PERFORMANCE MODELING
AND CAPACITY PLANNING
FOR SAAS APPLICATIONS

PERFORMANCE MODELING AND CAPACITY PLANNING FOR
SAAS APPLICATIONS

By NAFISEH VALIZADEH SHIRAN, MASc

A Thesis Submitted to the School of Graduate Studies in Partial
Fulfillment of the Requirements for

the Degree Master of Applied Science Software Engineering

McMaster University (C) Copyright by Nafiseh Valizadeh Shiran,

February 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF APPLIED SCIENCE SOFTWARE ENGINEERING (2025)

Hamilton, Ontario, Canada (Computing and Software)

TITLE:

AUTHOR:

SUPERVISORS:

NUMBER OF PAGES:

PERFORMANCE MODELING AND CAPACITY
PLANNING FOR SAAS APPLICATIONS

Nafiseh Valizadeh Shiran
MASc (Master of Applied Science Software Engineering),

McMaster University, Hamilton, Canada

Professor Douglas Down

Professor Richard Paige

x, 62

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Lay Abstract

This research aims to simplify the capacity provisioning of cloud-based applications
by reducing reliance on extensive lab-based testing and offering more time and cost
effective alternatives. We develop a simulation framework integrated with an ana-
lytical solution to predict system performance. These methods are validated using
empirical test data, demonstrating their effectiveness in assisting system architects to
ensure scalability and performance of their services are maintained within acceptable

quality of service agreements.

111

Abstract

Providing quality services in cloud-based systems is a critical factor. SaaS based ap-
plications typically experience dynamic workloads which compels system architects
and providers to look for ways to keep their application services scalable, but find-
ing the right number of services can be a cumbersome task if they solely rely on
testing and maintaining the application in lab environments. This is primarily due
to the significant time and costs involved in setting up the system. In this thesis,
we propose a lightweight method to perform capacity planning of the applications.
This approach combines an analytical tool that models the system as a closed net-
work of queues and utilizes a numerically stable algorithm, SMVA, to approximate
performance metrics, and a simulation framework developed to capture more intrica-
cies of our underlying system environment and platform. We validate the proposed
methods on a microservices app deployed on a Kubernetes cluster that captures key
metrics like throughput, response time, and pod CPU utilization. The results show
acceptable agreement among the SMVA predictions, simulation outputs, and empir-

ical observations, therefore confirming the effectiveness of our approach.

v

To the resilient students of my homeland, whose pursuit of education continues

despite the weight of conflict.

Acknowledgements

I would like to begin by gratefully acknowledging the financial support I received
from the Natural Sciences and Engineering Research Council of Canada (NSERC)
and Cubic Transportation Systems. This work would not have been possible without
their generous support.

I would also like to express my deepest gratitude to my academic supervisor, Dr.
Douglas Down, for his invaluable guidance, insight, and continuous encouragement
throughout my research. His mentorship has been a key part of my academic journey,
and I am truly thankful for all the support and advice he has given me.

I also want to thank my co-supervisor, Dr. Richard Paige, for his support during
my time in the program.

I am grateful to the faculty and staff at McMaster University for their support
throughout my studies.

Most importantly, I wish to thank my family. Their constant presence, patience,
and belief in me made all the difference, especially during the most challenging mo-

ments. I'm deeply thankful for everything they’ve done to help me get here.

vi

Table of Contents

Lay Abstract

Abstract

Acknowledgements

Declaration of Academic Achievement
1 Introduction

2 Literature Review
2.1 Analytical Queueing Models
2.2 Simulation Approaches L
2.3 Hybrid and Empirical Validation Studies

2.4 Critical Summary and Research Gap

3 Methodology
3.1 Queueing Networks
3.2 Product Form Solution

3.3 Stable Mean Value Analysis (SMVA)

Vil

iii

iv

vi

xi

3.4 Algorithm Implementation

3.5 Discrete-Event Simulation of Microservices

4 Implementation
4.1 Overview of the System Architecture
4.2 Kubernetes Cluster Setup
4.3 Microservices Deployment

4.4 Monitoring Stack Setup

5 Experimental Results
5.1 Capacity Planning for Pods
5.2 Experimental Results and Validation

5.3 Validation and Comparative Analysis

6 Conclusion
6.1 Main Conclusion

6.2 Future Work

Appendix A
A.1 Inventory Configuration,
A.2 ServiceMonitor Configuration

A.3 Source Code Repository

Appendix B
B.1 PetClinic Application Throughput

B.2 Discrete-Event Simulation Results (Response and Queue Times) . . .

Viil

30
30
31
32
34

36
36
39
40

46
46
A7

50
20
o1
52

53
53
5}

List of Figures

1.1 High-level overview of the microservices structure and flow of user re-
quests in the PetClinic application. 3
3.1 Continuous-Time Markov Chain (CTMC) state diagram illustrating
transitions and rates. pa, pup, and pc are the processing rates at
Customers, Visits, and Vets service nodes, respectively. 15
3.2 High-level overview of task flow and resource selection in the discrete-
event simulation modelo 28
B.1 PetClinic application throughput: Test 1 (50 users, 1 pod per service) 53
B.2 PetClinic application throughput: Test 2 (50 users, 2 pods for cus-
tomers, 1 for visits, 1 for vets) 54
B.3 PetClinic application throughput: Test 3 (100 users, 1 pod per service) 54
B.4 PetClinic application throughput: Test 4 (100 users, 2 pods per service) 55
B.5 Discrete-event simulation results: Test 1 (50 users, 1 pod per service) 56
B.6 Discrete-event simulation results: Test 2 (50 users, 2 pods for cus-
tomers, 1 for visits, 1 for vets) oL 56
B.7 Discrete-event simulation results: Test 3 (100 users, 1 pod per service) 57

B.8 Discrete-event simulation results: Test 4 (100 users, 2 pods per service) 57

1X

List of Tables

3.1 Summary of notations.o 16
5.1 Summary of notations 37
5.2 Base processing rates obtained from individual load tests at saturation

(100% CPU utilization). 40
5.3 Throughput (requests/sec) comparison: SMVA and PetClinic App . . 41
5.4 Response time comparison (ms) between SMVA,| DES, and PetClinic =~ 42
5.5 Simulation configuration and runtime per test step 43
5.6 Comparison of Capacity Planning Recommendations and SMVA Re-

sults at Larger Scale 44

Declaration of Academic

Achievement

The following is a declaration that the research represented in this thesis was com-
pleted by Ms. Nafiseh Valizadeh Shiran and acknowledges the contributions of Dr.
Douglas Down and Dr. Richard Paige.

Together with Dr. Douglas Down and Dr. Richard Paige, Ms. Nafiseh Valizadeh
Shiran contributed to the inception of the study and the overall study design. She was
primarily responsible for the implementation of the performance models, development
of the simulation and algorithms, execution of experiments, and the writing of the
manuscript. Dr. Douglas Down and Dr. Richard Paige contributed to the inception
and design of the study, reviewed the manuscript, and provided ongoing guidance and
support throughout all stages of this thesis. This thesis contains no material that has
been submitted or published previously, in whole or in part, for the award of any
other academic degree or diploma, except where otherwise indicated. This thesis is

entirely the original work of Ms. Nafiseh Valizadeh Shiran.

x1

Chapter 1

Introduction

Cloud computing has fundamentally changed the way resources and services are pro-
vided with its various types of service provisioning models such as infrastructure as a
service (IaaS), software as a service (SaaS), and platform as a service (PaaS). It pro-
vides businesses a wide range of solutions that they can adopt. It allows businesses to
dynamically scale and increase their agility while also helping them to manage costs
based on their consumption [19].

To maintain customer demands and ensure service quality, cloud providers face
specific challenges in efficiently managing their resources, both hardware and software.
These challenges are not limited to public cloud providers; they also affect small
enterprises that adopt cloud computing paradigms for provisioning their private on-
premise cloud infrastructure.

In this work our main focus is on the software delivery model that provides appli-
cations directly to end-users. We focus on the scalability challenge in SaaS applica-
tions, because of their highly variant load and unpredictable changes, although this

challenge is also important across all cloud models. Microservices architecture is a

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

pattern widely adopted to facilitate granular resource control and bottleneck identi-
fication. For larger-scale applications, this architecture is used with containerization
approaches. To manage complexities inherent in such environments, orchestration
platforms like Kubernetes are utilized. Kubernetes facilitates fast and controlled
deployment of services while providing scaling functionality as a key feature that
smooths the need for both application agility and availability.

Effective scalability requires workload characterization, user demand patterns,
resource availability, and Quality of Service (QoS) constraints. Therefore, achieving
efficient service delivery requires proactive system profiling and capacity planning.

