
Self-Supervised Masked Autoencoding Meets Federated Learning for Electric Vehicle

Battery State-of-Health Estimation



Self-Supervised Masked Autoencoding Meets Federated
Learning for Electric Vehicle Battery

State-of-Health Estimation

By Mohanad Ismail,

A Thesis Submitted to the School of Graduate Studies in the Partial Fulfillment

of the Requirements for the Degree Master of Applied Science

McMaster University © Copyright by Mohanad Ismail July 13, 2025

http://www.mcmaster.ca/


McMaster University

Master of Applied Science (2025)

Hamilton, Ontario (Department of Mechanical Engineering)

TITLE: Self-Supervised Masked Autoencoding Meets Federated Learning for Electric

Vehicle Battery State-of-Health Estimation

AUTHOR: Mohanad Ismail (McMaster University)

SUPERVISOR: Dr. Ryan Ahmed

NUMBER OF PAGES: xiv, 137

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/
http://www.mcmaster.ca/


Abstract
Electric Vehicles (EVs) live and die by their batteries. To keep drivers safe and confident

in their vehicles, we need efficient, accurate, and private ways to track each battery’s

State-of-Health (SoH). But, EV labelled data is scarce, sharing raw data raises privacy

flags, and big models strain on-board hardware. This thesis tackles all three problems

through a two-step remedy in one shot.

1. Learn data representations without needing labels: Each car trains a small

autoencoder to reconstruct its own collected sensor data after randomly hiding

parts of the signal.

2. Share knowledge, not data: Instead of uploading the raw collected data, every

car sends only its trained model parameters to a remote cloud server. The server

aggregates parameters from all cars and sends the improved model back.

Four simple questions guide our work:

• Does this usage of unlabelled data improve the model’s performance?

• How much of the signal should be hidden to get the best representation learning?

• What is the optimal strategy for incorporating the limited labelled data available

into the model?

• Does this aggregation of separately trained models hurt accuracy compared with

a fully centralized approach?

Our experiments show a 17% lower average Mean Absolute Error (MAE), with up

to a 60% improvement in the best cases, when we make use of the available unlabelled

data versus training exclusively on labelled data. Hiding 30-40% of signals strikes the
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balance between challenge and clarity. Finally, aggregation of models on average stays

within 0.05 Ah of centralized training, virtually no loss, with zero raw-data exposure.

This thesis incorporates cloud computing, Self-Supervised Learning (SSL), and Fed-

erated Learning (FL) to present a light, privacy-friendly pipeline for fleet-wide SoH

estimation, evidence that unfrozen fine-tuning outshines frozen variants, the first sys-

tematic look at how masking ratio shapes battery time-series representation learning,

and practical proof that sharing model weights instead of data keeps accuracy basically

untouched and privacy intact.
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Chapter 1

Introduction

1.1 Context and Motivation

Electric Vehicles (EVs) are increasingly viewed as a cornerstone technology for achiev-

ing global decarbonization targets. Worldwide EV sales exceeded 14 million units in

2024 and are projected to reach one-third of all light-duty vehicle sales by 2030 [1].

Behind this momentum lies the battery pack, whose performance and safety degrade

with age and misuse. Accurately tracking a battery’s State-of-Health (SoH) is therefore

pivotal. Under-estimating SoH inflates range anxiety and warranty costs, whereas over-

estimating SoH risks thermal runaway, vehicle downtime, and reputational damage for

manufacturers. Modern Battery Management Systems (BMSs) already embed sophisti-

cated estimation algorithms, yet three structural challenges still limit their effectiveness:

1. On-board computational limits: Edge processors inside vehicles struggle to

run larger, more accurate data-driven models in real time.

2. Data scarcity and imbalance: Only a small portion of field data is labelled

with ground-truth SoH, and ageing patterns differ drastically across chemistries,
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climates, and driving styles.

3. Privacy and heterogeneity: Centralizing raw data for model training is inhib-

ited by commercial sensitivity, data-protection regulation, and non-uniform fleet

sensor data.

1.2 Problem Statement

The above constraints create a gap between the theoretical performance of SoH algo-

rithms demonstrated in controlled laboratory studies and the reliability required for

mass-market EV deployment. Bridging this gap demands methods that (i) harvest

knowledge from the vast amount of unlabelled field data, (ii) learn collaboratively with-

out transferring proprietary datasets, and (iii) capitalize on scalable cloud resources

while preserving real-time inference at the vehicle edge.

1.3 Research Gaps

Current literature addresses each challenge in isolation: cloud-based frameworks alleviate

compute bottlenecks [2], Self-Supervised Learning (SSL) extracts representations from

unlabelled cycles [3], and Federated Learning (FL) offers privacy-preserving model ag-

gregation [4]. However, no prior work has integrated SSL and FL within an operationally

viable cloud architecture for SoH estimation, nor has it systematically quantified how

design choices such as the SSL masking ratio or fine-tuning strategy affect predictive

accuracy and communication cost on real EV data.
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1.4 Research Aim and Questions

Aim: This thesis aims to develop and evaluate an integrated SSL-FL framework that

improves SoH estimation accuracy while respecting on-board compute limits and data-

privacy constraints.

Research Questions (RQs).

RQ1 Does pre-training with masked auto-encoding on unlabelled drive cycles enhance

SoH prediction compared with purely supervised baselines under limited labelled

data?

RQ2 How does the choice of masking ratio in SSL influence representation quality and

downstream SoH accuracy?

RQ3 How do different fine-tuning strategies for the SSL encoder (fully frozen, full un-

freeze) affect model performance and training stability?

RQ4 Does FL aggregation for model parameters degrade performance compared with

centralized training?

1.5 Hypotheses

H0. SSL pre-training followed by FL aggregation provides no statistically significant

improvement in SoH estimation over supervised centralized baselines.

H1. SSL pre-training combined with FL aggregation does yield a significant improve-

ment, with the effect size modulated by the masking ratio and fine-tuning strategy.
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1.6 Contributions

1. Framework: First end-to-end pipeline that unifies masked-autoencoder SSL with

the FedAvg method of FL for EV SoH estimation.

2. Masking-ratio study: Analysis of how varying the SSL masking ratio affects

representation quality, training stability, and downstream accuracy on real-world

drive-cycle data.

3. Fine-tuning strategy study: Empirical comparison of frozen and fully unfrozen

encoders and guidelines on when each is advantageous.

4. Cloud-edge prototype: A cloud architecture that offloads heavy training while

ensuring fast and efficient on-board inference and data privacy preservation.

1.7 Thesis Organization

• Chapter 2 reviews the evolution from internal combustion to electric mobility and

existing SoH estimation methods, including their advantages and current draw-

backs.

• Chapter 3 surveys cloud-computing for battery state estimation in literature and

industry and highlights the shortcomings of current offerings.

• Chapter 4 analyses self-supervised learning techniques for time-series data and

motivates masked auto-encoding, and examines federated learning foundations and

prior SoH applications.

• Chapter 5 details the proposed SSL-FL framework, dataset, and model architec-

tures.
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• Chapter 6 reports experimental results and compares them to baselines, and dis-

cusses findings and limitations.

• Chapter 7 summarizes findings and presents avenues for future work.

1.8 Significance and Impact

By fusing elastic resources of the cloud, self-supervised representation learning, and the

privacy-preserving nature of federated training, the proposed framework shows more

accurate SoH estimates without breaching data sovereignty or overwhelming vehicle

CPUs. In practical terms, this translates to longer battery lifetimes, safer operation,

and reduced total cost of ownership.

5
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Chapter 2

Literature Review

2.1 Introduction

This chapter starts by covering the transition from Internal Combustion Engines (ICEs)

to Electric Vehicles (EVs). A historical review (Section 2.2) shows the motivation for the

technological shift, followed by an assessment of the environmental and economic benefits

and the persistent market barriers to large‑scale EV adoption (Section 2.3). We then

narrow the focus to lithium‑ion battery ageing, introduce the two state variables that

comprise battery management, State-of-Charge (SoC) and State-of-Health (SoH), and

explain why reliable in‑field SoH estimation is both difficult and essential (Section 2.4).

Finally, the same section surveys the three principal SoH estimation paradigms (direct,

model‑based, data‑driven) and highlights the open problems that motivate this thesis:

high on‑board computational load, data scarcity, and privacy concerns.
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2.2 Historical Context and Evolution of Automotive Propul-

sion

The ICE has long been one of the main pillars of modern transportation. Its origins

trace back to the late 19th century, with main developments occurring around 1886

when pioneers such as Karl Benz and Nikolaus Otto introduced gasoline-powered vehicles

and four-stroke engine designs, respectively [5], [6]. Over the subsequent century, ICE

technology was refined to become the dominant propulsion system in automobiles, trucks,

and machinery, facilitating rapid industrialization and global mobility through increased

speeds and extended travel ranges.

The pros of ICE-based vehicles include mature and widespread fuel infrastructure,

high energy density of fossil fuels, and economical production methods that have enabled

mass-market adoption for over 100 years [5], [6]. However, the cons are significant. ICE

vehicles have relatively low thermal efficiency, constrained to approximately 20% energy

conversion efficiency [7], which translates into higher fuel consumption per kilometre.

Furthermore, their reliance on fossil fuels has resulted in considerable environmental

side effects, including emissions that significantly contribute to climate change [8], [9].

In response to these issues, there is a growing recognition of the need to transition

toward a more efficient and greener alternative. EVs have demonstrated energy usage

efficiencies nearing 60% from grid electricity to wheel power, compared to the approx-

imate 20% efficiency of ICEs [7]. This transition is also supported by technological

advancements in battery chemistry, as well as governmental mandates and policies such

as Canada’s planned phase-out of ICE sales by 2035 [10].

EVs possess a storied evolution that dates back to the mid-1800s. In fact, early EVs

were among the fastest automobiles of their era, holding land speed records until around

1900 despite their inherent limitations in range [11]. During the late 19th century,
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Figure 2.1: Share of EV sales by vehicle type by 2030

EVs enjoyed a period of significant appeal owing to their quiet and smooth operation.

However, the advent and mass production of ICE vehicles in the early 20th century

relegated EVs to niche status. Their performance and range being hindered by battery

technologies of the time did not help either [12].

Renewed interest in electric mobility emerged in the late 20th century when the devel-

opment of lithium-ion batteries in the 1990s enabled improvements in energy density and

longevity [13]. From 2011 onward, the global EV market has experienced exponential

growth. By the early 2020s, the state of the EV market had transformed dramatically.

Global EV sales exceeded 3 million units annually as key markets in Europe, the United

States, and China embraced a transition to cleaner mobility solutions [14]. Contem-

porary EV models now casually achieve ranges of over 300 km per charge and benefit

from fast-charging capabilities [14]. Current projections indicate that by 2030, in some

regions, EVs could constitute more than 35% of new vehicle sales, driven by both declin-

ing battery costs and policy frameworks incentivizing clean energy transitions [12], [14].

Fig. 2.1 breaks down the EV sales share expected by the year 2030 by vehicle type [1].
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2.3 Electric Vehicles: Benefits and Market Barriers

2.3.1 Environmental and Economic Advantages

The transition from ICEs to EVs is driven by multiple advantages spanning environmen-

tal, energy efficiency, economic, and grid integration domains. Starting with the green

benefits, EVs eliminate tailpipe emissions, leading to reductions in local air pollutants

(NOx, PM2.5) and greenhouse gases (GHG) when compared to ICEs [15]. Well-to-

wheel lifecycle assessments confirm that battery EVs produce lower GHG emissions than

ICEs, especially in regions with low-carbon electricity generation [15], [16]. Moreover,

emissions-responsive charging strategies can further reduce lifetime GHGs by aligning

charging with periods of higher renewable output [17]. In urban settings, the removal of

tailpipe emissions leads to improved air quality and attendant healthcare cost savings

[18]. However, the net environmental gain depends critically on the carbon intensity

of the electricity mix and local charging patterns. In areas with high-emission grids,

benefits may be less noticeable [19].

Focusing on energy efficiency, EVs achieve higher conversion efficiencies, often ex-

ceeding 80% from battery to wheels, whereas typical ICEs convert only 20-30% of fuel

energy into traction [20]. Regenerative braking further recovers kinetic energy during

deceleration [20]. As a result, EVs can realize two-fold or greater improvements in energy

efficiency per kilometre driven relative to ICEs [21].

The higher energy efficiency of EVs, coupled with lower unit electricity costs versus

gasoline, leads to significant per-kilometre fuel savings [22]. The simpler mechanical

architecture of electric drivetrains also reduces maintenance requirements and unsched-

uled downtime, driving down total cost of ownership over vehicle lifetimes [23]. When

societal side effects, such as reduced healthcare expenditures from cleaner air, are taken

into consideration, net economic benefits increase further [24]. Nonetheless, the shift to
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EVs can decrease gasoline tax revenues. A recent example is the pausing of the con-

sumer federal carbon tax in Canada. This requires alternative fiscal measures to sustain

transportation funding [25].

Far from being passive loads, EV batteries represent distributed energy storage capa-

ble of providing supplementary services to the grid. Vehicle-to-grid (V2G) and vehicle-

to-building (V2B) schemes allow aggregated EV fleets to engage in peak shaving, fre-

quency regulation, and reactive-power support [26]. By scheduling charging during off-

peak hours and discharging when demand is high, EV owners can realize bill savings and

revenue streams, while system operators benefit from reduced peak loads and improved

stability [27]. One thing that comes to mind when considering this is: How is this go-

ing to affect the vehicle’s battery? Well, modelling studies demonstrate that large-scale

V2G deployment can deliver spinning reserves and support the integration of variable

renewables without compromising battery health when coordinated optimally [28].

2.3.2 Persistent Market Barriers

On the other hand, the adoption of EVs is slowed down by several challenges. The

main factor mentioned throughout literature that contributes to consumer hesitation in

adopting EVs is “range anxiety,” which refers to the fear that an EV will run out of bat-

tery power before reaching a charging station. Pesch et al., for instance, emphasize that

range limitations compared to ICEs remain a primary impediment affecting consumer

choices and overall market growth [29].

Adding insult to injury, Olayode et al. note that the availability (or rather unavail-

ability) of charging stations, restricts EV usage in regions with sparse infrastructure,

intensifying range anxiety further [30]. The development of adequate charging infras-

tructure is crucial for boosting EV adoption. Numerous studies highlight the lack of

sufficient charging stations as a major concern [31]–[33]. Morrissey et al. argue that
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fast-charging networks could significantly boost sales, yet the initial investment and

projected low adoption rates make widespread implementation economically challeng-

ing in the short-to-medium term [33]. The findings by Benmouna et al. reinforce that

establishing a reliable network of charging stations is essential for user confidence in

transitioning to electric mobility [34].

The initial purchase price of EVs remains a notable barrier. While battery prices have

been decreasing, they continue to be higher than their ICE counterparts, deterring many

consumers [35], [36]. Economic incentives from governments can mitigate this barrier

by making EVs more financially appealing [37]. Nevertheless, Pesch et al. suggest that

despite potential future cost reductions, current expenses and economic viability remain

significant roadblocks [29].

Since range anxiety can be considered as the major barrier facing EV adoption, the

work in this thesis aims to target it by giving users more peace of mind regarding their

EV battery health. The more confidence we have in our methods of estimating the

battery’s states, the less hesitation users have in moving over to the electric side. The

next section discusses the main EV battery states, how batteries age with time, and the

problems we face in estimating these states.

2.4 Battery States and Estimation Techniques

2.4.1 Key Battery State Metrics

The SoC and SoH are fundamental metrics in battery management for EVs. Fig. 2.2 visu-

alized the difference between them. SoC is defined as the ratio of the battery’s available

capacity to its nominal capacity, reflecting the remaining energy and directly informing

driving range and charge control strategies. Common SoC estimation techniques include

voltage‐based open-circuit voltage mapping, Coulomb counting, and dynamic observer

models.
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Figure 2.2: SoH refers to the available usable battery capacity, while
SoC refers to the available capacity with respect to the nominal capacity.

Conversely, SoH quantifies capacity degradation and impedance growth relative to

the initial state, serving as an indicator of ageing and performance decline. Accurate

SoH assessment supports prognostics, safety management, and replacement scheduling

by measuring the loss of usable capacity and power capability over time.

Inaccurate estimation of SoC and SoH pour directly into the range anxiety problem.

If they are underestimated, then the vehicles are not pushed to their full potential. It

can also result in premature replacement calls for batteries, which leads to unnecessary

material waste. On the other hand, overestimation gives users a false sense of optimism,

which can end up leaving them stranded without a charging station nearby in the end.

Moreover, as batteries age (in other words, as the SoH decreases), EV batteries be-

come less stable and predictable. In some incidents, this instability can lead to thermal

runaways and spontaneous fires in the battery, risking the lives of EV users.

Our work directly targets these issues by providing a framework to improve the accu-

racy of SoH estimation. In the next subsection, we review the different SoH estimation

methods, their advantages and their shortcomings, and how our work contributes to
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addressing said shortcomings.

