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To My Parents



ABSTRACT

Inspection planning and verification procedures are central activities in any inspection using
Coordinates Measuring Machines (CMMs). The objective of tactile CMM inspection planning is
to establish the best sequence of inspection steps with a detailed inspection procedure for each
inspection feature or cluster of measurement points. Algorithms are then used to interpolate these
points and generate their mathematical model(s). Complex surfaces may need to be decomposed
into several patches which are interpolated separately then joined in a single model by determining
their intersections. These models (curves and surfaces) are then used by tolerance analysis
algorithms to verify if tolerance specifications are met by comparing the interpolated model
representing the actual surface and the CAD model representing the theoretical surface.

Thi§ di.ssenation presents a computer-aided CMM inspection planning system as well as new
tqols for the interpolation and manipulation of measured features. The inspection planning system
is modular and integrates all planning tasks.

A new algorithm is developed for determining inspection accessibility domains (or cones).
An improved discrete accessibility algorithm is developed for probes with discrete possible
orientations. A novel formulation of the problem of measurement points clustering and probe
orientation selection in terms of operations sequencing and resources allocation is devised and
adopted. A method for optimum clustering and sequencing of measurement points has been
developed. The criteria in this case are the minimum number of clusters, the minimum number of
resources used and finally the minimum distance travelled by the probe. A collision-free shortest

probing path algorithm is enhanced. A modular Computer-Aided Inspectiofx Pianning (CAIP)

vii



system which integrates inspection planning tasks was developed and validated. Examples of actual
parts have been used, tested and simulated.

A new method for the incorporation of uncertainties as well as linear constraints in the
interpolation mode! based on dual Kriging interpolation has been developed. A new curve/surface
formulation of dual Kriging as a combination of interpolation profiles is proposed, hence extending
its use for solids and n-D entities interpolation, as well as sweeping, skinning and blending. In
addition, dual Kriging was generalized to incorporate NURBS and B-splines. Finally, geometric
algorithms, as opposed to numerical, analytical or differential algorithms for the intersection and
manipulation of curves and surfaces are developed. Algorithms for the intersection of
parametric/implicit and parametric/parametric entities (curves and surfaces) as well as for the
projection of points on curves and surfaces have been developed, implemented and validated.

The results of this work are intended to fill voids which exist in previous works in
inspection planning and verification. These are: the integration of the different tasks involved in
CMM inspection planning in order to develop an automated and robust inspection planner based
on formalized and integrated approaches for accessibility analysis, optimum measurement

operations sequencing and resources allocation, and accurate representation and manipulation of

measured curves and surfaces.
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CHAPTER 1

INTRODUCTION

This chapter introduces the Computer-Aided CMM Inspection Planning and Verification
System developed in this thesis. The first section of this chapter describes the background and
motivation of this work. The second section defines the problem of inspection planning and

geometric modeling. Finally, section three presents the objectives and an overview of the thesis.
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Figure 1.1  Inspection Planning and Verification
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specifications are met.

Another field where contributions are needed is in the modeling, manipulation and
interpolation of complex measured sucfaces. This is very important if we consider the fact that the
verification of specified geometric dimensions and tolerances is based on the comparison of the
interpolated model representing the actual surface and the CAD model representing the theoretical
surface. In addition, the verification of tolerances generally involves complicated and long iterative
calculations. The cost of these calculations depends heavily on the interpolation model as well as
the methods used. These are generally analytical algorithms for solving non-linear equations and
can be unstable as in the case of Non Uniform Rational B-splines (NURBS), Bezier and Coons
curves and surfaces (Mengq et al., 1992a, Piegl and Tiller, 1987). This is especially important for
on-line verifications systems. In addition, it is important to include measurement errors in the
surface interpolation model in order to better describe the actual surface with a smooth model and

overcome the problem caused by random errors which generate perturbations in the interpolated

surface.

Measure Surface Interpolate Individual Join Patches
Patches

Figure 1.4  Steps in Inspection and Verification



1.2 PROBLEM DEFINITION

The objective of this research is to develop an automated and integrated inspection planner
for coordinate measuring machines and a set of tools for the interpolation and manipulation of
measured surfaces.

The part dealing with inspection planning deals with five main tasks:

1.  Analyzing the Accessibility of Measurement Points and Features
2. Clustering of Measurement Points

3.  Sequencing of Measurement Points

4.  Generation of Collision-free Probe Path

5.  Integration of Previous Tasks in a CAIP System

The second part dealing with the manipulation of measured surfaces includes the following
tasks:
1.  Surface Modeling

2. Surface Manipulation

1.2.1 Inspection Planning

Accessibility Analysis may be considered the most important task in high level inspection
planning. The lack of formalized and general analysis methods was the main problem in previous
inspection planning efforts. In addition, existing approaches impose restrictive abstractions and
simplifications which generally eliminate good solutions at an early stage of the planning. A
general accessibility analysis method which will determine all possible inspect.ic.nvl probe orie—ntations

that can safely access a given measurement point is needed. The actual shape and size of the probe

should also be considered and post-verification should be avoided.












CHAPTER 2

LITERATURE SURVEY

This chapter reviews some of the important aspects of CMM technology in the first section.
A review of the important works which emerged in the fields of CMM inspection planning and
geometric modeling and curve/surface manipulation is provided in the second and third section

respectively. A discussion of this survey is presented in section four.

2.1 CMM TECHNOLOGY

Coordinate Measuring Machines (CMMs) are versatile, have gained widespread use, and
are the most precise devices when compared with manual and non-contact measurement devices.
They offer a measurement accuracy ranging from 0.001" to 0.0001" (ElMaraghy, H. A. and
ElMaraghy, W. M., 1994), with an excellent repeatability. These machines can be operated in four
modes: manual, teach mode, off-line interactive programmiﬁg and automated planning and program
generation. CMMs main advantages are: 1) reduced set-up and fixture cost, 2) faster inspection
process (measurement time cut by up to 24:1 ratio (Anon, 1990)). thus allowing more sampling.

and 3) easier statistical process control, thus reducing scrap and rework.

A CMM is basically a Cartesian robot. It can have one of four main construction designs

including Cantilever, Bridge, Horizontal and Gantry type (Figure 2.1).
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Figure 2.1  Different Types of CMMs

Touch probes are most commonly used for measurements. They can have single or multi-
tips of various size and stylus length. Motorized probes, such as Renishaw indexable head, allow
changing the orientation of the probe stylus in small incremental rotations about two axes. They
can be easily integrated within a manufacturing cell to provide timely feedback for improving
production quality. CMMs have many advantages compared to non-contact inspection devices such
as laser scanners. They are more accurate and have a uniform precision over a wide range, whereas
non-contact devices are less accurate with a trade-off between range and accuracy. However, non-
contact devices (i.. laser scanners) are not sensitive to normal temperature variations, and allow
for better control of the amount of data generated, compared to the large amounts of data generated
and the need for data reduction. Touch probes can reach many internal features that are otherwise
not accessible by laser beams, the movement of parts during measurements is not required. thus

making inspection of large and bulky parts easier; however, no fixturing is needed for non-contact

inspection.
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Offset vector between different styli (set by multi-styli calibration)
Probe lobbing (systematic direction-dependent probe error)

Probe repeatability

Stylus bending

Indexable probe head repeatability

Stylus (or probe) changer repeatability

Probe spatial frequency response and frictional effects

2. CMM Properties

*

Errors in rigid body geometry (at standard temperature)

Non-rigid body geometry errors (quasi-static conditions)

CMM part loading effects

CMM dynamic behavior

CMM repeatability

Algorithm accuracy

Thermally induced errors in a uniform and constant, but non-standard
temperature environment

Other environmental factors

Variations in utility services: air pressure, electrical power and water

supply.

3. Part Properties

*

*

*

Part dynamics (part bending under probing force and vibration)
Part fixturing

Part thermal properties

4. User Selected Properties

™

*

CMM operating parameters

Sampling strategy (incomplete part geometry information)
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Table 2.1 Characteristics of Inspection Planning Systems (Cont.)

5. Medland 6. Merat et al. 7. Brown and 8. Tao and
and Mullineux (1991-1994) Gyorog (1990) | Davies (1992)
(1992)
Type Automatic Generative/ Expert System Expert System
Retrieval
CAD Model Feature-based Feature-based Feature-based Feature-based
Inspection CMMs CMMs and CMMs CMMs
Type non-CMMs
Measurement Accuracy and Predefined - Heuristics
Points Tolerance
Generation -
Accessibility - - Discrete -
Analysis
Operations Strategies Time Efficient Heuristics Heuristics
Sequencing
Collision-free - Heuristics Heuristics Heuristics
Path Planning
Plan - - Yes -
Simulation
Alternate - - - -
Plans

Optimization
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2.3 GEOMETRIC MODELING

The tactile inspection process is followed by the analysis and verification of tolerance
specifications. Data points or coordinates are used to represent or approximate the actual inspected
feature using mathematical models. These models are then compared to the CAD models in order
to verify if tolerance specifications are met.

Complex surfaces are frequently encountered in inspected parts especially in mould design.
They are more difficult to inspect and usually need to be decomposed into patches which are
interpolated separately then joined and intersected. The tools to be used for representing and
manipulating these surfaces are very important, they have to represent closely the actual surface

and to be efficient and fast.

PMN

P2

P

P11

Figure 2.3  Curve and Surface Interpolation

2.3.1 Curve and Surface Representation

There are three main applications of curve and surface modelling: 1) design, where only
a general or qualitative idea about the desired shape is available, 2) interpolation, where the
geometric model has to pass exactly through a set of data points, and finally 3) data fitting, where

a large number of data points is used, and the geometric model has to approximate these points
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with a given accuracy. The last two applications are generally used to model data generated using

CMMs (de Boor, 1978, Kuriyama, 1994, Morteson, 1985, Piegl, 1991, Sarkar and Menq, 1991).

The most popular techniques for curve and surface representation are: piecewise polynomial
interpolation, spline interpolation, Bezier, B-splines and Non-Uniform Rational B-spline (NURBS)
curves and surfaces. and Coons surfaces.

In the case of Bezier, B-spline and NURBS techniques, the model is built using a set of
control points that form a control polygon or polyhedra representing an approximation of the curve
or surface. Note that the B-spline is a generalization of Bezier, and NURBS is a generalization of
B-splines and may be represented using tensorial products. One of the major problems of the
Bezier technique is the degree of the model which is directly related to the number of control
points. This problem is eliminated in the case of B-spline and NURBS techniques. The NURBS
technique has the additional property (or feature) of representing classical analytical models such
as conics, and surfaces of revolution. These methods are also invariant under scaling, rotation,
translation and shear as well as parallel and perspective projection.

