D.20)-(D.23) and Eq. (D.24). The couplings in the PP plane are coupled with
the couplings in the PH plane through the intersection. However, a simplification arises at low energies.
In the low-energy limit, the phase space of the intersection becomes vanishingly small compared to the
phase space of the PP and PH planes. To see this in more detail, let us consider the beta functional of

λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) for p and k far away from the intersecting line, that is |vkk+vpp| > µ. The q integration

in Eq. (2.115) can be broken into the contribution that depends on the couplings in the intersecting
line and the remaining contribution that does not depend on the couplings in the intersecting line as

β
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)(
p −p
k −k

) =
(

1 + 3(z − 1) + 2η(ψ)p + 2η
(ψ)
k

)
λ
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σ4 σ3
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k −k

)

+

∫

Ck,p

dρ(q) V
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)
p,k,q +

∫

C′
k,p

dρ(q) V
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)
p,k,q ,
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where

V
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+
1

πN2
f
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+
1

4π

(
λ
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(σ1 σ2

β α

)

(
p −p
q −q

) λ
( 1 5
1 5 );

(
β α
σ4 σ3

)

(
q −q
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) + λ
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(σ1 σ2

β α
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(
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(
β α
σ4 σ3

)

(
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and
Ck,p =

{
q
∣∣ |vqq + vkk| > µ & |vqq + vpp| > µ

}
,

C ′
k,p =(Ck,p)

∁.
(D.28)

Ck,p represents the set of q at which all coupling functions in V
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)
p,k,q are away from the

intersection and obey the beta functionals given by Eqs. (2.115)-(2.118). C ′
k,p, being the complement
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of Ck,p, represents the set of q at which at least one coupling function in V
(λ);( 1 5

1 5 );(σ1 σ2
σ4 σ3

)
p,k,q is in

the intersection of the PP and PH planes and satisfy Eq. (D.24). In the small µ limit, the phase
space of C ′

k,p vanishes linearly in µ. Consequently, the contribution of C ′
k,p to the beta functions

of λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) away from the intersection becomes negligible in the small µ limit. Similarly, the

contributions of the intersection to the beta functional of the couplings in the PH plane away from the
intersection are negligible in the low-energy limit. Therefore, one can ignore the intersection for the
purpose of understanding the RG flow of the coupling functions in the PP and PH planes away from
the intersecting line. As a result, the couplings in the PP plane and the couplings in the PH plane
become effectively decoupled in the low-energy limit, and we can study Eqs. (2.115)-(2.118) and Eqs.
(D.20)-(D.23), separately. The solution of the beta function in the PP-plane is discussed in Sec. 2.6.3.
Here, we present the solution of the beta function for the couplings defined in the PH-plane.

D.2.4 Solution of the beta functional for the 2kF PH interaction

The closed set of beta functionals for λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

) , λ
( 1 8
4 5 );(σ1 σ2

σ4 σ3
)(

p k
k p

) , λ
( 4 5
1 8 );(σ1 σ2

σ4 σ3
)(

p k
k p

) , λ
( 4 8
4 8 );(σ1 σ2

σ4 σ3
)(

p k
k p

) that

describe four-fermion couplings in the PH channel with momentum 2k⃗F are given by Eqs. (D.20)-
(D.23). With

λ
(σ1 σ2
σ4 σ3

)

2PH
(
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
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the set of beta functionals can be combined into
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To make the analysis parallel with that of the PH channel, we define

λ̃

(
α β
γ δ

)

2PH( P K
K P )

=
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with P = peℓ, K = keℓ to rewrite the beta functional as

∂
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σ4 σ3
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K P )
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1 +K
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− 1
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K Q

) +
2Tσ1σ2

σ4σ3

Nf
R(K,P )(Ps − Pd),
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where R(K,P ) and η̂K , are defined in Eqs. (2.181). The coupling function is decomposed into four
different channels as

λ̃
(σ1 σ2
σ4 σ3

)
2PH{Ki} = λ̃

(t)(s)
2PH{Ki}I

σ1σ2
σ4σ3

Ps + λ̃
(t)(d)
2PH{Ki}I
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Pd + λ̃
(a)(s)
2PH{Ki}χ

σ1σ2
σ4σ3

Ps + λ̃
(a)(d)
2PH{Ki}χ

σ1σ2
σ4σ3

Pd, (D.33)
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where Iσ1σ2
σ4σ3

and χσ1σ2
σ4σ3

are defined in Eq. (2.153). Each of the four channels are SU(Nc)-trivial s-
wave, SU(Nc)-trivial d-wave, SU(Nc)-adjoint s-wave and SU(Nc)-adjoint d-wave channels. The beta
functional in each channel becomes

d

dℓ
λ̃

( ta ),( sd )
2PH( P K

K P )
= −

(
1 +K

∂

∂K
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∂
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− 1
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(
Q K
K Q

) +
2

Nf
Y

( ta )
PH 1( sd )R(P,K),
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where 1( sd ) is defined in Eq. (2.157).
Eq. (D.34) has the same form as Eq. (2.180). The only difference is the change in the spin

wavefunction and the associated eigenvalue determined from the representations of two fermions in the
PP and PH channels. The spin symmetric and anti-symmetric representations in the PP channel with

eigenvalues Y
(±)
PP in the last term of Eq. (2.180) are replaced with the trivial and adjoint representations

in the PH channel with eigenvalues Y
( ta )
PH in Eq. (2.154) 2. All discussions on λ̃2PP straightforwardly

generalize to λ̃2PH . In the PH channel, the spin fluctuations gives rise to an attractive interaction in
the SU(Nc)-adjoint s-wave channel and the SU(Nc)-trivial d-wave channel with the SU(Nc)-trivial d-
wave channel being the stronger. The other two channels, SU(Nc)-adjoint d-wave and SU(Nc)-trivial

s-wave, are repulsive. Therefore, λ̃
(t)(d)
2PH and λ̃

(a)(s)
2PH become non-Hermitian (complex) at quasi-fixed

point.

2For Nc = 2, even that difference goes away because the fundamental and anti-fundamental representations are
identical for SU(2).
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Appendix E

Spinors in curved spacetime

In this appendix, we review the background material for the theory of spinor in curved spacetimes. For
concreteness, we consider four-dimensional spacetimes, but the discussion can be generalized to any
dimension (for more details, see Ref. [27] for example). Suppose manifold M is endowed with metric
gµν . One can define a set of orthonormal basis that spans the space of one-forms through which the
metric two-form can be written as

gµνdxµ ⊗ dxν = ηabθ̂
a ⊗ θ̂b, (E.1)

where θ̂a = eaµdxµ is the orthonormal basis, eaµ is the vielbein and ηab = diag(−1,+1,+1,+1)1. One

can also introduce a set of vectors that is dual to {θ̂a} through the relation ⟨θ̂a, êb⟩ = δab, where

êa = e µa ∂µ. The bases {êa} and {θ̂a} are called the non-coordinate bases. There is clearly the freedom
to rotate the orthonormal basis through the local Lorentz transformations. A relativistic fermion forms
a spinor representation under this local Lorentz transformation. From the requirement that the action
should be invariant under the local Lorentz transformation, the action for a Dirac spinor with mass m
coupled to a gauge field Aµ(x) is written as

Γψ =

∫

M

√
|g|d4x ψ̄(x)γce µc

(
∂µ + Aµ(x) +

i

2
ωµ,abΣ

ab +m

)
ψ(x). (E.2)

Here,
√
|g| = |e| with e = det eaµ. ψ̄ = ψ†γ0, where the gamma matrices γa satisfy the Clifford algebra

{γa, γb} = 2ηab that furnishes the spinor representation of local Lorentz transformation. Σab =
i
4

[
γa, γb

]
is the generator of the local Lorentz transformations. The matrix-valued one form with

elements ωµ,ab = (ωab)µ is the spin connection that acts as the gauge connection for the local Lorentz
transformation. The connection one-form and the vielbein completely determines the torsion and
curvature of the spacetime through the Cartan structure equations,

dθ̂a + ωab ∧ θ̂b =T a, (E.3a)

dωab + ωac ∧ ωcb =Rab, (E.3b)

where d is the exterior derivative, ∧ is the wedge product, T a is the torsion two-form and Rab is the
curvature two-form. T a and Rab are gauge covariant measures that characterize the geometry of the
manifold M . The torsion measures the screw or twist on a frame when parallel transported along two
directions in the manifold M . The curvature is a measure of the holonomy (gauge flux) acquired by a
vector transported parallely around a loop.

