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Lay Abstract

This thesis explores how we can improve artificial intelligence models in two key areas:

Federated Learning (FL) and Image Restoration (IR).

FL allows multiple clients to train a shared model without revealing their private

data. However, differences in data distributions across clients, known as data hetero-

geneity (non-i.i.d.), can negatively impact the model’s learning process and accuracy.

We develop an informed client selection strategy that prioritizes clients based on the

diversity of their local gradients.

In IR, we focus on removing complex visual distortions while preserving perceptual

quality and natural image structure. We develop a two-stage restoration framework

to address the fundamental distortion–perception tradeoff. The first stage generates

a coarse estimate optimized for distortion-oriented metrics, while the second stage

refines this estimate using generative model-based methods that learn an efficient

distribution mapping to enhance perceptual fidelity. Our approach achieves high-

quality, visually realistic restorations even under challenging real-world degradations

by combining distortion reduction with perceptual enhancement. These contributions

advance flow-based optimization strategies for image restoration in the presence of

distribution shifts.
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Abstract

This thesis explores model optimization strategies for two fundamental areas in ma-

chine learning: Federated Learning (FL) and Image Restoration (IR), both of which

must address challenges posed by data heterogeneity and distribution shifts. We

present three contributions aimed at improving robustness, adaptability, and perfor-

mance in these settings.

The first chapter introduces a gradient-based client selection method for FL. We

propose a novel `4-norm cosine similarity metric that captures higher-order gradient

structures, allowing the server to prioritize clients whose updates are more aligned

and informative. This approach accelerates convergence and improves the final model

quality compared to random or traditional `2-based selection strategies, especially

under non-i.i.d. client distributions.

The second chapter presents MoiréXNet, a multi-scale image restoration network

designed to remove complex visual distortions such as moiré patterns. Our frame-

work integrates linear attention modules for efficient feature aggregation, test-time

training for adaptation to unseen degradations, and a truncated flow matching prior

to enforce structural consistency. MoiréXNet achieves state-of-the-art performance

across several real-world benchmarks.
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The third chapter addresses the ”Last Mile” of image restoration through a rec-

tified flow-based refinement process. We design a two-stage restoration framework: a

coarse estimate is first optimized for distortion-oriented metrics, followed by refine-

ment using generative model-based methods that learn efficient distribution mappings

to enhance perceptual fidelity. This strategy balances distortion reduction and per-

ceptual quality, producing visually realistic results even under severe degradation.

Collectively, this thesis advances gradient-based optimization for federated sys-

tems and flow-guided adaptive restoration methods, contributing to the development

of AI models that are robust, efficient, and capable of handling messy, unpredictable

real-world data.
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3.4 Quantitative comparison with the state-of-the-art demoiréing approaches
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Chapter 1

Introduction

Artificial intelligence (AI) has achieved remarkable success across various applica-

tions [32, 41, 139, 30, 28], from personalized services and medical diagnosis to au-

tonomous driving and computational photography. Despite these advances, deploying

AI models in real-world settings often presents significant challenges, particularly in

data heterogeneity, distribution shifts, and limited supervision. This thesis seeks to

enhance model performance while improving the robustness and effectiveness of AI

models in two pivotal areas: Federated Learning (FL) and Image Restoration (IR).

1.0.1 Problem Formulation: Federated Learning

FL aims to collaboratively train a global model w ∈ Rd across a population of N

decentralized clients, each holding a private local dataset Di (i = 1, . . . , N). The

central server seeks to solve the following optimization problem:

min
w
F (w) =

N∑
i=1

piFi(w), (1.0.1)

1
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where Fi(w) = E(x,y)∼Di
[`(w;x, y)] is the local loss function on client i, ` denotes a

supervised loss (e.g., cross-entropy), and pi reflects the relative importance or size of

client i’s dataset.

At each communication round t, a subset of clients St ⊆ {1, . . . , N} is selected to

perform local updates. Each selected client i ∈ St updates its model parameters by

minimizing Fi(w) locally, typically via stochastic gradient descent (SGD), and sends

the update ∆wi back to the server for aggregation [133].

Challenges under Data Heterogeneity. In practice, client datasets are often

non-i.i.d. and highly heterogeneous [80, 230, 97, 143, 1], leading to divergent updates

that slow convergence and degrade the performance of the aggregated global model.

Random client sampling fails [133] to account for the variability and alignment of

client updates, resulting in suboptimal optimization dynamics. To address these

challenges, this thesis formulates client selection as an informed sampling process.

In each round, the server aims to select clients whose updates are expected to be

diverse, yet aligned with global optimization. Specifically, in chapter 2, we introduce

a gradient-based selection strategy leveraging `4-norm cosine similarity (Cos4), which

measures high-order similarities between local gradients and the global model:

Cos4(gi, gj) =
〈gi, gj〉
‖gi‖4‖gj‖4

, (1.0.2)

where gi and gj are flattened gradients or model updates from clients i and j, and

‖ · ‖4 denotes the `4 norm.

By prioritizing clients based on their Cos4 similarity to the global direction, the

server selects a subset St that promotes faster convergence and more consistent model

2
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updates, effectively mitigating the impact of data heterogeneity.

1.0.2 Problem Formulation: Image Restoration

IR aims to recover a clean image X ∈ RH×W×C from a degraded observation Y ∈

RH×W×C , where H, W , and C denote the image height, width, and channels, re-

spectively. The degradation process is typically modeled as a conditional distribution

p(Y | X), which may be complex, non-invertible, and unknown in real-world scenar-

ios [114, 25, 103].

Given paired training data {(Yi, Xi)}Ni=1, traditional supervised learning approaches

aim to learn a deterministic mapping fw : Y 7→ X̂ by minimizing a distortion-oriented

loss:

w∗ = arg min
w

E(Y,X) [Ldistortion (fw(Y ), X)] , (1.0.3)

where Ldistortion typically measures pixel-wise differences, such as `1 or `2 loss.

However, minimizing distortion metrics alone often leads to overly smooth recon-

structions that lack perceptual realism, particularly when the degradation distribution

at test time deviates from the one seen during training. This issue is known as the

distortion–perception tradeoff [15].

To address these challenges, we adopt a two-stage restoration framework:

• Stage 1: Coarse Estimation. A mapping fw : Y 7→ Z is trained to minimize

distortion and produce an initial estimate Z of the clean image.

• Stage 2: Perceptual Refinement. A rectified flow model vθ : Z 7→ X̂ is used

to refine Z toward a perceptually improved reconstruction X̂ via deterministic

3
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sample transport.

In Chapter 3, we implement the first-stage coarse estimator by designing MoiréXNet,

an adaptive multi-scale restoration network designed for demoiréing. MoiréXNet inte-

grates linear attention for efficient feature aggregation and employs test-time training

(TTT) [178] for online adaptation. To support perceptual refinement, it also in-

corporates a truncated flow matching [100] prior, improving robustness to unseen

degradations.

In Chapter 4, we extend this two-stage framework into a general-purpose solu-

tion for universal image restoration. We treat the outputs of existing MMSE-based

models as coarse estimates and refine them using a rectified flow model [112]. This

approach addresses the Last Mile problem in IR—improving perceptual quality with-

out retraining the entire pipeline. We theoretically and empirically demonstrate that

rectified flow offers an efficient refinement mechanism that enhances both distortion

and perception metrics across diverse restoration benchmarks.

1.0.3 Contributions and Thesis Organization

The thesis consists of three articles (under review) addressing model optimization

for client selection in Federated Learning and Image Restoration. Contributions are

detailed in the sections of Chapters 2, 3 and 4. Summarized reference information

follows:

• Liangyan Li, Yangyi Liu, Yimo Ning, Stefano Rini, Jun Chen. “A Gradient-

Based Selection Scheme Leveraging L4 Cosine Similarity for Federated Learning

under Data Heterogeneity”. arXiv preprint https://arxiv.org/abs/2506.

15923.

4
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• Liangyan Li, Yimo Ning, Wei Dong, Kevin Le, Yunzhe Li, Xiaohong Liu, Jun

Chen, J. (2025). ”MoireXNet: Adaptive Multi-Scale Demoiréing with Linear

Attention Test-Time Training and Truncated Flow Matching Prior”. arXiv

preprint https://arxiv.org/abs/2506.15929.

• Liangyan Li, Kevin Le, Ruibin Li, Matthew Ferreira, Wei Dong, Jun Chen,

Xiangyu Xu, (2025). ”Solving the Last Mile Problem of Image Restoration with

Rectified Flow”. Manuscript submitted to TIP 2025 (under review).

The rest of the thesis is organized as follows:

1. Federated Learning Client Selection. We introduce a gradient-based client

selection strategy using a novel L4 cosine similarity metric, denoted Cos4, which

more sensitively captures client gradient differences under data heterogeneity.

2. MoiréXNet: Adaptive Demoiréing. We present MoiréXNet, an adaptive,

multi-scale framework that combines linear attention, test-time training, and a

truncated flow-matching prior to robustly remove complex moiré artifacts while

preserving fine detail.

3. Rectified Flow for Last-Mile Restoration. We propose a two-stage, rectified-

flow–based refinement for the last-mile problem in image restoration, balancing

distortion-minimization objectives with perceptual fidelity via efficient deter-

ministic transport.

4. Conclusions and Future Directions. We synthesize our key findings and

outline promising directions for future work in both federated learning and flow-

based image restoration.
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Chapter 2

A Gradient-Based Selection

Scheme Leveraging  L4 Cosine

Similarity for Federated Learning

under Data Heterogeneity

2.1 Abstract

Federated Learning (FL) has gained increasing popularity for its ability to utilize

diverse datasets from multiple sources without requiring data centralization. How-

ever, existing works often overlook the nuanced gradient correlations among remote

clients, which can be particularly detrimental in the face of data heterogeneity. In

this paper, we propose cos4−select, a novel FL framework that exploits an `4-norm-

based cosine similarity measure of the model updates to identify and select clients for
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model aggregation. By emphasizing higher-order gradient moments, cos4−select ef-

fectively mitigates the adverse impacts of non-IID data distributions, improving both

the convergence speed and the final accuracy. In addition, we incorporate a simple

yet effective algorithm that promotes diversified selections by tracking a queue of

previously selected clients. We validate our approach using a VGG16 model across

various data partition schemes and initialization settings, demonstrating consistent

gains over state-of-the-art selection strategies.

2.2 Introduction

Across the many distributed deep learning frameworks proposed in the literature,

Federated Learning (FL) has gained significant attention for its ability to train mod-

els on decentralized data without requiring raw data exchange [133, 95]. In an FL

system, a central parameter server (PS) coordinates the training of a global model by

collecting model updates from multiple remote clients, each holding its local dataset.

In many practical scenarios, the convergence of FL is adversely affected by local data

heterogeneity, i.e., when the data distributions among clients differ significantly. Sim-

ply averaging the local updates in such a setting can severely degrade performance.

A second challenge in FL involves communication efficiency : because FL relies on

frequent exchanges of model updates between clients and the PS [89, 95], the com-

munication overhead often becomes the main bottleneck. This paper addresses the

intersection of these two issues. In particular, we seek to answer the question:

“What is the best strategy for selecting a subset of clients for training under local

data heterogeneity?”

Our core insight differs from existing client-selection literature in two key respects.
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Accumulate

gradient

updates gt+1

Send Model

update wt+1

Time

...

Clients PSPS PS

...

Clients

...

Gradient summaries used

for centralized client

selection

Clients

. . .

Figure 2.1: A conceptual representation of the Gradient Summaries for Centralized
Client Selection (GSCCS) setting.

First, we highlight that diversity among the selected clients, rather than strict gradi-

ent alignment, is often the more effective criterion, as divergent gradients can provide

complementary updates for the global model. Second, we propose the cosine similar-

ity induced by the `4 norm—denoted cos4−select—as a particularly robust selection

metric under various data heterogeneity levels.

Building on these insights, we design a cos4-based centralized client-selection

mechanism for FL, which we refer to as cos4−select. The method is simple, yet can be

implemented with minimal communication overhead, since each client only transmits

a small sketch of its local gradient to the server. Empirically, cos4−select accelerates

convergence and improves model accuracy compared to existing strategies, especially

in highly heterogeneous environments. We believe our findings offer a practical and

scalable approach for enhancing both the communication efficiency and the overall

performance of federated learning.

Our contributions can be outlined as follows:

• Novel Problem Formulation for Client Selection: We formulate the client
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selection problem in federated learning as a logistic regression model in which the

input features capture the pairwise gradient diversity between any two clients, and

the output is the probability of how likely the pair may be the best choice for

model update. This notion naturally extend to the multi-client case by averaging

the pairwise selection performance.

• Feature Exploration for Gradient Alignment: We thoroughly evaluate a

wide range of features for two-client selection in a single-layer FL training scenario,

including both statistical and geometrical criteria. Our analysis–conducted across

varying number levels of data heterogeneity and number of selected clients– reveals

that the cosine similarity induced by the `K norm (with K ∈ {1, 2, 4}) performs

robustly across all scenarios.

• Identification of cos4−select as the Best Single Feature: Among the different

`K-based cosine similarity measures, we identify cos4−select as the most effective

single feature for client selection, as it better captures gradient alignment under

diverse training conditions.

• Empirical Validation and Performance Gains: We conduct extensive numer-

ical evaluations demonstrating that leveraging cosF for client selection significantly

improves convergence speed and final model accuracy compared to existing selec-

tion strategies. Our results suggest that a simple yet powerful metric such as cosF

can be effectively integrated into FL protocols with minimal overhead.

Our proposed approach builds upon prior works that explore higher-order statis-

tics of gradient updates. For instance, [31] demonstrates that the kurtosis of the

gradient can serve as a relevant statistical measure for training performance, while
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[115] explores gradient distortions involving higher-order norms. These insights col-

lectively motivate our focus on `4-based cosine similarities in the present work.

2.3 Related Work

Client selection in Federated Learning (FL) is motivated by various local dataset

dynamics such as data imbalance, heterogeneity, and computational constraints, as

established in foundational works [134, 127, 94]. Research has shown that strategic

client selection can significantly improve accuracy [92], ensure fairness [176], enhance

robustness [10], and accelerate convergence [144, 176]. Several studies tackle the

multi-objective nature of this task by applying classical optimization tools to balance

fairness, resource constraints, and model performance. For instance, Lyapunov opti-

mization frameworks [73, 162, 12, 240] dynamically manage system stability across

these dimensions, while greedy algorithms [135, 224, 118] and Hungarian match-

ing methods [141, 26] offer more computationally efficient solutions. Reinforcement

learning approaches [231, 3, 8] also allow adaptive selection policies to be learned

from environmental interactions.

