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Abstract

In this thesis, we introduce and develop the model theory of general von Neumann

algebras with a faithful normal semifinite weight. Our framework admits various

computability theoretic properties that align it with recent work on uncomputable

universal theories in the tracial von Neumann algebra setting. We study the ultra-

product that our framework suggests and we prove analogues of known theorems

about the Ocneanu ultraproduct for this new ultraproduct, ultimately providing 3

new operator algebraic characterizations of our ultraproduct. We show that our

framework captures the Connes-Takesaki decomposition which is central to the clas-

sification of injective factors. We capture the Connes-Takesaki decomposition via

definable groupoids, examining other aspects of definability in continuous logic along

the way. Finally, we study the uncomputability of various classes of operator algebras

and, as an application, give consequences about ultraproduct embeddings.
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Chapter 1

Introduction

The model theory of tracial von Neumann algebras was first given explicit treatment,

complete with an axiomatization in continuous logic, by Farah-Hart-Sherman in [20].

This was prefigured by their work begun earlier (though published later) in [21].

These works facilitated the import of concepts and techniques from logic to the study

of tracial von Neumann algebras and their ultraproducts - a practice which is now

commonplace (for a small sample, see [22], [7], [28], [36]). These von Neumann

algebras are, in turn, central to a vast array of research directions and programs in

mathematics and physics.

More recently, the more specialized topic of computable continuous model theory

and its applications has gained prominence. This topic began to receive widespread

attention near the beginning of the author’s graduate school career with the publica-

tion of [43] by Ji-Natarajan-Vidick-Wright-Yuen who, using techniques from quantum

complexity, resolve the famous Connes Embedding Problem (CEP) in the negative.

The negative solution to the CEP means that there are separable II1 factors which

do not embed in any (tracial) ultrapower of the hyperfinite II1 factor R. Soon after

1
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this result was announced, Goldbring-Hart synthesized its proof with a computability

and continuous model theoretic perspective in [32] to, among other things, prove a

vast strengthening of the negative resolution of the CEP by showing that R does not

have a computable universal theory. This kicked off a flurry of work and proliferation

of interesting questions in computable continuous model theory (see [24], [32] or [31]

for a survey).

In [4], the author, with Goldbring-Hart, expands the scope of computable con-

tinuous model theory to include von Neumann algebras that are equipped with a

faithful normal state (so-called W∗-probability spaces), and the associated Ocneanu

ultraproducts. In [5], the author, with Goldbring-Hart-Sinclair, develops a language

of W∗-probability spaces that is better suited to computable continuous logical study

than the previous Dabrowski language.

Note that not all von Neumann algebras admit a faithful normal state, though

they all admit a generalization called a faithful normal semifinite weight. To a von

Neumann algebra M and a choice of faithful normal semifinite weight Φ on it, we

can associate a one-parameter group of automorphisms σΦ
t of M called the modular

automorphism group or simply the modular group (see Section 4.5 for more details).

The modular group is trivial in the tracial von Neumann algebra setting, but it

is indispensable to the structure theory of more general W∗-probability spaces. In

particular, the study of the modular group, also known as Tomita-Takesaki theory,

is the key to understanding the so-called hyperfinite type III factors, which admit

natural choices of faithful normal states but do not admit faithful normal traces. More

generally, Tomita-Takesaki theory is the source of all known structural studies of type

III von Neumann algebras. Strikingly, the modular group also plays an important

2
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role in quantum field theory (see [62] or [9] for a gentle introduction).

In this thesis, we further expand the scope of continuous model theory to include

von Neumann algebras in complete generality by considering full left Hilbert algebras.

Previous work in continuous model theory has yielded significant tools and insights

in the type I and type II1 settings; this thesis sets the stage for the extension of these

tools and insights to the type III setting, about which less is presently known (though

see [34] for several interesting applications of model theory in the type III setting).

The language we give sticks closely to that given for tracial von Neumann algebras

by Farah-Hart-Sherman, further easing the transition from the tracial paradigm to

the completely general setting for model theorists and operator algebraists. The

computability of our theory and the various extensions we give allows the recent

work in computable continuous model theory to be readily adapted to this setting.

This thesis straddles multiple broad areas of mathematics, and therefore draws

from a wide range of prerequisites. In Chapter 2, Chapter 3, and Chapter 4, we

aim to acquaint the reader with three of these: continuous logic, operator algebras,

and Hilbert algebras (and the accompanying Tomita-Takesaki theory) respectively.

Rather than simply listing definitions, lemmas and theorems, or recapitulating stan-

dard references, we attempt to tailor the exposition to our unique purposes and to

provide the reader with relevant insights.

In Chapter 5, we present a natural language and axiomatization of a theory of full

left Hilbert algebras or, equivalently, von Neumann algebras equipped with a choice

of faithful normal semifinite weight. We dub the latter "weighted von Neumann

algebras". The existence of such an axiomatization has been conjectured by experts

3
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in continuous logic, likely even since shortly after the original work of Farah-Hart-

Sherman. Dabrowski, in [16], gives an abstract axiomatizability result, using Keisler-

Shelah, for the class of (preduals of) von Neumann algebras in his language of so-called

"tracial matrix ordered operator spaces". However, this axiomatization (provably)

cannot possibly include the modular automorphism group and therefore does not

induce the correct morphisms of models (namely inclusions of von Neumann algebras

admitting a conditional expectation).

The language presented here required multiple innovations, which may explain

post-hoc why this problem remained open for so long. The first such problem is that

multiplication is not uniformly continuous on the operator norm unit ball. Dealing

with this issue required the introduction of totally K-bounded elements. By taking

our sorts SK to be the totally K-bounded elements, we are able to include multiplica-

tion in our language, which is highly desirable since the multiplication is ubiquitous

in all applications. The second problem is that in order to ensure that our models

have the correct morphisms, we need to be able to express the modular group. This

is a difficult task since the classical approaches to Tomita-Takesaki theory rely on

the use of unbounded (and therefore discontinuous) operators. We resolve this issue

by adapting techniques of Rieffel-Van Daele from [57]. After multiple calculations to

prove that the formalism of Rieffel-Van Daele is compatible with totally K-bounded

elements, we use their formalism to exhibit a computable definitional expansion of

theory which axiomatizes the modular group as a one-parameter group of automor-

phisms associated to our choice of weight. The last hurdle that we will discuss here is

one that arises when showing that the axiomatization we have is correct, namely that

there is an equivalence of categories between models of our theory and the category we

4
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are axiomatizing. Call the category we want to capture C and the category of models

of our theory Mod(T ). The functors witnessing this equivalence are the Dissection

functor taking an object of C and returning a metric structure in Mod(T ) and the

Interpretation functor taking structures in Mod(T ) and returning objects of C. It is

often easy to show that if we start with c ∈ Ob(C), dissect it and then interpret the

resulting metric structure, we get something isomorphic to c. On the other hand, it

is often non-trivial to show that if we start with M ∈ Mod(T ), interpret it and then

dissect the result, we have an isomorphic metric structure. The reason for this is that

we need to rule out the possibility of extra elements finding their way into the sorts

that M did not see. In the tracial setting, the analogous problem was resolved by

adding extra axioms to mimic the proof of the Kaplansky Density Theorem (see [20,

Section 3]). Since the polynomials involved there do not necessarily preserve totally

bounded elements, we must find a new approach. To that end, inspired by results of

Kadison in [45], we prove Theorem 5.5.18 characterizing the totally bounded elements

of a weighted von Neumann algebra. The proof takes up the majority of section 5.5

and is rather involved and technical. We believe this result is of independent interest

to operator algebraists.

In the tracial von Neumann algebra and W∗-probability space settings, the model

theoretic ultraproduct that arose from the axiomatizations corresponded to the tracial

ultraproduct and the Ocneanu ultraproduct respectively (and the latter subsumes the

former). These ultraproducts were already well-understood by operator algebraists,

having been introduced by Sakai in 1962 and Ocneanu in 1985 respectively. In con-

trast, the only ultraproduct found in the literature for general von Neumann algebras

is the Groh-Raynaud ultraproduct. The Groh-Raynaud ultraproduct is well-known

5
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to not behave well with respect to modular automorphisms (see, for example, [3]).

Since our axiomatization can define the modular group, our ultraproduct must not be

the Groh-Raynaud ultraproduct. In Chapter 6, building on ideas of Ando-Haagerup

in [3] and of Masuda-Tomatsu in [49], we provide multiple purely operator algebraic

ultraproduct constructions for weighted von Neumann algebras. Ultimately, we show

that all of these constructions are equivalent to the model theoretic ultraproduct

associated to our theory. These results and the associated ultraproducts can be of in-

terest even to any von Neumann algebraists who are unfamiliar with model theoretic

language and techniques.

In Chapter 7, we extend some of the definability machinery of continuous logic.

Considering definable groupoids, we show that our theory "remembers" the Connes-

Takesaki decomposition. The Connes-Takesaki decomposition plays a crucial role in

Connes’ work on the classification of injective factors in [13]. This gives a partial

answer to a question of Bradd Hart regarding the model-theoretic content of Connes’

classification.

In [4], we proved various extensions of the negative solution to CEP as well as the

undecidability of the universal theories of various hyperfinite type III von Neumann

algebras and associated results about ultraproduct embeddings of von Neumann al-

gebras. In Chapter 8, we reprove many of these results in the language developed

in Chapter 5. Some of the proofs we provide here are notably simpler than those

given in [4], demonstrating the utility of our formalism. We also prove further results

that are made possible by this language, remarkably including the undecidability of

the universal theory of the hyperfinite II∞ factor. This result is the first such un-

decidability result for a von Neumann algebra equipped with an unbounded weight.

6
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Anticipating more such results, we prove Theorem 8.6.4, which can be used to extend

an undecidability result for the centralizer of an algebra to the algebra itself.

7
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Chapter 2

Preliminaries on Continuous Logic

2.1 Overview

Model theory is the branch of mathematics that studies classes of mathematical ob-

jects by attaching semantics (called structures or models) to syntax. Classical model

theory was formally initiated by Alfred Tarski and his school in 1933 with the de-

velopment of his semantic theory of truth. Truth, in this setting, follows a bivalent

logic, meaning it assumes exactly two truth values (namely True and False). In the

near century since then, model theory has become a central topic in mathematics,

with deep connections and applications to algebra, algebraic geometry, graph theory,

computer science, differential equations and nearly every other field.

For some purposes, such as the study of Banach spaces, two truth values turn

out to be insufficient. It becomes more natural to consider logics with continuum

many truth values corresponding to real numbers. Multi-valued logics such as those

considered by Łukasiewicz and Pavelka have been studied since the 1920s. Various

model theories corresponding to such logics were studied by Chang and Keisler in the

8
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1960s. A related model theory for Banach spaces was studied by Henson and Iovino.

Continuous model theory in its most recognizable form was initiated by Ben Yaacov

and Usvyatsov. Since then, continuous logic has been successfully applied to a wide

range of subjects in operator algebras and metric geometry.

Many of the proofs in this chapter are standard and can be found in [30, Chapter

2], among other sources, and follow the classical proofs closely and will thus be omit-

ted. For the fundamentals of classical logic, the reader should see [19]. For a more

comprehensive account of classical model theory, we recommend [11]. To learn more

about continuous logic, the reader should see [30].

2.2 Continuous Logic

We will begin by recalling the basic objects and theorems of continuous logic. The

aim of this section is to establish notation, conventions and terminology for self-

containment and the convenience of the reader.

A foundational idea in model theory is that of a signature. It forms the basis

for constructing languages and syntax and also provides the framework upon which

structures will hang. Recall that a modulus of uniform continuity or continuity

modulus for a map f : X → Y between metric spaces (X, dX) and (Y, dY ) is a

function δ : R → R such that dY (f(x), f(y)) ≤ δ(dX(x, y)) for all x, y ∈ X.

Definition 2.2.1. A signature is a triple Σ := (S,F,R) such that:

• S is a set of sort symbols S together with a real number KS for each S.

• F is a set of function symbols f together with an arity (S1, ..., Sn) with

each Si ∈ S representing the domain, S ∈ S representing the codomain and a

9
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modulus of uniform continuity δF for each F .

• R is a set of relation symbols R together with an arity as above for the domain

of R and a compact interval KR in R, the codomain of R, and a modulus of

uniform continuity δR for each R.

The language L associated to a signature Σ is defined recursively as in classical

logic. Here the connectives are continuous functions from cartesian powers of com-

pact intervals to the reals. Quantifiers will be supremum and infimum (for universal

and existential quantification respectively).

Definition 2.2.2. We define the main syntactic notions in continuous logic. We will

always assume that, for each sort, we have infinitely many variables available that

range over that sort.

• L-terms are valid compositions of functions, variables, and constants. They

naturally come with continuity moduli by the respective composition of the

continuity moduli for the functions.

• Atomic L-formulae are given by

– R(t1, ..., tn) where R ∈ R with arity (S1, ..., Sn) and each ti is a term of

sort Si;

– dS(t1, t2) where t1 and t2 are terms of sort S. We will interpret dS as the

underlying metric of the sort S.

• Formulae are obtained by closing under connectives and quantifiers.

• Sentences are formulae with no free variables.

10
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With a language, we can introduce the notion of a structure in that language.

This is the starting point for the semantic aspect of logic.

Definition 2.2.3. Given a signature Σ = (S,F,R) and its associated language L, we

define an L-structure to be a triple M := (S(M),F(M),R(M)) of indexed families

where:

• S(M) is a family of complete bounded metric spaces SM indexed by S ∈ S

such that SM has diameter bounded by KS.

• F(M) is a family of functions fM indexed by f ∈ F with domain, codomain and

modulus of uniform continuity as specified by the data associated to f .

• R(M) is a family of relations RM indexed by R ∈ R with domain, codomain

and modulus of uniform continuity as specified by the data associated to R and

range contained in KR.

For an L-structure M , and a formula ϕ (resp. a term t), we can recursively define

ϕM (resp. tM) in the obvious way. We will call this the interpretation of ϕ (resp. t)

in M . Note that if σ is a sentence, then for any L-structure M , the interpretation σM

of σ in M is a real number. We now have the ingredients to start studying theories

and the models thereof.

Definition 2.2.4. An L-theory is a set of L-sentences. An L-structure M is a model

of an L-theory T , denoted M ⊨ T , if σM = 0 for all σ ∈ T . We let Mod(T ) denote

the class of all models of T . A class C of L-structures is called an elementary class

if there is an L-theory T such that C = Mod(T ) in which case, we will say that T

axiomatizes C.

11
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Until further notice, fix a language L and an L-theory T . We denote the set of

sentences in L by Sent(L). Let x denote a tuple of variables (x1, . . . , xn) and Mx

denote the set of tuples of elements in M with the same arity as x.

Definition 2.2.5. For an L-structure M , the evaluation map is evM : Sent(L) → R

defined by evM(ϕ) = ϕM .

The theory Th(M) of a structure M is the set consisting of sentences ϕ such that

evM(ϕ) = 0.

Definition 2.2.6. Two L-structures M and N are elementarily equivalent, writ-

ten M ≡ N , if Th(M) = Th(N).

Definition 2.2.7. A map ρ :M → N is a homomorphism if

• for all function symbols f of L and a ∈Mx, we have ρ(fM(a)) = fN(ρ(a)).

• for all relation symbols R in L and a ∈Mx, we have RM(a) ≥ RN(ρ(a)).

Definition 2.2.8. ρ is an embedding if it is a homomorphism and for all relation

symbols R in L and a ∈Mx, we have RM(a) = RN(ρ(a)).

Remark 2.2.9. If ρ is an embedding, then ρS is an isometric embedding for all sorts

S of L.

Definition 2.2.10. An embedding ρ :M → N is an elementary embedding if for

all formulae ϕ with parameters in M, we have ϕM = ϕN ◦ ρ.

Definition 2.2.11. A set of sentences Γ is complete if it is satisfiable, and whenever

M and N satisfy Γ , then M ≡ N .

Note that if M is an L-structure, then Th(M) is a complete L-theory.

12
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Definition 2.2.12. IfN is a substructure ofM , then we say thatN is an elementary

substructure of M , written N ⪯ M , if whenever ϕ(x) is an L-formula and a ∈ N

is a sequence sorted in the same manner as the variables x, then ϕN(a) ≡ ϕM(a). In

this case, we call N an elementary expansion of M .

We write N ≺M if N ⪯M and N ̸=M . If ρ :M ↪→ N is an embedding, then it

is an elementary embedding if ρ(M) ⪯ N .

Let Mod(T ) be the category of models of T with morphisms given by elementary

embeddings between them. We consider the pseudometric space (F0
x , d0) with F0

x the

space of L-formulae together with the pseudometric

d0(ϕ, ψ) = sup{|ϕM(a)− ψM(a)| : M ⊨ T, a ∈Mx}.

The reason d0 is only a pseudometric and not a metric is because, as defined, many

pairs of distinct formulae ϕ and ψ may satisfy d0(ϕ, ψ) = 0. For example, consider

any formula ϕ and let ψ := ϕ+ 2− 2.

We will say that ϕ and ψ are T -equivalent if d(ϕ, ψ) = 0. We denote by (Fx, d)

the metric space completion of F0
x with respect to d0 together with the completed

metric d.

We call an element of Fx a T -formula. Notice that T -equivalent formulae are

identified in Fx. This will generally not lead to any issues as it will be clear from

context when we want to refer to the syntactic concept of a formula or the concept

up to T -equivalence.

Theorem 2.2.13. Let (ϕn) be a sequence of L-formulae representing the T -formula

ϕ in Fx. Then ϕM(a) = limn→∞ ϕMn (a) for any a ∈ Mx. In other words, ϕM has a
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well-defined interpretation in any M ⊨ T .

Proof. Since (ϕn) is a Cauchy sequence, we have for every ϵ > 0 that there exists an

N such that for every n,m > N

d(ϕn, ϕm) ≤ ϵ therefore T ⊨ sup
x

|ϕn(x)− ϕm(x)| ≤ ϵ

so this limit is defined. Further, for any other (ψn) representing ϕ, we have for every

ϵ > 0 that there exists an N such that for all n > N

d(ϕn, ψn) ≤ ϵ therefore T ⊨ sup
x

|ϕn(x)− ψn(x)| ≤ ϵ

so that this limit is unique.

Next, we will study definability. To define definability, we need the notion of a

T -functor. Let Met denote the category of bounded metric space with morphisms

isometric embeddings between them.

Definition 2.2.14. A functor X : Mod(T ) → Met is called a T -functor over x if

• For every M ⊨ T , X(M) is a closed subset of Mx.

• X(f : M → N) is the morphism given by restriction of the map induced on

X(M) by f .

The most natural examples of T -functors are given by zerosets.

Definition 2.2.15. The zeroset of a T -formula ϕ is given by

Z(ϕ)(M) = Z(ϕM) = {a ∈Mx : ϕ(a) = 0}.

14
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Definition 2.2.16. ϕ(x) is called an almost-near formula for M if, for any ϵ > 0,

there is δ = δ(ϵ) > 0 so that, for any a ∈Mx, if |ϕM(a)| < δ(ϵ), then there is b ∈Mx

such that ϕM(b) = 0 and d(a, b) ≤ ϵ. In this case, we refer to the function δ(ϵ) as a

modulus for ϕ. If ϕ is an almost-near formula for M , then we refer to the zeroset of

ϕM in Mx, denoted Z(ϕM), as the definable set corresponding to ϕ.

Definition 2.2.17. A T -functor is called a T -definable set if and only if it is the

zeroset of an almost near formula.

Proposition 2.2.18. X is a T -definable set if and only if for every T -formula ψ(x, y),

the functions supx∈X ψ(x, y) and infx∈X ψ(x, y) are realized by T-formulae.

Remark 2.2.19. The above proposition confirms that this is in fact the right def-

inition of definability. Not all zerosets satisfy this property. This is the key use of

definable sets in classical model theory.

Fix a tuple of variables x from the sorts of L.

Definition 2.2.20. • For M ⊨ T and a ∈ Mx, the function tpM(a) : Fx → R

given by tpM(a)(ϕ) = ϕM(a) is called the type of a in M .

• The space of x-types of T , denoted Sx(T ), is the set of functions of the form

tpM(a)(ϕ(x)) = ϕM(a), whereM is a model of T , a ∈Mx, and ϕ is an L-formula

whose free variables are among x.

• An element of the space of x-types is called a complete type.

• p ∈ Sx(T ) is realized in M if there is an element a ∈M such that tpM(a) = p.

Definition 2.2.21. Let Σ be a set of L-formulae and p a complete type. The partial

type associated to Σ is the restriction of p to Σ.
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Definition 2.2.22. The quantifier free type tpqf (a) of a is the restriction of tp(a)

to the set of all quantifier free formulae.

Definition 2.2.23. Suppose that M is an L-structure and A ⊆M . p is a (partial)

type over A if p is a (partial) type in LA with respect to the theory of MA.

Just as in classical model theory, the space of x-types Sx(T ) naturally carries a

topology. Unlike in classical model theory, this topology is not necessarily totally

disconnected.

Definition 2.2.24. The logic topology on Sx(T ) is the topology generated by the

basis consisting of the sets:

B(ϕ, (r, s)) = {p ∈ Sx(T ) : p(ϕ) ∈ (r, s)}

where ϕ and r, s ∈ R so that (r, s) represents the open interval.

Remark 2.2.25. The logic topology is the coarsest topology on Sx(T ) such that the

function fϕ(p) = p(ϕ) (the value of the type p evaluated at ϕ) is continuous for all

T -formulae ϕ.

When T is complete, Sx(T ) carries a second topology, finer than the logic topology,

that measures how close realizations of types can be.

Definition 2.2.26. The metric topology on Sx(T ), for complete T , is the topology

induced by the metric

d(p, q) = inf
M⊨T

inf
a,b
d(a, b)

where a ranges over realizations of type p and b ranges over realizations of type q.
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The relationship between the logic topology and the metric topology is a key

conceptual tool in stability theory and the study of categoricity in continuous model

theory. There is a fruitful analogy between the logic and metric topologies on Sx(T )

and the weak and norm topologies on B(H), the bounded linear operators on a Hilbert

space.

Classical model theory often concerns itself with the cardinalities of both languages

and structures. The analogue of cardinality in continuous logic is the concept of

density character.

Definition 2.2.27. The density character χ(X) of a topological space X is the

smallest cardinality of a dense subset of X.

Definition 2.2.28. The density character χ(T ) of T is the smallest cardinality of

a dense subset of Fx.

Now that we have some of the relevant jargon, we will state some of the main

theorems of continuous logic. Many of these theorems are ubiquitous in continuous

logic and its applications and will be used frequently in this thesis so it is convenient

to record them here. We begin by stating analogues of what are arguably the most

important and defining (see Lindström’s theorem) theorems of classical first order

logic.

Theorem 2.2.29 (Downward Löwenheim-Skolem). Let L be a separable first order

language and let T be a L-theory with an infinite model M of infinite density character.

Then M has a separable elementary submodel N .

We say that a metric structure M is compact if SM is a compact metric space

for every sort S in the language.

17

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Ph.D. Thesis – J. Arulseelan; McMaster University – Dept. of Mathematics and Statistics

Theorem 2.2.30 (Upward Löwenheim-Skolem). Let L be a separable language and

let T be an L-theory with an infinite non-compact model M with density character κ.

Then for every κ′ > κ, there is an elementary extension N of M of density character

χ(N) = κ′.

Definition 2.2.31. Γ is satisfiable if there is an L-structure M such that M ⊨ Γ.

Definition 2.2.32. Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

We will often use the notation a .− b to mean the function max{a − b, 0}. This

serves as a convenient way to express a ≤ b in terms of continuous functions.

Definition 2.2.33. Γ is approximately finitely satisfiable if the set

{|ϕ| .− ϵ : ϕ ∈ Γ, ϵ > 0}

is finitely satisfiable.

Theorem 2.2.34 (Compactness). The following are equivalent:

1. Γ is satisfiable.

2. Γ is finitely satisfiable.

3. Γ is approximately finitely satisfiable.

Remark 2.2.35. The compactness theorem is equivalent to the fact that Sx(T ) is

compact with respect to the logic topology for all T and x. Compactness also implies

that every partial type over A is realized in an elementary extension of A.

Next we state a convenient criterion for elementary substructures.

18
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Theorem 2.2.36 (Tarski-Vaught). Suppose that N ⊆ M . Then the following are

equivalent:

• N ⪯M .

• For all basic L-formulae ϕ(y, x) and all a ∈ N

inf{ϕM(b, a) : b ∈ N} = inf{ϕM(b, a) : b ∈M}.

2.3 Ultraproducts and Saturation

We introduce the concept of an ultraproduct in the continuous setting as well as

Łoś’ theorem, the so-called "fundamental theorem of ultraproducts". Ultraproducts

are an indispensable tool in both classical and continuous model theory and their

applications. In particular, we will soon provide a criterion for definability in terms

of ultraproducts. We will also use the existence of notions of ultraproduct in a class

of objects as both a guide for axiomatizing that class and a way to study that class.

First we recall the definition of an ultrafilter.

Definition 2.3.1. A filter U on a set I is a set U ⊂ P (I) of subsets of I such that:

• I ∈ U ;

• A ∈ U and A ⊆ B implies B ∈ U ; and

• A ∈ U and B ∈ U implies A ∩B ∈ U .

Definition 2.3.2. An ultrafilter is a maximal filter.
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Definition 2.3.3. An ultrafilter is said to be non-principal if it does not contain a

singleton.

Remark 2.3.4. Non-principal ultrafilters exist by Zorn’s lemma. Throughout the

rest of this thesis, all ultrafilters will be taken to be non-principal.

Definition 2.3.5. Let (ai) be a sequence of real numbers and U an ultrafilter on I.

Suppose there is a real number B such that {i ∈ I : |ai| < B} ∈ U . Then there is a

unique real number r such that for every ϵ > 0, we have {i ∈ I : |ai − r| < ϵ} ⊆ U .

We call r the ultralimit of (ai) with respect to U .

Let (Mi)i∈I be a family of L-structures and let U be an ultrafilter on I. For each

sort S, define dS,U as the pseudometric on
∏

i∈I S(Mi) defined by

dS,U(x, y) = lim
U
dS(Mi)(xi, yi).

Definition 2.3.6. The ultraproduct of (Mi), denoted
∏

U Mi has
∏
S(Mi)/dS,U as

sorts and symbols interpreted pointwise. If Mi = M for all i, then we call this the

ultrapower MU .

