
RESIDUALLY DOMINATED GROUPS



RESIDUALLY DOMINATED GROUPS IN HENSELIAN VALUED
FIELDS OF EQUICHARACTERISTIC ZERO

BY
DICLE MUTLU, M.Sc.

A Thesis
Submitted to the Department of Mathematics and Statistics

and the School of Graduate Studies
of Mcmaster University

in Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philoshophy

© Copyright by Dicle Mutlu, July 25, 2025
All Rights Reserved



Doctor of Philosophy (2025) McMaster University
(Mathematics and Statistics) Hamilton, Ontario, Canada

TITLE: Residually Dominated Groups in Henselian Valued
Fields of Equicharacteristic Zero

AUTHOR: Dicle Mutlu
M.Sc. (McMaster University)

SUPERVISOR: Deirdre Haskell

NUMBER OF PAGES: v, 75

ii



Abstract

We study the model theory of henselian valued fields of equicharacteristic zero by
generalizing results from the complete theory of algebraically closed valued fields
(ACVF) in the literature. Haskell, Hrushovski and Macpherson introduced the no-
tion of stable domination which provides a tameness condition to study the model
theory of ACVF. It was later generalized to residual domination in the work by
Haskell, Ealy and Simon, and independently by Vicaria for pure henselian valued
fields of equicharacteristic zero.

In this thesis, we study residual domination itself, giving characterizations that
are similar to those for stably dominated types in ACVF. We then introduce resid-
ually dominated groups, which are the analogue of the stably dominated groups in-
troduced and studied extensively by Rideau-Kikuchi and Hrushovski. We show that
the connected components of residually dominated groups are subgroups of stably
dominated groups that are definable in the algebraic closure of the given henselian
valued field. This allows us to extend results from ACVF to the henselian setting.
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Chapter 1

Introduction

Model theory is a branch of mathematical logic that studies mathematical structures through
their properties expressible in a first-order language. Shelah’s classification theory ([She78])
arranges complete theories along several dividing lines according to the complexity of their
first-order behaviour, separating the tame from the wild. Stable theories, for example the
theories of vector spaces and algebraically closed fields, lie in the tame end, while the com-
plete theory of integers, as shown by Gödel’s Incompleteness Theorems, exhibits extremely
wild behaviour. Between these extremes, there are several dividing lines in the tame side,
such as simplicity, NIP and NTP2.

Henselian valued fields provide natural examples for many classes of theories on the tame
side. Hence, it is tempting for model theorists to study them to shed light on the complexities
of a class of theories. Examples include algebraically closed valued fields, real closed valued
fields and, more generally, Hahn fields.

A striking fact about henselian fields is that, although their theories may be complicated,
many of their model-theoretic properties are controlled by two simpler components: the
residue field and the value group. This was proved by Ax and Kochen in [AK65], and
independently by Ershov in [Es65], in terms of first-order properties. This insight is generally
referred to in the literature as the AKE-principle.

One research direction in model theory is to generalize results known for stable theories to
unstable tame theories. Inspired by the theory of algebraically closed valued fields, which is
NIP, Haskell, Hrushovski, and Macpherson introduced the notion of stably dominated types,
which are the types that are controlled by their traces on sorts whose induced theories are
stable. In algebraically closed valued fields, stably dominated types are characterized by
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their orthogonality to the value group, meaning that any definable interaction with the
value group is trivial. The stable sorts are those internal to the residue field; that is, they
lie in the image of a definable map whose domain is the residue field.

This idea was later generalized to henselian valued fields as residual domination (also
referred to as residue field domination), first for real closed valued fields in [EHM19], and
later for pure henselian valued fields of equicharacteristic zero in [EHS23] and [Vic22] (see
Definition 2.1.20).

One part to understand the complexity of a theory is to analyze definable groups in
it. In stable theories definable groups have been studied extensively using the well-behaved
notions of generic types, connected components, stabilizers of types, etc. Outside of the
stable setting, several generalizations of these tools have been studied. For example, In
[HRK19], Hrushovski and Rideau-Kikuchi introduce stably dominated groups which are de-
finable groups that are controlled by a stably dominated type, and they have similar proper-
ties as groups in a stable theory have. Moreover they show an AKE-type result, where they
show that a definable abelian group can be decomposed into a limit stably dominated group
which is a direct union of stably dominated groups uniformly parametrized by elements in
the value group � and into a group that is internal to �.

In this thesis, we aim to generalize results on stably dominated types and groups from
the setting of algebraically closed valued fields to the more general henselian setting. Given a
type in the henselian field K, one can also view it as a type in the algebraically closed valued
field that contains the henselian field K. This naturally raises the question of whether
residually dominated types are stably dominated from the viewpoint of the algebraically
closed valued field. In Chapter 2, we will show that they are equivalent over acl-closed bases
for types that concentrate on the valued field sort.

We write T for a complete theory of a henselian valued field, and let U be a universal
model of T . We denote by T0 the complete theory of algebraically closed valued fields of
equicharacteristic zero, and write eU for the field-theoretic algebraic closure of U . Similarly,
tp0(a/A) denotes the complete type of a over A in T0.

Theorem 2.2.11. Let a be a tuple in U that lies in the valued field sort and C ⇢ U be a
subfield that is acl-closed in the valued field. Then the following are equivalent:

1. tp(a/C) is residually dominated in T ,

2. tp0(a/C) is stably dominated in T0.

2
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Using Theorem 2.2.11, we also characterize residually dominated types as those that are
orthogonal to �, similar to stably dominated types.

Theorem 2.3.5. Let C be a valued field such that C is acl-closed in the valued field sort
and assume that p is a C-invariant type. If p|C is residually dominated, then for any model
M ◆ C and a |= p|M , we have �(Ma) = �(M). Conversely if for all |C|

+-saturated model
M ◆ C and a |= p|M , �(Ma) = �(M), then p|C is residually dominated.

Regarding groups, we extend the notion of stably dominated groups by introducing
residually dominated groups. Given a definable group G, a global type p concentrating on
G is called strongly f -generic if there exists a small model M such that every translate of p
by an element of G does not fork over M . We say that G is residually dominated if there
exists a global residually dominated type concentrating on G. Another related notion is the
connected component of the group. For a set A, we define the connected component G

00
A

to
be the intersection of all A-type-definable subgroups H of G such that the index |G/H| is
bounded.

We assume that the theory of the henselian field is NTP2. Using results of Montenegro,
Onshuus, and Simon in [MOS20], we can embed the connected component of such groups into
an algebraic group. This allows us to view residually dominated groups as subgroups of stably
dominated groups, hence enabling the application of known results for stably dominated
groups.

Theorem 3.2.11. Assume T is NTP2. Let (G, ·) be a definable residually dominated group
in the valued field sort of U , with a strongly f -generic type over M . Then, there exist an ACF-
definable group g over M in the residue field and a pro-M -definable group homomorphism
f : G00

M
! g such that the generics of G00

M
are dominated via f . Namely, for each strongly

f -generic p of G00
M

and for tuples a, b in U with a |= p|M , we have tp(b/Mf(a)) ` tp(b/Ma)

whenever f(a) |
^

alg

k(M) k(Mb).

The organization of the paper is as follows. In the first chapter, we provide preliminary
definitions and results needed.

In the second chapter, we begin with an expository survey on stable and residual dom-
ination, unifying similar statements on residual domination from [EHS23] and [Vic22]. We
then show the equivalence of residual and stable domination for certain types. We conclude
with a generalization of many properties of stable domination to the context of residual
domination.

3



Ph.D. Thesis – D. Mutlu McMaster University – Mathematical Logic

In the third chapter, we introduce residually dominated groups and present generaliza-
tions of results from [HRK19].

Finally, in the last chapter, we offer concluding remarks and discuss directions for future
research.
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1.1 Pure Model Theory

In this section, we review the relevant notions from pure model theory that will be used
throughout this paper. We assume the reader is familiar with the basics of model theory,
such as formulas, elementary equivalences and extensions, saturation, quantifier elimination,
etc.

Throughout this section, we fix a language L together with the theory T in the language
L. We also fix a sufficiently saturated and homogeneous model of T which we denote by U ,
and refer to as a universal model. A subset A ✓ U is said to be small if its cardinality is less
than the cardinality of U .

We denote the model-theoretic algebraic closure and definable closure of a set A by acl(A)

and dcl(A), respectively. We use x, y, a, b, · · · to denote tuples. For a tuple a in U , the set
of all formulas with parameters from A that are realized by a is called the type of a over
A, denoted by tp(a/A). The space of all types over A is denoted by S(A), while Sn(A)

denotes the space of types of n-tuples over A. A global type is a type in S(U). If � is a
finite set of L-formulas, then we write S�(A) for the set of types that consists of the boolean
combinations of formulas '(x; b) with '(x; y) 2 � and b 2 A

|y|.
A definable set is assumed to be definable over parameters. If ' is an L-formula that has

parameters from a set A, we write ' 2 L(A). If S is a collection of sorts in L, L|S denotes
the restriction of the language to those sorts in S. Given a sort S and a set A, we write
S(A) for S \ dcl(A).

Quantifier elimination

In valued fields, quantifier elimination results are generally given relatively. We begin by dis-
cussing the definition of quantifier elimination relative to a collection of sorts. The following
definition is quoted from [Rid17, Appendix A].

Definition 1.1.1. Let ⌃ be a collection of sorts of L.

1. Let L
0
◆ L be an expansion of L, and let ⌃0 be the set of new sorts. We say L

0 is a
⌃-enrichment of L if L0

\ L
0
|⌃[⌃0 ✓ L, meaning that the enrichment does not affect

the sorts of L outside of ⌃.

2. We define the Morleyization of L on the sorts in ⌃ to be the language obtained by
adding predicates P'(x) for every L�⌃-formula '(x). We write T

⌃-Mor for the corre-
sponding expansion of T to the language L

⌃-Mor.
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3. We say that T eliminates quantifiers relative to ⌃ if T⌃-Mor eliminates quantifiers.

4. We say that T eliminates quantifiers resplendently relative to ⌃ if, for any ⌃-enrichment
L
0 of L and any L

0-theory T
0
◆ T , the theory T

0 eliminates quantifiers relative to ⌃[⌃0.

Definition 1.1.2. Let M |= T , and A be a set with A ✓M .

1. An L(A)-definable set X ✓ M is called stably embedded in M if for any n 2 Z>0, all
definable subsets of Xn are definable with parameters from X [A.

2. A definable set X ✓M is called stably embedded in M with control of parameters, if X
is stably embedded, and in addition, for any L-formula �(x; y) and a tuple u 2 M

|y|

such that �(x;u) defines a subset of Xn for some n 2 Z>0, there exists an L-formula
 (x, d) with d 2 dcl(u) that defines the same subset of Xn.

3. The definable sets X and Y are called orthogonal if for any L(U)-formula '(x, y, a)

defining a subset of X |x|
⇥ Y

|y|, there exist formulas

✓1(x, b1), · · · , ✓n(x, bn) and  1(y, c1), · · · , n(y, cn)

such that ' defines the same set as the formula

n[

i=1

✓i(x, bi) ^  i(y, ci).

4. A sort S is stably embedded (or stably embedded with control of parameters) if the set
defined by x 2 S is stably embedded (or stably embedded with control of parameters)
in every model M |= T . We say S is a purely stably embedded L

0-structure where L
0 is

the restriction of L to the sort S, if any definable subset X of Sn is definable by an
L
0-formula with parameters from S.

5. Two sorts S and T are orthogonal to each other if S and T are orthogonal as definable
sets.

Definition 1.1.3. Let T be a sort. A definable set X is T -internal if there exists a finite
set F of parameters such that X ✓ dcleq(T [F ). Equivalently, by compactness, there exists
a map f : T n

! X for some n 2 Z>0, definable with parameters from F in T
eq.

Notation 1.1.4. For a sort S and a set A, we write S(A) := S \ dcl(A).

6
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The stably embedded sets are extensively studied in [CH99]. The following two facts are
well-known. For the sake of completeness, we include their proofs.

Fact 1.1.5. Let S be a sort in L that is stably embedded with control of parameters. Let B ◆
C be subsets of U . Then for any subset A ✓ U , we have tp(B/CS(B)) ` tp(B/CS(B)S(A)).

Proof. Let B ⌘CS(B) B
0 and � be an automorphism of U that fixes CS(B) pointwise and

sends B to B
0. We will show that B ⌘CS(B)S(A) B

0. For this, let �(x, y, z) be an L-formula,
b be a tuple in S(B), and let a be a tuple in S(A) such that |= �(B, a, b). Then, the
set {d 2 U : |= �(B, d, b)} is definable in the sort S. By assumption, it is definable over
S(B) = S(B0). After applying �, we have {d 2 U : |= �(B, d, b)} = {d 2 U : |= �(B0

, d, b)}.
Thus, |= �(B0

, a, b), as desired.

Fact 1.1.6. Let S and T be sorts of U that are orthogonal to each other. Then for any sets
A ✓ S and B ✓ T , we have S(A [B) = S(A).

Proof. Let c 2 S(A [ B), and let a be a tuple in A, b be a tuple in B, and �(x, y, z)

be an L(;)-formula such that �(x, a, b) witnesses c 2 dcl(a, b). By the orthogonality of S
and T , the formula �(x, a, z) is equivalent to a finite disjunction of formulas of the form
✓i(x, d) ^  i(z), where i  n, and for each i  n, ✓i is an L|S-formula and  i is an L|T -

formula. It follows that c is the unique solution of
nW

i=1
✓i(x, d), which is also an A-definable

set. Therefore c 2 S(A). The other direction is trivial.

Elimination of Imaginaries

Let X ✓ U
n be a definable set, and let E(x, y) be a definable equivalence relation on X.

For each c 2 X, the equivalence class c/E is called an imaginary element. It is desirable
when the imaginary elements can be identified with a tuple in the model. We can expand
the language to ensure that these elements are coded.

Definition 1.1.7. Let X be a definable set. A finite tuple c is called a code for X if for
every automorphism � of U , � fixes c pointwise if and only if it fixes X setwise. Similarly,
a possibly infinite tuple c is a code for a type p if for every automorphism � of U , � fixes c

pointwise if and only if � leaves p invariant.

Definition 1.1.8. The theory T eliminates imaginaries if every ;-definable equivalence class
c/E has a code within U .

7
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Let (Ei)i2I be an enumeration of all ;-definable equivalence relations in T . Fix a model
M |= T . For each i 2 I, we expand the language L by adding new sorts corresponding to
the sets Xi/Ei, where Ei is an equivalence relation defined on Xi. We also add functions
⇡i : Xi ! Xi/Ei, defined by ⇡i(x) = x/Ei for each x 2 Xi. The resulting expanded language
is denoted by L

eq. For a model M |= T , we write M eq to denote its expansion in the language
L
eq. Then, the L

eq-theory of M eq is axiomatized by the following conditions:

• 8x9yi, (⇡i(x) = yi), where x is a variable in the home sort and yi is a variable in the
sort Xi/Ei.

• 8x1x2, (⇡i(x1) = ⇡i(x2) ! Ei(x1, x2)).

This expanded theory is denoted by T
eq. If T eliminates imaginaries, then for every

;-definable equivalence relation E, each class c/E has a code in some model M |= T .
We write dcleq and acleq to denote definable and algebraic closures taken in T

eq, respec-
tively.

Pro-definable Sets

Most of the time, we work with infinite tuples of variables in formulas or types. Pro-definable
sets are one of the suitable frameworks for this purpose.

A partial order I is filtered if every pair of elements in I has an upper bound within I.

Definition 1.1.9. A pro-definable set is a family of definable sets (Xi)i2I indexed by a
filtered order I, together with definable transition maps fj,i : Xj ! Xi for each i < j. We
identify it with its projective limit X := lim

 �
Xi.

The pro-definable set X is C-definable if each Xi is C-definable and all transition maps
fj,i are C-definable.

After fixing an enumeration of the sets Xi and introducing variables xi corresponding
to each Xi, the pro-definable set X can be represented as a partial type in the variables
x = (xi)i2I . If all transition maps in the system are injective, X can be identified as a
subset of each Xi. In this case, X is the intersection of all Xi, making it 1-definable.

A pro-definable map f : lim
 �

Xi ! Y , where Y is a definable set, is simply a definable map
from some Xj to Y . If Y is also a projective limit, then a pro-definable map f : lim

 �
Xi !

lim
 �

Yi consists of a compatible family of pro-definable maps fj : lim
 �

Xi ! Yj .

8
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Invariant and definable types

Definition 1.1.10. Let A be a small set. A global type p 2 S(U) is A-invariant if for each
� 2 Aut(U/A), each L-formula '(x; y) and each tuple b in U , we have

'(x; b) 2 p() '(x;�(b)) 2 p.

When M |= T , we will show that any p 2 S(M) extends to global M -invariant type.
Consider the set

⌃(x) = {�(x, b) : �(x, y) is an L-formula such that ¬�(M, b) is empty}.

Then, p[⌃ is consistent. Since otherwise, there would exist some '(x) 2 p and ✓1, . . . , ✓n 2 ⌃

with ' ^

nV
i=1

✓i inconsistent. It follows that ' `
nW

i=1
¬✓i. Since M is a model, there exists

some a 2 M
|x| with |= '(a). Hence, |= ¬✓i(a) for some i, a contradiction. Let q be a

global extension of p [ ⌃. Notice that for any ✓ 2 q, there exists ' 2 p with ' ` ✓. Let
� 2 Aut(U/M), then for any a 2 M

|x| and tuple b in U , |= ✓(a, b) $ ✓(a,�(b)). It follows
that q is M -invariant.

Another important class of invariant types is definable types.

Definition 1.1.11. A type p 2 S(A) is definable if for each L-formula '(x; y), there is an
L(A)-formula (dpx)'(x, y) such that for every tuple b 2 A

|y|, we have

'(x; b) 2 p() U |= (dpx)'(x, b).

The collection of formulas
�
(dpx)'(x, y)

�
'

is called a defining scheme of p. For B ✓ A, p
is said to be B-definable if for any L-formula '(x, y), the defining formula (dpx)'(x, y) is
L(B)-definable.

One of the main advantages of working with invariant and definable types is that there
is a canonical way to extend them to global types.

Let p 2 S(M) be an A-definable type and N ⌫ M . Let {(dpx)'(x, y)}' be a defining
scheme of p over A. Then, p extends to a complete A-definable type q 2 S(N), given by

q := {'(x, b) : '(x, y) is an L-formula, b 2 N
|y| and U |= (dpx)'(x, b).}

In this case, q is the unique A-definable extension of p.