To effectively utilize Kubernetes and meet QoS constraints, such as maintaining
response times and sufficient throughput, and also to avoid the complexities of de-
ploying and testing actual application services (which is a costly and time-consuming
task), we can benefit from analytical and simulation models. In this work, we use
queueing theory, a subset of stochastic modeling, which characterizes the inter-arrival
times of requests as well as their processing demands. We use principles of queue-
ing theory to represent our services as networks of queues. To represent changes in
the state of the system, which consists of services and incoming requests, we utilize
Continuous-Time Markov Chains (CTMC). Then, to estimate important performance
metrics such as response times and throughput, we apply an approach called Stable
Mean Value Analysis (SMVA). Additionally, we develop a capacity planning tool that
provides us with a first cut of the service requirements that enables more accurate
resource allocation decisions in the design phase.

Analytical models provide theoretical insights and an initial performance evalua-

tion of systems. However, since they often require simplifying assumptions regarding

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

arrival processes, service demand patterns, and their interactions, they might not fully
capture the intricacies present in real-world systems. Thus, we have decided to also
utilize simulation models. The simulation framework developed in this work enables
us to capture detailed interactions between the services as well as the complexities in
the underlying container orchestration tool, Kubernetes.

As our validation scenario, we use the Spring PetClinic Cloud microservices ap-
plication, which is deployed on a Kubernetes cluster. This application provides a
realistic example to model its behavior as a closed network of queues. We leverage
this setup to directly compare and validate the performance predictions from our
analytical and simulation models. The open-source project is available on GitHub.
Figure 1.1 provides a high-level overview of the microservices structure and illustrates

the flow of user requests through the application.

Pod -
O Kubernetes
service instance

Queue - buffer
D:l:l] of incoming

requests

Request Flow -

—* direction of request
traversal
Think Customers Service Visits Service Vets Service

N Users Station Legend

Figure 1.1: High-level overview of the microservices structure and flow of user
requests in the PetClinic application.

The remainder of this thesis is organized as follows. Chapter 2 provides a com-
prehensive literature review, discussing existing analytical and simulation approaches
relevant to performance modeling and capacity planning of computer systems, in-

cluding cloud-based services. Thereafter, in Chapter 3, we describe our methodology,

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://github.com/spring-petclinic/spring-petclinic-cloud

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

including our analytical approach based on queueing theory, solving the Continuous-
Time Markov Chain for our application, the use of the SMVA algorithm to derive
performance metrics, and our discrete-event simulation framework designed to over-
come the limitations of analytical modeling. Chapter 4 covers implementation as-
pects, explaining how we set up our Kubernetes cluster environment and deployed
and configured the Spring PetClinic application. Chapter 5 presents our experimen-
tal results, comparing performance measurements obtained from running the Spring
PetClinic application on a production-ready Kubernetes cluster against predictions
from the SMVA approach and simulation (DES) model. Lastly, in Chapter 6, we
draw conclusions based on our methodology’s results and offer recommendations for

future research.

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 2

Literature Review

This chapter reviews existing research on performance modeling of microservices and
cloud-based services. The literature is categorized based on methodological group-
ing: Analytical Queueing Models, Simulation Approaches, and Hybrid and Empirical

Validation Studies.

2.1 Analytical Queueing Models

Queueing models form the essential foundation which supports both performance pre-
diction and resource allocation methods. Research studies [7, 25] utilize simple queue-
ing models (M/M/1, M/M/1/C, and M/M/k/k) for multitier systems for predicting
response time and throughput performance metrics. The models demonstrate bene-
fits but their validation depends only on simulator-based tests using Java Modeling
Tools (JMT) and CloudSim without verification from actual system implementations.

The research by Carvalho et al. [2] uses queueing theory to design a multi-class

capacity planning model for IaaS platforms which includes quota-based admission

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

control and service-level objectives (SLOs). The approach optimizes CPU usage ef-
fectively but its primary focus is on CPU resource modeling. The approach does
not capture the detailed microservice-level interactions, job flows and load-dependent
scaling behaviors which happen in applications running on cloud infrastructures.

Kouki and Ledoux [17] discuss the challenge of resource allocation for multi-tier
SaaS architectures in which multiple user classes are categorized based on their cost
and performance requirements. The SaaS system is represented as a closed queueing
network where each tier is modeled as a M /M /c/k queue. They compute metrics like
request latency and abandonment rates by using an extended Mean Value Analysis
(MVA) algorithm. A utility function uses these metrics to balance application cost
and dependability. A capacity planning tool is then implemented to suggest the
optimal configuration that adheres to the SLAs. Similar to other studies so far,
the validation of this work also does not perform empirical assessments, relying on
simulation results.

The paper by Casale [3] presents a solution to the numerical instability of load-
dependent MVA. This extension of MVA, is known to exhibit numerical instability,
particularly when processing rates depend on the load; therefore, they used Buzen’s
convolution algorithm to address this problem. This method has the same complex-
ity of O(MN?) as the load-dependent MVA, but addresses the instability issue by
avoiding probability computations. However, it is still not computationally efficient
for systems with a large number of users and servers. On the other hand, the Stable
Mean Value Analysis (SMVA) approach [28], which also addresses the same issue,
offers a straightforward mapping between the real metrics of the system and the

theoretical model. However, it is important to note that SMVA is an approximate

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

algorithm rather than an exact solution.

2.2 Simulation Approaches

Simulation tools are beneficial in terms of capturing complex properties of software
systems and interactions between their components and could be used as complemen-
tary methods for the performance evaluation of such systems [14, 20]. The simulation
framework pgsim [29] simulates multi-tier microservices and captures metrics such as
average and tail latencies. It targets concurrency and thread-level resource manage-
ment. However, it does not simulate the interaction of microservices, the request flow,
and routing and scaling features of applications running on the cloud infrastructure
- features that we desire for our analysis.

Tian et al. [26] provide a comparative survey of existing simulation tools. While
these tools provide insights on event-driven execution and hierarchical modeling of our
framework, many of them target traditional VM structures rather than simulating the
behavior and characteristics of applications deployed on orchestration environments.

The PACE framework proposed by Chouliaras and Sotiriadis [5] combines reactive
and proactive mechanisms for resource allocation and workload surges. The frame-
work is fast and real-time for scaling decisions, but it does not cover deeper queueing
dynamics of services. The work represented in this thesis provides more detailed in-
sight into how communication patterns influence the performance of services and the
overall system.

Pinciroli et al. [21] discuss simulating microservices based on design patterns and
how each of these patterns could influence the performance of the application. They

further evaluate the patterns with a JMX-based tool. Although they have proposed

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

extending their work by using Markov chains, their current contribution remains on

simulation experiments and not comparing with empirical tests.

2.3 Hybrid and Empirical Validation Studies

Hybrid methods, combining analytical models with empirical validations, offer prac-
tical insights into the performance of microservices.

Khazaei et al. [16] designed an analytical model using Continuous-time Markov
chains that focuses on the provisioning dynamics of containers and virtual machines
for microservice platforms. Their study provides valuable insight on reducing the
time and cost of infrastructure provisioning and elasticity through their systematic
capacity planning algorithm.

Han et al. [10] introduce a heuristic-based method for efficient placement of mi-
croservices on Kubernetes clusters. They use empirical test data for this decision
making based on metrics such as response time and resource usage. However, since
their method lacks theoretical analysis for optimal resource placement, it may be
limited for varying and heavy workloads.

Similarly, Jindal et al. [15] utilize Terminus to perform sandboxing of microser-
vices. In their approach, they first isolate each microservice and perform load tests,
employing regression analysis on the data to find the maximum request rate each can
handle without violating the SLOs. Their approach does not consider the impact of
inter-service communication on the system performance.

Chen et al. [4] focus mainly on exploring the benefits of breaking down monolithic
applications to microservices by analytical decomposition based on simple M /M/1

and M/D/1 queueing models. In their study, they try to quantify the impact of this

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

decomposition on latency and resource usage by running simple scenarios. However,
they oversimplify important performance issues, such as request routing and load-
dependent scaling behaviors.

Furman and Diamant [8] utilize a modified Offered Load Function to perform ca-
pacity planning for cloud services that experience demand fluctuations. Their method
suggests retrial intervals for user requests that could shift the load during peak times
to off-peak periods. While their work is effective for macro-level capacity planning,
it can be limited in its applicability as it simplifies operational features like internal
queueing and load balancing.

