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Abstract

We introduce and analyze a discrete-time, two-species competition model that requires one cycle
before newborn cohort can contribute to the growth of the population. Our formulation admits
all of the outcomes of the classical discrete Lotka-Volterra like competition model: both species
die out; one species wins the competition independent of the initial conditions; there is a unique
coexistence fixed point that is a saddle and the winning species depends on the initial conditions;
or there is a unique coexistence fixed point that is globally asymptotically stable. It also admits
two novel bistable regimes. In the first regime, one stable and one unstable interior fixed point
coexist with a stable and unstable boundary fixed point. In the second regime, the two boundary
fixed points are saddles and there are three interior fixed points; two are attractors and the one in
between them is a saddle. Using monotone dynamical systems theory, we show that every forward
orbit converges to some fixed point. In the general case, where the two species’ parameters need not
coincide, we derive sufficient conditions for extinction, exclusion, and unique coexistence. We also
establish sufficient conditions for each of the novel bistable regimes to occur provided we know how
many interior fixed points exist. In the symmetric case where certain ratios of the parameters of
each species are identical, the first of the bistable regimes is ruled out and we obtain necessary and
sufficient conditions for the second case. Finally, we illustrate each regime with phase portraits and
bifurcation diagrams.
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Chapter 1

Introduction and Motivation

Many species exhibit different survival probabilities between newborn and adult cohorts, even when
no direct juvenile–adult competition occurs. An experimental study on the cardinalfish Apogon
notatus [13] showed that females defended their breeding territories to guard newly spawned eggs
from predators. Consequently, the eggs experienced higher survival probability than the adults.
Likewise, an experimental study at Cape Crozier, Ross Island [1] showed that the adults of Adélie
penguins suffered high mortality due to breeding, especially among younger adults where the annual
survivorship is only 54.7%. In contrast, a study across six colonies at Cape Bird, Antarctica [9] found
that 56.2% of Adélie eggs hatched successfully and 63.3% of hatched chicks survived to fledging.
Similarly, [28] described that male three-spined stickleback constructed and defended nests, actively
guarded eggs and fry, indicating a higher survival probability for newborns.

However, many discrete-time competition models do not account for such differences and incor-
porate adults and juveniles in a single stage or age class. For example, the two-species competition
models introduced in [20, 21] model each species population as a single rational function that ignores
the stage or age structure. It was shown in [7] that the Leslie-Gower discrete competition model
only admits the same classical outcomes of the two species continuous Lotka-Volterra competition
model as in [22]. Such simplifications can miss important dynamical behavior.

To address this issue, many stage-structured competition models have been studied (see e.g.,
[5, 6, 32]). For example, the juvenile-adult model in [6] separates each species into juvenile and
adult stages and is given by a four-dimensional discrete-time competition system. Not only does
it recover all the outcomes of [7], but it also reveals stable and unstable two-cycles. In [32], a
three-stage, two-species competition model was introduced and shown to capture the same classical
outcomes. When the survivorship functions take the Ricker form, it can exhibit a period doubling
bifurcation and chaos. While these models capture richer dynamics, their high dimensionality makes
global stability analysis more complicated.

Recently, [27] separates a single species population into mature and immature cohorts incorpo-
rating a reproduction delay, τ , to model age classes. It separates the model into an adult survival
term and a juvenile survival term where the survival probability of the newborns to maturity in-
volves τ `1 breeding cycles. The adult survivors and newborns formulation can be easily generalized
to include more than one species. In this thesis, we extend that framework, assuming τ “ 0, to
two competing species, assuming that it requires only one cycle after birth for newborns to become
mature and contribute to the growth of the population. We obtain a planar competition model.
We show that this model not only exhibits the classical outcomes, but also admits multiple interior
attractors separated by a saddle, even though it is only two-dimensional. In order to study the
global dynamics of the model, we employ tools from the theory of monotone dynamical systems (see
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[3, 4, 8, 10, 15–19, 24, 30] and references therein). In particular, we show our model falls into the
class of competitive maps, in which each species’ population increases as its competitor’s population
decreases. To establish global convergence, we combine results in [25] and [8, 15, 16]. We carry
out this analysis first in the general (asymmetric) case, deriving sufficient conditions for extinction,
exclusion, and coexistence and we reveal two novel bistable regimes. Under the simplifying assump-
tion of symmetry, (i.e., certain ratios of the parameters are identical for each species), we obtain a
complete classification of the global dynamics.

1.1 Organization of the Thesis

The rest of this thesis is structured as follows:

• Chapter 2 introduces the preliminaries, including notation, definitions, and theorems on mono-
tone dynamical systems that are used throughout the thesis.

• Chapter 3 develops the core results for the mature–immature two-species competition model
in the general case, i.e., for arbitrary positive parameters. It is shown that there can be at
most three interior fixed points and every forward orbit must converge to some fixed point.
It also establishes sufficient conditions for global stability of the origin, for a unique interior
fixed point to exist, and identifies the bistable regimes in which orbits converge either to a
stable boundary fixed point or to a stable interior fixed point. In particular, whenever three
interior fixed points exist, both boundary fixed points are unstable and the two stable interior
fixed points are separated by the unstable saddle in the middle. This conclusion holds for both
general and symmetric cases. However, the regime with one stable interior fixed point and one
stable boundary fixed point occurs only in the general case.

• Chapter 4 restricts the discussion to the case where both species have identical parameters,
which we call the symmetric case of the model. This simplification allows us to make stronger
conclusions regarding global dynamics of the model and allows us to determine the basins of
attraction in the bistable regimes.

• Chapter 5 presents numerical illustrations of all the qualitative regimes derived earlier, in-
cluding schematic phase portraits for the symmetric and general cases. Bifurcation diagrams
are presented that highlight the possible sequences of bifurcations that include transcritical
bifurcations and a pitchfork bifurcation in the symmetric model and one or two saddle–node
bifurcations in the general case.

• Chapter 6 summarizes the main results, discusses their implications for biology, and outlines
future directions.

Through this, we aim to present a comprehensive analysis of the global dynamics of the planar
two-species competition model with single-cycle maturation, thereby contributing to the broader
literature on discrete competition models and provides a bridge between higher order stage and or
age structured models and the classical planar competition models.

2
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Chapter 2

Mathematical Background and
Preliminaries

2.1 Notation

• R denotes the set of real numbers.

• R` “ tr P R : r ě 0u denotes the set of non-negative real numbers.

• Z “ t. . . ,´2,´1, 0, 1, 2, . . . u denotes the set of all integers.

• N “ t0, 1, 2, . . . u denotes the set of nonnegative integers.

• N` “ t1, 2, 3, . . . u denotes the set of positive integers.

• Rn is the n-dimensional real vector space.

• For a subset A Ă Rn, intA denotes the interior of A. In particular, intRn
` “ tx P Rn : xi ą

0 for all iu.

• Vectors in Rn are denoted in boldface; e.g., x P Rn for n ą 1.

• Rn
` refers to the nonnegative orthant in Rn, i.e., tx “ px1, . . . , xnq P Rn : xi ě 0 for all iu.

• CmpUq denotes the class of functions that are m-times continuously differentiable on domain
U . In particular, if T P CmpUq, that means T is an m-times continuously differentiable map
from U Ă Rn into Rn.

• For a smooth vector-valued map T : Ω Ă Rn Ñ Rn, DTpxq denotes the Jacobian matrix of T
at the point x.

• For a real-valued function f : R Ñ R, we write the first derivative as f 1pxq (or d
dxfpxq), the

second derivative as f2pxq, and for higher-order derivatives we use the notation f pnqpxq.

We use boldface letters for all vectors (e.g. x,y P Rn) and vector valued functions (e.g. T : Ω Ñ Rn).
Scalars or parameters (e.g. t, α, β, f) are written in standard italic type. Unless otherwise stated,
all norms and inner products are the usual Euclidean ones.

3
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2.2 Standard Definitions in Discrete Dynamical Systems

The terminology presented here is standard in many texts on dynamical systems; see, for example,
[11, 23, 31].

Let X be a metric space, and let Ω Ă X be a subset. Consider a continuous map

T : Ω Ñ Ω.

For an initial point x0 P Ω, define the iterative sequence

xt`1 “ Tpxtq, t ě 0,

so that
xt “ Ttpx0q, t ě 0.

i.e., Tt denotes the tth iterate of the map, T.

Definition 2.2.1 (Spectral Radius). For a square matrix A the spectral radius is

ρpAq :“ maxt |λ| : λ is an eigenvalue of Au.

Definition 2.2.2 (Forward Orbit). For z P Ω, we define its forward orbit by

O`pzq :“ tTtpzq : t “ 0, 1, 2, . . . u.

Definition 2.2.3 (Forward-Invariant Set). The subset Ω Ă X is called forward invariant under the
map T : Ω Ñ Ω if

TpΩq Ă Ω.

Definition 2.2.4 (Fixed Point). A point x˚ P Ω is a fixed point of T if

Tpx˚q “ x˚.

Definition 2.2.5 (Periodic Point). A point x P Ω is said to be periodic with period p ą 0 if

Tppxq “ x,

and p is the smallest positive integer for which this holds. The set

Oppxq :“ tx,Tpxq, . . . ,Tp´1pxqu

is called the periodic orbit of x, and p is referred to as the prime period of x.

Definition 2.2.6 (Stability and Asymptotic Stability). A fixed point x˚ is called stable if, for every
ε ą 0, there exists δ ą 0 such that

}x0 ´ x˚} ă δ ùñ }xt ´ x˚} ă ε for all t ě 0.

If in addition xt Ñ x˚ as t Ñ 8 whenever }x0 ´ x˚} ă δ, then x˚ is called asymptotically stable.

Definition 2.2.7 (Global Asymptotic Stability). A fixed point x˚ is globally asymptotically stable
if it is asymptotically stable and all orbits in Ω converge to x˚. Equivalently,

lim
tÑ8

xt “ x˚ for every x0 P Ω.

4
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Definition 2.2.8 (Basin of Attraction). Let x˚ P Ω be a fixed point of T. The basin of attraction
of x˚ is

Bpx˚q :“ tx0 P Ω : lim
tÑ8

Ttpx0q “ x˚u.

Definition 2.2.9 (ω-Limit Set). For x0 P Ω, the ω-limit set of x0 is

ωpx0q “ ty P Ω : there exists tk Ñ 8 with xtk Ñ yu.

Definition 2.2.10 (Hyperbolic Fixed Point, Stable Manifold). If x˚ is a hyperbolic fixed point of
a smooth map T (meaning the Jacobian DTpx˚q has no eigenvalues on the unit circle), then the
stable manifold of x˚ is

W spx˚q “ tx P Ω : lim
tÑ8

Ttpxq “ x˚u.

2.3 Cone-Induced Partial Orders

Definition 2.3.1 (Positive Cone [15]). A nonempty subset Y` of a Banach space Y is said to be a
positive cone if it satisfies

(1) Y` ` Y` Ă Y`;

(2) R` ¨ Y` Ă Y`;

(3) Y` X p´Y`q “ t0u;

(4) Y` ‰ t0u.

Here, Y` is viewed as the positive elements in Y : y P Y` ðñ y ě 0.

Definition 2.3.2 (Cone-Induced Partial Order [15, 25]). Given a positive cone Y` “ K Ă Rn, we
define a partial order ďK on Rn by

x ďK y ðñ y ´ x P K.

We then write
x ăK y ðñ x ďK y and x ‰ y,

and
x !K y ðñ y ´ x P intK.

If the cone K is taken to be the positive orthant, i.e.,

K “ Rn
` “ tx P Rn : xi ě 0 for i “ 1, . . . , nu,

then we omit the subscript K in the above definition.

Definition 2.3.3 (Comparability [2, 15]). Let pRn,ďKq be a partially ordered set induced by the
cone K. Two points x,y P Rn are said to be comparable if either

x ďK y or y ďK x.

Otherwise, x and y are said to be incomparable.

5
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Definition 2.3.4 (Order Intervals [2, 15]). For x,y P Rn with x ďK y, the closed order interval
rx,ysK is defined by

rx,ysK “ tz P Rn : x ďK z ďK yu.

If x !K y, the open order interval rrx,yssK is defined by

rrx,yssK “ tz P Rn : x !K z !K yu.

Definition 2.3.5 (Order-Convex Sets [2, 15]). A subset Ω Ă Rn is order-convex (with respect to
ďK) if for any x,y P Ω and x ďK y, we have

rx,ysK Ă Ω.

2.4 Order-Preserving Maps

Let Ω Ă Rn and let T : Ω Ñ Ω be continuous.

Definition 2.4.1 (Order-Preserving, Strictly, and Strongly Order-Preserving [15, 25]). We say T
is:

• order-preserving if, for all x,y P Ω,

x ďK y ùñ Tpxq ďK Tpyq,

• strictly order-preserving if, for all x,y P Ω,

x ăK y ùñ Tpxq ăK Tpyq,

• strongly order-preserving if, for all x,y P Ω,

x !K y ùñ Tpxq !K Tpyq.

2.5 Planar Competitive Maps

Consider the discrete-time dynamical system defined by

xt`1 “ Tpxtq, t “ 0, 1, 2, . . . ,

where xt P Ω Ă Rn and T : Ω Ñ Ω a C1pΩq map. Let x0 P Ω be the initial condition. Take any
x,y P Ω with x “ px1, x2q and y “ py1, y2q. Consider the cone

K “ tpu, vq P R2 : u ě 0, v ď 0u,

which induces the partial order

x “ px1, x2q ďK y “ py1, y2q ðñ px1 ď y1q and px2 ě y2q.

Accordingly, we define
x ăK y ðñ px1 ď y1, x2 ě y2, x ‰ yq,

and
x !K y ðñ px1 ă y1q and px2 ą y2q.

6
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Definition 2.5.1 (Competitive, Strictly and Strongly Competitive Maps [15, 25]). Let Ω Ă R2 and
T : Ω Ñ Ω be continuous. We say T is:

1. Competitive if
x ďK y ùñ Tpxq ďK Tpyq for all x,y P Ω,

2. Strictly Competitive if

x ăK y ùñ Tpxq ăK Tpyq for all x,y P Ω,

3. Strongly Competitive if

x ăK y ùñ Tpxq !K Tpyq for all x,y P Ω.

Remark 2.5.1 ([4, Proposition 3.1]; [19, Proposition 2.1]). If T is differentiable, a sufficient condi-
tion for T to be strongly competitive is that, for every x P Ω, the Jacobian matrix

DTpxq “

«

BT1

Bx1
pxq BT1

By1
pxq

BT2

Bx1
pxq BT2

By1
pxq

ff

has the sign configuration
„

` ´

´ `

ȷ

,

i.e.,
BT1

Bx1
pxq ą 0,

BT1

By1
pxq ă 0,

BT2

Bx1
pxq ă 0,

BT2

By1
pxq ą 0.

Definition 2.5.2 (K-positive and Strongly K-positive Linear Maps [15, 25]). Let F : R2 Ñ R2 be
a linear map and let K Ă R2 be a cone. We say that:

1. F is K-positive if
F pKq Ď K,

that is, for every x P K, we have F pxq P K.

2. F is strongly K-positive if
F pKzt0uq Ă intK,

that is, for every nonzero x P K, we have F pxq P intK.

Lemma 2.5.1 ([25], page 5). A 2 ˆ 2 matrix M is called K-positive, if the diagonal entries are
non-negative and off diagonal entries are non-positive.

Definition 2.5.3 ([15, 25]). We say that T : Ω Ă R2
` Ñ Ω satisfies condition (O`) if for every

x “ px1, x2q,y “ py1, y2q P Ω,
Tpxq ! Tpyq ùñ x ď y,

i.e., if
T1pxq ă T1pyq and T2pxq ă T2pyq,

then
x1 ď y1 and x2 ď y2.

Lemma 2.5.2 ([25, Lemma 4.3]). If T : Ω Ă R2
` Ñ Ω is C1 and:

7
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(a) Ω contains order intervals and is ďK convex.

(b) detpDTpxqq ą 0 for x P Ω.

(c) DTpxq is K-positive in Ω.

(d) T is injective.

then T is competitive and condition (O`) holds.

Theorem 2.5.1 ([25, Theorem 4.2]). Let T : Ω Ă R2
` Ñ Ω be a competitive map satisfying condition

(O`). Then for every x in Ω, the forward orbit tTtpxqutě0 is eventually componentwise monotone.
Moreover, if the orbit of x has compact closure in Ω, then it converges to a fixed point of T.

The following results originate from [8] and are presented here in the form given by [15]. They
require the following hypothesis that they refer to as (G).

Hypothesis 2.5.1. Let Ω “ ra,bsK “ tx P R2 : a ďK x ďK bu where a,b P R2 and a ăK b. The
map T : Ω Ă R2 Ñ Ω is order preserving and TpΩq has compact closure in Ω.

