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Lay Abstract 

The effects of forest thinning practices on biomass regeneration are not well understood 

as traditional field methods for measuring forest characteristics are costly and impractical for 

large spatial extents. To monitor and report on biomass components more effectively, we used 

unoccupied aerial vehicle (UAV) imagery and laser scanning observations, segmentation 

algorithms, and a deep learning predictive model, for a 14-ha mixed forest stand in Southern 

Ontario. Laser scanning observations were segmented into tree crowns for the deep learning 

model, and the crown size, height, and biomass of individual trees were output from UAV 

imagery. Our results indicate that a combined segmentation and modelling approach can provide 

accurate estimates of biomass components in forests, even under conditions where their stand 

density and spatial patterns are manipulated.  
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Abstract 

Canada’s vast forests play a substantial role in the global carbon balance but require laborious and 

expensive forest inventory campaigns to monitor changes in aboveground biomass (AGB). Light 

detection and ranging (LiDAR) or reflectance observations onboard airborne or unoccupied aerial 

vehicles (UAV) may address scalability limitations associated with traditional forest inventory but 

require simple forest structures or large sets of manually delineated crowns. Here, we introduce a 

deep learning approach for crown delineation and AGB estimation reproducible for complex forest 

structures without relying on hand annotations for training. Firstly, we detect treetop and delineate 

crowns with LiDAR point cloud using marker-controlled watershed segmentation (MCWS). Then 

we train a deep learning model on annotations derived from MCWS to make crown predictions on 

an UAV red, blue and green (RGB) tiles. Finally, we estimate AGB metrics from tree height and 

crown diameter-based allometric equations, all derived from UAV data. We validate our approach 

using a 14-ha mixed forest stands with various experimental tree densities in Southern Ontario, 

Canada. Our results demonstrate an 18% improvement in AGB estimation accuracy when the 

unsupervised LiDAR only algorithm is followed by a self-supervised RGB deep learning model. 

In unharvested stands, the self-supervised RGB model performs well for height (R2=0.79) and 

AGB (R2= 0.80) estimation. In thinned stands, the performance of both unsupervised and self-

supervised methods varied with stand density, crown clumping, canopy height variation, and 

species diversity. These findings suggest that MCWS can be supplemented with self-supervised 

deep learning to directly estimate biomass components in complex forest structures as well as 

atypical forest conditions where stand density and spatial patterns are manipulated.  

Keywords: LiDAR, UAV, biomass, unmanned aerial vehicle, crown delineation, self-supervised 

deep learning  



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

v 

 

Acknowledgements 

I would like to first acknowledge my advisor Dr. Alemu Gonsamo, whose feedback, expertise, 

and continuous support were integral to the completion of this thesis. I would also like to thank 

my committee members Dr. Darren Scott and Dr. Jiaxin Chen, as well as my co-authors Jenny 

Chau, Dr. Derek T. Robinson, Sean Rudd, and Dr. Dominic Cyr for their contributions to the 

research. Finally, I am grateful for the support that all of my friends and colleagues in the 

McMaster Remote Sensing Laboratory has given me throughout my Master’s. This research was 

funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance 

Grant (RGPIN-2020-05,708), and Environment and Climate Change Canada (ECCC) Grants and 

Contributions program (GCXE24S085). 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

vi 
 

Table of Contents 

Lay Abstract……………………………………………………………………………..………iii  

Abstract…………………………………………………………………………………..………iv 

Acknowledgements……………………………………………………………..………..………v 

Chapter 1: LiDAR and RGB-based Methods to Estimate Biomass……………….....……….1 

1.1 Introduction…………………………………………………………..…………..……….1 

1.2 Materials and Methods…………………………………………………………..……….5 

1.2.1 Site Description……………………………………………………………..……….5 

1.2.2 Data……………………………………………………………..…………..……….7 

1.2.3 Individual Tree Detection and Delineation………..………………………..………8 

1.2.4 Tree-level Aboveground Biomass Estimation and Validation……………...……...10 

1.3 Results………………………………...…………………………………………..……..15 

1.4 Discussion and Summary………………………………………………………..……...19 

1.4.1 LiDAR and RGB-based Tree Height Estimation and Crown Delineation…………19 

1.4.2 Tree-level AGB Estimation…………………………..……………………..……...21 

1.4.3 Biomass Growth Response of VRH………………………………………....……...23 

1.4.4 Conclusions and Outlook……………………………….…………………..……...24 

Chapter 2: Impacts of Retention Harvesting on Species Biodiversity and Richness..……..27 

2.1 Introduction………………..……………………………………………………..……...27 

2.2 Materials and Methods…………………………………………………………..……...30 

2.2.1 Species Identification and Richness…………………………………….…..……...30 

2.2.2 Understory Radiation Measurements and Red Pine Canopy……..………..……...33 

2.2.3 Topography and Soil Nutrient Content Measurements……………………..……..34 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

vii 
 

2.3 Final Outlook…………………………………...………………………………..……...36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

viii 
 

List of Tables 

Table 1. Characteristics of the variable retention harvesting treatments………………………….6 

Table 2. Parameters for allometric equations for common tree species………………………....11 

Table 3. Summary statistics for the performance of the estimated aboveground biomass……....16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

ix 

 

List of Figures 

Figure 1. Location of the red pine stand in Southern Ontario…………………………………….6 

Figure 2. Workflow for generating self-supervised delineated crowns………………………....10 

Figure 3. Graphs of crown diameter, height, and aboveground biomass estimations…………...13  

Figure 4. Plot of aboveground biomass and annual change density…………………...………...18 

Figure 5. Aerial view of the study site…………………………………………………………..31  

Figure 6. Digital elevation model of the study site………………………………………….…..35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

x 

 

List of Abbreviations and Symbols 

33A 33% Aggregate crown retention 

33D 33% Dispersed crown retention 

55A 55% Aggregate crown retention 

55D 55% Dispersed crown retention 

AGB Aboveground biomass 

ANOVA Analysis of variance 

C Carbon 

CHM Canopy height model 

CON Unharvested control 

DBH Diameter at breast height 

DEM Digital elevation model 

LAI Leaf area index 

LiDAR Light detection and ranging 

MCWS Marker-controlled watershed segmentation 

PPFDU Photosynthetic photon flux density at the understory 

RGB Red, blue and green 

UAV Unoccupied aerial vehicles 

TWI Topographic Wetness Index 

 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

1 

 

Chapter 1: LiDAR and RGB-based Methods to Estimate Biomass 

1.1 Introduction 

Forests are essential to global Earth-system health and carbon (C) cycling through several 

ecosystem functions, including C sequestration and storage (Martire et al., 2015). Forests are 

critical terrestrial sinks for atmospheric CO2 due to their ability to store large amounts of C in trees 

and forest soils. Canada has one of the largest contiguous forest ecosystems on Earth, spanning an 

area of 4 million km2 (Gonsamo & Chen, 2011). Canada’s forests store 20.9 Pg C in their biomass, 

around 6.5% – 7.2% of the total C stored in AGB in all forests on Earth (Sothe et al., 2022). With 

2.06 million km2 of Canada’s forests covered under a management plan that includes timber 

production and conservation, frequent monitoring of changes in tree aboveground biomass (AGB) 

is necessary for developing climate change mitigation solutions. Traditionally, AGB is estimated 

from allometric equations that use in-situ tree height and diameter at breast height (DBH) 

measurements. Height and DBH-based allometric equations are available for 33 common tree 

species in Canada, adjusted for interspecies variations in biomass compartments such as bark, 

branches, foliage, and wood (Lambert et al., 2005). However, traditional national forest inventories 

target a limited number of commercial species and growing conditions, and obtaining consistent 

field measurements for forest monitoring is costly and impractical for large spatial extents of 

forests which have great variety in species mix and growing conditions (Iglhaut et al., 2019; Pappas 

et al., 2022).  