The study by Urgaonkar et al. [27] presents a modeling approach for multi-tier
internet applications. The model includes complex features of applications such as
concurrency limits, caching, and load distribution across multiple service instances.
However, their method relies on standard iterative MVA computations, which in-
herently may cause numerical instabilities, particularly at larger scales. This thesis
uses Stable Mean Value Analysis (SMVA) [28] which addresses the issue through
a decomposition strategy, by isolating load-dependent service behavior into simpler
calculations. The detailed operational insights provided in [27], such as service con-
currency management and caching effects, represent beneficial enhancements that

could potentially enrich MVA-based approaches.

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

2.4 Critical Summary and Research Gap

The reviewed literature highlights methodological advancements alongside notable
limitations. Analytical queueing models [2, 3, 6, 7, 17, 23, 25| frequently lack empiri-
cal validation against real-world scenarios or don’t fully capture the detailed complex-
ities of request behaviors within applications environments. Simulation-based stud-
ies [5, 21, 26, 29] while effective at modeling runtime behaviors such as intra-service
concurrency, often simplify or overlook the detailed interactions and orchestration
dynamics inherent in microservice deployments.

Hybrid methods [4, 8, 10, 15, 16, 27| address operational realism, but typically
focus narrowly (provisioning delays, isolated services, cyclical loads) or omit key com-
plexities such as service interactions, internal queueing, or realistic concurrency man-
agement.

In contrast, this thesis integrates

e An analytical model (closed Jackson network), analyzed using the Stable Mean
Value Analysis algorithm, is utilized for detailed request-level performance pre-

dictions and service interaction complexities in microservice applications.

e Empirical validation through application load-testing data, to confirm analytical

and simulation predictions against real deployments.

e A complementary discrete-event simulation framework modeling microservice
interactions, request flows, and routing behaviors influenced by the details of

the underlying container orchestration engine.

e A capacity planning tool that provides practical recommendations based on

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

SLA-driven resource allocation validated using analytical, simulation, and em-

pirical methods.

Consequently, this thesis addresses the methodological gaps identified in analyti-
cal, simulation, and hybrid studies, and offers empirically validated insights that are
aimed at performance modeling and capacity planning in microservice-based appli-

cations operating in container orchestration environments.

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 3

Methodology

This chapter explores analytical methods that facilitate the performance prediction
of SaaS-based applications, specifically microservices architectures. We first discuss
how we could model our system as a Jackson network of queues. Building upon
this, we show that the system state can be represented through a Continuous-Time
Markov Chain (CTMC) which we explain in detail along with its characteristics and
methods for calculating steady-state probabilities. This discussion on CTMCs is
followed by an introduction to the Jackson Product Form theorem, which is used
to calculate steady-state probabilities. Finally, we suggest the Stable Mean Value
Analysis (SMVA) method as an extension of traditional mean value analysis (MVA).
We explain our decision to use SMVA, emphasizing its advantage to estimate mean

response times and throughput.

12

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

3.1 Queueing Networks

In the context of queueing theory, we can think of microservices as individual nodes,
each with its own processing demand. If the node/server is idle, the arriving request
can be processed immediately. However, if the request finds all the servers busy, it
should wait in the queue until one server becomes available. These nodes are often
interconnected such that the output from one service is the input to another; thus
their interactions can be represented as a network of queues.

Jackson networks are queueing networks characterized by exponential service
times and probabilistic routing between multiple nodes. A Jackson network con-
sists of M nodes, each serving requests in First-Come-First-Served (FCFS) order,
with processing rates p; for each node 7. Arrivals in the network may originate from
outside the system without being influenced by how requests leave the system, or they
can originate internally as requests transition between nodes determined by routing
probabilities P;; which represent the probability of a job moving from server 7 to

server j. Jackson networks can be classified into the following categories:

e Open Networks: There are external arrivals and departures.

e Closed Networks: A fixed number of requests circulate internally without

external arrivals or departures.

In our testing scenarios, users, after thinking for a period of time, submit a request
for the sequence of microservices. Once the request is completed, the entire process
is repeated. Since there are a fixed number of users in the system without external
arrivals or departures and due to predefined routing probabilities between microser-

vices, the closed Jackson network is a suitable representation. To analyze and solve

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

such closed networks, we represent the system using a Continuous-time Markov chain

(CTMCQ).

3.1.1 Continuous-Time Markov Chain

A Continuous-Time Markov Chain (CTMC) is a stochastic process characterized by
state transitions that occur according to exponentially distributed random variables
over continuous time intervals. In the context of our scenario, the CTMC provides
a representation of the state of the system by reflecting the distribution of requests
among the nodes.

Formally, we define our CTMC state as a vector:

n=(ny,ng,...,Nn),

where n; indicates the number of requests present at the ¢-th node. The number of
users in the think node is given by np;1 = N — Zf\il n;, where N is the total number
of users. Transitions between these states occur at the rates of the preceding nodes.
When a node completes processing a request, the request moves to the next node
with a pre-defined routing probability. Figure 3.1 illustrates the CTMC transitions
for a scenario with two tasks in the system where each microservice only has one pod.
To solve the CTMC and find steady-state probabilities, we need to formulate global
balance equations for each state. The global balance equations ensure that the total
rate entering a state is equal to the total rate leaving the state. In the next section,
we will see that the steady-state probabilities of the CTMC for Jackson networks can
be expressed in product form.

Having formally defined the CTMC as a stochastic process describing system

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

states and state transitions, we can now apply it to our network of queues. Table 3.1

is summary of all notations used in the preceding and upcoming sections.

Figure 3.1: Continuous-Time Markov Chain (CTMC) state diagram illustrating
transitions and rates. pa, pp, and pc are the processing rates at Customers, Visits,
and Vets service nodes, respectively.

3.2 Product Form Solution

To find the steady-state probabilities of our microservices system modeled as a Continuous-
Time Markov Chain (CTMC), we use the Gordon-Newell theorem [9], which builds
upon Jackson’s theorem [12, 13]. These theorems assume exponential service times

at each node and unlimited queue capacities.

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Notation Description

M Total number of microservice nodes

N Total number of users in the network

7 Number of users at microservice node i

1 Processing rate (service rate) at node i

¥ User request generation rate

PV Arrival rate at node 4

S Number of instances (servers/pods) at node i
P; Routing probability from node ¢ to node j

Pi Utilization of node ¢

Tn Steady-state probability of system being in state n
C Normalizing constant

Z Mean think time at the think node

X, Throughput for population n

R,,(n) Response time at node m with population n
(

D,,(n) Service demand at node m for n requests
N Concurrency level at node m
°(n) Total occupancy at node m at population n
¢ (n) Estimated average number of users at delay center

Qam(n) Front-server queue length at node m

Table 3.1: Summary of notations.

In our system, we consider a closed Jackson network consisting of M microservice

'Represents a relative arrival rate solution to the balance equations.

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

nodes, each operating as a load-dependent queue with exponential processing times,
represented as -/M/s;. Additionally, we include a think node (node M + 1) modeled
as an infinite-server queue (-/M/o0), labeled as node M + 1. The total number of

users in the system is /N, which satisfies:

M+1

=1

The service rate at each node 7 is defined in a piecewise manner as:

min(ng;, s;) pi, i=1,..., M

pi(ni) =
The generalized local balance equations for each state (nq,...,ny41), are given
by:
M+1
W(nh B 7nM+1)/'Li(ni) = Z 7T(TL1, i + 17 sy Ny —]-7 s 7nM+1>,u’j(nj + 1) -Pji7
j=1

where n; > 0 and n; < N.

Due to the computational cost of explicitly solving these equations for large M
and N, with a time complexity of O(N™) we leverage the established results from the
Gordon—Newell theorem [9], which provides a closed-form solution for the steady-state
probabilities.

From these local balance equations, we derive the simultaneous rate equations for

each node:

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

M+1 M+1

j=1 j=1
This set of equations does not yield a unique solution. We may therefore select an
arbitrary solution by setting one of the \; equal to 1, and then use the normalization

constant to determine the actual arrival rates \;. We define

Ai

, i=1,...,M+1.
Si i

Pi =

If the values of \; were the true arrival rates, then p; would be the utilization of
node i. While the true arrival rates are unknown, the quantities p; are sufficient to
calculate the steady-state distribution.

Using these assumptions and the Gordon-Newell theorem, the steady-state proba-
bility of the system for state n = (ny,...,ny,nar41) is given by the Jackson product

form:

M
(5ip)™ \ (Sarr1ppr41)™H
T =C (H) l ’

UIVESE

where

n;!, n; < S,

Si! (Si)niisi, n; > S;

The normalization constant C' is determined by the condition:

Zﬂ'n: 1.

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

The product form solution provides us with the steady-state probability for all
possible states in our CTMC. However, computing the normalizing constant, espe-
cially for larger N or multiple load-dependent servers, is demanding. With this in
mind, since our goal is to find approximate values for metrics such as response times
and throughput, we turn to a less computationally expensive approach called Mean

Value Analysis (MVA).

