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LAY ABSTRACT 

Osteoarthritis of the knee is on the rise and often changes the way people walk, yet these changes 

are hard to measure outside a laboratory. To better understand how to best measure walking inside 

and outside of a laboratory, this thesis used a combination of camera-based and sensor-based 

measurement systems to understand how people move before and after surgery.  First, it builds a 

new computer model that finds walking within sensor signals more accurately. Next, it shows that 

data from motion capture and sensors agree on how someone moves in the lab and how that relates 

to what happens during walking in the real world. Finally, both tools track patients before and after 

knee replacement surgery, revealing the strong points and limits of each method. Together, they 

could give doctors and patients a clearer, real world picture of recovery and can be adapted to 

monitor other injuries, sports, or daily activities. 
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ABSTRACT 

Late-stage knee osteoarthritis (OA) is a growing musculoskeletal disease affecting millions 

of older adults. Objective clinical assessments may be a means to improve surgical outcomes but 

often requires dedicated laboratory equipment and space. Wearable sensors may be easier to collect 

but are limited by more complex analysis and interpretation of results. This thesis introduces a 

modular, open-source framework that for collecting gait with bilateral shank inertial measurement 

units (IMUs). The processing pipeline automates data alignment, incorporates deep learning gait 

segmentation, stride event detection, and metric extraction, enabling seamless analysis across 

laboratory and free-living settings.  

Three studies establish the framework’s value. Study 1 retrained an existing ResNet + 

BiLSTM using healthy and OA datasets. The model reached ~97 % classification accuracy and 

decreased walking bout fragmentation compared to a heuristic frequency method, especially at 

slower walking speeds. Study 2 demonstrated strong in-lab agreement between motion capture- 

and sensor-derived spatiotemporal and kinematic variables. However, week-long free-living 

recordings revealed systematically slower and more variable gait, confirming that laboratory 

snapshots may overestimate real-world mobility. Notably, peak mediolateral shank angular 

velocity, a native IMU metric, remained well-correlated with Oxford Knee Score, highlighting its 

clinical promise. Study 3 delivered the first longitudinal, head-to-head sensitivity comparison 

between measurement systems in 42 arthroplasty patients. Metrics from motion capture were able 

to capture early postoperative gains, whereas data from IMUs tracked day-to-day function. 

Collectively, these findings show that pairing laboratory precision with ecological breadth 

from inertial sensors could yield a richer picture of OA gait than either modality alone, while also 

demonstrating strengths and weaknesses of both measures. The framework’s sensor-agnostic 
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design, evidence for clinically relevant native IMU variables, and demonstration of 

complementary sensitivity advance the field toward scalable, data-driven monitoring and 

personalised rehabilitation. 

  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

vi 
 

ACKNOWLEDGMENTS 

 This thesis is the culmination of the past four years that would not have been possible 

without many people helping people along the way. Coming back for my PhD in my thirties, just 

after the birth of my first child with another planned before I finished, and in another country, 

wasn’t an easy decision. I’m happy to say now at the end, it was the correct one.  

 To my advisor, Dylan Kobsar, thank you for being an excellent mentor, giving me the 

space to develop my own ideas but also guidance when I needed it. You always had my back 

with a positive attitude about everything that really helped, especially when a model wasn’t quite 

working or the stride length calculation (still) wasn’t coming out like I wanted it to. Being your 

first PhD student was not something I took lightly, and it was important to me to help form the 

foundation for the lab and set the bar high for those that came next. You were the advisor I 

needed when I had finally found the area that I felt passionate enough about to finish my PhD.  

 To my committee members: Dr. Peter Keir, Dr. Janie Wilson, and Dr. Rong Zheng. Thank 

you for all your guidance and feedback throughout. I set out to complete an ambitious project 

and I could not have completed it without all your help. Your collective experiences provided me 

with helpful insights and constructive criticism that led to my successful dissertation research.  

 To my external examiner, Dr. Katherine Boyer. Thank you for your feedback and taking 

time to review my dissertation. I was honoured when you agreed to be my external examiner, as 

you are someone I have looked up to in the field of biomechanics for a long time, and greatly 

enjoyed our conversation during the defence.  

 To the other members of the Kobsar Lab. Thank you all for being great teammates and 

friends. Grad school can be a grind at times, and I hope I was helpful when you asked about 

different problems you were having with your projects or questions about jobs or life in general. 

It was great to work with all of you, and the collaboratory nature of our lab was one of the things 

I was most excited about when decided to join. This is truly what a grad school research lab 

should be like. In particular, thank you to Zaryan Masood and Josh Keogh, for being so 

welcoming when I arrived in the lab and really made it feel like home.  

 To clinic staff at St. Joe’s. Thank all of you for your willingness to help with placing 

countless sensors and collecting data. Thanks to Kim Madden for keeping things organized, 

Monica Malek for running most of the data collections and processing, and Kim Irish for picking 

everything up during staffing changeovers. This dissertation truly does not happen without all 

your support from the beginning to the end.  

 Finally, thank you to my family. To my wife, Sara, this PhD is half yours since without 

your love and support throughout it would not have happened. We packed up and moved with an 

infant to a new country so I could do this PhD, and you made sacrifices along the way so I could 

get that done. The willingness to say yes to that are among the reasons I love you, and I can’t 

wait to see where our life takes us together. To my children, Gideon and Ada, I love you both and 

love all the extra time I got to spend with you both because I was doing grad school again. I hope 

I am an inspiring figure in your life. Lastly, to my grandfather, who passed away last year. You 

always were telling me I was destined to get a PhD, and I wish you could have seen me complete 

it. I hope you would be proud.  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

vii 
 

DECLARATION OF ACADEMIC ACHIEVEMENT 

FORMAT AND ORGANIZATION OF THESIS 

This thesis is prepared in accordance with the “sandwich” format outlined in the School of 

Graduate Studies Guide for the Preparation of Master’s and Doctoral Theses. It includes a 

literature review (Chapter 1), a motivational chapter describing the development of a data-

informed framework (Chapter 2), three studies prepared in journal article format (Chapters 3-5), 

and a general discussion chapter (Chapter 6). At the time of this thesis, Chapters 3-5 were 

prepared for submission. For all papers with multiple authorship, the contributions of the 

candidate and all coauthors are outlined below using the Contributor Role Taxonomy (CRediT; 

https://credit.niso.org/), commonly used during journal submission.  

 

Chapter 3 (Study 1):  

Ruder M.C., Di Bacco V.E., Patel K., Zheng R., Madden K., Adili A., Kobsar D. Augmenting a 

ResNet+BiLSTM deep learning model with clinical mobility data outperforms heuristic 

frequency-based model for walking bout segmentation. Prepared for submission to Sensors.  

 

Contributions 

Conceptualization: MCR, KD 

Data curation: MCR, VED 

Formal analysis: MCR 

Funding acquisition: KD 

Investigation: MCR, KP 

Methodology: MCR, KP, RZ, KM, KD 

Project administration: MCR 

Resources: KD, AA, KM 

Software: MCR, KP 

Supervision: MCR, KD 

Validation: MCR, KD 

Visualization: MCR 

Writing – original draft: MCR 

Writing – review and editing: VED, KP, RZ, KM, AA, KD 

 

 

https://credit.niso.org/


Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

viii 
 

Chapter 4 (Study 2):  

Ruder M.C., Di Bacco V.E., Madden K., Adili A., Kobsar D. Comparing Gait Metrics from In-

Lab Gait Analyses to Free-Living Assessment from Wearable Sensors in End-Stage 

Osteoarthritis Patients. Prepared for submission to Journal of Biomechanics.  

 

Contributions 

Conceptualization: MCR, KD 

Data curation: MCR, VED, KM 

Formal analysis: MCR, VED 

Funding acquisition: KD, KM  

Investigation: MCR,  

Methodology: MCR, KM, KD 

Project administration: MCR, VED, KM 

Resources: KD, AA, KM 

Software: MCR 

Supervision: MCR, KD 

Validation: MCR, KD 

Visualization: MCR 

Writing – original draft: MCR 

Writing – review and editing: VED, KM, AA, KD 

 

 

 

 

 

 

 

 

 

 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

ix 
 

Chapter 5 (Study 3):  

Ruder M.C., Di Bacco V.E., Madden K., Adili A., Kobsar D. Evaluating the Longitudinal 

Sensitivity of In-Lab and Free-Living Gait Assessments in Knee Osteoarthritis. Prepared for 

submission to Osteoarthritis and Cartilage.  

 

Contributions 

Conceptualization: MCR, KD 

Data curation: MCR, VED, KM 

Formal analysis: MCR, VED 

Funding acquisition: KD, KM  

Investigation: MCR,  

Methodology: MCR, KM, KD 

Project administration: MCR, VED, KM 

Resources: KD, AA, KM 

Software: MCR 

Supervision: MCR, KD 

Validation: MCR, KD 

Visualization: MCR 

Writing – original draft: MCR 

Writing – review and editing: VED, KM, AA, KD 

  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

x 
 

TABLE OF CONTENTS 

Descriptive Note ............................................................................................................................ ii 

LAY ABSTRACT ......................................................................................................................... iii 

ABSTRACT .................................................................................................................................. iv 

ACKNOWLEDGMENTS ........................................................................................................... vi 

DECLARATION OF ACADEMIC ACHIEVEMENT ............................................................ vii 

TABLE OF CONTENTS .............................................................................................................. x 

List of Figures: ........................................................................................................................... xiv 

List of Tables: .............................................................................................................................. xv 

List of Abbreviations: ................................................................................................................ xvi 

Glossary of Terms ..................................................................................................................... xvii 

Chapter 1: Literature Review ...................................................................................................... 1 

1. Introduction ........................................................................................................................... 1 

1.1 Knee Osteoarthritis ............................................................................................................. 5 

1.2 Gait Analysis Overview ....................................................................................................... 6 

1.2.1 Traditional Laboratory-based Gait Analyses ............................................................. 8 

1.2.2 Limitations of Laboratory-based Gait Analysis ...................................................... 13 

1.2.3 Wearable Sensor-based Gait Analysis....................................................................... 15 

1.2.4 Limitations of Wearable Sensor-based Gait Analysis ............................................. 21 

1.3 Machine Learning Applications for Gait Analysis ......................................................... 23 

1.3.1 Machine Learning Overview ..................................................................................... 23 

1.3.2 Machine Learning for Gait Segmentation ................................................................ 26 

1.3.3 Limitations of Machine Learning in Gait Segmentation ........................................ 31 

1.3.4 Applying a Machine Learning Framework for Osteoarthritis Gait Segmentation

 ............................................................................................................................................... 31 

1.4 Gaps in literature .............................................................................................................. 34 

1.5 Study Objectives ................................................................................................................ 36 

Chapter 2: Development of a Data-Informed, Clinically Viable Gait Framework .............. 38 

Preamble .................................................................................................................................. 38 

2.1 Framework Considerations .............................................................................................. 39 

2.1.1 Placement and Location ............................................................................................. 39 

2.1.2 Sensor Location ........................................................................................................... 40 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xi 
 

2.1.3 Number of Sensors ...................................................................................................... 40 

2.1.4 Repeatability and Population Considerations ......................................................... 41 

2.2 Foundational Methodological Studies ............................................................................. 41 

2.2.1 Researcher-Placed vs Self-Placed Sensors ................................................................ 41 

2.2.2 Repeatability of Gait Metrics from Out-of-Lab Gait Assessment in OA Patients 42 

2.2.3 Implications of Findings ............................................................................................. 43 

2.3 Description of Gait Framework ....................................................................................... 44 

2.3.1 Preprocessing .............................................................................................................. 46 

2.3.2 Gait Segmentation ...................................................................................................... 46 

2.3.3 Event Detection and Stride Segmentation ................................................................ 47 

2.3.4 Outlier Detection ......................................................................................................... 48 

2.3.5 Metric Extraction ....................................................................................................... 49 

2.4 Conclusions ........................................................................................................................ 49 

Chapter 3: Augmenting a ResNet + BiLSTM deep learning model with clinical mobility 

data outperforms heuristic frequency-based model for walking bout segmentation (Study 

1) ................................................................................................................................................... 51 

Preamble .................................................................................................................................. 51 

Abstract .................................................................................................................................... 52 

3.1 Introduction ....................................................................................................................... 53 

3.2 Methods .............................................................................................................................. 57 

3.2.1 Description of Datasets ............................................................................................... 57 

3.2.2 Preprocessing .............................................................................................................. 61 

3.2.3 ResNet + BiLSTM Model Framework ..................................................................... 63 

3.2.4 Model Training and Performance Analysis .............................................................. 65 

3.3 Results ................................................................................................................................ 69 

3.3.1 Dataset composition .................................................................................................... 69 

3.3.2 Model Training, Validation, and Testing .................................................................. 70 

3.3.3 Model Comparison to Heuristic Gait Detection ...................................................... 74 

3.3.4 Effect of Gait Speed .................................................................................................... 75 

3.4 Discussion ........................................................................................................................... 76 

3.5 Bridge Section – Comparison of Free-Living Bout Identification from Frequency 

Method and ML Method ........................................................................................................ 81 

3.6 Supplemental Material ..................................................................................................... 84 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xii 
 

3.6.1 Healthy Lab Dataset ................................................................................................... 84 

3.6.2 Clinical Lab Dataset ................................................................................................... 85 

Chapter 4: Comparing Gait Metrics from In-Lab Gait Analyses to Free-Living Assessment 

from Wearable Sensors in End-Stage Osteoarthritis Patients (Study 2) ............................... 89 

Preamble .................................................................................................................................. 89 

Abstract .................................................................................................................................... 90 

4.1 Introduction ....................................................................................................................... 90 

4.2 Materials and Methods ..................................................................................................... 93 

4.2.1. Participants ................................................................................................................ 93 

4.2.2 Data Collection Protocol ............................................................................................ 93 

4.2.3. Data Analysis .............................................................................................................. 95 

4.2.4 Statistical Analysis ...................................................................................................... 98 

4.3 Results ................................................................................................................................ 99 

4.4 Discussion ......................................................................................................................... 106 

4.5 Conclusions ...................................................................................................................... 109 

4.6 Supplemental Figure ........................................................................................................ 111 

Chapter 5: Evaluating the Longitudinal Sensitivity of In-Lab and Free-Living Gait 

Assessments in Knee Osteoarthritis (Study 3)......................................................................... 112 

Preamble .................................................................................................................................112 

Abstract ...................................................................................................................................112 

5.1 Introduction ......................................................................................................................114 

5.2 Materials and Methods ....................................................................................................117 

5.2.1 Participants ................................................................................................................117 

5.2.2 Data Collection Protocol ...........................................................................................117 

5.2.3. Data Analysis .............................................................................................................119 

5.2.4 Statistical Analysis .................................................................................................... 121 

5.3 Results .............................................................................................................................. 122 

5.3.1 Patient-Reported Outcomes..................................................................................... 123 

5.3.2 Motion Capture ......................................................................................................... 125 

5.3.3 Wearable Sensors ...................................................................................................... 131 

5.4 Discussion ......................................................................................................................... 136 

5.5 Conclusions ...................................................................................................................... 140 

5.6 Supplemental Tables ....................................................................................................... 141 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xiii 
 

Chapter 6: General Discussion ................................................................................................ 145 

6.1 Research Implications ..................................................................................................... 145 

6.2 Contributions to Existing Knowledge ........................................................................... 148 

6.3 Limitations and Considerations ..................................................................................... 150 

6.4 Recommendations for Future Work .............................................................................. 153 

6.5 Conclusions ...................................................................................................................... 155 

Chapter 7: References .............................................................................................................. 156 

 

  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xiv 
 

List of Figures:  

Figure 

Number 

Description Page 

Figure 1.1 Radiographs of osteoarthritis in knee, grades 1 to 4 6 

Figure 1.2 Simplified stance diagram depicting varus thrust 10 

Figure 1.3 Tables depicting rise of publications investigating wearable 

sensors, along placement of sensors 

17 

Figure 1.4 Longitudinal study design utilized by Bolam, et al.  20 

Figure 1.5 Deep learning framework proposed by Li and Wang 29 

Figure 2.1 Simplified workflow for processing pipeline 45 

Figure 3.1 Sensor placements for PAMAP2, healthy dataset, and clinical 

dataset 

58 

Figure 3.2 Deep learning model architecture, adapted from Li and Wang 65 

Figure 3.3 Confusion matrices broken out individually for PAMAP2, 

healthy, and clinical testing sets 

73 

Figure 4.1 Sensor locations on shank, located medial and inferior to the 

tibial tuberosity 

94 

Figure 4.2 Bland-Altman plots for each variable between motion capture 

and in-lab IMU data 

101 

Figure 4.3 Representative plot of stride time distribution for in-lab data and 

free-living IMU data 

103 

Figure 4.4 Scatter plots for free-living peak angular velocity vs OKS, and 

gait speed (from motion capture) vs OKS 

106 

Figure 5.1 Self-reported function and pain, plotted for each time point 124 

Figure 5.2 Gait speed and stride time, derived from motion capture, plotted 

for each timepoint 

129 

Figure 5.3 Knee joint flexion excursion at each timepoint and normalized 

knee joint flexion angles from participants who completed all 

each timepoints 

130 

Figure 5.4 Frontal plane excursion at each timepoint and normalized flexion 

and abduction/adduction knee joint angles from participants who 

completed all each timepoints 

131 

Figure 5.5 Peak frontal acceleration asymmetry and peak sagittal angular 

velocity asymmetry, plotted for each timepoint 

135 

 

  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xv 
 

List of Tables:  

Table Number Description Page 

Table 3.1 Description of each model iteration in terms of training, 

validation, and testing data used in model development and 

evaluation 

67 

Table 3.2 Activity breakdown by percentage for each dataset, both 

individually as well as total breakdown by dataset combinations 

70 

Table 3.3 Overall performance on training, validation, and test sets for each 

model. 

71 

Table 3.4 Median performances on individual test sets from each data, 

based on the top performing model, when used for gait detection 

and the heuristic frequency-based method 

74 

Table 3.5 Method performance on participants in clinic test set by speed. 75 

Table 3.6 Performance of the frequency-based and machine-learning bout-

detection methods in free-living data. 

83 

Table 4.1 Descriptive statistics for the sample 99 

Table 4.2 Concurrent validity between motion capture and in-lab sensor 

data 

100 

Table 4.3 Ecological validity of gait variables from in-lab sensors and free-

living sensors 

102 

Table 4.4 Pearson correlations between gait metrics d patient reported 

outcome measures relating to function, depressive symptoms, 

and pain  

105 

Table 5.1 Results of linear mixed-effects models for self-reported 

outcomes at each study timepoint. 

125 

Table 5.2 Results of linear mixed-effects models for variables derived from 

markerless motion capture 

127 

Table 5.3 Results of linear mixed-effects models for variables derived from 

wearable sensors 

133 

 

  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xvi 
 

List of Abbreviations:  

Abbreviation Definition 

CMC Coefficient of Multiple Correlation 

CNN Convolutional Neural Network 

FFT Fast Fourier Transform 

GRF Ground Reaction Force 

ICC Intraclass Correlation Coefficient 

IMU Inertial Measurement Unit 

KAM Knee Adduction Moment 

KL Kellgren-Lawrence 

LSTM Long Short-Term Memory 

ML Medial-Lateral 

OA Osteoarthritis 

OKS Oxford Knee Score 

PCA Principal Component Analysis 

PHQ Patient Health Questionnaire 

RMSE Root Mean Squared Error 

RNN Recurrent Neural Network 

SVM Support Vector Machine 

TKA Total Knee Arthroplasty 

 

 

  



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

xvii 
 

Glossary of Terms 

Term Definition 

Acceleration 

Rate of change of velocity over time, expressed in m/s2. Measured by 

accelerometer component of IMU to quantify segment speeding up or 

slowing down.  

Accuracy 
The proportion of total predictions that were correct, reflecting overall 

correctness of a model. 

Angular velocity 

Rate of rotation around an axis, expressed in degrees per second (deg/s 

or degree/second). Measured by gyroscope component of IMU to 

quantify segment rotation.  

Coefficient of 

Multiple Correlation  

A statistical measure used to compare how similar one waveform is to 

a reference waveform across multiple points. 

Deep Learning 
An advanced machine learning method using neural networks with 

multiple layers to automatically learn features from large datasets. 

Event Detection  

A process in gait analysis where specific gait events (e.g., heel strike, 

toe off) are identified within a walking cycle, typically using peaks or 

features in acceleration or gyroscope signals. 

F1-Score 
The harmonic mean of precision and recall, used to balance false 

positives and false negatives in classification. 

Gait Analysis 
Study of walking patterns primarily by using kinematics, kinetics, 

and/or spatiotemporal variables to describe gait.  

Gait Segmentation 
The process of identifying periods of walking from continuous sensor 

data, often used to isolate walking bouts. 

Heuristic Model 
A rule-based approach that applies fixed thresholds or conditions to 

make predictions, often used as a baseline method. 

Inertial 

Measurement Unit  

A small sensor device that includes accelerometers and gyroscopes to 

capture motion and orientation of body segments. 

Kinematics 
The study of motion in terms of displacement, velocity, and 

acceleration, without considering the forces that cause it. 

Kinetics 
The study of forces and torques that cause movement, such as ground 

reaction forces during walking. 

Machine Learning  
A branch of artificial intelligence where algorithms learn patterns from 

data and improve performance without being explicitly programmed. 

Markerless Motion 

Capture 

A system that estimates joint and body segment positions from video 

without using physical markers attached to the subject. 

Osteoarthritis 

A degenerative joint disease where cartilage wears down over time, 

leading to pain, stiffness, and decreased mobility, especially in weight-

bearing joints. 

Precision 
The proportion of correctly predicted positive observations among all 

predicted positives, indicating model exactness. 

Principal Component 

Analysis  

A dimensionality reduction technique that transforms data into 

principal components to highlight variation and simplify analysis. 

Recall 
The proportion of actual positives correctly identified by the model, 

indicating its sensitivity. 
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Spatiotemporal 

Parameters 

Gait metrics that involve both space (e.g., stride length) and time (e.g. 

stride time), used to assess walking performance. 

Stance Time 
The period when the foot is in contact with the ground during a gait 

cycle. 

Stride Time 
The duration between successive contacts of the same foot, typically 

measured from heel strike to heel strike. 

Swing Time 
The portion of the gait cycle when the foot is off the ground and 

moving forward. 

Total Knee 

Arthroplasty  

A surgical procedure in which a damaged knee joint is replaced with 

artificial components. 

Varus Thrust 
A visible and abrupt inward movement of the knee during the stance 

phase of walking, commonly observed in knee OA. 
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Chapter 1: Literature Review 

 

1. Introduction 

Osteoarthritis (OA) is a debilitating joint disease characterized by the loss of 

cartilage and structural changes to the surrounding bone and soft tissue. These changes can 

lead to increased pain, reduced function, and a decline in overall quality of life (Moskowitz, 

2009). The knee is the most affected joint, with the end-stage treatment being a total knee 

arthroplasty (TKA). OA affects millions of older adults, and the burden is growing. With 

Canada’s aging population, TKA procedures have been steadily increasing over the past 

two decades, approaching 100,000 annual surgeries and placing intense pressure on 

healthcare systems (Canadian Institute for Health Information, 2023).  

Knee OA is associated with altered lower limb movement patterns and joint loading 

during walking (Kumar et al., 2013), making gait analysis a valuable tool for monitoring 

disease progression (Elbaz et al., 2014). Traditional gait analysis typically involves placing 

markers on a participant and having them walk several times across a room or on a 

treadmill. While these systems do provide a non-invasive way to support personalized 

treatment and management of OA, their use is not widespread and the potential for 

implementation as a standard of care is limited. This is due to that fact that these systems 

are prohibitively expensive for most clinics with respect to the required equipment, 

experienced operators, and time constraints (Simon, 2004). Furthermore, they also only 

provide a small snapshot of a patient’s gait throughout the day, and drawing conclusions 
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from these limited number of gait cycles in a highly constrained environment may not be 

representative of their real-world gait and function (Benedetti et al., 2013). Consequently, 

while gait analysis research has identified key factors that could inform clinical decision 

making, such as knee adduction angles and moments, these insights are not yet routinely 

translated into clinical practice due to barriers in implementation, accessibility, and 

clinician training (Outerleys et al., 2021; Young-Shand et al., 2020).  

Wearable sensors offer a promising alternative to traditional laboratory-based gait 

analysis. Compared to conventional systems, they are more affordable and easier to deploy 

in clinical and real-world settings, with inertial measurement units (IMU) being the most 

used. Additionally, these sensors have consistently been shown to provide accurate and 

reliable data on spatiotemporal and kinematic data in controlled settings (Kobsar et al., 

2020a). The ability to collect these data continuously in a variety of environments, 

including more uncontrolled, free-living conditions, offer the potential to gather more 

ecological validity data that may better represent patients’ daily lives (Kobsar et al., 2020b, 

2017).  

While free-living gait data collected from wearable sensors can provide a richer and 

more continuous stream of information, the volume and variability of these data also 

present significant challenges for analysis, particularly in identifying walking bouts. 

Simple event detection algorithms often fail outside controlled environments, especially in 

clinical populations with pathological gait. To address this, machine learning methods have 

been increasingly applied to free-living gait analysis in populations such as older adults 
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(Nouredanesh et al., 2021), chronic obstructive pulmonary disease (Buekers et al., 2023), 

Parkinson’s disease (Martindale et al., 2021), and multiple sclerosis (Shema-Shiratzky et 

al., 2020). However, these models are rarely designed for knee OA patients, who often walk 

more slowly and with altered patterns, nor are they typically trained on data from lower 

limb sensors mounted near the knee. This represents a clear opportunity to develop a deep 

learning-based model tailored for OA populations to identify periods of gait from periods 

of non-gait. 

Overall, with recent advancements in technology, many of the components 

necessary to support more advanced and responsive treatment approaches for OA are now 

available. However, these tools have either not been extensively examined within OA 

populations (e.g., the reliability of gait metrics in free-living environments) or have not 

been applied in an integrated manner (e.g., using biomechanical models to monitor 

treatment-related gait changes over time). Although much of the existing work has 

demonstrated the utility of wearable sensors and analytical models in controlled laboratory 

settings, their greatest potential may lie in free-living applications, where real-world 

movement patterns offer richer insight into functional status. Fully realizing this potential 

will require the incorporation of machine learning methods to reliably identify walking 

bouts in unstructured, real-world data. This, in turn, would allow for a more comprehensive 

evaluation of these tools in clinically relevant settings and facilitate a better understanding 

of their sensitivity to change and their value relative to conventional, in-lab gait 
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assessments. Therefore, the broad and overarching questions which drive my doctoral 

dissertation are:  

1. Can deep learning approaches improve identification of walking gait over current 

threshold-based methods in free-living data, particularly in older adults with OA?  

2. Do wearable sensors, when worn for an extended collection period prior to surgery, 

provide a different representation of a patient’s gait than those collected from a 

laboratory-based motion capture system? 

3. How does the sensitivity of free-living gait metrics derived from wearable sensors 

compare to laboratory-based measures in detecting gait changes across pre- and 

post-operative timepoints following surgical intervention? 
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1.1 Knee Osteoarthritis  

 Osteoarthritis (OA) is a serious and incurable joint disease, with the underlying 

causes and etiology are largely unknown (March, 2016). While OA can affect many 

different joints, the most common site for OA is at the knee (Chehab et al., 2014). Knee 

OA is characterized by structural changes in the soft tissues surrounding the joints, which 

over time lead to joint narrowing and pain (Palmer et al., 2020). Specifically, reductions of 

cartilage at the knee joint over time lead to additional changes in the bones (Figure 1.1). 

Initial diagnoses for knee OA are done radiographically using the Kellgren-Lawrence scale, 

with grades rating the structure in the knee from 0 (no structural damage), 1 (doubtful joint 

narrowing, possible tissue degradation), 2 (possible joint narrowing with definitive tissue 

degradation), 3 (definite joint narrowing with tissue damage) to 4 (severe joint narrowing 

and tissue damage) (Kellgren and Lawrence, 1957). Patients that eventually receive the 

end-stage treatment, total knee arthroplasty (TKA), can take up to 6 months to fully heal 

(Paravlic et al., 2022). Overall, the procedure results in significant pain relief and 

improvement in walking, though individual outcomes can greatly vary (Ritter et al., 2008). 