On the other hand, single-factor optimizations focus on isolated aspects like com-

putational capacity [189, 243] or client reputation [200, 11, 199, 180], potentially

overlooking the comprehensive trade-offs required for optimal global performance.

Closer to the scope of this work are approaches that select clients based on their local

training losses. The Active FL (AFL) method [56] assigns selection probabilities via

differential privacy applied to local losses, and POWER-OF-CHOICE (POWD) [79]

prioritizes clients with high local losses. While these loss-based methods can speed up

convergence, they may degrade overall performance in non-IID settings by ignoring
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correlations among clients.

Rather than relying on local losses, another class of methods selects clients by

inspecting their gradients [131, 166, 214]. In particular, [131] selects clients whose

gradients have the largest norms, and [166] employs a gradient-based approach that

leverages Shapley values to identify clients most representative of the global dataset,

improving efficiency and robustness under non-IID conditions. Similarly, [214] jointly

optimizes client selection and gradient compression, aiming to reduce communication

costs while maintaining overall performance. However, these gradient-based methods

typically treat each client’s contribution independently, risking biased updates when

chosen clients fail to represent the global distribution.

To address this limitation, more recent strategies factor in the relationships among

clients. For example, FedCor [181] models correlations between clients’ losses via a

Gaussian Process, allowing it to iteratively select clients based on predicted perfor-

mance gains. By focusing on client-to-client relationships, such an approach can

prioritize the updates most likely to benefit the global model over successive training

rounds.

Existing approaches often rely on local losses, resource metrics, or static client

correlations, which can introduce biases or fail to adapt to evolving data conditions.

In contrast, our method emphasizes gradient alignment and diversity among clients

by directly analyzing inter-client gradient relationships rather than relying solely

on losses or reputations. This allows us to avoid redundancy from correlated up-

dates, mitigate biases arising from non-representative client sampling, and enhance

robustness under data heterogeneity by prioritizing gradient diversity. Unlike purely
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gradient-norm or loss-based selection strategies, this framework explicitly models in-

terdependencies between clients, thereby yielding more coherent and globally benefi-

cial updates.

2.4 Preliminaries

2.4.1 Notations

We use lowercase boldface letters (e.g., z) to denote vectors and calligraphic uppercase

letters (e.g., A) to denote sets. For any set A, let |A| be its cardinality. We adopt

the shorthand [m : n] , {m, . . . , n} and [n] , {1, . . . , n}. Throughout the paper, (i)

k ∈ [K] indicates a client index – we use k′ needing two client indexes, (ii) t ∈ [T ]

an iteration index, (iii) s ∈ S ⊆ [K] a selected client index with |S| = S, (iv) j ∈ [J ]

denotes a shard (or partition) index, and r ∈ [R] is the random seed.

2.4.2 Federated Learning

Consider the FL setting with K clients, each possessing a local dataset Dk ∈ D, for

k ∈ [K] wishing to minimize the loss function L as evaluated across all the clients and

over the model weights w ∈ Rm, where m denotes the dimensionality of the model

parameter. This minimization is coordinated by the PS as follows: in round t ∈ [T ],

the clients transmit local gradients to the PS; the PS generates a model update, and

sends the updated model back to the clients. The above steps are repeated for T times:

the model obtained at time T is declared as the converged model. Mathematically,
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the loss function L is defined as

L(w) =
1

|D|
∑
k∈[K]

Lk(Dk,w), (2.4.1)

where Lk(Dk,w) is the local loss function quantifying the prediction error of the k-th

client’s model. A common approach for numerically finding the optimal value of w is

through the iterative application of (synchronous) stochastic gradient descent (SGD).

We define the local gradients calculated at communication round t as

E[gkt] = E[∇Lk(Dk,wt)], (2.4.2)

where ∇Lk(Dk,wt) denotes the local gradients of the model evaluated at the local

dataset of the k-th client by minimizing the local loss function. Note that the ex-

pectation in (2.4.2) is taken over the randomness in evaluating the gradients, e.g.,

mini-batch effects. The PS aggregates all the local gradients and forms the new

global weights

wt+1 = wt − ηtgt, for t ∈ [T ], where (2.4.3)

for

gt =
1

K

∑
k∈[K]

gkt, (2.4.4)

where w0 is a random initialization.

2.4.3 Client Selection

Communication overhead is a major bottleneck in Federated Learning (FL), since each

training round typically involves transmitting updates between multiple clients and a
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central PS. To address this, a common strategy is to select only a subset of clients in

each round, reducing communication while still gathering sufficiently diverse updates.

Formally, let St ⊆ [K] denote the set of active clients at round t ∈ [T ]. This selection

process aims to balance two objectives: keeping |St| small to mitigate communication

costs, and ensuring that the selected gradients are sufficiently diverse to enhance the

global model’s generalization.

Client selection can follow two main paradigms. In decentralized approaches,

each client independently decides whether to participate based on local metrics. In

contrast, centralized approaches place this responsibility on the PS, which can use

aggregated information (e.g., partial gradient statistics) for client selection. In this

work, we focus on centralized selection under heterogeneous data distributions, lever-

aging gradient-based measures to identify and activate clients whose updates offer

the greatest potential for improving model convergence.

2.4.4 Data Heterogeneity

In many practical scenarios, the local dataset at each client is intrinsically heteroge-

neous. One way to capture this heterogeneity is by assuming that each client’s data

are sampled from a mixture of several prior distributions. Specifically, let mik denote

the i-th data point (features and labels) at client k. We write

mik ∼ P k
m =

∑
j∈[J ]

λjk P
(j)
m , (2.4.5)

where {P (j)
m }j∈[J ] is a kernel of J distributions, and the mixing coefficients λk =
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{λjk}j∈[J ] specify the proportion of data at client k coming from each kernel distribu-

tion.

In the following, we implement the mixture model of (2.4.5), we partition the

full CIFAR dataset into 10 shards–one per label– and assign to each client J shards.

Every client k then receives exactly J shards chosen uniformly at random from the

available J ·K total shards. This produces non-i.i.d. local data distributions reflecting

the mixture structure. By varying J or the manner in which shards are allocated,

one can control the degree of heterogeneity across clients.

2.5 Problem Formulation

In many practical FL scenarios, it is advantageous for the parameter server (PS) to

decide which clients will actively participate in a training round, based on partial

information about each client’s local gradients. We refer to this approach as the

Gradient Summaries for Centralized Client Selection (GSCCS) setting – see Fig. 2.1.

Specifically, the selection process proceeds in two phases:

1. Summary Transmission: Each client k ∈ [K] sends a gradient summary—a

compressed or otherwise optimized representation of its local gradient gkt —to the

PS.

2. Centralized Client Selection: Upon receiving these summaries, the PS exam-

ines their contents and decides on the set St ⊆ [K] of active clients for round t,

with |St| = S.

By introducing this extra summary-transmission phase, the PS can make a more

informed selection of active clients. Compared to one-shot aggregation schemes that
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skip client selection, GSCCS adds one extra transmission step prior to the main

gradient exchange. However, these summaries typically have much lower dimension

or precision than the full gradient vectors, allowing the PS to exclude clients whose

updates do not significantly benefit the global model.

Mathematically, let the gradient summary of client k at time t be defined as

skt = φ(gkt), (2.5.1)

where φ : Rm → Rp outputs a lower-dimensional or compressed vector. Each client

k ∈ [K] transmits skt to the PS, which then uses these summaries to compute pairwise

gradient affinities and ultimately select the active set St of cardinality J .

Once St is determined, the gradient update at round t is given by

ĝt =
1

J

∑
s∈St

gst, (2.5.2)

and the corresponding sequence of model weights {ŵt}t∈[T ] follows from standard

gradient-based updates. We denote the client selection policy as

St = π
(
{skt}k∈[K]

)
, (2.5.3)

where among the
(
K
J

)
possible subsets of clients, the optimal choice S∗t minimizes the

loss L(·) at time t. Thus, the client selection problem under the GSCCS setting can

be formulated as

P : min
φ,π

1

T

∑
t∈[T ]

(
L
(
ĝ∗t
)
− L(ĝ)

)
, (2.5.4)

where we seek to minimize the average additional loss incurred by selecting J out of
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K clients based on summaries of dimension p.

2.5.1 Assumptions, Observations, and Comments

Sketch dimension. We do not delve deeply into how the sketch size r affects train-

ing performance, leaving this investigation for future work. Our current framework

assumes r is large enough that each sketch accurately captures the relevant gradient

information needed for client selection.

Reliability of summaries. We assume the transmitted summaries are sufficiently

accurate for the parameter server to compute meaningful gradient-affinity measures.

In practice, one can optimize the sketching or sampling procedure (e.g., choosing an

appropriate matrix M) to balance communication overhead against selection accu-

racy.

Randomness in the training process. When referring to “optimal” client selec-

tion, we do so in an average sense—averaging over the stochasticity introduced by

random shard allocations, parameter initialization, and mini-batch sampling. Ana-

lyzing the full dynamics of this random process is beyond our current scope.

Final-loss selection criterion. Selecting clients to directly minimize the final loss

after T rounds can be impractical, as it requires predicting the model’s future evolu-

tion across multiple rounds. Instead, our approach focuses on a per-round (or greedy)

selection strategy, striking a practical balance between simplicity and performance.
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2.6 Proposed Method: cos4−select

In this section, we present the main contribution of our work: the cos4−select algo-

rithm for centralized client selection under the Gradient Summaries with Centralized

Client Selection (GSCCS) setting (Fig. 2.1). We organize our discussion as follows.

First, Section 2.6.1 introduces a logistic regression formulation for selecting exactly two

clients. Section 2.6.2 provides numerical insights into the most predictive gradient-

based features, and Section 2.6.3 describes the full cos4−select algorithm.

2.6.1 Logistic Regression Formulation for Pairwise Client Se-

lection

To begin, we focus on selecting exactly two clients out of K, treating the client selec-

tion task as a logistic regression problem. Concretely, the input features capture how

two clients’ updates interact (e.g., pairwise cosine similarity), while the labels reflect

normalized validation accuracies after training on those two clients. The resulting

dataset consists of feature-label pairs gathered under different rounds, heterogeneity

levels, and random seeds.

Mathematically, we define the client selection (CS) loss:

LCS = min
w

1

J

∑
k,k′

k 6=k′

BCE
(
σ(w>xk,k′), yk,k′

)
, (2.6.1)

where BCE is the binary cross-entropy loss, σ(·) is the sigmoid function, xk,k′ is

a d-dimensional feature vector (e.g., pairwise gradient metrics) for clients (k, k′),

and yk,k′ ∈ [0, 1] reflects how well the pair (k, k′) performs if selected. Intuitively,
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LCS measures how accurately the logistic model (parameterized by w) predicts the

performance of any two-client combination under the specified training conditions.

Table 2.1: Comparison of cos1, cos2, cos3, and cos4 under various experimental
settings.

cos1 cos2 cos3 cos4Charac. Type
Rank Rel.A Rank Rel.A Rank Rel.A Rank Rel.A

1 2.85 0.1790 2.85 0.1771 2.65 0.1761 1.65 0.1747
2 3.05 0.0993 2.55 0.1017 2.55 0.1002 1.85 0.0985Shard
5 3.00 0.0334 2.50 0.0337 2.40 0.0393 2.10 0.0415

Iteration
5 3.33 0.0833 2.33 0.0766 2.67 0.0677 1.67 0.0672
10 3.33 0.0762 2.00 0.0645 3.33 0.0657 1.33 0.0634
15 4.00 0.1073 2.00 0.1189 2.33 0.1352 1.67 0.1227
Avg 2.97 0.1039 2.63 0.1042 2.53 0.1052 1.87 0.1049

All
Std 0.59 0.073 0.60 0.072 0.51 0.069 0.51 0.067

Feature Vector Construction. In our experiments, we collect various gradient-

based metrics into the feature vector xk,k′ (see Table 2.1). One key candidate is the

cosine similarity under the Lp norm:

cosp(gk,gk′) =
〈gk,gk′〉p
‖gk‖p ‖gk′‖p

(2.6.2)

with

〈u, v〉p =
‖u+ v‖p − ‖u− v‖p

4
. (2.6.3)

This generalization encompasses the traditional L2 cosine similarity as a special case

and allows for higher-order norms (e.g., L4) that can emphasize dominant gradient

coordinates.

Label Definition. To generate the label yk,k in (2.6.1) for a particular pair of clients
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k, k′ we:

• Let y′k′,k(n, j, r) represent the vector of accuracies (or losses) for all possible K(K−

1) pairs under the three training conditions: (i) iteration n, (ii) heterogeneity level

j, (iii) and random seed r.

• Map these raw accuracies to [0, 1] considering for instance, via a softmax or min-

max scaling to obtain yj. Other scaling functions can be considered, such as linear

or entropy scaling.

This yields a binary or continuous label indicating the relative performance of each

pair k, k′ across the three training conditions.

Once the logistic model is trained, the learned weight vector w reveals which

pairwise features (or combinations thereof) best predict successful client selection.

Of course, care must be taken to avoid issues like collinearity, overfitting, and data

imbalance; yet, this framework offers a systematic way to distill the most informative

gradient-based metrics for further analysis or for building practical selection heuris-

tics.

2.6.2 Numerical Findings

To gain further insight on the client selection formulation in Sec. 2.6.1 we consider the

training of the last layer of VGG for K = 10 clients, T = 15 iterations, J = {1, 2, 5}

shards, and R = 10 seeds, For each of the training settings, i.e. (t, j, r) we consider the

selection of all possible K(K − 1) pair of users k, k′ and record (i) a set of pairwise

gradient features xk,k,(t, j, r), and the accuracy of the model under this selection

y′k,k′(t, j, r) as discussed above. The features we consider are quite extensive, such as
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• per-user, geometric features such as (‖g‖p + ‖g′‖p),

• pairwise geometric features e.g. ‖g − g′‖p, cosp(g,g
′)

• per-user, statistical features e.g. (Kurt[g] + Kurt[g′]),

• pairwise statistical features e.g. Cov(g,g′)

After careful experimentation, we conclude that the cosp(g,g
′) for p ∈ [4] provides

the most accurate and robust user selection performance. A summary of the training

for this set of features is provided in Table 2.1: here we report the performance in

terms of the (i) rank of the features in the feature important analysis and (ii) the

relative loss, obtained, as normalized over the loss of the worst user selection minus

the loss of the user selection and across (i) shards and (ii) iterations. Note that the

results in each row are averaged across the other training conditions. That is the

results for shard j are averaged over the iterator t and random seed r.

