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ABSTRACT

The research reported in this thesis is related to the mathematical description of 

the response of structured media. Three separate but conceptually linked topics are 

addressed. Firstly, a mathematical formulation for the description of average mechanical 

properties of structural masonry is presented. An element of structural masonry is 

regarded as a composite medium consisting of brick matrix intercepted by the sets of 

head and bed joints. The former are treated as aligned, uniformly dispersed weak 

inclusions, whereas the latter as continuous planes of weakness. A general three- 

dimensional formulation is provided and is subsequently applied to estimate the average 

elastic properties of masonry and to investigate the conditions at failure.

Subsequently, the approach mentioned above is extended to predict the elastic and 

elastoplastic properties of fibre and particle reinforced composite systems. An elastic 

material, with the mechanical properties of the reinforcement, is intercepted by two/three 

families of mutually orthogonal layers that possess the elastoplastic properties of the 

matrix. This system is then assumed to be equivalent to a fibre/particle reinforced 

composite after an appropriate orientation average is evaluated. The predictions of the 

elastic constants are satisfactory as compared to those derived from the equivalent 

inclusion method. The simulations of the elastoplastic response of a fibrous composite 

are also in a qualitative agreement with the experimental observation.

iii



Finally, the finite element method is employed to study the deformation of strain 

softening materials. Strain softening is considered as the localization of deformation into 

a shear band, which is treated as a bifurcation problem. A criterion is suggested for the 

selection of the inclination of a shear band from the multi-solutions produced by the 

necessary condition of bifurcation. A partitioning scheme is also proposed for the 

evaluation of a characteristic length related to the finite element implementation of the 

formulation. The initial stress method is then used to solve a strip footing problem. The 

numerical study is aimed at investigating the sensitivity of the load-displacement 

characteristics to the details, of discretization.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL REMARKS

A structured medium is defined as any multi-phase continuum that retains distinct 

interfaces among its constituents such that the geometric characteristics and mechanical 

properties of the constituents remain unaltered. A structured medium can exist either in 

a natural state (soils, rocks, ice and wood, ect.) or be obtained artificially (concrete, 

masonry, fibrous composites, ect.). The constituents can be either in the form of physical 

entities, such as bricks and mortar in masonry, or in the form of imperfections such as 

microvoids and microcracks.

In order to model the mechanical properties of such materials, two methodologies 

can be followed. The phenomenogical approach is based on the overall experimental 

observation of the mechanical response and it ignores the microscopic identities of the 

constituents. A successful device for describing the inherent and induced anisotropy as 

well as the irreversibility of deformation is the introduction of internal variables such as
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damage tensor (Lemaitre, 1985; Krajcinovic and Fonseka, 1981; Leckie and Onat, 1981; 

Murakami and Ohno, 1981) or fabric tensor (Cowin, 1985; Pietruszczak and Krucinski, 

1989), which can be incorporated into the formulation through the framework of 

thermodynamics (Lemaitre, 1985; Valanis, 1971) or through functional expansion 

(Krajcinovic and Fonseka, 1981; Murakami and Ohno, 1981; Pietruszczak and Krucinski, 

1989). In the microscopic approach, a structured medium is regarded as an assemblage 

of discrete constituents and the overall mechanical properties are derived from the 

geometric characteristics and the mechanical properties of the constituents through an 

appropriate averaging process. The two approaches exhibit their own advantages and 

disadvantages. The former usually displays relative simplicity but suffers from an 

impractical demand of a large number of tests required to determine the material 

constants for varying volume fractions of the constituents. The latter provides more 

physical insight and requires only the tests for the determination of the material 

parameters relevant to the mechanical properties of the constituents; however, the 

quantitative predictions are not always satisfactory due to complexity arising from the 

interaction between the constituents.

A knowledge of the mechanical behaviour of structured media is of fundamental 

importance to their proper engineering and scientific applications. In this thesis, three 

selected topics relevant to civil and mechanical engineering are investigated by employing 

a unified mathematical framework. Attention is focused on the description of the average 

mechanical behaviour of the material under consideration, so that the formulations can 

be easily incorporated into the existing numerical packages for large scale finite element
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analysis.

1.2 OBJECTIVES AND SCOPE OF THE RESEARCH

Chapter 2 is concerned with a mathematical formulation for the description of 

average mechanical properties of masonry. A typical element of structural masonry is 

viewed as a composite medium consisting of the brick matrix intercepted by the sets of 

head and bed joints. The former are considered as aligned, uniformly dispersed weak 

inclusions, whereas the latter represent continuous planes of weakness. A general three- 

dimensional formulation is provided and is subsequently applied to predict the average 

macroscopic properties in the elastic range and to investigate the conditions at failure. 

An extensive numerical study is performed.

In chapter 3, a micromechanical approach is proposed to model the elastoplastic 

behaviour of fibre and particle reinforced composites. The approach is based on the 

concept of a "superimposed medium". An elastic material, with the mechanical properties 

of the reinforcement is intercepted by two/three families of mutually orthogonal layers 

that possess the elastoplastic properties of the matrix. The above system is assumed to 

be equivalent to a fibre/particle reinforced composite system after an appropriate 

orientation average is evaluated. Numerical simulations pertaining to the elastic constants 

of fibre and particle reinforced composites as well as the elastoplastic response of a 

fibrous composite are provided.
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The objective of chapter 4 is to implement the constitutive relation of a strain 

softening material into the finite element algorithm. The phenomenon of strain softening 

is regarded as the localization of deformation into a shear band, which is treated as a 

bifurcation problem. Upon the formation of the shear band, the material becomes a 

"structured medium" (i.e. the intact material is intercepted by a shear band), so that its 

mechanical properties can be derived from the framework of mechanics of composite 

materials. A criterion is proposed for the selection of the orientation of a shear band 

from the multi-solutions produced by the necessary condition of bifurcation. Thereafter, 

the initial stress method is used to solve a geotechnical boundary value problem, a strip 

footing. The numerical results pertaining to the sensitivity of load-displacement 

characteristics to the details of discretization are provided. The displacement field in the 

vicinity of the footing at different settlements and the extend of softening zone prior to 

collapse are also identified.