1For Euclidean signature, the Minkowskian metric ηab is replaced with δab = diag(+1,+1,+1,+1). In the following
two paragraphs, we use the Einstein convention for the Greek and Latin indices.
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Appendix F

Schwarzschild Geodesics

In this appendix, we briefly review the Schwarzschild spacetime that describes a black hole and the
motion of a free falling object (for a more complete review, see [215] for example). The Schwarzschild
metric is an exact solution to Einstein field equations, which describes the spacetime outside a static,
neutral and spherically symmetric compact object. In the spherical coordinate, the line element for
the Schwarzschild metric can be written as

ds2 =
(

1 − rs
r

)
c2dt2 − dr2

1 − rs
r

− r2dθ2 − r2 sin2 θdϕ2, (F.1)

where M is the mass and c is the sped of light. t is the time coordinate that describes the proper time
of an asymptotic observer who is at r = ∞, where r is the radial coordinate.

rs =
2GM

c2
(F.2)

is the Schwarzschild radius, where G is the gravitational constant. When the radius of the compact
object is smaller than rs, it describes a black hole with an event horizon at r = rs inside of which the
future light cone always points toward r = 0, and thus no escape. As the free falling object approaches
the horizon from the outside, the lapse of its proper time is infinitely slowed down as compared to that
of the proper time of an asymptotic observer. This gives rise to a critical slowdown of the motion of
the free falling object as observed by the asymptotic observer. For an object that falls radially to the
black hole at a fixed angle (say θ = π/2 and ϕ = 0), the geodesic equation of motion gives

t ∼ rs
c

log




∣∣∣
√

r
rs

+ 1
∣∣∣

√
r
rs

− 1


 (F.3)

near the horizon. As r approaches rs, t diverges logarithmically. This implies that the asymptotic
observer will never see the passing of the free falling object across the horizon.
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Appendix G

The pairing term for Bogoliubov
quasiparticles

In this appendix we derive Eq. (3.23). We begin by writing the pairing interaction between electrons
in segments 1 and 5 (See Fig. 3.1),

S
( 1 5
1 5 )

4f =
1

4µ

∑

{σi}

∫
dωpdωkdωq d2p d2k d2q

(2π)9
ψ∗
1,σ1

(
ωp +

ωq
2
, p⃗+

q⃗

2

)
ψ∗
5,σ2

(
−ωp +

ωq
2
,−p⃗+

q⃗

2

)

× λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p+ q
2 −p+ q

2

k+ q
2 −k+ q

2

)ψ5,σ3

(
−ωk +

ωq
2
,−k⃗ +

q⃗

2

)
ψ1,σ4

(
ωk +

ωq
2
, k⃗ +

q⃗

2

)
.

(G.1)
Here, λ is the four fermion coupling function generated from the critical spin fluctuations. The specific
momentum-dependence of the coupling function is not important for us. The functional renormaliza-
tion group analysis shows that the strongest attractive interaction is generated in the spin-singlet and
d-wave channel, and the significant pairing interaction is generated not only for the electrons at the
hot spots but also for electrons that are far away from the hot spots [30]. We are using the frequency
defined in Eq. (3.7). Performing a Hubbard-Stratonovich transformation on the quartic interaction
yields

e−S
( 1 5
1 5 )

4f =

∫
D∆D∆∗ exp

{
−
∑

{σi}

∫ 
 ∏

l=p,q,k,q′

dωl d2l

(2π)3



[

∆̃† σ1σ2

(ωp,p⃗;ωq,q⃗)

[
−λ̄
]σ1σ2;σ3σ4

(ωp,p⃗,ωq,q⃗;ωk ,⃗k,ωq′ ,q⃗′)
∆̃σ3σ4

(ωk ,⃗k;ωq′ ,q⃗′)

− ψ∗
1,σ1

(
ωp +

ωq
2
, p⃗+

q⃗

2

)
ψ∗
5,σ2

(
−ωp +

ωq
2
,−p⃗+

q⃗

2

)[
−λ̄
]σ1σ2;σ3σ4

(ωp,p⃗,ωq,q⃗;ωk ,⃗k,ωq′ ,q⃗′)
∆̃σ3σ4

(ωk ,⃗k;ωq′ ,q⃗′)

− ∆̃† σ1σ2

(ωp,p⃗;ωq,q⃗)

[
−λ̄
]σ1σ2;σ3σ4

(ωp,p⃗,ωq,q⃗;ωk ,⃗k,ωq′ ,q⃗′)
ψ5,σ3

(
−ωk +

ωq′

2
,−k⃗ +

q⃗′

2

)
ψ1,σ4

(
ωk +

ωq′

2
, k⃗ +

q⃗′

2

)]}
,

(G.2)

where we use the matrix notation
[
λ̄
]σ1σ2;σ3σ4

(ωp,p⃗,ωq,q⃗;ωk ,⃗k,ωq′ ,q⃗′)
=

(2π)3δ(ωp−ωq′ )δ
(2)(q⃗−q⃗′)

4µ λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p+ q
2 −p+ q

2

k+ q′
2 −k+ q′

2

)

1. Writing the static component of the order parameter with zero center of mass momentum as

1The matrix elements of λ̄ can be written as λ̄mn, where m ≡ (σ1σ2;ωp, p⃗, ωq , q⃗) and n ≡ (σ3σ4;ωk, k⃗, ω
′
q , q⃗

′).
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∆̃σ1σ2

(ωp,p⃗;ωq,q⃗)
= (2π)3δ(ωq)δ

(2)(q⃗)∆̃σ1σ2

(ωp,p⃗)
and making a further transformation through

∆σ1σ2

(ωp,p⃗)
=
∑

σ3σ4

∫
dωkd2k

(2π)3

λ
( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

)

4µ
∆̃σ3σ4

(ωk ,⃗k)
, (G.3)

we obtain the pairing term for the Bogoliubov quasiparticles,

e−S
( 1 5
1 5 )

4f =

∫
D∆D∆∗ exp

{
−
∑

{σi}

∫
dωp d2pdωk d2k

(2π)6
∆† σ1σ2

(ωp,p⃗) [G−1]
(σ1 σ2
σ4 σ3

)(
p −p
k −k

)∆σ3σ4

(ωk ,⃗k)

−
∑

σ1,σ2

∫
dωp d2p

(2π)3

[
ψ∗
1,σ1

(ωp, p⃗) ∆σ1σ2

(ωp,p⃗)
ψ∗
5,σ2

(−ωp,−p⃗) + ψ5,σ1
(−ωp,−p⃗) ∆† σ1σ2

(ωp,p⃗) ψ1,σ2
(ωp, p⃗)

]}
,

(G.4)

where [G−1]
(σ1 σ2
σ4 σ3

)(
p −p
k −k

) = 4µ(2π)3δ(0)δ(2)(⃗0)
[
−λ−1

]( 1 5
1 5 );(σ1 σ2

σ4 σ3
)(

p −p
k −k

) . Once the momentum-dependent pair-

ing amplitude is determined from the saddle-point equation, it together with the vielbein sets the
background spacetime on which the Bogoliubov quasiparticles propagate.