9
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Similarly, in the case of invariant types, we also have a canonical extension. Indeed, let
p 2 S(M) be an A-invariant type where M is |A|

+-saturated. For each L-formula '(x; y),
define Dp,' to be the set of all types q 2 S(A) for which there exists some b 2 M

|y| with
b |= q and '(x, b) 2 p. Then, if N ⌫M , p extends to a complete type r 2 S(N), defined by

r := {'(x; b) : '(x, y) is an L-formula, b 2 N
|y| and 9q 2 Dp,' such that b |= q.}

As in the definable case, r is the unique A-invariant extension of p. We will denote it by
p|N . If N ◆ B ◆M , then p|B is the restriction r|B of the type r to B. Moreover, it depends
only on p, not on A: if p is B-invariant for some other set B, then the construction yields
the same type.

Tensor product of invariant types, Morley sequences

Let p, q 2 S(M) be invariant types. Define p(x)⌦ q(y) as follows:

(a, b) |= p(x)⌦ q(y) if and only if b |= q and a |= p|Mb.

This type is called the tensor product of p and q, and it is well-defined by the invariance
of p.

Remark 1.1.12. The product ⌦ on the space of invariant types S
inv(U) is associative but

need not be commutative.

Now let p be an A-invariant type. For any positive integer n 2 Z>0, we define p
(n)

inductively as follows: p
(1)(x1) := p, and for n � 2, p

(n+1)(x1 . . . , xn+1) := p(xn+1) ⌦

p
(n)(x1, . . . , xn). We write p

! =
S
p
(n). Note that if (a1, a2, · · · ) |= p

(!), then for each i,
ai |= p|a1,···ai�1 .

For B ◆ A, a Morley sequence of p over B is a sequence b := (bi : i < !) that realizes
p
(!)

|B.

Classification theory

Classification theory was initiated by Shelah [She78], with the goal of classifying first-order
theories using dividing lines. In this thesis, we introduce the class of theories we will focus
on. The definitions and results are from [Pil96],[Sim15] and [Che14].

10
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Definition 1.1.13. 1. An L(U)-formula '(x, y) is called stable if there are no sequences
(ai)i<! and (bi)i<! in U such that

'(ai, bj) holds if and only if i < j for all i, j < !.

2. The theory T is stable if every formula '(x, y) is stable.

In the definition, one can say that a stable formula does not witness the existence of a
linear order on any infinite tuple.

The following equivalent characterizations of stability show that stability can be checked
locally.

Fact 1.1.14. The following are equivalent.

1. T is stable,

2. For all A ✓ U with |A|  , |S(A)| < + |L|.

3. For all A ⇢ U and every finite set of formulas �, we have |S�(A)| < |A|,

4. For all A, and every p 2 S(A), p is definable.

5. For all A and every 1-type p 2 S1(A), p is definable.

Example 1.1.15. 1. The following theories are stable: algebraically closed fields, Z-
modules, vector spaces, differentially closed fields of equicharacteristic zero.

2. The following theories are unstable, since they admit a definable linear order: dense lin-
ear orders, real closed fields, ordered abelian groups, non-trivially valued algebraically
closed valued fields.

Definition 1.1.16. 1. Let '(x; y) be an L(;)-formula, and let A be set of |x|-tuples. We
say that '(x; y), shatters A if there exists a family (bI : I ✓ A) of |y|-tuples such that,
for all a 2 A

U |= '(a; bI) if and only if a 2 I.

2. An L(;)-formula '(x; y) is IP (the independence property) if it shatters an infinite set.
We say it is NIP, if it is not IP.

11



Ph.D. Thesis – D. Mutlu McMaster University – Mathematical Logic

3. The theory is NIP (or dependent) if all formulas are NIP.

Example 1.1.17. 1. Let T be the theory of (Q, <). The formula x < y does not shatter
any set A with |A| � 2. In fact, if a1, a2 2 A with a1 < a2, there is no b{2} such that
¬(a1 < b{2}) and a2 < b{2} both hold.

2. Any stable formula fails to shatter an infinite set, otherwise it would induce a linear
order, contradicting stability.

Example 1.1.18. 1. The following theories are NIP: the theory of algebraically closed
valued fields, dense linear orders without endpoints, real closed fields.

2. The following theories are not NIP: random graphs, algebraically closed fields with an
automorphism.

Definition 1.1.19. A formula '(x; y) has the tree property of the second kind (TP2) if there
exists a family of tuples (aij)i,j2N and k 2 N such that:

• '(x, aij)j2N is k-inconsistent for every i 2 N,

• '(x, ai�(i))i2N is consistent for every permutation � : N! N.

A formula is NTP2 if it is not TP2. A theory is NTP2 if every formula in the theory is
NTP2.

Example 1.1.20. The class of NTP2-theories generalizes both NIP and simple theories, so
any NIP or simple theory is NTP2. An example of an NTP2-theory that is neither NIP

nor simple is the ultraproduct
Q

p2P
Qp/U of p-adically closed fields Qp, with respect to a

non-principal ultrafilter U on the set P of prime numbers.

Forking and dividing

Notation 1.1.21. For tuples a and b and a set A, we write a ⌘M b if tp(a/M) = tp(b/M).

Definition 1.1.22. Let  be a cardinal. A sequence (ai)i< is an A-indiscernible sequence,
if for all i1 < · · · in and j1 < · · · jn, ai1 · · · ain ⌘A aj1 · · · ajn .

Definition 1.1.23. Let '(x; y) be an L(;)-formula, a a tuple of length |y| and A a set.
Then,

12
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1. We say '(x, a) divides over A, if there exists an A-indiscernible sequence (ai)i<! with
a1 := a and such that the set {'(x; ai):i < !} is inconsistent. (Equivalently, it is
k-inconsistent for some k 2 Z>0, meaning that every subset of size k is inconsistent.)

2. We say '(x, a) forks over A if it lies in a finite disjunction of dividing formulas. That
is, there exist L(U)-formulas ✓1(x), · · · , ✓n(x), where for each i, ✓i divides over A, and

'(x) `
nW

i=1
✓i(x). A set of formulas forks over A, if it implies a formula that forks over

A.

3. If b is a tuple, we say a does not fork from b over A, denoted by a |
^A

b if tp(a/Ab)
does not fork over A.

It is straightforward that if a formula does not divide over A, then it does not fork over
A. However, the converse does not always hold in general.

Nevertheless, in a large class of theories, forking and dividing coincide over models:

Fact 1.1.24. ([CK12, Theorem 1.1]) Assume that T is NTP2 and M |= T . Then, for any
formula '(x) 2 L(U), '(x) divides over M if and only if it forks over M .

In stable theories, every type over an acl-closed set admits a unique non-forking extension.

Fact 1.1.25. Assume that T is stable. Let C be a subset of U such that C = acl(C). Then
for any tuple a in U , tp(a/C) is stationary, i.e. for any M |= T with M ◆ C, there exists a
unique type p 2 S(M) that does not fork over C.

Germs of Functions on Types

In this subsection, we will recall the notion of germs of definable functions on a definable
type. This is analogous to germs of functions on topological spaces, where a germ is an
equivalence class of functions which appear identical locally. When the theory is stable, the
strong germs always exists, which are particularly useful in group configuration arguments,
namely, constructing definable groups from data on definable types. The definitions are
given below.

Definition 1.1.26. Let p(x) be a global A-definable type, where A is a small set. Let fc

and gc0 be definable functions with parameters c and c
0, respectively. We say that fc(x) and

gc0(x) have the same p-germ if p ` fc(x) = gc0(x), or equivalently, |= (dpx)fc(x) = gc0(x).

13
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Given an L(c)-definable function fc, we define a relation E as follows:

c1Ec2 if and only if fc1(a) = fc2(a) for all a |= p. (1.1.1)

By definability of p, the relation E is definable, and it is easy to check that E is an equivalence
relation. The equivalence class c/E of c under E is called the p-germ of fc on p.

The p-germ of fc is said to be strong over A if, moreover, for all a |= p|Ac, we have
fc(a) 2 dcl(e, a,A), where e is a code for the definable set c/E.

Model theory and groups

Throughout this section, we fix a definable group G in a theory T over a model M - that is,
there exist L(M)-formulas that define both the underlying set of G and its multiplication
operation. Each definition and fact presented here also holds when G is a type-definable
group; that is, when G itself is type definable and the graph of its group operation is given
by the restriction of a definable set to G

3.
For a subgroup H  G, we say H has bounded index in G if [G : H] < , where  is

smaller than the cardinality of the universal model U .

Definition 1.1.27. Let A be a small set. The connected components of an L(A)-definable
group G over A are defined as follows:

1. G
0
A

is the intersection of all A-definable subgroups of G of finite index.

2. G
00
A

is the intersection of all subgroups of G that are type-definable over A and have
bounded index.

3. G
1

A
is the intersection of all subgroups of G that are Aut(U/A)-invariant and have

bounded index.

For any A, we note that G
1

A
 G

00
A
 G

0
A
. However, the converse might not hold in

general.

Fact 1.1.28. ([Sim15, Theorem Theorem 8.3, Theorem 8.4,8.7]) Assume that T is NIP.
Then for any small set A, the connected components G

0
A
, G00

A
, and G

1

A
do not depend on A.

Therefore, in NIP theories, we simply write G
0, G00, and G

1, omitting the parameter
set, for the connected components of G.

14
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The elements of G(U) act on definable subsets of G as follows: for any L(U)-formula
�(x) defining a subset of G and any g 2 G(U), we define g · �(x) := �(g�1

· x). This induces
an action of G(U) on SG(U), the set of global types concentrating on G, where for each
g 2 G(U) and p 2 SG(U):

g · p := {'(x) : there exists a |= p such that U |= '(g · a)}.

Hence g · a |= g · p whenever a |= p. The stabilizer of p under this action is:

StabG(p) = {h 2 G(U) : hp = p}.

The following definitions first appeared in [HP11] and were refined in [CS18] in the NIP

context. The same definitions were also used in [MOS20] in the NTP2 context.

Definition 1.1.29. 1. An L(U)-formula is f -generic if for all g 2 G(U), there exists a
small model M such that g · ' does not fork over M .

2. A partial type p is f -generic if it contains only f -generic formulas.

3. A global type p 2 SG(U) is strongly f -generic over a small model M if for every
g 2 G(U), g · p does not fork over M . In this case, we say G has a strongly f -generic
type.

As discussed in [CS18] and [MOS20], these notions of genericity behave similarly to
generics in stable theories when there exists a strongly f -generic of the group.
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1.2 Valued Fields

In this section, we review both the algebraic and model-theoretic aspects of valued fields.

Definition 1.2.1. Let K be a field. A valuation on K is a group homomorphism v : K !

� [ {1} where � is an ordered abelian group such that for all x, y 2 K:

1. v(x) =1 if and only if x = 0,

2. v(xy) = v(x) + v(y),

3. v(x+ y) � min{v(x), v(y)}.

In this case, the pair (K, v) is called a valued field, and � is called the value group.

Here, � [1 is a monoid, where we assume that � <1 for all � 2 �, and that 1+ � =

� +1 =1.
For a valued field (K, v), its valuation ring is the set O = {a 2 K | v(a) � 0}. This ring

has a unique maximal ideal m := {a 2 O | v(a) > 0}. The quotient field O/m is called the
residue field, and is denoted by k. We also denote the natural projection by res : O ! k.

Given a valued field K, in terms of characteristic the possibilities are either char(K) =

char(k) = p where p � 0, or char(K) = 0 and char(k) = p > with p > 0. When char(K) =

char(k) = 0, we say K is of equicharacteristic zero; when when char(K) 6= char(k), we say
K is of mixed characteristic.

Example 1.2.2. 1. On Q, for a prime p, we can define the valuation vp : Q ! Z as
follows: for a, b 2 Q with b 6= 0, vp(ab ) = k where a

b
= p

k
mn and p does not divide

both m and n. Here, vp is called the p-adic valuation.

2. Let k be a field and G be an ordered abelian group. Consider the set of formal sumsP
�2G

a�t
� where a� 2 k for each � 2 G. For a formal sum f =

P
�2G

a�t
� , we define

its support supp(f) to be the set {� : a� 6= 0}. Let

k((tG)) := {f =
X

�2G

a�t
� : a� 2 k and supp(f) is well-ordered.}.

Then k((tG)) has a valued field structure, where

-
P
�2G

a�t
� +

P
�2G

b�t
� =

P
�2G

(a� + b�t
�),
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-
� P
�2G

a�t
�
�� P

�2G

b�t
�
�
=
P
�2G

P
�+↵=�

a�b↵t
�
.

- For f 2 k((t�)), v(f) = min(supp(f)).

The valued field k((tG)) is called a Hahn field. Its residue field is k and its value group
is G.

Lemma 1.2.3. Let (K, v) be a valued field. Then,

1. v(1) = 0,

2. For x, y 2 K, v(x+ y) = min{v(a), v(b)} if v(x) 6= v(y).

Proof. This is easily verified using definitions.

Another important quotient for a valued field (K, v) is the set RV⇥ := K
⇥
/(1 +m). We

write rv : K⇥
! RV⇥ for the natural projection map. For a = a(1 + m) in RV⇥, define

vrv(a) = v(a). This is well-defined: if a = a0, then a

a0 2 1 + m. In particular, a = a
0(1 + u)

for some u 2 m. By Lemma 1.2.3, v(a) = v(a0) + v(1 + u) = v(a0). Moreover, there is a
natural embedding i : k ,! RV given by sending a(1 + m) 2 k to a(1 + m) 2 RV⇥. We set
i(0) := 0rv and we write RV = RV⇥

[{0rv}. The maps i and vrv give a short exact sequence
of abelian groups:

1! k⇥ ,! RV ⇣ �! 0,

and this extends to a short exact sequence of monoids by setting vrv(0rv) =1.

1! k! RV! �1 ! 0.

A valuation also induces a natural topology on K, generated by open balls, where an open
ball centered at a point a 2 K and a radius � 2 � is the set B>�(a) = {b 2 K:v(b� a) > �}.

Then, a closed ball is a set of the form B��(a) = {b 2 K:v(b� a) � �}. Notice that m is the
open ball B>0(0), and O is the closed ball B�0(0).

For � 2 �, the fiber of � under vrv is the set RV� = {a(1 + m) : v(a) = �} of �. An
element a(1 +m) can be identified with the open ball B>v(a)(a) and this identification does
not depend on the representative of a(1 + m). For a(1 + m) = b(1 + m), then v(a) = v(b),
and thus if a� b = au1 � bu2 for some u1, u2 2 m, then v(a� b) > v(a) = v(b).

17
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Remark 1.2.4. Given � 2 �, fix a non-zero d� 2 RV�. Let f : k ! RV� be defined by
f(a) = ad�, for all a 2 k. One can show that f is well-defined. Morever, f is a definable
bijection, and hence RV� is k-internal. This also induces a multiplication on RV� as follows:
for x, y 2 RV�, define xy = abd� where x = f(a) and y = f(b) for some a, b 2 k. There
is also an induced addition on the fiber RV� [ 1, interpreted as x + y = f(a + b), where
f(a) = x and f(b) = y for a, b 2 k. Note that this addition does not depend on the choice of
d�.

Therefore, RV� [ {0RV} has a 1-dimensional k-vector space structure.

One can define the partial addition on the RV-sort as follows rv(a + b) = rv(c) if and
only if there exist a

0
, b

0
, c

0
2 K such that rv(a) = rv(a0), rv(b) = rv(b0), rv(c) = rv(c0) and

a
0 + b

0 = c
0. Otherwise, we set RV(a + b) = 0RV However, this is not always well-defined.

The following fact provides the necessary condition for well-definedness.

Fact 1.2.5. ([Fle11, Proposition 2.5]) Let (K, v) be a valued field and a1 . . . , an 2 K such
that v(a1 + . . . , an) = min{v(a1), . . . , v(an)}. Then, we have rv(a1 + · · · + an) = rv(a1) +

· · ·+ rv(an).

Valued Field Extensions

For a valued field K, let kK = {res(a):a 2 K} and �K = {v(a):a 2 K}. For another valued
field L, we write L � K if L ◆ K and the valuation of L resticted to K gives the valuation
of K. In this case, we say L is a valued field extension of K.

When L has a finite transcendence degree over K, this reflects to the value group and
the residue field as in the following fundamental inequality known as Zariski-Abhyankar
Inequality. Here, for fields A ✓ B, tr.deg(A/B) refers to the transcendence degree of A over
B.

Fact 1.2.6. ([vdD14, Theorem 3.25]) Let L � K be an extension of valued fields and suppose
that tr.deg(L/K) is finite. Then both tr.deg(kL/kK) and the dimension of the Q-vector space
�L/�K are finite. Moreover,

tr.deg(L/K) � tr.deg(kL/kK) + dimQ(�L/�K),

where dimQ(�L/�K) is the dimension of �L/�K as a Q-vector space.

Definition 1.2.7. A valued field extension L � K is called

18
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• unramified if �K = �L

• immediate if �K = �L and kK = kL.

Definition 1.2.8. A valued field (K, v) is maximally complete(or maximally valued) if it
has no proper immediate extensions.

Fact 1.2.9. ([Hil18, Proposition 5.6]) A Hahn field k((tG)) is maximally complete.

Henselian Fields

An important class of valued fields are henselian valued fields. They are the valued fields that
satisfy the Hensel’s Lemma, given in the definition, below. For a polynomial P (x) 2 O[X],
we write res(P )(X) 2 k[X] to denote the polynomial obtained by applying the map res to
the coefficients of P (x).

Definition 1.2.10. A valued field (K, v) is called henselian if for every polynomial P 2 O[X]

and every a 2 O satisfying res(P )(res(a)) = 0 and res(P )0(res(a)) 6= 0, there exists a unique
b 2 O such that v(b� a) > 0 and P (b) = 0.

Example 1.2.11. Hahn fields, algebraically closed valued fields and p-adically closed valued
fields.

A valued field (K, v) is called finitely ramified if for any n 2 Z>0, the interval [0, v(n)] is
finite.

Fact 1.2.12. (Theorem [EP05, Lemma 4.1.1, Theorem 4.1.10]) Let (K, v) be a valued field
of equicharacteristic zero, or finitely ramified of mixed characteristic. Then, the following
are equivalent:

1. (K, v) is henselian.

2. (K, v) is algebraically maximal, i.e. any any proper algebraic extension is immediate.

3. The valuation v extends uniquely to K
alg: if w is a valuation on K

alg extending v, then
there is a valued-field isomorphism between (K, v) and (K,w).

By Fact 1.2.12, whenever (K, v) is henselian it embeds into its algebraic closure (Kalg
, w)

in a particularly nice way: any valued field automorphism of (K, v) extends to a valued field
automorphism of (Kalg

, w)).
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Definition 1.2.13. Let (K, v) be a valued field of equicharacteristic zero. Then, there exists
a henselian valued field extension (Kh

, w) of (K, v) such that if (K 0
, v

0) is a henselian valued
extension of (K, v) there exists a valued field embedding ◆(Kh

, w) ! (K 0
, v

0) such that ◆|K
is an identity map. In this case, (Kh

, w) is called the henselization of (K, v).