OA affects millions of older adults and has grown substantially with annual number of 

arthroplasty procedures over 11000, further straining healthcare systems (Canadian 

Institute for Health Information, 2023).   
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Figure 1.1: Radiographs of osteoarthritic knee Grade 1 to Grade 4, from Kellgren and 

Lawrence (Kellgren and Lawrence, 1957).  This figure demonstrated grades rating the 

structure in the knee. A. KL Grade 1, where there is doubtful joint narrowing, with possible 

tissue degradation. B. KL Grade 2, where there is possible joint narrowing with definitive 

tissue degradation. C. KL Grade 3, where there is definite joint narrowing with tissue 

damage. D. KL Grade 4, where there is severe joint narrowing and tissue damage. 

 

1.2 Gait Analysis Overview 

 Gait analysis is a critical tool for evaluating movement in both healthy and 

pathological populations. It enables the characterization of an individual’s gait through 

several biomechanical domains: kinetics, kinematics, and spatiotemporal parameters. 

Kinetics refer to the forces and moments acting on joints or segments, such as ground 

A B 

C D 
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reaction forces during walking. Kinematics describe the motion of joints or segments in 

terms of position, velocity, or acceleration, such as knee flexion angles during stance. 

Spatiotemporal parameters include timing- and distance-related metrics such as step length, 

step time, and gait speed, which offer functional insight into overall gait performance. Gait 

analysis may also incorporate electromyography to assess muscle activation patterns and 

their influence on joint motion. Another commonly used approach for deriving joint 

kinetics is inverse dynamics, which estimates internal joint moments by combining 

kinematic data with external forces, such as those measured by force plates. 

On a basic level, clinical gait analysis is looking for the presence of aberrant 

movements during periods of walking. Clinicians often use these visual assessments during 

pre- and post-surgical visits.  Early research-based gait analysis moved from visual 

assessments to video collection. As technology progressed, researchers increasingly 

collected with optoelectronic motion capture systems, using cameras and markers to track 

the subject through a calibrated collection area. Recent advances with markerless motion 

capture also allows for gait analysis without markers. Wearable sensors have become 

integral to gait analysis both within and outside the laboratory, enhancing our 

understanding of OA progression and the effects of various interventions. A recent 

systematic review concluded that many gait biomechanical parameters are associated with 

increased odds of OA onset and progression in the disease at the knee, with those in the 

frontal plane and sagittal plane measures being the most meaningful (D’Souza et al., 2022). 

Overall, 91% (21/23) of the studies analyzed showed association with at least one 
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biomechanical variable. The following sections will highlight the utility and limitations of 

each approach for gait analysis, with a particular focus on OA populations.  

1.2.1 Traditional Laboratory-based Gait Analyses 

 Using force platforms as an analysis of kinetics via ground reaction forces (GRF) 

offer a way to better understand the loading environment of the knee using inverse 

dynamics. Numerous studies have analyzed knee adduction moment (KAM), which is the 

external torque through the knee, as a primary proxy for distribution of frontal plane 

loading through the knee. KAM is calculated via an inverse dynamics approach that takes 

into account the dynamic alignment of the knee and location of the GRF during stance. 

With respect to OA, KAM has been linked to severity (Mündermann et al., 2005), 

progression (Miyazaki, 2002), pain (Hurwitz et al., 2002), and treatment (Shull et al., 

2013). Additionally, a meta-analysis showed increased odds of OA progression with greater 

baseline peak KAM (D’Souza et al., 2022). Research has also shown that the KAM may 

be a modifiable biomechanical marker of OA. A recent study by Seagers, et al. found that 

modifying foot progression angle can reduce KAM while not increasing hip moments 

(Seagers et al., 2022). A 10-degree toe-out gait resulted in reductions of 7.6% and 11.0% 

for the first and second KAM peaks, respectively. Nevertheless, assessing KAM requires 

multi-axis, in-ground force plates which make it highly inaccessible, especially in clinical 

settings.  

Kinematic measures are particularly important in the gait analysis of individuals 

with knee OA. For example, knee flexion at initial contact and toe-off is typically increased 
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in patients with severe OA compared to healthy controls, accompanied by reduced knee 

flexion excursion during stance (Favre et al., 2016). In a five-year longitudinal study, Favre 

et al. (2016) found that baseline knee flexion angle at heel strike, reflecting a more vertical 

shank, was associated with cartilage thinning. This underscores the importance of sagittal 

plane kinematics in tracking OA progression.  

Another potential marker of disease severity is varus thrust, defined as a sudden 

lateral movement of the knee into a varus (i.e. bow-legged) position during the stance phase 

of gait (Figure 1.2). This abrupt motion has been associated with a four-fold increase in the 

risk of OA progression (Chang et al., 2004). Clinicians often rely on visual observation to 

detect varus thrust, but efforts to objectively quantify a proxy measure of varus thrust by 

using kinematic metrics, such as peak knee varus angle or varus angular velocity, have 

yielded inconsistent definitions. The most common definition calculates the frontal plane 

joint angle excursion at initial foot contact to a subsequence point later in stance (Takigami 

et al., 2000). However, the window for excursion can vary from the first 10% of gait cycle 

(Deie et al., 2014) to a broadly defined “early stance” (Shimada et al., 2024) to the entire 

stance phase (Mahmoudian et al., 2017). Despite inconsistency in definition, some studies 

have related a proxy measure for varus thrust to severity. For instance, Kuroyanagi, et al., 

used marker-based motion capture to examine peak varus angles in patients with K-L 

grades 2, 3, and 4, reporting mean angles of 2.4°, 2.8°, and 7.2°, respectively (Kuroyanagi 

et al., 2012). Although suggestive of increasing lateral movement with disease progression, 

further research is needed to establish validated thresholds. Taken together, these findings 
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highlight the importance of kinematic indicators, such as knee flexion and varus thrust, in 

understanding how OA alters gait. However, these measures are more complex to assess 

and interpret than spatiotemporal parameters, which may also serve as valuable indicators 

of functional gait health. 

 

Figure 1.2: Simplified stance phase in sagittal and frontal planes, from Chang, et al. (2004) 

depicting sudden lateral knee motion, often termed varus thrust. Gait analysis was typically 

done using subjective visual identification of aberrations in gait, such as abrupt lateral knee 

motion during stance depicted in the lower panel. Gait analysis has increasingly been 

assessed using objective measures, such as laboratory-based optoelectronic motion capture 

and wearable sensors but have not arrived at a consensus on defining proxies for this 

motion. 
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Spatiotemporal parameters can reflect a patient’s functional capacity through 

measures such as gait speed, step length, and step time, making them simple yet important 

indicators in OA. Spatiotemporal parameters can be used as a method of quantifying 

function in OA patients, with a review by Dong, et al., finding differences in walking speed 

and stride length in patients with unicompartmental knee arthroplasties and TKA (Dong et 

al., 2023).  Pressure mats have been effective in determining these parameters to classify 

the severity of gait deficits in OA populations (Elbaz et al., 2014). Specifically, the Elbaz 

et al. study found that spatiotemporal parameters could objectively classify patients with 

knee OA by severity with 90% accuracy and misclassifications of only one grade. This 

classification also correlated well with other factors such as pain and function. Variability 

of spatiotemporal measures could serve as a marker of disease severity in knee OA. For 

example, a study by Kiss found that gait complexity decreases in patients with knee OA, 

with greater variability in kinematic parameters. Side-to-side differences ranged from  15 

degrees in moderate cases to over 30 degrees in severe cases, which was also associated 

with increased variability in spatiotemporal parameters (Kiss, 2011). Even simple metrics 

such as the standard deviation of spatiotemporal parameters may capture gait fluctuations. 

Recently, advances in markerless motion capture could greatly improve the access 

to gait analyses. Early markerless motion capture studies have characterized it as valid and 

reliable as markered motion capture, while eliminating the time consuming placement of 

markers from gait analysis and greatly improving the accessibility of these measures 

(Kanko et al., 2021a, 2021b). Furthermore, work by Keller, et al., found negligible effects 
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on reliability of markerless motion capture by clothing worn, even over multiple sessions, 

allowing subjects to wear their “normal” clothes (Keller et al., 2022). These findings further 

increase the ecological validity of this research tool and value as a potential clinical tool. 

Additionally, concurrent assessments of gait kinematics between markered and markerless 

systems showed comparable results between the two systems (Kanko et al., 2021b). 

Important sagittal plane measures, such as knee flexion angle, were seen to have the 

greatest similarity, with a root mean squared difference of 3.3 degrees which is within the 

error of most systems. Consequently, this technology also potentially unifies 

biomechanical analyses between lab spaces, as variability in data due to differences in lab 

marker sets and marker placements are eliminated and allow biomechanics researchers to 

pool data more effectively (Kanko et al., 2021a). Markerless motion capture does have 

potential issues with the underlying manually labeled data used as training sets, with joint 

centers at the hip and knee up to 50 mm. This may be mitigated as some companies have 

proprietary biomechanically labeled datasets (Kanko et al., 2021c; Needham et al., 2021).  

Taken together, there is great utility and promise within using gait analyses for 

monitoring OA. Kinetics, kinematics, and spatiotemporal variables characterize gait, and 

each provide valuable information on mechanisms of OA-related gait changes, as well as 

factors that can describe progression and inform treatment options. Markerless motion 

capture also offers a more accessible way to collect gait analyses. However, there are 

important considerations with respect to limitations that must be discussed.  
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1.2.2 Limitations of Laboratory-based Gait Analysis 

 Despite being considered the reference standard for gait analysis, laboratory-based 

motion capture has several notable limitations. For markered motion capture, the main 

issues relate to marker placement and skin artifact (i.e., where markers move with the skin 

rather than the underlying bony landmarks). A study by Miranda et al. comparing markered 

motion capture to biplanar fluoroscopy found joint center position errors as high as 30 mm 

(mean: 9-19 mm), and rotational errors up to 14 degrees (average: 2.5-5.5 degrees) 

(Miranda et al., 2013). Moreover, markered motion capture can be uncomfortable or 

restrictive for participants, potentially altering their natural walking patterns (Chen et al., 

2016; Robles-García et al., 2015). In a study by Robles-García et al., patients with 

Parkinson’s disease and healthy participants were recorded walking along a predetermined 

path while knowingly being observed, and then covertly recorded on their return walk after 

being told the trial had ended. Gait speed, cadence, and step length differed significantly 

between overt and covert recordings, with participants walking faster and with longer 

strides when aware of being observed. A systematic review of laboratory-based gait 

analyses also raised concerns regarding the validity and reliability of kinematic measures 

and emphasized the need for larger sample sizes (Ornetti et al., 2010). Taken together, these 

factors could limit the applicability of laboratory-based gait analysis in both research and 

clinical settings.  

Despite these limitations, kinetic, kinematic, and spatiotemporal variables derived 

from laboratory-based gait data provides valuable information for knee OA with respect to 
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severity, progression, and treatment. However, an additional, but critical limitation could 

be how well laboratory-based patient gait data reflects their everyday walking. Hillel, et 

al., sought to characterize differences in laboratory-based and free-living data through use 

of dual-task walking (Hillel et al., 2019). Dual-task walking, which is walking while 

completing a secondary cognitive task, is one common approach to simulate “real-world”, 

more “normal” walking in-lab. For Hillel’s study, older adults were observed in-lab during 

regular (single-task) walking and during dual-task walking and then observed out-of-lab 

over a week using a wearable sensor. These sensors allow continuous collection and 

potentially provide a much more comprehensive picture of a participant’s gait. Indeed, 

Hillel’s study supported the idea that laboratory-based gait is unique from out-of-lab gait, 

as the laboratory-based measures of gait speed, step regularity, and stride regularity during 

regular walking were different from both dual-task in-lab walking and out-of-lab walking. 

Simultaneously, while dual-task walking was more similar to out-of-lab walking, they were 

still not equivalent. In summary, while dual-tasking gait in-lab is close to real-world 

walking, neither laboratory-based measures of gait parameters reliably reflected out-of-lab 

gait parameters. As a result of these factors, wearable sensors have become increasingly 

prevalent in gait analysis, with a growing number of studies focused on free-living gait 

outside controlled laboratory environments. The next section will discuss the current state 

of gait analysis research with wearable sensors as well as the limitations of the technology.  
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1.2.3 Wearable Sensor-based Gait Analysis 

Wearable sensors, and particularly inertial measurement units (IMU), which 

typically include accelerometers, gyroscopes, and sometimes magnetometers, are a cost-

effective alternative to motion capture. There is also substantial interest in characterizing 

OA gait with wearable sensors, as the number of studies investigating OA gait with 

wearable sensors have gone up considerably in the past decade (Figure 1.3A). Wearable 

sensors biggest strength is that they can be collected for extended periods, trading the high-

fidelity, full body kinematics and/or kinetics for high volume but noisy measurements of 

segment motion. As previously noted, laboratory-based systems require substantial time to 

place markers accurately before completing some number of activities, and then ultimately 

drawing conclusions from a limited number of motion trials (e.g., 5-10 total gait cycles).  

Wearable sensors can collect hundreds to thousands of gait cycles outside of a lab setting 

for analysis, which could be potentially more representative, but still ultimately require 

precise placement.  

In general, there is a wide range of the numbers, types, and locations of wearable 

sensors used in gait research. Studies range from individual accelerometer sensors to an 

integrated system of sensors in an IMU (e.g., accelerometer, gyroscope, and/or 

magnetometer), and further to pressure insoles or newer flexible strain sensors (Bolam et 

al., 2021; Chen et al., 2016; Gholami et al., 2020; Zijlstra and Hof, 2003). Wearable sensors 

are also flexible in terms of the numbers of sensors used, ranging from a single sensor to 

an array of multiple sensors (Abe and Nagamune, 2021; Buckley et al., 2019), and can be 
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placed at different locations (e.g., back, thigh, shank, foot) to obtain a variety of gait metrics 

(Figure 1.3B) (Kobsar et al., 2020b). While foot or back placements are most common 

overall, the shank placement is most common for motion measurements (via acceleration 

signals). The shank placement also would more effectively measure proxies of potential 

kinematic gait markers, such shank inclination (or possibly knee flexion) angle or varus 

thrust, while also able to measure spatiotemporal variables effectively. Depending on 

attachment location, the shank could have reliability issues but these could potentially be 

overcome by using an alignment algorithm (Hafer et al., 2020). However, the improvement 

in reliability from using an alignment algorithm has not been documented.  
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Figure 1.3: Rise in publications using wearable sensors in OA, with the placements used 

to obtain common gait variables, from Kobsar, et al. (2020). A. The number of published 

studies investigating OA gait with wearable sensors has increased considerably as the 

sensors have become more commercially available and a viable clinical tool. B. Number 

of studies using different variables obtained from different wearable sensor placements for 

gait analysis assessments in osteoarthritis populations. Kinematic variables, such as joint 

moment, joint angle, segment angle, acceleration magnitude (Acc Mag) can describe the 

segment (e.g. knee) motion. Spatiotemporal (ST) variables can refer to mean stride or step 

times as well as the asymmetry or variability between sides.  

 

  Applying wearable sensors in a clinical environment with OA patients has the 

potential to transform how the disease is assessed and managed. To realize this potential, it 

is essential to evaluate how well wearable-derived gait metrics correspond to reference-

standard laboratory-based measurements. As previously discussed, there is a large body of 

literature on laboratory-based gait metrics (e.g., KAM, knee flexion angle, spatiotemporal 

A B 
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parameters), and a critical step toward clinical translation is understanding how wearable 

sensor-derived data compares to these reference standards. From a kinetic perspective, for 

example, He et al. used an array of pressure sensors and a foot-mounted IMU to estimate 

KAM, demonstrating a strong correlation (median r = 0.90) with values from a laboratory-

based motion capture system during foot progression angle modification (Z. He et al., 

2019). Five out of six patients successfully reduced their first KAM peak. However, it is 

important to note that KAM is difficult to estimate from IMUs alone and typically requires 

additional force-related inputs. 

Wearable sensors show particularly strong agreement with laboratory-based 

systems for kinematic group differences and spatiotemporal parameters. From a kinematic 

standpoint, Hafer et al. compared wearable IMU-derived gait data to motion capture across 

young adults, older asymptomatic individuals, and those with knee OA, finding no 

significant tool × group interaction (p = 0.67-0.98), suggesting both systems captured 

group-level differences consistently (Hafer et al., 2020). Costello et al. similarly 

demonstrated that a single IMU could estimate varus thrust, where increases in peak 

adduction velocity were significantly associated with increased walking speed, although 

the strength of correlation was not formally reported (Costello et al., 2020). Spatiotemporal 

variables have shown the strongest alignment between wearable sensors and laboratory-

based systems. In the Hafer study, wearable-derived stride length and walking speed had 

low mean square errors (<0.07 m and <0.05 m/s, respectively). Systematic reviews further 

support good-to-excellent validity and reliability for wearable-derived stride time (ICC = 
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0.91-0.94) and stride length (ICC = 0.81-0.94) in OA populations (Kobsar et al., 2020b, 

2020a, 2016). 

In addition to the well-studied kinetic, kinematic, and spatiotemporal parameters, 

wearable sensors can also provide access to additional variables such as cumulative impact 

load and inter-limb load symmetry. These metrics have been widely explored in athletic 

settings, where IMUs are used to quantify acceleration peaks and monitor external 

workload during practices and games. Impact load metrics have shown good-to-excellent 

reliability in sport-specific tasks like cutting and directional changes (ICC = 0.58-0.97)  

(Burland et al., 2021) and are often correlated with physiological responses such as 

perceived exertion and heart rate (Helwig et al., 2023). Because these data can be captured 

in ecologically valid contexts (i.e. outside laboratory constraints), they have been 

incorporated into return-to-play protocols and injury prevention strategies (Kupperman et 

al., 2021). These same strengths suggest potential for translation into clinical populations, 

particularly for tracking rehabilitation progress and asymmetry in gait. 

The application of impact load metrics in clinical OA populations remains limited, 

but emerging studies suggest meaningful potential. For example, Ren, et al., used load 

asymmetry during jump tasks to assess recovery following hip resurfacing arthroplasty, 

finding that asymmetries present before and at 3 months post-surgery had resolved by 6 

months (Ren et al., 2023). While not gait-based, this framework could be adapted for 

ambulatory monitoring in knee OA patients. A more direct application is the study by 

Bolam, et al., which demonstrated the feasibility of using wearable sensors to monitor 
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cumulative impact load, asymmetry, and knee flexion during early recovery following total 

knee arthroplasty (Figure 1.4) (Bolam et al., 2021). Patients wore sensors weekly up to 6 

weeks post-operatively, and the data which was collected over a 12-hour window once a 

week, revealed a 371% increase in cumulative impact load and a trend toward symmetric 

loading between limbs. These findings underscore the potential for wearable sensors to 

capture clinically relevant recovery metrics in real-world contexts. 

 

 

Figure 1.4: Longitudinal study design by Bolam, et al. (2021). While Bolam successfully 

measured OA gait following TKA, each collection only lasted 12 hours and may not capture 

the full range of gait metrics a patient may experience during a typical week. The study 

measured kinematic improvements from a pre-operative timepoint to post-TKA in 

cumulative impact load, asymmetry, and knee flexion.  

 

The use of wearable sensors for gait analysis represents a significant opportunity 

for clinicians to improve patient care. Sensor-based monitoring has been shown to relate 
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well to laboratory-based measures, with wearable-derived gait metrics correlating with 

both self-reported quality of life and traditional functional tests (e.g., 6-minute walk, timed 

up and go) (Youn et al., 2020). For example, step time has been shown to correlate with the 

three subscales of the Knee Injury and Osteoarthritis Outcome Score: pain (r = 0.64), 

symptoms (r = 0.76), and quality of life (r = 0.77). Step time also showed strong 

correlations with functional tests, including the 6-minute walk (r = 0.77), timed up and go 

(r = 0.75), and 30-second chair stand (r = 0.80). An earlier study by the same group 

demonstrated that IMUs could estimate kinetic and kinematic parameters post-operatively 

in TKA patients, with Pearson correlations ranging from 0.51 to 0.79 between IMU-derived 

variables and ground reaction forces (Youn et al., 2018). Providing contextual information 

by classifying recognizable activities has also been shown to improve the interpretability 

of gait metrics for clinicians and patients alike (Chen et al., 2020). Several studies have 

used wearable sensor-based metrics as the foundation for research aimed at guiding clinical 

decision making, ranging from gait rehabilitation to predicting treatment response (Z. He 

et al., 2019; Kobsar et al., 2017). However, the processing and management of raw sensor 

data, especially for kinematic and spatiotemporal metrics, remains a critical but often 

overlooked step in improving their clinical utility especially in free-living collections.  

1.2.4 Limitations of Wearable Sensor-based Gait Analysis 

Despite their promise, wearable sensors present important limitations. While there 

are encouraging validation studies, there are notable differences remain that highlight the 

need for continued refinement of wearable-based gait analysis. A recent 2023 study by 
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Hafer, et al., found notable differences in knee flexion angle, with motion capture showing 

greater flexion than IMUs at specific gait phases (0-38% and 58-91% of the stride) (Hafer 

et al., 2023). While these differences did not alter clinical interpretation, they highlight 

limitations in the fidelity of IMU-based kinematic estimates under certain conditions. 

Additionally, achieving one-to-one equivalence with lab-based metrics is challenging, 

particularly in free-living environments (Hillel et al., 2019). Factors such as sensor 

placement variability, signal drift, and the absence of ground reaction force data can reduce 

accuracy (Kobsar et al., 2020a, 2020b, 2016). While sensors enable the collection of large 

volumes of ecologically valid data, this often comes at the cost of measurement precision. 

Standardized processing pipelines, improved alignment algorithms, and context-aware 

models may help mitigate these issues (Chen et al., 2016; Halilaj et al., 2018). Researchers 

and clinicians must therefore weigh the trade-offs between volume, ecological validity, and 

fidelity. 

Ultimately, the use of using wearable sensors comes down to the trade-off between 

volume and detail that often accompanies free-living sensor data. A study like the one by 

Bolam, et al., benefited from repeated, ecologically valid measurements from wearable 

sensors. However, there was no motion capture conducted, nor it did not include standard 

gait metrics such as spatiotemporal parameters or peak kinematic events from the free-

living collection. It also did not link sensor-derived outcomes with patient-reported or 

functional measures. Additionally, the 12-hour collection window each week still may not 

have captured fluctuations in pain or gait variability across days (Allen et al., 2009; Parry 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

23 
 
 

et al., 2017), and the six-week follow-up may have been too short to reflect the full recovery 

trajectory, which can extend to six months or more (Paravlic et al., 2022). There also remain 

research gaps regarding how well any of the free-living metrics relate to motion capture-

derived metrics.  

Overall, the literature illustrates both alignment in spatiotemporal metrics but also 

potential divergence in kinetic and kinematic measurements between motion capture and 

wearable sensors. Nonetheless, wearable inertial sensors remain a promising tool for 

extending gait monitoring beyond the lab, where they can complement insights gained from 

traditional motion capture systems. Improvement in wearable sensors data quality, 

particularly in unstructured, real-world conditions where traditional methods of extracting 

gait characteristics often fail, could also improve agreement between methods. Machine 

learning offers a promising path forward by improvement of identification of periods of 

gait. The next section will outline machine learning approaches that may enhance the 

accuracy, consistency, and interpretability of wearable sensor-derived gait metrics in 

clinical practice. The next section will outline machine learning approaches that may 

enhance the accuracy, consistency, and interpretability of wearable sensor-derived gait 

metrics in clinical practice. 

1.3 Machine Learning Applications for Gait Analysis 

1.3.1 Machine Learning Overview 

Machine learning (ML) is a subset of computational methods within the field of 

artificial intelligence that has rapidly advanced in recent years. This growth has been fueled 
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by increasing computational power, reduced hardware costs, and the availability of large-

scale datasets. As a result, ML techniques are now widely applied across fields ranging 

from computer science to healthcare. Within the realm of gait analysis and knee OA, ML 

has a growing number of promising applications. For instance, markerless motion capture, 

based on pose estimation algorithms, has the potential to make biomechanical assessment 

more accessible in clinical settings. Wearable sensors, which generate large volumes of 

continuous data from a single user across multiple days, also present further opportunities 

for ML applications. Several studies have shown that biomechanical variables such as the 

knee adduction moment (KAM) and knee joint angle can be estimated using ML models 

(Seagers et al., 2022; Tan et al., 2022). Other applications include predicting post-treatment 

outcomes (Bini et al., 2019) and identifying responders versus non-responders to 

rehabilitation interventions (Kobsar and Ferber, 2018). Together, these developments 

highlight the growing potential for ML to enhance clinical decision-making and improve 

long-term management of OA. 

A major challenge in analyzing free-living data collected with wearable sensors is 

the lack of contextual cues about the activity being performed at any given time. As such, 

a foundational step in processing this data is gait segmentation, which is the process of 

identifying periods of walking, or gait bouts, from continuous streams of sensor data. 

Accurate gait segmentation is essential for ensuring that downstream gait metrics reflect 

true ambulatory behavior. In structured lab settings, segmentation is straightforward due to 

the presence of trial markers and controlled environments. In contrast, free-living data is 
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noisy, unstructured, and interspersed with non-walking activities, making segmentation 

significantly more complex. 

Traditionally, heuristic segmentation methods, also known as rules-based 

approaches, have been used to infer walking periods based on predefined thresholds such 

as signal magnitude, periodicity, or orientation. While interpretable and computationally 

efficient, these methods often fail in real-world conditions, especially among individuals 

with gait impairments such as those with knee (Mariani et al., 2013; Ullrich et al., 2020). 

The rise of wearable sensor research has coincided with the growth of ML in healthcare, 

creating new opportunities to apply data-driven approaches to segmentation. ML models, 

particularly those that learn from temporal data, are well-suited to handle the variability 

and scale of free-living recordings. 

As these models are developed and evaluated, their performance is typically 

quantified using classification metrics such as accuracy, precision, recall, and the F1 score. 

Accuracy refers to the percentage of total predictions the model gets correct. Precision 

measures how many of the segments identified as true positives are actually true positives, 

while recall (also called sensitivity) captures how many true positives the model 

successfully identifies. The F1-score combines precision and recall into a single value, 

balancing false positives and false negatives. These metrics are especially important when 

working with imbalanced data, which could be common in free-living recordings where 

walking may be relatively infrequent. Within the context of using a ML model for gait 
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segmentation, the periods identified as walking could then use the rules-based methods for 

identifying individual steps or strides.  

Improving gait segmentation could substantially enhance the reliability of gait 

metrics used as inputs to predictive models, enabling more ecologically valid assessments 

of mobility and treatment response. However, before these downstream applications can 

be realized, gait segmentation models must first be rigorously evaluated in clinical 

populations. The following subsections will provide an overview of current machine 

learning approaches for gait segmentation, with a focus on their use in populations with 

pathological gait, such as individuals with OA. 

1.3.2 Machine Learning for Gait Segmentation 

 Enhancing gait segmentation is pivotal research, as its improvements can amplify 

the predictive capabilities of other ML models, such as those forecasting outcome scores 

following exercise intervention (Kobsar et al., 2017) or TKA (Bini et al., 2019). However, 

determining which approach or approaches are ideal is difficult, as many of the models 

were created primarily on younger healthy subjects. As noted in a review by Halilaj, et al., 

many ML models in biomechanics are developed and evaluated inconsistently (Halilaj et 

al., 2018). Each framework has been shown to have certain strengths and weaknesses. 

Heuristic methods offer simple approaches of segmenting data based on gait events from 

raw sensor data or frequency components (Mariani et al., 2013; Ullrich et al., 2020). While 

these are adequate for data collected in a controlled lab setting, they may not be as robust 

when collected remotely, especially in populations with pathological gaits.  
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The complexity of machine learning models can vary widely depending on their 

structure and training requirements. Supervised learning refers to models that are trained 

on labeled datasets, where each input is paired with a known output or class. Common 

supervised algorithms include support vector machines (SVMs), decision trees, and neural 

networks. In the context of gait segmentation, supervised models are typically trained to 

classify segments of sensor data as "walking" or "not walking" based on annotated ground 

truth. These models can achieve high accuracy, but their performance often depends on the 

quality and diversity of the training data. Because many supervised models are developed 

using controlled laboratory data, they may overfit to these conditions and struggle to 

generalize to free-living environments (Andaur Navarro et al., 2021), generating the 

labeled datasets required for training can be time-consuming and labor-intensive. In 

contrast, unsupervised learning involves algorithms that analyze unlabeled data to identify 

inherent patterns, groupings, or structures without prior knowledge of the output 

categories. These models can be particularly useful when labeled data is scarce or 

unavailable. In gait analysis, unsupervised techniques may be used to cluster movement 

patterns or detect walking bouts based on shared features. While unsupervised models 

reduce the need for manual annotation, they are often more complex to develop, interpret, 

and validate. They may also require more computational resources and careful parameter 

tuning to achieve robust performance. 