Theorem 2.5.2 (Order Interval Trichotomy [8, Proposition 1]; [15, Theorem 5.1]). Assume Hy-
pothesis 2.5.1. Then at least one of the following holds:

(a) there exists a fixed point c P Ω such that a ăK c ăK b

(b) there exists an entire orbit txnunPZ Ă Ω with lim
tÑ´8

xt “ a and lim
tÑ`8

xt “ b that is nonde-

creasing in the K-order and strictly increasing if T is strictly order preserving.

(c) there exists an entire orbit txtutPZ Ă Ω with lim
tÑ´8

xt “ b and lim
tÑ`8

xt “ a that is nonincreas-

ing in the K-order and strictly decreasing if T is strictly order preserving.

Corollary 2.5.1 ([8, Theorem 4]; [15, Corollary 5.2]). Assume Hypothesis 2.5.1, and let a and b
be stable fixed points of T. Then there is a third fixed point in Ω “ ra,bsK .

Proposition 2.5.1 ([15, Proposition 5.3]). Consider (a),(b),(c) in Theorem 2.5.2. Assume Hypoth-
esis 2.5.1.

(i) If a !K b, at most one of (b),(c) can hold.

(ii) If T is strongly order preserving, then exactly one of (a),(b),(c) can hold.

2.6 Useful Definitions and Theorems

Theorem 2.6.1 (Bolzano–Poincare–Miranda (see e.g., [29])). Let

In “ tx P Rn : |xi| ă q, 1 ď i ď nu,

and
G “ pg1, g2, . . . , gnq : In Ñ Rn

be a continuous mapping defined on the closure of In such that Gpxq ‰ 0 for all x on the boundary
of In. Assume further that for each i,

gipx1, . . . , xi´1,´q, xi`1, . . . , xnq ě 0 and gipx1, . . . , xi´1,`q, xi`1, . . . , xnq ď 0

8
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on the respective boundary faces. Then there exists at least one point x˚ P In such that

Gpx˚q “ 0.

Definition 2.6.1 (P -matrix, [14]). A real nˆn matrix is called a P -matrix if every principal minor
(i.e., the determinant of every principal submatrix) is positive.

Theorem 2.6.2 ([14, Theorem 4]). Let Ω Ă Rn be a rectangular region (open or closed) and
T : Ω Ñ Rn be C1. If DTpxq is a P -matrix for every x P Ω, then T is injective on Ω.

9
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Chapter 3

The Two-Species Competition
Model

3.1 The Model

We formulate a competition model between two species Xt and Yt based on the formulation of a
single species model introduced in [27]. For each species, we consider that the species at time t ` 1
consists of the individuals that were alive at time t and survive to time t ` 1 as well as individuals
born at the beginning of the time period pt, t ` 1q that survive until time t ` 1. Thus, the general
form for a species Z at time t ` 1 is then

Zt`1 “ stZt ` rstgZt, (3.1.1)

where the first term represents the survival of the individuals that were alive at time t, determined
by the fraction st P r0, 1s. The second term, rstgZt represents the newborn individuals (gZt, g ą 0)
that survive until time t ` 1, determined by the newborn survival probability rst P r0, 1s.

To include competition in the single species model, the general model construction aligns with
the model derivation technique for single species introduced in [27] where they also allowed for
incorporation of a delay in the reproduction terms.

We consider the following model of two-species competition. Here, the equations for Xt and Yt

are of the form of (3.1.1) and we assume that the adult survival probability, st, is subject to natural
mortality, intra-specific competition, and inter-specific competition. We assume that immediately
after time t, populations Xt, Yt produce r1Xt, r2Yt newborns, where r1, r2 ą 0 are the number of
offspring per adult of species of X and Y , respectively. On the other hand, the newborn survival
probability rst is subject to natural mortality and intra-specific competition within the newborn
cohort.

Xt`1 “
Xt

1 ` d1 ` C11Xt ` C12Yt
`

r1Xt

p1 ` D1q ` C1r1Xt
, (3.1.2a)

Yt`1 “
Yt

1 ` d2 ` C22Yt ` C21Xt
`

r2Yt

p1 ` D2q ` C2r2Yt
. (3.1.2b)

Here, the survival probability of the adults of species X is given by s
pXq

t “ 1
1`d1`C11Xt`C12Yt

,

10
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where d1 ą 0 is the natural mortality coefficient of adults of species X, C11 ą 0 is the intra-
specific competition coefficient for individuals of adults, and C12 ą 0 is the inter-specific competition
coefficient for adults of species X due to competition with adults of species Y . A similar structure

is obtained for adults of species Y , s
pY q

t , with a respective description of the parameters. We also

model the survival of the newborn cohort of species X as rst
pXq

“ 1
1`D1`C1r1Xt

, where D1 ą 0
is the natural mortality coefficient of the newborns of species X and C1 ą 0 measures the intra-

specific competition among its newborn individuals. A similar expression holds for rst
pY q with the

corresponding parameters.
Next, we nondimensionalize system (3.1.2) by letting

Xt “
xt

C11
, Yt “

yt
C22

, α1 “
C12

C22
, α2 “

C21

C11
, µ1 “

C1

C11
, µ2 “

C2

C22
, δ1 “

1 ` D1

r1
, δ2 “

1 ` D2

r2
.

This yields

xt`1 “
xt

1 ` d1 ` xt ` α1yt
`

xt

δ1 ` µ1xt
, (3.1.3a)

yt`1 “
yt

1 ` d2 ` yt ` α2xt
`

yt
δ2 ` µ2yt

, (3.1.3b)

where
di, αi, µi, δi ą 0 for i “ 1, 2.

Let zt “ pxt, ytq and fpx, yq “ pf1px, yq, f2px, yqq where

f1px, yq “
1

1 ` d1 ` x ` α1y
`

1

δ1 ` µ1x
, f2px, yq “

1

1 ` d2 ` y ` α2x
`

1

δ2 ` µ2y
. (3.1.4)

Define
Tpx, yq “ pT1px, yq, T2px, yqq “ pxf1px, yq, yf2px, yqq, (3.1.5)

so that T : R2
` Ñ R2

` matches the right-hand sides of (3.1.3). We now introduce the symmetric
case by letting

d1 “ d2, δ1 “ δ2, µ1 “ µ2, α1 “ α2, (3.1.6)

Next, we establish well-posedness of system (3.1.3).

3.2 Analysis of the two-species model

3.2.1 Well-Posedness

We first show that the model is well-posed, i.e, solutions with nonnegative initial conditions remain
nonnegative and all solutions are bounded.

For any z “ px, yq P R2
`, let

O`pzq :“ tTtpzq : t “ 0, 1, 2, . . . u.

Define

A :“
”

0, 1 `
1

µ1

ı

ˆ

”

0, 1 `
1

µ2

ı

.

Lemma 3.2.1. Consider (3.1.5). Then, TpR2
`q Ď A and all solutions starting in intR2

` remain
positive.
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Proof. First observe that every term in T (see (3.1.5)) is strictly positive, so any orbit starting in
intR2

` remains positive. Next, for any px, yq P R2
`:

T1px, yq “
x

1 ` d1 ` x ` α1y
`

x

δ1 ` µ1x
ď

x

1 ` d1 ` x
`

x

µ1x
ď 1 `

1

µ1
.

A similar argument shows 0 ď T2px, yq ď 1 ` 1
µ2
. This implies

TpR2
`q Ď

”

0, 1 `
1

µ1

ı

ˆ

”

0, 1 `
1

µ2

ı

“ A

Since A is compact and forward invariant under T, every forward orbit enters A in at most one step
and remains there, completing the proof.

Remark 3.2.1. Any fixed point x˚ of T must satisfy x˚ “ Tpx˚q P TpR2
`q Ď A.

Having established that all fixed points lie in A, we now show that T also admits forward
invariant sets, including the coordinate axes, and under symmetry, the diagonal.

Lemma 3.2.2. The following sets are forward invariant under T:

tpx, 0q : x ě 0u, tp0, yq : y ě 0u.

Moreover, if T satisfies the symmetry assumption, (3.1.6), then the diagonal tpx, xq : x ě 0u is also
forward invariant under T.

Proof. For any x ě 0, one has

Tpx, 0q “ pT1px, 0q, 0q P tpx, 0q : x ě 0u, Tp0, xq “ p0, T2p0, xqq P tp0, yq : y ě 0u.

Finally, under the symmetry assumption (3.1.6), we have T1px, xq “ T2px, xq. Thus,

Tpx, xq “ pT1px, xq, T1px, xqq P tpx, xq : x ě 0u.

3.2.2 Properties of Nullclines

Setting T1px, yq “ xf1px, yq “ x and T2px, yq “ yf2px, yq “ y in system (3.1.3), yields the nullclines,

x-nullclines: x “ 0 or y “ ℓ1pxq “
1

α1pµ1x ` δ1 ´ 1q
´

x ` d1
α1

. (3.2.1a)

y-nullclines: y “ 0 or x “ pℓ2pyq “
1

α2pµ2y ` δ2 ´ 1q
´

y ` d2
α2

. (3.2.1b)

Note that we express the nontrivial y-nullcline as a function of y rather than x here to emphasize
that it has a horizontal asymptote. We will express it as a function of x later, as well.

Define the vertical asymptote of y “ ℓ1pxq as

xasy :“
1 ´ δ1
µ1

,
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and the horizontal asymptote of y “ pℓ2pyq as

yasy :“
1 ´ δ2
µ2

.

For every x ‰ xasy, a direct calculation shows

lim
xÑx´

asy

ℓ1pxq “ ´8, lim
xÑx`

asy

ℓ1pxq “ `8, lim
xÑ´8

ℓ1pxq “ `8, lim
xÑ`8

ℓ1pxq “ ´8. (3.2.2)

On each side of x “ xasy, ℓ1pxq is C2. The derivatives of y “ ℓ1pxq are

ℓ1
1pxq “ ´

µ1

α1pµ1x ` δ1 ´ 1q2
´

1

α1
, (3.2.3)

ℓ2
1pxq “

2µ2
1

α1pµ1x ` δ1 ´ 1q3
. (3.2.4)

This implies ℓ1pxq is strictly decreasing on both p´8, xasyq and pxasy,8q, concave on p´8, xasyq and
convex on pxasy,8q. By continuity and strict monotonicity, ℓ1pxq : p´8, xasyq Ñ R is a bijection
which implies y “ ℓ1pxq admits a continuous inverse. Clearly, if xasy ă 0, then the branch of
y “ ℓ1pxq to the left of xasy never enters the first quadrant. Even if xasy ą 0, since 0 ă δ1 ă 1, it
follows that

ℓ1pxq ď ℓ1p0q “
1

α1pδ1 ´ 1q
´

d1
α1

ă 0, @x P p0, xasyq. (3.2.5)

So the left branch never enters the first quadrant in all cases. By reflecting the graph of ℓ1pxq with

respect to y “ x, one sees that x “ pℓ2pyq satisfies the corresponding properties. In particular,

lim
yÑy´

asy

pℓ2pyq “ ´8, lim
yÑy`

asy

pℓ2pyq “ `8, lim
yÑ´8

pℓ2pyq “ `8, lim
yÑ`8

pℓ2pyq “ ´8. (3.2.6)

Similarly, even if yasy ą 0,
pℓ2pyq ď pℓ2p0q ă 0, @y P p0, yasyq.

This implies the branch of x “ pℓ2pyq below y “ yasy never enters the first quadrant, as well.

The properties of the branches of y “ ℓ1pxq and x “ pℓ2pyq that lie outside of the first quadrant
are illustrated in Figure 3.1.
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xasy

yasy

Figure 3.1: The blue dashed line is x “ xasy and the red dashed line is y “ yasy. The blue solid curve is
the branch of the x-nullcline to the left of xasy and the red solid curve is the branch of the y-nullcline above
y “ yasy. The intersection is labeled with a black circle.

With the above properties of the nullclines in mind, we show that the branch to the left of xasy

of ℓ1pxq and the branch above the yasy of pℓ2pyq must intersect at least once outside of the first
quadrant.

Lemma 3.2.3. The two nontrivial nullclines

y “ ℓ1pxq and x “ pℓ2pyq

defined in (3.2.1), intersect at least once outside of the first quadrant.

Proof. Define
hpxq :“ pℓ2pℓ1pxqq.

Note that
y “ ℓ1pxq and x “ pℓ2pyq ðñ x “ pℓ2pℓ1pxqq.

So an intersection of the nullclines is equivalent to a fixed point of hpxq. Since

lim
xÑ´8

hpxq “ ´8 and lim
xÑx´

asy

hpxq “ `8,

the continuity and Intermediate Value Theorem ensure at least one intersection x̂ P p´8, xasyq with
hpx̂q “ x̂. By (3.2.5), either x̂ ă 0 or ℓ1px̂q ă 0 , so at least one intersection lies outside of the first
quadrant.

Remark 3.2.2. Any fixed point in intR2
` of (3.1.3) must lie to the right of x “ xasy and above

y “ yasy.

Next, we find an alternative expression for the branch of the y-nullcline that is above y “ yasy.
This will be used to determine a sufficient condition for a unique interior fixed point

y “ ℓ`
2 pxq :“

´ rpδ2 ´ 1q ` µ2pd2 ` α2xqs `

b

pδ2 ´ 1 ´ µ2pd2 ` α2xqq
2

` 4µ2

2µ2
. (3.2.7)
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Define

rSpxq :“
´µ2pα2x ` d2q ` δ2 ´ 1

b

“

´µ2pα2x ` d2q ` δ2 ´ 1
‰2

` 4µ2

´ 1. (3.2.8)

A direct calculation yields

pℓ`
2 q1pxq “

α2

2
rSpxq, (3.2.9)

pℓ`
2 q2pxq “

2α2
2µ

2
2

´

p´µ2pα2x ` d2q ` δ2 ´ 1q
2

` 4µ2

¯3{2
. (3.2.10)

3.2.3 Existence and Number of Fixed Points

In this subsection, we establish the existence conditions and number of fixed points in R2
`. In order

to do this, we require the following lemma on the behavior of the functions fi for i “ 1, 2 in implicit
form.

Lemma 3.2.4. Consider (3.1.4) with px, yq P R2
`. Let i P t1, 2u.

(a) If δi ě 1 ` 1
di
, then fipx, yq ď 1 for all px, yq P R2

` with equality if and only if px, yq “ p0, 0q.

(b) If 0 ă δi ă 1 ` 1
di
, then there exists at least one px, yq P R2

` such that fipx, yq “ 1.

(c) If

0 ă δ1 ă 1 `
1

d1 ` α1

´

1 ` 1
µ2

¯ and 0 ă δ2 ă 1 `
1

d2 ` α2

´

1 ` 1
µ1

¯ ,

then there exists at least one point px˚, y˚q P intA such that

f1px˚, y˚q “ 1 “ f2px˚, y˚q.

Proof. (a) We first compute the partial derivatives of both f1px, yq and f2px, yq:

Bf1
Bx

px, yq “ ´
1

p1 ` d1 ` x ` α1yq2
´

µ1

pδ1 ` µ1xq2
,

Bf1
By

px, yq “ ´
α1

p1 ` d1 ` x ` α1yq2
,

Bf2
Bx

px, yq “ ´
α2

p1 ` d2 ` y ` α2xq2
,

Bf2
By

px, yq “ ´
1

p1 ` d2 ` y ` α2xq2
´

µ2

pδ2 ` µ2yq2
.

(3.2.11)

From (3.2.11), we see
Bfi
Bx

px, yq ă 0,
Bfi
By

px, yq ă 0 @ px, yq P R2
`,

so each fi is strictly decreasing in both variables and each attains its maximum value at p0, 0q. A
direct evaluation gives

fip0, 0q “
1

1 ` di
`

1

δi
.

If δi “ 1 ` 1{di, then fip0, 0q “ 1 and since each fi is strictly decreasing,

fipx, yq ă 1 @ px, yq P R2
`ztp0, 0qu,
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so fipx, yq ď 1 everywhere with equality only at p0, 0q. If instead, δi ą 1 ` 1{di then fip0, 0q ă 1
and monotonicity gives

fipx, yq ď fip0, 0q ă 1, @px, yq P R2
`.

(b) A direct calculation shows

fip0, 0q ą 1 ðñ δi ă 1 `
1

di
,

while
lim

x,yÑ8
fipx, yq “ 0 ă 1.

Since fipx, yq is continuous on R2
`, the Intermediate Value Theorem guarantees at least one px˚, y˚q P

R2
` with fipx

˚, y˚q “ 1.
(c) By (3.2.11), both f1 and f2 are strictly decreasing in each variable. Hence, on x “ 0, f1p0, yq

decreases for y P r0, 1 ` 1{µ2s (so its minimum occurs at y “ 1 ` 1{µ2) and f2p0, yq decreases
for y P r0, 1 ` 1{µ1s (so its minimum occurs at y “ 1 ` 1{µ1). On y “ 0, f1px, 0q decreases for
x P r0, 1 ` 1{µ1s (maximum at x “ 0) and f2px, 0q decreases for x P r0, 1 ` 1{µ2s (maximum at
x “ 0). Hence on A, it suffices to check when

f1
`

0, 1 ` 1{µ2

˘

ą 1, f1
`

1 ` 1{µ1, 0
˘

ă 1, f2
`

0, 1 ` 1{µ1

˘

ą 1, f2
`

1 ` 1{µ2, 0
˘

ă 1.