Definition 1.2.14. Let K be a field of characteristic zero, possibly with extra structure.
We say K is algebraically bounded if for all tuple a in K, acl(a) is contained in alg(a), where
alg(a) is the field-theoretic algebraic closure of Q(a).

Fact 1.2.15. ([vdD89]) Let (K, v) be an henselian field. Then K is algebraically bounded.

Quantifier elimination

There are many different choices of language when working with valued fields. The classical
one L div was introduced by Robinson. This language extends the language of rings by a
single binary relation symbol div , interpreted as follows: a div b if and only if v(a)  v(b).
Robinson showed that the theory of algebraically closed valued fields admits quantifier elim-
ination in L div . However, this fails in general for the theories of henselian fields. Simply
adding sorts for value groups and the residue field to the language might not even be suffi-
cient; one might need the angular component, a section of the valuation map.

We define the language Lval = (VF, k,�) of valued fields as follows: The sorts VF and
k are equipped with the language of rings and the sort � is equipped with the language of
ordered abelian groups expanded by a symbol 1. In addition, there are maps v : VF ! �

and Res : VF ⇥ VF⇥
! k, where v is interpreted as the valuation map and for all a 2 VF

and b 2 VF⇥, Res(a, b) equals res(a
b
) if v(a) � v(b) and 0, otherwise.

The following result is a well-known.

Fact 1.2.16. A complete theory of algebraically closed valued fields eliminates quantifiers in
Lval.

We define the language Lval,ac to be the expansion of Lval by adding a map ac : VF! k.
For each a 2 VF, ac(a) = res(a) if a 2 O and ac(a) = 0 otherwise.

Fact 1.2.17. ([Pas90]) The theory of henselian valued fields of equicharacteristic zero with
angular components eliminates quantifiers resplendently relatively to � and k in the language
Lval,ac.
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Next, we define the language LVF,RV of valued fields, consisting of two sorts: VF and
RV. Each sort is equipped with the language of rings. The addition on RV is defined as in
Fact 1.2.5: for x, y 2 K,

rv(x) + rv(y) =

8
<

:
rv(x+ y), if v(x+ y) = min{v(x), v(y)},

0RV, otherwise.

We also include the map rv : VF ! RV given by the natural projection on VF⇥, with
rv(0) := 0rv.

The following fact was originally proved in [Bas91], we cite it from a more recent source.

Fact 1.2.18. ([Rid17, Theorem 1.4]) The complete theory of henselian valued fields of
equicharacteristic zero eliminates quantifiers resplendently and relatively to RV in the lan-
guage LVF,RV

As an immediate consequence of the previous two facts, we have the following corollary.

Corollary 1.2.19. 1. Let Tval,ac be a complete theory of henselian valued fields of equichar-
acteristic zero in the language Lval,ac. Then the sorts k and � are purely stably embed-
ded and orthogonal to each other.

2. Let Trv be a complete theory of henselian valued fields of equicharacteristic zero in the
language LRV. Then the sort RV is purely stably embedded.

Theory of henselian valued fields also eliminates quantifiers if we choose a different ex-
pansion of the language Lval. We can add the multiplicative sorts k⇥/(k⇥)n. This approach
is analogous to the quantifier elimination for p-adically closed fields, where predicates for
nth roots are added to the language (see [Mac76]). In the henselian case, introducing these
additional sorts ensures that the short exact sequence 1! k⇥ ! RV⇥

! �! 0 splits. The
language was introduced in [ACGZ22] and as explained in [Vic22], the quantifier elimination
result of the field quantifiers was given.

Definition 1.2.20. 1. We define Lval,A to be the expansion of Lval by the power residue
sorts An = k⇥/(k⇥)n [ {0n}. For each n 2 N, we add the maps ⇡n : k! An where ⇡n
is the projection map on k⇥ and ⇡n(0) := 0n. We also add the maps resn : VF! An

defined as follows: for all a 2 VF, if v(a) 2 n�, then resn(a) = ⇡n(res(
a

b
)) for any b

with v(a) = nv(b). We note that this is well-defined and does not depend on the choice
of b. We set resn(a) := 0n otherwise.
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2. We define LRV,A =
�
RV, k,�,A, vrv, ◆, (⇢n)n2Z, (⇡n)n2N

�
as the language of short exact

sequences of monoids. Here, the sort � is in the language of ordered groups expanded
by a symbol 1. The sorts RV and k have the language of monoids {·, 1, 0}, with the
sort k further expanded by the sorts A as described in part (1). The map ◆ : k! RV

is the natural embedding, and vrv : RV! � is the induced valuation map on RV. For
a 2 RV, the function ⇢n is defined as follows: if a 2 v�1

rv (n�), then ⇢n(a) = ⇢n(ab�1)

for some b 2 RV with nvrv(b) = vrv(a); otherwise, ⇢n(a) := 0. This is a well-defined
map and does not depend on the choice of b.

Fact 1.2.21. ([ACGZ22, Theorem 5.15]) Every Lval formula '(x, y, z) where x, y and z are
variables belonging to VF, �, k, respectively, is equivalent to a Lval,A-formula  (t1(x), · · · , tn(x), y, z)
where ti’s are one of the following forms: v(p(x)), res(p(x)

q(x ) or resn(p(x)) where p and q are
polynomials with integer coefficients. In particular, if D is a subset of kA (respectively �)
over a parameter set C in the valued field sort, then there exists an kA-formula (respectively,
a �-formula) and some u 2 dcl(C) such that  (x, u) defines D. Hence, the sorts kA and �

are stably embedded with the control of parameters.

The following, then is a direct consequence of Fact 1.2.21.

Fact 1.2.22. Let T be a theory of henselian valued fields of equicharacteristic zero in the
language Lval,A. Then T eliminates field quantifiers. Moreover, the sorts kA and � are
purely stably embedded and orthogonal to each other.

A suitable language for the elimination of quantifiers for the theories of the short exact
sequence of abelian groups is given in [ACGZ22]. Here, we state this result in the context
of valued field structures.

Fact 1.2.23. ([ACGZ22, Corollary 4.8]) The theory of (RV,�, k) in the language LRV,A

eliminates the RV-quantifiers. Moreover, the sorts kA and � are purely stably embedded and
orthogonal to each other.

The Ax-Kochen-Ershov Principle

For henselian valued fields of equicharacteristic zero or unramified mixed characteristic with
a perfect residue field, the theory is completely determined by the value group and residue
field. This was proven by Ax and Kochen in [AK65] and, independently, by Ershov in [Es65].
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Fact 1.2.24. Let (K,�K , kK) and (M,�M , kM ) be henselian fields of equicharacteristic or
unramified henselian valued field of mixed characteristic and with perfect residue field. Then

(K,�K , kK) ⌘ (L,�L, kL) if and only if �K ⌘ �L as ordered abelian groups and kK ⌘ kL as
fields.

In the light of Fact 1.2.24, one can consider which model theoretical properties can be
lifted from the residue and the value group to the theory of the valued field. This approach
is known as the AKE -principle. For example, some tameness properties of the theory are
transferred from the residue field and the value group. Such a result first appeared in [Del81]
in which it is proved that the theory of henselian valued fields is NIP if and only if the theory
of the residue field is NIP (the theory of the value group is always NIP). A further instance
has been proved more recently.

Fact 1.2.25. ([Che14, Theorem 7.6]) A henselian valued field of equicharacteristic zero is
NTP2 if and only if the theory of its residue field is NTP2,

The following is a folklore fact and it can be deduced from Theorem 1.2.24.

Fact 1.2.26. Let K be a henselian valued field which is either equicharacteristic zero or
is unramified of mixed characteristic with perfect residue field. Then K has an elementary
extension M , which is a maximally complete model.

Algebraically Closed Valued Fields

In this section, we survey model-theoretic properties of algebraically closed valued fields that
we will need in this thesis. We have seen that a complete theory of algebraically closed valued
fields eliminates quantifiers in 1-sorted language Ldiv. This leads to a characterization of
definable subsets in the field sort.

A swiss cheese is a set of the form B \ (D1 [ . . . [ Dn), where B,D1, . . . , Dn are balls
and D1, · · · , Dn are pairwise disjoint and are proper subballs of B.

Fact 1.2.27. ([Hol95]) Let K be an algebraically closed valued field. If X ✓ K, then X is
a union of finitely many swiss-cheeses.

Next, we recall the characterization of definable and algebraic closure in the valued field
sort.
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Notation 1.2.28. Let K be a field and C ✓ K. Then C
alg denotes the field-theoretic

algebraic closure of C. If a is a tuple of elements (possibly infinite) or a set of elements,
then C(a) denotes the field generated by C and a.

Fact 1.2.29. ([Hil18, Corollory 4.13]) Let K be an algebraically closed valued field, seen as
an Ldiv-structure. Then, for A ✓ K,

1. acl(A) = F(A)alg, where F is Q if charK = 0 and is Fp otherwise.

2. dcl(A) = F(A)h, the henselization of the field F(A) (see Definition 1.2.13).

The following is another well-known fact that follows from the stable embeddedness with
control of parameters of the sorts k and �.

Fact 1.2.30. Let A ✓ K. Then, acl(kA) = kAalg , acl(�A) = dcl(�A) = Q⌦ �A.

The Language of Geometric Sorts

In this section, we recall the the language of geometric sorts for which the theory of alge-
braically closed valued fields eliminate imaginaries.

For n � 1, let Sn be the set of codes for free O-submodules of K
n. We can identify

each free O-submodule � of K
n with an element in GLn(K)/GLn(O). We define Tn =S

s2Sn
⇤(s)/m⇤(s), where ⇤(s) is the O-submodule coded by s. Let ⌧n : Sn ! Tn be the

natural projection map. Furthermore, for each n � 1 we define the natural projection maps
�n : GLn(K)! Sn and �n : GLn(K)! Tn.

Definition 1.2.31. Let L0 denote the expansion of the language Lval of valued fields ob-
tained by adding sorts S =

S
n
Sn and T =

S
n
Tn along with the maps (⌧i,�n,�n)i>0 as

described above.

Example 1.2.32. 1. Let �O = {a 2 K : v(a) � �}. It is easy to check that �O is
an O-module, hence lies in S1. Conversely, using Fact 1.2.27, one can show that any
O-submodule of K is of this form.

2. If ⇤(s) = �O, then the quotient element a + m⇤(s) is the open ball B>�(a). Hence,
the open balls are coded in T1.

Fact 1.2.33. ([HHM06]) A complete theory of algebraically closed valued fields eliminates
imaginaries in L0.
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We close this section by stating another key property of algebraically closed valued fields.

Fact 1.2.34. ([HHM08, Corollary 8.16]) Let eU be a universal model of algebraically closed
valued fields in the language L0. Let C = acl(C) be a subset and a be a finite sequence in eU .
Let M be a model containing C. Then, tp(a/C) has a C-invariant extension to some type
p 2 S(M).
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Chapter 2

Residual Domination

The notion of stable domination was introduced by Haskell, Hrushovski and Macpherson in
[HHM08] for algebraically closed valued fields. Later, it was generalized to residual domi-
nation (also referred to as residue field domination) first by Ealy, Haskell and Marikova in
[EHM19] for real closed valued fields and then to a broader class of henselian valued fields
by Ealy, Haskell and Simon in [EHS23], by Vicaria in [Vic22] and recently by Kovacsics,
Rideau-Kikuchi and Vicaria in [KRKV24]. In this chapter, we will provide an algebraic
characterization of residual domination in pure henselian valued fields of equicharacteristic
zero, analogous to the result given for algebraically closed valued fields in [EHS23]. Our
proofs are very similar to those in [EHS23]. Using this result, we relate the residual domi-
nation in the henselian field to the stable domination in the algebraically closed valued field
that it embeds into.

For algebraically closed valued fields, it is well known that the stable sorts are precisely
those internal to the residue field. In the setting of henselian valued fields, it was shown
in [Vic22] and [EHS23] that certain types are dominated by a collection of sorts internal
to the residue field over the value group. We will further show that these types are stably
dominated over the value group in the algebraic closure of the henselian field. Conversely,
we will show that a type that is stably dominated over the value group is dominated in the
henselian field by the same collection of sorts internal to the residue field.

The organization of this chapter is as follows: we start by giving a survey on domination
in valued fields, which covers the facts on stable domination in algebraically closed valued
fields and residual domination in henselian valued fields. In the subsequent sections, we will
present our main results.
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2.1 A Survey on Domination in Valued Fields

In this section, we recall definitions and results on domination in valued fields. An abstract
notion of domination was introduced in [EHM19]. Let L be an arbitrary language, and let T
be an L-theory with a universal model U . Suppose S and T are sorts (or collections of sorts)
that are stably embedded in U . Additionally, assume that there exists a ternary relation,
denoted by |

^
S on S, which provides a notion of independence.

For a set A, we write S(A) to denote the set S \ dcl(A).

Definition 2.1.1. Let a be a tuple, and let C be a set of parameters in U . We say that
tp(a/C) is dominated by S if for every tuple b in U such that S(Ca) |

^
S

C
S(Cb), we have

tp(a/CS(Cb)) ` tp(a/Cb).

We say tp(a/C) is dominated by S over T if, tp(a/CT (Ca)) is dominated by S.

In the context of henselian valued fields, the stably embedded sorts that we will work
with will be the residue field k and the value group �. We will use the field theoretic algebraic
independence in the sort k. As stated in [EHS23], the existence of good separated basis is
crucial to achieve the desired type implication.

Separated Extensions

Let (C, v) ✓ (L, v) be valued fields, let V be a finite dimensional C-vector subspace of L.
We say V is separated over C if there exists a C-basis ~b = (b1, . . . , bn) of V such that for all
c1, . . . , cn 2 C,

v(
X

i

cibi) = min{v(ci) + v(bi)}i.

In this case, ~b is called a separated basis. A separated basis is good if in addition, for all
1  i, j  n, we have v(bi) = v(bj) or v(bi) + �(C) 6= v(bj) + �(C).

Finally, we say L has the separated basis property over C (or equivalently, the field exten-
sion L/C is separated) if every finite-dimensional C-vector subspace of L has a separated ba-
sis over C. We say L has the good separated basis property over C, if every finite-dimensional
C-vector subspace of L has a good separated basis over C

In fact, separated basis property always implies the good separated basis property.
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Remark 2.1.2. Let (C, v) ✓ (L, v) be valued fields, and suppose that L has the separated
basis property over C. Then L also has the good separated basis property over C.

Proof. We will prove by induction on the dimension of C-vector subspace of L. Let U be
a finite-dimensional C-vector space of dimension n, with a good separated basis b1, . . . , bn.
Let b 2 L\U . By assumption, we may assume that (b1, . . . , bn, b) is separated over C. First,
suppose that v(b) 6= v(u) for any u 2 U . Then, in particular, v(b) 6= v(c) + v(bi) for any
c 2 C and i  n. Hence, (b1, . . . , bn, b) remains a good basis.

Now suppose that v(b) = v(u) for some u 2 U . Then there exists i0  n and c 2 C such
that v(b) = v(c) + v(bi0). After replacing b with c

�1
b, we may assume that v(b) = v(bi0).

Therefore, (b1, . . . , bn, b) is again a good basis.

Fact 2.1.3. ([Del88, Corollary 7]) Any algebraic extension of a henselian field is separated.

The following fact follows from the definition.

Fact 2.1.4. ([Del88, Lemma 5]) Let (C, v) ✓ (L, v) be valued fields. Assume that U and
V are finite-dimensional C-vector subspaces of L with U ✓ V and V is separated over K.
Then U is separated over C.

As mentioned in [Del88], the transitivity of having the separated basis property can be
derived using Fact 2.1.4:

Proposition 2.1.5. Let (C, v) ✓ (L, v) ✓ (M, v) be valued fields such that L/C and M/L

are separated. Then M/C is separated.

Proof. Let (fi)i2I be a separated basis of M over L and (ej)j2J a separated basis of L over C.
For any x 2M , we can write x =

P
lifi =

P
(
P

ci,jej) fi. It is easy to see that the products
eifj are distinct and the set {ejfi | j 2 J, i 2 I} is C-linearly independent. Moreover, it
remains separated over C since the elements fi’s are separated over L and cej 2 L for any
c 2 C and j 2 J . Thus, {ejfi | j 2 J, i 2 I} is a separated basis of M over C.

If U is a finite-dimensional C-vector subspace of M , then U lies in the C-span of finitely
many ejfi’s. By Fact 2.1.4, this implies U is separated over C.

The following is a well-known example of separated extensions. This field extension is
called the Gauss extension.

Example 2.1.6. Let C be a valued field and let a be a singleton with v(a) = 0 and res(a) is
transcendental over C. Let L be the field generated by C and a. Then L is separated over
C.
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Proof. We will show that for every n 2 Z>0 and c1, . . . , cn 2 C, v(
nP

i=1
cia

i) = min{v(ci)}.

Suppose not. Let � = min{v(ci)}i and I = {j : v(cj) = �}. We may assume that 1 2

I. Then v(
P
j2I

cjc
�1
1 a

j) > 0. It follows that
P
j2I

res(cjc�1)res(a)j = 0, which contradicts

with the transcendentality of res(a) over kC . The separatedness of L over C then follows
immediately.

Recall that a valued field is maximally complete if it does not have a proper immediate
extension. The following is a well-known fact. Recall that by Remark 2.2.8, the separated
basis property implies the good separated basis property.

Fact 2.1.7. [HHM08, Lemma 12.2] Let C be maximally complete. Then every valued field
extension of C has the separated basis property over C.

Stably Dominated Types

Throughout this subsection, we fix a language L and its theory T . We will work in a universal
model U of T .

Let C be a set. A C-definable set D is said to be stable if for any C-definable formula
'(x; y), the formula '(x, y) ^  (x), where  (x) defines D, is stable. If D is stable, then it
is also stably embedded. However, in the literature, such sets are referred to as stable and
stably embedded, and we will stick to this convention.

Let StC denote the collection of all C-definable, stable and stably embedded sets in
U . We will consider StC as a multi-sorted structure whose sorts are the stable and stably
embedded C-definable sets, equipped with their induced structure. Additionally, for each
relation on finitely many C-definable stable and stably embedded sets D1, . . . , Dn in U , we
include the corresponding relations in StC .

Fact 2.1.8. ([HHM08, Lemma 3.2]) The structure StC is stable.

We informally refer to the sort StC as the stable sorts. Then a type is stably dominated
if it is dominated by the stable sorts, where we use the forking independence, denoted by
|
^. The formal definition is given below.

Definition 2.1.9. Let C be a parameter set and a be a tuple. Then the type tp(a/C) is
stably dominated if for every tuple b 2 U ,

tp(a/CStC(Cb)) ` tp(a/Cb),
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whenever StC(Ca) |
^C

StC(Cb).
Let M be a model. We say that a type p 2 S(M) is stably dominated if there exists

C ✓M such that the restriction p|C is stably dominated.