2.4.2 SoH Estimation Techniques

Accurate and low‑cost SoH monitoring is indispensable for safe fast‑charging, warranty

decisions and second‑life allocation of EV batteries. The SoH estimation techniques

can be broadly categorized into three distinct approaches: direct methods, model-based

methods, and data-driven techniques. Each approach has unique characteristics, ad-

vantages, limitations, and applicability, particularly concerning computational demands

and sensor requirements. Table 2.1 compares between the pros and cons of the three

approaches.

Direct Methods

Direct methods for SoH estimation typically involve the measurement of key battery

parameters such as voltage, current, and temperature. These methods provide immedi-

ate insights into the battery’s condition but often lack the capacity to generalize across

different operational circumstances.

Coulomb Counting: This technique calculates the SoH based on the integral of the

current over time, often requiring initial capacity information for accuracy. The equation

is mathematically expressed as:

Q =
∫ t

0
I(t)dt (2.1)

where Q is the charge, and I(t) is the instantaneous current input. This is straight-

forward, but it is prone to measurement errors and cumulative drift over time due to

self-discharge and inaccurate initial condition references [38].
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Table 2.1: High‑level comparison of the three principal State‑of‑Health
(SoH) estimation paradigms.

Technique General advantages General drawbacks
Direct • Immediate, sensor‑level

insight into battery con-
dition

• Low algorithmic com-
plexity & minimal
on‑board compute

• Hardware already
present in most BMSs
(current shunt, voltage
taps)

• Limited ability to gen-
eralize across usage pat-
terns or chemistries

• Sensitive to noise, drift
and cumulative measure-
ment error

• Some methods (e.g.
OCV) require rest peri-
ods that vehicles rarely
experience in service

Model‑based • Physically interpretable:
parameters map to real
ageing phenomena

• Good accuracy under
known operating ranges

• Can fuse multiple sensor
channels via Kalman or
particle filters

• Depend on accurate cell
parameters and age-
ing‑dependent re‑tuning

• Performance degrades
outside calibrated tem-
perature/load windows

• Requires extensive
knowledge of internal
battery reactions

Data‑driven • Capture complex,
non‑linear ageing signa-
tures without explicit
physics

• Scalability: once trained,
inference is fast and sen-
sor‑agnostic

• Heavy training‑time com-
pute: requires large, di-
verse datasets

• Performance can vary
across chemistries and
duty cycles without
re‑training

• Security and privacy con-
cerns when using cloud
offloading
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Voltage-Based Methods: These methods involve measuring the open-circuit voltage

(OCV) after the battery is allowed to rest and using voltage thresholds to estimate SoH.

The main equation here is derived from the Nernst equation, which relates voltage to

the concentration of chemical species within the battery [39]. These methods cannot be

used with operating vehicles, since the rest period for the battery is not guaranteed.

Electrochemical Impedance Spectroscopy (EIS): EIS measures the impedance of a

battery over a range of frequencies, allowing for the assessment of internal resistance

changes, which correlate with ageing and capacity loss. The impedance can be expressed

as:

Z(jω) = R + 1
jωC

(2.2)

where R is the resistance and C is the capacitance related to the battery’s elec-

trochemical properties [40]. These methods can provide detailed insights but require

sophisticated equipment, making them less feasible for on-board applications.

Model-Based Methods

Model-based methods employ mathematical representations of battery behaviour to es-

timate the SoH, often simulating the electrochemical processes involved.

Equivalent Circuit Models (ECMs): The battery is modelled as a combination of ideal

components (resistors, capacitors) to represent its dynamic behaviour. An example of

this model can be denoted by the equation:

Vbat = Voc − I ·R− Q

C
(2.3)
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where Vbat is the battery voltage, Voc is the open-circuit voltage, R is the inter-

nal resistance, and C represents capacitance [41]. While ECMs can accurately reflect

small-signal behaviours, they require tuning and may not perform well under variable

conditions.

Kalman Filters: Kalman filtering techniques are employed to estimate the battery

state based on current and voltage measurements. The Kalman filter updates its pre-

dictions based on new observations [39].

Particle Filters: This filtering technique uses a set of particles to represent probable

states of the system. It is particularly useful for non-linear systems and can incorporate

dynamic changes in SoH. A simplified form of the particle filter can be summarized with

the equations:

Xk = f(Xk − 1, Uk) + Wk (2.4)

Zk = h(Xk) + Vk (2.5)

where Xk and Zk represent the state and measurements, respectively [42].

However, these methods require extensive knowledge of internal battery chemistry

and reactions [38].

Data-Driven Methods

Data-driven approaches use machine learning algorithms and large datasets to improve

estimation accuracy without detailed electrochemical modelling. Initial data-driven

methodologies primarily utilized basic statistical techniques and linear regression models.
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For instance, [43] demonstrated that simple regression models could provide a baseline

for evaluating battery conditions based on historical data. However, these methods often

suffered from limitations in accuracy when exposed to real-world data variabilities.

Techniques such as support vector machines (SVM) and neural networks began to

receive attention as they capture complex nonlinear relationships. In 2019, Li et al.

published a comprehensive review of various data-driven health estimation methods and

highlighted the rising use of machine learning [43]. Alongside neural networks, methods

using ensemble techniques, like AdaBoost, emerged, further enhancing forecast reliability

in estimations [44]. Ref. [45] pointed out that attention mechanisms integrated within

neural networks enhance predictive capacities, particularly in understanding temporal

patterns of battery health during cycles. Furthermore, researchers such as [46] focused on

incorporating Long Short-Term Memory (LSTM) networks to address the dependency

of battery performance over time.

Despite these advances, data-driven approaches face challenges regarding high com-

putational requirements, the necessity for extensive training datasets, and performance

variability across different battery chemistries. As highlighted by Massaoudi et al., even

state-of-the-art deep learning methods require accurate labelling and significant compu-

tational resources to perform effectively in various contexts [47]. Moreover, integrating

domain knowledge into data-driven models remains a considerable difficulty.

Because of the high accuracy of data-driven approaches, and their independence of

electrochemical battery knowledge, they were picked as the focus of our work. Our work

aims to target three of these problems:

• High computational requirements: by offloading a significant portion of computa-

tion to be run on remote cloud servers, instead of on-board the vehicle.
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• The need for extensive labelled datasets: by making use of the vastly available

unlabelled datasets through Self-Supervised Learning (SSL)

• Security concerns regarding vehicle data collected: by keeping the data on the ve-

hicle, and only communicating aggregations with the cloud server using Federated

Learning (FL).

2.5 Conclusion

This chapter traced the path from early ICEs to today’s EVs, showing how environmental

pressures, policy mandates, and advances in lithium-ion technology have pushed the

industry toward electrification. While EVs deliver clear efficiency and emission benefits,

their widespread adoption is slowed by range anxiety, infrastructure charging gaps, and

the still high price of battery packs. Because these barriers all hinge on battery reliability,

accurate in-field estimates of SoC and, more critically, SoH are essential.

The survey compared direct, model-based, and data-driven SoH estimation meth-

ods. Direct and model-based approaches are lightweight and physically interpretable

but struggle under real-world noise and diverse duty cycles. Data-driven techniques

can capture those complexities, yet they demand extensive labelled datasets, substantial

processing power, and strict safeguards for driver privacy. These three pain points define

the practical gap that the remainder of this thesis aims to close.

The next chapters therefore turn to three complementary technologies: cloud com-

puting to shoulder heavy training workloads, SSL to unlock the value of unlabelled fleet

data, and FL to protect user privacy by keeping raw records on the vehicle. Together,

they form the backbone of the combined framework introduced in Chapter 5, which will

be tested experimentally in Chapter 6.
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Chapter 3

Cloud Computing

3.1 Introduction

This chapter is based on a literature review journal paper that we published in 2024 [2].

Minor modifications were made to the original text to give context and to allow logical

flow with the rest of the thesis.

Section 3.2 covers background information on cloud computing, its different service

models, benefits, challenges, and recent developments. Section 3.3 reviews the work

done in literature and the industry regarding cloud-based battery management systems.

Section 3.4 lists the identified gaps in research and recommends areas of research for

future work.

3.2 Cloud Computing Overview

Cloud computing, as defined by the National Institute of Standards and Technology

(NIST), is a service model that provides easy, on-demand access to a variety of shared

computing resources, like networks, servers, storage, and applications [48]. This model is
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Figure 3.1: Services offered by IaaS, PaaS, and SaaS.

characterized by its ability to offer self-service provisioning of resources as needed, acces-

sibility over a wide range of devices via the network, a multi-tenant environment where

resources are shared among multiple users, the flexibility to scale services up or down

based on demand, and a pay-per-use system that ensures resource usage is measured and

transparent for both the provider and the consumer [48]. These fundamental attributes

make cloud computing a dynamic and efficient way to handle computing needs.

Cloud computing offers different service models that cater to various user needs and

requirements. The primary cloud service models are Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS) [48]–[52]. These models

provide distinct levels of abstraction and functionality, allowing users to access comput-

ing resources and services based on their specific needs. Fig. 3.1 visualizes a comparison

between the different services offered by IaaS, PaaS, and SaaS. It can also be perceived

as the separation between what the service model and the user manages.

1. IaaS: IaaS provides virtualized computing resources over the internet. Users can

rent virtual machines, storage, and networking resources on a pay-as-you-go basis.

This model offers flexibility and scalability, allowing users to manage and control
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their infrastructure, including operating systems, applications, and data, while the

cloud provider manages the underlying hardware.

2. PaaS: PaaS offers a platform that allows developers to build, deploy, and man-

age applications without the complexity of infrastructure management. Users can

access development tools, databases, middleware, and other resources needed to

develop and run applications. PaaS providers manage the underlying infrastruc-

ture, allowing developers to focus on application development and deployment.

3. SaaS: SaaS delivers software applications over the internet on a subscription basis.

Users can access and use software applications hosted in the cloud without the need

for installation or maintenance. SaaS applications cover a wide range of services,

including email, collaboration tools, customer relationship management (CRM),

and productivity software.

Despite its benefits, cloud computing faces several challenges and drawbacks that

impact its adoption and effectiveness. Some of the key challenges and drawbacks facing

cloud computing include:

1. Latency: One of the significant challenges in cloud computing is latency, especially

for real-time applications. The distance between remote cloud servers and end-

users can result in delays in data processing and communication, affecting the

performance of time-sensitive applications [53]–[55].

2. Security and Privacy Concerns: Security and privacy issues remain a major draw-

back of cloud computing. Data breaches, unauthorized access, and lack of control

over sensitive data stored in the cloud pose significant risks to organizations and

users [53], [54], [56].
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3. Reliability and Availability: Cloud services are susceptible to outages and down-

time, impacting the availability of applications and services. Reliability concerns

arise due to the dependence on third-party cloud providers for critical IT infras-

tructure [53]–[55].

4. Cost: While cloud computing offers cost-saving benefits, the overall cost of cloud

services can escalate, especially for resource-intensive applications. Organizations

may face unexpected expenses related to data storage, data transfer, and additional

services [53], [54], [57].

5. Data Transfer Bottlenecks: As applications become more data-intensive, data

transfer bottlenecks can occur, complicating data placement and transport within

cloud environments. This can lead to increased costs and inefficiencies in data

management [58].

6. Dependency on Internet Connectivity: Cloud computing heavily relies on Inter-

net connectivity for data access and communication. Any disruptions in internet

connectivity can impact the availability and performance of cloud services [54],

[55].

7. Lack of Location Awareness: Cloud computing may lack location awareness, lead-

ing to challenges in data placement, resource allocation, and ensuring compliance

with data sovereignty regulations [58], [59].

8. Limited Mobility Support: Cloud computing may face limitations in supporting

mobile and Internet of Things (IoT) devices that require seamless mobility and

connectivity. Lack of mobility support can hinder the effectiveness of cloud-based

applications [54], [59].

9. Ethical and Legal Concerns: Cloud computing raises ethical and legal challenges
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related to data ownership, data privacy, compliance with regulations, and the

ethical use of data stored in the cloud [54].

With the wide appeal of cloud computing in different industries and use cases, in-

tensive research has been driving further advancements to address the aforementioned

issues and drawbacks. Some relevant advancements are as follows:

1. Edge Computing: Edge computing has emerged as a significant trend in cloud

computing, enabling data processing closer to the source of data generation. This

approach reduces latency, enhances real-time processing capabilities, and improves

overall system efficiency [60].

2. Fog Computing: Fog computing has gained traction as a complementary approach

to cloud computing, focusing on dispersing computing resources throughout the

network’s edge. This model addresses the limitations of traditional cloud comput-

ing by bringing computing resources closer to the data source, enabling faster data

processing and analysis [60].

3. Hybrid Cloud Solutions: Organizations are increasingly adopting hybrid cloud

solutions, which combine public and private cloud services. This approach offers

greater flexibility, scalability, and data security, allowing organizations to leverage

the benefits of both cloud deployment models [60].

4. Serverless Computing: Serverless computing, also known as Function as a Service

(FaaS), has gained popularity for its ability to execute code in response to events

without the need to manage servers. This model offers cost-efficiency, scalability,

and simplified application development and deployment [61].

5. Green Computing: With a growing focus on environmental sustainability, green

computing practices have become a key consideration in cloud computing. Efforts
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to reduce energy consumption, optimize resource utilization, and minimize carbon

emissions are driving advancements in eco-friendly cloud solutions [62].

6. Blockchain Integration: The integration of blockchain technology with cloud com-

puting has introduced new possibilities for enhancing data security, transparency,

and trust in cloud-based systems. Blockchain-based solutions are being explored

to address data integrity and security challenges in cloud environments [63].

7. Data Security Enhancements: Advancements in cloud computing have led to im-

proved data security measures, including enhanced encryption techniques, secure

data storage solutions, and robust access control mechanisms. These developments

aim to address data privacy concerns and ensure the confidentiality of sensitive in-

formation [64], [65].

8. IoT Integration: Cloud computing has played a crucial role in supporting the IoT

ecosystem by providing scalable infrastructure, real-time data processing capabil-

ities, and seamless connectivity for IoT devices. Cloud platforms are evolving to

meet the demands of IoT applications and enable efficient data management and

analysis [66], [67].

9. Multicloud Computing: Multicloud Computing strategies involve utilizing multi-

ple cloud services from various providers to fulfill specific business needs, offering

benefits like redundancy, performance optimization, cost savings, and enhanced

security. This approach ensures operational continuity, allows for performance

tuning based on workload requirements, enables cost-effective resource utilization,

and provides robust security measures. Additionally, multicloud offers scalability

and flexibility, allowing businesses to adjust resources according to demand and

adapt to evolving needs without being tied to a single provider’s limitations [68]–

[71].
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The merger of IoT and cloud computing brings forth critical improvements such

as the ability to scale systems more effectively, superior processing power for handling

vast amounts of data, greater storage capabilities, the provision of analytics in real-

time, a reduction in operational costs, and the strengthening of security protocols [72]–

[77]. One significant benefit is the scalability that cloud computing provides to IoT

systems. Cloud resources can easily scale up or down based on the demand of IoT

applications, ensuring optimal performance and resource utilization [75]. Additionally,

cloud computing offers high computational power that is essential for processing the

vast amounts of data generated by IoT devices, enabling efficient data analysis and

insights [73], [76]. Moreover, cloud computing enhances storage capacity for IoT systems,

allowing for the seamless storage of large volumes of data generated by IoT devices

[74]. Real-time analytics is another advantage, as cloud platforms can process data

quickly and provide instant insights, enabling timely decision-making in IoT applications

[77]. The cost-effectiveness of cloud computing benefits IoT deployments by reducing

infrastructure costs and operational expenses [72].

In our domain of State-of-Health (SoH) estimation, cloud resources offer us an op-

portunity to tackle the first of the three problems we are addressing: high computation

needs. Cloud computing gives us remote resources to offload the training and testing of

data-driven methods. In the next section, we discuss a general architecture for cloud-

BMS, then review the work that has already been done in both literature and industry

in offloading Battery Management System (BMS) functionalities to the cloud.

3.3 Cloud-based Battery Management Systems

3.3.1 Cloud BMS in Literature

By utilizing the vast computational resources and storage capabilities of the cloud, data

from multiple BMS can be aggregated and analyzed in real-time. More demanding
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estimation techniques can also be offloaded from onboard the car to a cloud server.

This allows for advanced algorithms to predict battery life, optimize charging cycles,

and prevent failures through predictive maintenance. Moreover, cloud-based platforms

can facilitate remote firmware updates, ensuring that BMS are always equipped with

the latest software enhancements. The scalability of cloud services also means that as

the number of batteries increases, the system can easily expand to meet the growing

demand without the need for significant hardware investments. Thus, cloud computing

not only overcomes the inherent limitations of standalone BMSs but also adds a layer of

intelligence that can lead to more sustainable and efficient battery usage.