The two previous classes of techniques use a set of discrete data or control points. Coons
surface (Zeid, 1990), however, use a set of curves (i.e. an infinite number of data points) to
generate the surface. This technique is very useful for the generation of blending surfaces or

patches between existing surfaces and can ensure up to C* continuity (i.e. second order derivatives

continuity) (Zeid, 1990).

2.3.2 Curve and Surface Manipulation

A large number of methods have been proposed in the literature for determining the
intersection set between two geometric objects. Some methods are general, in the sense that they
can be applied to any type of surface. The approach of Marciniak (1990) is based on solving a set

of simultaneous nonlinear equations by Newton’s method and on minimizing the distance between
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max'imum abstracted probe length for which the accessibility domain is maximum. The thickness
of the shell is decreased at each iteration, and at the limit, a surface shell representing the
accessibility domain is obtained. This shell is equivalent to the projected image in the optical
analogy. Assume that: |

M s the point to be accessed by a probe of length R.

D is the part’s (and eventually fixtures and clamps) complement space.

The accessibility domain A, is the set of directions MB such that:

IMB} = R, MB<D 3.1)

An interesting property of the accessibility domain A,(M) is:

A M) cAM) , VY rsR 3.2)

Therefore, Ag(M) can be stated as:

R
A M) = (] A,(M), 0<r,<R (3-3)

r=rg

Using (3.3) to determine Ax(M) yields theoretically an infinite number of intersections. For

this reason, spherical shells of thickness e (e > 0) will be used.

r0 Definition

I(M) is the intersection of a half-sphere (or sphere in the case of a point on a surface
singularity i.e. vertex, edge. or a point in the space not lying on a specified surface) of radius r
centered at M, with domain D.

S(I(M), r’) is the spherical scaling of /(M) at point M with the ratio r'/r.

0 is the maximum abstracted probe length for which the accessibility domain is maximum,

ie.



'r0 = max { /LM) < STM), Vr'>r } (34

r0 must satisfy:

SUp.o(M10) < LM), ¥V R210 3.5
Property (3.5) suggests a dichotomy procedure to find 0. This is due to the fact that if
(3.5) is not satisfied for a given r0, then it will not be satisfied for any r0’ > r0. The steps
used to determine or approximate r are:
step 1 Initialization r0' =R/ 2
step 2 Verify relation (3.5)
step3  if (3.5)is satisfied then 0™ = (r0' + RY?2 else r0™' = rf /2

step4  if abs(r0*' - r0) > & goto step 2 else end.

The following procedure is applied to reduce the thickness of the spherical shell S,(r0<r<R)
Intersect the spherical shell S,{rf<r<rl) with D, then scale the result with an amplitude R/rI and

intersect it with S,(r0<r<R), keeping the center of the shells at the same point each time. A solid

S,(r;<r<R) is obtained. However, rl has to verify

R-r1 = R (r1 - 10) (36
rl
or
rl = \/Rr0 3.7)
The thickness of the shell is:
e, = R-rl = R-/R0 (3.8

The importance of ensuring that r0 > 0 is clear at this level. In effect, an r0 = 0 will not

lead to a decrease in the shell thickness, and the method will not converge. In addition, the larger
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0 is, the faster the convergence (for a fixed accuracy) to the accessibility domain. Note that 0
is at least equal to the radius of the probe ball; otherwise, the inspection is impossible.

Each point in the spherical shell represents a possible orientation. The intersection
procedure successively eliminates impossible orientations.

The sphere of radius r0 represents the maximum number of directions of length r0 that can
access the measurement point. If we consider one specific ray of length r0 fired from M (see
Figure 3.3), the scaling operation extends the ray with a length e = rI - r). Two cases are possible,
1) the segment (M,M,) is included in (D), 2) the segment (M,.M,.) is not included in (D). Only the

directions of the second type are eliminated by the successive intersection operations.

R

% %

-ﬂ\
M1s ‘Mzs

_A’

\\

Figure 3.3  Steps of the ICSS Method

If the same procedure is applied to solid S,, choosing r2 = Y(Rrl), the thickness of the
equivalent solid (shell) will be &2 =R -r2 = R - Y(Rrl). Equations (3.7) and (3.8) can be

generalized to:
(3.9)

and
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n = integer R 3.12)
82 Log(1-%)

Figure 3.4 shows the results of the first four iterations applied to the example shown in
Figure 3.2. The accessibility domain may be represented using spherical coordinates parameters
0 and ¢. A graph 0 = flp) may be generated. The accessibility domain is then given by 8 < f{p)

or 8 > f(p) (see Figure 3.5).

180 T T i L] 1 L
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Figure 3.5  Implicit Representation of the Accessibility Domain
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be repeated for as many segments as needed. It is performed exactly as in the case of a straight
probe of length R = R,.
The use of bent probes is of particular interest for cases where the inspection of a whole

feature or a set of points by a single straight probe is impossible.

3.1.4 Modification of Accessibility Domain for Actual Probes

Actual probes are not dimensionless. If we consider the largest-half sphere of radius r0
centered at the measurement point, and the minimum cone of half angle o, totally enclosing the
probe less its segment of radius r0 (see Figure 3.8a), here appears another application of r0 which
permits obtaining more accurate and more realistic enclosing cones of the measurement probe, as
compared to the safety cone proposed in (Lim and Menq, 1994). A simple intersection test of the
probe cone with the accessibility cone suffices when only a verification of the orientation is
needed. This type of correction is represented by an offset of magnitude o of the curve 8 = f(¢)

in the direction of possible orientations.

a) The minimum cone enclosing b) Modification for the probe ball
the probe

Abstracted A.D.

Actual A.D.

M .

Figure 3.8  Principles of Modifications of Accessibility Domains

The same corrections can be applied to bent probes, considering each time a segment of



a7

the bent probe and having initially determined the minimum enclosing cone for each segment. This
correction can be refined further if we observe that the accessibility domain has to be determined
not at the measurement point but at the center of the probe ball in contact with the measurement
point (see Figure 3.8b). This correction cannot be performed by the method described by Spyridi
and Requicha (1990) since the center of the ball probe does not belong to the actual solid or
surface used to analyze accessibility. However, with the ICSS method. it is possible to perform this
type of refinement easily. This modification generally enlarges the abstracted accessibility domain
(see Figure 3.8b), hence directions parallel to the tangent plane are not eliminated. The effect of
this correction on the curve 8 = f{¢) is generally a non-uniform offset (i.e. an offset with a non-
constant magnitude) in the direction of possible orientations. Figure 3.12 shows the effect of these

corrections.

|
IP 1
o
!
!

N

Figure 3.9  Example Part and the Inspected Points PI ... P12

3.1.5 An Example

The accessibility domains of 12 measurement points on the workpiece shown in Figure 3.9

have been generated. External obstacles such as tools and fixtures have not been considered. A
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Figure 3.11 Implicit Representation of the Accessibility Domains of Points P2, P8, P9,
P11 and PI2

Figure 3.12 shows an example of application of the corrections that can be perfornmed over
the accessibility domain of point PI. The continuous curve represents the boundary of the
accessibility domain of an abstracted probe obtained for a point lying on a surface. The dash-dot
curve represents the accessibility domain of a point offset from the measurement point by the
radius of the probe tip. The dashed curve is an example where a safety cone angle (10 deg.) is
considered for the probe. Finally, the combination of previous corrections produces the dotted
curve. The accessibility domains of these points may be compared in order to determine their

intersection (i.e. the set of possible common orientations). These results have been generated using

the ACIS Geometric Modeler (Spatial Technology. 1993).
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2

Figure 3.13  Spherical Coordinates System

3.2.1 Ray Tracing Algorithm

This section presents an overview of the ray tracing algorithm. More details may be found
in (Zeid. 1990). Ray tracing has been utilized in a variety of applications: visual realism to generate
line drawings with hidden solids removed, shaded picture, and solid analysis (mass properties). The
basis of ray tracing is very simple. It consists of the intersections of a ray (i.e. straight line) which
is best defined in a parametric form as a point and a direction vector with an object (solid or

surface). It is based on line/surface intersections algorithms.

3.2.2 Description of the Method

This method is based on ray tracing algorithms implemented using the ACIS Solid Modeler
(Spatial Technology, 1993). The CMM probe is composed of a stylus and a head. The stylus may
be oriented according to two independent angles with predefined ranges and resolutions. The
orientation of the probe is described by the two spherical angles 6 and ¢ , their range 8, and
8pars Omin and @, and their increments A8 and Ag. Orientation changes may be performed
manually or automatically as in the case of the PHOA Renishaw probe. Figure 3.14 shows the

adopted probe abstraction, it includes the probe head as well the probe stylus. The rays utilized
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Initialization

P={}

Iteration
foreach O, 0<i<land 0<j<Jdo
determine C,
itV Cye P, Cyz Cyand Cyz C, then
P=PU{C}
else
for each C,, € P do
if G, C,then
P=(P-{C U{Cp
end
end
end
end

Given the set of principal clusters, it is possible to represent the problem by using a
Tool/Operation matrix representation. Each principal cluster represents a tool (a probe with a set

of orientations) and each point represent a measurement operation (see Figure 3.18).

3.2.3 Example
The same part and measurement points of the example presented in section ! are considered.
The characteristics of the probe (Renishaw PH9 for example) are:
angle 6 : 75, 180 deg. step: 7.5 deg.
angle ¢ : -180, 180 deg. step: 7.5 deg.
With this resolution, the probe is able to inspect a part with a total number of probe
orientations equal to: (105/7.5 + 1)(360/7.5) - 47 = 673. The total number is not 720 as mentioned

in (Lim and Meng, 1994), since the orientations with 8 = 90 deg. and ¢ = -180, 180 are identical.
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directly or by comparing the accessibility domain of each point. The precision of the results may
be increased according to needs by increasing the number of iterations. Computation time depends
of the complexity of the part to be inspected as well as the time efficiency of the Boolean
algorithms of the CAD system

The discrete approach is particularly useful when the probe(s) used is (are) known in advance.
However, if the continuous accessibility domains are already computed, it is very simple to retrieve
the discrete accessibﬂity domains.

Choosing a finite radius of the probe has many advantages in both continuous and discrete
accessibility analysis. It permits analyzing only the local neighborhood of the measurement points,
thereby reducing calculations for complicated parts and environments. In addition, feasible
orientations are not ignored.

The previous considerations as well as the corrections taking into account the actual shape

of the probe and its actual position leads to exact and robust accessibility analysis.