CHAPTER!

A MATHEMATICAL DESCRIPTION OF MACROSCOPIC BEHAVIOUR 

OF MASONRY

2.1 INTRODUCTION

Over the last few decades the research in structural masonry has concentrated 

mainly on the experimental testing of brickwork. The results of those investigations have 

provided a valuable information used to establish empirically or semi-empirically based 

methodologies for the design of masonry structures. There have been only a few isolated 

attempts to estimate the properties of masonry in a rigorous analytical manner (e.g. 

Pande et al., 1989). It is quite apparent however, that an adequate description of these 

properties is essential for the analysis of complex boundary value problems involving 

masonry structures.

The mechanical response of masonry can be analyzed by employing the finite 

element technique. By using the physical and the actual geometric properties of brick 

units and mortar, the numerical solution to a class of selected problems can be obtained

5
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(Ali and Page, 1989; Afshari and Kaldjian, 1989). There are however serious limitations 

of this approach. Firstly, the actual geometry of the brickwork may result in ill- 

conditioning of the algebraic system and/or instability of the numerical solution. 

Secondly, the approach becomes quite impractical in the context of large-scale masonry 

structures comprising of a very large number of brick units subjected to a three- 

dimensional state of stress.

This chapter presents an alternative approach for the description of the behaviour 

of structural masonry. The methodology followed is based on the framework outlined by 

Pietruszczak (1991). A typical element of brickwork is regarded as a structured/composite 

medium for which the average macroscopic properties can be uniquely identified. Thus, 

a representative volume of the "material" considered is assumed to consist of a number 

of brick units intercepted by two orthogonal families of joints. The chapter is written in 

the following sequence. First, a general three-dimensional formulation is provided (after 

Pietruszczak and Niu, 1991). The average constitutive relation is derived by employing 

the assumption that the head joints represent a set of aligned weak inclusions and the 

bed joints form continuous planes of weakness. The formulation is then applied to 

establish the average elastic properties of the system. Later, the phenomenon of a 

progressive failure of the brickwork is investigated. An extensive numerical study is 

carried out; the performance of the framework is verified for a series of biaxial 

compression-tension and compression-compression tests.
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22 MACROSCOPIC RESPONSE OF STRUCTURAL MASONRY

Consider a typical element of structural masonry, i,e. a brick panel, as shown 

schematically in Fig.2.1a, subjected to a uniformly distributed load. On the macroscale, 

the panel can be regarded as a two-phase composite consisting of brick units intercepted 

by two orthogonal sets of joints filled with mortar. In order to describe the average 

mechanical properties of the system, it is convenient to address the influence of head 

(vertical) and bed joints separately, i.e., invoke the concept of a superimposed medium.

Referring to Fig.2.1b, consider first the brick matrix with a family of head joints (so 

called medium (1)). The head joints can be treated as aligned, uniformly dispersed weak 

inclusions embodied in the matrix. The average properties of the medium (1) can be 

represented by a constitutive relation

- [D^e® (2.1)

where a^ = { o n^\ a 22^\ ^33^^ 12^^ 0 13^\ a23^^} T and 

€^={€ii^,€22^e33^1Vi3^1W1^Tare th® volume averages of stress/strain rates 

in (1). In particular, the homogenized medium (1) can be regarded as an orthotropic 

elastic-brittle material. In such a case, the components of [D^] can be estimated form 

Eshelb/s (1957) solution to an ellipsoidal inclusion problem combined with Mori- 

Tanaka’s (1973) mean-field theory. The explicit relations defining the components of 

[D^] are provided by Zhao and Weng (1990) and are too complex to be cited here.
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The entire masonry panel can now be represented by a homogenized medium (1) 

stratified by a family of bed joints (2), Fig.2.1c. The bed joints run continuously through 

the panel and form the weakest link in the microstructure of the system. In particular, 

the bed joints can be regarded as an elastoplastic medium with mechanical properties 

defined by

a® - [D®]^ (2-2)

Assuming that both constituents (1) and (2) exist simultaneously and are perfectly 

bonded, the overall stress/strain rate averages a and e can be derived from the averaging 

rule (Hill, 1963)

e - Tije^+^e®

d - T^c/^+r^a^

where q’s are the volume fractions of both constituents,

h t

(23)

(2.4)

(2.5)

and h and t represent the spacing and the thickness of bed joints, respectively.

The assumption of perfect bonding between the constituents and the equilibrium 

requirements provide additional kinematic and static constraints
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where

[S*]^ - [6*]e®

[filo® - [63d®

(2.6)

(2.7)

1 0 0 0 0 0
[5*] =001

poo
0 0 0
0 1 p

(2.8)

The constraints (2.6) and (2.7), as applied to averages, are rigorous provided t-ch. Their 

validity can easily be verified from the Eshelby’s equivalence principle.

It is evident that the field equations listed above (eqs.(2.1)-(2.4), together with (2.6) 

and (2.7)) provide a set of 30 equations for 30 unknowns, e.g., o^cr^o-^jC*1) and e®. 