 Many ML gait models are created on young healthy adults. For example, a study 

by Chen, et al., using a SVM model as part of a larger study on activity recognition built 
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their model on 10 healthy adults. (Chen et al., 2020). With the model built on such limited 

data, it may be highly susceptible to overfitting and with deficiencies in robustness (Andaur 

Navarro et al., 2021; Halilaj et al., 2018). For example, it may perform well on healthy 

subjects, but not older, clinical populations. Another example by Li, et al., was developed 

on 5 young adults, and validated on a public dataset of 9 young adults. Activity recognition 

is achieved using a supervised model called a bidirectional long short-term memory 

(BiLSTM), where extracted spatial features are obtained from IMU sensors using a residual 

convolutional neural network (CNN) before obtaining additional dependencies of feature 

sequences (Figure 1.5) (Li and Wang, 2022). This model performed well in terms of 

identifying walking, both within the test set data (recall: 1.00; precision: 0.99), as well as 

on a separate public dataset (recall: 0.98; precision: 0.99). Similar to the Chen study, while 

this model performs well on a healthy population, it is unclear whether either of these 

models would generalize to individuals with slower, pathological gait, such as Parkinson’s 

disease or severe OA.  
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Figure 1.5: Deep learning framework utilized by Li and Wang (2022) which combines a 

residual block and bidirectional long short-term memory (BiLSTM). The residual black 

uses convolutional neural networks to extract spatial features from the signal, while the 
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BiLSTM captures the forward and backward temporal information from time sequences A 

framework like this could be used to segment OA gait data into walking bouts.  

 

There are also examples of ML gait segmentation models which incorporate higher 

numbers of healthy participants. An approach by Martindale, et al., combined three public 

datasets to build a large robust model with over 100 subjects evaluated while using one 

dataset in the training and testing and the other two datasets for validation (Martindale et 

al., 2021). This model can find edges of a gait segment using a CNN and uses the recurrent 

neural network (RNN) to model the temporal dependencies of the data (i.e., stride time and 

swing time durations of detected strides). All data was collected laboratory-based and 

evaluated across several different activities (walking, sitting, jogging, running, stairs, 

cycling, jumping, resting). The model resulted in high F1-scores for activity recognition 

and phase identification across all activities. Walking resulted in an F1-score of 95.7 for 

activity recognition and 98.2 for phase identification, to predict the exact timing and 

duration of activities. Nevertheless, while models such as the one described by Martindale 

are larger and potentially more robust, they are still created with laboratory-based data, 

primarily from healthy participants. This remains an important limitation when applying 

these models to free-living, clinical gait data, as the model will likely will not perform as 

well as the performance metrics indicate.  
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1.3.3 Limitations of Machine Learning in Gait Segmentation  

 While machine learning offers promising improvements over heuristic approaches, 

several limitations must be considered when applying these methods to gait segmentation. 

The review by Halilaj, et al., notes a number of challenges regarding applying ML models 

to biomechanical data, primarily regarding generalizability and  (Halilaj et al., 2018). As 

also noted in the previous section, ML models are trained on data collected in structured 

environments using healthy populations, which may not reflect the variability and 

irregularities seen in free-living data or clinical populations such as those with knee OA. 

This is also potentially exacerbated if the model is trained on a small number of 

participants, which as noted by Andaur Navarro, et al., makes models more prone to 

overfitting (Andaur Navarro et al., 2021). As a result, models may fail to perform reliably 

outside the conditions under which they were trained. Another concern is model 

transparency and interpretability. As noted by Halilaj, high-performing models, particularly 

deep learning architectures, operate as “black boxes,” making it difficult for clinicians or 

researchers to understand how classification decisions are made. This lack of 

interpretability may limit clinical trust and adoption, especially in contexts where 

explainability is crucial for decision-making. 

1.3.4 Applying a Machine Learning Framework for Osteoarthritis Gait Segmentation 

Clinical gait by nature is likely to be more complex and dissimilar between patients 

as compared to healthy control subjects. However, despite this potentially added 

complexity, it doesn’t necessarily mean the gait is unable to be modeled. Unlike healthy 
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gait models that perform well based on minimal numbers of subjects, clinical gait models 

will likely require more data to produce robust models that generalize well to data they 

haven’t seen before (Halilaj et al., 2018).  Because of the often slower and pathological 

gait of severe OA patients, heuristic-based gait segmentation may not properly identify 

walking bouts, especially in free-living collection. Similar pathological gaits, such as 

Parkinson’s disease, are a well-studied area using ML models to segment gait from 

wearable sensors (Martindale et al., 2021; Roth et al., 2021). While there are a wide range 

of potential applications for ML frameworks within OA, improving gait segmentation is of 

particular importance. Improvements of the data quality from gait segmentation can 

positively affect everything downstream that relies on it (e.g., metrics, other models, etc.). 

This section will primarily discuss research that has been deployed, or could be via transfer 

learning, for gait segmentation on an OA population. 

Several ML models have been developed for gait analysis with the basis of 

analyzing pathological gait. These studies typically analyze populations with known 

pathological gait, such as Parkinson’s disease. One unsupervised approach, known as 

Hidden Markov Modeling (HMM), was demonstrated by Roth, et al. Specifically, this 

model was used to make predictions of human gait based on IMU data by combining two 

models to segment data into strides and transitions (Roth et al., 2021). The combined model 

was trained on both laboratory-based and free-living data from 28 patients with Parkinson’s 

disease with sensors placed on the instep of each foot. The models developed resulted in 

high evaluation metrics. Laboratory-based data segmentation performed by the HMM were 
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comparable to a separate heuristic-based dynamic time warping algorithm (F1-scores: 

96.2% vs 94.6%, respectively). However, on out-of-lab data, both HMM trained using 

laboratory-based and free-living data both considerably outperformed the dynamic time 

warping (F1-scores: 92.2, 92.4, and 85.1, respectively). ML modeling on pathological gait 

segmentation such as this could potentially be applied to similar clinical populations and 

out-perform heuristic-based models.  

Thus far, studies using ML techniques to segment gait in an OA population are 

limited. Most studies are focused on predicting outcomes or other parameters such as knee 

joint angle. A study by Renani, et al., analyzed segmentation of OA gait using a deep neural 

network framework, while also analyzing the optimal sensor combination for prediction 

accuracy of different outcome variables (Sharifi Renani et al., 2020). Interestingly, in terms 

of prediction accuracy, the shank location was consistently ranked highest, while the pelvis 

placement, which is a common sensor placement location in gait research, ranked lowest. 

However, this study was completed laboratory-based and did not do an out-of-lab 

assessment using sensors, which, as has been noted, is a common limitation in many 

studies.  

Regardless of a lack of current research in the OA population, there has been 

progress in ML-based gait segmentation models on other pathological gait (e.g., 

Parkinson’s disease) patients that could be utilized on OA gait via transfer learning. The 

previously discussed Roth and Martindale studies offer promise in terms of developing 

advanced gait segmentation models in pathological gait populations, which could include 
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OA (Martindale et al., 2021; Roth et al., 2021). The Roth HMM framework was trained on 

laboratory-based data but appears to have been successfully transferred to free-living data. 

However, other HMM frameworks, such as done by Attal, et al., were not as accurate, 

achieving around 80% accuracy (Attal et al., October 25-29). Similarly, the Martindale 

model was developed on a large dataset of primarily healthy adults, even though it did 

include a small number of pathological gait subjects (e.g., four Parkinson’s disease 

patients) in their study. Additionally, the Martindale model only involved laboratory-based 

activities and was not developed nor evaluated on free-living data. While the BiLSTM 

approach shown by Li and Wang was initially created on a sample of 5 subjects, it’s high 

performance on public datasets is particularly of interest. The model framework similarly 

could be retrained to be deployed on an OA population. Taken all together, while there is 

substantial need for ML-based gait segmentation models developed on truly free-living gait 

data from OA patients, the surrounding research is promising but it has yet to be done.   

1.4 Gaps in literature 

There is a growing and promising body of research supporting the use of both 

laboratory-based and wearable systems for clinical gait analysis. Laboratory systems, such 

as optical motion capture and force plates, remain the reference standard due to their high 

spatial and temporal precision. Meanwhile, wearable sensor systems offer distinct 

advantages in terms of portability, scalability, and the ability to collect ecologically valid 

data outside of controlled settings (Muro-de-la-Herran et al., 2014). However, there is a 

persistent disconnect exists between conventional laboratory-based gait analysis and 
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wearable sensor-based approaches, particularly when data are collected in free-living 

environments. Most gait analysis research continues to be conducted in structured lab 

settings, which, while highly controlled, may not fully capture the variability or functional 

relevance of gait in daily life. This may limit the generalizability of findings to real-world 

clinical populations. Although wearable sensors have demonstrated potential to bridge this 

gap, few studies have fully leveraged their capabilities for longitudinal ambulatory 

monitoring, especially in individuals with knee OA. As a result, the clinical relevance of 

wearable-derived gait metrics, such as stride time, in free-living conditions remain 

insufficiently characterized in OA populations. 

Similarly, while machine learning has shown promise for tasks such as gait event 

detection and segmentation, many existing models have important limitations. These 

include reliance on small, homogenous datasets, sometimes with as few as five participants, 

and training primarily on healthy individuals. When applied to clinical populations or data 

collected outside the lab, model performance often declines substantially. Moreover, there 

is significant opportunity to develop more robust, patient population-specific models that 

integrate the volume and ecological validity of wearable sensor data with the 

biomechanical precision of laboratory systems. 

Another notable limitation across the field is the relative lack of longitudinal data 

tracking individuals throughout the rehabilitation continuum. Most studies offer only a 

snapshot view, making it difficult to understand how gait patterns evolve over time or in 

response to interventions. Longitudinal, real-world data could provide a much richer 
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foundation for predictive modeling and personalized rehabilitation strategies. Together, 

these gaps highlight the need for more integrated approaches that combine wearable 

sensors, machine learning, and laboratory-based methods. Doing so may allow for more 

comprehensive, scalable, and clinically meaningful assessment of gait in populations with 

movement impairments such as knee OA.  

1.5 Study Objectives  

Wearable sensors and deep learning hold promise for advancing gait analysis, 

particularly for free-living assessment. While studies like Bolam et al. have begun 

exploring this potential, they often collect limited free-living data and lack integration with 

lab-based metrics or patient-reported outcomes. Similarly, although various machine 

learning models have been applied to gait segmentation, few focus on individuals with 

osteoarthritis, despite the promise of deep learning models (e.g. BiLSTM) for improving 

segmentation accuracy. To date, much of this research has been conducted in isolation (e.g. 

on healthy populations, in lab environments, or at small scale) without a unified framework 

for clinical application. This thesis aimed to fill that gap by developing a clinically relevant 

gait analysis framework that uses wearable sensors and deep learning to detect changes in 

gait in older adults with knee OA. Additionally, this work examined the sensitivity of 

wearable-derived gait metrics compared to traditional lab-based assessments. A key focus 

is on the use of shank-mounted sensors, given their demonstrated ability to capture both 

spatiotemporal and kinematic gait metrics (e.g., stride time, lateral knee motion), as well 

as a supporting work that reflects a realistic, sparse sensor deployment.  
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To achieve these goals, the thesis is structured around four research aims designed 

to build and validate a framework for clinical use:  

• Aim 1: Develop a basic framework for collecting free-living gait data using 

wearable sensors that identifies walking bouts and extracts key kinematic (e.g., 

peak impact accelerations, peak angular velocities, etc.) and spatiotemporal gait 

parameters (e.g., stride time, stance time, swing time).  

• Aim 2: Refine walking gait segmentation methods for free-living wearable sensor 

data using a previous deep learning approach (Li and Wang, 2022) trained on a 

more diverse dataset featuring participants with OA.  

• Aim 3 Assess the agreement of gait metrics (i.e., stride time, stance time, swing 

time, and peak angular velocity) in-lab and free-living against a reference-standard 

system in end-stage OA patients prior to surgery.  

• Aim 4: Examine longitudinal sensitivity of the wearable sensor framework to detect 

changes in gait following end-stage surgical treatment, as compared to a 

conventional, laboratory-based gait analysis system.  

In summary, the goals of this thesis are to not only develop a framework for using 

wearable sensors for free-living gait analysis, but to evaluate framework on adults with 

late-stage knee OA. The development of the framework, from conception to creating a deep 

learning model to evaluating agreement between in-lab gait to free-living gait, is discussed 

in Chapter 2, Chapter 3, and Chapter 4, with the evaluation of the framework addressed in 

Chapter 5.   
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Chapter 2: Development of a Data-Informed, Clinically Viable Gait Framework 

 

Preamble 

 As discussed in the literature review, there is growing interest in using wearable 

sensors for clinical gait analysis. However, a central challenge remains: how best to analyze 

data collected in free-living environments, particularly in ways that are both clinically 

meaningful and adaptable across diverse use cases. Previous studies have introduced 

processing frameworks tailored to specific clinical populations (e.g. ACL rehabilitation) or 

sensor configuration (e.g., thigh sensor) (Gurchiek et al., 2019), which enhances internal 

validity but limits broader applicability. Conversely, some frameworks take a fully agnostic 

approach, offering modular tools applicable across populations and sensor placements, 

such as the open-source platform introduced by Beyer, et al. (Beyer et al., 2024). While 

this platform is a major advancement, its current scope is restricted to wrist and ankle 

placements and does not yet fully address the needs of lower-limb pathologies like knee 

osteoarthritis (OA). The method relies solely on the mediolateral gyroscope for gait 

identification; as noted earlier, simple heuristic approaches are often less robust in clinical 

populations. Incorporating additional IMU channels could improve detection accuracy, but 

this requires further study. 

This chapter briefly and broadly describes the development of a gait analysis 

framework that aims to balance these extremes: specific enough to be validated in a target 

clinical population (knee OA) using a strategic sensor placement (shank), yet modular and 
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extensible enough to be adapted for broader clinical applications. The framework was 

implemented in Python and serves as both a benchmark for future enhancements (e.g., deep 

learning-based models) and a foundation for real-world clinical deployment, as outlined in 

future chapters. By developing a more general gait framework that is sensor and clinical 

population agnostic, there should be broader applicability when being deployed to clinical 

use. The sections that follow describe the rationale, design considerations, and standardized 

processing pipeline of this prototype, which serves as the benchmark against which later 

refinements will be evaluated and, if warranted, incorporated into the finalized clinical 

pipeline.  

 

2.1 Framework Considerations 

Several key factors guided the development of the proposed gait analysis 

framework, including sensor placement, sensor location, number of sensors, the impact of 

and repeatability in a knee OA population. These decisions were informed by both practical 

deployment constraints and scientific considerations regarding signal quality and clinical 

relevance. 

2.1.1 Placement and Location 

Sensor placement (e.g., self-placed vs. researcher-placed) and anatomical location 

(e.g., back, thigh, shank, ankle, or foot) directly affect data quality, patient compliance, and 

clinical interpretability. Unsupervised self-placement offers scalability, enabling remote 

deployment via mail and easy replacement if a sensor is dislodged. This approach, used by 
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Beyer, et al., requires rigorous wear-time validation, since patients may remove sensors 

daily (Beyer et al., 2024). Researcher placement, while more labor-intensive, ensures 

consistent positioning and has been more commonly used in the literature. However, few 

studies have directly compared the reliability of researcher- versus self-placed sensors, and 

fewer still have evaluated methods to mitigate placement variability. 

2.1.2 Sensor Location 

A range of sensor locations have been explored in prior work. According to a review 

by Kobsar, et al., OA patients have been studied using sensors on the back, thigh, shank, 

ankle, and foot, with the back being the most common (Kobsar et al., 2020b). While back 

placement is convenient, it provides limited information about joint-specific motion. Foot 

sensors can aid in estimating spatiotemporal metrics like stride time and length but 

similarly offer limited insight into joint dynamics. The shank, by contrast, was selected in 

this framework for its ability to capture both stride-level timing and joint-relevant metrics 

such as peak acceleration and angular velocity. Its bony attachment point just below the 

knee also reduces skin motion artifact compared to placements like the thigh, which has 

been found to have larger movement artifact even after alignment correction (Mihy et al., 

2022). 

2.1.3 Number of Sensors 

Many in-lab studies deploy multiple sensors to estimate joint kinematics or evaluate 

sensor fusion approaches (Hafer et al., 2023; Kobsar et al., 2016). However, multi-sensor 

setups are less feasible for long-term, free-living use due to burden on participants. Recent 
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studies suggest that meaningful gait analysis is possible with a reduced number of sensors 

(e.g., 2-3), which improves compliance and supports clinical translation (Bolam et al., 

2021). This framework was designed to enable interlimb comparisons (e.g., symmetry) 

while limiting patient burden. The determination of using self-placed sensors also plays a 

role in this decision, as each sensor self-placed could introduce error from incorrect 

placements and potentially decrease patient compliance.  

2.1.4 Repeatability and Population Considerations 

Repeatability of gait metrics in OA populations remains understudied, particularly 

outside the lab. While healthy adults have been evaluated extensively under controlled 

conditions (Kobsar et al., 2020a), free-living reliability in clinical populations has received 

less attention. Therefore, there was a need to assess repeatability of both waveforms and 

discrete peak variables from accelerations and angular velocities in an OA population 

outside of the lab. 

2.2 Foundational Methodological Studies 

This section summarizes two pre-thesis studies that informed the development of 

the gait framework. These studies, published in the Journal of Biomechanics in 2022 and 

2023, examined (1) the validity of self-placed sensors and (2) the repeatability of gait 

metrics in an OA population.  

2.2.1 Researcher-Placed vs Self-Placed Sensors  

 The first study (Ruder et al., 2022) evaluated whether self-placed sensors could 

produce gait data comparable in validity and reliability to those placed by a researcher. It 
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also tested whether a principal component analysis (PCA)-based alignment correction, 

adapted from Hafer, et al., (Hafer et al., 2020)  could mitigate placement variability. Young, 

healthy adults self-placed a sensor on their left tibia, while a researcher placed a second 

sensor on the right tibia. Participants completed two in-lab walking sessions using a 

marker-based optical motion capture system as the reference standard. Gait metrics were 

extracted from both sensors before and after PCA-based alignment and evaluated using 

intraclass correlation coefficients (ICCs) for discrete peak variables and coefficients of 

multiple correlation (CMCs) for waveform data. 

 After alignment correction, both self-placed and researcher-placed sensors showed 

good-to-excellent validity and test-retest reliability for key gait metrics, including vertical, 

anterior-posterior, and resultant acceleration peaks. Although placement consistency was 

lower for self-placed sensors (ICC = 0.55 vs. 0.85), corrected waveform data remained 

highly reliable (CMC ≥ 0.93). Slight reductions in validity were observed for mediolateral 

acceleration and frontal plane angular velocity in the self-placed sensors, likely due to 

placement variability and lower signal amplitudes. Overall, these results support the 

feasibility of self-placed sensors when alignment correction is applied, potentially enabling 

their use in decentralized settings such as remote monitoring or clinical trials. 

2.2.2 Repeatability of Gait Metrics from Out-of-Lab Gait Assessment in OA Patients 

The second study (Ruder et al., 2023) assessed the between-day repeatability of gait 

metrics derived from wearable sensors in a clinical population. Nine adults with moderate-

to-severe knee OA completed four out-of-lab gait assessments, approximately one week 
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apart, during a standardized six-minute walk test. Sensors were placed on the tibia and 

aligned using the same PCA-based method from the previous study. 

Gait cycles were extracted, and both waveform-level and discrete peak variables 

(e.g., stride time, vertical acceleration) were evaluated for test-retest reliability. Results 

showed good-to-excellent reliability for most metrics, particularly when multiple steps 

were averaged. Ensemble waveform reliability improved with increasing step counts. ICC 

values for key discrete metrics exceeded 0.75, particularly in the more affected limb. As in 

the first study, slightly lower reliability was observed in mediolateral acceleration and 

frontal plane angular velocity. The findings indicate that with proper preprocessing and 

alignment, wearable sensors can provide stable and clinically meaningful gait metrics in 

free-living environments, supporting their use in longitudinal monitoring and intervention 

tracking in OA populations. 

2.2.3 Implications of Findings  

These two studies played a central role in shaping the design of the proposed 

framework. Although the first study demonstrated that PCA alignment could effectively 

correct for placement variability in self-placed sensors, pilot testing revealed practical 

limitations: older adult participants often struggled with placing on the correct limb, forgot 

to charge or activate the sensors, or inadvertently left them unplaced. Of 10 patients 

recruited during early testing, usable data were obtained from only two. Consequently, the 

decision was made to adopt researcher placement for all subsequent data collections. 

Nevertheless, PCA-based alignment remained a key component of the framework to 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

44 
 
 

account for variation introduced by different researchers. Similarly, the use of two sensors, 

one on each shank, was chosen to balance measurement richness with participant burden, 

while enabling assessment of interlimb symmetry. The second study confirmed that tibial 

sensors yield reliable waveform and discrete metric data in OA patients under free-living 

conditions. These findings provided essential evidence for the clinical validity of the 

framework and helped identify which gait metrics (e.g., peak sagittal angular velocity) are 

most robust for longitudinal tracking in this population. 

With these foundational studies complete, the framework was ready for broader 

implementation. The next section provides a high-level overview of its structure and 

processing steps. 

2.3 Description of Gait Framework 

 Initial development of the gait framework was informed by both laboratory and 

free-living datasets collected during pilot studies. The design emphasized modularity, 

enabling different segmentation methods and analyses to be integrated as the framework 

evolves. Although this chapter does not provide formal validation metrics, subjective 

evaluation of algorithm performance in identifying walking bouts and gait events guided 

initial development. Subsequent chapters will quantify the framework’s performance 

relative to other segmentation methods (e.g., deep learning; Chapter 3) and use this 

foundation for further analyses (Chapter 4 and 5). Wearable sensor data are processed using 

a standardized pipeline implemented in Python, designed to support both in-lab and free-
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living applications. The pipeline consists of five core stages: preprocessing, gait 

segmentation, event detection, outlier rejection, and metric extraction (Figure 2.1). 

  

Figure 2.1: Simplified workflow for processing pipeline, run in parallel for both sensors. 

Raw data is preprocessed and then undergoes gait segmentation to identify walking bouts. 

Walking bouts are then evaluated using event detection to further segment into individual 

strides and evaluated for outliers before outputting metrics and averaging parameters.  
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2.3.1 Preprocessing 

Raw data from bilateral tibial sensors are automatically loaded based on sensor 

naming conventions. The framework supports reading files from both the binary .cwa 

format used by the Axivity AX6 devices (Axivity AX6, 100Hz, Axivity Ltd., Newcastle, 

UK) and .csv data from alternative sensors (e.g. IMeasureU). Sensor data are temporally 

aligned to the later-starting device to minimize clock drift at the beginning of recordings. 

Orientation correction adapted from Hafer, et al., is performed in two stages (Hafer et al., 

2020). First, the vertical axis is identified and aligned to gravity using a static acceleration 

window. Then, PCA-based optimization is applied during walking to align the mediolateral 

gyroscope axis. This ensures that axes are consistently oriented across sessions and 

participants. Physical activity levels are then estimated using shank-specific cut points 

developed by Gafoor, et al., producing both absolute and normalized activity counts across 

predefined intensity bins (Gafoor et al., 2024). These outputs support physical activity 

monitoring of interest to clinicians alongside gait analysis. The physical activity counts can 

also be used for wear time detection and removal of non-wear sections of data after the 

sensor is removed.  

2.3.2 Gait Segmentation 

Gait segmentation is performed independently for each sensor using a user-defined 

bout detection method. A more detailed description is included in Chapter 3, but as noted, 

this step is designed to be flexible to run different methods in parallel for evaluation. The 

default implementation is a frequency-based heuristic method developed by Ullrich, et al., 
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originally evaluated for individuals with Parkinson’s disease. (Ullrich et al., 2020). This 

method was chosen for its simplicity and demonstrated effectiveness in altered gait 

populations, having been originally developed for free-living gait detection in individuals 

with Parkinson’s disease. In short, this method analyzes 10-second windows of the 

mediolateral gyroscope signal (e.g., sagittal plane swinging motion of the leg). If the signal 

energy exceeds the defined threshold, the dominant frequency is estimated using an 

autocorrelation. A fast Fourier transform is then applied, and the presence of peaks at two 

or more of the first four harmonics of the estimated dominant frequency indicates cyclical 

gait for the window of interest. Detected walking windows are stored as Boolean masks, 

allowing for efficient reuse and facilitating downstream processing. The modular structure 

of this step allows for easy comparison between segmentation methods, such as heuristic 

versus deep learning approaches. 

2.3.3 Event Detection and Stride Segmentation 

Within each walking bout, individual strides are identified using an event detection 

method adapted from Mariani et al. (2013). Mid-swing peaks are first located in the 

mediolateral angular velocity signal. The interval between successive mid-swing peaks is 

divided in half: the largest resultant acceleration peak in the first half is classified as heel 

strike, and the largest in the second half as toe off. This approach was selected based on 

pilot testing and prior literature indicating consistent alignment with ground truth. Discrete 

variables were calculated between each during each stride (heel strike to heel strike), stance 

(heel strike to toe off), and swing (toe off to subsequent heel strike) as needed. Specifically, 
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from these events, spatiotemporal gait metrics (i.e., stride time, stance time, and swing 

time) are computed, as well as peak angular velocities and accelerations are extracted for 

each phase (stride, stance, swing). All strides are time-normalized to 101 points to allow 

for ensemble averaging and comparison across participants. These candidate strides are 

then subjected to a multi-stage outlier detection protocol.  

2.3.4 Outlier Detection 

After event detection, each candidate stride is time-normalized and evaluated 

through a multi-step outlier detection framework designed to ensure signal fidelity and 

biomechanical consistency. First, principal component analysis (PCA) is applied to a 

stride-level signal (typically the mediolateral angular velocity). Strides are projected into a 

15-component score space to capture at least 90% of variance, and multivariate z-scores 

are calculated. Strides with z-scores exceeding ±2.5 in any component are flagged as 

statistical outliers and removed. This step captures signal-level anomalies such as abrupt 

noise spikes, artifacts, or irregular gait patterns. Next, the remaining strides are evaluated 

using the coefficient of multiple correlation (CMC), which quantifies biomechanical 

similarity between each individual stride and a reference waveform (defined as the mean 

of all in-lab strides). Strides with a CMC value below 0.5 are excluded, reflecting 

insufficient waveform similarity. This added layer filters biomechanically inconsistent 

strides that may have passed the statistical threshold but diverge from typical gait patterns. 

Only strides passing both filters are retained for metric extraction. 
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2.3.5 Metric Extraction 

Final outputs include both stride-wise peak metrics and time-normalized 

waveforms. These outputs support condition comparisons, longitudinal tracking, and 

group-level analysis.  

2.4 Conclusions 

 The development of this gait analysis framework involved a series of practical and 

methodological decisions intended to support both research utility and clinical translation. 

While not itself a standalone study, this work represents a critical foundation for the broader 

dissertation. The design was informed by two foundational methodological studies that 

addressed key barriers to real-world implementation: the impact of sensor placement 

variability and the reliability of gait metrics in an OA population. These studies 

demonstrated that with proper alignment correction and careful deployment, wearable 

sensors can provide valid and repeatable gait measures in both lab-based and free-living 

settings. 

The framework is deliberately modular, supporting integration of future 

segmentation and event detection methods while maintaining a standardized core for 

repeatable analysis. For the current work, a researcher-placed, dual-shank configuration 

was selected based on pilot testing, participant compliance, and metric reliability. PCA-

based alignment and multi-step outlier detection further enhance the robustness of the 

extracted gait metrics, making the framework suitable for clinical monitoring and research 

applications. 
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As wearable technology continues to advance, this framework offers a platform for 

expansion. Additional modules, such as sleep tracking or activity classification, could be 

added in future iterations. Likewise, as new gait segmentation methods emerge, including 

those based on deep learning, they can be integrated into the existing pipeline. One such 

method is explored in Chapter 3.  
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Chapter 3: Augmenting a ResNet + BiLSTM deep learning model with clinical 

mobility data outperforms heuristic frequency-based model for walking bout 

segmentation (Study 1) 

 

Preamble 

 This chapter presents my first formal dissertation study, in which I trained, tested, 

and evaluated a machine learning activity classification model using data from both healthy 

adults and patients with knee osteoarthritis to identify gait bouts. The previous chapter 

described a baseline gait detection framework built on a heuristic frequency model. In the 

following chapter, I extend that framework by retraining a promising machine learning 

model and assessing its performance independently and against the heuristic approach. I 

systematically expanded the training dataset in stages, retraining and re-evaluating the 

model after each increment to track performance gains. Overall, this work advances the 

development of robust classifiers tailored to individuals with altered gait. 