CHAPTER 4

CLUSTERING AND SEQUENCING OF INSPECTION

OPERATIONS

The step following the accessibility analysis in the inspection planning methodology is
measurement points sequencing and resources allocation (machines. set-ups, probes and probe
orientations). This task is performed using an optimization search technique. The principal clusters
determined by the accessibility analysis procedure are used for this purpose. The first section
presents integrated measurement operations sequencing and resources allocation method applied
to a case including precedence constraints. The second and third sections deal with the clustering
and sequencing of measurement operations when no precedence constraints are imposed. Finally,

a discussion of the results is provided in the fourth section.

4.1 CLUSTERING with PRECEDENCE CONSTRAINTS
In this section we present a method for sequencing operations that allocate resources such
as machines, set-ups, probes and probe orientations changes while maintaining precedence

constraints between operations.
If only one type of resource is involved, the proposed method minimizes resource

changes, i.e. it minimizes the number of clusters using the same resource. Alternate solutions are

generated and additional refinements are performed to minimize the number of different resources

used in the sequence.
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on the optimization criteria, where in general more than one criterion are considered (Agapiou,
1991). These criteria often conflict and are highly coupled. Therefore, depending on the context,
a compromise has to be made among different criteria hierarchically ordered according to their

importance.

Optimization Criteria
We have identified eight general optimization criteria in a general CMM inspection
context. They are divided in two groups:
Principal Criteria
1. Machine changes
2. Set-up changes
3. Probe changes
4. Probe orientation changes
Secondary Criteria
S. The total number of machines used
6. The total number of set-ups used
7. The total number of probes used

8. The total number of probe orientations used

An absolute ordering of these two groups of criteria can be performed by analyzing their
contribution to the cost function within a specific manufacturing context. However, the above order
of criteria [1, 2, 3 then 4] and [5, 6, 7 then 8] is generally accepted. In effect, 2 machine change
costs more than a set-up change (since a machine change implicitly involves a set-up change), and
a set-up change costs more than a tool change which costs more than a probe orientation change.

Similarly, an additional machine costs more than an additional set-up which in turn costs more than
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Proposition

We propose to establish a sequence of inspection operations where the first task is fixed
and (if possible) subsequent tasks which do not break the previously formed cluster are chosen.
The resulting number of clusters will consequently be the minimum possible, given the fixed first

operation. A minimum number of clusters yields a minimum number of resource changes.

Remarks: 1) The sequence of operations is established by choosing the first task from the possible
first operations according to the precedence constraints, then the second operation in the sequence
is chosen from among the operations liberated from their precedence constraints, and so on, until
all operations are sequenced. 2) If a task uses the same resource as the previous task, they belong

to the same cluster.

Proof

Assume that a penalty of one unit is associated with a resource change. An isolated
operation will cause two resource changes, thus will be penalized with two units; a clustered
operation; however, will not cause a resource change, and does not incur any penalty.

Suppose that (i-1) tasks among n have already been sequenced, and that at the stage i (i
< n), two tasks are possible, Oj and Ok, Oj using the same resource as the previous task, and Ok

using a different resource.

Six different cases are possible (Figure 4.1):
Penalty
1. If Oj is chosen (before Ok)
1. Ok will be clustered with other operations 0

2. Ok will not be clustered with other operations 2



L. If Ok is chosen (before Oy)
Ok is clustered with other operations

3. Oj will be clustered with other tasks

4. Oj will not be clustered with other tasks

Ok is not clustered with other operations

5. Oj will be clustered with other tasks

6. Oj will not be clustered with other tasks

Gi
0 0
O] o O]
0 2 0 2
Ok o OK].e. 0 00 A [+ W
[ 2 0 2
(1) (2) (3) (4)

Figure 4.1 Principle of the Clustering Algorithm
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«.[OK]...

ol O]
2 4
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The only case where choosing Ok before Oj may be better in terms of penalty than

choosing Oj before Ok is when both hypotheses of cases (2) and (3) (see Figure 4.1) are

simultaneously verified.
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The methods proposed in this chapter are not limited to inspection planning. They may
be used in process planning in general. These methods overcome the problems caused by the
exhaustive approach which can be applied only for small problems to avoid combinatorial
explosion, and the heuristic approach which generates only feasible or near-to-optimal solutions.
They are especially useful for a high-level process planner or at an early stage of the product
development, and can be implemented as a sequencing and resource allocation kernel in a
computer-assisted process planner, and the ability to generate alternative solutions adds flexibility

to the resulting process plans.
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26 adjacent nodes in 3-D, and the global adjacency matrix is very sparse. However, only the local
adjacency matrix, which can be determined very easily without any need for storage if the nodes

are numbered in a special manner, is used.

ADJACENT NODES

CURRENT NODE

Figure 5.1 Parallelepiped Element of the Discretized Workspace

Ry REREEEEEE
a) Global |::i i ]
L] SEREEEREESEEEEESSEEY FESSS
[ |
e i
b) Local i M R > i
R S S !
IR IR R SR !
L N

Figure 5.2 Workspace Discretization: a) Global and b) Local
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A safety factor (i.e. 10 to 20%) that increases the size of boxes is applied when approximating the

probe.

-

N 7
S

L,

Figure 5.5 Probe Approximation

Figure 5.6 Approximation of Complex Surfaces

In the case of inspecting complex surfaces (Chapter 6), it is also possible to represent the
surface using a set of boxes. This can be achieved by using an isoparametric mapping of the
surface and by considering the enveloping box of each element of the mapping (see Figure 5.6).

This approximation may be refined by choosing smaller steps in the isoparametric mapping of the
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Simplifications used in Interference Checking

* If a first order interference is detected at a given node, then the node is
removed from the list of possible nodes.

* If the box enveloping all the boxes of the probe does not interfere with an
obstacle, then it is not necessary to check each elementary box of the probe for
interference.

*  If the enveloping box of the probe moving between two positions does not
interfere with an obstacle, then it is not necessary to check each elementary

box of the probe for interference.

2nd Order Interference 1st Order Interference

/" ourcl
/] 5 77

Obstacle

-

4

- =

Approximated 2nd Order Interference

Figure 5.8 First Order and Second Order Interference Checking

5.4.1 Checking First Order Interference
This case can be detected easily. It is sufficient to compare each one of the boxes

representing the moving probe to each box representing the part and its environment.
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A box is defined by its two extreme comers B{[Xpiv Ymin» Zoin] [Xmarr Yoarr Zoae) }- TWO

boxes B1 and B2 do not overlap if and only if:

1 v 1 2 1 2
xmln>xm or ynin>ym or 'zuﬂn>zm

or 5.1

xzmln>xlm or yzmln)ylw or zzm!n>zlm

The time complexity for computing the first order interference checking is O(m n),
where m is the number of boxes representing the probe and » the number of boxes representing
the obstacles. An algorithm for reporting intersection of n boxes is proposed by Hoffmann (1989).
The complexity of the algorithm is O(n log’(n) + J), where J is the number of actual intersections.

This algorithm is, however, very difficult to implement.

5.4.2 Checking Second Order Interference
This type of interference occurs when moving from one point to another, and is
caused by the object swept volume, which interferes with the part and its environment. This type

of interference is more difficult to analyze. Both exact and approximated approaches were

evaluated:
1) The swept volume of the box is compared to the boxes of the part and its
environment. Calculations involving the evaluation and comparison of the position
of the vertices, edges and faces of the box and the external faces of the swept
volume are performed.
2) The approximated approach consists of dividing the path between the two points

into small sub-paths, and checking at the intermediate nodes first order interferences

(see Figure 5.6).

The time complexity for computing the second order interference checking is O(k
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Dual Kriging permits the automatic construction of equations of smooth parametric curves from
a discrete number of points.

The primal formulation of Kriging with data points containing: N positions P;, M first
order derivatives PI . and L second order derivatives P, (see Figure 6.1), is to find an
interpolant P(z) as a linear combination of the data points, i.e.

N M . L . 6.1
P(‘)=EMP:+EU,PJ+EYJ;< (6.1)
tal sl k=1
A, p; and v, are determined by minimizing the squared variance of the estimation error, i.e.

N M L
€A s psn¥ye) = E[PO) - Y AP - Y B - Y v, P (62)
i=1 J=1 k=1

Additional constraints, called no-bias conditions in classical Kriging, are considered.
These constraints state that the interpolant filters a given basis of finite dimensional subspace of

K+1 functions p(t) (e.g. polynomial, rational and trigonometric functions), i.e.
N M . L .
PO = Y Apfe) + Y, wBfE) + Y v,P(F), OslsK (6.3)
t=1 F=1 k=1

This basis of functions generally describes the mean shape of the function.

The problem is solved by introducing the Lagrange multipliers §,, and minimizing
L N M ) L . 64
E=_e-) 8,00-Y 2o - 1w - L 156D 64
m=0 1a1 4=l k1

After deriving E with regard to the different parameters A,, #; ¥, and 3,,, we obtain
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N M L X
Y. AyETPyP) + IZ; pEPP] + ‘g Y:EIPP) + Y 8, pe) = E[POP)
t'=1 = m=0

N - “ - - L - ‘ . -
’Z;A,E[P,PJ] + Y wyEIP,P] + ij,‘E[P,P,‘] + ngKt) = E[P()P))
= /=1 =] m=

N M L I e

IX:G,E[P,IS,‘] + JE B, EIBP) + Y Y EP,P] + Y 8, Bty = EIPOF,]
- 1 A m=0

1

(6.5

N

N L
3.,y + ,.El RBLEY + 2 VBLE) = PO

i=1

The intrinsic hypothesis in classical Kriging states that the covariance between two points

P(1) and P(s) depends only on their Euclidian distance, i.e.

ETP(t) P(e)] = K(t,~t,) = K(h) (6.6)

Remark: The choice of the generalized covariance function K(k) determines if the
solution of E is a minimum or a maximum. Christakos (1984) should be consulted for the
conditions that K(k) must verify in order to have a global minimum solution (non-negative definite

system). However, in geometric modeling it is generally sufficient to have an invertible system.
This is achieved by choosing K(k) such that K(|e-t,). K(Je-£,]). K(|t-£,]) and pfe) are linearly

independent for u in [0,1]. 1 Si<N,I1<j<M, 1<k<Land0<I<K.