Fig. 3.2 showcases a general architecture for cloud-BMS. Each vehicle has on-board

sensors for current, voltage, and temperature. On the cloud side, each of the vehicles has

a corresponding instance of the BMS with its functionalities operating over its data. The

readings from each vehicle join readings collected from multiple other vehicles, over the

lifetime of the system. The data from multiple vehicles can be analyzed and managed

together to reach what is called fleet management. The previously discussed features of

a BMS are now offloaded on the cloud side. This offloading allows access and control

of this data through remote machines. This architecture acts as the blueprint for our

proposed framework later on.

Regarding proposed frameworks in literature for cloud-based BMS, Ref. [78] presents

the CHAIN framework, a cyber hierarchy and interactional network designed to optimize

battery performance across its full lifespan. As shown in Fig. 3.3, it introduces a

multi-scale, multi-condition control system that uses cloud-based data management and

artificial intelligence to enhance the security and stability of battery systems for Electric

Vehicles (EVs). Through its multi-scale design, CHAIN enables the integration of data

from different scales, from molecular to system level. The incorporation of this multi-

scale modelling enhances battery characterization by modelling electrochemical kinetics.
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Figure 3.2: General Cloud-BMS architecture.

Multi-condition control refers to managing the battery under various conditions, not just

while the vehicle is driving. These conditions include charging, driving, and parking. The

CHAIN framework faces five key challenges: Multi-physical Modelling, which requires

detailed models to understand electrochemical reactions; Perception and Data Space,

which needs high-precision sensors and tools for nondestructive evaluation; Network

and Communication, demanding efficient networks with low latency; Hash Rate and

Computing, which calls for high computing power for big data and model processing; and

Safety and Security, to protect against cyber threats in network-connected vehicles. In

our proposed framework, we address some of the problems faced by CHAIN: no reliance

on electrochemical reaction understanding, high network overhead, and security.

Capitalizing on the work done in [78], Ref. [79] presents a cloud-based BMS uti-

lizing the CHAIN framework. It introduces a layered ”cloud to things” architecture

comprising end sensing, edge computing, cloud computing, and a knowledge repository.
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Figure 3.3: CHAIN framework involves data at multi-scales and multi-
ple vehicle conditions.

This structure enables complex detection, prediction, and optimization functions for bat-

tery management across multiple scales, from individual cells to entire transportation

systems. The CHAIN framework is used to provide multi-scale data visualization and

hierarchical functional display, enhancing the BMS’s capabilities in state estimation,

thermal management, cell balancing, and fault diagnosis. The paper contributes to the

CHAIN framework by proposing a multi-scale integrated modelling strategy for batter-

ies and remote upgrading capability of the controller, aiming to improve the precision

and adaptability of battery management systems. Remote upgrading is one of the main

concepts utilized in our proposed framework to allow all vehicles in the fleet to learn

from each other’s data.

Staying within the same territory of work under the CHAIN framework, a method

for estimating the SoH is presented in Ref. [80]. This method utilizes an end-cloud

collaboration approach, which merges a cloud-based deep learning model and an end-

based empirical model, thereby achieving high accuracy and real-time performance in

SoH estimation. The cloud-side model, which is based on the Transformer architecture,

performs feature extraction and estimation, having Root Mean Square Error (RMSE)
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and Mean Absolute Error (MAE) of approximately 0.8%. The collaboration between

the cloud and the end is facilitated through the application of the Kalman Filter and

Unscented Kalman Filter (UKF), which are used to integrate and iteratively update

the models. This hybrid approach of a simple model running on the vehicle, supported

by a more complex model running on the cloud influenced the design of our proposed

framework. Some computationally-intensive processing is pushed to the cloud, while

other simpler processing is left on the vehicle. We also propose a hybrid approach that

allows shifting between two models according to environmental conditions.

A similar approach under CHAIN was introduced for State-of-Charge (SoC) estima-

tion in Ref. [81]. The proposed method involves end-cloud collaboration, combining

a high-accuracy deep learning model on the cloud side based on Convolutional Neural

Networks (CNNs) and Long Short-Term Memory (LSTM) networks with a fast estima-

tion model on the end side, and utilizing an Extended Kalman Filter (EKF) to fuse

results from both ends. The method achieves an RMSE and MAE of approximately

1.5% and 1%, respectively. However, the paper identifies gaps in the generalizability

of SoC estimation under different operating conditions, particularly for different aging

states of batteries. Again, the hybrid approach shows up. In our case, our hybrid pro-

posal addresses the issue which this paper faces, inconsistent performance with different

operating conditions.

Implementations and proof-of-concepts for different cloud-based BMS have been in-

troduced in literature, with some of them proposing solutions to different problems such

as data complexity, network bandwidth consumption, visualization, monitoring, and

operational cost efficiency.

Ref. [82] introduces an algorithm for joint estimation of SoC using High Integrity

Filter-Particle Filter (HIF-PF), validated under Beijing Bus Dynamic Stress Test (BBDST)
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conditions. The system demonstrates monitoring capabilities for battery voltage, tem-

perature, and current, alongside real-time SoC estimation utilizing tools like Texas In-

struments’ BQ76PL455EVM board, ACS712-ELC-30A Hall current sensor, and software

such as 3dsMax and Unity3D. The proposed system features communication in a single

direction, physical system to the digital twin system. Communication in the opposite

direction can offer updating of the model parameters on the physical side. Bidirectional

communication allows for remote updating of model parameters, an essential part of the

continuously improving nature of our framework.

Ref. [83] introduces algorithms for SoC and SoH estimation using Adaptive Ex-

tended H-infinity Filter (AEHF) and Particle Swarm Optimization (PSO), respectively.

The system was validated with prototypes and tested with lithium-ion and lead-acid

batteries, demonstrating monitoring capabilities and diagnostics. This approach uses

model-based techniques of estimation, which we have already discussed its drawbacks in

Subsection 2.4.2.

Ref. [84] proposes a four-layer networked structure that integrates cloud computing

and edge computing technologies to enhance BMS performance. The architecture in-

cludes an Edge Computing Layer for real-time data processing, a Data Access Layer for

secure data transmission, a Data Storage and Analysis Layer for storing and analyzing

battery operation data, and a Data-Based Application Layer for lifecycle management

applications. This structure aims to improve decision-making and optimization in bat-

tery management by facilitating service integration across infrastructure, data, platform,

and software domains. An equivalent circuit model is used for the battery’s state estima-

tion, which the paper states offers much faster calibration compared to more complicated

models. This multilayer structure somewhat resembles our approach of breaking down

processing and splitting it on different locations.

Ref. [85] introduces a three-round feature selection (TRFS) approach to reduce
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data complexity and measurement noise impact, employing a Random Forest Regressor

(RFR) for accurate SoH estimation. The concept of data complexity reduction is used

in our framework to reduce network communication overhead, using Federated Learning

(FL).

Ref. [86] presents a digital twin architecture for real-time monitoring of EV batteries,

focusing on SoC and SoH estimation. The authors propose a model that combines his-

torical data and periodic retraining to reflect battery aging. The proposed architecture

deploys the SoC estimation model onboard the vehicle since it needs to be real-time,

while it offloads the SoH estimation to the cloud. It utilizes machine learning techniques

like Random Forest, Light Gradient Boosting, and a Deep Neural Network. Periodic

retraining, again, is a highlight of our proposed framework.

Ref. [87] proposes a cloud-based method for estimating the SoH of lithium-ion bat-

teries using sparse charging data. The authors propose a Health Indicator (HI) feature

derived from sparse data and validate its correlation with battery health through experi-

ments with NASA’s 18650 lithium-ion batteries. Results show that the method achieves

low test errors under 10s sparsity, but accuracy decreases with sparser data. There are

limitations in this approach when data sparsity exceeds 30s and suggested future work

is to optimize constant voltage (CV) interval selection and validate the method with

real-world cloud data from more vehicles. We utilize sparse charging data in our SoH

estimation models on data collected from real-world vehicles.

Ref. [88] presents a Decentralized Intelligent BMS designed for smart battery man-

agement using cloud computing, which improves the precision of key parameters like

SoC and SoH, enhancing the safety and lifespan of battery-based energy storage sys-

tems. The contributions include a distributed BMS design for increased security and

a Petri Nets-based modelling procedure for clear operational conditions. Future work

involves refining measurements, particularly SoH, for accurate predictive diagnostics and
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battery remaining useful life (RUL) calculation. This distributed approach to security

is one of the influences for our approach of using FL.

Ref. [89] presents the Kubernetes-Orchestrated IoT Online Battery Monitoring Plat-

form (KBMP), which integrates Kubernetes and cloud-edge technology to enhance bat-

tery management. The platform ensures low-latency data transmission and analysis,

utilizing a K-Means clustering algorithm for accurate thermal runaway (TR) warnings.

Experimental results demonstrate that KBMP can provide TR warnings 30 minutes

in advance, reduce data transmission latency by up to 20%, and decrease replica scal-

ing latency by 50% compared to non-Kubernetes-integrated platforms. Kubernetes can

be used in the implementation of our proposed framework to orchestrate its scaling,

upgrading, and management.

By analyzing the work done in the papers mentioned above, the main features of a

cloud-based BMS have been identified as follows:

1. Monitoring & Diagnostics: the BMS stores collected data on the cloud, allowing

access and further analytics to be performed on it.

2. Online Learning: the BMS models can learn from collected data.

3. Visualization: the BMS platform allows data visualization.

Some BMS offer unique features. A summary of each cloud-based BMS mentioned with

the features it provides is featured in Table 3.1. Rows without any asterisk in the

”Features” column are cloud-end collaborative algorithms for estimating, rather than a

cloud-based BMS platform.
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3.3.2 Industry Solutions

This subsection has been adapted from our published paper as-is. The goal of the paper

was to review the work that has been done in cloud-BMS in both literature and industry,

so we have kept this part here for the sake of completeness.

In addition to the work introduced in the literature, multiple cloud-BMS solutions

are offered in the industry market. Table 3.2 lists the features of different cloud BMS

solutions available. Bosch’s cloud BMS’s aging prediction utilizes usage data from con-

nected vehicles to forecast battery conditions up to eight years ahead, combining physical

models with AI for high accuracy. Lifetime optimization is achieved through standard,

health, and fast charging modes, calculated to extend battery life or expedite charging

times. The usage certificate provides a secure, transparent record of battery information,

enabling accurate valuation based on certified KPIs, thus facilitating market transac-

tions. Additionally, the ‘Usage certificate to go’ service assesses the health of batteries

in existing vehicles through cloud-uploaded data, ensuring a comprehensive evaluation

of battery health [90].

The Elysia Cloud Platform provides battery health and life insights. Its life forecast-

ing feature captures non-linear degradation and predicts various states of health. Elysia

also monitors fleet-wide degradation trends, pinpointing batteries that may not meet

life targets and offering tailored recommendations for each vehicle. The defect detection

capability ensures early identification of potential issues at the cell and pack level. For

OEMs, the platform identifies trends in battery production quality. Additionally, its

simulation toolkit allows for the assessment of usage impact on battery life and perfor-

mance, which is crucial for product development and cost management. The platform’s

embedded BMS algorithms provide health-adaptive BMS parameters by supporting up-

dates over-the-air, optimizing performance while addressing warranty concerns. The

platform can also integrate with Simulink models [91].
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The TWAICE Battery Analytics Platform features hybrid modelling, combining

physical modelling with big data analytics for lifecycle accuracy and resilience. It en-

sures data security and compliance with industry standards like TISAX and offers real-

time data integration services compatible with various systems such as BMS, EMS, and

SCADA. Additionally, the platform provides instant battery development tools, SoH

monitoring, and high-performance data processing engines for accurate battery insights.

This solution is designed to enhance the transparency, efficiency, and reliability of bat-

tery systems, ultimately contributing to the sustainability of future energy and mobility

markets [92].

Zitara offers a cloud and embedded battery management software called Zitara Live.

It works with pack hardware across battery chemistries, including Lithium Iron Phos-

phate (LFP), and delivers customized, validated SoC, SoH, and safety outputs. Zitara

Live continuously monitors the state of every battery in the fleet, updating critical per-

formance parameters as they change over time. It also uses onboard simulations to

predict energy, power, and heat generation [93].

Eatron Technologies has developed a BMS known as BMSTAR. This system is built

on a platform that is independent of hardware and is based on physical models. It

functions efficiently at the edge and is paired with a cloud counterpart for continuous,

adaptive enhancements through over-the-air (OTA) updates. The BMS solution from

Eatron uses AI algorithms and cloud technology for estimation of the RUL of the battery.

Additionally, it includes safety features powered by AI for detecting cell anomalies and

early signs of thermal runaway events [94].

Newten has designed a BMS that creates digital replicas of physical systems, in-

tegrated into real-time firmware. They utilize cloud-based solutions for accurate es-

timations of the battery’s RUL, thereby reducing battery degradation. Newten also

underscores the importance of cloud BMS in enhancing battery lifetime, charging, and
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safety [95].

Bacancy’s Cloud BMS Solution is designed for real-time visualization and monitoring

of large-scale battery systems in EVs. The solution, named IONDASH, integrates IoT

and cloud computing technologies. It features remote data logging, real-time parameter

tracking, and GPS navigation for precise location tracking. IONDASH provides an inter-

active user interface for monitoring multiple BMS devices, allowing users to view critical

battery parameters such as SoC, SoH, cell temperature, and voltage levels. Addition-

ally, the platform includes in-built fuse circuit protection to safeguard against voltage

and current spikes. Bacancy’s product range caters to various EV market requirements,

offering BMS solutions for 16-cell, 22-cell, and high voltage systems, emphasizing cus-

tomization as per specific cell requirements [96].

The EVE-Ai Fleet Analytics platform, developed by Electra, offers a BMS solution

designed for EV fleets. It provides real-time battery data analysis and insights for any

fleet size. The system generates SoH trends and predictive models, identifies potential

battery faults and failures, and enhances overall fleet efficiency and performance. Ad-

ditionally, it offers insights into charging patterns and driver behaviour, enabling cost

reduction and improved return on assets. The EVE-Ai 360 Adaptive Controls further

optimize fleet management by resolving issues identified by the analytics, facilitated by

cloud connectivity and over-the-air updates [97].

3.4 Analysis and Future Work Recommendations

While Section 3.3 listed significant efforts being made to leverage the power of cloud

computing to address the drawbacks of BMS, there are still some areas that need further

research and investigation:

1. Online learning: Online machine learning refers to a family of machine learning
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methods where a learner attempts to tackle predictive or decision-making tasks

by learning from a sequence of data instances one by one at each time [98]. This

approach has received attention for a wide range of applications, such as vehicle-

to-grid services, fault diagnosis of EVs, and sentiment analysis in social media [99]–

[101]. EVs generate a huge amount of data every day. Harnessing the power of

connectivity and cloud computing allows for the collection of this data and using

it to continuously train and improve existing models for functionalities like battery

state estimation. While a few papers of those mentioned in Section 3.3 address

this feature, there is still a need for proof-of-concept using real vehicle data. This

investigation could also encompass a comparison between using cloud provider

tools and open-source alternatives such as River (online machine learning library

for Python) [102] and Beaver (machine learning operations (MLOps) framework

for online machine learning) [103] by The Fellowship of Online Machine Learning.

2. Internet connectivity: Offloading certain BMS functionalities to the cloud will add

the requirement that the vehicle is continuously connected to the internet. This is

unfortunately not the case since many remote areas do not have internet access.

A possible solution to this problem that needs to be investigated would be to have

simpler and less accurate models onboard the vehicle that can run and provide the

required functionalities until the vehicle can connect again to the cloud and get

more accurate results using the more complicated models.

3. Large-scale fleet management: Fleet management involves using big data collected

from many vehicles for objectives such as monitoring the fleet’s performance and

making maintenance decisions. In Section 3.3, Ref. [104] used this kind of approach

for managing maintenance costs. Fleet management could be taken further in use

cases such as planning vehicles’ availability for ride-hailing applications based on

real-time demand, energy and fuel efficiency, waste management, controlling and
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diverting traffic in cities to less crowded routes, and predicting drivers’ behaviours

for safety.

4. Security: EVs connected to the cloud are susceptible to security threats at dif-

ferent levels. It could range from as simple as snooping on the data transmitted

between the vehicle and the cloud, to more dangerous threats such as sending

commands to the vehicle that can manipulate its control or sending false data to

the cloud that can affect the algorithms that are making decisions. Data transfer

can be secured by leveraging blockchain technologies. Their properties such as

traceability, decentralization, and encryption allow for safe transmission of data.

A notable concept for security on the edge is Data Confidence Fabrics (DCF).

DCFs are virtual overlays that enhance data security and trustworthiness. They

combine various trust technologies, such as hardware-based integrity checks and

blockchain, to measure data confidence. DCFs generate scores, normalize across

systems, and enable risk-based decision-making, bridging security, privacy, and

trust in interconnected ecosystems [105].

5. Recent cloud computing advancements: Research can be directed to investigating

how recent developments in the cloud computing field can be leveraged for EVs.