Thus, the problem is mathematically determinate. It should be noted that the total 

number of unknowns can be reduced by introducing certain simplifying assumptions 

pertaining to the kinematics of bed joints. The formulation discussed by Pietruszczak 

(1991) for example, has been derived by expressing the local deformation field in bed 

joints in terms of velocity discontinuities rather than strain rates e®, thereby reducing the 

number of unknowns to 27.

In order to solve the problem, i.e., provide an explicit form of the average 

constitutive relation, it is convenient to introduce the following identity
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[6]d® - [6][DV - [£®][8*]e® + [F®][6]e® ; f - 1,2 (2-9)

where

[n® 
"21

n® 
"23

n® 
"25

D® 
"22

n® 
4424

D®1
"26

[£®1 ■ "41 "43
D® 
"45 ; IF®] ■ D® 

^42
D® 
"44

D® 
"46

(2-10)

n® 
"61

n® 
"63

D® 
"65

D® 
"62

D® 
"64

n® 
"66

Utilizing eqs(2.9) and (2.6), the static constraint (2.7) can now be expressed in the form

[f^IS'le + [F^HSlfc® - [E®][8']e + [J®][8]e® (2-n)

Given the representation (2.11) and the decomposition (2.3), the strain rates in both 

constituents can be uniquely related to e. In view of kinematic constraints (2.6), the set 

of equations (2.3) reduces to

[5]j® . l[i]g - l[5]i» 
% 12

Substitution of eq.(2.12) in eq.(2.11) results, after a simple algebra, in

[8]e® - He

(2.12)

(2-13)

where
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[^ - (t^1^ + -[^D U^IB] + ([^J - [£(1>])[8*]} (2-14)

n2 n2

Thus, in view of eq.(2.3), the following relationship is obtained

e® - [5Je (2.15)

where

1 0 0 0 0 0

$11 $12 $13 $14 $15 $16

0 0 1 0 0 0
1^1 - (2.16)

$21 $22 $23 $24 $25 $26

0 0 0 0 1 0

$31 $32 $33 $34 $35 $36.

and the components of [S] are defined by eq.(2.14).

The strain rates in bed joints can be expressed in a similar functional form to that 

of eq.(2.15). After substituting eq.(2.15) in eq.(2.3) and solving for e®, one obtains

e® - [KJe (2-17)

where
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[SJ = (—W -—P1D (218)
n2 n2

and [I] represents the unit matrix (6x6).

Finally, the overall stress rate averages a can be derived form eq.(2.4). Substitution 

of eqs(2.15) and (2.17) in eq.(2.4), results in

6 - M^tSi] + P^KB-nADte - W (2-19)

The above equation represents the average constitutive relation for the entire composite 

system. As expected, the macroscopic behaviour depends on the mechanical properties 

of both constituents and their volume contributions. In the following sections the 

proposed mathematical framework is investigated in details. First, the average elastic 

properties of the masonry are established and subsequently the phenomenon of 

progressive failure of the material microstructure is addressed.

23 AVERAGE ELASTIC PROPERTIES OF STRUCTURAL MASONRY

Assume that all constituents in the microstructure remain elastic and determine the 

average elastic properties of the composite. Consider first the medium (1), i.e. brick 

matrix with uniformly dispersed head joints in the form of monotonically aligned
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rectangular parallelepipeds. If both the bricks and the joints are isotropic then the 

medium (1), as a whole, will become orthotropic. In this case, the constitutive matrix, 

eq.(2.1), assumes the form

^^^ 0 

D^ ^ D™ 0 

^ ^ ^? o

0 0 0 D^

0 0 0 0

0 0 0 0

0

0

0

0

nW 
^55

0

0

0

0

0

0

D(I) ^66

(2.20)

The nine independent elastic constants are function of the properties of both constituents 

as well as the cross-sectional aspect ratio and the volume fraction of the inclusions. 

Recently, Zhao and Weng (1990) have identified the average elastic constants of an 

orthotropic composite reinforced with aligned elliptic cylinders. The estimates are based 

on Eshelb/s solution to ellipsoidal inclusion problem combined with Mori-Tanaka’s 

mean-field theory (to deal with the finite concentration of inclusions). The results 

reported by Zhao and Weng can be applied to estimate the average elastic properties of 

medium (1), viz. eq.(2.20). The algebraic expressions defining the elastic constants are 

quite complex and will not be cited here. The Reader is referred, in this respect, directly 

to the original publication.
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Assume now that the’bed joints, eq.(2.2), are considered as isotropic, i.e.

It

to® D® 
V12 ^12 0 0 0

^12 ^12 0 0 0

^12
n® 
^12 1711 0 0 0

[D®] =
0 0 0 0 0

0 0 0 0 ^44 0

0 1° 0 0 0 <

n^ = n® - n® 
^44 V11 ^12 (2.21)

Given both representations (2.2) and (2.21) the matrices [E®] and [F®], defined in

eq.(2.10), reduce to

[E®] -

[nW ^12

0
0

j

D(1) 
^23

0 
0

0

0
0

M =

[nW 
^22

0

0

0

0

0

0

nW

(2.22)

^12 ^12 0
[nW 0 0

[E®] - 0 0 0 9 [F®] - 0 0 (2.23)

0 0 0 0 0 <

Substituting the above representation in eq.(2.14), one obtains after some algebraic

manipulations
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A? (oJM?) 0 0 0

1)2* *

o o -Ji o 0
n2*

D® 
o o o o — 

n2c

where

(2.24)

a = D® + ^ ; 6-D®+lDg ; c-d£> + 2!*D® 
^2 ^2 ^2

Thus, given the definitions (2.20), (2.21) and (2.24), the components of the macroscopic 

constitutive matrix can be {determined from eq.(2.19). The composite panel is an 

orthotropic body (on a macroscale) and the nine independent components of [D] matrix 

are defined as

J!
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Du ■ ^^-^_^L ;
‘ 0^01?