Noting that:

1 if uzv
-1 ¥f u<v

6.7)

dK(lti-tll) - dK(h) = -d_h‘j‘_K = e(t,t,)lf(h), e(u,v) = {
dt, dy,  dt dh f

Using previous relations, we can deduce the following expressions:



ETP@®P) = K(|t-1)) = K,

ETP(OP) = e(f DK(|t-L]) = ¢k,

EPPOP] = R(i--5,)) = K,

ETPP) = K(|t,-t)) = K,

EPP) = et £)K(it-t)]) = ¢,K, (6.8)
EPP) = K(|j4-t,)) = K,

E[PP) = -12(|r‘,-r‘,|) = -K',

EWPP) = eC)RUt-G)) = e X,

EPF) = KO(iE]) = K9,

Equations (6.5) can be written as:

l i I i | : 1 ¢ : ] i)
- Ky -~ |~ ejR’Kl’] - | - Ky - | - pyy) - Ay Ky
i | H I i | i i
| | i | i i
T I T N A Iy o= [ W P9
i | i | i | i i i
e B (6.9
' l : I i | ; ;
- Ky = | = Ky~ | ~ KO « | - B ~| || [Ky
: I : | i | i i i
H | H | H | 0 - 0 i
- L= . 8
=P - | P - |~ PE) - | I
: | i | i jo - of t71 Ll

or in compact form
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=

kK X Pl
.T - -
K& Kok (6.10)
KT &k gl |Y
T p]’ ﬁl’ 0 8
The inversion of the previous system yields
2 u v w k
r .
By Y R S|k (6.11)
Y wWT RT Z Q| |k
3 xT sT QT T
Recalling that
A
PO =[P P F.[s (6.12)
Y
and combining (6.11) and (6.12), we obtain
/4 1 4
P@) =[PP PLVT|.IK + (PP F.|Y|[K +
wT RT| 6.13)
X
[P P P).|R|.(Kl + [P P P).|S|.[P]
z Q
or
(6.14)

P@) = (B]7.K] + [€)7.[A + [A7.[] + [@].[F]
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The dual expression of P(z) is then
K N M L. L 6.15)
PO = Y ap0 + Y bK(e-1]) + Y c,e@)K(Je-5,]) + Y dK([e-)) (6.
1=0 F1 El I=1
The previous expression may be generalized to higher order derivatives by:

M D N
PO =) et =Y ) +§2b{(e(r{.o>fx“’<lr-r{ D (6.16)
231

In Kriging, the first summation m(#) is called the drift represents the average shape of
the model, and the second double summation e(f) is called the fluctuation of the model. The

coefficients a, and b/ are determined by requiring that the interpolation passes through data points

and verifies Dtk order derivatives conditions, i.e.

o D N[
Pa = PO = Fapt'tw + 33 bleathy Kl 617

combined with the no-bias conditions

b ¥
Y3 blpfah =0 (6.18)
70 =1

Remark

The same procedure is applied in the case of an implicit interpolant of the form z =
Sfix,y). It is sufficient to replace P with z and ¢ with the vector (x,y). The absolute value is replaced

with a vectorial norm, such as the Euclidian norm.
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If derivatives are not considered in the interpolation model then the parametric equations

of Kriged curves can be written as follows:
M N
P®=Y ap® + Y 5 K(|t-4) (6.19)
=0 1

The parameters ¢ represent a decreasing sequence of real numbers: ; < ¢, < ... <. They

may be determined by an approximation of the curve length calculated from ¢, = 0 by:

1
2 . 6.20
1=t (G =2+ Oy 9D+ 7y -z)1%, 1<isN-1 620

These parameters are usually normalized so that ¢ takes its value in the interval [0, 1].
Equation (6.19) represents a Kriged curve in which the terms in 4, model the average shape of the
curve. The summation with the coefficient b, is a correction about the average shape that allows
the model to fit a set of N given data points.

Examples of curve interpolation with positions and derivatives data are presented in

Appendix C.

6.2.1 Invariance by Affine Transformations and Translations

Invariance by affine transformations and translations property may be proved easily by
considering the primal formulation of Kriging, which states that any point on a Kriged curve is
determined from a linear combination of the curve data points

b ¥
P@ =YY AP} (621)
70 =1

where A, verifies the no-bias conditions
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D N
EZ 1pPah = pto) (6.22)
0 1=

Applying a general affine transformation (e.g. scaling, rotation, etc.), followed by a

translation A[P] = L[P] + T, to the Kriged curve, yields:

2 Y 2 3 6.23)
AP@1=LIPO)+T=L[Y. Y MPA+T=F Y ALPA+T (6.23)
=0 1=1 720 =1

On the other hand,

2 2, & 2, & 6.24
gz MARA=F S AP D - R Y A R 8, (629
i=1

0 =1 50 i=1 0=

The conditions of no-bias in equation (6.22) states that ZZA, = 1 for p(t) = p,(t) = 1.
This is because the constant function is always present in the basis of linear subspaces of functions.
The affine image of a Kriged curve is obtained by transforming the data points (positions and

derivatives) and leaving the Kriging parameters unchanged. The same property applies to surfaces

and solids.

6.2.2 Equivalence to Least Squares Interpolation

The least squares interpolation of a set of data points by a linear combination of a basis
of functions is obtained by considering the drift as a linear combination of these functions, and
taking the covariance function to be equal to the function K(0) = 1, and

K(h) = 0 for k= 0.

In effect, equation (6.17) may be written in the following matrix form.
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or ol

If K = I, the NxN identity matrix, then the previous equation yields:

KB + DA = P - (A=(DTD)"D"P (626)
DTB =0 B=0

which is the least squares interpolation of data points P, using the basis of functions defining the

drift (Farebrother, 1988).

3 T T T T ¥ T
Kriging With NURBS Dirift -
2.5¢ —"naing - ]
~.— Control Polygon v
Red
ol —-NURBS 0 i

1.5

0.5)

Figure 6.2 Kriging with a NURBS Drift

6.2.3 Equivalence with B-splines and NURBS
The equivalence with NURBS is quite easy to verify. Simply consider the drift as a linear

combination of the B-spline functions, or the rational B-spline functions, and consider a null
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consists of a drift and a generalized covariance that govern the shape of the surface. A grid of N,
by N, data points defines the surface, that is N, sections along the v direction, with each section

defined by N, data points Py(x;, y;, z;) (see Figure 6.3).

PiNy

PNqu

/ .
Py
. P1
Py
) .

PNu1

Figure 6.3 Discrete Surface Interpolation

The parametric equations of a curve in the u (respectively v) direction for a Kriging
profile with a drift linear combination of p{u) (respectively g,(v)) and a generalized covariance

K, (h) (respectively K,(h)) can be written as follows:

M, N,

P, (u) = ‘z;a‘ pw) + Izll:blxa(lu-ull) (6.27)
N, N,

PO = gck ) + ’deKb(l""'ll) (6.28)
=]

¢ and v are determined in a2 manner similar to curves, using (6.19) along each profile.
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It is possible to determine the coordinates of any point belonging to the generating profiles, that
is points P(u,,v) or P(u,v,). However, in the general case where P = P(u,v), another equation
involving both profiles has to be defined. This is accomplished in the following steps (see Figure
6.2):
1. Determine a4, and b, of equation (6.27) for each section by solving N, linear systems:
P{u)=P,1<j<N,
2. Assuming that u = const., we can determine N, intermediate points P,, = P (u), I <
i<N,
3. Use previous intermediate points P,, to create the isoparametric curve u = const., and

determine the corresponding ¢, and d,, then calculate P (v) using (6.28).

Using matrix notation, the previous steps may be written as follows. Step 1 is equivalent

to solving the system of equations

i | Py = P [b, (P, P, P,]
K(luwl) - [ Pos) ~ Pu)| | 5 P, P, Py,
! I po("g_) - Pu.("".) bN_ P,, P,, P
. L L _ _ _ _ _ - Nul NJ ”wv (6.29)
Poluy) Po(u) Po(“p(.) | 0 - 0 % 0 0 o
i i i | - i i i
P, ".(u 1) pu.(u;) pu.(uu.) | 0 h 0 ) d"' L 0 0 0 |
or in a compact form,
(6.30)

(K,] .[6)=[P]

where [b] = {b,...b,..by, a,.. aMu}". Solving for [b] yields:
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(b= K" - [P) (6.31)
and step 2 yields:
i
')
P, = [~ K(lu-t]) = po(®) = py 1K) |- |, 15jsN, (6.32)
0
. o P

The notation utilized on the R.H.S of equation (6.29) stands for the data points of the N,
sections considered along the v direction. In fact, coefficients a, b, are vector coefficients, where
each set of coefficients is obtained for a different section.

Finally, step 3 is equivalent to solving:

i | q°(vl) - qM'(Vl) ] €, 1 v,
- K(ve-vil) - [ av) - 20 V) G e,
! I QQ(VN') - dy (VN ) N,
_______________________ T B I " (6.33)
2D 2v) Wvy) | 0 0 ||d, 0
i i i | : - i ¢ i
q M,(vl) q“'(v,) q‘('(vn') I 0 et 0 ] _dl A 0 ]
then calculating
H
Pwk
[PWIIT= [ Ky([v-v,]) ~ g0) ~ M 1K) | - (6.39)
0
0
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Replacing P,,; by their value from equation (6.32), we obtain:

[ i T ( I 0~ 0 H
Kb(lu“u[|) Pv | i - Ky ([v-v,.])
i | 0 -0 i
P(uy)= pu(u) [ KA] S N I - -l a _ (635)
s 0.0 I 0 -0 qo(v)
b i ;
| P 0.0 |0 - O | 46®

The above equation yields the parametric representation of a complex surface. The drift
and covariance of each Kriging profile may be changed. This will affect the shape of the Kriged
surface. For example, when K(h) = k, a piecewise linear surface is obtained. It can be shown also
that Kriging with K(h) = #* and a linear drift is equivalent to bicubic spline interpolation. Note that
a trigonometric drift is particularly adapted to surfaces of revolution.

Equation (6.35) may be written in a compact form as:

P(uv) =k )17 [M] (kW] (636)
where
| 0 ~0
Pv I 1 e 1
| 0 -0
M) = K] |--———-- | - - - K™ (637)
0.0 [0 -0
f o I i - 3
0..0 | 0 - O
and
[ka(u)] = [m ka(lu_ujl) - po(u) - p“.(u)]r (6-38)

(kW] = [~ kb(lv—vjl) - qo(¥) ~ qu'(v)]r
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For a given surface, [M] is calculated once, and equation (6.36) is used to calculate the

surface points.

6.3.2 Interpolating a Set of Curves

A similar approach may be used to generate a surface from a set of parametric curves
P{u) (see Figure 6.4). In this case, equation (6.34) is used and P, is replaced with P{u). The
shape of the surface is controlled by the curves along u direction and the Kriging profile along v
direction. The Kriging profile may have the general form of equation (6.16).

Ruled surfaces are a particular case of this procedure. They are obtained using a Kriging

profile with a constant drift and a linear generalized covariance.