3.2.1 PetClinic Application as a Closed Jackson Network

The characteristics of the PetClinic application, such as user interactions and mi-
croservice communication, have led us to model the system as a closed Jackson net-
work of queues. Users are continuously circulating through the system. Each request
initiated by a user proceeds through a sequence of services, including customer ser-
vice, followed by visit service, and then vet service, before reaching the think node.
After spending some time in the think node, each user repeats the same cycle again.
The system maintains a steady user population because new requests neither enter
nor leave the system.

In addition to this cyclic behavior, microservices use predefined routing probabili-
ties to interact with each other. The output of one microservice serves as the input of
another, with transitions occurring based on routing probabilities F;; and processing
rates p;(n;). For example, consider a transition from state (1,0,0) to state (0,1,0),
which indicates a request that transitions from customer service to visit service. This
transition occurs at rate ficustomer, reflecting the completion of a request in customer
service and the route to visit service.

As the system scales, the complexity of this model increases substantially with the

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

number of microservices M and users N. Specifically, determining the normalization

constant C' used by the product form solution, involves adding the probabilities of all

N—I—M).

possible states of the system, given by (Iy:

Figure 1.1 illustrates the conceptual model of this microservices application sys-
tem. In this figure, each microservice is a node that consists of one or more pods,

with arrows indicating the direction of request flows between microservices.

3.3 Stable Mean Value Analysis (SMVA)

Stable Mean Value Analysis (SMVA) [28] is an extension of the classical Mean Value
Analysis Method to handle load-dependent queues in a closed network, while avoiding
numerical instability. This issue happens in MVA because of its iterative nature in
computing state probabilities for load dependent queues which leads to cumulative
rounding errors. These rounding errors can lead to significant errors in mean response
time calculations, such as negative values.

SMVA prevents this by splitting each load-dependent node into a front server
(with constant demand D,,(N,,)) and a delay center, which captures the leftover

portion via

nDy(n) — Dm(ﬁm), if n < N,

Ny —1) Dp(Nn), ifn> N,

For a single class with total population N, SMVA proceeds from n = 1 up to
n = N. Let Q% (n) be the total number of requests at node m at population n, and

let QS,(n) be the estimated number of requests at the delay node. We set Q9,(0) =0

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

initially. Then, for each n:

1. Estimate number of requests at delay-center

In this step, we use the Bard-Schweizer [1, 22] approximation to estimate a
delay-center’s mean number of requests at the mth queue. If n = 1, we simply

set Q¢ (1) = 1. For n > 1, we have:

n

Quln) = —"— x Qp(n 1)

2. Compute front-server response time

Suppose node m’s front demand is D,,(N,,) and we treat it as an M/M/1

queue. Then the front-server mean response time R, ,,(n) is

Rym(n) = Di(Now) (14 Qam(n — 1)),

where Qqm(n —1) is the front-server mean queue length from the previous step.

3. Compute delay-center response time

Using Q¢,(n) as the estimated number of requests at the delay-center, we take

[QS,(n)] and insert it into the delay center demand function DY

Ram(n) = D ([Q7,(n)]).

4. Sum node response times

After calculating the front and delay center’s mean response times, the node

total mean response time is

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

5. Compute throughput

Let Z be the mean think time. Then the overall throughput for system popu-

lation n is
n

e S

6. Update front-server queue length

We update the front-server mean queue length at node m for population n

Qam(n) = X, X Rym(n).

7. Update total node queue length

Finally, the total mean number of requests at node m is

Q% (n) = X, X | Rygm(n) + Ram(n)|.

By following these seven steps for n = N iterations, we get estimates of Xy (through-
put), Q%,(N) (total mean queue length), Q. (N) (mean queue length at front queue),
and Ry, (N), Ram(N) (front and delay mean response times). These steps comprise

the SMVA approach from [28].

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

3.4 Algorithm Implementation

The following is a Python implementation of the SMVA approach. It takes as in-
puts service demands, number of users, N, and mean think time to calculate the
performance metrics, throughput and response times of each service. The algorithm
iteratively computes the approximate mean queue length and mean response time for

each service node following the steps discussed above.

Algorithm 1 Stable Mean Value Analysis (SMVA)
1: Input: Service demands D,,(n), population N, think time Z

2: Initialize: Q2,(0) < 0 for all m

3. forn=1to N do

4: for each node m do

5: if n =1 then

6: Q° (1)« 1

7: else

8: Qr(n) = 725 - Qn(n—1)

9: Ryn(n) < Dyn(Ny) - (14 Qayn(n — 1))
10 Ram(n) + D ([Q(n)])

11: R, (n) < Rym(n) + Rym(n)

12: Xy m

13: for each node m do

14: Qam(n) Xp - Rym(n)

15: Q°,(n) < X, - [Rym(n) + Ram(n)]

16: Return: Xy, Q2 (N), R,,(N)

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

The Stable Mean Value Analysis method that we discussed above is a fast and
efficient way to estimate mean performance values such as queue time and response
time with time complexity O(NM) . However, product form conditions are assumed
while using this method. Real-world examples of applications on the other hand
have more complexities which include dynamic routing, concurrency constraints, and
non-exponential processing time distributions. Therefore, to address some of these
practical challenges and gain more insight into the performance behavior of such
systems, we complement our analytical approach with a discrete event simulation

approach, described in the following section.

3.5 Discrete-Event Simulation of Microservices

As discussed earlier, analytical methods are powerful tools for characterizing the per-
formance of software systems. However, they rely on simplifying assumptions and
fail to capture certain complexities such as queue disciplines and processing policies.
Therefore, we have to rely on other solutions as well to complement their shortcom-
ings. Discrete-Event Simulation (DES) is a widely used method that enables us to
model detailed system interactions. Discrete-Event Simulation allows system states
to evolve through distinct events which occur at specific points during a given simu-
lation period. The DES model includes representations of entities (requests or tasks),
resources (processors and queues) and events (arrivals, departures and completions).

The main components of a DES model include:

e Entities: These represent the active components in the system, such as re-

quests, customers, or, in our case, user requests and microservice pods.

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Events: Any occurrence that changes the state of the system. For instance a

request arriving to the system or completing its processing.

Queues: Buffers where entities wait for resources if they are busy. In a software

system, this might be the waiting line for a particular service.

e Resources: The processing units that serve the entities. In this case, pods

serve as resources with a certain capacity for concurrent requests.

Simulation Clock: A global simulation time that advances from one event to

the next, rather than proceeding continuously.

3.5.1 Simulation Framework and System Components

We have developed a discrete-event simulation (DES) framework to model the behav-
ior of microservice-based applications running on a Kubernetes cluster. The frame-
work is implemented using SimPy library in Python, that lets us implement request
arrivals, resource contention, request routing, queueing, and concurrency limits. The

simulation architecture includes the following main components:

e Nodes: The nodes in the Kubernetes cluster represent virtual machines (VMs)
or physical hosts. Nodes act as the hosts for running containerized microservices
within the pods. A node can contain multiple pods, each corresponding to
specific microservices. Nodes are created based on the configuration given by

the user that specifies available services and number of pods per service 2.

2In this section, the terms tasks and requests are used interchangeably to refer to individual
HTTP requests initiated by users. Similarly, the term services may refer either to microservices or
Kubernetes Service objects.

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

e Pods: Each pod represents the atomic processing unit in a Kubernetes clus-
ter. Pods are characterized by their processing rates and concurrency limits
which differ for each service. The concurrency capacity is managed by SimPy
Resource that limits the number of simultaneous tasks that could be pro-
cessed. When a task arrives at the system, it gets assigned to a pod to be
processed based on a processing rate and then the simulation clock advances
using env.timeout (). Subsequently, the task’s processing duration, queued

time, response time, and exit time from the pod will be updated.

e Tasks: Tasks represent individual HTTP requests sent by users to interact with
the microservice application. Each task has a predefined type (e.g., customers
request, visits request, vets request) that determines the sequence of services
it must traverse. When a task enters the system, it is routed through the
specified microservices defined in the sequence. At each microservice, it may
experience queueing delays, wait for available resources, and undergo processing
before proceeding to subsequent services. Throughout this process, tasks gather
performance metrics that are used to evaluate system performance under various

conditions.

e Services: Each microservice represents an application-level functionality (e.g.,
customer management, visits management, veterinarian search) that runs within

each pod.

e Task Generator: Users are simulated as concurrent and independent entities

continuously sending requests in a closed-loop pattern. Each simulated user:

1. Creates tasks based on the defined task types and service sequences.

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

2. Sends tasks to the system and waits until their completion, after which it
records the task’s performance metrics such as response time and queue

time.
3. Pauses for a randomized think time, before starting the next iteration.

e Controller: The controller acts as the central logic handling the routing and
execution of tasks. For each incoming task, the controller performs the following
responsibilities:

1. Identifies nodes which have the requested service types.

2. Selects the node which currently has the shortest queue length across its

pods having the relevant service.