I 1 'll 11 12

033 = (rf^fe-^^;

—^+±(D^-D^
’ll ’ll

Ip^lpg)-^ 
’ll n2

(2.25)

12
tn rf+i z^u)

12

013 (ti^®^^-
1i(£M?)(£|^^

<^0?

(i) ak ni(0u -0M)(0H-0^’) 
023 ’ (H^^lOg)-

n®+2!ln®
^2

In order to illustrate the inathematical framework outlined in this section, some 

numerical simulations were carried out. The objective was to investigate the influence of 

the joint thickness and the elastic properties of the constituents (brick and mortar) on the 

average elastic response of the masonry panel. Both constituents were assumed to be

isotropic and the elastic constants (Young’s modulus, E and Poisson’s ratio, v) were

selected after Pande et al. (1989) as
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Eb=l.l x 104 MPa; vb=0.25; vm=0.20

where the subscripts b and m refer to brick and mortar, respectively. The brick 

dimensions were taken as: h=75 mm, 1=225 mm.

Fig.2.2 shows the variation of nine elastic constants (normalised with respect to the 

properties of the brick) of the masonry panel as a function of the thickness, t, of the 

joints. The simulations were carried out for different Eb/Em ratios ranging from 1.1 to 11. 

It is evident, from the figure 2.2, that an increase in the joint thickness results in a 

progressive reduction of average elastic moduli (E and G), whereas an increase of the 

Young’s modulus of the mortar causes a corresponding increase in these values.

The contribution of the head joints to the average macroscopic properties of the 

masonry panel is investigated further in Figs.2.3 and 2.4. The results shown in Fig.2.3 

correspond to the case in which the head joints are treated as continuous vertical planes 

of weakness (a^O, where a is the cross sectional aspect ratio of the head joints, Zhao and 

Weng, 1990). In other words, the masonry panel is regarded as an elastic medium 

intercepted by two mutually orthogonal families of continuous joints. The latter 

approximation was employed by Pande et al.(1989) to estimate the average elastic 

properties of masonry through a direct strain energy approach. By comparing the results 

with those in Fig.2.2, it is evident that the predictions are very close and only the values 

of En and G31 are underestimated. Thus, the treatment of head joints as weakness planes 

provides a reasonable approximation in the context of the elastic response of the system.

Finally, Fig.2.4 shows the most conservative prediction corresponding to the case 

when the head joints are infilled, i.e. are regarded as voids (Em ■* 0). The values of the
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overall moduli (E and G) are, in general, reduced as compared to those in Fig.2.2, in 

particular En and G31 are affected. It is clear however, that the masonry structure with 

head joints infilled is still capable of resisting the external load.

i

2.4 DESCRIPTION OF PROGRESSIVE FAILURE OF STRUCTURAL MASONRY

The collapse of a masonry panel can result either from the failure of the brick 

matrix, which is usually of a brittle nature, or from the ductile/brittle failure of the bed 

joints. The head joints represent a less significant link in the panel microstructure, in the 

sense that their local failure will not induce the collapse on a macroscale. Thus, it seems 

reasonable to regard the medium (1) as an orthotropic elastic body, eq.(2.20), and impose 

an appropriate criterion for the elastic-brittle transition in the bricks. At the same time, 

the bed joints can be treated as an elastoplastic strain-hardening material.

Consider first the homogenized medium (1). In order to determine the stress rates 

in the bricks, express the averaging procedure, eqs(23) and (2.4), as

6® - nV + qV (2.26)

e® - t]^ + ^^ (2.27)

Here, the prime and double prime superscripts refer to brick matrix and mortar (head) 

joints respectively, whereas rf s are the volume fractions of both constituents
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n7^ > <2-28>i + t i +1

where 1 represents the spacing of the head joints.

With all the constituents remaining elastic, i.e.,

i/-[^ ; f'-lDW ; i®-[flV (2-29)

the stress decomposition, eq.(2.26), yields

[D^e® - r\,[D,]e' + ^[DV (2-30)

Thus, substituting eq.(2.27) in eq.(2.30) and rearranging

^ - [^ ; Pl = ■^^-[DV(lPwbID"D (231)

so that the stress rates in the brick matrix are defined as

o' - [D'je' - [D^P'je® (232)

The failure criterion for the bricks can be expressed in terms of a path-independent

condition i
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. ^ - 0 (2.33)

in which F=O is a scalar-valued function of the basic invariants of a'. In particular, the 

functional form proposed by Pietruszczak et al.(1988) may be used

-A.) + OJ-&-) - (a,--) = 0 (2.34)

where I is the first stress invariant, J2 is the second invariant of the stress deviator and 

6 is the angle measure of the third deviatoric stress invariant J3,

0 = ; -2LS o (2J5)
3 2 X 6 6 v '

The parameter a., through ag are dimensionless material constants, whereas 4 represents . 

uniaxial compressive strength of the brick. The function g(0), eq.(2.34), can be selected 

in the form

g(0) » — jyO^Htt-gM . K = (236)
rVw-7(H+(i-W-^)

which satisfies g(7r/6) = l, g(-7r/6)=K and for a=0.999 guaranties convexity for K>0.56. 