Remark 2.3.7. The uniform continuity moduli in our languages guarantee that func-

tions and relations on the ultraproduct are well-defined.

Theorem 2.3.8 (Łos’ theorem). For an arbitrary L-formula ϕ(x) and a = (ai) ∈∏
U Mi we have that

ϕ
∏

U Mi(a) = lim
U
ϕMi(ai)

where ϕ ranges over Fx.
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We now give an extremely useful characterization of definable sets in terms of

ultraproducts.

Theorem 2.3.9. A T -functor X is a T -definable set if and only if for all sets I, all

families of models (Mi)i∈I of T , and all ultrafilters U on I, we have X(
∏

U Mi) =∏
U X(Mi).

It is often useful in model theory to consider models that realize many types.

Definition 2.3.10. Let κ be an infinite cardinal and a M be an L-structure. Then

M is said to be κ-saturated if for every A ⊂ M where χ(A) < κ, every type

(equivalently, every 1-type) over A is realized in M .

Definition 2.3.11. M is said to be saturated if it is χ(M)-saturated.

Proposition 2.3.12. For every infinite cardinal κ, there is an ultrafilter U on κ such

that if L has density character at most κ and Mα is an L-structure for all α < κ,

then
∏

U Mα is κ+-saturated.

Definition 2.3.13. U as in the above proposition is called a good ultrafilter.

In the case that κ = ℵ0, we get a simpler statement.

Proposition 2.3.14. If L is a separable language, Mn an L-structure for all n ∈ N,

and U a non-principal ultrafilter on N,
∏

U Mn is ℵ1-saturated.

Theorem 2.3.15 (Keisler-Shelah). For L-structures M and N , we have that M ≡ N

if and only if there are ultrafilters U and V such that MU ∼= NV .

Definition 2.3.16. Let MU be an ultrapower of M . Then we call M an ultraroot

of MU .
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Proposition 2.3.17. Suppose that C is a class of L-structures. The following are

equivalent:

• C is an elementary class.

• C is closed under isomorphisms, ultraproducts, and elementary submodels.

• C is closed under isomorphisms, ultraproducts, and ultraroots.

2.4 Computable Continuous Logic

Throughout this section, fix a language L. An immediate concern in developing com-

putable continuous logic is the fact that our languages are uncountable and thereby

too big to be computable in the usual sense. Namely, we have all continuous functions

as connectives. This is no serious issue though, as the Stone-Weierstrass theorem guar-

antees we have countable dense subsets of this set. Moreover, we can demand these

subsets be computable. Denote by Cc(Rk) the set of compactly supported continuous

functions to R on Rk.

We fix a countable collection (un) of continuous functions f : Rk → R over all k

with compact support satisfying the following two conditions:

• For each k, the set (un) ∩ Cc(Rk) is dense in Cc(Rk).

• There is an algorithm that takes a computable f ∈ Cc(Rk) and a rational δ > 0

and returns n such that un ∈ Cc(Rk) and ∥f − un∥∞ < δ. For convenience, we

assume that the following functions are among the sequence (un):

– the binary functions + and ×;
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– for each λ ∈ Q, the unary function x 7→ λx;

– the binary function .− given by x .− y = max(x− y, 0); and

– the unary functions x 7→ 0, x 7→ 1, and x 7→ x
2
.

We call an L-formula ϕ a restricted L-formula if it only uses functions from (un)

as connectives. We further say ϕ is computable if it only uses computable functions

as connectives. We fix an enumeration (ϕn) of restricted L formulae.

Proposition 2.4.1. There is an algorithm such that takes as inputs a computable L-

formula ϕ(x) and rational δ > 0 and returns n such that ϕn(x) has the same arity as

ϕ and ∥ϕ−ϕn∥ < δ, the distance being the usual logical distance between L-formulae.

Moreover, if ϕ is quantifier-free, then so are the ϕn.

Proposition 2.4.2. There is an algorithm such that takes a computable almost near

formula ϕ(x) for M that has a computable modulus and a rational q > 0 and returns

n ∈ N so that, for all a ∈ Mx, we have |d(a, Z(ϕM)) − ϕn(a)
M | < q. Moreover, if ϕ

is quantifier-free, then each ϕn is existential.
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Chapter 3

Operator Algebras Preliminaries

3.1 Overview

The study of von Neumann algebras was first initiated in the 1930s, motivated by

unitary representations and by mathematical formalisms for quantum mechanics, by

von Neumann himself and Murray in [50], [51], [69] and [52]. There, they proved

many of the foundational results of the theory. The more general class of C∗-algebras

was studied by Rickart, Gelfand, Naimark, Krein and others in their abstract form

in the early 40s. Segal studied their concrete form represented on a Hilbert space

and introduced the term "C∗-algebra" in [60]. Work of Gelfand and Naimark in

1943 showed that they can be seen as a noncommutative generalization of topological

spaces. This perspective later, in turn, led to important connections to K-theory

and geometry via index theory. The classification program for simple nuclear C∗-

algebras is one of the great mathematical feats of the last century, involving many

researchers and many important insights (see [63]). In the almost 100 years since

their introduction, the study of von Neumann algebras has advanced significantly.
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It has developed connections to dynamical systems, representation theory, logic and

mathematical physics. In the 1970s, through work by Sakai, McDuff, Connes and

others, ultraproducts became a central tool in the analysis of von Neumann algebras.

Also from the 1950s to the 1970s, Tomita and Takesaki further revolutionized the field

with the theory of modular automorphism groups. Today, operator algebras continue

to extend their reach into broader mathematics through Connes’ noncommutative

geometry program (see [14]). Operator algebras can be found as noncommutative

or "quantum" analogues of various classical mathematical objects. However, in this

thesis, we will only consider von Neumann algebras and occasionally more general

C∗-algebras.

Due to time and space constraints, we assume the reader is familiar with the

essentials of functional analysis including, but not limited to: Banach space and

Hilbert space theory, linear operators and functionals, weak convergence and Baire

category results. The reader lacking such familiarity should consult one of [48], [55]

or [58].

While von Neumann algebras are a special case of C∗-algebras, often the techniques

used and results obtained differ greatly between the subjects. For the fundamental

concepts used to study C∗-algebras and von Neumann algebras, we recommend [55].

More advanced looks at C∗-algebras are [17] and [44]. For details about the Elliot

classification program, the reader should consult [63]. A very thorough account of

von Neumann algebra theory can be found in [65]. An encyclopedic reference for both

topics is [8].
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3.2 Definitions

Let H be a Hilbert space and let B(H) denote the algebra of bounded operators on

H together with the operator norm.

Definition 3.2.1. For a ∈ B(H), denote by a∗ the unique operator such that

⟨av , w⟩ = ⟨v , a∗w⟩

for all v, w ∈ H. We call a∗ the adjoint of a.

A unital ∗-algebra A ⊆ B(H) is called a C∗-algebra if it is closed in the topology

induced by the operator norm. We also have the following, more abstract, character-

ization.

Definition 3.2.2. A C∗-algebra is a (complex) Banach space A equipped with:

• A multiplication that is submultiplicative: ∥ab∥ ≤ ∥a∥∥b∥ for all a ∈ A (A is a

Banach algebra).

• A conjugate linear involution ∗ : A → A (which we will call the adjoint)

satisfying:

– (xy)∗ = y∗x∗; and

– ∥x∗x∥ = ∥x∥2 (the C∗-identity).

A is called a unital C∗-algebra if, furthermore, A admits a multiplicative unit 1.

One can check that the above definitions are equivalent using the GNS construc-

tion introduced later in this chapter. We remark that if we remove the C∗identity

requirement, we get the more general notion of a Banach ∗-algebra.
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Example 3.2.3. Let n ∈ N be a natural number at least 1. The algebra Mn(C) of

n × n matrices is a (unital) C∗-algebra in the operator norm with ∗ the conjugate

transpose.

Example 3.2.4. Let X be a compact Hausdorff topological space. The algebra C(X)

of complex-valued continuous functions with pointwise addition and multiplication is a

(unital) C∗-algebra in the norm ∥f∥∞ = supx∈X |f(x)| with ∗ defined by f(x)∗ = f(x)

for all x ∈ X.

A unital ∗-algebra M ⊆ B(H) is called a von Neumann algebra if it is closed

with respect to either of the following topologies.

Definition 3.2.5. The weak operator topology (often abbreviated WOT) on

B(H) is the weakest topology such that T 7→ ⟨Tv , w⟩ is continuous for every v, w ∈

H.

Definition 3.2.6. The strong operator topology (often abbreviated SOT) on

B(H) is the weakest topology such that T 7→ Tv is continuous for every v ∈ H.

Equivalently, the strong operator topology is the topology in which a net of oper-

ators (Tα) converges to T if and only if (Tα) converges pointwise to T .

Notice that the strong operator topology is in general stronger than the weak

operator topology (hence the names). However, both topologies agree on which linear

subspaces (and hence subalgebras) are closed. Note also that both topologies are

weaker than the norm topology. Hence every von Neumann algebra is a C∗-algebra

but not vice-versa. Another topology we will use often is the following.

Definition 3.2.7. The strong∗ topology or SOT∗ is the topology in which a net
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of operators (Tα) converges to T if and only if (Tα) strongly converges to T and (T ∗
α)

strongly converges to T ∗.

Definition 3.2.8. Let S ⊆ B(H). The commutant S ′ of S is the set of all elements

of B(H) that commute with every element of S.

Von Neumann proved his celebrated double commutant theorem in 1930 in [68].

This gives us another concrete definition of von Neumann algebras as those ∗-algebras

closed equal to their own double commutant. Note that such ∗-algebras are automat-

ically unital.

Theorem 3.2.9 (Double Commutant Theorem (von Neumann)). Let M be a subal-

gebra of B(H) closed under ∗. The closure of M in the WOT (equivalently the SOT)

is M′′, the second commutant of M.

It is useful to define the following types of elements of a C∗-algebra.

Definition 3.2.10. Let A be a C∗-algebra and let x ∈ A be an element.

• x is self adjoint if x∗ = x.

• x is normal if x∗x = xx∗.

• x is a projection if x∗ = x and x2 = x.

• x is a unitary if xx∗ = x∗x = 1.

• x is a partial isometry if x∗x = p and xx∗ = q. for some projections p and q.

• x is positive if x = y∗y for some y ∈ A.
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Notice that in the case of bounded linear operators on B(H), the definitions above

agree with their standard usage. Note that one can define an order on self-adjoint

operators by a ≤ b if b − a is a positive operator. We will use the notation Asa to

denote the set of all self adjoint elements of A and A+ to mean the set of all positive

elements of A.

Example 3.2.11. Consider the case of continuous function algebras C(X).

• Self-adjoint elements are those with range in the reals. Unitaries are those with

range in the complex unit circle. Positive elements are those with range in the

positive (non-negative) reals. Note that the image of a continuous function is

the same as its spectrum in C(X).

• In the case of continuous function algebras C(X), projections are those elements

with range in {0, 1}; notice this means that it is an indicator function. Since

elements of C(X) are meant to be continuous, these are specifically indicator

functions of clopen subsets of X. Notice that a C∗-algebra may lack non-trivial

projections, as in the case when X is connected.

• All elements of C(X) are normal and all partial isometries are projections.

These two notions will only become useful in the non-commutative setting.

We will now state the Kaplansky Density Theorem. This is an incredibly cen-

tral theorem in von Neumann algebras. It is arguably even more important in the

continuous logic of von Neumann algebras. See [55, Theorem 2.2.3] for a proof.

Theorem 3.2.12. Given a ∗-subalgebra A of B(H), denote by A the weak closure

of A in B(H), then the unit ball A1 of A is weakly dense in the unit ball A1 of A.

Further, the self-adjoint part of A1 is weakly dense in the self-adjoint part of A1.
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3.3 States, Traces and Weights

Definition 3.3.1. Let φ be a linear functional with operator norm ∥φ∥ = 1 on a

unital C∗-algebra A.

• φ is called a state if φ(y) is a positive real for all positive y = x∗x and φ(1) = 1.

A functional satisfying the first condition is called positive.

• A state is called faithful if φ(x∗x) = 0 implies x = 0.

• If a state preserves suprema of increasing nets of self adjoint operators, it is

called normal.

• If a faithful normal state furthermore satisfies φ(xy) = φ(yx) for all x, y ∈ A,

we say φ is a trace.

Example 3.3.2. Consider A = Mn(C). The normalized trace τ(a) = 1
n
tr(a) is a

tracial state on A. Furthermore, for every x ∈ A+ such that τ(a) = 1, we can form

another state φx(a) = τ(xa) which is not necessarily tracial. We will see later that

this exhausts all states on A.

Proposition 3.3.3. The space of states on A forms a closed convex subspace of the

space of all continuous linear functionals on A. In the case that A admits a trace,

the space of tracial states on A also forms a closed convex subspace of the space of all

continuous linear functionals.

Definition 3.3.4. M is σ-finite if it admits a faithful normal state.

Remark 3.3.5. The terminology "σ-finite" refers to the fact that, in such von Neu-

mann algebras, the identity is a SOT-limit of a countable increasing family of finite

projections. Compare this with the notion of a σ-finite measure.
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Definition 3.3.6. A σ-finite von Neumann algebra together with a choice of faithful

normal state is called a W∗-probability space.

Remark 3.3.7. The terminology "W∗-probability space" comes from the analogy

with probability spaces. The state φ can be thought of as a "noncommutative prob-

ability measure" on the "noncommutative measure space" M. This analogy is used

heavily in the subject of Free Probability.

Definition 3.3.8. A weight on M is a map Φ : M+ → [0,∞] such that:

1. Φ(x+y) = Φ(x)+Φ(y) for all x, y ∈ M+, with the convention that ∞+a = ∞

for any a; and

2. Φ(λx) = λΦ(x) for all x ∈ M+ and λ ≥ 0 where we use the convention 0∞ = 0.

Definition 3.3.9. We will often require our weights satisfy more properties:

• A weight is semifinite if PΦ = {x ∈ M+|Φ(x) <∞} generates M.

• A weight is faithful if Φ(x) = 0 for x ∈ M+ implies x = 0.

• A weight is normal if Φ(supk xk) = supk Φ(xk) for all increasing nets (xk) ∈

M+.

• A weight is a trace or tracial weight if Φ(aa∗) = Φ(a∗a) for all a ∈ M.

Note that any positive linear functional defines a weight by restricting to the

positive elements of M.

Definition 3.3.10. Let φ and Φ be weights on a von Neumann algebra M. We say

Φ majorizes φ, denoted φ ≤ Φ if φ(x) ≤ Φ(x) for all x ∈ M+.
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The following is a key result in the theory of weights due to Haagerup [38], and

Pederson-Takesaki [56, Theorem 7.2].

Theorem 3.3.11 (Haagerup Approximation of Weights). Let Φ be a weight. The

following are equivalent.

• Φ is normal.

• Φ is σ-weakly lower semicontinuous.

• Φ(x) = sup{φ(x) : φ is a positive functional and φ ≤ Φ} for all x ∈ M+.

• Φ(x) =
∑

i∈I ⟨xvi , vi⟩ for some net (vi) in H.

The next theorem is classical. See [65, Theorem 2.7] for a proof. Notice that in

that proof, the weight constructed majorizes a state (in fact, many) and so we may

assume that any faithful normal semifinite weight we consider has this property.

Theorem 3.3.12. Every von Neumann algebra admits a faithful normal semifinite

weight. Moreover, at least one such faithful normal semifinite weight majorizes a

state.

We discuss various possible morphisms between C∗-algebras. Let f : A → B be a

linear map between C∗-algebras A and B. The matrix amplification of dimension

n is the map f (n) :Mn(A) →Mn(B) defined by f (n)(aij) = f(aij) for all 1 ≤ i, j ≤ n.

Definition 3.3.13. • f is said to be a ∗-homomorphism if, f(1) = 1, f(ab) =

f(a)f(b) and f(x∗) = f(x)∗.

• f is said to be positive if the image of any positive element is positive.
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• f is said to be n-positive if all of its matrix amplifications up to dimension n

are positive.

• f is said to be completely positive or c.p. if it is n-positive for all n.

• f is said to be unital completely positive or u.c.p. if it is completely positive

and unital.

Let A be a ∗-algebra.

Definition 3.3.14. • A ∗-representation of A is a ∗-homomorphism π from A

to B(H). We say π is nondegenerate if {π(a)v : a ∈ A, v ∈ H} is dense in H.

• Let v ∈ H be a vector in H. v is cyclic for A if the image of A under a 7→ π(a)v

is a dense subset of H.

• Let v ∈ H be a vector in H. v is separating for A if π(a)v = 0 implies a = 0

for a ∈ A.

Proposition 3.3.15. Let π : A → B(H) be a ∗-representation. Then v is cyclic

for A with respect to π if and only if v is separating for its commutant A′ := π(A)′.

Similarly, v is separating for A if and only if v is cyclic for A′.

Theorem 3.3.16. Let φ be a state on A. There is a ∗-representation π of A acting

on a Hilbert space H with a unit cyclic vector v such that φ(a) = ⟨π(a)v, v⟩ for every

a in A.

Proof. First, we construct H. Define a pre-inner product on A by ⟨a , b⟩ = φ(b∗a).

One can check that K = {a ∈ A : φ(a∗a) = 0} is a left ideal of A. H is the result

of taking the Hilbert space completion of A/K.
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Next we construct π. Define π(a)(b+K) = (ab+K). One can check that this is

a bounded operator on A/K and hence extends to one on H.

The construction of π from φ in the proof of the above theorem is called the

Gelfand-Naimark-Segal construction or GNS construction.

Remark 3.3.17. If φ is faithful, then the step involving K above is unnecessary. If

A is unital, then 1 is a cyclic vector for π.

Remark 3.3.18. States on A separate points and so by taking the direct sum of

GNS constructions over all states yields a faithful representation of A on the direct

sum of the Hilbert spaces.

This implies the following theorem.

Theorem 3.3.19. Every abstract C∗-algebra can be realized as a concrete C∗-algebra.

The abstract definition of von Neumann algebras is not quite as simple as the

abstract definition of C∗-algebras. One was provided by Sakai with the proof of his

theorem on preduals.

Recall that the dual V∗ of a Banach space V is the space of continuous linear

functionals on V . We note that V∗ is naturally also a Banach space.

Definition 3.3.20. Given Banach spaces V and V∗, we call V∗ the predual of V if

V is isometrically isomorphic to the dual of V∗.

Theorem 3.3.21 (Sakai). A C∗-algebra is a von Neumann algebra if and only if it

admits a predual as a Banach space.

The proof of the above theorem builds an explicit such predual. If the C∗-algebra

is B(H) then we can show that the ideal of trace-class operators B(H)1 is the predual
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of B(H). In fact, every continuous functional f on B(H) is of the form f(a) = tr(ba)

for some b ∈ B(H)1 For A an arbitrary C∗-algebra, then we can represent A on B(H).

We can check that the image of this representation is weakly closed if and only if the

set

K = {b ∈ B(H)1 : tr(ba) = 0 for all a ∈ A}

is closed. A predual of A in this case is B(H)1/K.

This does not yet give us an abstract definition of von Neumann algebras as the

construction of the predual involves a Hilbert space action. But it turns out that

more is true. The predual of a von Neumann algebra is essentially unique and can be

presented in terms of positive normal functionals.

Theorem 3.3.22. [59] Any predual of a von Neumann algebra M is isometrically

isomorphic to the space of positive normal linear functionals on M.

This gives both the abstract definition of a von Neumann algebra and its equiva-

lence to the concrete definition. When working with W∗-probability spaces, we often

want to consider a von Neumann algebra without worrying about carrying around an

action on a Hilbert space. We will therefore often switch between perspectives.

3.4 Commutative Operator Algebras and Duality

Definition 3.4.1. The Gelfand Spectrum of a commutative C∗-algebra A is de-

fined as the set sp(A) = {f ∈ A∗ : f is an algebra homomorphism} together with its

topology as a subset of the dual of A.

Theorem 3.4.2. Every unital commutative C∗-algebra A is isomorphic to the C∗-

algebra of continuous functions on its Gelfand spectrum sp(A).
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In fact, this construction defines an equivalence of categories.

Let cnxn + cn−1x
n−1 + . . .+ c0 = p ∈ C[x] be a formal polynomial in one variable

and let a ∈ A be given. It is easy to see that we can "define" p(a) by formally

replacing x with a. In other words we take p(a) = cna
n + cn−1a

n−1 + . . .+ c01. Since

A is an algebra, it is clear that this actually defines a unique element of A. Using an

evaluation map, we can identify the formal expressions with their associated elements.

This is the most primitive example of a functional calculus. We can do the same

thing for non-commuting polynomials p ∈ C⟨x, x⟩ by defining a = a∗.

When a ∈ A is a normal element, we can say more. Since normal elements

commute, we can consider polynomials in two commuting variables p ∈ C[x, x] and

evaluation defines a homomorphism eva : C[x, x] → A by eva(p) = p(a).

If A is a unital C∗-algebra, we can do even better. Consider the commutative

subalgebra A(a, 1) generated by a and 1. This is commutative since a is normal. By

Gelfand duality, we can consider the Gelfand spectrum X of A(a, 1). It turns out

that X is deeply connected to the eigenvalues of a.

Definition 3.4.3. The spectrum of an element a ∈ A is the set sp(a) = {λ ∈ C :

a− λ1 is not invertible}.

Proposition 3.4.4. sp(A(a, 1)) is homeomorphic to sp(a) as a subset of C.

Moreover, the polynomial functional calculus plays well with the eigenvalues of a.

Proposition 3.4.5. sp(p(a)) = p(sp(a)).

So the polynomial functional calculus can be seen as applying functions to the

spectrum of a. In the case of a continuous function on C that is continuous in

a neighbourhood of sp(a), we can define a more general functional calculus. By
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Weierstrass approximation, we can approximate any such function f by polynomials

pn. For each n, pn(a) is well-defined and one can check that pn(a) converges to a

unique element f(a) such that sp(f(a)) = f(sp(a)). This defines what is called the

continuous functional calculus.

Proposition 3.4.6. Continuous functional calculus defines an isometric ∗-isomorphism

eva from C0(sp(a)) to C0(A(a, 1)).

Where C∗-algebras are "noncommutative topological spaces", von Neumann alge-

bras are "noncommutative measure spaces". For X a measure space (a set equipped

with a σ-algebra of measurable subsets), define L∞(X) to be the algebra of equiva-

lence classes of essentially bounded measurable functions from X to C.

Proposition 3.4.7. Every commutative von Neumann algebra is isomorphic to L∞(X)

where X is some "standard" measure space.

We will not define a "standard" measure space as it is not important for our

purposes. We simply note that not every measure space is standard, but every one

we will use is. When restricted to the category of standard measure spaces, the above

defines an equivalence of categories.

Similar to the continuous functional calculus, von Neumann algebras are closed

under a broader functional calculus called the Borel functional calculus.

Proposition 3.4.8. For every self adjoint element m ∈ M and Borel function f

from sp(m) to C, there is a well-defined f(m) ∈ M such that sp(f(m) = f(sp(m)).

Proposition 3.4.9. The construction above induces an isometric ∗-homomorphism

from L∞(sp(m)) the von Neumann algebra generated by m and 1.
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3.5 Factors and Classification

Definition 3.5.1. A factor is a von Neumann algebra whose center consists only of

scalar multiples of 1.

Murray and von Neumann defined factors in their study of "factorizations" of

quantum mechanical systems into mutually independent sets of quantum mechanical

systems. Murray and von Neumann further divided factors into three classes.

• Type I: Those with a minimal projection. These are equivalently those isomor-

phic to B(H) for some Hilbert space H.

• Type II: Those with no minimal projections but admitting a faithful normal

semifinite tracial weight. Further subdivided into types II1 and II∞ based on if

the range of the projection under the tracial weight is [0, 1] or [0,∞] respectively.

• Type III: Those admitting no faithful normal semifinite tracial weight.

Von Neumann would later, in 1949, show that any separably acting von Neumann

algebra could be decomposed as a direct integral of factors. As a result, the study

of von Neumann algebras in general can be systematically reduced to the study of

factors.

Definition 3.5.2. A von Neumann algebra is called hyperfinite if it contains a union

of finite dimensional subalgebras as a subset dense in the weak operator topology.

Already in [50], Murray and von Neumann completely classified the type I factors

using their concept of "relative dimensionality" of projections (the precursor to what

is now known as Murray-von Neumann equivalence). In [50], [51], [69], and [52], they
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also defined and characterized the hyperfinite II1 factor and showed that there are at

least 2 non-isomorphic II1 factors. In [69], they showed, using their group-measure

space construction, that there exists a factor of type III. However, it was not known

that there was a pair of non-isomorphic type III factors until 1956. Identification of

new isomorphism classes of type II and III factors remained slow until in 1967, Powers

shook the subject by presenting an uncountable family of non-isomorphic factors. We

will construct these so-called Powers factors below, but we must first make a brief

detour.

Consider a pair of von Neumann algebras M and N acting on Hilbert spaces

H1 and H2 respectively. We will often want to take a "tensor product" of M and

N . Taking the algebraic tensor product M⊙N produces a ∗-algebra but in general,

this is not even a C∗-algebra. One might wish to just complete the algebraic tensor

product with respect to a canonical norm. Such a canonical norm is not always

guaranteed to exist. There can be an uncountable family of such norms but, usually,

operator algebraists will work with the smallest (giving ⊗min) or the largest (giving

⊗max) such. While thinking more deeply about such norms leads to a wide number

of interesting ideas, we will not need them here. Instead, we will leverage the actions

on Hilbert spaces to form a canonical tensor product.

Definition 3.5.3. The spatial tensor productM⊗̂N of M and N acting faithfully

on Hilbert spaces H1 and H2 respectively is defined as the weak∗ closure of M∪N ⊆

B(H1⊗H2). Here, H1⊗H2 is the canonical Hilbert space tensor product and M∪N

is an abbreviation for the union in B(H1 ⊗H2) of the images of M ↪→ B(H1 ⊗H2)

defined by m 7→ m⊗ 1 and N ↪→ B(H1 ⊗H2) defined by n 7→ 1⊗ n.

Proposition 3.5.4. The spatial tensor product up to isomorphism depends only on
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M and N .

Defining tensor products of finitely many von Neumann algebras analogously, we

can now construct the hyperfinite II1 factor and the Powers factors.