3. Selects the pod within this node that currently has the least load, defined

by the sum of the number of active and queued tasks.

4. Manages task queueing if no pod concurrency slots are immediately avail-

able.
5. Initiates the processing once a pod is available.

6. Routes the task to the next service after the processing in the current

service completes and repeats steps 1 to 5.

Figure 3.2 shows a high-level view of the system. This figure illustrates the flow
of requests in the system and the decision making for assigning a resource for the

incoming requests.

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Info Poiicy

i

H(

Node

O

000606

r —
Request z
o Is task Yes
> % T >

o

§ Node No
Result

Policy |
v
Queue
—» | Router E—

Figure 3.2: High-level overview of task flow and resource selection in the
discrete-event simulation model

The detailed operational flow of tasks through this framework will be described

in the next subsection.

3.5.2 Event Flow

In our DES, the Simulation Clock starts at time zero. The flow of events is as follows:

1. Task Arrival: The TaskGenerator generates a new Task at time intervals.

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

This event updates the simulation clock to the arrival time.

2. Routing and queueing: The Controller identifies a suitable node and pod.

The task creates a resource request (pod.resource.request()).

3. Service Start: Once the task acquires the resource, it begins processing. The

task enqueue time is recorded to measure the queue time.

4. Service Completion: After a processing delay (env.timeout (service_time)),
the task completes service on the current pod. This triggers an event to release

the resource and log the task’s queue and processing times.

5. Next Service or Exit: If the task’s service chain has additional microservices
to visit, it repeats the routing and queueing steps. Otherwise, it exits the

system, and its total response time is finalized.

For all entities within this simulation, the simulation clock operates at a global
level and it advances through its priority queue for every event in the described steps,

which maintains the correct sequence of queue durations.

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 4

Implementation

4.1 Overview of the System Architecture

The application used for this research is the Spring Petclinic Cloud [24], which is a
modified version of the original Spring Petclinic microservices. For the purpose of this
research that needed a containerized microservices application, this version matched
the requirements, as it is specifically designed for deployment in cloud environments
using Kubernetes. This makes it particularly suitable for validating the DES approach
that we discussed earlier. The purpose of this chapter is to see how to assess the
performance of a real-world application running on a cloud infrastructure. The setup
of the environment before deploying the application requires at least one virtual
machine from a cloud provider on which to set up the Kubernetes cluster. The
cluster consists of two nodes. After preparing the environment, we deployed the
application and the pods distributed on both nodes. The number of microservice pods
can be changed over the course of the service deployment. To be able to monitor the

performance results of application load tests with various load types, a monitoring

30

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

stack is added to the cluster. It constantly monitors the health and status of all
objects in the cluster, with dashboards to query our target metrics such as response
times to http requests, thread count for each microservice pod, and microservice/pod

throughput.

4.2 Kubernetes Cluster Setup

4.2.1 Cluster Configuration

The Kubernetes cluster used in this project is deployed with Kubespray which is a
collection of Ansible playbooks that automate the configuration and deployment of
the cluster within the nodes. The first step to configure Kubespray [18] is to clone
the official repository and then create an inventory file inventory/mycluster to
define the node roles in the cluster. Appendix A.1 shows the format of the inventory
file to define Node 1 as the control plane or the master node and Node 2 as the worker
node.

After configuring the inventory, the desired versions and plugins are specified
in the group variables. For this environment, Kubernetes v1.29.10 is used (a
stable release), the Calico plugin is used to provide networking and network policies,
containerd serves as the container runtime (because docker is deprecated), and local
path is chosen as the default StorageClass to handle local volume provisioning on
nodes.

After setting all the required parameters for cluster setup, KubeSpray is run

against the specified inventory using:

ansible-playbook -i inventory/mycluster/hosts.ini cluster.yml

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

This command installs Kubernetes across the nodes, applies container runtime and
Cloud Network Interface which in this case is calico, and gives us a ready to use
cluster in which we can deploy our application. In order to verify the state of the

nodes and pods, the following commands are used:

kubectl get nodes

kubectl get pods --all-namespaces

The status shown for both nodes and pods should be in the ready state; otherwise,

we will not be able to proceed to the next steps.

4.3 Microservices Deployment

The application deployment in the Kubernetes environment follows a series of auto-
mated steps as defined by the project authors. First, the spring-petclinic namespace
in Kubenetes is created. The associated services are then deployed, followed by the
databases for each specific microservice using Helm, and finally the application itself
is deployed via a custom script.

To set up the namespace for the Spring Petclinic application, the following com-

mand is executed.
kubectl apply -f k8s/init-namespace/

This creates the spring-petclinic namespace which isolates the application from
other components.
Next, Kubernetes services used by the application are created with:

kubectl apply -f k8s/init-services

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Verification of service deployment is performed by listing the services within the

spring-petclinic namespace:
kubectl get svc -n spring-petclinic

The output is expected to list services such as api-gateway, customers-service,
vets-service, visits—-service.
Before deploying the databases, it is necessary to ensure that a single default

StorageClass is active:

[breaklines=truel

kubectl get sc

The databases are then deployed using Helm via the Bitnami MySQL chart. The

commands below deploy three separate database instances for the application:

helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo update
helm install vets-db-mysql bitnami/mysql --namespace spring-petclinic
— —-version 12.2.2 --set auth.database=service_instance_db
helm install visits-db-mysql bitnami/mysql --namespace
— spring-petclinic --version 12.2.2 --set
— auth.database=service_instance_db
helm install customers-db-mysql bitnami/mysql --namespace
— spring-petclinic --version 12.2.2 --set
— auth.database=service_instance_db
Finally, the application can be deployed using custom deployment manifests. The

following command automatically runs the deployment process for all microservices.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

./scripts/deployToKubernetes.sh
To verify that all application pods are running in the spring-petclinic namespace:
kubectl get pods -n spring-petclinic

This command should confirm that all pods such as api-gateway, customers-service,
vets-service, visits-service, and the database pods are in a running state.
Lastly, to validate external access to the application, the external IP of the API

Gateway service of NodePort type is obtained with:
kubectl get svc -n spring-petclinic api-gateway

The expected output indicates that the API Gateway has been assigned an external

IP address, that enables external access.

4.4 Monitoring Stack Setup

In order to monitor the performance metrics of the microservices deployed on the
Kubernetes cluster, kube-prometheus-stack Helm chart is utilized which is a bundle

of Prometheus, Grafana, and the Prometheus Operator.

4.4.1 Installing kube-prometheus-stack

Before installation of the monitoring stack, the updated Prometheus Community

Helm repository is added:

helm repo add prometheus-community
< https://prometheus-community.github.io/helm-charts

helm repo update

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

and then Prometheus stack is deployed in the monitoring namespace:

helm install my-prom-stack prometheus-community/kube-prometheus-stack
— —-namespace monitoring --create-namespace

This command installs:

e Prometheus Operator: Manages CRDs such as ServiceMonitor and Prometheus.

e Prometheus: Responsible for scraping metrics from microservices and storing

them.

e Grafana: Provides dashboards for data visualization.

4.4.2 ServiceMonitors for Microservices

In order for Prometheus to be able to scrape metrics from the microservices, objects
named ServiceMonitor are defined and Prometheus looks for the matching labels, in

our case release: my-prom-stack. Therefore, each ServiceMonitor includes:

metadata:
labels:

release: my-prom-stack

Additionally, the ServiceMonitor has to reference the same labels and ports that
are used by each microservice’s service. For example, if a microservice service is la-
beled app: customers-service and exposes metrics on port http at /actuator/prometheus,
the corresponding ServiceMonitor configuration is provided in Appendix A.2.

Using this configuration helps Prometheus to scrape the microservice’s runtime
application metrics (e.g., memory usage, request rates, thread activity) on port http

every 15 seconds.

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 5

Experimental Results

5.1 Capacity Planning for Pods

Capacity planning for Kubernetes pods is essential to ensure the required Quality of
Service (QoS). For a closed network of queues, as discussed in Section 3.3, in steady
state, the joint distribution of number of requests at each node is of product form;
therefore, the arrival process seen at node i can be treated as memoryless. According
to this, in our architecture, each node’s local behavior is the same as an M/M/s
queue. The objective is to determine, for every microservice, the minimum number
of pods s such that the probability of queueing Py does not exceed a predefined
threshold. Controlling Py ensures shorter expected queue times and, consequently,
yields low response times. A practical rule of thumb is to keep Py less than 0.2 to
maintain response times in an acceptable range. Table 5.1 is a summary of notations

used in the following sections.