Appendix H

Field-theoretic functional RG
scheme for the Kondo problem

In this appendix, we describe the functional renormalization group (RG) scheme, closely following
Ref. [30]. Let Γ (2m,2n,l) be the vertex function for 2m itinerant electrons, 2n pseudo fermions and
l bosons. The normalization of the pseudo-fermion field, and the Kondo coupling function and the
impurity-boson coupling are defined through the vertex function so that (see Fig. H.1)

−i ∂
∂p0

Γ (0,2,0)(p0)

∣∣∣∣
p0=µ

=1 + F0, (H.1)

Γ (0,2,1)(p0, q0)
∣∣∣
p0=q0/2=µ

=
1

2
(gf + F1) , (H.2)

Γ (2,2,0);(N,N ′)(k,k′, p0)
∣∣∣
p0/2 = k′0 = −k0 = µ

eN [⃗k; v
(N)
k ] = eN ′ [k⃗′; v(N

′)
k′ ] = 0

=
1

4µ

[
J
(N,N ′)
kN ,k′N′

+ F
(N,N ′)
3;kN ,k′N′

]
. (H.3)

Here, F0,F1 are scheme-dependent terms that are regular in the µ→ 0 limit. For the Kondo coupling,

which is a function of momentum along the Fermi surface, not only F
(N,N ′)
3;kN ,k′N′

is required to be regular

in µ at each external momentum but also its integral done along the Fermi surface with the measure
dk
µ should be regular [30]. This stricter condition is necessary to capture an IR divergence that may

arise for a momentum-integrated dimensionless coupling such as the one in the s-wave Kondo coupling
∼
∫
dkN
µ JkN ,k′N′ while JkN ,k′N′ at each momentum is regular.

To impose these RG conditions, a local counter term action is added to as Eq. (4.2),

SC.T.
1 =

∫
dp0
2π

Af,1ip0f
†
α(p0)fα(p0)

+
1

µ

∑

N,N ′

∫
dkdq

dp0
2π

A
(N,N ′)
f,2 (kN , qN ′)J

(N,N ′)
kN ,qN′ψ

†
N,σ(k)

τ⃗σ,σ′

2
ψN ′,σ′(q)f†α(p0 + q0)

τ⃗α,β
2
fβ(p0 + k0)

+ gf
∑

α,β=↑,↓

∫
dq

dp0
2π

Af,3f
†
α(p0 + q0)

Φα,β(q)

2
fβ(p0),

(H.4)

where Φα,β ≡ ϕ⃗ · τ⃗α,β . For the RG conditions of the coupling functions that appear in Eq. (4.1) and
their counter terms, we refer the reader to Ref. [30]. Adding Eq. (H.4) to Eq. (4.2), we obtain the
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p0 p0Γ (0,2,0)Γ (0,2,0)

(a)

p0 + q0

p0

q Γ (0,2,1)Γ (0,2,1)

(b)

p0 + k′0 k

k′p0 + k0

Γ (2,2,0)Γ (2,2,0)

(c)

Figure H.1: (a) The inverse propagator of the pseudo-fermion. (b) The boson-impurity vertex. (c) The
electron-impurity vertex. Here, the double wiggly lines, the dashed lines, and the solid lines represent
the boson propagators, the pseudo-fermion propagators and the electron propagators, respectively.

renormalized action for the impurity,

SRen =

∫
dpB0
2π

ipB0 f
B†
α (pB0 )fBα (pB0 )

+
∑

N,N ′

∫
dkBdqB dpB0

2π
J
B(N,N ′)
kBN ,q

B
N

ψB†
N,σ(kB)

τ⃗σ,σ′

2
ψB
N ′,σ′(qB) · fB†α (pB0 + qB0 )

τ⃗α,β
2
fBβ (pB0 + kB0 )

+
∑

α,β=↑,↓

∫
dqB dpB0

2π
gBf f

B†
α (pB0 + qB0 )

ΦB
α,β(qB)

2
fBβ (pB0 ).

(H.5)

Here,

kB0 = Zτk0, k⃗B = k⃗,

ψB
N,σ(kB) =

√
Z(ψ,N)(kN )ψN,σ(k), ΦB

σσ′(qB) =
√
Z(Φ)Φσσ′(q), fBα (pB0 ) =

√
Z(f)fα(p0),

J
B(N,N ′)
kBN ,q

B
N′

=
Z

(N,N ′)
f,2 (kN , qN ′)

Z3
τZ

(f)
√
Z(ψ,N)(kN )Z(ψ,N ′)(qN ′)

µ−1J
(N,N ′)
kN ,qN′ , gBf =

Zf,3

Z2
τZ

(f)
√
Z(Φ)

gf

(H.6)

are bare frequency, fields and couplings expressed in terms of the renormalized ones. Zτ is the dynam-
ical critical exponent.

√
Z(ψ,N)(kN ) and

√
Z(Φ) are renormalization of the fermion and boson fields,

respectively[30]. Z(f) =
Zf,1

Z2
τ

is the field renormalization of the pseudo-fermion. The renormalization

factors are given by Zf,1 = 1 + Af,1, Z
(N,N ′)
f,2 (kN , qN ′) = 1 + A

(N,N ′)
f,2 (kN , qN ′) and Zf,3 = 1 + Af,3.

The beta functions capture how the renormalized couplings, which represent the vertex functions at
energy scale µ, runs as µ is lowered for fixed bare couplings,

β(gf ) =gf

(
2(z − 1) + 2η(f) + η(Φ) − d logZf,3

d logµ

)
, (H.7)

β
(J);(N,N ′)
k,k′ =J

(N,N ′)
k,k′


1 + 3(z − 1) + 2η(f) + η

(ψ,N)
k + η

(ψ,N ′)
k′ −

d logZ
(N,N ′)
f,2 (k, k′)

d logµ


 , (H.8)

where

z = 1 +
d logZτ
d logµ

, η
(ψ,N)
k =

1

2

d logZ(ψ,N)(k)

d logµ
, η(Φ) =

1

2

d logZ(Φ)

d logµ
, η(f) =

1

2

d logZ(f)

d logµ
.

(H.9)
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In the small vk limit, the dynamical critical exponent and the anomalous dimensions are given by [182,
30]

z = 1 +
3

4π2
w, η(Φ) =

1

4π
w log

1

w
, η

(ψ,N)
kN

=
3(g

(N)
kN ,kN

)2

4π2cV
(N)
F,kN

µ

µ+ 2cv
(N)
kN

|kN |
− (z − 1), (H.10)

where w ≡ v0/c(v0) with c(v0) =

√
v0
16 log

(
1
v0

)
.
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Appendix I

Quantum corrections for the Kondo
problem

In this appendix, we present the one-loop quantum corrections that renormalize the pseudo-fermion
self-energy, the boson-impurity coupling and the electron-impurity (Kondo) coupling. The diagrams
that are relevant to the boson-impurity coupling and the Kondo coupling are shown in Fig. I.1. For
the quantum corrections for the impurity-free theory, we refer the readers to Refs. [182, 30].

I.1 Pseudo-fermion self-energy

The one-loop self-energy in Fig. I.1a gives

Σ(f);1L(p0) = −
3g2f
4

∫
dqD(q)Gf (p0 + q0) = −

3g2f
4

∫
dq0
2π

D̄(q0)Gf (p0 + q0), (I.1)

where

D̄(q0) =

∫
dqxdqy
(2π)2

D(q)

=
1

π2c2

{
2cΛb log

(
1 +

cΛb
cΛb + |q0|

)
+ |q0|

[
log

(
1 +

cΛb
cΛb + |q0|

)
− log

(
1 +

cΛb
|q0|

)]} (I.2)

is the local boson propagator at the impurity site. Here, Λb is the momentum cutoff below which
the self-energy of the boson generated from the particle-hole excitation Π(q) = [|q0| + c(|qx| + |qy|)]−1

becomes dominant over the bare boson propagator dropped in this calculation. The logarithmic UV
divergence log Λb/q0 in the coefficient of |q0| arises because the bosons with large momenta up to Λb
have a significant spectral weight at low energies[182]. While the precise value of Λb is not important,
it is crucial that Λb is a fixed UV momentum cutoff. From now on, we set Λb = Λ/c, where Λ is an
energy cutoff. The frequency integration q0 results in

Σ(f);1L(p0) ≈ ip0
3g2f log2

(
Λ

|p0|

)

8π3c2
− ip0

3g2f log(2) log
(

Λ
|p0|

)

4π3c2
+ ip0

3g2f log
(

Λ
|p0|

)

4π3c2
(I.3)

to the leading order in small p0. With the renormalization conditions (H.1), the counter term in the
small µ limit is chosen to be

A1L
f,1 =

3g2f log(2) log
(

Λ
µ

)

4π3c2
−

3g2f log2
(

Λ
µ

)

8π3c2
. (I.4)
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q
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(b)

p0 + k0, β
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p0 + k′0, α
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q
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(c)

p0 + k0, β
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p0 + k′0, α

k′, N ′, σ′
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k, N, σ

(d)
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p0 + k0 + q0

p0 + k′0 + q0

p0 + k′0, α

k′, N ′, σ′

k, N, σ

(e)

Figure I.1: The one-loop diagrams that renormalize the pseudo-fermion, the boson-impurity coupling
and the Kondo coupling. (a) The pseudo-fermion self energy. (b) The boson-impurity vertex correction.
(c-e) The vertex correction for the Kondo coupling. The boson propagator is non-perturbatively dressed
by particle-hole excitations. Here, the double wiggly lines, the dashed lines, and the solid lines represent
the boson propagators, the pseudo-fermion propagators and the electron propagators, respectively (See
Fig. H.1). The coiled line represents the Kondo interaction.