Advancements in remote sensing enable consistent monitoring and reporting on forest 

characteristics through aerial and satellite-based forest inventories (Xu et al., 2021). Compared to 

traditional forest inventory procedures that involve manual ground-based measurements, aerial 

remote-sensing-based forest inventories, collected by unoccupied aerial vehicles (UAV), can 
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provide relatively better spatial and temporal coverage using red, green and blue (RGB) imagery 

or light detection and ranging (LiDAR) data (White et al., 2016). LiDAR can generate 3-

dimensional point clouds, which provide location and structural information of tree biomass 

components (Xu et al., 2021). Although RGB and LiDAR data are most commonly and efficiently 

collected through UAVs or satellites, as of yet, they are unable to provide sufficiently accurate 

DBH measurements that are typically used to estimate AGB. Thus, traditional allometric equations 

for AGB estimation are unsuitable for UAV-based inventories and would need to be adapted. 

Previous studies have proposed methods to approximate DBH from crown diameter for existing 

allometric equations or develop equations to estimate AGB directly from crown diameter (Jucker 

et al., 2022). Adapting DBH-based allometric equations to crown-based equations offers 

significant practical benefits since developing new equations from crown measurements to 

estimate AGB necessitates direct biomass sampling of trees, a method that is both destructive and 

impractical for large spatial scales (Dalponte & Coomes, 2016; Kim et al., 2010; Ni‐Meister et al., 

2010). 

Small-footprint airborne laser scanning methods are proliferating as an approach for 

extracting forest inventory data from LiDAR point clouds. The point cloud can be used to generate 

a canopy height model (CHM), which can subsequently be analyzed to estimate individual 

treetop’s location and height (e.g., local maximum filtering, Panagiotidis et al. (2016)). Treetop 

locations can be used as markers in a watershed segmentation (e.g., Yun et al. (2021)), which is a 

boundary detection-based technique that has successfully delineate tree crowns (i.e., segments) in 

a CHM (e.g., Yin and Wang (2019)). Marker-controlled watershed segmentation (MCWS) is a 

variant of the method that uses an inverted CHM to treat treetops as individual catchment basins 

for a pouring water algorithm. Water is poured until it reaches the highest point of a basin, and the 
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resulting edges delineate the crown profiles (Yun et al., 2021). While commonly used to generate 

forest inventory data, MCWS-based crown delineation is limited in forests with minimal tree 

height variance and high crown clumping (Yin & Wang, 2019). Yet, the impact of forest structural 

complexity on MCWS crown delineation has not been rigorously assessed, particularly in the 

context of forests under a management plan with various silvicultural treatments. Region-growing 

segmentations are an alternative method for crown delineation that uses a decision tree method to 

grow individual crowns around treetops (Dalponte & Coomes, 2016). Improved tree detection and 

crown segmentation has been achieved using deep learning and region-growing algorithms, but 

training datasets are limited to small forests with very high point density LiDAR data (e.g., 1000 

points/m2, Wielgosz et al. (2024)). Additionally, some models require terrestrial or mobile laser 

scanning data to separate individual trees in the point clouds, which limits reproducibility for larger 

study areas where only airborne laser scanning may be available (Wielgosz et al., 2024).  

Deep learning neural networks for crown delineation using RGB-band mosaics have been 

gaining traction in recent years. Current models primarily use either a mask region-based or U-Net 

convolutional neural network, which require large sets of ground truth information for training 

(Freudenberg et al., 2022; Hao et al., 2021). Over large study areas, models are trained on manually 

delineated crowns, with high agreement between hand annotations in the test data and the model 

predictions. These methods require manual intervention or large sets of hand annotations for 

individual tree crown analysis in dense forest canopies common in Canadian forests (Brandt et al., 

2020; Leckie, 2003). LiDAR crown prediction has been explored as an alternative to manual 

delineation for training data. Weinstein et al. (2019) developed a segmentation model trained on 

trees generated from unsupervised LiDAR algorithms, with moderate crown precision and recall 

in simple forest structures. While this self-supervised method enables automated segmentation, 
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there is a limited understanding of its application for predicting forest inventory (Weinstein et al., 

2019). Furthermore, the open-source model has yet to be trained on Canadian forests, particularly 

for sites under silvicultural thinning treatments with variable forest structures (Weinstein et al., 

2020). 

Here, we investigate the accuracy of unsupervised LiDAR and self-supervised RGB forest 

inventory predictions in a 14-ha northern temperate coniferous forest stand in Canada (So et al., 

2024). We used a combination of UAV LiDAR and RGB data acquired during leaf-on and leaf-

off conditions, MCWS, and open-source deep learning models to generate tree height and crown 

diameter predictions of a forest stand undergoing various thinning treatments. We also developed 

crown-based allometric equations from existing forest inventory databases to estimate AGB from 

ground truth data, unsupervised LiDAR and self-supervised RGB predictions. Through this work, 

we demonstrate a self-supervised method for height and crown estimation that is reproducible for 

forests of varying structural complexities and help estimate AGB directly from remote sensing 

data. 
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1.2 Materials and Methods 

1.2.1 Site Description 

We carried out the study at a 14-ha temperate red pine (Pinus resinosa) plantation stand located in 

the St. Williams Conservation Reserve (42.704444 N, 80.358056 W). The study site is located 

approximately 3 km north of Lake Erie in southern Ontario and belongs to the larger Turkey Point 

Observatory (Zugic et al., 2021). Managed by the Ontario Ministry of Natural Resources, the stand 

was planted in 1931 with red pine seedlings placed 2 meters apart in furrowed rows. The stand 

density was reduced from ~2500 trees/ha to ~1875 trees/ha in 1960 through forest thinning. In 

2014, the ministry divided the study site into 14 1-ha plots and applied one of five variable 

retention harvesting (VRH) treatments (unharvested control (CON), 33% aggregate crown 

retention (33A), 55% aggregate crown retention (55A), 33% dispersed crown retention (33D), 

55% dispersed crown retention (55D)) (Fig. 1). VRH are silvicultural treatments that manipulate 

the spatial distribution of residual forest stands into evenly spread (dispersed) or clustered 

(aggregate) patterns after harvest. The treatments focus on preserving forest structural complexity 

to enhance stand regeneration and biomass growth rate (So et al., 2024). Treatment parameters 

were applied using provincial guidelines on shelterwood system regeneration of red and white pine 

forests (Table 1) (So et al., 2024; Zugic et al., 2021). Tree clumping is retained at base level in 

unharvested control and aggregate crown retention treatments but is reduced in dispersed 

treatments (Boyden et al., 2012) (Fig. 1).  
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Fig. 1. Location of the red pine stand in Southern Ontario, Canada (left). An aerial view of the 

study site, divided into 14 1-ha plots (right). The three-digit abbreviation of each plot represents 

the variable retention harvesting treatment applied (see Table 1), and the last number is the 

replication number. 