Consider now the response of the bed joints. Assuming that joints are elastoplastic,
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the components of [D(2)], eq.(2.2), can be derived from the standard plasticity formulism 

based on the existence of yield and plastic potential functions

f" X”® k) - 0 ; i|f ■ $(0®) ■ const (2.37)

where k is a scalar parameter recording the history of plastic deformation, i.e., 

k=k{(€(2))pJ, In particular, the properties of the mortar can be described by one of the 

existing formulations applicable to brittle-plastic materials (see e.g., Chen and Han, 1988; 

Pietruszczak et al., 1988). I

By inspecting the geometry of typical structural panels, it is evident that the 

thickness of bed joints is small as compared to other dimensions. In such a case, the 

analysis may be simplified by assuming both expressions (2.37) in the functional form

f = - ^ + c) - 0.
’i (238)

* “ • const

which is analogous to Coulomb friction law. In eq.(2.38), m = p($), where $ is a suitably 

chosen hardening parameter. In particular, one can select

P = Po + ^'l1^ ; ? " - (239)

where g0, ^ and a are material constants. Equations (2.38) and (2.39) are sufficient to 

1;
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define, in a unique manner, the components of [D(2)], eq.(2.2), by following a routine 

plasticity procedure. (

In order to verify the performance of the proposed framework, an extensive 

numerical study was undertaken. In particular, a series of in-plane biaxial compression

tension and compression-compression tests was simulated for different orientations of the 

set of bed joints relative to loading configuration. The analysis was carried out assuming 

the brick dimensions as 215 mm x 65 mm and the thickness of the joints as 10 mm. The 

following material parameters were chosen:

Brick: ^=14,700 MPa, vb=0.16, fo=15.3 MPa, ^=1.2 MPa

Mortar: Em=7,400 MPa, vm=0.21

Mf=0.73, /xo=O.3/xf, A=0*2Mf> c=0.78 MPa, a=0.001

The material constants describing the response in the elastic range were assumed after 

Ali and Page (1989). The same reference was used to estimate the values of the last set 

of parameters, pertaining to the elastoplastic behaviour of mortar. The choice of g0, m 

and a has been somewhat arbitrary due to the limited experimental information.

Fig.2.5 shows a set of failure envelopes obtained from the simulation of a series of 

in-plane biaxial compression-tension tests. The loading process involved a number of 

trajectories corresponding to a constant compressive- tensile stress ratio (i.e., 0, 0.25, 0.5, 

0.75, 1, 2, 5, 10, 30, co). The simulations were successively repeated for different 

orientations of bed joints relative to the direction of the tensile stress ( the angle p, 

ranging from 0’ to 90°).Fig.2.5, apart from defining the set of failure envelopes, provides 

a direct information on the failure mode pertaining to each individual loading history. For
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low values of p (i.e., p =0’ and P =22.5°) the collapse of the brickwork is solely induced 

by the brittle failure of bricks. For 45° < p < 78.75°, the predominant mechanism is the 

failure of the bed joints, whereas for p =33.75“ and p=90“ both modes are possible 

depending on the actual stress ratio.

Fig.2.6 presents the evolution of uniaxial compressive and tensile strength of the 

brickwork with varying orientation of the bed joints. The results, which are extracted from 

Fig.2.5, indicate that the ultimate strength (both in compression and tension) is the 

highest for low values of p, i.e., when the failure of masonry is induced by brittle rupture 

of bricks. As p increases a transition in the failure mode takes place which prompts a 

drastic reduction in the uniaxial strength. The lowest value corresponds to p«60“ (bed 

joint failure).

The results shown in Fig.2.5 and 2.6 describe the conditions at failure only, i.e., 

identify the maximum stress ratio which can be attained for a given stress history. For 

each loading case, a complete stress-strain characteristics are obtained by integration of 

the constitutive law (2.19). As an illustration, one such a characteristics, corresponding 

to p =45° and stress ratio of 5.0, is presented in Fig.2.7. A complete deformation history, 

both on a macroscale and for all the individual constituents, is recorded. Here, the failure 

of the masonry panel is induced by a ductile failure (shearing) of the bed joints.

The results shown in Fig.2.8 correspond to a series of in-plane biaxial compression

compression tests. The loading program was analogous to that for compression-tension 

and involved a number of stress trajectories at constant vertical to horizontal stress ratio. 

In this case, the predominant failure mechanism is associated with the brittle failure of
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the brick matrix. The failure of bed joints is recorded only for some cases involving 

extremal values of the stress ratio.

The last aspect of the present analysis is the evaluation of the influence of head 

joints on the macroscopic failure. The predictions shown in Fig.2.5-2.8 have all been 

based on the assumption that the head joints are linearly elastic. This assumption may 

not be quite adequate as certain stress trajectories may result in the failure of head joints. 

Fig.2.9 shows the prediction for two chosen biaxial tests obtained for the case when the 

head joints are treated as infilled. Comparing both solutions, i.e., for elastic and infilled 

head joints, it is evident that the conditions at failure are only marginally affected by the 

treatment of head joints. In fact, when the failure is initiated in bed joints, the predictions 

are virtually the same, only when the bricks fail, the predictions show some degree of 

sensitivity.

Finally, it should be stressed that the numerical analysis presented here is, in fact, 

of a qualitative nature as no comparison to the experimental data has been provided. The 

reason is that the experimental reports are usually very fragmentary and there is no 

comprehensive study giving an adequate information required for a quantitative study. 