By calculations,

f1p0, 1 ` 1{µ2q “
1

1 ` d1 ` α1

`

1 ` 1
µ2

˘ `
1

δ1
ą 1 ðñ δ1 ă 1 `

1

d1 ` α1

`

1 ` 1
µ2

˘ .

and

f1p1 ` 1{µ1, 0q “
1

1 ` d1 ` 1 ` 1
µ1

`
1

δ1 ` µ1

`

1 ` 1
µ1

˘ ă 1,

holds for all δ1 ą 0 and d1 ą 0 and therefore adds no further restrictions, noting that the left-hand
side of the inequality is a decreasing function of both d1 and δ1 and

1

2 ` 1
µ1

`
1

µ1

`

1 ` 1
µ1

˘ “
µ2
1 ` 3µ1 ` 1

2µ2
1 ` 3µ1 ` 1

ă 1.

Similarly for f2,

f2p0, 1 ` 1{µ1q ą 1 ðñ δ2 ă 1 `
1

d2 ` α2

`

1 ` 1
µ1

˘ .

By Theorem 2.6.1, there exists px˚, y˚q P intA with

f1px˚, y˚q “ 1 “ f2px˚, y˚q,

provided the conditions in (c) of the lemma hold.

We now show how the nullclines determine when boundary or interior fixed points exist.
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Proposition 3.2.1. Consider system (3.1.3). The following statements hold:

(a) (Trivial Fixed Point) E0 “ p0, 0q always exists.

(b) (Boundary Fixed Points) A positive boundary fixed point Ex “ px, 0q (respectively, Ey “

p0, yq) where x ą 0 (respectively, y ą 0) exists if and only if

0 ă δ1 ă 1 `
1

d1

ˆ

respectively, 0 ă δ2 ă 1 `
1

d2

˙

,

where

x :“
´ pµ1d1 ` δ1 ´ 1q `

b

rµ1d1 ´ pδ1 ´ 1qs
2

` 4µ1

2µ1
, (3.2.12)

and

y :“
´ pµ2d2 ` δ2 ´ 1q `

b

rµ2d2 ´ pδ2 ´ 1qs
2

` 4µ2

2µ2
. (3.2.13)

Under the symmetry assumption (3.1.6), x “ y where

x “
´ pµd ` δ ´ 1q `

b

rµd ´ pδ ´ 1qs
2

` 4µ

2µ
.

Ex (respectively, Ey) coalesces with E0, whenever δ1 “ 1 ` 1
d1

(respectively, δ2 “ 1 ` 1
d2
).

(c) (Interior Fixed Points) A sufficient condition for at least one interior fixed point E˚ to
exist is

0 ă δ1 ă 1 `
1

d1 ` α1

´

1 ` 1
µ2

¯ and 0 ă δ2 ă 1 `
1

d2 ` α2

´

1 ` 1
µ1

¯ .

A necessary condition for at least one interior fixed point to exist is

δ1 ă 1 `
1

d1
and δ2 ă 1 `

1

d2
,

i.e., both nontrivial boundary fixed points exist.

Proof. a) It is obvious. (b) This follows from Lemma 3.2.4(b) and noting that when x ” 0 or
y ” 0 then system (3.1.3) reduces to a special case of the single-species growth models considered
in Theorem 4.5 of [26] where for the growth model it was proved at most one positive fixed point
exists. (c) This follows immediately from Lemma 3.2.4(c).

We now prove there are at most three intersections of the x- and y-nullclines with both compo-
nents positive and hence, at most three interior fixed points.

Proposition 3.2.2. System (3.1.3) admits at most three interior fixed points in R2
`. If α1α2 “ 1,

it admits at most two.

Proof. Setting fipx, yq “ 1, i “ 1, 2 and simplifying, each nullcline can be expressed as a conic in
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R2:

f1px, yq “ 1 ðñ Q1px, yq “ µ1x
2 ` pd1µ1 ` δ1 ´ 1qx ` α1pδ1 ´ 1qy

` α1µ1 xy ` d1δ1 ´ d1 ´ 1 “ 0, (3.2.14)

f2px, yq “ 1 ðñ Q2px, yq “ µ2y
2 ` pd2µ2 ` δ2 ´ 1qy ` α2pδ2 ´ 1qx

` α2µ2 xy ` d2δ2 ´ d2 ´ 1 “ 0. (3.2.15)

Hence, any interior fixed point satisfies

Q1px, yq “ 0 and Q2px, yq “ 0.

A necessary condition for an interior fixed point to exist is that

Qpx, yq :“ f1px, yq ´ f2px, yq “ Q1px, yq ´ Q2px, yq “ 0.

Setting Qpx, yq “ 0, we obtain

Qpx, yq “ µ1x
2 ` pα1µ1 ´ α2µ2qxy ´ µ2y

2 `
`

d1µ1 ` δ1 ´ 1 ´ α2pδ2 ´ 1q
˘

x

`
`

α1pδ1 ´ 1q ´ d2µ2 ´ δ2 ` 1
˘

y `
“

d1pδ1 ´ 1q ` d2p1 ´ δ2q
‰

“ 0.
(3.2.16)

For every x ‰ xasy, Q1px, yq “ 0 is equivalent to y “ ℓ1pxq so substituting y “ ℓ1pxq into
Q2px, yq “ 0 gives

rQpxq “ η4x
4 ` η3x

3 ` η2x
2 ` η1x ` η0 “ 0, (3.2.17)

where ηj are provided in Appendix A.1. Thus, rQpxq has at most four real roots (at most three when
α1α2 “ 1, since then η4 “ 0). Each px˚, ℓ1px˚qq yields an intersection of the two nullclines. Hence

y “ ℓ1pxq and x “ pℓ1pyq intersect at most four times (three times if α1α2 “ 1) in R2 and at least
one of those intersections always lies outside the first quadrant (Lemma 3.2.3). So, there are at most
three intersections in R2

` (two when α1α2 “ 1), and hence at most three interior fixed points (two
when α1α2 “ 1).

Remark 3.2.3. If there is a unique interior fixed point, we refer to it as E˚. If there are two interior
fixed points, we refer to them as E˚

1 and E˚
2 . If there are three interior fixed points, we refer to them

as E˚
1 , E

˚
2 , and E˚

3 .

We now derive sufficient conditions for system (3.1.3) to admit a unique interior fixed point. To
do so, we collect nullcline derivatives needed in Lemma 3.2.5.

Lemma 3.2.5. Consider system (3.1.3). If

δ1 ă 1 `
1

d1 ` α1p1 ` 1
µ2

q
, δ2 ă 1 `

1

d2 ` α2p1 ` 1
µ1

q
, α1α2 ă 1 `

µ1

pµ1 ` δ1 ´ 1q2
, (3.2.18)

then there exists a unique interior fixed point.

Proof. By Proposition 3.2.1(c), the first two conditions in (3.2.18) imply that there is at least one
interior fixed point. We show the third condition implies that there is at most one interior fixed
point.

Define h̃pxq :“ ℓ1pxq ´ ℓ`
2 pxq. Since ℓ1pxq, ℓ`

2 pxq (see (3.2.3)) are C1 on I “ pxasy, 1 ` 1
µ1

s,
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h̃ P C1pIq. Next, we find conditions so that

ℓ1
1pxq ă pℓ`

2 q1pxq, @x P

ˆ

xasy, 1 `
1

µ1

ȷ

. (3.2.19)

Then, h̃pxq is strictly decreasing and hence has at most one root for h̃pxq “ 0. In order to show
this, it suffices to determine an upper bound for ℓ1

1pxq and a lower bound for pℓ`
2 q1pxq. By (3.2.4),

ℓ2
1pxq ą 0 for all x ą xasy. Therefore, the maximum of ℓ1

1pxq occurs at x “ 1 ` 1
µ1
. A direct

computation shows

ℓ1
1pxq ď ´

1

α1

ˆ

1 `
µ1

pµ1 ` δ1 ´ 1q2

˙

, @x P

ˆ

xasy, 1 `
1

µ1

ȷ

. (3.2.20)

Similarly by (3.2.10), pℓ`
2 q2pxq ą 0 for any x P R. Therefore, the minimum of pℓ`

2 q1pxq occurs as x

approaches the left end point of I. By (3.2.8), rSpxq P p´2, 0q for every x P R. It follows that

pℓ`
2 q1pxq P p´α2, 0q, @x ě xasy. (3.2.21)

Combining (3.2.20) and (3.2.21), a sufficient condition for (3.2.19) to hold is

´
1

α1

ˆ

1 `
µ1

pµ1 ` δ1 ´ 1q2

˙

ă ´α2.

This inequality is equivalent to

0 ă α1α2 ă 1 `
µ1

pµ1 ` δ1 ´ 1q2
. (3.2.22)

Therefore, under (3.2.22), h̃1pxq satisfies

h̃1pxq “ ℓ1
1pxq ´ pℓ`

2 q1pxq ă 0, @x P

ˆ

xasy, 1 `
1

µ1

ȷ

.

This implies h̃pxq has at most one root in
´

xasy, 1 ` 1
µ1

ı

. This completes the proof.

The sufficient conditions for multiple interior fixed points rely on the local stability of Ex and
Ey and the order perseveration property of T, and hence will be discussed later.

3.2.4 All Forward Orbits Converge Monotonically to a Fixed Point

In this section, we show that every forward orbit is componentwise monotone and converges to a
fixed point using the theory of monotone dynamical systems. First we compute the Jacobian matrix
of system (3.1.3) to obtain.
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DTpx, yq

“

»

—

—

—

—

—

–

1
p1`d1`x`α1yq

´ α1x
p1`d1`x`α1yq2

´ α1x
p1`d1`x`α1yq2

` 1
δ1`µ1x

´ x
pδ1`µ1xq2

´
α2y

p1`d2`y`α2xq2
1

p1`d2`y`α2xq
´

α2y
p1`d2`y`α2xq2

` 1
δ2`µ2y

´
y

pδ2`µ2yq2

fi

ffi

ffi

ffi

ffi

ffi

fl

(3.2.23)

“

»

—

–

δ1
pδ1`µ1xq2

`
1`d1`α1y

p1`d1`x`α1yq2
´ α1x

p1`d1`x`α1yq2

´
α2y

p1`d2`y`α2xq2
δ2

pδ2`µ2yq2
` 1`d2`α2x

p1`d2`y`α2xq2

fi

ffi

fl

.

We note for any px, yq P R2
` and positive parameters, that

BT1

Bx
ą 0,

BT1

By
ď 0,

BT2

Bx
ď 0,

BT2

By
ą 0.

where BT1

By “ 0 if and only if x “ 0 and BT2

Bx “ 0 if and only if y “ 0. Hence, for any x, y ě 0, DTpx, yq

has the sign pattern

DTpx, yq “

„

ą 0 ď 0
ď 0 ą 0

ȷ

. (3.2.24)

Remark 3.2.4. Each Ti is rational with positive denominator for px, yq P R2
`. Hence, T P C1pR2

`q.

Define
K :“ tpu, vq : u ě 0, v ď 0u Ă R2.

The partial ordering ďK on R2
` becomes

px1, y1q ďK px2, y2q ðñ x1 ď x2, y1 ě y2.

Remark 3.2.5. By Lemma 2.5.1 and the sign pattern (3.2.24), DTpx, yq is K-positive for every
px, yq P R2

`.

We note a geometric fact about the K–order that will be used in the proof that system (3.1.3)
is a competitive dynamical system.

Lemma 3.2.6. Any closed rectangle Ω “ rA,Bs ˆ rC,Ds Ă R2
` contains order intervals and is

ďK–convex.

Proof. Consider Ω “ rA,Bs ˆ rC,Ds Ă R2
`. Take any u,v, z P Ω with u ďK z ďK v. It follows

from the definition that

A ď u1 ď z1 ď v1 ď B, D ě u2 ě z2 ě v2 ě C.

Thus, it is clear that z P Ω for any z P ru,vsK .

Lemma 3.2.7. Consider (3.1.5). T is competitive on R2
` and strongly competitive (strongly K-order

preserving) on intR2
`.

20

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – B. Cui; McMaster University – Department of Mathematics and Statistics

Proof. Since T1 is non-decreasing in x and non-increasing in y, while T2 is non-increasing in x and
non-decreasing in y, for any px1, y1q, px2, y2q P R2

` with x1 ď x2, y1 ě y2, we have

"

T1px1, y1q ď T1px2, y2q

T2px1, y1q ě T2px2, y2q
,

with equality in both lines if and only if px1, y1q “ px2, y2q. Therefore,

px1, y1q ďK px2, y2q ùñ pT1px1, y1q, T2px1, y1qq ďK pT1px2, y2q, T2px2, y2qq,

and so T is K-order preserving, and therefore competitive on R2
` by Definition 2.5.1. Moreover, by

(3.1.5), the off-diagonal derivatives are strict whenever x, y ą 0. Remark 2.5.1 then yields that T is
strongly K-order preserving (i.e., strongly competitive) on intR2

`.

We next verify that T has a positive Jacobian determinant everywhere and use a P -matrix
criterion to deduce global injectivity.

Lemma 3.2.8. Consider (3.1.5). T is orientation-preserving on R2
`.

Proof. It is straightforward to show that for any px, yq P R2
`,

detpDTpx, yqq “
BT1

Bx

BT2

By
´

BT1

By

BT2

Bx
ą 0.

After simplification, one can see that the determinant detpDTq is always positive, since

detpDTpx, yqq “

ˆ

δ1
pδ1 ` µ1xq2

`
1 ` d1 ` α1y

p1 ` d1 ` x ` α1yq2

˙ˆ

δ2
pδ2 ` µ2yq2

`
1 ` d2 ` α2x

p1 ` d2 ` y ` α2xq2

˙

´
α1α2xy

p1 ` d1 ` x ` α1yq2p1 ` d2 ` y ` α2xq2
,

“
δ1δ2

pδ1 ` µ1xq2pδ2 ` µ2yq2
`

δ1p1 ` d2 ` α2xq

pδ1 ` µ1xq2p1 ` d2 ` y ` α2xq2

`
δ2p1 ` d1 ` α1yq

pδ2 ` µ2yq2p1 ` d1 ` x ` α1yq2
`

p1 ` d1 ` α1yqp1 ` d2 ` α2xq ´ α1α2xy

p1 ` d1 ` x ` α1yq2p1 ` d2 ` y ` α2xq2
,

“
δ1δ2

pδ1 ` µ1xq2pδ2 ` µ2yq2
`

δ1p1 ` d2 ` α2xq

pδ1 ` µ1xq2p1 ` d2 ` y ` α2xq2

`
δ2p1 ` d1 ` α1yq

pδ2 ` µ2yq2p1 ` d1 ` x ` α1yq2
`

p1 ` d1qp1 ` d2q ` p1 ` d1qα2x ` p1 ` d2qα1y

p1 ` d1 ` x ` α1yq2p1 ` d2 ` y ` α2xq2
,

ą 0.

Hence, T is orientation preserving on R2
`.

Having shown detpDTq ą 0 everywhere, we now use Definition 2.6.1 of a P -matrix and apply
Theorem 2.6.2 to conclude global injectivity of T.

Lemma 3.2.9. Consider (3.1.5). The Jacobian DTpx, yq is a P -matrix on R2
` and T is globally

injective on R2
`.

Proof. Since for any px, yq P R2
`,

BT1

Bx
px, yq ą 0,

BT2

By
px, yq ą 0 (see sign pattern (3.2.24) ),
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and
detDTpx, yq ą 0 (Lemma 3.2.8),

both 1ˆ1 principal minors and the 2ˆ2 principal minor of DT are strictly positive. Hence DTpx, yq

is a P -matrix on R2
`. Applying Theorem 2.6.2 with Ω “ R2

` and using the differentiability of T
from Remark 3.2.4, we conclude T is globally injective on R2

`.

Remark 3.2.6. The conclusion that T is injective on R2
` can also be proven by Theorem 4.1 [30]

that states that if T is competitive and locally invertible in the first quadrant, then T is globally
injective on R2

`.

We next verify that T satisfies the four hypotheses of Lemma 2.5.2 (and hence condition (O`)
of Definition 2.5.3).

Lemma 3.2.10. T satisfies condition (O`) defined in Definition 2.5.3.

Proof. We show that all four conditions (a)-(d) of Lemma 2.5.2 hold for T on R2
`. (a) This follows

from Lemma 3.2.6. (b) This follows from Lemma 3.2.8. (c) This follows from Remark 3.2.5.(d)
This follows from Lemma 3.2.9. Thus, all assumptions of Lemma 2.5.2 are satisfied, and the claim
follows.

Since T is competitive and (O`) holds, Theorem 2.5.1 applies.

Theorem 3.2.1. Consider system (3.1.3). For every px, yq P R2
`, the forward orbit tTtpx, yqutě0

converges to a fixed point of T.