From the above, we glean the two following main insights:

• Single-Feature Accuracy: When restricting to a single feature for simplicity,

cos4 consistently emerges as the most predictive and robust metric for successful

client-pair selection. While cos1 achieves a smaller relative accuracy overall, it has

a higher variance.

• Negative Alignment: selecting the pair with the most negative cos4 improves per-

formance, suggesting that selecting complementary gradients–as opposed to overly

similar ones– is beneficial in most settings.
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Algorithm 1 cos4-select: FL Training under GSCCS

Require: Rounds T , number of clients K, selection size J , sketch function φ(·),
queue length L

1: Initialize global model w0, queue Q = ∅
2: for t = 1 to T do
3: PS broadcasts wt to all clients
4: for each client k ∈ [K] in parallel do
5: gkt ← ClientUpdate(Dk, wt)
6: skt ← φ(gkt) . Gradient summary (Eq. (2.4.2))
7: Send skt to the PS
8: end for
9: PS computes cos4(Sit,Sjt) for all i, j /∈ Q . Eq. (2.6.4)

10: Select St = Top-J(− cos4(sit, sjt)) . Negative alignment
11: for each x ∈ St do
12: enqueue x into Q . Track selected clients
13: end for
14: Selected clients St send gkt to PS
15: ĝt = 1

J

∑
k∈St gkt . Eq. (2.5.2)

16: wt+1 ← Optimizer(wt, ĝt) . Eq. (2.4.3)
17: PS updates queue Q by removing clients if their dwell time > L
18: end for

2.6.3 Proposed Algorithm: cos4−select

Having gleaned the insights from Section 2.6.2, we now present our proposed solution

for the GSCCS setting, which we refer to as cos4−select. Before describing the full

procedure, we introduce three additional elements that generalize and stabilize the

selection process.

Generalizing Beyond Pairs. Although the earlier analysis focused on selecting

exactly two clients, we naturally extend this to subsets of size J > 2. Rather than

computing pairwise cos4 for two users, we consider the average similarity across all
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pairs in the subset S:

cos4(S) =
1(
J
2

) ∑
k,k′∈S
k>k′

cos4
(
gk,gk′

)
. (2.6.4)

A lower value of cos4(S) indicates a higher degree of gradient diversity, which can be

beneficial in non-i.i.d. settings. We will demonstrate in subsequent sections that this

multi-client criterion maintains the advantages of the pairwise approach while scaling

to larger subsets.

Generalizing Beyond a Single Layer. Next, while Section 2.6.2 considered only

one layer of the model, Equation (2.6.4) extends naturally to deeper networks. We

simply compute each cos4(gk,gk′) over multiple layers (or an appropriately weighted

sum of per-layer similarities) and then aggregate those into an overall cos4 score. This

allows our method to capture gradient diversity spanning the entire neural architec-

ture, rather than focusing on a single layer.

AoU-Queue for Client Rotation. Finally, to avoid selecting the same clients

repeatedly—especially in highly heterogeneous scenarios—we introduce an Age-of-

Update Queue, or AoU-Queue. Whenever a client is chosen for transmission, we

place it in the AoU-Queue for a fixed number of rounds, preventing its immediate

re-selection. Mathematically, let L be the length of the queue, then if a user is

selected for transmission at time t, it will be available for selection at time t′ with

t′ > t + L/S. Conceptually, this provides a “cool-down period,” ensuring that we

periodically sample less frequently chosen clients.

Equipped with these three ingredients—multi-user selection, multi-layer gradients,

and an AoU-Queue—we now proceed to present the full cos4−select algorithm in
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detail. Algorithm 1 outlines the full procedure.

Each client k first compresses its local gradient gkt into a lower-dimensional sketch

skt = φ(gkt) and sends it to the PS. Based on these summaries, the PS approximates

the cos4 similarity for every pair of clients not currently in the queue. It then selects

a subset St of size J by maximizing negative alignment (i.e., minimizing cos4). Those

J clients are enqueued for ` rounds to avoid repeated selection, while they transmit

their full gradients to the PS. Finally, the server aggregates these gradients, updates

the global model, and broadcasts it back to all clients. As illustrated in Fig. 2.6 , in-

troducing a nonzero queue length significantly improves overall accuracy for different

shard configurations, highlighting the benefit of balancing gradient-based selection

with controlled client rotation.

By mixing a negative cos4-based alignment criterion with a simple queue mecha-

nism to ensure rotation, cos4−select balances gradient diversity with fair client partic-

ipation. Our experiments confirm that this approach achieves both faster convergence

and higher accuracy in strongly heterogeneous FL environments.

2.7 Experiments

2.7.1 Settings

Experiments are conducted on the CIFAR-10 [90] and Fashion-MNIST datasets [204]

with an ImageNet pre-trained VGG16 network [165], where the feature extraction

layers are frozen and only the classifier layers are fine-tuned. Each experiment is

repeated with 10 random seeds to ensure reliability. To evaluate the performance

of our client selection strategy, we compare it against three baselines: FedCor [181],
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AFL [56] and POWER-OF-CHOICE [79].

To compare the cos4 client selection method with relevant baselines in heteroge-

neous federated learning (FL) settings, the datasets are partitioned using the Parti-

tion by Shards (PS) method. Specifically, the dataset is divided into K ×S = 10×S

shards, where K = 10 represents the number of clients and S is a hyperparameter

controlling the level of heterogeneity (with lower S indicating higher non-IIDness).

Within each shard, data points share identical labels. Our method was evaluated

under three heterogeneity levels (S=1, 2, 5) and two selection configurations: per-

forming selection on only the layer 6 (one-layer) and on the layers 3 and 6 (two-layer)

of the VGG classifier.

1 2 3 4 5 6 7 8 9 10

Cos4

Cos3

Cos2

Cos1−0.45−0.49−0.14−0.17−0.33−0.16−0.27−0.22−0.54−0.87

−0.63−0.31−0.77−0.72−0.51−0.68−0.46−0.69−0.440.02
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Figure 2.2: Comparation of cosine similarities for shard j = 1 when choose 2 clients
from 10 on CIFAR10 dataset.
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Figure 2.3: Comparing our Cos4 for shard j = 1 against Cos2 and other SOTA
methods.

Table 2.2: Comparison of cos4 with the baselines under various experimental
settings.

cos4 AFL FedCor PoC cos4 AFL FedCor PoC
Charac. Type

One Layer Two Layers
1 29.29 28.24 25.47 27.95 28.94 28.68 23.69 27.27
2 42.68 38.99 39.91 38.83 43.53 39.03 39.22 39.26Shard
5 56.46 53.79 54.62 53.56 56.60 52.16 52.83 52.97

Iteration

3 34.82 31.65 32.42 32.53 36.07 31.30 32.84 33.25
5 40.88 37.77 36.89 36.17 40.42 35.66 35.54 35.68
7 44.22 40.35 40.41 41.41 44.78 41.01 38.16 38.89
9 46.51 44.70 42.61 43.67 47.13 45.13 42.01 43.88
Avg 42.81 40.34 40.00 40.11 43.02 39.96 38.58 39.83

All
Std 7.91 8.73 7.97 8.30 8.08 8.75 7.47 7.85

2.7.2 Compare to SOTA

CIFAR-10 dataset with 2 clients selected

Table 2.2 demonstrates that our cos4 method consistently outperforms the baseline

methods on CIFAR-10 under different data heterogeneity (Shard=1,2,5). At the

top half of the table, we display the converged test accuracy of each method. The

results show that cos4 converges to the best test accuracy compared to the baseline

methods across all three heterogeneity settings. At the bottom half of the table,

the test accuracy (averaged across three heterogeneity settings) at selected iterations
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is illustrated. Also, Figure 2.3 shows a heatmap of the coefficients w for different

iterations t ∈ [10] for shard j = 1, choosing J = 2 users over K = 10 averaged

across R = 10 seeds. Our cos4 method demonstrates robust performance across the

entire converging process. Extending to the two-layer configuration, while the baseline

methods generally result in a loss of performance, our cos4 method may achieve higher

test accuracy.

CIFAR-10 dataset with 4 clients selected

In Figure 2.4, we compare our method with the baseline methods when 4 out of 10

total clients need to be selected. Although all four methods converge to similar final

test accuracies after 20 iterations, our method excels the other in terms of converging

speed. While the baseline methods all take more than 5 iterations to reach 40%

test accuracy, our method achieves that at the third iteration. This advantage in

convergence speed persists until our method is the first to achieve the final converged

test accuracy.
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Figure 2.4: Comparison with baselines on the CIFAR-10 dataset for shard number
J = 2, S = 4, K = 10, in the one-layer setting.
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Fashion-MNIST dataset with 2 clients selected

In order to validate the effectiveness of our method on other datasets, we deploy

all three baselines and cos4−select on Fashion-MNIST dataset. In Figure 2.5, we

present the experiment results under the setting, where local dataset is highly het-

erogeneous (Shard =1) and 2 out of 10 clients need to be selected for the one-layer

setting. By analyzing the training curves, we observe that our cos4 method starts to

outperform the baseline methods starting from the fourth iteration, and our method

converges to the best final test accuracy among all comparisons.
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Figure 2.5: Comparison with baselines on the Fashion-MNIST dataset (Shard = 1,
selecting 2 clients from 10) with one-layer setting.
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Figure 2.6: Comparison with different queue length using dataset CIFAR-10 for
Shard = 1, 2 and 5 under GSCCS settings.
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Figure 2.6 shows that the choice of queue length significantly influences learning

efficiency: Q=4 optimally balances stability and adaptability across shard sizes. For

smaller shards (1-2) with higher data heterogeneity, Q=4 maintains competitive con-

vergence accuracy by 10 iterations vs Q=0/Q=6 stagnation) by preserving critical

historical updates without over-saturation. In larger shards (5), homogeneous data

naturalizes queue length impact, though Q=4 still enables slightly faster early con-

vergence. Excessively long queues (Q=6) consistently underperform, demonstrating

diminishing returns in data retention efficiency.

2.8 Conclusion

This paper introduces a novel framework that leverages the cosine similarity between

clients’ local gradients to select clients, thereby reducing communication costs and

improving convergence in heterogeneous federated learning (FL). Specifically, we pro-

pose a simple yet highly efficient method for client selection. Extensive experimental

results validate the effectiveness of our approach across various FL scenarios. In fu-

ture work, we will demonstrate that our method remains effective even when using

limited summaries of local gradients to determine which clients are selected for global

model updates.
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Chapter 3

MoiréXNet: Adaptive Multi-Scale

Demoiréing with Linear Attention

Test-Time Training and Truncated

Flow Matching Prior

3.1 Abstract

This paper introduces a novel framework for image and video demoiréing by in-

tegrating Maximum A Posteriori (MAP) estimation with advanced deep learning

techniques. Demoiréing addresses inherently nonlinear degradation processes, which

pose significant challenges for existing methods. Traditional supervised learning ap-

proaches either fail to remove moiré patterns completely or produce overly smooth

results. This stems from constrained model capacity and scarce training data, which
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inadequately represent clean image distribution and hinder accurate reconstruction

of ground-truth images. While generative models excel in image restoration for lin-

ear degradations, they struggle with nonlinear cases such as demoiréing and often

introduce artifacts.

To address these limitations, we propose a hybrid MAP-based framework that

integrates two complementary components. The first is a supervised learning model

enhanced with efficient linear attention Test-Time Training (TTT) modules, which

directly learn nonlinear mappings for RAW-to-sRGB demoiréing. The second is a

Truncated Flow Matching Prior (TFMP) that further refines the outputs by aligning

them with the clean image distribution, effectively restoring high-frequency details

and suppressing artifacts. These two components combine the computational effi-

ciency of linear attention with the refinement abilities of generative models, resulting

in improved restoration performance.

3.2 Introduction

Moiré patterns, caused by interference between grid-like structures such as camera

sensors and LED screens [188], are visually disruptive artifacts characterized by wavy

lines, ripples, or colorful distortions [179]. These patterns degrade image quality

and are challenging to remove due to their complex, content-dependent variations in

thickness, frequency, and color, which often blend with fine image details [238].

Conventional demoiréing methods, relying on classical filters or signal decompo-

sition models [163, 177, 217, 86, 203], struggle to handle the non-linear and intricate

nature of moiré artifacts. The introduction of paired real [179, 64, 222, 219, 237,
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(a) Clean Images (b) Moiré Images (c) PnPFM (d) MoiréXNet (e) TFMP

Figure 3.7: Visual comparison of demoiréing methods. (a) Clean, (b) Moiré, (c)
PnP Flow, (d) MoiréXNet, (e) MoiréXNet + TFMP.

148, 42, 223] and synthetic datasets [239] has enabled supervised learning meth-

ods [179, 102, 220, 34, 62, 54, 64, 105, 237, 109, 238, 190, 219, 145, 188] to achieve

notable success in recovering clean sRGB images from corrupted inputs. However,

these methods are limited by their reliance on finite training datasets, which fail to

capture the true distribution of clean images. This limitation, compounded by the

non-linear transformations in the Image Signal Processor (ISP) pipeline, often results

in oversmoothed outputs with missing high-frequency details. While some efforts have

been made to incorporate frequency-domain information [64, 105, 43, 237, 188] or uti-

lize RAW domain data [222, 223, 208], they still fall short of accurately recovering

fine textures and edges, leading to suboptimal restoration quality.
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(a) Clean Images (b) Moiré Images (c) PnPFM (d) MoiréXNet (e) TFMP

Figure 3.8: Visual comparison of moiré artifact removal and detail preservation: (a)
Clean Images, (b) Moiré Images, (c) PnP Flow Matching with Moiré sRGB as

inputs, (d) MoiréXNet results (ours), and (e) MoiréXNet results enhanced
refinement via TFMP. Using pretrained PnP Flow Matching with a linear kernel on

moiré sRGB inputs (d) leads to artifacts like bullring effects due to the nonlinear
nature of the moiré pattern. Our framework (d) achieves superior structural fidelity

and artifact suppression while preserving high-frequency details. Refining the
results of MoiréXNet with TFMP (e) achieves further performance enhancements.

Generative models [58, 88, 71, 130] have shown strong performance in image

restoration tasks by leveraging learned priors to recover missing details. For tasks

such as denoising, deblurring, and super resolution, plug-and-play (PnP) denois-

ers [16, 9, 202, 5, 13, 234, 149, 38, 170, 75, 104, 132] are widely adopted for re-

construction. However, these approaches predominantly assume linear degradation

processes (e.g., additive noise, known blur kernels, uniform downsampling). Moiré

patterns, in contrast, pose a fundamentally different and more complex challenge.
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They arise from nonlinear interactions between scene textures and sensor sampling

grids, resulting in spatially varying aliasing effects that resist closed-form character-

ization. This inherent nonlinearity limits generative models’ ability to disentangle

artifacts from true image content, often leading to residual artifacts or hallucinated

details in restored images, as illustrated in Figure 3.8, column (c). MRGAN [221],

an unsupervised approach based on CycleGAN [244], demonstrates progress in moiré

removal by training generators with self-supervised techniques. However, it fails to

fully exploit the benefits of supervised learning and clean image priors, which restricts

its effectiveness.