It should be noted however that the qualitative trends presented here, in the context of 

both compression-tension and compression-compression tests, are in a close agreement 

with experimental results reported by Page (1981 and 1983).
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2.5 CONCLUSIONS

A mathematical formulation has been presented for describing the average 

properties of the structural masonry. The approach has been derived from the framework 

of the mechanics of composite media. The proposed constitutive law (2.9) relates, in a 

unique manner, the stress rate a to strain rate € averages. Their local counterparts are 

derived from the corresponding global measures by means of structural matrices whose 

components are function of properties of both constituents and their volume 

contributions. The framework can be incorporated into exiting numerical packages to 

analyze masonry panels of arbitrary geometry. This is feasible providing the characteristic 

dimension of the elementary volume is much greater than the predominant dimension 

of the masonry unit.

It has been shown that in the elastic range the brickwork can be considered as an 

orthotropic medium. The values of elastic constants are strongly influenced by the 

properties and the thickness of the mortar joints. The failure mechanism consists of a 

formation of macrocracks in brick matrix or a ductile/brittle failure of the bed joints. The 

actual failure mode is a function of the imposed loading history. The properties of the 

head joints have a very limited effect on the macroscopic failure. Thus, for practical 

purpose, the head joints may be assumed as isotropic linearly elastic.



26

(a)

Fig.2.1 (a) Geometry of a structural masonry panel; (a) medium (1); (c) medium (1) 
intercepted by bed joints (after Pietruszczak, 1991).
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Fig.2.2 Average elastic properties of structural masonry.
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Fig.2.3 Influence of the head joints on the average elastic properties of masonry.
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Fig.2.4 Influence of the head joints on the average elastic properties of masonry.
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0 = failure of bricks
* = failure of bed joints

Fig.2.5 Failure envelopes for in-plane biaxial compression-tension test.
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Fig.2.6 Variation of uniaxial compressive (a) and tensile (b) strength with the orientation 
of bed joints.
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Fig.2.7 Material characteristics corresponding to biaxial compression test (0=45°; stress 
ratio:5.0).
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Fig.2.8 Failure envelopes for in-plane biaxial compression tests.
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Fig.2.9 Influence of head joints on the response under biaxial conditions (a) biaxial 
compression-tension; (b) biaxial compression.



CHAPTERS

MACROSCOPIC DESCRIPTION OF ELASTOPLASTIC BEHAVIOUR 

OF PERFECTLY BONDED COMPOSITES

3.1 INTRODUCTION

Composite materials, such as metal and thermoplastic composites, can experience 

significant elastoplastic deformations. Since the reinforcement usually remains elastic up 

to failure, the nonlinearity of a composite system results from the inelastic behaviour of 

the matrix.

The methodologies adopted in the past few decades for the description of the 

elastoplastic response of composite systems can be classified into two categories. Tn the 

first one, a composite system is regarded as a homogenous isotropic/anisotropic medium. 

The overall mechanical properties are derived on the basis of experiments recording the 

overall stress-strain response (Kenaga, Doyle and Sun, 1987). The advantage of this 

approach is its simplicity but in return the macroscopic stress-strain description of the 

composite cannot be related to the mechanical properties of its constituents. On the other

40
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hand, the micro-mechanical approach is able to address this problem by retaining the 

identities of the reinforcement and the matrix. Thus, a macroscopic model can be 

established in which the overall constitutive equation depends on the mechanical 

characteristics of the constituents, the respective volume contributions as well as the 

mutual,constraints between interfaces of the constituents associated with the geometry 

of the microstructure (Dvorak and Bahei-El-Din, 1979; Dvorak and Bahei-El-Din, 1982; 

Tandon and Weng, 1988). In addition, the finite element method can be employed to 

analyze a typical element of a composite system in order to obtain some information 

about the elastoplastic behaviour under chosen loading conditions (Adams, 1973; Lin, 

Salinas and Ito, 1972).

This chapter presents a micro-mechanical approach for the description of 

fibre/particle reinforced composite systems. The methodology followed is based on the 

concept of a "superimposed medium" used elsewhere (Pande, Liang and Middleton, 1989; 

Pietruszczak, 1991; Pietruszczak and Niu, 1991). In this approach, the elastic properties 

and the elastoplastic response of both fibre and particle reinforced composites can be 

addressed under a unified framework. Numerical simulations, pertaining to the evaluation 

of elastic constants of fibre and particle reinforced composites as well as the elastoplastic 

response of a fibrous composite, are provided.

32 MATHEMATICAL FORMULATION
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The formulation comprises two parts. First, the elastoplastic behaviour of a medium 

consisting of two/three families of mutually orthogonal and equally spaced layers is 

modeled with the aid of the concept of a superimposed medium. An appropriate 

orientation average, corresponding to the given problem is subsequently established. With 

no loss of generality, only the formulation for a fibrous composite is presented and the 

extension to a particle reinforced composite can be readily accomplished with one more 

family of layers involved.

Consider an elastic medium with the elastic properties of reinforcement intercepted 

by two families of mutually orthogonal layers possessing the elastoplastic properties of 

the matrix. In order to describe the average mechanical properties of this system, it is 

convenient to address the influence of the two families of layers separately, i.e., invoke 

the concept of a superimposed medium.

Consider first the medium with equally spaced horizontal layers. Suppose that the 

mechanical properties of reinforcement and the layer material are identified by the 

following constitutive equations

y - tw

6*0) w [ZJwOJj^O)

(3.1)

(3.2)

in which [Df] is the elastic stiffness of reinforcement, [D01^] is the elastoplastic stiffness 

of the material of the horizontal layers, and o={flrn,a22,CT33,a12,d13,CT23}T and 

€={en,£22,^33^12,Yi3,Y 23/ are the stress and strain rates respectively, with the different
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superscripts indicating distinct constituents. Both constituents are assumed to exit 

simultaneously and to be perfectly bonded, so that the overall stress and strain rate 

averages d(1) and e{1) can be derived from the averaging rule (Hill, 1963)

^> - %^Ke*> (33)

i® - nu^He*"® P'4)

where q’s are the respective volume fractions of the constituents

and h and t denote the spacing and the thickness of the layers, respectively.