36

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Notation Description

R Resource requirement ratio (A/p)

Py Probability that an arriving task must queue

a Maximum allowed queueing probability (QoS threshold)
c Constant used in the square-root staffing rule

D(+) Cumulative distribution function (CDF) of the standard Normal distribution
o(+) Probability density function (PDF) of the standard Normal distribution

Mean queue time at node i

Table 5.1: Summary of notations

5.1.1 System Model and Assumptions

Let X denote the average arrival rate to a microservice node, u the processing rate of
an individual pod, and s the number of pods provisioned for that node. The minimum

number of pods required for stability is captured by the resource-requirement ratio
A
R=— (5.1.1)
1
with utilization p = A/(sp) < 1 implying s > R.

5.1.2 Square—Root Staffing Rule

To satisty the QoS constraint Py < «, the square-root staffing rule [11] recommends

s =R+ cVR, (5.1.2)

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

where the constant ¢ solves the nonlinear equation

=) (5.1.3)
For a typical target of a = 0.20, one obtains ¢ ~ 1.28.

5.1.3 Arrival-Rate Estimation in a Closed Network

For a population of N users that alternate between think node with mean Z and

services, the overall arrival rate is approximated by

N

)\:)
Z—i—Zil//Li‘i‘ZiTQi

(5.1.4)

where the summation spans all microservice nodes. To estimate the maximum
arrival rate (throughput), we set the queue waiting times to zero (T, = 0). The

resource requirement for node ¢ is therefore

R == (5.1.5)

5.1.4 Calculating Pod Requirements

Given R; and the QoS threshold «, the number of pods for node i is

S; — RZ + cv/ Rl (516)

Applying this rule to every microservice yields the minimal pod configuration that

satisfies the global QoS goal while avoiding unnecessary over provisioning.

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

5.2 Experimental Results and Validation

This section presents comparative validation of the Stable Mean Value Analysis
(SMVA), the discrete-event simulation model, and the performance observed in a
real Kubernetes deployment of the Spring PetClinic application. The validation starts
with determining service processing rates using load tests and operational laws, then
proceeds to a direct comparison of key performance metrics such as throughput and

mean response times across the three methods.

5.2.1 Estimation of Service Processing Rates

The service processing rates (u values) for microservices customers-service, visits-
service, and vets-service were estimated through individual load tests on the Kuber-
netes cluster. Each service was isolated and independently tested until it reached ap-
proximately 100% CPU utilization by increasing the load. At this saturation point,
the operational law relating throughput (X;), utilization (p;), and service demand
(E[T) is:

For a fully utilized server (p; & 1), the mean service time simplifies to:

E[T)) = —, thus pu; =X, (5.2.2)

Applying this, the following base processing rates were obtained (Table 5.2):

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Service Name Processing Rate (u, requests/sec)
Customers-service 170
Visits-service 450
Vets-service 250

Table 5.2: Base processing rates obtained from individual load tests at saturation
(100% CPU utilization).

5.3 Validation and Comparative Analysis

In this section, we validate the results obtained from the Square-Root Staffing capac-
ity planning, the Stable Mean Value Analysis (SMVA), the Discrete-Event Simulation
(DES), and the actual Kubernetes-deployed Spring PetClinic application. The valida-
tion includes a comparison of throughput and response times under varying workloads,
using different pod configurations. Detailed screenshots from these validation tests

are available in Appendix B.

5.3.1 Throughput Validation

Table 5.3 compares the throughput achieved by the SMVA algorithm and actual

application under different user loads and pod configurations.

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Test Users (N) Pods (Customers,Visits,Vets) SMVA PetClinic

1 50 1,1,1 80 80
2 50 2,1,1 81 81
3 100 1,1,1 152 130
4 100 2,2,2 162 150

Table 5.3: Throughput (requests/sec) comparison: SMVA and PetClinic App

5.3.2 Response Time Validation

Table 5.4 compares the response times obtained from the SMVA algorithm, Discrete
Event Simulation (DES), and the actual PetClinic application under the correspond-
ing test scenarios. All experimental runs used a mean think time (Z) of 0.6 seconds
for the analytical and simulation models (SMVA, DES and capacity planning), while
the actual PetClinic application used a lower think time of 0.3 seconds to accom-
modate network-induced latencies and closely match the analytical and simulation
assumptions. Initially, using a mean think time of 0.3 in SMVA and DES resulted in
significantly higher throughput values, almost twice those observed in the PetClinic
load-test results. Therefore, to align the modeled throughput with the empirical re-
sults and to account for the network latencies, we increased the value of mean think

time to 0.6 seconds.

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Test Users Pods (Customer,Visits,Vets) Service SMVA DES PetClinic

Customers 10.8 12.9 11.0

1 50 1,11 Visits 2.8 2.7 4.0
Vets 5.8 5.9 7.0

Customers 6.7 7.2 7.2

2 50 2,1,1 Visits 2.8 2.8 4.0
Vets 5.8 5.7 7.0

Customers 41.0 42.0 43.0

3 100 1,1,1 Visits 3.5 3.5 4.8
Vets 9.9 9.2 10.2

Customers 8.4 9.8 7.2

4 100 2,2,2 Visits 2.5 2.4 4.2
Vets 4.9 4.6 6.2

Table 5.4: Response time comparison (ms) between SMVA,| DES, and PetClinic

5.3.3 Validation of Capacity Planning Method

In the first round of tests, we ran SMVA, discrete-event simulation (DES), and the
actual PetClinic application using a setup of one pod per node (Customer, Visit, and
Vet services) with 50 users. The response times and throughput results from this ini-
tial test are recorded. In this simulation, each user iteratively issued 4 request. With
a Then, we executed the capacity planning (CP) method with the same parameters
(50 users, identical think time, and processing rates). The CP method suggested in-
creasing the number of pods for Customer Service to two, while leaving other service

pods unchanged. After applying these suggested adjustments and running the tests

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

again, we observed a noticeable decrease in response times in the SMVA, DES, and
PetClinic application.

The second round of tests involved scaling up the workload to 100 users while ini-
tially maintaining one pod per node. After recording the response times and through-
put, we applied the CP method again, which recommended increasing the number of
pods to two for each node. Implementing this new setup improved the response times
in all three cases (SMVA, DES, and PetClinic).

The following table summarizes the total number of requests generated and sim-

ulation runtime for each test step.

Test Step Users Total Requests Simulation Runtime (min)

1 20 20,000 3
2 50 20,000)
3 100 40,000 2
4 100 40,000 5

Table 5.5: Simulation configuration and runtime per test step

Due to limitations in the underlying resources (virtual machines), we could not
apply the recommendations of the capacity planning tool at larger scales. However,
we validated these recommendations by applying them to the SMVA algorithm, and
our observations confirmed that the total throughput matched the predictions from
the capacity planning method, and response times improved when the suggested
number of pods were applied. Table 5.6 summarizes the capacity planning method
recommendations and the results obtained from the SMVA method when simulating

a workload of 5000 users.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Metric Value

Number of Users 5000

Recommended Pods (Capacity Planning)

Customers-service 26

Visits-service 24

Vets-service 39
Throughput

Predicted (Capacity Planning) 8167 rps

Obtained (SMVA) 8147 rps

SMVA Response Times

Customers-service 6.500 ms
Visits-service 2.687 ms
Vets-service 4.518 ms

Table 5.6: Comparison of Capacity Planning Recommendations and SMVA Results
at Larger Scale

As observed from the above results, the predicted throughput from the capacity
planning method aligns closely with the prediction of the SMVA algorithm. Moreover,
the response times remained relatively low and close to the mean processing times
when we used the suggested pod configuration by the capacity planning code. For
further validation, we reduced the pod instances for each of the services which led to
noticeable increase in the overall response times. For example, when the number of
pods was reduced to 48 for customers-service, 18 for vets-service, and 32 for visits-

service, the corresponding response times shifted to 8.12 ms, 30.28 ms, and 7.67 ms,

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

respectively. This experiment, further confirms the effectiveness and reliability of our

proposed capacity planning approach.