Proof. By Lemma 3.2.7, T is competitive. By Lemma 3.2.10, condition (O`) is satisfied. By
Lemma 3.2.1, every forward orbit eventually enters the compact absorbing rectangle A, and hence
has compact closure in R2

`. Therefore, all the hypotheses of Theorem 2.5.1 are satisfied. It follows
that each orbit is eventually componentwise monotone and converges to a fixed point of T.

3.2.5 Stability and Global Dynamics

In order to determine the relative positions of the interior fixed points with respect to each other and
the boundary fixed points and determine their stability and the global dynamics of system (3.1.3),
we require the following results.

First we determine the relative positions of the interior fixed points with respect to the boundary
fixed points.

Lemma 3.2.11. Consider system (3.1.3). Let E˚
j “ px˚

j , y
˚
j q be any interior fixed point of T. Then

Ey !K E˚
j !K Ex.

Proof. By Proposition 3.2.1, the interior fixed point E˚
j can only exist if boundary fixed points Ex

and Ey also exist. On the nonnegative x-axis, f1px, 0q “ 1 determines a unique point x ą 0. For
each x ą 0, the strictly decreasing function f1px, yq “ 1 has exactly one root given by y “ ℓ1pxq ą 0.
Assume for contradiction that x˚

j ě x, then we obtain

f1px˚
j , 0q ď f1px, 0q “ 1,

so the unique y with f1px˚
j , yq “ 1 must satisfy y ď 0, contradicting y˚

j ą 0. Hence 0 ă x˚
j ă x.

Similarly, assuming y˚
j ě y ą 0 leads to x˚ ă 0 which is a contradiction. Thus, every interior fixed

point must satisfy
0 ă x˚

j ă x, 0 ă y˚
j ă y.

22

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – B. Cui; McMaster University – Department of Mathematics and Statistics

Equivalently,
Ey !K E˚

j !K Ex.

To show that if there are two unstable fixed points that are order related by !K then there is a
third fixed point in between, we require the following results.

Lemma 3.2.12. Let Ei ‰ Ej be two fixed points of T with Ei ăK Ej, and let

A1 :“ rEi,EjsK “ tz P R2
` : Ei ďK z ďK Eju.

Then TpA1q Ă A1 and TpA1q has compact closure in A1.

Proof. By Lemma 3.2.7, T is order preserving with respect to ďK in R2
`. For any z P rEi,EjsK , we

have
Ei ďK z ďK Ej ùñ TpEiq ďK Tpzq ďK TpEjq.

Since TpEiq “ Ei and TpEjq “ Ej , it follows that

Ei ďK Tpzq ď Ej ùñ Tpzq P A1.

Hence, TpA1q Ă A1. Since A1 Ă R2
` is compact and T is continuous, TpA1q has compact closure

in A1.

Therefore, Lemma 3.2.12 shows that Hypothesis 2.5.1 of Theorem 2.5.2 is satisfied. We now
show that if two order related fixed points are unstable, a third fixed point must exist.

Lemma 3.2.13. Consider system (3.1.3). Let Ei ‰ Ej be two fixed points of T in R2
` with Ei !K Ej

and
ρpDTpEiqq ą 1, ρpDTpEjqq ą 1,

where ρp¨q denotes the spectral radius. Then there exists a third fixed point Ek such that

Ek P rrEi,EjssK .

This lemma was first proved as Corollary 1 in [16]; see also Corollary 5.4 in [15]. A self-contained
proof is included here for completeness.

Proof. Since Ei !K Ej and by Lemma 3.2.12, Hypothesis 2.5.1 holds, Theorem 2.5.2 and Proposi-
tion 2.5.1 apply to rEi,EjsK . Therefore, at least one of (a), (b), (c) in Theorem 2.5.2 is satisfied,
while (b) and (c) cannot both hold by Proposition 2.5.1(i).

Assume (a) holds. Then, there exists a fixed point such that Ek P rrEi,EjssK , and we are done.
Without loss of generality assume (b) holds (the argument for (c) is identical by relabeling Ei

and Ej). Then, there exists an entire orbit

txtutPZ Ă rEi,EjsK

that is non-decreasing with respect to ďK , and

lim
tÑ´8

xt “ Ei, lim
tÑ`8

xt “ Ej .
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Since lim
tÑ`8

xt “ Ej , for any ε ą 0 there exists t0 ą 0 with ∥xt ´ Ej∥ ă ε for all t ě t0. Define

Uε “
␣

z P rEi,EjsK : xt0 ďK z ďK Ej

(

“ rxt0 ,EjsK .

Let
BεpEjq “

␣

z P R2 : ||z ´ Ej || ă ε
(

.

Take any z P Uε. Write xt0 “ pxt0,1, xt0,2q, z “ pz1, z2q and Ej “ pEj,1, Ej,2q. Since T is order
preserving with respect to ďK , we obtain

xt0 ďK z ďK Ej ðñ

#

0 ď xt0,1 ď z1 ď Ej,1,

xt0,2 ě z2 ě Ej,2 ě 0.

By 0 ď xt0,1 ď z1 ď Ej,1, we obtain

0 ď Ej,1 ´ z1 ď Ej,1 ´ xt0,1 ùñ |z1 ´ Ej,1| ď |xt0,1 ´ Ej,1|,

and by xt0,2 ě z2 ě Ej,2 ě 0, we obtain

xt0,2 ´ Ej,2 ě z2 ´ Ej,2 ě 0 ùñ 0 ď |z2 ´ Ej,2| ď |xt0,2 ´ Ej,2|.

Hence,
||z ´ Ej ||2 ď ||xt0 ´ Ej ||2 ă ε ùñ z P BεpEjq.

This shows Ej P Uε Ă BεpEjq. For any z P Uε, order-preservation of T gives

xt0 ďK xt0`1 “ Tpxt0q ďK Tpzq ďK TpEjq “ Ej .

Hence, Tpzq P Uε and TpUεq Ď Uε. For any ε ą 0, there is a forward invariant set Uε of Ej contained
in the open ball BεpEjq. Hence, Ej is locally stable, contradicting ρ

`

DTpEjq
˘

ą 1. Therefore, (b)
contradicts the local instability of Ej . Similarly, (c) contradicts the local instability of Ei. Thus,
only (a) can occur, and there exists a fixed point Ek with Ek P rrEi,EjssK .

Next, we consider the convergence of the orbits.

Theorem 3.2.2. Consider system (3.1.3). If E0 is the only boundary fixed point, then every forward
orbit that starts on an axis converges to E0. If Ex exists than any forward orbit with x ą 0 and
y “ 0 converges to Ex. Similarly, if Ey exists than any orbit with y ą 0 and x “ 0 converges to Ex.

Proof. On the axes, (3.1.3) reduces to a special case of the single species growth model in [26] and
Theorem 4.5 applies.

Theorem 3.2.3. The trivial fixed point E0 “ p0, 0q of system (3.1.3) is globally asymptotically stable
with respect to R2

` if and only if

δi ě 1 `
1

di
, for i “ 1, 2.

Proof. By Proposition 3.2.1(a), if δi ě 1` 1
di

for i “ 1, 2, then E0 is the only fixed point in the first

quadrant. Hence, by Theorem 3.2.1, every orbit with initial conditions in R2
` converges to E0. On

the other hand, if δi ă 1` 1
di

for at least one of i “ 1 or 2, then at least one of Ex or Ey exists, and
so by Theorem 3.2.2, E0 is unstable.
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Next, we analyze the local stability of the boundary fixed points.

Proposition 3.2.3. Consider system (3.1.3). When Ex and Ey are hyperbolic, the following state-
ments hold.

(a) Ex is locally asymptotically stable if and only if

0 ă δ1 ă 1 `
1

d1
and

„

δ2 ě 1 `
1

d2

ȷ

Y

„

1 ă δ2 ă 1 `
1

d2
, α2 ą α˚

2

ȷ

.

(b) Ey is locally asymptotically stable if and only if

0 ă δ2 ă 1 `
1

d2
and

„

δ1 ě 1 `
1

d1

ȷ

Y

„

1 ă δ1 ă 1 `
1

d1
, α1 ą α˚

1

ȷ

.

where

α˚
i “

p1 ` di ´ diδiq
“a

pµjdj ´ pδj ´ 1qq2 ` 4µj ` µjdj ` δj ´ 1
‰

2pδi ´ 1qp1 ` dj ´ djδjq
, i, j P t1, 2u, i ‰ j. (3.2.25)

Proof. (a) The Jacobian of (3.1.3) is given in (3.2.23) and (3.2.24). Since f1px, 0q “ 1, at Ex,
DTpExq is upper triangular, the eigenvalues are given by

λ1pExq “ 1 ´
x

p1 ` d1 ` xq2
´

µ1 x

pδ1 ` µ1xq2
“

1 ` d1
p1 ` d1 ` xq2

`
δ1

pδ1 ` µ1xq2
ą 0,

λ2pExq “
1

1 ` d2 ` α2x
`

1

δ2
.

By Proposition 3.2.1(b), x ą 0 ðñ 0 ă δ1 ă 1 ` 1
d1

with x given by (3.2.12), so

0 ă λ1pExq ă 1 ðñ 0 ă δ1 ă 1 `
1

d1
.

For λ2pExq, one checks easily if 0 ă δ2 ď 1, then

λ2pExq “
1

1 ` d2 ` α2x
`

1

δ2
ą 1.

Hence a necessary condition for λ2pExq ă 1 is δ2 ą 1. When δ2 ą 1, one has

λ2pExq ă 1 ðñ 1 ` d2 ` α2x ą
δ2

δ2 ´ 1
ðñ α2 ą

δ2
δ2´1 ´ p1 ` d2q

x
“ α˚

2 ,

where α˚
2 is given in (3.2.25). When 1 ă δ2 ă 1` 1

d2
, we have d2pδ2 ´1q ă 1 and x ą 0. This implies

that α˚
2 ą 0. If δ2 ě 1 ` 1

d2
, then α˚

2 ď 0 and λ2pExq is always less than one and the claim follows.
(b) By exchanging the indices, a similar argument applies to Ey and the conclusion follows.

Next, we present the geometric interpretation of the Proposition 3.2.3. Define

ỹ “
1 ´ d1pδ1 ´ 1q

α1pδ1 ´ 1q
, x̃ “

1 ´ d2pδ2 ´ 1q

α2pδ2 ´ 1q
. (3.2.26)
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On the y-axis, f1p0, yq “ 1 gives the intercept y “ ỹ. On the x-axis, f2px, 0q “ 1 gives the
intercept x “ x̃. Assume 1 ă δi ă 1 ` 1

di
. A direct calculation shows

x̃ ă x ðñ α2 ą α˚
2 , ỹ ă y ðñ α1 ą α˚

1 . (3.2.27)

In view of Proposition 3.2.3, (3.2.27) shows the local stability of Ex and Ey can be translated to the
relative positions of px̃, 0q and Ex, and p0, ỹq and Ey. We illustrate this by Figure 3.2.

x

y

E0

(0,
~
y)

(
~
x,0)Ex

Ey

(a) Ex unstable, Ey stable.

x

y

E0

(0,
~
y)

(
~
x,0)

Ex

Ey

(b) Ex stable, Ey unstable.

x

y

E0

(0,
~
y)

(
~
x,0)

Ex

Ey

(c) Both Ex and Ey are locally stable.

x

y

E0

(0,
~
y)

(
~
x,0)

Ex

Ey

(d) Both Ex and Ey are unstable.

Figure 3.2: The blue curves are the x-nullclines and the red curves are the y-nullclines. The figures
illustrate all possible relative positions of axis intercepts px̃, 0q and p0, ỹq with respect to the boundary fixed
points Ex and Ey which in turn determine their local stability.

The following Lemma shows when both Ex and Ey are locally asymptotically stable, then there
is a unique interior fixed point.

Lemma 3.2.14. Consider system (3.1.3). If

1 ă δi ă 1 `
1

di
and αi ą α˚

i , i “ 1, 2,

then there is a unique interior fixed point.

Proof. Under the assumption, Proposition 3.2.3 shows both Ex and Ey are both locally asymptot-
ically stable. Let hpxq “ ℓ1pxq ´ ℓ2pxq where ℓ1pxq and ℓ`

2 pxq are given in (3.2.1a) and (3.2.7). By
calculations,

lim
xÑx`

asy

hpxq “ `8, lim
xÑ`8

hpxq “ ´8, hp0q “ ỹ ´ y ă 0, hpxq “ 0 ´ ℓ`
2 pxq ą 0.
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Choose ε ą 0 with xasy ` ε ă 0 and M ą x large so that

hpxasy ` εq ą 0, hpMq ă 0.

Since hpxq is continuous on pxasy,8q, the Intermediate Value Theorem and Proposition 3.2.2 ensure
that there is exactly one root in each of the intervals

pxasy ` ε, 0q Ă pxasy, 0q, p0, xq, px,Mq Ă px,8q.

Since only the middle root lies in the first quadrant, there is a unique interior fixed point.

Here, we illustrate Lemma 3.2.14 with Figure 3.3.

x

y

E0

~
y

~
x

Ex

Ey

Figure 3.3: Illustration of the proof of Lemma 3.2.14. The intersections are labeled in purple.

We now state the corresponding global stability results when only one of Ex or Ey exists.

Theorem 3.2.4. Consider system (3.1.3). Then, the following hold:

(a) If δ2 ě 1 ` 1
d2

and 0 ă δ1 ă 1 ` 1
d1
,

then Ex is globally asymptotically stable with respect to intR2
`.

(b) If δ1 ě 1 ` 1
d1

and 0 ă δ2 ă 1 ` 1
d2
,

then Ey is globally asymptotically stable with respect to intR2
`.

Proof. (a) By Proposition 3.2.3(a), Ex is locally asymptotically stable while Proposition 3.2.1(b)
shows Ey does not exists. By Theorem 3.2.3, E0 is unstable whenever any other fixed point exist.
Thus, Theorem 3.2.1 implies that every orbit with initial conditions in intR2

` converges to Ex, and
the conclusion follows. (b) Similarly, the result for Ey follows.

Next, we describe global convergence when system (3.1.3) has either no interior fixed points
(with existence of both boundary fixed points ) or exactly two interior fixed points. The results are
summarized in Theorem 3.2.5.
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Theorem 3.2.5. Assume system (3.1.3) satisfies one of the following conditions:

(i) 1 ă δ2 ă 1 ` 1
d2
, α2 ą α˚

2 , and
“

δ1 ď 1 or p1 ă δ1 ă 1 ` 1
d1
, α1 ă α˚

1 q
‰

,
or

(ii) 1 ă δ1 ă 1 ` 1
d1
, α1 ą α˚

1 , and
“

δ2 ď 1 or p1 ă δ2 ă 1 ` 1
d2
, α2 ă α˚

2 q
‰

.

Then, either there are no interior fixed points or there are two and one of the following holds:

(a) If there is no interior fixed point, in regime (i), every interior orbit converges to Ex and in
regime (ii), every interior orbit converges to Ey.

(b) If, there are two interior fixed points, E˚
1 !K E˚

2 , in regime (i), every interior orbit converges
to either E˚

1 or Ex and in regime (ii), every interior orbit converges to either E˚
2 or Ey.

Proof. We prove both (a) and (b) for regime (i). The exact same argument applies to regime (ii) by
exchanging indices.

First note that, under the conditions in regime (i), Proposition 3.2.3(a) implies that Ex is locally
asymptotically stable and Ey is unstable. We show that there must be an even number of interior
fixed points in this case. We proceed using proof by contradiction. Suppose that there is a unique
fixed point E˚. Since Ex is asymptotically stable, if E˚ is also asymptotically stable, by Corol-
lary 2.5.1, there is a second interior fixed point E˚

2 with E˚
2 P rrE˚,ExssK yielding a contradiction.

Since Ey is unstable, if E˚ is also unstable, then Lemma 3.2.13 implies there is at least a second
interior fixed point E˚

2 P rrEy,E
˚ssK , contradicting that E˚ is the only interior fixed point. If we

suppose instead that there are exactly three interior fixed points, a similar argument implies there
must be at least four interior fixed points again proving a contradiction. Since, by Proposition 3.2.2,
there can be at most three interior fixed points, there must be either two interior fixed points or no
interior fixed points.

(a) If no interior fixed point exists, then Ex is the only attractor. Proposition 3.2.3 and Theo-
rem 3.2.1 immediately imply convergence of interior orbits to Ex.

(b) Let the two interior fixed points be ordered as E˚
1 !K E˚

2 , since Ex is locally asymptotically
stable and Ey is unstable, it follows that E˚

1 is locally asymptotically stable and E˚
2 is unstable.

Theorem 3.2.1 then ensures every interior orbit converges to either E˚
2 or Ex.

We now consider the parameter regime in which there are an odd number of interior fixed points,
i.e., one or three.

Theorem 3.2.6. Consider system (3.1.3).

(a) If 0 ă δi ď 1 and 0 ă α1α2 ă 1 `
µ1

pµ1`δ1´1q2
for i “ 1, 2,

then there is a unique interior fixed point, E˚ that is globally asymptotically stable with respect
to intR2

`.