Example 2.1.10. 1. In any theory, if a type p lies in the stable sorts, then p is stably
dominated.

2. Let T be a complete theory of algebraically closed valued fields in the language L0 of
geometric sorts. For any ball B, define

p
B = x 2 B [ x /2 B

0 : B
0
⇢ B is a proper subball of B.

By Fact 1.2.27, every definable set in a model M is a boolean combination of M -
definable balls. Hence, pB is a complete type, called the generic type of B.

When B = O, we have that a |= p
O implies a 62 m, where m is the maximal ideal, i.e.,

the open ball Bop

0 (0). Therefore, v(a) = 0, and so res(a) 62 0.

For a set C, we have a |= p|C if and only if res(a) does not lie in any acl(C)-definable
subset of k. Indeed, suppose a |= p

O
|C. If res(a) = ↵ for some ↵ 2 acl(C), then a 2

res�1(↵), which is a proper acl(C)-definable subball of O, a contradiction. Conversely,
suppose res(a) /2 acl(C), and assume there exists a proper closed subball Bcl

d
(�) ⇢ O

with d, � 2 acl(C) such that a 2 B
cl
d
(�). Then v(a � d) � � > 0. By Lemma 1.2.3, it

follows that v(a) = v(d) = 0. Applying res, we get res(a) = res(d), but res(d) 2 acl(C),
a contradiction.

Since the residue field k is an algebraically closed field, it is stable. We will show that
p
O
|C is stably dominated via the map res for any set C.

Let b be any tuple such that res(a) |
^C

St(Cb). Suppose b ⌘Cres(a) b
0, and let � 2

Aut(U/Cres(a)) with �(b) = b
0 and �(a) = a

0. We will show that b ⌘Ca b
0. The

forking independence in particular implies that res(a) 62 acl(Cb), hence a |= p
O
|Cb.

As b ⌘Cres(a) b
0, it follows that res(a) 62 acl(Cb

0), hence a |= p
O
|Cb

0 as well.

Now let '(x, y) be any L(C)-formula. Then |= '(a, b) if and only if |= '(a0, b0). Since
a, a

0
|= p

O
|Cb

0, we have a ⌘Cb0 a
0, which implies |= '(a, b0). As ' was arbitrary, it

follows that tp(b/Ca) = tp(b0/Ca), hence b ⌘Ca b
0, as desired.

With a similar argument one can show that the generic type of any closed ball is stably
dominated.
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3. The generic type p
m of the maximal ideal m, which is the open ball Bop

0 (0) is not stably
dominated. Suppose on the contrary that p

m
|C is stably dominated over some set C.

If a |= p
m
|C, then we must have 0 < v(a) < � for all positive � 2 dcl(C), in particular

v(a) 62 �(C). It follows that for c1, . . . , cn 2 VF(C), we have v(
nP

i=1
cia

i) = min{v(ci) +

v(ai)}, since for distinct i, j, we have v(ci) + v(ai) 6= v(cj) + v(aj). In particular this
means for all u 2 VF(Ca) \ VF(C), v(u) 62 �(C). Moreover, since a 62 acl(C), the
Zariski–Abhyankar inequality (Fact 1.2.6) implies that k(Ca) = k(C). By Fact 2.1.18,
we can identify StC with k \ acl(C), hence StC(Ca) = StC(C). It follows trivially
that StC(Ca) |

^C
StC(Ca). Therefore, we must have tp(a/CStC(Ca)) ` tp(a/Ca).

However, tp(a/CStC(Ca)) = tp(a/C) is not a realized type, while tp(a/Ca) is realized
by a — a contradiction. Thus, pm|C is not stably dominated.

Stably dominated types behave similarly to types in stable theories. In the following
facts, we outline their main properties.

Fact 2.1.11. ([Proposition 3.13, Corollary 3.31 (iii), Corollary 6.12][HHM08], [HRK19,
Proposition 2.10 (1)] ) For all tuples a and C,

(i) Suppose C = acl(C). If tp(a/C) is stably dominated then it has a unique C-definable
extension p that satisfies the following: for all B ◆ C, a |= p|B if and only if
StC(Ca) |

^C
StC(B). Moreover, p is symmetric: (a, b) |= p ⌦ p if and only if

(b, a) |= p⌦ p

(ii) tp(a/C) is stably dominated if and only if tp(a/acl(C)) is.

(iii) If tp(a/C) is stably dominated and b 2 acl(Ca), then tp(b/C) is stably dominated.

Fact 2.1.12. ([HHM08, Theorem 4.9, Corollary 6.12]) Let a be a tuple and C be a set.

(i) Suppose that p is an acl(C)-invariant global type and p|C is stably dominated. Then
for every B ◆ C, p|B is stably dominated.

(ii) If p is a global C-invariant type, stably dominated over B ◆ C, and if tp(B/C) has a
global C-invariant extension, then p is stably dominated over C.

Another key property of stably dominated types is the existence of strong codes for germs
(see Definition 1.1.26), which is another similarity to types in stable theories.
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Fact 2.1.13. ([HHM08, Theorem 6.3]) Let C = acl(C) and p be a global C-invariant type,
stably dominated over C. Let f be a definable function which is defined on the set of real-
izations of p. Then the p-germ of f is strong over C. Moreover, if f(a) 2 StC where a |= p,
then the code of the germ of f lies in StC .

In the case of algebraically closed valued fields, the stably dominated types are charac-
terized as types that are orthogonal to the value group in the following sense.

Fact 2.1.14. ([HHM08, Theorem 10.7]) Let p be a global C-invariant type in an algebraically
closed valued field. Then p is stably dominated if and only if for any model M ◆ C and
a |= p|M , we have �(Ma) = �(M).

Domination in valued fields can be expressed purely as an algebraic statement, in which
case, the type implication can be rephrased as finding an extension of valued field isomor-
phisms. In [HHM08], algebraic domination statements are given under the assumption that
the base of the type is a maximally complete field, which guarantees that any of its extensions
has the separated basis property. In [EHS23], it was emphasized that it is the separated basis
property that is crucial, rather than the maximality of the base field. The following result
combines [HHM08, Proposition 12.11] and [EHS23, Proposition 3.1] to make it explicit. We
include the proof for completeness.

Notation 2.1.15. Let A be a subset of a valued field K. Then we write �A := {v(a) :
a 2 A} and kA := {res(a) : a 2 A}.

Fact 2.1.16. Let C,L and M be valued fields such that C ✓ L\M . Assume that �M \�L =

�C , and kM and kL are linearly disjoint over C. Further, suppose that L (respectively, M)
has the separated basis property over C. Then the following are satisfied:

(i) L has the separated basis property over M (respectively, M has it over L),

(ii) If N is the field LM generated by L and M , then the value group �N is generated by
�L and �M as groups, and kN is generated by kL and kM as fields.

(iii) If � : L ! L
0 is a valued field isomorphsim fixing C, �L and kL, then there exists a

valued field isomorphism ⌧ : LM ! L
0
M which is the identity on M and extends �.

Proof. We begin by proving (i). Let ~u = (u1, · · · , un) be a C-linearly independent tuple in
L. We will first show that ~u is M -linearly independent and its M -span has a good separated
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basis. By assumption, we may assume that ~u is already a good separated basis over C. If
v(u1) = v(u2) = . . . = v(un), then one can observe that the tuple 1, res(u2

u1
), . . . , res(un

u1
) is

kC-linearly independent.
Now fix x =

nP
i=1

miui, where m1, · · · ,mn 2 M . Let J := {j : v(mjuj) = �}, where

� = min{v(limi) : i  n}. Without loss of generality, we can assume that 1 2 J . Suppose
on the contrary that v(

P
i2J

miui) > v(m1u1). For all distinct i, j 2 J , we have v( ui
uj
) = v(mi

mj
),

and it follows that v( ui
uj
) 2 �L \�M = �C . As ~u is a good basis over C and v(ui), and v(uj)

lie in the same coset in �L/�C , we must have v(ui) = v(uj). It follows that v(mi) = v(mj)

for all i, j 2 J . Now, we have v(1+
P
i2J

uimi
u1m1

) > 0. After applying the residue map, we obtain

1+
P
i2J

res( ui
u1
)res(mi

m1
) = 0. By the assumption that kM and kL are linearly disjoint over kC ,

we can conclude that the tuple 1, res(u2
u1
), . . . , res(uk

u1
) is kC-linearly dependent. But, this

contradicts with the choice of ~u. Hence, ~u is separated over C.
For (ii), it is enough to check x 2 N of the form x =

P
in

limi where l1, . . . , ln 2 L and

m1, . . . ,mn 2 M . By part (i), we can assume that l1, . . . , ln is a good separated basis over
M . We may assume that v(x) = v(l1) + v(m1). It then follows immediately that �N is
generated by �L and �M . Now, further assume that x 2 O

⇥

N
, so that v(x) = 0. As in the

proof of (i), let J = {i  n : v(limi) = 0}. We can assume that 1 2 J . Then

res(x) = res(l1m1)(1 +
X

i2J\{1}

limi

l1m1
).

Since v(l1m1) = 0, it follows that v(l1) = �v(m1) 2 �C . Let c 2 C, with v(l1) = v(c) and
define l = l1c

�1 and m = m1c. Then we have res(l1m1) = res(l)res(m). Moreover, as shown
in part (i), we also have v( li

l1
) = v(mi

m1
) for all i 2 J \ {1}. It follows that

res(x) = res(l)res(m)(1 +
X

i2J\{1}

res(
li

l1
)res(

mi

m1
).

Hence, res(x) 2 kLkM , as desired.
For (iii), since L and M are linearly disjoint over C, there exists a field isomorphism ⌧ :

LM ! L
0
M fixing M and extending �. We will show that ⌧ is a valued field isomorpshism.

By part (i), for any x 2 LM , we can write v(x) = v(l)+v(m) for some l 2 L and m 2M .
Since � fixes �L and ⌧ fixes M , it follows that v(x) = v(⌧(x)). As ACVF, eliminates field
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quantifiers, we conclude that ⌧ is a valued field isomorphism, as desired.

An algebraic characterization of stably dominated types in algebraically closed valued
fields is given in [EHS23].

Fact 2.1.17. ([EHS23, Theorem 3.6]) Assume that U is an algebraically closed valued field
in the language of geometric sorts L0. Let C ✓ U be a subfield and a be a tuple of valued
field elements from U . Let L = dcl(Ca). Assume that L is a regular extension of C. Then
the following are equivalent.

1. tp(a/C) is stably dominated.

2. L is an unramified extension of C and has the good separated basis property over C.

We close this section, by recalling a characterization of stable sorts in algebraically closed
valued fields.

Fact 2.1.18. ([HHM06, Proposition 3.4.11]) Let C be an algebraically closed valued field
and D be a C-definable set in a complete theory of algebraically closed valued fields. Then
the following are equivalent:

(i) D is stable and stably embedded, i.e. D ✓ StC ,

(ii) D is k-internal.

Residually Dominated Types

In this subsection, we work in the language Lval,A (see Definition 1.2.20), which we denote by
L for simplicity. We fix a complete theory, T , of a henselian valued field of equicharacteristic
zero. Let U be its universal model.

Notation 2.1.19. Let L,M and C be fields with C ✓ L \M . We write L |
^

alg

C
M if L is

field-theoretically algebraically independent from M over C. Namely, for every finite tuple
a1, . . . , an 2 L, we have tr.deg(a1, · · · , an/C) = tr.deg(a1, · · · , an/M).

The following definition is given in [Vic22]. In our notation, we recall that kA denotes
k [A.
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Definition 2.1.20. Let a be a tuple in U and C be a subset of U . We say tp(a/C) is
residually dominated if for every tuple b in U , we have

tp
�
b/CkA(Ca)

�
` tp(b/Ca)

whenever k(Ca) |
^

alg

C
k(Cb).

Let f be a C-definable map into the sort kA whose domain contains realizations of
tp(a/C). Then we say tp(a/C) is residually dominated via f if for every tuple b in U ,
tp(b/Cf(a)) ` tp(b/Ca) holds whenever f(a) |

^
alg

C
k(Cb).

The following result is essentially [Vic22, Theorem 3.8]. In the original statement, the
base set is assumed to be a maximal model of THen; here, we weaken this assumption
assuming the existence of the separated basis property. For simplicity, we use a stronger
assumption on the value group. Aside from these modifications, the proof remains essentially
unchanged, but we include it here for the sake of completeness.

Fact 2.1.21. ([Vic22, Theorem 3.8]) Let L and M be valued fields and C be a common
subfield. Assume that

1. L or M has the separated basis property over C,

2. �(L) = �(C),

3. k(M) and k(L) are linearly disjoint over k(C).

Then tp(L/CkA(M)�(M)) ` tp(L/M).

Proof. Let L
0
|= tp(CkA(M)�(M)) and let � : LM ! L

0
M

0 be an L-isomorphism, sending
L to L

0, M ! M
0 and fixing C [ kA(M) [ �(M). Consider ��1

|M : M
0
! M , the

restriction of ��1 on M
0. By Fact 2.1.16, we know that there exists a valued field isomorphism

⌧ : L
0
M

0
! L

0
M , fixing L

0 and extending �
�1

|M 0 . Then h = ⌧ � � is a valued field
isomorphism between LM and L

0
M which fixes M and sends L to L

0. It remains to show
that h is an L-isomorphism.

For this, we will show that for a, b 2 LM , if resn(a) = resn(b), then we have resn(h(a)) =

resn(h(b)). We know that v(a) = v(l) + v(m) for some l 2 L and m 2 M . By assumption,
there is c 2 dcl(C) with v(c) = v(l). Let l

0 = lc
�1 and m

0 = mc, then both v(l0) and v(m0)

lie in n�. Let x = a

l0m0 , then we have

resn(a) = ⇡n(res(x))res
n(l0)resn(m0).
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Similarly, we can find y 2 O
⇥

LM
and l

00
2 L and m

00
2M such that

resn(b) = ⇡n(res(y))res
n(l00)resn(m00).

By Fact 2.1.16 (ii), res(x) and res(y) lie in kLkM . Moreover, resn(m0) and resn(m00) are
elements of A(M), so we can conclude that resn(a) = resn(b) can be represented by a formula
in tp(L/CkA(M)�(M)). Since h extends an L-elementary map � that is the identity map
on C [ kA(M) [ �(M), we conclude that resn(h(a)) = resn(h(b)). Hence, we can extend h

to an L-definable map by sending resn(x) to resn(h(x)). By Fact 1.2.22, h is elementary and
can be extended to an L-isomorphism of U .

Example 2.1.22. 1. Any type that lies in the residue field is residually dominated. In-
deed, if a 2 kA, then for every tuple b in U , the type implication tp(b/CkA(Ca)) `

tp(b/Ca) holds, since the sort kA is stably embedded with control of parameters (see
Fact 1.2.21).

2. Analogously to Example 2.1.10(2), we can define a generic type of a ball within a
henselian field of equicharacteristic zero. Consider the set

p
O = {x 62 B : B ⇢ O : is a proper subball of O}.

Unlike in the case of ACVF, this set is not a complete type, since it does not contain
any information on the sort A. Let p be a complete type that contains p

O. We will
show that p is residually dominated.

In this case, we first show that for any set C, if a |= p|C, then we have A(Ca) ✓

A(Cres(a)). In fact, by Example 2.1.6 (2), we know that for every c1, . . . , cn 2 C and

v(
nP

i=1
cia

i) = min{v(ci) + v(a)}. Then for x =
nP

i=1
cia

i with v(x) 2 n�, we have

resn(
nX

i=1

cia
i) = ⇡n

 
res
⇣

nP
i=1

cia
i

ci0a
i0

⌘!
resn(ci0)res

n(ai0)

where v(x) = v(ci0)+v(a). Since res(a) = 0, we have res
⇣ nP

i=1
cia

i

ci0a
i0

⌘
=

nP
i=1

res( ci
ci0

)res(a)i�i0 2
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dcl(Cres(a)). We conclude resn(x) 2 dcl(Cres(a)).

Let b be a tuple in U such that k(Ca) |
^

alg
C

k(Cb). We may assume that b is a
tuple in the field sort, since we can take b to be an enumeration of a model M ◆ Cb

with k(Ca) |
^

alg
C

k(M). Our goal is to show that tp(b/Cres(a)) ` tp(b/Ca). Let
L := dcl(Ca) and M := dcl(Cb).

By Example 2.1.6, we know that L is separated over C, and as shown in its proof,
�L = �C . Since C is acl-closed, it follows that kM and kL are linearly disjoint over C.
Thus, by Fact 2.1.21, we have

tp(L/CkA(M)�(M)) ` tp(L/M).

By the stable embeddedness of the sorts kA and �, this is equivalent to tp(M/CkA(L)) `

tp(M/L). (Note that �(L) = �(C)). We conclude tp(b/CkA(Ca)) ` tp(b/Ca).

By the discussion above, we have in fact shown that the type p|C is residually domi-
nated via the map res, since kA(L) ✓ dcl(Cres(a)).

3. Any completion of a generic type of an open ball is not residually dominated. The
proof is similar to the ACVF case and we refer to Example 2.1.10 (3).

We continue by quoting the following fact from [Vic22] on forking.

Fact 2.1.23. ([Vic22, Theorem 4.4]) Let L
0 be the expansion of L where the residue field

is equipped with the imaginary expansion keq, likewise the value group is equipped with its
imaginary expansion �eq. Let M be a maximally complete model and a, b be tuples. Then
a |
^M

b if and only if kA(Ma)�(Ma) |
^M

keq(Ma)�eq(Ma).

Notice that Fact 2.1.21 does not state that tp(L/C) is residually dominated, we also need
to consider the parameters outside of the valued field sort. We will show that it is indeed
enough to consider the parameters inside the valued field sort.

Lemma 2.1.24. Let a 2 U be a tuple and C be a parameter set in the valued field sort.
Then for any tuple b in A, tp(a/CkA(Cb)) ` tp(a/Cb).

Proof. If '(x, b, c) 2 tp(a/Cb) where c is a tuple in C, then by Fact 1.2.21, '(x, b, c) is
equivalent to a formula  (t(x), b) where t is a tuple of terms with parameters from C and
a variable x such that t(x) lies in kA. Since  is CkA(Cb)-definable, the type implication
follows immediately.
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Theorem 2.1.25. Let a be a tuple in U and C be a parameter set in the valued field sort.
Then the following are equivalent:

(i) For any finite tuple b 2 U , if k(Ca) |
^

alg

k(C) k(Cb), then tp(a/CkA(Cb)) ` tp(a/Cb),

(ii) For any finite tuple b 2 VF(U), if k(Ca) |
^

alg

k(C) k(Cb), then tp(a/CkA(Cb)) ` tp(a/Cb).