 

Table 1. Characteristics of the variable retention harvesting (VRH) treatments in the red pine 

stand. The canopy is primarily composed of red pine (Pinus resinosa), accompanied with a few 

other tree species, including white pine (Pinus strobus) and black oak (Quercus velutina). 

According to a pre-harvest survey in 2011, the mean height of red pine was 23.8 ± 2.8m (Zugic 

et al., 2021). The mean diameter at breast height and age of trees in the study site are 28.3 cm 

and 93 years old respectively (Bodo & Arain, 2022). The stand density represents the average 

density post-VRH treatment (So et al., 2024). 
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Plot Abbreviation 

Basal area retained 

post-VRH treatment 

(%) Pattern of thinning 

Stand Density (trees 

plot−1) 

CON 100 No thinning 432 

33A 33 Aggregate 178 

33D 33 Dispersed 118 

55A 55 Aggregate 213 

55D 55 Dispersed 235 

 

1.2.2 Data 

We collected LiDAR data and RGB imagery of the study site in July of 2023 using a DJI Matrice 

600 remotely piloted UAV fitted with an integrated Riegel MiniVUX-1 LiDAR sensor. The UAV 

was flown at 60m above ground level and LiDAR data was acquired with scan lines separated by 

0.1m and constrained to a 120° field of view. The flight plan used parallel flight lines spaced 22m 

apart, resulting in images with 75% sidelap and 80% forward overlap, and a ground sampling 

distance of 0.01-0.02 m. After processing, the LiDAR data yielded an average point density of 

650.7 points/m2. LiDAR data covered all 14 plots of the study site, but RGB imagery in the 

northern corner and eastern section of the site, including plots 55A2, 55D2, and 33A1, were 

constrained by orthorectification limitations and were excluded. 

We also collected tree height, crown diameter, and DBH field measurements for 72 trees in the 

study site. Only 57 of these trees were within the extent of the RGB imagery coverage. Height was 

calculated from the average measurements taken by a clinometer and a Nikon Forestry Pro II Laser 

Rangefinder. Crown diameter was derived from the average crown measurements in the north-



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

8 

 

south and east-west directions. DBH was collected using measuring tape at 1.3m above the ground. 

We also recorded the geographic locations of the sampled trees using GPS. To capture the leaf-off 

season, LiDAR, RGB, and field data were also collected in December of 2023 using the same 

sampled trees. 

 

1.2.3 Individual Tree Detection and Delineation 

We constructed a 0.25m resolution CHM from the LiDAR point cloud and identified tree locations 

and heights using a local maximum filter with a window size of 2 meters. We applied a height 

threshold between 15-40m to obtain mature trees and delineated crowns using an MCWS 

algorithm. The treetops are inverted into sinks and stratified into several layers based on height 

interval. A pouring algorithm fills starting from the lowest layers with water until the sink is 

completely filled (Yun et al., 2021). Tree crowns are delineated using the edge of the water in each 

pit, yielding crown area, which is used to calculate crown diameter with the assumption that the 

crown is circular to address hidden coverage due to overlapping (Equation 1):  

𝐶𝐷 = 2√
𝐶𝐴

𝜋
 (1) 

where CD is crown diameter and CA is crown area. 

Local maximum filter and MCWS were applied for both leaf-on and leaf-off CHM. Tree crowns 

were classified into hardwood or softwood species using a ΔCA threshold calculated from leaf-on 

and leaf-off CHMs. This threshold was derived from a previous survey of seasonal canopy 

variation in the study site and differed between VRH treatments (So et al., 2024).  

To generate self-supervised predictions from RGB imagery, we used an open-source deep 

learning neural network developed by Weinstein et al. (2019). The convolutional neural network 

uses a RetinaNet one-stage detector, which combines object detection and classification into a 
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single network for faster training and decreased sensitivity to the magnitude of bounding box 

proposals. For classification, the neural network uses a ResBet-50 backbone pre-trained on an 

ImageNet dataset. The original neural network was trained on data from the National Ecological 

Observatory Network, but we trained the model using the delineated crowns derived from the 

MCWS algorithm (Weinstein et al., 2020). We divided the RGB images and the predictions from 

MCWS into spatial subsets for each individual plot in the study site to minimize overfitting 

between thinning treatments. The RGB images have a spatial resolution of 0.05m and were split 

into window sizes of 400 by 400 pixels to provide adequate context for tree detection. To account 

for the high stand density of the study site, we allowed a window overlap of 25% to capture trees 

divided among images (Weinstein et al., 2019). For each spatial subset of LiDAR-derived crown 

polygons, we extracted bounding boxes and used them as annotations for training. Bounding box 

predictions generated from the model were merged with height and crown perimeter information 

of polygons generated from the unsupervised LiDAR algorithm based on intersection over union 

threshold. We applied a weighted logarithmic algorithm based on the perimeter of the crown 

predictions to define crown diameter and shared boundaries between overlapping predictions (Hu 

& Jung, 2021; Wu et al., 2016) (Fig. 2). 
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Fig. 2. Workflow for generating self-supervised red, green, and blue (RGB) delineated crowns. (a) 

Treetop detection using local maximum filtering and canopy height model from light detection 

and ranging point cloud, (b) bounding box annotations of crowns delineated by marker-controlled 

watershed segmentation for training, (c) bounding box predictions by self-supervised RGB deep 

learning model, and (d) delineated crowns of self-supervised RGB bounding box predictions using 

intersection over union threshold and weighted logarithmic algorithm. 

 

1.2.4 Tree-level Aboveground Biomass Estimation and Validation 

The database Tallo contains nearly 500,000 records of field measurements from over 5000 tree 

species worldwide. We identified 22 common tree species in Canada and extracted DBH, crown 



M.Sc. Thesis – K. So; McMaster University – School of Earth, Environment & Society 

11 

 

diameter, and biomass information for the species records, both in open and closed-canopy forests 

(Jucker et al., 2022). We conducted a regression analysis between DBH and crown diameter to 

create crown diameter-based AGB allometric equations for each species found in our study site 

(Table 2) (Gering & May, 1995; Hemery et al., 2005).  

 

Table 2. Parameters derived for allometric equations were used to predict the diameter at breast 

height (DBH, cm) from crown diameter (m) for common tree species found at the study site. The 

relationship between DBH and crown diameter was significant for all species. The parameters 𝑎 

and 𝑏 are exponents of the weight function of the equations provided by Lambert et al. (2005). The 

values for the parameters were derived from regression analysis of archival DBH, crown diameter, 

and biomass data collected by Jucker et al. (2022). n represents the number of data records used 

for each species. 