Consider M2(C) together with the normalized trace

τ


a b

c d


 =

1

2
a+

1

2
d

Given A we can embed A into A ⊗M2(C) by A → A ⊗ Id. Thus we can form a

nested union

M2(C) ↪→M2(C)⊗M2(C) ↪→M2(C)⊗M2(C)⊗M2(C)

together with their normalized traces, which we will denote by Tr. Consider the

union A =
⋃∞
n=0M2n(C) together with the induced trace thereupon. Taking the

GNS construction of A with respect to the trace yields a factor which is known as

the hyperfinite II1 factor R.

Let λ ∈ (0, 1) be given. Consider M2(C) together with the state

φ


a b

c d


 =

1

λ+ 1
a+

λ

λ+ 1
d.

This gives us a nested union of finite dimensional W∗-probability spaces An =⊗n
i=1M2(C) with the state given by tensor products of φ. Taking the GNS con-

struction with respect to the tensor state gives us a factor known as the Powers

factor Rλ. The resulting state is called the Powers state.
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The two examples above are special cases of what are called infinite tensor

products of finite type Is or ITPFI factors. These were defined by Araki-Woods,

motivated by the work of Powers.

Definition 3.5.5. For any countable family (Ai, φi) of finite dimensional matrix

algebras Ai =Mni
(C) with a state φi thereupon, we can form the tensor products over

i of Ai and φi. The ITPFI algebra associated to this family is the GNS construction

with respect to the resulting state.

Araki-Woods also gave a way to classify ITPFIs in terms of the spectral theory

of the corresponding states. Connes’ 1976 paper [13] on the classification of injective

factors amounted to a huge improvement on our understanding of type II and type III

factors. Generalizing the Araki-Woods classification and using the then-new Tomita-

Takesaki theory, Connes further subdivided the type III factors into types IIIλ for

λ ∈ [0, 1]. Under this classification, for λ ∈ (0, 1), the Powers factor Rλ is the unique

hyperfinite factor of type IIIλ up to isomorphism. As such, we will refer to Rλ as the

hyperfinite type IIIλ factor. There is also a unique hyperfinite factor of type III1 as

seen in the next theorem.

Theorem 3.5.6. [41] All ITPFI factors of type III1 are isomorphic to R∞ defined

as

R∞ =
⊗
n∈N

(M3(C),Tr(ρ−))

where

ρ =


1

1+λ+µ
0 0

0 λ
1+λ+µ

0

0 0 µ
1+λ+µ


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where 0 < λ, µ and log(λ)
log(µ)

is irrational.

There are hyperfinite factors which are not covered by the above examples. These

are called type III0. The type III0 case is more complicated. The hyperfinite factors

of type III0 with separable predual which are ITPFI was classified [15]. However,

the existence of hyperfinite factors of type III0 with separable predual which are not

ITPFI was proved by Connes in [12].

3.6 Ultraproducts of von Neumann Algebras

Let (Mi, τi)i∈I be a family of tracial von Neumann algebras with trace τi and let U

be an ultrafilter on I. Define

ℓ∞(Mi) = {(xn) ∈
∏
i∈I

Mi : sup
i∈I

∥xi∥ <∞}

and the ideal

IU := {(mi) ∈ ℓ∞(Mi, I) : lim
U
τ(m∗

imi) = 0}

Definition 3.6.1. The tracial ultraproduct is defined as the quotient

U∏
Mi := ℓ∞(Mi)/IU .

For (mi) ∈ ℓ∞(Mi), we will write (mi)
• for its equivalence class in

∏U Mi.

Proposition 3.6.2.
∏U Mi is a tracial von Neumann algebra with trace τUi defined

by τUi ((mi)
·) = limU τi(mi).

Definition 3.6.3. A C∗-algebra A ⊆ B(H) has the weak expectation property

42

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Ph.D. Thesis – J. Arulseelan; McMaster University – Dept. of Mathematics and Statistics

or WEP if there is a u.c.p. map Φ : B(H) → A∗∗ that is the identity on A.

Definition 3.6.4. A has the QWEP (quotient of the weak expectation prop-

erty) if A is isomorphic to a quotient of a C∗-algebra with the WEP.

The Connes Embedding Problem asks whether every tracial von Neumann

algebra embed in a tracial ultrapower of R. The name comes from its appearance as

an off-hand comment in [13].

Kirchberg’s QWEP problem asks if every separable C∗-algebra has QWEP.

In [46], Kirchberg, while asking this question, also proves it to be equivalent to the

Connes Embedding Problem (CEP). Fritz proves that both of these are equivalent

to Tsirelson’s problem from quantum information theory in [25]. See [54] for more

about this early work.

By [43], CEP and therefore also the Kirchberg’s QWEP problem are known to

be resolved in the negative. Later in this thesis, we will prove various strengthenings

of the negation of this problem. See [29] for more about these problems and their

relationships with model theory from a modern perspective.

Given a family Mi of von Neumann algebras, acting on Hilbert spaces Hi, we

can define Banach space ultraproducts ΠB,UMi and ΠB,UHi of the von Neumann

algebras and Hilbert spaces respectively. Moreover, (xi)U ∈ ΠB,UMi acts naturally

on (ξi)U ∈ ΠB,UHi by the formula

(xi)U(ξi)U = (xiξi)U .

Definition 3.6.5. The abstract ultraproduct ΠU(Mi,Hi) of the family (Mi,Hi)

is defined to be the strong closure of the action of ΠB,UMi on ΠB,UHi given above.
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For the definition below, see Section 4.5 for the definition of the standard Hilbert

space.

Definition 3.6.6. When Hi is the standard Hilbert space associated to Mi for all i,

the abstract ultraproduct ΠU(Mi,Hi) is called the Groh-Raynaud ultraproduct.

Theorem 3.6.7. [3, Theorem 3.22] (
∏

U Mi)
′ =
∏

U M′
i.

For a W∗probability space (M, φ), we define the sharp norm

∥x∥#φ =

√
φ(x∗x) + φ(xx∗)

2
.

Consider a family of W∗-probability spaces (Mi, φi)i∈I and an ultrafilter U on I.

Define

ℓ∞(Mi) = {(xn) ∈
∏
i∈I

Mi : sup
i∈I

∥xi∥ <∞}

and the subset

IU := IU(Mi, φi) := {(mi) ∈ ℓ∞(Mi, I) : lim
U

∥mi∥#φi
= 0}.

Unlike in the tracial case, we do not in general have that IU is a two-sided ideal of

ℓ∞(Mi). Consider the two sided normalizer of IU given by

NU := NU(Mi, φi) := {(mi) ∈ ℓ∞(Mi, I) : (mi)IU + IU(mi) ⊂ IU}.

It is readily apparent that IU is a two-sided ideal of NU .

Definition 3.6.8. [3, Section 3.1] The Ocneanu ultraproduct is defined as the

quotient
∏U Mi := NU/IU . For (mi) ∈ NU , we will write (mi)

• for its equivalence
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class in
∏U Mi.

Proposition 3.6.9. [3, Proposition 3.2.]
∏U Mi is a σ-finite von Neumann algebra

with faithful normal state φU
i defined by φU

i ((mi)
·) = limU φi(mi).

3.7 Model Theory of Tracial von Neumann Algebras

We begin this section by describing the language of tracial von Neumann algebras.

Recall the 2-norm, defined by ∥x∥2 =
√
τ(x∗x). We will need to reference the follow-

ing fact in the next definition.

Fact 3.7.1. [30, Chapter 2, Fact 3.11] For every n ∈ N, there is a sequence (q̂nk ) of

polynomials in one variable such that for every C∗-algebra A and a ∈ A, ∥a∥ ≤ n

implies ∥q̂nk (a)∥ ≤ 1. Moreover, if ∥a∥ ≤ 1, then limk→∞ q̂nk (a) = a where this limit is

taken in the operator norm.

The following is adapted from [30, Chapter 2] and [20].

Definition 3.7.2. We define the language Ltr of tracial von Neumann algebras to

consist of:

• For each n ∈ N, we have a sort Sn with bound 2n representing the n-ball in the

operator norm, with a metric symbol dn representing the 2-norm, defined as:

dn(x, y) = ∥x− y∥2 =
√
τ((x− y)∗(x− y)).

• Binary function symbols +n and −n with domain S2
n and range S2n. The in-

tended interpretation is simply addition and subtraction restricted to the oper-

ator norm ball of radius n. The modulus of continuity for each is δ(ϵ) = ϵ.
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• a binary function ·n with domain S2
n and range Sn2 . The intended interpretation

is the restriction of multiplication to the operator norm ball of radius n. The

modulus of continuity is δ(ϵ) = ϵ
n
.

• two constant symbols 0n and 1n which lie in the sort Sn. The intended inter-

pretation of these symbols are the elements 0 and 1.

• for every λ ∈ C, there is a unary function symbol λn whose domain is Sn and

range is Smn, where m = ⌈|λ|⌉ if λ ̸= 0 or m = 1 if λ = 0. The intended

interpretation is scalar multiplication by λ restricted to the operator norm ball

of radius n. The modulus of continuity is δ(ϵ) = ϵ
|λ| when λ ̸= 0 and δ(ϵ) = 1

when λ = 0.

• a unary function symbol ∗
n with domain and range Sn. The intended interpre-

tation is the restriction of the adjoint to the operator norm ball of radius n.

The modulus of continuity is δ(ϵ) = ϵ.

• For every m > n, we include unary function symbols in,m with domain Sn and

range Sm. The intended interpretation is the inclusion map between the balls

of the given radii. The modulus of continuity is δ(ϵ) = ϵ.

• For each n ∈ N, there is one relation symbol τn whose intended interpretation

is the restriction of the trace to the operator norm unit ball of radius n. Its

domain is Sn and the range is Dn, the complex ball of radius n. Technically we

have separate symbols for the real and imaginary parts but this is of no great

importance.

• For n, k ∈ N, we include function symbols qnk with domain Sn and range S1.
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These will be interpreted as the corresponding polynomials asserted to exist in

Fact 3.7.1 and their moduli of continuity will be the same as said polynomials.

Viewing a von Neumann algebra M as being divided into the above sorts with

all the intended interpretations, we have its dissection D(M). We will now present

the axioms of tracial von Neumann algebras. A dissection will come from a dissection

as above if it satisfies the following axioms. They will be stated informally, but it is

easy to translate them into formal sentences in our language.

Definition 3.7.3. The set Ttr of sentences in the language Ltr consists of the follow-

ing:

1. Axioms on the function symbols saying they define a complex ∗-algebra.

2. Axioms that say that τ defines a tracial state on that algebra.

3. axioms saying that for m > n, im,n preserves addition, multiplication, the ad-

joint and the trace.

4. dn(x, y) = ∥x−y∥2 requiring that the distance on each sort is given by the norm

coming from the trace.

5. supx∈Sn
supy∈S1

(∥xy∥2 .− n∥y∥2). This says that any element of the sort Sn has

operator norm at most n in the GNS representation with respect to τ .

6. Axioms saying that qnk is interpreted as in Fact 3.7.1. Since qnk is a polynomial,

we can express this simply in terms of the scalar multiplication, multiplication

and addition operations already defined. Let Sm be the naive range of qnk we

obtain from composing such operations. We also add, for each n, k, the axiom

supx∈Sn
i1,m(q

n
k (x)) = q̂nk (x).
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Given a model A of Ttr, we define the interpretation M(A) to be the tracial

von Neumann algebra given by taking the nested union of the sorts of A and putting

together the operations and trace in the evident manner.

We will refer to the final item above and analogous constructions as "the Kaplan-

sky density trick". We call it such because it mimics the cutdown polynomials used

to prove the Kaplansky density theorem. It is a key piece of the proof (omitted here)

of the following.

Proposition 3.7.4. The category Mod(Ttr) of models of Ttr is equivalent to the cate-

gory of tracial von Neumann algebras. Moreover, this equivalence is witnessed by the

functors D and M .

Remark 3.7.5. The ultraproducts in Ttr are exactly the tracial ultraproducts we

defined earlier. More precisely, the equivalence of categories asserted in the previous

proposition can be upgraded to an ultra-equivalence when the category of tracial von

Neumann algebras is equipped with the tracial ultraproduct.

Proposition 3.7.6. The following sets are definable:

• The set U of unitaries.

• The set P of projections.

• The set P2 of pairs of projections of the same trace.

Consider the sentences given by

σfactor = sup
(p,q)∈P2

inf
u∈U

d(upu∗, q)
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and

σII1 = inf
p∈P

∥τ(p)− 1

π
∥.

Proposition 3.7.7. Ttr−factor = Ttr ∪ {σfactor = 0} axiomatizes the class of tracial

factors.

Theorem 3.7.8. TII1−factor = Ttr−factor ∪ {σII1 = 0} axiomatizes II1 factors.
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Chapter 4

Hilbert Algebras Preliminaries

4.1 Overview

The term "Hilbert algebras" was first defined to describe the special case of unimod-

ular Hilbert algebras by Hidegorô Nakano, motivated by group algebras of locally

compact groups in [53]. Warren Ambrose, in [2], had previously treated the compact

group case using what he called H∗-algebras. Nakano generalized this by consider-

ing those functions on G with finite integral. Nakano only considered unimodular

groups (those whose left and right Haar measures coincide). Irving Segal [61] and

Roger Godement [26] then independently identified how the left and right represen-

tations that arise in the unimodular case are related. Jacques Dixmier, in [18], later

introduced "quasi-unitary algebras" to treat the non-unimodular case. Here, Dixmier

even identifies and uses the modular operator. However, it was Minoru Tomita who

first realized the importance of the modular operator, describing how it arises from

the polar decomposition of the adjoint in 1959 and proving the tensor product com-

mutation theorem in 1967. Tomita’s work also included "modular Hilbert algebras",
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known today as Tomita algebras. This thesis will not treat Tomita algebras, so we

will end our discussion of them here. Following the latter paper, Masamichi Take-

saki, in [64], reformulated and corrected some errors in Tomita’s work, bringing it to

mainstream relevance. Here, Takesaki also clarifies the connection between Hilbert

algebras and statistical mechanics via the KMS condition. Where previous work on

Hilbert algebras was inextricably linked to harmonic analysis and representation the-

ory, Takesaki’s work was the beginning of Hilbert algebras being studied for their own

sake. Christopher Lance gave a treatment of direct integrals of continuous fields of

Hilbert algebras in [47]. In [67], Alfons Van Daele provided a simplified treatment of

the material in [64], including a new proof of Tomita’s theorem. Providing new proofs

of Tomita’s theorem is now a long-standing tradition, with the most recent example

as of the writing of this thesis being due to Jonathan Sorce in [62]. In [57, Section 5],

Rieffel and Van Daele gave a new treatment of left (and right) Hilbert algebras using

only bounded operators. Hilbert algebras soon became indispensable to the study of

crossed products (see [39] and [40] for example). As such, they played a central role

in Alain Connes’ classification work in [12], [13] and [15].

4.2 Unbounded Operators

The domain of an unbounded operator will generally only be given on a dense sub-

space. A reason for this restriction is explained after the following definition.

Definition 4.2.1. An unbounded operator T on a Hilbert space H is a linear

operator defined on a subspace D(T ) of H. One usually assumes D(T ) is dense in H.

Note that any bounded operator T : H → H is an unbounded operator with
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D(T ) = H. The existence of everywhere-defined unbounded operators that are not

bounded is non-constructive and depends on the Hahn-Banach theorem. The un-

bounded operators that will appear in this thesis (namely the modular operator,

introduced later in this chapter) will generally not be everywhere-defined. However

they will be defined on a subset of H.

Definition 4.2.2. T is said to be densely defined if D(T ) is dense in H.

Definition 4.2.3. Two unbounded operators T and S are equal if and only if D(T ) =

D(S) and for all x ∈ D(T ) = D(S), one has Tx = Sx.

Definition 4.2.4. We say that S extends T , denoted T ⊆ S, if D(T ) ⊆ D(S) and

Sx = Tx for all x ∈ D(T ).

Suppose T is densely defined. Let K be the set of all η such that ξ 7→ ⟨Tξ , η⟩

extends to a bounded linear functional on H. Then K is a subspace of H. By

Riesz representation, there is a unique ζ ∈ H such that ⟨Tξ , η⟩ = ⟨ξ , ζ⟩ for all

ξ ∈ D(T ). Define the adjoint of T , T ∗ to be the operator such that T ∗η = ζ. Note

that D(T ∗) = K. Unlike in the bounded setting, it is necessary to distinguish between

Hermitian and self-adjoint unbounded operators.

Definition 4.2.5. An unbounded operator T is symmetric or Hermitian if T =

T ∗ |D(T ).

Definition 4.2.6. T is self-adjoint if it is symmetric and D(T ) = D(T ∗).

Definition 4.2.7. A symmetric operator T is essentially self-adjoint if its closure

is self-adjoint.
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Theorem 4.2.8 (Hellinger-Toeplitz). An everywhere defined symmetric linear oper-

ator on H is bounded.

A common technique for working with unbounded operators is by using its graph.

Definition 4.2.9. The graph of T is the set gr(T ) = {(x, Tx) | x ∈ D(T )} in H⊕H.

Lemma 4.2.10. A linear subspace K ⊆ H ⊕ H is the graph of a linear operator if

and only if K∩ 0⊕H = {0⊕ 0}. Moreover, the linear operator is uniquely defined by

K.

Corollary 4.2.11. T ⊆ S if and only if gr(T ) ⊆ gr(S).

Definition 4.2.12. T is said to be closed if its graph gr(T ) is a closed set in H⊕H

in the product topology.

Theorem 4.2.13 (Alternative Characterization of Closedness). T is closed if and

only if D(T ) is complete with respect to the graph norm ∥x∥T =
√

∥x∥2 + ∥Tx∥2.

Note that H⊕H is a Hilbert space with respect to the inner product ⟨x⊕ y , x′ ⊕ y′⟩ =

⟨x , x′⟩+ ⟨y , y′⟩.

Definition 4.2.14. T is said to be closeable if it extends to a closed linear operator.

Proposition 4.2.15 (Closure of Graph is Graph of Closure). If an operator T is

closeable, then the closure of its graph is the graph of an operator and that operator

is the closure of T .

Remark 4.2.16. If T is closed, densely defined and continuous on its domain, then

its domain is all of H.
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We now describe the functional calculus of self-adjoint unbounded operators and

spectral projections.

Definition 4.2.17. Let T be an unbounded operator on H. The resolvent set of

T , denoted ρ(T ) is the set of all λ ∈ C such that there exists S ∈ B(H) such that

S(T − λI) ⊆ (T − λI)S = I.

In other words, S is an inverse for (T − λI).

Similarly to the bounded case, we define the spectrum.

Definition 4.2.18. Let T be an unbounded operator on H. The spectrum of T ,

denoted σ(T ) is the complement of the resolvent set of T .

Definition 4.2.19. Let Σ be a σ-algebra on a set Ω and let H be a Hilbert space. A

resolution of the identity or spectral measure on Σ is a function

E : Σ → B(H)

satisfying the following properties:

1. E(U) is a projection for every U ∈ Σ;

2. E() = 0, E(Ω) = I;

3. E(U ∩ V ) = E(U)E(V ) for every U, V ∈ Σ;

4. If U, V ∈ Σ are disjoint, then E(U ∪ V ) = E(U) + E(V ); and

5. The function Ex,y : Σ → R defined by Ex,y(U) := ⟨E(U)x , y⟩ is a complex

measure for every x, y ∈ H.
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In this thesis, we only consider situations where Ω = R and Σ is the Borel σ-algebra

on R. Our final theorem and definition will be crucial to our proofs in Chapters 5

and 6. They provide the framework for functional calculus on unbounded operators.

Theorem 4.2.20. Let T be an unbounded operator on H. There is a unique resolution

of the identity E such that

⟨Tx , y⟩ =
∫
R
tdEx,y(t) x ∈ D(T ), y ∈ H.

Moreover, E is concentrated on σ(T ). In other words, E(σ(T )) = I.

Definition 4.2.21. E as in the theorem above is called the spectral decomposition

of T . If U is a Borel subset of R, then E(U) is called the spectral projection of T

associated to U .

4.3 Hilbert Algebras and Semicyclic Representations

Here we will exposit the basics of Hilbert algebras.

Let A be an algebra over C with inner product ⟨· , ·⟩ and involution # and denote

by H the Hilbert space completion of A with respect to the inner product.

Definition 4.3.1. We call A a left Hilbert algebra if it satisfies the following

conditions.

1. Left multiplication is continuous. In other words, for any a ∈ A, the operator

π(a) : b 7→ ab extends to a bounded operator, also denoted π(a) on H.

2. We have ⟨ab , c⟩ =
〈
b , a#c

〉
for a, b, c ∈ A so that the representation π of A on

H is a ∗-representation.
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3. The subalgebra A2 spanned by elements of the form ab for a, b ∈ A is dense in

A. This implies π is nondegenerate.

4. # is closable as an unbounded operator on H.

We will now give a bounded operator reformulation of axiom (4) in line with [57].

Denote by K the real subspace of H given by the closure of the set {a#a : a ∈ A}.

Theorem 4.3.2. [57, Definition 4.5 and the preceding remarks] Let A be an involutive

algebra with inner product ⟨· , ·⟩ satisfying (1) − (3) above. Then the following are

equivalent.

1. # is closable as an unbounded operator on H.

2. K ∩ iK = {0}.

We will denote by Rl(A) the von Neumann algebra π(A)′′ in B(H) and refer to

it as the left von Neumann algebra.

Definition 4.3.3. We say a vector a ∈ H is right bounded if the operator π′(a)

defined by π′(a)b = π(b)a when b ∈ A and extended to all of H is bounded. We

denote the set of right bounded elements as A′.

Next, we of course consider the double commutant.

Definition 4.3.4. We say a vector a ∈ H is left bounded if the operator π(a)

defined by π(a)b′ = π′(b′)a when b′ ∈ A′ and extended to all H is bounded. We define

the set of left bounded elements as A
′′ .

Definition 4.3.5. We define a left Hilbert algebra A to be full or achieved if A = A
′′ .
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Notice the previous definition is reminiscent of the double commutant theorem.

This is shown to be an apt comparison in the next section.

Recall that we call a pair (M,Φ) a weighted von Neumann algebra if M is a

von Neumann algebra and Φ is a faithful normal semifinite weight on M. The next

result is fundamental to the ideas used in the rest of this chapter. It says that we

can switch perspectives between weighted von Neumann algebras and full left Hilbert

algebras without fear.

Theorem 4.3.6. The categories of weighted von Neumann algebras and Hilbert alge-

bras are equivalent.

The proof is technical and the result well-known. We will not recall the proof here,

but the reader may find it in [65, Theorem 2.5 and Theorem 2.6]. We will, however,

describe the process for moving from a weighted von Neumann algebra to a Hilbert

algebra and vice versa. First, we consider the special case of σ-finite von Neumann

algebra with a specified faithful normal state.

Example 4.3.7. Let M be a σ-finite von Neumann algebra and φ be a faithful

normal state on M. Consider the GNS representation πφ on Hφ and the cyclic and

separating vector ω such that φ(x) = ⟨π(x)ω , ω⟩ for all x ∈ M. Then we can define

the associated Hilbert algebra as Mω together with multiplication and # given by

(aω)(bω) = abω = π(a)bω (aω)# = a∗ω.

Note in the previous example that A′ = M′ω. It is then trivial to show that A

is full. Generalizing the GNS representation, we define the semicyclic representation

with respect to a weight.

57

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Ph.D. Thesis – J. Arulseelan; McMaster University – Dept. of Mathematics and Statistics

Let M be a von Neumann algebra and let Φ be a faithful normal semifinite weight

on M. Recall that PΦ := {x : x is positive and Φ(x) <∞}. We define the sets:

NΦ = {x ∈ M : x∗x ∈ PΦ} and DΦ = N∗
ΦNΦ.

One can show via a polarization argument (see [65]) that

DΦ = span{a∗b : Φ(a∗a) <∞ and Φ(b∗b) <∞}.

Notice that Φ can be extended to a linear functional on DΦ and so we call DΦ the

definition domain of Φ.

We get an obvious embedding

ηΦ : DΦ → HΦ

of DΦ in its Hilbert space completion HΦ.

Since (yx)∗yx = x∗y∗yx ≤ ∥y∥x∗x and therefore Φ(x∗y∗yx) ≤ ∥y∥Φ(x∗x), we have

that DΦ is a ∗-closed left ideal of M. Since DΦ is a ∗-closed left ideal of M, we can

define a representation of M on HΦ as follows. For any a ∈ M, define the operator

πΦ(a) ∈ B(HΦ) by πΦ(a)ηΦ(b) = ηΦ(ab) for all b ∈ DΦ and extending to HΦ by

continuity.

Definition 4.3.8. Let M be a von Neumann algebra and let HΦ and πΦ be defined

as above. Then πΦ is called the semicyclic representation with respect to Φ.

Now we can associate a full Hilbert algebra to a weighted von Neumann algebra

(M,Φ) by taking DΦ ∩ D∗
Φ together with the multiplication and involution of the
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given by

ηΦ(a)ηΦ(b) = ηΦ(ab) ηΦ(a)
# = ηΦ(a

∗).

One can check (see [65]) that this defines a full Hilbert algebra. Conversely, given

a full left Hilbert algebra A, the left von Neumann algebra Rl(A) together with the

faithful normal semifinite weight given for x ∈ Rl(A) positive by

Φl(x) =


√
⟨ξ , ξ⟩ if x1/2 = ξ ∈ A

∞ otherwise
.

We can also define a faithful normal semifinite weight on the commutant by

Φr(x) =


√

⟨ξ , ξ⟩ if x1/2 = ξ ∈ A′

∞ otherwise .
.

We note the proof of the previous theorem shows that these processes are inverse to

each other up to a unitary isomorphism.

4.4 Right Bounded and Totally Bounded Elements

Our axiomatization will build on the semicyclic representation with respect to a dis-

tinguished faithful normal semifinite weight. We will collect here some technical

results on the semicyclic representation that will be useful in the sequel.

Denote by M′ the commutant of π(M) in B(H).
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Definition 4.4.1. We say v ∈ H is right-bounded if there is a K ∈ R such that

∥av∥H = ∥π(a)v∥H ≤ K∥ηΦ(a)∥H

for all a ∈ M. Denote by ∥v∥right the infimum over such K. Denote by π′(v) the

operator on H induced by v.

Denote by Hright the set of right-bounded vectors. We define the set of totally

bounded elements Htb := (Hright∩DΦ)∩(Hright∩DΦ)
∗. In other words, an element

x of DΦ∩D∗
Φ is totally bounded if x and x∗ are furthermore right bounded. It is clear

that Hright and Htb are linear subspaces of H. It is not clear at this point that Hright

or Htb has any more structure than this.