Proof. The direction (i)) (ii) is obvious. For the converse direction, take a tuple b 2 U with
k(Ca) |

^
alg
k(C) k(Cb). Note that for all b in A, by Lemma 2.1.24, we have tp(a/CkA(Cb)) `

tp(a/Cb). Thus, we may assume that the tuple b does not lie entirely in A. There exists a
model M containing Cb such that k(Ca) |

^
alg

Ck(Cb) k(M). By transitivity of |
^

alg, it follows

that k(Ca) |
^

alg
C

k(M). By (ii), we then have tp(a/CkA(M)) ` tp(a/M), which is equivalent
to tp(M/kA(Ca)) ` tp(M/Ca). It immediately follows that tp(b/CkA(Ca)) ` tp(b/Ca),
which is equivalent to tp(a/CkA(Cb)) ` tp(a/Cb).

Finally, using Fact 2.1.21 and Theorem 2.1.25, we obtain the following corollary.

Corollary 2.1.26. Let a be a tuple in the valued field sort, and let C be a subset of the
valued field such that C is algebraically closed in T . Define L := dcl(Ca). Assume that L

has the separated basis property over C, �(L) = �(C), and k(L) is a regular extension of
k(C). Then tp(a/C) is residually dominated.

Types Dominated by k-Internal Sorts

Another instance of domination observed in henselian valued fields is domination by certain
collections of k-internal sorts. For this, we will work in the language LRV,A (see Definition
1.2.20), and assume that T is a complete theory of henselian valued fields of equicharacteristic
zero in the language LRV,A. For � ✓ � and a subset M in the valued field, we define

kIntM� := k(M) [ {RV�(M)}�2�,

where RV� is the fiber above � under the map vrv : RV ! �. Recall that each fiber RV�

can be regarded as a 1-dimensional k-vector space after adding the constant 0RV, and is
definably isomorphic to k via the map f�(a) =

a

d�
for some fixed d� 2 RV� . Therefore, the

collection of kInt-sorts is k-internal. Furthermore, when L is a model, kIntL�L
coincides with

the residue field of L, since RV�(L) is non-empty.
We refer such sorts as kInt-sorts in short, but note that it does not cover all k-internal

definable sets. As shown in [HHM08], these sorts serve as a suitable analogue for stable sorts
in henselian valued fields.
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Fact 2.1.27. ([HHM08, Lemma 12.9]) Let C and L be algebraically closed valued fields with
C ✓ L. Let a1, . . . , an 2 L, �1, . . . , �n 2 � and d1, . . . , dn 2 RV such that for each 1  i  n,
v(ai) = �i and di = rv(ai). Define C

0 := acl0(C�1 . . . �n) and C
00 := acl(Cd1 . . . dn). Then

StC0(L) = acl0(C 00k(L)) \ StC0 .

Notation 2.1.28. Let C,L, and M be subfields of U such that C ✓ L\M , L = dcl(L) and
�L ✓ �M . We write kIntL�L

|
^

0
C�L

kIntM�L
if and only if in the stable structure StC�L , kIntL�L

and kIntM�L
are independent over C�L.

Definition 2.1.29. Let C ✓ L be substructures of U with �L/�C torsion-free. Then the
type tp(L/C�L) is dominated by kInt-sorts if, for every M containing C�L, we have

tp(M/C�LkInt
L

�L
) ` tp(M/L)

whenever kIntL�L
|
^

0
C�L

kIntM�L
.

The characterization for the independence in StC�L is given in [HHM08].

Fact 2.1.30. ([HHM08, Lemma 12.10]) Let C,L and M be substructures of U . Assume
that �L ✓ �M . Let a1, a2, . . . , ar and b1, . . . , bs be tuples in L (where r and s are possibly
infinite) such that v(a1), . . . , v(ar) forms a Q-basis of �L over �C , and res(b1), . . . , res(bs)

form a transcendence basis of kL over kC . Assume that e1, . . . , er 2 M such that for each
1  i  r, v(ei) = v(ai). Then the following statements are equivalent:

1. The elements
res(

a1

e1
), . . . , res(

ar

es
), res(b1), . . . , res(bs)

are algebraically independent over kM .

2. kIntL�L
|
^

0
C�L

kIntM
C�L

.

The algebraic conditions for domination by kInt-sorts are given in both [EHS23, Theorem
3.9] and [Vic22, Theorem 5.12]. In the former, the base set C is not assumed to be a maximal
model, whereas in the latter it is assumed to be a model. Again, the existence of the separated
basis property is crucial here. Since the languages are different in these two settings, we will
include the proof for the sake of completeness. Before proceeding, we quote a fact concerning
the composition of places.
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Fact 2.1.31. ([HHM08, Lemma 12.16]) Let (L, v) be a valued field with value group �, and
let p : L ! kL [ 1 be the corresponding place. Fix a subfield F ✓ kL, and assume that
p
0 : kL ! F [1 is a place that restricts to the identity on F .

Define the composed place p
⇤ := p

0
� p : L! F [1, and let v : L! �⇤ be the valuation

corresponding to p
⇤. Suppose a 2 L satisfies p(a) 2 kL \ 0 and p(a) = 0. Then:

(i) If b 2 L with v(b) � 0, then
0 < v⇤(a)⌧ v⇤(b),

where v⇤(a)⌧ v⇤(b) means that for all n 2 Z>0, nv⇤(a) < v⇤(b).

(ii) There exists a convex subgroup � ✓ �⇤ defined by

� := {±v⇤(x) | x 2 L, p(x) 62 {0,1}, p
⇤(x) = 0} [ {0�⇤},

such that there is an isomorphism g : �⇤
/�! � satisfying g � v⇤ = v.

Fact 2.1.32. Let C,L, and M be subfields of U such that L has a finite transcendence degree
over C, C ✓ L \M , and M ◆ C [ �L. Assume that the following are satisfied:

1. L has the separated basis property over C,

2. kL is a regular extension of kC ,

3. kIntL�L
|
^

0
C�L

kIntM�L

Then tp(L/C�LAMkIntM�L
) ` tp(L/M).

Proof. Let L
0
|= tp(L/C�LAMkIntM�L

), and let � be an automorphism of U witnessing this.
We will show that there exists an L-isomorphism ⌧ : LM ! L

0
M that is the identity on M

and extends �|L.

Claim 1. We may assume that � is identity on �M .

Proof. We have tp(L/C�LAMkIntM�L
) ` tp(L/C�(LAMkIntM�L

)). Since � is stably embed-
ded with control of parameters in LRV,A, by Fact 1.1.5, we know that the right-hand of this
type implication implies tp(L/C�(LAMkIntM�L

)�(M)). If �(LAMkIntM�L
) = �(L), we’re

done. As M ◆ �L, for each � 2 �L, RV�(M) is non-empty, hence they are isomorphic to
k(M) via a definable map with parameters from RV�(M). We know that the sorts � and kA
are orthogonal to each other in the structure RV, it follows that kIntM�L

and � are orthogonal
to each other. By Fact 1.1.6, Then it follows that �(LAMkIntM�L

) = �(L).
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Now, we outline the rest of the proof. We will construct a finer valuation v0 on LM

by perturbing v. We will show that �(L,v0) \ �(M,v0) = �(C,v0) and k(L,v0) and k(M,v0) are
linearly disjoint over k(C,v0). Then we will apply Fact 2.1.16 to deduce there is a valued
field isomorphism ⌧ : LM ! L

0
M which is the identity map on M and extends �|L. As

a final step, using Theorem 2.2.12 below, we will show that ⌧ can be assumed to be an
LRV,A-isomorphism.

We will construct a finer valuation on the field LM using the compositions of places. Let

• a1, . . . , ar 2 L such that (v(ai))ir is a Q-basis of �L over �C .

• e1, . . . , en 2M such that for each i  r, v(ai) = v(ei),

• b1, . . . , bs 2 L such that (res(bi))is forms a transcendence basis of kL over kC .

As kIntL�L
|
^C�L

kIntM
C�L

, by Fact 2.1.30, the elements

res(
a1

e1
), . . . , res(

ar

er
), res(b1), . . . , res(bs)

are algebraically independent over kM .
For 0  j  r, we define

R
(j) := acl(kM , kL, res(

a1

e1
), . . . ,

ar

er
) \ kLM .

Note that R
(0) = acl(kM ), kL) \ kLM .

Next, for each 0  j  r � 1, we choose a place

p
(j) : R(j+1)

! R
(j)

that fixes R
(j). We can also assume that res(aj+1

ej+1
) is sent to 0, since, it does not lie in the

algebraically closed set R
j .

Let pv : LM ! kLM be the corresponding place to the valuation v, and let p
⇤ : kLM !

R
(r) be a place fixing R

r. Let pv0 : LM ! R
(0) be the place given by the composition

pv0 = p
(0)
� · · · � p

(r�1)
� p

⇤
� pv.

Let v0 be the corresponding valuation on LM .
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We observe that pv0 and pv coincide on kM , since all p(j) and p
⇤ are the identity map on

kM . Thus, we will identify (M, v) and (M, v0). Similarly, they coincide on kL, thus (�, v)
and (�, v0) are isomorphic. However, we cannot simultaneously identify (�, v) with (�, v0)
and (M, v) with (M, v0).

Let x 2M with v(x) > 0. Then after applying Fact 2.1.31 (i) repeatedly, we obtain

0 < v⇤(
a1

e1
)⌧ · · ·⌧ v⇤(

ar

er
)⌧ v⇤(x).

Let
� = {v⇤(x),�v⇤ : x 2 LM, pv(x 62 {0,1}) and p

0(x) = 0} [ {0�(LM,v)}.

Then by Fact 2.1.31, � is a convex subgroup of �(LM,v0). Moreover, it contains v0(ai
ei
) for all

i  r, by construction.
For each 1  i  r, we write v0(ai

ei
) = �i, and v0(ei) = v(ei) = ✏i.

Claim 2. �(L,v0) \ �(M,v0) = �(C,v0).

Proof. Let m 2 M and l 2 L with v0(l) = v0(m). By the choice of {v(ai)}i, we can find
p1, . . . , pn 2 Q, and � 2 �C such that

v(l) =
rX

i=1

piv(ai) + �

As �(L,v0) and �(L,v) are isomorphic over �C , we further have

v0(l) =
rX

i=1

piv0(ai) + �

=
rX

i=1

pi�i �

rX

i=1

pi✏i + �.

By assumption, ✏1, . . . , ✏r are Q-independent elements of �(M,v0) over �C , so we complete
it to a basis {✏i}ir [ {µ↵j}j2J . Then we can find p

0
1 . . . , p

0
r, q1, . . . qt 2 Q and �0 2 �C such

that

v0(m) =
rX

i=1

p
0

i✏i +
nX

j=1

qiµ↵i + �
0
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Because v0(l) = v0(m), we observe

rX

i=1

pi�i +
rX

i=1

(p0i � pi)✏i �
nX

j=1

qiµ↵i + � � �i = 0.

Note that
P

r

i=1 pi�i 2 �, where we know that the elements of � are infinitisemally small
with respect to the elements of �(M,v0). Thus, we must have pi = 0 for all 1  i  r.
Moreover, the elements {✏i}ir [ {µ↵j}j2J forms a Q-basis of �(M,v0) over �C . Thus, we
must have p

0

i
= 0 for all i and qj = 0 for all j. As a result,

v0(l) = � = �
0 = v0(m),

where � = �
0
2 �C , as desired.

Claim 3. k(L,v0) and k(M,v0) are linearly disjoint over k(C,v0)

Proof. By construction of p0, we have k(L,v0) = k(L,v) and k(M,v0) = k(M,v). As kL is a regular
extension of kC , the result follows from Fact 2.2.6.

Note that (L, v0) has the separated basis property over (C, v0), since (L, v) and (L, v0)
are isomorphic over �(C,v) = �(C,v0). Together with Claims 2 and 3, this ensures that the
hypothesis of Fact 2.1.16 is satisfied. Therefore, there exists a valued field isomorphism
⌧ : LM ! LM

0 that is the identity on M and extends �|L. Since v0 is finer than v, ⌧ is also
a valued field isomorphism with respect to v.

We have shown that there exists a valued field isomorphism LM ! LM
0 extending

an L-isomorphism � : L ! L
0 over the set C�LA(M)kIntM�L

, where kIntL�L
|
^C�L

kIntM�L
.

Finally, by Theorem 2.2.12 below, this is equivalent to the existence of an L-isomorphism
LM ! LM

0 that fixes L.

Resolutions

We close this section by showing that finite tuples in the geometric sorts are resolved in U .
This was proved in [EHS23], but we also show that the result holds in the language with
power residue sorts.

Definition 2.1.33. Let C ⇢ VF(U) and e be a finite tuple of imaginaries in U . A set
B ✓ VF(U) is a resolution of Ce if it is acl-closed in the valued field sort and Ce ✓ dcl(B).
Moreover, the resolution is prime if it embeds over Ce into every resolution of Ce.
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The following fact is essentially Theorem 4.2 in [EHS23]. However, we restate it in a
slightly different form, as presented in the proof of Theorem 4.2.

Fact 2.1.34. ([EHS23, Theorem 4.2]) Let C ✓ VF(U) be a subfield, e be a tuple that lies
in the geometric sorts of U . Then there exists a prime resolution B ✓ U of Ce. Moreover
there exists B0 ✓ B with acl(B0) = acl(B), Ce 2 dcl(Ce), k \ dcl0(B0) = k \ dcl0(Ce) and
� \ dcl0(B0) = � \ dcl0(Ce).

Theorem 2.1.35. Let e be a finite tuple that does not contain any element from the sort
A, or more generally, lies in the geometric sorts. Then there exists a prime resolution of B
with kA(B) = kA(acl(Ce)) and �(B) = �(Ce).

Proof. Let B and B0 be as in the conclusion of Fact 2.1.34. Using Fact 1.2.21 we can
conclude that in U we have k(B0) = k(Ce) and �(B0) = �(Ce). Moreover, A(B0) ✓ A(Ce),
since RV(B0) = RV(Ce). Thus A(B0) = A(Ce). It follows that kA(B) = kA(acl(Ce)). By
Remark 1.2.21, we can similarly show that �(B) = �(Ce) in U .
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2.2 Equivalence of Residual Domination and Stable Domina-
tion

In this section, we will provide our main results on residually dominated types. Throughout
this section, we fix a complete theory of henselian valued fields of equicharacteristic zero in
the language Lval,A, which we will denote by L, for simplicity.

Sometimes, we will want to work within an algebraically closed valued field. In this case,
we consider U as a substructure of an algebraically closed valued field eU , where the valuation
on U extends uniquely to the valuation on eU , as stated in Fact 1.2.12 (3). Thus, we will
regard the valued fields inside U as substructures of the algebraically closed field.

Before stating our proofs, we will need the following results from [EHS23].

Fact 2.2.1. ([EHS23, Lemma 1.13]) In any theory, let C,F and L be subsets of a universal
model with C ✓ L \ F. Then, tp(L/C) ` tp(L/F ) is equivalent to tp(F/C) ` tp(F/L).

Notation 2.2.2. Let C be a subset of a field. We write C
alg for the field-theoretic algebraic

closure of C. If a1, . . . , an is a tuple of field elements, then alg(a1, . . . , an) denotes K
alg,

where K is the field generated by Q and a1, . . . , an.

Fact 2.2.3. ([EHS23, Lemma 1.19]) Let C ✓ L be valued fields such that L is a regular
extension of C and L is henselian. Then, tp0(L/C) ` tp0(L/C

alg).

Fact 2.2.4. ([Lan02, VIII, 4.12]) Let L and C be fields such that C ✓ L and L is a regular
extension of C. Then, for any field M , L |

^
alg

C
M implies that L and M are linearly disjoint

over C.

Notation 2.2.5. For a subset A of a field K, we define alg(A) := Q(A)alg, where Q(A) is
the field generated by A, and Q(A)alg is its field-theoretic algebraic closure.

Lemma 2.2.6. Let C,F and L be valued fields in U such that C ✓ F \L. Assume that L is
a regular extension of C and tp(L/C) ` tp(L/F ). Then, L and F are linearly disjoint over
C.

Proof. Suppose on the contrary that L and F are not linearly disjoint over C. By Fact
2.2.4, there exists a finite tuple l1, · · · , ln 2 L which is algebraically independent over C

but algebraically dependent over F . We may assume l1 2 alg(Fl1, · · · , ln), hence l1 2

acl(Fl1, · · · , ln). Let X be a set of all conjugates of l1 over Fl1, · · · , ln in U . By assumption,
there exists an automorpshim � of U fixing Cl2, · · · , ln and sending l1 to some m 62 X.
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Then, by the type implication, there exists an automorphism fixing Fl2, · · · , ln and sending
l1 to m 62 X, a contradiction.

We now show that if a type is residually dominated, then its realization does not add
any new information to the value group.

Lemma 2.2.7. Let a be a tuple in VF(U) and C be a subfield such that tp(a/C) is residually
dominated. Then �(Ca) = �(C).

Proof. Suppose, on the contrary, that there exists � 2 �(Ca) \ �(C). First observe that
k(C�) = k(C). Indeed, let ↵ 2 k(C�) and let '(x, �, d) be a formula witnessing this, where d
is a tuple in dcl(C). By the orthogonality of kA and Remark 1.2.21, there is a formula  (x, d0)
in the sort kA with d

0
2 kA(C) such that ↵ is the unique realization. Hence, ↵ 2 k(C).

Then the independence k(Ca) |
^

alg

k(C) k(C�) holds trivially since since k(C) = k(C�). By
domination, we obtain tp(�/CkA(Ca)) ` tp(�/Ca), leading to a contradiction. In fact, by
orthogonality again, if � 2 dcl(CkA(Ca)), then � 2 �(C), contradicting the assumption.

Lemma 2.2.8. Let C ✓ L be subfields of U . Suppose L is a regular extension of C and
tp(L/C) is residually dominated. Then, for any maximal immediate extension F of C in U ,
we have tp0(L/C) ` tp0(L/F ) in eU .

Proof. Fix a maximal immediate extension F of C. Notice that k(L) |
^

alg

k(C) k(F ) holds
trivially, since k(F ) = k(C). Then, by domination, tp(L/CkA(F )) ` tp(L/F ) holds. Since,
k(F ) = k(C), in particular, A(C) = A(F ), it follows that tp(L/C) ` tp(L/F ).

We will show that every valued field isomorphism � : L ! L
0 fixing C extends to a

valued field isomorphism ⌧ : LF ! L
0
F , fixing F . By Lemma 2.2.6, L and F are linearly

disjoint over C. Hence, there is a ring isomorphism ⌧ : LF ! L
0
F that sends L to L

0

and fixes F . Moreover, by [HHM08, Proposition 12.1], any F -span of a finite tuple from
L has a separated basis over F . So, for every d 2 LF , there exists a separated F -linearly
independent tuple l1, · · · , ln 2 L and coefficients f1, · · · , fn 2 F such that d =

P
fili, and

v(d) = min{v(fi) + v(li)}. Since �(L) = �(C) = �(F ), it follows that v(⌧(d)) = ⌧(v(d)).
Then, ⌧ is a valued field isomorphism and thus tp0(L/C) ` tp0(L/F ).