 

Species a b p-value Ra
2 n 

Red Maple 2.806992458 3.504022233 < 2.2 ∙ 10-16 0.438960047 745 

Sugar Maple 3.911188043 -0.532628866 < 2.2 ∙ 10-16 0.572270107 4840 

Eastern White 

Pine 

5.173398317 1.024282383 < 2.2 ∙ 10-16 0.660361561 328 

Red Oak 3.640308391 3.613734121 < 2.2 ∙ 10-16 0.676487076 477 

Black Cherry 4.280098995 -0.46564346 8.761 ∙ 10-15 0.529246468 79 

Red Pine 5.497935919 4.336751745 < 2.2 ∙ 10-16 0.669898369 78 

Black Oak 3.544180093 4.120237777 < 2.2 ∙ 10-16 0.683712703 105 
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The crown diameter-based equations were substituted into existing DBH-based allometric 

equations provided by Lambert et al. (2005) (Equation 2). The parameters a and b are exponents 

of the weight function of these allometric equations. Species specific parameter values were 

derived from archival DBH, crown diameter, and biomass data collected by Jucker et al. (2022):  

𝐷𝐵𝐻 = 𝑎 ∙ 𝐶𝐷 + 𝑏 (2) 

The DBH is then used to calculate AGB from estimated model parameters for each species’ 

respective biomass component (𝛽i) (Equations 3, 4):  

𝐴𝐺𝐵total = 𝐴𝐺𝐵wood + 𝐴𝐺𝐵bark + 𝐴𝐺𝐵foliage + 𝐴𝐺𝐵branches  (3) 

𝐴𝐺𝐵i = 𝛽i1 ∙ 𝐷𝐵𝐻𝛽i2 ∙ 𝐻𝛽i3  (4) 

where H is the tree height. 

We also estimated the AGB change (ΔAGB) of trees using the delineated crowns and previous 

DBH inventory data before application of VRH treatments from the study site. We extracted DBH 

from the crown diameter of delineated crowns using Equation 2 and calculated ΔAGB using a 

survey of mean annual DBH change of mature trees in the site after VRH treatment was 

implemented. 

Delineated crowns generated from the unsupervised and self-supervised predictions were 

matched with ground validation data through a direct intersection between the crown polygon and 

the ground truth location. We assessed the detection rate as the proportion of ground truth trees 

matched with the predicted crowns. AGB in the ground validation data was calculated from height 

and DBH measurements using Equations 3 and 4. We used adjusted R2 (Ra
2) and root mean squared 

error (RMSE) as accuracy metrics to evaluate the performance of the crown diameter, tree height, 

and AGB predictions with the ground validation data.  
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Fig. 3. Comparisons of the estimated (a) crown diameter, (b) height, and (c) aboveground biomass 

(AGB) calculated using allometric equations developed from unsupervised light detection and 

ranging data against ground measurements. n = 67. Comparisons are also provided for the 
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estimated (d) crown diameter, (e) height, and (f) AGB calculated using allometric equations 

developed from self-supervised red, green, and blue deep learning predictions against ground 

measurements. n = 43. The equations for the line of best fit and the adjusted R2 (Ra
2) values for the 

unharvested control and for all variable retention harvesting treatments are displayed. The p values 

for the Ra
2 are displayed in parentheses. The black line indicates the regression fit line while grey 

shade shows the 95% confidence intervals of mean prediction for the regression line. The green 

line is the 1:1 line.  
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1.3 Results 

We first analysed the performance of crown delineation, height and AGB estimations from UAV 

LiDAR data. Initial treetop detection and crown delineation using the unsupervised LiDAR-based 

algorithm identified 5122 trees in the study site with average and range height of 24.4m and 15.0m 

‒ 34.0m, respectively. Stand height is consistent with a pre-harvest forest inventory survey of the 

site conducted in 2011, which yielded a mean height of 23.8 ± 2.8m (Zugic et al., 2021). The 

estimated mean and range of the crown diameter were 5.0m and 1.2m ‒ 15.4m, respectively. 

Crowns delineated with the unsupervised LiDAR algorithm matched 67 trees in the ground truth 

data, with a detection rate of 93.06%. Overall, estimations for height (Ra
2= 0.48, p= <0.001, 

RMSE= 3.15m) were stronger than crown diameter (Ra
2= 0.27, p= <0.001, RMSE= 1.42m) (Fig. 

3). Amongst the treatments, model performances for crown diameter (Ra
2= 0.47, p= <0.01) and 

height (Ra
2= 0.70, p= <0.001) estimations were strongest in the unharvested control plot. AGB 

estimations in the harvested treatment plots (mean across harvested treatments Ra
2= 0.29, mean p= 

<0.001) outperformed the unharvested control plots (Ra
2= 0.21, p= 0.06) (Fig. 3 (c)).  

Treetop detection and crown delineation using the self-supervised RGB model identified 

3482 trees within the spatial extent of the RGB imagery. The trees have a height and crown 

diameter mean of 24.01m and 4.95m, respectively. Crowns delineated with the self-supervised 

RGB model matched 43 trees in the ground truth data, with a detection rate of 75.44%. Overall, 

RGB-based predictions for crown diameter (Ra
2= 0.38, p= <0.001, RMSE= 1.99m) and AGB (Ra

2= 

0.47, p= <0.001, RMSE= 236.58 kg) outperformed their respective LiDAR-based predictions 

(Crown diameter Ra
2= 0.27, Crown diameter p= <0.001, Crown diameter RMSE= 1.42m, AGB 

Ra
2= 0.29, AGB p= <0.001, AGB RMSE= 229.35 kg) while height predictions remained even 

(LiDAR Ra
2= 0.48, LiDAR p= <0.001, LiDAR RMSE= 3.15m, RGB Ra

2= 0.47, RGB p= <0.001, 
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RGB RMSE= 3.57m) (Fig. 3). Amongst the treatments, predictions for height (Ra
2= 0.79, p= 

<0.001) and estimated AGB (Ra
2= 0.80, p= <0.001) were strongest in the unharvested control (Fig. 

3(e)& 3(f)). However, crown diameter predictions in the unharvested control plot were weaker 

than in the harvested treatment plots (Control Ra
2= 0.24, Control p= 0.05, mean across harvested 

treatments Ra
2= 0.40, mean p= <0.001), and performed worse than fully-supervised deep learning 

approaches (Brandt et al., 2020) (Fig. 3(d)).  

Table 3. Summary statistics for the performance of the estimated aboveground biomass (AGB) 

based on tree height and crown diameter derived from unsupervised light detection and ranging 

data and self-supervised red, green and blue deep learning model. AGB adjusted R2 (Ra
2) is 

provided for each control (unharvested) and variable retention harvesting (VRH) treatments that 

were applied for the study site and include average stand density and basal area retained post-VRH 

treatment (So et al., 2024). The p values for the Ra
2 are displayed in parentheses. 

 

Amongst harvested treatments, AGB estimation from both LiDAR and RGB data is most 

accurate when 33% of the basal area is retained (mean across LiDAR 33A and 33D Ra
2= 0.40, 

Thinning 

Treatment 

Basal Area 

Retained (%) 

Stand Density 

(trees plot-1) 

Ra
2 LiDAR 

(n = 67) 

Ra
2 RGB 

(n = 43) 

Control 100 432 0.21 (0.06) 0.80 (<0.001) 

Aggregated 33 178 0.40 (<0.01) 0.79 (<0.001) 

Aggregated 55 213 0.04 (0.24) 0.34 (0.13) 

Dispersed 33 118 0.39 (0.11) 0.66 (<0.05) 

Dispersed 55 235 0.31 (<0.05) 0.19 (0.18) 

Overall 223 0.29 (<0.001) 0.47 (<0.001) 
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mean across LiDAR 33A and 33D p= <0.05, mean across RGB 33A and 33D Ra
2= 0.73, mean 

across RGB 33A and 33D p= <0.001), which are also the treatments with the lowest stand density. 