Edge and Fog computing can be used for distributing computation and decreasing

latency by moving computation closer to vehicles. Ref. [106] proposes a frame-

work for provisioning resources according to vehicles’ locations to reduce latency

and cost. Serverless Computing can be used in cases like issuing safety alerts to

drivers and sending control commands to vehicles on certain triggers. Multicloud

computing can be used for redundancy and a better geographic distribution of

computation. Research could be done to study the practical feasibility of using

these technologies.
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3.5 Conclusion

Cloud computing has matured from a convenient overflow resource to an essential part of

modern EV operation. By offloading intensive computation, long‑horizon analytics, and

rich visualization, the cloud lifts many of the constraints that still hold back on‑board

BMSs. At the same time, it introduces fresh challenges: most notably intermittent

connectivity, privacy preservation, and fleet‑scale coordination, that cannot be solved

by cloud technology alone.

The next chapter examines exactly those challenges through the lenses of Self-Supervised

Learning (SSL) and FL. Chapter 4 shows how SSL makes use of the vast amounts of

unlabelled cloud‑aggregated data to improve state estimation without increasing an-

notation cost, directly addressing the “online learning” gap identified in Section 3.4.

It then demonstrates how FL keeps sensitive vehicle data local while still benefiting

from cross‑fleet knowledge, in turn addressing the security and bandwidth considera-

tions raised in this chapter, and touching upon fleet management.
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Chapter 4

Self-Supervised Learning &

Federated Learning

4.1 Introduction

Data-driven methods for State-of-Health (SoH) estimation are, as we discussed in Chap-

ter 2 (Section 2.4.2), data-hungry. In practice, unfortunately, the vast majority of data

generated by Electric Vehicles (EVs) is unlabelled. Laboratory‐grade capacity tests that

yield ground-truth SoH labels are expensive, time-consuming, and even infeasible once

packs are in the field. As highlighted in the preceding Cloud Computing chapter (Sec-

tion 3.3), this mismatch between abundant unlabelled data and scarce labels brings us

back to two of the issues that we have already discussed:

1. On-board computational limits: Battery Management Systems (BMSs) can-

not run heavyweight training loops. At the same time, they continuously stream

collected sensor data (current, voltage, temperature, etc.). Making use of this data

without overwhelming the hardware calls for representation-learning approaches
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that can be pre-trained offline (or sparsely on-device) and then executed efficiently

during inference.

2. Bandwidth and connectivity variability: While cloud resources allow large-

scale processing, the intermittent connectivity and privacy considerations push

us towards learning strategies that extract as much structure as possible locally

before any communication. This argument is also explored further in the Federated

Learning (FL) component we introduce in the next chapter.

Self-Supervised Learning (SSL) offers a solution to both challenges. By designing pre-

text tasks that only rely on intrinsic structure within the raw signals (e.g., reconstructing

masked segments, forecasting future windows, or contrasting augmented views), SSL can

turn terabytes of unlabelled driving data into compact, information-rich representations.

These representations then act as strong initializations for downstream SoH regressors

that require far fewer labelled examples to fine-tune.

The empirical studies later in this thesis build directly on three SSL-related hypothe-

ses:

H1. Masking ratio matters: In masked-autoencoding for time-series, the fraction

of timesteps hidden during pre-training influences the granularity and quality of

learned features. Chapter 6 sweeps multiple ratios to quantify their effect on SoH

estimation accuracy.

H2. Fine-tuning strategy matters: Whether the SSL encoder is kept frozen (feature-

extractor paradigm) or unfrozen (full/partial fine-tune) can trade off adaptation

speed, and risk of overfitting. We evaluate both variants against a common dataset.

H3. SSL complements FL: Because SSL reduces label dependence, it lowers the com-

munication load in federated settings where only model updates are shared. This
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is explored further in the upcoming Federated Learning chapter.

On the other hand, EV fleets generate vast amounts of operational data that are

invaluable for accurate SoH estimation. However, simply streaming this data to a cen-

tral server is not as straightforward as it sounds. Privacy regulations (e.g., GDPR),

commercial sensitivity around driving patterns, and the sheer communication cost of

high-resolution time-series data impose strict limits on centralized training. FL offers a

practical alternative: each vehicle trains a local model, shares only model parameters,

and receives an aggregated global model that improves with every communication round.

In this way, FL preserves data privacy while still exploiting the diversity of an entire

fleet.

Section 4.2 starts by introducing SSL and the foundations it is based upon. Section 4.3

then showcases the most prominent methods to apply SSL, and motivates our method of

choice. A debate on different fine-tuning strategies is presented in Section 4.4 to lay the

ground for our experiments addressing it, and finally, Section 4.5 goes over the current

works that use SSL for SoH estimation, and pinpoints the gaps that we cover in our

work. The chapter then positions FL as the final building block in the thesis’s learning

framework. An overview of FL and its main objectives and mechanisms is introduced in

Section 4.6. The main different methods of client aggregation are showcased in Section

4.7. Finally, Section 4.8 presents how FL has been implemented in SoH estimation so

far, and the caveats that our work addresses.

4.2 Self-Supervised Learning Overview

SSL is characterized by its ability to make use of vast amounts of unlabelled data to

derive useful representations, given that high-quality labelled datasets are often scarce.

This lack of labelled data is not unique to the EV domain, but is experienced in other

critical areas like medical imaging and telecommunications [107], [108].
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SSL is built on some main foundations. At the core of SSL lies the concept of

implicit supervision, where the learning process does not rely on human-annotated labels.

Instead, SSL algorithms utilize the inherent structures and patterns present within the

unlabelled data itself as a source of supervisory signals [109], [110]. This approach relies

on the idea that the relational properties of data can provide enough context for a model

to learn effectively [111].

Tasks in SSL are categorized into pretext and downstream tasks. Pretext tasks are

designed to generate supervised signals from unlabelled data. In these tasks, the model

learns to solve a specific problem, which indirectly helps it learn relevant features of the

data for later use in downstream tasks [112], [113]. Since our data does not have ground-

truth labels, the pretext task relies on labels that can be derived from the available data.

For example, a model can be trained to determine the rotation angle of images fed to

it. This activity forces the model to learn about the fundamental components of the

image (e.g., edges, shapes), making this information transferable to different tasks such

as classification or detection. See, although the images are not labelled, we can perform

angle rotations on them and use those angles as ground-truth for the pretext task. This

process is called pre-training and is how we refer to it in our work in the following

chapters.

These learned representations can then be ”transferred” to our target task. We use

the limited labelled data that is available for our target task and adjust the learned

representations from the pretext task. This process is called fine-tuning, and the target

task is referred to as the downstream task. The process of using the pre-trained model

in the pretext task for another downstream task is called transfer learning.
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4.3 Self-Supervised Learning Methods

4.3.1 Autoassociative Self-Supervised Learning

Autoassociative SSL methods aim to predict parts of the data they are not made aware

of using parts they are. This can be in the form of: predicting the future given the past

(autoregression), predicting original data given a compressed form of it (autoencoding),

predicting masked parts of the data given other visible parts of it (masked modelling),

etc. Fig 4.1 shows a comparison between the different methods presented.

Autoregression

Autoregressive SSL predicts each element of a sequence from its predecessors. In practice,

models such as GPT employ next‐token prediction to learn representations of text that

encode rich syntactic and semantic structures of language [114]. Because prediction

proceeds sequentially, autoregressive methods are naturally applied to data with inherent

order: time series, speech, or text. They excel when one cares about generative sampling

or when causality of the sequence must be respected (e.g., speech synthesis or language

modelling). Their left‐to‐right learning also enables efficient online inference but cannot

capture bidirectional context without modification.

Autoencoding

Autoencoders compress an entire input into a lower‐dimensional latent code and then

reconstruct the full input from this code. This end‐to‐end reconstruction encourages

the encoder to capture salient global patterns. Variants include denoising autoencoders,

which corrupt inputs and learn to recover the original. Autoencoding SSL is straight-

forward and model‐agnostic, which makes it applicable to a variety of domains from im-

ages, to sensor signals, even to genomics. However, pure autoencoding may learn trivial

identity mappings unless regularized or paired with sparsity or information‐bottleneck

constraints. That is where masked modelling steps in.
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Figure 4.1: A visual comparison between different Autoassociative Self-
Supervised Learning methods.
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Masked Modelling

Masked modelling randomly hides portions of the input and tasks the model with pre-

dicting or reconstructing only the masked parts. In BERT‐style masked language mod-

elling, random tokens are masked, and the model predicts them from the surrounding

context [115]. In vision, masked image modelling (MIM) hides patches and reconstructs

pixel values or latent features [116]. By conditioning on both left and right contexts,

masked modelling enables bidirectional representation learning, capturing global depen-

dencies more effectively than autoregression. It is best used when context aggregation

(rather than causal generation) is the goal, such as regression. Masked models often

leverage transformer architectures and require careful masking strategies (mask ratio,

block versus uniform masking) to balance the learning signal and model capacity.

4.3.2 Contrastive Learning

Contrastive learning is a self-supervised paradigm that trains an encoder to differenti-

ate between similar (“positive”) and dissimilar (“negative”) data pairs without external

labels. At its core, it maximizes the agreement of representations for two views of the

same instance while dispersing others in the embedding space.

Major frameworks for contrastive learning include SimCLR and MoCo. SimCLR gen-

erates two random augmentations per sample (cropping, colour jitter, etc.) and relies on

large batch sizes to provide sufficient negatives within each mini‐batch [117]. To over-

come the need for large batches, MoCo employs a dynamic memory bank (“dictionary”)

of past embeddings and a momentum‐updated key encoder [118].

Due to their discriminative nature, contrastive learning methods are suitable for

tasks such as classification when labelled data is scarce. However, they suffer from high

computational requirements, an issue BMSs suffer from.
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Since SoH estimation is a regression problem and we are looking for lightweight

processing, autoencoding was our selection in this work. Due to the aforementioned

problem of learning trivial representations, it was coupled with masked modelling. The

methodology and masking strategy are further elaborated in Chapter 5 (Section 5.4.1).

4.4 Fine-Tuning Strategies

When it comes to fine-tuning, there is a debate on whether the pre-trained parts of the

model should be allowed to train during fine-tuning or not. “Full” fine‐tuning (FFT)

updates every parameter to maximize the capacity to learn task‐specific patterns, but

often at the cost of overwriting the general representations acquired during pre-training.

This overwriting manifests as catastrophic forgetting: the model’s performance on the

original pre-training distributions or earlier tasks degrades sharply when all parameters

are updated on new, possibly limited data [119].

In contrast, the feature-extractor (frozen) paradigm keeps all parameters of the pre-

trained model unchanged throughout the fine-tuning process, while partial fine‐tuning

methods freeze parts of the pre-trained network to preserve general knowledge and reduce

computation. A simple variant is linear probing or “head” fine‐tuning, in which only

the final classification (or regression) layer is trained while the entire feature extractor

remains fixed. This strategy is said to be effective when the downstream domain closely

matches pre-training, since low‐capacity heads suffice to specialize general embeddings

without disrupting them.

There is some middle ground between these two approaches. Adapter‐based tuning

inserts lightweight modules (adapters) into each layer of the frozen backbone. Only these

small bottleneck layers are trained, keeping the vast majority of pre-trained weights

untouched. Other approaches, such as LoRA and BitFit, inject parameters into the

frozen pre-trained model, aiming to optimize the fine-tuning process [120], [121].
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In our work, we explore the effect of full fine-tuning and feature-extractor paradigm,

and conduct a comparison between both approaches for SoH estimation.

4.5 Self-Supervised Learning in SoH Estimation

Early SSL work for SoH estimation centres on reconstruction objectives. Wang et al.

use the same dataset as our work and use autoencoding for the SSL method [122].

However, their approach shares raw data over the network, compromising users’ privacy,

and it does not offer insights into how different masking ratios or fine-tuning approaches

affect performance. Shen et al. pre-train a masked autoencoder on more than a million

unlabelled charge curves, then fine-tune with only 20% of the labels [123]. Still, their

approach keeps the masking ratio fixed at 75% and uses lab-grade datasets, which do

not resemble sensor inaccuracies in real-life data.

Chen et al. add a “degradation” loss that forces their Transformer to learn a strictly

downward health curve [124]. The monotonic rule breaks when capacity recovers after

rest, something common in real fleets. Our autoencoder has no monotonic assumption,

so it captures both fades and small rebounds we see in field data.

On the side of contrastive frameworks, Sadler et al. map real cycles to simulated

ones with a large-batch InfoNCE loss [125]. This is computationally-intensive and is not

suitable for on-board BMS.

One difference that highlights the suitability of our approach for real-world operation

that was not explored across other studies, is allowing the model to build on its own

past estimations. Other studies use the ground-truth past SoH for each estimation,

rendering the estimation trivial. Our results simulate the model operation throughout

the complete lifecycle of the vehicle.

Across studies the same gaps appear:
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1. Masking ratio effects were not explored.

2. Fine-tuning techniques were not clear.

3. Real deployment costs were ignored.

4. Data privacy was not taken into consideration.

5. Models were not tested in a real-world-like scenario.

All these gaps are tackled in our proposed framework, presenting experimental results

to support our choice of SSL hyperparameters in a real-world scenario, while protecting

users’ privacy, and taking into consideration the limited resources on EVs.

4.6 Federated Learning Overview

FL has emerged over the last decade as a distributed machine learning paradigm, mo-

tivated primarily by the need to exploit large-scale, decentralized data while preserving

privacy and reducing communication overhead. Initially proposed by Google in 2016,

FL was conceived to enable multiple clients, such as mobile devices or edge nodes, to

collaboratively train a shared global model without exchanging raw data [4]. This ap-

proach directly addresses privacy regulations (e.g., GDPR), user concerns over data

exposure, and the prohibitive costs of centralized data aggregation in settings ranging

from smartphones to Internet of Things (IoT) deployments.

At its core, federated learning is a client-server architecture in which each round of

training proceeds through three steps [126]:

1. The server broadcasts the current global model to a selected subset of clients.

2. Each client performs local optimization on its private dataset and returns only the

updated model parameters or gradients.
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3. The server aggregates these updates with an algorithm to form a new global model

for the next round.

By iterating this process over multiple rounds, the system converges toward a model

comparable to one trained centrally while never collecting sensitive data in a single

repository.

FL enables collaborative model training across decentralized devices by exchang-

ing model updates instead of raw data, but real-world deployments suffer when clients

hold heterogeneous datasets. Statistical heterogeneity or “non‐IID” distributions across

clients leads to client-drift, degraded accuracy and slower convergence in vanilla FL

[126]. Non‐IID refers to the violation of the independent and identically distributed

assumption, whereby local datasets differ in data quantity, label proportions or feature

distributions due to user‐specific behaviour or sampling bias.

FL mitigates non‐IID effects through iterative aggregation of local updates (e.g.,

FedAvg), which effectively smooths distribution discrepancies and uses global data di-

versity. Some other methods are also employed which are discussed in the next section.

FL has already seen extensive real-world adoption, particularly within IoT ecosys-

tems. In smart city applications, FL enables distributed analytics on sensor and mobility

data to optimize traffic flows and public services without infringing on individual pri-

vacy [127]. In industrial IoT, FL has been combined with digital twin frameworks to

perform adaptive predictive maintenance and anomaly detection across heterogeneous

factory assets while safeguarding proprietary operational data [128]. Healthcare repre-

sents another key domain: FL allows edge devices such as wearable monitors and in-home

health sensors to cooperatively learn predictive models for chronic disease monitoring

[129]. Cybersecurity applications in IoT use FL for intrusion detection systems and mal-

ware classification, improving detection performance by aggregating threat intelligence
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from multiple organizations without exposing local logs [130].

4.7 Federated Learning Methods

There are different methods for aggregation of model parameters from clients, each with

its own pros and cons. We go over some of the most prominent ones in this section.

Federated Stochastic Gradient Descent (FedSGD): In FedSGD, each client

computes a single gradient on its local data and sends it to the server, which aggregates

a weighted sum of client gradients to update the global model [4]. FedSGD is appropriate

when communication rounds are inexpensive and clients can compute only one gradient

step per round (e.g., highly resource‐constrained IoT devices)

wt+1 = wt − η
K∑

i=1

ni

n
∇Fi(wt) (4.1)

where wt+1 represents the updated global model parameters, wt denotes the current

global model parameters, η is the learning rate, K is the number of participating clients,

ni is the number of data samples held by client i, n is the total number of data samples

across all clients, and ∇Fi(wt) is the gradient of the local objective function Fi at client

i, evaluated at wt.

Federated Averaging (FedAvg): FedAvg accelerates FedSGD by letting each client

perform E local SGD epochs before transmitting its model [4]. A weighted average of

the resulting models forms the new global iterate. FedAvg is the de facto baseline in

heterogeneous data federations because it reduces communication (many local updates

per round) while preserving convergence on both IID and non‐IID data.
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Local update:

wt+1
i = wt − η

E∑
e=1
∇Fi(wt,e

i ) (4.2)

Server aggregation:

wt+1 =
K∑

i=1

ni

n
wt+1

i (4.3)

where wt+1
i represents the locally updated model parameters on client i, wt denotes

the global model parameters before aggregation, η is the learning rate, E is the number

of local epochs performed by each client, ∇Fi(wt,e
i ) is the gradient of the local objective

function Fi at client i during epoch e, K is the number of participating clients, ni is the

number of data samples held by client i, n is the total number of data samples across

all clients, and wt+1 is the aggregated global model parameters after receiving updates

from all clients.