Theorem 2.2.9. Let C be a field and a be a tuple from the field sort. Assume that tp(a/C)

is residually dominated and L := dcl(Ca) is a regular extension of C. Then, L has the
separated basis property over C.
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Proof. First, note two easy cases. If a 2 dcl(C), then a 2 C
alg. Since L is a regular extension

of C, it follows that a 2 C, and the result follows immediately. If �(C) is trivial, then by
Lemma 2.2.7, �(L) is also trivial, and the result follows trivially. Hence, assume a does not
lie in dcl(C) and C is not trivially valued.

Let C
0 = dcl(C) and F be a maximal immediate extension of C inside U . Note that

C
0 is henselian since it is dcl0-closed. Moreover, we may assume that F is an elementary

extension of C 0 in the theory T
0 := Th(C 0). Note that T and T

0 implies the same quantifier
free sentences with parameters in C

0.
As the next step, we will show that L and F are linearly disjoint over C. Since L

is a regular extension of C, by Fact 2.2.4, it suffices to prove L |
^

alg
C

F . Suppose, for
contradiction, that there are tuples l1, . . . , ln which are algebraically independent over C but
algebraically dependent over F . We may assume that l1 2 alg(Fl2, . . . , ln).

Notice that by Lemma 2.2.8, we have tp0(L/C) ` tp0(L/F ). Let ✓ 2 tp0(l1, . . . , ln/F )

be a formula witnessing that l1 2 alg(Fl2, . . . , ln). Then there exists ' 2 tp0(l1, . . . , ln/C)

that implies ✓. Hence, ' witnesses that l1 2 acl(Cl2, . . . , ln), and thus l1 2 alg(Cl2, . . . , ln),
a contradiction.

Now, we will prove the claim by induction on the dimension n of C-vector subspaces of L.
For n = 1, the claim is obvious. Assume that ~l = (l1, . . . , ln) 2 L

n is C-linearly independent
and separated over C. Let v 2 L be such that v does not lie in the C-span C ·~l of ~l. Since
L and F are linearly disjoint over C, the tuple (l1, . . . , ln, v) is F -linearly independent. By
[HHM08, Proposition 12.1], there exists u 2 F ·~l such that v(u) = max{v(w�v) : w 2 C ·~l.}

Since F is maximally complete, by Fact 2.1.7, LF is a separated extension of F . It
follows that �LF is generated by �L = �(L) and �F = �(F ). By Lemma 2.2.7, we have
�(L) = �(C) = �(F ). Hence v(u) 2 �(C). Set � := v(u).

Define ✓(x1, · · · , xn) to be the formula v(
nP

i=1
xili) = �. Clearly, ✓ 2 tp0(F/L). By Lemma

2.2.8 we have tp0(L/C) ` tp0(L/F ), and by Fact 2.2.1, tp0(F/C) ` tp0(F/L). Thus, there is
⇢(x1, · · · , xn) 2 tp0(F/C) that implies ✓ (in the theory T ). As F is an elementary extension
of C 0 in the theory T

0, there is a tuple d1, · · · , dn 2 C
0 with T

0
|= ⇢(d1, · · · , dn). Since ⇢ is

quantifier-free, it follows that T |= ⇢(d1, · · · , dn). Hence T |= ⇢(d1, · · · , dn).

Now let u =
nP

i=1
diln+1 2 C

0
·~l. We need to show that there is w 2 C ·~l with v(w� l) = �.

We will use the same proof as in the second claim of the proof of [EHS23, Proposition 2.3]. By
Fact 2.2.3, tp0(L/C) ` tp0(L/C

alg) and by Fact 2.2.1, we have tp0(C
alg

/C) ` tp0(C
alg

/L).
Recall that dcl(C) ✓ C

alg, so let u1, · · · , um be the orbit of u under the action of Aut(Calg).
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The type implication ensures that v(ui � v) = � for each i. Then for w = 1
m

P
ui, we have

v(w � v) = v( 1
m

P
(ui � v)) = �.

Let ln+1 = v � w. Then, l1, . . . , ln, ln+1 is a separated basis over C. In fact, for

c1, . . . , cn, cn+1 2 C, if on the contrary, v(
n+1P
i=1

cili) > min{v(cn+1ln+1), v(
nP

i=1
cili)}. It fol-

lows that

v(ln+1 +
nX

i=1

cili) > v(ln+1),

v(v � w +
nX

i=1

cili) > v(v � w),

v(v � (w �
nX

i=1

cili)) > �

where � > max{v(v � w
0) : w

0
2 C ·~l}. Hence, we have a contradiction.

The following is an analog of Fact 2.1.17 for henselian fields of equicharacteristic zero.

Corollary 2.2.10. Let C be a subfield and a be a tuple in the valued field sort of U . Assume
that L := dcl(Ca) is a regular extension of C. Then the following are equivalent:

1. tp(a/C) is residually dominated.

2. L is an unramified extension of C and L has the separated basis property over C.

Proof. By Lemma 2.2.7 and Theorem 2.2.9, 1. implies 2. Conversely, since L is henselian
and the extension L is a regular extension of C, it follows that k(L) is a regular extension
of k(C). Applying Corollary 2.1.26, we conclude that tp(a/C) is residually dominated.

Finally, we combine all the results to relate residual domination to stable domination.

Theorem 2.2.11. Let a be a tuple in the valued field sort and C be subfield of VF(U).
Assume that C is acl-closed in the valued field sort. Then the following are equivalent:

1. tp(a/C) is residually dominated in the L-structure U ,

2. tp0(a/C) is stably dominated in the L0-structure eU .
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Proof. Let L := dcl0(Ca) and M := dcl(Ca) First assume that tp(a/C) is residually dom-
inated. Since C is acl-closed in U and L,M ✓ U , both L and M are regular extensions of
C. By Corollary 2.2.10, M has the separated basis property over C and �(M) = �(C). As
M ◆ L, it follows that �0(L) = �0(C) and L has the separated basis property over C. By
Fact 2.1.17 then, tp0(a/C) is stably dominated.

Conversely, assume that tp0(a/C) is stably dominated. By Fact 2.1.17, �0(L) = �0(C)

in eU and L has the separated basis property over C. Since M = dcl(Ca) is an algebraic
extension of L and L is henselian, it follows from Fact 2.1.3 that M is separated over L.
Then, by Proposition 2.1.5, M is separated over C. Then, by Corollary 2.2.10, we conclude
that tp(a/C) is residually dominated.

A similar equivalence holds when considering domination by kInt-sorts.

Theorem 2.2.12. Let C be a substructure of U and a be a tuple of field elements. Let
L := dcl(Ca). Then, the following are equivalent:

(i) tp(L/C�L) is dominated by the kInt-sorts and A in U .

(ii) tp0(a/C�L) is stably dominated in eU .

Proof. We will prove that tp0(a/acl0(C�L)) is stably dominated, which is equivalent to (ii).
Let B be a resolution of C�L such that � \ dcl0(B) = � \ dcl0(C�L) and k \ dcl0(B) =

k \ acl0(C�L). We may assume that B is maximally complete. Then, � \ dcl0(Ba) =

� \ dcl0(B) = � \ dcl0(Ca), so dcl0(Ba) is an unramified extension of dcl0(B). Since B is
maximally complete, this extension is in fact separated. Note that B is acl0-closed, so any
field extension of B is regular. Therefore, by Fact 2.1.17, tp0(a/B) is stably dominated.

Let p be a B-invariant extension of tp0(a/B) in eU . By the choice of B, we have
tp0(a/acl0(C�L)) ` tp0(a/B). In fact, for any a

0
|= tp0(a/acl0(C�L)), we have a ⌘�(B) a

0

and a ⌘k(B) a
0. Then, by relative quantifier elimination in ACVF, we conclude that a ⌘B a

0.
Thus, p is acl0(C�L)-invariant. Finally, by Theorem 2.1.12, it follows that tp0(a/acl0(C�L))

is stably dominated, as desired.
Conversely, assume that (ii) holds. Let M ✓ U be a substructure with M ◆ C�L such

that
kIntL�L

|
^

0
C�L

kIntM�L
. (2.2.1)

Let � 2 Aut(U/C�LA(M)kIntM�L
). Let L

0 = �(L). By Fact 2.1.30, the independence in
2.2.1 is equivalent to

StC�L(L) |
^C�L

StC�L(M). (2.2.2)
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Claim 1. In eU , we have L ⌘C�LStC�L
(M) L

0.

Proof. Since � extends to an automorphism of eU , we already have L ⌘
C�LkInt

M
�L

L
0 in eU .

Then, by stable embeddedness of the stable sorts, it is enough to show StC�L(L) ⌘StC�L
(M)

StC�L(L
0). By the choice of L0, we have StC�L(L

0) |
^StC�L

StC�L(M). Together with the
independence relation 2.2.2, we can find an isomorphism fixing StC�L and sending StC�L(L)

to StC�L(L
0), as desired.

Hence, by stable domination, we can find an L0-isomorphism ⌧ : LM ! L
0
M which is

the identity map on M . We will show that ⌧ is an L-isomorphism. For this, it suffices to
show that ⌧ induces an isomorphism on the sorts An and commutes with resn for each n.

Fix a1 . . . , ar, b1, . . . , bs 2 L and e1 . . . , er 2M such that {v(ai)}i is a Q-basis of �L over
�C , v(ai) = v(ei) for each i  r, and {res(bi)}is is a transcendence basis of kL over kC .
Recall that, by Fact 2.1.30, the independence relation 2.2.1 implies that the elements

res(b1), . . . , res(bs), res(
a1

e1
), . . . res(

ar

er
)

are algebraically independent over kM .
We will use this fact to show that for each x 2 LM , rv(x) can be expressed in terms of

the elements from kIntM�L
and rv(L). First, we need the following subsequent claims.

Claim 2. Let a = lm for l 2 L and m 2 M . Assume that v(lm) = 0. Then, res(a) lies in
the field generated by the field kM and the elements res(b1), . . . , res(bs), res(a1e1 )

p1 , . . . res(ar
er
)pr

for some pi 2 Q for each i  s.

Proof. There are p1, . . . , pr 2 Q and c 2 C such that v(l) =
� P
ir

piv(ai)
�
+ v(c). It follows

that there exists some l̂ 2 L with v(l̂) = 0 such that l =
�
⇧ira

pi
i

�
cl̂. Since v(l) = �v(m),

we can similarly write m = m̂�
⇧e

pi
i

�
c

, where m̂ 2M with v(m̂) = 0. Then, we have,

lm =

�
⇧ira

pi
i

�
cl̂m̂�

⇧ire
pi
i

�
c

=
�
⇧ir(

ai

ei
)pi
�
l̂m̂,

Note that each factor in the above product has valuation zero. After applying the residue
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map, we obtain

res(lm) =
�
⇧irres(

ai

ei
)pi
�
res(l̂)res(m̂).

After replacing res(l̂) with
P
is

res(ci)res(bi) for c1, . . . , cs 2 C, the result follows.

Claim 3. L and M are linearly disjoint over C.

Proof. Let l1, . . . , ln be a C-linearly independent tuple. We will first show that for any
m1, . . . ,mn 2, we have v(

nP
i=1

mili)) = min{v(mi) + v(li)}in. In particular, this will prove

that �LM = �M . Suppose on the contrary that for some m1, . . . ,mn 2 M , not all equal to
zero, we have v(

P
in

mili) > min{v(mi) + v(li)}in = �. Let J = {i  n : v(limi) = �}. We

may assume that 1 2 J . Then,

v
�
1 +

X

i2J

limi

l1m1

�
> 0.

After applying the residue map,

1 +
X

i2J

res(
mili

m1l1
) = 0. (2.2.3)

By Claim 2, each term res(mili
m1l1

) lies in the algebraic closure of kM and the variables
res(ai

ei
)ir and res(bi)is. Hence the equation 2.2.3 witnesses the algebraic dependence of

the set {res(b1), . . . , res(bs), res(
a1
e1
), . . . res(ar

er
)} over kM , which is a contradiction.

To show linear disjointness, suppose on the contrary that there exists a C-linearly in-
dependent tuple l1, . . . , ln 2 L such that for some m1, . . . ,mn 2 M , we have

P
in

mili = 0.

Then v(
P
in

mili) = min{v(limi)}, hence cannot be 1, a contradiction.

Claim 4. Let a 2 LM . Then there are a
0
2 LM and m

0
2M such that a = a

0
m

0, v(a0) = 0

and rv(a0) 2 dcl(L [ kIntM
L
).

Proof. First assume that a lies in the ring generated by L and M . We may assume that a =P
in

mili where l1 . . . , ln are M -linearly independent and separated over M , and m1 . . . ,mn 2

M . Without loss of generality, assume further that v(a) = v(l1) + v(m1) and let J =
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{i : v(mili) = v(m1l1)}. Let m
0
2 M such that v(m0) = v(m1) + v(l1). Note that such m

0

exists since �M ◆ �L. Let a = a

m0m
0 and notice that v( a

m0 ) = 0. By Fact 1.2.5, we have
rv( a

m0 ) =
P
i2J

rv( limi
m0 ). Thus,

rv(a) = rv(
a

m0
)rv(m0) =

�X

i2J

rv(li)rv(
mi

m0
)
�
rv(m0). (2.2.4)

For each i 2 J , we have v(mi
m0 ) 2 �L. Thus, rv(mi

m0 ) 2 kIntM�L
for each i 2 J . This shows

rv( a

m0 ) 2 dcl(L [ kIntM�L
).

If a 2 LM , then we can write a =
a
0
1m

0
1

a
0
2m

0
2
, where v(a01) = v(a02) = 0, m0

1,m
0
2 2 M and

rv(a01), rv(a
0
2) 2 dcl(L [ kIntM�L

). Then, rv(a
0
1

a
0
2
) =

rv(a01)
rv(a02)

lies in dcl(L [ kIntM�L
). Hence, the

result follows for a 2 LM , as well.

Now let a, b 2 LM with v(a), v(b) 2 n�, and assume that resn(a) = resn(b). Then
⇢n(rv(a)) = ⇢n(rv(b)). By Claim 4, we can find a

0
, b

0
2 LM and m1,m2 2 M such that

a = a
0
m1 and b = b

0
m2, where v(a0) = v(b0) = 0, and a

0
, b

0 lie in dcl(L [ kIntM�L
). Then

⇢n(rv(a
0))⇢n(m1) = ⇢n(rv(b

0))⇢n(m2)

where ⇢n(m1), ⇢n(m2) 2 AM and ⇢n(rv(a0)), ⇢n(rv(b0)) 2 dcl(L [ kIntM�L
). Therefore, the

equality resn(a) = resn(b) is expressible in the type tp(L/C�LAMkIntM�L
).

As ⌧ fixes C�LkInt
M

�L
and ⌧(L) = L

0 we can conclude ⇢n
�
rv(⌧(a))

�
= ⇢n

�
rvn(⌧(b))

�
.

This shows that ⌧ naturally induces an isomorphism between (An)LM and (An)L0M for
each n 2 Z>0, by sending resn(a) = ⇢n(rv(a)) to resn(⌧(a)) = ⇢n(rv(a)). Hence ⌧ is an
LA,RV-isomorphism, as desired.
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2.3 Properties of Residual Domination

In this section, we use Theorem 2.2.11 to show that residually dominated types share similar
properties with stably dominated types in ACVF. Assuming the existence of a non-forking
global type, we will show that residually dominated types are orthogonal to �, and invariant
under base change and definable pushforwards.

To work with these results, we first need a characterization of forking over models. Such
a characterization was given in [EHM19] for maximally complete models. The maximal-
ity assumption guarantees the good separated-basis property, but the proof goes through
unchanged if we instead assume the good separated basis property over C.

Proposition 2.3.1. ([EHM19, Theorem 3.4]) Let C be a valued field, and let a and b be
tuples from the field sort. Assume that L := dcl0(Ca) has the good separated basis property
over C, kL is a regular extension of kC and �L/�C is torsion free (or �L \�M = �C , where
M = dcl0(Mb)). Then in the structure eU , we have a |

^C
b if and only if k(Ca)�(Ca) |

^C

k(Cb)�(Cb).

When the type is residually dominated, the independence in � comes for free, and inde-
pendence in the residue field of U implies independence in the stable sorts.

Lemma 2.3.2. Let C be a valued field, with C = acl(C) in the field sort. Let a and b be tuples
of field elements. Suppose that tp(a/C) is residually dominated and k(Ca) |

^
alg
k(C) k(Cb).

Then, a |
^C

b in eU . In particular, StC(Ca) |
^C

StC(Cb) in the structure eU .

Proof. Let L = dcl0(Ca) and M = dcl0(Cb). The theory of the residue field in eU is ACF.
Thus, the algebraic independence in the residue field implies kL |

^C
kM in eU . Moreover,

since tp(a/C) is residually dominated, by Corollary 2.2.10, we have �(Ca) = �(C), which
implies �0(C) = �0(Ca). Thus, it follows trivially that �L |

^C
�M . Since C is acl-closed,

kL is a regular extension of kC . Then, applying Proposition 2.3.1, we conclude a |
^C

b. In
particular, StC(Ca) |

^C
StC(Cb).

Below we show that residual domination is invariant under base changes. It suffices
to assume the existence of a nonforking global extension rather than requiring invariant
extensions. The following fact about type implications will be useful.

Fact 2.3.3. ([EHS23, Lemma 1.19]) Let C  L be a valued field extension such that L/C is
regular and L is henselian. Then, tp0(L/C) ` tp0(L/acl0(C)). In particular, if a is a tuple in
the field sort such that dcl0(Ca) is a regular extension of C, then tp0(a/C) ` tp0(a/acl0(C)).
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Theorem 2.3.4. Let C ✓ B be subfields that are acl-closed in the valued field sort. Let p be
a global type that does not fork over C.

(i) If p|C is residually dominated, then p|B is also residually dominated.

(ii) Suppose further that p is C-invariant and p|B is residually dominated. Then p|C is
also residually dominated.

Proof. We start with (i). Let a |= p|C. By Theorem 2.2.11, tp0(a/C) is stably dominated
and by Fact 2.1.11 (ii), tp0(a/acl0(C)) is stably dominated. Let q be the unique acl0(C)-
definable extension of tp0(a/acl0(C)) as in Fact 2.1.11. Our aim is to show that q and p0

coincide on U , where p0 is the ACVF-type in S( eU) with a realization b |= p. Then, using
Theorem 2.2.11, it will enable us to lift Fact 2.1.12 to the henselian setting, and the results
will follow.