Dispersed treatments with reduced tree clumping perform worse with self-supervised RGB deep 

learning than aggregate treatments (mean across 33D and 55D Ra
2= 0.43, mean across 33D and 

55D p= <0.05, mean across 33A and 55A Ra
2= 0.57, mean across 33A and 55A p= <0.001). For 

unsupervised LiDAR predictions, aggregate treatments that retain baseline tree clumping 

performed evenly with dispersed treatments when treatment is severe (33A Ra
2= 0.40, 33A p= 

<0.01, 33D Ra
2= 0.39, 33D p= 0.11), but much weaker in moderate treatments (55A Ra

2= 0.04, 

55A p= 0.24, 55D Ra
2= 0.31, 55D p= <0.05) (Table 3) (Boyden et al., 2012; So et al., 2024).  

Amongst the delineated crowns generated by the self-supervised RGB model, the total 

estimated AGB of mature trees in the study site is 1006042 kg, with a density of 10.1 kg m-2 across 

the spatial extent of the RGB imagery. AGB density in the unharvested control (16.5 kg m-2) is 

consistent with estimates for other unharvested forest stands within the same ecoregion (Barakat, 

2017). Amongst harvested treatments, the AGB density is higher with moderate VRH (mean across 

55A and 55D= 9.3 kg m-2, mean p= <0.001) compared to severe VRH (mean across 33A and 33D= 

7.1 kg m-2, mean p= <0.001), and comparable between aggregate thinning (mean across 33A and 

55A= 8.4 kg m-2, mean p= <0.001), and dispersed thinning (mean across 33D and 55D= 8.0 kg m-

2, mean p= <0.001) (Fig. 4(a)). The mean annual ΔAGB density for the study area is 0.15 kg yr-1 

m-2, with the mean annual ΔAGB density greater in the unharvested control plots (mean= 0.18 kg 

yr-1 m-2) compared to the harvested treatment plots (mean across harvested treatments= 0.15 kg yr-

1 m-2, mean p= <0.001). In harvested treatments, annual ΔAGB density is lower in moderate VRH 

(mean across 55A and 55D= 0.09 kg yr-1 m-2, mean p= <0.001) compared to severe VRH (mean 

across 33A and 33D= 0.21 kg yr-1 m-2, mean p= <0.001), while annual ΔAGB density is higher in 
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dispersed thinning (mean across 33D and 55D= 0.17 kg yr-1 m-2, mean p= <0.001) compared to 

aggregate thinning (mean across 33A and 55A= 0.13 kg yr-1 m-2, mean p= <0.001) (Fig. 4(b)). 

 

 

 

Fig. 4. Comparisons of the estimated (a) aboveground biomass (AGB) and (b) the annual AGB 

change density calculated using allometric equations developed from self-supervised red, green, 

and blue deep learning predictions against ground measurements.  
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1.4 Discussion and summary 

1.4.1 LiDAR and RGB-based Tree Height Estimation and Crown Delineation 

In this study, we demonstrated the feasibility of using UAV LiDAR and RGB data for estimating 

tree-level canopy height, crown area and eventually AGB for a 14 1-ha forest stands with various 

stand density and tree distribution. Our approach combines an unsupervised LiDAR segmentation 

algorithm and a self-supervised RGB deep learning model to improve forest inventory data 

collection, particularly under VRH treatments. The unsupervised LiDAR method applied a 

modified MCWS for tree crown delineation, while tree heights were extracted using a local-

maxima filtering approach. A self-supervised deep learning model was trained on RGB imagery 

using LiDAR-derived annotations, allowing crown delineation in the absence of extensive ground 

truth data. This dual approach aimed to assess AGB estimation accuracy across different forest 

stand structures and management regimes. When comparing with UAV LiDAR-based studies 

conducted in unharvested forests in other regions across the world, the performance of our 

unsupervised LiDAR algorithm is consistent with local maximum filtering for height, but weaker 

with inverse watershed segmentation of tree crowns. Panagiotidis et al. (2016) yielded a similar 

height accuracy (Ra
2= 0.72 ‒ 0.75) and stronger crown delineation (Ra

2= 0.63 ‒ 0.85) in a smaller, 

primarily coniferous forest.  

There are three major challenges with delineating tree crowns using LiDAR, which are 

reflected in the unsupervised LiDAR algorithm. First, treetop detection is limited in mixed forests, 

with omission errors common for smaller crown structures and trees hidden under the canopy (Yun 

et al., 2021). Leaf-off LiDAR aided in the detection and classification of smaller hardwood trees 

within the study area, but improvement is marginal when mixed with taller softwood trees. Canopy 

compositions in stands undergoing VRH treatments are less dominated by mature red pine trees, 
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and the improved pulse penetration enables more accurate capture of inventory data (Gatziolis et 

al., 2010; So et al., 2024). Second, the water pouring algorithm in MCWS relies on height variation 

for region expansion, particularly along crown boundaries, to avoid over-expansion. Height 

variation is greater in plots with lower stand densities or undergoing dispersed VRH treatment 

where mature red pines are more spread apart, improving differentiation between water expansion 

boundary cells and adjacent treetops (Lisiewicz, 2022). Our approach applies two solutions, using 

high resolution LiDAR point cloud to construct the CHM to help preserve some height variation 

and masking non-tree areas with a height threshold to allow clearer segmentation along boundaries 

(Yin & Wang, 2019). Third, tree clumping is particularly prevalent in mixed and deciduous forest 

stands, with commission error in treetop detection common with regenerating broadleaf trees. 

Young broadleaf stands such as black oak or red maple (Acer rubrum) fill the harvested gaps left 

behind by aggregate VRH, and false positives may occur when delineating large canopies due to 

multi-foliage clumps and lateral branches. We screen out over-segmentation using an angle 

threshold between height and spatial distance differences, improving delineation in dispersed and 

unharvested treatments where broadleaf and coniferous species are more evenly mixed (Hu et al., 

2014; Yun et al., 2021). 

These challenges with LiDAR-based tree crown delineation highlight the mixed 

performances of AGB estimations, especially when applied with our crown diameter-based 

allometric equations. Training the self-supervised RGB model on LiDAR-derived annotations 

addresses the lack of training data available for forests undergoing VRH treatment. Incorporating 

the vertical and colour features of trees into the deep learning approach limited the under and over-

segmentation of crowns observed with unsupervised LiDAR delineation. The self-supervised RGB 

model is less effective when delineating crowns in more complex canopy conditions such as the 
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unharvested control, and existing models that are pretrained on much larger datasets would be 

better suited for unmanaged forests. A more complex convolutional neural network that refines 

bounding box classification using additional features like shadows may aid with crown boundary 

identification (Qi, 2017). In previous studies, crown size has been used to develop regression 

models for tree height in Canadian forests, particularly in stands with uniform species or age. The 

crown-height relationship is less clear in mixed forests with complex horizontal and vertical 

structures, and accurate crown-to-height prediction using RGB-based deep learning delineations 

would require additional species and age labeling from manual annotations (Falkowski et al., 2014; 

Russell et al., 2014). For height estimation, crown delineations generated by self-supervised RGB 

model are more effective for developing a crown boundary mask to extract tree height from the 

CHM.  