 

This work was prepared for submission to Sensors, with the following coauthors:  

Matthew C. Ruder, Vincenzo E. Di Bacco, Kushang Patel, Rong Zheng, Kim Madden, 

Anthony Adili, and Dylan Kobsar 
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Abstract 

Wearable sensors have become valuable tools for assessing gait in both laboratory and free-

living environments. However, detection of walking in free-living environments remains 

challenging, especially in clinical populations. Machine learning models may offer more 

robust gait identification, but most are trained on healthy participants which limits their 

generalizability to other populations. To extend a previously validated machine learning 

model, an updated model was trained using an open dataset (PAMAP2), before 

progressively including training datasets with additional healthy participants and a clinical 

osteoarthritis population. The performance of the model identifying walking was also 

evaluated using a common heuristic, frequency-based gait detection algorithm. Results 

showed that the model trained with all three datasets performed best in terms of activity 

classification, ultimately achieving a high accuracy of 96% on held out test data. When the 

model was used for identification of walking activity classification, the model generally 

performed on par with the heuristic, frequency-based method. However, for patients with 

slower gait speeds (<0.8 m/s), the machine learning model maintained high recall (>0.89), 

while the heuristic method performed poorly with recall as low as 0.38. This study 

demonstrated the potential of training with clinical data to improve model robustness for 

pathological gait. Although further validation, especially in free-living environments, is 

needed, this study provides a framework for enhancing existing model architecture using 

diverse datasets and highlights the importance of dataset diversity when developing models 

for clinical applications. 
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3.1 Introduction 

Wearable inertial measurement unit (IMU) systems have emerged as powerful, 

cost-effective tools for evaluating walking gait in clinical contexts. These evaluations are 

essential for understanding disease status, progression, and response to treatments 

(Caramia et al., 2018; Carcreff et al., 2020; García-de-Villa et al., 2025). In knee 

osteoarthritis (OA), one of the most prevalent musculoskeletal conditions (Chapple et al., 

2011), IMUs have been used to assess patient function (Hafer et al., 2020; Ismailidis et al., 

2020), track disease progression (Costello et al., 2020), and monitor rehabilitation response 

(Z. He et al., 2019). While these assessments can be invaluable in clinical environments, 

free-living daily life offers the potential for deeper insights into functional capacity, disease 

state, or response to treatment that may not be captured in controlled settings  (Bolam et 

al., 2021; Hillel et al., 2019). However, working with free-living IMU data presents 

significant challenges due to the large volume of data across various activities, many of 

which may not be of interest. Accurately identifying activities, or simply when a participant 

is walking, remains a key hurdle in translating IMU technology for real-world applications 

outside of controlled laboratory environments.  

Traditional heuristic, or rules-based, methods are often used to identify periods of 

walking, referred to as walking bouts. One of the simplest methods is identifying peak 

acceleration impacts that exceed a certain threshold, which correspond to heel strikes 

during walking (Selles et al., 2005). While this method is easy to implement, it lacks 

robustness and is poorly suited for free-living data due the variability, not only between 
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individuals’ gait but also within an individual’s gait in uncontrolled environments (Hillel 

et al., 2019). Alternatively, the cyclical nature of walking gait can be effectively 

incorporated into walking bout identifier algorithms by examining the signal’s frequency 

content. For example, the harmonic frequencies of the IMU signals can be analyzed using 

a fast Fourier transform (FFT) to identify walking behavior by detecting harmonics that are 

indicative of gait (Ullrich et al., 2020). This approach has demonstrated strong performance 

in laboratory settings (sensitivity = 0.98), with only minimal drop-off when deployed on 

semi-structured, unsupervised, and remotely collected validation data (sensitivity = 0.97). 

While this improvement over simple peak heuristics is promising, there are still challenges 

related to thresholding estimates for harmonics, which can limit the generalizability and 

robustness for walking classification. Participants also generally walk slower in free-living 

assessments, which may complicate gait detection in populations with altered gait that 

already move slower than healthy populations (Alkjaer et al., 2015; Hillel et al., 2019). 

Therefore, developing gait identification algorithms that are robust and agnostic to these 

variations must be accounted for before deployment on free-living data.  

Machine learning (ML) methods have emerged alongside wearable IMUs and offer 

improved predictive power over traditional heuristic models. Techniques like support 

vector machines (Gurchiek et al., 2019) and Hidden Markov Models (Roth et al., 2021) 

have been used to identify walking bouts using handcrafted features from three-

dimensional acceleration and angular velocity data. While effective, these methods rely on 

feature engineering and may not capture the full complexity of human movement. More 
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advanced deep learning approaches, such as Convolutional Neural Networks, can 

automatically extract relevant features from raw IMU data, enabling more effective gait 

analysis (Martindale et al., 2021). However, given the temporal dependence of human 

movement signals, utilizing a deep learning model that also integrates the temporal 

structure of the signal can be critical to identifying walking bouts in free-living data. 

Long Short-Term Memory networks, a type of recurrent neural network, are deep 

learning models designed to capture long-term dependencies in time-series data. These 

advanced networks excel in tasks where temporal information is essential, such as sequence 

prediction or activity recognition, because they can retain information over long sequences 

and mitigate the vanishing gradient problem often encountered in traditional recurrent 

neural networks. A recent study by Li and Wang tested the use of this model to identify 

activities, including walking, from an open dataset (PAMAP2) (Li and Wang, 2022). The 

architecture consists of two main components: 1) the Residual Convolutional 2D block 

(ResNet), which extracts features from a window of IMU data, and 2) the Bidirectional 

Long Short-Term Memory (BiLSTM) network, which captures long-range dependencies 

and reduces information loss in sequential data. This model architecture is particularly 

intriguing because it has demonstrated strong performance across various datasets, ranging 

from those with multiple sensor placements to a single sensor positioned just below the 

knee. Specifically, the authors found that the model identified activities with over 95% 

accuracy trained independently across three datasets: the full PAMAP2 dataset, another 

open dataset (WISDM), and a lab-created dataset with a single proximally placed sensor 
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on the shank. While these findings are promising, they share limitations common to many 

models, as highlighted in a recent review (Halilaj et al., 2018). Specifically, the models 

were trained and validated exclusively with healthy subjects, with no evaluation on 

individuals with altered gait, limiting the generalizability of the findings. Moreover, these 

results were obtained without a specific, separate test set and were not compared to 

traditional heuristics, making it difficult to assess the model’s performance relative to 

simpler, more established methods.  

Rather than developing a new ML architecture, this work extends Li and Wang’s 

(2022) approach to create a clinically viable system that uses a single lower-limb sensor 

capable of identifying activities in both healthy individuals and those with knee OA, with 

a particular focus on walking bouts due to their significance in these populations. A similar 

model architecture to that of Li and Wang (2022) was implemented, along with additional 

training data (from both healthy individuals and those with knee OA) to enhance 

classification performance. Additionally, the performance of this trained deep learning 

model was evaluated against a common heuristic gait detection algorithm (Ullrich et al., 

2020) to compare ML performance with a heuristic approach, using a more comprehensive 

test set across a variety of gait speeds. Specifically, we hypothesized that (i) the deep 

learning model, when trained with additional healthy and clinical data, would outperform 

the base open dataset model on a clinical test set; (ii) it would outperform the heuristic gait 

detection algorithm; and (iii) this advantage would be particularly evident in individuals 

with lower gait speeds. By doing so, this study aims to develop a clinical gait detection 
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model using only a single sensor located on the shank. 

3.2 Methods 

3.2.1 Description of Datasets 

Data used in the current study were sourced from three distinct datasets: (a) the 

PAMAP2 dataset (Reiss, 2012), (b) a new healthy adult dataset, and (c) a new clinical 

dataset of adults with knee and hip OA. Each dataset contributed to the development, 

validation, and testing of the model, with data obtained from sensors placed at varying 

locations on the shank. The PAMAP2 dataset, which includes a variety of activities and 

sensor placements (chest, wrist, and ankle), served as the base dataset for model 

development. In this application, only the ankle sensor data were used to simplify the 

sensor array and facilitate the extraction of meaningful gait metrics from OA patients using 

this location, extending the scope of current work (Kobsar et al., 2020b). The inclusion of 

(b) a secondary healthy dataset, in which sensors were placed more proximally on the 

shank, was intended to promote model development that is more robust to variations in 

sensor placement along the shank (Figure 3.1). Next, the limited number of healthy 

participants in the base dataset may restrict its generalizability to older adults with gait 

impairments. To address this, (c) a clinical dataset comprised of adults with knee OA, 

collected approximately two weeks prior to joint replacement surgery, was included to 

increase population diversity. This dataset represents end-stage OA and provides valuable 

data on individuals exhibiting a range of gait speeds and condition-related gait alterations 

(Alkjaer et al., 2015). The datasets and activity labels are described in full below, with the 
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full protocols for the healthy and clinical datasets available in Section 3.6 Supplemental 

Material. 

 

 

Figure. 3.1 Sensor placements for PAMAP2 (a), healthy dataset (b), and clinical dataset 

(c). The PAMAP2 sensor was attached to the dominant side lateral ankle with a strap. The 

healthy dataset was attached with a semi-elastic strap with sensor placement medial and 

inferior to the knee. The clinical dataset used the same attachment location as the healthy 

dataset but instead attached with medical grade tape. Please note that sensors are not to 

scale, as increased size is used to clearly show placements. 

 

1) PAMAP2 Dataset 

This open dataset was created as a benchmark dataset for physical activity monitoring 

(Reiss, 2012). The dataset contained 9 participants (8M, 1F; age: 27.2 ± 3.3 years; 

height: 179.4 ± 8.4 cm, weight: 80.9 ± 10.3 kg) wearing multiple IMU sensors (Colibri 

wireless IMUs, Trivisio) sampled at 100 Hz while completing 18 varying activities. 

(a) (b) (c) 
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For the purposes of developing a clinical gait detection model for this study, the only 

sensor utilized was the IMU attached on the dominant side ankle (Figure 3.1a). There 

are 12 activities that were completed during the protocol (lying, sitting, standing, 

walking, running, cycling, Nordic walking, ironing, vacuuming, jumping rope, 

ascending and descending stairs) and up to six optional activities (watching TV, 

computer work, driving a car, folding laundry, and playing soccer). Data from Subject 

109 in the dataset only contained labeled data for jumping rope and was therefore 

excluded. All remaining subjects were included. A total of 13 activity labels were 

identified in the datasets used and updated during subsequent preprocessing.  

2) Healthy Lab Dataset 

This dataset was collected as part of a concurrently collected study. The McMaster 

Research Ethics Board approved the study (MREB 6120), and all participants 

provided their informed consent prior to enrollment.  In addition to the primary study, 

14 healthy participants (10M, 4F; age: 25.0 ± 4.4 years; height: 180.1 ± 9.1 cm; 

weight: 77.1 ± 13.4 kg) consented to additionally wearing one sensor (IMeasureU Blue 

Trident; Vicon Ltd., Oxford, UK), sampled at 1600 Hz, on each leg at the anterior-

medial aspect of the proximal tibia and attached using semi-elastic straps (Figure 

3.1b), while completing five different activities. The activities included three walking 

trials (i.e. walking in a straight line, walking with toe-out, and walking in a slalom 

pattern, all at a self-selected speeds), a static trial, and non-gait ambulation. The static 

trial included data where the participants were standing or sitting, with limited to no 

movement. The non-gait ambulation trial simulated slower movements (e.g., 
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sweeping) that might be completed during activities of daily living but should not be 

considered classified as gait for gait analysis purposes. Following collection, the 

sensors were removed and downloaded using the CaptureU software (Version 1.3.1) 

and downsampled to 100 Hz. Data from left and right sensors were concatenated 

together into a single structure, with non-labeled data removed. 

3) Clinical Dataset 

The clinical dataset was created as a subset (n=32) from a larger study utilizing 

wearable sensors to longitudinally monitor gait in a cohort of older adults (12M, 20F; 

age: 65.7 ± 7.8 years; 168.0 ± 9.9 cm; 92.3 ± 23.9 kg) with OA awaiting knee (n=25) 

or hip arthroplasty (n=7). The Hamilton Integrated Research Ethics Board (HiREB 

16236) approved this study, and all participants provided their informed consent prior 

to enrollment. Patients wore one sensor (Axivity AX6; UK), sampled at 100 Hz, on 

each leg at the anterior-medial aspect of the proximal tibia (Figure 3.1c), attached 

using waterproof medical grade tape (Simpatch Adhesive Patch). Sensors were worn 

for one week to capture free-living gait and activity data, as well as in-clinic 

performance-based functional tasks recorded with markerless motion capture 

(Theia3D, Kingston, ON). For the current study, only quiet standing and a 60-second 

self-selected walking speed tasks were manually labeled since not every patient 

completed all functional tasks and represents the minimum dataset across all patients. 

While markerless motion capture video data is not included in the current study, the 

data were used to calculate gait speed as described in Outerleys, et al. (Outerleys et 

al., 2024a). To improve robustness across gait speeds for the final model, patients’ gait 
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speeds were classified as “slow” (<0.8 m/s), “average” (0.8-1.2 m/s), and “fast” (> 1.2 

m/s) based on previously reported mean gait speeds for OA patients (Marcum et al., 

2014; Wiik et al., 2017). Data from left and right sensors were concatenated together 

to form a single data structure. 

3.2.2 Preprocessing  

All subsequent data processing was completed in Python 3.9. Only the acceleration 

and gyroscope signals were utilized given these were available in all three datasets. To 

account for different sensor placements and orientations used, a calibration procedure was 

used to have consistent axes across all datasets as described by Mihy et al. (Mihy et al., 

2022). For each subject in all datasets, data were first aligned with gravity in the vertical 

direction using a segment of quiet standing. Next, using the labeled data, a walking section 

in the data was used to rotate the sensor around the vertical direction to be fully aligned 

with the anteroposterior direction. To ensure all units were consistent across all datasets, 

units were converted as needed so the accelerometer units used were meters per second 

squared (m/s2) and angular velocity was expressed in degrees per second (deg/s).  

Given the goal of using this model for gait detection, the activity labels from each 

dataset were modified during preprocessing to be consistent across all datasets. The 

PAMAP2 dataset was most affected given that there were 18 total activities, but since not 

all activities were required (e.g. playing soccer, jumping rope) or differentiable using a 

single lower limb sensor (sitting vs standing), activities were reclassified as outlined in 

Supplemental Table I at the end of the chapter.  The final relabeled activities for the 
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PAMAP2 dataset resulted in 7 total activities for classification: static, walking, running, 

cycling, stair ascent, stair descent, and other. Static may describe any condition where the 

subject is not moving, including sitting, standing, or laying down. The “other” 

classification was created to capture activities of daily living that do not represent gait 

behavior, such as vacuuming or house cleaning, that would not be completely static but 

also not true gait. These activities were selected to be representative of potential activities 

in the clinical population and utilized as needed for the other datasets for consistency. For 

the healthy dataset, the “static” label was used, while all three gait tests (i.e., straight 

walking, toe out walking, and slalom walking) were labeled as “walking”. The cone task 

and sweeping were both classified as “other”. For the clinical dataset, the quiet standing 

task was labeled as “static” and self-selected walking speed task was labeled as “walking”. 

For all datasets, unlabeled data (including previously labeled activities that were unused) 

were removed. For PAMAP2 data, 500 samples from the beginning and end of each activity 

were removed to account for potential inaccuracies in starting and ending a data label, 

ensuring only steady state data was included from each activity (e.g., walking labels often 

start with static or transitional data). To account for differences in participants and sensor 

placement between datasets, data were scaled using the StandardScaler function (SciKit-

Learn v1.6.1). Since the PAMAP2 dataset included running as an activity, the walking 

section from each participant was used to generate a consistent scaling transform for each 

participant across all datasets. The scaling transform was then applied to all data for that 

participant.  
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Following event relabeling, the sensor data was then segmented into sequential n-

second sliding windows of length n∙sampling frequency (termed window_sz), with a 50% 

overlap, with a corresponding activity label for that window. For static-labeled sections 

only, the window was evaluated to check that it was a true static window by ensuring the 

root mean squared acceleration was less than 1 m/s2. While the original Li and Wang paper 

uses a one second window (window_sz = 100), a leave-one-subject-out analysis found 

minimal changes in accuracy up to five seconds (window_sz = 500). Given that the target 

population for this model are clinical patients who may walk slower, the window was 

extended to five seconds. A five second window also aligns well with a heuristic frequency-

based model (Ullrich et al., 2020) used in the secondary analysis. 

3.2.3 ResNet + BiLSTM Model Framework 

The model used in this study was structured identically to the architecture outlined 

by Li and Wang (Li and Wang, 2022). In short, there are two blocks within the model: a 

ResNet and BiLSTM. The ResNet is used to extract spatial features from the signal, while 

the BiLSTM captures the forward and backward temporal information from time sequences 

(Figure 3.2). The following section will provide a high-level overview of model 

architecture. 

The input to the model consisted of segmented, sequential IMU data, represented 

as (window_sz, n_channels,1), where window_sz represents number of samples in the 

current sequence, n_channels represents each individual IMU channel included (i.e. 

accelerometer and gyroscope axes). For the current study, window_sz = 500 indicating a 
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length of 500 samples.  The n_channels parameter was set to 6 since all channels were 

used. To extract spatial features from the input data, residual block is introduced. The 

residual block is comprised of two convolutional layers and an additional convolutional 

shortcut connection added. Each convolutional layer is composed of 32 kernels of 2x2 size. 

The first convolutional layer has a stride length of 2 for the convolutional window. 

Following this layer, a batch normalization (batch norm) layer is used to accelerate training 

and re-center the data before passing to the next layer. Next, ReLU is used as the activation 

function before passing to the second convolutional layer. Following the second 

convolutional layer, which has a stride length of 1, another batch norm layer is used. At 

this point, the shortcut connection, featuring the third convolutional layer with stride length 

of 2, is added to mitigate vanishing gradients, enabling deeper networks. The residual block 

concludes with a second ReLU activation function before a dropout layer with 0.5 dropout 

is used. Before being passed to the BiLSTM layer, the resulting output to this point is 

passed to a flatten layer, which collapses the dimensions into a 1-dimensional array.  

The output from the residual block was then passed to the BiLSTM. While the 

residual block extracted the spatial features and local patterns of the signals, the BiLSTM 

captured the temporal relationships of the time sequences from the output of the residual 

block. The BiLSTM used is a special type of recurrent neural network that analyzes the 

forward and backward temporal relationships of the signals. Within this BiLSTM, there 

are forward and backward layers because a standard Long Short-Term Memory network 

would only be based on previous data. The bidirectional nature of this layer allows for 
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better learning with respect to human activity recognition. Following the BiLSTM layer, 

there is an additional dropout layer with 0.5 dropout. A dense layer is to connect every 

neuron of the previous layer, which helps prevent overfitting. The output of the data is 

extracted through a softmax activation layer, which finally predicts the probability of 

each activity. The predicted probability can then be used to predict the most likely 

activity for a given window.

Figure 3.2. Model architecture of the ResNet + BiLSTM model, adapted from Li and 

Wang, 2022. 

 

3.2.4 Model Training and Performance Analysis 

The models were trained on a desktop computer equipped with a 3.5 GHz 16-Core 

CPU, with 32 GB of RAM, and a graphics processor (NVIDIA GeForce RTX 2070 Super). 

The algorithm was implemented using Python 3.9 using TensorFlow 2.10.1, using Spyder 
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as the integrated development environment on a 64-bit version of Windows 10. Three 

models were independently trained with progressive combinations of the PAMAP2 dataset, 

healthy dataset, and clinical dataset, starting with only the PAMAP2 dataset, then adding 

the healthy dataset, and finally adding the clinical dataset (Table 3.1). Participants in each 

dataset were randomly divided between training, validation and testing sets so at least 75% 

used for training. Validation and testing sets were randomly and evenly divided, except for 

the clinical dataset, where testing participants were specifically selected to ensure a range 

of gait speeds. The same hyperparameters in Li and Wang were used, except for training 

time. The models were trained by minimizing sparse categorical cross entropy using the 

Adam optimizer. A batch size of 64 was used to train each model. Whereas the Li and Wang 

used a training time of 80 to train each model, early stopping was used to prevent model 

overfitting, with a patience of 10. The best model based on minimized loss was retained 

from each model training and saved as the final model.  
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Table 3.1: Description of each model iteration in terms of training, validation, and testing 

data used in model development and evaluation, with the number of n subjects included 

from each dataset. Additional data was added for training and validation during model 

development, but the testing test was consistent across all model iterations. 

Model Iteration Training Data (n) Validation Data (n) Testing Data (n) 

PAMAP2 Only PAMAP2 (6) PAMAP2 (1) 

PAMAP2 (1) 

Healthy (2) 

Clinical (6) 

PAMAP2 + 

Healthy 

PAMAP2 (6) 

Healthy (10) 

PAMAP2 (1) 

Healthy (2) 

PAMAP2 (1) 

Healthy (2) 

Clinical (6) 

PAMAP2 + 

Healthy + 

Clinical 

PAMAP2 (6) 

Healthy (10) 

Clinical (26) 

PAMAP2 (1) 

Healthy (2) 

Clinical (3) 

PAMAP2 (1) 

Healthy (2) 

Clinical (6) 

 

Metrics were calculated for each final model to describe the overall performance 

across training, validation, and testing. For each classification, true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) were the following metrics 

using functions from the SciKit-Learn package in Python (SciKit-Learn v1.6.1). 

Specifically, performance from accuracy (1), precision (2), recall (3), and F1-score (4) were 

calculated during training, validation, and testing, resulting in training, validation, and 

testing performance metrics, using the following equations:    

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 (2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ TP

2∗TP+FP+FN
 (4) 

Test performance metrics were calculated at the conclusion of training on the held-

out test sets, comprised of randomly selected participants from each dataset as follows: one 

PAMAP2 participant, two healthy participants, and six clinical patients. Regardless of the 

included datasets used for each of the three trained models, the test set was comprised of 

all participants from all datasets to better characterize how generalizable the overall model 

architecture is through inclusion of additional training data.  

Since this model was planned to be primarily used as a gait detection model, a 

secondary analysis to compare performance with a heuristic model was completed. In short, 

the frequency-based method uses harmonic frequencies to detect gait or non-gait by 

analyzing a 10 second sliding window on a given signal. Following a fast Fourier transform 

of the window, the harmonic frequency was found, and if peaks were detected in at least 

two of the first four harmonics, then it was deemed “gait”. Conversely, if less than 2 peaks 

were found, then it was classified as “not gait”. The output of this method results in a 

Boolean array (i.e., True or False) describing if gait is occurring. Because the original study 

used foot-mounted sensors, the algorithm was evaluated during pilot testing to determine 

the optimal signal to use as well as the optimal peak prominence (i.e., how much a peak 

stands out relative to the signal baseline). It was found that for sensors with the shank 
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attachment used in this study, the mediolateral gyroscope with a peak prominence of 5 best 

captured slower walking.  

Following training and evaluation of all models (i.e., PAMAP2 only, PAMAP2 + 

Healthy, and PAMAP2 + Healthy + Clinical), the best-performing model (i.e. PAMAP2 + 

Healthy + Clinical) was tested for sensitivity in detecting walking, comparing it to a 

heuristic frequency-based model (Ullrich et al., 2020). To do this, the activity predictions 

from the ML model were converted into a Boolean array, where each five-second segment 

was labeled as either "walking" or "not walking," to match the output format of the 

frequency-based method. These predictions, with a 50% overlap between windows, were 

then mapped back to the original data length. A new array, initialized to zeros, was created. 

As the function processed the overlapping windows, ones were added to indicate walking 

periods. The proportion of windows predicting walking was calculated for each sample. 

Finally, this array was converted into a final Boolean output, where any value greater than 

0.5 was considered a "True" walking window. The analysis was performed only on labeled 

sections of the test sets, generating performance metrics for both the heuristic and ML 

models. 

3.3 Results 

3.3.1 Dataset composition 

Following preprocessing (i.e., removing unnecessary data and relabeling activities), 

the datasets provided varying amounts of data for training, validation, and testing. The 

PAMAP2 dataset provided the largest amount of data, with 50.3% of the data (1,466,715 
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total samples), followed by the healthy dataset with 26.1% (760,308 total samples), and 

then the clinical dataset with 23.6% (689,341 total samples). The breakdown of each 

activity in each dataset is provided in Table 3.2, both in terms of the individual datasets as 

well as the combined datasets used for augmenting model training.  

 

Table 3.2: Activity breakdown by percentage for each dataset, both individually as well as 

total breakdown by dataset combinations (i.e., PAMAP2 + Healthy, PAMAP2 + Healthy 

+ Clinical). Percentages are in terms of combined labeled activity data in training, 

validation, and test sets. 

Datasets Static Walking Running Cycling 
Stair 

Ascent 

Stair 

Descent 
Other 

PAMAP2 38.7% 16.3% 6.7% 11.2% 8.0% 7.2% 12.0% 

Healthy 20.3% 53.6% 0.0% 0.0% 0.0% 0.0% 26.1% 

Clinical 47.8% 52.2% 0.0% 0.0% 0.0% 0.0% 0% 

PAMAP+ 

Healthy 
32.4% 29.0% 4.4% 7.4% 5.3% 4.7% 16.8% 

PAMAP+ 

Healthy + 

Clinical 

36.0% 34.5% 3.4% 5.6% 4.0% 3.6% 12.8% 

 

3.3.2 Model Training, Validation, and Testing 

General model performance for each model across all datasets used in training, 

validation, and testing is detailed in Tabel 3.3. Model training took 46, 49, and 56 epochs 

before early stopping for PAMAP2 only, PAMAP2 + Healthy, and PAMAP2 + Healthy + 

Clinical training datasets, respectively. In general, model performance was relatively stable 

in terms of training, with performance metrics (i.e., accuracy, precision, recall, and F1-
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score) all ranging from 0.96 to 0.98. There was a drop in model performance in the 

validation set, with performance metrics ranging from 0.91 to 0.93. Similar trends were 

seen in performance metrics when evaluating the test sets featuring held out data from each 

dataset. Overall model performance on the test sets for PAMAP2-only model achieved 

accuracy of 0.85, while the PAMAP2 + Healthy, and PAMAP2 + Healthy + Clinical models 

both achieved accuracy of 0.94 

 

Table 3.3: Overall performance on training, validation, and test sets for each model. 

Model 

Datasets 

Performance 

Metric 
PAMAP2 

PAMAP2 + 

Healthy 

PAMAP2 + 

Healthy + 

Clinical 

Training 

Accuracy 0.96 0.97 0.98 

Precision 0.96 0.97 0.98 

Recall 0.96 0.97 0.98 

F1-score 0.96 0.97 0.98 

Validation 

Accuracy 0.91 0.93 0.92 

Precision 0.93 0.93 0.92 

Recall 0.91 0.93 0.92 

F1-score 0.92 0.93 0.92 

Testing 

Accuracy 0.85 0.94 0.94 

Precision 0.89 0.94 0.94 

Recall 0.85 0.94 0.94 

F1-score 0.85 0.94 0.94 

 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

72 
 
 

Further details of model performance with respect to performance on individual test 

sets from each dataset can be found in Figure 3.3a-c. The PAMAP2 test set performance 

improved slightly from an accuracy of 0.92 with just PAMAP2 training data, to 0.95 and 

0.94 with models trained with additional healthy and clinical data, respectively. Gait-

related misclassifications decreased with additional data from the healthy and clinical 

datasets. Healthy test set accuracy increased substantially from the PAMAP2-only trained 

model to the PAMAP2 + Healthy and PAMAP2 + Healthy + Clinical trained models, rising 

from 0.81 to 0.93 and 0.92, respectively. Clinical testing performance contained a similar 

trend, with accuracy increasing from the PAMAP2-only trained model to the PAMAP2 + 

Healthy trained model, from 0.84 to 0.95, before slightly increasing to 0.97 when clinical 

data was incorporated into the final PAMAP2 + Healthy + Clinical trained model. 
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(a) 

 

(b) 

(c) 

Figure 3.3. Confusion matrices broken out individually for PAMAP2, healthy, and clinical 

testing sets, with accuracy for each testing set shown for each model. Model performance 

generally improved on test sets as additional data was incorporated into training. 
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3.3.3 Model Comparison to Heuristic Gait Detection 

As the combined PAMAP2, healthy, and clinical trained model demonstrated the 

best performance, this model was then used to compare against the heuristic frequency-

based model. The median performance on each test set is shown in Table 3.4. With the 

exception of the PAMAP2 testing participant, the frequency-based model performed on par 

with the ML-based model. The PAMAP2 testing only achieved an accuracy of 0.80, 

compared to the ML model accuracy of 0.97. The ML-based model (accuracy range: 0.97 

to 0.98) performed slightly better than the frequency-based model (accuracy range: 0.94 to 

0.95) on healthy and clinical datasets. Overall, there were surprisingly no other notable 

differences.  