The assumption of perfect bonding between the constituents and the equilibrium

requirements provide additional kinematic and static constraints

[«/ - [SJi"™

W - W?®

(3-6)

(3-7)

where

0 0 0 0 0
1 0 0 0 0
0 0 10 0

0 0 1 0 0 0



44 

It is evident that the field equations listed above (eqs.(3.1)-(3.4)), together with eqs.(3.6) 

and (3.7), render a set of 30 equations for 30 unknowns, e.g. a^, af, im^, ef and em(1\ 

Thus, the problem is mathematically determinate. The solution (Pietruszczak and Niu, 

1991) takes the form

d® = [DV

P®] - nutoW+M^W
(3-8)

where [S11] and [SJ are known as strain concentration tensor

^-[S!/1 ; i^-pje® (3.9)

and are functions of both the mechanical properties of the constituents and the respective 

volume contributions. The details concerning the derivation of eq.(3.8) are provided in 

Section 3.6.

Assume now that the homogenized medium, whose response is defined by eq.(3.8), 

is intercepted by the second family of layers. In such a case, one has

o»® - [Z)^^® (3.10)

together with the set of equations analogous to eqs.(3.3) and (3.4), i.e.

(3-11)
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e - na^Ma4”® (3-12)

Here if s are the volume contributions of the constituents

na ■ h*t ’ ■ h+t (3.13)

whereas h and t represent the spacing and the thickness of the second family of layers 

(not necessarily identical to those of the first family). The kinematic and static constraints 

can be specified as

[SJa® - [6Jd"®

P2V - [834-®

(3-14)

(3.15)

where

PJ

b 1 o o o o 

oooioo 

0 0 0 0 0 1
; PJ]

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

Following a similar procedure to that established for the first family of layers, one obtains

G 0 [D]€
Pl - na^I^MD"®^

(3.16)
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where [S21] and [SJ are the strain concentration tensors

e» - [S21]e ; e*® - [SJe (3-17)

Substitution of eq.(3.8) in eq.(3.16), results in

M " ’12illit^^ii]ty+ (3 |8)

It is noted that the first term in eq.(3.18) represents the contribution of the 

reinforcement, whereas remaining terms refer to the matrix. In view of eqs.(3.17) and 

(3.9), the strain rates in the constituents can be related to their overall counterparts

^■tyyi ; ^-iyy« <319>

Consider now a composite reinforced by long cylidrical fibres which are randomly . 

dispersed in the transverse plane. The response of such a system is assumed to be defined 

by eq.(3.16) providing the orientation average in the transverse plane is taken

«' = P>K ; [D?V[T1[WP (3.20)

In eq.(3.20) J' and €' represent the stress and strain rates of a fibrous composite, [D] 

is given by eq.(3.18), whereas [T' ] and [T] represent the transformation matrixes defined
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as

a' - [T^a ; a - [7]a'

where a' and a symbolize symmetric second order tensors expressed as vectors in a six

dimensional space. Both [T'J and [T] can be writen in the explicit form

1 0 0 0 0 0 1 0 0 0 0 0 ‘

0 c2 s2 0 o. -2cs 0 c2 s2 0 0 2cs

0 s2 c2 0 0 2cs 0 s2 c2 0 0 -2csin =
0 0 0 c -s 0

; m =
0 0 0 c s 0

0 0 0 s c 0 0 0 0 -s c 0

p cs ~cs 0 0 c2-s2 0 -cs cs 0 0 c2-s\

in which c=cosp and s=sinp.

For a particle reinforced composite one more family of layers, perpendicular to the 

former two, should be introduced and the orientation averaging scheme, eq.(3.20), should 

be replaced by a three-dimensional one. In what follows, the proposed approach is 

investigated in detail. First, the elastic properties of fibre and particle reinforced 

composite systems are determined and subsequently the elastoplastic response of a 

fibrous composite is studied.
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3.3 ELASTIC PROPERTIES OF LONG FIBRE AND PARTICLE REINFORCED

COMPOSITES

In general, the orientation average, eq.(3.20), has to be evaluated numerically since 

the form of the stiffness matrix [D] in eq.(3.20) is orientation dependent. If all 

constituents remain elastic, however, the integration can be carried out analytically. For 

the later case, eq.(3.20) yields

^ 11 “ ^11 > ^ 22 = (^•^22+^^33+^‘^23+^'^66^/^

^33 “ ^ 22 ’ ^ 44 " (^44+^5s)^

^ 55 “ ^ 44 ’ ^66° (^ZZ^SS-^^ZS^^fifi)^

^■11 " ^ 13 » ^ 13 “ (P^+D^ll

^23 S ^32 ’ -^ 23 = (^22+^33+^^23~2Dgg)/8

(3.21)

It is noted that [D] corresponds to an orthotropic material, whereas [D'] is that of 

transversely isotropic one. In terms of elastic constants, one has (see Hashin and Rosen, 

1964)

J^ - (D^By/2 ; 633 - (D^-D^/2

$12 " ^44 ’ ^11 “ & 11“^ 1J(P 23+j^ 22)

V12 “ ^(^ ll~^l^l^23

Numerical simulations have been performed for glass fibres and epoxy matrix. The elastic
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constants of both constituents have been assumed after Zhao and Weng (1990)

Fibres: Ef=72.4 GPa, Vf=0.20

Matrix: Em=2.76 GPa, vm=0.35

Fig.3.1 presents the variation of the five elastic constants as predicted by eq.(3.21). The 

results have been compared with those obtained from the equivalent inclusion method 

(Zhao and Weng, 1990), which is based on EShelby’s solution of ellipsoidal inclusion 

(Eshelby, 1957) and Mori-Tanaka mean field theory (Mori and Tanaka, 1973). It can be 

seen that the estimates based on the two approaches are very close.