 

1.4.2 Tree-level AGB Estimation 

Quantifying AGB in stands depends on accurate relationships between key biomass determinants 

such as height and crown area. Although growth models often project an inverse relationship 

between height and crown diameter, MCWS may inaccurately capture crown ratio as the full 

crown of taller trees are segmented and the canopies of smaller trees are partially hidden. The 

variance in height and crown between in-situ measurements and LiDAR methods leads to 

disagreements in AGB estimates (Garber et al., 2008). Inaccurate AGB estimations also occur due 

to overestimation of tree height in stands of varying tree apex and branch structures. Integrating 

height into the weighted analysis of initial crown delineations from the RGB deep learning model 

helps account for age, structure, and species-specific changes in crown ratio. Although this 

approach can lead to crown underestimation in taller trees, incorporating crown recession in AGB 
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estimates reflects in-situ observations better than unsupervised algorithms relying solely on 

airborne laser scanning (Van Deusen & Heath, 2010). Nevertheless, both unsupervised LiDAR 

and self-supervised RGB approaches are less impacted by canopy obstruction and tree apex 

variance in stands with smaller densities. Especially in severely managed forests, a smaller density 

of residual trees allows accurate capture of vertical structure and full canopy profile, resulting in 

more precise sinks for MCWS and subsequently higher quality annotations for deep learning 

model training.  

Trees in stands undergoing moderate dispersed harvesting are spaced closer together 

compared to severe dispersed treatment stands, which can make tree classification for species-

specific allometric AGB equations more difficult. It is less of an issue for unsupervised LiDAR 

predictions, where mature softwood and young hardwood trees can be differentiated by height 

threshold and crown area change between leaf-on and leaf-off seasons. However, species 

classification using spectral signatures is unreliable in crowded mixed stands of softwood and 

hardwood trees. Species common in mixed coniferous and deciduous forests have similar spectral 

reflectance properties in the visible spectrum, which may lead to species misclassification in AGB 

estimation. A self-supervised deep learning model relying on imagery would need to use near-

infrared reflectance or additional properties such as texture or seasonal phenology (Martin et al., 

1998). In moderate aggregate treatment, hardwoods and softwoods are clumped separately into 

dense homogenous groups, allowing the self-supervised deep learning model to pick up on minor 

differences in spectral signatures between species more easily. In contrast, dense clusters of trees 

with similar height and crown structure can lead to high overlap between branches and crown 

boundaries, leading to missed or under-segmented crowns (Wan Mohd Jaafar et al., 2018). 
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The allometric equations used to estimate DBH from height and crown diameter leave 

room for improvement. While Equation 1 standardizes irregular canopies and aids with 

automation, AGB estimation requires a more comprehensive approach to geometric differences in 

crown area (Kutchartt et al., 2024). Our allometric equations account for interspecies variation in 

the crown diameter-to-area relationship but could not also consider VRH treatments due to the 

lack of available archival DBH, crown diameter, and biomass data for VRH sites in Canada. 

 

1.4.3 Biomass Growth Response of VRH  

The study area is located within the Carolinian zone of southern Ontario, an ecoregion 

characterized by high biodiversity and vegetation growth (Barakat, 2017). The rich growth 

environment enhances biomass regeneration, especially in comparison to other mixed forests 

undergoing active harvest management (Boucher et al., 2021; Molina et al., 2021). Canopy gaps 

left behind in harvest treatment plots enhance below-canopy light environment and encourage 

advanced regeneration of red pine and other species (Nyamai et al., 2020). However, most 

broadleaf stands in our site were within the understory layer and too short to be fully delineated 

by the self-supervised RGB deep learning model which is trained on mature crowns. Softwood 

species also contain less biomass across all tree components compared to residual red pines, which 

contribute the most to mature tree AGB as reflected in biomass trends between stand densities 

(Westfall, 2012). Nonetheless, tree biomass growth benefits from gaps within the forest matrix 

created by VRH treatments, which limits competition for sunlight and nutrients with neighbouring 

trees. Particularly at higher intensities, thinning treatments like VRH reduce horizontal-spacing 

competition amongst mature trees, enhancing biomass growth through increased access to 

resources (Kim et al., 2015). The effect is limited in aggregate thinning, where horizontal-spacing 
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between trees is minimally changed and excessive clustered gaps within the forest matrix introduce 

soil drainage problems (Kanninen et al., 2004). Overall, amongst VRH treatments in our study, 

biomass growth benefits the most from severe dispersed thinning and the least from moderate 

aggregate thinning, consistent with previous in-situ studies conducted in our site (e.g., Zugic et al. 

(2021)).  

 

1.4.4 Conclusions and Outlook 

While our self-supervised deep learning approach can be reproducible in small forests with local 

LiDAR and RGB datasets, there are two major limitations when extrapolating height and crown 

information to other biophysical characteristics. First, allometric DBH and AGB relationships 

were derived from a database that may be incompatible with certain biomass models. Specifically, 

biomass components such as foliage or fruit are unavailable, and some trees were excluded due to 

the lack of crown diameter data. Data availability for common Canadian tree species is also 

limited, so we grouped some missing species into general softwood or hardwood categories for 

DBH and AGB calculations (He et al., 2013; Jucker et al., 2022). We recommend exploring local 

datasets to supplement the estimation of stand inventory in mixed forests as the relationship 

between height and crown diameter, and eventually with AGB can vary between forest 

management, growth environment, species composition, and other factors. A more recent forest 

inventory database that includes isolated forests with natural ecosystems and different stand 

densities can expand the scope and application of our allometric equations. Second, while 

delineated crowns from a self-supervised RGB model provide an automated and substantially 

cheaper alternative to quantifying AGB and ΔAGB, it does not take into consideration shrubs and 

young trees in its estimation, only the sizeable trees. The height thresholds required for proper 
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delineation of crown boundaries mask understory vegetation and short trees, and the approach 

might work best for assessing biomass and C uptake changes in forests where the understory is a 

small contributor (Bodo et al., 2023). Thus, estimates made by the self-supervised method should 

be considered as additional reference data in guiding forest management pathways rather than a 

primary indicator for long-term trends in biomass growth and climate mitigation at all levels of an 

ecosystem. We suggest additional research into self-supervised crown delineation and height 

estimation in stands dominated by broadleaf species or young saplings.  

Although our study was limited to 3482 ‒ 5122 trees across a 14-ha plot, it provides insight 

into integrating multi-source remote sensing data and self-supervised algorithms into forest 

inventory programs on a large scale to improve the efficiency of acquiring information critical to 

the sustainable management of forests for climate change. Nonetheless, our study is complemented 

by varying shape and intensity of experimental thinning which was expected to have the largest 

impact on crown and tree dimension relationship with AGB to construct allometric equations. 