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Chapter 6

Conclusion

6.1 Main Conclusion

In this thesis, we have designed an approach to effectively plan the capacity of an
SaaS-based application. The methods we have used consist of three main steps, two
of which are complementary. We have first suggested utilizing a capacity planning
approach, which implemented the square-root staffing rule for a network of queues,
which in this case is a microservices application deployed on a Kubernetes cluster
of nodes. The capacity planning suggests an optimal number of pods per service
to maintain the performance within a reasonable range. This step ensures that we
neither over-provision nor under-provision resources, thus managing costs effectively
while adhering to Service Level Agreements (SLAs).

Afterwards, the suggested setup is tested in both analytical and simulation models
to check the performance results, response time, and throughput. The analytical
model is a closed Jackson network of load-dependent queues that is solved using

the SMVA approach to estimate our performance metrics of interest. The SMVA

46

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

algorithm was selected due to its computational simplicity, numerical stability, and
suitability to handle load-dependent behavior in closed queueing networks.

The simulation model, on the other hand, is a discrete-event simulation of the
application and the container orchestration engine that our apps are deployed and
running on. Since analytical models may not be able to capture inherent complexities
of applications and the influence of the environment and platforms on which these
apps run, a simulation tool could be a convenient complementary way to account
for these shortcomings. Our DES model is a straightforward tool for testing differ-
ent routing strategies and also scenarios that involve a service that simultaneously
interacts with multiple downstream services.

Furthermore, it has been an important matter for us to have validations of our
models. We performed load tests on the ready-to-use Spring PetClinic Cloud project,
which is a microservice-based web application. We deployed the app on a 2-node
Kubernetes cluster and performed load tests to capture metrics such as HT'TP re-
quests, response times for each microservices pod, throughput, and CPU utilization
of the pods. The results shown by these tests verify the validity and effectiveness of
our capacity planning approach, as well as the queueing model and simulation-based

performance analysis codes.

6.2 Future Work

Throughout this research, there have been points that could be noted to improve the
effectiveness and generalization of our approach to a wider spectrum of applications
and cover more granular behaviors of software systems.

Starting with the analytical method, we have used an approach that has inherent

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

limitations regarding request flow. MVA-based approaches assume sequential request
processing and are unable to handle parallel requests to downstream services since this
violates the independence assumption required for queues. An important improve-
ment here would be identifying approaches capable of handling fork-join scenarios,
such as decomposition techniques.

Another matter for consideration involves careful characterization of workload
distribution patterns. For simplicity, we have relied on Markovian assumptions like
exponential processing times, which might not accurately reflect real system behav-
iors. To improve this, we could incorporate non-Markovian models, such as those with
general distributions (e.g., phase-type distribution), or use empirical workload data
to derive more accurate service-time distributions. This would increase the fidelity of
our analytical and simulation models to real-world performance scenarios.

Moreover, another direction for the future work is to integrate the capacity plan-
ning approach with Kubernetes auto scaling feature. Kubernetes auto scaling, reac-
tively adjusts the node and pod instances based on load variations and performance
constraints. However, our method does this in a proactive way. Specifically, our
capacity planning approach may be used as a baseline configuration for Kubernetes
autoscalers. Furthermore, by dynamically monitoring the performance metrics of au-
toscaler with our analytical and simulation model results, we can refine the scaling
policies.

A final aspect that we can improve is relevant to our capacity planning approach.
Currently, our capacity planning tool only suggests an optimal combination of pods
to keep application performance within a predefined threshold. However, we can

enhance this by adding a scheduler that can decide where to optimally place the

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

pods, based on underlying resource constraints. Having this scheduler alongside our
capacity planning tool could result in better overall performance, reduced operational

costs, and better resource utilization.

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Appendix A

In this appendix, all code listings used in the thesis are provided.

A.1 Inventory Configuration

[al1]

nodel ansible_host=10.0.0.1 ip=10.0.0.1
node2 ansible_host=10.0.0.2 ip=10.0.0.2
[kube_control_plane]

nodel

[etcd]

nodel

[kube_node]

node2

20

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

A.2 ServiceMonitor Configuration

The following configuration defines the ServiceMonitor for a microservice labeled
app:customers-service. This configuration instructs Prometheus to scrape met-
rics from the microservice’s endpoint /actuator/prometheus on port http every 15

seconds.

apiVersion: monitoring.coreos.com/vl
kind: ServiceMonitor
metadata:
name: customers-service-servicemonitor
namespace: monitoring
labels:
release: my-prom-stack
spec:
selector:
matchlLabels:
app: customers-service
namespaceSelector:
matchNames:
- spring-petclinic
endpoints:
- port: http
path: /actuator/prometheus

interval: 15s

o1

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

A.3 Source Code Repository

The source code and the simulation framework developed are available at this GitHub

repository.

o2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://github.com/v-nafiseh/DES_Kubernetes.git
https://github.com/v-nafiseh/DES_Kubernetes.git

Appendix B

B.1 PetClinic Application Throughput

The figures demonstrate the throughput of PetClinic application microservices (Customers-
service, Visits-service, and Vets-service) in a four-step load test. During each of the
steps, the number of users or Pods changes, and the results for the changes in the
throughput of each of the microservices are recorded.

Throughput

175 req/s
150 req/s
125 req/s
100 req/s
75 req/s
50 req/s
25 reqg/s

O req/s

16:32:30 16:33:00 16:33:30 16:34:00 16:34:30 16:35:00 16:35:30 16:36:00 16:36:30 16:37:00 16:37:30

Figure B.1: PetClinic application throughput: Test 1 (50 users, 1 pod per service)

23

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Throughput

300 req/s

250 req/s

200 req/s

150 req/s
100 req/s
50 req/s

Oreq/s — o+ o o o o o o o o o o o F*

16:57:00 16:58:00 16:59:00 17:00:00 17:01:00 17:02:00 17:03:00

17:04:00 17:05:00 17:06:00 17:07:00 17:08:00 17:09:00 17:10:00

Figure B.2: PetClinic application throughput: Test 2 (50 users, 2 pods for
customers, 1 for visits, 1 for vets)

Throughput

120 req/s

100 req/s

A

80 req/s A

/
//

/ \\
60 req/s / /\ //
L &
40 req/s
20 req/s
0 req/s

17:22:00 17:23:00 17:24:00 17:25:00 17:26:00 17:27:00

17:28:00 17:29:00 17:30:00 17:31:00 17:32:00

Figure B.3: PetClinic application throughput: Test 3 (100 users, 1 pod per service)

o4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Throughput

175 req/s
150 req/s
125 req/s
100 req/s
75 req/s
50 req/s
25 req/s

0req/s @ ——o—F&
17:32:00 17:33:00 17:34:00 17:35:00 17:36:00 17:37:00 17:38:00 17:39:00 17:40:00 17:41:00 17:42:00 17:43:00 17:44:00 17:45:00 17:46:0

Figure B.4: PetClinic application throughput: Test 4 (100 users, 2 pods per service)

B.2 Discrete-Event Simulation Results (Response
and Queue Times)

The following figures present the mean response times and queue times of the simu-

lated PetClinic application in the DES framework, under the same previous setup.

95

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Mean Queue Time per Service

Mean Response Time per Service

1256
_ 124
= 6 2
2 E 101
I £
o 84
£ 44 F
= @ 64 5.91 ms
o @
z §
5 2 8 44
ES 2 273 ms
< 5|
] T T T o] T T T
jice ce ice ice iCe e
o-ser! - axs-se™ xe-5€! 5-5€ - 16-5€"
cuﬁ‘pmer ms\.i) et cusmme\’ N ?‘-\5\1 . et
customers-service Processing Times visits-service Processing Times
500 : B customers-service B visits-service
1 —=— Mean=5.81 —=— Mean=2.25
5, 400 :
9
g 1
S 300 A |
H
& 2004
100 A
0- T T T u T T T T
o] 10 20 30 40 7.5 10.0 12.5 15.0 17.5

Processing Time (ms)
vets-service Processing Times

mm vets-service
- = Mean=4.02

T
15 20 35

Processing Time (ms)

25

Processing Time (ms)

Figure B.5: Discrete-event simulation results: Test 1 (50 users, 1 pod per service)

Mean Queue Time per Service

Mean Response Time per Service

—r7mm
E 151 E 6 4 5.74 ms
T £
o
E 1.0 F 4
- o
g E 2.86 ms
g a
2 o054]
305 g2
o
0.0 T T T 0 T T T
WICE AVICe e ice VICe ice
o erss® (s se gers 52! msto“"ets—ae (s se et 5!
customers-service Processing Times visits-service Processing Times
600
: B customers-service B visits-service
500 1 —— Mean=5.77 —— Mean=2.27
1
2 400 |
H I
3 300 4 1
g
£ 2001
100 4
0- y T u y T T T T
()] 10 20 30 40 7.5 10.0 125 15.0 17.5
Processing Time (ms) Processing Time (ms)
vets-service Processing Times
m vets-service
== Mean=3.96