I.2 Boson-impurity vertex correction

The one-loop boson-impurity vertex correction in Fig. I.1b reads

Γ1L(p0, q0) = −
g3f
8

∫
dkD(k)Gf (p0+k0)Gf (p0+q0+k0) = −

g3f
8

∫
dk0
2π

D̄(k0)Gf (p0+k0)Gf (p0+q0+k0).

(I.5)
Integrating k0 results in the quantum correction at external frequency µ,

Γ1L(p0, q0)
∣∣
p0=q0/2=µ

= −
g3f log2

(
cΛb

µ

)

16π3c2
+
g3f (log(108) − 2) log

(
cΛb

µ

)

16π3c2
(I.6)

upto terms that are regular in µ. The corresponding counter term is

A1L
f,3 =

g2f log2
(
cΛb

µ

)

8π3c2
−
g2f (log(108) − 2) log

(
cΛb

µ

)

8π3c2
. (I.7)

I.3 Kondo coupling vertex corrections

The diagrams in Figs. I.1c and I.1d, originally computed by Kondo, give

Γ
(N,N ′);

(α σ
β σ′

)
;(1L)

FL(PP );(kN ,k′N′ ,p0)
= (3δσσ′δαβ − 2τ⃗σσ′ · τ⃗αβ)Γ

(N,N ′);(1L)
FL(PP );(kN ,k′N′ ,p0)

, (I.8)

Γ
(N,N ′);

(α σ
β σ′

)
;(1L)

FL(PH);(kN ,k′N′ ,p0)
= (3δσσ′δαβ + 2τ⃗σσ′ · τ⃗αβ)Γ

(N,N ′);(1L)
FL(PH);(kN ,k′N′ ,p0)

, (I.9)
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where

Γ
(N,N ′);(1L)
FL(PP );(kN ,k′N′ ,p0)

= −
∑

M

∫
dq
J
(N,M)
kN ,qM

J
(M,N ′)
qM ,k′

N′

16µ2
GM (q)Gf (p0 + k0 + k′0 − q0), (I.10)

Γ
(N,N ′);(1L)
FL(PH);(kN ,k′N′ ,p0)

= −
∑

M

∫
dq
J
(N,M)
kN ,qM

J
(M,N ′)
qM ,k′

N′

16µ2
GM (q)Gf (p0 + q0). (I.11)

At the external frequencies, k′0 = −k0 = p0/2 = µ set by the RG condition, (I.10) gives rise to

Γ
(N,N ′);(1L)
FL(PP );(kN ,k′N′ )

= −
∑

M

∫
dqM
2π

J
(N,M)
kN ,qM

J
(M,N ′)
qM ,k′

N′

32πµ2V
(M)
F,qM

log

(
Λ

µ

)
. (I.12)

The qM integral is left undone because we do not know the explicit form of the Kondo coupling a priori.

The corresponding counter term becomes Γ
(N,N ′);(1L)
CT ;FL(PP );(kN ,k′N′ )

=
∑
M

∫
dqM
2π

J
(N,M)
kN ,qM

J
(M,N′)
qM,k′

N′

32πµ2V
(M)
F,qM

log
(

Λ
µ

)
.

The evaluation of Eq. (I.11) is similar and the resulting counter term is given by Γ
(N,N ′);(1L)
CT ;FL(PH);(kN ,k′N′ )

= −Γ
(N,N ′);(1L)
CT ;FL(PP );(kN ,k′N′ )

. In the net counter term, the density-density interaction cancels, leading to

Γ
(N,N ′);

(α σ
β σ′

)
;(1L)

CT ;FL;(kN ,kN′ ) = −τ⃗σσ′ · τ⃗αβ
∑

M

∫
dqM
2π

J
(N,M)
kN ,qM

J
(M,N ′)
qM ,k′

N′

8πµ2V
(M)
F,qM

log

(
Λ

µ

)
. (I.13)

It contributes to the IR beta functional as

4µ
∂Γ

(N,N ′);
(α σ
β σ′

)
;(1L)

CT ;FL;(kN ,kN′ )

∂ log µ

∣∣∣∣∣∣∣
JB

= τ⃗σσ′ · τ⃗αβ
∑

M

∫
dqM

2πµV
(M)
F,qM

J
(N,M)
kN ,qM

J
(M,N ′)
qM ,k′

N′

2π
, (I.14)

where the derivative with respect to logµ is done with fixed bare Kondo coupling, which is J
B(N,M)
kN ,qM

=

J
(N,M)
kN ,qM

/µ to the leading order.
In AFQCM, Fig. I.1e gives rise to an additional vertex correction to Kondo coupling. Since the

critical boson renormalizes the Kondo coupling in the exact same way as it renormalizes the boson-
impurity vertex through (I.5), the multiplicative renormalization factor is identical to that of Eq.
(I.7),

Γ
(N,N ′);(1L)
CT ;NFL =

J
(N,N ′)
kN ,k′N′

4µ



g2f log2

(
Λ
µ

)

8π3c2
−
g2f (log(108) − 2) log

(
Λ
µ

)

8π3c2


 . (I.15)

For the beta function, the term that is proportional to log2 Λ/µ dominates and gives

4µ
∂Γ

(N,N ′);
(α σ
β σ′

)
;(1L)

CT ;NFL

∂ log µ
= −τ⃗σσ′ · τ⃗αβ

g2fJ
(N,N ′)
kN ,k′N′

4π3c2
log

(
Λ

µ

)
. (I.16)
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Appendix J

The solution of the beta functions
for gf and J

In this appendix, we compute Kondo scale ℓK as a function of the bare parameters J̃Vi , gf,i and ℓ0
defined at the short-distance cutoff scale ℓi by solving Eqs. (4.4) and (4.5). In the small J̃Vi limit,
the flow of J̃V can be understood in two steps. At short distance scales smaller than a crossover scale
denoted by ℓcross, J̃

V undergoes a suppression due to the anomalous dimension generated from the

boson-impurity coupling. Its flow is described by ∂J̃V (ℓ)
∂ℓ = −ηf (ℓ)J̃V (ℓ). Then, J̃V at the crossover

scale becomes J̃V (ℓcross) ∼ J̃Vi e
−γ with γ =

∫ ℓcross
ℓi

dℓ′ηf (ℓ′). For ℓ ≫ ℓcross, the flow of J̃V can be

approximated by ∂J̃V (ℓ)
∂ℓ =

(
J̃V (ℓ)

)2
as is in Fermi liquids, and J̃V becomes strong at Kondo scale

ℓK ∼ ℓcross + eγ/J̃Vi . This is illustrated in Fig. J.1. Since ℓcross is largely independent of J̃Vi in the
small J̃Vi limit, ℓK is mainly determined by the renormalized Kondo coupling at ℓcross.

In order to compute this suppression factor of the Kondo coupling (e−γ) at ℓcross, we first need to
know how ηf evolves as a function of ℓ by solving the beta function of gf . The flow of gf exhibits
different behaviours depending on the relative magnitude between 1/ℓ0 and g̃f = g2f/c

2 at ℓi. Three
different cases are illustrated in Fig. J.2. Below, we discuss each case one by one.

J.1 g̃f,i ≪ 1/ℓ0

In this case, the boson-impurity coupling is weak, and its flow is mainly controlled by the anomalous
dimension of the boson η(Φ). In particular, g̃f can be dropped in Eq. (4.5) in the beta function of

gf ,
∂gf (ℓ)
∂ℓ = − 1

4πw log
(
1
w

)
gf (ℓ), where w = v/c. The finite w-correction to the anomalous dimension

of the boson makes the boson-impurity coupling irrelevant and flow to zero at large distance scales.