Figure 6.4 Continuous Surface Interpolation

This type of interpolation may be used for skinning operations as well as the interpolation
of blending surfaces. Moreover, using traditional NURBS for skinning operations may destroy the
continuity of the surface. This is not the case for skinning using Kriging if the curves to be skinned
are continuous. On the other hand, skinning using dual Kriging is invariant under affine

transformations. This is not generally the case for skinning with NURBS (Piegl, 1991).
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1. Calculate the N, matrices [M,] by using equation (6.37) for each section w =
const.

2. Supposing « = const. and v = const., determine N, intermediate points P, =
P (w),]1<k<N,

3. Use previous intermediate points P, to create the isoparametric curve u =

const., v = const., and determine the corresponding Kriging coefficients. P,,(w)

is then calculated using equation (6.41).

PNu11

Figure 6.5 Solid Interpolation Using a Discrete Set of Points

Using matrix notation, the previous steps may be written as follows:

Step | is equivalent to calculating



| 0 -0
qu l o=~ i
| 0 - 0
(M) = [K]" [-—eemee | - - -| [Kgl™Y, 1sks<IN,,
0..0 |0 ~0
N
0..0 | 0 - oJ

and step 2 yields:

Pwk= [ka(u)] T [Mk] [kb(v)]

The final expression of P(u,v,w) is:

P(u,y,w) = [P (W)]7= [~ K(|w-w,|) = 1ow) -,y WK

[k, ()] M 1Tk, (0]
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(6.40)

(6.41)

(6.42)

The above equation yields the parametric representation of a complex solid formed by

the combination of the three profiles A, B and C.

6.4.2 Interpolating a Set of Surfaces

The same procedure presented in section 3.2. is extended to the case of solid interpolation

using a set of parametric surfaces. A Kriging profile is used along direction w, and

(k. (1)]T{M ][k,(v)] is simply replaced with P,(u,v) in equation (6.42).
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6.4.3 Interpolating n-D Entities

In the case of n-D entities, the interpolation procedure is recurrent and is based on the

following recurrent relation:

i ]

P,._l(up"‘:u -1)

Pluyt) = P(uymu,) = [k u)1TK,]™ -- (6.43)

Examples of applications of this generalization to n-D entities are:
1. Computer graphics and animation, the fourth parameter is in this
case time and P, ' represents the solid/surface or curve at time
2. Sweeping a solid along a curve or surface, the fourth (eventually

fifth) parameter represent(s) the trajectory of the solid.

Detailed examples of solid interpolation are provided in Appendix C.

6.5 UNCERTAINTIES IN DATA POINTS

The coordinates generated by a CMM generally contain errors of two different types: 1)
random errors, and 2) deterministic errors (see Chapter 2, section 1.2.1). The second type of errors
can be evaluated and controlled. The first type however is not controllable and may be evaluated
only if its probability distribution is known. With these uncertainties in the data points, an exact
interpolation does not represent correctly the actual curves and surfaces. A model taking into
account these errors is preferable. This can be achieved by interpolating with uncertainties in the

data points.
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First, the case of parametric curves will be considered. then this approach will be

extended to surfaces.

Figure 6.6 Interpolation with Uncertainties

We assume that the deviation e, at each data point P, is bounded by A, (i.e. leJ < 1A,))
(see Figure 6.6). If uncertainties are considered in the Kriging formulation, the interpolation model

will no longer fit the data points. and equation (6.17) will be written as (with positions data only):

M N
P,-e,=P(e)=)_ap(ty + Y b, K(|ty-¢) (6.44)
=0 1
with the no-bias equations given in equation (6.4). The local deviation, ¢, = b, d,, at each data
point is assumed to affect only the diagonal terms of the Kriging submatrix, not the drift, because

uncertainties in data points are assumed to be uncorrelated. The following linear system is

obtained:
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Pt) - byt |5,

K©O)+d, K(t-t) - | ]
-~ KOy i | opt) - P ||be| P,
i KQ+dy | Pty - Pyt ||By| [P,

(6.45)

po(tl) po(t;) po(tn) l

o
1

. O
)
(=]

[Pult) P Py | 0O -~ 0 Jlg| [O]

or in a matrix format

PRy

[] is the N x N identity matrix

However, equation (6.45) contains N additional unknowns, d,. Since the number of
equations is less than the number of variables, an iterative procedure is required to determine the
d,

Statistically, the d, represent the variance of the measurement errors on data points, it is
called Nugget-effect in classical Kriging, i.e., d, = 6 = var{g(t)) = E[g(t)]), and lg(t)| < 1Al
Hence, it is possible to determine A if the statistical distribution of the errors is known. It can be
shown that for a uniform distribution of the error between A and -A, we have o° = AY/3.

The proposed iterative procedure is as follows:

Initialization

b{0) are determined by solving (6.45) without uncertainties.
d/ = AJb(0) using these values in system (6.45) yields the deviation
e/ = b(d)) d/

Iterations

Repeat until lgffl < 1A}
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df = Al b(dM) = A1 e} dF!
¢ = b(d) df

solve system (6.45)

Different convergence criteria may be used. For constant A, = A, I <j < N, the criterion
may be the maximum deviation for all data points, or their average absolute deviation. The
convergence of this algorithm depends of the order or "degrees of freedom" of the Kriging profile.
In effect, a linear profile (covariance and drift) is more difficult to deform than a cubic profile.

Furthermore. if A, — <o it can be shown that the interpolation tends to the least squares
solution. In effect. if d; — <o, then b; — 0, and the interpolation is then reduced to the drift. The
following is the proof that in this case the drift is the least squares approximation of the data
points.

Writing equation (6.45) in a matrix format gives

(C+dDB + DA = P 647

{
D'B =0
However, d — « implies that B — 0, hence D A = P; that is,

A = (DTD)'DTP (6.48)

which is the solution of the least squares approximation of data points P using basis functions p(z)
with coefficients A. (D"D)? exits because the p(r) forms a basis of the subspace of functions.
Another way to derive the least squares interpolation from the Kriging interpolation is by choosing

a covariance such that K(k) = 0, for b # 0, and K(0) = 1.

In the case of surfaces. there are two independent profiles with two independent
parameters. It is possible to consider the deviation for only one of the profiles. or divide it between

the two profiles equaily.
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6.6 INTERPOLATING WITH LINEAR CONSTRAINTS
Introducing uncertainties in the data points may cause certain types of discontinuities in
the case of closed curves and surfaces. This problem is overcome by introducing continuity

constraints in the interpolation model.

The linear constraints considered are of the following form:

pPPe) + vPOE) + 8 =0 (651)
An example incorporating linear constraints in the Kriging interpolation with uncertainties
is presented here. These constraints are in this case C° continuity and C’ continuity at the extremity
points of a closed curve or surface. The same procedure may be applied for higher order continuity

or for other cases of linear constraints.

To incorporate constraints, the primal Kriging formulation must be used. The objective
is to find A, ... Ay, @, /3 verifying (o,  being the Lagrange multipliers associated with the

constraints) which verify that:
N
P = Y 1,(P,-e) + a(PO)-P()) + P (P'O)-P'(D) (652)
t=1

where e, is the uncertainties (or error) at point P, The continuity constraints are not limited to ¢

=0and ¢t=1.

The objective is to minimize the squared variance of the estimation, that is:

N
e(dym2 pa,B) = 3 ETP() - Ell,(P‘-e,) + (6.53)
i=
a (P(0)-P(1) + B(P'©@)-P' )T

Assume that the errors e; are not correlated; Therefore,
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Elee) = 0, i#j
Ele,P] = 0

(6.54)
Ele,P(] = 0
Efe,P(®] = 0
The intrinsic hypothesis states that:
ETP(t)P(s)] = K(|s-2|) (6.55)

The following relations are then derived:

E[P@)]* = K(0)
E[P,P) = K(|t;-t,)= K,
E[(P,-e)(PI-e)] = KU + E[e‘eJ]
E[P(0)-P()* = 2(K(0)- K(1))
E[P'0)-P'(1)]* = 2(K"(1)-K"(0))
E[POP)=K(Jt-1,)) = K, (6.56)
ETP()(P0)-P(1))] = -K(2)-K(1-7)
ETP@)(P'©)-P'(1)] = -K'(®-K'(1-1)
E[(PO)-P(1))(P'(0)-P'(1))] = O
E[PI(I)]z = ‘{IE[I:{(:) P(‘)] - K//(t)

t

Taking into account previous simplifications, the minimization of equation (6.53) is

solved by deriving it with regard to A,, ... A, @ and S, that is, solving

e, A A . (6.57)
di, da op

The no-bias equations for a basis of functions pft), 0 < I <M are:

M
Y Ap) + a(0)-p(1) + B(i(0)-pi(D) = pLD) (6.58)

i=1



K 1
2
H \
)
pﬁ“".oJ
K(z))- o
I(t -
-K
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4T 0 | C G 0 (6.63)

0
c P(O)-P(1)
P'©)-P/(1)

Remark: Solving equation (6.57) does not necessarily lead to 2 minimum squared variance
solution for any K(h) function, i.e., matrix [K] is not usually positive definite. Reference
(Christakos, 1984) should be consulted for the conditions necessary to derive a non-negative

definite matrix. Note that for parametric Kriging, [K] has only to be invertible.

This procedure may be applied for any number of linear constraints. It is possible to

impose higher order continuity constraints and obtain smoother closed surfaces.

In Figure 6.7 a cubic covariance combined with a constant drift are used. The dotted curve
is obtained by exactly interpolating the data points shown by +’. If a constant nugget effect (0.1
along x and y) is specified for each data point, the dash-dotted curve is obtained. The curve
obtained in this case is not closed. If the tangents at end points are constrained to be equal, then
the dashed curve is obtained. The curve is however still not closed. Finally, if in addition to
previous considerations, position continuity is imposed, the continuous curve is obtained. The curve
in this case is C'. Note that the deviations of the data points from the curve were always smaller
or equal to the maximum allowed deviation (0.1), this can be verified by the square domain

surrounding each data point.
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Figure 6.8a Classical Interpolation

Figure 6.8c Nugget Effect and Tangents C
ontinuity
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1

Figure 6.8b Interpolation with Nugget Effect

Figure 6.8d Nugget Effect, Tangents and
Positions Continuity
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Fewer data points are needed to define traditional curves and surfaces using Kriging,
as opposed to NURBS [70, 77]. For example, to represent a full circle, only three
data points are required, hence, taking advantage of classical parametric
representations, which are simpler and computationally more efficient compared with
the seven points and ten knots needed for representing a circle using NURBS.

The interpolation passes through the data points, although controlled deviations are
possible, and generally no control points, weights or knots are used.

Interpolating data with mixed types, such as positions, derivatives and linear
constraints is possible.

It is possible to have mixed types of profiles. Example, surfaces of revolution are
obtained by combining a general profile (such as NURBS) with a trigonometric

profile.