In this paper, we propose a generic approach to tackling image/video restoration

and demonstrate its effectiveness, particularly in the challenging task of demoiréing.

Our contributions can be summarized as follows:

1. Hybrid MAP-based framework: We introduce a novel framework that com-

bines supervised learning with generative priors to address the nonlinear and non-

stationary nature of moiré degradation.

2. Efficient Test-Time Training (TTT) modules: We incorporate linear atten-

tion TTT modules into a supervised model, enabling efficient and robust RAW-

to-sRGB demoiréing through direct nonlinear mappings.

3. Flow Matching generative prior: We leverage a TFPM to refine restoration

outputs, effectively aligning them with the clean image distribution to recover

high-frequency details and suppress artifacts.

4. State-of-the-art performance: Our approach demonstrates superior results on

benchmark datasets, achieving significant improvements in quantitative metrics

(e.g., PSNR) and visual quality over prior methods.
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3.3 Related Works

3.3.1 Moiré Pattern Removal

Moiré patterns result from the interference of similar frequencies, degrading the qual-

ity of screen captures. A moiré pattern remover restores clean images or videos

by eliminating these patterns and correcting color deviations. Conventional meth-

ods [159, 163] primarily focus on specific types of moiré patterns. In contrast, su-

pervised learning-based image demoiréing approaches excel at learning diverse moiré

patterns. This progress has been driven by the availability of high-quality moiré

datasets [222, 237, 219, 179, 65, 42, 223] and advancements in deep learning back-

bones [68, 183, 116, 178].

For image demoiréing, most approaches utilize Convolutional Neural Network

(CNN)-based architectures, integrating multiscale features [102, 179, 34, 62, 237,

33, 108, 187], attention mechanisms [85, 206] (e.g., channel, spatial, and color) and

frequency-domain techniques [33, 237, 64, 105, 187, 122, 238] to tackle the complex

patterns of moiré artifacts. 3DNet [190] leverages both spatial- and frequency-domain

knowledge through a dual-domain distillation network. DDA [235] focuses on efficient

image demoiréing for real-time applications. The aforementioned methods predom-

inantly operate in the sRGB domain, where the ISP discards much of the original

sensor information through processes such as tone mapping, white balance, and com-

pression. In contrast, RAW-domain images retain unprocessed sensor data, preserving

richer details and naturally exhibiting reduced moiré patterns. RDNet [222] intro-

duces the first RAW-domain demoiréing dataset, leveraging the richer information

available in RAW images and incorporating a multi-scale encoder with multi-level
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feature fusion. However, despite employing a class-specific learning strategy to han-

dle different types of screen content, it lacks flexibility when applied to diverse scenes,

ultimately limiting its generalization capability. Studies such as [222, 210, 208] ex-

plore image demoiréing in both RAW and sRGB domains. However, these methods

struggle to handle diverse and complex scenarios effectively.

For video demoiréing, VDmoiré [42] introduces the first dedicated dataset and

a baseline model, while RawVDemoiré [223] proposes a temporal alignment method

specifically for RAW video demoiréing. Compared to their image demoiréing coun-

terparts, which primarily focus on feature extraction and fusion, video demoiréing

methods [209, 146, 106, 36, 150, 42] emphasize leveraging temporal information from

neighboring frames and aggregating multi-frame features to enhance the quality of

the restored video frames.

A key challenge in both image and video reconstruction lies in extracting rich

features that can effectively capture spatial and temporal dependencies. Transform-

ers [183, 50] have consistently outperformed CNN-based models [164, 67] across a

wide variety of tasks [193, 124, 126, 24, 111, 110, 125, 113, 192–194], thanks to their

ability to effectively capture global dependencies through self-attention mechanisms.

Such mechanisms rely on the Key-Value (KV) cache to store historical context, with

the attention output at time t given by:

zt = softmax

(
QK>√
dk

)
V (3.3.1)

where the softmax operation computes the attention weights. Self-attention explic-

itly stores all historical context, resulting in memory requirements that grow linearly

with the sequence length O(t) and computational complexity of O(t2) due to pairwise
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interactions between all tokens. In contrast, Mamba RNNs [207, 59] are an effective

state space model with linear computation complexity. Mamba RNNs leverage selec-

tive state spaces( input-dependent gating) to achieve linear-time complexity (O(t))

while maintaining global receptive fields. Mamba dynamically adjusts its state tran-

sition parameters based on the input, enabling both hardware-aware efficiency (via

parallel scan operations) and data-dependent context compression.

More recently, TTT blocks [178, 236] have emerged as a method to bridge the gap

between Transformers and RNNs by employing efficient parametric updates. TTT

avoids maintaining a growing KV cache by using a parametric hidden state st, which

is updated as follows:

st = f(st−1, xt;W ), (3.3.2)

where st−1 is the previous hidden state, xt is the current token input, andW represents

the learned parameters. The output is generated as:

zt = g(st;W ). (3.3.3)

This hidden state is iteratively updated at each time step, representing a compressed

summary of all previous tokens. TTT does not maintain an explicit KV cache, re-

sulting in a fixed-size representation with O(1) memory requirements. While TTT is

highly efficient for processing long sequences, it is typically less expressive than full

self-attention mechanisms.

In this work, we adopt TTT linear attention layers as our primary building

blocks, leveraging their long-range attention capabilities while maintaining compu-

tational efficiency. Frequency-domain features play a crucial role in computer vision
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tasks [23, 215, 225, 151, 37]. To harness the global representational power of the fre-

quency domain and mitigate the attention layers’ inherent bias toward low-frequency

features, we introduce a Learnable Frequency Enhanced Filter (LFEF) block before

the TTT linear attention layer. LFEF adaptively enhances both high- and low-

frequency components, ensuring a balanced and enriched feature representation for

improved downstream processing. We further integrate Invertible Neural Networks

(INNs) [45, 87, 44] during preprocessing to improve the feature extraction ability

of the TTT backbone. INNs are invertible models that excel in image processing

tasks [246, 78, 57, 6] by enabling efficient, lossless transformations and high-fidelity

reconstructions. Comprehensive architectural details are provided in Section 3.4.1,

with quantitative and qualitative performance evaluations discussed in Section 4.5.

The efficiency of the TTT linear attention layers is reflected in lower computational

complexity and faster inference times as shown in Table 3.3, while still achieving high

restoration performance as evidenced by competitive PSNR and SSIM scores.

3.3.2 Pretrained Image Priors for Image Restoration

Although traditional supervised image demoiréing methods achieve high PSNR [201],

their results often suffer from oversmoothing artifacts [77]. This limitation stems

from two key factors: (1) Euclidean distance-based loss functions in neural networks

prioritize pixel-wise fidelity at the expense of perceptual quality, and (2) constrained

dataset diversity restricts the model’s capacity to learn accurate image mappings.

To address these challenges, recent approaches have integrated prior knowledge

of natural image statistics into restoration pipelines. Image restoration is typically

formulated as an inverse problem, where the goal is to recover a clean image x from
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noisy observations y based on the forward model: y = Hx + n, where H is the

forward operator, which is typically a linear operation (e.g., a blurring matrix or

downsampling operator), and n represents additive noise, often assumed to follow a

Gaussian distribution. One common approach to solving this inverse problem is to

optimize a regularized objective function:

x̂ = arg min
x

1

2
‖Hx− y‖22 + λΦ(x). (3.3.4)

The first term, 1
2
‖Hx − y‖22, enforces consistency with the observed data (data

fidelity term), while the second term, λΦ(x), encodes prior knowledge about the im-

age (regularization term), such as smoothness or sparsity. Traditional methods [153,

245, 55, 66, 155] relied on explicit mathematical models of natural image statistics,

such as Fourier spectrum [154], total variation (TV) [155, 20, 48, 49, 142], spar-

sity priors [128, 22, 19, 155], and patch-based Gaussian mixtures priors [248, 104] to

guide the restoration process. The Plug-and-Play (PnP) [185, 175] framework revo-

lutionized image restoration by decoupling the prior from the forward model. Instead

of explicitly defining a regularization term Φ(x), PnP leverages powerful image de-

noising algorithms as implicit priors. For example, advanced nonlearned denoisers

like BM3D [21] and CNN-based denoiser [227, 7, 29, 121, 136, 228] have been used

for this purpose. Many modern learned priors exploit the capabilities of generative

models, which excel at capturing complex natural image distributions. Generative

models such as GANs [58], VAEs [88], diffusion models [172, 71, 167], and normaliz-

ing flows [45, 87] have shown immense potential in this regard, making them valuable

tools for modeling priors [16, 9, 202, 5, 13, 234, 149, 38, 170]. A recent extension of
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normalizing flows, known as flow matching [100, 112], optimizes transport paths be-

tween distributions and has been explored for various image restoration tasks within

PnP frameworks [132].

Even though PnP denoisers excel in addressing linear degradation tasks such as

denoising, deblurring, and super-resolution, effectively balancing fidelity and per-

ceptual quality, their effectiveness is significantly constrained in handling nonlinear

degradation tasks like demoiréing or JPEG artifact removal. As shown in Fig. 3.8,

when applied to image demoiréing, PnP-Flow tends to introduce artifacts due to the

inherent complexity of the degradation process. To overcome this limitation, we pro-

pose using TFMP as a refinement step to enhance the demoiréed images produced

by a supervised model.

3.4 Methodology

Moiré removal involves recovering a clean image x from a degraded observation

y = M(x) + n, where M(·) represents a nonlinear, scene-dependent degradation

caused by interference between high-frequency textures and sampling grids. In this

section, we present our hybrid approach: A supervised learning model in Section 3.4.1,

enhanced with efficient linear attention TTT modules, directly learns nonlinear map-

pings for RAW-to-sRGB demoiréing. This stage incorporates INN and LFEF mod-

ules to refine features in both the spatial and frequency domains, effectively removing

coarse patterns while preserving structural content. A truncated flow matching model

in Section 3.4.2 further refines the outputs by aligning them with the clean image dis-

tribution. This step restores high-frequency details and suppresses residual artifacts

through distribution matching, enabling photorealistic texture recovery.
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Figure 3.9: An overview of the proposed method.

3.4.1 Demoiréing Network Architecture

Our demoiréing framework builds upon the VDRaw framework [36], replacing the

convolutional layers in the preprocessing phase with a combination of ShallowCNN

and an INN module to enhance high-frequency detail preservation. Furthermore, we

adaptively combine the frequency domain features by learning a weighted filter before

applying TTT linear attention for multi-scale feature extraction. In our model, we

selected the TTT 1B version and adjusted the hidden size to 256.

Fig. 3.9 provides an overview of our proposed MoiréXNet model for video

demoiréing. More specifically, the key stages include Shallow Feature Extraction

(SFE), Deep Feature Extraction (DFE), Auxiliary Frames Alignment and Blend

(AFAB) and Hierarchical Reconstruction (HR). The model takes three neighboring
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RAW images, Vi
raw ∈ RH

2
×W

2
×4, where i ∈ {t−1, t, t+1}, in the 4-channel RGGB for-

mat as input and directly reconstructs the corresponding central frame sRGB image

Ot
sRGB. For clarity and consistency, we adopt the same notation as VDRaw.

The SFE block is designed to extract shallow features, denoted as Fraw, from

the RAW input data Vraw. The SFE block uses lightweight convolutional layers to

embed raw input frames (reference + auxiliary frames) into an initial feature space.

Then, an INN module, as proposed in [236], further ensures lossless information

preservation by enabling the mutual reconstruction of input and output features. This

unique property allows the INN to serve as a lossless feature extraction mechanism,

ensuring that all critical information is retained for the subsequent DFE process.

The DFE block generates multi-scale features by downsampling shallow features using

bilinear interpolation with scaling factors of 0.5 and 0.25. At each level, the combined

LFEF and TTT Linear Attention blocks extract deep features from each frame. The

LFEF addresses the limitations of attention layers, which tend to lose high-frequency

information, by extracting richer features and enhancing overall model performance.

Detailed architecture is shown in Figure 3.9.

At each scale, TTT linear attention blocks capture long-range dependencies to

enhance global context understanding while maintaining fine-grained details. The

multi-scale features are finally fused using the VDRaw strategy, ensuring structural

consistency and effective feature integration.

We have enhanced the feature extraction blocks compared to the VDRaw frame-

work, while keeping the feature alignment and reconstruction blocks unchanged. Fol-

lowing the approach in [42, 196, 208], we employ pyramid cascading deformable (PCD)
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alignment to align the features of Vt−1
raw and Vt+1

raw with those of Vt
raw. For reconstruc-

tion, we adhere to the original VDRaw framework, where the final output consists

of three different resolutions of sRGB images: full resolution, half resolution, and

quarter resolution Of
sRGB, Oh

sRGB, Oq
sRGB, which are used to calculate the multiscale

loss.

For image demoiréing tasks, features are extracted from a single input frame,

bypassing the need for the PCD module. Instead, multi-scale features are fused using

TTT linear attention blocks before being passed to the reconstruction backbone for

image restoration.

3.4.2 Flow Matching for Iterative Refinement of Degraded

Images

We propose an iterative refinement process leveraging a TFMP to enhance the outputs

of the MoiréXNet model. The denoiser learns a velocity field that maps degraded

images to clean ones, enabling a stepwise recovery that progressively brings images

closer to the ground truth. We initialize the iterative refinement process with a

degraded image x̃, which serves as the initial estimate of the clean image x, as x̃

is significantly closer to x compared to the moiréimage y. Thus, we set xt = x̃,

with t starting from a higher value (e.g., t = 0.95) rather than 0. Here, t ∈ [0.95, 1]

represents the progression through the refinement process, with five samples drawn at

each step. A refined version of the MoiréXNet model’s output is obtained by applying

a few iterations of the denoiser.

The flow matching model learns a velocity field ∂xt
∂t

= v(xt, t), which defines the

gradient direction guiding the degraded image toward the clean image at timestep
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t. In our approach, this velocity field is iteratively applied to refine the MoiréXNet

model’s output by updating xt as follows:

xt−1 = xt + ∆t · v(xt, t), (3.4.1)

where ∆t is the step size.