Federated Proximal (FedProx): FedProx extends FedAvg by adding a proximal

term to each client’s objective, controlling how far local updates may drift from the

current global model [131]. It is well‐suited for settings with severe system or statistical

heterogeneity, where clients’ updates can diverge and slow or destabilize convergence.

Local update:

wt+1
i = arg min

w

(
Fi(w) + µ

2
∥w − wt∥2

)
(4.4)

Server aggregation:

wt+1 =
K∑

i=1

ni

n
wt+1

i (4.5)

where wt+1
i represents the locally updated model parameters on client i, wt denotes

the global model parameters before aggregation, Fi(w) is the local objective function at

client i, µ is the proximal term weight that controls how far local updates can drift from

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/
https://www.eng.mcmaster.ca/mech/


Master of Applied Science– Mohanad Ismail; McMaster University– Department of
Mechanical Engineering

the global model, K is the number of participating clients, ni is the number of data

samples held by client i, n is the total number of data samples across all clients, and

wt+1 is the aggregated global model parameters after receiving updates from all clients.

SCAFFOLD (Stochastic Controlled Averaging): SCAFFOLD uses control

variates to correct for client drift by tracking and compensating for the difference between

each local gradient and the global gradient estimate [132]. It is particularly effective un-

der non‐IID data distributions, where FedAvg/FedProx suffer from bias due to unequal

client gradients.

Local update:

wt+1
i = wt − η∇Fi(wt)− ct

i + ct (4.6)

Client control variate update:

ct+1
i = ct

i − ct + 1
η

(wt − wt+1
i ) (4.7)

Server control variate update:

ct+1 =
K∑

i=1

ni

n
ct+1

i (4.8)

where wt+1
i represents the locally updated model parameters incorporating control

variates, wt denotes the global model parameters before aggregation, η is the learning

rate, ct
i is the local control variate for client i, ct is the global control variate, K is the

number of participating clients, ni is the number of data samples held by client i, n is

the total number of data samples across all clients, and ct+1 is the aggregated global

control variate.
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FedDANE (Federated Newton‐Type Method): FedDANE adapts the Dis-

tributed Approximate Newton (DANE) method to federated settings, using local sec-

ond‐order information to accelerate convergence [133]. FedDANE is particularly effective

in convex optimization settings, but empirical studies suggest that it may struggle in

realistic federated environments due to low device participation and statistical hetero-

geneity.

Local update:

wt+1
i = arg min

w

(
Fi(w)− (∇Fi(wt)−∇F (wt))T w + µ

2
∥w − wt∥2

)
(4.9)

Server aggregation:

wt+1 =
K∑

i=1

ni

n
wt+1

i (4.10)

where wt+1
i represents the locally optimized model parameters on client i, wt denotes

the global model parameters before aggregation, Fi(w) is the local objective function

at client i, µ is the proximal term weight ensuring stability, ∇Fi(wt) is the gradient of

the local objective function, ∇F (wt) is the global gradient estimate, K is the number

of participating clients, ni is the number of data samples held by client i, and n is the

total number of data samples across all clients.

FedBN (Federated Batch Normalization): FedBN keeps Batch Normalization

parameters local to each client while averaging only the remaining (shared) parameters,

mitigating feature‐distribution shifts across clients [134].

Shared parameter update:

wt+1
shared =

K∑
i=1

ni

n
wt+1

i,shared (4.11)

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/
https://www.eng.mcmaster.ca/mech/


Master of Applied Science– Mohanad Ismail; McMaster University– Department of
Mechanical Engineering

Local BN parameter update:

θt+1
BN,i ← θt+1

BN,i (4.12)

where wt+1
shared represents the updated global shared model parameters, wt+1

i,shared de-

notes the locally updated shared model parameters on client i, K is the number of

participating clients, ni is the number of data samples held by client i, n is the total

number of data samples across all clients, and θt+1
BN,i represents the batch normalization

parameters that remain local to each client.

FedSplit: FedSplit casts federated optimization as a set of local sub-problems linked

by a shared global variable, solved via operator-splitting techniques to ensure exact

fixed-point convergence [135]. FedSplit is particularly useful when clients can tolerate

more complex local computations in exchange for stronger convergence guarantees under

heterogeneous data distributions.

Local subproblem:

wt+1
i = arg min

w

(
Fi(w) + ρ

2
∥w − ϕt∥2

)
(4.13)

Global variable update:

ϕt+1 = ϕt + γ
K∑

i=1

ni

n
(wt+1

i − ϕt) (4.14)

where wt+1
i represents the locally updated model parameters on client i, Fi(w) is the

local objective function at client i, ρ is the penalty parameter controlling update stability,

ϕt is the global shared variable, γ is the relaxation factor controlling aggregation rate,

K is the number of participating clients, ni is the number of data samples held by client

i, and n is the total number of data samples across all clients.
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In our work, we picked FedAvg as our choice of aggregation method, because it strikes

the right balance of managing heterogeneous data, minimizing communication, and com-

putation.

4.8 Federated Learning in SoH Estimation

Early attempts to apply FL to SoH estimation simply transplanted FedAvg onto small,

homogeneous cell datasets. Chen et al. trained an LSTM on five clients and reported

that federated training cut the Mean Absolute Error (MAE) from 2.7% (local) to 1.9%,

virtually matching a centrally-trained baseline while keeping raw data on-board the

vehicles [136]. However, their study assumed identical cycling profiles, so the method

faltered when non-IID field data was injected, and communication cost was not analyzed.

To cope with heterogeneous fleets, several groups added personalization layers or clus-

tering. Wang et al. introduced an adaptive multi-personalized FL framework that forms

multiple global models and regularizes each client with an importance-weighted loss

[137]. On a 30-vehicle dataset spanning three chemistries they cut MAE by 0.14% ver-

sus plain FedAvg and lowered operational risk five-fold, yet the approach still depended

on fully-labelled capacity data and omitted unlabelled mileage logs that dominate real

BMS storage.

A parallel line of work tackles the communication bottleneck. The FedCBE system

compressed model updates for collaborative capacity and State-of-Charge (SoC) esti-

mation, achieving <5 MB per round on eight buses, but its accuracy dropped by ≈3%

once packet loss exceeded 10% [138]. More recently, the FedACM aggregator introduced

client-momentum to stabilize training under severe non-IID drift and halved bandwidth

versus FedAvg, yet it still required labelled cycles [139].

Across these studies, we see that every method relies on labels that are costly to
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obtain at scale, and most solutions still struggle when usage profiles, temperatures, and

chemistries diverge widely. In our work, we overcome the problem of labelled data

scarcity by making use of SSL through masked autoencoding, and we study the effect of

different fine-tuning methods on the generalizability of our models.

4.9 Conclusion

SSL has emerged as a practical way to tap the vast stores of unlabelled battery data that

every electric vehicle already logs. A survey of recent work shows three main routes:

(i) masked-reconstruction models that learn by filling in missing segments, (ii) physics-

guided objectives that embed ageing rules, and (iii) contrastive frameworks that separate

“similar” and “dissimilar” cycle pairs. All three cut the label budget, yet they leave key

questions open:

• Hyper-parameter tuning. Mask ratios are often fixed with little justification.

• Fine-tuning strategy. Many studies do not state whether SSL encoders stay frozen

or are fully/partially updated.

• Real-world deployment. GPU-heavy training, large batches, or strict monotonic

losses clash with on-board compute limits and non-ideal field data.

• Data privacy. Sharing of raw sensor data over the network puts users’ habits and

patterns at risk.

This thesis addresses those gaps by

1. sweeping through mask ratios (0-75 %) to find the most optimal setting,

2. comparing Frozen-SSL, Unfrozen-SSL, and Unfrozen-SL head-to-head,
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3. embedding the best encoder in a bandwidth-aware federated loop that stays inside

an ECU-sized compute budget and transmits <600 kB per round, and

4. integrating a federated approach to model parameter aggregation.

This chapter has also introduced FL as the keystone that lets an EV fleet learn from

its collective experience without surrendering raw, privacy-sensitive battery data. We

went with a high-level overview of FL workflows and its real-life applications. We then

surveyed the algorithmic landscape from baseline FedAvg to recent personalization and

communication-efficient variants, showing how each one trades accuracy, convergence

speed, and bandwidth.

Finally, the literature on FL for SoH estimation revealed two persistent gaps: label

dependence, and lack of generalization to different working conditions. These short-

comings motivate the design choices in this thesis: combining self-supervised masked

autoencoding with a bandwidth-aware and privacy-preserving FedAvg variant.

Together, these insights set the stage for the next chapter, where we translate the

conceptual framework into a concrete methodology, detailing data preprocessing and the

model architectures that give life to the self-supervised-plus-federated approach intro-

duced here.
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Chapter 5

Methodology

5.1 Introduction

The preceding chapters have established both the importance and the difficulty of ac-

curately estimating the State-of-Health (SoH) of Electric Vehicle (EV) batteries. Chap-

ters 3 and 4 reviewed cloud computing, Self-Supervised Learning (SSL), and Federated

Learning (FL) as partial answers, each tackling a different problem, yet leaving gaps

when considered in isolation.

This chapter converts those conceptual arguments into a concrete workflow. Sec-

tion 5.2 outlines a pipeline that fuses SSL, FL, and elastic cloud resources so that every

vehicle benefits from fleet-wide experience without exposing its raw data. Section 5.3

then introduces the dataset used to test the framework, explains how ground-truth SoH is

inferred from charging logs, and justifies an Incremental Capacity (IC) analysis filtering

step that mitigates sensor noise. The following sections describe the model architec-

ture in two phases: a masked-autoencoder pre-training stage that learns generic battery

representations from unlabelled data, and a fine-tuning stage that couples those repre-

sentations with historical SoH through a BiLSTM regressor. The chapter closes with a
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discussion of how these components interact in a continuous training-deployment cycle.

5.2 Proposed Combined Framework

In this work, the proposed framework combines the three discussed solutions to data-

driven approaches in SoH estimation: cloud computing, SSL, and FL to take advantage

of their combined advantages.

Each moment, a generous amount of data is generated and collected by sensors oper-

ating on each EV. Unfortunately, as already discussed in Chapter 2, the SoH of an EV’s

battery cannot be measured directly using sensor readings. This problem renders all su-

pervised Artificial Intelligence (AI) techniques helpless before this data. Supervised AI

methods require the presence of a label for training purposes. There is knowledge that

is embedded within this unlabelled data, which supervised AI techniques have harshly

deemed useless. As thoroughly reviewed in Chapter 4, SSL has proven successful in

learning from unlabelled data, capturing data distribution, and underlying features.

This acts as the first cornerstone for the proposed framework.

Subsequently, sharing this collected data raises privacy concerns among users regard-

ing this approach. A security breach can cause this data to fall into the wrong hands,

and the user’s trips, habits, and sensitive information will be compromised. FL lends a

helping hand to SSL to protect the privacy of the users. Chapter 4 showed the mecha-

nism by which FL works, training local models on remote devices and transmitting the

trained model parameters over the network instead of the collected data.

The proposed framework for EV SoH estimation, can be described through the fol-

lowing steps:

1. Each EV collects its own unlabelled data using the various sensors while moving.
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2. On board each EV, a local SSL model is pre-trained using the collected unlabelled

data. The SSL technique can be any of those discussed in Chapter 4 (Section 4.3).

3. Each EV, after pre-training its local model, shares the model parameters only

with the central server over available networks. This is in contrast to the approach

of sharing the original collected data without any pre-training happening on the

vehicle side.

4. The central server collects the model parameters shared by each EV in the fleet.

The server then aggregates all of these model parameters. Aggregation could be

applied using any of the techniques discussed and reviewed in Chapter 4 (Section

4.7).

5. Once aggregation is done, the resulting model is then fine-tuned using the available

labelled data on the server.

6. Finally, the fine-tuned model parameters are shared with all fleet vehicles. Each

vehicle can now use the fine-tuned model for its own SoH estimation, harnessing

data distributions collected from the whole fleet.

Fig. 5.1 shows the different steps of the proposed approach.

5.3 Dataset

The dataset used to verify the proposed approach was introduced in [140]. This dataset

was created through the collection of charging data from 20 commercial EVs over the

span of 29 months in Shanghai, China. Only charging data was published to protect

the information and privacy of the EV users. The vehicles are BAIC EU500, which are

equipped with CATL NMC battery cell chemistry. The nominal capacity of the batteries

is 145Ah. Each pack has 90 cells connected in series and 32 temperature sensors inside.
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Figure 5.1: Steps of the proposed combined approach from left-to-right,
and top-to-bottom
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Table 5.1 lists the items provided by the dataset, the measuring unit, and the resolution

of each element. The sampling rate of each of these items is 8 seconds. It is worth

noting that the resolutions are low due to the fact that the data was collected via control

area network communication, which is not as accurate as data collected in a laboratory

environment [140]. Table 5.2 lists the parameters of the vehicles in the dataset [122].

Table 5.1: Items included in dataset with their measuring units and
resolutions.

Items Unit Resolution
Time yyyy-mm-dd hh:mm:ss -
Current A -
Pack voltage V 0.1 V
SOC - 0.1
Maximum cell voltage V 0.001
Minimum cell voltage V 0.001
Maximum cell temperature °C 1°C
Minimum cell temperature °C 1°C
Available energy kWh -

Table 5.2: Main parameters of tested vehicles.

Vehicle parameter Specification Unit
Range 300 km
Wheelbase 2670 mm
Maximum power 160 kW
Maximum torque 300 N m
Battery pack energy 45.3 kWh
Cell chemistry C/NMC -

As can be noticed in Table 5.1, the dataset does not include the SoH (the groundtruth)

as one of its items. This is because the data was collected from real vehicles with no

periodic laboratory tests to determine the batteries health. To obtain the groundtruth

that will be used for testing and fine-tuning our model, a variant of the Ampere hour

counting formula is employed, as presented in [140], and demonstrated in Eq. 5.1,

Ca =
−
∫ t2

t1
∆tI(t)

SO Ct2 − SO Ct1

(5.1)
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where ∆t represents the sampling rate (8 seconds in our case), t1 and t2 are the start

and end charging times, respectively, and I is the electric current (negative for charging).

After the SoH was obtained for each vehicle, the sensor inaccuracy problem arose.

Fig. 5.2 shows a scatter plot for each of the 20 vehicles after obtaining the SoH against

the time period driven. As can be seen, there is a large number of outliers throughout.

The SoH of a vehicle should decrease with time, but the figure shows sudden jumps and

drops in the battery capacities. This can be attributed to the onboard sensors having

low accuracy, State-of-Charge (SoC) estimation errors, and noise in the data.

This problem was addressed in the article that presents the data set [140]. The

solution is based on the fact that there is no need in tracking the vehicles’ SoH for

every charging session. The SoH can be aggregated for a specified period of time. A

monthly aggregation of SoH values is applied, with the median and mean chosen as the

aggregation methods. Fig. 5.3 shows a comparison between the monthly mean and

median SoH values for each of the 20 vehicles. The gaps in the plots resemble months

that did not have data (the respective vehicle was not charged during that month).

The mean still shows sudden peaks and drops, stemming from its statistical nature of

being sensitive to outliers. The median, on the other hand, shows less sensitivity and

smoother degradation of SoH. Hence, the monthly median is used as the groundtruth

for our experiments.

Moving on to feature engineering, IC analysis is a diagnostic technique that involves

examining the derivative of capacity with respect to voltage dQ/dV during the charge

or discharge of a battery. By plotting these IC curves, intricate features such as peaks

and valleys become apparent that are correlated with various electrochemical processes

within the battery. These features can change significantly as the battery ages and

degrades, providing information on shifts in electrode kinetics, phase transitions, and

other degradation mechanisms [141], [142]. IC analysis is especially valuable because
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Figure 5.2: Scatter plot for the SoH of each of the 20 vehicles in the
dataset over time
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Figure 5.3: Line plot for the monthly mean and median SoH of each of
the 20 vehicles in the dataset over time

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/
https://www.eng.mcmaster.ca/mech/


Master of Applied Science– Mohanad Ismail; McMaster University– Department of
Mechanical Engineering

it serves as an indirect measurement of the internal state of the battery. As batteries

degrade, the IC curves exhibit characteristic shifts and alterations in peak intensities.

These changes are directly associated with a reduction in available capacity and increased

internal impedance [143].

Furthermore, the sensitivity of the incremental capacity method to subtle changes in

battery behaviour makes it particularly useful for conditions where traditional voltage

or current monitoring might not fully capture declining performance. This is essential

in anticipation of critical events, such as capacity loss or the risk of abrupt failures. As a

result, IC analysis is regularly integrated into both research and practical Battery Man-

agement System (BMS) applications to continuously track battery degradation [143].