It combines the interpolation of discrete data as well as continuous data (see sections

4.2 and 5.2).

It is possible to interpolate a grid of data points with a non-uniform number of points

along each isoparametric curve.



CHAPTER 7

INTERSECTIONS IN GEOMETRIC MODELING

Once the measurement data has been interpolated, it is important to compare the obtained
model and the original data points. Different tools are used for this purpose including: 1)
orthogonal projection on curves and surfaces which are used for the determination of the normal
deviation of a point from a curve or surface, and 2) intersection of curves and surfaces for the
construction of a surface from a set of surface patches. The problem of finding the intersection of
curves and surfaces arises in numerous computer-aided design applications and in the verification
of specified geometric tolerances based on the comparison and manipulation of the interpolated
model (based on measurements) which represents the actual surface and the CAD model
representing the theoretical surface. The methods generally used rely on iterative numerical
techniques based on the solution of a set of non-linear equations which are very sensitive to the
type of interpolation used. These systems of equations are generally local and need adequate
starting points in order to yield convergent solutions.

This chapter presents two general geometric algorithms to find the intersections of C°
curves and surfaces. Section 7.1 presents an overview of related works in curve/surface
manipulations. Section 7.2 explains the first intersection method which can be applied to two
geometric objects defined respectively by their parametric and implicit equations. Section 7.3
describes the algorithm of orthogonal projection (OP), on which the general intersection method
of section 7.4 is based. This method can be used with any kind of C° surfaces: if the surface is C',

then it can be further refined into the so-called conjugate tangent approach to speed up the
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geometric set defined parametricaily will be referred to as the parametric object, and the set
defined by an implicit equation of the form f(M) = 0, where M designates the reference coordinates
of a point in the geometric space, is the implicit object. The following parametric objects will be
investigated:
(i) a curve, defined for example in a three-dimensional space by:

x = g(t), y=8(), z=gb), te[0,1]
(ii) a surface, defined by:

x = g,(s,0), ¥ = g(s,0, z=g5(s,0), st € [0,1]
(iii) a solid, defined by:

x=g(rst), y=grst), z=zglrs), st € [0,1]°

These various equations can be summed up in the notation M = G(p) where M denotes the
coordinates of a current point in the geometric space and p is the set of parameters, i.e., ¢, (s,) or

(r,s,t) respectively for the curve, surface or solid.

f(M) <0

Figure 7.1  Intersection of Implicit and Parametric Entities

Two examples of application are given: (1) intersection of a line with a curve, and (2)
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X
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in Figure 7.3 case b, cannot be obtained. In addition, if the density of points selected on the
isoparametric curves is not high enough, in some cases the intersection will not be detected (see
Figure 7.3 case c). Additional calculations involving derivatives would be needed to remedy these
deficiencies. Although some problems could be overcome by increasing the number of subdivisions
on the isoparametric curve, a more general methodology based on orthogonal projections and
tangents will be presented in sections 4 and 5 respectively. The first method will now be illustrated
by two applications: (1) intersection of a line with a parametric curve; and (2) intersection of a

plane with a parametric surface.

Figure 7.3  Cases where the Intersection is not Detected by the Implicit and
Parametric Entities Intersection Method

7.2.1 Curve-Line Intersection
The simplest application of the above methodology consist of finding the intersection of
a line with a planar curve defined by its parametric equation x(z), y(¢) for 0 < ¢t < I, (see Figure

7.1). If the implicit equation of the line is
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ax+by+c=0 (7.1
then the intersection with the curve is defined by the set of parameters ¢ such that
ax(®) + by@t) +c =0 (72)

A two-step algorithm has been set up to solve equation (7.2):

Step 1

Step 2

A sequence of k+1 points on the curve is calculated for a constant parameter step At = 1/k,
say x(iAt), y(iAt) fori = 0, 1, ... , k. Each portion of the curve between two consecutive
points i and i+I is called an arc. After evaluating the algebraic distance from the line of

each of the previous points, i.e.:

d, = ax(iA) + by(iA) + ¢ (73)
it is possible to locate the intersecting arcs on the curve, if any intersection exists. Such

arcs simply correspond to d,d;, ;< 0.

Once an intersecting arc is located on the curve, the exact position of the intersection may
be calculated either by a dichotomy algorithm (i.e. bisection algorithm) (Burden, 1989) or
by inverse kriging. The dichotomy algorithm consists in dividing the interval where the
solution d, = 0 is suspected to exist into two equal intervals then keeping the interval
where a change in the sign of d, is detected. The procedure is continued until a certain
accuracy is reached. The parameters ¢ are interpolated for a linear drift and cubic
covariance as a function of d(t) = ax(t) + by(t) + c. From the set of data (d(t),t) for I =

1, ..., L, a kriged interpolant ¢ = u(d) may be constructed, the parameter corresponding to

the intersecting point being simply £* = u(0).



126

7.2.2 Surface - Plane Intersection

A slightly more complicated application of the same methodology is illustrated by the

intersection of a plane with a surface defined by its parametric equation x(s,2), y(s,), z(s,t) for 0

<s<land0<t<l.

If the equation of the plane is:

ax+by+cz+d=0 79

then the intersection with the surface is defined by the set of parameters s and ¢ such that:

Step 1

Step 2

ax(st) + by(s,p) + cz(s) +d =0 (7.5)

The two-step procedure is simply:

Compute a sequence of k + I points on the isoparametric curves s = s;forj=0,1.,m
for a constant parameter step At = 1/k, say x(s, iAt), y(s, iAt), z(s, iAt) for i = 0, 1,..., k.

By evaluating the corresponding values of expression (7.5), namely:

€, = ax(spiAr) + by(s,iAn) + cz(spiAe) + d (7.6)

it is possible to locate the intersecting arcs on the surface whenever they exist. Such arcs

simply correspond to ee,, < 0.

As in the previous case, an inverse kriging of parameter ¢ = u(e) as a function of e(t) =
a x(s, t) + b y(s, 1) + c 2(s, t) + d is performed, and the parameter corresponding to the
intersection being simply £* = u(0). The same procedure can be applied by interverting the
roles of ¢ and s. This yields a set of intersections on the plane, with at least one point for

each s or ¢ isoparametric curve, Note that the intersecting points obtained by this procedure
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are not necessarily ordered. This is the case especially when a closed surface is intersected
or when the isoparametric curves in s and ¢ both intersect the surface. An appropriate
sorting algorithm would have to be used if the intersection points are not ordered or if the
intersection is composed of more than one curve. Note that the procedure can be
accelerated by using a dichotomy algorithm method to find the exact intersection rather

than inverse kriging.

i
T Ti+y

Figure 7.4  Determination of the Orthogonal Projection of a Point on a Parametric
Curve

7.3 ORTHOGONAL PROJECTION ON A GEOMETRIC OBJECT

The orthogonal projection (OP) of a point on a parametric object is defined as the nearest
point on the object from which a vector normal to the object will intersect the original point. A
numerical procedure for finding the projection of a point on a parametric curve (planar or 3D) or

a parametric surface will now be described.

7.3.1 Orthogonal Projection on a Parametric Curve

Let M be the point to be projected on a curve C(#), while N, denotes a current point on the
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curve and T; is the tangent vector at N;. The OP N of M on the curve is by definition such that
MN is orthogonal to T, the tangent unit vector at N, so MN.T = 0. The curve being’ continuous,
it can be described by a set of dis;mte points N, By calculating the signs of the dot product MN;
. T, it is possible to locate the projection of M between two consecutive points on the curve. This
simply comresponds to a change of sign between MN;. T, and MN,,,. T,,, as seen in Figure 7.5 for
example. The next step consists of performing an interpolation by inverse kriging between the two
points. Intermediate points are generated on the curve for a set of parameters ¢, their number
depending on the desired accuracy. The curve parameters ¢ are interpolated as a function of the
scalar products MN, . T, in order to construct a function ¢ = f(MN.T). The OP is obtained by
calculating ¢* = f{0). If a point has more than one OP, then the nearest one will be chosen. In some
cases, several points may be obtained that are all located at the same minimum distance from the
original point. This is the case for example, for the projection of the centre of a circle on its

perimeter. In this case, the algorithm does not necessarily converge. Figure 7.5 presents examples

of OP on curves.

Figure 7.5  Examples of Orthogonal Projections on a Parametric Curve
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M; (b)

Figure 7.8  Different Cases of Intersection in the Orthogonal Projection Method

7.4 INTERSECTION BY THE METHOD OF ORTHOGONAL

PROJECTIONS

The second intersection algorithnr is based on the following property of orthogonal
projections (OP): considering two parametric objects (curve or surface), successive orthogonal
projections from an initial point located on oﬁe of the two objects either converge to the
intersection (see Figure 7.8a), or yield the minimum distance between the two objects. A proof will
be given for the intersection of two parametric geometric objects defined by their parametric
equations. The method of orthogonal projection has been used previously for the iterative solution
of linear systems (Lehning, 1986). For example, in the case of a system of three linear equations,
where each equation represents a plane, an initial point can be projected orthogonally on the first
plane, then the projection is re-projected on the second plane, and so on the third and on the first
plane again, until the difference between two successive projections becomes smaller than a

prescribed precision. Orthogonal projections on planes and lines can be obtained by a simple
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5. The speed of the algorithm can be improved considerably by using the conjugate
tangents approach described in the next section.

6. Parametric curves and surfaces are generally defined with a fixed range of their
parameters (i.e. f, <t < 1, 5, £ 5 £ 5,). In order for the successive projections to converge to the
intersection(s), it may become necessary to extend the range of the parameters so that orthogonal

projections are found.

(b)
P

Figure 7.13 Two examples of Non-Intersecting Objects

7.5 CONJUGATE TANGENT APPROACH

Although the algorithm based on OP works satisfactorily, numerical experiments have
shown that it can be accelerated by combining OP on each isoparametric curve of one surface with
tangent planes on the other surface. Figure 7.14 illustrates the rapidness with which the alternate
tangent and OP converge. This procedure is called the conjugate tangent. because iteration points

are taken alternatively on tangent or normal vectors to each surface. in analogy with minimization
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algorithms based on conjugate gradients (Avriel, 1976). The method will be described with the help
of examples for finding the intersection of two planar curves, a curve and a surface or two
surfaces. A pure tangent intersection approach could be utilized as shown in Figure 7.15. However,
when the tangent does not intersect the curve or surface, the algorithm may be blocked as
illustrated in Figure 7.16 where the tangent at point M1 does not intersect the other curve. An OP
is then needed to find another point, say M2, to ensure convergence of the algorithm as illustrated

in Figure 7.16.