T
15 20
Processing Time (ms)

25

Figure B.6: Discrete-event simulation results: Test 2 (50 users, 2 pods for
customers, 1 for visits, 1 for vets)

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

Frequency

Frequency

Figure B.7: Discrete-event simulation results:

Frequency

Frequency

Mean Queue Time per Service

Mean Response Time per Service

4201
40 4
5 30 £
£ 3 01
o £
£ 207 [
@ 20
p] 20
£ 101 &
5 i" 10 4 9.23 ms
351 ms
0 T T T 0 T T T
jice e e ice ce e
senC persetV et ser ~ejesse™" sty
Cus‘pmeﬁ SIS vets Cus‘pmeﬁ SIS vets
customers-service Processing Times visits-service Processing Times
1200 |
B customers-service 1200 : B visits-service
1000 _ = _ =
Mean=5.89 1000 : Mean=2.32
800 4
g 800 !
o
6007 2 600 1
@
400 T 4004
200 4 200 4
0- u T T 0- T T T T T T
20 30 40 50 0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
Processing Time (ms) Processing Time (ms)
vets-service Processing Times
1250 m vets-service
== Mean=3.98
1000
750 4
500 4
250 4
o4

u T T
15 20 25

Processing Time (ms)

Mean Queue Time per Service

Mean Response Time per Service

Test 3 (100 users, 1 pod per service

4 10 1 57T
W
= 8]
23 E
K £
@ 6
E,] E
e ! 4.60 ms
44
g g
314 o 2.45 ms
LER
o] T T T 0 T T T
jice ce e jice ce ice
_eeriic _er sery sery s-se™Y -serV
mers Wsits vets omers WS vets
st X . cust .) .
customers-service Processing Times visits-service Processing Times
1200
1250 : B customers-service : B visits-service
| —— Mean=5.96 1000 4 1 —— Mean=2.34
1000 9 : > 800 :
i H 1
7501 | 3 600 1
@
T 400
200 +
y U y y 0- T T T T ™
20 30 40 50 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Processing Time (ms)
vets-service Processing Times

mm vets-service
== Mean=3.97

T T T
15 20 25

Processing Time (ms)

Processing Time (ms)

Figure B.8: Discrete-event simulation results: Test 4 (100 users, 2 pods per service)

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Bibliography

[1] Y. Bard. Some extensions to multiclass queueing network analysis. In Proceedings
of the 3rd International Symposium on Modelling and Performance Evaluation
of Computer Systems: Performance of Computer Systems, pages 51-62, New
York, 1979. North-Holland Publishing Co.

[2] M. Carvalho, D. A. Menascé, and F. Brasileiro. Capacity planning for iaas cloud
providers offering multiple service classes. Future Generation Computer Systems,

77:97-111, 2017.

[3] G. Casale. On single-class load-dependent normalizing constant equations. Per-

formance Evaluation, 65(11-12):844-858, 2008.

[4] A. C. H. Chen, M. C. H. Hsiang, and M.-Y. Wang. Efficiency analysis of mi-
croservices based on queueing models. In 2023 IEEFE International Conference on
Machine Learning and Applied Network Technologies (ICMLANT), pages 1-5,
2023.

[5] S. Chouliaras and S. Sotiriadis. Auto-scaling containerized cloud applications:
A workload-driven approach. Simulation Modelling Practice and Theory, 121:
102654, 2022.

o8

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

[6]

[9]

[10]

[11]

[12]

[13]

[14]

J. Correia, F. Ribeiro, R. Filipe, F. Araijo, and J. Cardoso. Response time
characterization of microservice-based systems. I[IEEFE Access, 9:85232-85244,
2021.

S. El Kafhali, I. E1 Mir, K. Salah, and M. Hanini. Dynamic scalability model
for containerized cloud services. Arabian Journal For Science and Engineering,

pages 10693-10708, 2020.

E. Furman and A. Diamant. Optimal capacity planning for cloud service
providers with periodic, time-varying demand. Computers & Operations Re-

search, 129:105223, 2021.

W. J. Gordon and G. F. Newell. Closed queueing systems with exponential
servers. Operations Research, 15(2):254-265, 1967.

J. Han, Y. Hong, and J. Kim. Refining microservices placement employing work-
load profiling over multiple kubernetes clusters. IEEE Access, 8:192543-192556,

2020.

M. Harchol-Balter. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press, 2013.

J. R. Jackson. Networks of waiting lines. Operations Research, 5(4):518-521,
1957.

J. R. Jackson. Jobshop-like queueing systems. Management Science, 10(1):131—
142, 1963.

R. Jain. The Art of Computer Systems Performance Analysis: Techniques for

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

[15]

[16]

[19]

[20]

[21]

Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons, New York, NY, USA, 1991.

A. Jindal, V. Podolskiy, and M. Gerndt. Performance modeling for cloud mi-
croservice applications. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering (ICPE ’19), pages 25-32. ACM, 2019.

H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Efficiency analysis
of provisioning microservices. In IEEE 8th International Conference on Cloud

Computing Technology and Science (CloudCom), pages 261-268. IEEE, 2016.

Y. Kouki and T. Ledoux. Sla-driven capacity planning for cloud applications. In
IEEFE jth International Conference on Cloud Computing Technology and Science,
pages 135-140. IEEE, 2012.

Kubernetes SIGs. Kubespray: Deploy a production ready kubernetes cluster.
https://github.com/kubernetes-sigs/kubespray, 2024. Accessed: 2024-05-

26.

S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud com-

puting — the business perspective. SSRN Electronic Journal, 2010.

D. A. Menascé, V. A. Almeida, and L. W. Dowdy. Performance by Design:
Computer Capacity Planning by Ezample. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2004.

R. Pinciroli, A. Aleti, and C. Trubiani. Performance modeling and analysis
of design patterns for microservice systems. In 2023 IEEE 20th International
Conference on Software Architecture (ICSA), pages 35-46, 2023.

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://github.com/kubernetes-sigs/kubespray

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

[22]

[23]

[24]

[25]

[26]

[27]

28]

P. Schweitzer. Approximate analysis of multiclass closed networks of queues. In
Proceedings of International Conference on Stochastic Control and Optimization,

pages 2529, Amsterdam, 1979.

A. A. Shahin. Enhancing elasticity of saas applications using queuing theory. In-
ternational Journal of Advanced Computer Science and Applications (IJACSA),
8(1):279-286, 2017.

Spring PetClinic Project. Spring petclinic cloud. https://github.com/

spring-petclinic/spring-petclinic-cloud, 2024. Accessed: 2025-06-18.

A. Srivastava and N. Kumar. Queueing model based dynamic scalability for
containerized cloud. International Journal of Advanced Computer Science and

Applications (IJACSA), 14(1):465, 2023.

W. Tian, M. Xu, A. Chen, G. Li, X. Wang, and Y. Chen. Open-source simulators
for cloud computing: Comparative study and challenging issues. Simulation

Modelling Practice and Theory, 58:239-254, 2015.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An analytical
model for multi-tier internet services and its applications. In Proceedings of the
ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, pages 291-302, 2005.

Q. Zhang and D. G. Down. SMVA: A stable mean value analysis algorithm for
closed systems with load-dependent queues. In Systems Modeling: Methodologies

and Tools, pages 27-44. Springer International Publishing, 2019.

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://github.com/spring-petclinic/spring-petclinic-cloud
https://github.com/spring-petclinic/spring-petclinic-cloud

M.A.Sc. Thesis — N. Valizadeh Shiran; McMaster University — Computing and Software

[29] Y. Zhang, Y. Gan, and C. Delimitrou. pgsim: Enabling accurate and scalable
simulation for interactive microservices. In 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 212-222

2019.

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

	Lay Abstract
	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Introduction
	Literature Review
	Analytical Queueing Models
	Simulation Approaches
	Hybrid and Empirical Validation Studies
	Critical Summary and Research Gap

	Methodology
	Queueing Networks
	Product Form Solution
	Stable Mean Value Analysis (SMVA)
	Algorithm Implementation
	Discrete-Event Simulation of Microservices

	Implementation
	Overview of the System Architecture
	Kubernetes Cluster Setup
	Microservices Deployment
	Monitoring Stack Setup

	Experimental Results
	Capacity Planning for Pods
	Experimental Results and Validation
	Validation and Comparative Analysis

	Conclusion
	Main Conclusion
	Future Work

	Appendix A
	Inventory Configuration
	ServiceMonitor Configuration
	Source Code Repository

	Appendix B
	PetClinic Application Throughput
	Discrete-Event Simulation Results (Response and Queue Times)