The flow matching model is pretrained to learn the transformation dynamics from

degraded images to clean images, ensuring robust refinement. The iterative process

progressively improves the image, making it cleaner and closer to the ground truth.

The method works for a wide variety of image degradation types, such as noise, blur,

and compression artifacts.

3.5 Experiments

Table 3.3: A comparison of state-of-the-art methods for image and video demoiréing
in the context of Raw Video Demoiréing, evaluated using average PSNR, SSIM,

LPIPS, and computational complexity. The best results are bolded in red, while the
second-best results are bolded in black. This table highlights the state-of-the-art

performance of our model, MoiréXNet, in both image and video demoiréing tasks.

Method Input type PSNR↑ SSIM↑ LPIPS↓ Inference time (s)

Image
RDNet [222] RAW 25.892 0.8939 0.1508 2.514
RRID [210] sRGB+RAW 27.283 0.9029 0.1168 0.501

MoiréXNet RAW 29.590 0.9170 0.0936 0.070

Video

VDMoiré [42] sRGB+RAW 27.277 0.9071 0.1044 1.057
VDMoiré∗ sRGB+RAW 27.747 0.9116 0.0995 1.125

DTNet [209] sRGB 27.363 0.8963 0.1425 0.972
DTNet∗ sRGB 27.892 0.9055 0.1135 1.050

VDRaw [36] sRGB+RAW 28.706 0.9201 0.0904 1.247
DemMamba [207] RAW 30.004 0.9169 0.0901 0.446

MoiréXNet RAW 30.127 0.9258 0.0847 0.070
TFMP RAW 30.214 0.9281 0.0973 -
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We compare the proposed MoiréXNet and its refined version, TFMP, with state-of-

the-art methods and evaluate their performance on both video and image demoiréing

tasks.

3.5.1 Experimental Setup

Training Details. Our experiments are conducted on a machine equipped with

two NVIDIA A100 GPUs. We train our methods using the AdamW optimizer with

an initial learning rate of 3 × 10−4, betas (0.9, 0.999) for momentum and variance

smoothing, and weight decay to improve generalization. The learning rate is adjusted

using the ReduceLROnPlateau scheduler, which reduces it by a factor of 0.8 if vali-

dation loss does not improve for 3 consecutive epochs, with a minimum learning rate

of 5 × 10−6. This setup ensures efficient and stable training with adaptive learning

rate adjustments. We begin training with L1 VGG loss for 175 epochs, followed by

fine-tuning with wavelet loss for an additional 41 epochs to further refine the results.

3.5.2 Datasets

For the RAW-domain image and video demoiréing task, we conduct experiments

using the RawVDemoiré dataset [36] and the TMM22 dataset [222]. The VDMoiré

dataset includes 300 training videos and 50 testing videos, each with 60 frames at a

resolution of 1080×720 (720p). For image demoiréing, the TMM22 dataset provides

540 RAW and sRGB image pairs for training and 408 pairs for testing, with image

patches cropped to 256×256 for training and 512×512 for testing. In both datasets,

RAW moiré inputs are compared against sRGB ground truth images to evaluate the

performance of the proposed method.
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(a) Clean Images (b) Moiré Images (c) VDRaw (d) MoiréXNet (e) TFMP

Figure 3.10: Qualitative comparison on RAW video demoiréing RawVDemoiré [36].
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(a) Clean Images (b) Moiré Images (c) RDNet (e) MoiréXNet (f) TFMP(d) RRID

Figure 3.11: Qualitative comparison on RAW image demoiréing TMM22
dataset [222].

3.5.3 Loss Function

Relying solely on pixel-wise losses in the sRGB domain, such as L1 or L2, is often

insufficient. We combine L1 loss and VGG-based perceptual loss as follows:

Ltotal = λvggLvgg(Ipred, Igt) + λ`1L`1(Ipred, Igt), (3.5.1)

where λvgg = 0.3 and λ`1 = 0.7. The L1 loss is:

L`1 = ‖Ipred − Igt‖1. (3.5.2)

The perceptual loss is computed using a pre-trained VGG-16 [164] network:

Lvgg =
∑
l∈F

‖φl(Ipred)− φl(Igt)‖1, (3.5.3)
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where φl represents the activation from layer l, and F is the set of feature layers.

3.5.4 Evaluation

For quantitative comparison, we use PSNR [201], SSIM[201], and LPIPS [233] to

evaluate image quality. PSNR assesses pixel-level fidelity but overlooks structural

and perceptual aspects. SSIM incorporates luminance, contrast, and structure, of-

fering better alignment with human perception while remaining pixel-based. LPIPS

leverages deep features to assess semantic distortions, enabling robust perceptual

evaluation and broad use in demoiréing tasks [64, 233, 219, 205]. Additionally, we

evaluate model efficiency by reporting inference time for a comprehensive analysis.

Table 3.3 compares the performance of various methods for image and video

demoiréing based on PSNR, SSIM, LPIPS and inference time on RawVDemoiré

dataset [223]. The results demonstrate that MoiréXNet outperforms all other meth-

ods, excelling in both reconstruction quality and computational efficiency, and es-

tablishes a new benchmark for RAW image and video demoiréing tasks. For image

demoiréing, MoiréXNet achieves a PSNR of 29.590 dB, SSIM of 0.9170, and LPIPS

of 0.0936, significantly outperforming RDNet [222] and RRID [210]. Specifically,

MoiréXNet’s PSNR is +3.698 dB higher than RDNet (25.892 dB) and +2.307 dB

higher than RRID (27.283 dB), while its SSIM is +0.0231 dB higher than RDNet

(0.8939) and +0.0141 dB higher than RRID (0.9029). the LPIPS is 0.0572 lower

than RDNet and 0.0232 lower than RRID. For video demoiréing, MoiréXNet achieves

a PSNR of 30.127 dB, an SSIM of 0.9258, and an LPIPS of 0.0847 while maintaining

an efficient inference time of 0.070 seconds. When refined with PnP flow matching,

MoiréXNet achieves state-of-the-art results with a PSNR of 30.214 dB, surpassing
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DeMMamba [207] (30.004 dB) by +0.21 dB. It also achieves the highest SSIM of

0.9281, outperforming VDRaw[36] (0.9201) by +0.008, and achieves the lowest LPIPS

score of 0.0795, which is 0.0054 lower than DeMMamba (0.0901).

These results demonstrate that the refined model leverages PnP flow matching

to further enhance reconstruction quality. Both MoiréXNet variants excel in bal-

ancing computational efficiency and performance, with inference times competitive

against lighter models. However, the increase in LPIPS alongside improved PSNR

and SSIM after PnP flow matching refinement suggests that while the refinement

enhances pixel-wise accuracy and structural fidelity, it may also introduce visually

unnatural artifacts. Figure 3.10 illustrates the effectiveness of our model in removing

moiré patterns directly from RAW moiré images, without relying on the sRGB color

space for color correction. The results demonstrate that our model not only elim-

inates moiré artifacts but also preserves accurate colors, avoiding any visible color

distortions or artifacts.

For the TMM22 dataset, which focuses on image demoiréing, we compare MoiréXNet

with state-of-the-art methods, as presented in the table 3.4. As mentioned, the

TTMM22 dataset only contains 540 images for training, which limits the model’s

ability to generalize effectively. Nevertheless, MoiréXNet achieves competitive per-

formance against state-of-the-art methods, as illustrated in Figure 3.11.

3.5.5 Ablation Study

1) Ablation study on the model architecture. Table 3.5 highlights the signifi-

cance of each block in the MoiréXNet architecture. The full model, which integrates

INN, LFEF, and TFMP, achieves the highest reconstruction quality, as reflected in
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Figure 3.12: Denoiser iterations vs PSNR.

the best PSNR and SSIM results. This underscores the necessity of combining these

components to attain state-of-the-art performance on the VDraw dataset.

Specifically, including the INN block improves performance with a PSNR increase

of +0.99 and an SSIM increase of +0.004. Adding the LFEF block on top of INN

further enhances results, contributing a PSNR increase of +0.09 and an SSIM increase

of +0.015. Finally, incorporating the TFMP block alongside INN and LFEF results

in an additional PSNR increase of +0.09 and an SSIM increase of +0.003.

Table 3.5: Ablation study on Model Architecture.

Models PSNR↑ SSIM↑
MoiréXNet (w/o INN, LFEF and TFMP) 29.04 0.906
MoiréXNet (w INN and w/o LFEF and TFMP) 29.36 0.910
MoiréXNet (w INN and LFEF w/o TFMP) 30.12 0.925
MoiréXNet (w INN LFEF and TFMP) 30.21 0.928

2) Optimal t for Flow-Matching Denoising. In flow-matching denoising, the

parameter t determines the progression of the algorithm toward the clean image. Since

x̃ is already close to the clean image, fewer iterations are required. The Figure 3.12

demonstrates that the PSNR peaks around iteration 15, where the algorithm achieves
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optimal performance. This indicates that x̃ is approximately at t = 0.98. To avoid

overshooting the peak, we set t = 0.95 for our method.

3.6 Conclusion

We proposed a hybrid approach for nonlinear moiré removal by combining an efficient

supervised model with a denoising-based generative procedure, improving restoration

quality and offering insights for handling linear and nonlinear degradations. Future

work will focus on adaptive techniques to refine the data fidelity gradient, further

enhancing the supervised model’s performance.
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Chapter 4

Solving the Last Mile Problem of

Image Restoration with Rectified

Flow

4.1 Abstract

Image restoration seeks to reconstruct a clean image X from a degraded observation

Y . Classical supervised models minimize distortion-based losses, yielding outputs

that remain faithful to Y but usually lack perceptual quality. In contrast, generative

approaches produce visually plausible samples aligned with the natural image distri-

bution, yet these samples may contradict the observed evidence Y . This trade-off

highlights a method that bridges the gap between distortion minimization and distri-

butional realism. We frame this as a last mile problem, where the goal is to learn a

deterministic rectified flow that transports MMSE estimates Z ∼ pZ to clean samples

X ∼ pX . This approach simultaneously minimizes the expected squared error and

56



Ph.D. Thesis – Liangyan Li; McMaster University – Electrical and Computer Engineering

aligns the output distribution with the natural image manifold. We provide theo-

retical proof and empirical validation of our methods on image super-resolution and

image demoiréıng tasks.

4.2 Introduction

Image restoration, i.e., recovering a clean image from a corrupted/partial observa-

tion, is a fundamental problem in computer vision and signal processing. It lies at

the core of numerous applications, from medical diagnostics [123, 242] and satellite

imaging [161, 191] to photography [216, 211, 212] and digital forensics [53, 186]. The

challenge is deeply rooted in the ill-posed nature of the task: given a degraded image,

there are infinitely many plausible clean counterparts, making it difficult to produce

results that are both accurate and perceptually convincing.

Most existing methods attempt to balance two competing goals: minimizing dis-

tortion (e.g., via mean squared error, MSE) [47, 227] and maximizing perceptual

realism [93, 212, 195]. However, these objectives are often at odds. Approaches that

minimize MSE tend to produce blurry outputs that average over multiple plausible

reconstructions. Conversely, methods that prioritize realism — through adversarial

losses [93, 212] or powerful diffusion priors [157, 52, 247] — often generate visually

pleasing results that diverge from the actual ground truth. Achieving both goals in

a unified, principled manner has remained an open challenge.

In this paper, we revisit image restoration from a probabilistic and information-

theoretic perspective. We ask: How accurately can we reconstruct the original image

while ensuring that the predicted images are indistinguishable from real, clean images?

Inspired by the Universal Rate-Distortion-Perception Theorem [226], we formalize this
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as a perfect-perception-constrained optimization problem:

min
pX̂|Y :pX̂=pX

E[‖X − X̂‖2], (4.2.1)

where X, Y , and X̂ denote the clean image, the degraded observation, and the

restored output, respectively. The constraint pX̂ = pX enforces that the restored

outputs lie on the natural image manifold, ensuring perceptual realism.

Our key insight is that this problem admits a theoretically optimal decomposi-

tion into two distinct stages. We prove that the optimal solution is obtained by

(i) computing the minimum mean square error (MMSE) estimate E[X|Y ], followed

by (ii) applying an optimal transport map to align the distribution of MMSE out-

puts with the true data distribution. We refer to this second step — transforming

the distortion-minimizing MMSE output into a realistic image — as the last mile of

image restoration.

To address this last mile, we introduce a novel use of rectified flow [112, 101, 4], a

flow-based generative model that learns continuous transport maps between arbitrary

distributions, as illustrated in Figure 4.13. As proved in [107], rectified flow provides

an effective mechanism for aligning distributions, making it particularly well-suited

to our problem. Crucially, this establishes, for the first time, a complete, theoretically

grounded solution to the perception-constrained image restoration problem.

Our main contributions are:

• We provide a foundational framework and a novel solution for balancing the

distortion-perception tradeoff in image restoration, which minimizes dis-

tortion under a distribution-matching constraint, ensuring both fidelity and

realism.
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LR: Y Z = E[X | Y ] HR: X̂
MMSE Rectified Flow

Observation Intermediate Final Result

Figure 4.13: Overview of the proposed framework for IR, formulated as a
composition of MMSE estimation followed by an optimal transport map,

implemented using Rectified Flow.

• We prove that this problem admits a unique and optimal solution: a two-

stage process combining MMSE estimation with an optimal transport map.

• We propose a rectified flow-based method to solve the last mile of image

restoration and demonstrate its effectiveness both quantitatively and qualita-

tively.

4.3 Related Work

4.3.1 Image Restoration

Classical image restoration methods [84, 74, 184] frame the task as a least-squares or

MAP estimation problem under Gaussian noise assumptions, minimizing pixel-wise

reconstruction losses such as mean squared error (MSE). While these approaches

guarantee stability and data consistency through convex optimization, they tend to

average over all plausible solutions, producing oversmoothed outputs that lack fine-

grained detail [227, 119]. This reflects the intrinsic perception–distortion tradeoff [15],

where optimizing distortion metrics often degrades perceptual quality.

Modern generative models aim to overcome this tradeoff by introducing learned

image priors. GAN-based methods [197, 229, 58] synthesize sharper textures via
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Table 4.6: Summary of rectified flow experiments with different source and
conditioning strategies. Here, N represents noise, and NC denotes no condition. Our
proposed method, Z2X | NC , utilizes VAE(Z) as the source and operates without

conditioning.