For a composite reinforced with randomly distributed particles, an appropriate 

three-dimensional orientation average has to be evaluated. In such a case, transformation 

matrices [T'] and [T] in eq.(3.20) are function of three independent variables, for 

instance Euler angles. It is obvious that lengthy algebraic manipulations are unavoidable 

in order to arrive at an analytical solution. An alternative is to establish the orientation 

average specified in eq.(3.20) first, and introduce a spherical coordinate system in order 

to perform the subsequent averaging. The latter approach was suggested by Christensen 

and Waals (1972) and results in

^33 " (3^\i+8D'jj •MD'u 440'44)715 

^23 " ^ n+^ 23+^ 12+$^ 23 ~^^ ^^

where [D'], eq.(3.20), is established by inserting one more family of layers to create a 

laminate system strengthened by cubic particles. The bulk and shear moduli are defined
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as

* - OV^# ; G - (D^-D^/2

The numerical simulations have been performed using the same elastic constants as those 

for the fibrous composite and the results are presented in Fig.3.2. Again, a good 

agreement with the solution based the equivalent inclusion method (Weng, 1973) can be 

observed.

3.4 ELASTOPLASTIC RESPONSE OF FIBROUS COMPOSITE

In this section, the elastoplastic behaviour of boron/aluminum composite system 

is investigated. The mechanical properties of this composite are taken from the literature 

(Kenaga, Doyle and Sun, 1987; Sun and Chen, 1991). The elastic constants and the . 

volume fractions are as follows

Boron fibres: Ef=379.3 GPa, Vf=0.1

Aluminum matrix: Em=68.3GPa, vm=0.3

Volume fractions: Cf=0.47, ^=0.53

The matrix is assumed to be a von Mises material with isotropic hardening obeying an 

associated flow rule. The yield function is given by
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f= o-k(5) ; a -

in which S^ represents deviatoric stress tensor and the hardening function k(Q is selected 

in the hyperbolic form

K® - VC"/’^-^

where as and Of denote the initial tensile yield stress and ultimate stress respectively, and

A is a material constant. The hardening parameter is defined as

in which depjj represents the deviatoric plastic strain rate. From the information provided 

in papers by Kenaga, et al. (1987) and Sun and Chen (1991), it can be estimated that 

os=43 MPa, Of=76 MPa and A=0.00276. The tensile stress-strain diagram is re-plotted 

in Fig.33. Following the standard plasticity procedure, the elastoplastic stiffness matrix 

can be established.

In order to evaluate the orientation average, eq.(3.20), Gaussian quadrature has 

been employed. Five Gaussian sample points were chosen within the interval [0, tt]. The 

averaging scheme has been tested first in the context of elasticity, yielding the results 

identical to those obtained from the analytical solution, eq.(3.21). The scheme has been
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subsequently tested for elastoplastic response. The stress-strain response of transverse 

uniaxial tensions and longitudinal pure shears is shown in Fig.3.4. It can be seen that the 

inherent isotropy of a fibrous composite has been preserved and consequently the 

averaging scheme is acceptable.

Fig.3.5 shows the uniaxial tensile stress-strain curves, in which a indicates the 

orientation of fibres with respect to the direction of tensile stress. It can be seen that the 

predicted response is generally stiffer than the experimental one. Fors^ 45°, reasonable 

results are obtained, however the curve for# =60’ lies above that for ^=45°. The latter 

result is consistent with the assumption of perfect bonding and indicates however that for 

large values of a other mechanisms, such as slippage and separation between fibres and 

matrix, contribute to the elastoplastic stress-strain response. Fig.3.6 depicts the variation 

of the tensile strength with the orientation of fibres. It can be seen that for 5-=45’ the 

tensile strength reaches the minimum value. The maximum value of 2004 MPa 

corresponds to ^=0°. Furthermore, it can be observed that the tensile strength is highly 

overestimated for large values of ft.

3.5 CONCLUSIONS

A micro-mechanical approach has been suggested for modelling the elastoplastic 

behaviour of perfectly bonded composite systems. The approach has been based on the 

concept of a superimposed medium combined with appropriate orientation averaging



schemes. The overall mechanical properties of a medium embodying two/three families 

of mutually orthogonal layers have been established by considering their influence 

separately. In conceptual terms, such a procedure results in creating a laminate system 

strengthened by square fibres or cubic particles. Such a system is supposed to 

approximate the response of a fibre/particle reinforced composite system after the 

orientation average is taken.

The elastic response of fibre/particle reinforced composites has been simulated. 

The proposed approach furnishes very reasonable predictions in comparison to the 

solutions from the equivalent inclusion method. The elastoplastic analysis results in quite 

reasonable estimates which are consistent with the assumption of perfect bonding. A 

more precise microscopic description of the elastoplastic behaviour requires the 

incorporation of other mechanisms such as slippage and separation at the interfaces 

between constituents.

3.6 APPENDWMVATION OF STRAIN CONCENTRATION TENSORS

la order to provide an explicit form of the overall constitutive relation, it is 

convenient to introduce the following identities