Lemma 4.4.2. Let v ∈ Hright be given. Then π′(v)π′(v)∗ ∈ M′

Proof. Let x ∈ M be given.

π′(v)π(x)ηΦ(y) = π′(v)ηΦ(xy)

= xyv

= xπ′(v)ηΦ(y)

So π′(v)∗x = π(x)π′(v)∗. Therefore

xπ′(v)∗π′(v) = π′(v)∗π(x)π′(v)

= π′(v)∗π′(v)x

and we are done.

60

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Ph.D. Thesis – J. Arulseelan; McMaster University – Dept. of Mathematics and Statistics

Theorem 4.4.3. Htb is a dense subspace of H.

Proof. Assume for contradiction that it is not dense. Denote by p the projection

of H onto Htb. By assumption, p ̸= 1. Since Htb is fixed by M′, we have that

p ∈ (M′)′ = M. Then Φ(1 − p) > 0 and by Theorem 3.3.11, there is an increasing

net φvi(a) = ⟨avi , vi⟩ of vector states on M such that
∑

i∈I φvi = Φ. Therefore there

is a vk such that φvk ≤ Φ and φvk(1 − p) > 0. So φvk(1 − p) = ⟨(1− p)vk , vk⟩ and

therefore (1− p)vk ̸= 0. Now since

∥xvk∥H = φvk(x
∗x)

≤ Φ(x∗x)

= ∥x∥H,

it follows that vk is in Hright and hence Htb so (1− p)vk = 0. This is a contradiction.

Therefore Htb is a dense subspace of H.

Our next theorem and corollary will explain our use of the norms ∥ · ∥Φ and ∥ · ∥#Φ .

While the result is elementary, the author could not locate a proof in the literature,

so one is provided.

Theorem 4.4.4. Let (M,Φ) be a von Neumann algebra equipped with a faithful, nor-

mal, semifinite weight and let π : M → H be the associated semicyclic representation.

Then ∥x∥Φ =
√
Φ(x∗x) metrizes the strong operator topology on DΦ ∩M1, the set of

all x ∈ DΦ such that ∥x∥ ≤ 1.

Proof. M and B(H) are both von Neumann algebras and therefore, by Theorem

3.3.22, admit preduals. Thus M1 and B(H)1 are WOT-compact by Banach-Alaoglu.
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Since Φ is faithful and normal, π is a continuous bijection from M1 to π(M1) ⊂ B(H).

A continuous bijection between compact Hausdorff spaces is a homeomorphism, so π

is a homeomorphism from M1 to π(M1). We know that xn → x converges in the

strong operator topology if and only (xn − x)∗(xn − x) → 0 in the WOT. Since π is

a ∗-homomorphism, we conclude that a net (xn) in M1 strong-converges if and only

π(xn) strong-converges.

Now suppose that (xn) is a net in DΦ ∩ M1 such that ∥xn − x∥ → 0 for some

x ∈ DΦ ∩ M1. Let ηΦ(a) be a right bounded element of H. Then there is a :=

π′(ηΦ(a)) ∈ π(M)′ and we have:

∥(xn − x)ηΦ(a)∥2Φ = ⟨(xn − x)ηΦ(a) , (xn − x)ηΦ(a)⟩

= ⟨π′(a)ηΦ(xn − x) , π′(a)ηΦ(xn − x)⟩

= ⟨π′(a)∗π′(a)ηΦ(xn − x) , ηΦ(xn − x)⟩

= ∥a∥2∥xn − x∥2Φ → 0

Since right-bounded elements of H are dense, for every ϵ > 0 and v ∈ H, there is

ηΦ(a) right bounded such that ∥v − ηΦ(a)∥Φ < ϵ. Whence

|∥(xn − x)ηΦ(a)∥Φ − ∥(xn − x)v∥Φ| ≤ ∥xn − x∥Φ∥ηΦ(a)− v∥Φ

≤ 2ϵ.

Thus ∥(xn − x)v∥ → 0 for all v ∈ H. Hence π(xn) → π(x) in the strong operator

topology and consequently xn → x in the strong operator topology. The converse is

proven by the same considerations.
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Corollary 4.4.5. ∥x∥♯Φ metrizes the strong-∗ topology on norm bounded subsets of

DΦ.

4.5 Tomita-Takesaki Theory and Standard Forms

Tomita-Takesaki theory is a powerful but extremely technical subject. As such, we

do not have the room here to provide a comprehensive account of the theory. We

will provide an overview of the primary setup of the theory, up to and including the

definition of the modular automorphism group, but we will omit all details regarding

the unbounded operators. We encourage the reader to consult [65] for a more thorough

and complete exposition.

Let (M,Φ) be a weighted von Neumann algebra and let HΦ be the semicyclic

representation Hilbert space associated to Φ. Define the unbounded operator SΦ on

HΦ as the closure of

SΦηΦ(x) = ηΦ(x
∗) for x ∈ ηΦ(M).

We can also define the unbounded operator FΦ on HΦ as the closure of

FΦηΦ(x) = ηΦ(x
∗) for x ∈ ηΦ(M′)

and note that S∗
Φ = FΦ. Define ∆Φ = S∗

ΦSΦ = FΦSΦ and consider the polar de-

composition SΦ = JΦ∆
1/2
Φ = ∆

−1/2
Φ JΦ. We call the positive densely-defined operator

∆Φ the modular operator and we call the antilinear isometry JΦ the modular

conjugation.
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Now for every t ∈ R, we can define an operator ∆it
Φ on HΦ by functional calculus.

In fact, ∆it
Φ is a unitary operator because ∆Φ is positive and therefore self-adjoint.

What follows is the main theorem of Tomita-Takesaki theory, known as Tomita’s

theorem. It has been proved multiple times by various authors using an array of

techniques, for example: [64], [67], [45] and [62] among others.

Theorem 4.5.1 (Tomita’s Theorem). For every t ∈ R,

∆it
ΦM∆−it

Φ = M JΦMJΦ = M′.

It follows that t 7→ σΦ
t where σΦ

t (x) = ∆it
Φx∆

−it
Φ defines a one-parameter family

of automorphisms of M. In fact, one can prove that this is a strong∗-continuous

one-parameter group of automorphisms of M. For any fixed t ∈ R, the function

σΦ
t is called a modular automorphism. The collection of all such modular auto-

morphisms together with their structure as an action of R is called the modular

automorphism group.

The correct notion of an embedding in the context of weighted von Neumann alge-

bras is an injection of the underlying algebras which admits a conditional expectation

onto its image.

Definition 4.5.2. Let (N ,Φ) be a weighted von Neumann algebra and let M ⊆ N

be a von Neumann subalgebra equipped with the weight given by restriction of Φ. A

conditional expectation of N onto M with respect to Φ is a linear map satisfying:

• ∥x∥ ≥ ∥E(x)∥ for all x ∈ N ;

• E(x) = x for all x ∈ M; and
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• Φ(x) = Φ(E(x)) for all x ∈ N .

Fact 4.5.3. [65, Volume II, Chapter IX, Section 4] A conditional expectation E of

N onto M satisfies:

• E is a completely positive map;

• E(x∗x) ≥ 0 for all x ∈ N ;

• E(x∗x) ≥ E(x)∗E(x) for all x ∈ N ; and

• E(axb) = aE(x)b for all x ∈ N and a, b ∈ M.

In the next lemma, conditions 1 and 3 are from [65, Volume II, Chapter IX,

Theorem 4.2.] and condition 2 is from [57, Theorem 5.13.]. The equivalence of

conditions 1 and 3 is often referred to as Takesaki’s Theorem.

Theorem 4.5.4. Suppose that (M,Φ) and (N ,Ψ) are weighted von Neumann alge-

bras and f : M → N is a state-preserving ∗-homomorphism. Then the following are

equivalent:

1. f is an embedding of weighted von Neumann algebras.

2. f preserves distances to the sets of self-adjoint elements, that is, for all a ∈ M,

we have dΦ(a,Msa) = dΨ(f(a),Nsa).

3. f commutes with the modular automorphism group, that is, for every t ∈ R and

a ∈ M, we have f(σΦ
t (a)) = σΨ

t (f(a)).

In his thesis (see [37]), Haagerup gives a way to associate to any left Hilbert

algebra, a selfdual cone that canonically captures the representation up to unitary
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equivalence. This gives rise to the notion of a standard form, which will play a

significant role in the later chapters of this thesis. Here, we will collect the definitions

and some important results related to standard forms.

Definition 4.5.5. Let H be a Hilbert space and let P ⊆ H be a nonempty subset.

P is called a cone if v ∈ P and r ∈ R+ implies rv ∈ P .

Definition 4.5.6. Let P be a cone in a Hilbert space H. The dual cone P◦ is

defined by

P◦ = {ξ ∈ H : ⟨ξ , η⟩ ≥ 0 for all η ∈ P}.

Then P is called selfdual if P = P◦.

Definition 4.5.7. A quadruple (M,H, J,P) is said to be a standard form if M

is a von Neumann algebra acting on a Hilbert space H such that J : H → H is an

antilinear isometric involution and P is a selfdual cone in H all satisfying:

1. JMJ = M′;

2. JcJ = c∗ for all c ∈ Z(M), where Z(M) is the center of M;

3. Jξ = ξ for all ξ ∈ P ; and

4. aJaJ(P) ⊆ P for all a ∈ M.

Let M be any von Neumann algebra and Φ a faithful normal semifinite weight on

M. Then the semifinite representation of M with respect to Φ becomes a standard

form when equipped with its modular conjugation J = JΦ and the selfdual cone

P := {π(ξ)(Jξ) : ξ ∈ ηΦ(M)}
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Standard forms are unique in the following sense.

Theorem 4.5.8. [37, Theorem 2.3.] Let (M1,H1, J1,P1) and (M2,H2, J2,P2) be

standard forms and let f : M1 → M2 be a ∗-isomorphism. Then there exists one and

only one unitary u : H1 → H2 such that:

• f(x) = uxu∗ for all x ∈ M1;

• J2 = uJ1u
∗; and

• P1 = u(P2).

We end this section by recording two theorems that will be crucial to our analysis

of generalized Ocneanu ultraproducts in Chapter 6.

Theorem 4.5.9. [3, Theorem 3.18] Groh-Raynaud ultraproducts act standardly on

the Hilbert space ultraproduct.

Theorem 4.5.10. [37, Corollary 2.5 and Lemma 2.6] If (M,H, J,P) is a standard

form and q is a projection in M, and p = qJqJ then (pMp, p(H), pJp, p(P)) is a

standard form.

Given a projection p of a von Neumann algebra M, we call pMp a corner of M.

4.6 Relative Modular Theory

A key tool in the use of Tomita-Takesaki theory is the observation by Connes that the

modular automorphism group has a unique image in the outer automorphisms. For

a comprehensive exposition of relative modular theory, we direct the reader to [65,
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Book 2, Chapter VIII, Section 3]. In fact, our presentation is an extremely condensed

version of what can be found there.

Assume Φ and Ψ are faithful normal semifinite weights on M let N =M2(M) be

the algebra of 2×2 matrices with entries in M. Fixing the standard matrix elements

e11, e12, e21, e22 so that each element x ∈ N is represented by

x =

x11 x12

x21 x22

 = x11e11 + x12e12 + x21e21 + x22e22,

we define the balanced weight ρ = Φ⊕Ψ by

ρ


a11 a12

a21 a22


 = Φ(a11) + Ψ(a22).

Then ρ is a faithful normal semifinite weight and

Dρ = {x ∈ N : x11, x21 ∈ DΦ, x12, x22 ∈ DΨ}.

Now the GNS Hilbert space for ρ is given by

Hρ = HΦ ⊕HΨ ⊕HΦ ⊕HΨ
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with the canonical injection

a11 a12

a21 a22

 7→



a11

a12

a21

a22


.

So left multiplication is given by

πρ


x11 x12

x21 x22


 =



πΦ(x11) 0 πΦ(x12) 0

0 πΨ(x11) 0 πΨ(x12)

πΦ(x21) 0 πΦ(x22) 0

0 πΨ(x21) 0 πΨ(x22)


.

Letting SΦ,Ψ be the closure of the map a12 7→ a∗12 on DΨ∩D∗
Φ and analogously letting

SΨ,Φ be the closure of the map a21 7→ a∗21 on DΦ ∩D∗
Ψ we have

Sρ =



SΦ 0 0 0

0 0 SΨ,Φ 0

0 SΦ,Ψ 0 0

0 0 0 SΨ


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and letting SΦ,Ψ = JΦ,Ψ∆Φ,Ψ and SΨ,Φ = JΨ,Φ∆Ψ,Φ be the respective polar decompo-

sitions, we have the polar decomposition Sρ = Jρ∆ρ where

Jρ =



JΦ 0 0 0

0 0 JΨ,Φ 0

0 JΦ,Ψ 0 0

0 0 0 JΨ


, ∆ρ =



∆Φ 0 0 0

0 ∆Φ,Ψ 0 0

0 0 ∆Ψ,Φ 0

0 0 0 ∆Ψ


Theorem 4.6.1.

σρt


x11 x12

x21 x22


 =

 σΦ
t (x11) σΦ,Ψ

t (x12)

σΨ,Φ
t (x21) σΨ

t (x22)


where σΦ,Ψ

t and σΦ,Ψ
t are strongly continuous one-parameter families of isometries

satisfying

σΦ,Ψ
t (x) = σΨ,Φ

t (x∗)∗

and also

πΦ(σ
Ψ,Φ
t (x)) = ∆it

Ψ,ΦπΦ(x)∆
−it
Φ πΨ(σ

Φ,Ψ
t (x)) = ∆it

Φ,ΨπΨ(x)∆
−it
Ψ

Theorem 4.6.2. Setting ut = σΨ,Φ
t (1) ∈ M for t ∈ R, we have that ut defines a

continuous family of unitaries satisfying

σΨ
t (x) = utσ

Φ
t (x)u

∗
t us+t = usσ

Φ
s (ut)

for s, t ∈ R and x ∈ M. The second condition is called the cocycle condition.
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Definition 4.6.3. The map t 7→ ut is called the Connes cocycle derivative or the

Connes Radon-Nikodym derivative of Ψ with respect to Φ and is denoted by

ut = (DΨ : DΦ)t.

4.7 Group Algebras and Crossed Products

Let G be a countable discrete group.

Definition 4.7.1. The group algebra C[G] with respect to G is the vector space

generated by elements δg for each g ∈ G together with the multiplication defined by

extending (δg)(δh) = δgh linearly.

Define an inner product on C[G] by ⟨δg , δh⟩ = 1 if g = h and ⟨δg , δh⟩ = 0

otherwise. This extends to an inner product on the whole vector space. Notice that

C[G] is naturally a ∗-algebra acting on itself by left multiplication. Denote the left

multiplication by δg as π(δg).

Denote by ℓ2(G) the Hilbert space completion of C[G] with respect to its inner

product. Note that the action of C[G] on C[G] extends to an action of C[G] on ℓ2(G)

by continuity.

Definition 4.7.2. The group von Neumann algebra of G is the weak operator

closure of C[G] in B(ℓ2(G)) where the identification of elements of C[G] as operators

on ℓ2(G) is as given above. The group von Neumann algebra is a tracial von Neumann

algebra with respect to the trace τ(a) = ⟨aδe , δe⟩ where e is the identity element of

G.
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Proposition 4.7.3. The group von Neumann algebra of any infinite discrete group G

is a finite von Neumann algebra. It is a factor if G has no non-trivial finite conjugacy

classes. It is isomorphic to R if, in addition to the previous condition, it a union of

its finite subgroups.

Consider a locally compact groupG. Take a left-invariant Haar measure µ together

with its modulus ∆µ. Consider the Hilbert space L2(G) of square integrable complex

functions with respect to µ.

Let (M, φ) be a W∗-probability space and define H = Hφ the GNS space of M

with respect to φ. Further assume that G acts on M by a strongly-continuous action

α. Consider the Hilbert space H⊗ L2(G) ∼= L2(G,H) of square integrable functions

on G with codomain H. L2(G,H) has the inner product

⟨ξ , η⟩ =
∫
G

⟨ξ(s) , η(s)⟩ dµ

where ξ, η ∈ L2(G,H).

We define the crossed product as the von Neumann algebra M ⋊α G acting on

L2(G,H) as the algebra generated by

• π(m)(ξ(s)) = (αs−1(m))(ξ(s)) for all m ∈M , ξ ∈ L2(G,H) and s ∈ G; and

• ug(ξ(s)) = ξ(g−1s) for all ξ ∈ L2(G,H) and g, s ∈ G.

It can be seen that:

• π is a faithful normal representation of M on L2(G,H);

• ug is a strongly continuous unitary representation of G on L2(G,H); and
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• ugπ(m)u∗g = π(αg(m)) for all m ∈ M and g ∈ G.

We recall here the definition of the dual weight φ̂ on M ⋊α G. Consider the

involutive algebra Cc(G,M) of compactly supported σ-strong∗-continuous functions

from G to M with the product defined by

a · b =
∫
G

αt(a(st)b(t
−1))dµ(t)

and involution defined by

b♯ = ∆µ
−1αs−1((b(s−1))∗)

for all a, b ∈ Cc(G,M). Consider the ∗-representation

r(a) =

∫
G

usπ(a(s))dµ(s)

on L2(G,H). This defines a representation of Cc(G,M) as a dense subalgebra of

M ⋊α G. In general, the dual weight can then be constructed via taking the left

Hilbert algebra associated to this representation and letting φ̂ be the weight induced

on the associated left von Neumann algebra. For concreteness, we will use Haagerup’s

construction of the dual weight for locally compact abelian groups. Consider µ̂, the

Haar measure on Ĝ defined so that Plancherel’s formula holds. Namely, if we define

for f ∈ L1(G), the function f̂ as

f̂(p) =

∫
G

f(s)p(s)dµ(s)
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then the following equation (the Plancherel formula) holds.

f(s) =

∫
Ĝ

f̂(p)p(s)dµ̂(p).

First, define an operator-valued faithful normal weight

Tx =

∫
Ĝ

α̂p(x)dµ̂(p)

for x ∈ (M⋊α G)+. Now define

φ̂ = (φ ◦ π−1) ◦ T.

See [39] and [40] for more details.

The following facts about φ̂ are important.

Proposition 4.7.4. φ̂ and σφ̂t satisfy

• φ̂(r(a♯a)) = φ((a♯a)(e)) for a ∈ Cc(G,M);

• σφ̂t (π(x)) = π(σφt (x)) for x ∈ M and t ∈ R; and

• σφ̂t (ug) = (∆µ(g))
itug((Dφ ◦ αg : Dφ)t) for g ∈ G and t ∈ R.

Let G be a locally compact abelian group for the rest of this section. Let (M, φ, α)

a G-system. Denote by Ĝ the Pontryagin dual of G. There is a canonical Ĝ-system

(M⋊α G, φ̂, α̂) on M⋊α G.

For every p ∈ Ĝ, there is a unitary v(p) ∈ B(L2(G,H)) defined by:

v(p)ξ(s) = p(s)ξ(s)
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where s ∈ G and ξ ∈ L2(G,H).

This defines an action α̂ of Ĝ on M⋊α G defined by:

α̂p(π(x)) = π(x) and α̂p(ug) = p(g)ug

for all x ∈ M, g ∈ G and p ∈ Ĝ. It is easy to see that M is isomorphic to the fixed

point algebra of α̂.

We call (M⋊αG, φ̂, α̂) the dual system for (M, φ, α). The next theorem is [65,

Volume II, Chapter X, Theorem 2.3.].

Theorem 4.7.5 (Takesaki Duality). There is an isomorphism Γ : M⋊α G⋊α̂ Ĝ→

M⊗B(ℓ2(G)) such that

Γ(π̂(π(x))) = π(x) and Γ(π̂(ug)) = 1⊗ ug and Γ(ûp)(−) = 1⊗ p(−).

It follows that if M is properly infinite and G is second countable, that M⋊αG⋊α̂Ĝ ∼=

M. Moreover, the action ˆ̂α is transformed to the action α̃g = αg ⊗ Ad(ug).
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Chapter 5

Model Theory of von Neumann

Algebras

5.1 Overview

In [5], the present author, together with Goldbring, Hart and Sinclair, develop the

model theory of σ-finite von Neumann algebras together with a choice of faithful

normal state. Many von Neumann algebras, however, do not admit such a state

and hence this excludes many von Neumann algebras of interest. Many applications,

such as crossed product duality, necessitate the ability to work with more general

faithful, normal, semifinite weights even in the σ-finite setting. It is not difficult to

extend the methods of [5] to faithful normal semifinite weights and hence take this

opportunity to present the model theory in full generality in this thesis. Since every

von Neumann algebra admits a faithful normal semifinite weight, this allows us to

work with arbitrary von Neumann algebras model-theoretically.
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The existence of this axiomatization demonstrates further the utility of the ap-

proach given in [5]. In [16], Dabrowski provides axiomatizability results in both the

σ-finite and general von Neumann algebra cases. However, where Dabrowski gives

an explicit axiomatization in a language that stays close to everyday practice in the

σ-finite case, they give only an abstract axiomatizability result, via Keisler-Shelah, in

the general case in a language (so-called tracial matrix ordered operator spaces) that

is not commonly seen in operator algebras. Our approach is explicit and designed to

be easy to use by operator algebraists.

We point out that even in the σ-finite case, our results here and in [5] are new.

While Dabrowski gives an explicit computable axiomatization in their so-called "min-

imal language", the extension to include the modular automorphisms is shown to be

definable by more abstract methods. Therefore, it remains an open question whether

this extension to include the modular automorphisms is computably axiomatizable.

We give an explicit computable definition of the modular automorphisms. To do this,

we use results and techniques from [57] which gives a bounded operator approach to

Tomita-Takesaki theory on Hilbert algebras.

5.2 Preliminary Estimates and Bounds

We will collect some results we need from [57] as well as some estimates that follow

from the techniques used therein. Throughout this section, let M be a von Neumann

algebra and let Φ be a faithful normal semifinite weight on Φ. We will often use

Theorem 4.3.6 to apply results about Hilbert algebras to the equivalent weighted von

Neumann algebra.

Let K denote the real subspace of H defined by the closed span of elements of
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the form a∗a, where we consider H as a real Hilbert space with respect to the inner

product given by the real part of Φ(b∗a). We define P to be the projection onto K

and Q to be the projection onto iK. By [57, Lemma 5.12.], K is the closure of the set

of self-adjoint elements of ηΦ(M). We also define R = P +Q and TJ = P −Q as in

[57].

Theorem 5.2.1. If x ∈ M is left K-bounded, then PηΦ(x) and QηΦ(x) are right

(2K2 + 2)-bounded. Moreover, since P is a projection, ∥PηΦ(x)∥Φ ≤ ∥ηΦ(x)∥Φ.

Proof. Examine the proofs of [57, Lemma 5.4, Lemma 5.6 and Corollary 5.7]. There,

it is seen that if x ∈ K, then π′(PηΦ(x)) = a−1b where a, b ∈ Rr(A
′) are as defined in

[57, Lemma 5.4]. It is clear from the definition that ∥b∥ ≤ 1. It is shown in the proof

of [57, Lemma 5.6] that ∥a−1∥ ≤ 1 + ∥π(x)∥2. Thus, by decomposing general x into

real and imaginary parts, we see that if x is left K-bounded, then PηΦ(x) is right

(2K2 + 2)-bounded. By the same reasoning, QηΦ(x) is right (2K2 + 2)-bounded.

Theorem 5.2.2. If x ∈ M is totally K-bounded, then PηΦ(x) and QηΦ(x) are totally

(5K2 + 4)-bounded.

Proof. Now if x is totally K-bounded, then since P ′ = (1 − Q), it follows that x is

left (5K2 + 4)-bounded. Combining with the previous theorem gives the result. The

proof for Q is nearly identical.

Corollary 5.2.3. If x ∈ M is totally K-bounded, then RηΦ(x) is totally (10K2+8)-

bounded. Moreover, ∥RηΦ(x)∥Φ ≤ 2∥ηΦ(x)∥Φ.

Note that we are being quite conservative in our estimates. So long as P , Q

and R send totally K-bounded elements to totally L-bounded elements, where L is

predictable in terms of K, we will not run into any issues (see Section 5.5).
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Now we turn our attention to some conditions for fullness. We will need the

following analysis for axiom (10) below. For j > 1, let E(j−1, j) be the spectral

projection of ∆ (and ∆−1) corresponding to the interval (j−1, j).

Following [45], define the following families of functions for a ∈ R:

ha(t) = (cosh(t− a))−1 =
2

et−a + ea−t
;

fa(t) = e−|t−a|;

ga(t) = e−|t| − e−|t−a| + e−|t+a|

ea + e−a
.

The next lemma can be found in [65, Volume II, Lemma 1.17] and many other

sources.

Lemma 5.2.4 (Bridging Lemma/Takesaki’s Resolvent Lemma). For every x ∈ M

and λ ∈ C/R+, there exists y′ ∈ M′ such that

(∆−1 − λI)−1ηΦ(x) = ηΦ(y
′).

Furthermore

∥y′∥ ≤ ∥x∥√
2|λ| − 2Re(λ)

.

Similarly, for every x′ ∈ M′ and λ ∈ C/R+, then there exists y ∈ M such that

(∆− λ)−1ηΦ(x
′) = ηΦ(y)

and

∥y∥ ≤ ∥x′∥√
2|λ| − 2Re(λ)

.
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We show in the next lemma that the construction of the element y given above

interacts well with totally bounded elements.

Lemma 5.2.5. Let x ∈ M be given and let y′ ∈ M′ satisfy (∆−1 − λI)−1ηΦ(x) =

ηΦ(y
′) as in the previous lemma. If x is totally bounded as an element of M, then y′

as given above is totally bounded as an element of M′.

Proof. Let x and y′ be as above. Write ηΦ(x) = (∆−1 − λI)ηΦ(y
′). Taking F of both

sides gives

FηΦ(x) = FSFηΦ(y
′)− λFηΦ(y

′)

= (∆− λI)FηΦ(y
′).

Therefore

(∆− λI)−1FηΦ(x) = FηΦ(y).

The bounds from the previous lemma give a bound for the left bound of Fy′ in terms

of the right bound of x. A symmetric argument gives a left bound for y′ in terms of

the right bound of Sx. Explicitly

SηΦ(x) = SSFηΦ(y
′)− λSηΦ(y

′)

= FSSηΦ(y
′)− λSηΦ(y

′)

= (∆− λI)SηΦ(y
′)

and the resolvent lemma gives the left bound of SηΦ(y′) which is equal to the left

bound of ηΦ(y′) in terms of the right bound of SηΦ(x).