 

Table 3.4: Median performances on individual test sets from each data, based on the top 

performing model containing PAMAP2 + Healthy + Clinical datasets when used for gait 

detection and the heuristic frequency-based method. 

Dataset (n) Model Accuracy Precision Recall F1-Score 

PAMAP2 

(1) 

Frequency 0.80 0.41 0.97 0.58 

ML 0.98 0.91 0.98 0.94 

Healthy (4) 
Frequency 0.95 0.97 0.95 0.96 

ML 0.99 1.00 0.99 1.00 

Clinic (6) 
Frequency 0.94 0.99 0.94 0.96 

ML 0.97 1.00 0.98 0.97 
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3.3.4 Effect of Gait Speed 

Further performance comparisons between the trained ML model and the heuristic 

frequency-based method were evaluated individually on the clinical test set (Table 3.5). 

There were two patients for each gait speed previously defined gait speed range of slow 

(0.30 and 0.75 m/s), average (1.00 and 0.99 m/s), and fast (1.32 and 1.42 m/s). The machine 

model performed much better than the heuristic frequency on the patients with slower gait 

speeds, with the frequency-based method only having accuracies of 0.53 and 0.81, 

compared to the ML-based model with 0.96 and 0.93. For normal and fast gait speed 

patients, the overall performance of the models on the healthy and clinical datasets, the 

accuracies were very similar between the frequency-based method (accuracy range: 0.94-

0.98) and ML model (accuracy range: 0.97-0.99). 

Table 3.5: Method performance on participants in clinic test set by speed. Individual 

performance metrics for each patient that are below 0.90 are bold and italicized. 

Patient 

Gait 

Speed 

(m/s) 

Speed 

Type 
Method Accuracy Precision Recall 

F1-

Score 

1  0.30 Slow 
Frequency 0.53 0.87 0.38 0.53 

ML 0.96 0.99 0.96 0.97 

2 0.75 Slow 
Frequency 0.81 1.00 0.72 0.84 

ML 0.93 1.00 0.89 0.94 

3 1.00 Average 
Frequency 0.96 0.99 0.94 0.97 

ML 0.97 0.96 0.99 0.98 

4 0.99 Average 
Frequency 0.95 0.99 0.94 0.97 

ML 0.98 0.99 0.98 0.99 

5 1.32 Fast 
Frequency 0.94 0.95 0.94 0.95 

ML 0.97 0.97 0.98 0.98 

6 1.42 Fast 
Frequency 0.98 1.00 0.96 0.98 

ML 0.99 0.98 0.99 0.99 
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3.4 Discussion 

The purpose of this study was to (a) enhance the training of a previously developed 

deep learning architecture, which combines a ResNet and BiLSTM, by incorporating 

additional healthy and clinical participants into model training; (b) compare the sensitivity 

of this model to a heuristic frequency-based model; and (c) evaluate its performance across 

lower gait speeds. The results demonstrated that the base model, trained only on the 

PAMAP2 dataset, performed surprisingly well on clinical data, achieving 91% accuracy 

(Figure 3.3a). However, augmenting the model with additional clinical training data 

improved its performance, reaching 97% accuracy (Figure 3.3c). Additionally, the deep 

learning model generally outperformed the heuristic frequency-based method, with the 

greatest improvement observed at slower walking speeds in patients with end-stage OA. 

Although further validation is needed, particularly in free-living environments, this study 

presents a promising framework for enhancing gait detection models for healthy and 

pathological populations using wearable sensors.  

In terms of model evaluation using the original architecture proposed by Li and 

Wang, the overall model performance of the current study is comparable to the original 

study. Li and Wang reported a validation accuracy of 97% on the PAMAP2 dataset, as well 

as 97% on their own human activity dataset. In comparison, the validation accuracy in this 

study was lower, particularly for the PAMAP2-only model (91%) and higher but still not 

reaching Li and Wang’s accuracy in the PAMAP2 + Healthy trained model (0.93) or the 

PAMAP2 + Healthy + clinical trained model (92%). Several methodological factors may 

explain these differences. Li and Wang’s lab-created dataset, which used a shank sensor 
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placement and consisted of five young adults, split the data into 70% training and 30% 

validation, but did not appear to separate the data by subject. This could have led to memory 

leakage between training and validation sets, potentially inflating their model’s 

performance. As noted in the review by Haliaj, a common pitfall in ML is not fully 

separating training, validation, and testing datasets (Halilaj et al., 2018). In contrast, the 

current study ensured that subjects were only included in one of the datasets: training, 

validation, or testing. Additionally, while both studies used similar activities for training 

and validation on the PAMAP2 dataset, this study focused on activities more likely 

performed by older adults, such as walking, cycling, and stairs, while excluding those less 

likely (e.g., rope jumping, Nordic walking). Finally, the number of sensors used differed 

between studies. Li and Wang used the full set of sensors in the PAMAP2 dataset, while 

this study used a single sensor placed below the knee, limiting the model’s ability to 

distinguish between activities like sitting, standing, and lying, which were grouped as 

“static”. These differences in model training, data preprocessing, and sensor placement 

likely account for the variations in model performance between the two studies.  

The current study aimed to further characterize the model architecture by 

augmenting the PAMAP2 dataset with additional healthy and clinical datasets and 

evaluating the model on held-out test sets. Li and Wang trained and validated their models 

using only their lab-created dataset and two open datasets. In contrast, this current study 

used the PAMAP2 dataset as a base and augmented the training and validation data with 

additional static and walking data from both healthy and clinical populations, with a 

slightly different sensor placement. The additional data slightly improved the model’s 
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performance on the PAMAP2 test set, which achieved accuracy of 92%, 95%, and 94% 

across the three trained models. With the base PAMAP2-only trained model, most 

misclassifications in the clinical dataset involved walking data being classified as “stairs” 

or “other.” This could be due to the slower or reduced magnitude IMU data in the clinical 

group, which may resemble stair walking or shuffling gait patterns observed in the healthy 

PAMAP2 dataset. However, when both healthy and clinical data were incorporated into 

model training, the model performance on the clinical test set improved accuracy to 97%, 

with only 5% of gait windows misclassified as “other”, a significant improvement over the 

PAMAP2-only model, which misclassified 20% of walking data.  

One of the main objectives of this study was to develop a ML model capable of 

accurately identifying gait bouts in a clinical OA population using only one lower-limb 

sensor, with performance surpassing traditional heuristic models. On the surface, the 

current deep learning, augmented with clinical data, appears only slightly better than the 

heuristic frequency-based method (94% vs. 97%). However, when analyzed individually 

by gait speed, the deep learning model shows no performance drop, while the heuristic 

model performs poorly on slower gait speeds. Recall for the two patients with slower gait 

speeds was 0.38 and 0.72 for the frequency-based model, compared to 0.96 and 0.89 for 

the deep learning model. This ability to identify slower walking speeds is critical for both 

clinical and free-living applications. For instance, healthy older adults typically walk at 

speeds between 1.1 and 1.2 m/s (Andrews et al., 2023), while patients with OA often have 

slower speeds, around 1.0 m/s (Marcum et al., 2014; Wiik et al., 2017) or slower, as seen 

in this study. Additionally, walking speeds in both healthy and clinical populations can be 
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further reduced in free-living conditions outside of controlled testing environment 

(Foucher et al., 2010; Takayanagi et al., 2019). Therefore, it is important for a model to 

accurately detect walking bouts at speeds below 1.0 m/s for real-world applications. The 

current model’s ability to perform well, even with a patient walking at an extremely slow 

speed of 0.3 m/s, demonstrates its robustness in identifying a wide range of gait types. 

However, future studies should evaluate its performance in identifying clinical OA gait in 

free-living environments.  

The study aligns well within the broader literature. While there is not an exact one-

to-one comparison, several studies have attempted to characterize slower gait in older 

adults, both with and without deep learning. A similar study incorporating gait data from 

individuals with Parkinson’s disease, stroke, multiple sclerosis, and chronic low back pain 

used a temporal convolutional neural network to identify gait events, validated against 

optical motion capture, at three different speeds (Romijnders et al., 2022). This model 

performed well across both ankle and shank sensor locations, with high recall (>95%), 

precision (>98%), and F1-score (94%) for both initial and terminal contact events. 

Additionally, the previously mentioned study by Roth, et al., which used a Hidden Markov 

Model to identify gait in patients with Parkinson’s disease achieved high performance 

metrics (F1-score = 92.1%), especially for longer bouts (F1-score = 96.2%). The current 

study appears to largely be in line with the performance of these models in different 

populations, but extends this work to a broader focus on osteoarthritis populations where 

such work is lacking (Kokkotis et al., 2020). Overall, within the current study the model 

trained with PAMAP2 + Healthy + clinical data achieved high performance metrics on an 
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osteoarthritis population, which will enable future gait analyses outside of controlled 

laboratory environments.  

This study has several notable limitations. Ideally, a dataset of older adults, both 

with and without pathological gait, would include a wide range of activities for model 

training. However, in clinical populations with gait impairment, this is not often feasible. 

Patients who can complete a broad range of activities are typically higher functioning and 

exhibit less pathological gait. As a result, using only static and walking activities for 

evaluation may overstate the model’s performance. While the high performance on the 

held-out PAMAP2 test set suggests that satisfactory results across multiple activities are 

achievable, other activity classifications in clinical populations remain unvalidated and 

require further research. That being said, it is important to clarify that the current study was 

primarily focused on developing a model to specifically identify walking, which allowed 

for greater emphasis on accurate walking labels. Moreover, one of the limitations 

surrounding many other models is that they are built on a single data collection source 

(Halilaj et al., 2018), whereas the current study demonstrated excellent results in 

identifying walking bouts across different datasets with different sensors, placements, and 

populations, highlighting the robustness of the model. Additionally, the study did not 

validate the models on free living data. Given the lack of a gold standard for activity 

classification in free-living environments, validation would have been challenging. 

Nonetheless, as noted previously, future studies will seek to assess the performance of these 

models in free-living data settings.  

In summary, this study provides additional evidence that the ResNet+BiLSTM 
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model is a valid approach to activity classification using IMU data. It also demonstrates 

the effectiveness of using open datasets, like PAMAP2, as a base that can be augmented 

with data from different sensor locations or populations. The ability to incorporate larger 

training datasets significantly improves model performance, as shown in this study. 

Furthermore, the deep learning model outperformed a heuristic frequency-based method 

when trained with data from a slower, pathological population. This is particularly relevant 

for future studies on free-living gait, as both healthy and clinical populations tend to walk 

slower and will require more robust gait identification. 

 

3.5 Bridge Section – Comparison of Free-Living Bout Identification from Frequency 

Method and ML Method 

 Although the present study concentrates on identifying walking bouts from 

controlled laboratory settings, deploying the resulting model in free-living environments is 

the ultimate goal. In free-living data, where no ground-truth labels exist, comparisons can 

only be qualitative in nature. To obtain an initial sense of relative performance, both the 

frequency-based and ML algorithms were applied to the same participants and compared 

the number and length of bouts and the resulting number of strides from those bouts (Table 

3.6). 

Overall, the ML method detected fewer, more continuous bouts with more strides 

compared to the frequency method. On average, median bout length was 141.3 s with the 

ML method versus 16.1 s with the frequency method. The maximum bout length averaged 
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3471.1 s for ML versus 355.3 s for the frequency method. These results suggest that the 

frequency method tends to fragment extended periods of walking into multiple short bouts, 

whereas the ML method is capable of detecting them naturally as longer bouts. Which 

behaviour is preferable depends on the research question, but in free-living studies, 

capturing longer continuous bouts is often advantageous, because any stray non-walking 

strides can be excluded later during outlier detection. 

For the participants in Study 3, the ML method therefore yielded a more complete 

picture of free-living gait by identifying more strides across longer bouts. Accordingly, 

Chapters 4 and 5 use gait parameters derived from the ML method only. 
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Table 3.6: Performance of the frequency-based and machine-learning bout-detection 

methods in free-living data. 

Patient 

Frequency ML 

Bouts 

(n) 

Median 

Length 

(s) 

Max 

Length 

(s) 

Total 

Strides 

(n) 

Bouts 

(n) 

Median 

Length 

(s) 

Max 

Length 

(s) 

Total 

Strides 

(n) 

1 1092 15.5 141.8 2095 777 56.1 1463.5 4789 

2 1180 16.4 158.4 7385 750 57.4 1235.3 9397 

3* 153 15.1 229.6 1518 75 106 1015 1981 

4 2318 18.6 307.5 20939 220 540.3 14376.6 28773 

5 1436 15.3 319.5 13611 1007 50.2 758.1 17621 

6 1598 15.9 974.9 14981 1187 38 1978 18414 

Mean  1296.2 16.1 355.3 10088.2 669.3 141.3 3471.1 13495.8 

* Patient removed sensors after 1 day.  
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3.6 Supplemental Material 

3.6.1 Healthy Lab Dataset 

As part of a concurrently collected study, 14 healthy subjects (10M, 4F; age: 25.0 

± 4.4 years; height: 180.1 ± 9.1 cm; weight: 77.1 ± 13.4 kg) had gait recorded during three 

walking trials at a self-selected speed. The primary study collected gait data from another 

motion capture system, which were not analyzed for the current study. Participants wore 

one sensor (IMeasureU Blue Trident; Vicon Ltd., Oxford, UK), sampled at 1600 Hz, on 

each leg at the anterior-medial aspect of the proximal tibia and attached using semi-elastic 

straps. Following set up and calibration, the following gait tasks were collected on an 

indoor walking track:  

1) 4 x 10 m straight line walk.  

2) 2 x 10 m “toe-out” straight line walk.  

3) 2 x 10 m slalom walk, where the subjects navigated around cones in a serpentine 

pattern. 

Following the completion of the walking trials, subjects stood or sat down while 

they waited to begin the final sensor collection and kept the IMeasureU sensors on the 

shanks on and recording during this process to collect static and semi-static data, 

approximately for 2 minutes. Afterwards, subjects completed common activities of daily 

living that are ambulation but not typical walking, to simulate slower gait that might be 

completed during activities of daily living but should not be considered classified as gait 
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for gait analysis purposes. These trials consisted of:  

1) Picking up 12 cones arranged in a 3x4 grid, spaced approximately one meter apart, 

in any order they wished.  

2) Broom sweeping the area around where the grid had been arranged for 1 minute.  

Sensors were removed and downloaded using the CaptureU software (1.3.1) and 

downsampled to 100 Hz. Data from each sensor were manually labeled using a custom 

MATLAB script (The Mathworks, Natick, MA), identifying each active section as 

“walking”, “static” or “other”, while non-classified data were removed. Data from left and 

right sensors were concatenated together into a single structure. 

3.6.2 Clinical Lab Dataset 

A subset of data from a larger study utilizing wearable sensors to longitudinally 

monitor gait in a cohort of older adults (12 M, 20 F; age: 65.7 ± 7.8 years) with OA awaiting 

knee (n=25) or hip arthroplasty (n=7) were included. With respect to gait, OA patients 

typically walk slower with an atypical gait compared to healthy control subjects, although 

level of function can vary greatly with pain [13]. Algorithms, both ML and heuristic, may 

not be able to accurately classify gait cycles due, especially when patients have a slower 

gait speed. Wearable sensor data from the patients’ preoperative visit, approximately two 

weeks before a scheduled surgery, was used. Patients were asked to wear one sensor 

(Axivity AX6; Vicon Ltd., Oxford, UK), sampled at 100 Hz, on each leg at the anterior-

medial aspect of the proximal tibia and attached using waterproof medical grade tape 

(Simpatch Adhesive Patch) to be worn for one week to capture free-living gait and activity 
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data. Following sensor placement, patients were asked to complete a battery of functional 

tasks recorded with 10 cameras (Sony RX0-II, 60 Hz, Sony Corporation) for post-

processing with markerless motion capture software (Theia3D, Kingston, ON):  

1) 30 seconds of quiet standing 

2) 60 seconds of self-selected pace walking 

3) 30 seconds of faster walking,  

4) Five repetition sit-to-stand 

5) Two steps up and down.  

Following the one-week period, patients mailed the sensors back using provided 

envelopes. Data were downloaded using the OmGui software (1.0.0.43) and manually 

labeled using a custom Python script in a similar way as described above for the healthy 

dataset. For the current study, only quiet standing and 60-second self-selected walking tasks 

were utilized since not every patient completed all five functional tasks and represents the 

minimum dataset across all patients. Additionally, to the interest in identifying slower gait, 

faster walking was not included. The step up and down task, while similar to stair ascent 

and decent, was ultimately not long enough of a trial to be included for potential 

classification. Data from left and right sensors were concatenated together to form a single 

data structure.  

Markerless motion capture video data was processed in Theia3D and then 

processed into gait cycles using Visual 3D. Heel strike events calculate spatiotemporal 
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variables, including gait speed, as described in Outerleys, et al. To ensure robustness across 

gait speeds for the final model, patients’ gait speeds were classified as “slow” (<0.8 m/s), 

“average” (1.0 m/s), and “fast” (> 1.2 m/s) based on previous reported mean gait speeds 

for OA patients.  

Data labels were updated across all datasets to be consistent during preprocessing. 

The full original and updated labels for each are displayed in Supplemental Table 1. 
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Supplemental Table 1: Original labels and updated labels for all datasets. Updated labels 

were used to reflect the same activities in different datasets.  

Dataset Original Label Updated Label 

PAMAP2 1 – Lying 

2 – Sitting  

3 – Standing 

0 – Static 

4 – Walking 1 – Walking 

5 – Running 2 – Running 

6 – Cycling 3 – Cycling 

12 – Stair ascent  4 – Stair ascent 

13 – Stair descent 5 – Stair descent  

16 – Vacuum cleaning 

19 – House cleaning  

6 – Other 

7 – Nordic walking  

17 – Ironing 

24 – Rope jumping 

Removed 

Healthy  1 – Straight walking 

2 – Toe-out walking 

3 – Serpentine walking 

1 – Walking 

4 – Static (sitting and/or 

standing) 

0 – Static 

5 – Cone Task  

6 - Sweeping 

6 – Other  

Clinical 1 – Quiet Standing 0 - Static 

2 – Self-selected walking (60 

seconds) 

1 – Walking 

3 – Fast walking (30 seconds) 

4 – 5 repetition sit-to-stand.  

5 – Stairs  

Removed 
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Chapter 4: Comparing Gait Metrics from In-Lab Gait Analyses to Free-Living 

Assessment from Wearable Sensors in End-Stage Osteoarthritis Patients (Study 2)  

 

Preamble 

Chapter 4, my second study, examines gait data collected simultaneously with in-lab 

motion capture, wearable sensors, and extended free-living recordings. Although many 

studies have shown strong agreement between motion capture and wearable sensor 

measurements, few have explored how these metrics compare with longer, real-world gait 

samples that may better reflect everyday movement. Here, I analyze several key variables 

common to both systems. The in-lab results replicate previous findings, while the free-

living analyses extend them by showing how the same metrics behave outside the 

laboratory. Also, while not directly evaluated, this study also utilized the gait detection 

model developed in Study 1. Together, these findings support the use of wearable sensor-

derived gait measures in free-living assessments and set the stage for Chapter 5, which 

evaluates them longitudinally. 

 

This work was prepared for submission to Journal of Biomechanics, with the following 

coauthors:  

Matthew C. Ruder, Vincenzo E. Di Bacco, Kim Madden, Anthony Adili, and Dylan Kobsar 
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Abstract 

Gait analysis provides objective metrics to evaluate mobility in populations such as 

individuals with knee osteoarthritis (OA). However, in-lab assessments may not reflect 

real-world gait. Wearable inertial sensors offer a promising alternative, but few studies have 

directly compared concurrent gait measures from motion capture and wearable sensor-

based gait analysis with free-living data collections. This study collected gait data 

preoperatively from 45 older adults with end-stage knee OA using both in-lab markerless 

motion capture and wearable sensors, as well as up to seven days of free-living wearable 

sensor recordings. Stride time and stance time demonstrated excellent agreement and 

reliability between motion capture and in-lab wearable data. Reliability between in-lab and 

free-living measures was lower, though peak angular velocity retained moderate-to-good 

reliability. These findings suggest that certain spatiotemporal gait metrics, particularly peak 

angular velocity, may be viable for use in extended free-living assessments. The study 

supports the integration of wearable sensors into long-term gait monitoring for clinical 

populations. 

 

4.1 Introduction 

Osteoarthritis (OA) is a common and debilitating joint disease characterized by 

cartilage degradation and alterations to in bone morphology, often leading to increased 

pain, reduced mobility, and diminished quality of life (Andriacchi and Favre, 2014). OA 

affects millions of adults worldwide, most commonly involving the knee joint, and has 
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risen substantially in prevalence (Li et al., 2024). Gait analysis using motion capture 

enables highly accurate and objective quantification of various gait parameters (e.g. gait 

speed, stride length, knee flexion, frontal plane alignment), providing valuable insights into 

functional status and disease progression (Birmingham et al., 2017; Duffell et al., 2017; 

Ornetti et al., 2010) . 

Laboratory-based gait analysis, using marked or markerless motion capture, 

remains the gold standard for high-fidelity gait measurement (Ornetti et al., 2010). 

However, despite the importance of assessing gait health in populations such as those with 

OA, gait analysis is not commonly used in clinical care. These systems are costly, both 

monetarily and in terms of physical space, requiring specialized camera equipment and 

dedicated facilities. Moreover, gait data collected in laboratory settings may not reflect 

real-world gait patterns, particularly in individuals with knee OA, where functional 

limitations and fluctuations in pain may lead to a disconnect between laboratory-based 

assessments and everyday walking (Allen et al., 2009; Asay et al., 2013; Hillel et al., 2019). 

Wearable sensors, such as inertial measurement units (IMUs), offer a cost-effective 

way to continuously collect data in real-world settings. Within laboratory environments, 

gait metrics from IMUs have been shown to closely align with those obtained from motion 

capture across a range of populations, including individuals with gait impairments (Prisco 

et al., 2024). In knee OA specifically, spatiotemporal (e.g., stride time (Hafer et al., 2020)) 

and kinematic variables (e.g., sagittal knee range of motion (Hafer et al., 2023; Seel et al., 

2014)), consistently demonstrate high reliability and strong agreement with motion capture 

data. Nonetheless, it remains uncertain how well these validated metrics capture the 
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complexity and variability of gait that occurs during daily life outside controlled laboratory 

conditions.  

Although IMUs offer the potential to capture real-world walking patterns, relatively 

few studies have directly compared gait metrics collected in laboratory settings to those 

measured in free-living environments. One notable study by Hillel, et al., found that gait 

parameters collected from older adults in the lab differed significantly from those collected 

in free-living environments (Hillel et al., 2019). The authors concluded that in-lab 

measurement may not accurately reflect everyday walking. The findings are supported by 

studies involving other clinical population, such as individuals with COPD (Buekers et al., 

2023), Parkinson’s disease (Del Din et al., 2016), and multiple sclerosis (Shema-Shiratzky 

et al., 2020), where gait assessed in free-living conditions typically shows slower gait 

speeds and longer strides times compared to the controlled laboratory environment. 

Unfortunately, these studies often lack concurrent comparisons to conventional motion 

capture systems for the in-lab assessments and have yet to directly examine these 

differences in individuals with knee OA.  

Therefore, the purpose of this study was to quantify agreement between in-lab 

motion capture and IMU-derived gait variables, as well as free-living gait variables, in 

adults with knee OA. Specifically, biomechanical variables derived from wearable IMUs 

during in-lab walking were compared to those collected concurrently from a markerless 

motion capture system, and to a week of free-living IMU data. In line with previous studies, 

we hypothesized that the two in-lab systems would show strong agreement, whereas the 

free-living data would diverge from in-lab IMU data in a manner consistent with findings 
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from other populations (e.g., longer stride times). A secondary purpose of this work was to 

examine whether IMU-derived gait variables, obtained in-lab, during free-living, or as a 

difference metric between the two settings, were significantly correlated with patient-

reported outcome measures for knee OA. We hypothesized that free-living gait variables 

would show stronger correlations with patient-reported outcomes. 

4.2 Materials and Methods 

4.2.1. Participants 

This work is part of a larger study cohort study following individuals with knee OA 

as they undergo a surgical arthroplasty procedure (i.e., joint replacement surgery). The 

Hamilton Integrated Research Ethics Board (HiREB 16236) approved this study, and all 

participants provided their informed consent prior to enrollment. For this sub-study, 

participants also consented to wearing two small wearable sensors on their knees for up to 

seven days. Only data collected prior approximately two weeks prior to their scheduled 

arthroplasty procedure were examined. Exclusion criteria included any significant 

disability that prevented ambulation or the inability to provide informed consent. To be 

included in the current analysis, participants were required to wear both sensors for at least 

four days.  

4.2.2 Data Collection Protocol 

 Following consent, participants completed surveys assessing patient-reported 

outcome measures related to pain, function, and depression. Pain was assessed with a visual 

analog scale, asking participants “Rate your average pain in your knee in the last week.” 

Function was evaluated using the Oxford Knee Score (OKS, Dawson et al., 1998)), which 
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yields a score from 0 (worst outcome) to 48 (best outcome). Depressive symptom severity 

was measured using the Patient Health Questionnaire (PHQ-8, Kroenke et al., 2009)), 

which produces a score from 0 to 24. A score of 10 or more is considered major depression, 

while 20 or more indicates severe major depression. 

Sensor placement began following the completion of the surveys. Two IMU sensors 

(Axivity AX6, 100 Hz, Axivity Ltd., Newcastle, UK) were affixed just below each knee, 

medial and inferior to each tibial tuberosity, using adhesive tape (Simpatch) by a researcher 

(Figure 4.1). The sensors were configured to record continuously for seven days. 

Participants were instructed to maintain their normal daily routine to remove them only at 

the end of the seven-day period, unless removal was required earlier due to discomfort. 

After removal, participants returned the sensors to the research team using a pre-addressed 

mailing envelope.  

 

Figure 4.1. Sensor locations on shank, located medial and inferior to the tibial tuberosity.  
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Following the placement of the sensors, participants completed a series of 

functional tasks for movement analysis using markerless motion capture. Ten cameras 

(Sony RX0-II, 60 Hz, Sony Corporation) were used to record participants as they 

performed movements representative of activities of daily living. Specifically, the recorded 

tasks included: 30 seconds of quiet standing, 60 seconds of walking at a self-selected pace, 

30 seconds of faster walking, a five-repetition sit-to-stand test, and a two-step ascent and 

descent task on moveable stairs. The walking tasks were done along an outlined 7.6 m 

walkway. Due to functional variability among participants, some did not attempt or 

complete all movement tasks. However, all participants completed at least quiet standing 

and 60 seconds of walking at a self-selected pace, with the latter serving as the primary 

data source for this study. Following the in-lab movement analysis, participants left the lab 

with the sensors remaining in place to capture one week of free-living data.  

4.2.3. Data Analysis 

4.2.3.1 In-lab Motion Capture 

In-lab motion capture data from each participant were processed into kinematic 

variables using Theia3D (V2023.1.0.3161, Theia Markerless, Kingston, ON). Kinematic 

data were then analyzed in Visual3D (HAS-Motion, Kingston, ON) to segment walking 

data into individual strides (Outerleys et al., 2024b). Spatiotemporal and kinematic 

variables were calculated for each stride and for each limb. Spatiotemporal variables of 

interest included stride time, stance time, and swing time. Shank angular orientation was 
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differentiated to calculate shank angular velocity, which served as an additional comparator 

to IMU-derived variables. 

4.2.3.2 Wearable Sensor 

Upon receipt of the wearable IMUs, data were downloaded using the OMGui 

program (V1.0.0.43). All subsequent processing was conducted in Python 3.9 using Spyder 

as the integrated development environment. A custom Python script was used to align 

sensor data, identify walking bouts, segment the signals into individual strides, and 

calculate the gait variables.  