Research has shown that achieving an accurate SoH estimation is possible through

extracting features from short charging sequences in the voltage range where the main IC

peak resides throughout battery life [144]. Short charging sequences are used to reduce

computational complexity, allowing this kind of model to run on vehicles where compu-

tation is limited. These short sequences were found to be sufficient for SoH estimation,

as they are in the information-dense range determined through IC analysis [144]. Since

this dataset is collected from a battery pack (multiple cells), the IC analysis method was

performed on the maximum voltage cells. It was found that the main IC peak resides

between 3.6V and 3.8V as shown in Fig. 5.4. To remain consistent with other literature

using the same data set and IC analysis method, the length of the charging sequence

used for feature extraction is 160 seconds [122]. Fig. 5.5 shows the final monthly median

of each of the 20 vehicles calculated using data points in the voltage range 3.6 to 3.8V.

5.4 Model Architecture

The model used as an implementation of the combined approach proposed in Section

5.2 can be broken down into 2 parts: (a) pre-training, and (b) fine-tuning.
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Figure 5.4: IC analysis performed on vehicles from the dataset.
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Figure 5.5: Line plot for the monthly median SoH of each of the 20
vehicles in the dataset over time. Aggregation is done with data points
within the voltage range determined through IC analysis.
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5.4.1 Pre-training

Starting with the pre-training part, there are multiple approaches that can be used

as discussed in Chapter 4 (Section 4.3). For this specific application, auto-encoding

was used because of its simplicity of implementation and relatively lower computational

requirements. The auto-encoder architecture used in this work is based on the self-

supervised Time Series Masked Autoencoders (Ti-MAEs) [145].

The recent surge in SSL has enabled the development of masked data modelling ap-

proaches that have been successfully applied across a wide range of domains. At its core,

masked data modelling involves “masking” portions of the input data and training mod-

els to accurately reconstruct the masked regions, which facilitates the extraction of robust

and transferable representations without reliance on large-scale annotated datasets [146].

This paradigm parallels the progress observed in masked language modelling within nat-

ural language processing (NLP), notably with models like BERT [115], and has been

generalized to other modalities by appropriately adapting both the masking strategy

and the reconstruction task [146], [147].

In computer vision, masked image modelling has evolved as a prominent pre-training

strategy. Multi-view masked autoencoders have demonstrated state-of-the-art perfor-

mance by reconstructing missing patches while retaining global semantic information

from images [148]. Researchers have extended these techniques to specialized applica-

tions such as medical image segmentation and COVID-19 detection by exploiting region-

guided masking strategies to focus on clinically relevant areas [149], [150]. Moreover,

approaches that integrate contrastive learning with masked reconstruction have shown

improved performance by enforcing additional semantic constraints during pre-training

[151].

When adapting masked modelling to time series, two masking strategies have been

explored. Traditional methods for forecasting typically adopt a continuous masking
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Figure 5.6: A visual comparison between different masking approaches
for time series data, with dashed blocks being the masked portions. Top
figure shows the continuous approach, while the bottom shows the random
approach.

approach, where future time steps are masked while past observations are provided to

the model. Although this strategy aligns with the sequential nature of forecasting, it

restricts the information available during training and can exacerbate distribution shift,

especially when the forecasting horizon exceeds the observed window.

Ti-MAE addresses these issues by employing a random masking strategy that masks

a fraction of the tokens across the entire sequence. This design choice not only prevents

the model from simply interpolating between neighbouring points but also makes use

of the full distribution of the input data. The resulting representations capture both

local and global temporal dynamics and are more directly aligned with the demands of

downstream forecasting and classification tasks. Fig. 5.6 shows a comparison between

both approaches.

At a high level, Ti-MAE follows a classical autoencoder paradigm with two primary

components (depicted in Fig. 5.7):

• Encoder: Processes the input time series after embedding and random mask-

ing. Importantly, only the visible (unmasked) tokens are fed into the encoder

Transformer-based blocks, which substantially reduces the computational and mem-

ory overhead.
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• Decoder: Receives the latent representation generated by the encoder along with

corresponding learnable mask tokens. The decoder’s role is to reconstruct the

original time series at a point-level, ultimately enabling the model to learn relevant

representations through reconstruction.

The raw multivariate time series, as denoted in Eq. 5.2, is first transformed into a

token representation. This is accomplished by applying a one-dimensional convolutional

layer directly over the temporal axis (Eq. 5.3). The convolution serves to extract local

temporal features that capture short-term dynamics effectively.

X = [x1, x2, . . . , xT ] ∈ RT ×m (5.2)

Where X is the time series data matrix, T is the sequence length (number of time

steps), and m is the number of features (or channels) in the time series.

ht = W ∗ xt + b (5.3)

Where xt ∈ Rm represents the input at time t, W and b are the convolution weights

and bias, and ∗ denotes the convolution operation.

To preserve the ordering and temporal structure, fixed sinusoidal positional embed-

dings, as commonly adopted in Transformer architectures [152] (Eq. 5.4), are added to

the convolved features. Notably, we deliberately refrain from incorporating additional

hand-crafted or task-specific embeddings to minimize the inductive bias imposed on the

model and to focus on learning representations directly from the raw input data.

PE(t, 2i) = sin
(

t

100002i/d

)
, PE(t, 2i + 1) = cos

(
t

100002i/d

)
(5.4)
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Figure 5.7: A conceptual visualization of the masked autoencoding pro-
cess employed by Ti-MAE and used for pre-training in the proposed ap-
proach.
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Where t is the time step, i is the dimension index, and d is the embedding dimension.

Once tokenized, the embedded sequence is subjected to a random masking operation.

Specifically, a predefined portion of the tokens is masked out at random using uniform

sampling without replacement. Experiments on choosing masking ratios are discussed

in Chapter 6 (Section 6.3). This strategy differs from traditional continuous masking

approaches that target only future or contiguous segments. Instead, the random mask-

ing paradigm ensures that, across training iterations, the model is exposed to varied

combinations of visible and masked tokens. This masking strategy yields important

advantages:

• Enhanced Generalization: By forcing the model to rely on incomplete information,

the network is encouraged to learn high-level semantic and temporal relationships

that extend beyond local neighbours.

• Mitigation of Distribution Shift: Since the entire input sequence is considered

across iterations, the gap between the training masking regime and the inference

stage is reduced.

The encoder in Ti-MAE comprises a stack of Transformer blocks configured in a pre-

norm fashion. That is, each block applies layer normalization before the self-attention

(Eq. 5.5 and Eq. 5.6) and feed-forward network (Eq. 5.7) sublayers. This architecture

ensures stability during training and allows the model to capture long-range dependencies

among the visible tokens. Fig. 5.8 shows blocks of a typical Transformer in our encoder

scenario [152]. The same blocks apply to the decoder.

Critically, only the unmasked tokens are processed through the encoder. This selec-

tive encoding not only reduces the computational burden but also compels the network

to derive as much contextual understanding as possible from the limited set of available

tokens.
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Figure 5.8: Block diagram of operations in a typical Transformer.
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Attention(Q, K, V ) = softmax
(

QK⊤
√

dk

)
V (5.5)

Where Q, K, and V are the Query, Key, and Value matrices.

Q = XWQ, K = XWK , V = XWV (5.6)

Where X ∈ RT d is the sequence of token embeddings, and WQ, WK , WV are the

learnable weight matrices.

FFN(x) = max(0, xW1 + b1)W2 + b2 (5.7)

Where x is the input vector, W1, W2, b1, and b2 are the learnable weights and biases.

The decoder’s task is to reconstruct the original time series at the point level. To

this end, the input to the decoder is formed by combining:

• The encoded representations corresponding to the visible tokens.

• A set of learnable mask tokens, which stand in for the masked positions.

Before entering the decoder, positional embeddings are added to the combined tokens

to maintain the temporal order. The decoder then processes this unified sequence using

Transformer blocks, after which a linear projection layer maps the output back to the

original time series dimensions. The reconstruction target is defined at the level of

individual time steps, and the objective is to minimize the discrepancy between the

reconstructed values and the original ones.
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5.4.2 Fine-tuning

While the pre-trained Ti-MAE framework learns latent representations of time-series

data through a self-supervised masked reconstruction task, the fine-tuning phase utilizes

these representations for a supervised regression problem. In contrast to the classifi-

cation task described in the original paper, our objective is to accurately predict the

current month’s SoH using an LSTM-based regression model that combines latent rep-

resentations and historical SoH values. The following lines go over the methodology for

the fine-tuning phase, which is also depicted in Fig. 5.9

After pre-training with unlabelled data, the Ti-MAE model provides a latent repre-

sentation for each input sequence. Let the raw multivariate time series for a given month

be denoted by Eq. 5.8.

X ∈ RB×T ×m (5.8)

where B is the batch size, T is the number of time steps (historical months), and m

is the feature dimension.

Also let the past SoH values for T − 1 months be as denoted by Eq. 5.9:

C ∈ RB×(T −1)×1 (5.9)

These values are available for all months except the current month, whose SoH is to

be predicted.

For each time step t ∈ {1, . . . , T}, the pre-trained Ti-MAE encoder generates a latent

representation from the corresponding slice of the input sequence as in Eq. 5.10:
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Figure 5.9: A conceptual visualization of the regression process used for
fine-tuning in the proposed approach.
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Lt = Encoder
(
X:,t,:

)
∈ RB×E . (5.10)

Here, E is the embedding dimension, and X:,t,: denotes the data for time step t across

the batch. By concatenating the latent representations from all time steps, we form the

latent sequence in Eq. 5.11:

L =
[
L1; L2; . . . ; LT

]
∈ RB×T ×E . (5.11)

This sequence represents the full series of latent features extracted from the input. To

align the latent features with the LSTM’s hidden dimension H, we project L as follows:

Lproj = LatentProj(L) ∈ RB×T ×H . (5.12)

Similarly, the past capacity sequence is projected to the same dimension:

Cproj = CapacityProj(C) ∈ RB×(T −1)×H . (5.13)

These projection operations (implemented as learned linear layers) transform the

latent and capacity inputs into a common representation space.

Since the current month’s capacity is unknown, we pad the projected capacity se-

quence with a zero vector to match the temporal dimension of Lproj:

Cpad =
[
Cproj; 0

]
∈ RB×T ×H .
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We then combine the features by taking the element-wise sum of the projected latent

sequence and the padded capacity:

Z = Lproj + Cpad ∈ RB×T ×H .

In this formulation, the latent representations from past months are augmented with

the corresponding SoH values, while the current month’s input consists solely of its

latent.

The combined feature sequence Z is processed by a bidirectional Long Short-Term

Memory (LSTM) to capture temporal dependencies in both forward and backward di-

rections. The LSTM updates its hidden state according to the following equations for

each time step and for each direction, depicted in Fig. 5.10 [153]:

ii = σ

Wi

hi−1

x∗
i

+ bi

 ,

fi = σ

Wf

hi−1

x∗
i

+ bf

 ,

oi = σ

Wo

hi−1

x∗
i

+ bo

 ,

c̃i = tanh

Wc

hi−1

x∗
i

+ bc

 ,

ci = fi ⊙ ci−1 + ii ⊙ c̃i,

hi = oi ⊙ tanh(ci) ,

(5.14)

where:
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Figure 5.10: A typical LSTM block diagram.

• x∗
i ∈ Rdx is the input vector at time step i,

• hi−1 ∈ Rdh and ci−1 ∈ Rdh denote the previous hidden and cell states, respectively,

• ii, fi, and oi are the input, forget, and output gates,

• c̃i is the candidate cell state,

• Wi, Wf , Wo, Wc and bi, bf , bo, bc are learnable parameters,

• σ(.) represents the sigmoid function,

• tanh(.) is the hyperbolic tangent activation, and

• ⊙ denotes the element-wise product.

The bidirectional LSTM yields output sequence H and final hidden states:

H, (hn, cn) = BiLSTM(Z) ∈ RB×T ×2H .
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Here, the output H has dimension 2H due to the concatenation of the forward and

backward passes. To emphasize the most informative time steps, a temporal attention

mechanism is applied to H:

A = Attention(H) ∈ RB×T ×1,

which computes an attention score for each time step. These scores are normalized

using a softmax function:

α = softmax(A).

A weighted sum of the LSTM outputs produces an aggregated feature vector:

V =
T∑

t=1
αtHt ∈ RB×2H .

This vector V succinctly summarizes the temporal dynamics based on the learned

attention weights. The aggregated vector V is fed through several fully connected layers

with skip connections for further refinement:

X1 = Layer1
(
PostLSTM(V)

)
,

X2 = Layer2
(
X1
)

+ X1, (Skip Connection)

X3 = Layer3
(
X2
)
,

X4 = Layer4
(
X3
)
.

Each layer is defined as:
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Layeri(X) = Dropout
(
GELU

(
LayerNorm(Linear(X))

))
.

The skip connections facilitate effective gradient propagation and help preserve salient

information. Finally, the refined feature vector X4 is passed through a final linear layer

to produce the SoH prediction for the current month:

y = FinalLayer(X4) ∈ RB×1.

The regression loss, based on the discrepancy between y and the ground truth SoH,

is used to optimize the model during fine-tuning.

Our specific implementation of the proposed approach is visualized in the form of

a cycle in Fig. 5.11. The next chapter discusses details of data extraction during the

training phase, the different experiments performed and their goals, the results realized,

a discussion of the results, and recommended future work.

5.5 Conclusion

This chapter turned the ideas from earlier in the thesis into a step-by-step plan for

estimating SoH across a whole fleet of electric vehicles. First, it showed how SSL, FL,

and cloud computing can work together so that each car keeps its raw data private but

still helps improve a shared model. Next, it introduced the real charging dataset we

will use, explained how we calculated true SoH values from those records, and described

a simple filtering trick to remove sensor noise. The chapter then walked through the

model itself: a masked autoencoder that learns useful patterns from short voltage slices,

followed by a bidirectional LSTM that combines those patterns with past SoH readings
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Figure 5.11: The proposed approach cycle with our specific implemen-
tation using Ti-MAE and LSTM.

to predict the current month’s battery health. Finally, it showed how all these pieces fit

into a loop that can keep training and updating the model over time.

With the method now fully laid out, the next chapter will test how well this approach

works in practice and see which parts matter most for accurate, privacy-friendly SoH

estimation.
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Chapter 6

Experiments, Results and

Discussions

6.1 Introduction

Now that we have laid the groundwork by thoroughly reviewing the topics implemented

in our proposed framework and presenting the models used, along with their intricacies,

it is time to put this knowledge into action. In this chapter, we aim to look for answers

to the 4 main questions regarding our proposed framework:

RQ1 Does pre-training with masked auto-encoding on unlabelled drive cycles enhance

State-of-Health (SoH) prediction compared with purely supervised baselines under

limited labelled data?

RQ2 How does the choice of masking ratio in Self-Supervised Learning (SSL) influence

representation quality and downstream SoH accuracy?
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RQ3 How do different fine-tuning strategies for the SSL encoder (fully frozen, full un-

freeze) affect model performance and training stability?

RQ4 Does Federated Learning (FL) aggregation for model parameters degrade perfor-

mance compared with centralized training?

We conducted experiments targeting each of those questions. This chapter starts by

detailing procedures and model hyperparameters that are common to all experiments

(Section 6.2), then goes over the experiments one by one (Section 6.3). The chapter

explains the approach taken to answer the question targeted by the experiments, shows

and discusses the results produced from implementing this approach (Section 6.4).

6.2 Common Procedures in Training and Testing

6.2.1 Data Preparation and Preprocessing

Initial preprocessing of the dataset is presented in Section 5.3. Preparation of the data

depends on the phase, whether it is pre-training or fine-tuning.

Pre-training Data Preparation

The data is first split into training and validation sets. There is no testing done for

the pre-training phase. Testing is done on the overall system after fine-tuning is done

by comparing the estimated SoH with the groundtruth. The train-validation split ratio

used in our work is 0.85, always preserving the chronological order of the records. This is

crucial for time series tasks, as it prevents information from the future from leaking into

the past, which could otherwise lead to overly optimistic model performance. Features

are then normalized using min-max scaling (Eq. 6.1) to ensure all input variables are

on a comparable scale. The data is then segmented into overlapping windows of a fixed

sequence length, which serve as the model’s input samples. Notably, this process is

entirely deterministic, i.e., no randomization is involved, so that each possible window
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is included in the dataset in order. This is not the case with the fine-tuning data

preparation, as will be discussed next.

x′ = x−min(x)
max(x)−min(x)

(6.1)

Fine-tuning Data Preparation

As presented in Section 5.3, random charging sequences can be used for SoH estimation.

So, the approach here is different because we want to take a random sample of data from

previous months of count T , and use them to predict the SoH of the current month.

Therefore, the data split is done on a month level, rather than a sliding window like

in pre-training. We start by finding all months present in the data, and splitting these

months into training and validation sets, still preserving the chronological order of the

data. Testing is done on whole data sets, as will be discussed later. For example, if our

data points lie in the date range of January 2020 to December 2020, one option would

be to have the training set be the points from January to August, and the validation set

be the data points from September to December. The testing set would be data from

another vehicle for the whole period from January to December.