The next lemma is [45, Lemma 4.11].
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Lemma 5.2.6. For every a ∈ R and x ∈ M, there exists y ∈ M satisfying

ha(log(∆))ηΦ(x) = ηΦ(y).

Furthermore, ∥y∥ ≤ ∥x∥.

Note that

ha(log(∆)) = 2(e−a∆+ ea∆−1)−1

= 2i(∆ + ieaI)−1(∆−1 + ie−aI)−1

which is a bounded injective operator on H of norm at most 1. By the bound given

in the resolvent lemma, ha(log(∆))ηΦ(x) = ηΦ(y) implies ∥y∥ ≤ ∥x∥. By symmetry

under interchanging ∆ and ∆−1, we get decrease in right norm too. By Lemma 5.2.4,

y is totally ∥x∥-bounded.

Lemma 5.2.7. For every a ∈ R and x ∈ Mtb, there exists y ∈ Mtb such that we have

ha(log(∆))ηΦ(x) = ηΦ(y). Furthermore, ∥y∥ ≤ ∥x∥ and ∥π′(ηΦ(y))∥ ≤ ∥π′(ηΦ(x))∥.

It is a routine calculation then to see that ha(log(∆))ηΦ(x) = ηΦ(y) if and only if

2R(2−R)ηΦ(x) = (e−a(2−R)2 + eaR2)ηΦ(y).

Lemma 5.2.8 (Lemma 4.11 in [45]). For all a ∈ R and x ∈ M, there exists y ∈ M

such that fa(log(∆))ηΦ(x) = ηΦ(y). Furthermore, ∥y∥ ≤ ∥x∥.

5.3 Spectral Subspaces

Some of the key ingredients of this chapter and the next make use of the so-called

spectral subspaces of Arveson spectral theory. For the convenience of the reader, we
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will use this section to give a very brief exposition of those aspects of Arveson spectral

theory we need. Arveson spectral theory was first introduced by William Arveson in

[6], initially inspired by a desire to generalize to the context of C∗-algebras a result of

Marcel Riesz and Frigyes Riesz from harmonic analysis. It was noticed already in [6]

that this framework is applicable to results on automorphism groups and derivations

of operator algebras as well as in quantum field theory. Arveson works in a fair bit

of generality by considering actions of arbitrary locally compact abelian groups. In

the non-separable case, this necessitates the development of a generalization of the

Bochner integral in that paper. However, we only consider actions of R, which is

separable, so we will ignore and use the Bochner integral. The reader who wishes

to learn Arveson spectral theory in full generality may consult [6] or [65, Book II,

Chapter XI].

We begin motivating the Arveson spectral theorem by recalling Stone’s theorem

on one-parameter unitary groups from functional analysis.

Theorem 5.3.1 (Stone’s Theorem). Let H be a Hilbert space. Strongly continuous

one parameter groups of unitary operators Ut on H are in one-to-one correspondence

with (unbounded) self-adjoint operators A on H under the relation Ut = eitA. We call

A the infinitesimal generator of Ut in this case. Furthermore, A is bounded if and

only if Ut is norm-continuous.

Notice that if we attempt to replace H with a Banach space X , we have no hope

of recovering such an infinitesimal generator in general. This limitation even holds

for relatively nice Banach spaces, let alone the potentially pathological Banach spaces

underlying C∗-algebras and von Neumann algebras. One the other hand, it should

be noted that A is completely determined as an unbounded operator on H by its
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spectral decomposition.

Let Ut be a strongly continuous one-parameter unitary group on H with infinites-

imal generator A. Let E be the spectral decomposition of A. By functional calculus,

for t ∈ R, we have

Ut = eitA =

∫
R
eitλdE(λ).

The Arveson spectral theory, rather than finding an infinitesimal generator, in-

stead finds a good enough analogue of what would be its spectral decomposition,

were it to exist. The observant reader will notice that the integral in the above dis-

play ranges over characters eitλ of R. The next well-known theorem from abstract

harmonic analysis explains where this comes from.

Theorem 5.3.2. Let G be a locally compact abelian group and let H be a Hilbert space.

Every unitary representation α : G→ B(H) corresponds to a unique projection-valued

measure on the dual group Ĝ such that

α(g) =

∫
Ĝ

β(g)dE(β).

The proof goes roughly as follows. To each unitary representation α : G→ B(H),

we can extend to a representation of L1(G) on H (see Definition 5.3.3). By the

Spectral Theorem for Banach ∗-algebras, this representation is canonically associated

to a unique projection-valued measure on the spectrum σ(L1(G)). Finally, it is a

classical property of the Fourier transform that σ(L1(G)) is canonically isomorphic

to Ĝ.
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For the rest of this section, fix a von Neumann algebra M. Further fix a strongly-

continuous one-parameter automorphism group αt, namely α is a continuous repre-

sentation of R on M, where M is equipped with the strong operator topology. Recall

that the Pontryagin dual group R̂ of R is homeomorphically isomorphic to R. As such

we will always implicitly make the identification R̂ = R. Recall that for f ∈ L1(R),

the Fourier transform f̂ of f is given by

f̂(λ) =

∫
R
eitλf(t)dt λ ∈ R̂ = R.

Definition 5.3.3. For x ∈ M, we define

αf (x) =

∫
R
f(t)αt(x)dt.

Notice this extends the representation α of R to a representation of L1(R). Next,

we will define the spectrum of an element x ∈ M with respect to α.

Definition 5.3.4. For x ∈ M, we define

Spα(x) = {λ ∈ R̂ : f̂(λ) = 0 for all f ∈ L1(R) such that αf (x) = 0}.

In other words, the spectrum Spα(x) of x with respect to α is the subset of R̂

associated to the ideal of functions f ∈ L1(R) such that αf has x in its kernel. This

can be interpreted as the simple oscillation component of the map t 7→ αt(x). Now

we can define the Arveson spectrum.
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Definition 5.3.5. We define Arveson spectrum Sp(α) of α as

Sp(α) = {λ ∈ R̂ : f̂(λ) = 0 for all f ∈ L1(R) such that αf = 0}.

Now we make the most important definition of this section.

Definition 5.3.6. The spectral subspace of α corresponding to a closed subset

E ⊆ R̂ is defined as

M(α,E) = {x ∈ M : Spα(x) ⊆ E}.

The assignment E 7→M(α,E) is the analogue of spectral measure that was alluded

to earlier in this section. We quote the following from [65, Book II, Chapter XI,

Corollary 1.8].

Proposition 5.3.7. Let x, y ∈ M and let E,F ⊆ R be given. Then

1. Spα(x
∗) = −Spα(x).

2. Spα(xy) ⊆ Spα(x) + Spα(y).

3. M(α,E)∗ =M(α,−E).

4. M(α,E)M(α, F ) ⊆M(α,E + F ).

The next theorem follows immediately from [65, Book II, Chapter XI, Proposition

1.24] and its proof.

Theorem 5.3.8. Assume H is the Hilbert space corresponding semicyclic represen-

tation M with respect to some faithful normal semifinite weight Φ. Let Ut = ∆it
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be the one-parameter group of unitaries on H and σt be the one-parameter group of

automorphisms of M given by Tomita-Takesaki theory. Then

1. Sp(U) = Sp(σ).

2. If x ∈ ηΦ(M) and f ∈ L1(R), then σf (x) ∈ ηΦ(M) and UfηΦ(x) = ηΦ(σf (x)).

Moreover, it is well known that Sp(σ) = sp(log(∆)) \ {0}. The above theorem

will be indispensable to our proof of (and also the inspiration for the statement of)

Theorem 6.2.6.

5.4 Axiomatization

We will only ever consider weights Φ that majorize a state. In particular, Φ(1) ≥ 1

or Φ(1) = ∞. This is to avoid certain issues with ultraproducts becoming trivial.

Namely, without this assumption, one might consider an ultraproduct of von Neu-

mann algebras with scalings of a state which go to zero, whence the ultraproduct

would be a singleton. This is fine in practice because one could always re-scale the

weight. Very rarely in practice does one consider a bounded weight that is not a

state, so this is not a particularly objectionable restriction.

We introduce the language LvNa for weighted von Neumann algebras, whose sym-

bols include:

1. For each n ∈ N, there is a sort Sn with bound 2n, whose intended interpre-

tation is the set of n-bounded, right n-bounded elements x of DΦ with right

n-bounded adjoint. We let dn denote the metric symbol on Sn, whose intended

interpretation is the metric induced by ∥ · ∥#Φ .
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2. For each n ∈ N, binary function symbols +n and −n with domain S2
n and

range S2n and whose modulus of uniform continuity is δ(ϵ) = ϵ. The intended

interpretation of these symbols are addition and subtraction in the algebra

restricted to the sort Sn.

3. For each n ∈ N, a binary function symbol ×n with domain S2
n and range Sn2 and

whose modulus of uniform continuity is δ(ϵ) = ϵ
n
. The intended interpretation

of these symbols is multiplication in the algebra restricted to the sort Sn.

4. For each n ∈ N, a unary function symbol ∗n whose modulus of uniform continu-

ity is δ(ϵ) = ϵ. The intended interpretation of these symbols is for the adjoint

restricted to each sort.

5. For each n ∈ N, the constant symbol 0n which lies in the sort Sn. The intended

interpretation of these symbols is the element 0.

6. For each n ∈ N and λ ∈ C, there is a unary function symbol λn whose domain is

Sn and range is Smn, where m = ⌈|λ|⌉ and with modulus of uniform continuity

δ(ϵ) = ϵ
|λ| when λ ̸= 0. The intended interpretation of these symbols is scalar

multiplication by λ restricted to Sn. (If one is interested in keeping the language

countable and computable, one may restrict to scalars whose real and imaginary

parts are rational.)

7. For each m,n ∈ N with m < n, we have a unary function symbols ιm,n with

domain Sm and range Sn and whose modulus of uniform continuity is δ(ϵ) = ϵ.

The intended interpretation of these symbols is the inclusion map between the

sorts.
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8. For each n ∈ N, we have a unary predicate symbol Φn whose range is [0, n] and

whose modulus of uniform continuity is δ(ϵ) = ϵ√
2
. The intended interpretation

of this symbol is the restriction of the weight to Sn. Technically speaking, there

should really be two such symbols, one for the real and imaginary parts of the

weight, but we content ourselves to abuse notation here.

9. For each n ∈ N, there is a predicate symbol An on the sort Sn taking values

in [0, 4n] and with modulus of uniform continuity δ(ϵ) = ϵ√
2
. The intended

interpretation of this symbol is the distance associated to the norm ∥ · ∥Φ from

an element to the set of self-adjoint elements in S(5n2+4). The
√
2 in the denom-

inator stems from the fact that ∥a∥Φ ≤
√
2∥a∥#Φ for all a ∈ M.

Remark 5.4.1. Notice that the main difference between the above language and

LW∗ from [5] is that the above lacks an identity element. This is explained by the

observation that [5] is really essentially restricting the above to unital full Hilbert

algebras (where the vector corresponding to the unit is also assumed to have norm

1).

We now introduce the axioms TvNa for weighted von Neumann algebras in the lan-

guage given above. In axiom 9 below, we will use R to represent the R operator from

[57]. This is merely a notational convenience (see the discussion after Corollary 5.6.2

for more details). Recall the notation .− which we introduced just before Definition

2.2.33.

1. The usual algebraic axioms requiring the dissection of M into sorts Sn to be a

∗-algebra.

2. Axioms saying that Φ is a positive linear functional.
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3. Axioms saying the connecting maps preserve addition, multiplication, adjoints

and Φ.

4. An axiom for each n requiring that dn is defined by the norm

∥x∥#Φ =

√
Φ(x∗x) + Φ(xx∗)

2
.

5. Axioms requiring that the elements of Sn are n-bounded with n-bounded ad-

joint. To be explicit, for each k we have

sup
x∈Sn

sup
y∈Sk

Φ((yx)∗yx) .− n2Φ(y∗y) sup
x∈Sn

sup
y∈Sk

Φ((xy)∗xy) .− n2Φ(y∗y).

and similarly for x∗. We also add an axiom saying that elements x of Sn have

∥x∥♯Φ ≤ n:

sup
x∈Sn

Φ(x∗x+ xx∗) .− 2n2.

6. Axioms expressing that the inclusion maps are isometries and have the correct

ranges. Specifically, for each n, and for all k we add:

sup
x∈S1

∣∣∥ιn(x)∥ − ∥x∥
∣∣

and

sup
x∈S1

sup
z∈Sk

∣∣Φ((zx)∗(zx))− Φ((zιn(x))
∗(zιn(x))

∣∣.
7. Axioms expressing that the inclusion ιn : S1 → Sn has range consisting of all
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x ∈ Sn where x is left and right 1-bounded with right 1-bounded adjoint:

sup
x∈Sn

sup
z∈Sk

inf
y∈S1

max
{
∥x− ιn(y)∥ .− (∥x∥ .− 1),

∥x− ιn(y)∥ .−
(
Φ((zx)∗(zx)) .− Φ(z∗z)

)
,

∥x− ιn(y)∥ .−
(
Φ((zx∗)∗(zx∗)) .− Φ(z∗z)

)}
.

8. Axioms expressing that An represents the distance to the self-adjoint elements

of S(5n2+4). More precisely, for each n ∈ N, we include the axiom

sup
x∈Sn

∣∣∣∣∣An(x)− inf
y∈S(5n2+4)

∥∥∥∥x− y + y∗

2

∥∥∥∥
Φ

∣∣∣∣∣ .
9. For each a ∈ N, we add the following ∀∃ axioms saying that models are closed

under ha(log(∆)). Defining m = 2⌈ea⌉(10n2 + 8)2, we add

sup
x∈Sn

inf
y∈Sn

dSm(2R(2−R)x, (e−a(2−R)2 + eaR2)y).

Here, m reflects the natural sort for our terms to land in as compositions of

functions. To see that this does indeed imply closure under ha(log(∆)), see the

discussion following Lemma 5.2.7

10. We have been asking that all of our weights majorize a state. To this end, we

add an axiom

sup
x∈S1

(sup
y∈S1

max{dS1(xy, y), dS1(yx, y)}
.− (dS1(x, 0)

.− 1)).

Note that this says that if x is an element of S1 that act like the identity on S1
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(and hence on all of H by linearity and density), then ∥x∥Φ = 1. Notice that if

there is no such x, then Φ(1) > 1 since 1 has left and right norm 1.

5.5 Proof of Equivalence of Categories

This section is devoted to proving the following theorem. The most involved step is

showing that the left Hilbert associated to any model is actually full. We point out

that this step is done in the tracial setting using the Kaplansky density trick (see Fact

3.7.1 and the definition following it). In our setting, however, such an approach is

insufficient as we cannot control left and right bounds simultaneously using spectral

cut-down polynomials. Thus a whole new approach involving the spectral theory of

the modular operator is necessary. Note that the approach here is adapted directly

from [5] because the approach we developed there carries over very nicely.

Theorem 5.5.1. The category of models of the theory defined above is equivalent

to the category of weighted von Neumann algebras with morphisms being weight-

preserving embeddings with a conditional expectation.

As usual in continuous logic, we define the dissection associated to a weighted

von Neumann algebra. This will define a functor from the category of weighted von

Neumann algebras to Mod(TvNa). Given a weighted von Neumann algebra (M,Φ),

form the associated semicyclic representation. The sort SK of the dissection D(M,Φ)

consists of the totally K-bounded elements of the semicyclic representation (or its

associated full Hilbert algebra).

Theorem 5.5.2. For any weighted von Neumann algebra (M,Φ), the dissection

D(M,Φ) is a model of TvNa. Moreover, in any dissection D(M,Φ), AK captures
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the distance from an element of SK(M) to Msa.

Now we must consider the "inverse" functor, called the interpretation. We

associate to any model of TvNa a Hilbert algebra as follows. We will later show that

this Hilbert algebra is full and thereby can be considered as a weighted von Neumann

algebra.

Suppose that we have a model A ∈ Mod(TvNa) of the theory TvNa. We begin by

forming the direct limit A0 of the sorts SK(A) for K ∈ N via the embeddings iL,K .

Using the interpretation of the function symbols on each sort, we see that M0 is

naturally a complex ∗-algebra by axiom (1). Furthermore, using the predicate for the

weight on each sort, one can define an inner product ⟨x, y⟩ := Φ(y∗x) on A0. We

let H0 denote the Hilbert space completion of A0 with respect to this inner product.

For each a ∈ A0, the maps b 7→ ab : A0 → A0 and b 7→ ba : A0 → A0 extend to

unique bounded linear operators π(a) : H0 → H0 and π′(a) : H0 → H0 respectively;

satisfying ∥π(a)∥, ∥π′(a)∥ ≤ K if a ∈ SK(A) by axiom (5). Axiom (6) guarantees

that each element belongs to the correct sort. In accordance with Theorem 4.3.2, we

should show that K ∩ iK = {0}. Denote by A′ the set of right bounded elements of

H0. We need a small lemma.

Lemma 5.5.3. Assume A′ is dense in H0. Then K ∩ iK = {0}.

Proof. By the discussion after [57, Proposition 5.3], we see that A′ ⊆ iK⊥ + K⊥ ⊆

(K ∩ iK)⊥. If A′ is dense, then so is (K ∩ iK)⊥, in which case, K ∩ iK = {0}, as

desired.

Now, since every element of A0 is right bounded and A0 is dense in H0 by as-

sumption, the previous lemma implies K ∩ iK = {0}. Thus A0 is contained in a left

Hilbert algebra.
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To each model of our theory, we can define the interpretation to be the full left

Hilbert algebra generated by the model. We will show soon that every model of our

theory actually consists of all totally bounded elements of the generated von Neumann

algebra and therefore determines the full left Hilbert algebra uniquely.

Definition 5.5.4. We define the interpretation AA of A ∈ Mod(TvNa) to be the

full left Hilbert algebra AA := (A0(A))
′′ on H := H0(A) generated by A as in the

discussion above.

Note by definition that the direct limit A0(A) of the sorts of A is SOT-dense

in the interpretation. For dissections and interpretations to define an equivalence of

categories, we need to show that for any A ∈ Mod(TvNa), the algebra A0(A) associated

to A is precisely the set of totally bounded elements of the interpretation of A.

Theorem 5.5.5. If x ∈ A0(A), then x is totally bounded in AA. In fact, if x is totally

K-bounded in A0(A), then x is totally K-bounded in AA.

Proof. This follows immediately from axiom (5) and SOT-density of M0 in M. If

x ∈ SK(A) and ∥x∥ ≤ 1 and ∥π′(x)∥, ∥π′(x∗)∥ ≤ 1 then since the inclusion maps have

the correct images by axiom (6), the inclusions are isometries. By axiom (7), and the

fact that the sorts are complete, we have that x ∈ S1(A).

Theorem 5.5.6. A0(A) is closed under P , Q and R.

Proof. M0 is SOT-dense in M and ∥ · ∥Φ metrizes the strong operator topology.

Thus the ∥ · ∥Φ-distance to the self-adjoint elements in M0 agrees with that in M.

Now, if a ∈ SK(M0) then, by the previous theorem, π(a) ∈ SK(M). Thus PΦ(π(a))

is totally bounded. Moreover, axiom (8) tells us that AK(x) can be computed in
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S5K2+4(M0). Thus, by definition of inf, we have a sequence (an) of self adjoint

operators in S5K2+4(M0) such that ∥an − x∥Φ converges to AK(x). Since ∥ · ∥Φ

metrizes the strong operator topology, we have that (an) converges to PΦ(x). By

the uniform total bound of 3K, we have that (an) strong-∗ converges to PΦ(x). By

completeness of S5K2+4(M0) in ∥ · ∥♯Φ, we have that PΦ(x) ∈ S5K2+4(M0). Thus M0

is closed under PΦ and, in turn, under QΦ. Therefore M0 is closed under RΦ.

We now need to show that A0(A) contains all of the totally bounded elements of

AA. We will show that this is guaranteed by axiom (9), but first we need to prove

some intermediate results. We will make the following definition to characterize the

properties that we have now seen to be true of A0(A) for any model A of our theory.

Definition 5.5.7. Let M0 be a ∗-subalgebra M0 ⊆ M of a von Neumann algebra

M such that:

• every element of M0 is totally bounded;

• the set of totally 1-bounded elements of M0 is ∥ · ∥#Φ -complete; and

• M0 is closed under ha(log(∆)) for all a ∈ N.

Then we will call M0 a good subalgebra.

Note that the second condition above, together with scaling, implies that, in fact,

the set of totally K-bounded elements of M0 is ∥ · ∥#Φ -complete for all K ∈ R.

Proposition 5.5.8. If M0 is a good subalgebra, then M0 is closed under fa(log(∆))

and ga(log(∆)) for all a ∈ N.
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Proof. Write

e−|t| =
∞∑
n=0

an(cosh(t))
−(2n−1),

wherein every an is a positive real and
∑∞

n=0 an = 1 as in the proof of lemma 4.11 in

[45]. Plugging in log(∆) gives

fa(log(∆)) =
∞∑
n=0

an(ha(log(∆)))2n−1,

where the sum is norm-convergent. Thus for every x ∈ M0 which is totally K-

bounded, closure under ha(log(∆)) implies ηΦ(yn) := (ha(log(∆)))2n−1x is in M0.

Note ηΦ(yn) is totally K-bounded for all n. Since each an is a positive real and∑∞
n=0 an = 1, it follows that the partial sums of

fa(log(∆))ηΦ(x) =
∞∑
n=0

anηΦ(yn)

are all totally K-bounded and converge uniformly to the limit. Now, closure un-

der fa(log(∆)) follows by completeness of totally bounded subsets. Closure under

ga(log(∆)) follows from closure under fa(log(∆)) and f0(log(∆)) by closure under

linear combinations.

From now on, j denotes an element of R>1. We let E(j−1, j) denote the spec-

tral projection of ∆ (and ∆−1) corresponding to the interval (j−1, j) and set Ej :=

E(j−1, j)(HΦ).

The following is [45, Lemma 4.12]:

Fact 5.5.9. Suppose that x ∈ M and ηΦ(x) ∈ Ej. Then:

1. For all n ∈ Z, there is xn ∈ M such that ∆n(ηΦ(x)) = ηΦ(xn) and ∥xn∥ ≤
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j|n|∥x∥; and

2. x is right bounded and ∥x∥right ≤ j1/2∥x∥.

The statement obtained by switching M and M′ is also valid.

Corollary 5.5.10. Suppose that x ∈ M and ηΦ(x) ∈ Ej. Then x is totally j3/2∥x∥-

bounded.

Proof. By Fact 5.5.9, ∥x∥right ≤ j
1
2∥x∥. By Fact 5.5.9 again, we may write ∆(ηΦ(x)) =

ηΦ(x1) with x1 ∈ M and ∥x1∥ ≤ j∥x∥. By invariance of Ej under ∆, we use the

previous fact again to conclude that ∥x1∥right ≤ j1/2∥x1∥ ≤ j3/2∥x∥. Note that

∆ηΦ(x) ∈ ηΦ(M′) by the previous fact and thus SηΦ(x) = F∆ηΦ(x). Since π′(Fy) =

π′(y)∗ for all y ∈ M′, it follows that

∥x∗∥right = ∥π′(SηΦ(x))∥

= ∥π′(SηΦ(x))
∗∥

= ∥π′(FSηΦ(x))∥

= ∥π′(∆ηΦ(x))∥

≤ j
3
2∥x∥.

As we wanted.

Our next main goal is the following.

Theorem 5.5.11. Suppose that M0 is a good subalgebra. If x ∈ M is such that

ηΦ(x) ∈ Ej, then x ∈ M0.

We begin with some lemmas. Until further notice, we write M0 to mean a good

subalgebra of M.
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Lemma 5.5.12. For all x ∈ M and a ∈ N, we have that ∥ga(log∆)(x)∥right ≤

3e3a/2∥x∥ and ga(log(∆))x ∈ M0.

Proof. Without loss of generality, we may assume that ∥x∥ = 1. By Kaplansky

density, we can find a sequence xn of contractions in M0 strongly converging to x.

Then yn := ga(log(∆))xn strongly converges to ga(log(∆))x. Moreover, ∥yn∥ ≤ 3 for

all n. Since yn ∈ Ej, where j = ea, it follows that yn is totally 3j3/2-bounded. The

claim now follows by completeness of totally bounded subsets of M0 and the fact

that the strong and strong-* topologies are the same on totally bounded subsets.

Lemma 5.5.13. If x ∈ M is such that ηΦ(x) ∈ Ej, then ∆ngj(log(∆))ηΦ(x) ∈

ηΦ(M0) for all integers n.

Proof. By assumption and Fact 5.5.9, ∆nηΦ(x) ∈ ηΦ(M). Lemma 5.5.12 thus yields

that ∆ngj(log(∆))(ηΦ(x)) = gj(log(∆))(∆nηΦ(x)) ∈ ηΦ(M0).

For a fixed j, we split Ej into pieces E−, Ec and E+ corresponding to the intervals

(1
j
, 1), {1} and (1, j) respectively. Define k+(t) := ga(2t − a) and k− := gj(2t + a),

where a := log(j).

Lemma 5.5.14. E+(H) ∩ ηΦ(M) is dense in E+(H) and E−(H) ∩ ηΦ(M) is dense

in E−(H).

Proof. It is clear from construction that k+(log(∆)) maps ηΦ(M) to ηΦ(M). Note

that k+(t) is strictly positive on (0, a) and 0 everywhere else. Thus k+(log(∆))x is

contained in the spectral subspace of ∆ corresponding to (1, j) for all x. Since k+

does not vanish on (0, a), we have k+(log∆)(H) is dense in E+(H). Moreover, since

{E+(ηΦ(x)) : x ∈ M} is dense in E+(H), we have that {k+(log(∆))(E+(ηΦ(x))) :

x ∈ M} is dense in E+(H). The proof for E−(H) is analogous.
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The following is a straightforward calculation:

Lemma 5.5.15. If v ∈ Ec(H), then

gj(log∆)(v) =
ej − e−j

ej + e−j
v.

In connection with the next lemma, we note that gj(log∆) is bounded and invert-

ible (with bounded inverse) on Ej.