From w(ℓ) determined from Eq. (2.8), one obtains gf (ℓ) = e
−

√
ℓ+ℓ0−

√
ℓ0+ℓi√

3 gf,i, and the effective
boson-impurity coupling g̃f = g2f/c

2 becomes

g̃f (ℓ) =
ℓ0 + ℓ

ℓ0 + ℓi
e
−

2(
√

ℓ+ℓ0−
√

ℓi+ℓ0)√
3 g̃f,i, (J.1)

where subscript i denote the coupling defined at initial length scale ℓi ∼ O(1). As ℓ increases ηf =
(g̃f ℓ/π

3) reaches its maximum g̃f,i
√
ℓ0 around scale

√
ℓ0 before it decays exponentially. Since η(Φ) only

decays as 1/
√
ℓ+ ℓ0, η(Φ) remains dominant over ηf at all scales. Therefore, Eq. (J.1) is valid at all ℓ.

We can now solve Eq. (4.8) using Eq. (J.1). If the Kondo coupling is weak at ℓi, −ηf J̃V dominates

over (J̃V )2 at short distance scales. This allows us to use ∂J̃V (ℓ)
∂ℓ = −ηf (ℓ)J̃V (ℓ) to find J̃V (ℓ) before

167
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Figure J.1: A schematic RG flow of Kondo coupling J̃V in the small J̃Vi limit. At short distances
below a crossover scale ℓcross, J̃

V is suppressed by the anomalous dimension ηf . Beyond the crossover

scale, the anomalous dimension becomes negligible, and J̃V is enhanced as in Fermi liquids. Therefore,
the scale at which J̃V becomes O(1) is given by ℓK ∼ ℓcross + 1

J̃V (ℓcross)
.

(J̃V )2 becomes dominant: J̃V (ℓ) = J̃Vi e
−γ1(ℓ) with

γ1(ℓ) = g̃f,i





[
4
√

3(ℓ0 − 15)(ℓ+ ℓ0)3/2 − 4
√

3(ℓ+ ℓ0)5/2 − 30(ℓ+ ℓ0)2

+18(ℓ0 − 15)(ℓ+ ℓ0) + 18
√

3(ℓ0 − 15)
√
ℓ+ ℓ0 + 27(ℓ0 − 15)

]
e

2(
√

ℓ0+ℓi−
√

ℓ+ℓ0)√
3

−4
√

3(ℓ0 − 15)(ℓ0 + ℓi)
3/2 + 4

√
3(ℓ0 + ℓi)

5/2 + 30(ℓ0 + ℓi)
2 − 18(ℓ0 − 15)(ℓ0 + ℓi)

−18
√

3(ℓ0 − 15)
√
ℓ0 + ℓi − 27(ℓ0 − 15)





4π3(ℓ0 + ℓi)
.

(J.2)
At short distance scales, Kondo coupling is exponentially suppressed due to g̃f . For ℓ >

√
ℓ0, however,

g̃f becomes exponentially small, slowing down the decay of J̃V . Therefore, a crossover from the ηf J̃
V -

dominated flow to the (J̃V )2-dominated flow occurs at the crossover scale ℓcross,1 which is determined

by ηf (ℓcross,1) = J̃VI (ℓcross,1). We note that ℓcross,1 >
√
ℓ0 in the small J̃Vi limit. At scale greater than√

ℓ0, Eq. (J.2) saturates to

J̃VI (ℓ≫
√
ℓ0) = J̃Vi e

− 3g̃f,iℓ0

π3 , (J.3)

and ℓcross,1 satisfies
√
ℓcross,1 + ℓ0 −

√
ℓ0 −

√
3
2 log

(
(ℓcross,1+ℓ0)ℓcross,1

ℓ0

)
=

√
3
2 log

(
g̃f,i
π3

)
+

3
3
2 g̃f,iℓ0
2π3 +

√
3
2 log

(
1
J̃V
i

)
. To the leading in J̃V , the crossover scale is given by

ℓcross,1 =
3
√

3g̃f,iℓ
3/2
0

π3
+
√

3
√
ℓ0 log

(
g̃f,i

π3J̃Vi

)
+

3g̃2f,i


π3 log

(
g̃f,i

π3J̃V
i

)

g̃f,i
+ 3ℓ0




2

4π6
. (J.4)

For ℓ≫ ℓcross,1, the flow of the Kondo coupling is governed by ∂J̃V (ℓ)
∂ℓ =

(
J̃V (ℓ)

)2
, and its solution is
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(a) (b) (c)

Figure J.2: The renormalization group flow of the boson-impurity coupling (gf ) is controlled by
η(Φ)(ℓ), the correction to the anomalous dimension of the boson at non-zero nesting angle, and
ηf (ℓ) = g̃f (ℓ)ℓ/π3, the anomalous dimension generated from gf itself. gf exhibits different behaviours,

depending on the relative magnitudes of η
(Φ)
i ∼ 1/

√
ℓ0 and

√
g̃f,i. (a) In this case, g̃f,i is small enough

that ηf remains negligible compared to η(Φ) at all scales (Appendix C J.1). (b) In this case, g̃f is
dominant over η(Φ) from the UV scale all the way to a crossover scale ℓf ∼

√
ℓ0 (Appendix C J.2 a).

(c) This is similar to case (b) except that there is an additional window of scale ℓi < ℓ < ℓf,1 in which
η(Φ) is larger than ηf (Appendix C J.2 b).

J̃VI (ℓ ≥ ℓcross,1) = 1

(J̃V
I (ℓcross,1))

−1−(ℓ−ℓcross,1)
. This results in the Kondo scale,

ℓK = ℓcross,1 +
e

3g̃f,iℓ0

π3

J̃Vi
. (J.5)

In the small J̃V limit, ℓK is given by e

3g̃f,iℓ0

π3

J̃V
i

to the leading order. Compared to the Fermi liquid with

the same electronic density of states, ℓK is larger by factor of e
3g̃f,iℓ0

π3 .

J.2 1/ℓ0 ≪ g̃f,i

In this case, the boson-impurity coupling plays the dominant role, and the behaviour of Kondo coupling
exhibits a strong departure from that of Fermi liquids. Below, we present the solution of the beta
function for two sub-cases separately: (a) 1/

√
ℓ0 ≪ g̃f,i, (b) 1/ℓ0 ≪ g̃f,i ≪ 1/

√
ℓ0.

J.2.1 1/
√
ℓ0 ≪ g̃f,i

In this case, g̃f is dominant so that one can ignore η(Φ) in the beta function of gf at short distance

scale. gf obeys
∂gf (ℓ)
∂ℓ = − g3f (ℓ)ℓ

π3c2 with its solution gf (ℓ) = ± π5/2|gf,i|√
π5+16g2f,i(2ℓ3+3ℓ2ℓ0−ℓ2i (3ℓ0+2ℓi))

. Then, g̃f

becomes

g̃f (ℓ) =
3π3g̃f,i(ℓ+ ℓ0)

3π3(ℓ0 + ℓi) + g̃f,i(2ℓ3 + 3ℓ2ℓ0 − ℓ2i (3ℓ0 + 2ℓi))
. (J.6)

While g̃f (ℓ) ≈ g̃f,i at short distance scales, it takes a universal form, g̃f (ℓ) ≈ 3(ℓ+ℓ0)π
3

2ℓ3+3ℓ2ℓ0
at long distance

scales. This crossover occurs around

ℓ1 ≈
√

π3

g̃f,i
≪ ℓ

1/4
0 . (J.7)

According to Eq. (J.6), g̃f ℓ decays faster than η(Φ) with increasing ℓ. Therefore, there must be a
crossover scale ℓf above which g̃f ℓ becomes smaller than η(Φ). Equating η(Φ)(ℓf ) and g̃f ℓf/π

3 gives
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ℓ2f − 2
√

3ℓ0ℓf + ℓ21 = 0 whose only positive solution is

ℓf =
√

3ℓ0 +
√

3ℓ0 − ℓ21 ≈ 2
√

3ℓ0. (J.8)

For ℓ0 ≫ 1, we have a hierarchy ℓ1 ≪ ℓf ≪ ℓ0. For ℓ ≫ ℓf , the beta function for gf is given by

∂gf (ℓ)
∂ℓ = − 1

4πw log
(
1
w

)
gf (ℓ) whose solution is given by gf (ℓ ≥ ℓf ) = e

−
√

ℓ+ℓ0−√
ℓ0+ℓf√

3 gf (ℓf ). This gives
g̃f (ℓ) that decays exponentially,

g̃f (ℓ ≥ ℓf ) =
π3(ℓ0 + ℓ)

ℓ2f (ℓ0 + ℓf )
e
−

2(
√

ℓ+ℓ0−√
ℓ0+ℓf)

√
3 . (J.9)

With g̃f , we can now understand how Kondo scale ℓK depends on J̃Vi . As J̃Vi decreases, ℓK continu-
ously increases such that it passes three crossover scales ℓf . Therefore, we consider the following two
limiting cases: i) ℓK ≪ ℓf , and ii) ℓf ≪ ℓK .