MCWS, when supplemented with self-supervised deep learning, was particularly effective in 

estimating biomass components in unharvested and severely thinned forests. This approach is a 

cheaper and less labour-intensive forest inventory alternative to traditional in-situ methods, only 

dependent on availability of aerial LiDAR data and RGB imagery. It can be useful for tracking 

biomass and forest C storages changes across time and management regions, such as plantations 

before and after a harvest treatment. To expand on the applications of self-supervised deep learning 

from remote sensing observations, our approach should be tested to evaluate biomass outcomes of 

other silvicultural interventions and forest management. We also encourage further research on the 

application of unsupervised LiDAR-based crown delineations for training other neural network 

architectures, such as U-Net, that can operate on limited amounts of annotations. As deep learning 
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neural networks are becoming more popular as a method for tree crown delineation and biomass 

estimation, the accuracy and performance of the predictions must be properly evaluated, 

particularly in the context of mixed forest stands with complex canopy structures and biodiversity.  
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Chapter 2: Impacts of Retention Harvesting on Species Biodiversity and Richness 

2.1 Introduction 

We have extensively covered VRH treatments in the context of stand regeneration and biomass 

growth rate. However, another critical objective of VRH is to benefit biodiversity through the 

retention of key forest structures (e.g. live and dead trees, wood debris) in production stands 

(Gustafsson et al., 2020). Microenvironmental changes brought forth by selective harvesting can 

affect the formation of understory vegetation, improving species diversity and resilience to climate 

change impacts (Deng et al., 2023). Studies have shown VRH enhances stand-level structural 

characteristics, subsequently creating favourable conditions for understory biodiversity 

conservation. For instance, in wildfire-prone forests, dispersed retention treatments have been 

associated with increased understory vegetation cover and species richness compared to 

unharvested controls (Franklin et al., 2019). Similarly, Franklin et al. (2018) found that combined 

aggregated and dispersed retention was also effective in supporting species diversity in understory 

communities within boreal mixedwood forests. VRH was implemented in our red pine plantation 

stand in 2014 for a similar objective: to modify the structural complexity of the canopy and 

enhance the biodiversity of plant species. In a previous study of the area, we found that aggregate 

and dispersed treatments generally create favourable microclimate conditions for the understory. 

Unlike clearcut or unharvested forest stands, VRH increases the light environment to encourage 

understory C uptake, while simultaneously retaining enough trees to provide a litter-rich 

environment (So et al., 2024). 

However, red pines are known to be allelopathic, and forests are typically characterized by 

sparse understory vegetation even with favourable light conditions. The needle-like litter of red 

pines are rich in resin acids, which degrade into active growth inhibitory substances for several 
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broadleaf and herbaceous species. For example, sufficient concentrations of 15-hydroxy-7-

oxodehydroabietate and 7-oxodehydroabietic acid, formed from the degradation of Japanese red 

pine (Pinus densiflora) resin, can inhibit the growth of invasive grass and weed species (Kato-

Noguchi et al., 2017). Thus, even with enhanced forest management practices providing greater 

access to sunlight, nutrients, and water in the understory, the allelopathic effects of red pine litter 

can persistently inhibit the growth of non-pine species (Spitale, 2011). There is a possibility that 

biochemical responses of VRH observed in our study area reflect a homogenized understory 

dominated by pine saplings. The dominance of red pine in the overstory and its associated 

allelopathic suppression of woody and herbaceous species can encourage a feedback loop, where 

only red pine saplings can establish and thrive, further reinforcing the monoculture through the 

defoliation and degradation processes (So et al., 2024). Although the biodiversity benefits of VRH 

have been extensively documented for deciduous and coniferous mixedwood forests, the impact 

on species richness in single-layered monocultures with substantial allelopathic potential remains 

poorly understood. Therefore, despite the increased biomass regeneration and climate mitigation 

associated with VRH treatments in plantation stands, it is critical to understand their effects on the 

presence and abundance of native species to avoid establishing biological deserts with poor 

biodiversity (Spitale, 2011). 

Furthermore, our study area is located over a dried stream bed, with predominantly sandy 

soil and wet conditions (So et al., 2024). Dried stream beds, remnants of intermittent fluvial 

systems, often exhibit heterogeneous microtopography and small-scale elevation gradients are 

common. Depressions may retain water longer while elevated areas may dry out more quickly, 

leading to a patchy distribution of soil nutrients across the landscape. This uneven elevation also 

creates microhabitats where water and solutes, including dissolved organic C and nitrate, can 
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accumulate during precipitation events, leading to spatial variability in soil nutrient pools (Rupp 

et al., 2021). The leaching process of C and N is accelerated by periodical dry and wet conditions. 

During dry periods, organic matter decomposition slows, leading to the accumulation of soluble 

nutrients. Subsequent rewetting events can then mobilize these nutrients, resulting in pulses of 

leaching, a phenomenon known as the “Birch effect” (Zhu et al., 2022). Heterogeneity in soil 

nutrient stoichiometry due to elevation can lead to uneven vegetation patterns, limiting the 

establishment of certain species that require more nutrient-rich soil. Stand growth patterns in our 

study area suggest additional soil drainage issues caused by excessive removal of trees. But how 

these moisture and soil nutrient dynamics impact understory species richness has yet to be 

extensively studied in our site and other small-scale managed forests (So et al., 2024). 

Here, we investigate the impacts of various VRH treatments on biodiversity and species 

presence in a red pine plantation stand in Canada. We plan to use a combination of digital 

hemispherical photography, remote sensing, and ground-based biometric measurements to assess 

light environment, litter input, soil nutrient content, topography, and understory species richness 

over a multi-VRH treatment mosaic. Through this work, we aim to demonstrate the impacts of 

differential retention strategies on microhabitat heterogeneity, nutrient cycling, and native species 

regeneration in red pine plantation ecosystems. 
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2.2 Materials and Methods  

2.2.1 Species Identification and Richness 

We carried out this study at the same temperate red pine plantation stand located within the St. 

Williams Conservation Reserve. The climate in this region is characterized by warm, humid 

summers and cold winters. The mean annual temperature is 8.0 °C and the mean annual 

precipitation is 1036 mm, of which approximately 13 % falls as snow (Arain et al., 2022). A pre-

harvest survey of our study area identified 53 woody species in the understory, including vines, 

shrubs, and trees. Black cherry (Prunus serotina), black oak (Quercus velutina), red maple (Acer 

rubrum), and eastern white pine (Pinus strobus) primarily make up the woody understory layer, 

although several herbaceous species were noted in subsequent surveys (Bodo et al., 2023). Within 

each of the 14 1-ha plots, we established 5 georeferenced sampling points: 1 at the geographical 

center of the plot, and the other 4 at 20 m north, east, south, and west of the center (Fig. 5.). During 

the growing season in June of 2025, we collected high-resolution overhead photographs of a 1m 

by 1m quadrat plot at each sampling point. These photographs were captured at a height of 1.5m 

using a Nikon D750 camera equipped with an AF-S NIKKOR 14-24mm f/2.8G ED lens. 
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Fig. 5. Aerial view of the study site, divided into 14 1-ha plots. The three-digit abbreviation of 

each plot represents the variable retention harvesting (VRH) treatment applied, and the last number 

is the replication number. Within each plot, sampling points are established at the geographical 

center of the plot, and 20 m north, east, south, and west of the center, denoted by either a yellow 

star or red flag symbol.  

 

We divided each quadrat plot photograph into 10cm by 10cm image tiles, filtered for green channel 

light using the image processing software ImageJ, and created a binary mask of black and white 

pixels separating the leaves from the background elements. To classify species, we used Leafsnap, 

a multi-stage computer vision system that first calculates leaf curvature using area and arclength 
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measures. Disks of fixed radii are placed at each point along the leaf’s contour to compute the 

fraction of area or perimeter lying within the segmented leaf, and then used to construct histograms 

of curvature over scale features. The features are used as queries for a nearest neighbours search 

of the Leafsnap database, which contains over 29000 images across 184 species, including primary 

woody species identified in our study area. Species are identified using curvature histogram 

intersection distance, a method that has previously yielded a 96.8% accuracy in returning the 

correct match for field images (Neeraj Kumar et al., 2012). For plants not covered in Leafsnap’s 

database, like grasses and shrubs, we identified species using Plants of Southern Ontario, Trees, 

Shrubs, Wildflowers, Grasses, Ferns and Aquatic Plants by Richard Dickinson and France Royer, 

which contains 760 species of wild flora (Richard Dickinson & Royer, 2014). 