(b) If 1 ă δi ă 1 ` 1
di

and αi ą α˚
i for i “ 1, 2,

then there is a unique interior fixed point E˚ that is unstable, and every interior orbit converges
to either Ex or Ey.

(c) If 1 ă δi ă 1 ` 1
di

and αi ă α˚
i for i “ 1, 2,

then exactly one of the following holds:

(i) there is a unique interior fixed point, E˚ that is globally asymptotically stable with respect
to intR2

`; or

28

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – B. Cui; McMaster University – Department of Mathematics and Statistics

(ii) there are three interior fixed points E˚
1 !K E˚

2 !K E˚
3 and every interior orbit converges

to E˚
1 or E˚

3 .

Proof. (a) By Proposition 3.2.3, bothEx andEy are unstable under the given conditions. Lemma 3.2.5
ensures a unique interior fixed point E˚. By Lemma 3.2.11, Ey !K E˚ !K Ex. Assume for con-
tradiction that E˚ is unstable. By Lemma 3.2.13, there is a second interior fixed point E˚

2 with
E˚

2 P rrEy,E
˚ssK , contradicting the uniqueness of E˚. Hence E˚ is locally asymptotically stable.

By Theorem 3.2.1, every interior orbit converges to E˚.
(b) By Proposition 3.2.3, both Ex and Ey are locally asymptotically stable under the given

conditions. By Lemma 3.2.14, there is a unique interior fixed point E˚. Lemma 3.2.11 then gives
Ey !K E˚ !K Ex. Assume for contradiction that E˚ is locally asymptotically stable. Corol-
lary 2.5.1 will yield a second interior fixed point, again contradicting uniqueness. Hence E˚ is
unstable. By Theorem 3.2.1, every interior orbit converges to either Ex or Ey.

(c)Under the given conditions, Proposition 3.2.3 shows bothEx andEy are unstable. Lemma 3.2.13
implies there is at least one interior fixed point. Assume for contradiction that there are exactly two
interior fixed points E˚

1 ,E
˚
3 with E˚

1 !K E˚
3 . If both E˚

1 ,E
˚
3 are stable, then Corollary 2.5.1 implies

a third fixed point E˚
2 in rrE˚

1 ,E
˚
3 ssK . If both E˚

1 ,E
˚
3 are unstable, then Lemma 3.2.13 yields a

third one in rrE˚
1 ,E

˚
3 ssK . If one is stable (E˚

1 ) and one is unstable (E˚
3 ), applying Lemma 3.2.13

to rrE˚
3 ,ExssK again yields a third one in rrE˚

3 ,ExssK . Hence, in all cases, there can not be two
interior fixed points. Since Proposition 3.2.2 bounds the total number to three, there can be either
one or three interior fixed points.

If there is a unique interior fixed point E˚, the same argument as in (a) applies and the conclusion
follows. If there are three interior fixed points, we order them as E˚

1 !K E˚
2 !K E˚

3 . Since both
Ex and Ey are unstable, E˚

1 and E˚
3 must be stable. Also, E˚

2 must be unstable. Otherwise E˚
2

and E˚
1 are both locally asymptotically stable and Corollary 2.5.1 yields a third one in between, a

contradiction. The convergence to E˚
1 and E˚

3 follows from Theorem 3.2.1

Proposition 3.2.2 allows at most three interior fixed points and parts (b) (c)(ii) of Theorem 3.2.6
imply the following result.

Corollary 3.2.1. Consider system (3.1.3). If there are three interior fixed points, then the following
ordering is the only possibility:

Ey (unstable) !K E˚
1 (stable) !K E˚

2 (unstable) !K E˚
3 (stable) !K Ex (unstable).

It is worth emphasizing that when there are three interior fixed points, E˚
2 is always unstable.

We leave the bifurcation analysis of the fixed points to Chapter 5.
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Chapter 4

Global Dynamics Assuming
Symmetry

In this chapter, we assume system (3.1.3) satisfies the symmetry conditions

d1 “ d2 “ d, δ1 “ δ2 “ δ, µ1 “ µ2 “ µ, α1 “ α2 “ α. (4.0.1)

Biologically, (4.0.1) means that certain ratios of the parameters of the two species are identical based
on the change of varaibles given in (3.1.3).

4.1 Existence of Interior Fixed Points under Symmetry

Under (4.0.1), Qpx, yq “ f1px, yq ´ f2px, yq “ 0 defined in (3.2.16) factors as

Qpx, yq “ L1px, yqL2px, yq “ 0, (4.1.1)

where
L1px, yq : x ´ y, L2px, yq : µpx ` yq ` dµ ` δ ´ 1 ´ αpδ ´ 1q. (4.1.2)

Any fixed point px˚, y˚q P intR2 must satisfy

Case 1 :

#

L1px˚, y˚q “ 0,

fipx
˚, y˚q “ 1, i “ 1 or 2.

or Case 2 :

#

L2px˚, y˚q “ 0,

fipx
˚, y˚q “ 1, i “ 1 or 2.

(4.1.3)
In order to determine the existence conditions of all interior fixed points, we now analyze the

two cases above.

4.1.1 Case 1: (L1 “ 0)

Lemma 4.1.1. Consider system (3.1.3) with (4.0.1). The fixed point E˚
2 “ px˚

2 , x
˚
2 q lies in the

interior of the first quadrant if and only if 0 ă δ ă 1 ` 1
d . If δ “ 1 ` 1

d , E
˚
2 disappears through E0.

Proof. Since y “ ℓ1pxq (see (3.2.3)) is strictly decreasing and L1 “ 0 (see (4.1.2)) is strictly increas-
ing, they intersect at most once in the first quadrant and hence there is at most one interior fixed
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point. On L1 “ 0, y “ x and (3.2.14) becomes

rA1x
2 ` rB1x ` rC1 “ 0, (4.1.4)

where rA1 “ µp1`αq, rB1 “ dµ` p1`αqpδ ´ 1q, and rC1 “ dpδ ´ 1q ´ 1. Since rA1 ‰ 0, the roots are

x˘ “
´ rB1 ˘

b

rB2
1 ´ 4 rA1

rC1

2 rA1

.

A direct calculation shows that x` ą x´ and

x` ą 0 ðñ rC1 ă 0 ðñ 0 ă δ ă 1 `
1

d
.

Hence, E˚
2 “ px˚

2 , x
˚
2 q, where x˚

2 “ x`.

4.1.2 Case 2: (L2 “ 0)

In this case, we consider all the fixed points that are on L2 “ 0. Define

k̃1 :“
dµ ` δ ´ 1 ´ αpδ ´ 1q

µ
. (4.1.5)

Solving L2px, yq “ 0 for y yields
y “ ´x ´ k̃1. (4.1.6)

Substituting (4.1.6) into f1px, yq “ 1 and simplifying, we obtain a quadratic equation in x:

rA2x
2 ` rB2x ` rC2 “ 0, (4.1.7)

where

rA2 “ µp1 ´ αq, rB2 “ dµ ` δ ´ 1 ´ αpδ ´ 1q ´ αµk̃1, rC2 “ dpδ ´ 1q ´ 1 ´ αpδ ´ 1qk̃1. (4.1.8)

We therefore consider the following cases:

1. Case 2.1: rA2 ‰ 0, rB2 ‰ 0, rC2 ‰ 0.

2. Case 2.2: One or more of rA2, rB2, rC2 is zero: (a) rA2 “ 0, (b) rB2 “ 0, (c) rC2 “ 0.

Case 2.1: rA2 ‰ 0, rB2 ‰ 0, rC2 ‰ 0.

Solving (4.1.7) gives the roots

x˚
1 “

´ rB2 `

b

rB2
2 ´ 4 rA2

rC2

2 rA2

, x˚
3 “

´ rB2 ´

b

rB2
2 ´ 4 rA2

rC2

2 rA2

. (4.1.9)

Hence, the two fixed points that are on L2 “ 0 (see (4.1.6)) take the form

E˚
1 “ px˚

1 , y
˚
1 q and E˚

3 “ px˚
3 , y

˚
3 q, where y˚

i “ ´x˚
i ´ k̃1, for i “ 1, 3.
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From (4.1.8) and (4.1.5), we obtain

rB2 “ p1 ´ αqrdµ ` p1 ´ αqpδ ´ 1qs and rA2k̃1 “ rB2.

By Vieta’s formulas for a quadratic,

x˚
3 ` x˚

1 “ ´
rB2

rA2

“ ´k̃1 and x˚
3x

˚
1 “

rC2

rA2

,

Since y˚
i “ ´x˚

i ´ k̃1, it follows that

y˚
3 “ x˚

1 , y˚
1 “ x˚

3 , E˚
1 “ px˚

1 , x
˚
3 q, E˚

3 “ px˚
3 , x

˚
1 q, (4.1.10)

i.e., E˚
1 and E˚

3 are symmetric about y “ x. A necessary and sufficient condition for x˚
3 , x

˚
1 ą 0 to

hold is
x˚
3 ` x˚

1 ą 0, x˚
3x

˚
1 ą 0, r∆2 “ rB2

2 ´ 4 rA2
rC2 ě 0.

Equivalently,
rA2

rB2 ă 0, rA2
rC2 ą 0, rB2

2 ě 4 rA2
rC2.

Therefore, there are only two possible cases that can give new interior fixed points:

Case 2.1(a) :

#

rA2 ą 0, rB2 ă 0, rC2 ą 0,
rB2
2 ě 4 rA2

rC2,

or

Case 2.1(b) :

#

rA2 ă 0, rB2 ą 0, rC2 ă 0,
rB2
2 ě 4 rA2

rC2.

We analyze each case in turn.

Case 2.1(a): rA2 ą 0, rB2 ă 0, rC2 ą 0. A direct calculation shows that

rA2 ą 0, rB2 ă 0 ðñ 0 ă α, δ ă 1.

Hence Case 2.1(a) is the regime with 0 ă α, δ ă 1. We now prove that no new interior fixed point
exists in this regime.

Lemma 4.1.2. Consider system (3.1.3) with (4.0.1). If

0 ă α ă 1, 0 ă δ ă 1,

the only interior fixed point is E˚
2 .

Proof. Since α, δ ă 1, a direct calculation shows

rC2 ą 0 ðñ d ă ´
1 `

αpδ´1q
2

p1´αq

µ

p1 ´ αqp1 ´ δq
ă 0,
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contradicting d ą 0. Hence, rC2 ď 0, and therefore

x˚
3x

˚
1 “

rC2

rA2

ă 0, x˚
3 ` x˚

1 “ ´
rB2

rA2

ą 0.

Finally, since rC2 ď 0 ă rB2
2 ,

r∆2 “ rB2
2 ´ 4 rA2

rC2 ą 0.

It follows that one root is negative and one positive, so neither E˚
3 nor E˚

1 lies in intR2
`.

Since one root is negative and other is positive, and x˚
3 ă x˚

1 , it follows that x
˚
3 ă 0 ă x˚

1 . Hence,
E˚

3 “ px˚
3 , x

˚
1 q lies in the second quadrant and E˚

1 “ px˚
1 , x

˚
3 q lies in the fourth quadrant.

Case 2.1(b): rA2 ă 0, rB2 ą 0, rC2 ă 0. We show this case can admit two interior fixed points.
Define

d˚
tc “

αpδ ´ 1q

µ
´

1

pα ´ 1qpδ ´ 1q
, d˚

´ “
pα ` 1qpδ ´ 1q

µ
´

2
a

pα ´ 1qµ
,

µ˚
2 “ pα ´ 1qpδ ´ 1q2, µ˚

1 “ αµ˚
2 , µ˚

3 “
pα ` 1q2 µ˚

2

4
, µ˚

4 “
µ˚
1

1 ` dpδ ´ 1qpα ´ 1q
.

(4.1.11)

A direct calculation shows

rA2 ă 0 ðñ α ą 1, rB2 ą 0 ðñ dµ ă pα´1qpδ´1q and δ ą 1, rC2 ă 0 ðñ d ą d˚
tc ðñ µ ą µ˚

4 .

Hence, this case holds exactly when the following holds

α ą 1, δ ą 1, dµ ă pα ´ 1qpδ ´ 1q, d ą d˚
tcp ðñ µ ą µ˚

4 q. (4.1.12)

Under α, δ ą 1, we obtain
d˚
tc ą 0 ðñ µ ă µ˚

1 and µ˚
4 ą 0.

Hence, d ą d˚
tc always hold if µ ě µ˚

1 . After simplifications, (4.1.12) gives the following non-empty
sets:

C1 “

#

pα, δ, µ, dq :
α ą 1, δ ą 1,

µ ě µ˚
1 , 0 ă d ă

pα´1qpδ´1q

µ

+

, (4.1.13)

or

C2 “

#

pα, δ, µ, dq :
α ą 1, δ ą 1, µ˚

2 ă µ ă µ˚
1 ,

d˚
tc ă d ă

pα´1qpδ´1q

µ

+

. (4.1.14)

Noting that both C1 and C2 must satisfy α ą 1 and δ ą 1. In that regime, we have

µ˚
2 ă µ˚

1 , so that

#

C1 ‰ H by choosing µ ě µ˚
1 , d ą 0,

C2 ‰ H by choosing µ P pµ˚
2 , µ

˚
1 q, d P

`

d˚
tc, pα ´ 1qpδ ´ 1q{µ

˘

.

Next, we check when r∆2 ě 0. Since α ą 1, a direct calculation shows r∆2 ě 0 ðñ ĂM0pdq ď 0,
where

ĂM0pdq “ rp1 ´ αqµ2sd2 ` r2pα2 ´ 1qpδ ´ 1qµsd ` p1 ´ αqp1 ` αq2pδ ´ 1q2 ` 4µ. (4.1.15)
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ĂM0pdq is a parabola that opens downward with two real roots

d˚
˘ “

pα ` 1qpδ ´ 1q

µ
˘

2
a

pα ´ 1qµ
.

Hence, under α, δ ą 1, we obtain

r∆2 ě 0 ðñ pd ď d˚
´q or pd ě d˚

`q. (4.1.16)

A direct calculation shows

d ě d˚
` ðñ dµ ě pα ´ 1qpδ ´ 1q ` 2pδ ´ 1q ` 2

c

µ

α ´ 1

ùñ dµ ą pα ´ 1qpδ ´ 1q,

contradicting dµ ă pα ´ 1qpδ ´ 1q. Hence, d ě d˚
` is impossible. For d˚

´, a direct calculation shows

d˚
´ ą 0 ðñ µ ă µ˚

3 . Hence, in Case 2.1(b), r∆2 ě 0 holds if and only if

D1 “

"

pα, δ, µ, dq :
α ą 1, δ ą 1
0 ă µ ă µ˚

3 , 0 ă d ď d˚
´

*

. (4.1.17)

Thus, in Case 2.1, two additional interior fixed points occur if and only if C1 X D1 ‰ H or
C2 X D1 ‰ H. In order to determine when they are non-empty, the following lemma will be used.

Lemma 4.1.3. Assume α ą 1 and δ ą 1. Then, the following inequalities hold:

(a) µ˚
2 ă µ˚

1 ă µ˚
3 and µ˚

2 ď µ˚
4 ă µ˚

1 , with µ˚
2 “ µ˚

4 if and only if d “ 1
δ´1 .

(b) d˚
tc ď d˚

´ with equality if and only if µ “ µ˚
2 and d˚

´ ď
pα´1qpδ´1q

µ ď 1
δ´1 ðñ µ ě µ˚

2 .

Proof. See Appendix A.2.

Next, we consider when at least one of rA2, rB2, rC2 defined in (4.1.8) is zero.

Case 2.2: rA2
rB2

rC2 “ 0. In the next Lemma we prove that if any one of rA2, rB2, rC2 vanishes, then
no new interior fixed points occur.

Lemma 4.1.4. Consider system (3.1.3) with (4.0.1). If at least one of rA2, rB2, rC2 in (4.1.7) is
zero, then no interior fixed point can arise in Case 2.2.

Proof. The proof is given in Appendix A.3.

Thus, we have shown that except for E˚
2 “ px˚

2 , x
˚
2 q determined in Case 1, and possibly E˚

1 and
E˚

3 considered in Case 2.1(b), there are no other parameter ranges for which interior fixed points
can occur. The conditions when interior fixed points exist are given next.

Theorem 4.1.1. Consider system (3.1.3) with (4.0.1).

(a) There are three interior fixed points, E˚
1 ,E

˚
2 ,E

˚
3 , if and only if

pα, δ, µ, dq P C1 X D1, or pα, δ, µ, dq P C2 X D1.