First, we show that q does not fork over C. By Fact 2.3.3, we have tp0(L/C) `

tp0(L/acl0(C)), where L = dcl0(Ca) is henselian. It follows that q|acl0(C) does not fork
over C, therefore q also does not fork over C.

Now, let M � U with C ✓M , and take b |= p|M . Since p does not fork over C, we have,
k(Cb) |

^
alg
k(C) k(M). By Lemma 2.3.2, this gives StC(Cb) |

^C
StC(M). Then, by Fact 2.1.11

(i), b |= q|M . Since M is arbitrary, we conclude p0|U = q|U .
Let B ◆ C and assume that B = acl(B). Then p0|B = q|B is stably dominated by Fact

2.1.12. Applying Theorem 2.2.11, we conclude that p|B is residually dominated.
For (ii), let a |= p|M , where M ◆ B is a model. Since p does not fork over B, by

part (i), we in particular have that p|M is residually dominated. Write M0 := acl0(M).
By Fact 2.3.3, we have tp0(a/M) ` tp0(a/M0), and by Fact 2.1.11 (ii), tp0(a/M0) is stably
dominated. We will show that tp0(a/C) ` tp0(a/M) in eU , which implies that tp0(a/M0) is
C-invariant in eU . So let a

0
|= tp0(a/C). We will show that a

0
|= tp0(a/M). Since C and M

are acl-closed and p|M is not a realized type, a and a
0 are algebraically independent over

C. Hence, they remain algebraically independent over M , so there is a ring isomorphism ⌧

between M(a) and M(a0).
By Corollary 2.2.10, we have �(Ma) = �(M). By invariance of p over C, we also have

�(Ma) = �(C). Therefore, �0(Ca) = �0(Ca
0) = �0(C), and it follows that ⌧ is in fact a

valued field isomorphism.
Now let q be a C-invariant extension of tp0(a/acl0(M)). Then q is also acl0(C)-invariant,

and by Fact 2.1.12, it follows that q|acl0(C) is stably dominated; equivalently, q|C is stably
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dominated. By construction, a |= q|C, so tp0(a/C) is stably dominated. By Theorem 2.2.11,
it follows that tp0(a/C) is residually dominated, as required.

Using this theorem, we show that residually dominated types are orthogonal to �, as-
suming the existence of a global invariant extension.

Theorem 2.3.5. Let C be a valued field such that C is acl-closed in the valued field sort
and assume that p is a C-invariant type. If p|C is residually dominated, then for any model
M ◆ C and a |= p|M , we have �(Ma) = �(M). Conversely if for all |C|

+-saturated model
M ◆ C and a |= p|M , �(Ma) = �(M), then p|C is residually dominated.

Proof. First, assume that p|C is residually dominated. Let M be a model containing C. Since
M is acl-closed, it follows by Theorem 2.3.4 that p|M is residually dominated. Consequently,
by Corollary 2.2.10, for a |= p|M , we have �(M) = �(Ma).

For the converse, fix a maximally complete, model F ⌫ M where M is |C|
+-saturated.

Let a |= p|F . By assumption, �(Fa) = �(F ). By Fact 2.1.7, L = dcl(Fa) has the separated
basis property over F . Moreover, since F is a acl-closed, L is a regular extension of F .
Applying Corollary 2.2.10, we conclude that tp(a/F ) is residually dominated. Since p is
C-invariant with C = acl(C) and F is acl-closed, we can apply Theorem 2.3.4 to conclude
that p|C is residually dominated.

We finish this section by showing that a pushforward of the residually dominated type
under a definable map remains residually dominated. We will need the following facts.

Fact 2.3.6. ([HHM08, Lemma 10.14]) Let C be a valued field with C = acl0(C) in the valued
field sort. Assume that tp0(a/C) is stably dominated. Then, there exists a resolution A of
Ca such that tp(A/C) is stably dominated.

The following is essentially [EHS23, Lemma 4.3]; although the language is different, the
proof is identical.

Fact 2.3.7. Let C be a parameter set, and let a be a tuple in U . Let B be a resolution
of Ca such that kA(B) = kA(acl(Ca)). Suppose that tp(b/CkA(B)) ` tp(a/B). Then,
tp(b/CkA(Ca)) ` tp(b/Ca).
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Proof. Let '(x, a) 2 tp(b/Ca). By assumption, there exists  (x, d) 2 tp(a/CkA(B)) imply-
ing '(x, a). Let X be the set of the conjugates of d over Ca in U . By Remark 1.2.21, X is
kA(Ca)-definable. Then,

W
di2X

 (x, di) is kA(Ca)-definable and implies '(x, a).

Theorem 2.3.8. Let C be a valued field that is acl-closed in the valued field and let a be a
tuple in the field sort with tp(a/C) is residually dominated. Let f be an L(C)-definable map
whose domain contains the set of realizations of tp(a/C). Then tp(f(a)/C) is residually
dominated.

Proof. First note that if f(a) 2 A, then, by Remark 1.2.21, we have tp(f(a)/CkA(Cb)) `

tp(f(a)/Cb) for any b. Thus, we may assume that f is an L-definable map whose image is
lies in an ACVF-definable sort.

By Theorem 2.2.11, tp0(a/C) is stably dominated. Moreover, since f(a) 2 dcl(Ca), we
have f(a) 2 acl0(Ca). Then Fact 2.1.11 (iii) implies that tp0(f(a)/C) is stably dominated
and therefore tp0(f(a)/acl0(C)) is stably dominated. By Fact 2.3.6, there exists a resolution
A of acl0(C)f(a) such that tp0(A/acl0(C)) is stably dominated. Note that A is also a
resolution of Cf(a).

Let B be a prime resolution of Cf(a), as described in Theorem 2.1.35. The set B embeds
inside A over C, hence tp0(B/C) is stably dominated. Since C = acl(C), applying Theorem
2.2.11, we obtain tp(B/C) is residually dominated. Also recall that we have kA(B) =

kA(acl(Cf(a))).
Now, assume that b is a tuple in U with k(Cf(a)) |

^
alg

k(C) k(Cb). Then, k(B) |
^

alg

k(C) k(Cb),
since k(Cf(a))alg = k(B)alg. By residual domination of tp(B/C), tp(b/CkA(B)) ` tp(b/B).
Finally, by Fact 2.3.7, tp(b/CkA(Cf(a)) ` tp(b/Cf(a)).
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Chapter 3

Residually Dominated Groups

In this section, we introduce residually dominated groups, defined analogously to the notion
of stably dominated groups presented in [HRK19]. For a broader setting, the notion of groups
admitting a strongly f -generic type, introduced in [CS18] provides a useful generalization of
generic types of definable groups in stable theories. In henselian valued fields, we define a
group to be residually dominated if it admits a residually dominated strongly f -generic type.

As in the ACVF case, we will first establish the existence of a surjective definable group
homomorphism from a residually dominated group onto a pro-definable group in the residue
field. Moreover, we observe a similar phenomenon regarding the occurrence of residually
dominated types: every definable non-trivial abelian group contains a directed union of
residually dominated groups parameterized by realizations of a type in the value group �.
Moreover, any definable abelian group can be decomposed into such a union and a �-internal
group.
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3.1 Stabilizer Theorems, Stably Dominated Groups

In stable theories, the notion of generics and stabilizers are primary tools in analyzing groups.
It was generalized to unstable theories by various authors. For example, recent generaliza-
tions are provided for NIP and later for NTP2 theories in [CS18] and [MOS20], respectively.
In this section, we will present the results from mainly [MOS20].

Throughout this section, we fix a theory T , with its universal model U . We assume that
T eliminates imaginaries. By definable, we always mean definable with parameters.

We will work in a definable group G, meaning both the set G and its group operation
are definable. For elements x, y 2 G, we denote their group product by x · y, and we use xy

to denote the tuple obtained by concatenating x and y.
We will identify definable sets with their defining formulas.

Definition 3.1.1. A collection µ of definable sets is called an ideal if it satisfies the following:

1. ; 2 µ,

2. If A ✓ B and B 2 µ, then A 2 µ,

3. If A 2 µ and B 2 µ, then A [B 2 µ.

Two important classes of ideals of our interest are given below.

Definition 3.1.2. Let µ be an ideal of definable subsets of G and let A be a set. Let M |= T

and A be any set.

1. We say that µ is A-invariant if for all �(x, d) 2 µ and � 2 Aut(U/A), we have
�(x,�(d)) 2 µ.

2. Let µ be an M -invariant ideal. We say that µ has the S1-property if, for any formula
'(x, y) and any M -indiscernible sequence (ai)i<!, if '(x, ai) ^ '(x, aj) 2 µ for some
(or equivalently, any) i, j < !, then there exists some (or equivalently, any) i < ! such
that '(x, ai) 2 µ.

3. We say that µ has the S1-property on an M -definable set A if A 62 µ and the condition
above is satisfied for formulas '(x, ai) that define subsets of A.

Example 3.1.3. Let A be a set. Let D(A) be the set of formulas that divides over A,
and F(A) be the set of formulas that forks over A. Then F(A) is an A-invariant ideal.
Moreover, by definition of forking, we have D(A) ✓ F(A). However, D(A) is an ideal only
when D(A) = F(A)
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The following fact says that the forking ideal is contained in any ideal with the S1-
property.

Fact 3.1.4. ([Hru12, Lemma 2.9]) Let M |= T and µ be an M -invariant ideal which has
the S1-property on some definable set X. Then for any type p(x) that concentrates on X, if
p does not belong to µ, then p does not fork over M .

Fact 3.1.5. ([MOS20, Lemma 3.14]) Let M |= T and G be an M -definable group with a
strongly f -generic over M . Let µ be an ideal of formulas that do not extend to a strongly
f -generic type over M . Then µ is M -invariant, M and has the S1-property.

Stabilizers

Definition 3.1.6. Let M be a small model of a theory T , and let (G, ·) be an M -type-
definable group. Let µ be the ideal of formulas that are not contained in any strongly
f -generic global type in G. For a type p, we say p is µ-wide if p does not concentrate on any
D 2 µ.

1. For p, q 2 SG(M), we define StabG(p) := {g 2 G(U) | g · p = p}, and StabG(p, q) :=

{g 2 G(U) | g · p = q}.

2. If p 2 SG(M) is an f -generic type, we define

Stµ(p) := {g 2 G(U) | g · p \ p is wide.}.

We write Stabµ(p) for the group generated by Stµ(p).

Fact 3.1.7. Let G be a type definable group with a strongly f -generic over M in a theory
T . Let µ be an ideal of definable subsets of G that do not extend to a strongly f -generic over
M .

(i) ([CS18, Proposition 3.8]) If T is NIP, then a global type p is an f -generic of G if and
only if it has a bounded orbit under the translation by elements of G, which happens if
and only if G00 = StabG(p).

(ii) ([MOS20, Theorem 3.18]) If T is NTP2 and p 2 SG(M) is an f -generic, then G
00
M

=

Stabµ(p) = (p · p�1)2. Moreover, G00
M

\ Stµ(p) is contained in a union of M -definable
sets that belong to µ.
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A definable group G is called definably amenable if there exists an additive probability
measure on the definable subsets of G, which is invariant under the left translations by the
elements of G. The examples include definable abelian groups and solvable groups.

Fact 3.1.8. ([MOS20, Proposition 3.20])Assume that G is a definably amenable group in
an NTP2-theory, then G admits a strongly f -generic type.

The following fact, in particular, applies to definable groups in the pure henselian valued
fields whose theory is NTP2.

Fact 3.1.9. ([MOS20, Theorem 2.19]) Let T be an NTP2 theory which extends the theory
of fields and is algebraically bounded. Assume that any model of T is definably closed in the
theory of its field-theoretic algebraic closure. Let G be a group definable in an !-saturated
M |= T , and assume that G has a strongly f -generic type over M . Then there exist an
M -definable algebraic group H and an M -definable group homomorphism ◆ : G00

M
! H with

a finite kernel.

Groups with definable f-generics

In this section, our aim is to present the equivalence of categories between groups with
definable f -generics and pro-definable group chunks.

Let f be a definable function and p be a definable type over some set C. We denote
by F(p), the set of definable functions that are defined on the set of realizations of p. We
denote G(A) for the set of p germs of elements of F(p). Then G(p) has a group structure:
if f, g 2 F(p) with the p-germs f̄ and ḡ, respectively, then f̄ · ḡ is as the p-germ of the
composition f � g. We note that it is well-defined.

Definition 3.1.10. An abstract group chunk is a pair (p, F ) where p is a C-definable type
and F is a definable map defined on the realizations of p⌦2 that satisfies the following:

(i) For each a |= p|C, (Fa)⇤p = p, where Fa(x) = F (a, x).

(ii) For each a, b |= p|C, we have a 2 dcl(b, F (a, b)) and b 2 dcl(a, F (a, b)).

(iii) For all (a, b, c) |= p
⌦3

|C, we have F (F (a, b), c) = F (a, F (b, c)).

In the following fact, a group G is pro-definable if G is a pro-definable set and its group
multiplication is a pro-definable map from G⇥G to G.
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Fact 3.1.11. ([HRK19, Proposition 3.15]) Let (p, F ) be an abstract group chunk where p

is definable over C. Then there exists a pro-C-definable group (G, ·) and a pro-C-definable
injective map f : p ! G such that p

⌦2
` f(F (x, y)) = f(x) · g(x) and G = Stab

�
(f)⇤p

�
,

(hence (f)⇤p is a definable f -generic of G.)

The following fact states that the choice of G is unique.

Fact 3.1.12. ([HRK19, Proposition 3.16]) Let G1 and G2 be a pro-C-definable groups and
p be a C-definable f -generic of G1. Let f : p ! G2 be a pro-C-definable map such that
p
⌦2(x, y) ` f(x ·y) = f(x) ·f(y). Then there exists a unique pro-C-definable homomorphism

g : G1 ! G2 with p(x) ` f(x) = g(x). Furthermore, if f is injective, then so is g.

Fact 3.1.13. ([HRK19, Proposition 3.4]) Let G be a pro-C-definable group with a definable
f -generic over C. Then G is pro-C-definably isomorphic to pro-limit of C-definable groups.

Stably Dominated Groups

In this subsection, we will survey the definitions and the results we need from [HRK19] on
stably dominated groups. Although the results in [HRK19] apply to more general theories,
our focus will be on algebraically closed fields.

By a pro-C-definable group, we mean a pro-C-definable set G equipped with a group
operation that is given by a pro-C-definable map.

Definition 3.1.14. Let G be a pro-C-definable group. We say G is stably dominated if it
has a stably dominated definable f -generic.

In [HRK19], several examples are provided. Here, we include some of them explicitly.

Example 3.1.15. Let K |= ACVF.

1. Let G be the multiplicative group of the valuation ring O. Note that G = O
⇥ = {u 2

O : v(u) = 0}. We will show that G is a stably dominated, connected group with
G = G

00 = G
0. Let p be the generic type of O given in Example 2.1.10(2), which is

stably dominated. We will show that for every g 2 G, the translate g · p equals p. Let
' be an L-formula. By Fact 1.2.27, we may assume that ' defines a formula of the
form x 2 B where B is a C-definable ball. When B is a C-definable proper subball
of O, the definable set g · x 2 g · B implies x 2 B

0 where B
0 is a Cg-definable proper

subball of O. Then, by definition of p, for all a |= p|C, a 62 B
0. Thus, a realization of
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g · p does not lie in any proper subball B0 of O. It follows that g · p = p and we have
StabG(p) = G. Hence, G is a connected group with the stably dominated generic type
p, as desired.

2. Let G = SLn(O) be the multiplicative group of n ⇥ n matrices with entries from O

and determinant 1. Then G is a connected stably dominated group. To illustrate,
consider the case n = 2, let q(x1, x2, x3, x4) be the global completion of the type
p
⌦3
[ {x1x3 � x2x4 = 1}, where p is as in part (1) the generic type of O. As p is

stably dominated, the tensor product p
⌦3 is stably dominated. Moreover, for any

a, b, c, d |= q, we have the equality StC(Cabcd) = StC(abc). It follows that q is stably
dominated. We will show that G = Stab(q). If

"
g h

k l

#
2 G,

then for (a, b, c, d) |= q, we have
"
g h

k l

#"
a b

c d

#
=

"
ga+ hc gb+ hd

ka+ lc kb+ ld

#
.

Since a |= p|c, we have ga + hc |= p. Similarly, gb + hd |= p and ka + lc |= p. This
shows that G = Stab(q) is a connected stably dominated group.

We write T0 for the theory of algebraically closed valued fields in the language L0 of
geometric sorts.

Fact 3.1.16. (Proposition 4.6 and Lemma 4.9, [HRK19]) Let G be a pro-C-definable, stably
dominated group over C. Then:

1. There exists a pro-C-definable group g in StC and a pro-C-definable group homomor-
phism ✓ : G ! g such that every generic of G is dominated by ✓. Moreover, the pair
(g, ✓) is universal, i.e. if g0 is a pro-C-definable group in StC and ✓

0 : G ! g0 is a
pro-C-definable map over C then there exist a unique homomorphism ⌧ : g ! g0 with
⌧ � ✓ = ✓

0.

2. If g is pro-C-definable in StC , and ✓ : G ! g is a surjective pro-C-definable group
homomorphism which dominates G, Then any type p 2 SG(C) is generic in G if and
only if its image ✓⇤(p) is generic in g.
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3.2 Residually Dominated Groups

In this section, we will introduce residually dominated groups which generalizes stably dom-
inated groups for henselian valued fields. Our main result will be the generalization of Fact
3.1.16.

Throughout this section, we will write T to be a complete theory of henselian valued
fields of equicharacteristic zero. We denote its universal structure by U . We will also see U

as a substructure of the algebraically closed valued field eU , which is obtained by taking field-
theoretic-algebraic closure of U . We will see eU as an L0-structure where L0 is the language
of geometric sorts, and we denote its theory by T0.

Definition 3.2.1. Let G be a definable (or more generally pro-definable) group in G with a
strongly f -generic type over M . We say G is residually dominated if there exists a residually
dominated type p 2 SG(M) that extends to a global strongly f -generic type of G.

Below, we will see that the L0-definable groups given in Example 3.1.15 are again resid-
ually dominated. However, in the henselian setting the groups might not have a unique
generic.

Example 3.2.2. 1. Since any type that lies in kA is residually dominated, any definable
group that lies in kA with a strongly f -generic type is residually dominated.

2. Let G = O
⇥ = {u 2 O : v(u) = 0} be the multiplicative group of the valuation ring,

and assume that G has a strongly f -generic type over a model M . We will show that
G is residually dominated; we will find a global type p 2 SG(U) where no translation
of p forks over M .