First, using an alignment procedure described by Mihy et al., sensor data were 

aligned to account for slight misalignments and standardize to ensure consistent axes across 

participants (Mihy et al., 2022). The in-lab portion of data was manually identified to 

isolate the quiet standing and self-selected walking sections. The quiet standing trial was 

used to align the vertical axis of the sensor to the gravity vector. A segment of the self-

selected walking trial was then used to virtually rotate the sensor data about the 

mediolateral axis, aligning the local coordinate system to sagittal plane of the shank during 

walking. Accelerometer data were converted from gravitational units (g’s) to meters per 

second squared (m/s2), while angular velocity was expressed in degrees per second (deg/s). 

The in-lab sections from each sensor were exported to separate files for further analysis.  

After extracting the in-lab subset from IMU data, walking bouts were identified in 

the full dataset for each sensor. A previously developed machine learning model 

architecture, trained using data from adults with knee OA, was used to generate the activity 

classification model required to identify walking bouts. Sensor data were segmented into 
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five-second windows with 50% overlap and scaled to the walking section using 

StandardScaler from Scikit-Learn (SciKit-Learn v1.6.1). The model classified each five-

second window into one of several activity categories: “static” (including sitting, standing, 

and lying down), “walking”, “running”, “cycling”, “stair ascent”, “stair descent”, and 

“other” (e.g., other dynamic activities such as cleaning that would like not be correctly 

classified otherwise). This output was then converted to a binary array, with ones 

representing “walking” and zeros as “not walking.” Within each walking bout, gait events 

were detected using previously defined methods (Mariani et al., 2013), and stride-level 

variables were calculated using the same approach as the motion capture data. These 

variables included stride time, stance time, swing time, and peak angular velocity during 

free-living gait. 

To minimize the inclusion of erroneously detected strides, a two-step outlier 

detection procedure was implemented. First, a principal component analysis was conducted 

on all in-lab, time-normalized (0-100%) mediolateral angular velocity data. The resulting 

principal component analysis model was then applied to all initially detected strides, and 

any stride with a z-score exceeding 2.5 on any principal component was flagged as an 

outlier. Next, a stride similarity check was performed by computing the correlation between 

each remaining stride and the average of all in-lab strides (Ferrari et al., 2010). Strides with 

a correlation coefficient below 0.5 were additionally considered outliers and excluded from 

further analysis. Together, these steps provided an approach based on intentionally broad 

thresholds, aimed at removing only strides with clearly atypical patterns that were not 

representative of a gait cycle, thereby limiting the influence of false walking data on the 
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resulting discrete variables. In-lab walking data was manually identified for each 

participant and labeled.  

4.2.4 Statistical Analysis 

To address the primary purpose of the study, each variable was compared between 

motion capture and in-lab IMU data, as well as in-lab IMU data and free-living IMU data. 

For each participant, the median and standard deviation were calculated for each variable. 

Agreement between motion capture and in-lab IMU data was assessed using Pearson 

correlation coefficients and Bland-Altman plots with 95% limits of agreement. 

Additionally, agreement was further evaluated with a two-way random effects intraclass 

coefficient (i.e., ICC(2,1)) for both motion capture vs. in-lab IMU and in-lab IMU vs. free-

living IMU data comparisons. ICC values were interpreted as follows: <0.50 = poor 

agreement , 0.50-0.75 = moderate agreement , 0.75-0.90 = good agreement , and >0.90 

indicate excellent agreement (Koo and Li, 2016). Similarly, Cohen’s d was calculated to 

quantify the effect size between each variable for both motion capture vs. in-lab IMU and 

in-lab IMU vs. free-living IMU data. 

For the secondary purpose, examining the relationship between gait measures and 

patient-reported outcomes, Pearson correlation coefficients were calculated. Specifically, 

correlations between each gait variable (stride time, stance time, swing time, peak angular 

velocity) and each patient-reported outcome measures (pain, PHQ-8, OKS). Additionally, 

correlations were computed for the differences between in-lab and free-living gait 

measures to determine whether discrepancies between settings were related to the patient-

reported outcome measures. Finally, although gait speed was not estimated from the IMUs 
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in this study, its the relationship to clinical outcomes was explored by correlating motion 

capture–derived gait speed with each patient-reported measure, given its prevalence in the 

literature.  

4.3 Results 

Participant characteristics are displayed in Table 4.1. A total of 45 participants were 

included in the current analysis, consisting of 14 males and 31 females. Overall, the sample 

was representative of a typical knee OA population, with moderate levels of pain and 

reduced function.  

The total number of strides available for gait analysis varied by measurement 

technique. Data were not synchronized between systems, as this was outside the scope of 

the current study, resulting in a greater number of strides captured by the IMU (73 ± 13) 

compared to motion capture (30 ± 5) during the in-lab assessment. This difference was 

primarily due to limited capture volume of cameras along the walkway in the gait lab. 

Additionally, with up to seven days collected out-of-lab, free-living IMU data yielded a 

large number of strides available for analysis (24,541 ± 12,360).  

 

Table 4.1.  Descriptive statistics for the sample. 

Statistical 

Value 

Age 

(yrs) 

Height 

(cm) 

Mass 

(kg) 

Pain 

(0-10) 

PHQ-8 

(0-24) 

OKS 

(0-48) 

Mean (SD) 65 (8) 167 (9) 94 (21) 7 (2) 5 (4) 23 (7) 

Min, Max 52, 83 152, 188 48, 154 1, 10 0, 21 4, 37 
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With respect to concurrent validity between motion capture and in-lab IMU data, 

there was moderate to excellent agreement across all variables of interest (Table 4.2). The 

Bland-Altman plots illustrate the bias and limits of agreement between the two systems 

(Figure 4.2). Stride time showed particularly strong agreement, with a low mean difference 

(0.003 s), RMSE (0.04 s), and high correlation of (r = 0.98). Stance time had slightly higher 

values for both mean difference (0.05 s) and RMSE (0.08 s) but still demonstrated excellent 

correlation (r = 0.91). Swing time exhibited a small negative bias toward the motion capture 

system (-0.05 s) but had narrower limits of agreement (-0.15 to 0.06) than stance time. 

However, it showed only a moderate correlation (r = 0.71), which was notably lower than 

for stride and stance times. Peak angular velocity had larger mean difference (20.2 deg/s) 

and RMSE (43.0 deg/s) but still showed moderate correlation (r = 0.74), suggesting a 

consistent bias between the systems.  

Table 4.2. Concurrent validity between motion capture and in-lab sensor data. 

 

Motion 

Capture  

Mean 

(SD) 

In-Lab 

Sensors 

Mean 

(SD) 

Mean 

Difference 

(Limits of 

Agreement) 

 

RMSE 
Pearson r  

(95% CI)1 

Stride Time  

(s) 
1.23 (0.19) 1.23 (0.17) 

0.003 

 (-0.08, 0.08) 
0.04 

0.98  

(0.96, 0.99) 

Stance Time  

(s) 
0.85 (0.17) 0.80 (0.14) 

0.05 

 (-0.09, 0.18) 
0.08 

0.91  

(0.84, 0.95) 

Swing Time  

(s) 
0.38 (0.03) 0.43 (0.07) 

-0.05  

(-0.15, 0.06) 
0.07 

0.71  

(0.52, 0.83) 

Peak Angular 

Velocity 

(deg/s) 

308.6 

(50.1) 

288.3 

(53.7) 

20.2  

(-54.1, 94.6) 
43.0 

0.74  

(0.56, 0.85) 

1 All p-values were < 0.001. 
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Figure 4.2. Bland-Altman plots for each variable between motion capture and in-lab IMU 

data. 

 

Descriptive statistics and additional metrics for the gait variables of interest are 

presented in Table 4.3. When examining the in-lab and free-living ecological validity, all 

variables, except swing time, showed only moderate agreement. However, swing time just 

crossed the threshold for good agreement, with an ICC of 0.76. In general, gait measures 
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from free-living data reflected patterns of slower walking, with longer stride time and 

stance times. Peak angular velocity, derived from the mediolateral angular velocity during 

swing, was lower in free-living data, suggesting reduced limb movement intensity, even 

though swing time remains consistent.  

Table 4.3. Ecological validity of gait variables from in-lab sensors and free-living sensors 

Variable 

In-Lab 

Sensors 

Mean (SD) 

Free-Living 

Sensors 

Mean (SD) 

ICC(2,1) Cohen’s d p-value 

Stride 

Time  

(s) 

1.23 (0.17) 1.26 (0.12) 0.66 -0.23 0.07 

Stance 

Time  

(s) 

0.80 (0.14) 0.82 (0.11) 0.66 -0.14 0.17 

Swing 

Time  

(s) 

0.43 (0.07) 0.42 (0.05) 0.76 0.019 0.44 

Peak 

Angular 

Velocity 

(deg/s) 

288.3 (53.7) 251.3 (40.8) 0.71 0.77 < 0.001 

 

The histogram for stride time from a representative participant, whose median free-

living stride time was within 5% of the overall sample median, is shown in Figure 4.3. This 

participant demonstrated nearly identical stride times between motion capture and in-lab 

IMU data (median: 1.08 ± 0.03 s vs. 1.08 ± 0.05 s). In contrast, the median stride time 

during free-living was 1.24 ± 0.31 s, which was 13.8% slower and substantially more 

variable. As shown in the histogram, the free-living stride time distribution was noticeably 

wider than the relatively narrow range observed in-lab, with a greater number of slower 
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strides. Based on this distribution, the participant’s in-lab stride time (1.08 s) was faster 

than 92% of their free-living stride times. Stride time histograms for all participants are 

provided in Figure S1 at end of text.   

 

 

Figure 4.3. Representative plot of stride time distribution for in-lab data and free-living 

IMU data.  

 

Gait variables and patient-reported outcome measures demonstrated several 

significant correlations relating to function (OKS), depressive symptoms (PHQ-8), and 

self-reported pain in the last week (Table 4.4). OKS and PHQ-8 showed similar patterns of 

associations with gait variables, reflecting their inverse scoring structures, where higher 

OKS scores indicate better function, while higher PHQ-8 scores indicate more depressive 

symptoms. Specifically, longer stride times and stance times were significantly associated 
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with worse self-reported function and greater depressive symptoms. Although these 

relationships were present for both in-lab and free-living measures, the strongest 

correlations were observed with in-lab data (r = 0.37-0.48), compared to free-living (r = 

0.21-0.25). In contrast, the only IMU variable associated with self-reported pain was free-

living peak angular velocity (r = -0.31; p = 0.04). Interestingly, this association was 

comparable to the relationship between pain and gait speed measured via in-lab motion 

capture. Additionally, peak angular velocity, whether assessed in-lab or during free-living 

(Figure 4.4a), showed some of the strongest correlations with OKS (r = 0.44-0.45), 

highlighting its potential utility as a quantitative marker of functional, similar to gait speed 

(Figure 4.4b).  
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Table 4.4. Pearson correlations between gait metrics from in-lab, free-living, difference 

between metrics and patient reported outcome measures relating to function (OKS; higher 

scores indicate better function), depressive symptoms (PHQ-8; lower scores indicate fewer 

depressive symptoms), and pain (last week, visual analog scale; higher scores indicate more 

pain).  

 

 
OKS PHQ-8 Pain 

Pearson r p Pearson r p Pearson r p 

S
tr

id
e 

T
im

e 
(s

) 

In-lab 
-0.46 

(CI: -0.66, -0.19) 
<0.001 

0.43 

(CI: 0.16, 0.64) 
<0.001 

0.15 

(CI: -0.15, 0.42) 
0.34 

Free-living 
-0.21 

(CI: -0.47, 0.09) 
0.17 

0.18 

(CI: -0.12, 0.45) 
0.24 

0.09 

(CI: -0.21, 0.38) 
0.54 

S
ta

n
ce

 

T
im

e 
(s

) 

In-lab 
-0.48 

(CI: -0.68, -0.22) 
<0.001 

0.37 

(CI: 0.09, 0.6) 
0.01 

0.26 

(CI: -0.04, 0.51) 
0.09 

Free-living 
-0.25 

(CI: -0.51, 0.04) 
0.09 

0.21 

(CI: -0.09, 0.48) 
0.16 

0.11 

(CI: -0.19, 0.39) 
0.47 

S
w
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e 
(s

) 

In-lab 
-0.12 

(CI: -0.4, 0.18) 
0.43 

0.29 

(CI: -0.01, 0.53) 
0.06 

-0.16 

(CI: -0.44, 0.14) 
0.29 

Free-living 
0.05 

(CI: -0.24, 0.34) 
0.72 

-0.07 

(CI: -0.36, 0.23) 
0.63 

-0.11 

(CI: -0.39, 0.19) 
0.49 
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r 
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In-lab 
0.44 

(CI: 0.16, 0.65) 
<0.001 

-0.24 

(CI: -0.5, 0.05) 
0.11 

-0.16 

(CI: -0.43, 0.14) 
0.31 

Free-living 
0.45 

(CI: 0.18, 0.66) 
<0.001 

-0.26 

(CI: -0.52, 0.03) 
0.08 

-0.31 

(CI: -0.56, -0.02) 
0.04 

G
a

it
 S

p
ee

d
 

(m
/s

) 

Motion 

Capture 

0.57 

(CI: 0.34, 0.74) 
<0.001 

-0.28 

(CI: -0.53, 0.02) 
0.07 

-0.33 

(CI: -0.57, -0.04) 
0.03 
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Figure 4.4. Scatter plots for (a) free-living peak angular velocity vs OKS and (b) gait speed 

(from motion capture) vs OKS. Both indicate higher velocities correlate with higher levels 

of self-reported function.  

 

4.4 Discussion 

The purpose of this study was to better understand the relationships between in-lab 

and free-living gait analyses in a cohort of knee OA patients. There was moderate to 

excellent agreement between systems measuring during in-lab assessments, particularly 

with stride time and stance time. However, this level of agreement did not extend to 

comparisons between in-lab and free-living gait, suggesting that even adults with knee OA 

preparing for joint arthroplasty surgery tend to walk faster and demonstrate higher 

functional performance in the lab than in daily life. Several gait metrics were also 

significantly associated with patient-reported outcomes, as expected. Notably, peak 

angular velocity, reflecting the intensity of limb swing during gait, was significantly related 

to self-reported function and served as a strong proxy for gait speed, which is often more 

a b 
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computationally complex to estimate. Taken together, these findings provide a clearer 

picture of the relationships between motion capture, in-lab IMU data, and gait collected 

over longer free-living periods.  

The findings of this study generally align with previous research comparing motion 

capture and IMUs for spatiotemporal gait assessment. Although the current analysis 

presents median-level comparisons rather than stride-to-stride agreement, the results 

indicate that the systems remain closely aligned overall. In particular, these findings are 

consistent with prior studies demonstrating excellent agreement for stride time and stance 

time, along with the commonly observed reduction in agreement for swing time assessment 

(Jakob et al., 2021; Kobsar et al., 2020a, 2020b).  

Additionally, the current findings align with previous research showing that 

individuals in both healthy older and clinical populations tend to walk more slowly outside 

of laboratory environments (Buekers et al., 2023; Del Din et al., 2016; Hillel et al., 2019; 

Shema-Shiratzky et al., 2020). This was also observed in the present study, where only 

moderate agreement was found between in-lab and free-living gait metrics in a sample of 

older adults with knee OA. These results are consistent with those reported by Hillel et al., 

where step time was greater, but not significantly different, in free-living compared to in-

lab settings, while gait speed was significantly slower. When examining a representative 

participant, stride time measured via motion capture and in-lab sensors was identical, 

whereas free-living stride time was slower and exhibited a broader distribution. As shown 

in Figure 4.3, this greater variability is reflected in the histogram, with the in-lab stride time 

corresponding to the 92nd percentile of the free-living distribution. For this participant, the 
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difference between in-lab and free-living stride time was substantial, and similar patterns 

were observed in some additional participants (Figure S1). However, at the group level, 

the difference in stride time was small and not statistically significant (1.23 s vs. 1.26 s; 

Cohen’s d = 0.23). Interestingly, a more notable discrepancy was found in peak angular 

velocity (288.3 deg/s in-lab vs. 251.3 deg/s free-living), with an effect size of 0.77, 

highlighting this metric as a potentially sensitive marker of functional change. While 

environmental differences in stride time were less pronounced, the preoperative status of 

the cohort may have blunted free-living variability, suggesting that larger differences could 

emerge postoperatively. 

A notable finding from this study is the level of agreement observed for peak 

angular velocity in the mediolateral axis (i.e., swing velocity), a native measure of IMUs 

placed on the shank. Given the long-standing use of motion capture in gait analysis, 

measures such as joint angles, stride length, and gait speed are often prioritized, leading 

researchers to use IMU data to estimate these variables rather than to focus on direct, native 

outputs. Our findings suggest that this metric not only shows good agreement with motion 

capture but may also offer clinical relevance. Although systematic differences were 

observed between the motion capture and IMU-derived values, the two remained well-

correlated, suggesting these differences likely stem from inherent system characteristics 

and processing methods, rather than errors that undermine the utility of the metric. In fact, 

IMUs may provide a more direct measure of limb swing, potentially offering a better 

ground truth than optical motion capture in certain contexts. Notably, peak angular velocity 

may also serve as a practical proxy for gait speed, capturing movement intensity without 
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requiring step length estimation. Its clinical relevance is further supported by the significant 

correlations with self-reported pain and function (OKS) in free-living conditions. 

Nevertheless, further research is needed to understand its sensitivity to change relative to 

conventional gait metrics, particularly in response to treatment or recovery following 

surgery.  

This study has limitations that should be noted. First, this study examined only a 

limited set of gait parameters. Most notably, the current study did not include gait metrics 

such as joint angles, stride length, or gait speed, which are prevalent for an OA population 

as markers of disease progression. However, these measures are difficult to estimate 

accurately using a single sensor at the shank. Additionally, as noted, IMU-derived 

estimates of these measures may be prone error, particularly over extended data collection 

periods such as a week. This highlights the potential value of native IMU measures as 

alternatives, though further research is needed to fully establish their viability as a clinically 

relevant gait metric. Finally, this study focused exclusively on individuals with late-stage 

knee OA. As such, the observed relationships and levels of agreement may not generalize 

to other populations, though the findings do provide a useful framework for evaluating gait 

measures across different contexts.  

4.5 Conclusions 

This study quantified the agreement between gait measures obtained from motion 

capture and wearable sensors, both in laboratory and free-living environments, in an OA 

population. These findings support the extension of gait analysis to longer-term, real-world 

data collection and highlight the potential utility of a native IMU-based measure of gait 
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intensity in future studies. With previous systematic reviews have noted that many “free-

living” gait analyses are actually not truly free-living (Boekesteijn et al., 2022; Kobsar et 

al., 2020b), this study demonstrates the ability of these measures to be used in longer-term, 

truly free-living collections.   
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4.6 Supplemental Figure 

 

Figure S1. Stride time histograms for all study participants. 
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Chapter 5: Evaluating the Longitudinal Sensitivity of In-Lab and Free-Living Gait 

Assessments in Knee Osteoarthritis (Study 3) 

 

Preamble 

In my final study, I assessed the longitudinal sensitivity of gait metrics obtained from both 

in-lab motion capture and free-living wearable sensors. While in-lab recordings provide 

highly precise measurements, they capture only a brief snapshot of movement. Wearable 

sensors, in contrast, deliver longer, more representative, yet more variable, datasets. 

Previous research, summarized in Chapter 4, has largely focused on the agreement between 

these two modalities. I extended that work by examining how each set of measures changes 

over time. The findings indicate that in-lab metrics are more sensitive to functional 

changes, whereas wearable-sensor metrics may better reflect day-to-day activity. 

 

This work was prepared for submission to Osteoarthritis and Cartilage, with the following 

coauthors:  

Matthew C. Ruder, Vincenzo E. Di Bacco, Kim Madden, Anthony Adili, and Dylan Kobsar 

 

Abstract 

Objective: To determine how markerless motion capture and free-living wearable inertial 

sensors jointly characterise gait in knee osteoarthritis (OA).  
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Methods: Gait data from a clinically adjacent hallway-based markerless system was 

compared with up to seven days of free-living data from bilateral shank-mounted sensors 

in 42 arthroplasty candidates.  Spatiotemporal and kinematic outcomes were evaluated 

longitudinally from pre-operative assessment to at least one postoperative assessment up 

to 12-month follow-up. 

Results: Laboratory-derived gait speed, stride time, and knee flexion as well as 

abduction/adduction excursion angles each showed clear, statistically significant 

improvements from the preoperative visit through every post-operative follow-up (all p < 

0.001). These in-lab variables yielded the largest effect sizes, demonstrating high 

sensitivity to change. Analogous free-living inertial sensor metrics demonstrated the 

similar directional trends but reached statistical significance less often, typically only at the 

12-month assessment. This likely reflects the greater day-to-day variability and smaller 

effect magnitudes that characterise real-world walking. 

Conclusion: Markerless motion capture maximises sensitivity to surgical change, whereas 

wearable sensors may contextualise everyday mobility. When used together, they may yield 

a more complete picture of functional status than either modality alone. This work 

demonstrates the strengths and limitations of each system. 

Impact: Findings inform design of pragmatic trials and clinical decision-support tools that 

triage care to those most likely to benefit. 
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5.1 Introduction 

Gait impairment is a hallmark of many chronic diseases, yet objective gait 

assessments are rarely incorporated into routine clinical care. These assessments require 

dedicated laboratory space, specialized equipment, and additional time, making them 

difficult for both patients and clinicians to accommodate. Consequently, clinicians 

frequently rely on patient-reported outcome measures, which may not fully reflect a 

patient’s real-world function (Braaksma et al., 2020). In conditions such as osteoarthritis 

(OA), gait is further influenced by pain and structural changes to the joint (Astephen 

Wilson et al., 2011). With OA prevalence steadily increasing among older adults, 

accessible tools to objectively quantify gait could enhance clinical assessment, guide 

treatment decisions, and ultimately improve patient outcomes (Kobsar et al., 2017; 

Outerleys et al., 2021).  

Emerging technologies such as markerless motion capture and wearable sensors are 

making gait analysis far more accessible for clinical populations. Markerless motion 

capture eliminates the need for time consuming marker placement, enabling the collection 

of gait data during routine visits clinically feasible. Recent studies have demonstrated that 

joint angles (Kanko et al., 2021b) and spatiotemporal gait variables (Kanko et al., 2021c) 

obtained from markerless motion capture systems are comparable to those from traditional 

marker-based systems. Markerless motion capture systems also exhibit high intersession 

repeatability, with less than 3 degrees of variability across all lower limb joints (Kanko et 

al., 2021a). Wearable sensors offer additional advantages, including portability, cost-

effectiveness, and the ability to assess gait over extended periods and in real-world 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

115 
 
 

environments. Gait can be evaluated using single or multiple sensors placed at locations 

ranging from the lower back to the foot (Kobsar et al., 2020b). Their kinematic outputs, 

including joint angles and segment orientations, show strong agreement with motion 

capture data. Likewise, systematic reviews report good-to-excellent validity and reliability 

for sensor-derived spatiotemporal metrics (ICC = 0.81–0.94) in both healthy and 

osteoarthritis cohorts (Kobsar et al., 2020b, 2020a, 2016). Collectively, these 

advancements support the expanded integration of objective gait assessment into everyday 

clinical practice. 

A key barrier to integrating gait analysis into routine care is understanding how 

sensitive common gait metrics are to change over time. Much of the existing research has 

focused on comparing motion capture and wearable sensor-derived gait metrics in cross-

sectional studies. Specifically, several studies have reported differences in gait between 

healthy young adults (Lee et al., 2019), older adults (Werner et al., 2020), and clinical 

populations such as Parkinson’s disease (Jakob et al., 2021; Serrao et al., 2019) and OA 

(Hafer et al., 2023; Seel et al., 2014) using both systems. While these cross-sectional 

findings provide valuable insights into their sensitivity to group-level differences, they do 

not address how well variables from these systems capture longitudinal change, an essential 

requirement for clinical monitoring. 

While fewer studies have examined longitudinal changes in gait, initial research 

using both motion capture and wearable sensor systems show promising results. 

Solomonow-Avnon, et al., followed patients for one year after hip arthroplasty and 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

116 
 
 

demonstrated that gait speed and several sagittal plane kinematic variables, measured with 

motion capture, predicted functional improvement (Solomonow‐Avnon et al., 2017). 

Bolam, et al., also leveraged wearable sensors, monitoring cumulative load and impact 

asymmetry during the first six weeks of rehabilitation following total knee arthroplasty 

(Bolam et al., 2021). However, they did not evaluate the sensitivity of these measures to 

change, and the short follow-up period may have missed key recovery milestones, which 

often extend beyond six months (Paravlic et al., 2022). Collectively, these studies 

underscore the potential of objective gait metrics for monitoring change over time, but 

further work is needed to establish their sensitivity to longitudinally change.  

Despite the growing interest in objective gait assessments for clinical populations, 

most prior research has either (1) compared motion capture and wearable sensor data at a 

single timepoint or (2) tracked longitudinal change using only one system. Consequently, 

the relative longitudinal sensitivity of the two approaches remains unclear, particularly in 

populations undergoing interventions such as total knee arthroplasty (TKA). To address 

this gap, we concurrently and longitudinally monitored gait in older adults with knee OA 

scheduled for TKA, collecting gait data in both in-lab motion capture and free-living 

collection with inertial sensors. Additionally, rather than analyzing only overlapping 

metrics (e.g., stride time), we assessed a broader set of variables unique to each modality 

alongside common measures. This design allowed us to characterize each system’s 

sensitivity to change and clarify the strengths and limitations of motion capture versus 

wearable inertial sensors for clinical use. 
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5.2 Materials and Methods 

5.2.1 Participants 

Participants were recruited as part of a larger longitudinal study monitoring gait and 

functional changes in individuals scheduled for hip or knee arthroplasty. The Hamilton 

Integrated Research Ethics Board approved the study (HiREB 16236), and all participants 

provided written informed consent. All individuals had end-stage hip or knee OA, but only 

participants with knee OA were included in the present analysis. Those enrolled in this sub-

study also agreed to wear two small wearable sensors for up to seven days at each 

assessment. Exclusion criteria included any significant disability that prevented ambulation 

or inability to provide informed consent. Gait assessments were scheduled preoperatively 

approximately two weeks before surgery, and again at approximately 3, 6, and 12 months 

postoperatively. 

5.2.2 Data Collection Protocol 

The data collection protocol was identical at every timepoint, with a baseline 

(preoperative; T00) and postoperative follow-ups at approximately 3 (T03), 6 (T06), and 

12 months (T12). Patients first completed electronic patient-reported outcome measures on 

an iPad. Pain over the past week was rated on a visual analogue scale (VAS; 0-10, with 0 

being no pain and 10 being the worst pain). Knee function was assessed with the Oxford 

Knee Score (OKS; scored 0–48, where higher scores indicate better function) (Dawson et 

al., 1998). At postoperative follow-up visits, participants were asked “With respect to your 

osteoarthritis, how would you rate yourself now compared to before the surgery?” to assess 
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surgical satisfaction, using an 11-point Likert scale, with -5 (much worse) and 5 (much 

better) as anchors. All patient-reported outcomes were collected at every assessment. 

After completing the surveys, two inertial sensors (Axivity AX6, Axivity Ltd., 

Newcastle, UK) were attached to participants just below their knees. Each sensor was 

positioned on the medial aspect of the shank, slightly inferior to the tibial tuberosity, and 

secured with medical grade adhesive tape (Simpatch). The sensors were programmed to 

record linear accelerations (±8g at 100 Hz) and angular velocity data (±1,000 

degrees/second at 100 Hz) continuously for seven days. Participants were provided with a 

prepaid envelope to return the devices by mail at the end of the recording period. 

After affixing sensors, participants completed a series of functional tasks while 

recorded by markerless motion capture. A synchronized 10-camera system (Sony RX0-II, 

60 Hz, Sony Corporation) installed within a clinically adjacent hallway captured each task. 

Functional tasks included a quiet standing trial, two walking trials (self-selected speed and 

faster than self-selected), a five repetition sit-to-stand, and a two-step ascent and descent. 

Walking tasks were completed along a 7.6 m walkway, outlined on the floor using a decal. 