34

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – B. Cui; McMaster University – Department of Mathematics and Statistics

(b) There is a unique interior fixed point, E˚ “ E˚
2 , if and only if

0 ă δ ă 1 `
1

d
and

“

α ď 1 or δ ď 1
‰

Y
“

α ą 1, δ ą 1, pµ, dq R pC1 Y C2q X D1

‰

, (4.1.18)

where

C1 X D1 “

"

pα, δ, µ, dq :
α ą 1, δ ą 1
µ˚
1 ď µ ă µ˚

3 , 0 ă d ă d˚
´

*

, (4.1.19)

and

C2 X D1 “

"

pα, δ, µ, dq :
α ą 1, δ ą 1
µ˚
2 ă µ ă µ˚

1 , d˚
tc ă d ă d˚

´

*

. (4.1.20)

Proof. (a) For pα, δ, µ, dq P C1 X D1, one has µ ě µ˚
1 and 0 ă µ ă µ˚

3 . By Lemma 4.1.3,

µ˚
1 ď µ ă µ˚

3 , d ď d˚
´ ă

pα ´ 1qpδ ´ 1q

µ
.

This then yields (4.1.19). For pα, δ, µ, dq P C2 X D1, one has µ˚
2 ă µ ă µ˚

1 . Lemma 4.1.3(b) gives

d˚
tc ă d˚

´ ă
pα´1qpδ´1q

µ . Thus the condition d˚
tc ă d ă

pα´1qpδ´1q

µ in C2 and 0 ă d ď d˚
´ from D1

reduces to d˚
tc ă d ď d˚

´, which yields (4.1.20).
(b) By Lemma 4.1.1, E˚

2 exists if and only if 0 ă δ ă 1 ` 1
d . Since C1 X D1 and C2 X D1 are

subsets of
␣

pα, δ, µ, dq : 0 ă δ ă 1 ` 1
d

(

, it follows that whenever E˚
1 and E˚

3 exist, so does E˚
2 . If

0 ă δ ă 1 ` 1
d and pµ, dq R pC1 Y C2q X D1, the fixed point E˚

2 is unique.

In (4.1.19) and (4.1.20), we have excluded the case for which d “ d˚
´, since in that case, E˚

1 ,E
˚
2

and E˚
3 coalesce. Hence, it will be treated as the case for unique interior fixed point.

The following results follow directly from Lemma 4.1.3.

Remark 4.1.1. If one of the following holds, then (4.1.18) holds:

(i) 0 ă α ď 1 and 0 ă δ ă 1 ` 1
d .

(ii) 0 ă δ ď 1.

(iii) α, δ ą 1 and d˚
´ ă d ď 1

δ´1 .

(iv) α, δ ą 1, µ ě µ˚
3 , and d ă 1

δ´1 .

(v) α, δ ą 1, 0 ă µ ď µ˚
2 , and d ă 1

δ´1 .

(vi) α, δ ą 1, µ˚
2 ă µ ă µ˚

1 , and d ď d˚
tc .

(vii) α, δ ą 1, µ˚
2 ă µ ă µ˚

1 , and d “ d˚
´ .

It will be shown in Chapter 5 that d “ d˚
tc is a transcritical bifurcation point and d “ d˚

´ is a
pitchfork bifurcation point. Next, we show in Case 2.2(c), E˚

1 and E˚
3 coalesce with Ex and Ey.

Lemma 4.1.5. Consider system (3.1.3) with (4.0.1). E˚
1 “ p0, x˚

3 q becomes Ey and E˚
3 “ px˚

3 , 0q

becomes Ex if and only if

α ą 1, 1 ă δ ă 1 `
1

d
, and µ “ µ˚

4 ,
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This is equivalent to

α ą 1, 1 ă δ ă 1 `
1

d
, µ˚

2 ă µ ă µ˚
1 , and d “ d˚

tc,

i.e., (vi) in Remark 4.1.1 with d “ d˚
tc.

Proof. In Case 2.2(c), rC2 “ 0 and rA2, rB2 ‰ 0. A direct calculation shows

rC2 “ 0 ðñ dpδ ´ 1q ´ 1 “ αpδ ´ 1qk̃1 ðñ µ “ µ˚
4 ðñ d “ d˚

tc

By calculation, the two fixed points that are on L2 “ 0 take the form

x˚
3 “ ´

rB2

rA2

“ ´k̃1, y˚
3 “ 0, y˚

1 “ x˚
3 .

Correspondingly, E˚
1 becomes p0,´k̃1q and E˚

3 becomes p´k̃1, 0q. Next, the necessary and sufficient
condition for both ´k̃1 and µ˚

4 to be positive is

´k̃1, µ
˚
4 ą 0 ðñ α ą 1 and 1 ă δ ă 1 `

1

d
.

This is equivalent to

´k̃1, d
˚
tc ą 0 ðñ α ą 1, 1 ă δ ă 1 `

1

d
, and µ˚

2 ă µ ă µ˚
1 .

By Proposition 3.2.1(b), Ex “ px, 0q and Ey “ p0, xq with x ą 0 if and only if 0 ă δ ă 1 ` 1
d .

Substituting dpδ ´ 1q ´ 1 “ αpδ ´ 1qk̃1 into x yields

x “
´rµk̃1 ` αpδ ´ 1qs ` |µk̃1 ´ αpδ ´ 1q|

2µ
.

Suppose for contradiction that µk̃1 ´ αpδ ´ 1q ě 0, then

|µk̃1 ´ αpδ ´ 1q| “ µk̃1 ´ αpδ ´ 1q ùñ x “ ´
αpδ ´ 1q

µ
ă 0,

a contradiction. Thus µk̃1 ´ αpδ ´ 1q ă 0. This shows

|µk̃1 ´ αpδ ´ 1q| “ αpδ ´ 1q ´ µk̃1 ùñ x “ ´k̃1 “ x˚
3 ,

completing the proof.

We next identify how all the fixed points are arranged with respect to ďK .

Proposition 4.1.1. Consider system (3.1.3) with (4.0.1). The following statements hold.

(a) If 0 ă δ ă 1 ` 1
d , then Ey !K E˚

2 !K Ex.

(b) If pα, δ, µ, dq P pC1 Y C2q X D1, then Ey !K E˚
1 !K E˚

2 !K E˚
3 !K Ex.

(c) If α, δ ą 1 and either µ˚
1 ď µ ă µ˚

3 , d “ d˚
´ or µ˚

2 ă µ ă µ˚
1 , d “ d˚

´, then E˚
1 “ E˚

2 “ E˚
3 .
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Proof. (a) follows directly from Lemma 3.2.11 and Lemma 4.1.1.
(b) By (4.1.9), a direct calculation shows

x˚
1 ´ x˚

3 “

b

r∆2

2 rA2

ă 0 ùñ 0 ă x˚
1 ă x˚

3 .

Next, set h1pxq “ ℓ1pxq ´ x. By (3.2.3),

ℓ1
1pxq ă 0, @x ě 0 ùñ h1

1pxq “ ℓ1
1pxq ´ 1 ă 0.

This is strictly decreasing in the first quadrant. Since x˚
3 and x˚

1 are on both y “ ´x ´ k̃1 and
y “ ℓ1pxq, we have

ℓ1px˚
1 q “ ´x˚

1 ´ k̃1, ℓ1px˚
3 q “ ´x˚

3 ´ k̃1.

From(4.1.10), we obtain
´x˚

1 ´ k̃1 “ x˚
3 , ´x˚

3 ´ k̃1 “ x˚
1 .

Hence,

ℓ1px˚
1 q “ x˚

3 , ℓ1px˚
3 q “ x˚

1 ùñ h1px˚
1 q “ x˚

3 ´ x˚
1 ą 0, h1px˚

3 q “ x˚
1 ´ x˚

3 ă 0.

The Intermediate Value Theorem implies,

0 ă x˚
1 ă x˚

2 ă x˚
3 ,

and Lemma 3.2.11 yields
Ey !K E˚

1 !K E˚
2 !K E˚

3 !K Ex.

(c) Letting d “ d˚
´ yields

ℓ1px˚
1 q “ x˚

3 “ x˚
1 “ ℓ1px˚

3 q.

This shows x˚
2 “ x˚

1 “ x˚
3 . Equivalently, E

˚
1 “ E˚

2 “ E˚
3 .

4.2 Global Dynamics and Stability

In order to determine the basins of attraction of E˚
1 ,E

˚
3 , Ex, and Ey, in the symmetric case, we first

need to determine the invariant regions.
Define the regions

R´ :“ tpx, yq : 0 ă y ă xu, R` :“ tpx, yq : 0 ă x ă yu, R0 :“ tpx, xq : x ą 0u.

Proposition 4.2.1. Consider system (3.1.3) with (4.0.1). If 0 ă δ ă 1 ` 1
d , every interior orbit on

R0 converges to E˚
2 and R´ and R` are forward invariant under T.

Proof. That every interior orbit converges to R0 if 0 ă δ ă 1 ` 1
d follows from Theorem 2.5.1 and

the fact that E0 is unstable.
Now, we prove the forward invariance of R´ and R`. By Lemma 3.2.7, T is strongly competitive

in intR2
`. Hence, for any initial point px0, y0q with 0 ă y0 ă x0, we have

Tpy0, y0q “ pq, qq !K Tpx0, y0q “ px1, y1q, for some q ą 0.
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Note that
pq, qq !K px1, y1q ðñ 0 ă q ă x1, q ą y1 ą 0 ùñ 0 ă y1 ă q ă x1.

Therefore, 0 ă y1 ă x1. Since the same argument applies at each step,

pxt, ytq P R´ ùñ pxt`1, yt`1q P R´, @t P N.

A similar argument then shows

pxt, ytq P R` ùñ pxt`1, yt`1q P R`, @t P N.

In order to determine the local stability of Ex and Ey, when there is a unique interior fixed point,
we require several algebraic relations among the parameter thresholds which are summarized in the
following lemma. Define

α˚ :“
pµd ` δ ´ 1q `

a

rµd ´ pδ ´ 1qs2 ` 4µ

2pδ ´ 1q
, α˚ :“

1 `

b

1 `
4µ

pδ´1q2

2
. (4.2.1)

Lemma 4.2.1. The following statements hold.

(a) If 1 ă δ ă 1 ` 1
d , then α˚ ą 1.

(b) If α, δ ą 1, then µ ě µ˚
1 ðñ α ď α˚ and α˚ ą 1.

(c) If α, δ ą 1, 0 ă d ă 1
δ´1 , and µ ă µ˚

1 , then d ą d˚
tc ðñ 1 ă α ă α˚.

(d) If α, δ ą 1 and 0 ă d ă 1
δ´1 , then 1 ă α˚ ă α˚.

Proof. The proof is given in Appendix A.4.

In the next Lemma, we consider the stability of the boundary fixed points under the symmetry
condition (4.0.1).

Lemma 4.2.2. Consider system (3.1.3) with (4.0.1). If Ex and Ey are hyperbolic, then they are
locally asymptotically stable if and only if

1 ă δ ă 1 `
1

d
and α ą α˚, (4.2.2)

where α˚ is given by (4.2.1). Condition (4.2.2) is equivalent to each of the following conditions:

(i) α ą 1, δ ą 1, 0 ă µ ă µ˚
4 , and 0 ă d ă 1

δ´1 ,

(ii) α ą 1, δ ą 1, 0 ă d ă d˚
tc and d ă 1

δ´1 .

Proof. Under (4.0.1), α˚
1 , and α˚

2 in (3.2.25) coincide, and both simplify to (4.2.1). The conditions
in Proposition 3.2.3 simplify to (4.2.2). By Lemma 4.2.1, α˚ ą 1. Under δ ą 1, a direct calculation
shows

α ą α˚ ðñ 4pδ ´ 1q2α2 ´ 4αpδ ´ 1qrµd` δ ´ 1s ` 4µdpδ ´ 1q ´ 4µ ą 0 ðñ µ ă µ˚
4 ðñ d ă d˚

tc.
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Using Lemma 4.2.2 and Remark 4.1.1, we summarize the local stability of the fixed points when
there is a unique interior fixed point. Recall, E0 is always unstable in this case.

Proposition 4.2.2. Consider system (3.1.3) with (4.0.1). There is a unique interior fixed point,
E˚ “ E˚

2 , if and only if the parameters are in one of the regions given in Remark 4.1.1. In the
regions listed in (a), E˚ is locally asymptotically stable and in the regions listed in (b), E˚ is a
saddle. In case (b)(vii) with d “ d˚

tc, Ex,Ey are both non-hyperbolic, but locally asymptotically
stable. The stability of Ex and Ey in all parameter regimes is summarized below.

(a) Ex and Ey are unstable when at least one of the following holds:

(i) 0 ă δ ď 1;

(ii) 0 ă α ď 1 and 0 ă δ ă 1 ` 1
d ;

(iii) α, δ ą 1, d˚
´ ď d ă 1

δ´1 ;

(iv) α, δ ą 1, µ ě µ˚
3 , and 0 ă d ă 1

δ´1 ;

(v) α, δ ą 1, µ˚
2 ă µ ă µ˚

1 , and d “ d˚
´.

(b) Ex and Ey are locally asymptotically stable when one of the following holds:

(vi) α, δ ą 1, 0 ă µ ď µ˚
2 , and 0 ă d ă 1

δ´1 ;

(vii) α, δ ą 1, µ˚
2 ă µ ă µ˚

1 , and 0 ă d ď d˚
tc.

Proof. (a) In cases (i)-(v), one of the hypotheses of Lemma 4.2.2 fails, so both Ex and Ey are
unstable. In (i), α ď 1 contradicts α˚ ą 1. In (ii), 0 ă δ ď 1 contradicts δ ą 1. In (iii),
d˚

´ ď d ą 1
δ´1 , which implies µ ą µ˚

2 . But Ex and Ey are unstable since d˚
´ ą d˚

tc whenever µ ‰ µ˚
2 .

In (iv), Lemma 4.1.3(a) gives µ˚
4 ă µ˚

3 , so µ ą µ˚
3 ą µ˚

4 contradicting µ ă µ˚
4 . Hence, Ex and Ey

are unstable. In (v), d “ d˚
´ and d˚

´ ą d˚
tc whenever µ ‰ µ˚

2 (Lemma 4.1.3) and hence Ex and Ey

are unstable.
(b) In cases (vi)-(vii), all conditions in Lemma 4.2.2 hold except at d “ d˚

tc. By Lemma 4.1.5,
Ex and Ey coalesce with E˚

3 and E˚
1 , respectively. Hence, we must analyze the local stability of

E˚
2 “ px˚

2 , x
˚
2 q.

Let
g1 “ 1 ` d ` p1 ` αqx˚

2 , g2 “ δ ` µx˚
2 ,

where x˚
2 is the positive root of (4.1.4). By (3.2.23) and (3.2.24), a direct computation shows that

DTpE˚
2 q is a symmetric matrix with eigenvalues

λ1pE˚
2 q “

1 ` d

pg1q2
`

δ

pg2q2
“ 1 ´

αx˚
2

pg1q2
´

x˚
2

pg2q2
, λ2pE˚

2 q “
1 ` d ` 2αx˚

2

pg1q2
`

δ

pg2q2
.

By Lemma 4.1.1, x˚
2 ą 0 ðñ 0 ă δ ă 1 ` 1

d . This shows λ1pE˚
2 q ă 1 whenever it exists

0 ă λ1pE˚
2 q ă 1 ðñ 0 ă δ ă 1 `

1

d
.

By f1px˚
2 , y

˚
2 q “ 1, we obtain

1

g1
`

1

g2
“ 1. (4.2.3)

Next, we show λ2pE˚
2 q ą 1. Define

Spxq :“ s0 ` s1x ` s2x
2, (4.2.4)
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with

s0 “ pα ´ 1q ´ µpd˚
tcq2, s1 “ 2µp1 ` αq ´ 2µ

`

1 ` d˚
tc

˘

p1 ` αq, s2 “ ´µp1 ` αq2.

From 1
pg2q2

“ 1 ´ 2
g1

` 1
pg1q2

and λ2pE˚
2 q ´ 1 “ x˚

2

”

α´1
pg1q2

´
µ

pg2q2

ı

, we obtain

λ2pE˚
2 q ´ 1 “ x˚

2

„

α ´ 1 ´ µ

pg1q2
`

2µ

g1
´ µ

ȷ

. (4.2.5)

Multiplying both sides of (4.2.5) by pg1q
2

x˚
2

gives

Spx˚
2 q “

pg1q2rλ2pE˚
2 q ´ 1s

x˚
2

.

Since Spxq opens downward, the only positive root to Spxq “ 0 is

x˚ “

?
α ´ 1

?
µp1 ` αq

´
d˚
tc

1 ` α
.

Hence, we obtain
λ2pE˚

2 q ą 1 ðñ Spx˚
2 q ą 0 ðñ x˚

2 ă x˚.

Let ζ “
µ

µ˚
2

P p1, αq. A direct computation shows

x˚
2 ´ x˚ “

δ ´ 1

2µp1 ` αq
Φpζq,

where
Φpζq “ ´pζ ` 1q `

a

pζ ` 1q2 ` 4ζpα2 ´ 1q ´ 2
a

ζpα ´ 1q.

Since δ ą 1,
x˚
2 ă x˚ ðñ Φpζq ă 0.