To quantify species richness, we used the Chao1 estimator, which has a lower-bound 

estimate of true species richness. The index is based on the frequency of rare species observed, 

providing a more accurate estimate of richness in instances where rare species may be missed 

during sampling (Equation 5). This is particularly appropriate for our study area, given the within-

site heterogeneity of habitat conditions, our limited sample size, and the stand’s location in the 

highly biodiverse Carolinian Zone of southern Ontario (Chao et al., 2015): 

S1 = Sobs + 
(𝐹1)^2

2·𝐹2
 (5) 

where S1 is the true species diversity, Sobs is the number of species in the sample, F1 is the number 

of singletons (species occurring only once in the sample), and F2 is the number of doubletons 

(species occurring twice in the sample). 
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2.2.2 Understory Radiation Measurements and Red Pine Canopy 

To quantify the concentration of photosynthetically active understory radiation, we measured the 

average daily photosynthetic photon flux density (PPFDU) transmitted below the canopy 

(Jonckheere et al., 2005). At each sampling point, digital hemispherical photographs were taken 

on 12 dates throughout the 2022 growing season, using a Sigma 8 mm f/3.5 EX DG Circular 

Fisheye Lens. Through ImageJ, the photographs were filtered for blue channel light, and a binary 

mask of black and white pixels was created separating the sky and canopy elements. We used the 

CIMES program to extract the gap fraction, with the parameters set as 36 zenith rings, 144 azimuth 

sectors, and a zenith angle between 20° and 70°. The equation used by the program to calculate 

gap fraction is as follows (Gonsamo et al., 2011) (Equation 6): 

P0(φ,θ) = PW/(PB + PW) (6) 

where φ is the mid-point of the azimuth angle of a portion of the hemisphere projected to the image 

plane, θ is the mid-point of the zenith angle, PB is the number of canopy pixels, and PW is the 

number of sky pixels within the selected area of the image. 

Results from the gap fraction analysis were used to estimate PPFDU through PARCLR.exe, an 

executable file from the CIMES program. We also used the program to calculate the leaf area index 

(LAI), a dimensionless variable to quantify red pine canopy foliage density based on one-half the 

total leaf area per unit of horizontal ground surface area (Gonsamo et al., 2011). The zenith angle 

was restricted to 50° -70° to prioritize red pine canopy close enough to the sampling point for litter 

to have an allelopathic effect on plant growth. We focused on photographs taken during early 

spring (March) and autumn (September), just before red pines drop their old needle-like leaves 

(Kato-Noguchi et al., 2017). LAI is calculated from null-gap segments using the executable files 
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LANG01.exe and LANG02.exe, using the following equations by Gonsamo et al. (2011) 

(Equations 7, 8): 

LSAT(θ,φ) = -2·ln[1/Npixels]·cosθ (7) 

P0(θ,φ) = exp[-LSAT(θ,φ)·0.5/cosθ] (8) 

where θ is the zenith angle, LSAT(θ,φ) is the maximum LAI value of a null-gap segment, Npixels is 

the number of pixels in the null-gap segment, and P0(θ,φ) is the new null-gap segment. 

 

2.2.3 Topography and Soil Nutrient Content Measurements 

We constructed a 1.0m resolution digital elevation model (DEM) of our study area from our 

LiDAR point cloud data (Fig. 6.). To predict water and nutrient pooling, we used the Topographic 

Wetness Index (TWI), which quantifies the spatial distribution of soil moisture based on local 

topography variation. TWI reflects the tendency of water to accumulate at a given location as a 

function of both slope and upstream contributing area. Data from the DEM was used to create a 

1.0m TWI raster of the study site, calculated using the following equation (Beven & Kirkby, 1979) 

(Equation 9): 

TWI = ln(
𝑎

tan(𝛽)
) (9) 

where a is the upslope contributing area to the flow direction and β is the local slope angle. 
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Fig. 6. Digital elevation model of the study site, at 1.0m resolution. The model was constructed 

from light detection and ranging point cloud data collected in July of 2023. 

 

We also collected soil core samples to a depth of 10 cm at 4 sampling points located 20 m north, 

east, south, and west of the center within each plot of the study area. Litter was removed and the 

soil samples were air-dried, ground, and analyzed for C and N concentrations using the combustion 

method at the University of Guelph's Agriculture and Food Laboratory. Total C consisted of both 

organic and inorganic C fractions. 
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2.3 Final Outlook 

The first objective of our study was to determine the environmental drivers of species richness 

within red pine plantation ecosystems. While light availability normally facilitates the growth and 

establishment of diverse understory flora, it may not benefit species richness in areas with thick 

red pine litter layers, which exhibit strong allelopathy effects that inhibit seedling emergence 

(Facelli et al., 1991; Montgomery & Chazdon, 2001). Local topography may also influence species 

composition by affecting microclimatic conditions, particularly through its impact on soil moisture 

and nutrient pools via leaching (Svenning, 2001). We used multiple regression analysis, with the 

Chao1 index as the primary response variable and PPFDU, LAI, and TWI as predictor variables. 

Specifically, we conducted Type III analysis of variance (ANOVA) on the fitted linear models to 

assess whether each continuous environmental factor contributed significantly to observed 

variation in Chao1 richness. Multicollinearity among predictors was assessed using variance 

inflation factor, while the relationship between TWI and soil C and N was analysed separately 

(Zuur et al., 2010). We used a two-tailed t-test to estimate significance levels between all 

comparisons. 

The second objective of our study was to evaluate the effects of VRH treatments on PPFDU, 

LAI, TWI, and Chao1 species richness. VRH is known to help facilitate ecosystem resilience and 

heterogeneity in mixedwood forests. Although previous studies of our site point to light 

availability, litter input, and soil drainage changes, we aim to investigate how these manifest across 

different VRH treatments and affect species diversity in single-layered monocultures like red pine 

plantations (David B. Lindenmayer & Franklin, 2002). We used one-way ANOVA to test for 

significant differences in abiotic determinants and species richness between VRH treatments and 
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types. Post-hoc comparisons were conducted for significant results using Tukey’s Honest 

Significant Difference test to identify specific pairwise differences (Michael Kutner et al., 2004). 

Through our study, we hope to contribute to the growing body of evidence on the ecological 

impacts of structural retention strategies. While VRH methods are often assumed to encourage 

environmental conditions that enhance understory species richness, we predict that this effect is 

context-dependent, and certain stands, such as red pine monocultures, carry unique surface litter 

dynamics and topographic features. These conditions may negate these benefits or further diminish 

biodiversity (Franklin et al., 2018; So et al., 2024). Looking forward, we recommend further 

research into targeted microsite amelioration, such as mechanical litter disturbance or nutrient 

amendments, in VRH and other management pathways to better support conservation in stands 

experiencing ongoing biodiversity loss. 
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