For the self-selected walking task, participants were instructed to walk at their typical 

walking speed for 60 seconds. For the fast-walking task, they were asked to walk “faster 

than their typical walking speed” for 30 seconds. Participants were encouraged to complete 

each task to the best of their ability but could opt out of tasks they did not feel comfortable 

performing. Upon completion of functional tasks, participants left with sensors still 

attached and were instructed to maintain their typical routines.  
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5.2.3. Data Analysis 

5.2.3.1 In-lab Motion Capture 

After each session, video files from all cameras were transferred to a local computer 

for processing and analysis.  Markerless trajectories were generated using Theia3D 

(v2023.1.0.3161, Theia Markerless, Kingston, ON). Walking trials were then segmented 

into individual strides in Visual3D using a previously described algorithm (Outerleys et 

al., 2024b), and stride-level spatiotemporal and kinematic data were exported. The primary 

spatiotemporal variables were stride time, stance time, swing time, and gait speed. Knee 

flexion and knee abduction/adduction excursions during stance (i.e., the joint’s range of 

motion) were selected as kinematic variables. These metrics are well-established indicators 

of gait health in laboratory studies (Huang et al., 2023; Kobsar et al., 2020b; Marcum et 

al., 2014; McCarthy et al., 2013; Solomonow‐Avnon et al., 2017). Each variable was 

calculated for the operative (SideOp) and nonoperative (SideNonOp) limbs. Symmetry, 

expressed as a percentage relative to the operative limb, was defined as:  

2 ∗
𝑆𝑖𝑑𝑒𝑂𝑝−𝑆𝑖𝑑𝑒𝑁𝑜𝑛𝑂𝑝

𝑆𝑖𝑑𝑒𝑂𝑝+𝑆𝑖𝑑𝑒𝑁𝑜𝑛𝑂𝑝
∗ 100 (Eq. 1) 

5.2.3.2 Free-Living Wearable Sensor 

Wearable sensor processing was completed following the return of the inertial 

sensors at each timepoint. Upon delivery of the sensors, raw data were downloaded using 

OMGui (V1.0.0.43, Axivity Ltd, Newcastle, UK) in CWA file format. Processing was 

performed in Python 3.9 using Spyder as the integrated development environment to 

functionally align sensor data, identify walking bouts using the previously developed ML 
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gait detection algorithm (i.e., from Chapter 3), and segment each inertial sensor signal to 

the stride level for variable extraction.  

For each sensor, data were first aligned using a combination of standing and 

walking data. Following the approach described by Mihy, et al., a section of acceleration 

data from the quiet standing trial was used to align the vertical axis with the gravity vector. 

Next, a section of angular velocity data rotating around the mediolateral axis during the 

self-selected walking trial was used to virtually rotate the sensor data, aligning the local 

segment coordinate system to the sagittal plane of the shank. The Axivity sensors are 

calibrated to output acceleration in gravitational units (g) and angular velocity in degrees 

per second (degrees/second). For analysis, acceleration data were converted to metres per 

second squared (m/s2), while angular velocity was maintained as degrees per second 

(degrees/second). 

Next, walking bouts were identified using a previously developed machine learning 

gait model (Li and Wang, 2022) and segmented into stride-level data. In short, the machine 

learning model, trained on healthy participants and individuals with knee OA, identified 

each five second window of data as one of eight activities, including walking (See Chapter 

3). For the purposes of the current study, all non-walking segments were labeled as 0 and 

all walking segments as 1. Within each identified walking bout, initial contact and terminal 

contact were estimated using previously described methods (Mariani et al., 2013) before 

calculating stride-level variables (e.g. stride time, peak mediolateral angular velocity). 

Finally, a two-step outlier detection process was applied to minimize the inclusion of 

erroneous strides. First, principal component analysis was conducted on time-normalized 
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mediolateral angular velocity data, flagging strides with a z-score greater than 2.5 as 

outliers. Second, a stride similarity check was performed using the multiple correlation 

coefficient relative to a previously identified in-lab average stride section for each 

individual. Strides with a correlation coefficient below 0.5 were excluded. This process 

aimed to eliminate clearly atypical strides, ensuring that only representative gait cycles 

influenced the analysis. 

For wearable sensor data, variables of interest were temporal and kinematic in 

nature. The temporal metrics (i.e., stride time, stance time, and swing time) paralleled those 

derived from motion capture but capture the wider variability present in free-living 

recording. Kinematic measures were taken directly from native sensor outputs to avoid the 

errors inherent in estimating joint angles or stride length. Peak resultant acceleration during 

stance is common biomechanical variable relating impact during gait (James et al., 2023; 

Lafortune, 1991). Peak frontal plane acceleration has been used as a proxy measure for 

sudden lateral knee movement (i.e., varus thrust) (Misu et al., 2022). Peak mediolateral 

angular velocity during swing, as shown in Chapter 4, may provide similar functional 

information to gait speed. Each variable was calculated separately for the operative and 

nonoperative limbs, and limb symmetry was evaluated using Eq. 1. 

5.2.4 Statistical Analysis 

Longitudinal change in each variable of interest, including patient-reported 

outcomes, was evaluated using a linear mixed-effects model (LMM): 

Variable of interest ~  Timepoint + Age + Sex  +  (1 | Participant) 
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Timepoint included four ordered levels: preoperative (T00, reference), and postoperative 

assessments at 3 months (T03), 6 months (T06), and 12 months (T12). Age and sex (0 = 

female, 1 = male) were mean-centered, so the intercept reflects the expected value for an 

average aged participant of average sex at T00. A random intercept for each participant 

accounted for baseline differences. LMMs use all available observations under the missing-

at-random assumption, accommodating participants with incomplete follow-up.  

Estimated marginal means (EMMs) for each timepoint were generated from the 

fitted LMMs by setting covariates to their sample means. The EMM were used to calculate 

effect sizes, where Cohen’s d was derived from EMM differences divided by the model-

based pooled baseline standard deviation (SD). Residual normality and homoscedasticity 

were evaluated with Q-Q plots and residual-versus-fitted plots with no substantive 

violations were observed. For each postoperative timepoint comparted to the preoperative 

baseline, raw beta coefficients (i.e., change in original units) with 95% confidence 

intervals, p-values, standardized betas (i.e., change in SD units), and Cohen’s d were 

reported. Bonferoni corrected p-values were also calculated between sequential visits (e.g. 

T00 to T03, T03 to T06, etc.). All analyses were conducted in Python 3.9 using statsmodels 

0.14.0. Statistical significance was set at two-tailed α = 0.05. 

5.3 Results 

 In total, 42 patients (age: 66 ± 8 yrs, height = 168 ± 10 cm, weight = 91 ± 22 kg, 29 

females, 13 males) consented to the study at their preoperative visit and completed at least 

one postsurgical follow up at 3-months (n=29), 6-months (n=25), or 12-months (n=22). 

Eight patients completed all four timepoints, and 26 patients attended at least two 
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postoperative follow-ups. An additional 32 patients had consented for the sub-study at their 

preoperative appointment but declined to return or were unreachable during postoperative 

appointment scheduling.  

5.3.1 Patient-Reported Outcomes 

The results from the LMM for the patient-reported outcomes are displayed in Table 

5.1. Preoperatively, the cohort reflected typical knee OA presentation, with reduced self-

reported function and moderate-to-high levels of pain. Postoperatively, pain was 

significantly reduced on average (estimated mean T00: 6.22; estimated mean T12: 1.43). 

Self-reported function initially improving markedly (estimated mean T00: 24.07; estimated 

mean T03: 36.61) before leveling off at T06 and T12 (39.32 and 40.07, respectively). 

Correspondingly, surgical satisfaction increased from three to twelve months, although 

inter-patient variability was slightly greater at the final visit. 
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Figure 5.1: Self-reported function via Oxford Knee Score (left) and visual analog scale 

(VAS) pain. Preop = T00; postop = T03, T06, T12. After Bonferoni correction, all 

postoperative timepoints were different than T00 (indicated with * on plot). 

 

 

 

 

 

 

 

* * * * * * 
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Table 5.1: Results of linear mixed-effects models for self-reported outcomes at each study 

timepoint. Beta estimate includes a confidence interval.  

Variable Visit 
Marginal 

Mean 

Beta  

Estimate 
p-value 

Beta 

(Stand.) 

Cohen’s 

d 

OKS 

T00 24.07 - - - - 

T03 36.61 
12.64  

(10.02 - 15.26) 
< 0.001 0.52 1.69 

T06 39.32 
14.76  

(12.02 - 17.50) 
< 0.001 0.58 2.05 

T12 40.07 
15.91  

(13.07 - 18.74) 
< 0.001 0.61 2.15 

Pain 

T00 6.22 - - - - 

T03 2.02 
-4.22  

(-4.99 - -3.45) 
< 0.001 -0.59 -2.06 

T06 1.29 
-4.77  

(-5.57 - -3.96) 
< 0.001 -0.64 -2.41 

T12 1.45 
-4.76  

(-5.59 - -3.93) 
< 0.001 -0.61 -2.34 

 

 

5.3.2 Motion Capture 

 Results from the LMMs for each in-lab motion capture-derived variable of interest 

are presented in Table 5.2, with Bonferoni corrected p-values in Supplemental Table 5.1. 

Overall, these variables demonstrate changes indicative of improvements in function 

following the surgical intervention. Gait speed, displayed longitudinally in Figure 5.2 (left) 

increased significantly over time, with patients not only improving their gait speed 

immediately after surgery (T00: 0.92 m/s; T03: 1.03 m/s), but continuing to progress 

throughout the first postoperative year (T03: 1.03 m/s; T12: 1.18 m/s). Temporal variables 

relating to the phases of gait (stride, stance, and swing times) all showed significant 
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improvements (decreases) over the perioperative period. Stride time is displayed in Figure 

5.2 (right), demonstrated a similar trend from lower (faster) stride times after surgery (T00: 

1.23 s; T03: 1.16) and decreasing at each postoperative timepoint, albeit lesser 

improvement from 6 months to 12 months postoperatively (T03: 1.16 s; T06: 1.12 s; T12: 

1.10 s).  

Kinematic gait variables from motion capture also indicate functional gains. Knee 

flexion excursion increased from 12.5 degrees at T00 to 16.4 degrees at T12 (Figure 5.2, 

left). This is consistent with time-normalized, ensemble averaged knee flexion angle at 

each timepoint from all patients completing all timepoints (Figure 5.3, right). Similarly, 

frontal knee excursion decreased from 3.8 to 2.9 degrees between T00 to T06, before 

increasing to 3.53 degrees at T12 (Figure 5.3, left). The pronounced varus/valgus excursion 

seen preoperatively is greatly reduced after surgery and remains stable through the later 

follow-ups (Figure 5.3, right). Although frontal plane traces are inherently more variable 

than sagittal traces, the post-operative curves cluster more tightly. These patterns reinforce 

the temporal findings, with sagittal motion recovering more gradually and frontal plane 

stability improving immediately after surgery and then plateaus. 

For measures of asymmetry, stride, stance, and swing time all showed general 

improvements over time. However, only swing time demonstrated consistent, statistically 

significant improvements in symmetry from T00 to T12. While knee flexion excursion 

asymmetry also showed a trend toward improvement, this did not reach statistical 

significance any timepoint. In contrast, abduction/adduction excursion asymmetry was 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

127 
 
 

significantly greater at all postoperative timepoints compared to baseline. This suggests 

potential differences in mediolateral alignment between a knee with an implant versus one 

without. 

 

Table 5.2: Results of linear mixed-effects models for variables derived from markerless 

motion capture. Asymmetry is relative to surgical side (i.e. positive = operative side values 

are higher, negative = nonoperative side values are higher). Beta estimates include a 

confidence interval.  

Variable Visit 
Marginal 

Mean 

Beta 

Estimate 
p-value 

Beta 

(Stand.) 

Cohen’s 

d 

Gait Speed 

(m/s) 

T00 0.92 - - - - 

T03 1.03 
0.11  

(0.06 - 0.17) 
< 0.001 0.19 0.49 

T06 1.1 
0.18 

(0.12 - 0.23) 
< 0.001 0.29 0.78 

T12 1.18 
0.25 

(0.19 - 0.31) 
< 0.001 0.38 1.12 

Stride 

Time (s) 

T00 1.23 - - - - 

T03 1.16 
-0.07  

(-0.11 - -0.04) 
< 0.001 -0.17 -0.44 

T06 1.12 
-0.1  

(-0.14 - -0.06) 
< 0.001 -0.23 -0.62 

T12 1.10 
-0.14 

(-0.18 - -0.10) 
< 0.001 -0.29 -0.79 

Stride 

Time 

Asymmetry 

(%) 

T00 0.16 - - - - 

T03 -0.01 
-0.17 

(-0.70 - 0.36) 
0.53 -0.07 -0.16 

T06 0.01 
-0.15 

(-0.70 - 0.41) 
0.60 -0.06 -0.14 

T12 -0.04 
-0.21 

(-0.80 - 0.37) 
0.48 -0.08 -0.19 

T00 0.84 - - - - 
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Stance 

Time (s) 

T03 0.79 
-0.06 

(-0.09 - -0.03) 
< 0.001 -0.16 -0.39 

T06 0.76 
-0.08 

(-0.11 - -0.05) 
< 0.001 -0.21 -0.57 

T12 0.73 
-0.11 

(-0.15 - -0.07) 
< 0.001 -0.27 -0.75 

Stance 

Time 

Asymmetry 

(%) 

T00 -1.44 - - - - 

T03 -0.67 
0.85 

(-0.23 - 1.92) 
0.12 0.14 0.31 

T06 -0.28 
1.01 

(-0.13 - 2.16) 
0.08 0.16 0.46 

T12 -0.43 
0.88 

(-0.34 - 2.09) 
0.16 0.13 0.40 

Swing 

Time (s) 

T00 0.39 - - - - 

T03 0.37 
-0.01  

(-0.03 - -0.00) 
0.01 -0.17 -0.40 

T06 0.36 
-0.02 

(-0.03 - -0.01) 
< 0.001 -0.25 -0.64 

T12 0.36 
-0.03 

(-0.04 - -0.01) 
< 0.001 -0.27 -0.70 

Swing 

Time 

Asymmetry 

(%) 

T00 3.52 - - - - 

T03 1.37 
-2.27 

(-4.40 - -0.14) 
0.04 -0.18 -0.42 

T06 0.26 
-3.04 

(-5.28 - -0.79) 
0.01 -0.23 -0.63 

T12 0.65 
-2.67  

(-5.07 - -0.28) 
0.03 -0.19 -0.56 

Flexion 

Excursion 

(degrees) 

T00 3.78 - - - - 

T03 3.09 
-0.69  

(-1.08 - -0.30) 
0.001 -0.29 -0.69 

T06 2.92 
-0.86  

(-1.27 - -0.46) 
< 0.001 -0.35 -0.87 

T12 3.53 
-0.24  

(-0.68 - 0.20) 
0.29 -0.09 -0.25 

Flexion 

Excursion 

Asymmetry 

(%) 

T00 7.07 - - - - 

T03 -17.93 
-25.46 

(-39.51 - -11.41) 
< 0.001 -0.33 -0.79 

T06 -13.87 
-19.88  

(-34.59 - -5.18) 
0.008 -0.25 -0.67 

T12 -9.28 
-15.89  

(-31.65 - -0.13) 
0.05 -0.18 -0.52 

Abduction/ T00 12.47 - - - - 
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Adduction 

Excursion 

(degrees) 

T03 13.04 
0.62  

(-0.80 - 2.04) 
0.39 0.06 0.15 

T06 14.19 
1.66  

(0.17 - 3.15) 
0.03 0.17 0.45 

T12 16.40 
3.78  

(2.17 - 5.39) 
< 0.001 0.35 1.02 

Abduction/ 

Adduction 

Excursion 

Asymmetry 

(%) 

T00 -10.83 - - - - 

T03 -11.5 
-0.42  

(-11.29 - 10.46) 
0.94 -0.01 -0.02 

T06 -4.29 
5.62  

(-5.80 - 17.03) 
0.34 0.08 0.23 

T12 0.43 
11.68  

(-0.61 - 23.97) 
0.06 0.16 0.39 

  

  

Figure 5.2: Gait speed (left) and stride time (right), derived from motion capture, plotted 

for each timepoint. When Bonferoni corrected was applied, there were only significant 

differences between T00 and all postoperative visits for gait speed (indicated with * on 

plot), and for stride time between T00 and T06 as well as T00 and T12 (indicated with * 

on plot).   

*   * * * * 
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Figure 5.3: Knee joint flexion excursion at each timepoint (left). Normalized knee joint 

flexion angles averaged from participants who completed all each timepoints (right). Preop 

= T00; postop = T03, T06, T12. After Bonferoni correction, only T12 was different than 

T00 (indicated with * on plot). 

 

 

* 



Ph.D. Thesis – M. Ruder; McMaster University – Kinesiology. 

131 
 
 

  

Figure 5.4: Frontal plane excursion at each timepoint (left). Normalized flexion and 

abduction/adduction knee joint angles averaged from participants who completed all each 

timepoints (right). Preop = T00; postop = T03, T06, T12. After Bonferoni correction, only 

T06 was different than T00 (indicated with * on plot). 

 

5.3.3 Wearable Sensors 

 Similar trends were observed in the LMM results for variables derived from 

wearable sensors (Table 5.3, with Bonferoni corrected p-values in Supplemental Table 5.2). 

Consistent with the temporal results from motion capture, stride time, stance time, and 

swing time tended to decrease at postoperative timepoints, indicating potentially faster gait. 

However, unlike the in-lab motion capture results, these changes were not statistically 

significant.  

* 
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Few significant changes were seen in the kinematic measures from inertial sensor. 

Peak sagittal angular velocity slightly, not significantly, increased postoperatively from 

T00 (229.27 degrees/second) to T03 (248.35 degrees/second) as might be expected with 

potentially faster gait, but leveled off at T06 (240.47 degrees/second) and T12 (248.30 

degrees/second). There was little change preoperatively to postoperatively in peak resultant 

acceleration and peak stance frontal plane acceleration.  

Asymmetry measures trends toward more symmetrical marginal means, but few of 

these changes reached significance. Notably, asymmetry in peak sagittal angular velocity 

(Figure 5.5, right) showed a moderate reduction (effect sizes: T06 = 0.50, p=0.03; T12 = 

0.55; p=0.04). Peak frontal plane acceleration asymmetry (Figure 5.5, left) showed similar 

reductions (effect sizes: T06 = 0.48, p=0.03; T12 = 0.52; p=0.04).  Large confidence 

intervals likely reflect greater variability in real-world asymmetries compared to in-lab 

assessments. Both asymmetry measures trended towards being more symmetrical further 

in the postoperative timeline.  
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Table 5.3: Results of linear mixed-effects models for variables derived from wearable 

sensors. Asymmetry is relative to surgical side (i.e. positive = operative side values are 

higher, negative = nonoperative side values are higher). 

Variable Visit 
Marginal 

Mean 
Beta Estimate p-value 

Beta 

(Stand.) 

Cohen’s 

d 

Stride Time 

(s) 

T00 1.20 - - - - 

T03 1.25 
0.05  

(-0.04 - 0.14) 
0.30 0.10 0.24 

T06 1.19 
-0.01  

(-0.11 - 0.09) 
0.84 -0.07 -0.2 

T12 1.15 
-0.06  

(-0.16 - 0.04) 
0.27 -0.11 -0.26 

Stride Time 

Asymmetry 

(%) 

T00 2.06 - - - - 

T03 -2.15 
-4.15  

(-12.14 - 3.83) 
0.31 -0.12 -0.27 

T06 0.51 
-1.69  

(-9.97 - 6.59) 
0.69 -0.05 -0.1 

T12 2.95 
0.83  

(-8.34 - 10.0) 
0.86 0.02 0.06 

Stance Time 

(s) 

T00 0.77 - - - - 

T03 0.80 
0.03  

(-0.03 - 0.08) 
0.37 0.09 0.22 

T06 0.76 
-0.01  

(-0.07 - 0.05) 
0.78 -0.07 -0.19 

T12 0.74 
-0.04  

(-0.10 - 0.02) 
0.22 -0.12 -0.3 

Stance Time 

Asymmetry 

(%) 

T00 -1.68 - - - - 

T03 -4.61 
-2.88  

(-11.19 - 5.44) 
0.50 -0.08 -0.18 

T06 -1.45 
0.07  

(-8.52 - 8.65) 
0.99 0.00 0.01 

T12 0.89 2.09  0.66 0.05 0.16 

Swing Time 

(s) 

T00 0.42 - - - - 

T03 0.44 
0.02  

(-0.02 - 0.07) 
0.19 0.10 0.25 

T06 0.42 
0.00  

(-0.05 - 0.04) 
0.28 -0.06 -0.17 

T12 0.41 -0.01 0.58 -0.06 -0.11 
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(-0.06 - 0.03) 

Swing Time 

Asymmetry 

(%) 

T00 10.84 - - - - 

T03 2.63 
-8.09  

(-20.12 - 3.94) 
0.27 -0.15 -0.35 

T06 4.07 
-7.03 

 (-19.64 - 5.59) 
0.93 -0.12 -0.29 

T12 6.06 
-3.82  

(-17.18 - 9.54) 
0.58 -0.06 -0.21 

Peak 

Sagittal 

Angular 

Velocity 

(degrees/ 

second) 

T00 229.27 - - - - 

T03 248.35 
18.71 

(-5.10 - 42.53) 
0.12 0.14 0.33 

T06 240.47 
13.83 

(-11.54 - 39.19) 
0.29 0.05 0.08 

T12 248.30 
16.56  

(-10.36 - 43.48) 
0.23 0.11 0.32 

Peak 

Sagittal 

Angular 

Velocity 

Asymmetry 

(%) 

T00 -10.63 - - - - 

T03 -5.99 
4.74  

(-5.87 - 15.35) 
0.38 0.09 0.21 

T06 0.17 
10.53 

(-0.43 - 21.49) 
0.06 0.19 0.48 

T12 1.54 
11.74 

(-0.12 - 23.61) 
0.05 0.19 0.52 

Peak Stance 

Frontal 

Plane 

Acceleration 

(m/s2) 

T00 0.59 - - - - 

T03 0.55 
-0.04 

(-0.12 - 0.06) 
0.457 -0.06 -0.14 

T06 0.61 
0.04  

(-0.06 - 0.13) 
0.47 0.06 0.10 

T12 0.67 
0.07 

(-0.03 - 0.17) 
0.18 0.11 0.36 

Peak Stance 

Frontal 

Plane 

Acceleration 

Asymmetry 

(%) 

T00 -14.02 - - - - 

T03 -18.96 
-4.87 

(-20.89 - 11.15) 
0.55 -0.05 -0.13 

T06 4.90 
18.61 

(2.02 - 35.22) 
0.03 0.19 0.50 

T12 7.00 
18.84 

(0.90 - 36.78) 
0.04 0.18 0.55 

Peak 

Resultant 

Acceleration 

(m/s2) 

T00 2.19 - - - - 

T03 2.16 
-0.04  

(-0.19 - 0.12) 
0.64 -0.04 -0.07 

T06 2.14 
-0.01  

(-0.18 - 0.15) 
0.87 -0.05 -0.21 

T12 2.32 0.11 0.23 0.08 0.25 
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(-0.07 - 0.29) 

Peak 

Resultant 

Asymmetry 

(%) 

T00 -3.97 - - - - 

T03 -7.32 
-3.36 

(-11.12 - 4.40) 
0.40 -0.10 -0.22 

T06 1.30 
5.30 

(-2.70 - 13.30) 
0.19 0.15 0.35 

T12 -0.70 
3.12  

(-5.49 - 11.73) 
0.48 0.08 0.22 

 

 

Figure 5.5: Peak frontal acceleration asymmetry (left) and peak sagittal angular velocity 

asymmetry (right), derived from free-living wearable sensor data, plotted for each 

timepoint. When Bonferoni corrected was applied, there were only significant differences 

between T00 and T06 as well as T00 and T12 postoperative visits for both variables 

(indicated with * on plot).  

 

* * * * 
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5.4 Discussion 

 This study evaluated how well gait metrics capture change when measured in-lab 

using markerless motion capture and in free-living conditions with multi-day inertial sensor 

recordings. A practical protocol was implemented for arthroplasty patients, combining a 

clinically adjacent hallway-based motion capture system with a minimal two sensor 

wearable setup. Laboratory-derived variables, including gait speed, stride time, and knee 

flexion and abduction/adduction excursion angles, demonstrated clear, statistically 

significant improvements from the preoperative visit through postoperative follow-ups. 

Free-living inertial sensor metrics exhibited similar directional trends but reached 

statistical significance less frequently, likely reflecting higher environmental variability 

and smaller effect sizes. While further research is needed to better understand the 

relationships between in-lab and free-living measures, as well as how to optimize the use 

of wearable sensor-derived metrics, this study establishes a realistic framework for 

integrating objective gait assessment into routine clinical practice.  

Most validation studies compare wearable sensors directly with motion capture, 

treating the latter as the reference standard. These investigations typically report good 

agreement. For example, Hafer, et al., found that while absolute joint angle values differed 

between systems, the relative patterns were consistent, supporting comparable clinical 

interpretation even when the raw numbers diverged. Such work is essential for establishing 

the construct validity of sensor-derived metrics. However, the current study differed in 

approach. Rather than seeking one-to-one equivalence, we examined the sensitivity of each 
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modality to longitudinal change: the brief but detailed laboratory snapshot versus the multi-

day, free-living record captured by inertial sensors. The results suggest that motion capture 

remains the more sensitive tool for detecting postoperative improvements, whereas 

wearable sensors, though showing similar directional trends, displayed weaker signal-to-

noise under real-world conditions. From a clinical perspective, motion capture appears to 

provide a more sensitive measures of change than comparable metrics derived from 

wearable sensors. 

 The reduced sensitivity of free-living measures from wearable sensors may stem 

from several sources. In-lab walking can be different than free-living walking. In Hillel’s 

week-long monitoring of 150 older adults, free-living gait was usually slower than what 

the same participants achieved in the lab. Specifically, median laboratory usual-walking 

speed exceeded the speed observed in approximately 64% of all 30-s daily-living bouts 

(63.8 ± 23.3%), while even the more demanding laboratory dual-task speed was faster than 

about half of those bouts (50.9 ± 25.4%). Put simply, the “snapshot” captured in the lab, 

whether single- or dual-task, tends to overestimate the pace at which people walk in their 

everyday lives. Consequently, while free-living measures may provide a more 

representative picture of everyday gait, it may not provide a more sensitive measure of 

change following arthroplasty.  

Alternatively, some of the dissonance between in-lab and free-living measures may 

stem from the study population itself. A systematic review by Arnold, et al., reported 

minimal changes in physical activity, as measured by pedometers, in individuals following 
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total hip and knee arthroplasties. The review found mixed results at 6 months 

postoperatively, with larger improvements at 12 months in some studies, although activity 

levels remained lower than those of healthy controls. These findings are supported by a 

subsequent systematic review by Hammett, et al., which reported no improvements in 

physical activity at 6 months and only small to moderate improvement at 12 months. 

Despite consistent improvements in quality of life, pain, and physical function, physical 

activity in these patient populations did not improve substantially (Hammett et al., 2018). 

In the current study, similar improvements in pain and function were seen in-lab but not 

clearly reflected in free-living measures. This may reflect a true lack of change in everyday 

gait patterns, but it may also highlight fundamental differences in what each measurement 

system capture.  

 The observed discordance between measurement systems may be attributed to the 

different aspects of gait that each system captures. In the structured lab setting, patients 

may feel more motivated to walk faster or perform differently due to the awareness of being 

observed. This effect has been well-documented across both healthy and clinical gait 

populations (Ardestani and Hornby, 2020; Jeon et al., 2023; Robles-García et al., 2015). 

As a result, motion capture assessments may primarily reflect functional capacity, the best 

performance a patient is capable of under observation. Indeed, gait speed has consistently 

been shown to be a strong predictor of functional capacity across multiple populations 

(Ilgin et al., 2011; Nakamoto et al., 2015; Pophal Da Silva et al., 2021). In contrast, the 

lack of sensitivity to change in wearable sensors may reflect that patients, although 
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improving functionally, have not yet translated this increased capacity into their everyday 

activity patterns. As noted, physical activity levels tend to not increase substantially 

postoperatively, suggesting that free-living data may better represent actual day-to-day 

behavior rather than peak functional performance.  