For any α ą 1 and ζ P p1, αq, a direct calculation shows

Φpζq ă 0 ðñ pζ ` 1q2 ` 4ζpα2 ´ 1q ă
“

pζ ` 1q ` 2
a

ζpα ´ 1q
‰2

ðñ pζ ` 1q2 ` 4ζpα2 ´ 1q ăpζ ` 1q2 ` 4pζ ` 1q
a

ζpα ´ 1q ` 4ζpα ´ 1q2

l jh n

“

pζ`1q`2
?
ζpα´1q

‰2

ðñ 4ζ
“

pα2 ´ 1q ´ pα ´ 1q2
‰

l jh n

“ 4ζ¨2pα´1q

ă 4pζ ` 1q
a

ζpα ´ 1q

ðñ 2ζ ă pζ ` 1q
a

ζ ðñ p
a

ζ ´ 1q2 ą 0 pζ ą 1q.

Hence, Φpζq ă 0 and λ2pE˚
2 q ą 1. so E˚

2 is an unstable saddle point.

Biologically, Proposition 4.2.2(a) lists all parameter regimes where both species survive, whereas
(b) lists all regimes in which one species excludes the other.

Remark 4.2.1. In Proposition 4.2.2(a)(i), both nullcline asymptotes lie in the first quadrant and
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so x̃ and ỹ are irrelevant (see Figure 5.2(a)). In (a)(iii-v) , x̃ ą x (see Figure 3.2(c)). In (a)(ii),
both configurations can occur. In (b)(vi-vii), x̃ ă x (see Figure 3.2(d)).

Combining the preceding lemmas, we obtain the complete global dynamics in the symmetric
case.

Theorem 4.2.1. Consider system (3.1.3) assuming symmetry condition (4.0.1) with expressions of
α˚, ¨ ¨ ¨ , d˚

´ listed in Table B.2.

(a) The interior fixed point E˚
2 is globally asymptotically stable with respect to intR2

` if either

1. 0 ă δ ď 1 or
“

0 ă α ď 1 and 0 ă δ ă 1 ` 1
d

‰

,
or

2. α, δ ą 1 and one of the following holds:

i. d˚
´ ď d ă 1

δ´1 , or

ii. µ ě µ˚
3 , 0 ă d ă 1

δ´1 ,

iii. µ˚
2 ă µ ă µ˚

1 , d “ d˚
´.

(b) If pα, δ, µ, dq P pC1 Y C2q X D1,
then E˚

3 is globally asymptotically stable with respect to R´ and E˚
1 is globally asymptotically

stable with respect to R`. E˚
2 is a saddle.

(c) If α, δ ą 1 and

“

0 ă µ ď µ˚
2 , 0 ă d ă 1

δ´1

‰

or
“

µ˚
2 ă µ ă µ˚

1 , 0 ă d ď d˚
tc

‰

,

then Ex is globally asymptotically stable with respect to R´ Ytpx, 0q : x ą 0u and Ey is globally
asymptotically stable with respect to R` Y tp0, yq : y ą 0u.

(d) If none of the above is satisfied, then E0 is globally asymptotically stable in the entire first
quadrant.

Proof. (a) In either parameter regime, Proposition 4.2.2 implies that Ex,Ey is unstable and leaves
a unique interior fixed point E˚

2 . Exactly the same argument in Theorem 3.2.6(a) applies and the
conclusion follows.

(b) Theorem 3.2.6(c) shows that the boundary points Ex and Ey are necessarily unstable when-
ever E˚

2 , E
˚
3 , and E˚

1 exist. By Proposition 4.1.1(b),

Ey !K E˚
1 !K E˚

2 !K E˚
3 !K Ex.

The proof that E˚
1 ,E

˚
3 are stable and E˚

2 unstable follows by exactly the same argument as in
Theorem 3.2.6(c)(ii). Since R´ and R` are invariant (Proposition 4.2.1) and each contains one
attractor, Theorem 3.2.1 implies that every interior orbit in R´ converges to E˚

3 , and every interior
orbit in R` converges to E˚

1 .
(c) By Proposition 4.2.2, Ex and Ey are stable, and E˚

2 is the unique interior fixed point.
Combining Theorem 3.2.1 with Proposition 4.2.1, we conclude that Ex (respectively, Ey) is globally
asymptotically stable with respect to R´ Y tpx, 0q : x ą 0u (respectively, R` Y tp0, yq : y ą 0u).

(d) If the parameters do not lie in any of the above regimes, then E0 is the only fixed point in
the first quadrant. Convergence of orbits to E0 follows from Theorems 3.2.1 and 3.2.3.
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4.2.1 Continuum of Fixed Points

In this section only, we assume µ “ 0 and α “ 1. Biologically, for each species, µ “ 0 eliminates
intra-specific competition among newborns, and α “ 1 implies that the inter-specific competition
coefficient among adults of each species is equal to their intra-specific competition coefficient.

Define

K0 :“
δ

δ ´ 1
´ p1 ` dq.

Proposition 4.2.3. Consider system (3.1.3) with (4.0.1). If µ “ 0, α “ 1 and 1 ă δ ă 1 ` 1
d , then

every orbit, except the one starting from the origin, converges to a point on x ` y “ K0.

Proof. Under the given conditions, system (3.1.3) reduces to

xt`1 “ T1pxt, ytq “ xt fpxt, ytq, (4.2.6)

yt`1 “ T2pxt, ytq “ yt fpxt, ytq. (4.2.7)

with

fpx, yq “
1

1 ` d ` x ` y
`

1

δ
.

The nontrivial x- and y-nullclines are the same, yielding a continuum of fixed points. If δ ď 1, no
positive solution exists. Otherwise,

fpx, yq “ 1 ðñ x ` y “ K0.

Hence, every px, yq with x ` y “ K0 is a fixed point. A direct calculation shows x ` y “ K0 ą 0 if
and only if 1 ă δ ă 1 ` 1

d . Letting

h0pxq “ K0 ´ x, k0pyq “ K0 ´ y,

the next-iterate operators (see definition in [26]) become

Lh0px, yq “ T2px, yq ´ h0pT1px, yqq “ yfpx, yq ´ pK0 ´ xfpx, yqq “ px ` yqfpx, yq ´ K0,

Lk0px, yq “ T2px, yq ´ k0pT1px, yqq “ px ` yqfpx, yq ´ K0 “ Lh0px, yq.

Let u “ x ` y and gpuq “ ufpuq. A direct calculation shows

g1puq “
1 ` d

p1 ` d ` uq2
`

1

δ
ą 0, @ u ě 0.

So gpuq is strictly increasing in u. At u “ K0,

1 ` d ` K0 “
δ

δ ´ 1
ùñ gpK0q “ K0.

Thus whenever 0 ă u ă K0, strict monotonicity gives

gpuq ă gpK0q “ K0 ùñ ufpuq ă K0 ùñ Lh0
px, yq ă 0,

and if u ą K0 ą 0, then Lh0
px, yq ą 0. By Lemma 3.4 and Theorem 3.5 from [26], the conclusion

follows.

42

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Chapter 5

Numerical Results and Bifurcation
Analysis

First, we provide phase portraits to demonstrate all the possible dynamical outcomes in model (3.1.3)
in both the symmetric and general cases, and then, we provide bifurcation diagrams to illustrate the
saddle-node and pitchfork bifurcations that can occur.

5.1 Phase Portraits

5.1.1 Symmetric Case

In the symmetric case, Theorem 4.2.1 partitions the parameter space into regions where all the dif-
ferent dynamical outcomes occur. Figures 5.1 and 5.2 show schematic phase portraits demonstrating
each possible case. Figure 5.1 illustrates that there is an entire line given by x ` y “ K0 of interior
fixed points that are stable, but not asymptotically stable, and all solutions converge to one of the
fixed points on the line, depending on the initial conditions.

x

y

Ex

Ey

E0

x+ y = K0

Figure 5.1: Phase portrait illustrating the continuum of stable interior fixed points when µ “ 0, α “ 1,
and 1 ă δ ă 1 ` 1

d
. The blue curve on the y axis is the trivial x-nullcline and the red curve on the y-axis

is the trivial y-nullcline. The diagonal line, x ` y “ K0, shown by a dashed red-blue line, shows that the
nontrivial nullclines for both species are the same.
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The next figure illustrates the remaining possible cases under the symmetry assumption (3.1.6).
Under this assumption, there is at least one interior fixed point.

x

y

xasy

yasy

y = x

E0 Ex

Ey

E∗

(a)

x

y
y = x

E0 Ex

Ey
E∗

(b)

x

y

y = x

E0

E∗

E∗
1

E∗
3

Ey

Ex

1

2

3

4

1○, 3○

2○, 4○

(c)

x

y
y = x

E0 Ex

Ey

E∗

(d)

1

Figure 5.2: Phase portraits illustrating all the remaining possible cases in Theorem 4.2.1 (excluding the case
in which E0 is globally asymptotically stable with respect to R2

`). The blue curves are the x-nullclines and
the red curves are the y-nullclines. Every interior orbit on the diagonal converges to E˚. By Theorem 3.2.1,
every orbit starting in each region converges monotonically to a locally asymptotically stable fixed point in
that region. In (a),(b), all interior orbits converge to E˚. In (c), orbits in R´ converge to E˚

3 and those in
R` to E˚

1 . In (d), orbits in R´ converge to Ex and those in R` to Ey.

Note that Figure 5.2(c) illustrates the case in which there are three interior fixed points. This
case has not been observed in other two-species competition models [4, 7, 21].
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5.1.2 General Case

Here, we illustrate the remaining phase portraits that can occur for model (3.1.3) that do not occur
under the symmetry assumption. Figure 5.3 illustrate schematic phase portraits where one of the
species drives the other to extinction, shown to be possible in Theorem 3.2.4.

x

y

xasyE0 Ex

(a)

x

y

E0 Ex

(b)

x

y

yasy

E0

Ey

(c)

x

y

E0 Ex

Ey

(d)

1

Figure 5.3: Phase portraits illustrating Theorem 3.2.4. Blue curves are the x-nullclines and red curves
are the y-nullclines. By Theorem 3.2.1, every orbit starting in each region converges monotonically to a
locally asymptotically stable fixed point in that region. (a)–(b) show regimes in which only the non-trivial
x-nullcline exists and all interior orbits converge to the boundary fixed point Ex. (c)–(d) show regimes in
which only the non-trivial y-nullcline exists and all interior orbits converge to the boundary fixed point Ey.

Theorem 3.2.5 covers the rest of the possible dynamical outcomes, i.e., there are no interior fixed
points or there are two. Figure 5.4 illustrates each of these possibilities.
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E0 Ex
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2○

(c)

x

y

E0 Ex

Ey

E∗
1
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2

1

2

3
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(d)

x
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(e)

x

y

E0 Ex

Ey

(f)

x

y

yasy

E0 Ex

Ey

(g)

x

y

E0 Ex

Ey

(h)

1

Figure 5.4: Phase portraits illustrating Theorem 3.2.5. Parameter values are summarized in Table B.1. The
blue curves are the x-nullclines and the red curves are the y-nullclines. In the graphs on the right, the dashed
curves represent the horizontal and vertical asymptotes that lie in the first quadrant. By Theorem 3.2.1,
every orbit starting in each region converges monotonically to a locally asymptotically stable fixed point in
that region. In (a–b), there are two interior fixed points. Orbits converge to E˚

1 or Ex. In (c–d), there
are two fixed points. Orbits converge to E˚

2 or Ey. In (e–f), there are no interior fixed points. All orbits
converge to Ex. In (g–h), there are no there are no interior fixed points. All orbits converge to Ey.
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5.2 Sequences of Bifurcations

All bifurcation diagrams were generated using MatContM [12].

5.2.1 Sequences of Bifurcations Including a Pitchfork Bifurcation

In the symmetric case (see Theorem 4.2.1), varying the natural mortality coefficient d of adults
can produce a pitchfork bifurcation. Reducing d allows more adults to survive each breeding cycle,
which increases the adult populations and thus strengthens both inter- and intra- specific competition
among adults. Once d crosses the threshold d˚

´, the coexistence state on the diagonal loses stability
and two coexistence states that are symmetric about the diagonal appear. Figure 5.5 illustrates how
three interior fixed points merge before coalescing with the origin as d.

(a) x–d projection (identical to y–d)

(b) 3-D view

Figure 5.5: Sequence of bifurcations including a pitchfork bifurcation for the symmetric parameter set
(α “ 2.13, µ “ 35.2, δ “ 5.9) as d increases from zero to 0.21. (a) shows the two dimensional projection
of (b), a three dimensional bifurcation diagram . At d close to zero, the boundary fixed points Ex and
Ey are both locally asymptotically stable, there is a unique interior fixed point E˚

2 that is unstable, and
the origin E0 is also unstable. When d « 0.1159, two new interior fixed points E˚

3 and E˚
1 appear from

transcritical bifurcations with Ex and Ey, respectively. At d « 0.1186 all three interior fixed points E˚
1 ,

E˚
2 , and E˚

3 collide in a pitchfork bifurcation, leaving E˚
2 globally asymptotically stable. At d « 0.204, Ex

and Ey together with E˚
2 coalesce with E0 and leave the first quadrant, leaving E0 globally asymptotically

stable.
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5.2.2 Sequences of Bifurcations Including a Saddle-Node Bifurcation

Next, in the general case we fix all other parameters and vary species X’s newborn cohort mortality
to adult reproduction coefficient, δ1 “ 1`D1

r1
. Figure 5.6 illustrates the saddle–node bifurcation and

subsequent transcritical bifurcations of Ex and Ey, as described in Theorem 3.2.5.

(a) x–δ1 projection (b) y–δ1 projection

(c) 3-D view

Figure 5.6: Sequence of bifurcations including a saddle–node bifurcation in the general case. (a) and (b)
show the 2-D projections, and (c) shows the 3-D view. Parameter values are given by α1 “ 15, α2 “ 3, δ2 “

2, d1 “ 1, d2 “ 0.3, µ1 “ 4, µ2 “ 2 and δ1 increases from zero to 2.1. For δ1 near zero, Ex is locally
asymptotically stable and Ey and E0 are both unstable. At δ1 « 0.7704, two interior fixed points (ordered as
Ey !K E˚

1 !K E˚
2 !K Ex) are born via a saddle–node bifurcation, where E˚

1 is locally asymptotically stable
and E˚

2 is unstable. The unstable interior fixed point E˚
2 leaves the first quadrant through a transcritical

bifurcation with Ex at δ1 « 0.8776. The stable interior fixed point E˚
2 leaves the first quadrant through

a subsequent transcritical bifurcation with Ey at δ1 « 1.175. At δ1 « 2.0, the boundary fixed point Ex

undergoes a transcritical bifurcation with E0 leaving Ey globally asymptotically stable.
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5.2.3 Sequences of Bifurcations Including Two Saddle-Node Bifurcations

Finally, we give an example, in the general case, that illustrates that there can be zero, one, two,
or three interior fixed points caused by two saddle-node bifurcations and a transcritical bifurcation.
We fix all other parameters and vary α1 “ C12

C22
, species Y ’s inter- to intra-specific adult competition

ratio. The bifurcations are summarized below.

(a) x–α1 projection (b) y–α1 projection

(c) 3-D view

Figure 5.7: Sequence of bifurcations including two saddle–node bifurcations in the general case. (a) and
(b) show the 2-D projections, and (c) shows the 3-D view. Parameter values are given by α2 “ 6.9, δ1 “

1.083, δ2 “ 1.1, d1 “ 0.8, d2 “ 0.1, µ1 “ 0.3, µ2 “ 0.6 and α1 increases from 8.5 to 12.5. For α1 near
8.5, there is a unique interior fixed point E˚

3 that is globally asymptotically stable, whereas both Ex and Ey

are unstable. As α1 « 9.35, the first saddle-node bifurcation occurs, creating two interior fixed points that
can be ordered as E˚

1 !K E˚
2 . Here, E˚

1 is locally asymptotically stable, E˚
2 is unstable, and E˚

3 remains
locally asymptotically stable but loses its global attractivity. At α1 « 9.71, E˚

1 coalesces with Ey in a
transcritical bifurcation and then leaves the first quadrant, leaving Ey locally asymptotically stable. Finally,
as α1 « 12.14, the second saddle-node bifurcation annihilates E˚

2 and E˚
3 , leaving Ey globally asymptotically

stable. Throughout, E0 and Ex remain unstable.
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Chapter 6

Conclusions and Future Directions

This thesis analyzes a two-species, discrete-time, single-cycle maturation competition model obtained
by adapting the single-species framework in [27] to two species with reproduction delay τ to be zero.
Therefore, we are assuming that the cohort of newborns takes exactly one cycle before they are able
to contribute to the growth of the population. The associated map T is proven competitive, globally
injective and it satisfies Condition (O`) as in Lemma 2.5.2, which ensures that every interior orbit
converges to a fixed point by Theorem 2.5.1. Sufficient conditions are obtained for global convergence
to the origin, to the boundary fixed point, and to a unique interior fixed point, and are also obtained
for two new types of bistability regimes. The first bistability regime contains one stable and one
unstable interior fixed point together with one stable and one unstable boundary fixed points. The
second bistability regime has three interior fixed points, two are attractors and they are separated
by the third, a saddle. Both boundary fixed points are unstable.