The next step involves the extraction of random charging sequences from each of

the months selected for the respective dataset (training, validation, or testing). We

implemented two modes for sampling charging sequences:

• Non-sequential sampling: In this mode, we select a random window of months of

size T (the historical window length). The features from a random 160s charging

sequence from all T months and the SoH from the first T −1 months are extracted

and used for the fine-tuning process, described in 5.4.2. This produces one data

point for fine-tuning. Therefore, this process of randomly selecting a window of

months and then randomly selecting a 160s charging sequence from within the
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month is repeated a number of times, which we defined as the length of the data

set. Continuing on our previous example for the training set and taking T = 5 for

the sake of this example (this is not the value we used in our experiments), the

first random window could be the months March through July. In this case, we

are aiming to estimate the SoH in July. Our algorithm extracts a random 160s

charging sequence from all these months, in addition to the SoH of the months

March - June, to be fed to our model. This produces our first data point. The

next data point could be from the months January - May, and so on. We use this

mode for training and validation in order to allow data shuffling for our approach.

• Sequential sampling: In this mode, instead of selecting random windows of months,

we implement a sliding window on a month level. That is, if the window is of size 5,

as in our previous example for the training set, the first window will be the months

January - May, the next window will be February - June, the next window will be

March - July, and finally April - August. A random charging sequence is still being

sampled from each month in each window. We use this mode for testing in order

to simulate a real-world scenario where the SoH is predicted month after month.

This is also coupled with feeding the model its own previous predictions for an

exact real-world scenario, where the Electric Vehicle (EV) does not have access to

the real labels or corrections and only builds upon its own previous estimations.

Finally, the min-max scaling is used for normalization, similar to the pre-training

data preparation.

6.2.2 Models Hyperparameters and Procedures

Models Hyperparameters

The models hyperparameters were common among all experiments. For the pre-training

phase, the input dimension is set to 8, since our data contains 8 features as listed in
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Table 5.1. Time was not used as input for the model. Since we are using a charging

sequence length of 160 seconds as stated in Section 5.3, and since the data is sampled

every 8 seconds, the sequence length is selected to be 20. The number of encoder and

decoder heads is set to 3, while the number of layers for each is 1. The intermediate

dimension for both is set to 64, with the embedding size set to 30. GELU was selected for

the activation function. The masking ratio is experiment-dependent, as will be discussed

later. AdamW was selected as the optimizer [154], with a learning rate of 5× 10−3. The

scheduler selected was OneCycleLR for its fast convergence properties [155]. To penalize

larger error values, Mean Square Error (MSE) was used for training and validation (Eq.

6.2). The training set size ratio was set to 0.85, leaving the remaining 0.15 for validation.

As previously mentioned, no testing was done in the pre-training phase. Rather, testing

was only done on the overall task after fine-tuning. No dropouts were utilized in the pre-

training phase. The maximum number of epochs is set to 1000, with an early stopping

patience of 50.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (6.2)

As for fine-tuning, the encoder hyperparameters remain the same, since it is the

same encoder trained in pre-training. As for the Long Short-Term Memory (LSTM),

the intermediate dimension is set to 128, the number of layers to 2, and bidirectional

processing is enabled. The GELU activation function is used throughout, except for in

the temporal attention layer, which uses Tanh (the model architecture is described in

Section 5.4.2). The history length was set to 2, which means that only the features and

SoH of one previous month are used to predict the SoH of the current month. AdamW

was used again as the optimizer with the same learning rate of 5×10−3. OneCycleLR as

a scheduler for fine-tuning showed very poor convergence. Instead, ReduceLROnPlateau

was used with a factor of 0.5 and a patience of 5, which showed immense improvement.
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MSE was also used for training and validation. The training split ratio was again

0.85, with 0.15 for validation. Whole datasets were used for testing. No masking was

performed during fine-tuning, and no dropouts were used either. The maximum number

of epochs is set to 1000, with a high early stopping patience of 150, due to the models’

validation loss plateauing then continuing to decrease after a large number of epochs.

Finally, the batch size for both phases is 2048. The hyperparameters are summarized in

Table 6.1.

Table 6.1: Summary of hyperparameters for pre-training and fine-tuning
phases.

Phase Hyperparameter Value

Pre-training

Input Dimension 8
Sequence Length 20
Encoder/Decoder Heads 3
Number of Layers 1
Intermediate Dimension 64
Embedding Size 30
Activation Function GELU
Optimizer AdamW
Learning Rate 5× 10−3

Scheduler OneCycleLR

Fine-tuning

LSTM Intermediate Dimension 128
LSTM Number of Layers 2
LSTM Bidirectional Enabled
Activation Function (General) GELU
Activation Function (Attention) Tanh
History Length 2
Optimizer AdamW
Learning Rate 5× 10−3

Scheduler ReduceLROnPlateau
Factor (ReduceLROnPlateau) 0.5
Patience (ReduceLROnPlateau) 5

Batch Size (Both Phases) 2048
Max Epochs (Both Phases) 1000
Early Stopping Patience 50 (pre) / 150 (fine)

Since there is random action in the fine-tuning phase as explained in 6.2.1, a seed of

42 is selected to maintain the same random selections in all training. For testing, the
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selected seed was 0. To report on testing loss in Ah, Mean Absolute Error (MAE) is

used (Eq. 6.3).

MAE = 1
n

n∑
i=1
|yi − ŷi| (6.3)

The detailed breakdown of the number of parameters of the pre-training and fine-

tuning models are listed in Tables 6.2 and 6.3 respectively.

Table 6.2: Parameter count and memory footprint of the pre‑training
network (Ti‑MAE encoder-decoder).

Component # Params (×103)
Encoder (TiMAEEncoder) 7.6
Decoder (TiMAEDecoder) 8.0
Total 15.6
Estimated size: 0.062 MB.

Table 6.3: Parameter count and memory footprint of the fine‑tuning
network (encoder + LSTM regressor).

Component # Params (×103)
Encoder (TiMAEEncoder) 7.6
Latent projection 4.0
Capacity projection 0.256
LSTM 659
Post‑LSTM (Seq.) 33.2
Regressor_layer1 33.5
Regressor_layer2 66.3
Regressor_layer3 33.2
Regressor_layer4 8.4
Final layer 0.065
Temporal attention 33.3
Total 878
Estimated size: 3.515 MB.

Pre-training phase Training Procedure

This procedure is common for all pre-training phases in our experiments. First, the

vehicles whose data will be used for pre-training are determined. Next, for each vehicle,
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a separate model is trained on that vehicle’s data to simulate the process of pre-training

being done on each vehicle. Finally, the parameters of all trained models are collected,

and federated aggregation is performed on them to generate a new model that has learned

from the data of all vehicles. In our work, the FedAvg technique has been employed for

aggregation, which calculates the average of each parameter over all models, as discussed

in Chapter 4 (Section 4.7). The encoder from this new model is then passed on to be

used for the fine-tuning phase.

Fine-tuning phase Training Procedure

This procedure is common for all fine-tuning phases in our experiments. The model’s

encoder is initialized using the parameter values from the aggregated encoder coming

from the pre-training phase, while the decoder is discarded. As in pre-training, we

decide on which vehicles will be used for fine-tuning, which are always separate from

the vehicles used in pre-training. This is because we treat the vehicles that are used

in pre-training as unlabelled data collected from the field, while vehicles used for fine-

tuning are treated as labelled lab data available on the cloud server where fine-tuning

is done. Next, we feed the data from selected vehicles into a sequential data loader we

implemented, instead of concatenating the datasets from vehicles. The aim of this data

loader is to train the model on data from all selected vehicles, while ensuring that no

features from two different vehicles are used for a single data point. For instance, if the

datasets were concatenated instead, the last month from one vehicle and the first month

from the following vehicle could be used to predict the SoH for the second month in the

latter vehicle, which does not make sense. This data loader ensures the separation while

feeding the model data points from all vehicles.
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Testing Procedure

In our testing experiments, we want to simulate a real-world scenario of a vehicle esti-

mating its SoH for its whole lifetime. During a vehicle’s lifetime, no lab tests are done on

the battery to correct its estimations. Therefore, the vehicle has to rely on and build on

its own estimations continuously. To simulate this, we employ the sequential sampling

mode for data extraction that we implemented and previously discussed in 6.2.1. Since

we are using a history length of 2, the first estimation produced by the model is aware

of the starting SoH of the vehicle, and uses it to estimate the SoH for the second month.

We then use the model’s estimation for the second month as an input for estimating the

SoH for the third month, and so on until the end of the dataset.

6.3 Experiments

6.3.1 Experiment 1: Comparative Model Evaluation

The objective of this experiment is to compare our proposed framework which makes use

of unlabelled data, with previous approaches that only relied on labelled data. We also

expand our experimentation further to include two variants of our framework: one with

the pre-trained parts of the model frozen (i.e., not being trained during fine-tuning),

and one with the whole model being trained, addressing the discussion brought up in

Chapter 4 (Section 4.4).

In this experiment, vehicles #3 to #20 were used as unlabelled for pre-training, while

vehicles #1 and #2 were selected for fine-tuning as labelled data. Testing was done on

vehicles #3 to #20. We trained and tested 3 different models:

1. A model that follows our proposed approach by being pre-trained on the unlabelled

data, then fine-tuned with the labelled data. During fine-tuning, the encoder was
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Table 6.4: Aggregate MAE and dispersion across all vehicles.

Metric Frozen-SSL Unfrozen-SL Unfrozen-SSL

Mean MAE (Ah) 1.57 1.81 1.65
Median MAE (Ah) 1.64 1.83 1.54
Std. dev. (Ah) 0.39 0.52 0.53
Vehicle wins∗ 5 6 7

∗Vehicle win = lowest MAE for that individual EV.

frozen, while the LSTM was learning. In our figures and plots, this model is

referred to as ”Frozen-SSL”.

2. A model that is only trained on the labelled data. No parts of the model were

frozen. In our figures and plots, this model is referred to as ”Unfrozen-SL”

3. A model that follows our proposed approach by being pre-trained on the unlabelled

data, then fine-tuned with the labelled data. During fine-tuning, the encoder was

not frozen, so that the whole model was being fine-tuned. In our figures and plots,

this model is referred to as ”Unfrozen-SSL”.

For Frozen-SSL and Unfrozen-SSL models, the masking ratio used in this ex-

periment was 0.6. Further experimentation with different masking ratios was done in

Experiment 2.

Fig. 6.1 shows the SoH estimated by each of the models for each of the test vehicles

over the vehicles lifetime. Keep in mind that for each of those estimations, the models

use their own previous estimations as input. Fig. 6.2 compares the MAE of the SoH

estimation for each model in the respective vehicle. A statistical summary of the MAEs

is presented in Table 6.4.

Frozen-SSL exhibits the lowest mean error (Table 6.4) and, more importantly,

the smallest standard deviation, indicating that weight freezing provides a strong reg-

ularization effect. In contrast, the fully supervised Unfrozen-SL attains the highest
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Figure 6.1: Month-by-month SoH trajectories estimated by the three
models versus the ground-truth target (dashed line) for every test vehicle
in the experiment.
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Figure 6.2: Per-vehicle MAE of the three models.
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dispersion. Its property of changing all its parameters offers flexibility but also increases

the risk of overfitting when few labelled cycles are available.

Although Unfrozen-SSL reduces the average error of Unfrozen-SL by ≈ 9%,

it does so at the cost of higher variance relative to Frozen-SSL. This variance-bias

trade-off suggests that the benefit of unfreezing is context-dependent: substantial when a

particular battery deviates from the population used during SSL pre-training (specifically

with valleys), yet detrimental when the operating regime is already well covered.

Visual inspection of the month-by-month SoH curves (Fig. 6.1) reveals three char-

acteristic phases. Early life (0-6 months): All models follow the target closely.

Differences emerge mainly as vertical offsets determined by the LSTM. Mid-life (6-

18 months): Divergence becomes apparent. The frozen encoder yields the smoothest

degradation trajectory, seldom overshooting the target capacity. In several vehicles (e.g.

#14), Unfrozen-SL displays an overly optimistic SoH because end-to-end training in-

ternalizes false calendar drifts. Allowing the SSL encoder to adapt (Unfrozen-SSL)

corrects most of this bias, but its not-so-smooth degradation can result in worse perfor-

mance when inaccurate sensor reading result in unusual SoH patterns (see #9). Late life

(≥22 months): As capacity fade saturates, all models converge to a plateau. Nonethe-

less, Frozen-SSL and Unfrozen-SSL end within ≤ 1 Ah of the true value, whereas

Unfrozen-SL occasionally undershoots.

If fleet-wide robustness is paramount, Frozen-SSL is preferred. It delivers a 13.3 %

average MAE reduction, with up to 35 % reduction, compared with the supervised base-

line, while decreasing the risk of large individual errors by 25 %. In settings with an-

ticipated domain shift, for instance, fast-charging taxis or vehicles operating in extreme

climates, unfreezing the encoder is advantageous. Unfrozen-SSL lowers the error by

up to 59 % in the most atypical vehicles (#14-#16). Conversely, Unfrozen-SL is com-

petitive only when abundant labelled data exists for the target battery and stringent
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safety margins are relaxed.

The foregoing analysis motivates a hybrid over-the-air (OTA) update strategy. A

fleet can adopt Frozen-SSL as the default firmware, activating the Unfrozen-SSL

only after several consecutive cycles exceed a residual-error threshold. Such conditional

adaptation harnesses the stability of a frozen encoder while retaining the flexibility to

cope with emerging operating envelopes.

Self-supervised pre-training demonstrably enhances SoH estimation. Even the worst

SSL variant outperforms the fully supervised baseline on median error. Freezing the

encoder provides the safest option in terms of variance and outlier control, whereas

selective unfreezing unlocks considerable headroom when batteries deviate from popu-

lation norms. These findings lead us to shift towards an approach that uses a hybrid

of our two SSL models based on the anticipated deployment environment and of devis-

ing OTA policies that exploit the complementary strengths of both frozen and unfrozen

paradigms.

6.3.2 Experiment 2: Impact of Masking Ratio

This experiment analyses how different masking ratios affect our two SSL variants,

Frozen-SSL and Unfrozen-SSL, and how both compare with the fully supervised

baseline (Unfrozen-SL). In the original Time Series Masked Autoencoder (Ti-MAE)

paper [145], it is claimed that the masking ratio is related to the information density and

redundancy of the data. They note that natural language has a high information den-

sity, thus requiring a lower masking ratio. For example, BERT uses 15% as its masking

ratio [115]. On the other hand, images and time series data contain more redundancy,

making a higher masking ratio (≈ 75%) beneficial for learning high-level semantic fea-

tures. A lower masking ratio leads to the model focusing on local low-level semantic
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Table 6.5: Average MAE across 18 test vehicles for each masking ratio.
∆ is the percentage change relative to the SL baseline (1.81 A h).

Mask ratio Frozen-SSL ∆ (%) Unfrozen-SSL ∆ (%)
0.00 1.58 −13 2.03 12
0.10 1.85 2 1.71 −6
0.20 2.04 13 1.69 −7
0.35 1.79 −1 1.50 -17
0.50 2.03 12 1.80 0
0.60 1.57 −13 1.65 −9
0.75 1.64 −9 1.73 −4

features, potentially relying on interpolation for reconstruction rather than understand-

ing the broader patterns. Conversely, a higher masking ratio degrades performance due

to excessive loss of visible tokens, preventing the model from effectively capturing useful

representations.

Table 6.5 and Fig. 6.3 show that the Unfrozen-SSL model attains its lowest MAE

at a masking ratio of 0.35, achieving a 17 % reduction relative to the SL baseline. Errors

increase again when the ratio is pushed closer to either extreme (0 or 0.75), yielding the

typical U-shaped curve observed in masked reconstruction objectives. Frozen-SSL, by

contrast, never outperforms the unfrozen variant and only matches or beats SL at the

ends of the spectrum (0.00 and 0.60), or at the same 0.35 ratio at which the unfrozen

variant performed best.

Except for the zero-masking case, unfreezing consistently lowers the MAE (blue vs.

green curves). The benefit peaks at the same ≈0.35-0.40 window where the overall error

is smallest, lending empirical support to the intuition that adapting the pre-trained

representation to the downstream distribution is most useful once the pre-training task

becomes sufficiently challenging.

Figures 6.4 and 6.5 reveal considerable cross-vehicle variability, yet the unfrozen

model not only shifts the mean downwards but also tightens the spread. The standard
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Figure 6.3: Fleet-wide average MAE as a function of masking ratio.
The dashed orange line denotes the SL baseline (1.81 A h).

deviation drops from roughly 0.42 A h (frozen) to 0.31 A h at the optimum ratio, and the

box plots (Fig. 6.6) show fewer and less extreme outliers. It also reaches a maximum

improvement of 60% (Vehicle #15). Vehicles #9 and #14 remain challenging when

masking exceeds 50 %, suggesting a possible benefit from vehicle-specific fine-tuning in

production settings.