Exp Source x0 Condition Target x1

Z2X | NC x0 = VAE(Z) None x1 = VAE(X)
Z2X | Y x0 = VAE(Z) VAE(Y ) x1 = VAE(X)
N2X | Y x0 ∼ N (0, I) VAE(Y ) x1 = VAE(X)
Y 2X | NC x0 = VAE(Y ) None x1 = VAE(X)
N2X | Z x0 ∼ N (0, I) VAE(Z) x1 = VAE(X)

adversarial training, but suffer from instability, mode collapse, and hallucinated ar-

tifacts. PLUSE [138] explores the latent space of a pretrained StyleGAN [81] to

produce realistic super-resolved outputs, employing a downscaling loss to ensure that

the generated high-resolution image, once downscaled, aligns with the low-resolution

observation. Likelihood-based models, including VAEs [88, 182] and normalizing

flows [46, 87], enable stable optimization via variational or exact likelihoods but typ-

ically yield blurry outputs due to limitations in decoder expressivity. Denoising Dif-

fusion Probabilistic Models (DDPM) [70, 157] have recently set new benchmarks in

image generation by denoising Gaussian noise through a stochastic process. How-

ever, DDPM are computationally expensive at inference time and often exhibit weak

fidelity to the input in restoration settings, making them less practical when strict

data consistency is needed. Latent Diffusion Models (LDMs)[152] mitigate this cost

by learning and operating in a lower-dimensional latent space. To further accelerate

inference, methods such as Denoising Diffusion Implicit Models (DDIM) [169, 18, 39],

consistency models (CMs)[173, 171], and diffusion distillation[137, 158, 241, 120] have

been proposed. These models improve determinism and reduce sampling steps, but
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still depend on stochastic iterative dynamics [82], making precise control over recon-

struction fidelity and consistency challenging in IR tasks.

Moreover, the accumulation of inference errors during stochastic denoising can

lead to uncontrolled artifacts and degraded fidelity [27, 99, 35]. To address this,

DDNM[198] confines denoising to the null space of degradation operators, ensur-

ing strict data consistency. SNIPS[83] blends diffusion sampling with iterative pro-

jections to jointly enforce fidelity and perceptual quality. Other approaches at-

tempt to improve robustness by decoupling the reverse process[96], adapting noise

schedules[40, 2, 156, 98, 174], or introducing regularization mechanisms[129]. Ad-

ditionally, HyperDiffusion[72] proposes a hypernetwork to fuse multiscale informa-

tion across diffusion stages, further enhancing restoration accuracy. Diff-Plugin [117]

equips a single pretrained diffusion model with a lightweight dual-branch Task-Plugin

that injects task-specific priors and guides the diffusion process for high-fidelity re-

sults.

4.3.2 Flow-Based Models for Image Restoration

Flow-based models offer a deterministic and efficient alternative to stochastic gener-

ation. Flow matching (FM) [101] learns a time-dependent velocity field v(x, t) that

continuously transports a simple initial distribution (e.g. Gaussian noise) into a target

data distribution via an ODE-driven flow, which is widely used in vision tasks, such

as [60, 160] . Unlike DDIM, which follows fixed, curvilinear diffusion trajectories (e.g.,

linear noise schedules) requiring numerous iterative steps for high-fidelity generation,

FM theoretically enables straighter probability paths. However, in high-dimensional

settings, FM’s ODE dynamics can exhibit numerical stiffness, necessitating small
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integration time steps that may compromise sampling efficiency.

Rectified flow [112] simplifies FM by enforcing approximately straight-line trans-

port paths from source to target. It avoids unnecessary curvature, crossing, or inter-

section in the velocity field, resulting in faster and more stable generation. Rectified

flow has demonstrated strong performance in high-resolution image generation and

has been adopted in recent large-scale models, such as Stable Diffusion 3 (SD3) [51],

FlowIE [247], FLUX [91] and PMRF [147].

Our contribution to this paper: (1) We provide new theoretical justification that

the rectified flow from Z to X—formulated as an optimal transport problem—can

provably approach the constrained optimum of the distortion-perception trade-off,

despite the lack of a deterministic relationship between X and Z in typical restoration

scenarios. (2) We conduct extensive experiments with SD3 to learn rectified flows in

latent space and evaluate performance across multiple tasks, demonstrating that our

method consistently achieves robust and stable refinement under diverse degradation

conditions, including complex demoiréing scenarios.

4.4 Method

4.4.1 Preliminary: Universal Rate-Distortion-Perception

In image restoration, it is crucial to jointly balance distortion (e.g., mean squared

error) and perceptual quality (how realistic the output appears). A foundational

result in this direction is the Universal Rate-Distortion-Perception Theorem [226],

which characterizes the achievable distortion–perception tradeoffs for any learned

representation.
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Let X denote a clean image and Y be a distorted version of X. Define Z =

E[X|Y ], the optimal reconstruction of X under MMSE. Then the set of achievable

distortion–perception pairs, denoted Ω(pY |X), satisfies the following inclusion:

Ω(pY |X) ⊆
{

(D,P ) : D ≥ E[‖X − Z‖2] + inf
pX̂ :d(pX ,pX̂)≤P

W 2
2 (pZ , pX̂)

}
⊆ cl(Ω(pY |X)),

(4.4.1)

where d(·, ·) is any divergence-based perception metric and W 2
2 denotes the squared

2-Wasserstein distance. This result implies that the minimal distortion achievable

by any representation is lower-bounded by the MMSE estimation Z, plus an addi-

tional cost for making the reconstructed distribution perceptually match the data

distribution.

In particular, the point (D,P ) = (E[‖X − Z‖2] +W 2
2 (pZ , pX), 0) represents the

optimal achievable performance under a perfect perception constraint, where the

reconstructed samples are indistinguishable from the true data distribution (i.e.,

pX = pX̂). However, achieving this point in practice remains a significant challenge.

4.4.2 The Last Mile Problem

A generic image restoration problem can be formulated as (4.2.1). It is worth noting

that enforcing pX̂ = pX helps preserve the perceptual quality of the reconstruction

[14]. A potential solution to (4.2.1) is given by posterior sampling with pX̂|Y chosen

to coincide with pX|Y . This choice automatically ensures pX̂ = pX . A score-based

diffusion posterior sampling method was recently proposed in [213]. We will demon-

strate that posterior sampling is generally suboptimal for (4.2.1) and characterize the

architectural principles underlying the optimal solution.
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Let Z := E[X|Y ]. Due to the conditional independence of X and X̂ given Y , we

have

E[‖X − X̂‖2] = E[‖X − Z‖2] + E[‖Z − X̂‖2]. (4.4.2)

If posterior sampling is used, then pXZ = pX̂Z and consequently

E[‖X − X̂‖2] = 2E[‖X − Z‖2]. (4.4.3)

In other words, the end-to-end distortion achieved by posterior sampling is twice the

distortion achieved by the Minimum Mean Squared Error (MMSE) estimate of the

clean image based on the degraded version. This result aligns with the findings in

Ohayon et al. [147].

On the other hand, since pX̂ = pX , it follows that

E[‖Z − X̂‖2] ≥ W 2
2 (pZ , pX), (4.4.4)

where W2(pX , pZ) denotes the Wasserstein-2 distance between pZ and pX . Therefore,

we have

E[‖X − X̂‖2] ≥ E[‖X − Z‖2] +W 2
2 (pZ , pX). (4.4.5)

This lower bound is in fact the minimum achieveable distortion for the image restora-

tion problem in (4.2.1) and can be attained by first computing the MMSE estimate

Z of X based on Y and then converting Z to X̂ using the optimal transport plan

associated with W2(pZ , pX).
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The suboptimality of posterior sampling can be inferred from the fact that

E[‖X − Z‖2] > W 2
2 (pZ , pX) (4.4.6)

in general. Indeed, under certain regularity conditions [17], the transport plan that

attains W2(pZ , pX) is determinstic whereas in most image restoration problems, due

to the stochastic nature of the degradation kernel, X and Y (and consequently, X and

Z) are not determinstically related. Moreover, we show in Appendix A.1 that even

in scearios where Y is a low-dimensional projection of X—a situation commonly en-

countered in super-resolution and image inpainting—the inequality in (4.4.6) remains

typically strict.

Given (4.4.5), the optimal image restortion scheme consists of two steps: MMSE

estimation followed by optimal transport. The MMSE estimation step can be ac-

complished using conventoinal supervised training. However, the subsequent step,

which converts the MMSE estimate Z into a perceptually perfect reconstruction X̂,

involves solving a challenging optimal transport problem. Here, we observe that with

a well-chosen training set, the learned MMSE estimate Z is already quite close to X,

implying that W2(pZ , pX) is also small. As a result, only a short-distance transporta-

tion is required, which we refer to as the ”last mile problem”.

4.4.3 Solving Last Mile with Rectified Flow

In this paper, we will address the ”last mile problem” using the rectified flow approach.

Specifically, we train a rectified flow model using paired (X,Z), where X is a clean

image from the training set and Z is the corresponding MMSE estimate obtained from

the first step. Note that X can be viewed as a sample from pX while Z can be viewed
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as a sample from pZ . Here X and Z are not independent, but are jointly distributed

according to pXZ . By training a rectified flow, we can obtain a new coupling of pX

and pZ , denoted by p̃XZ , such that

Ep̃[‖X − Z‖2] ≤ Ep[‖X − Z‖2], (4.4.7)

where Ep̃[‖X − Z‖2] is the incurred distortion when converting Z to X̂ using the

trained rectified flow. Note that the inequality (4.4.7) implies that the end-to-end

distortion achieved by the rectified flow approach, which is Ep[‖X − Z‖2] + Ep̃[‖X −

Z‖2], is at least as small as that achieved by posterior sampling, which is 2Ep[‖X −

Z‖2], although there is no guarantee that Ep̃[‖X − Z‖2] can reach W 2
2 (pZ , pX).

Rectified flow evolves from the MMSE estimate Z to the clean target X along

a straight-line path over time t ∈ [0, 1]. Unlike stochastic score-based methods,

rectified flow learns a globally consistent velocity field that aligns source and target

distributions via linear supervision. Specifically, we generate interpolated samples

Zt = (1− t)Z + tX, and train the model to match the constant displacement vector

X − Z:

θ∗ = arg min
θ

E(Z,X), t∼U [0,1]
[
‖vθ(Zt, t)− (X − Z)‖2

]
. (4.4.8)

This deterministic rectified flow efficiently transports MMSE estimates Z to clean

images X, suitable for the short-range transport required in ”last-mile” refinement.
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4.5 Experiments

4.5.1 Model Architecture and Training

We utilize Stable Diffusion 3 (SD3) [51], adapting its rectified flow-based latent trans-

former architecture for image restoration tasks. Prompt conditioning is disabled dur-

ing finetuning by setting encoder contexts to zero. Training and inference are con-

ducted entirely in the latent space using the pretrained SD3 VAE. During training,

we randomly crop images to 256 × 256. At test time, all evaluations are performed

on full-resolution images. We use the AdamW optimizer with a batch size of 2 and

a fixed learning rate of 5 × 10−5 to train the fusion module. All experiments are

conducted on a single NVIDIA A100 GPU with 80GB of memory. Specifically, we

finetune the following components:

• ControlNet: Encodes either the degraded observation Y or a null condition

as auxiliary guidance.

• Transformer Backbone: Processes either the MMSE estimate Z or a noise

input to predict velocity fields vθ(xt, t) for latent-space rectified transport.

Our proposed approach employs a null condition (NC) in the ControlNet module

and utilizes the MMSE estimate Z in the Transformer backbone. We compare our

method against several alternative experimental setups to evaluate its performance,

as summarized in Table 4.6. As the performance of the N2x-Z variant is notably

inferior to that of other methods, it will be excluded from subsequent comparisons.
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4.5.2 Evaluation Metrics

We evaluate the quality of reconstructions using both distortion (PSNR, SSIM [201])

and perception-based metrics (LPIPS [232], FID [69], NIQE [140]). In evaluating our

image restoration model X̂ = T (Z), we consider metrics that reflect both distortion

and perceptual quality. Below, we formalize each metric and highlight its theoretical

motivation.

Mean Squared Error (MSE) and PSNR. We define the pixel-wise distortion

between a prediction x̂ and ground truth x as

MSE(x, x̂) =
1

N

N∑
i=1

‖xi − x̂i‖2, (4.5.1)

PSNR(x, x̂) = 10 · log10

(
L2

MSE(x, x̂)

)
, (4.5.2)

where L is the maximum pixel intensity (e.g., 1.0 or 255). While PSNR captures

fidelity, it fails to reflect perceptual realism.

LPIPS: Learned Perceptual Image Patch Similarity. We adopt LPIPS [232]

to quantify perceptual similarity using deep features:

LPIPS(x, x̂) =
∑
l

1

HlWl

‖wl � (φl(x)− φl(x̂))‖22, (4.5.3)

where φl(·) denotes the activation of a pre-trained network (e.g., VGG) at layer l,

and wl are learned channel-wise weights.
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Frechet Inception Distance (FID). FID evaluates distributional similarity in the

feature space of an Inception network. Assuming activations of real and generated

images follow Gaussian distributions (µr,Σr) and (µg,Σg), the FID is given by:

FID = ‖µr − µg‖22 + Tr
(
Σr + Σg − 2(ΣrΣg)

1/2
)
. (4.5.4)

It captures both the mean shift and covariance mismatch between the distributions.

Natural Image Quality Evaluator (NIQE). NIQE [140] measures the percep-

tual quality of images without requiring reference images. It computes the distance

between the NSS (natural scene statistics) features of an image and a model trained

on pristine natural images. Lower NIQE scores indicate higher perceptual quality:

NIQE(x) = d
(
NSS features of x,NSS model

)
, (4.5.5)

where d(·) represents the distance (e.g., Mahalanobis distance) in the NSS feature

space. NIQE is particularly useful for evaluating images in scenarios where ground

truth references are unavailable. Note that N2X | Y represents ControlNet.

4.5.3 Super-Resolution

Dataset. We use the DIV2K [76] dataset with ×4 bicubic downsampling for the

training and evaluation of our super-resolution experiments. The initial MMSE esti-

mates Z are generated by state-of-the-art restoration network MambaIRv2 [61], with

both Base and Large versions of the model employed to produce diverse initial esti-

mates. The clean images X from the datasets are used as supervision targets during
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rectified flow training.

Table 4.7: Performance on DIV2K using MMSE outputs generated by the
MambaIRv2-Base model. All models were trained for 1000 epochs and evaluated

with 20 sample steps.