Lemma 5.5.16. We have

(gj(log∆)|E−)
−1(ηΦ(M) ∩ E−) ⊆ ηΦ(M),

and

(gj(log∆)|E+)
−1(ηΦ(M) ∩ E+) ⊆ ηΦ(M).

Proof. Suppose first that ηΦ(x) ∈ E−(H). Then

gj(log(∆))(ηΦ(x)) =

[
∆− e−j∆+ e−j∆−1

ej + e−j

]
(ηΦ(x))

=
∆(ej + e−j)− (e−j∆+ e−j∆−1)

ej + e−j
(ηΦ(x))

=
∆ej − e−j∆−1

ej + e−j
(ηΦ(x)).

It thus suffices to show that (ej∆− e−j∆−1)−1(ηΦ(x)) ∈ ηΦ(M). Since

(ej∆− e−j∆−1)−1 = ∆(ej∆2 − e−j)−1

and ηΦ(M) ∩ Ej is closed under ∆, it suffices to show that (e2j∆2 − 1)−1(ηΦ(x)) ∈

ηΦ(M); however, this follows by writing (e2j∆2−1)−1 as a geometric series and using
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that ηΦ(x) is in the (1
j
, 1) spectral subspace of ∆.

Next suppose that ηΦ(x) ∈ E+(H). Then

gj(log(∆))(ηΦ(x)) =

[
∆−1 − e−j∆+ e−j∆−1

ej + e−j

]
(ηΦ(x))

=
∆−1(ej + e−j)− (e−j∆+ e−j∆−1)

ej + e−j
(ηΦ(x))

=
∆−1ej − e−j∆

ej + e−j
(ηΦ(x)).

It thus suffices to show that (e−j∆ − ej∆−1)−1(ηΦ(x)) ∈ ηΦ(M). This time, write

(e−j∆− ej∆−1)−1 = ∆−1(e−j − ej∆−2)−1 and argue as in the previous case.

Proof of Theorem 5.5.11. Without loss of generality, we may assume that j ∈ N

and ∥x∥ ≤ 1. Write ηΦ(x) = v− + vc + v+, where v− ∈ E−(H), vc ∈ Ec(H), and

v+ ∈ E+(H). By Lemma 5.5.14, we may write v− = lim ηΦ(an) with each an ∈ M and

ηΦ(an) ∈ E−(H) and v+ = lim ηΦ(bn) with each bn ∈ M and ηΦ(bn) ∈ E−(H). More-

over, we may assume that ∥an∥, ∥bn∥ ≤ 1 for each n. By Lemma 5.5.16, for each n, we

may find ân, b̂n ∈ M such that gj(log∆)−1(ηΦ(an)) = ηΦ(ân), gj(log∆)−1(ηΦ(bn)) =

ηΦ(b̂n), and ηΦ(ân), ηΦ(b̂n) ∈ Ej. By Corollary 5.5.10, we have that ân and b̂n are

totally j3/2B-bounded, where B := ∥(gj(log∆)|Ej)−1∥. Consequently, we have

ηΦ(x) = gj(log∆)(lim
n
ηΦ(ân)) + vc + gj(log∆)(lim

n
ηΦ(b̂n)).

By Lemma 5.5.12, we have gj(log∆)(ηΦ(ân)) := ηΦ(a
†
n) and gj(log∆)(ηΦ(b̂n)) =

ηΦ(b
†
n) for some a†n, b†n ∈ M0; moreover, there is K > 0 such that each a†n and b†n are

totally K-bounded. Therefore, by completeness of SK(M), the first and third terms

of the display belong to ηΦ(M0). By Lemmas 5.5.12 and 5.5.15, the middle term also
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belongs to ηΦ(M0), whence the corollary is proved.

In light of Theorem 5.5.11, if we want to prove that good subalgebras are unique,

we must approximate arbitrary totally bounded elements by ones that belong to

compact spectral subspaces. We use the method of Bochner integrals found, for

instance, in [65, II, Lemma 2.4].

Let v = ηΦ(x). Let r > 0 be given. Set

vr =

√
r

π

∫
R
e−rt

2

∆itv dt .

For all z ∈ C, the vector

vr(z) =

√
r

π

∫
R
e−r(t−z)

2

∆itv dt

defines ∆izvr and defines an entire function in the variable z. Therefore, for every r,

vr ∈ D(∆iz). It follows that for all r > 0, the vector vr is contained in a compact

spectral subspace of ∆.

The proof of the following is in [37, Lemma 1.3] with details drawing from the

proof of [64, Lemma 10.1].

Lemma 5.5.17. π(vr) is bounded and satisfies ∥π(vr)∥ ≤ ∥π(v)∥. Furthermore, as

r → 0, we have π(vr) → π(v) in the strong-∗ topology.

Since all of the expressions above are symmetric under interchanging M and M′,

we have that if v = ηΦ(x) is totally K-bounded, then vr is totally K-bounded. We

conclude the following.

Theorem 5.5.18. If M0 is a good subalgebra, then M0 = Mtb.
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Proof. M0 ⊆ Mtb by definition. For the other direction, let v ∈ Mtb such that v

is totally K-bounded. For any r > 0, we can construct vr via the Bochner integral

construction above. By the discussion after the previous lemma, we know that vr

is totally K-bounded. Importantly, we saw that each vr is contained in a compact

spectral subspace of ∆, and therefore is contained in Ej for some j > 1. By Theorem

5.5.11, it follows that vr ∈ M0.

So consider the sequence v1/n. Its terms are all K-bounded elements of M0. By

the previous lemma, v1/n converges to v in the strong-∗ topology, and hence in ∥ · ∥#Φ .

Therefore, by the assumption that totally bounded subsets of M0 are ∥·∥#Φ -complete,

we conclude that v ∈ Mtb, as desired.

Now we can prove Theorem 5.5.1.

Proof of Theorem 5.5.1. At this point, we have shown that to a model A of TvNa,

we can associate a ∗-algebra M0 of operators on a Hilbert space H and a faithful

∗-representation π : M0 → B(H) such that, setting MA to be the strong closure of

π(M0) and letting ΦA denote the weight on MA corresponding to the inner product

on M0, we have that M0 is a good subalgebra for MA. Hence we have D(MA,ΦA) =

A. In particular, if we start with a weighted von Neumann algebra (M,Φ) and let

A := D(M,Φ), we have (using that the totally bounded vectors in M are dense in

M) that (MA,ΦA) = (M,Φ) and D(MA,ΦA) = D(M,Φ).

Finally, we observe that embeddings between weighted von Neumann algebras

correspond to embeddings between the corresponding dissections. One direction of

this claim is obvious; to see the other, suppose that D(M,Φ) ⊆ D(N , ψ). By Lemma

4.5.4, we need to show that, for each a ∈ M, the ∥ · ∥Φ-distance between a and

the self-adjoint elements of M is the same as the ∥ · ∥ψ-distance between a and the
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self-adjoint elements of N . However this follows from axiom (7) and axiom (8), the

density of bounded elements, and the fact from Theorem 5.2.2 that for a ∈ SK(M),

the distance from a to Msa is realized by an element of S5K2+4(M).

5.6 Definability of Modular Automorphisms

Recall that in the W∗-probability space setting, we have the following theorem.

Theorem 5.6.1. [5, Fact 7.1] Suppose that (Mi, φi)i∈I is a family of W∗-probability

spaces and U is an ultrafilter on I. Set (M, φ) =
∏

U(Mi, φi). Then, for any t ∈ R

and (xi)
• ∈ M, we have

σφt (xi)
• = (σφi

t (xi))
•.

It follows by Beth definability that:

Corollary 5.6.2. [5, Corollary 7.2] For all t ∈ R, σt is a TW∗-definable function.

Moreover, if φt is a TW∗-definable predicate defining σt, then the map t 7→ φt is

continuous with respect to the logic topology.

However, in the present setting, we do not yet know enough about the ultraprod-

ucts involved to prove such a theorem. It turns out that the direct analogue is in fact

true, but we will need to prove this by other means. We will do this directly by provid-

ing an expansion by definitions TvNa−mod of our theory such that the modular group

is definable. We will further show that such an expansion is actually computably

definable by explicitly demonstrating definable axioms.

We add new functions symbols Pn : Sn → S(5n2+4) to our language and expand

our dissections to interpret Pn as in Section 5.2 (see also [57, Section 5]) by adding

the following axioms.
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(11) supx∈Sn
An(Pn(x)); and

(12) supx∈Sn
supy∈S1

φ(y∗y(x−Pn(x))).

We further expand our language with symbols Qn : Sn → S(5n2+4) and Rn : Sn →

S(10n2+8) and add the following axioms to our theory:

(13) supx∈Sn
d(5n2+4)(Qn(x), iPn(−ix)); and

(14) supx∈Sn
d(10n2+8)(Rn(x),Pn(x) +Qn(x)).

It now follows that models of axioms (1)-(14) are dissections of weighted von

Neumann algebras with P interpreted in a dissection as the real projection onto the

closure of Msa and Q as the corresponding projection onto the closure of iMsa.

Our next task is to show that ∆it
φ preserves our sorts. We recall that if a ∈ Mtb,

then π′
Φ(a) ∈ M′, whence JΦπ′

Φ(a)JΦ ∈ M.

Lemma 5.6.3. Suppose that a ∈ Mtb. Then ∥JΦπ′
Φ(a)JΦ∥ ≤ ∥a∥right.

Proof. Fix b ∈ M′ and set d := JΦbJΦ ∈ M. Then JΦηΦ(b) = ηΦ(d) and so

∥(JΦπ′
Φ(a)JΦ)ηΦ(b)∥Φ = ∥π′

Φ(a)ηΦ(d)∥Φ

≤ ∥a∥right∥ηΦ(d)∥Φ

= ∥a∥right∥ηΦ(b)∥Φ

since JΦ is an isometry.

Proposition 5.6.4. Suppose that a ∈ Mtb. Then for all t ∈ R, we have ∆it
ΦηΦ(a) =

ηΦ(b) for unique b ∈ Mtb with ∥b∥right = ∥a∥right.
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Proof. We know that ∆it
ΦηΦ(a) = ηΦ(b) for a unique b ∈ M. Since a ∈ Mtb, we

have that JΦπ′
Φ(a)JΦ = πΦ(c) for some c ∈ M. By Lemma 5.6.3 above, we have that

∥c∥ ≤ ∥a∥right. It follows that πΦ(JΦηΦ(a)) = JΦπ
′
Φ(a)JΦ = c. Consequently, for any

d ∈ M, we have

(∆it
ΦJΦπΦ(c)JΦ∆

−it
Φ )ηΦ(d) = πΦ(d)(∆

it
ΦJΦηΦ(c))

= πΦ(d)ηΦ(b).

Taking ∥ · ∥Φ and using that ∆it and J are isometries, we have

∥πΦ(d)ηΦ(b)∥Φ ≤ ∥πΦ(c)∥∥ηΦ(d)∥Φ

≤ ∥a∥right∥ηΦ(d)∥Φ.

It follows that ∥b∥right ≤ ∥a∥right. By applying ∆−it, we achieve equality.

Corollary 5.6.5. If a ∈ Sn(M), then for all t ∈ R, we have ∆itηΦ(a) = ηΦ(b) for a

unique b ∈ Sn(M).

Let X ⊆ [0, 2] denote the spectrum of R. For t ∈ R, we let ft : X → C be the

function defined by ft(x) = xit. Take polynomial functions ft,n on X with coefficients

from Q(i) such that ∥ft − ft,n∥∞ < 1
n
. Moreover, these polynomials can be found

effectively in the sense that the map which upon (t, n) returns the coefficients of ft,n

from N2 to Q(i)<ω is a computable map.

The following lemma is straightforward from the definition of ∆it:
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Lemma 5.6.6. For all m,n ≥ 1, we have

∥∆it − ft,m(2−R)f−t,n(R)∥ <
1

m
∥f−t∥∞ +

1

n
∥ft,m∥∞.

Denoting the quantity on the right hand side of the inequality appearing in the

previous lemma by δt,m,n, we note that the map (t,m, n) 7→ δt,m,n is computable. We

also set qt,n ∈ N to an integer such that (f−t,n(R1))(S1) ⊆ Sqt,n . For each t ∈ Q,

we add a symbol ∆it : S1 → S1 to the language and continue our enumeration of

TvNa−mod by adding the following axioms to our theory:

(15) supx∈S1
[∥∆it(x)− ft,m(2−Rqt,n)(f−t,n(R1)(x)))∥Φ .− δt,m,n].

We note that the above description of the axioms in (15) is a bit sloppy as the

term involving the R’s take values in some sort Sp with p predictably depending on

t, m, and n, whence we should technically be plugging ∆it(x) into an appropriate

inclusion mapping.

We need one last lemma before we can complete our axiomatization; the proof

follows immediately from Proposition 5.6.4.

Lemma 5.6.7. For each a ∈ Sn(M) and t ∈ R, we have σΦ
t (a) ∈ Sn.

We are finally ready to complete the axiomatization TvNa−mod. We add function

symbols σt to the language and add the following axioms:

(16) supa,x∈S1
d1(σt(a)x,∆

it(a ·∆−it(x))).

We have now described a language LvNa−mod extending the language L and an

LvNa−mod-theory TvNa−mod extending TvNa for which the following theorem holds:
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Theorem 5.6.8. The category of models of TvNa−mod consists of the dissections of

weighted von Neumann algebras with the symbols P, Q, R, and ∆it interpreted as

above (restricted to their appropriate sorts) and with the symbols σt interpreted as the

modular automorphism group of the state (restricted to the sort S1). Moreover, the

theory TvNa−mod is effectively axiomatized.

The observation above that our axioms are effective is made in anticipation of,

and crucial to, the computability theoretic results in Chapter 8.
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Chapter 6

Ultraproducts of General von

Neumann Algebras

6.1 Overview

There are several different ultraproduct constructions that arise in the study of op-

erator algebras. In the (not necessarily tracial) von Neumann algebra setting, two

prominent examples are the Groh-Raynaud ultraproduct and the Ocneanu ultraprod-

uct. While the former is well-defined for arbitrary von Neumann algebras, the latter

only makes sense as usually defined in the σ-finite setting. In [5], the present au-

thor, Goldbring, Hart, and Sinclair study the model theory of σ-finite von Neumann

algebras in a language that naturally gives rise to the Ocneanu ultraproducts.

Traditionally, in continuous logic, axiomatizations are guided by pre-existing ul-

traproduct constructions which the axiomatizations aim to capture. In the case of

weighted von Neumann algebras, however, such an ultraproduct does not exist. Our

axiomatization thus gives us a whole new ultraproduct. We believe this ultraproduct
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is of independent interest and it makes sense to study its properties here. We give

multiple characterizations of our new ultraproduct and relate it to the Groh-Raynaud

ultraproduct, paralleling similar results for the Ocneanu ultraproduct given in [3].

6.2 Hilbert Algebra Ultraproducts

In this section, we will introduce the Hilbert algebra ultraproduct and then show

that it agrees with the model-theoretic ultraproduct of our language. The notion

of ultraproduct that our axiomatization seems to most immediately suggest is the

following.

Definition 6.2.1. Let (Ai,Hi) be a family of full left Hilbert algebras and let Φi be

the induced faithful normal semifinite weight on the left von Neumann algebra R(Ai).

Define ℓ∞Φ (Ai) to be the set of all sequences (xi) such that ∥xi∥Φi
and ∥π(xi)∥ are

both uniformly bounded. Define the subalgebra

IU =
{
(xi) ∈ ℓ∞Φ (Ai) : lim

i→U
∥xi∥♯Φi

= 0
}

and its two-sided normalizer

NU = {(xi) ∈ ℓ∞Φ (Ai) : (xi)IU ⊆ IU and IU(xi) ⊆ IU}.

Then the Hilbert algebra ultraproduct
∏U

HA(Ai,Hi) is defined to be NU/IU

together with its Hilbert space completion. We can equivalently consider the left

von Neumann algebra generated by this together with the associated faithful normal

semifinite weight, which we will denote by
∏U

HA(Mi,Φi).
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Theorem 6.2.2. The Hilbert algebra ultraproduct agrees with the Ocneanu ultraprod-

uct when every Φi is a state.

Proof. Suppose every Φi is a state. Since ∥xi∥Φi
≤ ∥π(xi)∥ by Cauchy-Schwartz, the

condition that ∥xi∥Φi
uniformly bounded condition is follows from the condition that

∥xi∥ is uniformly bounded. Also, since when Φi is a state, we have that ω = 1 is a

cyclic and separating vector, it follows that Ai = Miω. Then this recovers exactly

the definition of the Ocneanu ultraproduct. Furthermore, we know from [3] that in

the state case, the Ocneanu ultraproduct acts standardly, it follows that the Hilbert

space completion is isomorphic to L2(
∏U

HA(Mi,ΦU)).

Lemma 6.2.3. [3, Lemma 4.14] Let f ∈ L1(R), and (xi) ∈ NU(Mi, φi) where each

φi is a state. Then (σφi

f (xi)) ∈ NU(Mi, φi) and σφ
U

f ((xi)
•) = (σφi

f (xi))
• holds.

By the same proof, we have the following version of the above lemma for faithful

normal semifinite weights.

Lemma 6.2.4. Let f ∈ L1(R), and (xi) ∈ NU(Mi,Φi). Then (σΦi
f (xi)) ∈ NU(Mi,Φi)

and σΦU

f ((xi)
•) = (σΦi

f (xi))
• holds.

Now we state the main theorem of this section.

Theorem 6.2.5. Suppose that (Mi, φi) is a family of weighted von Neumann algebras

for all i ∈ I and U is an ultrafilter on I. Then D(
∏U

HA(Mi,Φi)) ∼=
∏

U D(Mi,Φi).

Before we prove the previous theorem, we need to prove some facts about spectral

subspaces (recall Section 5.3).

Recall the Féjer kernel Fa ∈ L1(R) defined for a > 0 by

Fa(t) =
a

2π
1{t=0} +

1− cos(at)

πat2
1{t̸=0}.

109

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Ph.D. Thesis – J. Arulseelan; McMaster University – Dept. of Mathematics and Statistics

and its Fourier transform

F̂a(λ) =

(
1− |λ|

a

)
1{|λ|≤a} + (0)1{|λ|>a}.

The following theorem is an adaptation of [3, Proposition 4.11] and its proof is

nearly identical.

Theorem 6.2.6. Let (xi) ∈ ℓ∞Φ (Ai). Then the following statements are equivalent:

1. (xi) ∈ NU := {(xi) ∈ ℓ∞Φ (Ai) : (xi)IU ⊆ IU and IU(xi) ⊆ IU}.

2. For any ϵ > 0, there exists a > 0 and (yi) ∈ ℓ∞Φ (Ai) such that

• limi→U ∥xi − yi∥#Φi
< ϵ; and

• yi ∈M(σΦi , [−a, a]) for all i ∈ I.

Proof. (1) =⇒ (2): Let (xi) ∈ NU and put x := (xi)U . Also, define

xa := σΦU

Fa
(x) ∈ (Mi,Φi)

U .

Define f : t 7→ ∥x− σΦU
t (x)∥#

ΦU . Since f is continuous and bounded, we have

∥ηΦ(xa − x)∥ΦU = ∥
∫
R
Fa(t)(ηΦ(σ

ΦU

t (x)− x) dt)∥#
ΦU

=

∫
R
Fa(t)∥ηΦ(x− σΦU

t (x))∥#
ΦU dt .

This expression goes to 0 as a→ ∞ and therefore we have

lim
a→∞

∥xa − x∥#
ΦU = 0.
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Therefore there exists a > 0 such that y := σΦU
Fa

(x) satisfies ∥ηΦ(y − x)∥ΦU < ϵ. We

have by Lemma 6.2.4, y = (yi)U , where yi = σΦi
Fa
(xi) for i ∈ I and

∥y∥∥Fa∥1∥x∥ = ∥x∥.

Therefore (yi) is a sequence satisfying (2). Note also that ∥yi∥ ≤ ∥xi∥ for i ∈ I.

(2) =⇒ (1): Take x = (xi) ∈ ℓ∞Φ (Mi) as in (2). Let ϵ > 0. Then by Lemma 6.2.4

and by assumption, there is y = (yi) ∈ NU such that limi→U ∥xi − yi∥#Φi
< ϵ. Taking

m = (mi) ∈ IU with supn≥1 ∥mi∥ ≤ 1, we have

lim
i→U

∥(ximi)
∗∥Φi

≤ lim
i→U

(∥m∗
i ∥∥x∗i − y∗i ∥Φi

+ ∥m∗
ix

∗
i ∥Φi

)

≤ ϵ.

Since ϵ > 0 is arbitrary, this proves xm ∈ IU so xIU ⊆ IU . By a similar proof we

have, limi→U ∥mixi∥Φi
= 0 so mx ∈ IU . We can now conclude that x ∈ NU as was

required.

Now we record a few more facts that we will need about spectral subspaces.

Proposition 6.2.7.

1. If x ∈ M(σΦ, [−a, a]) for some a > 0, then the map t 7→ σΦ
t (x) extends to an

entire function C → M; moreover, for any z ∈ C, there is a constant Ca,z

depending only on a and z such that ∥σΦ
z (x)∥ ≤ Ca,z∥x∥.

2. If x ∈M(σΦ, [−a, a]), then x ∈ Mtb and ∥x∥right, ∥x∗∥right ≤ Ca,i/2∥x∥.

Proof. The proof of item (1) is identical to the proof of [3, Lemma 4.13]. Item (2)

is explicit in [3, Lemma 4.13], but we include the proof for the sake of completeness.
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Suppose x ∈ M(σΦ, [−a, a]) and take y ∈ ηΦ(M); we show that ∥yηΦ(x)∥Φ ≤ Ca,i/2 ·

∥x∥ · ∥ηΦ(y)∥Φ. To see this, we calculate as follows:

∥yηΦ(x)∥Φ = ∥(JyJ)(S∆−1/2ηΦ(x))∥Φ since J is isom. and JS∆−1/2 = 1

= ∥(JyJ)SσΦ
i/2(ηΦ(x))∥Φ by def. of σΦ

i/2

= ∥(σΦ
i/2(x))

∗(ηΦ(Jy))∥Φ by Tomita’s Theorem

≤ ∥σi/2(x)∗∥ · ∥ηΦ(Jy)∥Φ by def. of operator norm

≤ Ca,i/2 · ∥x∥ · ∥ηΦ(y)∥Φ.

The result for x∗ is now immediate from (1).

Proof of Theorem 6.2.5. First suppose that (ai)• ∈
∏

U Sn(Mi). It is clear that (ai) ∈

ℓ∞(Mi, I); we wish to show that (ai) ∈ M. To see this, suppose that (mi) ∈ I; we

show that (aimi), (miai) ∈ I. Suppose, towards a contradiction, that (aimi) /∈ I and

set L := limU ∥aimi∥#Φi
̸= 0. Consider the set of i ∈ I for which ∥mi∥#Φi

< L/2n,

which belongs to U since (mi) ∈ I. For a U -large subset of these i, we have that

∥aimi∥#Φi
> L/2; for these i, we see that the operator norm of ai is greater than n or

the right norm of a∗i is greater than n, which is a contradiction. To see this, assuming

∥ai∥, ∥a∗i ∥right ≤ n, we have

∥aimi∥#Φi
=

√
∥aimi∥2Φi

+ ∥m∗
i a

∗
i ∥2Φi

2
≤

√
∥ai∥2∥mi∥2Φi

+ ∥a∗i ∥2right∥m∗
i ∥2Φi

2
≤ n∥mi∥#Φi

,

as claimed. The proof that (miai) ∈ I proceeds similarly, using that each ai is right

n-bounded and a∗i is left n-bounded. It is now clear that (ai)
• = (ai)

⋆ and that this

element is in Sn(
∏U

HA(Mi,Φi)).
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By Theorem 5.5.1, we now have that the von Neumann algebra associated to∏
U D(Mi,Φi) embeds into

∏U
HA(Mi,Φi); it suffices to show that this embedding is

actually onto. To see this, it suffices to show that, given any x ∈
∏U

HA(Mi,Φi) with

∥x∥ = 1 and any ϵ > 0, there is n > 0 and y ∈
∏

U Sn(Mi) such that ∥x − y∥#
ΦU <

ϵ. Write x = (xi)
⋆ and take y = (yi)

⋆ as in Theorem 6.2.6 for some a > 0. We

show that y ∈
∏

U Sn(Mi) for some n > 0. Indeed, as mentioned above, we may

assume that ∥yi∥ ≤ 1 for all i ∈ I whence, by Proposition 6.2.7(3), we have that

∥yi∥right, ∥y∗i ∥right ≤ Ca,i/2 for all i ∈ I and thus y ∈
∏

U Sn(Mi) when n ≥ Ca,i/2.

Theorem 6.2.8. The modular automorphism group commutes with the Hilbert alge-

bra ultraproduct.

Proof. By Proposition 6.2.5, together with the definability of the modular automor-

phism group via Theorem 5.6.8, we have (σΦi
t (xi))

• = σΦU
t (xi)

• whenever xi is totally

K-bounded. Now by strong density of the totally bounded elements and strong con-

tinuity of modular automorphisms, we conclude the claim.

Theorem 6.2.9. The weight defined by

Φl(x) =


√
⟨ξ , ξ⟩ if x1/2 = ξ ∈ A

∞ otherwise

on the right von Neumann algebra Rℓ(
∏U

HA(Ai,Hi)) of the Hilbert algebra ultraproduct

is a faithful normal semifinite weight.

Proof. By Theorem 6.2.5, the Hilbert algebra ultraproduct is a model of the theory

TvNa. By Theorem 5.5.1, this implies that it is a full left Hilbert algebra. Now the
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claim is true by the equivalence of categories between weighted von Neumann algebras

and full left Hilbert algebras.

6.3 Generalized Ocneanu Ultraproducts

While the Hilbert algebra ultraproduct from the previous section is nice from a Hilbert

algebra perspective, it has the distinct disadvantage that it can only be understood

in terms of vectors in the domain of definition. The von Neumann algebra we arrive

at by taking the strong closure can be somewhat mysterious. In particular, it is

difficult to know exactly what sequences from the factor algebras will appear in the

strong closure of the Hilbert algebra ultraproduct if the sequence contains elements

not in the respective domains of definition. It is also not prima-facie connected to

more standard constructions in operator algebras. We will consider an alternative

ultraproduct defined as a subset of the Groh-Raynaud ultraproduct and show that

the former has many nice properties that generalize some key theorems found in [3].