M1

MOx

N

Figure 7.14 Intersecting Two Curves with the Pure Tangent Intersection Approach

7.4.1 Intersection of Two Planar Curves

The method converges rapidly when the intersections of the tangent vectors with the
curves exist, as shown in Figure 7.14. When such intersections do not exist, as illustrated by the
case of point M1 in Figure 7.16, then we must come back to the OP: M1 is projected on M2, and

from M2, successive tangents yield M3, then M4 located very close to an intersection, If the initial
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point is far from the intersection, if no intersection exists or if there is more than one tangent

intersection, successive OP must be used to get closer to a targeted intersection.

Figure 7.15 Intersecting Two Curves using the Conjugate Tangent Approach

7.4.2 Intersection of a Curve and a Surface

The principle of the method is identical to that for two planar curves, except that the
tangent plane at a given point replaces the tangent. The tangent plane is intersected with the curve.
The intersection is projected on the surface, and the curve is intersected again with the tangent

plane at this point, and so on until two successive points lie within the same precision.

7.4.3 Intersection of Two Surfaces

The intersection of two parametric surfaces can be treated as a sequence of intersections

of isoparametric curves with the surface.
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M2

Figure 7.16 Using the Orthogonal Projection in the Case of a Non-Intersecting
Tangent Vector

7.6 DISCUSSION

The two methods presented in this chapter for finding the intersection of geometric objects
have been extensively used in various applications (Trochu, 1995 and Vafaeesefat, 1994), and were
found to be reliable and robust.

The first method is interesting when one object is defined by its implicit equation and the
other parametrically. Since this approach cannot handle the case of tangent objects, a second
method is proposed based on successive orthogonal projections from one object to the other. The
algorithm is general and can be applied to any type of geometric entities and intersection: curve-
curve, curve-surface and surface-surface. Several application examples were given for arbitrary
curves or surfaces. The algorithm is based on finding the orthogonal projection of a point on a

geometric object. Convergence of the algorithm was demonstrated. The whole procedure could be
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improved by considering enclosing boxes in order to speed up the determination of the nearest
projected point on a curve or on a surface. Note also that for these intersection algorithms, being
based on geometric considerations, a geometric interpolation of the iterative process can always
be provided. Finally, the second method can be further improved in the so-called conjugate
tangents approach by alternatively selecting iteration points on a tangent line or plane instead of

using only orthogonal projections.






CHAPTER 8

THE COMPUTER-AIDED INSPECTION PLANNING

(CAIP) SYSTEM

This chapter deals with the integration and implementation of the approaches and
methodologies, proposed in this thesis, in a computer-aided inspection planning and verification
system and its validation with application examples.

Section 8.1 presents the structure of the developed system. Section 8.2 describes the
implementation of the different modules. Finally, examples of applications are presented and

discussed in section 8.3,

8.1 THE CAIP SYSTEM STRUCTURE
The CAIP system is composed of two main parts dealing with two major tasks (see Figure
8.1):
* Inspection Planning

* Tolerance Verification

8.1.1 Inspection Planning
This part of the system consists of four modules:
- Accessibility Analysis Module
- Clustering Module
- Sequencing Module

- Path Planning Module
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Clustering
Module

Principal
Clusters

e

Inspection
Clusters

Figure 8.3 Clustering Module

8.1.1.3 Sequencing Module

This module generates the optimum sequence of measurement points. Two cases are
considered: 1) one with precedence constraints, where a selective breadth-first search determines
the best sequence(s) of measurement points yielding the optimization of criteria such as: minimum
probe changes, minimum probe orientation changes and minimum number of probes used; 2) one
without precedence constraints, where the clusters obtained by the previous module yield the
optimization of criteria such as those considered with precedence constraints. Each cluster is
considered independently and sequenced according to the additional criteria of the minimum
travelled distance of the probe. This problem is solved using branch and bound techniques applied

to the Travelling Salesman Problem (TSP).

The output of this module is the sequence of measurement points and the clusters they

form.

Inspection
Sequences

Inspection Sequencing
Clusters Module
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~—
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————— e

Figure 8.4 Sequencing Module
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8.2 SYSTEM IMPLEMENTATION

This system was implemented using C++ and LISP languages. LISP was used only in the
case of sequencing with precedence constraints.

ACIS Solid Modeler (Spatial Technology, 1993) was used for the Accessibility Analysis

Calculations.

8.3 EXAMPLES

The first example of this section deals with the inspection planning for an actual part:

flange. The second example deals with the interpolation of a sculptured surface from a grid of data

points obtained using a CMM .

8.3.1 Example 1

The workpiece of this example was taken from ASME, Y14.5M-1994. It represents a
typical example of a toleranced part. Forty measurement points distributed on each surface of the
workpiece (see Figure 8.6) were used in the example of Figure 8.7. No precedence constraints were
considered and only one probe is utilized in this example.

The origin of the coordinates system is the intersection of plane A and the axis of the

workpiece (see Figure 8.7). The coordinates of the measurement points are given in Table 8.1.

They are distributed as follows (see Figure 8.6):
- P1, P2 and P3 on the planar surface (SP1).
- P4, PS5 and P6 on the planar surface (SP2).
- P7, P8 and P9 on the planar surface (SP3).
- P10 on the right end of the thread (SP4).

- P11, P12 and P13 on the planar surface (SP5).
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Pl 21.500 37.239 0.000 P21 3.400 41.400 2
P2 -37.239 21.500 0.000 P22 -3.400 41.400 2
P3 -37.239 -21.500 0.000 P23 0.000 28.550 10
P4 21.500 37.239 5.700 P24 24.725 -14.275 10
P5 -37.239 21.500 5.700 P25 -24.725 -14.275 10
P6 -37.239 -21.500 5.700 P26 0.000 17.875 17
P7 0.000 25.400 15.750 P27 15.480 -8.938 17
P8 22.000 -12.700 15.750 P28 -15.480 -8.938 17
P9 -22.000 -12.700 15.750 P29 0.000 19.375 26
P10 0.000 17.610 31.700 P30 16.779 -9.688 26
Pl1l 0.000 13.000 41.200 P31 -16.779 -9.688 26
P12 11.258 -6.500 41.200 P32 0.000 15.850 36
P13 -11.258 -6.500 41.200 P33 13.727 -7.925 36
P14 0.000 16.000 9.500 P34 -13.727 -7.925 36
P15 13.856 -8.000 9.500 P35 0.000 10.000 15
P16 -13.856 -8.000 9.500 P36 8.660 -5.000 15
P17 0.000 49.750 2.800 P37 -8.660 -5.000 15
P18 43.085 -24.875 2.800 P38 0.000 22.263 4
P19 -43.085 -24.875 2.800 P39 19.280 -11.132 4
P20 0.000 47.000 2.800 P40 -19.260 -11.132 4
Table 8.1 Coordinates of Measurement Points
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Figure 8.7 Example of Pant (from ASME Y14.5M-1994)
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154

The sequenced clusters are:
Cluster 1: 40
Cluster 2: 5 9 25 28 31 34
Cluster 3: 1 21 20 2 3 19 16 15 39 36 35 14 38

Cluster4: 4 8 18 24 27 30 12 33 11 32 10 29 7 23 26 37 13 6 5 22 17

These sequences are chosen so as to minimize the total distance travelled by the probe
in each cluster of measurement points.

anis(220)time sequence
Runnning Measurement Points Sequencing Program

Reading Input Data
Reading Measurement Points Coordinates
Reading Measurement Points Clusters

Sequencing Cluster 1
Sequencing Cluster 2
Sequencing Cluster 3
Sequencing Cluster 4

End of Measurement Points Sequencing Program
0.230u 0.170s 0:01.02 39.2% 0+130k 1l+lio 5pf+0w

Figure 8.9  Screen Dump of the Sequencing Module

Path Planning Module

A preliminary task takes place in order to determine the list of probe orientations
associated with each cluster of measurement points. Figure 8.10 and 9.11 shows the set of possible
probe orientations of each cluster. The same scheme (8, ¢) used in Chapter 3 is adopted. The
accessibility domains determined by the first module are intersected in order to generate the
accessible orientations for each cluster. Previous results together with work space discretization
parameters (i.e. size of discretized elements, clearance of the probe from the measurement point,

resolution of the second order interference checking, safety factor, probe(s) characteristics and
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Cluster ¢
Probe 1

Polnt(s) : & 8 18 2¢ 27 30 12 33 11 32 10 239 7 23 26 37 13 & 5 22 17

0000900
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0 00000

Probes Orientations Seneratlon Coopleted ...
1.200u 0.140s3 0:02.88 46.5% 0+196k O+lio Opf+Ow

Figure 8.11 Possible Probe Orientation(s) of Each Cluster (Cont.)

If for a given cluster no collision-free path was found for the entire list of possible probe
orientations (see Figure 8.12), the user interacts and re-moves the measurement point causing the
problem (Measurement point number 37 in this example, see Figure 8.12) an places it in another
cluster (cluster 1 in this example) which contains at least one common orientation, the path
planning is then resumed. Figure 8.13 shows a screen dump of the program after modification of
the clusters.

In the case of basic shapes such as cylinders and parallelepiped it is possible to automate
the workpiece approximation procedure by decomposing the part into elementary shapes. Figure
8.14 shows the result of the approximation of this example’s workpiece into six pipes.

The output of this module is composed of the characteristic points of each path between
two measurement points (an algorithm is used to eliminate colinear points) and
the orientation of the probe. The path may be simulated using any CAD system. AutoCAD was
used in this case (see Figures 8.15 and 8.16).

Note that up to one million nodes (in the search graph) were used in the path planning
of this example which would have needed and adjacency matrix of 10'? elements for their

representation if the approach of local adjacency with special nodes numbering was not utilized.
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From the above results we can see that by introducing the uncertainties the surface tends
to deform mainly along the x direction in order to have a smoother surface and to eliminate the

noise and discontinuities.

Figure 8.24 Isoparametrics Curves along the u Direction

=

Figure 8.25 Isoparametrics Curves along the v Direction

Note that if a least squares interpolation is considered, then the surface obtained with

linear drifts is a plane which is a poor representation of the of the actual surface.

8.4 DISCUSSION

Two examples have been presented in this chapter. In the example of CMM inspection
planning, the results obtained are optimum and have been verified and simulated. It has been

shown that user interaction may be considered advantageously in order to choose, adapt and
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improve the muitiple solutions proposed by the system.

The second example deals with the interpolation of a sculptured surface composed of
260 data points using a single surface patch. This example demonstrates the capabilites of the
kriging method for the interpolation of large set of data points which would have needed a
decomposition of the surface into several patches if interpolation methods such as Bezier were
used. In addition, the uncertainties considered in the interpolation model filtered the noise in the

data and allowed a better representation of the actual surface.