ℓK ≪ ℓf In this case, the flow of gf is dominated by ηf at all scales up to ℓK . Using the large ℓ0

expression of Eq. (J.6), g̃f (ℓ) ≈ g̃f,iπ
3

π3+g̃f,i(ℓ2−ℓ2i )
, we obtain the solution for Eq. (4.8) is

J̃V (ℓ) =

√
π3

g̃f,i
J̃Vi

√
π3

g̃f,i
+ ℓ2 − ℓ2i



√

π3

g̃f,i
J̃Vi log




√
π3

g̃f,i
+ℓi

ℓ+

√
π3

g̃f,i
+ℓ2−ℓ2i


+ 1



. (J.10)

With ℓi ∼ O(1), the Kondo length scale is given by

ℓK =

√
π3

g̃f,i
sinh

(√
g̃f,i
π3

1

J̃Vi

)
. (J.11)

For J̃Vi /
√
g̃f,i ≫ 1, the bare Kondo coupling is relatively strong that the boson-impurity coupling plays

only a minimal role, and ℓK is essentially reduced to that of Fermi liquids with a small correction,

ℓK ≈ 1
J̃V
i

(
1 +

g̃f,i

6π3(J̃V
i )

2

)
. For J̃Vi /

√
g̃f,i ≪ 1, on the other hand, the boson-impurity coupling

significantly suppresses Kondo coupling, and ℓK becomes much larger than that of Fermi liquids,

ℓK ≈ 1
2

√
π3

g̃f,i
e

√
g̃f,i

π3
1

J̃V
i . Remarkably, the logarithmic Kondo scale ℓK grows exponentially as J̃Vi

decreases.

ℓf ≪ ℓK In the small J̃Vi limit, ℓK becomes greater than ℓf . In this case, one has to solve the beta
function for the Kondo coupling in multiple steps. At short distance scales, the beta function can be

approximated as ∂J̃V (ℓ)
∂ℓ = − g̃f (ℓ)ℓ

π3 J̃V (ℓ). Its solution is J̃V (ℓ) = J̃Vi e
−γ2(ℓ) with

γ2(ℓ) =



[
4
√

3(ℓ0 − 15)(ℓ+ ℓ0)3/2 − 4
√

3(ℓ+ ℓ0)5/2 − 30(ℓ+ ℓ0)2 + 18(ℓ0 − 15)(ℓ+ ℓ0) + 18
√

3(ℓ0 − 15)
√
ℓ+ ℓ0

+27(ℓ0 − 15)] e
2(

√
ℓ0+ℓf−

√
ℓ+ℓ0)√

3 − 4
√

3(ℓ0 − 15)(ℓ0 + ℓf )3/2 + 4
√

3(ℓ0 + ℓf )5/2 + 12ℓ0(ℓ0 + ℓf )

+30ℓf (ℓ0 + ℓf ) + 270(ℓ0 + ℓf ) − 18
√

3(ℓ0 − 15)
√
ℓ0 + ℓf − 27ℓ0 + 405





4ℓ2f (ℓ0 + ℓf )
.

(J.12)
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This J̃V -linear beta function is valid up to a crossover scale ℓcross,2 above which (J̃V )2 term dominates.
At the crossover scale, Eq. (J.12) saturates to

J̃V (ℓcross,2) = e−
3
4
J̃Vi
2

√
π3

3g̃f,iℓ0
(J.13)

for sufficiently small J̃Vi . From ηf (ℓcross,2) = J̃VIIb(ℓcross,2), we obtain the crossover scale,

ℓcross,2 = − 3

4


log




√
3g̃f,iℓ0
π3

6ℓ0(ℓ0 + 2
√

3ℓ0)J̃Vi


+

3

4




2

+
√

3

√
ℓ0 + 2

√
3ℓ0 log




√
3g̃f,iℓ0
π3

6ℓ0(ℓ0 + 2
√

3ℓ0)J̃Vi




+
3

4

√
3

√
ℓ0 + 2

√
3ℓ0 + 2

√
3ℓ0.

(J.14)
For ℓ≫ ℓcross,2, the Kondo coupling runs as in Fermi liquids, J̃VIIb(ℓ ≥ ℓcross,2) = 1

(J̃V
IIa(ℓcross,2))

−1−(ℓ−ℓcross,2)
,

and the Kondo scale is given by

ℓK =ℓcross,2 +
2e

3
4

J̃Vi

√
3g̃f,iℓ0
π3

. (J.15)

To the leading order in 1/J̃Vi , the Kondo scale becomes ℓK ∼ 1
J̃V
i

gf,i
v0,i log 1/v0,i

, where v0,i ∼ 1/(ℓ0 log ℓ0).

For fixed J̃Vi and gf,i, the Kondo length scale diverges as the bare nesting angle v0,i approaches zero.
The v0,i and gf,i dependences of ℓK are confirmed through the numerical solution of the beta functions,
as is shown in Fig. 4.3. There is a discrepancy in the prefactor A for ℓK = A

J̃V
i

gf,i
v0,i log 1/v0,i

between

the analytic estimation and the numerical solution: Aanalytic = 8e3/4√
π

vs. Anumeric ≈ 8e3/4

3
√
π

. This is

because Eq. (J.15) does not accurately account for the ℓ-dependent anomalous dimension around the
crossovers from the ηf -dominated flow to the the η(Φ)-dominated flow. Since we only keep only one
dominant term between η(Φ) and ηf for the flow of gf , our analytic result overestimates gf . This, in

turn, makes ηf larger, causing an underestimaion of J̃V , and hence ℓK,analytic > ℓK,numeric. However,
this does not affect how ℓK depends on gf,i and v0,i.

J.2.2 1/ℓ0 ≪ g̃f,i ≪ 1/
√
ℓ0

In this case, η
(Φ)
i is larger than g̃f,i at the UV cut off scale ℓi, but is not large enough to stay dominant

over g̃f at all scales. Since ηf (ℓ) initially grows as a function of ℓ, there is a crossover ℓf,1, where the
term g̃f ℓ/π

3 in the beta function of gf dominates over η(Φ) at crossover scale set by η(Φ)(ℓf,1) = ηf (ℓf,1).
The crossover scale is given by

ℓf,1 ≈ π3

2
√

3ℓ0g̃f,i
. (J.16)

At this crossover scale, the Kondo coupling becomes J̃Vi e
− π3

24g̃f,iℓ0 in the small J̃Vi limit. The flow in
ℓ > ℓf,1 is then identical to the previous case discussed in Sec. J.2. If ℓK ≪ ℓf , J̃V (ℓ) is given by Eq.