This, in a way, serves as evidence that our language is the "correct" one. Many of

the techniques we use will also be direct generalizations of or nearly identical to those

used in [3]. Finally, we will exhibit an explicit spatial isomorphism between this new

ultraproduct and the previous one.

Definition 6.3.1. Let (Mi,Φi) be a family of weighted von Neumann algebras and

let Hi be the associated family of semicyclic representations. Let (vi) be a sequence

of vectors such that vi ∈ ηΦi
(Mi) for all i. We will call (vi) a σ-continuous point

if (∆it
Φi
vi)

• is a continuous function of t with respect to ∥ · ∥#Φ on the Hilbert space

ultraproduct
∏U Hi.
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We also define a version of this notion for the elements of the Banach space

ultraproduct (and, by extension, the Groh-Raynaud ultraproduct) of the underlying

von Neumann algebras.

Definition 6.3.2. Let (Mi,Φi) be a family of weighted von Neumann algebras and

let Hi be the associated family of semicyclic representations. Let (xi) be a sequence

of elements such that xi ∈ Mi for all i. We will call (xi) a σ-continuous point if

(σΦi
t (xi))

• is a continuous function of t with respect to the strong∗ topology in the

Groh-Raynaud ultraproduct
∏U

GRMi.

Proposition 6.3.3. Let (vi) be a σ-continuous vector such that ∥πΦi
(vi)∥ is uniformly

bounded. Then (πΦi
(vi)) is a continuous element.

We next state the following characterization of the usual Ocneanu ultraproduct in

terms of σ-continuous vectors of the Hilbert space ultraproduct. This characterization

and its proof can be found in [49, Theorem 1.5]. The proof of equivalence of the

conditions (1) and (2) can be found in [3, Proposition 4.11]. We will show as a

corollary that we can equivalently view the Ocneanu ultraproduct in terms of σ-

continuous elements of the Groh-Raynaud ultraproduct.

Theorem 6.3.4. Let (xi) ∈ ℓ∞(Mi). Then the following statements are equivalent:

1. (xi) ∈ NU := {(xi) ∈ ℓ∞(Mi) : (xi)IU ⊆ IU and IU(xi) ⊆ IU}.

2. For any ϵ > 0, there exists a > 0 and (yi) ∈ ℓ∞(Mi) such that

• limi→U ∥xi − yi∥#φi
< ϵ; and

• yi ∈M(σφi , [−a, a]) for all i ∈ I.

3. (xi)
• is a σ-continuous vector.
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We also have:

Corollary 6.3.5. Let (xi) be as in the previous theorem. The conditions (1), (2) and

(3) are in turn equivalent to:

4. (πΦi
(xi))

• is a σ-continuous element.

Proof. We will show (3) ⇐⇒ (4) and the claim will follow by transitivity.

(3) =⇒ (4) follows from Proposition 6.3.3.

(4) =⇒ (3). Note ∥ · ∥#φ metrizes the strong∗ topology on norm bounded sets.

Now since ωφU = (ωφi
)U is cyclic and separating for the Ocneanu ultraproduct, every

element is represented by a vector. The claim now follows.

We still need to define a corresponding faithful normal semifinite weight on this

algebra. Recall that given a family (Mi, φi) of von Neumann algebras Mi together

with uniformly bounded linear functionals φi on them, we can define a positive linear

functional φU on the Groh-Raynaud (and, a fortiori, the Ocneanu) ultraproduct as

φU(xi) = lim
i→U

φi(xi)

and in fact, this is how the ultraproduct of states is defined. We will use a slight

generalization of [3, Corollary 3.25] that tells us that any positive linear functional

on the ultraproduct can be achieved this way. First we recall:

Lemma 6.3.6. [3, Corollary 3.25] Let φ be a state on the Groh-Raynaud ultraproduct∏U
GR(Mi,Hi). Then there exists a sequence φi of states such that φ = (φi)U .

The following generalization is clear by taking linear combinations.
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Corollary 6.3.7. Let φ be a positive linear functional on the Groh-Raynaud ultra-

product
∏U

GR(Mi,Hi). Then there exists a uniformly bounded sequence φi of positive

linear functionals such that φ = (φi)U .

Note that this definition does not make sense in the case of a weight. Indeed,

consider I = N and take Mi = M a fixed von Neumann algebra and let Φ be a

faithful normal state on M. Take the faithful normal semifinite weight Φi = i2Φ for

all i. Now considering the sequence xi = 1
i
1, we have that (xi)

• = (0)• but

lim
i→U

Φi(xi) = lim
i→U

i = ∞

and therefore this construction is ill-defined.

On the other hand, Theorem 3.3.11 tells us that any faithful normal semifinite

weight Φ is the supremum of all the positive linear functionals it majorizes. In other

words Φ = supφ where the supremum ranges over φ ∈ (M)+∗ such that φ ≤ Φ.

Since every bounded linear functional on a Groh-Raynaud ultraproduct is realized

as an ultraproduct of bounded linear functionals and it is clear that ultraproducts

of bounded linear functionals preserve entry-wise majorization, we are led to the

following definition.

Definition 6.3.8. Let (Mi,Φi) be a family of weighted von Neumann algebras. The

ultraproduct weight ΦU of Φi is the weight on the Groh-Raynaud ultraproduct∏U
GR(Mi,Φi) defined by

ΦU = sup{φ = (φi)U : φi ∈ (Mi)
+
∗ uniformly bounded such that φi ≤ Φi}.

While editing this thesis, the author became aware of the pre-print [10] due to
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Martijn Caspers. The pre-print remains unpublished. Interestingly, Caspers defines

the same weight we do, although for a larger class of weights. We also claim similar

results about these weights, albeit with very different proofs and techniques. Our mo-

tivations for considering such weights also differ greatly. The fact that this definition

was arrived at independently in such different ways suggests that it is a natural one

to consider.

The following is immediate.

Proposition 6.3.9. If Φi is a sequence of faithful normal states, then

ΦU(xi) = lim
i→U

Φi(xi)

so that the ultraproduct weight agrees with the usual ultraproduct state when every Φi

is a state.

We find it appropriate to remind the reader here that every weight we ever consider

in this thesis majorizes a state. In the spirit of the Theorem 6.3.4 and the intervening

discussion, we make the following definition.

Definition 6.3.10. Let (Mi,Φi) be a family of weighted von Neumann algebras.

We define the generalized Ocneanu ultraproduct
∏U

Oc(Mi,Φi) to be the subset

of the Groh-Raynaud ultraproduct consisting of elements (xi)
• for which (σΦi

t (xi))
•

is strong∗-continuous in the variable t. It is equipped with the restriction of the

ultraproduct weight ΦU to it.

We will show that the generalized Ocneanu ultraproduct and the Hilbert algebra

ultraproduct are actually equivalent. To do this, we will first identify the Hilbert
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algebra ultraproduct as a corner (see the statement after Theorem 4.5.10) of the Groh-

Raynaud ultraproduct by a projection. The projection in question will be naturally

isomorphic to the Hilbert space underlying the Hilbert algebra ultraproduct.

Theorem 6.3.11. [3, Theorem 3.7] Let (Mi) be a sequence of σ-finite von Neumann

algebras and let a normal faithful state φi on Mi be given for each i ∈ I. Assume

that each Mi acts standardly on Hi = L2(Mi, φi), so that
∏U

GRMi ⊆ B(
∏U(Hi)).

Also let

MU =
U∏
(Mi, φi), φU = (φi)

U ,

and define w : L2(MU , φU) →
∏U(Hi) by w(xi)•ωφU := (xiωφi

)•, (xi)• ∈ MU . Then

w is an isometry, and w∗(
∏U

GRMi)w = MU .

Inspired by the above, define W : L2(MU , φU) →
∏U(Hi) by extending

W (xi)
•ωφU := (xiωφi

)• for (xi)
• ∈ MU

to its closure by density. Then W is an isometry by Proposition 6.3.9. Define also

pΦ :
U∏
(Hi) → L2(MU , φU)

to be the projection onto the corresponding subspace. Then we have

W ∗(
U∏
GR

Mi)W = pΦ(
U∏
GR

Mi)pΦ

It is a simple calculation to see this agrees with the weight given by the inner product

on L2(MU , φU).
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We would like to show pΦ(
∏U

GRMi)pΦ = MU . In other words, the Hilbert algebra

ultraproduct is the corner of the Groh-Raynaud ultraproduct corresponding to pΦ.

Theorem 6.3.12. pΦ(
∏U

GRMi)pΦ = MU .

Proof. By Theorem 4.5.9,
∏U

GRMi acts standardly on
∏U(Hi) with antilinear isom-

etry J := JU = (Ji)
U . Consider the projection q = pΦJ . It is clear that q ∈

∏U
GRMi

since it is a projection that commutes with every element of (
∏U

GRMi)
′ =
∏U

GRM′
i.

Then since

p = qJqJ

= pΦJJpΦJJ

= pΦ,

we have by Theorem 4.5.10 that pΦ(
∏U

GRMi)pΦ acts standardly on the subspace

pΦ(
∏U(Hi)) ∼= L2(MU , φU).

We also have, by Theorem 5.5.1 and Proposition 6.2.5, that MU acts standardly

on L2(MU , φU). Note also that if (vi)
• ∈ ηΦU (MU), then π((vi)

•) is obviously in

the Groh-Raynaud ultraproduct. Furthermore, π((vi)•) commutes with pΦ by defini-

tion. Now the result follows by the fact that left Hilbert algebras give rise to unique

standard forms up to unitary equivalence.

Now we state and prove a generalization of Theorem 6.3.4 for the Hilbert algebra

ultraproduct. The proof is nearly identical to that given in [49, Theorem 1.5] and is

simply adapted here to the Hilbert algebra setting. Notice that in the following, we

only work in the domain of definition, or the underlying Hilbert space. We will deal

with the elements of infinite weight in Theorem 6.3.15.
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Theorem 6.3.13. Let (xi) ∈ ℓ∞Φ (Ai). Then the following statements are equivalent:

1. (xi) ∈ NU := {(xi) ∈ ℓ∞Φ (Ai) : (xi)IU ⊆ IU and IU(xi) ⊆ IU}.

2. For any ϵ > 0, there exists a > 0 and (yi) ∈ ℓ∞Φ (Ai) such that

• limi→U ∥xi − yi∥#Φi
< ϵ; and

• yi ∈M(σΦi , [−a, a]) for all i ∈ I.

3. (xi)
• is a σ-continuous vector.

Proof. (1) ⇐⇒ (2). See Theorem 6.2.6.

(2) =⇒ (3). Let ϵ > 0. Take a and y = (yi) as in (2). Take W ∈ U so that if

i ∈ W , then ∥ηΦ(xi − yi)∥#Φ < ϵ. For all t ∈ R and i ∈ W , we have

∥ηΦ(σΦ
t (xi)− xi)∥#Φ

≤ ∥ηΦ(σΦ
t (xi)− σΦ

t (yi))∥
#
Φ + ∥ηΦ(σΦ

t (yi)− yi)∥#Φ + ∥ηΦ(yi − xi)∥#Φ by triangle ineq.

= 2∥ηΦ(xi − yi)∥#Φ + ∥ηΦ(σΦ
t (yi)− yi)∥#Φ since σΦ

t is isom.

< 2ϵ+ ∥ηΦ(σΦ
t (yi)− yi)∥#Φ by assumption.

Let f ∈ L1(R) satisfy f̂(x) = 1 if |x| ≤ a. Then σΦ
f (yi) = yi, and

∥ηΦ(σΦ
t (yi)− yi)∥#Φ = ∥ηΦ(σΦ

λtf−f (yi))∥
#
Φ

≤ ∥λtf − f∥1∥yi∥#Φ

where λt denotes the left regular representation on R. Therefore

∥ηΦ(σΦ
t (xi)− xi)∥#Φ < 2ϵ+ ∥λtf − f∥1∥yi∥#Φ
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for all t ∈ R, i ∈ W . Now, by dominated convergence, we can choose δ > 0 such that

|t| < δ implies ∥λtf−f∥1 < ϵ(∥yi∥#Φ )−1. For such a δ, we have ∥ηΦ(σΦ
t (xi)−xi)∥

#
Φ < 3ϵ

for all i ∈ W , verifying σ-continuity.

(3) =⇒ (1). Let (xi) ∈ ℓ∞Φ (M) be a σ-continuous sequence. Let ϵ > 0 and take

δ > 0 and W ∈ U so that if |t| < δ and i ∈ W , then we have ∥σΦ
t (xi)− xi∥#Φ < ϵ.

For r > 0, set gr(t) :=
√

1
πr
e−t

2/r for t ∈ C. Note gr(t) is a Gaussian with L1-norm

of 1 for all r > 0. Furthermore, the smaller r is, the more concentrated gr(t) is around

0. Then there exists an r so that

∥ηΦ(σΦ
gr(xi)− xi)∥Φ ≤

∫
R
gr(t)∥ηΦ(σΦ

t (xi)− xi)∥Φ dt

< 2ϵ

for all i ∈ W . Now fix such an r and let (yi) ∈ IU with ∥yi∥ ≤ 1 for all i ∈ I. Then

for i ∈ W , we have

∥ηΦ(yixi)∥Φ = ∥yiηΦ(xi)∥Φ

= ∥yiηΦ(xi − σΦ
gr(xi)) + yiηΦ(σ

Φ
gr(xi))∥Φ

≤ ∥yiηΦ(xi − σΦ
gr(xi))∥Φ + ∥yiηΦ(σΦ

gr(xi))∥Φ by triangle ineq.

≤ ∥yi∥∥ηΦ(xi − σΦ
gr(xi))∥Φ + ∥yiσΦ

grηΦ(xi)∥Φ by def. of operator norm

< ϵ+ ∥yiσΦ
grηΦ(xi)∥Φ by choice of r and ∥yi∥ ≤ 1

= ϵ+ ∥JΦσΦ
i/2(σ

Φ
gr(xi))

∗JΦηΦ(yi)∥Φ by Tomita’s Theorem

≤ ϵ+ ∥gr(· − i/2)∥1∥xi∥∥ηΦ(yi)∥Φ by def. of σΦ
f (x).

It now follows that limi→U ∥ηΦ(yixi)∥Φ ≤ ϵ since ∥gr(· − i/2)∥1 ≤ 1. By a similar
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proof limi→U ∥ηΦ(xiyi)∥Φ ≤ ϵ which is what we required.

Corollary 6.3.14. An element (xi)• ∈ ℓ∞Φ is in NU if and only if (∆it
Φi
xi)

• ∈ NU for

all t ∈ R.

Proof. First, note by translation invariance of continuous group homomorphisms,

(σΦi
t (xi))

• is continuous at t = 0 if and only if it is continuous at all t ∈ R. Thus

since σΦi
t (xi) = π(∆itxi), we conclude.

Now we are ready to prove the equivalence between Hilbert algebra ultraproducts

and generalized Ocneanu ultraproducts. The reader should notice at this point that,

if we were working in the faithful normal state setting as in [3] and [49], we would

be done. This is because, in that setting, every element of M is represented as a

vector on the corresponding standard form and σt(x) = π(∆itxω). However, in our

more general setting, we do not have a cyclic and separating vector, so we still need

to take a strong closure. For this, we will make use of the corner characterization in

Theorem 6.3.12.

It stands to reason now that an element x ∈
∏U

GRMi is σ-continuous if and only

if it sends σ-continuous vectors to σ-continuous vectors. This happens if and only if x

commutes with pΦ, which has already been seen to be equivalent to being an element

of the Hilbert algebra ultraproduct. This is the essence of the proof to follow.

Theorem 6.3.15. Let x = (xi)U be an element of the Groh-Raynaud ultraproduct

where xi ∈ Mi for all i. The following are equivalent.

1. pΦ(xi)• = (xi)
•pΦ so that x is an element of the Hilbert algebra ultraproduct.

2. (xi)
• is a strong∗-continuous point of (σΦi

t )U so that x is an element of the

generalized Ocneanu ultraproduct.
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Proof. The (1) =⇒ (2) direction follows immediately from Theorem 6.2.8 and

the fact that the modular group is known to be strong∗-continuous. In this case, the

ultraproduct of the modular automorphism groups acts as the modular automorphism

group of the weight induced on the Hilbert algebra ultraproduct. The latter agree

with the ultraproduct weight on the Groh-Raynaud by the fact that pΦ is an isometry.

Now we prove (2) =⇒ (1). Assume (xi)
• is a strong∗-continuous point of (σΦi

t )U .

Then for all (vi)• ∈ NU , we have (σΦi
t (xi)vi)

• strong∗ converges to (xivi)
• as t→ 0.

Now

(σΦi
t (xi)vi)

• = (∆it
Φi
xi∆

−it
Φi
vi)

•

= (∆it
Φi
xi(∆

−it
Φi
vi))

•.

We also have that (vi)
• ∈ NU if and only if (∆−itvi)

• ∈ NU by Theorem 6.3.13. So

we have (∆itvi)
• ∈ NU . By parametrization we can replace (∆itvi)

• with vi.

Thus (∆itxivi)
• strong∗ converges to (xivi)

• as t→ 0 for all (vi)• ∈ NU . Applying

Theorem 6.3.13 again, we conclude (xi)
•(vi)

• ∈ NU and (x∗i )
•(vi)

• ∈ NU for all

(vi)
• ∈ NU . This is equivalent to pΦ(xi)• = (xi)

•pΦ. Thus, we are done.

Corollary 6.3.16. The generalized Ocneanu ultraproduct is a von Neumann subalge-

bra of the Groh-Raynaud ultraproduct that is the image of a faithful normal conditional

expectation.

Proof. By Theorem 6.3.15 and Proposition 5.5.1, the generalized Ocneanu ultraprod-

uct is a von Neumann subalgebra.

By Theorem 6.2.8 and since the ultraproduct weight is the restriction of the ul-

traproduct weight on the Groh-Raynaud ultraproduct, the modular automorphism
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group on the generalized Ocneanu ultraproduct agrees with the modular automor-

phism group on the Groh-Raynaud ultraproduct. Now since continuous elements are

invariant under σΦU
t , we have by Takesaki’s Theorem (Theorem 4.5.4), the desired

conditional expectation.

Thus, by Proposition 6.2.5 and Theorem 6.3.15, we conclude the ultimate result

of this chapter.

Theorem 6.3.17. For any family (Mi,Φi) of weighted von Neumann algebras, the

generalized Ocneanu ultraproduct acting on pΦ(
∏U Hi) is spatially isomorphic to

the Hilbert algebra ultraproduct of the corresponding family of full Hilbert algebras

(Ai,Hi). By transitivity, both of these are isomorphic to the model theoretic ultra-

product in our language.

Given the evident utility of the Ocneanu ultraproduct in the study of σ-finite von

Neumann algebras, there is now a wide array of obvious interesting questions to be

asked and generalizations of known theorems to be proved. In the chapters to follow,

we will focus on generalizations of some computable model theoretic results. We leave

potentially many further developments with a more operator algebraic flavor to future

work.
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Chapter 7

Connes-Takesaki Decomposition and

Imaginaries

7.1 Overview

An important landmark in the history of operator algebras was the 1976 publication

of Alain Connes’ classification of injective factors in [13]. Connes and this paper of

his have inspired much of the work in operator algebras since then, in particular, the

Elliot classification program for C∗-algebras. Since a significant amount of the work

in model theory of C∗-algebra is related to the Elliot program, it is an interesting

question to what extent model theory is already reflected in Connes’ work in the von

Neumann algebra setting. In this chapter, we will begin to answer this question by

showing that the model theory of von Neumann algebras "remembers" the Connes-

Takesaki decomposition, an important piece of the injective factors proof. To this end,

along the way, we will develop a bit more of the definability theory for continuous

logic. Much of the treatment here is based on [1].
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7.2 Definability and Definable Groupoids

Definition 7.2.1. We define a metric groupoid to be a groupoid enriched in Met.

In other words, a groupoid C is a metric groupoid if Ob(C) forms a metric space

and for any a, b ∈ Ob(C), we have the structure of a metric space on Hom(a, b).

Notice this coincides with the usual notion of a groupoid if Ob(C) and Hom(a, b) has

the discrete metric for all pairs of objects. Denote by Mor(C) the disjoint union of

all the Hom sets. This naturally has a metric space structure.

Definition 7.2.2. We say a metric groupoid is definable in M if there exist isome-

tries from Ob(C) and Mor(C) to definable sets A and B of M such that the source

and target functions s, t : B → A and the composability relation comp on B ×B are

definable and the composition function ◦ : (B ×B) → B is also definable.

We will simply call these definable groupoids for the remainder of this thesis. It

should be noted that definable groupoids are much rarer in continuous logic than in

classical logic. This is because continuous structures often have a paucity of definable

sets. This same paucity of definable sets and the related difficulty in identifying which

functions can be realized as a T -formula results in the continuous Beth definability

theorem playing a much more central role in continuous logic than Beth definability

does in classical logic. See, for example, [30, Chapter 2] for a discussion.

Theorem 7.2.3 (Continuous Beth Definability). Suppose that L′ ⊆ L are two con-

tinuous languages with the same sorts. Further, suppose T is an L-theory. If the

forgetful functor F : Mod(T ) → Str(L′) given by restriction to L′ is an equivalence of

categories onto the image of F , then every L-formula is T -equivalent to an L′-formula.
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Considering the aforementioned centrality of the Beth definability theorem, it is

remarkable that, to our knowledge, there is no attempt in the literature to prove the

continuous logic analogues of the Svenonius or Chang-Makkai definability theorems.

We will initiate these tasks now, to aid our discussion of the Connes-Takesaki de-

composition, as well as for their independent interest to continuous model theorists

more generally. Recall that in continuous logic, being definable is different from being

expressible as a formula. It is worthwhile to define the following.

Definition 7.2.4. We say that an L′ formula ϕ is T -expressible in L up to dis-

junction if there is a finite set θ1, ..., θn of L-formulae such that

T ⊨ sup
x

(
min
1≤i≤n

|ϕ(x)− θi(x)|
)

Definition 7.2.5. We say that an L′ formula ϕ is T -expressible in L up to pa-

rameters if there is an L-formula θ1(x, v1...., vn) with parameters v1, ..., vn such that

T ⊨ sup
x

(
inf

v1,...,vn
|ϕ(x)− θi(x, v1, ..., vn)|

)

We begin with the following strengthening of Beth definability.

Theorem 7.2.6 (Continuous Svenonius’ Theorem). Let U be a predicate symbol not

in L. Let ϕ be a sentence of L ∪ {U}. The following are equivalent:

1. For every model A for L, if (A, P1) and (A, P2) are expansions of A to models

of ϕ and (A, P1) ∼= (A, P2), then P1(x) = P2(x) for all x ∈ Ax.

2. U is T -expressible up to disjunction.
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Proof. (2) =⇒ (1). Suppose that θ1(x), ..., θk(x) are formulae of L such that

ϕ ⊨ min
1≤i≤n

(∀x)|U(x)− θi(x)|.

Let (A, P ) be an expansion of A which is a model of ϕ. This means that for some i,

we have

P (a) = θi(a) for all a ∈ Ax.

So P remains fixed under any automorphism of A, and, in particular, under any

isomorphism (A, P ) onto (A, P ′).

(1) =⇒ (2). Suppose that (2) does not hold. In other words, for no formulae

θ1(x), ..., θk(x) of L does

ϕ ⊨ min
1≤i≤n

(∀x)|U(x)− θi(x)|

hold. Then there exists for every formula θ of L, an ϵθ > 0 such that the set

Σ = {ϕ} ∪ {sup
x

|U(x)− θ(x))| > ϵθ : θ(x) a formula of L}

of sentences of L∪{U} is consistent. Let T be any complete extension of Σ in L∪{U}.

Note that T does not define U explicitly as there is no formula θ(x) of L such that

T ⊨ supx |U(x) − θ(x)|, whence by Beth definability, there is a model A of L which

has two different expansions into models of T :

(A, P1) ⊨ T, (A, P2) ⊨ T, P1 ̸= P2.
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Since T is complete, we also have

(A, P1) ≡ (A, P2).

Consider the model (A, P1, P2). Let (B, Y1, Y2) be a saturated extension of it in

the language L ∪ {U,U ′}. Clearly (B, Y1) and (B, Y2) are saturated, of the same

cardinality and equivalent. So, because there exists ϵ such that

(B, Y1, Y2) ⊨ sup
x

|U(x)− U ′(x)| > ϵ

we see that

(B, Y1) ∼= (B, Y2), (B, Y1, Y2) ̸⊨ sup
x

|U(x)− U ′(x)|

so Y1 ̸= Y2, contradicting (1).

We will not need to use the following continuous logic analogue of the Chang-

Makkai theorem at any point in this thesis. For this reason, we will not include the

proof. The proof will instead appear, alongside various elaborations of the contents

of this section, in joint work with Bradd Hart.

Our reason for stating the theorem is for the role the classical Chang-Makkai

theorem plays in Hrushovski’s "generalized imaginaries". The study of generalized

imaginaries is important in model theory. We suggest the paper [42] of Moosa-

Haykazyan for more details on generalized imaginaries and their connection to defin-

able groupoids. By studying definable metric groupoids in this thesis, we are thereby
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working with a continuous logic analogue of generalized imaginaries, so having a con-

tinuous logic analogue analogue of Chang-Makkai serves as a useful proof of concept

for our work here.

Theorem 7.2.7 (Continuous Chang-Makkai). Let ϕ be a sentence in L ∪ {U}. The

following are equivalent.

1. For all infinite models (M,P ) ⊨ ϕ we have

χ({Q : (M,P ) ∼= (M,Q)}) ≤ χ(M) := κ

Where {Q : (M,P ) ∼= (M,Q)} is considered as a subset of [0, 1]M equipped

with the metric arising from the sup-norm.

2. ϕ is equivalent to the zeroset of a T -formula with parameters.

7.3 Connes-Takesaki Decompositions

We now turn our attention to the model theoretic treatment of Connes-Takesaki

decompositions.

Theorem 7.3.1. [65] Let M be a von Neumann algebra of type III. Then there is a

type II∞ von Neumann algebra N with a faithful normal semifinite trace τ on N and

a trace-scaling one-parameter group of automorphisms θ : R → Aut(N ) such that

M ∼= N ⋊θ R.

Furthermore, (N , τ, θ) is unique up to conjugacy.
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N is often referred to as the continuous core of M. If Φ is a faithful normal

semifinite weight on M, we can construct (N , τ, θ) as

N ∼= M⋊σΦ R

with τ the dual weight of Φ and θ the dual action of σΦ as given in Takesaki duality.

We will then denote N = cΦ(M).