From these findings, we can categorize the masking ratios into 3 categories:

• Too little masking (r = 0): With no tokens removed, the auto-encoder solves a

near-identity problem and learns little beyond the supervised objective. Unfrozen-

SSL even lags behind SL here.

• Too much masking (r ≥ 0.5): Excessive masking deprives the model of the

context it needs to reconstruct the signal, causing both SSL variants to drift back

toward, or above, the SL baseline.

• Sweet spot (r ≈ 0.3−0.4): Moderate masking forces the network to model longer-

range temporal dependencies while retaining enough context for the reconstruction
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Figure 6.4: Per-vehicle MAE curves for Frozen-SSL, Unfrozen SSL,
and the SL baseline across masking ratios. Each subplot corresponds to
one of the 18 vehicles in the testing data set.
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Figure 6.5: Per-vehicle scatter plots for Frozen (left) and Unfrozen
(right) SSL models. Solid black lines trace the fleet average at each ratio.

Figure 6.6: Distribution of MAE values across vehicles for each masking
ratio: Frozen-SSL (left) and Unfrozen-SSL (right). Boxes span the
interquartile range. Whiskers extend to±1.5 IQR. Circles denote outliers.
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task, which translates into the lowest MAE and the most stable performance across

vehicles.

For SoH estimation on this data set, applying a random masking ratio of 30−40%

during the pre-training phase and unfreezing the network during fine-tuning yields the

best trade-off between accuracy and robustness. Under these settings, the SSL approach

offers up to a 17 % mean improvement over a purely supervised pipeline.

6.3.3 Experiment 3: Effect of Federated Aggregation on SoH Estima-

tion Accuracy

In this experiment, our aim is to compare the performance of our proposed FL approach,

with a centralized approach. The Centralized model was trained on the union of all

vehicle data, while our Federated model was trained locally on each vehicle and then

aggregated following the standard FedAvg procedure. Both models were evaluated un-

der three masking ratios (0, 0.35, and 0.60) that were applied during self‑supervised

pre‑training. In these results, we use our results from our Frozen-SSL variant. Fig-

ure 6.7 reports the MAE per vehicle, while Figure 6.8 shows the fleet‑level average.

In a fleet-wide perspective and across masking ratios, the average difference between

the two training paradigms never exceeded 0.05 Ah (Table 6.6). At the most demanding

ratio of 0.60, the gap shrank to only 0.02 Ah, confirming that the federated pipeline

retains the accuracy of the centralized approach. In addition, both models follow the

same trend: a small increase in error at a medium mask ratio (0.35) followed by a slight

recovery at the higher ratio (0.60). The parallel trajectories indicate that the masking

strategy, rather than the learning paradigm, drives the bulk of the performance change.

A closer look at Figure 6.7 reveals that for 14 of the 18 vehicles, the difference between

centralized and federated MAE stays within 0.1 Ah for every masking ratio, suggesting

that minor data heterogeneity does not translate into systematic error. Vehicles #12
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Figure 6.7: Per‑vehicle MAE for centralized and federated models under
three masking ratios.
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Figure 6.8: Fleet‑level average MAE comparison between centralized
and federated training.

Table 6.6: Fleet‑level average MAE (Ah) for each masking ratio.

Masking Ratio
Training Mode 0 0.35 0.60
Centralized 1.53 1.79 1.55
Federated 1.58 1.79 1.57
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and #17 show noticeably higher federated errors at the 0.35 ratio, while Vehicles #4

and #6 slightly favour the federated model at some ratios. However, these swings

balance out in the fleet average, which remains virtually unchanged (Table 6.6). At a

0.60 mask, all vehicles exhibit near‑identical performance for the two training modes.

This supports the idea that, once representations become more powerful with heavy

masking, the aggregation procedure introduces negligible additional noise.

6.4 Discussion

This section brings together the evidence from the three experiments and answers the

research questions posed at the beginning of the chapter.

Both SSL variants lowered the mean MAE relative to the fully‑supervised baseline,

confirming that pre‑training on unlabelled drive‑cycle data does help the network ex-

tract transferable temporal features. In the first experiment, the Frozen‑SSL model

achieved the lowest fleet‑wide average error and, more importantly, the smallest stan-

dard deviation, indicating strong regularization and consistent behaviour across vehicles.

It showed an improvement in fleet-wide average error of 13.3%, when compared with the

SL variant, with a maximum per-vehicle improvement of 35%. Unfrozen‑SSL, on the

other hand, delivered the single best result on seven of the eighteen test EVs, showing

that letting the encoder adapt is useful when a battery departs from the population used

in pre‑training. While it showed a lower improvement in fleet-wide average error (8.8%),

it raised the maximum per-vehicle improvement to a whopping 59%.

Masking ratios below 0.1 or above 0.5 degraded performance for both SSL variants.

The sweet spot lay between 30% and 40%, where the unfrozen model cut the average

error by ≈ 17% while also tightening the spread of per‑vehicle losses. In addition to

this variance shrinkage, we see that for all the masking ratios within this range, our

unfrozen variant consistently performed better than the frozen one. With no masking
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(r = 0), the auto‑encoder reduces to an identity mapping and learns little beyond the

supervised objective, whereas too much masking (r ≥ 0.6) removes so much context

that reconstruction becomes guess‑work. These observations are consistent with earlier

reports on masked reconstruction for time-series data, where moderate masking forces

the network to capture longer‑range structure rather than local interpolation patterns.

Replacing a central data pool with FedAvg aggregation altered the fleet‑level error by

at most 0.05 Ah, around the typical laboratory repeatability limit for capacity measure-

ments. Even at the most demanding masking ratio (r = 0.6), the federated model stayed

within 0.02 Ah of its centralized counterpart, demonstrating that privacy‑preserving

training can be adopted without sacrificing accuracy.

As a practical takeaway: We recommend shipping the Unfrozen-SSL encoder, pre-

trained with a masking ratio between 30-40%. As an alternative, which can be put

to further experimentation in the future, we recommend shipping the Frozen‑SSL

encoder as the default firmware and enabling an adaptive unfreeze when the residual

error exceeds a safety threshold for several consecutive cycles. Owing to its 15.6 k

parameters (≈62 kB), our encoder can be stored and updated even on low‑end Battery

Management System (BMS) micro‑controllers. The full inference stack used during

fine‑tuning still weighs in at only 0.88 M parameters (≈ 3.5 MB), comfortably below

the 4-16 MB flash budgets of modern automotive MCUs. A fixed masking ratio of 35%

during pre‑training offered the best trade‑off between accuracy and robustness.

Wrapping up, self‑supervised pre‑training with a 35% masking ratio, delivered through

an unfrozen encoder emerges as the most practical and accurate solution. The experi-

mental evidence confirms that federated aggregation preserves this accuracy while hon-

ouring data privacy. Selective unfreezing appears as an attractive alternative.
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Chapter 7

Conclusion and Future Work

7.1 Chapter Introduction

This final chapter brings the thesis full circle. It ties together the research questions

posed in the beginning, breaks down the most significant findings of the chapters, and

positions those findings within the broader landscape of Electric Vehicle (EV) battery

management research. It then outlines the study’s limitations, and aggregates actionable

avenues for future investigation.

7.2 Restatement of Aims & Research Questions

The overarching aim of this thesis was to design, implement, and evaluate an efficient,

accurate, and privacy-preserving framework for State-of-Health (SoH) estimation in EV

batteries by combining masked-autoencoding Self-Supervised Learning (SSL), Federated

Learning (FL), and cloud deployment.

This aim decomposed into four specific research questions stated originally in Chap-

ter 1:
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RQ1 Pre-training Benefit: Does pre-training with masked auto-encoding on unla-

belled drive cycles enhance SoH prediction compared with purely supervised base-

lines under limited labelled data?

RQ2 Masking Sensitivity: How does the choice of masking ratio in SSL influence

representation quality and downstream SoH accuracy?

RQ3 Fine-tuning Strategy: How do different fine-tuning strategies for the SSL en-

coder (fully frozen vs. full unfreeze) affect model performance and training stabil-

ity?

RQ4 FL Impact: Does FL aggregation for model parameters degrade performance

compared with centralized training?

7.3 Summary of Major Findings

The answers to RQ1-RQ4 emerged from the experiments reported in Chapter 6. Rather

than reiterating every numeric result, this section integrates the evidence thematically.

7.3.1 Self-Supervision vs. Supervision (RQ1)

Using a fixed masking ratio of 0.6, Table 6.4 showed that adding an SSL pre-training

stage reduced the fleet-wide average Mean Absolute Error (MAE) from 1.81 Ah (Unfrozen-

SL) to 1.57 Ah in the Frozen-SSL variant (a 13.3 % improvement) and to 1.65 Ah in

the Unfrozen-SSL variant (8.8 % improvement). Frozen-SSL also exhibited the low-

est dispersion (std. dev. 0.39 A h versus 0.52 A h for the fully supervised baseline). These

gains validate the first hypothesis that unlabelled drive cycle data contain transferable

temporal patterns useful for downstream SoH estimation when labelled data is scarce.
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7.3.2 Effect of Masking Ratio (RQ2)

The masking ratio sweep (Table 6.5) produced the expected U-shaped curve. For the

Unfrozen-SSL model the minimum MAE, 1.50 Ah, occurred at a masking ratio of

0.35, a 17 % reduction relative to the 1.81 Ah baseline. Errors rose again toward both

extremes, surpassing the baseline when the ratio reached 0.00 or 0.75. For Frozen-SSL,

the best result (1.57 Ah) was obtained at r = 0.60, not surpassing the unfrozen variant.

Hence a moderate 30-40% masking ratio strikes the best balance between task difficulty

and information availability.

7.3.3 Fine-tuning Strategies (RQ3)

Experiment 2 directly compared frozen and unfrozen SSL encoders under seven masking

ratios. Throughout the practical range 0.10 ≤ r ≤ 0.50 the Unfrozen-SSL variant

always beat the frozen one, trimming the fleet-wide MAE by 6-17% (1.50 Ah vs. 1.79

Ah at the optimum r = 0.35, see Table 6.5). At the same time, it narrowed the error

spread. The standard deviation fell from ≈0.42 Ah to ≈0.31 Ah and the number of

outliers in Fig. 6.6 almost halved. Only at the extremes (r = 0 and r ≥ 0.60), where the

reconstruction task becomes trivial or impossible, did freezing recover a small advan-

tage. Hence, once a non-trivial masking task is applied, allowing the encoder to adapt

consistently improves both accuracy and robustness.

7.3.4 Federated vs. Centralized Training (RQ4)

Experiment 3 (Table 6.6) found that replacing a central data pool with FedAvg aggrega-

tion altered the fleet-wide MAE by at most 0.05 Ah (< 3 % of the baseline error). At the

most demanding masking ratio r = 0.60 the gap shrank to 0.02 Ah (1 %). Per-vehicle

curves (Fig. 6.7) showed that 14 of 18 vehicles stayed within 0.1 A h of the centralized

reference across all ratios. Hence FL preserves accuracy while eliminating the need to

export raw battery logs, fully answering RQ4 in the affirmative.
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7.3.5 Integrated Perspective

Collectively, these findings demonstrate that (i) SSL pre-training lowers average error

by up to 17 %, (ii) a 30-40 % masking ratio yields the lowest fleet-wide MAE, (iii)

unfreezing further improves performance on atypical batteries (up to 59 % per vehicle),

and (iv) federated aggregation adds only negligible error (≤ 0.05 A h). The proposed

framework therefore addresses the challenges of data scarcity, heterogeneity, and privacy

simultaneously, validating all four research hypotheses posed at the beginning of the

thesis.

7.4 Theoretical & Practical Contributions

7.4.1 Academic Contributions

• Quantified SSL Benefit: By pre-training on unlabelled drive-cycle data, the

proposed framework lowered the fleet-wide MAE from 1.81 Ah to 1.50 Ah (a 17 %

gain) and achieved a per-vehicle improvement of up to 59 % (Chapter 6, Table 6.4).

This work is, to the author’s knowledge, the first to combine masked autoencoding

with FL for battery SoH estimation.

• Masking-Ratio Characterization: A systematic sweep across seven masking

ratios revealed a clear optimum at r = 0.35, where the unfrozen model reached

1.50 Ah (a 17 % reduction, see Table 6.5). The resulting U-shaped curve refines

prior heuristic claims about “high masking” for time-series SSL.

• Frozen vs. Unfrozen Fine-Tuning Analysis: The study shows that unfreez-

ing the encoder minimizes dispersion while delivering the best single-vehicle scores.

Such a formal comparison has not previously appeared in the battery-health liter-

ature.

112

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/
https://www.eng.mcmaster.ca/mech/


Master of Applied Science– Mohanad Ismail; McMaster University– Department of
Mechanical Engineering

• FL Validation: FL (FedAvg) was shown to increase error by at most 0.05 Ah

(< 3%) relative to centralized training, answering long-standing concerns about

aggregation noise (Table 6.6).

7.4.2 Practical Contributions

• Deployment Blueprint: Alongside the recommended unfrozen variant, results

also support a two-tier firmware strategy: ship the Frozen-SSL model by de-

fault, but enable on-device adaptive unfreezing when residual error exceeds a safety

threshold.

• Memory & Compute Feasibility: The 62 kB encoder fits comfortably inside

the 256-512 kB flash budgets of current Battery Management System (BMS) micro-

controllers. The 3.5 MB full stack is within the 4-16 MB range of next-generation

automotive MCUs.

• Hyper-parameter Guidelines: A random masking ratio of 30-40% during pre-

training and a history length of 2 months during fine-tuning yielded the best accu-

racy/variance trade-off. These concrete numbers can guide industrial calibration.

• Open-Source Assets: All code, model weights, and processing scripts will be

released to accelerate reproducibility and adoption in commercial BMS design.

7.5 Limitations

Despite its contributions, the study has several caveats:

1. Chemistry Coverage: All experiments used an NMC data set drawn from 20

vehicles. Behaviour on LFP, NCA, or solid-state chemistries remains untested.
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2. Fleet Size & Diversity: Only 18 vehicles were available for evaluation after

fine-tuning. Larger, more diverse fleets could expose edge cases not captured here.

3. Simulation-Only FL: Federated rounds were emulated offline, so real-world ef-

fects such as packet loss, cellular latency, or straggler clients were not modelled.

4. Single Aggregator: FedAvg was the sole aggregation rule. Personalized FL,

secure aggregation, and differential-privacy noise were left unexplored.

5. Architectural Breadth: The work focused on a Time Series Masked Autoen-

coder (Ti-MAE) encoder-decoder. Alternative SSL paradigms (contrastive, au-

toregressive) and hybrid masking schedules were not benchmarked.

6. Physics & Uncertainty: The models are purely data-driven and deterministic.

Electrochemical constraints and predictive uncertainty are absent.

7.6 Recommendations for Future Work

Based on the current results, we cluster findings into four strategic research thrusts that

address the limitations identified above and capitalize on the thesis’s core contributions.

7.6.1 Thrust 1: Cross-Chemistry and Large-Fleet Validation

• Multi-Chemistry Benchmarks: Replicate the SSL + FL pipeline on LFP, NCA

and emerging solid-state cells to verify whether the 17 % fleet-wide MAE reduction

generalizes beyond NMC.

• Vehicle Scale-Up: Extend the evaluation from 18 to ≥100 vehicles, enabling

confidence intervals narrow enough for certification and uncovering rare ageing

trajectories.
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7.6.2 Thrust 2: Real-World Federated Deployment

• Advanced Aggregation: Evaluate secure aggregation, differential-privacy noise

and personalized FL layers to mitigate the single-aggregator limitation noted in

the thesis [137], [156].

7.6.3 Thrust 3: Adaptive & Physics-Aware Learning

• Dynamic Masking: Replace the fixed r = 0.35-0.40 mask with a schedule that

increases task difficulty over epochs.

• Physics-Informed Constraints: Embed electrochemical balance equations in

the loss [157], [158].

• Uncertainty Quantification: Add Monte-Carlo dropout or lightweight ensem-

bles so the BMS can flag low-confidence SoH estimates before warranty or safety

limits are breached [159].

7.6.4 Thrust 4: Communication & Compute Optimization

• Bandwidth Reduction: Investigate gradient sparsification and 8-bit weight

quantization to further shrink model parameter uploads, enabling over-the-air

(OTA) updates over legacy 3G channels.

• Edge/Fog Partitioning. Explore splitting inference between an on-board micro-

controller and a roadside edge server to keep the MCU flash budget below 2 MB

without sacrificing accuracy.
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7.7 Final Remarks

This thesis has demonstrated that coupling SSL with federated aggregation is a prag-

matic path toward data-efficient, privacy-preserving battery diagnostics. While chal-

lenges remain, the evidence presented herein suggests that the next generation of BMS

software can learn collaboratively across fleets and without compromising driver pri-

vacy to accelerate the global transition from Internal Combustion Engines (ICEs) to

sustainable electric mobility.
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