(J.10) with the replacement of ℓi → ℓf,1 and J̃Vi → J̃Vi e
− π3

24g̃f,iℓ0 . This gives the Kondo scale that is
analogous to Eq. (J.11),

ℓK =
π3

2
√

3ℓ0g̃f,i
cosh



√
g̃f,i
π3

e
π3

24g̃f,iℓ0

J̃Vi


+

√
π3

g̃f,i
sinh



√
g̃f,i
π3

e
π3

24g̃f,iℓ0

J̃Vi


 . (J.17)



172 APPENDIX J. THE SOLUTION OF THE BETA FUNCTIONS FOR gf AND J

On the other hand, if ℓK ≫ ℓf , the Kondo scale is given by Eq. (J.15) with J̃Vi → J̃Vi e
− π3

24g̃f,iℓ0 :

ℓK =
2
√

3e
π3

24g̃f,iℓ0
+ 3

4
√
g̃f,iℓ0

π3/2J̃Vi
− 3

4


log




√
3g̃f,iℓ0
π3 e

π3

24g̃f,iℓ0

6J̃Vi ℓ0(ℓ0 + 2
√

3ℓ0)


+

3

4




2

+
√

3

√
ℓ0 + 2

√
3ℓ0 log




√
3g̃f,iℓ0
π3 e

π3

24g̃f,iℓ0

6J̃Vi ℓ0(ℓ0 + 2
√

3ℓ0)


+

3

4

√
3

√
ℓ0 + 2

√
3ℓ0 + 2

√
3ℓ0

(J.18)

to the leading order.



Bibliography

[1] Ar. Abanov and A. Chubukov. “Anomalous Scaling at the Quantum Critical Point in Itin-
erant Antiferromagnets”. In: Phys. Rev. Lett. 93 (25 Dec. 2004), p. 255702. doi: 10.1103/
PhysRevLett.93.255702. url: http://link.aps.org/doi/10.1103/PhysRevLett.93.
255702.

[2] Ar. Abanov and Andrey V. Chubukov. “Spin-Fermion Model near the Quantum Critical Point:
One-Loop Renormalization Group Results”. In: Phys. Rev. Lett. 84 (24 June 2000), pp. 5608–
5611. doi: 10.1103/PhysRevLett.84.5608. url: http://link.aps.org/doi/10.1103/
PhysRevLett.84.5608.

[3] Ar. Abanov, Andrey V. Chubukov, and J. Schmalian. “Quantum-critical theory of the spin-
fermion model and its application to cuprates: Normal state analysis”. In: Adv. Phys. 52.3
(2003), pp. 119–218. doi: 10.1080/0001873021000057123. url: http://dx.doi.org/10.
1080/0001873021000057123.

[4] Elihu Abrahams and Peter Wölfe. “Critical quasiparticle theory applied to heavy fermion metals
near an antiferromagnetic quantum phase transition”. In: Proc. Natl. Acad. Sci. 109 (2012),
p. 3238. doi: 10.1073/pnas.1200346109. url: http://www.pnas.org/content/109/9/3238.
abstract.

[5] A. A. Abrikosov. “Electron scattering on magnetic impurities in metals and anomalous resistiv-
ity effects”. In: 2.1 (), pp. 5–20. issn: 0554-128X. doi: 10.1103/physicsphysiquefizika.2.5.

[6] Ian Affleck. “A current algebra approach to the Kondo effect”. In: Nuclear Physics B 336.3
(1990), pp. 517–532. issn: 0550-3213. doi: https://doi.org/10.1016/0550-3213(90)90440-
O. url: https://www.sciencedirect.com/science/article/pii/055032139090440O.

[7] Ian Affleck and Andreas W.W. Ludwig. “The Kondo effect, conformal field theory and fusion
rules”. In: Nuclear Physics B 352.3 (1991), pp. 849–862. issn: 0550-3213. doi: https://doi.
org/10.1016/0550-3213(91)90109-B. url: https://www.sciencedirect.com/science/
article/pii/055032139190109B.

[8] Vivek Aji, Chandra M. Varma, and Ilya Vekhter. “Kondo effect in an antiferromagnetic metal:
Renormalization group analysis and a variational calculation”. In: Phys. Rev. B 77 (22 June
2008), p. 224426. doi: 10.1103/PhysRevB.77.224426. url: https://link.aps.org/doi/10.
1103/PhysRevB.77.224426.

[9] Ahmed Almheiri et al. “Black holes: complementarity or firewalls?” In: Journal of High Energy
Physics 2013.2 (Feb. 2013). issn: 1029-8479. doi: 10.1007/jhep02(2013)062. url: http:
//dx.doi.org/10.1007/JHEP02(2013)062.

[10] B. L. Altshuler, L. B. Ioffe, and A. J. Millis. “Low-energy properties of fermions with singular
interactions”. In: Phys. Rev. B 50 (19 Nov. 1994), pp. 14048–14064. doi: 10.1103/PhysRevB.
50.14048. url: http://link.aps.org/doi/10.1103/PhysRevB.50.14048.

173

https://doi.org/10.1103/PhysRevLett.93.255702
https://doi.org/10.1103/PhysRevLett.93.255702
http://link.aps.org/doi/10.1103/PhysRevLett.93.255702
http://link.aps.org/doi/10.1103/PhysRevLett.93.255702
https://doi.org/10.1103/PhysRevLett.84.5608
http://link.aps.org/doi/10.1103/PhysRevLett.84.5608
http://link.aps.org/doi/10.1103/PhysRevLett.84.5608
https://doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1080/0001873021000057123
https://doi.org/10.1073/pnas.1200346109
http://www.pnas.org/content/109/9/3238.abstract
http://www.pnas.org/content/109/9/3238.abstract
https://doi.org/10.1103/physicsphysiquefizika.2.5
https://doi.org/https://doi.org/10.1016/0550-3213(90)90440-O
https://doi.org/https://doi.org/10.1016/0550-3213(90)90440-O
https://www.sciencedirect.com/science/article/pii/055032139090440O
https://doi.org/https://doi.org/10.1016/0550-3213(91)90109-B
https://doi.org/https://doi.org/10.1016/0550-3213(91)90109-B
https://www.sciencedirect.com/science/article/pii/055032139190109B
https://www.sciencedirect.com/science/article/pii/055032139190109B
https://doi.org/10.1103/PhysRevB.77.224426
https://link.aps.org/doi/10.1103/PhysRevB.77.224426
https://link.aps.org/doi/10.1103/PhysRevB.77.224426
https://doi.org/10.1007/jhep02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1103/PhysRevB.50.14048
https://doi.org/10.1103/PhysRevB.50.14048
http://link.aps.org/doi/10.1103/PhysRevB.50.14048


174 BIBLIOGRAPHY

[11] Daniel J. Amit and Victor Martin-Mayor. Field Theory, the Renormalization Group, and Crit-
ical Phenomena. 3rd. World Scientific, 2005. doi: 10 . 1142 / 5715. eprint: https : / / www .

worldscientific.com/doi/pdf/10.1142/5715. url: https://www.worldscientific.

com/doi/abs/10.1142/5715.

[12] B. Amorim et al. “Novel effects of strains in graphene and other two dimensional materials”.
In: Physics Reports 617 (Mar. 2016), pp. 1–54. doi: 10.1016/j.physrep.2015.12.006. url:
https://doi.org/10.1016%2Fj.physrep.2015.12.006.

[13] P. W. Anderson. “A poor man’s derivation of scaling laws for the Kondo problem”. In: Journal of
Physics C: Solid State Physics 3.12 (1970), pp. 2436–2441. issn: 0022-3719. doi: 10.1088/0022-
3719/3/12/008.

[14] P. W. Anderson. “Localized Magnetic States in Metals”. In: Phys. Rev. 124 (1 Oct. 1961),
pp. 41–53. doi: 10.1103/PhysRev.124.41. url: https://link.aps.org/doi/10.1103/
PhysRev.124.41.

[15] N. Andrei. “Diagonalization of the Kondo Hamiltonian”. In: Phys. Rev. Lett. 45 (5 Aug. 1980),
pp. 379–382. doi: 10.1103/PhysRevLett.45.379. url: https://link.aps.org/doi/10.
1103/PhysRevLett.45.379.

[16] N. Andrei and C. Destri. “Solution of the Multichannel Kondo Problem”. In: Phys. Rev. Lett.
52 (5 Jan. 1984), pp. 364–367. doi: 10.1103/PhysRevLett.52.364. url: https://link.aps.
org/doi/10.1103/PhysRevLett.52.364.

[17] N. Andrei, K. Furuya, and J. H. Lowenstein. “Solution of the Kondo problem”. In: Rev. Mod.
Phys. 55 (2 Apr. 1983), pp. 331–402. doi: 10.1103/RevModPhys.55.331. url: https://link.
aps.org/doi/10.1103/RevModPhys.55.331.