 While this study produced several novel findings, there are also important 

limitations to consider. It is possible that more sensitive gait measurements could be 

derived from alternative sensor placement locations, such as the trunk or foot. However, 

the shank remains a commonly used placement for gait assessments in OA populations 

(Kobsar et al., 2020b), and provides data related to knee kinematics (e.g. peak frontal 

angular velocity) that other placements cannot. The shank placement is also less obstructive 

than trunk-mounted sensors and does depend on wearing shoes, as would be for a foot or 

insole mounted sensor. Ultimately, the research question should guide placement decisions 

in any study. Another limitation is the number of follow-up assessments completed by 

participants. Only 8 of 42 participants completed all four research visits, and only 26 of 42 

participants completed at least two of the three postoperative follow-ups. While some 

degree of attrition is expected in longitudinal studies, higher follow-up rates could improve 

sensitivity of both measurement systems. It is important to note that the standard of care 

for postoperative follow-ups at the clinical partner includes only 6-week and 12-month 

visits. As such, the 3- and 6-month gait assessment follow-ups were not tied to receiving 

clinical care and required additional visits to the hospital, which not all participants were 

willing or able to attend. Although participants received a parking pass and a CAD $20 gift 
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card for these extra visits, these incentives only partly mitigated attrition. The statistical 

methods used were selected to account for missing data. However, it should also be noted 

that the study is ongoing, and some participants have not yet reached their final 

postoperative follow-ups, which may improve these numbers. Regardless, future 

researchers are encouraged to align research assessments with routine clinical visits to 

maximize study attendance.  

5.5 Conclusions 

 This study sought to better characterize the sensitivity to change in gait measures 

obtained from both motion capture and wearable sensors in a cohort of knee OA patients. 

The findings support the use of motion capture to quantify gait before and after surgical 

intervention, with gait speed emerging as a particularly valuable indicator of functional 

capacity. While free-living gait measures were found to be less sensitive to change 

longitudinally, they demonstrated similar directional trends to those observed with motion 

capture. Taken together, these findings provide a practical foundation for integrating 

objective gait assessment, both in-lab and in daily life, into the clinical management of 

individuals with knee OA.  
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5.6 Supplemental Tables 

 

Supplemental Table 5.1: Bonferoni corrected p-values between each timepoint for motion 

capture variables.  

Outcome From To Difference SE t df praw pBonferoni 

Gait Speed 

(m/s) 

T00 T03 0.11 0.03 4.26 102 < 0.001 0.03 

T00 T06 0.18 0.03 6.39 102 < 0.001 < 0.001 

T00 T12 0.25 0.03 8.23 102 < 0.001 < 0.001 

T03 T06 0.07 0.03 2.07 102 0.04 1.00 

T03 T12 0.14 0.04 3.91 102 < 0.001 0.09 

T06 T12 0.07 0.04 2.03 102 0.05 1.00 

Stride 

Time (s) 

T00 T03 -0.07 0.02 -3.80 102 < 0.001 0.14 

T00 T06 -0.10 0.02 -4.98 102 < 0.001 < 0.001 

T00 T12 -0.14 0.02 -6.23 102 < 0.001 < 0.001 

T03 T06 -0.03 0.02 -1.21 102 0.23 1.00 

T03 T12 -0.06 0.03 -2.52 102 0.01 1.00 

T06 T12 -0.04 0.03 -1.42 102 0.16 1.00 

Stride 

Time 

Asymmetry 

(%) 

T00 T03 -0.17 0.27 -0.64 102 0.53 1.00 

T00 T06 -0.15 0.28 -0.52 102 0.60 1.00 

T00 T12 -0.21 0.30 -0.71 102 0.48 1.00 

T03 T06 0.02 0.31 0.08 102 0.94 1.00 

T03 T12 -0.04 0.32 -0.13 102 0.90 1.00 

T06 T12 -0.07 0.33 -0.20 102 0.84 1.00 

Stance 

Time (s) 

T00 T03 -0.06 0.02 -3.56 102 < 0.001 0.33 

T00 T06 -0.08 0.02 -4.73 102 < 0.001 < 0.001 

T00 T12 -0.11 0.02 -6.12 102 < 0.001 < 0.001 

T03 T06 -0.02 0.02 -1.19 102 0.24 1.00 

T03 T12 -0.05 0.02 -2.62 102 0.01 1.00 

T06 T12 -0.03 0.02 -1.54 102 0.13 1.00 

Stance 

Time 

Asymmetry 

(%) 

T00 T03 0.85 0.55 1.54 102 0.13 1.00 

T00 T06 1.01 0.58 1.73 102 0.09 1.00 

T00 T12 0.88 0.62 1.42 102 0.16 1.00 

T03 T06 0.17 0.64 0.26 102 0.80 1.00 

T03 T12 0.03 0.69 0.05 102 0.96 1.00 

T06 T12 -0.14 0.70 -0.19 102 0.85 1.00 

T00 T03 -0.01 0.01 -2.54 102 0.01 1.00 
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Swing 

Time (s) 

T00 T06 -0.02 0.01 -3.87 102 < 0.001 0.11 

T00 T12 -0.03 0.01 -4.15 102 < 0.001 0.04 

T03 T06 -0.01 0.01 -1.29 102 0.20 1.00 

T03 T12 -0.01 0.01 -1.68 102 0.10 1.00 

T06 T12 0.00 0.01 -0.50 102 0.62 1.00 

Swing 

Time 

Asymmetry 

(%) 

T00 T03 -2.27 1.09 -2.08 102 0.04 1.00 

T00 T06 -3.04 1.15 -2.65 102 0.01 1.00 

T00 T12 -2.67 1.22 -2.19 102 0.03 1.00 

T03 T06 -0.77 1.27 -0.60 102 0.55 1.00 

T03 T12 -0.41 1.37 -0.30 102 0.77 1.00 

T06 T12 0.36 1.39 0.26 102 0.80 1.00 

Flexion 

Excursion 

(degrees) 

T00 T03 0.62 0.72 0.86 102 0.39 1.00 

T00 T06 1.66 0.76 2.19 102 0.03 1.00 

T00 T12 3.78 0.82 4.60 102 < 0.001 0.01 

T03 T06 1.04 0.85 1.22 102 0.22 1.00 

T03 T12 3.16 0.93 3.40 102 < 0.001 0.55 

T06 T12 2.12 0.93 2.27 102 0.03 1.00 

Flexion 

Excursion 

Asymmetry 

(%) 

T00 T03 -0.42 5.55 -0.08 102 0.94 1.00 

T00 T06 5.62 5.82 0.96 102 0.34 1.00 

T00 T12 11.68 6.27 1.86 102 0.07 1.00 

T03 T06 6.03 6.50 0.93 102 0.36 1.00 

T03 T12 12.10 7.07 1.71 102 0.09 1.00 

T06 T12 6.07 7.14 0.85 102 0.40 1.00 

Abduction/ 

Adduction 

Excursion 

(degrees) 

T00 T03 -0.69 0.20 -3.46 102 < 0.001 0.46 

T00 T06 -0.86 0.21 -4.14 102 < 0.001 0.04 

T00 T12 -0.24 0.23 -1.05 102 0.30 1.00 

T03 T06 -0.18 0.23 -0.75 102 0.45 1.00 

T03 T12 0.45 0.25 1.79 102 0.08 1.00 

T06 T12 0.63 0.26 2.45 102 0.02 1.00 

Abduction/ 

Adduction 

Excursion 

Asymmetry 

(%) 

T00 T03 -25.46 7.17 -3.55 102 < 0.001 0.33 

T00 T06 -19.88 7.50 -2.65 102 0.01 1.00 

T00 T12 -15.89 8.04 -1.98 102 0.05 1.00 

T03 T06 5.58 8.32 0.67 102 0.50 1.00 

T03 T12 9.57 8.92 1.07 102 0.29 1.00 

T06 T12 4.00 9.08 0.44 102 0.66 1.00 
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Supplemental Table 5.2: Bonferoni corrected p-values between each timepoint for motion 

capture variables.  

Outcome From To Difference SE t df praw pBonferoni 

Stride Time 

(s) 

T00 T03 0.05 0.05 1.05 98 0.30 1.00 

T00 T06 -0.01 0.05 -0.20 98 0.84 1.00 

T00 T12 -0.06 0.05 -1.11 98 0.27 1.00 

T03 T06 -0.06 0.06 -1.08 98 0.29 1.00 

T03 T12 -0.11 0.06 -1.83 98 0.07 1.00 

T06 T12 -0.05 0.06 -0.80 98 0.43 1.00 

Stride Time 

Asymmetry 

(%) 

T00 T03 -4.15 4.07 -1.02 92 0.31 1.00 

T00 T06 -1.69 4.22 -0.40 92 0.69 1.00 

T00 T12 0.84 4.68 0.18 92 0.86 1.00 

T03 T06 2.46 4.66 0.53 92 0.60 1.00 

T03 T12 4.99 5.08 0.98 92 0.33 1.00 

T06 T12 2.53 5.31 0.48 92 0.64 1.00 

Stance Time 

(s) 

T00 T03 0.03 0.03 0.90 98 0.37 1.00 

T00 T06 -0.01 0.03 -0.28 98 0.78 1.00 

T00 T12 -0.04 0.03 -1.23 98 0.22 1.00 

T03 T06 -0.03 0.03 -1.02 98 0.31 1.00 

T03 T12 -0.07 0.04 -1.81 98 0.07 1.00 

T06 T12 -0.03 0.04 -0.85 98 0.40 1.00 

Stance Time 

Asymmetry 

(%) 

T00 T03 -2.88 4.24 -0.68 92 0.50 1.00 

T00 T06 0.07 4.38 0.02 92 0.99 1.00 

T00 T12 2.09 4.74 0.44 92 0.66 1.00 

T03 T06 2.95 4.84 0.61 92 0.54 1.00 

T03 T12 4.97 5.16 0.96 92 0.34 1.00 

T06 T12 2.02 5.26 0.39 92 0.70 1.00 

Swing Time 

(s) 

T00 T03 0.02 0.02 1.11 98 0.27 1.00 

T00 T06 0.00 0.02 -0.09 98 0.93 1.00 

T00 T12 -0.01 0.02 -0.55 98 0.59 1.00 

T03 T06 -0.03 0.03 -1.02 98 0.31 1.00 

T03 T12 -0.04 0.03 -1.38 98 0.17 1.00 

T06 T12 -0.01 0.03 -0.40 98 0.69 1.00 

Swing Time 

Asymmetry 

(%) 

T00 T03 -8.09 6.14 -1.32 92 0.19 1.00 

T00 T06 -7.03 6.44 -1.09 92 0.28 1.00 

T00 T12 -3.82 6.82 -0.56 92 0.58 1.00 

T03 T06 1.06 7.09 0.15 92 0.88 1.00 
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T03 T12 4.27 7.46 0.57 92 0.57 1.00 

T06 T12 3.21 7.77 0.41 92 0.68 1.00 

Peak 

Sagittal 

Angular 

Velocity 

(degrees/ 

second) 

T00 T03 18.72 12.15 1.54 98 0.13 1.00 

T00 T06 13.83 12.94 1.07 98 0.29 1.00 

T00 T12 16.56 13.74 1.21 98 0.23 1.00 

T03 T06 -4.89 14.45 -0.34 98 0.74 1.00 

T03 T12 -2.15 15.43 -0.14 98 0.89 1.00 

T06 T12 2.74 15.97 0.17 98 0.86 1.00 

Peak 

Sagittal 

Angular 

Velocity 

Asymmetry 

(%) 

T00 T03 4.74 5.41 0.88 92 0.38 1.00 

T00 T06 10.53 5.59 1.88 92 0.06 1.00 

T00 T12 11.74 6.05 1.94 92 0.06 1.00 

T03 T06 5.79 6.29 0.92 92 0.36 1.00 

T03 T12 7.00 6.81 1.03 92 0.31 1.00 

T06 T12 1.22 6.91 0.18 92 0.86 1.00 

Peak Stance 

Frontal 

Plane 

Acceleration 

(m/s2) 

T00 T03 -0.04 0.05 -0.74 98 0.46 1.00 

T00 T06 0.04 0.05 0.72 98 0.47 1.00 

T00 T12 0.07 0.05 1.35 98 0.18 1.00 

T03 T06 0.07 0.06 1.26 98 0.21 1.00 

T03 T12 0.11 0.06 1.77 98 0.08 1.00 

T06 T12 0.04 0.06 0.58 98 0.57 1.00 

Peak Stance 

Frontal 

Plane 

Acceleration 

Asymmetry 

(%) 

T00 T03 -4.87 8.18 -0.60 92 0.55 1.00 

T00 T06 18.62 8.47 2.20 92 0.03 1.00 

T00 T12 18.84 9.15 2.06 92 0.04 1.00 

T03 T06 23.48 9.58 2.45 92 0.02 1.00 

T03 T12 23.71 10.40 2.28 92 0.03 1.00 

T06 T12 0.22 10.53 0.02 92 0.98 1.00 

Peak 

Resultant 

Acceleration 

(m/s2) 

T00 T03 -0.04 0.08 -0.47 98 0.64 1.00 

T00 T06 -0.01 0.09 -0.17 98 0.87 1.00 

T00 T12 0.11 0.09 1.21 98 0.23 1.00 

T03 T06 0.02 0.10 0.24 98 0.81 1.00 

T03 T12 0.15 0.10 1.42 98 0.16 1.00 

T06 T12 0.12 0.11 1.16 98 0.25 1.00 

Peak 

Resultant 

Asymmetry 

(%) 

T00 T03 -3.36 3.96 -0.85 92 0.40 1.00 

T00 T06 5.30 4.08 1.30 92 0.20 1.00 

T00 T12 3.12 4.39 0.71 92 0.48 1.00 

T03 T06 8.66 4.51 1.92 92 0.06 1.00 

T03 T12 6.48 4.78 1.36 92 0.18 1.00 

T06 T12 -2.18 4.89 -0.45 92 0.66 1.00 
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Chapter 6: General Discussion 

6.1 Research Implications 

 As noted throughout this dissertation, the rising prevalence of osteoarthritis (OA) 

is expected to place increasing strain on healthcare systems as populations in many 

developed countries continue to age (Canadian Institute for Health Information, 2023; Li 

et al., 2024). Effectively prioritizing care for patients with the greatest need will therefore 

become essential. Objective gait metrics are poised to play a key role within a triage 

framework for OA management. The research presented in this dissertation lays important 

groundwork for advancing the use of objective gait assessment to support the health and 

treatment of older adults with OA. 

 Motion capture is a well-established technique for objectively quantifying gait by 

measuring spatiotemporal and kinematic parameters during walking. Beyond healthy 

populations, it has been widely applied to diverse clinical groups, including individuals 

with Parkinson’s disease (Pistacchi, 2017), multiple sclerosis (Chua et al., 2014), and OA 

(Chehab et al., 2014), among others. The emergence of markerless systems is now making 

motion capture more accessible and enabling the development of large, multicentre datasets 

across sites (Horsak et al., 2024; Kanko et al., 2021b; Outerleys et al., 2021). Researchers 

have further enhanced traditional laboratory-based gait analyses by integrating 

complementary tools such as electromyography (Bovi et al., 2011) and force platforms 

(Chehab et al., 2014; Hurwitz et al., 2002). Wearable sensors, used independently or in 
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concert with motion capture, represent the next technological advance in objectively 

assessing gait.  

This dissertation introduced a framework for collecting gait data using both motion 

capture and wearable sensor systems. By pairing a clinically adjacent hallway-based 

markerless motion capture setup with a sparse two sensor configuration on the shanks, 

clinics can collect high fidelity snapshots of gait alongside ecologically valid free-living 

records, all without prohibitive costs or space demands. Unlike earlier studies that 

examined sensitivity at a single in-lab time point across systems (Hafer et al., 2023) or 

tracked longitudinal change within one system (Bolam et al., 2021), this work helps clarify 

the trade-offs between the two modalities. Although the wearable sensor system proved 

less sensitive than motion capture, the results provide a clearer understanding of how the 

measures from each approach relate to one another. 

 Developing both the overall framework and the machine learning gait segmentation 

model were central to this dissertation. The framework was deliberately designed to be 

modular, allowing future extensions and refinements. Rather than focusing solely on 

derived laboratory metrics such as stride length or joint angles (Seel et al., 2014), this work 

emphasized “native” sensor variables (e.g., peak resultant acceleration, peak shank angular 

velocity) that are often overlooked in the gait literature. While simple measures like stride 

time can be calculated reliably from event detection, more complex variables risk 

compounding error in the inherently noisier free-living environment (Kobsar et al., 2020a, 

2020b). The ResNet + BiLSTM model, trained on combined healthy and OA data, 
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outperformed a frequency-based heuristic method, particularly at the slower walking 

speeds common in late-stage OA. Clinically, this results in fewer fragmented walking bouts 

and more representative stride data for subsequent analyses. 

By analyzing in-lab motion capture data alongside free-living wearable sensor data 

and tracking both longitudinally, this dissertation clarifies how these two measurement 

approaches interact and what each truly captures. At a single time point, gait metrics from 

wearable sensors and motion capture correlate well, echoing earlier validation studies 

(Hafer et al., 2023; Prisco et al., 2024; Seel et al., 2014). However, far fewer studies have 

compared those in-lab metrics with free-living data. Available work (e.g., Hillel et al., 

2019) shows that gait characteristics outside the lab differ from those recorded within it 

(Hillel et al., 2019). Chapter 4 of this dissertation confirms both patterns within a single 

study: (1) wearable sensor gait measures generally agree with motion capture outputs in 

the lab, and (2) those same wearable measures reflect different gait behavior in free-living 

contexts. Longitudinally, markerless motion capture proved more sensitive than wearable 

inertial sensors for detecting postoperative recovery, whereas metrics from inertial sensors 

showed similar directional trends but greater variability. These findings suggest that the 

two technologies serve complementary rather than competing roles: in-lab sessions can 

detect subtle clinical changes, while wearables contextualize everyday gait behaviour. The 

results also highlight the trade-offs associated with relying on a single system, offering 

guidance to researchers and clinicians on when each modality is most appropriate. 
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6.2 Contributions to Existing Knowledge 

The central thread of this dissertation is a baseline gait analysis framework 

introduced in Chapter 2. Designed to be modular and sensor agnostic, the framework 

balances clinical realism, using researcher-placed tibial sensors, with broad 

generalizability. It unifies sensor alignment, segmentation, event detection, and outlier 

handling within a single open platform. Although similar pipelines exist (Beyer et al., 

2024), they typically focus on wrist and ankle sensors and rely on a single gyroscope 

channel, an approach that is less robust for clinical populations. In contrast, the present 

framework employs bilateral shank sensors, enabling symmetry assessments without 

overburdening patients and allowing for future extensions. Its versatility is demonstrated 

throughout this dissertation: Chapter 3 integrates a ResNet + BiLSTM model for gait 

detection, Chapter 4 uses the pipeline to compare motion capture and wearable data at a 

single time point, and Chapter 5 applies it to longitudinal monitoring in a clinical cohort. 

While additional refinements are possible, the current pipeline offers a robust, extensible 

foundation for future researchers and development. 

In the first study (Chapter 3), an existing machine learning framework was retrained 

with additional data from both healthy adults and individuals with OA. Many gait analysis 

studies introduce new models trained on small datasets of young, healthy participants, 

leaving their performance on other sensor placements or clinical populations untested. 

Rather than creating a new architecture, we adapted a promising existing framework (Li 

and Wang, 2022) that had not previously been trained or evaluated on OA data to build an 
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OA-specific deep learning segmentation model. The resulting model achieved 

approximately 97% accuracy on clinical test data and significantly improved bout 

continuity compared with heuristic methods, particularly at the slower walking speeds 

typical of late-stage OA. This highlights a broader limitation in the literature, as models 

trained exclusively on small, healthy cohorts often generalize poorly to clinical populations 

(Halilaj et al., 2018).  

The second study (Chapter 4) demonstrates that key inertial sensor-derived gait 

metrics are generally in agreement with those from outside the laboratory in knee OA 

patients, supporting their use for longitudinal monitoring. Previous research has primarily 

validated wearable sensor measures against motion capture, showing that both systems 

capture similar trends despite differing absolute values (Hafer et al., 2023). This agreement 

was replicated and extended in Chapter 4 to incorporate up to one week of free-living data. 

Moreover, peak shank angular velocity, a variable rarely studied in free-living settings, was 

evaluated and found to correlate with the Oxford Knee Score, paralleling trends observed 

for gait speed. Given its computational simplicity, this metric may offer a practical remote 

proxy for functional status. 

The final study (Chapter 5) represents, to our knowledge, the first head-to-head, 

longitudinal comparison of sensitivity to change between markerless motion capture and 

multi-day inertial sensor recordings in arthroplasty patients. Laboratory-based metrics 

remain the gold standard for detecting postoperative change, whereas inertial sensors 

capture a broader behavioural context. Prior work assessed sensitivity either at a single 
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time point or within a single modality over time, leaving open questions about whether 

sensitivity holds across measurement systems and during extended free-living monitoring. 

The present results align with and extend previous research by examining these 

comparisons simultaneously within a single framework. While detailed lab assessments 

reflect functional capacity (Ilgin et al., 2011; Nakamoto et al., 2015), wearable sensor data 

provide a more representative picture of day-to-day activity (Boekesteijn et al., 2022; 

Buekers et al., 2023; Hillel et al., 2019). When used together, the two approaches offer a 

more comprehensive view of pre- and postoperative function than either can achieve alone, 

while also providing richer context than physical activity estimates alone.  

6.3 Limitations and Considerations 

 This dissertation has several limitations, the most prominent being the sensor 

configuration. Chapter 2 outlined the rationale for using two shank-mounted sensors on the 

medial side, highlighting that this widely adopted placement captures valuable 

spatiotemporal features and knee-related kinematics. However, alternative sensor 

locations, such as the lower back or foot, could offer greater sensitivity and enable direct 

estimation of variables like stride length (Kobsar et al., 2020b). Additionally, while adding 

more sensors would increase setup complexity, the potential gains in sensitivity and data 

richness may justify the extra effort in certain research or clinical context. That being said, 

this work does not provide data to directly suggest that alternative placements, such as the 

back or foot, would be superior. For example, given the importance of gait speed as a 
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measure, a foot sensor placement would provide reliable estimates of this measure (Kobsar 

et al., 2020a).  However, this remains an open question for future research.  

 This research also only looked at several gait-related variables independently from 

motion capture and wearable sensors. While many variables are available for analysis, it is 

not feasible to analyze them all, as such a subset was selected. As a result, there may be 

additional variables, such as gait variability or complexity, that could better leverage the 

unique strengths of each measurement system. Ultimately, there is a need to use motion 

capture and wearable sensors not independently, but as complementary tools, with each 

providing information inaccessible to the other. Integrating both measurement systems 

efficiently will be a key area of research in the future. This integration could range from 

straightforward data complementation, more in line with the current work, to more 

advanced approaches where the distinct contributions of each system are combined to 

reconstruct a more comprehensive view of patient function. For instance, biomechanical 

models might use lab-derived joint kinematics to more directly contextualize wearable-

derived movement and loading patterns in real-world settings, offering a more holistic 

understanding of function and disease progression across environments. Additionally, this 

research also concentrated on kinematic and spatiotemporal variables, rather than kinetic, 

as these variables are both more clinically viable and more easily interpreted by patients 

and clinicians. While measures such as knee adduction moment are well-studied, this 

emphasis may lead to underutilizing of kinematic and spatiotemporal variables. Given their 

applicability in both laboratory and real-world environments, kinematic and spatiotemporal 
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variables may offer a more versatile and scalable basis for monitoring patient function, 

particularly when compared to kinetic measures that are typically constrained to controlled 

settings.  

 These findings may not generalize to all populations. The deep learning model was 

trained exclusively on healthy adults and individuals with end-stage OA. Although it 

outperformed a heuristic frequency-based method for gait segmentation, its performance 

may not translate to other clinical groups with altered gait patterns. Moreover, the algorithm 

was validated only in laboratory settings. Free-living validation remains largely qualitative 

in the absence of synchronized video recordings. Similarly, the sensitivities observed in the 

comparisons between motion capture and wearable sensors may differ in other clinical 

populations. Future studies should replicate and extend these motion capture versus 

wearable sensor comparisons in groups with more diverse or pathological gait 

characteristics.  

 Finally, the small sample size and participant attrition during follow-ups limit the 

strength of the findings. As noted in Chapter 5, only 42 patients completed at least one 

follow-up visit, and just 8 attended all four gait assessments. Although linear mixed models 

accommodate some missing data, the study would benefit from more complete follow-up 

data. Offering larger incentives or providing patients with personalized gait analysis reports 

could improve retention. Whenever possible, aligning study assessments with routine clinic 

visits, particularly in clinically integrated research, may further enhance follow-up 

attendance.  
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6.4 Recommendations for Future Work  

 Several recommendations emerge from this work. First, the framework should 

continue evolving toward its goal of being sensor-agnostic and modular. Although it has 

been validated in individuals with end-stage knee OA, adapting it to other populations may 

require alternative sensor placements that are more sensitive to specific pathologies (e.g., 

trunk or foot sensors for Parkinson’s disease). Second, free-living validation of gait 

segmentation algorithms remains essential, despite the inherent challenges of obtaining 

ground-truth labels. Future efforts could draw on approaches that have succeeded in similar 

contexts. For example, in a study by Hickey, et al., participants wore an inertial sensor and 

a body mounted camera in free-living settings to evaluate their step counting algorithm for 

the sensor against gold standard video (Hickey et al., 2017). Using this approach, they 

found high relative (rho > 0.99) and absolute (ICC(2,1) > 0.94) agreement in identifying 

walking bouts and step counting. Finally, evaluating the machine learning architecture in 

additional clinical cohorts would clarify its robustness to other presentations of slow or 

altered gait. 

 Large, multi-site studies that track OA patients over longer periods, and across a 

broader range of disease severities and rehabilitation timelines, are essential to advancing 

gait-based clinical care. Like many areas of biomechanics, this field remains fundamentally 

limited by small, fragmented datasets. The framework developed in this dissertation 

represents a step toward addressing that gap, providing a foundation for scalable, 

standardized data collection. However, substantial work remains to achieve the large, 
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diverse datasets needed to establish normative gait values at each stage of OA progression.  

Prospective studies that follow early-stage patients with both motion capture and wearable 

sensors would help to identify the most relevant gait features to monitor, guide testing of 

nonsurgical interventions, and quantify functional decline until surgery becomes necessary. 

Such datasets would also support the development of robust, clinically relevant models that 

link gait characteristics to personalized rehabilitation plans. Although gait patterns have 

previously guided exercise interventions (Kobsar et al., 2017), larger and more diverse 

cohorts are needed to substantially improve predictive accuracy and clinical utility.  

 For gait analysis tools to gain traction in clinical practice, they must be both 

clinically viable and user-friendly enough to maintain patient engagement. Clinicians 

require succinct, easily interpreted gait reports that can inform treatment decisions, while 

patients need clear, accessible feedback on their progress and remaining deficits. This 

dissertation contributes to that goal by demonstrating the sensitivity of multiple gait 

measures across different measurement systems. However, despite examining a wide range 

of spatiotemporal and kinematic variables, this work represents only a subset of the many 

potential gait metrics that could be explored. Other metrics, such as gait complexity, haver 

shown promise for detecting subtle changes in movement patterns but were beyond the 

scope of this work (Bisi and Stagni, 2016). Likewise, additional integrated technologies, 

such as pressure sensing insoles, could further enrich gait data and deliver real-time 

postoperative feedback to support recovery (J. He et al., 2019). Integrating data from all 

these systems and using them in complementary roles will likely provide the clearest 
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picture of gait health. Exploring the utility of these additional variables and technologies 

represents a possible next step with the potential to reveal valuable insights along the longer 

journey of advancing and translating clinical gait assessments for OA. 

6.5 Conclusions 

This dissertation advances the field of clinical gait assessment by (i) developing a 

scalable processing framework, (ii) validating a deep learning segmentation model tailored 

to OA gait, (iii) demonstrating agreement free-living sensor metrics, and (iv) showing that 

markerless motion capture currently offers superior sensitivity to surgical change, while 

inertial sensors add ecological breadth. Together, these contributions lay the groundwork 

for personalised, data-driven management of knee OA that bridges the lab-clinic-home 

divide and set a roadmap for extending objective gait analytics to broader patient 

populations. 

A central theme throughout this work is the recognition that no single technology 

captures the full picture of human gait. By leveraging the complementary strengths of 

motion capture and wearable sensors, this research illustrates how combining laboratory 

precision with free-living context provides a more comprehensive understanding of 

mobility, recovery, and function. While challenges remain, including the need for larger 

datasets, broader validation, and streamlined clinical tools, this work demonstrates that 

scalable, clinically meaningful gait assessment is both achievable and an essential next step 

toward improving OA management and mobility research more broadly.  
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