Experiment PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

Z2X | Y 27.8790 0.7916 0.1177 11.2502 3.3298
Z2X | NC 28.1117 0.7970 0.1181 11.1885 3.3980
N2X | Y 26.1036 0.7320 0.1282 12.7094 2.8927
Y 2X | NC 27.0994 0.7655 0.1752 19.8216 4.1058
N2X | Z 26.2296 0.7361 0.1152 10.5094 2.8568

MMSE Z 29.7606 0.8371 0.2460 30.9108 5.3918
Degraded Y 26.8264 0.7567 0.4150 42.0390 7.6337

Table 4.8: Performance on DIV2K using MMSE outputs generated by the
MambaIRv2-Large model. All models were trained for 1000 epochs and evaluated

with 20 sample steps.

Experiment PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

Z2X | Y 27.9193 0.7931 0.1132 11.0818 3.3240
Z2X | NC 27.9609 0.7936 0.1097 10.3139 3.2825
N2X | Y 25.8178 0.7255 0.1295 12.3817 2.7943
Y 2X | NC 27.3156 0.7737 0.2123 20.4585 4.6745
N2X | Z 26.4182 0.7422 0.1112 10.0713 2.8312

MMSE Z 29.9957 0.8409 0.2404 31.2273 5.3406
Degraded Y 26.8264 0.7567 0.4150 42.0390 7.6337

Comparison with baselines.

In Tables 4.7 and 4.8, our proposed method Z2X | NC consistently improves per-

ceptual metrics—achieving lower LPIPS, FID, and NIQE—while maintaining com-

petitive distortion fidelity, with the best PSNR and SSIM among all tested flows.
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Although N2X | Z achieves comparable perceptual scores, it suffers from signifi-

cantly worse distortion metrics, highlighting a suboptimal balance.

The comparison in Figure 4.14 demonstrates that our method produces more de-

tailed facial features, such as human skin texture and spots, whereas PULSE tends to

generate smoother and less detailed faces. Qualitative comparisons in Figures 16

and 19 show that our method, Z2X | NC , produces cleaner outputs with well-

preserved details that closely resemble the ground truth X. Visually, the outputs

from Z2X | Y are comparable to those of Z2X | NC , suggesting that the addi-

tional conditional input offers minimal benefit despite increasing model complexity

and computational cost. In contrast, N2X | Y and N2X | Z yield lower visual

quality, with noticeable artifacts—particularly in the last row of Figure 16—under-

scoring the drawbacks of learning to generate directly from noise instead of from the

MMSE output. Finally, Y 2X | Z consistently performs the worst, with more severe

distortions and a marked decline in perceptual quality relative to the MMSE baseline.

Ablation Study

An analysis of Tables 15 and 16 reveals that increasing the number of sampling steps

generally improves perceptual quality, as indicated by lower LPIPS, FID, and NIQE

scores. However, additional steps lead to diminished reconstruction fidelity, reflected

in decreased PSNR and SSIM values. This trade-off suggests that a moderate num-

ber of sampling steps offers the most effective balance between perceptual quality and

distortion. Empirically, the optimal range appears to lie between 10 and 20 steps,

achieving favorable perceptual outcomes while maintaining acceptable distortion lev-

els.
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X Y Last Mile PULSE

Figure 4.14: Qualitative comparisons on the DIV2K dataset. Our Last Mile (MMSE
output generated by the MambaIRv2-Large model) compares with PLUSE.

X Y Last Mile Diff-Plugin

Figure 4.15: Qualitative comparisons on the FHDMi dataset. Our Last Mile
(MMSE output generated by the ESDNet-Large model) compares with Diff-Plugin.
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Table 4.9: Performance on FHDMi using MMSE outputs generated by the
ESDNet-Base model. All models were trained for 90 epochs and evaluated with 20

sample steps.

Experiment PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

Z2X | Y 23.5163 0.8148 0.1293 19.3015 5.8283
Z2X | NC 23.7475 0.8253 0.1218 15.2406 6.0788
N2X | Y 16.9218 0.6519 0.3390 31.9723 3.8249
Y 2X | NC 21.9214 0.7970 0.1612 26.6137 5.5821
N2X | Z 19.1732 0.7060 0.2814 33.1891 4.2557
Diff − Plugin 19.5555 0.7502 0.1945 35.9302 5.6319

MMSE Z 24.0627 0.8340 0.1357 20.5309 6.8500
Degraded Y 17.7393 0.7251 0.2749 44.6488 5.0810

Table 4.10: Performance on FHDMi using MMSE outputs generated by the
ESDNet-Large model. All models were trained for 90 epochs and evaluated with 20

sample steps.

Experiment PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

Z2X | Y 23.5834 0.8143 0.1226 19.0679 6.0392
Z2X | NC 24.1126 0.8283 0.1107 15.4219 5.9471
N2X | Y 16.8827 0.6031 0.4018 53.1289 3.3144
Y 2X | NC 21.8160 0.7837 0.1704 27.4793 5.3710
N2X | Z 19.9325 0.7042 0.2573 32.6380 4.4910
Diff − Plugin 19.5555 0.7502 0.1945 35.9302 5.6319

MMSE Z 24.4255 0.8425 0.1298 20.3144 6.8538
Degraded Y 17.7393 0.7251 0.2749 44.6488 5.0810
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Compare Last Mile With Other Flows

Across both DIV2K bicubic Base and DIV2K bicubic Large experiments at step 20,

our proposed Last Mile configuration (Z2X | NC ) consistently achieves the best per-

formance across key metrics, including PSNR, SSIM, LPIPS, and FID. It also ranks

second in NIQE, demonstrating a strong balance between distortion fidelity and per-

ceptual quality. These results underscore the effectiveness of our final rectified flow

setup in delivering high-quality image restoration across different model capacities.

Furthermore, comparing the two tables reveals that the further the MMSE estimate

deviates from the clean image distribution, the more significant the improvement

achieved by the Last Mile refinement—highlighting its role in bridging the final per-

ceptual gap.

Sample Steps. Table 11 and Table 12 show that increasing flow steps generally

improves perceptual quality (lower LPIPS and FID), but excessive steps (e.g., 50)

can degrade FID. Step 20 and 10 offer the best perception-distortion balance, with

strong LPIPS and FID scores while retaining moderate distortion fidelity. These

results suggest that moderate sampling steps are optimal for rectified flow refinement.

Notably, performance degradation at large step counts may arise from accumulated

numerical errors and imperfect velocity field estimation over extended integration

time, leading to overshooting or drift from the target data manifold.

Qualitative Comparisons Across Flows And Steps. The figures 21 and Fig-

ure 20 demonstrate the progression of image reconstructions across different flow

configurations for the super resolution task on the DIV2K bicubic dataset. The Last

Mile (our) Z2X | NC achieve the best balance between distortion metrics (PSNR,
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SSIM) and perceptual quality (LPIPS, FID), while Y 2X | NC prioritizes perceptual

realism. Early steps produce coarse results, intermediate steps (e.g., Step 20) show

significant quality improvements, and later steps may introduce artifacts.

4.5.4 Image Demoiréing

Dataset. We evaluate our method on the FHDMi dataset [63], which includes real-

world images corrupted by complex moiré patterns. To generate the initial MMSE

estimates, we use the state-of-the-art demoiréing network ESDNet [218]. Both the

Base and Large variants of ESDNet are employed to create diverse and coarse pre-

dictions from the degraded images. The corresponding clean images are used as

ground-truth references for rectified flow training.

Comparison with Baseline. Tables 4.9 and 4.10 present a comparison of various

experimental configurations against the MMSE baseline Z and the degraded observa-

tion Y . Relative to the MMSE baselines produced by the Base and Large models, our

method Z2X | NC significantly improves perceptual metrics: FID is reduced from

20.5309 and 20.3144 to 15.2406 and 15.4219, and LPIPS decreases from 0.1357 and

0.1298 to 0.1218 and 0.1107, respectively. These gains come at only a slight cost in

distortion metrics, with PSNR decreasing marginally from 24.0627 dB and 24.4255 dB

to 23.7475 dB and 24.1126 dB, and SSIM decreasing from 0.8340 and 0.8425 to 0.8253

and 0.8283. These results demonstrate that Z2X | NC offers the best perceptual

quality with minimal compromise in reconstruction fidelity. The Diff-Plugin is less

effective compared to other methods across all metrics.

Qualitative comparisons in Figures 18 show that our method, Z2X | NC , produces

cleaner outputs with well-preserved details that closely resemble the ground truth X.
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In contrast, methods conditioned on the degraded observation Y—such as Z2X | Y

and Y 2X | Z —retain structural content but introduce moiré artifacts due to the

entanglement with degraded inputs. They also fail to recover accurate colors, as

illustrated in the last row of Figure 18. From Figure 4.15, we can see that the

DiffPlugin failed to remove the moiré patterns.

Ablation Study of Steps. We examine the influence of the number of sampling

steps on the distortion–perception tradeoff in Appendix A.2, with the corresponding

results shown in Tables 13 and 14. Our proposed method, Z2X | NC , consistently

achieves a strong balance between perceptual quality and distortion fidelity, even

when the number of sampling steps is limited. Notably, the results indicate that using

approximately 10 sampling steps yields the most favorable tradeoff, highlighting both

the efficiency of our approach and its practicality for real-time or resource-constrained

applications.

4.5.5 Ablation Study Across Tasks

We conduct an ablation study across both super-resolution and demoiréing tasks to

evaluate the effectiveness of our approach.

Results for super-resolution are shown in Figure 23, while those for demoiréing

appear in Figure 22 .

In all cases, Z2X | NC consistently outperforms existing baselines. This advantage

is particularly pronounced in more challenging tasks such as image demoiréing, where

the observation Y is corrupted by complex, structured artifacts (e.g., moiré patterns).

In such scenarios, directly conditioning on Y can inadvertently introduce these arti-

facts into the output. By contrast, our method performs unconditional transport from
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Z, effectively avoiding artifact propagation and producing higher-quality restorations.

These findings suggest that as degradation complexity increases, the relative benefit of

our approach becomes more significant. Furthermore, Z2X | NC obviates the need to

encode Y during inference, thereby reducing computational overhead while preserv-

ing—or even enhancing—perceptual quality. This makes our method both practical

and efficient for real-world restoration applications. For additional comparisons and

implementation details, refer to Appendix A.2.

4.6 Conclusion

We proposed a principled two-stage framework for image restoration that leverages

rectified flow to refine MMSE estimates through deterministic transport. By formu-

lating the refinement process as an optimal transport problem and solving it via a

supervised velocity field, our method achieves a favorable distortion–perception trade-

off. Theoretical analysis justifies the use of rectified flow as an efficient and provably

optimal refinement mechanism. Extensive experiments on super-resolution task val-

idate the effectiveness and generality of our approach, demonstrating competitive or

superior performance compared to existing baselines.
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Chapter 5

Conclusion

This thesis explores principled and practical approaches to two long-standing chal-

lenges in machine learning systems: heterogeneous client selection in federated learn-

ing, and perceptual-quality enhancement in image restoration. Rather than treating

these problems in isolation, our contributions reflect a broader goal to optimize model

performance under distributional shifts and incomplete knowledge, by grounding the

solutions in statistical and transport theoretic principles.

We advance the field in three interconnected directions:

1. Client Selection via Gradient Similarity Modeling

We develop a gradient-based client selection framework for federated learning,

leveraging higher-order similarity metrics such as the `4 cosine and compos-

ite moment-based distances. This enables a more nuanced understanding of

gradient distributions under data heterogeneity.

2. Efficient Image Restoration Backbones
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For restoration under severe degradations (e.g., moiré, low-resolution, or com-

pound distortions), we design MoiréXNet, a novel backbone integrating:

• Invertible Neural Networks (INNs) for lossless feature transformations,

• Learnable Frequency Enhanced Filters (LFEF) for frequency-aware feature

amplification, and

• Test-Time Training (TTT) linear attention modules for efficient and adap-

tive inference.

This architecture significantly improves restoration fidelity across both spatial

and frequency domains while maintaining computational efficiency.

3. The Last Mile: Rectified Flow for Perceptual Refinement

We identify a fundamental bottleneck in generative restoration models—the

distortion-perception tradeoff—and propose a two-stage solution inspired by

optimal transport theory. The first stage computes the MMSE estimate to mini-

mize distortion, while the second applies a rectified flow model to transport these

estimates toward the true clean-image distribution. Unlike standard diffusion

or flow matching methods, rectified flow offers deterministic, non-interacting,

and cost-efficient trajectories, providing a tractable and provably optimal path

toward perceptual realism.

Together, these contributions establish a cohesive framework for model optimiza-

tion under distributional uncertainty. By combining statistical learning, generative

modeling, and optimal transport theory, this thesis provides both theoretical insights

and practical tools for improving model generalization, computational efficiency, and

perceptual quality in modern AI systems.
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Appendix A: Last Mile

A.1 On the Suboptimality of the PULSE Algo-

rithm

Let Y := HX, where X is an n-dimensional zero-mean random vector and H is an

m × n matrix. Moreover, let Z := E[X|Y ]. The PULSE algorithm [138] employs a

generative model with respect to pX to identify a reconstruction X̂ that matches X

in the latent space by minimizing E[‖HX̂ − Y ‖2]. As the reconstruction X̂ obtained

through posterior sampling automatically satisfiesHX̂ = Y almost surely, the PULSE

algorithm can be viewed as a specific instance of posterior sampling in this partic-

ular context. In light of (4.4.3), the end-to-end distortion achieved by the PULSE

algorithm is 2E[‖X − Z‖2] while the theoretical limit is E[‖X − Z‖2] + W 2
2 (pZ , pX).

Therefore, the PULSE algorithm is optimal if and only if E[‖X−Z‖2] = W 2
2 (pZ , pX).

Let H = UΛV be the singular value decomposition of H, where U is an m ×m

unitary matrix, Λ is an m×n diagonal matrix, V is an n×n unitary matrix. Moreover,

we assume that Λ is of the form diag(λ1, . . . , λk, 0, . . . , 0) with λi > 0 for i = 1, . . . , k.

Let X ′ := V X and Z ′ := V Z. As unitary transformations preserve the Euclidean

distance, we have E[‖X ′ − Z ′‖2] = E[‖X − Z‖2] and W 2
2 (pX′ , pZ′) = W 2

2 (pX , pZ).
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DenoteX ′ and Z ′ by (X ′1, . . . , X
′
n)T and (Z ′1, . . . , Z

′
n)T , respectively. It is easy to verify

that X ′i = Z ′i for i = 1, . . . , k, and Z ′i = E[X ′i|X ′1, . . . , X ′k] for i = k+1, . . . , n. Clearly,

if (Z ′k+1, . . . , Z
′
n) = (X ′k+1, . . . , X

′
n) (i.e., (X ′k+1, . . . , X

′
n) is a function of (X ′1, . . . , X

′
k))

or (Z ′k+1, . . . , Z
′
n) = (0, . . . , 0), then E[‖X ′ − Z ′‖2] = W 2

2 (pX′ , pZ′) and consequently

the PULSE algorithm is optimal. We shall show that when X is Gaussian with a

positive definite covariance matrix, this condition is in fact sufficient and necessary

for the optimality of the PULSE algorithm.