[18] N. P. Armitage et al. “Anomalous Electronic Structure and Pseudogap Effects in Nd1.85Ce0.15CuO4”.
In: Phys. Rev. Lett. 87 (14 Sept. 2001), p. 147003. doi: 10.1103/PhysRevLett.87.147003.
url: https://link.aps.org/doi/10.1103/PhysRevLett.87.147003.

[19] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Cengage Learning, 2011. isbn: 9788131500521.
url: https://books.google.ca/books?id=x\_s\_YAAACAAJ.

[20] Abhay Ashtekar, Luca Bombelli, and Oscar Reula. “THE COVARIANT PHASE SPACE OF
ASYMPTOTICALLY FLAT GRAVITATIONAL FIELDS”. In: Mechanics, Analysis and Ge-
ometry: 200 Years After Lagrange. Ed. by Mauro Francaviglia. North-Holland Delta Series.
Amsterdam: Elsevier, 1991, pp. 417–450. doi: https://doi.org/10.1016/B978-0-444-
88958 - 4 . 50021 - 5. url: https : / / www . sciencedirect . com / science / article / pii /

B9780444889584500215.

[21] Sven Badoux et al. “Change of carrier density at the pseudogap critical point of a cuprate
superconductor”. In: Nature 531.7593 (2016), pp. 210–214.

[22] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Microscopic Theory of Superconductivity”. In:
Phys. Rev. 106 (1 Apr. 1957), pp. 162–164. doi: 10.1103/PhysRev.106.162. url: https:
//link.aps.org/doi/10.1103/PhysRev.106.162.

[23] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Theory of Superconductivity”. In: Phys. Rev.
108 (5 Dec. 1957), pp. 1175–1204. doi: 10.1103/PhysRev.108.1175. url: https://link.
aps.org/doi/10.1103/PhysRev.108.1175.

[24] G. Baym and C. Pethick. Landau Fermi-Liquid Theory: Concepts and Applications. A Wiley-
Interscience publication. Wiley, 1991. isbn: 9780471824183. url: https://books.google.ca/
books?id=zDBnNEPAu2MC.

[25] E. Berg, M. Metlitski, and S. Sachdev. “Sign-Problem–Free Quantum Monte Carlo of the Onset
of Antiferromagnetism in Metals”. In: Science 338 (6088 2012), p. 1606. doi: 10.1126/science.
1227769. url: http://science.sciencemag.org/content/338/6114/1606.

https://doi.org/10.1142/5715
https://www.worldscientific.com/doi/pdf/10.1142/5715
https://www.worldscientific.com/doi/pdf/10.1142/5715
https://www.worldscientific.com/doi/abs/10.1142/5715
https://www.worldscientific.com/doi/abs/10.1142/5715
https://doi.org/10.1016/j.physrep.2015.12.006
https://doi.org/10.1016%2Fj.physrep.2015.12.006
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1103/PhysRev.124.41
https://link.aps.org/doi/10.1103/PhysRev.124.41
https://link.aps.org/doi/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRevLett.45.379
https://link.aps.org/doi/10.1103/PhysRevLett.45.379
https://link.aps.org/doi/10.1103/PhysRevLett.45.379
https://doi.org/10.1103/PhysRevLett.52.364
https://link.aps.org/doi/10.1103/PhysRevLett.52.364
https://link.aps.org/doi/10.1103/PhysRevLett.52.364
https://doi.org/10.1103/RevModPhys.55.331
https://link.aps.org/doi/10.1103/RevModPhys.55.331
https://link.aps.org/doi/10.1103/RevModPhys.55.331
https://doi.org/10.1103/PhysRevLett.87.147003
https://link.aps.org/doi/10.1103/PhysRevLett.87.147003
https://books.google.ca/books?id=x\_s\_YAAACAAJ
https://doi.org/https://doi.org/10.1016/B978-0-444-88958-4.50021-5
https://doi.org/https://doi.org/10.1016/B978-0-444-88958-4.50021-5
https://www.sciencedirect.com/science/article/pii/B9780444889584500215
https://www.sciencedirect.com/science/article/pii/B9780444889584500215
https://doi.org/10.1103/PhysRev.106.162
https://link.aps.org/doi/10.1103/PhysRev.106.162
https://link.aps.org/doi/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.108.1175
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://books.google.ca/books?id=zDBnNEPAu2MC
https://books.google.ca/books?id=zDBnNEPAu2MC
https://doi.org/10.1126/science.1227769
https://doi.org/10.1126/science.1227769
http://science.sciencemag.org/content/338/6114/1606


BIBLIOGRAPHY 175

[26] Erez Berg et al. Monte Carlo Studies of Quantum Critical Metals. 2018. eprint: arXiv:1804.
01988.

[27] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, 1982. doi: 10.1017/CBO9780511622632.

[28] Francisco Borges and Sung-Sik Lee. “Emergence of curved momentum-spacetime and its effect
on cyclotron motion in the antiferromagnetic quantum critical metal”. In: Physical Review B
108.24 (2023), p. 245112.

[29] Francisco Borges, Peter Lunts, and Sung-Sik Lee. “Ultraviolet/infrared mixing-driven suppres-
sion of Kondo screening in the antiferromagnetic quantum critical metal”. In: (May 2025). doi:
10.48550/ARXIV.2505.01561. arXiv: 2505.01561 [cond-mat.str-el].

[30] Francisco Borges et al. “Field-theoretic functional renormalization group formalism for non-
Fermi liquids and its application to the antiferromagnetic quantum critical metal in two dimen-
sions”. In: Annals of Physics 450 (2023), p. 169221. issn: 0003-4916. doi: https://doi.org/
10.1016/j.aop.2023.169221. url: https://www.sciencedirect.com/science/article/
pii/S0003491623000064.

[31] Jens Braun, Holger Gies, and Daniel D. Scherer. “Asymptotic safety: A simple example”. In:
Phys. Rev. D 83 (8 Apr. 2011), p. 085012. doi: 10.1103/PhysRevD.83.085012. url: https:
//link.aps.org/doi/10.1103/PhysRevD.83.085012.

[32] Sergey Bravyi, David P. DiVincenzo, and Daniel Loss. “Schrieffer–Wolff transformation for
quantum many-body systems”. In: Annals of Physics 326.10 (2011), pp. 2793–2826. issn: 0003-
4916. doi: 10.1016/j.aop.2011.06.004.

[33] Henrik Bruus and Karsten Flensberg. Many-body quantum theory in condensed matter physics
- an introduction. English. United States: Oxford University Press, 2004.

[34] Vanuildo S. de Carvalho and Hermann Freire. “Breakdown of Fermi liquid behavior near the
hot spots in a two-dimensional model: A two-loop renormalization group analysis”. In: Nuclear
Physics B 875.3 (2013), pp. 738 –756. issn: 0550-3213. doi: 10.1016/j.nuclphysb.2013.07.
016. url: http://www.sciencedirect.com/science/article/pii/S0550321313003829.

[35] Vanuildo S. de Carvalho and Hermann Freire. “Evidence of a short-range incommensurate d-
wave charge order from a fermionic two-loop renormalization group calculation of a 2D model
with hot spots”. In: Annals of Physics 348 (2014), pp. 32 –49. issn: 0003-4916. doi: 10.1016/
j.aop.2014.05.009. url: http://www.sciencedirect.com/science/article/pii/

S0003491614001171.

[36] R. J. Cava et al. “Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite
Ba2YCu3O9−δ”. In: Phys. Rev. Lett. 58 (16 Apr. 1987), pp. 1676–1679. doi: 10.1103/PhysRevLett.
58.1676. url: https://link.aps.org/doi/10.1103/PhysRevLett.58.1676.

[37] Joseph G. Checkelsky et al. “Flat bands, strange metals and the Kondo effect”. In: Nature
Reviews Materials 9.7 (2024), pp. 509–526. doi: 10.1038/s41578-023-00644-z. url: https:
//doi.org/10.1038/s41578-023-00644-z.

[38] Gennady Y. Chitov and Andrew J. Millis. “Leading Temperature Corrections to Fermi-Liquid
Theory in Two Dimensions”. In: Phys. Rev. Lett. 86 (23 June 2001), pp. 5337–5340. doi:
10.1103/PhysRevLett.86.5337. url: https://link.aps.org/doi/10.1103/PhysRevLett.
86.5337.
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