The residue map res : G ! k⇥ is a group homomorphism. We may assume that k⇥

has a strongly f -generic type q over M . Choose p 2 SG(U) extending p
O, the generic

type of O defined in Example 2.1.10 (2), such that for every a |= p, res(a) |= q. In
Example 2.1.22 (2), we showed any completion of pO is residually dominated, so p is
residually dominated as well.

Now, fix g 2 G(U), and M |= T where G has a strong f -generic type over M . Replacing
M by a maximally complete elementary extension if necessary, we may assume that
M itself is maximally complete. First notice that p does not fork over M . In fact, let
N ⌫M be a small model and take a |= p|N . Then, res(a) |

^M
k(N) since q does not

fork over M in k⇥. Since k(Ma) is the field generated by k(M) and res(a), it follows
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that kA(Ma) |
^M

k(N). Moreover, since p|M is residually dominated and a |= p|M

by Lemma 2.2.7, �(Ma) = �(M), and hence �(Ma) |
^M

�(N) holds immediately.
Thus kA(Ma) |

^M
keq(Mb)Aeq(Mb) and �(Ma) |

^M
�eq(Mb) hold. By Fact 2.1.23,

a |
^M

N holds, hence p|N does not fork over M as required.

The type g · p is residually dominated since its corresponding L0-type is stably domi-
nated. Moreover, its pushforward res⇤(g ·p) is res(g) ·q, which does not fork over M by
the choice of q. Repeating the previous arguments we can show that g ·p also does not
fork over M . Thus, p is a strongly f -generic type of G, and therefore G is residually
dominated.

3. Let G = SLn(O). Applying the residue map componentwise to each element g 2 G

gives a group homomorphism G ! SLn(k). Using Example 3.1.15 (3), together with
arguments analogous to those in part (2), we conclude that G is residually dominated.
In this case, if p is a residually dominated strongly f -generic type of G, then its
corresponding L0-type is the stably dominated (pO)⌦3

[ {x1x4 � x2x3 = 1}.

4. Let T be the theory of real closed valued fields, and let G denote the multiplicative
group of positive elements of the valuation ring O. In this case, G has exactly two
strongly f -generic types, namely q0+ and q1, where

• An element a |= q0+ if and only if a |= p
O and a is infinitesimally close to 0 from

the right.

• An element a |= q1 if and only if a |= p
O and a is larger than every element G.

Remark 3.2.3. When T is NTP2 and G is a definable group with strongly f -generic type
over M . Then G is residually dominated if and only there exists a residually dominated
p 2 SG(M), which is an f -generic type.

If p 2 SG(M) is f -generic and residually dominated, then by [MOS20, Proposition 3.10],
p extends to a strongly f -generic type over M . Here, we also note that any model is an
extension base in an NTP2-theory, as shown in [CK12].

Domination witnessed by a group homomorphism

In this section, we generalize Fact 3.1.16 to henselian valued fields of equicharacteristic zero
for groups definable in the valued field sort. Throughout, we assume that the theory of the
henselian field is NTP2.
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In any theory, a global type p is called generically stable over A if it is A-invariant and
for any Morley sequence (ai)i↵ of p over A and any formula '(x, y) with parameters from
the universal model U |= T , the set {i < ↵ : |= '(ai)} is finite or cofinite. Generically
stable types coincide with stably dominated types in ACVF.

Fact 3.2.4. ([Hru14, Theorem 3.3]) In the theory of non-trivially algebraically closed valued
fields, for an acl0-closed set C, a global type is stably dominated over C if and only if it is
generically stable over C.

In the proof of the lemma below, we will use results from [PT11] regarding generically
stable types in arbitrary theories.

Fact 3.2.5. ([PT11, Proposition 1]) Let p be a global A-invariant type in an arbitrary theory
T . Assume that p is generically stable over A. Then p is the unique non-forking extension
of p|A.

Lemma 3.2.6. Let a be a tuple in the valued field sort of U and M be a model. Assume
that tp0(a/M) is residually dominated. Then, tp0(a/M) is stationary in the structure eU .

Proof. By Theorem 2.2.11, tp0(a/M) is stably dominated, and equivalently, tp0(a/acl0(M))

is stably dominated. Since M is a model, dcl0(Ma) is a regular extension of M , and by Fact
2.2.3, we have tp0(a/M) ` tp0(a/acl0(M)) in eU .

Let p be the acl0(M)-definable extension of tp0(a/acl0(M)). By the type implication
above, p is M -invariant. Thus, p is generically stable over M . By Fact 3.2.5, p|M is
stationary.

Using this lemma, we can show that all non-forking extensions of a residually dominated
type have the same ACVF-type.

Notation 3.2.7. Let p be a global type in U . We define p0 to be a global type in eU such that
some realization a |= p also realizes p0.

Lemma 3.2.8. (i) Let M � U and a be a tuple in U such that tp(a/M) is residually
dominated. Since M is a model, tp0(a/M) is finitely satisfiable in M . Let q be the
unique non-forking extension of tp0(a/M) as in Lemma 3.2.6. Then, for any B ◆M

in eU , a |= q|B if and only if StM (Ma) |
^M

StM (B).

(ii) If p 2 S(U) is a non-forking extension of the residually dominated type tp(a/M), then
p0|U = q|U , where q is as in (i).
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Proof. For (i), if StM (Ma) |
^M

StM (B), then by stable domination, tp0(a/MStM (B)) `

tp0(a/B). By stable embeddedness of the stable sorts, the independence also implies that
tp0(a/MStM (B)) does not fork over M . Thus, tp(a/B) does not fork over M , and by the
uniqueness of q, a |= q|B. The converse direction is trivial.

For (ii), let N ⌫ M and suppose that b |= p|N (hence, b |= p0|N). Since p|N does not
fork over M , it follows that k(Mb) |

^
alg
k(M) k(N). By Lemma 2.3.2, we obtain StM (Mb) |

^M

StM (N), as tp(b/M) is residually dominated. By part (i), we conclude that b |= q|N . Since
N is arbitrary, it follows that q|U = p0|U .

Theorem 3.2.11 below is an analogue to Fact 3.1.16 (i). The construction of the pro-
definable group homomorphism ✓ is nearly identical; however, instead of using the existence
of strong germs of stably dominated types, we apply Proposition 3.2.9 below, which allows
us to remain within the residue field of U .

Proposition 3.2.9. Let C be a subfield and a be a tuple of valued field elements. Let L =

dcl0(Ca) such that L is a regular extension of C. Assume that tp0(a/C) is stably dominated.
Then for any tuple b from the valued field sort with a |

^M
b or b |

^M
a (or only with

k\ dcl0(Ca) |
^

alg

M
k\ dcl0(Cb)), we have k\ dcl0(Mab) = dcl0(k\ dcl0(Ma), k\ dcl0(Mb)).

Proof. Define L1 = dcl0(Ca) and L2 = dcl0(Cb). Given that either a |
^C

b or b |
^C

a,
we have kL1

|
^

alg

kC
kL2 . Since kL1 is a regular extension of kC , it follows from Fact 2.2.4

that kL1 and kL2 are linearly disjoint over kC . Moreover, by Fact 2.1.17, we have �L1 = �C

and that L1 has the good separated basis property over M . Now, let N = L1L2. By
Fact 2.1.16, kN is generated by kL1 and kL2 as fields. This implies that k \ dcl0(Cab) =

dcl0(k \ dcl0(Ca), k \ dcl0(Cb)).

The following Fact will be used later.

Fact 3.2.10. ([BMPW11, Lemme 2.1]) Let L be any language, and let L0 be a reduct of L.
Let T and T0 be L- and L0-theories, respectively, with T0 stable. If C is acl-closed in T , and
a does not fork with b over C in T , then a does not fork with b over C in T0.

Theorem 3.2.11. Assume T is NTP2. Let (G, ·) be a definable residually dominated group
in the valued field sort of U , with a strongly f -generic type over M . Then, there exist an ACF-
definable group g over M in the residue field and a pro-M -definable group homomorphism
f : G00

M
! g such that the generics of G00

M
are dominated via f . Namely, for each strongly

f -generic p of G00
M

and for tuples a, b in U with a |= p|M , we have tp(b/Mf(a)) ` tp(b/Ma)

whenever f(a) |
^

alg

k(M) k(Mb).
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Proof. Let H be an M -definable algebraic group and ◆ : G00
M
! H be an M -definable group

homomorphism with finite kernel, as in Fact 3.1.9. Let p 2 S(U) be a strongly f -generic of
G

00
M

, which is residually dominated.
Let p0 be the corresponding ACVF-type in eU . Note that ◆⇤(p) concentrates on H, where

H is ACVF-definable, hence ◆⇤(p0) concentrates on H. Moreover, by Theorem 2.2.11, p0|M
is stably dominated. Since M is a model of T and a substructure of M0, the type p0|M is
finitely satisfiable in M . Thus, by Lemma 3.2.6, it is stationary. Hence, p0 is its unique
non-forking extension.

Let q = ◆⇤(p). Note that q0|U and ◆⇤(p) are consistent in T . Since p is strongly f-generic
in G, we know that q is strongly f-generic in ◆(G)  H. Moreover, since p concentrates on
G

00
M

, we have q 2 ◆(G)00
M

. We will denote the multiplication of H by ·H . Note that since H

is an algebraic group, ·H is ACVF-definable.

Claim 1. q0 concentrates on G1 := StabH(q0).

Proof. First, note that StabH(q0) is L0(M)-type-definable, thus it suffices to find a real-
ization b |= q0|M that lies in StabH(q0). For this, we will find independent realizations
b |= q0|M , a |= q0|Mb such that b ·H a |= q0|Mb.

Let µ be the ideal of definable subsets of H that do not extend to a generic over M .
Then, q, being strongly f -generic, does not concentrate in any D 2 µ. In fact, by Fact 3.1.7
(ii), since ◆(G)00

M
\ Stµ(q) is contained in a union of M -definable sets in µ, we know that

q concentrates on Stµ(q). So, let b be a realization of q|M . Then, since b 2 Stµ(q), the
partial type over Mb given by q|M \ b · q|M is not in µ. Then it extends into a global type
q
0
2 S(U), such that q0 is strongly f -generic of ◆(G00

M
) over M . Let a realize q

0, in particular
a |= q|M . Now, by construction, both tp(a/M) and tp(b ·H a/M) are equal to q|M . Also,
by genericity of q0, we have a |

^M
b and b ·H a |

^M
b.

We observe that these independence relations also hold in eU . By Theorem 2.3.8, q is
residually dominated since it is a pushforward of the residually dominated type p under an
L(M)-definable map. Then Lemma 2.3.2 implies b ·H a |

^
0
M

b and a |
^

0
M

b in eU . By the
stationarity of q0|M , we conclude b ·H a |= q0|Mb and a |= q0|Mb, as desired.

By Fact 3.1.7 (ii), the group G
00
M

is generated by the set of realizations of p|M and
p
�1

|M . Then ◆(G00
M
) is generated by q|M and q

�1
|M . Since q0 is the unique generic of G1,

we must have q0 = (q0)�1. Then, by the above claim, ◆(G00
M
)  G1.

Claim 2. Each strongly f -generic of G00
M

is residually dominated.
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Proof. Let p, q, q0 and G1 be as above. Fix a strongly f -generic type r over M , and let s :=
◆⇤(r). Let s0 be the corresponding global L0-type in eU . Let g be a pro-L0-definable group
in the stable sorts, and let ✓ : G1 ! g be the surjective L0-definable group homomorphism
from Fact 3.1.16 (2). We wish to show that s|M is residually dominated.

By the previous paragraph, we have ◆(G00
M
)  G1. In particular, both s and s0 concentrate

on G1. Choose b 2 ◆(G00
M
)(U) such that b |= q|M , and let a 2 ◆(G00

M
)(U) realize s|Mb. Then

a |
^M

b. Since s is a strongly f -generic of ◆(G00
M
), we also have b ·H a |

^M
b.

Note that g is also definable in U , since all parameters are in U . Then we have ✓(b·a) |
^M

✓(b) in U . Because the reduct is stable, by Fact 3.2.10, the non-forking independence also
holds in eU , and by symmetry in stable theories, we also have ✓(b) |

^
0
M

✓(b ·H a), where
tp0(✓(b)/M) is stationary and extends to the unique generic of g. It follows from Fact 3.1.16
(2) that b |= q0|M(b ·H a), and in particular b |= q0|M(b ·H a)�1. By the genericity of
q0, the element (a ·H b)�1

·H b = a
�1 realizes q0|M . Since q0|M is stably dominated and

a
�1
2 acl0(Ma), it follows that tp0(a/M) = s0|M is stably dominated. Hence, by Theorem

2.2.11, the type s|M = ◆⇤(r|M) is residually dominated. Since ◆ has finite kernel, the type
r|M is residually dominated as well. This concludes the proof.

Now, we will construct the desired group homomorphism. For a tuple a in the valued
field sort, let ✓(a) be an enumeration of k \ dcl0(Ma), which can be seen as a pro-definable
map. Let a |= q0|M , b |= q0|Ma and c = a ·H b. Then, ✓(c) 2 k \ dcl0(Mab). Since q0|M is
stably dominated, by Proposition 3.2.9, ✓(c) 2 dcl0(✓(a), ✓(b)). Then there exists an ACVF-
definable map F such that F (✓(a), ✓(b)) = ✓(c). Since F is ;-definable, F is defined for all
such a and b.

Define ⇡ = ✓⇤(q0). By Claim 1, for such a, b and c as above, c |= q0|Ma. By Propo-
sition 3.2.9 again, we have ✓(b) 2 dcl0(✓(a), ✓(c)). Similarly, we can show that ✓(a) 2
dcl0(✓(b), ✓(c)). Then (F,⇡) is a group chunk and by Fact 3.1.11, one obtains a pro-M -
definable group g that lies in the residue field, which is the sort of the codomain of F . By
Fact 3.1.12, ✓ extends to a pro-M -definable map from G1 to g, which we again denote it by
✓.

Let f = ✓ � ◆.

Claim 3. Each strongly f -generic of G00
M

is residually dominated via f .

Proof. Fix a strongly f -generic r of G00
M

, and let b be a tuple such that f(a) |
^

alg

k(M) k(Mb).
Assume that b ⌘Mf(a) b

0. We will show that b ⌘Ma b
0.
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By Theorem 2.1.25, we may assume that b is a tuple in the valued field. First, we note that
b ⌘MkA(M◆(a)) b

0. Indeed, by residual domination of tp(◆(a)/M), we have �(M ◆(a)) = �(M).
Then, for any x 2 dcl(M ◆(a)) with v(x) 2 n�, since M is a model, there exists b 2 M such
that nv(b) = v(x). Hence,

resn(x) = ⇡n

⇣
x

bn

⌘
2 k(M ◆(a)) ✓ dcl(k \ dcl0(M ◆(a))).

It follows that b ⌘MkA(M◆(a)) b
0.

As tp(◆(a)/M) is residually dominated and k(M ◆(a)) |
^

alg

M
k(Mb

0), it follows that b ⌘M◆(a)

b
0. Therefore, it remains to show that b ⌘Ma b

0.
As Ker(◆) is an M -definable finite set and M is a model, we have Ker(◆) ⇢M . Therefore,

any a
0 with ◆(a) = ◆(a0) are interdefinable over M , meaning that we have a

0
2 dcl(Ma) and

a 2 dcl(Ma
0).

Now let �(x, y) be an L(M)-formula with �(x, a) 2 tp(b/Ma). Let X := ◆
�1(◆(a)) =

a1, . . . , an, where a1 = a. Note that X is L(M ◆(a))-definable. Since the elements of X are
interdefinable over M , it follows that �(x, a) is L(Mai)-definable for each ai 2 X.

Let � be an automorphism fixing M ◆(a) and sending b to b
0. Then �(a) = ai for some

i  n, and hence �(b0, ai) holds. By our observation, it follows that �(b0, a) also holds. As �
was arbitrary, this proves that b ⌘Ma b

0.

It remains to show that g can be assumed to be definable group rather than a pro-
definable one. By Fact 3.1.13, g is a projective limit of M -definable groups (gi)i2I . Since
each gi are definable in a stable structure, we can assume that ✓i(G1) is definable for each
i 2 I.

Let a |= p, where p is a strongly f -generic of G
00
M

. Then, since a is a finite tuple,
f(a) = k \ dcl0

�
M✓(◆(a))

�
is the field generated by kM and by a finite tuple ↵. Let i0 2 I

such that ↵ 2 ✓i0(◆(a)), then for all i � i0, ✓i(◆(a)) 2 dcl0
�
✓i0(◆(a))

�
. It follows tp(a/M) is

residually dominated via ✓i0 � ◆. So we can assume g = gi0 , as desired.
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Chapter 4

Final Discussions

In this final section, we discuss future directions and the questions that are not addressed
in this thesis around residual domination and definable groups.

For abelian groups, a decomposition theorem is given in [HRK19] as given in the following
fact:

Fact 4.0.1. ([HRKW24, Theorem 5.16]) Let H be a pro-limit of definable Abelian groups
in T0. Then, the limit stably dominated subgroup S =

S
t|=q

St of H exists and H/S is almost

internal to the sort �. Moreover, if H is definable, then S is connected and H/S is internal
to �.

Here, a limit stably dominated group refers to the direct union of connected stably
dominated groups St, each uniformly defined using a realization of a type q in the value
group. A natural next step is to extend this result to the setting of definably amenable groups.
In NIP theories, Chernikov and Simon [CS18] showed that definably amenable groups admit
a well-behaved notion of generic types and stabilizers; this was later generalized to NTP2

theories by Montenegro, Onshuus, and Simon [MOS20]. However, the case of algebraically
closed valued fields remains open.

Question 1. Does Fact 4.0.1 extend to definably amenable groups in non-trivially valued
algebraically closed valued fields?

Question 2. Can Fact 4.0.1 be generalized to the henselian valued field setting?

A recent study by Cubides Kovacsics, Rideau-Kikuchi and Vicaria [KRKV24] shows the
equivalence of residual domination for henselian valued fields of equicharacteristic zero (and
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for certain henselian valued fields with operators) in languages that eliminate imaginaries.
As a continuation of previous questions, we may ask:

Question 3. For any interpretable group G in a henselian valued field of equicharacteristic
zero, can G be decomposed as a direct limit of residually dominated groups and a �-internal
group?

The algebraic statements for the instances of residual domination are provided when the
field is equicharacteristic zero. Finally, we turn to the mixed-characteristic setting. To hope
for an AKE-principle we restrict to unramified henselian valued fields of mixed characteristic
with perfect residue field.

Question 4. Are there instances of residual domination for unramified henselian valued
fields of mixed characteristic with perfect residue field?

We hope that with these open questions, one can have a AKE-type decomposition theo-
rem for definable groups in a complete theory of henselian field, hence reduce any problem
related to interpretable groups in henselian fields to a problem in a simpler structures of
residue field and the value group.
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