More specifically, in the general case, Theorem 3.2.3 shows that if a species’ newborn cohort
mortality to adult reproduction ratio (1`Di

ri
) is larger than its survival threshold 1 ` 1

di
, then that

species dies out. This is one of the classical outcomes discovered in the discrete Leslie–Gower
competition model (see [5]). Theorem 3.2.4 shows that if one species satisfies 1`Di

ri
ą 1 ` 1

di
while

the other species’ newborn cohort mortality to adult reproduction ratio is below the survival ratio,
then only the latter species survives and approaches its carrying capacity. In this case, the carrying
capacity is exactly the x or y coordinate of the boundary fixed point for this species. Theorem 3.2.6(i)
shows that when both species’ newborn cohort mortality to adult reproduction ratio are sufficiently
small ( 1`Di

ri
ď 1), and the combined inter- to intra-specific adult competition ratio pC12C21

C22C11
q is weak

enough, then coexistence between the two species is possible. Theorem 3.2.6(b) shows that there is
an adult competition threshold for each species such that if both species’ inter- to intra-specific adult
competition ratios are larger than their threshold defined in (3.2.25), there is a unique coexistence
fixed point that is a saddle and the only species that survives is determined by the initial conditions.
Thus the model (3.1.3) recovers all the classical outcomes. The model can also have up to three
interior fixed points and the two bistability regimes already described. We give an example in which
there are two interior fixed points. This occurs via a saddle-node bifurcation. Each of these fixed
points eventually disappears by transcritical bifurcations involving an interior fixed point and a fixed
point on one of the axes.

In the symmetric case, certain ratios of the corresponding parameters are identical for the two
species. Unlike in the general case, there can only be zero, one, or three interior fixed points, not
two. A saddle-node bifurcation cannot occur. If 1`D

r ě 1` 1
d , then both species die out. If instead,

1`D
r ă 1 ` 1

d , then there can be either one or three interior fixed points. One of them is always on
the diagonal and the other two are symmetric about the diagonal. When there is a unique interior
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fixed point, it can be a saddle or globally asymptotically stable. When it is globally asymptotically
stable, both species coexist regardless of the initial populations. When it is a saddle, the boundary
fixed points are attractive and their basins of attraction are separated by the diagonal. This agrees
with Theorem 3.2 of [4]. It is shown that when the unique symmetric fixed point on the diagonal
exists, there can be simultaneous transcritical bifurcations with the fixed points on the axes giving
birth to two more interior fixed points that are asymptotically stable that then eventually disappear
through a pitchfork bifurcation. When the three interior fixed points all exist, the interior fixed
point on the diagonal and both boundary fixed points are unstable. The basins of attraction of
the two asymptotically stable interior fixed points that are symmetric about the diagonal are still
separated by the diagonal.

Next, we compare the dynamics of our model with other existing models. Because our model
can have more than one interior fixed point, our model captures richer dynamics than the classical
two-species competition models [4, 7, 21]. Besides the four classical outcomes, the four-dimensional
juvenile–adult competition model in [6] admits stable or unstable two-cycles and the six-dimensional
three-stage, competition model in [32] can undergo period-doubling bifurcations and chaos, not
possible in our model. However, again neither one of their high dimensional models can exhibit
the multiple interior fixed points, and related dynamics possible in our two dimensional model.
Our model also exhibits different dynamics compared to the stage-structured competition models in
[6, 32], while remaining only two-dimensional.

Although our model reveals richer dynamics than the two-species competition models in [4, 7, 21],
our analysis remains incomplete in several aspects. First, we have proved that there are at most
three interior fixed points in the general case. In the symmetric case, we proved there can be zero,
one, or three interior fixed points. Unlike in the symmetric case, in the general case, we were only
able to determine sufficient conditions for the precise number of interior fixed points as a function of
parameters. Next, our analysis is restricted to the case where the newborn cohort becomes mature
at the end of only one cycle. This is not biologically realistic for many species. In order to capture
more realistic maturation steps, we could introduce reproduction delays τ1, τ2 P N following the
single-species framework for immature cohorts as in [27]. This modification yields a τ1 ` τ2 ` 2
dimensional model,

Xt`1 “
Xt

1 ` d1 ` C11Xt ` C12Yt
`

D1r1Xt´τ1

D1β1 ` pβ1 ´ 1qC1r1Xt´τ1

, (6.0.1a)

Yt`1 “
Yt

1 ` d2 ` C22Yt ` C21Xt
`

D2r2Yt´τ2

D2β2 ` pβ2 ´ 1qC2r2Yt´τ2

, (6.0.1b)

where βi “ p1 ` Diq
τi`1 for i P t1, 2u. Since the model is no longer planar, Theorem 2.5.1 in [25]

no longer applies. Note that the Order Interval Trichotomy (Theorem 2.5.2) still holds in higher
dimensional cases so it remains a useful tool once we can verify hypothesis 2.5.1. At the same time,
we expect the presence of delays can introduce richer dynamics than the non-delayed case and we
reserve this direction for future work.

In summary, this thesis shows that a planar competition model with single-cycle maturation
not only recovers all the outcomes of the classical planar competition models, but also admits
two new bistable regimes involving multiple interior fixed points. Hence, this thesis provides a
bridge between the classical planar competition models [4, 7, 21] and the higher dimensional stage-
structured competition models ([6, 32]). The most important next step is to reintroduce explicit
maturation delays in the model. This will raise the dimension of the model and likely produce new
types of bifurcations that cannot occur in the non-delayed model.
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Appendix A

Auxiliary Proofs

A.1 Coefficients of the Quartic Equation

The coefficients for
rQpxq “ η4x

4 ` η3x
3 ` η2x

2 ` η1x ` η0,

are

η4 “ p1 ´ α1α2qµ2
1µ2,

η3 “ ´µ1 r2α1α2µ2p´1 ` δ1q ´ 2µ2p´1 ` d1µ1 ` δ1q

´α2
1α2µ1p´1 ` δ2q ` α1µ1p´1 ` d2µ2 ` d1α2µ2 ` δ2q

‰

,

η2 “ µ2

“

d21µ
2
1 ` µ1p´2 ` 4d1p´1 ` δ1qq ` p´1 ` δ1q2

‰

` α2
1µ1 rµ1p´1 ` d2p´1 ` δ2qq ` 2α2p´1 ` δ1qp´1 ` δ2qs

´ α1

“

α2µ2p´1 ` δ1q2 ` µ1 pα2µ2p´1 ` 2d1p´1 ` δ1qq

`2d2µ2p´1 ` δ1q ` 2p´1 ` δ1qp´1 ` δ2qq ` d1µ
2
1p´1 ` d2µ2 ` δ2q

‰

,

η1 “ 2µ2p´1 ` d1p´1 ` δ1qqp´1 ` d1µ1 ` δ1q

` α2
1p´1 ` δ1q p2µ1p´1 ` d2p´1 ` δ2qq ` α2p´1 ` δ1qp´1 ` δ2qq

´ α1 rp´1 ` δ1q pα2µ2p´1 ` d1p´1 ` δ1qq ` d2µ2p´1 ` δ1q

`p´1 ` δ1qp´1 ` δ2qq ` µ1p´1 ` 2d1p´1 ` δ1qqp´1 ` d2µ2 ` δ2qs ,

η0 “ µ2p1 ` d1 ´ d1δ1q2 ` α2
1p´1 ` δ1q2p´1 ` d2p´1 ` δ2qq

´ α1p´1 ` d1p´1 ` δ1qqp´1 ` δ1qp´1 ` d2µ2 ` δ2q.

(A.1.1)

A.2 Proof of Lemma 4.1.3

Proof of Lemma 4.1.3. (a) Since

µ˚
1

µ˚
2

“ α ą 1,
µ˚
3

µ˚
1

“
pα ´ 1q2 ` 4α

4α
ą 1,
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we have µ˚
2 ă µ˚

1 ă µ˚
3 . A direct calculation shows

µ˚
4 “

µ˚
1

1 ` dpδ ´ 1qpα ´ 1q
ă µ˚

1 , µ˚
4 ě µ˚

2 ðñ d ď
1

δ ´ 1
.

(b) A direct expansion shows

d˚
´ ´ d˚

tc “
δ ´ 1

µ
`

1

pα ´ 1qpδ ´ 1q
´

2
a

pα ´ 1qµ
“ A ` B ´ 2

?
AB,

where

A “
δ ´ 1

µ
, B “

1

pα ´ 1qpδ ´ 1q
.

By the arithmetic mean-geometric mean inequality (i.e., for any A,B ě 0, A`B ě 2
?
AB), d˚

tc ď d˚
´

with equality if and only if µ “ µ˚
2 . Next, a direct calculation shows

d˚
´ ď

pα ´ 1qpδ ´ 1q

µ
ðñ 2

δ ´ 1

µ
ď

2
a

pα ´ 1qµ
ðñ µ ě pα ´ 1qpδ ´ 1q2 “ µ˚

2 ,

and one checks easily that

pα ´ 1qpδ ´ 1q

µ
ď

1

δ ´ 1
ðñ µ ě pα ´ 1qpδ ´ 1q2 “ µ˚

2 .

This completes the proof.

A.3 Proof of Lemma 4.1.4

Proof of Lemma 4.1.4. We check the three cases (a) rA2 “ 0, (b) rB2 “ 0, and rA2 ‰ 0, and (c)
rC2 “ 0 and rA2, rB2 ‰ 0.

(a) rA2 “ 0. Since rA2 “ 0, α “ 1. This shows

rB2 “ p1 ´ αq
“

dµ ` p1 ´ αqpδ ´ 1q
‰

“ 0,

forcing rC2 “ 0. But when α “ 1, we obtain rC2 “ ´1 ‰ 0, which yields a contradiction.
(b) Since rB2 “ 0 and rA2 ‰ 0, dµ “ pα ´ 1qpδ ´ 1q. This implies

rk1 “ 0, rC2 “ dpδ ´ 1q ´ 1.

The quadratic equation yields two roots

rA2x
2 ` rC2 “ 0 ùñ x˚

1 “ ´

d

´ rC2

rA2

, x˚
3 “

d

´ rC2

rA2

.

If α, δ ą 1, then rA2, rC2 ă 0, and no real roots can exist. If instead 0 ă α, δ ă 1, then rA2 ą 0, rC2 ă 0
giving two real roots x˚

1 ă 0 ă x˚
3 . But then y˚

3 “ ´x˚
3 ă 0. So no interior fixed point can arise.
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(c) The quadratic equation yields two roots

rA2x
2 ` rB2x “ 0 ùñ x˚

1 “ 0, x˚
3 “

´ rB2

rA2

´ k̃1.

Hence, both fixed points are on the axes and no interior fixed points can exist.

A.4 Proof of Lemma 4.2.1

Proof of Lemma 4.2.1. (a) Let θ “ µd ´ pδ ´ 1q. Assume for contradiction that α˚ ď 1, then

α˚ ď 1 ùñ
a

θ2 ` 4µ ` θ ď 0. (A.4.1)

However, for any real θ and µ ą 0,

a

θ2 ` 4µ ` θ ą |θ| ` θ ě 0,

a contradiction. Hence, α˚ ą 1.
(b) A direct calculation shows

µ ě µ˚
1 ðñ P1pαq ď 0,

where
P1pαq “ rA5α

2 ` rB5α ` rC5,

with
rA5 “ pδ ´ 1q2 ą 0, rB5 “ ´pδ ´ 1q2 ă 0, rC5 “ ´µ ă 0.

Hence, P1pαq opens upward with two real roots

α´ “

1 ´

b

1 `
4µ

pδ´1q2

2
, α˚ “

1 `

b

1 `
4µ

pδ´1q2

2
.

Since α˚ ą 1 and α´ ă 0,
P1pαq ď 0 ðñ α P rα´, α˚s.

This implies
µ ě µ˚

1 ðñ P1pαq ď 0 ðñ 1 ă α ď α˚.

(c) Rearranging shows

d ą d˚
tc ðñ d ą

αpδ ´ 1q

µ
´

1

pα ´ 1qpδ ´ 1q
ðñ P2pαq ă 0,

where
P2pαq “ rA6α

2 ` rB6α ` rC6,

with

rA6 “ pδ ´ 1q2 ą 0, rB6 “ ´rpδ ´ 1q2 ` dµpδ ´ 1qs ă 0, rC6 “ µrdpδ ´ 1q ´ 1s ă 0.
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So P2pαq opens upward and has two real roots of opposite sign:

α̃´ “
pµd ` δ ´ 1q ´

a

rµd ´ pδ ´ 1qs2 ` 4µ

2pδ ´ 1q
, α˚ “

pµd ` δ ´ 1q `
a

rµd ´ pδ ´ 1qs2 ` 4µ

2pδ ´ 1q
.

Since
µd ` δ ´ 1 ă

a

pµd ´ pδ ´ 1qq2 ` 4µ,

α̃´ is negative, and from (a), α˚ ą 1. Hence, P2pαq ă 0 if and only if α̃´ ă α ă α˚. Restricting to
α ą 1 yields

d ą d˚
tc ðñ P2pαq ă 0 ðñ 1 ă α ă α˚.

(d) From (b), α “ α˚ is a root of P1pαq “ 0. Rearranging P1pα˚q “ 0 leads to

P1pα˚q “ 0 ðñ α2
˚pδ ´ 1q2 “ pδ ´ 1q2α˚ ` µ. (A.4.2)

Evaluating P2pαq at α “ α˚ yields

P2pα˚q “ pδ ´ 1q2α2
˚ ´ rpδ ´ 1q2 ` dµpδ ´ 1qsα˚ ` µrdpδ ´ 1q ´ 1s. (A.4.3)

Substituting (A.4.2) into (A.4.3) and simplifying, we obtain

P2pα˚q “ dµpδ ´ 1qp1 ´ α˚q.

It follows from δ ą 1 and α˚ ą 1 that P2pα˚q is negative. From (c), P2pαq ă 0 if and only if
α̃´ ă α ă α˚. The fact that P2pα˚q ă 0 implies

α̃´ ă 1 ă α˚ ă α˚,

which completes the proof.
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Appendix B

Tables

Case α1 µ1 δ1 d1 α2 µ2 δ2 d2

(a) 15.0 4.00 0.80 1.00 3.00 2.00 2.00 0.30
(b) 6.90 0.60 1.10 0.10 9.50 0.30 1.10 0.80
(c) 5.20 0.63 1.65 0.27 34.00 2.96 0.80 0.44
(d) 9.50 0.30 1.10 0.85 6.90 0.60 1.10 0.01
(e) 4.00 4.00 0.20 1.00 3.00 2.00 2.00 0.50
(f) 4.00 2.20 1.30 1.00 8.00 2.00 2.00 0.30
(g) 10.00 4.00 1.30 0.10 3.00 2.00 0.90 0.30
(h) 10.00 4.00 1.30 1.00 3.00 2.00 2.00 0.30

Table B.1: Parameter values used in each of the eight phase portraits (a)–(h).

Threshold Expression

α˚
pµd ` δ ´ 1q `

a

rµd ´ pδ ´ 1qs2 ` 4µ

2pδ ´ 1q

α˚

1 `

b

1 `
4µ

pδ´1q2

2
µ˚
1 αpα ´ 1qpδ ´ 1q2

µ˚
2 pα ´ 1qpδ ´ 1q2

µ˚
3

pα ´ 1qpα ` 1q2pδ ´ 1q2

4

µ˚
4

αpα ´ 1qpδ ´ 1q2

1 ` dpδ ´ 1qpα ´ 1q

d˚
tc

αpδ ´ 1q

µ
´

1

pα ´ 1qpδ ´ 1q

d˚
´

pα ` 1qpδ ´ 1q

µ
´

2
a

pα ´ 1qµ

d˚
`

pα ` 1qpδ ´ 1q

µ
`

2
a

pα ´ 1qµ

Table B.2: Key parameter thresholds under the symmetry condition. d˚
tc denotes the transcritical bifurca-

tion and d˚
´ denotes the pitchfork bifurcation.
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[4] D. Clark, M. R. S. Kulenović, and J. F. Selgrade. Global asymptotic behavior of a two-
dimensional difference equation modelling competition. Nonlinear Analysis: Theory, Methods
& Applications, 52(7):1765–1776, 2003.

[5] J. M. Cushing. A discrete model for competing stage-structured species. Theoretical Population
Biology, 41(3):372–387, 1992.

[6] J. M. Cushing, S. M. Henson, and L.-I. Roeger. Coexistence of competing juvenile–adult
structured populations. Journal of Biological Dynamics, 1(2):201–231, 2007.

[7] J. M. Cushing, S. Levarge, N. Chitnis, and S. M. Henson. Some discrete competition models
and the competitive exclusion principle. Journal of Difference Equations and Applications,
10(13-15):1139–1151, 2004.

[8] E. N. Dancer and P. Hess. Stability of fixed points for order-preserving discrete-time dynamical
systems. Journal für die Reine und Angewandte Mathematik, 419:125–140, 1991.

[9] L. S. Davis and F. T. McCaffrey. Survival analysis of eggs and chicks of Adélie penguins
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