CHAPTER 9

CONCLUSION

This chapter is divided into three sections: contributions, conclusions and future research.

9.1 CONTRIBUTIONS

The reported research makes the following contributions to the fields of inspection

planning and geometric modeling

9.1.1 Inspection Planning

*

A new algorithm is developed for determining accessibility domains (or cones).
This algorithm is general and provides the accessibility cone (continuous domain)
for points in space or on surfaces, and is not limited to planar patches, unlike
existing methods.

An improved discrete accessibility algorithm is developed for probes with discrete
possible orientations. The actual shape and position of the probe are considered
from the outset. Additional corrections are not needed and bent probes may easily
be considered using the same approach.

A novel formulation of the problem of measurement points clustering and probe
orentation selection in terms of operations sequencing and resources allocation
is adopted.

A method for optimum measurement points clustering and sequencing has been

developed. The criteria are in this case the minimum number of clusters, the
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9.3 FUTURE RESEARCH

There are a number of issues related to inspection planning and to the geometric

modelling of measured curves and surface that need further investigation.

In inspection planning the issues are:

* Development of a knowledge-based system which will generate the measurement
points, their location and their number according to the tolerance specified by
designers for various features of the part. Alternatively, a computer interface
which allows the user to interactively define these points.

* Improvements and acceleration of the performances of the path planning module.
This can be achieved by automating the approximation procedure of the probe,
the workpiece and its environment and by utilizing a parallel architecture for the
computations of the shortest path and the collision detection procedures.

* The need for post-processor program in order to interface the inspection planner
and the CMM machine. A module to determine the time it takes for inspection,
the set-up, and the calibration is needed in order to evaluate the overall cost of
the inspection and to eventually choose the least expensive inspection plans.

* Feedback inspection data to the CAD system to close the loop of product

development.

* The integration of the inspection planner and a tolerance verification system.

In geometric modelling, the main issues to be investigated are:

* How dual kriging and NURBS interpolation compare, specifically when
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representing or approximating general dual kriging using NURBS and vice-versa?
This feature is very important for the compatibility of the proposed kriging
models with existing CAD systems which utilize NURBS.

Dual kriging has been used as an interpolation tool. The issue of data fitting using
this technique is of great interest especially if large sets of data points are
considered. This permits the representation of complicated surfaces without
needing to decompose the surface into patches which are interpolated then joined.
Transfinite interpolation using dual kriging may be performed at present only
along one parameter of the surface. It is very important to extend the transfinite
interpolation using dual kriging to the two surface parameters (similar to Coons
surfaces). This will solve the problem of joining two different patches while

respecting continuity constraints.
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INITIALIZATION
forall ve Vdo
begin
dist(v) = ;
final(v) = false;
pred(v) = -1;
end
dist(S) = 0,
final(S) = true;
recent=S;

ITERATION
while final(T) = false do
begin
for every immediate successor v of recent if not final(v) do
begin
newlabel = dist(recent) + distance(point(recent), point(v}),
if newlabel < dist(v) then
begin
dist(v) = newlabel,
pred(v) = recent,
end
end
let y be the node with smallest temporary label, which is # eo;
final(y) = true;
recent = y,
end

Figure B.1 Dijkistra’s Shortest-Path Algorithm



APPENDIX B
BRANCH-AND-BOUND TRAVELLING SALESMAN

OPTIMIZATION ALGORITHM

This algorithm (Syslo et al., 1984) is based on a tree search where at each step all possible
solutions of the current problem are partitioned into two subsets: those that contain a specific edge
(i.,j) and those that do not. This branching is performed according to some heuristic which reduces
the amount of search to be conducted for the optimal solution . After branching, lower bounds of
the cost of each of the two subsets are computed. The solution space with the smaller lower-cost
bound is chosen for the next search. This process is continued until a Hamiltonian cycle is
obtained. Then only those subsets of solutions whose lower bounds are smaller than the current
solution need to be searched.

When Applied to the Travelling Salesman Problem, the Branch and Bound algorithm

operates reccursively on a graph where the cost of each edge is represented by the euclidian

distance of the nodes. The graph is represented by a weight matrix W.

The algorithm may be decomposed into three main parts:
1. Reduction of the cost matrix associated with every node in the search tree.
2. Selection of the best edge in the search tree

3. Depth-first exploration of the search tree



188

function REDUCE(A);

begin
rvalue = 0,
fori= 11to size do
begin
rowred(i) = smallest element in Ah row;
if rowred(i) > 0 then
begin
subtract rowred(i) from every finite element in th row;
rvalue = rvalue + rowred(i);
end
end
for j= 1 to size do
begin
colred(i) = smallest element in th column;
if colred(j) > 0 then
begin
subtract colred(j) from every finite element in gh column;
rvalue = rvalue + colred(j),
end
end
return rvalue;
end

Figure B.1  Reduction of Matrix A
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procedure BESTEDGE(A, size, r, ¢, mosf);
begin
most = o;
for i = 1 to size do
for j= 1to size do
if 3,= 0 then
begin
minr = smallest entry in h row, other than a;;
minc = smallest entry in th column, other than a;
total = minr + minc;
if total > most then
begin
most = total;

o~

r=

end

end

Figure B.2  Selecting the Best Edge (r.c)



procedure EXPLORE(edge, cost, A);
begin
cost = cost + REDUCE(A);
it cost < tweight then
if edges = n - 2 then
begin
add the last two edges;
tweight = cost;
record the new solution;
end
else
begin
apply procedure BESTEDGE to find (r,c) the best edge to split the
solutions on;
let most be amount subtracted from row r and column ¢;
lowerbound = cost + most,
prevent cycle;
newA = A - column c-row r,
if lowerbound < tweight then
begin
8 =
EXPLORE(edges, cost, A);
a.=0,
end
end
unreduce A;
end

Figure B3  Depth-First Exploration of Search Tree
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APPENDIX C

DUAL KRIGING APPLICATION EXAMPLES

In this appendix some detailed applications of dual Kriging for curve, surface and solid

interpolation are presented.

It is important to note that the parametrization of the surface/solid, i.e. the choice of the
direction for each parameter, is very important for the solid (or surface) representation.
Furthermore, degeneracy [e.g.. when an isoparametric sufface or curve is reduced to a point, or an

isoparametric surface is reduced to a curve] is useful for the representation of complicated shapes

as well as simple shapes, and closely depends on the symmetries in the object.

C.1 CURVE INTERPOLATION

C.1.1 Example 1

We will consider the simple case of interpolating a square curve (P! P2 P3 P4 P1) (see

Figure C.1).

The profile chosen for this curve is composed of a linear covariance and a constant drift.

The parameters associated with the data points are:

113
=0’l’71
s {424}

The Kriging matrix is in this case {equation 6.9 without the derivatives terms)
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Figure C.1 Curve Interpolation with Position Data Points

The equation of the square is then (equation 6.19)

1 1 3 -
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Figure C.2 Curve Interpolation with Position and Derivatives Data Points

C.1.2 Example 2
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Figure C.2 presents an example of curve interpolation using parametric Kriging with

derivatives data. The continuous line curve was interpolated using only position data (5 points).

The dashed curve was interpolated with two vertical slopes at extremity points. Finally, the dash-

dot curve was obtained with the data points of the first curve and a horizontal slope specified at

the middle of the curve.
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Pl P20
P16
P1S
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P2 Pl

Figure C.3 Data Points in XZ plane

C.2 SURFACE INTERPOLATION
C.2.1 Interpolating a Grid of Data Points

The two examples were generated using the same set of data points (4 x 5 points) P,-P;,
(see Figure C.3). They differ only at the level of Kriging profiles. A trigonometric drift and a linear
covariance combined with a trigonometric drift and a linear covariance were used for the first
example (Figure C.4), and a trigonometric drift and a linear covariance combined with a constant

drift and a linear covariance were used for the second example (Figure C.5).

The Kriging profiles of Figure C.4 are:
Profile A represents the circular shape (P, P, P; P, P,)

Profile B represents the helical shape (P, Ps Py Py; P;y)
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o L L3111 0
4 2 4 011311'
19113, 4214
4 4 2 4 101131
114 11 49 4 42 4
2 4 4 2 110111
kg=(3 11, 110_1,[1(4]—24 4 2
4 2 4 4
1 Tza°73!
1:—2—20110
- 1311,
11111000 4 2 4
10-101000 111110
010-10000
Matrix [M] is in this case (6.37)
P, P, Py Py P; 000
P, PGPmP“P“OOO
p. P, P, P.P,000
[M]=[KA" 3 7. Fn Fis B K"
P, Py P, Py Py 000

~
w
v
v
w
v
-y
o
[=]
(=]

and (6.38)

@17 = el Jamb1 Ju-2 1 Ju- 1 -1 1]

k1™ = [lv] |v—%| |v--%—| |v—%| jv-1] 1 cos2nv sin2nv]

C.2.2 Interpolating a Set of Continuous Curves (Skinning)
The third example shows a surface interpolated using the three curves (Ci(v), Cy(v).

C,(v)) shown in Figure C.6 (from top to bottom), one of which being only C’. The surface

obtained is represented in Figure C.6.
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T

A

Figure C.6 The Curves to be Skinned

The parameters associated with each curve are equidistant, and are u = {0, 1/2, 1}. The Kriging

matrix becomes (equation 6.9):

0oli110
8
11,1
8 8 2
K= 1
1 3 011
11100
olio00
2
The equation of the surface is then (6.34)
[C,™)]
G
Sn)=[luf lu-2 P -1 1010 |Cy0)
0
| 0
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P, P, P, P, Py O]
PZ P6 PlO Pu Pll 0
P, P, P, Py Py 0
[Ml] = [KA]-I P4 PI PIZ Plﬁ Pm 0 [K']'l
P, P, P, Py P, 0
000 0 00
000 0 00
00 0 0 0 0
and
P21 PZ'Z P23 PZA PZS 01
Py Py Pp Py Py ©
P21 le P23 Pu PZS 0
P, P, P, Py O
[Mz] = [KA]-I PZI -3l < Bl Sl L] [K, -1
PZI. PZZ P23 P?A PB 0
o 0 0 0 00
0o 6 0 0 00
0 0 0 0 00
and

(k@] T = [ul |u—l| |u--}-| |u—2| [u-1| 1 cos2nu sin2zu]
2 "2 e

1 1 3
ION7 = O] =31 -3 bogl v-111]

(kw7 = [w] [w-1] 1]

C.3.2 Example 2
Thirty six (4 x3 x 3) data points were used, two of the three profiles have a constant drift

combined with a linear covariance, and the third is a combination of a trigonometric drift and a

linear covariance.