Assume X is Gaussian with a positive definite covariance matrix. We have

E[‖X ′ − Z ′‖2] = W 2
2 (pX′ , pZ′) if and only if (Z ′k+1, . . . , Z

′
n) = (X ′k+1, . . . , X

′
n)1 or

(Z ′k+1, . . . , Z
′
n) = (0, . . . , 0).

It suffices to show that E[‖X ′−Z ′‖2] > W 2
2 (pX′ , pZ′) once the condition (Z ′k+1, . . . , Z

′
n) =

(0, . . . , 0) is violated.

Since the conditional expectation under the joint Gaussian distribution is linear,

we can write

Z ′i = a1,iX
′
1 + · · ·+ ak,iX

′
k, k = k + 1, . . .+ n. (A.1.1)

If the condition (Z ′k+1, . . . , Z
′
n) = (0, . . . , 0) is violated, then there must exist j ∈

{1, . . . , k} and i ∈ {k+ 1, . . . , n} such that aj,i 6= 0. So, without loss of generality, we

assume ak,n 6= 0.

Let ∆k := X ′k − E[X ′k|X ′1, . . . , X ′k−1] and ∆n := X ′n − E[X ′n|X ′1, . . . , X ′n−1]. Note

that γk := E[∆2
k] > 0 and γn := E[∆2

n] > 0 since the covariance matrix of X ′ is positive

definite (which is a consequence of the assumption that the covariance matrix of X

1This condition cannot be satisifed under the assumption that the covariance matrix of X is
positive definite. So we shall focus on the condition (Z ′

k+1, . . . , Z
′
n) = (0, . . . , 0).
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is positive definite). Let

X̃i := X ′i, i = 1, . . . , k − 1, (A.1.2)

X̃k := E[X ′k|X ′1, . . . , X ′k−1] + ∆̃k, (A.1.3)

where

∆̃k :=

√
γk − ε2γn

γk
∆k + sign(ak,n)ε∆n. (A.1.4)

It can be verified that the covariance matrix of (X̃1, . . . , X̃k)
T is the same as that of

(X ′1, . . . , X
′
k)
T . Moreover, let X̃i = a1,iX̃1 + . . .+ ak,iX̃k for i = k + 1, . . . , n. By this

construction, the covariance matrix of X̃ := (X̃1, . . . , X̃n)T is guaranteed to the same

as that of Z ′. Since E[‖X ′ − X̃‖2] ≥ W 2
2 (pX′ , pX̃) = W 2

2 (pX′ , pZ′), the problem boils

down to showing

E[‖X ′ − X̃‖2] < E[‖X ′ − Z ′‖2]. (A.1.5)

Clearly, we have

E[(X ′i − X̃i)
2] = E[(X ′i − Z ′i)2] = 0, i = 1, . . . , k − 1. (A.1.6)
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Moreover,

E[(X ′k − X̃k)
2] = E[(∆k − ∆̃k)

2]

= E

((1−
√
γk − ε2γn

γk

)
∆k − sign(ak,n)ε∆n

)2


=

(
1−

√
γk − ε2γn

γk

)2

γk + ε2γn

= ε2γn + o(ε2)

= E[(X ′k − Z ′k)2] + ε2γn + o(ε2). (A.1.7)

It can be verified that

E[(X ′i − X̃i)
2] = E[((X ′i − Z ′i) + ak,i(∆k − ∆̃k))

2]

= E[(X ′i − Z ′i)2] + a2k,iE[(∆k − ∆̃k)
2]

= E[(X ′i − Z ′i)2] + a2k,iε
2γn, i = k + 1, . . . , n− 1, (A.1.8)

where the second equality is due to the fact that E[(X ′i − Z ′i)∆k] = 0 (as X ′i − Z ′i is

independent of (X ′1, . . . , X
′
k) while ∆k is a linear combination of (X ′1, . . . , X

′
k)) and the

fact that E[(X ′i − Z ′i)∆n] = 0 (as ∆n is independent of (X ′1, . . . , X
′
n−1) while X ′i − Z ′i
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is a linear combination of (X ′1, . . . , X
′
n−1)). Finally, we have

E[(X ′n − X̃n)2] = E[((X ′n − Z ′n) + ak,n(∆k − ∆̃k))
2]

= E

((X ′n − Z ′n) + ak,n

((
1−

√
γk − ε2γn

γi

)
∆k − sign(ak,n)ε∆n

))2


= E[(X ′n − Z ′n)2]− 2|ak,n|εE[(X ′n − Z ′n)∆n] + a2k,nE[(∆k − ∆̃k)
2]

= E[(X ′n − Z ′n)2]− 2|ak,n|εE[X ′n∆n] + a2k,nE[(∆k − ∆̃k)
2]

= E[(X ′n − Z ′n)2]− 2|ak,n|εE[∆2
n] + a2k,nE[(∆k − ∆̃k)

2]

= E[(X ′n − Z ′n)2]− 2|ak,n|εγn + o(ε), (A.1.9)

where the third equality is due to the fact that E[(X ′n − Z ′n)∆k] = 0 (as X ′n − Z ′n

is independent of (X ′1, . . . , X
′
k) while ∆k is a linear combination of (X ′1, . . . , X

′
k)),

the fourth equality is due to the fact that E[Z ′n∆n] = 0 (as ∆n is independent of

(X ′1, . . . , X
′
n−1) while Z ′n is a linear combination of (X ′1, . . . , X

′
n−1)), and the fifth

equality is due to the fact that X ′n = E[X ′n|X ′1, . . . , X ′n−1]+∆n and E[X ′n|X ′1, . . . , X ′n−1
is independent of ∆n. Therefore,

E[‖X ′ − X̃‖2]− E[‖X ′ − Z ′‖2] = −2|ak,n|εγn + o(ε) < 0 (A.1.10)

when ε is sufficiently close to zero.

Remark 1. The assumption that X has a positive definite covariance matrix can be

considerably relaxed.
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A.2 Comparison for Image Super-Resolution

Comparison Figures and Tables for Last Mile.

X Y Z Z2X|Y Z2X|NC
(Our)

Z2X|NC
(Our)

N2X|Y Y2X|Z

Figure 16: Full-resolution qualitative comparisons across different flow settings,
where the MMSE output Z is generated by the MaMbaIRv2 Base model on the

DIV2K dataset with unknown degradation.

Table 11: Performance across different flow sampling steps for DIV2K bicubic Base.

Step PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

1 28.96 0.8271 0.2203 0.8139 4.6750
3 28.77 0.8209 0.1960 0.7018 4.3382
5 28.58 0.8154 0.1763 0.6903 4.1198
10 28.19 0.8030 0.1368 0.6917 3.6779
20 27.78 0.7880 0.1088 0.7104 3.2444
25 27.67 0.7834 0.1043 0.7243 3.1491
50 27.38 0.7721 0.1001 0.7553 3.0042
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X Y Z Z2X|Y Z2X|NC
(Our)

N2X|Y Y2X|Z N2X|Z Diff-Plugin

Figure 17: removeQualitative comparisons on the FHDMi dataset using MMSE
output generated by the ESDNet-Large model. All models were trained for 90

epochs and evaluated with 20 sample steps.

X Y Z Z2X|Y Z2X|NC
(Our)

N2X|Y Y2X|Z N2X|Z Diff-Plugin

Figure 18: Qualitative comparisons on the FHDMi dataset using MMSE output
generated by the ESDNet-Base model. All models were trained for 90 epochs and

evaluated with 20 sample steps.
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X Y Z Z2X|Y Z2X|NC
(Our)

N2X|Y Y2X|Z

Figure 19: Full-resolution qualitative comparisons across different flow settings,
where the MMSE output Z is generated by the MaMbaIRv2 Large model on the

DIV2K dataset with unknown degradation.

A.2.1 Comparison Figures and Tables for Image Demoiréing

Tables 13 and 14 report the performance of various flow sampling steps on the FHDMi

dataset, specifically for the image demoiriéing task.

A.2.2 Comparison Figures and Tables for Image Super-Resolution

Tables 15 and 16 report the performance of various flow sampling steps on the DIV2K

dataset, specifically for the image super-resolution task.
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step_1 step_3 step_5 step_10 step_50

Figure 20: Full-resolution qualitative comparisons across different flow steps, where
the MMSE output Z is generated by the MaMbaIRv2 Large model on the DIV2K

dataset with bicubic degradation.

Summary

Comparing Figure 23 , we observe that Z2X|Y aligns more closely with Z2X|NC when

the MMSE predictions Z are generated by the larger model. This suggests that con-

ditioning on Y—which may introduce artifacts due to its degraded nature—becomes

less critical as the quality of the MMSE estimate Z improves. In other words, a

stronger prior (from a larger model) reduces the dependence on the corrupted input,

thereby mitigating the propagation of degradation artifacts.
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step_1 step_3 step_5 step_10 step_25 step_50

Figure 21: Full-resolution qualitative comparisons across different flow steps, where
the MMSE output Z is generated by the MaMbaIRv2 Base model on the DIV2K

dataset with bicubic degradation.

However, comparing Figure 22 , in more challenging restoration tasks such as

image demoiring—where the degradation patterns (e.g., moiré artifacts) are highly

complex and structured—our unconditional refinement method Z2X|NC demonstrates

a more significant advantage over Z2X|Y. This is because conditioning on Y in such

cases risks embedding structured artifacts into the final output. Furthermore, by elim-

inating the need to encode Y during inference, our approach reduces computational

cost, offering both practical and performance benefits.

89

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Liangyan Li; McMaster University – Electrical and Computer Engineering

Table 12: Performance across different flow sampling steps for
DIV2K bicubic Large.

Step PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

1 28.94 0.8286 0.2151 0.8381 4.6263
3 28.89 0.8242 0.1921 0.7141 4.3393
5 28.74 0.8194 0.1740 0.7344 4.1421
10 28.43 0.8090 0.1389 0.7805 3.7355
20 28.10 0.7972 0.1115 0.8241 3.3232
50 27.81 0.7863 0.0995 0.8615 3.0665

Table 13: Performance of various sample steps on FHDMi using MMSE outputs
generated by the ESDNet-Base model. Model was trained for 90 epochs using the

Z2X | NC configuration.

Step PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

1 23.5396 0.8152 0.1567 23.7437 6.4758
3 23.7619 0.8260 0.1340 16.5014 6.1852
5 23.7869 0.8272 0.1295 15.8363 6.1666
7 23.7942 0.8272 0.1267 15.5214 6.1469
10 23.7839 0.8268 0.1245 15.3882 6.1244
15 23.7646 0.8260 0.1228 15.2707 6.1047
20 23.7475 0.8253 0.1218 15.2406 6.0788
25 23.7444 0.8248 0.1211 15.2405 6.0611
50 23.7245 0.8233 0.1200 15.3003 5.9963
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Table 14: Performance of various sample steps on FHDMi using MMSE outputs
generated by the ESDNet-Large model. Model was trained for 90 epochs using the

Z2X | NC configuration.

Step PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

1 23.6003 0.8167 0.1576 26.7510 6.5276
3 24.0965 0.8310 0.1278 17.3649 6.2396
5 24.1500 0.8320 0.1211 16.2115 6.1727
7 24.1652 0.8318 0.1171 15.7284 6.1153
10 24.1597 0.8310 0.1141 15.4514 6.0542
15 24.1270 0.8291 0.1116 15.4080 5.9767
20 24.1126 0.8283 0.1107 15.4219 5.9471
25 24.0829 0.8271 0.1104 15.5864 5.9121
50 24.0365 0.8250 0.1102 15.8627 5.8565
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Figure 22: Perception–distortion comparison on FHDMi: left is the Base model
(trained 90 epochs, 20 sampling steps), right is the Large model (same training and

sampling), showing FID vs. 1–SSIM.
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Table 15: Performance of various sample steps on DIV2K using MMSE outputs
generated by the MambaIRv2-Base model. Model was trained for 1000 epochs using

the Z2X | NC configuration.

Step PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

1 28.9401 0.8265 0.2174 29.3701 4.6276
3 28.8167 0.8212 0.1952 23.7827 4.3461
5 28.6918 0.8169 0.1786 20.0583 4.1655
7 28.5668 0.8129 0.1634 17.2565 3.9999
10 28.4166 0.8078 0.1456 14.5267 3.7943
15 28.2407 0.8016 0.1279 12.2615 3.5545
20 28.1117 0.7970 0.1181 11.1885 3.3980
25 28.0302 0.7939 0.1129 10.6583 3.3052
50 27.8255 0.7862 0.1040 9.8395 3.1165

Table 16: Performance of various sample steps on DIV2K using MMSE outputs
generated by the MambaIRv2-Large model. Model was trained for 1000 epochs

using the Z2X | NC configuration.

Step PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓) NIQE (↓)

1 28.9523 0.8283 0.2123 29.4720 4.5719
3 28.8309 0.8227 0.1887 23.6561 4.2568
5 28.6688 0.8176 0.1702 19.5663 4.0554
7 28.5081 0.8125 0.1531 16.4071 3.8737
10 28.3224 0.8064 0.1351 13.6005 3.6659
15 28.1054 0.7988 0.1180 11.3023 3.4269
20 27.9609 0.7936 0.1097 10.3139 3.2825
25 27.8596 0.7900 0.1054 9.8509 3.1941
50 27.6295 0.7812 0.0992 9.2846 3.0349
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Figure 23: Perception–distortion comparison: (a) is the Base model (trained 1000
epochs, 20 sampling steps) showing FID vs. 1–SSIM; (b) is the Large model (same

training and sampling).
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Coarse-to-fine disentangling demoiréing framework for recaptured screen im-

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[189] Chenyu Wang, Qiong Wu, Qian Ma, and Xu Chen. A buffered semi-

asynchronous mechanism with mab for efficient federated learning. In 2022

International Conference on High Performance Big Data and Intelligent Sys-

tems (HDIS), pages 180–184, 2022. doi: 10.1109/HDIS56859.2022.9991371.

[190] Hailing Wang, Qiaoyu Tian, Liang Li, and Xiaojie Guo. Image demoiréing with
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Wu. Textured image demoiréing via signal decomposition and guided filtering.

IEEE Transactions on Image Processing, 26(7):3528–3541, 2017.

[218] Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Jiajun Shen, Jia Li, and Xiaojuan Qi.

Towards efficient and scale-robust ultra-high-definition image demoiréing. In
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