Theorem 7.3.2. [66] Let (M, φ) be a von Neumann algebra together with a faithful

normal state and an action α by topological abelian group G. Consider also M⋊α G

together with its dual action β by the dual group Ĝ and its dual weight ψ. Then the

continuous points (with respect to β) of the Ocneanu ultrapower (
∏U M ⋊α G)c is

isomorphic to the crossed product of the continuous part of the Ocneanu ultrapower

(
∏U M) by the ultraproduct action αU .

In a future work, we will further extend this result to general ultraproducts and

with respect to more general groups. For our purposes though, we only need to note

that we will work exclusively with R and the modular automorphism group. Since R is

dual to itself and the Ocneanu ultraproduct is precisely, the continuous ultraproduct

with respect to the modular automorphism group, we can copy Tomatsu’s proof

nearly exactly to get that Ocneanu ultraproducts commute with crossed products by

the modular automorphism group.

Theorem 7.3.3. (cΦ(M), τ, θ) as given above is definable in (M,Φ)geq.

Proof. Consider the language LvNa-Pairs for structures of the form (M,Φ, σ,N , τ, θ)

where (M,Φ) and (N , τ) are weighted von Neumann algebras and σ and θ are one-

parameter automorphism groups on M and N respectively.
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Consider the class of structures in LvNa-Pairs where (M,Φ) and (N , τ) satisfy the

axioms of weighted von Neumann algebras, τ is tracial and σΦ is defined to be the

modular automorphism group of (M,Φ). This is axiomatizable by the discussion in

Chapters 5 and 6. We claim that the subclass such that N = cΦ(M) and τ is the dual

weight of Φ with θ the dual weight of σΦ is elementary. This follows from Theorem

7.3.2.

Now consider the reduct functor to the structures (M,Φ). We claim this induces

an equivalence of categories. This is true because σ is definable by the discussion in

Chapter 5, and N is unique up to automorphism. The latter is true because N is

unique up to unitary equivalence and since by [37] all automorphisms are implemented

by unitaries in standard forms. Now the theorem follows by Beth definability.

A problem one runs into when trying to recover the underlying II1 factor M from

M⊗B(H) is that there are many isomorphs of M contained therein. A parallel issue

arises in the model theoretic study of differential fields. There, the Galois group is

not canonically a definable group. Instead, there are multiple isomorphs of the Galois

group that are related by a system of isomorphisms. Thus a need arises for a so-called

binding groupoid (see, for example [42]).

If N = M ⊗ B(H) with the tracial weight τ is the II∞ amplification of the II1

factor M with trace τ0, then there are copies of M associated to any trace 1 projection

on N . We will view this as a definable groupoid. The morphisms M1 → M2 in this

setting will be the partial isometry v with source projection pM1 and range projection

pM2 if it exists in N . We will show that this is a definable groupoid.

It is well-known that the trace 1 projections forms a (quantifier-free) definable set
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A in N by

max{∥p2 − p∥, ∥p∗ − p∥, |τ(p)− 1|}.

Denote by P1 the definable set corresponding to the above. Taking the corner pNp

for any trace 1 projection obviously gives a copy of M. We will show now that the

morphism set B is (existentially) definable. Consider the formula:

max{ inf
p∈P1

∥x∗x− p∥, inf
q∈P1

∥xx∗ − q∥}.

Putting this all together yields the following theorem.

Theorem 7.3.4. A and B defined above forms a definable groupoid. The source and

target functions are the terms x∗x and xx∗ respectively. The composability relation

comp is given by comp(x, y) = ∥x∗x− yy∗∥ and the composition function is given by

◦(x, y) = yx∗xy∗.

Proposition 7.3.5. The above formulae are almost-near and hence form definable

sets.

The next theorem can be summarized as saying that (N , τ) is contained in the

"generalized imaginaries" of our theory. A more thorough treatment of generalized

imaginaries will appear in joint work with Bradd Hart.

Theorem 7.3.6. There is a definable groupoid in (M,Φ) such that every object is

isomorphic to (N , τ).

We remark that the preceding theorem could have instead been seen to be an

application of Theorem 7.2.7. However, we find our explicit construction of the de-

finable groupoid more intuitive. More importantly, our explicit definition, and its
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evident computability, play a key role in our analysis of the universal theory of the

hyperfinite II∞ factor in Theorem 8.6.1.

A similar metric groupoid to the above can be defined where in the place of partial

isometries, we use "partial unitaries". Instead of requiring the source and target to be

projections then, we assume they are unitaries on the corresponding corners. Notice

this will be much larger as a groupoid in general than the former definition. The

former is a skeletal groupoid and the latter will in general have large Hom sets.

Theorem 7.3.3 and Theorem 7.3.6 together imply that the model theory type III

von Neumann algebras retains information about their Connes-Takesaki decomposi-

tions.
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Chapter 8

Undecidability of QWEP and Type

III

8.1 Overview

The starting point for computable model theory of operator algebras was the paper

[33] by Goldbring and Hart. Following the resolution of the Connes embedding prob-

lem in [43], it was discovered by Goldbring and Hart that some of the techniques

therein can be used to prove that the universal theory of the hyperfinite II1-factor R

is undecidable. In turn, this implies an incredible strengthening of the refutation of

the Connes embedding problem.

In [4], the present author, together with Goldbring and Hart, used the framework

and results from [33] to prove various undecidability results about other hyperfinite

factors as well as the classes of QWEP C∗-algebras and QWEP W∗-probability spaces.

The results there on W∗-probability spaces are proved in both the language given in

[16] and that given in [35]. Here, we prove these results in a third language, that of
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W∗-probability spaces introduced in [5] or more generally, the language of weighted

von Neumann algebras introduced in this thesis. Throughout this chapter, we will

often use one name to refer to both a weighted von Neumann algebra and the metric

structure representing it. This is unproblematic by our work in Section 5.5.

We point out that the languages we introduced here and in [5] serve to simplify

some of the proofs in [4]. In particular, the proof of uncomputability of Th∀(Rλ)

for λ ∈ (0, 1) there involved introducing various types of functions, Fourier theory

and smearing techniques on the modular automorphism group. The proof given here

involves essentially only functional calculus for bounded operators and Takesaki’s

theorem (see Theorem 4.5.4).

Finally, we will use some of the technology introduced in Chapter 7 to show

some new uncomputability results that were not possible in the faithful normal state

setting.

8.2 Embedding Problems

In this section, we will introduce the embedding problem framework developed in [33]

and some of the main theorems proved there.

Definition 8.2.1. [33, Definition 2.1] Given an L-structure M, we say the theory of

M is computable if there is an algorithm that takes as input a restricted sentence

σ and a positive rational δ and returns rationals a < b with b − a < δ such that

σM ∈ (a, b). We can obviously extend this definition to subsets of the theory such as

the universal theory Th∀ or the two quantifier theories Th∀∃ and Th∃∀.

We also define the much stronger notion of a decidable theory, corresponding
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to another view of theories, even though we will not use it much. The next two

definitions are [33, Definition 2.2].

Definition 8.2.2. A theory T is decidable if there is an algorithm which takes as

input a restricted sentence and outputs whether or not the sentence is in T .

Definition 8.2.3. A theory is effectively enumerable if there is an algorithm

which enumerates the restricted sentences in T .

Definition 8.2.4. [33, Definition 2.5] Given an L-structure M , we say the universal

theory of M is weakly effectively enumerable if there is an algorithm which

enumerates sentences of the form σ .− r where σ is a restricted universal sentence,

r > 0 is rational and σM ≤ r.

The next definition is [33, Definition 5.1] and provides the key framework which

we will use throughout the rest of this chapter.

Definition 8.2.5. Given a structure M in a language L, we say that MEP has a

positive solution if there exists an effectively enumerable subset T ⊆ Th(M) such

that, for any L-structure N , if N ⊨ T , then N embeds into some ultrapower of M.

Remark 8.2.6. [33, Remark 5.4] CEP is a weakening of REP, where T ⊆ Th(R)

would be taken to be the theory of II1-factors. Therefore the fact that REP has a

negative solution (see below) is a strengthening of the failure of CEP.

Proposition 8.2.7. [33, Theorem 5.2] If MEP has a positive solution, then Th∀(M)

is weakly effectively enumerable.

Theorem 8.2.8. [33, Corollary 5.3] REP has a negative solution.
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In fact, we have an even stronger result.

Theorem 8.2.9. [33, Remark 5.4] There is no effectively enumerable theory T ex-

tending the theory of II1-factors with the property that every model of T embeds into

some ultrapower of R.

8.3 The Undecidability of QWEP

In [27], Goldbring shows that the class of C∗-algebras with the QWEP is axiomatizable

in the language of C∗-algebras. The proof there is abstract, and thus no explicit

axiomatization of this class is given. The class of QWEP C∗-algebras is the same as

the class of all C∗-algebras if and only if the QWEP conjecture or, equivalently, the

Connes embedding problem is affirmative. Thanks to [43], we know this is not the

case. We show that, in fact, from a computability theoretic perspective, the class of

QWEP C∗-algebras is wildly different from the class of all C∗-algebras. We will see

that while the latter has an explicit computable axiomatization, the former admits no

such axiomatization. We actually prove the much stronger result given in Theorem

8.3.2. This can serve as a post-hoc explanation for the lack of explicit axiomatization

in [27]. We note that this section uses only the classical languages of C∗-algebras and

tracial von Neumann algebras.

We begin by recalling the following standard definition from C∗-algebras.

Definition 8.3.1. Given m ∈ N and 0 < γ < 1, we say that a unital C∗-algebra A

has the (m, γ)-uniform Dixmier property if, for all self-adjoint a ∈ A, there are
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unitaries u1, . . . , um ∈ U(A) and z ∈ Z(A) such that

∥∥∥∥∥
m∑
i=1

1

m
uiau

∗
i − z

∥∥∥∥∥ ≤ γ∥a∥.

We say that A has the uniform Dixmier property if it has the (m, γ)-Dixmier

property for some m and γ.

This notion plays an important role in our proof for a constellation of reasons.

Given m and γ, let θm,γ denote the following sentence:

sup
a

inf
u1,...,un

inf
λ
max

(
max
i=1,...,n

∥uiu∗i − 1∥, ∥
m∑
i=1

1

m
uiau

∗
i − λ∥ .− γ∥a∥

)

in the language of C∗-algebras. Here, the supremum is over self-adjoint contractions,

the first infimum is over contractions, and the second infimum is over the unit disk

in C.

As mentioned in [33, Section 6], if A is a simple unital C∗-algebra with the (m, γ)-

uniform Dixmier property, then θAm,γ = 0. On the other hand, if θAm,γ = 0, then A is

monotracial. The property of being monotracial is useful because monotracial QWEP

C∗-algebras admit a trace-preserving embedding in RU in a way that is compatible

with the GNS construction. We will see this in the proof to follow.

Theorem 8.3.2. [4, Theorem 2.1] There is no effectively enumerable theory T in the

language of C∗-algebras with the following two properties:

1. All models of T have QWEP; and

2. There is an infinite-dimensional, simple model A of T that admits a trace and

has the uniform Dixmier property.
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Proof. Suppose, towards a contradiction that T is such a theory. Take a model A of

T as in the second condition in the statement of the theorem and fix a trace τA on

A. Take m and γ such that A has the (m, γ)-Dixmier property. Consider the theory

T ′ = T ∪ {θm,γ = 0} in the language of tracial C∗-algebras. It is clear that T ′ is

effective and (A, τA) ⊨ T ′.

Suppose that (B, τB) ⊨ T ′ and let N = B′′ in the GNS representation with respect

to τB. Since B has QWEP, N is a QWEP von Neumann algebra. Furthermore,

since B is monotracial, N is a II1 factor with unique trace. Therefore N admits a

trace-preserving embedding into RU . Since we have a sequence of embeddings

(R, τR) ↪→ (N , τN ) ↪→ (RU , τRU ),

it follows that for any universal sentence σ in the language of tracial C∗-algebras

σ(N ,τN ) = σ(R,τR). On the other hand, since B is simple, B embeds into N in a trace-

preserving way. Furthermore, this embedding has SOT-dense image, so σ(B,τB) =

σ(N ,τN ). Now we can enumerate proofs from T ′ and, using the completeness theorem,

find computable upper bounds on the values of σ(R,τR), contradicting Theorem 8.2.9.

Corollary 8.3.3. [4, Corollary 2.2] There is no effective theory T in the language of

C∗-algebras such that a C∗-algebra has QWEP if and only if it is a model of T .

We can now prove a “non-closure” under ultraproducts result for the class of C∗-

algebras without QWEP:

Corollary 8.3.4. [4, Corollary 2.3] The class of C∗-algebras without the QWEP is

not closed under ultraproducts.
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Proof. Suppose, towards a contradiction, that the class of C∗-algebras without the

QWEP is closed under ultraproducts. Let TC∗ denote the (effective) theory of C∗-

algebras. Since the class of C∗-algebras with QWEP is axiomatizable and the language

of C∗-algebras is separable, there is a sentence σQWEP in the language of C∗-algebras

such that a C∗-algebra A has QWEP if and only if σA
QWEP = 0. Our contradic-

tion assumption implies that there is some r > 0 such that σA
QWEP ≥ r for all

C∗-algebras without the QWEP. Without loss of generality, r ∈ Q. Since the lan-

guage of C∗-algebras is computable and the set of computable sentences is dense in

the set of all sentences (see [33, Section 2]), there is a computable sentence ψ such that

d(σQWEP , ψ) <
1
3

in the usual metric on formulae. It then follows that TC∗ ∪{ψ .− r
3
}

is an effective axiomatization of the class of C∗-algebras with QWEP, contradicting

Corollary 8.3.3.

Using the analog of Corollary 8.3.3 for the class of tracial von Neumann algebras

proven in [33], the exact same line of reasoning shows the following:

Corollary 8.3.5. [4, Corollary 2.4] The class of tracial von Neumann algebras that

do not admit a trace-preserving embedding in an ultrapower RU of the hyperfinite II1

factor is not closed under ultraproducts.

Recall the following definition.

Definition 8.3.6. A C∗-algebra A is pseudo-nuclear if it is a model of the common

theory of the class of nuclear C∗-algebras. Alternatively, A is pseudo-nuclear if it is

elementarily equivalent to an ultraproduct of nuclear C∗-algebras.

[23, Problem 7.3.3.] asks if there is a natural characterization of the class of

pseudo-nuclear C∗-algebras. Our next corollary may be considered a negative solution
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to this problem if we take ”natural characterization” to mean effective axiomatization.

Corollary 8.3.7. [4, Corollary 2.5] The elementary class of pseudo-nuclear C∗-

algebras is not effectively axiomatizable.

Proof. This follows immediately from Theorem 8.3.2 together with the fact that

pseudo-nuclear C∗-algebras are QWEP.

8.4 Failure of the R∞EP

The following is a direct analogue of [4, Theorem 4.3] in our new language and the

proof is nearly identical. Recall the notation R∞ denoting the hyperfinite III1 factor

from Theorem 3.5.6.

Theorem 8.4.1. The R∞EP is false in the language LvNa.

Proof. Suppose, towards a contradiction, that the R∞EP is true as witnessed by

the LvNa-theory T ⊆ Th(R∞). T is an effectively enumerable set of sentences by

assumption. Now consider

T ′ := {θ̄ .− ϵ : ϵ ∈ Q, θ is universal, and T ⊢ θ .− ϵ}.

Note that T ′ is an effectively enumerable set of sentences in the language of tracial

von Neumann algebras. Moreover, we have T ′ ⊆ Th(R). Since R embeds in RU
∞ (as

LvNa-structures), for any universal LvNa-sentence θ, we have that

θ̄R = θR ≤ θR∞ .
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Moreover, if (M, τ) is a tracial von Neumann algebra which is a model of T ′, then it

embeds, as a W∗-probability space, into a model of T , which is QWEP by assumption.

It follows that M is QWEP and thus admits a trace-preserving embedding into

RU . Consequently, T ′ witnesses that the REP has a positive solution, which is a

contradiction.

A fortiori, we conclude the following.

Theorem 8.4.2. The universal theory of the hyperfinite III1 factor Th∀(R∞) is not

effectively enumerable.

A W∗-probability space is QWEP if and only if it is a model of the universal

theory of R∞. Thus, we can conclude the following.

Theorem 8.4.3. There is no effectively enumerable set of sentence in the language

of W∗-probability spaces that axiomatizes precisely the class of QWEP W∗-probability

spaces.

Moreover, arguing just as in the case of Corollary 8.3.4, we have the following (see

[4, Corollary 4.4]):

Corollary 8.4.4. The class of W∗-probability spaces without the QWEP is not closed

under ultraproducts.

8.5 Failure of the RλEP

Our goal in this section is to show that, for any λ ∈ (0, 1), the (Rλ, φλ)EP has a

negative solution in the language LvNa, where φλ is the Powers state on Rλ.
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Given a W∗-probability space (M, φ), the centralizer of φ is

Mφ := {x ∈ M : σφt (x) = x for all t ∈ R}

= {x ∈ M : φ(xy) = φ(yx) for all y ∈ M}.

Notice that Mφ is a finite von Neumann algebra with trace φ|Mφ. The unit ball

of Mφ is a zeroset in (M, φ), namely the zeroset of the quantifier-free formula

d(R(x), x).

Definition 8.5.1. A faithful normal state φ on M is said to be lacunary if 1 is an

isolated point of the spectrum of the modular operator ∆φ.

Example 8.5.2. Suppose that M is a type IIIλ factor and φ is a periodic faithful

normal state on M with period 2π
| log(λ)| . Then σ(∆φ) ⊆ {0}∪λZ. In particular, φ is a

lacunary state on M. Moreover, in this case, by a result of Connes (see [12, Theorem

4.2.6]), Mφ is a II1 factor. In the special case of Rλ with the Powers state φλ, we

have that (Rλ)φ is the hyperfinite II1 factor R.

Proposition 8.5.3. [3, Proposition 4.27] If φ is a lacunary faithful normal state on

M, then (MU)φU = (Mφ)
U .

The following model theoretic consequence is immediate (see [4, Proposition 5.3]).

Proposition 8.5.4. If φ is a lacunary faithful normal state on M, then the unit ball

of Mφ is a definable subset of the unit ball of M.

We remark that Ando-Haagerup state Proposition 8.5.3 for a faithful normal

semifinite weight. However, for a few reasons, only this version of the statement
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for faithful normal states applies to our setting. Firstly, they take the Ocneanu ul-

trapower with respect to some arbitrary faithful normal state ψ and then consider an

ultrapower weight on that. Since Ocneanu ultrapowers are independent of the choice

of state and our definition of an ultrapower state matches theirs, this is fine in the

state case. On the other hand, their definition of ultrapower weight does not agree

with ours in general. They also do not define an Ocneanu ultrapower with respect to

a weight. We will later show that a more germane version of this result holds in our

setting, but for the moment, we will only use the state case.

If φ is a lacunary faithful normal state on M, we say that φ is λ-lacunary

if λ ∈ (0, 1) is such that σ(∆φ) ∩ (λ, 1
λ
) = {1}. (This terminology seems to be

nonstandard but convenient.) In particular, note that if φ is a periodic faithful

normal state on M with period 2π
| log(λ)| , then φ is λ-lacunary.

Note that ∆φ = R−1
φ (2 − Rφ) and that the spectra of both Rφ and (2 − Rφ)

are both contained in [0, 2]. By functional calculus, we have that ∆ is λ-lacunary if

and only if sp(Rφ) ∩ (2 − 2
λ+1

, 2
λ+1

) = {1}. Suppose fλ(x) is a computable function

such that fλ(1) = 1 and fλ is supported on (2− 2
λ+1

, 2
λ+1

). For concreteness, one can

choose fλ to be a suitable horizontal scaling of g(x) where

g(x) =


exp

(
− 1

1−(1−x)2 + 1
)

if x ∈ (0, 2)

0 otherwise
.

It follows by functional calculus that fλ(Rφ) is equal to the projection onto the λ = 1

eigenspace of Rφ, namely the centralizer. By Takesaki’s theorem, this projection is

well-defined onto the centralizer. Our next theorem is the analogue in our language

of [4, Theorem 5.14]. Notice that the proof here involves significantly less technical

146

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Ph.D. Thesis – J. Arulseelan; McMaster University – Dept. of Mathematics and Statistics

machinery than that given in [4]. Our proof only requires functional calculus for

bounded operators and avoids the use of distributions and smearing of the modular

automorphism group.

Theorem 8.5.5. For any λ ∈ (0, 1), the universal theory of (Rλ, φ) is not computable

in the language LvNa where φ is the Powers state on Rλ.

Proof. Suppose, toward a contradiction that the universal theory of (Rλ, φ) is com-

putable in the language LvNa. Let supx θ(x) be a universal sentence in the language of

tracial von Neumann algebras (we will assume all variables range over the unit ball).

Then

sup
x
θ(fλ(x))

is a universal sentence in our language. By assumption, given ϵ > 0, we can compute

the value of supx θ(fλ(x)) up to ϵ. But the value of supx θ(fλ(x)) is exactly the value

of supx θ(x) computed in (Rλ)φ ∼= R. This contradicts the uncomputability of the

universal theory of R.

Since the (Rλ, φλ)EP would imply that the universal theory of (Rλ, φλ) is com-

putable, we immediately get the following analogue of [4, Corollary 5.15]:

Corollary 8.5.6. The (Rλ, φλ)EP is false in the language LvNa.

The proof of Theorem 8.5.5 shows something more general than what was proven

in [4]:

Theorem 8.5.7. Suppose that (M, φ) is a W∗-probability space such that M is

QWEP and φ is a lacunary faithful, normal state on M for which Mφ contains

R. Then the universal theory of (M, φ) is not computable in the language LvNa.
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Proof. Since Mφ is invariant under the modular automorphism group, we have that

(Mφ, φ|Mφ) embeds in (M, φ) with conditional expectation. Consequently, Mφ is

also QWEP. Now since Mφ is a QWEP tracial von Neumann algebra there is a trace-

preserving embedding Mφ ↪→ RU . On the other hand, we also assumed that Mφ

contains R. Combining the last two statements, we have Th∀(R) = Th∀(Mφ). Now

we argue as in the proof of Theorem 8.5.5 above to reach a contradiction.

It is well known that every II1 factor contains a copy of R. We also have that

if φ is a periodic state, then Mφ is a II1 factor. Therefore, we have the following

corollary.

Corollary 8.5.8. Suppose M is a QWEP W∗-probability space and φ be a lacunary,

faithful, normal, periodic state on M. Then the universal theory of (M, φ) is not

computable in the language LvNa.

8.6 The Universal Theory of the Hyperfinite II∞ Fac-

tor is Undecidable

Notice that the proof of undecidability of the universal theory Rλ, for λ ̸= 0, 1

above involves giving a computable definition of the centralizer which, being R, has

undecidable universal theory. We will use this to show that the hyperfinite II∞ factor

R0,1 = R⊗B(H) together with its canonical tracial weight has undecidable universal

theory. In this case, R is not a definable set, but we can find a definable family of

isomorphic copies of R. The material in this section requires the machinery we have

built to handle general faithful normal semifinite weights and, as such, is original to

this thesis.
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Theorem 8.6.1. The universal theory of the hyperfinite II∞ factor R0,1 is not com-

putable in the language LvNa.

Proof. Let supx θ(x) be a universal sentence in the language of tracial von Neumann

algebras where again we assume all variables range over the unit ball. Let P1 denote

the set of trace 1 projections in R0,1. As noted in the previous chapter, P1 is a

quantifier-free definable set by the formula

max{d(p2, p), d(p∗, p), |Φ(p)− 1|}.

Note that for every p ∈ P1, the set

pR0,1p := {pxp : x ∈ R0,1}

is a copy of R and the restriction of the Φ on R0,1 to this set is the canonical trace

on R. Furthermore, the map x 7→ pxp sends the unit ball of R0,1 to the unit ball of

the corresponding copy of R. Thus, computing the supx θ(x) in any one copy of R

is the same as computing it in any other. So consider the universal sentence in LvNa

given by

ψ = sup
p∈P1

sup
x
θ(pxp).

By assumption, ψ is computable in R0,1. But

ψR0,1 = (sup
x
θ(x))R,

contradicting the uncomputability of the universal theory of R.

The techniques used in the previous proof may be leveraged to resolve other
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embedding problems and characterize the computability of universal theories of other

weighted von Neumann algebras. In fact, the proof above can easily be seen to prove

the following, more general, statement.

Theorem 8.6.2. Let (M, τ0) be a II1 factor equipped with its canonical trace. Assume

(M, τ0) has undecidable universal theory. If N = M⊗ B(H) and the tracial weight

τ is the II∞ amplification of the trace τ0, then (N , τ) also has undecidable universal

theory.

We will now prove an analogue of Proposition 8.5.3 in our setting.

Theorem 8.6.3. Let (M,Φ) be a weighted von Neumann algebra such that Φ is

lacunary and the restriction of Φ to MΦ is a semifinite weight. Then (MΦ)
U ∼=

(MU)ΦU .

Proof. First we prove (MΦ)
U ⊆ (MU)ΦU . By Takesaki’s theorem, there is a condi-

tional expectation

EΦ : M → MΦ,

which is furthermore implemented by a projection on the underlying Hilbert spaces

PΦ : HM → HMΦ
.

Therefore we have a natural identification ℓ∞Φ (MΦ) ↪→ ℓ∞Φ (M). So consider x =

(xi) ∈ (MΦ)
U . Then by Theorem 6.2.8, for all t ∈ R, we have

σΦU
t (x) = (σΦi

t (xi))
• = (xi)

• = x

whence the claim follows by taking strong closures.
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Now we want to prove (MU)ΦU ⊆ (MΦ)
U . Arguing as in the discussion before

Theorem 8.5.5, the lacunary assumption implies the projection from HM onto the

closure of ηΦ(MΦ) is definable. Therefore we have

ηΦU ((MU)ΦU ) ⊆ ηΦU ((MΦ)
U).

Since 1 ∈ MΦ, we have that MΦ has the same identity as M. We also assumed that

Φ is semifinite on MΦ, and normality and faithfulness on MΦ is automatic. Thus

by equivalence of faithful normal semifinite weights and full left Hilbert algebras, by

taking strong closures, we are done.

We have an immediate model theoretic consequence.

Theorem 8.6.4. Let (M,Φ) be a weighted von Neumann algebra such that Φ is

lacunary and the restriction of Φ to MΦ is a semifinite weight. Then the centralizer

MΦ is definable.
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